* tree-ssa-live.c (live_worklist): Take a stack allocated on
[official-gcc.git] / gcc / ada / exp_attr.adb
blobe832c5a5457c097c53811c2588f6a09fef2df4a4
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- E X P _ A T T R --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2005, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
20 -- MA 02111-1307, USA. --
21 -- --
22 -- GNAT was originally developed by the GNAT team at New York University. --
23 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 -- --
25 ------------------------------------------------------------------------------
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Einfo; use Einfo;
30 with Elists; use Elists;
31 with Exp_Ch2; use Exp_Ch2;
32 with Exp_Ch9; use Exp_Ch9;
33 with Exp_Imgv; use Exp_Imgv;
34 with Exp_Pakd; use Exp_Pakd;
35 with Exp_Strm; use Exp_Strm;
36 with Exp_Tss; use Exp_Tss;
37 with Exp_Util; use Exp_Util;
38 with Gnatvsn; use Gnatvsn;
39 with Hostparm; use Hostparm;
40 with Lib; use Lib;
41 with Namet; use Namet;
42 with Nmake; use Nmake;
43 with Nlists; use Nlists;
44 with Opt; use Opt;
45 with Restrict; use Restrict;
46 with Rident; use Rident;
47 with Rtsfind; use Rtsfind;
48 with Sem; use Sem;
49 with Sem_Ch7; use Sem_Ch7;
50 with Sem_Ch8; use Sem_Ch8;
51 with Sem_Eval; use Sem_Eval;
52 with Sem_Res; use Sem_Res;
53 with Sem_Util; use Sem_Util;
54 with Sinfo; use Sinfo;
55 with Snames; use Snames;
56 with Stand; use Stand;
57 with Stringt; use Stringt;
58 with Tbuild; use Tbuild;
59 with Ttypes; use Ttypes;
60 with Uintp; use Uintp;
61 with Uname; use Uname;
62 with Validsw; use Validsw;
64 package body Exp_Attr is
66 -----------------------
67 -- Local Subprograms --
68 -----------------------
70 procedure Compile_Stream_Body_In_Scope
71 (N : Node_Id;
72 Decl : Node_Id;
73 Arr : Entity_Id;
74 Check : Boolean);
75 -- The body for a stream subprogram may be generated outside of the scope
76 -- of the type. If the type is fully private, it may depend on the full
77 -- view of other types (e.g. indices) that are currently private as well.
78 -- We install the declarations of the package in which the type is declared
79 -- before compiling the body in what is its proper environment. The Check
80 -- parameter indicates if checks are to be suppressed for the stream body.
81 -- We suppress checks for array/record reads, since the rule is that these
82 -- are like assignments, out of range values due to uninitialized storage,
83 -- or other invalid values do NOT cause a Constraint_Error to be raised.
85 procedure Expand_Fpt_Attribute
86 (N : Node_Id;
87 Rtp : Entity_Id;
88 Nam : Name_Id;
89 Args : List_Id);
90 -- This procedure expands a call to a floating-point attribute function.
91 -- N is the attribute reference node, and Args is a list of arguments to
92 -- be passed to the function call. Rtp is the root type of the floating
93 -- point type involved (used to select the proper generic instantiation
94 -- of the package containing the attribute routines). The Nam argument
95 -- is the attribute processing routine to be called. This is normally
96 -- the same as the attribute name, except in the Unaligned_Valid case.
98 procedure Expand_Fpt_Attribute_R (N : Node_Id);
99 -- This procedure expands a call to a floating-point attribute function
100 -- that takes a single floating-point argument. The function to be called
101 -- is always the same as the attribute name.
103 procedure Expand_Fpt_Attribute_RI (N : Node_Id);
104 -- This procedure expands a call to a floating-point attribute function
105 -- that takes one floating-point argument and one integer argument. The
106 -- function to be called is always the same as the attribute name.
108 procedure Expand_Fpt_Attribute_RR (N : Node_Id);
109 -- This procedure expands a call to a floating-point attribute function
110 -- that takes two floating-point arguments. The function to be called
111 -- is always the same as the attribute name.
113 procedure Expand_Pred_Succ (N : Node_Id);
114 -- Handles expansion of Pred or Succ attributes for case of non-real
115 -- operand with overflow checking required.
117 function Get_Index_Subtype (N : Node_Id) return Entity_Id;
118 -- Used for Last, Last, and Length, when the prefix is an array type,
119 -- Obtains the corresponding index subtype.
121 procedure Expand_Access_To_Type (N : Node_Id);
122 -- A reference to a type within its own scope is resolved to a reference
123 -- to the current instance of the type in its initialization procedure.
125 function Find_Stream_Subprogram
126 (Typ : Entity_Id;
127 Nam : TSS_Name_Type) return Entity_Id;
128 -- Returns the stream-oriented subprogram attribute for Typ. For tagged
129 -- types, the corresponding primitive operation is looked up, else the
130 -- appropriate TSS from the type itself, or from its closest ancestor
131 -- defining it, is returned. In both cases, inheritance of representation
132 -- aspects is thus taken into account.
134 function Get_Stream_Convert_Pragma (T : Entity_Id) return Node_Id;
135 -- Given a type, find a corresponding stream convert pragma that applies to
136 -- the implementation base type of this type (Typ). If found, return the
137 -- pragma node, otherwise return Empty if no pragma is found.
139 function Is_Constrained_Packed_Array (Typ : Entity_Id) return Boolean;
140 -- Utility for array attributes, returns true on packed constrained
141 -- arrays, and on access to same.
143 ----------------------------------
144 -- Compile_Stream_Body_In_Scope --
145 ----------------------------------
147 procedure Compile_Stream_Body_In_Scope
148 (N : Node_Id;
149 Decl : Node_Id;
150 Arr : Entity_Id;
151 Check : Boolean)
153 Installed : Boolean := False;
154 Scop : constant Entity_Id := Scope (Arr);
155 Curr : constant Entity_Id := Current_Scope;
157 begin
158 if Is_Hidden (Arr)
159 and then not In_Open_Scopes (Scop)
160 and then Ekind (Scop) = E_Package
161 then
162 New_Scope (Scop);
163 Install_Visible_Declarations (Scop);
164 Install_Private_Declarations (Scop);
165 Installed := True;
167 -- The entities in the package are now visible, but the generated
168 -- stream entity must appear in the current scope (usually an
169 -- enclosing stream function) so that itypes all have their proper
170 -- scopes.
172 New_Scope (Curr);
173 end if;
175 if Check then
176 Insert_Action (N, Decl);
177 else
178 Insert_Action (N, Decl, All_Checks);
179 end if;
181 if Installed then
183 -- Remove extra copy of current scope, and package itself
185 Pop_Scope;
186 End_Package_Scope (Scop);
187 end if;
188 end Compile_Stream_Body_In_Scope;
190 ---------------------------
191 -- Expand_Access_To_Type --
192 ---------------------------
194 procedure Expand_Access_To_Type (N : Node_Id) is
195 Loc : constant Source_Ptr := Sloc (N);
196 Typ : constant Entity_Id := Etype (N);
197 Pref : constant Node_Id := Prefix (N);
198 Par : Node_Id;
199 Formal : Entity_Id;
201 begin
202 if Is_Entity_Name (Pref)
203 and then Is_Type (Entity (Pref))
204 then
205 -- If the current instance name denotes a task type,
206 -- then the access attribute is rewritten to be the
207 -- name of the "_task" parameter associated with the
208 -- task type's task body procedure. An unchecked
209 -- conversion is applied to ensure a type match in
210 -- cases of expander-generated calls (e.g., init procs).
212 if Is_Task_Type (Entity (Pref)) then
213 Formal :=
214 First_Entity (Get_Task_Body_Procedure (Entity (Pref)));
216 while Present (Formal) loop
217 exit when Chars (Formal) = Name_uTask;
218 Next_Entity (Formal);
219 end loop;
221 pragma Assert (Present (Formal));
223 Rewrite (N,
224 Unchecked_Convert_To (Typ, New_Occurrence_Of (Formal, Loc)));
225 Set_Etype (N, Typ);
227 -- The expression must appear in a default expression,
228 -- (which in the initialization procedure is the rhs of
229 -- an assignment), and not in a discriminant constraint.
231 else
232 Par := Parent (N);
234 while Present (Par) loop
235 exit when Nkind (Par) = N_Assignment_Statement;
237 if Nkind (Par) = N_Component_Declaration then
238 return;
239 end if;
241 Par := Parent (Par);
242 end loop;
244 if Present (Par) then
245 Rewrite (N,
246 Make_Attribute_Reference (Loc,
247 Prefix => Make_Identifier (Loc, Name_uInit),
248 Attribute_Name => Attribute_Name (N)));
250 Analyze_And_Resolve (N, Typ);
251 end if;
252 end if;
253 end if;
254 end Expand_Access_To_Type;
256 --------------------------
257 -- Expand_Fpt_Attribute --
258 --------------------------
260 procedure Expand_Fpt_Attribute
261 (N : Node_Id;
262 Rtp : Entity_Id;
263 Nam : Name_Id;
264 Args : List_Id)
266 Loc : constant Source_Ptr := Sloc (N);
267 Typ : constant Entity_Id := Etype (N);
268 Pkg : RE_Id;
269 Fnm : Node_Id;
271 begin
272 -- The function name is the selected component Fat_xxx.yyy where xxx
273 -- is the floating-point root type, and yyy is the argument Nam.
275 -- Note: it would be more usual to have separate RE entries for each
276 -- of the entities in the Fat packages, but first they have identical
277 -- names (so we would have to have lots of renaming declarations to
278 -- meet the normal RE rule of separate names for all runtime entities),
279 -- and second there would be an awful lot of them!
281 if Rtp = Standard_Short_Float then
282 Pkg := RE_Fat_Short_Float;
283 elsif Rtp = Standard_Float then
284 Pkg := RE_Fat_Float;
285 elsif Rtp = Standard_Long_Float then
286 Pkg := RE_Fat_Long_Float;
287 else
288 Pkg := RE_Fat_Long_Long_Float;
289 end if;
291 Fnm :=
292 Make_Selected_Component (Loc,
293 Prefix => New_Reference_To (RTE (Pkg), Loc),
294 Selector_Name => Make_Identifier (Loc, Nam));
296 -- The generated call is given the provided set of parameters, and then
297 -- wrapped in a conversion which converts the result to the target type
298 -- We use the base type as the target because a range check may be
299 -- required.
301 Rewrite (N,
302 Unchecked_Convert_To (Base_Type (Etype (N)),
303 Make_Function_Call (Loc,
304 Name => Fnm,
305 Parameter_Associations => Args)));
307 Analyze_And_Resolve (N, Typ);
308 end Expand_Fpt_Attribute;
310 ----------------------------
311 -- Expand_Fpt_Attribute_R --
312 ----------------------------
314 -- The single argument is converted to its root type to call the
315 -- appropriate runtime function, with the actual call being built
316 -- by Expand_Fpt_Attribute
318 procedure Expand_Fpt_Attribute_R (N : Node_Id) is
319 E1 : constant Node_Id := First (Expressions (N));
320 Rtp : constant Entity_Id := Root_Type (Etype (E1));
322 begin
323 Expand_Fpt_Attribute
324 (N, Rtp, Attribute_Name (N),
325 New_List (Unchecked_Convert_To (Rtp, Relocate_Node (E1))));
326 end Expand_Fpt_Attribute_R;
328 -----------------------------
329 -- Expand_Fpt_Attribute_RI --
330 -----------------------------
332 -- The first argument is converted to its root type and the second
333 -- argument is converted to standard long long integer to call the
334 -- appropriate runtime function, with the actual call being built
335 -- by Expand_Fpt_Attribute
337 procedure Expand_Fpt_Attribute_RI (N : Node_Id) is
338 E1 : constant Node_Id := First (Expressions (N));
339 Rtp : constant Entity_Id := Root_Type (Etype (E1));
340 E2 : constant Node_Id := Next (E1);
342 begin
343 Expand_Fpt_Attribute
344 (N, Rtp, Attribute_Name (N),
345 New_List (
346 Unchecked_Convert_To (Rtp, Relocate_Node (E1)),
347 Unchecked_Convert_To (Standard_Integer, Relocate_Node (E2))));
348 end Expand_Fpt_Attribute_RI;
350 -----------------------------
351 -- Expand_Fpt_Attribute_RR --
352 -----------------------------
354 -- The two arguments is converted to their root types to call the
355 -- appropriate runtime function, with the actual call being built
356 -- by Expand_Fpt_Attribute
358 procedure Expand_Fpt_Attribute_RR (N : Node_Id) is
359 E1 : constant Node_Id := First (Expressions (N));
360 Rtp : constant Entity_Id := Root_Type (Etype (E1));
361 E2 : constant Node_Id := Next (E1);
363 begin
364 Expand_Fpt_Attribute
365 (N, Rtp, Attribute_Name (N),
366 New_List (
367 Unchecked_Convert_To (Rtp, Relocate_Node (E1)),
368 Unchecked_Convert_To (Rtp, Relocate_Node (E2))));
369 end Expand_Fpt_Attribute_RR;
371 ----------------------------------
372 -- Expand_N_Attribute_Reference --
373 ----------------------------------
375 procedure Expand_N_Attribute_Reference (N : Node_Id) is
376 Loc : constant Source_Ptr := Sloc (N);
377 Typ : constant Entity_Id := Etype (N);
378 Btyp : constant Entity_Id := Base_Type (Typ);
379 Pref : constant Node_Id := Prefix (N);
380 Exprs : constant List_Id := Expressions (N);
381 Id : constant Attribute_Id := Get_Attribute_Id (Attribute_Name (N));
383 procedure Rewrite_Stream_Proc_Call (Pname : Entity_Id);
384 -- Rewrites a stream attribute for Read, Write or Output with the
385 -- procedure call. Pname is the entity for the procedure to call.
387 ------------------------------
388 -- Rewrite_Stream_Proc_Call --
389 ------------------------------
391 procedure Rewrite_Stream_Proc_Call (Pname : Entity_Id) is
392 Item : constant Node_Id := Next (First (Exprs));
393 Formal : constant Entity_Id := Next_Formal (First_Formal (Pname));
394 Formal_Typ : constant Entity_Id := Etype (Formal);
395 Is_Written : constant Boolean := (Ekind (Formal) /= E_In_Parameter);
397 begin
398 -- The expansion depends on Item, the second actual, which is
399 -- the object being streamed in or out.
401 -- If the item is a component of a packed array type, and
402 -- a conversion is needed on exit, we introduce a temporary to
403 -- hold the value, because otherwise the packed reference will
404 -- not be properly expanded.
406 if Nkind (Item) = N_Indexed_Component
407 and then Is_Packed (Base_Type (Etype (Prefix (Item))))
408 and then Base_Type (Etype (Item)) /= Base_Type (Formal_Typ)
409 and then Is_Written
410 then
411 declare
412 Temp : constant Entity_Id :=
413 Make_Defining_Identifier
414 (Loc, New_Internal_Name ('V'));
415 Decl : Node_Id;
416 Assn : Node_Id;
418 begin
419 Decl :=
420 Make_Object_Declaration (Loc,
421 Defining_Identifier => Temp,
422 Object_Definition =>
423 New_Occurrence_Of (Formal_Typ, Loc));
424 Set_Etype (Temp, Formal_Typ);
426 Assn :=
427 Make_Assignment_Statement (Loc,
428 Name => New_Copy_Tree (Item),
429 Expression =>
430 Unchecked_Convert_To
431 (Etype (Item), New_Occurrence_Of (Temp, Loc)));
433 Rewrite (Item, New_Occurrence_Of (Temp, Loc));
434 Insert_Actions (N,
435 New_List (
436 Decl,
437 Make_Procedure_Call_Statement (Loc,
438 Name => New_Occurrence_Of (Pname, Loc),
439 Parameter_Associations => Exprs),
440 Assn));
442 Rewrite (N, Make_Null_Statement (Loc));
443 return;
444 end;
445 end if;
447 -- For the class-wide dispatching cases, and for cases in which
448 -- the base type of the second argument matches the base type of
449 -- the corresponding formal parameter (that is to say the stream
450 -- operation is not inherited), we are all set, and can use the
451 -- argument unchanged.
453 -- For all other cases we do an unchecked conversion of the second
454 -- parameter to the type of the formal of the procedure we are
455 -- calling. This deals with the private type cases, and with going
456 -- to the root type as required in elementary type case.
458 if not Is_Class_Wide_Type (Entity (Pref))
459 and then not Is_Class_Wide_Type (Etype (Item))
460 and then Base_Type (Etype (Item)) /= Base_Type (Formal_Typ)
461 then
462 Rewrite (Item,
463 Unchecked_Convert_To (Formal_Typ, Relocate_Node (Item)));
465 -- For untagged derived types set Assignment_OK, to prevent
466 -- copies from being created when the unchecked conversion
467 -- is expanded (which would happen in Remove_Side_Effects
468 -- if Expand_N_Unchecked_Conversion were allowed to call
469 -- Force_Evaluation). The copy could violate Ada semantics
470 -- in cases such as an actual that is an out parameter.
471 -- Note that this approach is also used in exp_ch7 for calls
472 -- to controlled type operations to prevent problems with
473 -- actuals wrapped in unchecked conversions.
475 if Is_Untagged_Derivation (Etype (Expression (Item))) then
476 Set_Assignment_OK (Item);
477 end if;
478 end if;
480 -- And now rewrite the call
482 Rewrite (N,
483 Make_Procedure_Call_Statement (Loc,
484 Name => New_Occurrence_Of (Pname, Loc),
485 Parameter_Associations => Exprs));
487 Analyze (N);
488 end Rewrite_Stream_Proc_Call;
490 -- Start of processing for Expand_N_Attribute_Reference
492 begin
493 -- Do required validity checking, if enabled. Do not apply check to
494 -- output parameters of an Asm instruction, since the value of this
495 -- is not set till after the attribute has been elaborated.
497 if Validity_Checks_On and then Validity_Check_Operands
498 and then Id /= Attribute_Asm_Output
499 then
500 declare
501 Expr : Node_Id;
502 begin
503 Expr := First (Expressions (N));
504 while Present (Expr) loop
505 Ensure_Valid (Expr);
506 Next (Expr);
507 end loop;
508 end;
509 end if;
511 -- Remaining processing depends on specific attribute
513 case Id is
515 ------------
516 -- Access --
517 ------------
519 when Attribute_Access =>
521 if Ekind (Btyp) = E_Access_Protected_Subprogram_Type then
523 -- The value of the attribute_reference is a record containing
524 -- two fields: an access to the protected object, and an access
525 -- to the subprogram itself. The prefix is a selected component.
527 declare
528 Agg : Node_Id;
529 Sub : Entity_Id;
530 E_T : constant Entity_Id := Equivalent_Type (Btyp);
531 Acc : constant Entity_Id :=
532 Etype (Next_Component (First_Component (E_T)));
533 Obj_Ref : Node_Id;
534 Curr : Entity_Id;
536 begin
537 -- Within the body of the protected type, the prefix
538 -- designates a local operation, and the object is the first
539 -- parameter of the corresponding protected body of the
540 -- current enclosing operation.
542 if Is_Entity_Name (Pref) then
543 pragma Assert (In_Open_Scopes (Scope (Entity (Pref))));
544 Sub :=
545 New_Occurrence_Of
546 (Protected_Body_Subprogram (Entity (Pref)), Loc);
547 Curr := Current_Scope;
549 while Scope (Curr) /= Scope (Entity (Pref)) loop
550 Curr := Scope (Curr);
551 end loop;
553 Obj_Ref :=
554 Make_Attribute_Reference (Loc,
555 Prefix =>
556 New_Occurrence_Of
557 (First_Formal
558 (Protected_Body_Subprogram (Curr)), Loc),
559 Attribute_Name => Name_Address);
561 -- Case where the prefix is not an entity name. Find the
562 -- version of the protected operation to be called from
563 -- outside the protected object.
565 else
566 Sub :=
567 New_Occurrence_Of
568 (External_Subprogram
569 (Entity (Selector_Name (Pref))), Loc);
571 Obj_Ref :=
572 Make_Attribute_Reference (Loc,
573 Prefix => Relocate_Node (Prefix (Pref)),
574 Attribute_Name => Name_Address);
575 end if;
577 Agg :=
578 Make_Aggregate (Loc,
579 Expressions =>
580 New_List (
581 Obj_Ref,
582 Unchecked_Convert_To (Acc,
583 Make_Attribute_Reference (Loc,
584 Prefix => Sub,
585 Attribute_Name => Name_Address))));
587 Rewrite (N, Agg);
589 Analyze_And_Resolve (N, E_T);
591 -- For subsequent analysis, the node must retain its type.
592 -- The backend will replace it with the equivalent type where
593 -- needed.
595 Set_Etype (N, Typ);
596 end;
598 elsif Ekind (Btyp) = E_General_Access_Type then
599 declare
600 Ref_Object : constant Node_Id := Get_Referenced_Object (Pref);
601 Parm_Ent : Entity_Id;
602 Conversion : Node_Id;
604 begin
605 -- If the prefix of an Access attribute is a dereference of an
606 -- access parameter (or a renaming of such a dereference) and
607 -- the context is a general access type (but not an anonymous
608 -- access type), then rewrite the attribute as a conversion of
609 -- the access parameter to the context access type. This will
610 -- result in an accessibility check being performed, if needed.
612 -- (X.all'Access => Acc_Type (X))
614 if Nkind (Ref_Object) = N_Explicit_Dereference
615 and then Is_Entity_Name (Prefix (Ref_Object))
616 then
617 Parm_Ent := Entity (Prefix (Ref_Object));
619 if Ekind (Parm_Ent) in Formal_Kind
620 and then Ekind (Etype (Parm_Ent)) = E_Anonymous_Access_Type
621 and then Present (Extra_Accessibility (Parm_Ent))
622 then
623 Conversion :=
624 Convert_To (Typ, New_Copy_Tree (Prefix (Ref_Object)));
626 Rewrite (N, Conversion);
627 Analyze_And_Resolve (N, Typ);
628 end if;
629 end if;
630 end;
632 -- If the prefix is a type name, this is a reference to the current
633 -- instance of the type, within its initialization procedure.
635 else
636 Expand_Access_To_Type (N);
637 end if;
639 --------------
640 -- Adjacent --
641 --------------
643 -- Transforms 'Adjacent into a call to the floating-point attribute
644 -- function Adjacent in Fat_xxx (where xxx is the root type)
646 when Attribute_Adjacent =>
647 Expand_Fpt_Attribute_RR (N);
649 -------------
650 -- Address --
651 -------------
653 when Attribute_Address => Address : declare
654 Task_Proc : Entity_Id;
656 begin
657 -- If the prefix is a task or a task type, the useful address
658 -- is that of the procedure for the task body, i.e. the actual
659 -- program unit. We replace the original entity with that of
660 -- the procedure.
662 if Is_Entity_Name (Pref)
663 and then Is_Task_Type (Entity (Pref))
664 then
665 Task_Proc := Next_Entity (Root_Type (Etype (Pref)));
667 while Present (Task_Proc) loop
668 exit when Ekind (Task_Proc) = E_Procedure
669 and then Etype (First_Formal (Task_Proc)) =
670 Corresponding_Record_Type (Etype (Pref));
671 Next_Entity (Task_Proc);
672 end loop;
674 if Present (Task_Proc) then
675 Set_Entity (Pref, Task_Proc);
676 Set_Etype (Pref, Etype (Task_Proc));
677 end if;
679 -- Similarly, the address of a protected operation is the address
680 -- of the corresponding protected body, regardless of the protected
681 -- object from which it is selected.
683 elsif Nkind (Pref) = N_Selected_Component
684 and then Is_Subprogram (Entity (Selector_Name (Pref)))
685 and then Is_Protected_Type (Scope (Entity (Selector_Name (Pref))))
686 then
687 Rewrite (Pref,
688 New_Occurrence_Of (
689 External_Subprogram (Entity (Selector_Name (Pref))), Loc));
691 elsif Nkind (Pref) = N_Explicit_Dereference
692 and then Ekind (Etype (Pref)) = E_Subprogram_Type
693 and then Convention (Etype (Pref)) = Convention_Protected
694 then
695 -- The prefix is be a dereference of an access_to_protected_
696 -- subprogram. The desired address is the second component of
697 -- the record that represents the access.
699 declare
700 Addr : constant Entity_Id := Etype (N);
701 Ptr : constant Node_Id := Prefix (Pref);
702 T : constant Entity_Id :=
703 Equivalent_Type (Base_Type (Etype (Ptr)));
705 begin
706 Rewrite (N,
707 Unchecked_Convert_To (Addr,
708 Make_Selected_Component (Loc,
709 Prefix => Unchecked_Convert_To (T, Ptr),
710 Selector_Name => New_Occurrence_Of (
711 Next_Entity (First_Entity (T)), Loc))));
713 Analyze_And_Resolve (N, Addr);
714 end;
715 end if;
717 -- Deal with packed array reference, other cases are handled by gigi
719 if Involves_Packed_Array_Reference (Pref) then
720 Expand_Packed_Address_Reference (N);
721 end if;
722 end Address;
724 ---------------
725 -- Alignment --
726 ---------------
728 when Attribute_Alignment => Alignment : declare
729 Ptyp : constant Entity_Id := Etype (Pref);
730 New_Node : Node_Id;
732 begin
733 -- For class-wide types, X'Class'Alignment is transformed into a
734 -- direct reference to the Alignment of the class type, so that the
735 -- back end does not have to deal with the X'Class'Alignment
736 -- reference.
738 if Is_Entity_Name (Pref)
739 and then Is_Class_Wide_Type (Entity (Pref))
740 then
741 Rewrite (Prefix (N), New_Occurrence_Of (Entity (Pref), Loc));
742 return;
744 -- For x'Alignment applied to an object of a class wide type,
745 -- transform X'Alignment into a call to the predefined primitive
746 -- operation _Alignment applied to X.
748 elsif Is_Class_Wide_Type (Ptyp) then
749 New_Node :=
750 Make_Function_Call (Loc,
751 Name => New_Reference_To
752 (Find_Prim_Op (Ptyp, Name_uAlignment), Loc),
753 Parameter_Associations => New_List (Pref));
755 if Typ /= Standard_Integer then
757 -- The context is a specific integer type with which the
758 -- original attribute was compatible. The function has a
759 -- specific type as well, so to preserve the compatibility
760 -- we must convert explicitly.
762 New_Node := Convert_To (Typ, New_Node);
763 end if;
765 Rewrite (N, New_Node);
766 Analyze_And_Resolve (N, Typ);
767 return;
769 -- For all other cases, we just have to deal with the case of
770 -- the fact that the result can be universal.
772 else
773 Apply_Universal_Integer_Attribute_Checks (N);
774 end if;
775 end Alignment;
777 ---------------
778 -- AST_Entry --
779 ---------------
781 when Attribute_AST_Entry => AST_Entry : declare
782 Ttyp : Entity_Id;
783 T_Id : Node_Id;
784 Eent : Entity_Id;
786 Entry_Ref : Node_Id;
787 -- The reference to the entry or entry family
789 Index : Node_Id;
790 -- The index expression for an entry family reference, or
791 -- the Empty if Entry_Ref references a simple entry.
793 begin
794 if Nkind (Pref) = N_Indexed_Component then
795 Entry_Ref := Prefix (Pref);
796 Index := First (Expressions (Pref));
797 else
798 Entry_Ref := Pref;
799 Index := Empty;
800 end if;
802 -- Get expression for Task_Id and the entry entity
804 if Nkind (Entry_Ref) = N_Selected_Component then
805 T_Id :=
806 Make_Attribute_Reference (Loc,
807 Attribute_Name => Name_Identity,
808 Prefix => Prefix (Entry_Ref));
810 Ttyp := Etype (Prefix (Entry_Ref));
811 Eent := Entity (Selector_Name (Entry_Ref));
813 else
814 T_Id :=
815 Make_Function_Call (Loc,
816 Name => New_Occurrence_Of (RTE (RE_Current_Task), Loc));
818 Eent := Entity (Entry_Ref);
820 -- We have to find the enclosing task to get the task type
821 -- There must be one, since we already validated this earlier
823 Ttyp := Current_Scope;
824 while not Is_Task_Type (Ttyp) loop
825 Ttyp := Scope (Ttyp);
826 end loop;
827 end if;
829 -- Now rewrite the attribute with a call to Create_AST_Handler
831 Rewrite (N,
832 Make_Function_Call (Loc,
833 Name => New_Occurrence_Of (RTE (RE_Create_AST_Handler), Loc),
834 Parameter_Associations => New_List (
835 T_Id,
836 Entry_Index_Expression (Loc, Eent, Index, Ttyp))));
838 Analyze_And_Resolve (N, RTE (RE_AST_Handler));
839 end AST_Entry;
841 ------------------
842 -- Bit_Position --
843 ------------------
845 -- We compute this if a component clause was present, otherwise
846 -- we leave the computation up to Gigi, since we don't know what
847 -- layout will be chosen.
849 -- Note that the attribute can apply to a naked record component
850 -- in generated code (i.e. the prefix is an identifier that
851 -- references the component or discriminant entity).
853 when Attribute_Bit_Position => Bit_Position :
854 declare
855 CE : Entity_Id;
857 begin
858 if Nkind (Pref) = N_Identifier then
859 CE := Entity (Pref);
860 else
861 CE := Entity (Selector_Name (Pref));
862 end if;
864 if Known_Static_Component_Bit_Offset (CE) then
865 Rewrite (N,
866 Make_Integer_Literal (Loc,
867 Intval => Component_Bit_Offset (CE)));
868 Analyze_And_Resolve (N, Typ);
870 else
871 Apply_Universal_Integer_Attribute_Checks (N);
872 end if;
873 end Bit_Position;
875 ------------------
876 -- Body_Version --
877 ------------------
879 -- A reference to P'Body_Version or P'Version is expanded to
881 -- Vnn : Unsigned;
882 -- pragma Import (C, Vnn, "uuuuT";
883 -- ...
884 -- Get_Version_String (Vnn)
886 -- where uuuu is the unit name (dots replaced by double underscore)
887 -- and T is B for the cases of Body_Version, or Version applied to a
888 -- subprogram acting as its own spec, and S for Version applied to a
889 -- subprogram spec or package. This sequence of code references the
890 -- the unsigned constant created in the main program by the binder.
892 -- A special exception occurs for Standard, where the string
893 -- returned is a copy of the library string in gnatvsn.ads.
895 when Attribute_Body_Version | Attribute_Version => Version : declare
896 E : constant Entity_Id :=
897 Make_Defining_Identifier (Loc, New_Internal_Name ('V'));
898 Pent : Entity_Id := Entity (Pref);
899 S : String_Id;
901 begin
902 -- If not library unit, get to containing library unit
904 while Pent /= Standard_Standard
905 and then Scope (Pent) /= Standard_Standard
906 loop
907 Pent := Scope (Pent);
908 end loop;
910 -- Special case Standard
912 if Pent = Standard_Standard
913 or else Pent = Standard_ASCII
914 then
915 Rewrite (N,
916 Make_String_Literal (Loc,
917 Strval => Verbose_Library_Version));
919 -- All other cases
921 else
922 -- Build required string constant
924 Get_Name_String (Get_Unit_Name (Pent));
926 Start_String;
927 for J in 1 .. Name_Len - 2 loop
928 if Name_Buffer (J) = '.' then
929 Store_String_Chars ("__");
930 else
931 Store_String_Char (Get_Char_Code (Name_Buffer (J)));
932 end if;
933 end loop;
935 -- Case of subprogram acting as its own spec, always use body
937 if Nkind (Declaration_Node (Pent)) in N_Subprogram_Specification
938 and then Nkind (Parent (Declaration_Node (Pent))) =
939 N_Subprogram_Body
940 and then Acts_As_Spec (Parent (Declaration_Node (Pent)))
941 then
942 Store_String_Chars ("B");
944 -- Case of no body present, always use spec
946 elsif not Unit_Requires_Body (Pent) then
947 Store_String_Chars ("S");
949 -- Otherwise use B for Body_Version, S for spec
951 elsif Id = Attribute_Body_Version then
952 Store_String_Chars ("B");
953 else
954 Store_String_Chars ("S");
955 end if;
957 S := End_String;
958 Lib.Version_Referenced (S);
960 -- Insert the object declaration
962 Insert_Actions (N, New_List (
963 Make_Object_Declaration (Loc,
964 Defining_Identifier => E,
965 Object_Definition =>
966 New_Occurrence_Of (RTE (RE_Unsigned), Loc))));
968 -- Set entity as imported with correct external name
970 Set_Is_Imported (E);
971 Set_Interface_Name (E, Make_String_Literal (Loc, S));
973 -- And now rewrite original reference
975 Rewrite (N,
976 Make_Function_Call (Loc,
977 Name => New_Reference_To (RTE (RE_Get_Version_String), Loc),
978 Parameter_Associations => New_List (
979 New_Occurrence_Of (E, Loc))));
980 end if;
982 Analyze_And_Resolve (N, RTE (RE_Version_String));
983 end Version;
985 -------------
986 -- Ceiling --
987 -------------
989 -- Transforms 'Ceiling into a call to the floating-point attribute
990 -- function Ceiling in Fat_xxx (where xxx is the root type)
992 when Attribute_Ceiling =>
993 Expand_Fpt_Attribute_R (N);
995 --------------
996 -- Callable --
997 --------------
999 -- Transforms 'Callable attribute into a call to the Callable function.
1001 when Attribute_Callable => Callable :
1002 begin
1003 Rewrite (N,
1004 Build_Call_With_Task (Pref, RTE (RE_Callable)));
1005 Analyze_And_Resolve (N, Standard_Boolean);
1006 end Callable;
1008 ------------
1009 -- Caller --
1010 ------------
1012 -- Transforms 'Caller attribute into a call to either the
1013 -- Task_Entry_Caller or the Protected_Entry_Caller function.
1015 when Attribute_Caller => Caller : declare
1016 Id_Kind : constant Entity_Id := RTE (RO_AT_Task_Id);
1017 Ent : constant Entity_Id := Entity (Pref);
1018 Conctype : constant Entity_Id := Scope (Ent);
1019 Nest_Depth : Integer := 0;
1020 Name : Node_Id;
1021 S : Entity_Id;
1023 begin
1024 -- Protected case
1026 if Is_Protected_Type (Conctype) then
1027 if Abort_Allowed
1028 or else Restriction_Active (No_Entry_Queue) = False
1029 or else Number_Entries (Conctype) > 1
1030 then
1031 Name :=
1032 New_Reference_To
1033 (RTE (RE_Protected_Entry_Caller), Loc);
1034 else
1035 Name :=
1036 New_Reference_To
1037 (RTE (RE_Protected_Single_Entry_Caller), Loc);
1038 end if;
1040 Rewrite (N,
1041 Unchecked_Convert_To (Id_Kind,
1042 Make_Function_Call (Loc,
1043 Name => Name,
1044 Parameter_Associations => New_List
1045 (New_Reference_To (
1046 Object_Ref
1047 (Corresponding_Body (Parent (Conctype))), Loc)))));
1049 -- Task case
1051 else
1052 -- Determine the nesting depth of the E'Caller attribute, that
1053 -- is, how many accept statements are nested within the accept
1054 -- statement for E at the point of E'Caller. The runtime uses
1055 -- this depth to find the specified entry call.
1057 for J in reverse 0 .. Scope_Stack.Last loop
1058 S := Scope_Stack.Table (J).Entity;
1060 -- We should not reach the scope of the entry, as it should
1061 -- already have been checked in Sem_Attr that this attribute
1062 -- reference is within a matching accept statement.
1064 pragma Assert (S /= Conctype);
1066 if S = Ent then
1067 exit;
1069 elsif Is_Entry (S) then
1070 Nest_Depth := Nest_Depth + 1;
1071 end if;
1072 end loop;
1074 Rewrite (N,
1075 Unchecked_Convert_To (Id_Kind,
1076 Make_Function_Call (Loc,
1077 Name => New_Reference_To (
1078 RTE (RE_Task_Entry_Caller), Loc),
1079 Parameter_Associations => New_List (
1080 Make_Integer_Literal (Loc,
1081 Intval => Int (Nest_Depth))))));
1082 end if;
1084 Analyze_And_Resolve (N, Id_Kind);
1085 end Caller;
1087 -------------
1088 -- Compose --
1089 -------------
1091 -- Transforms 'Compose into a call to the floating-point attribute
1092 -- function Compose in Fat_xxx (where xxx is the root type)
1094 -- Note: we strictly should have special code here to deal with the
1095 -- case of absurdly negative arguments (less than Integer'First)
1096 -- which will return a (signed) zero value, but it hardly seems
1097 -- worth the effort. Absurdly large positive arguments will raise
1098 -- constraint error which is fine.
1100 when Attribute_Compose =>
1101 Expand_Fpt_Attribute_RI (N);
1103 -----------------
1104 -- Constrained --
1105 -----------------
1107 when Attribute_Constrained => Constrained : declare
1108 Formal_Ent : constant Entity_Id := Param_Entity (Pref);
1110 begin
1111 -- Reference to a parameter where the value is passed as an extra
1112 -- actual, corresponding to the extra formal referenced by the
1113 -- Extra_Constrained field of the corresponding formal. If this
1114 -- is an entry in-parameter, it is replaced by a constant renaming
1115 -- for which Extra_Constrained is never created.
1117 if Present (Formal_Ent)
1118 and then Ekind (Formal_Ent) /= E_Constant
1119 and then Present (Extra_Constrained (Formal_Ent))
1120 then
1121 Rewrite (N,
1122 New_Occurrence_Of
1123 (Extra_Constrained (Formal_Ent), Sloc (N)));
1125 -- For variables with a Extra_Constrained field, we use the
1126 -- corresponding entity.
1128 elsif Nkind (Pref) = N_Identifier
1129 and then Ekind (Entity (Pref)) = E_Variable
1130 and then Present (Extra_Constrained (Entity (Pref)))
1131 then
1132 Rewrite (N,
1133 New_Occurrence_Of
1134 (Extra_Constrained (Entity (Pref)), Sloc (N)));
1136 -- For all other entity names, we can tell at compile time
1138 elsif Is_Entity_Name (Pref) then
1139 declare
1140 Ent : constant Entity_Id := Entity (Pref);
1141 Res : Boolean;
1143 begin
1144 -- (RM J.4) obsolescent cases
1146 if Is_Type (Ent) then
1148 -- Private type
1150 if Is_Private_Type (Ent) then
1151 Res := not Has_Discriminants (Ent)
1152 or else Is_Constrained (Ent);
1154 -- It not a private type, must be a generic actual type
1155 -- that corresponded to a private type. We know that this
1156 -- correspondence holds, since otherwise the reference
1157 -- within the generic template would have been illegal.
1159 else
1160 if Is_Composite_Type (Underlying_Type (Ent)) then
1161 Res := Is_Constrained (Ent);
1162 else
1163 Res := True;
1164 end if;
1165 end if;
1167 -- If the prefix is not a variable or is aliased, then
1168 -- definitely true; if it's a formal parameter without
1169 -- an associated extra formal, then treat it as constrained.
1171 elsif not Is_Variable (Pref)
1172 or else Present (Formal_Ent)
1173 or else Is_Aliased_View (Pref)
1174 then
1175 Res := True;
1177 -- Variable case, just look at type to see if it is
1178 -- constrained. Note that the one case where this is
1179 -- not accurate (the procedure formal case), has been
1180 -- handled above.
1182 else
1183 Res := Is_Constrained (Etype (Ent));
1184 end if;
1186 Rewrite (N,
1187 New_Reference_To (Boolean_Literals (Res), Loc));
1188 end;
1190 -- Prefix is not an entity name. These are also cases where
1191 -- we can always tell at compile time by looking at the form
1192 -- and type of the prefix.
1194 else
1195 Rewrite (N,
1196 New_Reference_To (
1197 Boolean_Literals (
1198 not Is_Variable (Pref)
1199 or else Nkind (Pref) = N_Explicit_Dereference
1200 or else Is_Constrained (Etype (Pref))),
1201 Loc));
1202 end if;
1204 Analyze_And_Resolve (N, Standard_Boolean);
1205 end Constrained;
1207 ---------------
1208 -- Copy_Sign --
1209 ---------------
1211 -- Transforms 'Copy_Sign into a call to the floating-point attribute
1212 -- function Copy_Sign in Fat_xxx (where xxx is the root type)
1214 when Attribute_Copy_Sign =>
1215 Expand_Fpt_Attribute_RR (N);
1217 -----------
1218 -- Count --
1219 -----------
1221 -- Transforms 'Count attribute into a call to the Count function
1223 when Attribute_Count => Count :
1224 declare
1225 Entnam : Node_Id;
1226 Index : Node_Id;
1227 Name : Node_Id;
1228 Call : Node_Id;
1229 Conctyp : Entity_Id;
1231 begin
1232 -- If the prefix is a member of an entry family, retrieve both
1233 -- entry name and index. For a simple entry there is no index.
1235 if Nkind (Pref) = N_Indexed_Component then
1236 Entnam := Prefix (Pref);
1237 Index := First (Expressions (Pref));
1238 else
1239 Entnam := Pref;
1240 Index := Empty;
1241 end if;
1243 -- Find the concurrent type in which this attribute is referenced
1244 -- (there had better be one).
1246 Conctyp := Current_Scope;
1247 while not Is_Concurrent_Type (Conctyp) loop
1248 Conctyp := Scope (Conctyp);
1249 end loop;
1251 -- Protected case
1253 if Is_Protected_Type (Conctyp) then
1255 if Abort_Allowed
1256 or else Restriction_Active (No_Entry_Queue) = False
1257 or else Number_Entries (Conctyp) > 1
1258 then
1259 Name := New_Reference_To (RTE (RE_Protected_Count), Loc);
1261 Call :=
1262 Make_Function_Call (Loc,
1263 Name => Name,
1264 Parameter_Associations => New_List (
1265 New_Reference_To (
1266 Object_Ref (
1267 Corresponding_Body (Parent (Conctyp))), Loc),
1268 Entry_Index_Expression (
1269 Loc, Entity (Entnam), Index, Scope (Entity (Entnam)))));
1270 else
1271 Name := New_Reference_To (RTE (RE_Protected_Count_Entry), Loc);
1273 Call := Make_Function_Call (Loc,
1274 Name => Name,
1275 Parameter_Associations => New_List (
1276 New_Reference_To (
1277 Object_Ref (
1278 Corresponding_Body (Parent (Conctyp))), Loc)));
1279 end if;
1281 -- Task case
1283 else
1284 Call :=
1285 Make_Function_Call (Loc,
1286 Name => New_Reference_To (RTE (RE_Task_Count), Loc),
1287 Parameter_Associations => New_List (
1288 Entry_Index_Expression
1289 (Loc, Entity (Entnam), Index, Scope (Entity (Entnam)))));
1290 end if;
1292 -- The call returns type Natural but the context is universal integer
1293 -- so any integer type is allowed. The attribute was already resolved
1294 -- so its Etype is the required result type. If the base type of the
1295 -- context type is other than Standard.Integer we put in a conversion
1296 -- to the required type. This can be a normal typed conversion since
1297 -- both input and output types of the conversion are integer types
1299 if Base_Type (Typ) /= Base_Type (Standard_Integer) then
1300 Rewrite (N, Convert_To (Typ, Call));
1301 else
1302 Rewrite (N, Call);
1303 end if;
1305 Analyze_And_Resolve (N, Typ);
1306 end Count;
1308 ---------------
1309 -- Elab_Body --
1310 ---------------
1312 -- This processing is shared by Elab_Spec
1314 -- What we do is to insert the following declarations
1316 -- procedure tnn;
1317 -- pragma Import (C, enn, "name___elabb/s");
1319 -- and then the Elab_Body/Spec attribute is replaced by a reference
1320 -- to this defining identifier.
1322 when Attribute_Elab_Body |
1323 Attribute_Elab_Spec =>
1325 Elab_Body : declare
1326 Ent : constant Entity_Id :=
1327 Make_Defining_Identifier (Loc,
1328 New_Internal_Name ('E'));
1329 Str : String_Id;
1330 Lang : Node_Id;
1332 procedure Make_Elab_String (Nod : Node_Id);
1333 -- Given Nod, an identifier, or a selected component, put the
1334 -- image into the current string literal, with double underline
1335 -- between components.
1337 procedure Make_Elab_String (Nod : Node_Id) is
1338 begin
1339 if Nkind (Nod) = N_Selected_Component then
1340 Make_Elab_String (Prefix (Nod));
1341 if Java_VM then
1342 Store_String_Char ('$');
1343 else
1344 Store_String_Char ('_');
1345 Store_String_Char ('_');
1346 end if;
1348 Get_Name_String (Chars (Selector_Name (Nod)));
1350 else
1351 pragma Assert (Nkind (Nod) = N_Identifier);
1352 Get_Name_String (Chars (Nod));
1353 end if;
1355 Store_String_Chars (Name_Buffer (1 .. Name_Len));
1356 end Make_Elab_String;
1358 -- Start of processing for Elab_Body/Elab_Spec
1360 begin
1361 -- First we need to prepare the string literal for the name of
1362 -- the elaboration routine to be referenced.
1364 Start_String;
1365 Make_Elab_String (Pref);
1367 if Java_VM then
1368 Store_String_Chars ("._elab");
1369 Lang := Make_Identifier (Loc, Name_Ada);
1370 else
1371 Store_String_Chars ("___elab");
1372 Lang := Make_Identifier (Loc, Name_C);
1373 end if;
1375 if Id = Attribute_Elab_Body then
1376 Store_String_Char ('b');
1377 else
1378 Store_String_Char ('s');
1379 end if;
1381 Str := End_String;
1383 Insert_Actions (N, New_List (
1384 Make_Subprogram_Declaration (Loc,
1385 Specification =>
1386 Make_Procedure_Specification (Loc,
1387 Defining_Unit_Name => Ent)),
1389 Make_Pragma (Loc,
1390 Chars => Name_Import,
1391 Pragma_Argument_Associations => New_List (
1392 Make_Pragma_Argument_Association (Loc,
1393 Expression => Lang),
1395 Make_Pragma_Argument_Association (Loc,
1396 Expression =>
1397 Make_Identifier (Loc, Chars (Ent))),
1399 Make_Pragma_Argument_Association (Loc,
1400 Expression =>
1401 Make_String_Literal (Loc, Str))))));
1403 Set_Entity (N, Ent);
1404 Rewrite (N, New_Occurrence_Of (Ent, Loc));
1405 end Elab_Body;
1407 ----------------
1408 -- Elaborated --
1409 ----------------
1411 -- Elaborated is always True for preelaborated units, predefined
1412 -- units, pure units and units which have Elaborate_Body pragmas.
1413 -- These units have no elaboration entity.
1415 -- Note: The Elaborated attribute is never passed through to Gigi
1417 when Attribute_Elaborated => Elaborated : declare
1418 Ent : constant Entity_Id := Entity (Pref);
1420 begin
1421 if Present (Elaboration_Entity (Ent)) then
1422 Rewrite (N,
1423 New_Occurrence_Of (Elaboration_Entity (Ent), Loc));
1424 else
1425 Rewrite (N, New_Occurrence_Of (Standard_True, Loc));
1426 end if;
1427 end Elaborated;
1429 --------------
1430 -- Enum_Rep --
1431 --------------
1433 when Attribute_Enum_Rep => Enum_Rep :
1434 begin
1435 -- X'Enum_Rep (Y) expands to
1437 -- target-type (Y)
1439 -- This is simply a direct conversion from the enumeration type
1440 -- to the target integer type, which is treated by Gigi as a normal
1441 -- integer conversion, treating the enumeration type as an integer,
1442 -- which is exactly what we want! We set Conversion_OK to make sure
1443 -- that the analyzer does not complain about what otherwise might
1444 -- be an illegal conversion.
1446 if Is_Non_Empty_List (Exprs) then
1447 Rewrite (N,
1448 OK_Convert_To (Typ, Relocate_Node (First (Exprs))));
1450 -- X'Enum_Rep where X is an enumeration literal is replaced by
1451 -- the literal value.
1453 elsif Ekind (Entity (Pref)) = E_Enumeration_Literal then
1454 Rewrite (N,
1455 Make_Integer_Literal (Loc, Enumeration_Rep (Entity (Pref))));
1457 -- If this is a renaming of a literal, recover the representation
1458 -- of the original.
1460 elsif Ekind (Entity (Pref)) = E_Constant
1461 and then Present (Renamed_Object (Entity (Pref)))
1462 and then
1463 Ekind (Entity (Renamed_Object (Entity (Pref))))
1464 = E_Enumeration_Literal
1465 then
1466 Rewrite (N,
1467 Make_Integer_Literal (Loc,
1468 Enumeration_Rep (Entity (Renamed_Object (Entity (Pref))))));
1470 -- X'Enum_Rep where X is an object does a direct unchecked conversion
1471 -- of the object value, as described for the type case above.
1473 else
1474 Rewrite (N,
1475 OK_Convert_To (Typ, Relocate_Node (Pref)));
1476 end if;
1478 Set_Etype (N, Typ);
1479 Analyze_And_Resolve (N, Typ);
1481 end Enum_Rep;
1483 --------------
1484 -- Exponent --
1485 --------------
1487 -- Transforms 'Exponent into a call to the floating-point attribute
1488 -- function Exponent in Fat_xxx (where xxx is the root type)
1490 when Attribute_Exponent =>
1491 Expand_Fpt_Attribute_R (N);
1493 ------------------
1494 -- External_Tag --
1495 ------------------
1497 -- transforme X'External_Tag into Ada.Tags.External_Tag (X'tag)
1499 when Attribute_External_Tag => External_Tag :
1500 begin
1501 Rewrite (N,
1502 Make_Function_Call (Loc,
1503 Name => New_Reference_To (RTE (RE_External_Tag), Loc),
1504 Parameter_Associations => New_List (
1505 Make_Attribute_Reference (Loc,
1506 Attribute_Name => Name_Tag,
1507 Prefix => Prefix (N)))));
1509 Analyze_And_Resolve (N, Standard_String);
1510 end External_Tag;
1512 -----------
1513 -- First --
1514 -----------
1516 when Attribute_First => declare
1517 Ptyp : constant Entity_Id := Etype (Pref);
1519 begin
1520 -- If the prefix type is a constrained packed array type which
1521 -- already has a Packed_Array_Type representation defined, then
1522 -- replace this attribute with a direct reference to 'First of the
1523 -- appropriate index subtype (since otherwise Gigi will try to give
1524 -- us the value of 'First for this implementation type).
1526 if Is_Constrained_Packed_Array (Ptyp) then
1527 Rewrite (N,
1528 Make_Attribute_Reference (Loc,
1529 Attribute_Name => Name_First,
1530 Prefix => New_Reference_To (Get_Index_Subtype (N), Loc)));
1531 Analyze_And_Resolve (N, Typ);
1533 elsif Is_Access_Type (Ptyp) then
1534 Apply_Access_Check (N);
1535 end if;
1536 end;
1538 ---------------
1539 -- First_Bit --
1540 ---------------
1542 -- We compute this if a component clause was present, otherwise
1543 -- we leave the computation up to Gigi, since we don't know what
1544 -- layout will be chosen.
1546 when Attribute_First_Bit => First_Bit :
1547 declare
1548 CE : constant Entity_Id := Entity (Selector_Name (Pref));
1550 begin
1551 if Known_Static_Component_Bit_Offset (CE) then
1552 Rewrite (N,
1553 Make_Integer_Literal (Loc,
1554 Component_Bit_Offset (CE) mod System_Storage_Unit));
1556 Analyze_And_Resolve (N, Typ);
1558 else
1559 Apply_Universal_Integer_Attribute_Checks (N);
1560 end if;
1561 end First_Bit;
1563 -----------------
1564 -- Fixed_Value --
1565 -----------------
1567 -- We transform:
1569 -- fixtype'Fixed_Value (integer-value)
1571 -- into
1573 -- fixtype(integer-value)
1575 -- we do all the required analysis of the conversion here, because
1576 -- we do not want this to go through the fixed-point conversion
1577 -- circuits. Note that gigi always treats fixed-point as equivalent
1578 -- to the corresponding integer type anyway.
1580 when Attribute_Fixed_Value => Fixed_Value :
1581 begin
1582 Rewrite (N,
1583 Make_Type_Conversion (Loc,
1584 Subtype_Mark => New_Occurrence_Of (Entity (Pref), Loc),
1585 Expression => Relocate_Node (First (Exprs))));
1586 Set_Etype (N, Entity (Pref));
1587 Set_Analyzed (N);
1589 -- Note: it might appear that a properly analyzed unchecked conversion
1590 -- would be just fine here, but that's not the case, since the full
1591 -- range checks performed by the following call are critical!
1593 Apply_Type_Conversion_Checks (N);
1594 end Fixed_Value;
1596 -----------
1597 -- Floor --
1598 -----------
1600 -- Transforms 'Floor into a call to the floating-point attribute
1601 -- function Floor in Fat_xxx (where xxx is the root type)
1603 when Attribute_Floor =>
1604 Expand_Fpt_Attribute_R (N);
1606 ----------
1607 -- Fore --
1608 ----------
1610 -- For the fixed-point type Typ:
1612 -- Typ'Fore
1614 -- expands into
1616 -- Result_Type (System.Fore (Long_Long_Float (Type'First)),
1617 -- Long_Long_Float (Type'Last))
1619 -- Note that we know that the type is a non-static subtype, or Fore
1620 -- would have itself been computed dynamically in Eval_Attribute.
1622 when Attribute_Fore => Fore :
1623 declare
1624 Ptyp : constant Entity_Id := Etype (Pref);
1626 begin
1627 Rewrite (N,
1628 Convert_To (Typ,
1629 Make_Function_Call (Loc,
1630 Name => New_Reference_To (RTE (RE_Fore), Loc),
1632 Parameter_Associations => New_List (
1633 Convert_To (Standard_Long_Long_Float,
1634 Make_Attribute_Reference (Loc,
1635 Prefix => New_Reference_To (Ptyp, Loc),
1636 Attribute_Name => Name_First)),
1638 Convert_To (Standard_Long_Long_Float,
1639 Make_Attribute_Reference (Loc,
1640 Prefix => New_Reference_To (Ptyp, Loc),
1641 Attribute_Name => Name_Last))))));
1643 Analyze_And_Resolve (N, Typ);
1644 end Fore;
1646 --------------
1647 -- Fraction --
1648 --------------
1650 -- Transforms 'Fraction into a call to the floating-point attribute
1651 -- function Fraction in Fat_xxx (where xxx is the root type)
1653 when Attribute_Fraction =>
1654 Expand_Fpt_Attribute_R (N);
1656 --------------
1657 -- Identity --
1658 --------------
1660 -- For an exception returns a reference to the exception data:
1661 -- Exception_Id!(Prefix'Reference)
1663 -- For a task it returns a reference to the _task_id component of
1664 -- corresponding record:
1666 -- taskV!(Prefix)._Task_Id, converted to the type Task_Id defined
1668 -- in Ada.Task_Identification.
1670 when Attribute_Identity => Identity : declare
1671 Id_Kind : Entity_Id;
1673 begin
1674 if Etype (Pref) = Standard_Exception_Type then
1675 Id_Kind := RTE (RE_Exception_Id);
1677 if Present (Renamed_Object (Entity (Pref))) then
1678 Set_Entity (Pref, Renamed_Object (Entity (Pref)));
1679 end if;
1681 Rewrite (N,
1682 Unchecked_Convert_To (Id_Kind, Make_Reference (Loc, Pref)));
1683 else
1684 Id_Kind := RTE (RO_AT_Task_Id);
1686 Rewrite (N,
1687 Unchecked_Convert_To (Id_Kind, Concurrent_Ref (Pref)));
1688 end if;
1690 Analyze_And_Resolve (N, Id_Kind);
1691 end Identity;
1693 -----------
1694 -- Image --
1695 -----------
1697 -- Image attribute is handled in separate unit Exp_Imgv
1699 when Attribute_Image =>
1700 Exp_Imgv.Expand_Image_Attribute (N);
1702 ---------
1703 -- Img --
1704 ---------
1706 -- X'Img is expanded to typ'Image (X), where typ is the type of X
1708 when Attribute_Img => Img :
1709 begin
1710 Rewrite (N,
1711 Make_Attribute_Reference (Loc,
1712 Prefix => New_Reference_To (Etype (Pref), Loc),
1713 Attribute_Name => Name_Image,
1714 Expressions => New_List (Relocate_Node (Pref))));
1716 Analyze_And_Resolve (N, Standard_String);
1717 end Img;
1719 -----------
1720 -- Input --
1721 -----------
1723 when Attribute_Input => Input : declare
1724 P_Type : constant Entity_Id := Entity (Pref);
1725 B_Type : constant Entity_Id := Base_Type (P_Type);
1726 U_Type : constant Entity_Id := Underlying_Type (P_Type);
1727 Strm : constant Node_Id := First (Exprs);
1728 Fname : Entity_Id;
1729 Decl : Node_Id;
1730 Call : Node_Id;
1731 Prag : Node_Id;
1732 Arg2 : Node_Id;
1733 Rfunc : Node_Id;
1735 Cntrl : Node_Id := Empty;
1736 -- Value for controlling argument in call. Always Empty except in
1737 -- the dispatching (class-wide type) case, where it is a reference
1738 -- to the dummy object initialized to the right internal tag.
1740 procedure Freeze_Stream_Subprogram (F : Entity_Id);
1741 -- The expansion of the attribute reference may generate a call to
1742 -- a user-defined stream subprogram that is frozen by the call. This
1743 -- can lead to access-before-elaboration problem if the reference
1744 -- appears in an object declaration and the subprogram body has not
1745 -- been seen. The freezing of the subprogram requires special code
1746 -- because it appears in an expanded context where expressions do
1747 -- not freeze their constituents.
1749 ------------------------------
1750 -- Freeze_Stream_Subprogram --
1751 ------------------------------
1753 procedure Freeze_Stream_Subprogram (F : Entity_Id) is
1754 Decl : constant Node_Id := Unit_Declaration_Node (F);
1755 Bod : Node_Id;
1757 begin
1758 -- If this is user-defined subprogram, the corresponding
1759 -- stream function appears as a renaming-as-body, and the
1760 -- user subprogram must be retrieved by tree traversal.
1762 if Present (Decl)
1763 and then Nkind (Decl) = N_Subprogram_Declaration
1764 and then Present (Corresponding_Body (Decl))
1765 then
1766 Bod := Corresponding_Body (Decl);
1768 if Nkind (Unit_Declaration_Node (Bod)) =
1769 N_Subprogram_Renaming_Declaration
1770 then
1771 Set_Is_Frozen (Entity (Name (Unit_Declaration_Node (Bod))));
1772 end if;
1773 end if;
1774 end Freeze_Stream_Subprogram;
1776 -- Start of processing for Input
1778 begin
1779 -- If no underlying type, we have an error that will be diagnosed
1780 -- elsewhere, so here we just completely ignore the expansion.
1782 if No (U_Type) then
1783 return;
1784 end if;
1786 -- If there is a TSS for Input, just call it
1788 Fname := Find_Stream_Subprogram (P_Type, TSS_Stream_Input);
1790 if Present (Fname) then
1791 null;
1793 else
1794 -- If there is a Stream_Convert pragma, use it, we rewrite
1796 -- sourcetyp'Input (stream)
1798 -- as
1800 -- sourcetyp (streamread (strmtyp'Input (stream)));
1802 -- where stmrearead is the given Read function that converts
1803 -- an argument of type strmtyp to type sourcetyp or a type
1804 -- from which it is derived. The extra conversion is required
1805 -- for the derived case.
1807 Prag := Get_Stream_Convert_Pragma (P_Type);
1809 if Present (Prag) then
1810 Arg2 := Next (First (Pragma_Argument_Associations (Prag)));
1811 Rfunc := Entity (Expression (Arg2));
1813 Rewrite (N,
1814 Convert_To (B_Type,
1815 Make_Function_Call (Loc,
1816 Name => New_Occurrence_Of (Rfunc, Loc),
1817 Parameter_Associations => New_List (
1818 Make_Attribute_Reference (Loc,
1819 Prefix =>
1820 New_Occurrence_Of
1821 (Etype (First_Formal (Rfunc)), Loc),
1822 Attribute_Name => Name_Input,
1823 Expressions => Exprs)))));
1825 Analyze_And_Resolve (N, B_Type);
1826 return;
1828 -- Elementary types
1830 elsif Is_Elementary_Type (U_Type) then
1832 -- A special case arises if we have a defined _Read routine,
1833 -- since in this case we are required to call this routine.
1835 if Present (TSS (Base_Type (U_Type), TSS_Stream_Read)) then
1836 Build_Record_Or_Elementary_Input_Function
1837 (Loc, U_Type, Decl, Fname);
1838 Insert_Action (N, Decl);
1840 -- For normal cases, we call the I_xxx routine directly
1842 else
1843 Rewrite (N, Build_Elementary_Input_Call (N));
1844 Analyze_And_Resolve (N, P_Type);
1845 return;
1846 end if;
1848 -- Array type case
1850 elsif Is_Array_Type (U_Type) then
1851 Build_Array_Input_Function (Loc, U_Type, Decl, Fname);
1852 Compile_Stream_Body_In_Scope (N, Decl, U_Type, Check => False);
1854 -- Dispatching case with class-wide type
1856 elsif Is_Class_Wide_Type (P_Type) then
1858 declare
1859 Rtyp : constant Entity_Id := Root_Type (P_Type);
1860 Dnn : Entity_Id;
1861 Decl : Node_Id;
1863 begin
1864 -- Read the internal tag (RM 13.13.2(34)) and use it to
1865 -- initialize a dummy tag object:
1867 -- Dnn : Ada.Tags.Tag
1868 -- := Internal_Tag (String'Input (Strm));
1870 -- This dummy object is used only to provide a controlling
1871 -- argument for the eventual _Input call.
1873 Dnn :=
1874 Make_Defining_Identifier (Loc,
1875 Chars => New_Internal_Name ('D'));
1877 Decl :=
1878 Make_Object_Declaration (Loc,
1879 Defining_Identifier => Dnn,
1880 Object_Definition =>
1881 New_Occurrence_Of (RTE (RE_Tag), Loc),
1882 Expression =>
1883 Make_Function_Call (Loc,
1884 Name =>
1885 New_Occurrence_Of (RTE (RE_Internal_Tag), Loc),
1886 Parameter_Associations => New_List (
1887 Make_Attribute_Reference (Loc,
1888 Prefix =>
1889 New_Occurrence_Of (Standard_String, Loc),
1890 Attribute_Name => Name_Input,
1891 Expressions => New_List (
1892 Relocate_Node
1893 (Duplicate_Subexpr (Strm)))))));
1895 Insert_Action (N, Decl);
1897 -- Now we need to get the entity for the call, and construct
1898 -- a function call node, where we preset a reference to Dnn
1899 -- as the controlling argument (doing an unchecked
1900 -- conversion to the class-wide tagged type to make it
1901 -- look like a real tagged object).
1903 Fname := Find_Prim_Op (Rtyp, TSS_Stream_Input);
1904 Cntrl := Unchecked_Convert_To (P_Type,
1905 New_Occurrence_Of (Dnn, Loc));
1906 Set_Etype (Cntrl, P_Type);
1907 Set_Parent (Cntrl, N);
1908 end;
1910 -- For tagged types, use the primitive Input function
1912 elsif Is_Tagged_Type (U_Type) then
1913 Fname := Find_Prim_Op (U_Type, TSS_Stream_Input);
1915 -- All other record type cases, including protected records.
1916 -- The latter only arise for expander generated code for
1917 -- handling shared passive partition access.
1919 else
1920 pragma Assert
1921 (Is_Record_Type (U_Type) or else Is_Protected_Type (U_Type));
1923 -- Ada 2005 (AI-216): Program_Error is raised when executing
1924 -- the default implementation of the Input attribute of an
1925 -- unchecked union type if the type lacks default discriminant
1926 -- values.
1928 if Is_Unchecked_Union (Base_Type (U_Type))
1929 and then not Present (Discriminant_Constraint (U_Type))
1930 then
1931 Insert_Action (N,
1932 Make_Raise_Program_Error (Loc,
1933 Reason => PE_Unchecked_Union_Restriction));
1935 return;
1936 end if;
1938 Build_Record_Or_Elementary_Input_Function
1939 (Loc, Base_Type (U_Type), Decl, Fname);
1940 Insert_Action (N, Decl);
1942 if Nkind (Parent (N)) = N_Object_Declaration
1943 and then Is_Record_Type (U_Type)
1944 then
1945 -- The stream function may contain calls to user-defined
1946 -- Read procedures for individual components.
1948 declare
1949 Comp : Entity_Id;
1950 Func : Entity_Id;
1952 begin
1953 Comp := First_Component (U_Type);
1954 while Present (Comp) loop
1955 Func :=
1956 Find_Stream_Subprogram
1957 (Etype (Comp), TSS_Stream_Read);
1959 if Present (Func) then
1960 Freeze_Stream_Subprogram (Func);
1961 end if;
1963 Next_Component (Comp);
1964 end loop;
1965 end;
1966 end if;
1967 end if;
1968 end if;
1970 -- If we fall through, Fname is the function to be called. The
1971 -- result is obtained by calling the appropriate function, then
1972 -- converting the result. The conversion does a subtype check.
1974 Call :=
1975 Make_Function_Call (Loc,
1976 Name => New_Occurrence_Of (Fname, Loc),
1977 Parameter_Associations => New_List (
1978 Relocate_Node (Strm)));
1980 Set_Controlling_Argument (Call, Cntrl);
1981 Rewrite (N, Unchecked_Convert_To (P_Type, Call));
1982 Analyze_And_Resolve (N, P_Type);
1984 if Nkind (Parent (N)) = N_Object_Declaration then
1985 Freeze_Stream_Subprogram (Fname);
1986 end if;
1987 end Input;
1989 -------------------
1990 -- Integer_Value --
1991 -------------------
1993 -- We transform
1995 -- inttype'Fixed_Value (fixed-value)
1997 -- into
1999 -- inttype(integer-value))
2001 -- we do all the required analysis of the conversion here, because
2002 -- we do not want this to go through the fixed-point conversion
2003 -- circuits. Note that gigi always treats fixed-point as equivalent
2004 -- to the corresponding integer type anyway.
2006 when Attribute_Integer_Value => Integer_Value :
2007 begin
2008 Rewrite (N,
2009 Make_Type_Conversion (Loc,
2010 Subtype_Mark => New_Occurrence_Of (Entity (Pref), Loc),
2011 Expression => Relocate_Node (First (Exprs))));
2012 Set_Etype (N, Entity (Pref));
2013 Set_Analyzed (N);
2015 -- Note: it might appear that a properly analyzed unchecked conversion
2016 -- would be just fine here, but that's not the case, since the full
2017 -- range checks performed by the following call are critical!
2019 Apply_Type_Conversion_Checks (N);
2020 end Integer_Value;
2022 ----------
2023 -- Last --
2024 ----------
2026 when Attribute_Last => declare
2027 Ptyp : constant Entity_Id := Etype (Pref);
2029 begin
2030 -- If the prefix type is a constrained packed array type which
2031 -- already has a Packed_Array_Type representation defined, then
2032 -- replace this attribute with a direct reference to 'Last of the
2033 -- appropriate index subtype (since otherwise Gigi will try to give
2034 -- us the value of 'Last for this implementation type).
2036 if Is_Constrained_Packed_Array (Ptyp) then
2037 Rewrite (N,
2038 Make_Attribute_Reference (Loc,
2039 Attribute_Name => Name_Last,
2040 Prefix => New_Reference_To (Get_Index_Subtype (N), Loc)));
2041 Analyze_And_Resolve (N, Typ);
2043 elsif Is_Access_Type (Ptyp) then
2044 Apply_Access_Check (N);
2045 end if;
2046 end;
2048 --------------
2049 -- Last_Bit --
2050 --------------
2052 -- We compute this if a component clause was present, otherwise
2053 -- we leave the computation up to Gigi, since we don't know what
2054 -- layout will be chosen.
2056 when Attribute_Last_Bit => Last_Bit :
2057 declare
2058 CE : constant Entity_Id := Entity (Selector_Name (Pref));
2060 begin
2061 if Known_Static_Component_Bit_Offset (CE)
2062 and then Known_Static_Esize (CE)
2063 then
2064 Rewrite (N,
2065 Make_Integer_Literal (Loc,
2066 Intval => (Component_Bit_Offset (CE) mod System_Storage_Unit)
2067 + Esize (CE) - 1));
2069 Analyze_And_Resolve (N, Typ);
2071 else
2072 Apply_Universal_Integer_Attribute_Checks (N);
2073 end if;
2074 end Last_Bit;
2076 ------------------
2077 -- Leading_Part --
2078 ------------------
2080 -- Transforms 'Leading_Part into a call to the floating-point attribute
2081 -- function Leading_Part in Fat_xxx (where xxx is the root type)
2083 -- Note: strictly, we should have special case code to deal with
2084 -- absurdly large positive arguments (greater than Integer'Last),
2085 -- which result in returning the first argument unchanged, but it
2086 -- hardly seems worth the effort. We raise constraint error for
2087 -- absurdly negative arguments which is fine.
2089 when Attribute_Leading_Part =>
2090 Expand_Fpt_Attribute_RI (N);
2092 ------------
2093 -- Length --
2094 ------------
2096 when Attribute_Length => declare
2097 Ptyp : constant Entity_Id := Etype (Pref);
2098 Ityp : Entity_Id;
2099 Xnum : Uint;
2101 begin
2102 -- Processing for packed array types
2104 if Is_Array_Type (Ptyp) and then Is_Packed (Ptyp) then
2105 Ityp := Get_Index_Subtype (N);
2107 -- If the index type, Ityp, is an enumeration type with
2108 -- holes, then we calculate X'Length explicitly using
2110 -- Typ'Max
2111 -- (0, Ityp'Pos (X'Last (N)) -
2112 -- Ityp'Pos (X'First (N)) + 1);
2114 -- Since the bounds in the template are the representation
2115 -- values and gigi would get the wrong value.
2117 if Is_Enumeration_Type (Ityp)
2118 and then Present (Enum_Pos_To_Rep (Base_Type (Ityp)))
2119 then
2120 if No (Exprs) then
2121 Xnum := Uint_1;
2122 else
2123 Xnum := Expr_Value (First (Expressions (N)));
2124 end if;
2126 Rewrite (N,
2127 Make_Attribute_Reference (Loc,
2128 Prefix => New_Occurrence_Of (Typ, Loc),
2129 Attribute_Name => Name_Max,
2130 Expressions => New_List
2131 (Make_Integer_Literal (Loc, 0),
2133 Make_Op_Add (Loc,
2134 Left_Opnd =>
2135 Make_Op_Subtract (Loc,
2136 Left_Opnd =>
2137 Make_Attribute_Reference (Loc,
2138 Prefix => New_Occurrence_Of (Ityp, Loc),
2139 Attribute_Name => Name_Pos,
2141 Expressions => New_List (
2142 Make_Attribute_Reference (Loc,
2143 Prefix => Duplicate_Subexpr (Pref),
2144 Attribute_Name => Name_Last,
2145 Expressions => New_List (
2146 Make_Integer_Literal (Loc, Xnum))))),
2148 Right_Opnd =>
2149 Make_Attribute_Reference (Loc,
2150 Prefix => New_Occurrence_Of (Ityp, Loc),
2151 Attribute_Name => Name_Pos,
2153 Expressions => New_List (
2154 Make_Attribute_Reference (Loc,
2155 Prefix =>
2156 Duplicate_Subexpr_No_Checks (Pref),
2157 Attribute_Name => Name_First,
2158 Expressions => New_List (
2159 Make_Integer_Literal (Loc, Xnum)))))),
2161 Right_Opnd => Make_Integer_Literal (Loc, 1)))));
2163 Analyze_And_Resolve (N, Typ, Suppress => All_Checks);
2164 return;
2166 -- If the prefix type is a constrained packed array type which
2167 -- already has a Packed_Array_Type representation defined, then
2168 -- replace this attribute with a direct reference to 'Range_Length
2169 -- of the appropriate index subtype (since otherwise Gigi will try
2170 -- to give us the value of 'Length for this implementation type).
2172 elsif Is_Constrained (Ptyp) then
2173 Rewrite (N,
2174 Make_Attribute_Reference (Loc,
2175 Attribute_Name => Name_Range_Length,
2176 Prefix => New_Reference_To (Ityp, Loc)));
2177 Analyze_And_Resolve (N, Typ);
2178 end if;
2180 -- If we have a packed array that is not bit packed, which was
2182 -- Access type case
2184 elsif Is_Access_Type (Ptyp) then
2185 Apply_Access_Check (N);
2187 -- If the designated type is a packed array type, then we
2188 -- convert the reference to:
2190 -- typ'Max (0, 1 +
2191 -- xtyp'Pos (Pref'Last (Expr)) -
2192 -- xtyp'Pos (Pref'First (Expr)));
2194 -- This is a bit complex, but it is the easiest thing to do
2195 -- that works in all cases including enum types with holes
2196 -- xtyp here is the appropriate index type.
2198 declare
2199 Dtyp : constant Entity_Id := Designated_Type (Ptyp);
2200 Xtyp : Entity_Id;
2202 begin
2203 if Is_Array_Type (Dtyp) and then Is_Packed (Dtyp) then
2204 Xtyp := Get_Index_Subtype (N);
2206 Rewrite (N,
2207 Make_Attribute_Reference (Loc,
2208 Prefix => New_Occurrence_Of (Typ, Loc),
2209 Attribute_Name => Name_Max,
2210 Expressions => New_List (
2211 Make_Integer_Literal (Loc, 0),
2213 Make_Op_Add (Loc,
2214 Make_Integer_Literal (Loc, 1),
2215 Make_Op_Subtract (Loc,
2216 Left_Opnd =>
2217 Make_Attribute_Reference (Loc,
2218 Prefix => New_Occurrence_Of (Xtyp, Loc),
2219 Attribute_Name => Name_Pos,
2220 Expressions => New_List (
2221 Make_Attribute_Reference (Loc,
2222 Prefix => Duplicate_Subexpr (Pref),
2223 Attribute_Name => Name_Last,
2224 Expressions =>
2225 New_Copy_List (Exprs)))),
2227 Right_Opnd =>
2228 Make_Attribute_Reference (Loc,
2229 Prefix => New_Occurrence_Of (Xtyp, Loc),
2230 Attribute_Name => Name_Pos,
2231 Expressions => New_List (
2232 Make_Attribute_Reference (Loc,
2233 Prefix =>
2234 Duplicate_Subexpr_No_Checks (Pref),
2235 Attribute_Name => Name_First,
2236 Expressions =>
2237 New_Copy_List (Exprs)))))))));
2239 Analyze_And_Resolve (N, Typ);
2240 end if;
2241 end;
2243 -- Otherwise leave it to gigi
2245 else
2246 Apply_Universal_Integer_Attribute_Checks (N);
2247 end if;
2248 end;
2250 -------------
2251 -- Machine --
2252 -------------
2254 -- Transforms 'Machine into a call to the floating-point attribute
2255 -- function Machine in Fat_xxx (where xxx is the root type)
2257 when Attribute_Machine =>
2258 Expand_Fpt_Attribute_R (N);
2260 ------------------
2261 -- Machine_Size --
2262 ------------------
2264 -- Machine_Size is equivalent to Object_Size, so transform it into
2265 -- Object_Size and that way Gigi never sees Machine_Size.
2267 when Attribute_Machine_Size =>
2268 Rewrite (N,
2269 Make_Attribute_Reference (Loc,
2270 Prefix => Prefix (N),
2271 Attribute_Name => Name_Object_Size));
2273 Analyze_And_Resolve (N, Typ);
2275 --------------
2276 -- Mantissa --
2277 --------------
2279 -- The only case that can get this far is the dynamic case of the
2280 -- old Ada 83 Mantissa attribute for the fixed-point case. For this
2281 -- case, we expand:
2283 -- typ'Mantissa
2285 -- into
2287 -- ityp (System.Mantissa.Mantissa_Value
2288 -- (Integer'Integer_Value (typ'First),
2289 -- Integer'Integer_Value (typ'Last)));
2291 when Attribute_Mantissa => Mantissa : declare
2292 Ptyp : constant Entity_Id := Etype (Pref);
2294 begin
2295 Rewrite (N,
2296 Convert_To (Typ,
2297 Make_Function_Call (Loc,
2298 Name => New_Occurrence_Of (RTE (RE_Mantissa_Value), Loc),
2300 Parameter_Associations => New_List (
2302 Make_Attribute_Reference (Loc,
2303 Prefix => New_Occurrence_Of (Standard_Integer, Loc),
2304 Attribute_Name => Name_Integer_Value,
2305 Expressions => New_List (
2307 Make_Attribute_Reference (Loc,
2308 Prefix => New_Occurrence_Of (Ptyp, Loc),
2309 Attribute_Name => Name_First))),
2311 Make_Attribute_Reference (Loc,
2312 Prefix => New_Occurrence_Of (Standard_Integer, Loc),
2313 Attribute_Name => Name_Integer_Value,
2314 Expressions => New_List (
2316 Make_Attribute_Reference (Loc,
2317 Prefix => New_Occurrence_Of (Ptyp, Loc),
2318 Attribute_Name => Name_Last)))))));
2320 Analyze_And_Resolve (N, Typ);
2321 end Mantissa;
2323 ---------
2324 -- Mod --
2325 ---------
2327 when Attribute_Mod => Mod_Case : declare
2328 Arg : constant Node_Id := Relocate_Node (First (Exprs));
2329 Hi : constant Node_Id := Type_High_Bound (Etype (Arg));
2330 Modv : constant Uint := Modulus (Btyp);
2332 begin
2334 -- This is not so simple. The issue is what type to use for the
2335 -- computation of the modular value.
2337 -- The easy case is when the modulus value is within the bounds
2338 -- of the signed integer type of the argument. In this case we can
2339 -- just do the computation in that signed integer type, and then
2340 -- do an ordinary conversion to the target type.
2342 if Modv <= Expr_Value (Hi) then
2343 Rewrite (N,
2344 Convert_To (Btyp,
2345 Make_Op_Mod (Loc,
2346 Left_Opnd => Arg,
2347 Right_Opnd => Make_Integer_Literal (Loc, Modv))));
2349 -- Here we know that the modulus is larger than type'Last of the
2350 -- integer type. There are three possible cases to consider:
2352 -- a) The integer value is non-negative. In this case, it is
2353 -- returned as the result (since it is less than the modulus).
2355 -- b) The integer value is negative. In this case, we know that
2356 -- the result is modulus + value, where the value might be as
2357 -- small as -modulus. The trouble is what type do we use to do
2358 -- this subtraction. No type will do, since modulus can be as
2359 -- big as 2**64, and no integer type accomodates this value.
2360 -- Let's do a bit of algebra
2362 -- modulus + value
2363 -- = modulus - (-value)
2364 -- = (modulus - 1) - (-value - 1)
2366 -- Now modulus - 1 is certainly in range of the modular type.
2367 -- -value is in the range 1 .. modulus, so -value -1 is in the
2368 -- range 0 .. modulus-1 which is in range of the modular type.
2369 -- Furthermore, (-value - 1) can be expressed as -(value + 1)
2370 -- which we can compute using the integer base type.
2372 else
2373 Rewrite (N,
2374 Make_Conditional_Expression (Loc,
2375 Expressions => New_List (
2376 Make_Op_Ge (Loc,
2377 Left_Opnd => Duplicate_Subexpr (Arg),
2378 Right_Opnd => Make_Integer_Literal (Loc, 0)),
2380 Convert_To (Btyp,
2381 Duplicate_Subexpr_No_Checks (Arg)),
2383 Make_Op_Subtract (Loc,
2384 Left_Opnd =>
2385 Make_Integer_Literal (Loc,
2386 Intval => Modv - 1),
2387 Right_Opnd =>
2388 Convert_To (Btyp,
2389 Make_Op_Minus (Loc,
2390 Right_Opnd =>
2391 Make_Op_Add (Loc,
2392 Left_Opnd => Duplicate_Subexpr_No_Checks (Arg),
2393 Right_Opnd =>
2394 Make_Integer_Literal (Loc,
2395 Intval => 1))))))));
2397 end if;
2399 Analyze_And_Resolve (N, Btyp);
2400 end Mod_Case;
2402 -----------
2403 -- Model --
2404 -----------
2406 -- Transforms 'Model into a call to the floating-point attribute
2407 -- function Model in Fat_xxx (where xxx is the root type)
2409 when Attribute_Model =>
2410 Expand_Fpt_Attribute_R (N);
2412 -----------------
2413 -- Object_Size --
2414 -----------------
2416 -- The processing for Object_Size shares the processing for Size
2418 ------------
2419 -- Output --
2420 ------------
2422 when Attribute_Output => Output : declare
2423 P_Type : constant Entity_Id := Entity (Pref);
2424 U_Type : constant Entity_Id := Underlying_Type (P_Type);
2425 Pname : Entity_Id;
2426 Decl : Node_Id;
2427 Prag : Node_Id;
2428 Arg3 : Node_Id;
2429 Wfunc : Node_Id;
2431 begin
2432 -- If no underlying type, we have an error that will be diagnosed
2433 -- elsewhere, so here we just completely ignore the expansion.
2435 if No (U_Type) then
2436 return;
2437 end if;
2439 -- If TSS for Output is present, just call it
2441 Pname := Find_Stream_Subprogram (P_Type, TSS_Stream_Output);
2443 if Present (Pname) then
2444 null;
2446 else
2447 -- If there is a Stream_Convert pragma, use it, we rewrite
2449 -- sourcetyp'Output (stream, Item)
2451 -- as
2453 -- strmtyp'Output (Stream, strmwrite (acttyp (Item)));
2455 -- where strmwrite is the given Write function that converts
2456 -- an argument of type sourcetyp or a type acctyp, from which
2457 -- it is derived to type strmtyp. The conversion to acttyp is
2458 -- required for the derived case.
2460 Prag := Get_Stream_Convert_Pragma (P_Type);
2462 if Present (Prag) then
2463 Arg3 :=
2464 Next (Next (First (Pragma_Argument_Associations (Prag))));
2465 Wfunc := Entity (Expression (Arg3));
2467 Rewrite (N,
2468 Make_Attribute_Reference (Loc,
2469 Prefix => New_Occurrence_Of (Etype (Wfunc), Loc),
2470 Attribute_Name => Name_Output,
2471 Expressions => New_List (
2472 Relocate_Node (First (Exprs)),
2473 Make_Function_Call (Loc,
2474 Name => New_Occurrence_Of (Wfunc, Loc),
2475 Parameter_Associations => New_List (
2476 Convert_To (Etype (First_Formal (Wfunc)),
2477 Relocate_Node (Next (First (Exprs)))))))));
2479 Analyze (N);
2480 return;
2482 -- For elementary types, we call the W_xxx routine directly.
2483 -- Note that the effect of Write and Output is identical for
2484 -- the case of an elementary type, since there are no
2485 -- discriminants or bounds.
2487 elsif Is_Elementary_Type (U_Type) then
2489 -- A special case arises if we have a defined _Write routine,
2490 -- since in this case we are required to call this routine.
2492 if Present (TSS (Base_Type (U_Type), TSS_Stream_Write)) then
2493 Build_Record_Or_Elementary_Output_Procedure
2494 (Loc, U_Type, Decl, Pname);
2495 Insert_Action (N, Decl);
2497 -- For normal cases, we call the W_xxx routine directly
2499 else
2500 Rewrite (N, Build_Elementary_Write_Call (N));
2501 Analyze (N);
2502 return;
2503 end if;
2505 -- Array type case
2507 elsif Is_Array_Type (U_Type) then
2508 Build_Array_Output_Procedure (Loc, U_Type, Decl, Pname);
2509 Compile_Stream_Body_In_Scope (N, Decl, U_Type, Check => False);
2511 -- Class-wide case, first output external tag, then dispatch
2512 -- to the appropriate primitive Output function (RM 13.13.2(31)).
2514 elsif Is_Class_Wide_Type (P_Type) then
2515 Tag_Write : declare
2516 Strm : constant Node_Id := First (Exprs);
2517 Item : constant Node_Id := Next (Strm);
2519 begin
2520 -- The code is:
2521 -- String'Output (Strm, External_Tag (Item'Tag))
2523 Insert_Action (N,
2524 Make_Attribute_Reference (Loc,
2525 Prefix => New_Occurrence_Of (Standard_String, Loc),
2526 Attribute_Name => Name_Output,
2527 Expressions => New_List (
2528 Relocate_Node (Duplicate_Subexpr (Strm)),
2529 Make_Function_Call (Loc,
2530 Name =>
2531 New_Occurrence_Of (RTE (RE_External_Tag), Loc),
2532 Parameter_Associations => New_List (
2533 Make_Attribute_Reference (Loc,
2534 Prefix =>
2535 Relocate_Node
2536 (Duplicate_Subexpr (Item, Name_Req => True)),
2537 Attribute_Name => Name_Tag))))));
2538 end Tag_Write;
2540 Pname := Find_Prim_Op (U_Type, TSS_Stream_Output);
2542 -- Tagged type case, use the primitive Output function
2544 elsif Is_Tagged_Type (U_Type) then
2545 Pname := Find_Prim_Op (U_Type, TSS_Stream_Output);
2547 -- All other record type cases, including protected records.
2548 -- The latter only arise for expander generated code for
2549 -- handling shared passive partition access.
2551 else
2552 pragma Assert
2553 (Is_Record_Type (U_Type) or else Is_Protected_Type (U_Type));
2555 -- Ada 2005 (AI-216): Program_Error is raised when executing
2556 -- the default implementation of the Output attribute of an
2557 -- unchecked union type if the type lacks default discriminant
2558 -- values.
2560 if Is_Unchecked_Union (Base_Type (U_Type))
2561 and then not Present (Discriminant_Constraint (U_Type))
2562 then
2563 Insert_Action (N,
2564 Make_Raise_Program_Error (Loc,
2565 Reason => PE_Unchecked_Union_Restriction));
2567 return;
2568 end if;
2570 Build_Record_Or_Elementary_Output_Procedure
2571 (Loc, Base_Type (U_Type), Decl, Pname);
2572 Insert_Action (N, Decl);
2573 end if;
2574 end if;
2576 -- If we fall through, Pname is the name of the procedure to call
2578 Rewrite_Stream_Proc_Call (Pname);
2579 end Output;
2581 ---------
2582 -- Pos --
2583 ---------
2585 -- For enumeration types with a standard representation, Pos is
2586 -- handled by Gigi.
2588 -- For enumeration types, with a non-standard representation we
2589 -- generate a call to the _Rep_To_Pos function created when the
2590 -- type was frozen. The call has the form
2592 -- _rep_to_pos (expr, flag)
2594 -- The parameter flag is True if range checks are enabled, causing
2595 -- Program_Error to be raised if the expression has an invalid
2596 -- representation, and False if range checks are suppressed.
2598 -- For integer types, Pos is equivalent to a simple integer
2599 -- conversion and we rewrite it as such
2601 when Attribute_Pos => Pos :
2602 declare
2603 Etyp : Entity_Id := Base_Type (Entity (Pref));
2605 begin
2606 -- Deal with zero/non-zero boolean values
2608 if Is_Boolean_Type (Etyp) then
2609 Adjust_Condition (First (Exprs));
2610 Etyp := Standard_Boolean;
2611 Set_Prefix (N, New_Occurrence_Of (Standard_Boolean, Loc));
2612 end if;
2614 -- Case of enumeration type
2616 if Is_Enumeration_Type (Etyp) then
2618 -- Non-standard enumeration type (generate call)
2620 if Present (Enum_Pos_To_Rep (Etyp)) then
2621 Append_To (Exprs, Rep_To_Pos_Flag (Etyp, Loc));
2622 Rewrite (N,
2623 Convert_To (Typ,
2624 Make_Function_Call (Loc,
2625 Name =>
2626 New_Reference_To (TSS (Etyp, TSS_Rep_To_Pos), Loc),
2627 Parameter_Associations => Exprs)));
2629 Analyze_And_Resolve (N, Typ);
2631 -- Standard enumeration type (do universal integer check)
2633 else
2634 Apply_Universal_Integer_Attribute_Checks (N);
2635 end if;
2637 -- Deal with integer types (replace by conversion)
2639 elsif Is_Integer_Type (Etyp) then
2640 Rewrite (N, Convert_To (Typ, First (Exprs)));
2641 Analyze_And_Resolve (N, Typ);
2642 end if;
2644 end Pos;
2646 --------------
2647 -- Position --
2648 --------------
2650 -- We compute this if a component clause was present, otherwise
2651 -- we leave the computation up to Gigi, since we don't know what
2652 -- layout will be chosen.
2654 when Attribute_Position => Position :
2655 declare
2656 CE : constant Entity_Id := Entity (Selector_Name (Pref));
2658 begin
2659 if Present (Component_Clause (CE)) then
2660 Rewrite (N,
2661 Make_Integer_Literal (Loc,
2662 Intval => Component_Bit_Offset (CE) / System_Storage_Unit));
2663 Analyze_And_Resolve (N, Typ);
2665 else
2666 Apply_Universal_Integer_Attribute_Checks (N);
2667 end if;
2668 end Position;
2670 ----------
2671 -- Pred --
2672 ----------
2674 -- 1. Deal with enumeration types with holes
2675 -- 2. For floating-point, generate call to attribute function
2676 -- 3. For other cases, deal with constraint checking
2678 when Attribute_Pred => Pred :
2679 declare
2680 Ptyp : constant Entity_Id := Base_Type (Etype (Pref));
2682 begin
2683 -- For enumeration types with non-standard representations, we
2684 -- expand typ'Pred (x) into
2686 -- Pos_To_Rep (Rep_To_Pos (x) - 1)
2688 -- If the representation is contiguous, we compute instead
2689 -- Lit1 + Rep_to_Pos (x -1), to catch invalid representations.
2691 if Is_Enumeration_Type (Ptyp)
2692 and then Present (Enum_Pos_To_Rep (Ptyp))
2693 then
2694 if Has_Contiguous_Rep (Ptyp) then
2695 Rewrite (N,
2696 Unchecked_Convert_To (Ptyp,
2697 Make_Op_Add (Loc,
2698 Left_Opnd =>
2699 Make_Integer_Literal (Loc,
2700 Enumeration_Rep (First_Literal (Ptyp))),
2701 Right_Opnd =>
2702 Make_Function_Call (Loc,
2703 Name =>
2704 New_Reference_To
2705 (TSS (Ptyp, TSS_Rep_To_Pos), Loc),
2707 Parameter_Associations =>
2708 New_List (
2709 Unchecked_Convert_To (Ptyp,
2710 Make_Op_Subtract (Loc,
2711 Left_Opnd =>
2712 Unchecked_Convert_To (Standard_Integer,
2713 Relocate_Node (First (Exprs))),
2714 Right_Opnd =>
2715 Make_Integer_Literal (Loc, 1))),
2716 Rep_To_Pos_Flag (Ptyp, Loc))))));
2718 else
2719 -- Add Boolean parameter True, to request program errror if
2720 -- we have a bad representation on our hands. If checks are
2721 -- suppressed, then add False instead
2723 Append_To (Exprs, Rep_To_Pos_Flag (Ptyp, Loc));
2724 Rewrite (N,
2725 Make_Indexed_Component (Loc,
2726 Prefix => New_Reference_To (Enum_Pos_To_Rep (Ptyp), Loc),
2727 Expressions => New_List (
2728 Make_Op_Subtract (Loc,
2729 Left_Opnd =>
2730 Make_Function_Call (Loc,
2731 Name =>
2732 New_Reference_To (TSS (Ptyp, TSS_Rep_To_Pos), Loc),
2733 Parameter_Associations => Exprs),
2734 Right_Opnd => Make_Integer_Literal (Loc, 1)))));
2735 end if;
2737 Analyze_And_Resolve (N, Typ);
2739 -- For floating-point, we transform 'Pred into a call to the Pred
2740 -- floating-point attribute function in Fat_xxx (xxx is root type)
2742 elsif Is_Floating_Point_Type (Ptyp) then
2743 Expand_Fpt_Attribute_R (N);
2744 Analyze_And_Resolve (N, Typ);
2746 -- For modular types, nothing to do (no overflow, since wraps)
2748 elsif Is_Modular_Integer_Type (Ptyp) then
2749 null;
2751 -- For other types, if range checking is enabled, we must generate
2752 -- a check if overflow checking is enabled.
2754 elsif not Overflow_Checks_Suppressed (Ptyp) then
2755 Expand_Pred_Succ (N);
2756 end if;
2758 end Pred;
2760 ------------------
2761 -- Range_Length --
2762 ------------------
2764 when Attribute_Range_Length => Range_Length : declare
2765 P_Type : constant Entity_Id := Etype (Pref);
2767 begin
2768 -- The only special processing required is for the case where
2769 -- Range_Length is applied to an enumeration type with holes.
2770 -- In this case we transform
2772 -- X'Range_Length
2774 -- to
2776 -- X'Pos (X'Last) - X'Pos (X'First) + 1
2778 -- So that the result reflects the proper Pos values instead
2779 -- of the underlying representations.
2781 if Is_Enumeration_Type (P_Type)
2782 and then Has_Non_Standard_Rep (P_Type)
2783 then
2784 Rewrite (N,
2785 Make_Op_Add (Loc,
2786 Left_Opnd =>
2787 Make_Op_Subtract (Loc,
2788 Left_Opnd =>
2789 Make_Attribute_Reference (Loc,
2790 Attribute_Name => Name_Pos,
2791 Prefix => New_Occurrence_Of (P_Type, Loc),
2792 Expressions => New_List (
2793 Make_Attribute_Reference (Loc,
2794 Attribute_Name => Name_Last,
2795 Prefix => New_Occurrence_Of (P_Type, Loc)))),
2797 Right_Opnd =>
2798 Make_Attribute_Reference (Loc,
2799 Attribute_Name => Name_Pos,
2800 Prefix => New_Occurrence_Of (P_Type, Loc),
2801 Expressions => New_List (
2802 Make_Attribute_Reference (Loc,
2803 Attribute_Name => Name_First,
2804 Prefix => New_Occurrence_Of (P_Type, Loc))))),
2806 Right_Opnd =>
2807 Make_Integer_Literal (Loc, 1)));
2809 Analyze_And_Resolve (N, Typ);
2811 -- For all other cases, attribute is handled by Gigi, but we need
2812 -- to deal with the case of the range check on a universal integer.
2814 else
2815 Apply_Universal_Integer_Attribute_Checks (N);
2816 end if;
2818 end Range_Length;
2820 ----------
2821 -- Read --
2822 ----------
2824 when Attribute_Read => Read : declare
2825 P_Type : constant Entity_Id := Entity (Pref);
2826 B_Type : constant Entity_Id := Base_Type (P_Type);
2827 U_Type : constant Entity_Id := Underlying_Type (P_Type);
2828 Pname : Entity_Id;
2829 Decl : Node_Id;
2830 Prag : Node_Id;
2831 Arg2 : Node_Id;
2832 Rfunc : Node_Id;
2833 Lhs : Node_Id;
2834 Rhs : Node_Id;
2836 begin
2837 -- If no underlying type, we have an error that will be diagnosed
2838 -- elsewhere, so here we just completely ignore the expansion.
2840 if No (U_Type) then
2841 return;
2842 end if;
2844 -- The simple case, if there is a TSS for Read, just call it
2846 Pname := Find_Stream_Subprogram (P_Type, TSS_Stream_Read);
2848 if Present (Pname) then
2849 null;
2851 else
2852 -- If there is a Stream_Convert pragma, use it, we rewrite
2854 -- sourcetyp'Read (stream, Item)
2856 -- as
2858 -- Item := sourcetyp (strmread (strmtyp'Input (Stream)));
2860 -- where strmread is the given Read function that converts
2861 -- an argument of type strmtyp to type sourcetyp or a type
2862 -- from which it is derived. The conversion to sourcetyp
2863 -- is required in the latter case.
2865 -- A special case arises if Item is a type conversion in which
2866 -- case, we have to expand to:
2868 -- Itemx := typex (strmread (strmtyp'Input (Stream)));
2870 -- where Itemx is the expression of the type conversion (i.e.
2871 -- the actual object), and typex is the type of Itemx.
2873 Prag := Get_Stream_Convert_Pragma (P_Type);
2875 if Present (Prag) then
2876 Arg2 := Next (First (Pragma_Argument_Associations (Prag)));
2877 Rfunc := Entity (Expression (Arg2));
2878 Lhs := Relocate_Node (Next (First (Exprs)));
2879 Rhs :=
2880 Convert_To (B_Type,
2881 Make_Function_Call (Loc,
2882 Name => New_Occurrence_Of (Rfunc, Loc),
2883 Parameter_Associations => New_List (
2884 Make_Attribute_Reference (Loc,
2885 Prefix =>
2886 New_Occurrence_Of
2887 (Etype (First_Formal (Rfunc)), Loc),
2888 Attribute_Name => Name_Input,
2889 Expressions => New_List (
2890 Relocate_Node (First (Exprs)))))));
2892 if Nkind (Lhs) = N_Type_Conversion then
2893 Lhs := Expression (Lhs);
2894 Rhs := Convert_To (Etype (Lhs), Rhs);
2895 end if;
2897 Rewrite (N,
2898 Make_Assignment_Statement (Loc,
2899 Name => Lhs,
2900 Expression => Rhs));
2901 Set_Assignment_OK (Lhs);
2902 Analyze (N);
2903 return;
2905 -- For elementary types, we call the I_xxx routine using the first
2906 -- parameter and then assign the result into the second parameter.
2907 -- We set Assignment_OK to deal with the conversion case.
2909 elsif Is_Elementary_Type (U_Type) then
2910 declare
2911 Lhs : Node_Id;
2912 Rhs : Node_Id;
2914 begin
2915 Lhs := Relocate_Node (Next (First (Exprs)));
2916 Rhs := Build_Elementary_Input_Call (N);
2918 if Nkind (Lhs) = N_Type_Conversion then
2919 Lhs := Expression (Lhs);
2920 Rhs := Convert_To (Etype (Lhs), Rhs);
2921 end if;
2923 Set_Assignment_OK (Lhs);
2925 Rewrite (N,
2926 Make_Assignment_Statement (Loc,
2927 Name => Lhs,
2928 Expression => Rhs));
2930 Analyze (N);
2931 return;
2932 end;
2934 -- Array type case
2936 elsif Is_Array_Type (U_Type) then
2937 Build_Array_Read_Procedure (N, U_Type, Decl, Pname);
2938 Compile_Stream_Body_In_Scope (N, Decl, U_Type, Check => False);
2940 -- Tagged type case, use the primitive Read function. Note that
2941 -- this will dispatch in the class-wide case which is what we want
2943 elsif Is_Tagged_Type (U_Type) then
2944 Pname := Find_Prim_Op (U_Type, TSS_Stream_Read);
2946 -- All other record type cases, including protected records.
2947 -- The latter only arise for expander generated code for
2948 -- handling shared passive partition access.
2950 else
2951 pragma Assert
2952 (Is_Record_Type (U_Type) or else Is_Protected_Type (U_Type));
2954 -- Ada 2005 (AI-216): Program_Error is raised when executing
2955 -- the default implementation of the Read attribute of an
2956 -- Unchecked_Union type.
2958 if Is_Unchecked_Union (Base_Type (U_Type)) then
2959 Insert_Action (N,
2960 Make_Raise_Program_Error (Loc,
2961 Reason => PE_Unchecked_Union_Restriction));
2962 end if;
2964 if Has_Discriminants (U_Type)
2965 and then Present
2966 (Discriminant_Default_Value (First_Discriminant (U_Type)))
2967 then
2968 Build_Mutable_Record_Read_Procedure
2969 (Loc, Base_Type (U_Type), Decl, Pname);
2970 else
2971 Build_Record_Read_Procedure
2972 (Loc, Base_Type (U_Type), Decl, Pname);
2973 end if;
2975 -- Suppress checks, uninitialized or otherwise invalid
2976 -- data does not cause constraint errors to be raised for
2977 -- a complete record read.
2979 Insert_Action (N, Decl, All_Checks);
2980 end if;
2981 end if;
2983 Rewrite_Stream_Proc_Call (Pname);
2984 end Read;
2986 ---------------
2987 -- Remainder --
2988 ---------------
2990 -- Transforms 'Remainder into a call to the floating-point attribute
2991 -- function Remainder in Fat_xxx (where xxx is the root type)
2993 when Attribute_Remainder =>
2994 Expand_Fpt_Attribute_RR (N);
2996 -----------
2997 -- Round --
2998 -----------
3000 -- The handling of the Round attribute is quite delicate. The
3001 -- processing in Sem_Attr introduced a conversion to universal
3002 -- real, reflecting the semantics of Round, but we do not want
3003 -- anything to do with universal real at runtime, since this
3004 -- corresponds to using floating-point arithmetic.
3006 -- What we have now is that the Etype of the Round attribute
3007 -- correctly indicates the final result type. The operand of
3008 -- the Round is the conversion to universal real, described
3009 -- above, and the operand of this conversion is the actual
3010 -- operand of Round, which may be the special case of a fixed
3011 -- point multiplication or division (Etype = universal fixed)
3013 -- The exapander will expand first the operand of the conversion,
3014 -- then the conversion, and finally the round attribute itself,
3015 -- since we always work inside out. But we cannot simply process
3016 -- naively in this order. In the semantic world where universal
3017 -- fixed and real really exist and have infinite precision, there
3018 -- is no problem, but in the implementation world, where universal
3019 -- real is a floating-point type, we would get the wrong result.
3021 -- So the approach is as follows. First, when expanding a multiply
3022 -- or divide whose type is universal fixed, we do nothing at all,
3023 -- instead deferring the operation till later.
3025 -- The actual processing is done in Expand_N_Type_Conversion which
3026 -- handles the special case of Round by looking at its parent to
3027 -- see if it is a Round attribute, and if it is, handling the
3028 -- conversion (or its fixed multiply/divide child) in an appropriate
3029 -- manner.
3031 -- This means that by the time we get to expanding the Round attribute
3032 -- itself, the Round is nothing more than a type conversion (and will
3033 -- often be a null type conversion), so we just replace it with the
3034 -- appropriate conversion operation.
3036 when Attribute_Round =>
3037 Rewrite (N,
3038 Convert_To (Etype (N), Relocate_Node (First (Exprs))));
3039 Analyze_And_Resolve (N);
3041 --------------
3042 -- Rounding --
3043 --------------
3045 -- Transforms 'Rounding into a call to the floating-point attribute
3046 -- function Rounding in Fat_xxx (where xxx is the root type)
3048 when Attribute_Rounding =>
3049 Expand_Fpt_Attribute_R (N);
3051 -------------
3052 -- Scaling --
3053 -------------
3055 -- Transforms 'Scaling into a call to the floating-point attribute
3056 -- function Scaling in Fat_xxx (where xxx is the root type)
3058 when Attribute_Scaling =>
3059 Expand_Fpt_Attribute_RI (N);
3061 ----------
3062 -- Size --
3063 ----------
3065 when Attribute_Size |
3066 Attribute_Object_Size |
3067 Attribute_Value_Size |
3068 Attribute_VADS_Size => Size :
3070 declare
3071 Ptyp : constant Entity_Id := Etype (Pref);
3072 Siz : Uint;
3073 New_Node : Node_Id;
3075 begin
3076 -- Processing for VADS_Size case. Note that this processing removes
3077 -- all traces of VADS_Size from the tree, and completes all required
3078 -- processing for VADS_Size by translating the attribute reference
3079 -- to an appropriate Size or Object_Size reference.
3081 if Id = Attribute_VADS_Size
3082 or else (Use_VADS_Size and then Id = Attribute_Size)
3083 then
3084 -- If the size is specified, then we simply use the specified
3085 -- size. This applies to both types and objects. The size of an
3086 -- object can be specified in the following ways:
3088 -- An explicit size object is given for an object
3089 -- A component size is specified for an indexed component
3090 -- A component clause is specified for a selected component
3091 -- The object is a component of a packed composite object
3093 -- If the size is specified, then VADS_Size of an object
3095 if (Is_Entity_Name (Pref)
3096 and then Present (Size_Clause (Entity (Pref))))
3097 or else
3098 (Nkind (Pref) = N_Component_Clause
3099 and then (Present (Component_Clause
3100 (Entity (Selector_Name (Pref))))
3101 or else Is_Packed (Etype (Prefix (Pref)))))
3102 or else
3103 (Nkind (Pref) = N_Indexed_Component
3104 and then (Component_Size (Etype (Prefix (Pref))) /= 0
3105 or else Is_Packed (Etype (Prefix (Pref)))))
3106 then
3107 Set_Attribute_Name (N, Name_Size);
3109 -- Otherwise if we have an object rather than a type, then the
3110 -- VADS_Size attribute applies to the type of the object, rather
3111 -- than the object itself. This is one of the respects in which
3112 -- VADS_Size differs from Size.
3114 else
3115 if (not Is_Entity_Name (Pref)
3116 or else not Is_Type (Entity (Pref)))
3117 and then (Is_Scalar_Type (Etype (Pref))
3118 or else Is_Constrained (Etype (Pref)))
3119 then
3120 Rewrite (Pref, New_Occurrence_Of (Etype (Pref), Loc));
3121 end if;
3123 -- For a scalar type for which no size was
3124 -- explicitly given, VADS_Size means Object_Size. This is the
3125 -- other respect in which VADS_Size differs from Size.
3127 if Is_Scalar_Type (Etype (Pref))
3128 and then No (Size_Clause (Etype (Pref)))
3129 then
3130 Set_Attribute_Name (N, Name_Object_Size);
3132 -- In all other cases, Size and VADS_Size are the sane
3134 else
3135 Set_Attribute_Name (N, Name_Size);
3136 end if;
3137 end if;
3138 end if;
3140 -- For class-wide types, X'Class'Size is transformed into a
3141 -- direct reference to the Size of the class type, so that gigi
3142 -- does not have to deal with the X'Class'Size reference.
3144 if Is_Entity_Name (Pref)
3145 and then Is_Class_Wide_Type (Entity (Pref))
3146 then
3147 Rewrite (Prefix (N), New_Occurrence_Of (Entity (Pref), Loc));
3148 return;
3150 -- For x'Size applied to an object of a class-wide type, transform
3151 -- X'Size into a call to the primitive operation _Size applied to X.
3153 elsif Is_Class_Wide_Type (Ptyp) then
3154 New_Node :=
3155 Make_Function_Call (Loc,
3156 Name => New_Reference_To
3157 (Find_Prim_Op (Ptyp, Name_uSize), Loc),
3158 Parameter_Associations => New_List (Pref));
3160 if Typ /= Standard_Long_Long_Integer then
3162 -- The context is a specific integer type with which the
3163 -- original attribute was compatible. The function has a
3164 -- specific type as well, so to preserve the compatibility
3165 -- we must convert explicitly.
3167 New_Node := Convert_To (Typ, New_Node);
3168 end if;
3170 Rewrite (N, New_Node);
3171 Analyze_And_Resolve (N, Typ);
3172 return;
3174 -- For an array component, we can do Size in the front end
3175 -- if the component_size of the array is set.
3177 elsif Nkind (Pref) = N_Indexed_Component then
3178 Siz := Component_Size (Etype (Prefix (Pref)));
3180 -- For a record component, we can do Size in the front end
3181 -- if there is a component clause, or if the record is packed
3182 -- and the component's size is known at compile time.
3184 elsif Nkind (Pref) = N_Selected_Component then
3185 declare
3186 Rec : constant Entity_Id := Etype (Prefix (Pref));
3187 Comp : constant Entity_Id := Entity (Selector_Name (Pref));
3189 begin
3190 if Present (Component_Clause (Comp)) then
3191 Siz := Esize (Comp);
3193 elsif Is_Packed (Rec) then
3194 Siz := RM_Size (Ptyp);
3196 else
3197 Apply_Universal_Integer_Attribute_Checks (N);
3198 return;
3199 end if;
3200 end;
3202 -- All other cases are handled by Gigi
3204 else
3205 Apply_Universal_Integer_Attribute_Checks (N);
3207 -- If we have Size applied to a formal parameter, that is a
3208 -- packed array subtype, then apply size to the actual subtype.
3210 if Is_Entity_Name (Pref)
3211 and then Is_Formal (Entity (Pref))
3212 and then Is_Array_Type (Etype (Pref))
3213 and then Is_Packed (Etype (Pref))
3214 then
3215 Rewrite (N,
3216 Make_Attribute_Reference (Loc,
3217 Prefix =>
3218 New_Occurrence_Of (Get_Actual_Subtype (Pref), Loc),
3219 Attribute_Name => Name_Size));
3220 Analyze_And_Resolve (N, Typ);
3221 end if;
3223 return;
3224 end if;
3226 -- Common processing for record and array component case
3228 if Siz /= 0 then
3229 Rewrite (N, Make_Integer_Literal (Loc, Siz));
3231 Analyze_And_Resolve (N, Typ);
3233 -- The result is not a static expression
3235 Set_Is_Static_Expression (N, False);
3236 end if;
3237 end Size;
3239 ------------------
3240 -- Storage_Pool --
3241 ------------------
3243 when Attribute_Storage_Pool =>
3244 Rewrite (N,
3245 Make_Type_Conversion (Loc,
3246 Subtype_Mark => New_Reference_To (Etype (N), Loc),
3247 Expression => New_Reference_To (Entity (N), Loc)));
3248 Analyze_And_Resolve (N, Typ);
3250 ------------------
3251 -- Storage_Size --
3252 ------------------
3254 when Attribute_Storage_Size => Storage_Size :
3255 declare
3256 Ptyp : constant Entity_Id := Etype (Pref);
3258 begin
3259 -- Access type case, always go to the root type
3261 -- The case of access types results in a value of zero for the case
3262 -- where no storage size attribute clause has been given. If a
3263 -- storage size has been given, then the attribute is converted
3264 -- to a reference to the variable used to hold this value.
3266 if Is_Access_Type (Ptyp) then
3267 if Present (Storage_Size_Variable (Root_Type (Ptyp))) then
3268 Rewrite (N,
3269 Make_Attribute_Reference (Loc,
3270 Prefix => New_Reference_To (Typ, Loc),
3271 Attribute_Name => Name_Max,
3272 Expressions => New_List (
3273 Make_Integer_Literal (Loc, 0),
3274 Convert_To (Typ,
3275 New_Reference_To
3276 (Storage_Size_Variable (Root_Type (Ptyp)), Loc)))));
3278 elsif Present (Associated_Storage_Pool (Root_Type (Ptyp))) then
3279 Rewrite (N,
3280 OK_Convert_To (Typ,
3281 Make_Function_Call (Loc,
3282 Name =>
3283 New_Reference_To
3284 (Find_Prim_Op
3285 (Etype (Associated_Storage_Pool (Root_Type (Ptyp))),
3286 Attribute_Name (N)),
3287 Loc),
3289 Parameter_Associations => New_List (New_Reference_To (
3290 Associated_Storage_Pool (Root_Type (Ptyp)), Loc)))));
3291 else
3292 Rewrite (N, Make_Integer_Literal (Loc, 0));
3293 end if;
3295 Analyze_And_Resolve (N, Typ);
3297 -- The case of a task type (an obsolescent feature) is handled the
3298 -- same way, seems as reasonable as anything, and it is what the
3299 -- ACVC tests (e.g. CD1009K) seem to expect.
3301 -- If there is no Storage_Size variable, then we return the default
3302 -- task stack size, otherwise, expand a Storage_Size attribute as
3303 -- follows:
3305 -- Typ (Adjust_Storage_Size (taskZ))
3307 -- except for the case of a task object which has a Storage_Size
3308 -- pragma:
3310 -- Typ (Adjust_Storage_Size (taskV!(name)._Size))
3312 else
3313 if not Present (Storage_Size_Variable (Ptyp)) then
3314 Rewrite (N,
3315 Convert_To (Typ,
3316 Make_Function_Call (Loc,
3317 Name =>
3318 New_Occurrence_Of (RTE (RE_Default_Stack_Size), Loc))));
3320 else
3321 if not (Is_Entity_Name (Pref) and then
3322 Is_Task_Type (Entity (Pref))) and then
3323 Chars (Last_Entity (Corresponding_Record_Type (Ptyp))) =
3324 Name_uSize
3325 then
3326 Rewrite (N,
3327 Convert_To (Typ,
3328 Make_Function_Call (Loc,
3329 Name => New_Occurrence_Of (
3330 RTE (RE_Adjust_Storage_Size), Loc),
3331 Parameter_Associations =>
3332 New_List (
3333 Make_Selected_Component (Loc,
3334 Prefix =>
3335 Unchecked_Convert_To (
3336 Corresponding_Record_Type (Ptyp),
3337 New_Copy_Tree (Pref)),
3338 Selector_Name =>
3339 Make_Identifier (Loc, Name_uSize))))));
3341 -- Task not having Storage_Size pragma
3343 else
3344 Rewrite (N,
3345 Convert_To (Typ,
3346 Make_Function_Call (Loc,
3347 Name => New_Occurrence_Of (
3348 RTE (RE_Adjust_Storage_Size), Loc),
3349 Parameter_Associations =>
3350 New_List (
3351 New_Reference_To (
3352 Storage_Size_Variable (Ptyp), Loc)))));
3353 end if;
3355 Analyze_And_Resolve (N, Typ);
3356 end if;
3357 end if;
3358 end Storage_Size;
3360 -----------------
3361 -- Stream_Size --
3362 -----------------
3364 when Attribute_Stream_Size => Stream_Size : declare
3365 Ptyp : constant Entity_Id := Etype (Pref);
3366 Size : Int;
3368 begin
3369 -- If we have a Stream_Size clause for this type use it, otherwise
3370 -- the Stream_Size if the size of the type.
3372 if Has_Stream_Size_Clause (Ptyp) then
3373 Size := UI_To_Int
3374 (Static_Integer (Expression (Stream_Size_Clause (Ptyp))));
3375 else
3376 Size := UI_To_Int (Esize (Ptyp));
3377 end if;
3379 Rewrite (N, Make_Integer_Literal (Loc, Intval => Size));
3380 Analyze_And_Resolve (N, Typ);
3381 end Stream_Size;
3383 ----------
3384 -- Succ --
3385 ----------
3387 -- 1. Deal with enumeration types with holes
3388 -- 2. For floating-point, generate call to attribute function
3389 -- 3. For other cases, deal with constraint checking
3391 when Attribute_Succ => Succ :
3392 declare
3393 Ptyp : constant Entity_Id := Base_Type (Etype (Pref));
3395 begin
3396 -- For enumeration types with non-standard representations, we
3397 -- expand typ'Succ (x) into
3399 -- Pos_To_Rep (Rep_To_Pos (x) + 1)
3401 -- If the representation is contiguous, we compute instead
3402 -- Lit1 + Rep_to_Pos (x+1), to catch invalid representations.
3404 if Is_Enumeration_Type (Ptyp)
3405 and then Present (Enum_Pos_To_Rep (Ptyp))
3406 then
3407 if Has_Contiguous_Rep (Ptyp) then
3408 Rewrite (N,
3409 Unchecked_Convert_To (Ptyp,
3410 Make_Op_Add (Loc,
3411 Left_Opnd =>
3412 Make_Integer_Literal (Loc,
3413 Enumeration_Rep (First_Literal (Ptyp))),
3414 Right_Opnd =>
3415 Make_Function_Call (Loc,
3416 Name =>
3417 New_Reference_To
3418 (TSS (Ptyp, TSS_Rep_To_Pos), Loc),
3420 Parameter_Associations =>
3421 New_List (
3422 Unchecked_Convert_To (Ptyp,
3423 Make_Op_Add (Loc,
3424 Left_Opnd =>
3425 Unchecked_Convert_To (Standard_Integer,
3426 Relocate_Node (First (Exprs))),
3427 Right_Opnd =>
3428 Make_Integer_Literal (Loc, 1))),
3429 Rep_To_Pos_Flag (Ptyp, Loc))))));
3430 else
3431 -- Add Boolean parameter True, to request program errror if
3432 -- we have a bad representation on our hands. Add False if
3433 -- checks are suppressed.
3435 Append_To (Exprs, Rep_To_Pos_Flag (Ptyp, Loc));
3436 Rewrite (N,
3437 Make_Indexed_Component (Loc,
3438 Prefix => New_Reference_To (Enum_Pos_To_Rep (Ptyp), Loc),
3439 Expressions => New_List (
3440 Make_Op_Add (Loc,
3441 Left_Opnd =>
3442 Make_Function_Call (Loc,
3443 Name =>
3444 New_Reference_To
3445 (TSS (Ptyp, TSS_Rep_To_Pos), Loc),
3446 Parameter_Associations => Exprs),
3447 Right_Opnd => Make_Integer_Literal (Loc, 1)))));
3448 end if;
3450 Analyze_And_Resolve (N, Typ);
3452 -- For floating-point, we transform 'Succ into a call to the Succ
3453 -- floating-point attribute function in Fat_xxx (xxx is root type)
3455 elsif Is_Floating_Point_Type (Ptyp) then
3456 Expand_Fpt_Attribute_R (N);
3457 Analyze_And_Resolve (N, Typ);
3459 -- For modular types, nothing to do (no overflow, since wraps)
3461 elsif Is_Modular_Integer_Type (Ptyp) then
3462 null;
3464 -- For other types, if range checking is enabled, we must generate
3465 -- a check if overflow checking is enabled.
3467 elsif not Overflow_Checks_Suppressed (Ptyp) then
3468 Expand_Pred_Succ (N);
3469 end if;
3470 end Succ;
3472 ---------
3473 -- Tag --
3474 ---------
3476 -- Transforms X'Tag into a direct reference to the tag of X
3478 when Attribute_Tag => Tag :
3479 declare
3480 Ttyp : Entity_Id;
3481 Prefix_Is_Type : Boolean;
3483 begin
3484 if Is_Entity_Name (Pref) and then Is_Type (Entity (Pref)) then
3485 Ttyp := Entity (Pref);
3486 Prefix_Is_Type := True;
3487 else
3488 Ttyp := Etype (Pref);
3489 Prefix_Is_Type := False;
3490 end if;
3492 if Is_Class_Wide_Type (Ttyp) then
3493 Ttyp := Root_Type (Ttyp);
3494 end if;
3496 Ttyp := Underlying_Type (Ttyp);
3498 if Prefix_Is_Type then
3500 -- For JGNAT we leave the type attribute unexpanded because
3501 -- there's not a dispatching table to reference.
3503 if not Java_VM then
3504 Rewrite (N,
3505 Unchecked_Convert_To (RTE (RE_Tag),
3506 New_Reference_To
3507 (Node (First_Elmt (Access_Disp_Table (Ttyp))), Loc)));
3508 Analyze_And_Resolve (N, RTE (RE_Tag));
3509 end if;
3511 else
3512 Rewrite (N,
3513 Make_Selected_Component (Loc,
3514 Prefix => Relocate_Node (Pref),
3515 Selector_Name =>
3516 New_Reference_To (First_Tag_Component (Ttyp), Loc)));
3517 Analyze_And_Resolve (N, RTE (RE_Tag));
3518 end if;
3519 end Tag;
3521 ----------------
3522 -- Terminated --
3523 ----------------
3525 -- Transforms 'Terminated attribute into a call to Terminated function.
3527 when Attribute_Terminated => Terminated :
3528 begin
3529 if Restricted_Profile then
3530 Rewrite (N,
3531 Build_Call_With_Task (Pref, RTE (RE_Restricted_Terminated)));
3533 else
3534 Rewrite (N,
3535 Build_Call_With_Task (Pref, RTE (RE_Terminated)));
3536 end if;
3538 Analyze_And_Resolve (N, Standard_Boolean);
3539 end Terminated;
3541 ----------------
3542 -- To_Address --
3543 ----------------
3545 -- Transforms System'To_Address (X) into unchecked conversion
3546 -- from (integral) type of X to type address.
3548 when Attribute_To_Address =>
3549 Rewrite (N,
3550 Unchecked_Convert_To (RTE (RE_Address),
3551 Relocate_Node (First (Exprs))));
3552 Analyze_And_Resolve (N, RTE (RE_Address));
3554 ----------------
3555 -- Truncation --
3556 ----------------
3558 -- Transforms 'Truncation into a call to the floating-point attribute
3559 -- function Truncation in Fat_xxx (where xxx is the root type)
3561 when Attribute_Truncation =>
3562 Expand_Fpt_Attribute_R (N);
3564 -----------------------
3565 -- Unbiased_Rounding --
3566 -----------------------
3568 -- Transforms 'Unbiased_Rounding into a call to the floating-point
3569 -- attribute function Unbiased_Rounding in Fat_xxx (where xxx is the
3570 -- root type)
3572 when Attribute_Unbiased_Rounding =>
3573 Expand_Fpt_Attribute_R (N);
3575 ----------------------
3576 -- Unchecked_Access --
3577 ----------------------
3579 when Attribute_Unchecked_Access =>
3580 Expand_Access_To_Type (N);
3582 -----------------
3583 -- UET_Address --
3584 -----------------
3586 when Attribute_UET_Address => UET_Address : declare
3587 Ent : constant Entity_Id :=
3588 Make_Defining_Identifier (Loc, New_Internal_Name ('T'));
3590 begin
3591 Insert_Action (N,
3592 Make_Object_Declaration (Loc,
3593 Defining_Identifier => Ent,
3594 Aliased_Present => True,
3595 Object_Definition =>
3596 New_Occurrence_Of (RTE (RE_Address), Loc)));
3598 -- Construct name __gnat_xxx__SDP, where xxx is the unit name
3599 -- in normal external form.
3601 Get_External_Unit_Name_String (Get_Unit_Name (Pref));
3602 Name_Buffer (1 + 7 .. Name_Len + 7) := Name_Buffer (1 .. Name_Len);
3603 Name_Len := Name_Len + 7;
3604 Name_Buffer (1 .. 7) := "__gnat_";
3605 Name_Buffer (Name_Len + 1 .. Name_Len + 5) := "__SDP";
3606 Name_Len := Name_Len + 5;
3608 Set_Is_Imported (Ent);
3609 Set_Interface_Name (Ent,
3610 Make_String_Literal (Loc,
3611 Strval => String_From_Name_Buffer));
3613 Rewrite (N,
3614 Make_Attribute_Reference (Loc,
3615 Prefix => New_Occurrence_Of (Ent, Loc),
3616 Attribute_Name => Name_Address));
3618 Analyze_And_Resolve (N, Typ);
3619 end UET_Address;
3621 -------------------------
3622 -- Unrestricted_Access --
3623 -------------------------
3625 when Attribute_Unrestricted_Access =>
3626 Expand_Access_To_Type (N);
3628 ---------------
3629 -- VADS_Size --
3630 ---------------
3632 -- The processing for VADS_Size is shared with Size
3634 ---------
3635 -- Val --
3636 ---------
3638 -- For enumeration types with a standard representation, and for all
3639 -- other types, Val is handled by Gigi. For enumeration types with
3640 -- a non-standard representation we use the _Pos_To_Rep array that
3641 -- was created when the type was frozen.
3643 when Attribute_Val => Val :
3644 declare
3645 Etyp : constant Entity_Id := Base_Type (Entity (Pref));
3647 begin
3648 if Is_Enumeration_Type (Etyp)
3649 and then Present (Enum_Pos_To_Rep (Etyp))
3650 then
3651 if Has_Contiguous_Rep (Etyp) then
3652 declare
3653 Rep_Node : constant Node_Id :=
3654 Unchecked_Convert_To (Etyp,
3655 Make_Op_Add (Loc,
3656 Left_Opnd =>
3657 Make_Integer_Literal (Loc,
3658 Enumeration_Rep (First_Literal (Etyp))),
3659 Right_Opnd =>
3660 (Convert_To (Standard_Integer,
3661 Relocate_Node (First (Exprs))))));
3663 begin
3664 Rewrite (N,
3665 Unchecked_Convert_To (Etyp,
3666 Make_Op_Add (Loc,
3667 Left_Opnd =>
3668 Make_Integer_Literal (Loc,
3669 Enumeration_Rep (First_Literal (Etyp))),
3670 Right_Opnd =>
3671 Make_Function_Call (Loc,
3672 Name =>
3673 New_Reference_To
3674 (TSS (Etyp, TSS_Rep_To_Pos), Loc),
3675 Parameter_Associations => New_List (
3676 Rep_Node,
3677 Rep_To_Pos_Flag (Etyp, Loc))))));
3678 end;
3680 else
3681 Rewrite (N,
3682 Make_Indexed_Component (Loc,
3683 Prefix => New_Reference_To (Enum_Pos_To_Rep (Etyp), Loc),
3684 Expressions => New_List (
3685 Convert_To (Standard_Integer,
3686 Relocate_Node (First (Exprs))))));
3687 end if;
3689 Analyze_And_Resolve (N, Typ);
3690 end if;
3691 end Val;
3693 -----------
3694 -- Valid --
3695 -----------
3697 -- The code for valid is dependent on the particular types involved.
3698 -- See separate sections below for the generated code in each case.
3700 when Attribute_Valid => Valid :
3701 declare
3702 Ptyp : constant Entity_Id := Etype (Pref);
3703 Btyp : Entity_Id := Base_Type (Ptyp);
3704 Tst : Node_Id;
3706 Save_Validity_Checks_On : constant Boolean := Validity_Checks_On;
3707 -- Save the validity checking mode. We always turn off validity
3708 -- checking during process of 'Valid since this is one place
3709 -- where we do not want the implicit validity checks to intefere
3710 -- with the explicit validity check that the programmer is doing.
3712 function Make_Range_Test return Node_Id;
3713 -- Build the code for a range test of the form
3714 -- Btyp!(Pref) >= Btyp!(Ptyp'First)
3715 -- and then
3716 -- Btyp!(Pref) <= Btyp!(Ptyp'Last)
3718 ---------------------
3719 -- Make_Range_Test --
3720 ---------------------
3722 function Make_Range_Test return Node_Id is
3723 begin
3724 return
3725 Make_And_Then (Loc,
3726 Left_Opnd =>
3727 Make_Op_Ge (Loc,
3728 Left_Opnd =>
3729 Unchecked_Convert_To (Btyp, Duplicate_Subexpr (Pref)),
3731 Right_Opnd =>
3732 Unchecked_Convert_To (Btyp,
3733 Make_Attribute_Reference (Loc,
3734 Prefix => New_Occurrence_Of (Ptyp, Loc),
3735 Attribute_Name => Name_First))),
3737 Right_Opnd =>
3738 Make_Op_Le (Loc,
3739 Left_Opnd =>
3740 Unchecked_Convert_To (Btyp,
3741 Duplicate_Subexpr_No_Checks (Pref)),
3743 Right_Opnd =>
3744 Unchecked_Convert_To (Btyp,
3745 Make_Attribute_Reference (Loc,
3746 Prefix => New_Occurrence_Of (Ptyp, Loc),
3747 Attribute_Name => Name_Last))));
3748 end Make_Range_Test;
3750 -- Start of processing for Attribute_Valid
3752 begin
3753 -- Turn off validity checks. We do not want any implicit validity
3754 -- checks to intefere with the explicit check from the attribute
3756 Validity_Checks_On := False;
3758 -- Floating-point case. This case is handled by the Valid attribute
3759 -- code in the floating-point attribute run-time library.
3761 if Is_Floating_Point_Type (Ptyp) then
3762 declare
3763 Rtp : constant Entity_Id := Root_Type (Etype (Pref));
3765 begin
3766 -- If the floating-point object might be unaligned, we need
3767 -- to call the special routine Unaligned_Valid, which makes
3768 -- the needed copy, being careful not to load the value into
3769 -- any floating-point register. The argument in this case is
3770 -- obj'Address (see Unchecked_Valid routine in s-fatgen.ads).
3772 if Is_Possibly_Unaligned_Object (Pref) then
3773 Set_Attribute_Name (N, Name_Unaligned_Valid);
3774 Expand_Fpt_Attribute
3775 (N, Rtp, Name_Unaligned_Valid,
3776 New_List (
3777 Make_Attribute_Reference (Loc,
3778 Prefix => Relocate_Node (Pref),
3779 Attribute_Name => Name_Address)));
3781 -- In the normal case where we are sure the object is aligned,
3782 -- we generate a caqll to Valid, and the argument in this case
3783 -- is obj'Unrestricted_Access (after converting obj to the
3784 -- right floating-point type).
3786 else
3787 Expand_Fpt_Attribute
3788 (N, Rtp, Name_Valid,
3789 New_List (
3790 Make_Attribute_Reference (Loc,
3791 Prefix => Unchecked_Convert_To (Rtp, Pref),
3792 Attribute_Name => Name_Unrestricted_Access)));
3793 end if;
3795 -- One more task, we still need a range check. Required
3796 -- only if we have a constraint, since the Valid routine
3797 -- catches infinities properly (infinities are never valid).
3799 -- The way we do the range check is simply to create the
3800 -- expression: Valid (N) and then Base_Type(Pref) in Typ.
3802 if not Subtypes_Statically_Match (Ptyp, Btyp) then
3803 Rewrite (N,
3804 Make_And_Then (Loc,
3805 Left_Opnd => Relocate_Node (N),
3806 Right_Opnd =>
3807 Make_In (Loc,
3808 Left_Opnd => Convert_To (Btyp, Pref),
3809 Right_Opnd => New_Occurrence_Of (Ptyp, Loc))));
3810 end if;
3811 end;
3813 -- Enumeration type with holes
3815 -- For enumeration types with holes, the Pos value constructed by
3816 -- the Enum_Rep_To_Pos function built in Exp_Ch3 called with a
3817 -- second argument of False returns minus one for an invalid value,
3818 -- and the non-negative pos value for a valid value, so the
3819 -- expansion of X'Valid is simply:
3821 -- type(X)'Pos (X) >= 0
3823 -- We can't quite generate it that way because of the requirement
3824 -- for the non-standard second argument of False in the resulting
3825 -- rep_to_pos call, so we have to explicitly create:
3827 -- _rep_to_pos (X, False) >= 0
3829 -- If we have an enumeration subtype, we also check that the
3830 -- value is in range:
3832 -- _rep_to_pos (X, False) >= 0
3833 -- and then
3834 -- (X >= type(X)'First and then type(X)'Last <= X)
3836 elsif Is_Enumeration_Type (Ptyp)
3837 and then Present (Enum_Pos_To_Rep (Base_Type (Ptyp)))
3838 then
3839 Tst :=
3840 Make_Op_Ge (Loc,
3841 Left_Opnd =>
3842 Make_Function_Call (Loc,
3843 Name =>
3844 New_Reference_To
3845 (TSS (Base_Type (Ptyp), TSS_Rep_To_Pos), Loc),
3846 Parameter_Associations => New_List (
3847 Pref,
3848 New_Occurrence_Of (Standard_False, Loc))),
3849 Right_Opnd => Make_Integer_Literal (Loc, 0));
3851 if Ptyp /= Btyp
3852 and then
3853 (Type_Low_Bound (Ptyp) /= Type_Low_Bound (Btyp)
3854 or else
3855 Type_High_Bound (Ptyp) /= Type_High_Bound (Btyp))
3856 then
3857 -- The call to Make_Range_Test will create declarations
3858 -- that need a proper insertion point, but Pref is now
3859 -- attached to a node with no ancestor. Attach to tree
3860 -- even if it is to be rewritten below.
3862 Set_Parent (Tst, Parent (N));
3864 Tst :=
3865 Make_And_Then (Loc,
3866 Left_Opnd => Make_Range_Test,
3867 Right_Opnd => Tst);
3868 end if;
3870 Rewrite (N, Tst);
3872 -- Fortran convention booleans
3874 -- For the very special case of Fortran convention booleans, the
3875 -- value is always valid, since it is an integer with the semantics
3876 -- that non-zero is true, and any value is permissible.
3878 elsif Is_Boolean_Type (Ptyp)
3879 and then Convention (Ptyp) = Convention_Fortran
3880 then
3881 Rewrite (N, New_Occurrence_Of (Standard_True, Loc));
3883 -- For biased representations, we will be doing an unchecked
3884 -- conversion without unbiasing the result. That means that
3885 -- the range test has to take this into account, and the
3886 -- proper form of the test is:
3888 -- Btyp!(Pref) < Btyp!(Ptyp'Range_Length)
3890 elsif Has_Biased_Representation (Ptyp) then
3891 Btyp := RTE (RE_Unsigned_32);
3892 Rewrite (N,
3893 Make_Op_Lt (Loc,
3894 Left_Opnd =>
3895 Unchecked_Convert_To (Btyp, Duplicate_Subexpr (Pref)),
3896 Right_Opnd =>
3897 Unchecked_Convert_To (Btyp,
3898 Make_Attribute_Reference (Loc,
3899 Prefix => New_Occurrence_Of (Ptyp, Loc),
3900 Attribute_Name => Name_Range_Length))));
3902 -- For all other scalar types, what we want logically is a
3903 -- range test:
3905 -- X in type(X)'First .. type(X)'Last
3907 -- But that's precisely what won't work because of possible
3908 -- unwanted optimization (and indeed the basic motivation for
3909 -- the Valid attribute is exactly that this test does not work!)
3910 -- What will work is:
3912 -- Btyp!(X) >= Btyp!(type(X)'First)
3913 -- and then
3914 -- Btyp!(X) <= Btyp!(type(X)'Last)
3916 -- where Btyp is an integer type large enough to cover the full
3917 -- range of possible stored values (i.e. it is chosen on the basis
3918 -- of the size of the type, not the range of the values). We write
3919 -- this as two tests, rather than a range check, so that static
3920 -- evaluation will easily remove either or both of the checks if
3921 -- they can be -statically determined to be true (this happens
3922 -- when the type of X is static and the range extends to the full
3923 -- range of stored values).
3925 -- Unsigned types. Note: it is safe to consider only whether the
3926 -- subtype is unsigned, since we will in that case be doing all
3927 -- unsigned comparisons based on the subtype range. Since we use
3928 -- the actual subtype object size, this is appropriate.
3930 -- For example, if we have
3932 -- subtype x is integer range 1 .. 200;
3933 -- for x'Object_Size use 8;
3935 -- Now the base type is signed, but objects of this type are 8
3936 -- bits unsigned, and doing an unsigned test of the range 1 to
3937 -- 200 is correct, even though a value greater than 127 looks
3938 -- signed to a signed comparison.
3940 elsif Is_Unsigned_Type (Ptyp) then
3941 if Esize (Ptyp) <= 32 then
3942 Btyp := RTE (RE_Unsigned_32);
3943 else
3944 Btyp := RTE (RE_Unsigned_64);
3945 end if;
3947 Rewrite (N, Make_Range_Test);
3949 -- Signed types
3951 else
3952 if Esize (Ptyp) <= Esize (Standard_Integer) then
3953 Btyp := Standard_Integer;
3954 else
3955 Btyp := Universal_Integer;
3956 end if;
3958 Rewrite (N, Make_Range_Test);
3959 end if;
3961 Analyze_And_Resolve (N, Standard_Boolean);
3962 Validity_Checks_On := Save_Validity_Checks_On;
3963 end Valid;
3965 -----------
3966 -- Value --
3967 -----------
3969 -- Value attribute is handled in separate unti Exp_Imgv
3971 when Attribute_Value =>
3972 Exp_Imgv.Expand_Value_Attribute (N);
3974 -----------------
3975 -- Value_Size --
3976 -----------------
3978 -- The processing for Value_Size shares the processing for Size
3980 -------------
3981 -- Version --
3982 -------------
3984 -- The processing for Version shares the processing for Body_Version
3986 ----------------
3987 -- Wide_Image --
3988 ----------------
3990 -- We expand typ'Wide_Image (X) into
3992 -- String_To_Wide_String
3993 -- (typ'Image (X), Wide_Character_Encoding_Method)
3995 -- This works in all cases because String_To_Wide_String converts any
3996 -- wide character escape sequences resulting from the Image call to the
3997 -- proper Wide_Character equivalent
3999 -- not quite right for typ = Wide_Character ???
4001 when Attribute_Wide_Image => Wide_Image :
4002 begin
4003 Rewrite (N,
4004 Make_Function_Call (Loc,
4005 Name => New_Reference_To (RTE (RE_String_To_Wide_String), Loc),
4006 Parameter_Associations => New_List (
4007 Make_Attribute_Reference (Loc,
4008 Prefix => Pref,
4009 Attribute_Name => Name_Image,
4010 Expressions => Exprs),
4012 Make_Integer_Literal (Loc,
4013 Intval => Int (Wide_Character_Encoding_Method)))));
4015 Analyze_And_Resolve (N, Standard_Wide_String);
4016 end Wide_Image;
4018 ---------------------
4019 -- Wide_Wide_Image --
4020 ---------------------
4022 -- We expand typ'Wide_Wide_Image (X) into
4024 -- String_To_Wide_Wide_String
4025 -- (typ'Image (X), Wide_Character_Encoding_Method)
4027 -- This works in all cases because String_To_Wide_Wide_String converts
4028 -- any wide character escape sequences resulting from the Image call to
4029 -- the proper Wide_Character equivalent
4031 -- not quite right for typ = Wide_Wide_Character ???
4033 when Attribute_Wide_Wide_Image => Wide_Wide_Image :
4034 begin
4035 Rewrite (N,
4036 Make_Function_Call (Loc,
4037 Name => New_Reference_To
4038 (RTE (RE_String_To_Wide_Wide_String), Loc),
4039 Parameter_Associations => New_List (
4040 Make_Attribute_Reference (Loc,
4041 Prefix => Pref,
4042 Attribute_Name => Name_Image,
4043 Expressions => Exprs),
4045 Make_Integer_Literal (Loc,
4046 Intval => Int (Wide_Character_Encoding_Method)))));
4048 Analyze_And_Resolve (N, Standard_Wide_Wide_String);
4049 end Wide_Wide_Image;
4051 ----------------
4052 -- Wide_Value --
4053 ----------------
4055 -- We expand typ'Wide_Value (X) into
4057 -- typ'Value
4058 -- (Wide_String_To_String (X, Wide_Character_Encoding_Method))
4060 -- Wide_String_To_String is a runtime function that converts its wide
4061 -- string argument to String, converting any non-translatable characters
4062 -- into appropriate escape sequences. This preserves the required
4063 -- semantics of Wide_Value in all cases, and results in a very simple
4064 -- implementation approach.
4066 -- It's not quite right where typ = Wide_Character, because the encoding
4067 -- method may not cover the whole character type ???
4069 when Attribute_Wide_Value => Wide_Value :
4070 begin
4071 Rewrite (N,
4072 Make_Attribute_Reference (Loc,
4073 Prefix => Pref,
4074 Attribute_Name => Name_Value,
4076 Expressions => New_List (
4077 Make_Function_Call (Loc,
4078 Name =>
4079 New_Reference_To (RTE (RE_Wide_String_To_String), Loc),
4081 Parameter_Associations => New_List (
4082 Relocate_Node (First (Exprs)),
4083 Make_Integer_Literal (Loc,
4084 Intval => Int (Wide_Character_Encoding_Method)))))));
4086 Analyze_And_Resolve (N, Typ);
4087 end Wide_Value;
4089 ---------------------
4090 -- Wide_Wide_Value --
4091 ---------------------
4093 -- We expand typ'Wide_Value_Value (X) into
4095 -- typ'Value
4096 -- (Wide_Wide_String_To_String (X, Wide_Character_Encoding_Method))
4098 -- Wide_Wide_String_To_String is a runtime function that converts its
4099 -- wide string argument to String, converting any non-translatable
4100 -- characters into appropriate escape sequences. This preserves the
4101 -- required semantics of Wide_Wide_Value in all cases, and results in a
4102 -- very simple implementation approach.
4104 -- It's not quite right where typ = Wide_Wide_Character, because the
4105 -- encoding method may not cover the whole character type ???
4107 when Attribute_Wide_Wide_Value => Wide_Wide_Value :
4108 begin
4109 Rewrite (N,
4110 Make_Attribute_Reference (Loc,
4111 Prefix => Pref,
4112 Attribute_Name => Name_Value,
4114 Expressions => New_List (
4115 Make_Function_Call (Loc,
4116 Name =>
4117 New_Reference_To (RTE (RE_Wide_Wide_String_To_String), Loc),
4119 Parameter_Associations => New_List (
4120 Relocate_Node (First (Exprs)),
4121 Make_Integer_Literal (Loc,
4122 Intval => Int (Wide_Character_Encoding_Method)))))));
4124 Analyze_And_Resolve (N, Typ);
4125 end Wide_Wide_Value;
4127 ---------------------
4128 -- Wide_Wide_Width --
4129 ---------------------
4131 -- Wide_Wide_Width attribute is handled in separate unit Exp_Imgv
4133 when Attribute_Wide_Wide_Width =>
4134 Exp_Imgv.Expand_Width_Attribute (N, Wide_Wide);
4136 ----------------
4137 -- Wide_Width --
4138 ----------------
4140 -- Wide_Width attribute is handled in separate unit Exp_Imgv
4142 when Attribute_Wide_Width =>
4143 Exp_Imgv.Expand_Width_Attribute (N, Wide);
4145 -----------
4146 -- Width --
4147 -----------
4149 -- Width attribute is handled in separate unit Exp_Imgv
4151 when Attribute_Width =>
4152 Exp_Imgv.Expand_Width_Attribute (N, Normal);
4154 -----------
4155 -- Write --
4156 -----------
4158 when Attribute_Write => Write : declare
4159 P_Type : constant Entity_Id := Entity (Pref);
4160 U_Type : constant Entity_Id := Underlying_Type (P_Type);
4161 Pname : Entity_Id;
4162 Decl : Node_Id;
4163 Prag : Node_Id;
4164 Arg3 : Node_Id;
4165 Wfunc : Node_Id;
4167 begin
4168 -- If no underlying type, we have an error that will be diagnosed
4169 -- elsewhere, so here we just completely ignore the expansion.
4171 if No (U_Type) then
4172 return;
4173 end if;
4175 -- The simple case, if there is a TSS for Write, just call it
4177 Pname := Find_Stream_Subprogram (P_Type, TSS_Stream_Write);
4179 if Present (Pname) then
4180 null;
4182 else
4183 -- If there is a Stream_Convert pragma, use it, we rewrite
4185 -- sourcetyp'Output (stream, Item)
4187 -- as
4189 -- strmtyp'Output (Stream, strmwrite (acttyp (Item)));
4191 -- where strmwrite is the given Write function that converts
4192 -- an argument of type sourcetyp or a type acctyp, from which
4193 -- it is derived to type strmtyp. The conversion to acttyp is
4194 -- required for the derived case.
4196 Prag := Get_Stream_Convert_Pragma (P_Type);
4198 if Present (Prag) then
4199 Arg3 :=
4200 Next (Next (First (Pragma_Argument_Associations (Prag))));
4201 Wfunc := Entity (Expression (Arg3));
4203 Rewrite (N,
4204 Make_Attribute_Reference (Loc,
4205 Prefix => New_Occurrence_Of (Etype (Wfunc), Loc),
4206 Attribute_Name => Name_Output,
4207 Expressions => New_List (
4208 Relocate_Node (First (Exprs)),
4209 Make_Function_Call (Loc,
4210 Name => New_Occurrence_Of (Wfunc, Loc),
4211 Parameter_Associations => New_List (
4212 Convert_To (Etype (First_Formal (Wfunc)),
4213 Relocate_Node (Next (First (Exprs)))))))));
4215 Analyze (N);
4216 return;
4218 -- For elementary types, we call the W_xxx routine directly
4220 elsif Is_Elementary_Type (U_Type) then
4221 Rewrite (N, Build_Elementary_Write_Call (N));
4222 Analyze (N);
4223 return;
4225 -- Array type case
4227 elsif Is_Array_Type (U_Type) then
4228 Build_Array_Write_Procedure (N, U_Type, Decl, Pname);
4229 Compile_Stream_Body_In_Scope (N, Decl, U_Type, Check => False);
4231 -- Tagged type case, use the primitive Write function. Note that
4232 -- this will dispatch in the class-wide case which is what we want
4234 elsif Is_Tagged_Type (U_Type) then
4235 Pname := Find_Prim_Op (U_Type, TSS_Stream_Write);
4237 -- All other record type cases, including protected records.
4238 -- The latter only arise for expander generated code for
4239 -- handling shared passive partition access.
4241 else
4242 pragma Assert
4243 (Is_Record_Type (U_Type) or else Is_Protected_Type (U_Type));
4245 -- Ada 2005 (AI-216): Program_Error is raised when executing
4246 -- the default implementation of the Write attribute of an
4247 -- Unchecked_Union type.
4249 if Is_Unchecked_Union (Base_Type (U_Type)) then
4250 Insert_Action (N,
4251 Make_Raise_Program_Error (Loc,
4252 Reason => PE_Unchecked_Union_Restriction));
4253 end if;
4255 if Has_Discriminants (U_Type)
4256 and then Present
4257 (Discriminant_Default_Value (First_Discriminant (U_Type)))
4258 then
4259 Build_Mutable_Record_Write_Procedure
4260 (Loc, Base_Type (U_Type), Decl, Pname);
4261 else
4262 Build_Record_Write_Procedure
4263 (Loc, Base_Type (U_Type), Decl, Pname);
4264 end if;
4266 Insert_Action (N, Decl);
4267 end if;
4268 end if;
4270 -- If we fall through, Pname is the procedure to be called
4272 Rewrite_Stream_Proc_Call (Pname);
4273 end Write;
4275 -- Component_Size is handled by Gigi, unless the component size is
4276 -- known at compile time, which is always true in the packed array
4277 -- case. It is important that the packed array case is handled in
4278 -- the front end (see Eval_Attribute) since Gigi would otherwise
4279 -- get confused by the equivalent packed array type.
4281 when Attribute_Component_Size =>
4282 null;
4284 -- The following attributes are handled by Gigi (except that static
4285 -- cases have already been evaluated by the semantics, but in any
4286 -- case Gigi should not count on that).
4288 -- In addition Gigi handles the non-floating-point cases of Pred
4289 -- and Succ (including the fixed-point cases, which can just be
4290 -- treated as integer increment/decrement operations)
4292 -- Gigi also handles the non-class-wide cases of Size
4294 when Attribute_Bit_Order |
4295 Attribute_Code_Address |
4296 Attribute_Definite |
4297 Attribute_Max |
4298 Attribute_Mechanism_Code |
4299 Attribute_Min |
4300 Attribute_Null_Parameter |
4301 Attribute_Passed_By_Reference |
4302 Attribute_Pool_Address =>
4303 null;
4305 -- The following attributes are also handled by Gigi, but return a
4306 -- universal integer result, so may need a conversion for checking
4307 -- that the result is in range.
4309 when Attribute_Aft |
4310 Attribute_Bit |
4311 Attribute_Max_Size_In_Storage_Elements
4313 Apply_Universal_Integer_Attribute_Checks (N);
4315 -- The following attributes should not appear at this stage, since they
4316 -- have already been handled by the analyzer (and properly rewritten
4317 -- with corresponding values or entities to represent the right values)
4319 when Attribute_Abort_Signal |
4320 Attribute_Address_Size |
4321 Attribute_Base |
4322 Attribute_Class |
4323 Attribute_Default_Bit_Order |
4324 Attribute_Delta |
4325 Attribute_Denorm |
4326 Attribute_Digits |
4327 Attribute_Emax |
4328 Attribute_Epsilon |
4329 Attribute_Has_Access_Values |
4330 Attribute_Has_Discriminants |
4331 Attribute_Large |
4332 Attribute_Machine_Emax |
4333 Attribute_Machine_Emin |
4334 Attribute_Machine_Mantissa |
4335 Attribute_Machine_Overflows |
4336 Attribute_Machine_Radix |
4337 Attribute_Machine_Rounds |
4338 Attribute_Maximum_Alignment |
4339 Attribute_Model_Emin |
4340 Attribute_Model_Epsilon |
4341 Attribute_Model_Mantissa |
4342 Attribute_Model_Small |
4343 Attribute_Modulus |
4344 Attribute_Partition_ID |
4345 Attribute_Range |
4346 Attribute_Safe_Emax |
4347 Attribute_Safe_First |
4348 Attribute_Safe_Large |
4349 Attribute_Safe_Last |
4350 Attribute_Safe_Small |
4351 Attribute_Scale |
4352 Attribute_Signed_Zeros |
4353 Attribute_Small |
4354 Attribute_Storage_Unit |
4355 Attribute_Target_Name |
4356 Attribute_Type_Class |
4357 Attribute_Unconstrained_Array |
4358 Attribute_Universal_Literal_String |
4359 Attribute_Wchar_T_Size |
4360 Attribute_Word_Size =>
4362 raise Program_Error;
4364 -- The Asm_Input and Asm_Output attributes are not expanded at this
4365 -- stage, but will be eliminated in the expansion of the Asm call,
4366 -- see Exp_Intr for details. So Gigi will never see these either.
4368 when Attribute_Asm_Input |
4369 Attribute_Asm_Output =>
4371 null;
4373 end case;
4375 exception
4376 when RE_Not_Available =>
4377 return;
4378 end Expand_N_Attribute_Reference;
4380 ----------------------
4381 -- Expand_Pred_Succ --
4382 ----------------------
4384 -- For typ'Pred (exp), we generate the check
4386 -- [constraint_error when exp = typ'Base'First]
4388 -- Similarly, for typ'Succ (exp), we generate the check
4390 -- [constraint_error when exp = typ'Base'Last]
4392 -- These checks are not generated for modular types, since the proper
4393 -- semantics for Succ and Pred on modular types is to wrap, not raise CE.
4395 procedure Expand_Pred_Succ (N : Node_Id) is
4396 Loc : constant Source_Ptr := Sloc (N);
4397 Cnam : Name_Id;
4399 begin
4400 if Attribute_Name (N) = Name_Pred then
4401 Cnam := Name_First;
4402 else
4403 Cnam := Name_Last;
4404 end if;
4406 Insert_Action (N,
4407 Make_Raise_Constraint_Error (Loc,
4408 Condition =>
4409 Make_Op_Eq (Loc,
4410 Left_Opnd =>
4411 Duplicate_Subexpr_Move_Checks (First (Expressions (N))),
4412 Right_Opnd =>
4413 Make_Attribute_Reference (Loc,
4414 Prefix =>
4415 New_Reference_To (Base_Type (Etype (Prefix (N))), Loc),
4416 Attribute_Name => Cnam)),
4417 Reason => CE_Overflow_Check_Failed));
4418 end Expand_Pred_Succ;
4420 ----------------------------
4421 -- Find_Stream_Subprogram --
4422 ----------------------------
4424 function Find_Stream_Subprogram
4425 (Typ : Entity_Id;
4426 Nam : TSS_Name_Type) return Entity_Id is
4427 begin
4428 if Is_Tagged_Type (Typ)
4429 and then Is_Derived_Type (Typ)
4430 then
4431 return Find_Prim_Op (Typ, Nam);
4432 else
4433 return Find_Inherited_TSS (Typ, Nam);
4434 end if;
4435 end Find_Stream_Subprogram;
4437 -----------------------
4438 -- Get_Index_Subtype --
4439 -----------------------
4441 function Get_Index_Subtype (N : Node_Id) return Node_Id is
4442 P_Type : Entity_Id := Etype (Prefix (N));
4443 Indx : Node_Id;
4444 J : Int;
4446 begin
4447 if Is_Access_Type (P_Type) then
4448 P_Type := Designated_Type (P_Type);
4449 end if;
4451 if No (Expressions (N)) then
4452 J := 1;
4453 else
4454 J := UI_To_Int (Expr_Value (First (Expressions (N))));
4455 end if;
4457 Indx := First_Index (P_Type);
4458 while J > 1 loop
4459 Next_Index (Indx);
4460 J := J - 1;
4461 end loop;
4463 return Etype (Indx);
4464 end Get_Index_Subtype;
4466 -------------------------------
4467 -- Get_Stream_Convert_Pragma --
4468 -------------------------------
4470 function Get_Stream_Convert_Pragma (T : Entity_Id) return Node_Id is
4471 Typ : Entity_Id;
4472 N : Node_Id;
4474 begin
4475 -- Note: we cannot use Get_Rep_Pragma here because of the peculiarity
4476 -- that a stream convert pragma for a tagged type is not inherited from
4477 -- its parent. Probably what is wrong here is that it is basically
4478 -- incorrect to consider a stream convert pragma to be a representation
4479 -- pragma at all ???
4481 N := First_Rep_Item (Implementation_Base_Type (T));
4482 while Present (N) loop
4483 if Nkind (N) = N_Pragma and then Chars (N) = Name_Stream_Convert then
4485 -- For tagged types this pragma is not inherited, so we
4486 -- must verify that it is defined for the given type and
4487 -- not an ancestor.
4489 Typ :=
4490 Entity (Expression (First (Pragma_Argument_Associations (N))));
4492 if not Is_Tagged_Type (T)
4493 or else T = Typ
4494 or else (Is_Private_Type (Typ) and then T = Full_View (Typ))
4495 then
4496 return N;
4497 end if;
4498 end if;
4500 Next_Rep_Item (N);
4501 end loop;
4503 return Empty;
4504 end Get_Stream_Convert_Pragma;
4506 ---------------------------------
4507 -- Is_Constrained_Packed_Array --
4508 ---------------------------------
4510 function Is_Constrained_Packed_Array (Typ : Entity_Id) return Boolean is
4511 Arr : Entity_Id := Typ;
4513 begin
4514 if Is_Access_Type (Arr) then
4515 Arr := Designated_Type (Arr);
4516 end if;
4518 return Is_Array_Type (Arr)
4519 and then Is_Constrained (Arr)
4520 and then Present (Packed_Array_Type (Arr));
4521 end Is_Constrained_Packed_Array;
4523 end Exp_Attr;