* tree-ssa-live.c (live_worklist): Take a stack allocated on
[official-gcc.git] / gcc / ada / a-rbtgso.adb
blobd775234a9c333a1c31999232946a0d1d087bec5e
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT LIBRARY COMPONENTS --
4 -- --
5 -- ADA.CONTAINERS.RED_BLACK_TREES.GENERIC_SET_OPERATIONS --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 2004 Free Software Foundation, Inc. --
10 -- --
11 -- This specification is derived from the Ada Reference Manual for use with --
12 -- GNAT. The copyright notice above, and the license provisions that follow --
13 -- apply solely to the contents of the part following the private keyword. --
14 -- --
15 -- GNAT is free software; you can redistribute it and/or modify it under --
16 -- terms of the GNU General Public License as published by the Free Soft- --
17 -- ware Foundation; either version 2, or (at your option) any later ver- --
18 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
19 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
20 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
21 -- for more details. You should have received a copy of the GNU General --
22 -- Public License distributed with GNAT; see file COPYING. If not, write --
23 -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
24 -- MA 02111-1307, USA. --
25 -- --
26 -- As a special exception, if other files instantiate generics from this --
27 -- unit, or you link this unit with other files to produce an executable, --
28 -- this unit does not by itself cause the resulting executable to be --
29 -- covered by the GNU General Public License. This exception does not --
30 -- however invalidate any other reasons why the executable file might be --
31 -- covered by the GNU Public License. --
32 -- --
33 -- This unit was originally developed by Matthew J Heaney. --
34 ------------------------------------------------------------------------------
36 package body Ada.Containers.Red_Black_Trees.Generic_Set_Operations is
38 ----------------
39 -- Difference --
40 ----------------
42 procedure Difference (Target : in out Tree_Type; Source : Tree_Type) is
43 Tgt : Node_Access := Target.First;
44 Src : Node_Access := Source.First;
46 begin
48 -- NOTE: must be done by client:
49 -- if Target'Address = Source'Address then
50 -- Clear (Target);
51 -- return;
52 -- end if;
54 loop
55 if Tgt = Tree_Operations.Null_Node then
56 return;
57 end if;
59 if Src = Tree_Operations.Null_Node then
60 return;
61 end if;
63 if Is_Less (Tgt, Src) then
64 Tgt := Tree_Operations.Next (Tgt);
66 elsif Is_Less (Src, Tgt) then
67 Src := Tree_Operations.Next (Src);
69 else
70 declare
71 X : Node_Access := Tgt;
72 begin
73 Tgt := Tree_Operations.Next (Tgt);
74 Tree_Operations.Delete_Node_Sans_Free (Target, X);
75 Free (X);
76 end;
78 Src := Tree_Operations.Next (Src);
79 end if;
80 end loop;
81 end Difference;
83 function Difference (Left, Right : Tree_Type) return Tree_Type is
84 Tree : Tree_Type := (Length => 0, others => Tree_Operations.Null_Node);
86 L_Node : Node_Access := Left.First;
87 R_Node : Node_Access := Right.First;
89 Dst_Node : Node_Access;
91 begin
92 -- NOTE: must by done by client:
93 -- if Left'Address = Right'Address then
94 -- return Empty_Set;
95 -- end if;
97 loop
98 if L_Node = Tree_Operations.Null_Node then
99 return Tree;
100 end if;
102 if R_Node = Tree_Operations.Null_Node then
103 while L_Node /= Tree_Operations.Null_Node loop
104 Insert_With_Hint
105 (Dst_Tree => Tree,
106 Dst_Hint => Tree_Operations.Null_Node,
107 Src_Node => L_Node,
108 Dst_Node => Dst_Node);
110 L_Node := Tree_Operations.Next (L_Node);
112 end loop;
114 return Tree;
115 end if;
117 if Is_Less (L_Node, R_Node) then
118 Insert_With_Hint
119 (Dst_Tree => Tree,
120 Dst_Hint => Tree_Operations.Null_Node,
121 Src_Node => L_Node,
122 Dst_Node => Dst_Node);
124 L_Node := Tree_Operations.Next (L_Node);
126 elsif Is_Less (R_Node, L_Node) then
127 R_Node := Tree_Operations.Next (R_Node);
129 else
130 L_Node := Tree_Operations.Next (L_Node);
131 R_Node := Tree_Operations.Next (R_Node);
132 end if;
133 end loop;
135 exception
136 when others =>
137 Delete_Tree (Tree.Root);
138 raise;
139 end Difference;
141 ------------------
142 -- Intersection --
143 ------------------
145 procedure Intersection
146 (Target : in out Tree_Type;
147 Source : Tree_Type)
149 Tgt : Node_Access := Target.First;
150 Src : Node_Access := Source.First;
152 begin
153 -- NOTE: must be done by caller: ???
154 -- if Target'Address = Source'Address then
155 -- return;
156 -- end if;
158 while Tgt /= Tree_Operations.Null_Node
159 and then Src /= Tree_Operations.Null_Node
160 loop
161 if Is_Less (Tgt, Src) then
162 declare
163 X : Node_Access := Tgt;
164 begin
165 Tgt := Tree_Operations.Next (Tgt);
166 Tree_Operations.Delete_Node_Sans_Free (Target, X);
167 Free (X);
168 end;
170 elsif Is_Less (Src, Tgt) then
171 Src := Tree_Operations.Next (Src);
173 else
174 Tgt := Tree_Operations.Next (Tgt);
175 Src := Tree_Operations.Next (Src);
176 end if;
177 end loop;
178 end Intersection;
180 function Intersection (Left, Right : Tree_Type) return Tree_Type is
181 Tree : Tree_Type := (Length => 0, others => Tree_Operations.Null_Node);
183 L_Node : Node_Access := Left.First;
184 R_Node : Node_Access := Right.First;
186 Dst_Node : Node_Access;
188 begin
189 -- NOTE: must be done by caller: ???
190 -- if Left'Address = Right'Address then
191 -- return Left;
192 -- end if;
194 loop
195 if L_Node = Tree_Operations.Null_Node then
196 return Tree;
197 end if;
199 if R_Node = Tree_Operations.Null_Node then
200 return Tree;
201 end if;
203 if Is_Less (L_Node, R_Node) then
204 L_Node := Tree_Operations.Next (L_Node);
206 elsif Is_Less (R_Node, L_Node) then
207 R_Node := Tree_Operations.Next (R_Node);
209 else
210 Insert_With_Hint
211 (Dst_Tree => Tree,
212 Dst_Hint => Tree_Operations.Null_Node,
213 Src_Node => L_Node,
214 Dst_Node => Dst_Node);
216 L_Node := Tree_Operations.Next (L_Node);
217 R_Node := Tree_Operations.Next (R_Node);
218 end if;
219 end loop;
221 exception
222 when others =>
223 Delete_Tree (Tree.Root);
224 raise;
225 end Intersection;
227 ---------------
228 -- Is_Subset --
229 ---------------
231 function Is_Subset
232 (Subset : Tree_Type;
233 Of_Set : Tree_Type) return Boolean
235 begin
236 -- NOTE: must by done by caller:
237 -- if Subset'Address = Of_Set'Address then
238 -- return True;
239 -- end if;
241 if Subset.Length > Of_Set.Length then
242 return False;
243 end if;
245 declare
246 Subset_Node : Node_Access := Subset.First;
247 Set_Node : Node_Access := Of_Set.First;
249 begin
250 loop
251 if Set_Node = Tree_Operations.Null_Node then
252 return Subset_Node = Tree_Operations.Null_Node;
253 end if;
255 if Subset_Node = Tree_Operations.Null_Node then
256 return True;
257 end if;
259 if Is_Less (Subset_Node, Set_Node) then
260 return False;
261 end if;
263 if Is_Less (Set_Node, Subset_Node) then
264 Set_Node := Tree_Operations.Next (Set_Node);
265 else
266 Set_Node := Tree_Operations.Next (Set_Node);
267 Subset_Node := Tree_Operations.Next (Subset_Node);
268 end if;
269 end loop;
270 end;
271 end Is_Subset;
273 -------------
274 -- Overlap --
275 -------------
277 function Overlap (Left, Right : Tree_Type) return Boolean is
278 L_Node : Node_Access := Left.First;
279 R_Node : Node_Access := Right.First;
281 begin
282 -- NOTE: must be done by caller: ???
283 -- if Left'Address = Right'Address then
284 -- return Left.Tree.Length /= 0;
285 -- end if;
287 loop
288 if L_Node = Tree_Operations.Null_Node
289 or else R_Node = Tree_Operations.Null_Node
290 then
291 return False;
292 end if;
294 if Is_Less (L_Node, R_Node) then
295 L_Node := Tree_Operations.Next (L_Node);
297 elsif Is_Less (R_Node, L_Node) then
298 R_Node := Tree_Operations.Next (R_Node);
300 else
301 return True;
302 end if;
303 end loop;
304 end Overlap;
306 --------------------------
307 -- Symmetric_Difference --
308 --------------------------
310 procedure Symmetric_Difference
311 (Target : in out Tree_Type;
312 Source : Tree_Type)
314 Tgt : Node_Access := Target.First;
315 Src : Node_Access := Source.First;
317 New_Tgt_Node : Node_Access;
319 begin
320 -- NOTE: must by done by client: ???
321 -- if Target'Address = Source'Address then
322 -- Clear (Target);
323 -- return;
324 -- end if;
326 loop
327 if Tgt = Tree_Operations.Null_Node then
328 while Src /= Tree_Operations.Null_Node loop
329 Insert_With_Hint
330 (Dst_Tree => Target,
331 Dst_Hint => Tree_Operations.Null_Node,
332 Src_Node => Src,
333 Dst_Node => New_Tgt_Node);
335 Src := Tree_Operations.Next (Src);
336 end loop;
338 return;
339 end if;
341 if Src = Tree_Operations.Null_Node then
342 return;
343 end if;
345 if Is_Less (Tgt, Src) then
346 Tgt := Tree_Operations.Next (Tgt);
348 elsif Is_Less (Src, Tgt) then
349 Insert_With_Hint
350 (Dst_Tree => Target,
351 Dst_Hint => Tgt,
352 Src_Node => Src,
353 Dst_Node => New_Tgt_Node);
355 Src := Tree_Operations.Next (Src);
357 else
358 declare
359 X : Node_Access := Tgt;
360 begin
361 Tgt := Tree_Operations.Next (Tgt);
362 Tree_Operations.Delete_Node_Sans_Free (Target, X);
363 Free (X);
364 end;
366 Src := Tree_Operations.Next (Src);
367 end if;
368 end loop;
369 end Symmetric_Difference;
371 function Symmetric_Difference (Left, Right : Tree_Type) return Tree_Type is
372 Tree : Tree_Type := (Length => 0, others => Tree_Operations.Null_Node);
374 L_Node : Node_Access := Left.First;
375 R_Node : Node_Access := Right.First;
377 Dst_Node : Node_Access;
379 begin
380 -- NOTE: must by done by caller ???
381 -- if Left'Address = Right'Address then
382 -- return Empty_Set;
383 -- end if;
385 loop
386 if L_Node = Tree_Operations.Null_Node then
387 while R_Node /= Tree_Operations.Null_Node loop
388 Insert_With_Hint
389 (Dst_Tree => Tree,
390 Dst_Hint => Tree_Operations.Null_Node,
391 Src_Node => R_Node,
392 Dst_Node => Dst_Node);
393 R_Node := Tree_Operations.Next (R_Node);
394 end loop;
396 return Tree;
397 end if;
399 if R_Node = Tree_Operations.Null_Node then
400 while L_Node /= Tree_Operations.Null_Node loop
401 Insert_With_Hint
402 (Dst_Tree => Tree,
403 Dst_Hint => Tree_Operations.Null_Node,
404 Src_Node => L_Node,
405 Dst_Node => Dst_Node);
407 L_Node := Tree_Operations.Next (L_Node);
408 end loop;
410 return Tree;
411 end if;
413 if Is_Less (L_Node, R_Node) then
414 Insert_With_Hint
415 (Dst_Tree => Tree,
416 Dst_Hint => Tree_Operations.Null_Node,
417 Src_Node => L_Node,
418 Dst_Node => Dst_Node);
420 L_Node := Tree_Operations.Next (L_Node);
422 elsif Is_Less (R_Node, L_Node) then
423 Insert_With_Hint
424 (Dst_Tree => Tree,
425 Dst_Hint => Tree_Operations.Null_Node,
426 Src_Node => R_Node,
427 Dst_Node => Dst_Node);
429 R_Node := Tree_Operations.Next (R_Node);
431 else
432 L_Node := Tree_Operations.Next (L_Node);
433 R_Node := Tree_Operations.Next (R_Node);
434 end if;
435 end loop;
437 exception
438 when others =>
439 Delete_Tree (Tree.Root);
440 raise;
441 end Symmetric_Difference;
443 -----------
444 -- Union --
445 -----------
447 procedure Union (Target : in out Tree_Type; Source : Tree_Type)
449 Hint : Node_Access;
451 procedure Process (Node : Node_Access);
452 pragma Inline (Process);
454 procedure Iterate is new Tree_Operations.Generic_Iteration (Process);
456 -------------
457 -- Process --
458 -------------
460 procedure Process (Node : Node_Access) is
461 begin
462 Insert_With_Hint
463 (Dst_Tree => Target,
464 Dst_Hint => Hint,
465 Src_Node => Node,
466 Dst_Node => Hint);
467 end Process;
469 -- Start of processing for Union
471 begin
472 -- NOTE: must be done by caller: ???
473 -- if Target'Address = Source'Address then
474 -- return;
475 -- end if;
477 Iterate (Source);
478 end Union;
480 function Union (Left, Right : Tree_Type) return Tree_Type is
481 Tree : Tree_Type;
483 begin
484 -- NOTE: must be done by caller:
485 -- if Left'Address = Right'Address then
486 -- return Left;
487 -- end if;
489 declare
490 Root : constant Node_Access := Copy_Tree (Left.Root);
491 begin
492 Tree := (Root => Root,
493 First => Tree_Operations.Min (Root),
494 Last => Tree_Operations.Max (Root),
495 Length => Left.Length);
496 end;
498 declare
499 Hint : Node_Access;
501 procedure Process (Node : Node_Access);
502 pragma Inline (Process);
504 procedure Iterate is
505 new Tree_Operations.Generic_Iteration (Process);
507 -------------
508 -- Process --
509 -------------
511 procedure Process (Node : Node_Access) is
512 begin
513 Insert_With_Hint
514 (Dst_Tree => Tree,
515 Dst_Hint => Hint,
516 Src_Node => Node,
517 Dst_Node => Hint);
518 end Process;
520 -- Start of processing for Union
522 begin
523 Iterate (Right);
525 exception
526 when others =>
527 Delete_Tree (Tree.Root);
528 raise;
529 end;
531 return Tree;
532 end Union;
534 end Ada.Containers.Red_Black_Trees.Generic_Set_Operations;