* cfgexpand.c (tree_expand_cfg): Don't use FINALIZE_PIC.
[official-gcc.git] / gcc / cfg.c
blob2d6a3ca5c33647e212ddb82fdcdda0bcf5b5cdd6
1 /* Control flow graph manipulation code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
23 /* This file contains low level functions to manipulate the CFG and
24 analyze it. All other modules should not transform the data structure
25 directly and use abstraction instead. The file is supposed to be
26 ordered bottom-up and should not contain any code dependent on a
27 particular intermediate language (RTL or trees).
29 Available functionality:
30 - Initialization/deallocation
31 init_flow, clear_edges
32 - Low level basic block manipulation
33 alloc_block, expunge_block
34 - Edge manipulation
35 make_edge, make_single_succ_edge, cached_make_edge, remove_edge
36 - Low level edge redirection (without updating instruction chain)
37 redirect_edge_succ, redirect_edge_succ_nodup, redirect_edge_pred
38 - Dumping and debugging
39 dump_flow_info, debug_flow_info, dump_edge_info
40 - Allocation of AUX fields for basic blocks
41 alloc_aux_for_blocks, free_aux_for_blocks, alloc_aux_for_block
42 - clear_bb_flags
43 - Consistency checking
44 verify_flow_info
45 - Dumping and debugging
46 print_rtl_with_bb, dump_bb, debug_bb, debug_bb_n
49 #include "config.h"
50 #include "system.h"
51 #include "coretypes.h"
52 #include "tm.h"
53 #include "tree.h"
54 #include "rtl.h"
55 #include "hard-reg-set.h"
56 #include "regs.h"
57 #include "flags.h"
58 #include "output.h"
59 #include "function.h"
60 #include "except.h"
61 #include "toplev.h"
62 #include "tm_p.h"
63 #include "obstack.h"
64 #include "timevar.h"
65 #include "ggc.h"
66 #include "hashtab.h"
67 #include "alloc-pool.h"
69 /* The obstack on which the flow graph components are allocated. */
71 struct bitmap_obstack reg_obstack;
73 void debug_flow_info (void);
74 static void free_edge (edge);
76 #define RDIV(X,Y) (((X) + (Y) / 2) / (Y))
78 /* Called once at initialization time. */
80 void
81 init_flow (void)
83 if (!cfun->cfg)
84 cfun->cfg = ggc_alloc_cleared (sizeof (struct control_flow_graph));
85 n_edges = 0;
86 ENTRY_BLOCK_PTR = ggc_alloc_cleared (sizeof (struct basic_block_def));
87 ENTRY_BLOCK_PTR->index = ENTRY_BLOCK;
88 EXIT_BLOCK_PTR = ggc_alloc_cleared (sizeof (struct basic_block_def));
89 EXIT_BLOCK_PTR->index = EXIT_BLOCK;
90 ENTRY_BLOCK_PTR->next_bb = EXIT_BLOCK_PTR;
91 EXIT_BLOCK_PTR->prev_bb = ENTRY_BLOCK_PTR;
94 /* Helper function for remove_edge and clear_edges. Frees edge structure
95 without actually unlinking it from the pred/succ lists. */
97 static void
98 free_edge (edge e ATTRIBUTE_UNUSED)
100 n_edges--;
101 ggc_free (e);
104 /* Free the memory associated with the edge structures. */
106 void
107 clear_edges (void)
109 basic_block bb;
110 edge e;
111 edge_iterator ei;
113 FOR_EACH_BB (bb)
115 FOR_EACH_EDGE (e, ei, bb->succs)
116 free_edge (e);
117 VEC_truncate (edge, bb->succs, 0);
118 VEC_truncate (edge, bb->preds, 0);
121 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
122 free_edge (e);
123 VEC_truncate (edge, EXIT_BLOCK_PTR->preds, 0);
124 VEC_truncate (edge, ENTRY_BLOCK_PTR->succs, 0);
126 gcc_assert (!n_edges);
129 /* Allocate memory for basic_block. */
131 basic_block
132 alloc_block (void)
134 basic_block bb;
135 bb = ggc_alloc_cleared (sizeof (*bb));
136 return bb;
139 /* Link block B to chain after AFTER. */
140 void
141 link_block (basic_block b, basic_block after)
143 b->next_bb = after->next_bb;
144 b->prev_bb = after;
145 after->next_bb = b;
146 b->next_bb->prev_bb = b;
149 /* Unlink block B from chain. */
150 void
151 unlink_block (basic_block b)
153 b->next_bb->prev_bb = b->prev_bb;
154 b->prev_bb->next_bb = b->next_bb;
155 b->prev_bb = NULL;
156 b->next_bb = NULL;
159 /* Sequentially order blocks and compact the arrays. */
160 void
161 compact_blocks (void)
163 int i;
164 basic_block bb;
166 i = 0;
167 FOR_EACH_BB (bb)
169 BASIC_BLOCK (i) = bb;
170 bb->index = i;
171 i++;
174 gcc_assert (i == n_basic_blocks);
176 for (; i < last_basic_block; i++)
177 BASIC_BLOCK (i) = NULL;
179 last_basic_block = n_basic_blocks;
182 /* Remove block B from the basic block array. */
184 void
185 expunge_block (basic_block b)
187 unlink_block (b);
188 BASIC_BLOCK (b->index) = NULL;
189 n_basic_blocks--;
190 /* We should be able to ggc_free here, but we are not.
191 The dead SSA_NAMES are left pointing to dead statements that are pointing
192 to dead basic blocks making garbage collector to die.
193 We should be able to release all dead SSA_NAMES and at the same time we should
194 clear out BB pointer of dead statements consistently. */
197 /* Connect E to E->src. */
199 static inline void
200 connect_src (edge e)
202 VEC_safe_push (edge, gc, e->src->succs, e);
205 /* Connect E to E->dest. */
207 static inline void
208 connect_dest (edge e)
210 basic_block dest = e->dest;
211 VEC_safe_push (edge, gc, dest->preds, e);
212 e->dest_idx = EDGE_COUNT (dest->preds) - 1;
215 /* Disconnect edge E from E->src. */
217 static inline void
218 disconnect_src (edge e)
220 basic_block src = e->src;
221 edge_iterator ei;
222 edge tmp;
224 for (ei = ei_start (src->succs); (tmp = ei_safe_edge (ei)); )
226 if (tmp == e)
228 VEC_unordered_remove (edge, src->succs, ei.index);
229 return;
231 else
232 ei_next (&ei);
235 gcc_unreachable ();
238 /* Disconnect edge E from E->dest. */
240 static inline void
241 disconnect_dest (edge e)
243 basic_block dest = e->dest;
244 unsigned int dest_idx = e->dest_idx;
246 VEC_unordered_remove (edge, dest->preds, dest_idx);
248 /* If we removed an edge in the middle of the edge vector, we need
249 to update dest_idx of the edge that moved into the "hole". */
250 if (dest_idx < EDGE_COUNT (dest->preds))
251 EDGE_PRED (dest, dest_idx)->dest_idx = dest_idx;
254 /* Create an edge connecting SRC and DEST with flags FLAGS. Return newly
255 created edge. Use this only if you are sure that this edge can't
256 possibly already exist. */
258 edge
259 unchecked_make_edge (basic_block src, basic_block dst, int flags)
261 edge e;
262 e = ggc_alloc_cleared (sizeof (*e));
263 n_edges++;
265 e->src = src;
266 e->dest = dst;
267 e->flags = flags;
269 connect_src (e);
270 connect_dest (e);
272 execute_on_growing_pred (e);
274 return e;
277 /* Create an edge connecting SRC and DST with FLAGS optionally using
278 edge cache CACHE. Return the new edge, NULL if already exist. */
280 edge
281 cached_make_edge (sbitmap edge_cache, basic_block src, basic_block dst, int flags)
283 if (edge_cache == NULL
284 || src == ENTRY_BLOCK_PTR
285 || dst == EXIT_BLOCK_PTR)
286 return make_edge (src, dst, flags);
288 /* Does the requested edge already exist? */
289 if (! TEST_BIT (edge_cache, dst->index))
291 /* The edge does not exist. Create one and update the
292 cache. */
293 SET_BIT (edge_cache, dst->index);
294 return unchecked_make_edge (src, dst, flags);
297 /* At this point, we know that the requested edge exists. Adjust
298 flags if necessary. */
299 if (flags)
301 edge e = find_edge (src, dst);
302 e->flags |= flags;
305 return NULL;
308 /* Create an edge connecting SRC and DEST with flags FLAGS. Return newly
309 created edge or NULL if already exist. */
311 edge
312 make_edge (basic_block src, basic_block dest, int flags)
314 edge e = find_edge (src, dest);
316 /* Make sure we don't add duplicate edges. */
317 if (e)
319 e->flags |= flags;
320 return NULL;
323 return unchecked_make_edge (src, dest, flags);
326 /* Create an edge connecting SRC to DEST and set probability by knowing
327 that it is the single edge leaving SRC. */
329 edge
330 make_single_succ_edge (basic_block src, basic_block dest, int flags)
332 edge e = make_edge (src, dest, flags);
334 e->probability = REG_BR_PROB_BASE;
335 e->count = src->count;
336 return e;
339 /* This function will remove an edge from the flow graph. */
341 void
342 remove_edge (edge e)
344 remove_predictions_associated_with_edge (e);
345 execute_on_shrinking_pred (e);
347 disconnect_src (e);
348 disconnect_dest (e);
350 free_edge (e);
353 /* Redirect an edge's successor from one block to another. */
355 void
356 redirect_edge_succ (edge e, basic_block new_succ)
358 execute_on_shrinking_pred (e);
360 disconnect_dest (e);
362 e->dest = new_succ;
364 /* Reconnect the edge to the new successor block. */
365 connect_dest (e);
367 execute_on_growing_pred (e);
370 /* Like previous but avoid possible duplicate edge. */
372 edge
373 redirect_edge_succ_nodup (edge e, basic_block new_succ)
375 edge s;
377 s = find_edge (e->src, new_succ);
378 if (s && s != e)
380 s->flags |= e->flags;
381 s->probability += e->probability;
382 if (s->probability > REG_BR_PROB_BASE)
383 s->probability = REG_BR_PROB_BASE;
384 s->count += e->count;
385 remove_edge (e);
386 e = s;
388 else
389 redirect_edge_succ (e, new_succ);
391 return e;
394 /* Redirect an edge's predecessor from one block to another. */
396 void
397 redirect_edge_pred (edge e, basic_block new_pred)
399 disconnect_src (e);
401 e->src = new_pred;
403 /* Reconnect the edge to the new predecessor block. */
404 connect_src (e);
407 /* Clear all basic block flags, with the exception of partitioning. */
408 void
409 clear_bb_flags (void)
411 basic_block bb;
413 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
414 bb->flags = (BB_PARTITION (bb) | (bb->flags & BB_DISABLE_SCHEDULE)
415 | (bb->flags & BB_RTL));
418 /* Check the consistency of profile information. We can't do that
419 in verify_flow_info, as the counts may get invalid for incompletely
420 solved graphs, later eliminating of conditionals or roundoff errors.
421 It is still practical to have them reported for debugging of simple
422 testcases. */
423 void
424 check_bb_profile (basic_block bb, FILE * file)
426 edge e;
427 int sum = 0;
428 gcov_type lsum;
429 edge_iterator ei;
431 if (profile_status == PROFILE_ABSENT)
432 return;
434 if (bb != EXIT_BLOCK_PTR)
436 FOR_EACH_EDGE (e, ei, bb->succs)
437 sum += e->probability;
438 if (EDGE_COUNT (bb->succs) && abs (sum - REG_BR_PROB_BASE) > 100)
439 fprintf (file, "Invalid sum of outgoing probabilities %.1f%%\n",
440 sum * 100.0 / REG_BR_PROB_BASE);
441 lsum = 0;
442 FOR_EACH_EDGE (e, ei, bb->succs)
443 lsum += e->count;
444 if (EDGE_COUNT (bb->succs)
445 && (lsum - bb->count > 100 || lsum - bb->count < -100))
446 fprintf (file, "Invalid sum of outgoing counts %i, should be %i\n",
447 (int) lsum, (int) bb->count);
449 if (bb != ENTRY_BLOCK_PTR)
451 sum = 0;
452 FOR_EACH_EDGE (e, ei, bb->preds)
453 sum += EDGE_FREQUENCY (e);
454 if (abs (sum - bb->frequency) > 100)
455 fprintf (file,
456 "Invalid sum of incoming frequencies %i, should be %i\n",
457 sum, bb->frequency);
458 lsum = 0;
459 FOR_EACH_EDGE (e, ei, bb->preds)
460 lsum += e->count;
461 if (lsum - bb->count > 100 || lsum - bb->count < -100)
462 fprintf (file, "Invalid sum of incoming counts %i, should be %i\n",
463 (int) lsum, (int) bb->count);
467 void
468 dump_flow_info (FILE *file)
470 basic_block bb;
472 /* There are no pseudo registers after reload. Don't dump them. */
473 if (reg_n_info && !reload_completed)
475 unsigned int i, max = max_reg_num ();
476 fprintf (file, "%d registers.\n", max);
477 for (i = FIRST_PSEUDO_REGISTER; i < max; i++)
478 if (REG_N_REFS (i))
480 enum reg_class class, altclass;
482 fprintf (file, "\nRegister %d used %d times across %d insns",
483 i, REG_N_REFS (i), REG_LIVE_LENGTH (i));
484 if (REG_BASIC_BLOCK (i) >= 0)
485 fprintf (file, " in block %d", REG_BASIC_BLOCK (i));
486 if (REG_N_SETS (i))
487 fprintf (file, "; set %d time%s", REG_N_SETS (i),
488 (REG_N_SETS (i) == 1) ? "" : "s");
489 if (regno_reg_rtx[i] != NULL && REG_USERVAR_P (regno_reg_rtx[i]))
490 fprintf (file, "; user var");
491 if (REG_N_DEATHS (i) != 1)
492 fprintf (file, "; dies in %d places", REG_N_DEATHS (i));
493 if (REG_N_CALLS_CROSSED (i) == 1)
494 fprintf (file, "; crosses 1 call");
495 else if (REG_N_CALLS_CROSSED (i))
496 fprintf (file, "; crosses %d calls", REG_N_CALLS_CROSSED (i));
497 if (regno_reg_rtx[i] != NULL
498 && PSEUDO_REGNO_BYTES (i) != UNITS_PER_WORD)
499 fprintf (file, "; %d bytes", PSEUDO_REGNO_BYTES (i));
501 class = reg_preferred_class (i);
502 altclass = reg_alternate_class (i);
503 if (class != GENERAL_REGS || altclass != ALL_REGS)
505 if (altclass == ALL_REGS || class == ALL_REGS)
506 fprintf (file, "; pref %s", reg_class_names[(int) class]);
507 else if (altclass == NO_REGS)
508 fprintf (file, "; %s or none", reg_class_names[(int) class]);
509 else
510 fprintf (file, "; pref %s, else %s",
511 reg_class_names[(int) class],
512 reg_class_names[(int) altclass]);
515 if (regno_reg_rtx[i] != NULL && REG_POINTER (regno_reg_rtx[i]))
516 fprintf (file, "; pointer");
517 fprintf (file, ".\n");
521 fprintf (file, "\n%d basic blocks, %d edges.\n", n_basic_blocks, n_edges);
522 FOR_EACH_BB (bb)
524 edge e;
525 edge_iterator ei;
527 fprintf (file, "\nBasic block %d ", bb->index);
528 fprintf (file, "prev %d, next %d, ",
529 bb->prev_bb->index, bb->next_bb->index);
530 fprintf (file, "loop_depth %d, count ", bb->loop_depth);
531 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, bb->count);
532 fprintf (file, ", freq %i", bb->frequency);
533 if (maybe_hot_bb_p (bb))
534 fprintf (file, ", maybe hot");
535 if (probably_never_executed_bb_p (bb))
536 fprintf (file, ", probably never executed");
537 fprintf (file, ".\n");
539 fprintf (file, "Predecessors: ");
540 FOR_EACH_EDGE (e, ei, bb->preds)
541 dump_edge_info (file, e, 0);
543 fprintf (file, "\nSuccessors: ");
544 FOR_EACH_EDGE (e, ei, bb->succs)
545 dump_edge_info (file, e, 1);
547 if (bb->flags & BB_RTL)
549 if (bb->il.rtl->global_live_at_start)
551 fprintf (file, "\nRegisters live at start:");
552 dump_regset (bb->il.rtl->global_live_at_start, file);
555 if (bb->il.rtl->global_live_at_end)
557 fprintf (file, "\nRegisters live at end:");
558 dump_regset (bb->il.rtl->global_live_at_end, file);
562 putc ('\n', file);
563 check_bb_profile (bb, file);
566 putc ('\n', file);
569 void
570 debug_flow_info (void)
572 dump_flow_info (stderr);
575 void
576 dump_edge_info (FILE *file, edge e, int do_succ)
578 basic_block side = (do_succ ? e->dest : e->src);
580 if (side == ENTRY_BLOCK_PTR)
581 fputs (" ENTRY", file);
582 else if (side == EXIT_BLOCK_PTR)
583 fputs (" EXIT", file);
584 else
585 fprintf (file, " %d", side->index);
587 if (e->probability)
588 fprintf (file, " [%.1f%%] ", e->probability * 100.0 / REG_BR_PROB_BASE);
590 if (e->count)
592 fprintf (file, " count:");
593 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, e->count);
596 if (e->flags)
598 static const char * const bitnames[] = {
599 "fallthru", "ab", "abcall", "eh", "fake", "dfs_back",
600 "can_fallthru", "irreducible", "sibcall", "loop_exit",
601 "true", "false", "exec"
603 int comma = 0;
604 int i, flags = e->flags;
606 fputs (" (", file);
607 for (i = 0; flags; i++)
608 if (flags & (1 << i))
610 flags &= ~(1 << i);
612 if (comma)
613 fputc (',', file);
614 if (i < (int) ARRAY_SIZE (bitnames))
615 fputs (bitnames[i], file);
616 else
617 fprintf (file, "%d", i);
618 comma = 1;
621 fputc (')', file);
625 /* Simple routines to easily allocate AUX fields of basic blocks. */
627 static struct obstack block_aux_obstack;
628 static void *first_block_aux_obj = 0;
629 static struct obstack edge_aux_obstack;
630 static void *first_edge_aux_obj = 0;
632 /* Allocate a memory block of SIZE as BB->aux. The obstack must
633 be first initialized by alloc_aux_for_blocks. */
635 inline void
636 alloc_aux_for_block (basic_block bb, int size)
638 /* Verify that aux field is clear. */
639 gcc_assert (!bb->aux && first_block_aux_obj);
640 bb->aux = obstack_alloc (&block_aux_obstack, size);
641 memset (bb->aux, 0, size);
644 /* Initialize the block_aux_obstack and if SIZE is nonzero, call
645 alloc_aux_for_block for each basic block. */
647 void
648 alloc_aux_for_blocks (int size)
650 static int initialized;
652 if (!initialized)
654 gcc_obstack_init (&block_aux_obstack);
655 initialized = 1;
657 else
658 /* Check whether AUX data are still allocated. */
659 gcc_assert (!first_block_aux_obj);
661 first_block_aux_obj = obstack_alloc (&block_aux_obstack, 0);
662 if (size)
664 basic_block bb;
666 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
667 alloc_aux_for_block (bb, size);
671 /* Clear AUX pointers of all blocks. */
673 void
674 clear_aux_for_blocks (void)
676 basic_block bb;
678 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
679 bb->aux = NULL;
682 /* Free data allocated in block_aux_obstack and clear AUX pointers
683 of all blocks. */
685 void
686 free_aux_for_blocks (void)
688 gcc_assert (first_block_aux_obj);
689 obstack_free (&block_aux_obstack, first_block_aux_obj);
690 first_block_aux_obj = NULL;
692 clear_aux_for_blocks ();
695 /* Allocate a memory edge of SIZE as BB->aux. The obstack must
696 be first initialized by alloc_aux_for_edges. */
698 inline void
699 alloc_aux_for_edge (edge e, int size)
701 /* Verify that aux field is clear. */
702 gcc_assert (!e->aux && first_edge_aux_obj);
703 e->aux = obstack_alloc (&edge_aux_obstack, size);
704 memset (e->aux, 0, size);
707 /* Initialize the edge_aux_obstack and if SIZE is nonzero, call
708 alloc_aux_for_edge for each basic edge. */
710 void
711 alloc_aux_for_edges (int size)
713 static int initialized;
715 if (!initialized)
717 gcc_obstack_init (&edge_aux_obstack);
718 initialized = 1;
720 else
721 /* Check whether AUX data are still allocated. */
722 gcc_assert (!first_edge_aux_obj);
724 first_edge_aux_obj = obstack_alloc (&edge_aux_obstack, 0);
725 if (size)
727 basic_block bb;
729 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
731 edge e;
732 edge_iterator ei;
734 FOR_EACH_EDGE (e, ei, bb->succs)
735 alloc_aux_for_edge (e, size);
740 /* Clear AUX pointers of all edges. */
742 void
743 clear_aux_for_edges (void)
745 basic_block bb;
746 edge e;
748 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
750 edge_iterator ei;
751 FOR_EACH_EDGE (e, ei, bb->succs)
752 e->aux = NULL;
756 /* Free data allocated in edge_aux_obstack and clear AUX pointers
757 of all edges. */
759 void
760 free_aux_for_edges (void)
762 gcc_assert (first_edge_aux_obj);
763 obstack_free (&edge_aux_obstack, first_edge_aux_obj);
764 first_edge_aux_obj = NULL;
766 clear_aux_for_edges ();
769 void
770 debug_bb (basic_block bb)
772 dump_bb (bb, stderr, 0);
775 basic_block
776 debug_bb_n (int n)
778 basic_block bb = BASIC_BLOCK (n);
779 dump_bb (bb, stderr, 0);
780 return bb;
783 /* Dumps cfg related information about basic block BB to FILE. */
785 static void
786 dump_cfg_bb_info (FILE *file, basic_block bb)
788 unsigned i;
789 edge_iterator ei;
790 bool first = true;
791 static const char * const bb_bitnames[] =
793 "dirty", "new", "reachable", "visited", "irreducible_loop", "superblock"
795 const unsigned n_bitnames = sizeof (bb_bitnames) / sizeof (char *);
796 edge e;
798 fprintf (file, "Basic block %d", bb->index);
799 for (i = 0; i < n_bitnames; i++)
800 if (bb->flags & (1 << i))
802 if (first)
803 fprintf (file, " (");
804 else
805 fprintf (file, ", ");
806 first = false;
807 fprintf (file, bb_bitnames[i]);
809 if (!first)
810 fprintf (file, ")");
811 fprintf (file, "\n");
813 fprintf (file, "Predecessors: ");
814 FOR_EACH_EDGE (e, ei, bb->preds)
815 dump_edge_info (file, e, 0);
817 fprintf (file, "\nSuccessors: ");
818 FOR_EACH_EDGE (e, ei, bb->succs)
819 dump_edge_info (file, e, 1);
820 fprintf (file, "\n\n");
823 /* Dumps a brief description of cfg to FILE. */
825 void
826 brief_dump_cfg (FILE *file)
828 basic_block bb;
830 FOR_EACH_BB (bb)
832 dump_cfg_bb_info (file, bb);
836 /* An edge originally destinating BB of FREQUENCY and COUNT has been proved to
837 leave the block by TAKEN_EDGE. Update profile of BB such that edge E can be
838 redirected to destination of TAKEN_EDGE.
840 This function may leave the profile inconsistent in the case TAKEN_EDGE
841 frequency or count is believed to be lower than FREQUENCY or COUNT
842 respectively. */
843 void
844 update_bb_profile_for_threading (basic_block bb, int edge_frequency,
845 gcov_type count, edge taken_edge)
847 edge c;
848 int prob;
849 edge_iterator ei;
851 bb->count -= count;
852 if (bb->count < 0)
853 bb->count = 0;
855 /* Compute the probability of TAKEN_EDGE being reached via threaded edge.
856 Watch for overflows. */
857 if (bb->frequency)
858 prob = edge_frequency * REG_BR_PROB_BASE / bb->frequency;
859 else
860 prob = 0;
861 if (prob > taken_edge->probability)
863 if (dump_file)
864 fprintf (dump_file, "Jump threading proved probability of edge "
865 "%i->%i too small (it is %i, should be %i).\n",
866 taken_edge->src->index, taken_edge->dest->index,
867 taken_edge->probability, prob);
868 prob = taken_edge->probability;
871 /* Now rescale the probabilities. */
872 taken_edge->probability -= prob;
873 prob = REG_BR_PROB_BASE - prob;
874 bb->frequency -= edge_frequency;
875 if (bb->frequency < 0)
876 bb->frequency = 0;
877 if (prob <= 0)
879 if (dump_file)
880 fprintf (dump_file, "Edge frequencies of bb %i has been reset, "
881 "frequency of block should end up being 0, it is %i\n",
882 bb->index, bb->frequency);
883 EDGE_SUCC (bb, 0)->probability = REG_BR_PROB_BASE;
884 ei = ei_start (bb->succs);
885 ei_next (&ei);
886 for (; (c = ei_safe_edge (ei)); ei_next (&ei))
887 c->probability = 0;
889 else if (prob != REG_BR_PROB_BASE)
891 int scale = 65536 * REG_BR_PROB_BASE / prob;
893 FOR_EACH_EDGE (c, ei, bb->succs)
894 c->probability = (c->probability * scale) / 65536;
897 gcc_assert (bb == taken_edge->src);
898 taken_edge->count -= count;
899 if (taken_edge->count < 0)
900 taken_edge->count = 0;
903 /* Multiply all frequencies of basic blocks in array BBS of length NBBS
904 by NUM/DEN, in int arithmetic. May lose some accuracy. */
905 void
906 scale_bbs_frequencies_int (basic_block *bbs, int nbbs, int num, int den)
908 int i;
909 edge e;
910 for (i = 0; i < nbbs; i++)
912 edge_iterator ei;
913 bbs[i]->frequency = (bbs[i]->frequency * num) / den;
914 bbs[i]->count = RDIV (bbs[i]->count * num, den);
915 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
916 e->count = (e->count * num) /den;
920 /* Multiply all frequencies of basic blocks in array BBS of length NBBS
921 by NUM/DEN, in gcov_type arithmetic. More accurate than previous
922 function but considerably slower. */
923 void
924 scale_bbs_frequencies_gcov_type (basic_block *bbs, int nbbs, gcov_type num,
925 gcov_type den)
927 int i;
928 edge e;
930 for (i = 0; i < nbbs; i++)
932 edge_iterator ei;
933 bbs[i]->frequency = (bbs[i]->frequency * num) / den;
934 bbs[i]->count = RDIV (bbs[i]->count * num, den);
935 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
936 e->count = (e->count * num) /den;
940 /* Data structures used to maintain mapping between basic blocks and
941 copies. */
942 static htab_t bb_original;
943 static htab_t bb_copy;
944 static alloc_pool original_copy_bb_pool;
946 struct htab_bb_copy_original_entry
948 /* Block we are attaching info to. */
949 int index1;
950 /* Index of original or copy (depending on the hashtable) */
951 int index2;
954 static hashval_t
955 bb_copy_original_hash (const void *p)
957 struct htab_bb_copy_original_entry *data
958 = ((struct htab_bb_copy_original_entry *)p);
960 return data->index1;
962 static int
963 bb_copy_original_eq (const void *p, const void *q)
965 struct htab_bb_copy_original_entry *data
966 = ((struct htab_bb_copy_original_entry *)p);
967 struct htab_bb_copy_original_entry *data2
968 = ((struct htab_bb_copy_original_entry *)q);
970 return data->index1 == data2->index1;
973 /* Initialize the data structures to maintain mapping between blocks
974 and its copies. */
975 void
976 initialize_original_copy_tables (void)
978 gcc_assert (!original_copy_bb_pool);
979 original_copy_bb_pool
980 = create_alloc_pool ("original_copy",
981 sizeof (struct htab_bb_copy_original_entry), 10);
982 bb_original = htab_create (10, bb_copy_original_hash,
983 bb_copy_original_eq, NULL);
984 bb_copy = htab_create (10, bb_copy_original_hash, bb_copy_original_eq, NULL);
987 /* Free the data structures to maintain mapping between blocks and
988 its copies. */
989 void
990 free_original_copy_tables (void)
992 gcc_assert (original_copy_bb_pool);
993 htab_delete (bb_copy);
994 htab_delete (bb_original);
995 free_alloc_pool (original_copy_bb_pool);
996 bb_copy = NULL;
997 bb_original = NULL;
998 original_copy_bb_pool = NULL;
1001 /* Set original for basic block. Do nothing when data structures are not
1002 initialized so passes not needing this don't need to care. */
1003 void
1004 set_bb_original (basic_block bb, basic_block original)
1006 if (original_copy_bb_pool)
1008 struct htab_bb_copy_original_entry **slot;
1009 struct htab_bb_copy_original_entry key;
1011 key.index1 = bb->index;
1012 slot =
1013 (struct htab_bb_copy_original_entry **) htab_find_slot (bb_original,
1014 &key, INSERT);
1015 if (*slot)
1016 (*slot)->index2 = original->index;
1017 else
1019 *slot = pool_alloc (original_copy_bb_pool);
1020 (*slot)->index1 = bb->index;
1021 (*slot)->index2 = original->index;
1026 /* Get the original basic block. */
1027 basic_block
1028 get_bb_original (basic_block bb)
1030 struct htab_bb_copy_original_entry *entry;
1031 struct htab_bb_copy_original_entry key;
1033 gcc_assert (original_copy_bb_pool);
1035 key.index1 = bb->index;
1036 entry = (struct htab_bb_copy_original_entry *) htab_find (bb_original, &key);
1037 if (entry)
1038 return BASIC_BLOCK (entry->index2);
1039 else
1040 return NULL;
1043 /* Set copy for basic block. Do nothing when data structures are not
1044 initialized so passes not needing this don't need to care. */
1045 void
1046 set_bb_copy (basic_block bb, basic_block copy)
1048 if (original_copy_bb_pool)
1050 struct htab_bb_copy_original_entry **slot;
1051 struct htab_bb_copy_original_entry key;
1053 key.index1 = bb->index;
1054 slot =
1055 (struct htab_bb_copy_original_entry **) htab_find_slot (bb_copy,
1056 &key, INSERT);
1057 if (*slot)
1058 (*slot)->index2 = copy->index;
1059 else
1061 *slot = pool_alloc (original_copy_bb_pool);
1062 (*slot)->index1 = bb->index;
1063 (*slot)->index2 = copy->index;
1068 /* Get the copy of basic block. */
1069 basic_block
1070 get_bb_copy (basic_block bb)
1072 struct htab_bb_copy_original_entry *entry;
1073 struct htab_bb_copy_original_entry key;
1075 gcc_assert (original_copy_bb_pool);
1077 key.index1 = bb->index;
1078 entry = (struct htab_bb_copy_original_entry *) htab_find (bb_copy, &key);
1079 if (entry)
1080 return BASIC_BLOCK (entry->index2);
1081 else
1082 return NULL;