sh.c (shift_insns_rtx, [...]): Truncate shift counts to avoid out-of-bounds array...
[official-gcc.git] / gcc / tree-predcom.c
bloba5d4dcd5da6445278775dab7f54624aa952b4a17
1 /* Predictive commoning.
2 Copyright (C) 2005, 2007, 2008 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file implements the predictive commoning optimization. Predictive
21 commoning can be viewed as CSE around a loop, and with some improvements,
22 as generalized strength reduction-- i.e., reusing values computed in
23 earlier iterations of a loop in the later ones. So far, the pass only
24 handles the most useful case, that is, reusing values of memory references.
25 If you think this is all just a special case of PRE, you are sort of right;
26 however, concentrating on loops is simpler, and makes it possible to
27 incorporate data dependence analysis to detect the opportunities, perform
28 loop unrolling to avoid copies together with renaming immediately,
29 and if needed, we could also take register pressure into account.
31 Let us demonstrate what is done on an example:
33 for (i = 0; i < 100; i++)
35 a[i+2] = a[i] + a[i+1];
36 b[10] = b[10] + i;
37 c[i] = c[99 - i];
38 d[i] = d[i + 1];
41 1) We find data references in the loop, and split them to mutually
42 independent groups (i.e., we find components of a data dependence
43 graph). We ignore read-read dependences whose distance is not constant.
44 (TODO -- we could also ignore antidependences). In this example, we
45 find the following groups:
47 a[i]{read}, a[i+1]{read}, a[i+2]{write}
48 b[10]{read}, b[10]{write}
49 c[99 - i]{read}, c[i]{write}
50 d[i + 1]{read}, d[i]{write}
52 2) Inside each of the group, we verify several conditions:
53 a) all the references must differ in indices only, and the indices
54 must all have the same step
55 b) the references must dominate loop latch (and thus, they must be
56 ordered by dominance relation).
57 c) the distance of the indices must be a small multiple of the step
58 We are then able to compute the difference of the references (# of
59 iterations before they point to the same place as the first of them).
60 Also, in case there are writes in the loop, we split the groups into
61 chains whose head is the write whose values are used by the reads in
62 the same chain. The chains are then processed independently,
63 making the further transformations simpler. Also, the shorter chains
64 need the same number of registers, but may require lower unrolling
65 factor in order to get rid of the copies on the loop latch.
67 In our example, we get the following chains (the chain for c is invalid).
69 a[i]{read,+0}, a[i+1]{read,-1}, a[i+2]{write,-2}
70 b[10]{read,+0}, b[10]{write,+0}
71 d[i + 1]{read,+0}, d[i]{write,+1}
73 3) For each read, we determine the read or write whose value it reuses,
74 together with the distance of this reuse. I.e. we take the last
75 reference before it with distance 0, or the last of the references
76 with the smallest positive distance to the read. Then, we remove
77 the references that are not used in any of these chains, discard the
78 empty groups, and propagate all the links so that they point to the
79 single root reference of the chain (adjusting their distance
80 appropriately). Some extra care needs to be taken for references with
81 step 0. In our example (the numbers indicate the distance of the
82 reuse),
84 a[i] --> (*) 2, a[i+1] --> (*) 1, a[i+2] (*)
85 b[10] --> (*) 1, b[10] (*)
87 4) The chains are combined together if possible. If the corresponding
88 elements of two chains are always combined together with the same
89 operator, we remember just the result of this combination, instead
90 of remembering the values separately. We may need to perform
91 reassociation to enable combining, for example
93 e[i] + f[i+1] + e[i+1] + f[i]
95 can be reassociated as
97 (e[i] + f[i]) + (e[i+1] + f[i+1])
99 and we can combine the chains for e and f into one chain.
101 5) For each root reference (end of the chain) R, let N be maximum distance
102 of a reference reusing its value. Variables R0 upto RN are created,
103 together with phi nodes that transfer values from R1 .. RN to
104 R0 .. R(N-1).
105 Initial values are loaded to R0..R(N-1) (in case not all references
106 must necessarily be accessed and they may trap, we may fail here;
107 TODO sometimes, the loads could be guarded by a check for the number
108 of iterations). Values loaded/stored in roots are also copied to
109 RN. Other reads are replaced with the appropriate variable Ri.
110 Everything is put to SSA form.
112 As a small improvement, if R0 is dead after the root (i.e., all uses of
113 the value with the maximum distance dominate the root), we can avoid
114 creating RN and use R0 instead of it.
116 In our example, we get (only the parts concerning a and b are shown):
117 for (i = 0; i < 100; i++)
119 f = phi (a[0], s);
120 s = phi (a[1], f);
121 x = phi (b[10], x);
123 f = f + s;
124 a[i+2] = f;
125 x = x + i;
126 b[10] = x;
129 6) Factor F for unrolling is determined as the smallest common multiple of
130 (N + 1) for each root reference (N for references for that we avoided
131 creating RN). If F and the loop is small enough, loop is unrolled F
132 times. The stores to RN (R0) in the copies of the loop body are
133 periodically replaced with R0, R1, ... (R1, R2, ...), so that they can
134 be coalesced and the copies can be eliminated.
136 TODO -- copy propagation and other optimizations may change the live
137 ranges of the temporary registers and prevent them from being coalesced;
138 this may increase the register pressure.
140 In our case, F = 2 and the (main loop of the) result is
142 for (i = 0; i < ...; i += 2)
144 f = phi (a[0], f);
145 s = phi (a[1], s);
146 x = phi (b[10], x);
148 f = f + s;
149 a[i+2] = f;
150 x = x + i;
151 b[10] = x;
153 s = s + f;
154 a[i+3] = s;
155 x = x + i;
156 b[10] = x;
159 TODO -- stores killing other stores can be taken into account, e.g.,
160 for (i = 0; i < n; i++)
162 a[i] = 1;
163 a[i+2] = 2;
166 can be replaced with
168 t0 = a[0];
169 t1 = a[1];
170 for (i = 0; i < n; i++)
172 a[i] = 1;
173 t2 = 2;
174 t0 = t1;
175 t1 = t2;
177 a[n] = t0;
178 a[n+1] = t1;
180 The interesting part is that this would generalize store motion; still, since
181 sm is performed elsewhere, it does not seem that important.
183 Predictive commoning can be generalized for arbitrary computations (not
184 just memory loads), and also nontrivial transfer functions (e.g., replacing
185 i * i with ii_last + 2 * i + 1), to generalize strength reduction. */
187 #include "config.h"
188 #include "system.h"
189 #include "coretypes.h"
190 #include "tm.h"
191 #include "tree.h"
192 #include "tm_p.h"
193 #include "cfgloop.h"
194 #include "tree-flow.h"
195 #include "ggc.h"
196 #include "tree-data-ref.h"
197 #include "tree-scalar-evolution.h"
198 #include "tree-chrec.h"
199 #include "params.h"
200 #include "diagnostic.h"
201 #include "tree-pass.h"
202 #include "tree-affine.h"
203 #include "tree-inline.h"
205 /* The maximum number of iterations between the considered memory
206 references. */
208 #define MAX_DISTANCE (target_avail_regs < 16 ? 4 : 8)
210 /* Data references (or phi nodes that carry data reference values across
211 loop iterations). */
213 typedef struct dref
215 /* The reference itself. */
216 struct data_reference *ref;
218 /* The statement in that the reference appears. */
219 gimple stmt;
221 /* In case that STMT is a phi node, this field is set to the SSA name
222 defined by it in replace_phis_by_defined_names (in order to avoid
223 pointing to phi node that got reallocated in the meantime). */
224 tree name_defined_by_phi;
226 /* Distance of the reference from the root of the chain (in number of
227 iterations of the loop). */
228 unsigned distance;
230 /* Number of iterations offset from the first reference in the component. */
231 double_int offset;
233 /* Number of the reference in a component, in dominance ordering. */
234 unsigned pos;
236 /* True if the memory reference is always accessed when the loop is
237 entered. */
238 unsigned always_accessed : 1;
239 } *dref;
241 DEF_VEC_P (dref);
242 DEF_VEC_ALLOC_P (dref, heap);
244 /* Type of the chain of the references. */
246 enum chain_type
248 /* The addresses of the references in the chain are constant. */
249 CT_INVARIANT,
251 /* There are only loads in the chain. */
252 CT_LOAD,
254 /* Root of the chain is store, the rest are loads. */
255 CT_STORE_LOAD,
257 /* A combination of two chains. */
258 CT_COMBINATION
261 /* Chains of data references. */
263 typedef struct chain
265 /* Type of the chain. */
266 enum chain_type type;
268 /* For combination chains, the operator and the two chains that are
269 combined, and the type of the result. */
270 enum tree_code op;
271 tree rslt_type;
272 struct chain *ch1, *ch2;
274 /* The references in the chain. */
275 VEC(dref,heap) *refs;
277 /* The maximum distance of the reference in the chain from the root. */
278 unsigned length;
280 /* The variables used to copy the value throughout iterations. */
281 VEC(tree,heap) *vars;
283 /* Initializers for the variables. */
284 VEC(tree,heap) *inits;
286 /* True if there is a use of a variable with the maximal distance
287 that comes after the root in the loop. */
288 unsigned has_max_use_after : 1;
290 /* True if all the memory references in the chain are always accessed. */
291 unsigned all_always_accessed : 1;
293 /* True if this chain was combined together with some other chain. */
294 unsigned combined : 1;
295 } *chain_p;
297 DEF_VEC_P (chain_p);
298 DEF_VEC_ALLOC_P (chain_p, heap);
300 /* Describes the knowledge about the step of the memory references in
301 the component. */
303 enum ref_step_type
305 /* The step is zero. */
306 RS_INVARIANT,
308 /* The step is nonzero. */
309 RS_NONZERO,
311 /* The step may or may not be nonzero. */
312 RS_ANY
315 /* Components of the data dependence graph. */
317 struct component
319 /* The references in the component. */
320 VEC(dref,heap) *refs;
322 /* What we know about the step of the references in the component. */
323 enum ref_step_type comp_step;
325 /* Next component in the list. */
326 struct component *next;
329 /* Bitmap of ssa names defined by looparound phi nodes covered by chains. */
331 static bitmap looparound_phis;
333 /* Cache used by tree_to_aff_combination_expand. */
335 static struct pointer_map_t *name_expansions;
337 /* Dumps data reference REF to FILE. */
339 extern void dump_dref (FILE *, dref);
340 void
341 dump_dref (FILE *file, dref ref)
343 if (ref->ref)
345 fprintf (file, " ");
346 print_generic_expr (file, DR_REF (ref->ref), TDF_SLIM);
347 fprintf (file, " (id %u%s)\n", ref->pos,
348 DR_IS_READ (ref->ref) ? "" : ", write");
350 fprintf (file, " offset ");
351 dump_double_int (file, ref->offset, false);
352 fprintf (file, "\n");
354 fprintf (file, " distance %u\n", ref->distance);
356 else
358 if (gimple_code (ref->stmt) == GIMPLE_PHI)
359 fprintf (file, " looparound ref\n");
360 else
361 fprintf (file, " combination ref\n");
362 fprintf (file, " in statement ");
363 print_gimple_stmt (file, ref->stmt, 0, TDF_SLIM);
364 fprintf (file, "\n");
365 fprintf (file, " distance %u\n", ref->distance);
370 /* Dumps CHAIN to FILE. */
372 extern void dump_chain (FILE *, chain_p);
373 void
374 dump_chain (FILE *file, chain_p chain)
376 dref a;
377 const char *chain_type;
378 unsigned i;
379 tree var;
381 switch (chain->type)
383 case CT_INVARIANT:
384 chain_type = "Load motion";
385 break;
387 case CT_LOAD:
388 chain_type = "Loads-only";
389 break;
391 case CT_STORE_LOAD:
392 chain_type = "Store-loads";
393 break;
395 case CT_COMBINATION:
396 chain_type = "Combination";
397 break;
399 default:
400 gcc_unreachable ();
403 fprintf (file, "%s chain %p%s\n", chain_type, (void *) chain,
404 chain->combined ? " (combined)" : "");
405 if (chain->type != CT_INVARIANT)
406 fprintf (file, " max distance %u%s\n", chain->length,
407 chain->has_max_use_after ? "" : ", may reuse first");
409 if (chain->type == CT_COMBINATION)
411 fprintf (file, " equal to %p %s %p in type ",
412 (void *) chain->ch1, op_symbol_code (chain->op),
413 (void *) chain->ch2);
414 print_generic_expr (file, chain->rslt_type, TDF_SLIM);
415 fprintf (file, "\n");
418 if (chain->vars)
420 fprintf (file, " vars");
421 for (i = 0; VEC_iterate (tree, chain->vars, i, var); i++)
423 fprintf (file, " ");
424 print_generic_expr (file, var, TDF_SLIM);
426 fprintf (file, "\n");
429 if (chain->inits)
431 fprintf (file, " inits");
432 for (i = 0; VEC_iterate (tree, chain->inits, i, var); i++)
434 fprintf (file, " ");
435 print_generic_expr (file, var, TDF_SLIM);
437 fprintf (file, "\n");
440 fprintf (file, " references:\n");
441 for (i = 0; VEC_iterate (dref, chain->refs, i, a); i++)
442 dump_dref (file, a);
444 fprintf (file, "\n");
447 /* Dumps CHAINS to FILE. */
449 extern void dump_chains (FILE *, VEC (chain_p, heap) *);
450 void
451 dump_chains (FILE *file, VEC (chain_p, heap) *chains)
453 chain_p chain;
454 unsigned i;
456 for (i = 0; VEC_iterate (chain_p, chains, i, chain); i++)
457 dump_chain (file, chain);
460 /* Dumps COMP to FILE. */
462 extern void dump_component (FILE *, struct component *);
463 void
464 dump_component (FILE *file, struct component *comp)
466 dref a;
467 unsigned i;
469 fprintf (file, "Component%s:\n",
470 comp->comp_step == RS_INVARIANT ? " (invariant)" : "");
471 for (i = 0; VEC_iterate (dref, comp->refs, i, a); i++)
472 dump_dref (file, a);
473 fprintf (file, "\n");
476 /* Dumps COMPS to FILE. */
478 extern void dump_components (FILE *, struct component *);
479 void
480 dump_components (FILE *file, struct component *comps)
482 struct component *comp;
484 for (comp = comps; comp; comp = comp->next)
485 dump_component (file, comp);
488 /* Frees a chain CHAIN. */
490 static void
491 release_chain (chain_p chain)
493 dref ref;
494 unsigned i;
496 if (chain == NULL)
497 return;
499 for (i = 0; VEC_iterate (dref, chain->refs, i, ref); i++)
500 free (ref);
502 VEC_free (dref, heap, chain->refs);
503 VEC_free (tree, heap, chain->vars);
504 VEC_free (tree, heap, chain->inits);
506 free (chain);
509 /* Frees CHAINS. */
511 static void
512 release_chains (VEC (chain_p, heap) *chains)
514 unsigned i;
515 chain_p chain;
517 for (i = 0; VEC_iterate (chain_p, chains, i, chain); i++)
518 release_chain (chain);
519 VEC_free (chain_p, heap, chains);
522 /* Frees a component COMP. */
524 static void
525 release_component (struct component *comp)
527 VEC_free (dref, heap, comp->refs);
528 free (comp);
531 /* Frees list of components COMPS. */
533 static void
534 release_components (struct component *comps)
536 struct component *act, *next;
538 for (act = comps; act; act = next)
540 next = act->next;
541 release_component (act);
545 /* Finds a root of tree given by FATHERS containing A, and performs path
546 shortening. */
548 static unsigned
549 component_of (unsigned fathers[], unsigned a)
551 unsigned root, n;
553 for (root = a; root != fathers[root]; root = fathers[root])
554 continue;
556 for (; a != root; a = n)
558 n = fathers[a];
559 fathers[a] = root;
562 return root;
565 /* Join operation for DFU. FATHERS gives the tree, SIZES are sizes of the
566 components, A and B are components to merge. */
568 static void
569 merge_comps (unsigned fathers[], unsigned sizes[], unsigned a, unsigned b)
571 unsigned ca = component_of (fathers, a);
572 unsigned cb = component_of (fathers, b);
574 if (ca == cb)
575 return;
577 if (sizes[ca] < sizes[cb])
579 sizes[cb] += sizes[ca];
580 fathers[ca] = cb;
582 else
584 sizes[ca] += sizes[cb];
585 fathers[cb] = ca;
589 /* Returns true if A is a reference that is suitable for predictive commoning
590 in the innermost loop that contains it. REF_STEP is set according to the
591 step of the reference A. */
593 static bool
594 suitable_reference_p (struct data_reference *a, enum ref_step_type *ref_step)
596 tree ref = DR_REF (a), step = DR_STEP (a);
598 if (!step
599 || !is_gimple_reg_type (TREE_TYPE (ref))
600 || tree_could_throw_p (ref))
601 return false;
603 if (integer_zerop (step))
604 *ref_step = RS_INVARIANT;
605 else if (integer_nonzerop (step))
606 *ref_step = RS_NONZERO;
607 else
608 *ref_step = RS_ANY;
610 return true;
613 /* Stores DR_OFFSET (DR) + DR_INIT (DR) to OFFSET. */
615 static void
616 aff_combination_dr_offset (struct data_reference *dr, aff_tree *offset)
618 aff_tree delta;
620 tree_to_aff_combination_expand (DR_OFFSET (dr), sizetype, offset,
621 &name_expansions);
622 aff_combination_const (&delta, sizetype, tree_to_double_int (DR_INIT (dr)));
623 aff_combination_add (offset, &delta);
626 /* Determines number of iterations of the innermost enclosing loop before B
627 refers to exactly the same location as A and stores it to OFF. If A and
628 B do not have the same step, they never meet, or anything else fails,
629 returns false, otherwise returns true. Both A and B are assumed to
630 satisfy suitable_reference_p. */
632 static bool
633 determine_offset (struct data_reference *a, struct data_reference *b,
634 double_int *off)
636 aff_tree diff, baseb, step;
637 tree typea, typeb;
639 /* Check that both the references access the location in the same type. */
640 typea = TREE_TYPE (DR_REF (a));
641 typeb = TREE_TYPE (DR_REF (b));
642 if (!useless_type_conversion_p (typeb, typea))
643 return false;
645 /* Check whether the base address and the step of both references is the
646 same. */
647 if (!operand_equal_p (DR_STEP (a), DR_STEP (b), 0)
648 || !operand_equal_p (DR_BASE_ADDRESS (a), DR_BASE_ADDRESS (b), 0))
649 return false;
651 if (integer_zerop (DR_STEP (a)))
653 /* If the references have loop invariant address, check that they access
654 exactly the same location. */
655 *off = double_int_zero;
656 return (operand_equal_p (DR_OFFSET (a), DR_OFFSET (b), 0)
657 && operand_equal_p (DR_INIT (a), DR_INIT (b), 0));
660 /* Compare the offsets of the addresses, and check whether the difference
661 is a multiple of step. */
662 aff_combination_dr_offset (a, &diff);
663 aff_combination_dr_offset (b, &baseb);
664 aff_combination_scale (&baseb, double_int_minus_one);
665 aff_combination_add (&diff, &baseb);
667 tree_to_aff_combination_expand (DR_STEP (a), sizetype,
668 &step, &name_expansions);
669 return aff_combination_constant_multiple_p (&diff, &step, off);
672 /* Returns the last basic block in LOOP for that we are sure that
673 it is executed whenever the loop is entered. */
675 static basic_block
676 last_always_executed_block (struct loop *loop)
678 unsigned i;
679 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
680 edge ex;
681 basic_block last = loop->latch;
683 for (i = 0; VEC_iterate (edge, exits, i, ex); i++)
684 last = nearest_common_dominator (CDI_DOMINATORS, last, ex->src);
685 VEC_free (edge, heap, exits);
687 return last;
690 /* Splits dependence graph on DATAREFS described by DEPENDS to components. */
692 static struct component *
693 split_data_refs_to_components (struct loop *loop,
694 VEC (data_reference_p, heap) *datarefs,
695 VEC (ddr_p, heap) *depends)
697 unsigned i, n = VEC_length (data_reference_p, datarefs);
698 unsigned ca, ia, ib, bad;
699 unsigned *comp_father = XNEWVEC (unsigned, n + 1);
700 unsigned *comp_size = XNEWVEC (unsigned, n + 1);
701 struct component **comps;
702 struct data_reference *dr, *dra, *drb;
703 struct data_dependence_relation *ddr;
704 struct component *comp_list = NULL, *comp;
705 dref dataref;
706 basic_block last_always_executed = last_always_executed_block (loop);
708 for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
710 if (!DR_REF (dr))
712 /* A fake reference for call or asm_expr that may clobber memory;
713 just fail. */
714 goto end;
716 dr->aux = (void *) (size_t) i;
717 comp_father[i] = i;
718 comp_size[i] = 1;
721 /* A component reserved for the "bad" data references. */
722 comp_father[n] = n;
723 comp_size[n] = 1;
725 for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
727 enum ref_step_type dummy;
729 if (!suitable_reference_p (dr, &dummy))
731 ia = (unsigned) (size_t) dr->aux;
732 merge_comps (comp_father, comp_size, n, ia);
736 for (i = 0; VEC_iterate (ddr_p, depends, i, ddr); i++)
738 double_int dummy_off;
740 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
741 continue;
743 dra = DDR_A (ddr);
744 drb = DDR_B (ddr);
745 ia = component_of (comp_father, (unsigned) (size_t) dra->aux);
746 ib = component_of (comp_father, (unsigned) (size_t) drb->aux);
747 if (ia == ib)
748 continue;
750 bad = component_of (comp_father, n);
752 /* If both A and B are reads, we may ignore unsuitable dependences. */
753 if (DR_IS_READ (dra) && DR_IS_READ (drb)
754 && (ia == bad || ib == bad
755 || !determine_offset (dra, drb, &dummy_off)))
756 continue;
758 merge_comps (comp_father, comp_size, ia, ib);
761 comps = XCNEWVEC (struct component *, n);
762 bad = component_of (comp_father, n);
763 for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
765 ia = (unsigned) (size_t) dr->aux;
766 ca = component_of (comp_father, ia);
767 if (ca == bad)
768 continue;
770 comp = comps[ca];
771 if (!comp)
773 comp = XCNEW (struct component);
774 comp->refs = VEC_alloc (dref, heap, comp_size[ca]);
775 comps[ca] = comp;
778 dataref = XCNEW (struct dref);
779 dataref->ref = dr;
780 dataref->stmt = DR_STMT (dr);
781 dataref->offset = double_int_zero;
782 dataref->distance = 0;
784 dataref->always_accessed
785 = dominated_by_p (CDI_DOMINATORS, last_always_executed,
786 gimple_bb (dataref->stmt));
787 dataref->pos = VEC_length (dref, comp->refs);
788 VEC_quick_push (dref, comp->refs, dataref);
791 for (i = 0; i < n; i++)
793 comp = comps[i];
794 if (comp)
796 comp->next = comp_list;
797 comp_list = comp;
800 free (comps);
802 end:
803 free (comp_father);
804 free (comp_size);
805 return comp_list;
808 /* Returns true if the component COMP satisfies the conditions
809 described in 2) at the beginning of this file. LOOP is the current
810 loop. */
812 static bool
813 suitable_component_p (struct loop *loop, struct component *comp)
815 unsigned i;
816 dref a, first;
817 basic_block ba, bp = loop->header;
818 bool ok, has_write = false;
820 for (i = 0; VEC_iterate (dref, comp->refs, i, a); i++)
822 ba = gimple_bb (a->stmt);
824 if (!just_once_each_iteration_p (loop, ba))
825 return false;
827 gcc_assert (dominated_by_p (CDI_DOMINATORS, ba, bp));
828 bp = ba;
830 if (!DR_IS_READ (a->ref))
831 has_write = true;
834 first = VEC_index (dref, comp->refs, 0);
835 ok = suitable_reference_p (first->ref, &comp->comp_step);
836 gcc_assert (ok);
837 first->offset = double_int_zero;
839 for (i = 1; VEC_iterate (dref, comp->refs, i, a); i++)
841 if (!determine_offset (first->ref, a->ref, &a->offset))
842 return false;
844 #ifdef ENABLE_CHECKING
846 enum ref_step_type a_step;
847 ok = suitable_reference_p (a->ref, &a_step);
848 gcc_assert (ok && a_step == comp->comp_step);
850 #endif
853 /* If there is a write inside the component, we must know whether the
854 step is nonzero or not -- we would not otherwise be able to recognize
855 whether the value accessed by reads comes from the OFFSET-th iteration
856 or the previous one. */
857 if (has_write && comp->comp_step == RS_ANY)
858 return false;
860 return true;
863 /* Check the conditions on references inside each of components COMPS,
864 and remove the unsuitable components from the list. The new list
865 of components is returned. The conditions are described in 2) at
866 the beginning of this file. LOOP is the current loop. */
868 static struct component *
869 filter_suitable_components (struct loop *loop, struct component *comps)
871 struct component **comp, *act;
873 for (comp = &comps; *comp; )
875 act = *comp;
876 if (suitable_component_p (loop, act))
877 comp = &act->next;
878 else
880 dref ref;
881 unsigned i;
883 *comp = act->next;
884 for (i = 0; VEC_iterate (dref, act->refs, i, ref); i++)
885 free (ref);
886 release_component (act);
890 return comps;
893 /* Compares two drefs A and B by their offset and position. Callback for
894 qsort. */
896 static int
897 order_drefs (const void *a, const void *b)
899 const dref *const da = (const dref *) a;
900 const dref *const db = (const dref *) b;
901 int offcmp = double_int_scmp ((*da)->offset, (*db)->offset);
903 if (offcmp != 0)
904 return offcmp;
906 return (*da)->pos - (*db)->pos;
909 /* Returns root of the CHAIN. */
911 static inline dref
912 get_chain_root (chain_p chain)
914 return VEC_index (dref, chain->refs, 0);
917 /* Adds REF to the chain CHAIN. */
919 static void
920 add_ref_to_chain (chain_p chain, dref ref)
922 dref root = get_chain_root (chain);
923 double_int dist;
925 gcc_assert (double_int_scmp (root->offset, ref->offset) <= 0);
926 dist = double_int_add (ref->offset, double_int_neg (root->offset));
927 if (double_int_ucmp (uhwi_to_double_int (MAX_DISTANCE), dist) <= 0)
929 free (ref);
930 return;
932 gcc_assert (double_int_fits_in_uhwi_p (dist));
934 VEC_safe_push (dref, heap, chain->refs, ref);
936 ref->distance = double_int_to_uhwi (dist);
938 if (ref->distance >= chain->length)
940 chain->length = ref->distance;
941 chain->has_max_use_after = false;
944 if (ref->distance == chain->length
945 && ref->pos > root->pos)
946 chain->has_max_use_after = true;
948 chain->all_always_accessed &= ref->always_accessed;
951 /* Returns the chain for invariant component COMP. */
953 static chain_p
954 make_invariant_chain (struct component *comp)
956 chain_p chain = XCNEW (struct chain);
957 unsigned i;
958 dref ref;
960 chain->type = CT_INVARIANT;
962 chain->all_always_accessed = true;
964 for (i = 0; VEC_iterate (dref, comp->refs, i, ref); i++)
966 VEC_safe_push (dref, heap, chain->refs, ref);
967 chain->all_always_accessed &= ref->always_accessed;
970 return chain;
973 /* Make a new chain rooted at REF. */
975 static chain_p
976 make_rooted_chain (dref ref)
978 chain_p chain = XCNEW (struct chain);
980 chain->type = DR_IS_READ (ref->ref) ? CT_LOAD : CT_STORE_LOAD;
982 VEC_safe_push (dref, heap, chain->refs, ref);
983 chain->all_always_accessed = ref->always_accessed;
985 ref->distance = 0;
987 return chain;
990 /* Returns true if CHAIN is not trivial. */
992 static bool
993 nontrivial_chain_p (chain_p chain)
995 return chain != NULL && VEC_length (dref, chain->refs) > 1;
998 /* Returns the ssa name that contains the value of REF, or NULL_TREE if there
999 is no such name. */
1001 static tree
1002 name_for_ref (dref ref)
1004 tree name;
1006 if (is_gimple_assign (ref->stmt))
1008 if (!ref->ref || DR_IS_READ (ref->ref))
1009 name = gimple_assign_lhs (ref->stmt);
1010 else
1011 name = gimple_assign_rhs1 (ref->stmt);
1013 else
1014 name = PHI_RESULT (ref->stmt);
1016 return (TREE_CODE (name) == SSA_NAME ? name : NULL_TREE);
1019 /* Returns true if REF is a valid initializer for ROOT with given DISTANCE (in
1020 iterations of the innermost enclosing loop). */
1022 static bool
1023 valid_initializer_p (struct data_reference *ref,
1024 unsigned distance, struct data_reference *root)
1026 aff_tree diff, base, step;
1027 double_int off;
1029 /* Both REF and ROOT must be accessing the same object. */
1030 if (!operand_equal_p (DR_BASE_ADDRESS (ref), DR_BASE_ADDRESS (root), 0))
1031 return false;
1033 /* The initializer is defined outside of loop, hence its address must be
1034 invariant inside the loop. */
1035 gcc_assert (integer_zerop (DR_STEP (ref)));
1037 /* If the address of the reference is invariant, initializer must access
1038 exactly the same location. */
1039 if (integer_zerop (DR_STEP (root)))
1040 return (operand_equal_p (DR_OFFSET (ref), DR_OFFSET (root), 0)
1041 && operand_equal_p (DR_INIT (ref), DR_INIT (root), 0));
1043 /* Verify that this index of REF is equal to the root's index at
1044 -DISTANCE-th iteration. */
1045 aff_combination_dr_offset (root, &diff);
1046 aff_combination_dr_offset (ref, &base);
1047 aff_combination_scale (&base, double_int_minus_one);
1048 aff_combination_add (&diff, &base);
1050 tree_to_aff_combination_expand (DR_STEP (root), sizetype, &step,
1051 &name_expansions);
1052 if (!aff_combination_constant_multiple_p (&diff, &step, &off))
1053 return false;
1055 if (!double_int_equal_p (off, uhwi_to_double_int (distance)))
1056 return false;
1058 return true;
1061 /* Finds looparound phi node of LOOP that copies the value of REF, and if its
1062 initial value is correct (equal to initial value of REF shifted by one
1063 iteration), returns the phi node. Otherwise, NULL_TREE is returned. ROOT
1064 is the root of the current chain. */
1066 static gimple
1067 find_looparound_phi (struct loop *loop, dref ref, dref root)
1069 tree name, init, init_ref;
1070 gimple phi = NULL, init_stmt;
1071 edge latch = loop_latch_edge (loop);
1072 struct data_reference init_dr;
1073 gimple_stmt_iterator psi;
1075 if (is_gimple_assign (ref->stmt))
1077 if (DR_IS_READ (ref->ref))
1078 name = gimple_assign_lhs (ref->stmt);
1079 else
1080 name = gimple_assign_rhs1 (ref->stmt);
1082 else
1083 name = PHI_RESULT (ref->stmt);
1084 if (!name)
1085 return NULL;
1087 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
1089 phi = gsi_stmt (psi);
1090 if (PHI_ARG_DEF_FROM_EDGE (phi, latch) == name)
1091 break;
1094 if (gsi_end_p (psi))
1095 return NULL;
1097 init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
1098 if (TREE_CODE (init) != SSA_NAME)
1099 return NULL;
1100 init_stmt = SSA_NAME_DEF_STMT (init);
1101 if (gimple_code (init_stmt) != GIMPLE_ASSIGN)
1102 return NULL;
1103 gcc_assert (gimple_assign_lhs (init_stmt) == init);
1105 init_ref = gimple_assign_rhs1 (init_stmt);
1106 if (!REFERENCE_CLASS_P (init_ref)
1107 && !DECL_P (init_ref))
1108 return NULL;
1110 /* Analyze the behavior of INIT_REF with respect to LOOP (innermost
1111 loop enclosing PHI). */
1112 memset (&init_dr, 0, sizeof (struct data_reference));
1113 DR_REF (&init_dr) = init_ref;
1114 DR_STMT (&init_dr) = phi;
1115 if (!dr_analyze_innermost (&init_dr))
1116 return NULL;
1118 if (!valid_initializer_p (&init_dr, ref->distance + 1, root->ref))
1119 return NULL;
1121 return phi;
1124 /* Adds a reference for the looparound copy of REF in PHI to CHAIN. */
1126 static void
1127 insert_looparound_copy (chain_p chain, dref ref, gimple phi)
1129 dref nw = XCNEW (struct dref), aref;
1130 unsigned i;
1132 nw->stmt = phi;
1133 nw->distance = ref->distance + 1;
1134 nw->always_accessed = 1;
1136 for (i = 0; VEC_iterate (dref, chain->refs, i, aref); i++)
1137 if (aref->distance >= nw->distance)
1138 break;
1139 VEC_safe_insert (dref, heap, chain->refs, i, nw);
1141 if (nw->distance > chain->length)
1143 chain->length = nw->distance;
1144 chain->has_max_use_after = false;
1148 /* For references in CHAIN that are copied around the LOOP (created previously
1149 by PRE, or by user), add the results of such copies to the chain. This
1150 enables us to remove the copies by unrolling, and may need less registers
1151 (also, it may allow us to combine chains together). */
1153 static void
1154 add_looparound_copies (struct loop *loop, chain_p chain)
1156 unsigned i;
1157 dref ref, root = get_chain_root (chain);
1158 gimple phi;
1160 for (i = 0; VEC_iterate (dref, chain->refs, i, ref); i++)
1162 phi = find_looparound_phi (loop, ref, root);
1163 if (!phi)
1164 continue;
1166 bitmap_set_bit (looparound_phis, SSA_NAME_VERSION (PHI_RESULT (phi)));
1167 insert_looparound_copy (chain, ref, phi);
1171 /* Find roots of the values and determine distances in the component COMP.
1172 The references are redistributed into CHAINS. LOOP is the current
1173 loop. */
1175 static void
1176 determine_roots_comp (struct loop *loop,
1177 struct component *comp,
1178 VEC (chain_p, heap) **chains)
1180 unsigned i;
1181 dref a;
1182 chain_p chain = NULL;
1184 /* Invariants are handled specially. */
1185 if (comp->comp_step == RS_INVARIANT)
1187 chain = make_invariant_chain (comp);
1188 VEC_safe_push (chain_p, heap, *chains, chain);
1189 return;
1192 qsort (VEC_address (dref, comp->refs), VEC_length (dref, comp->refs),
1193 sizeof (dref), order_drefs);
1195 for (i = 0; VEC_iterate (dref, comp->refs, i, a); i++)
1197 if (!chain || !DR_IS_READ (a->ref))
1199 if (nontrivial_chain_p (chain))
1200 VEC_safe_push (chain_p, heap, *chains, chain);
1201 else
1202 release_chain (chain);
1203 chain = make_rooted_chain (a);
1204 continue;
1207 add_ref_to_chain (chain, a);
1210 if (nontrivial_chain_p (chain))
1212 add_looparound_copies (loop, chain);
1213 VEC_safe_push (chain_p, heap, *chains, chain);
1215 else
1216 release_chain (chain);
1219 /* Find roots of the values and determine distances in components COMPS, and
1220 separates the references to CHAINS. LOOP is the current loop. */
1222 static void
1223 determine_roots (struct loop *loop,
1224 struct component *comps, VEC (chain_p, heap) **chains)
1226 struct component *comp;
1228 for (comp = comps; comp; comp = comp->next)
1229 determine_roots_comp (loop, comp, chains);
1232 /* Replace the reference in statement STMT with temporary variable
1233 NEW_TREE. If SET is true, NEW_TREE is instead initialized to the value of
1234 the reference in the statement. IN_LHS is true if the reference
1235 is in the lhs of STMT, false if it is in rhs. */
1237 static void
1238 replace_ref_with (gimple stmt, tree new_tree, bool set, bool in_lhs)
1240 tree val;
1241 gimple new_stmt;
1242 gimple_stmt_iterator bsi, psi;
1244 if (gimple_code (stmt) == GIMPLE_PHI)
1246 gcc_assert (!in_lhs && !set);
1248 val = PHI_RESULT (stmt);
1249 bsi = gsi_after_labels (gimple_bb (stmt));
1250 psi = gsi_for_stmt (stmt);
1251 remove_phi_node (&psi, false);
1253 /* Turn the phi node into GIMPLE_ASSIGN. */
1254 new_stmt = gimple_build_assign (val, new_tree);
1255 gsi_insert_before (&bsi, new_stmt, GSI_NEW_STMT);
1256 return;
1259 /* Since the reference is of gimple_reg type, it should only
1260 appear as lhs or rhs of modify statement. */
1261 gcc_assert (is_gimple_assign (stmt));
1263 bsi = gsi_for_stmt (stmt);
1265 /* If we do not need to initialize NEW_TREE, just replace the use of OLD. */
1266 if (!set)
1268 gcc_assert (!in_lhs);
1269 gimple_assign_set_rhs_from_tree (&bsi, new_tree);
1270 stmt = gsi_stmt (bsi);
1271 update_stmt (stmt);
1272 return;
1275 if (in_lhs)
1277 /* We have statement
1279 OLD = VAL
1281 If OLD is a memory reference, then VAL is gimple_val, and we transform
1282 this to
1284 OLD = VAL
1285 NEW = VAL
1287 Otherwise, we are replacing a combination chain,
1288 VAL is the expression that performs the combination, and OLD is an
1289 SSA name. In this case, we transform the assignment to
1291 OLD = VAL
1292 NEW = OLD
1296 val = gimple_assign_lhs (stmt);
1297 if (TREE_CODE (val) != SSA_NAME)
1299 gcc_assert (gimple_assign_copy_p (stmt));
1300 val = gimple_assign_rhs1 (stmt);
1303 else
1305 /* VAL = OLD
1307 is transformed to
1309 VAL = OLD
1310 NEW = VAL */
1312 val = gimple_assign_lhs (stmt);
1315 new_stmt = gimple_build_assign (new_tree, unshare_expr (val));
1316 gsi_insert_after (&bsi, new_stmt, GSI_NEW_STMT);
1319 /* Returns the reference to the address of REF in the ITER-th iteration of
1320 LOOP, or NULL if we fail to determine it (ITER may be negative). We
1321 try to preserve the original shape of the reference (not rewrite it
1322 as an indirect ref to the address), to make tree_could_trap_p in
1323 prepare_initializers_chain return false more often. */
1325 static tree
1326 ref_at_iteration (struct loop *loop, tree ref, int iter)
1328 tree idx, *idx_p, type, val, op0 = NULL_TREE, ret;
1329 affine_iv iv;
1330 bool ok;
1332 if (handled_component_p (ref))
1334 op0 = ref_at_iteration (loop, TREE_OPERAND (ref, 0), iter);
1335 if (!op0)
1336 return NULL_TREE;
1338 else if (!INDIRECT_REF_P (ref))
1339 return unshare_expr (ref);
1341 if (TREE_CODE (ref) == INDIRECT_REF)
1343 ret = build1 (INDIRECT_REF, TREE_TYPE (ref), NULL_TREE);
1344 idx = TREE_OPERAND (ref, 0);
1345 idx_p = &TREE_OPERAND (ret, 0);
1347 else if (TREE_CODE (ref) == COMPONENT_REF)
1349 /* Check that the offset is loop invariant. */
1350 if (TREE_OPERAND (ref, 2)
1351 && !expr_invariant_in_loop_p (loop, TREE_OPERAND (ref, 2)))
1352 return NULL_TREE;
1354 return build3 (COMPONENT_REF, TREE_TYPE (ref), op0,
1355 unshare_expr (TREE_OPERAND (ref, 1)),
1356 unshare_expr (TREE_OPERAND (ref, 2)));
1358 else if (TREE_CODE (ref) == ARRAY_REF)
1360 /* Check that the lower bound and the step are loop invariant. */
1361 if (TREE_OPERAND (ref, 2)
1362 && !expr_invariant_in_loop_p (loop, TREE_OPERAND (ref, 2)))
1363 return NULL_TREE;
1364 if (TREE_OPERAND (ref, 3)
1365 && !expr_invariant_in_loop_p (loop, TREE_OPERAND (ref, 3)))
1366 return NULL_TREE;
1368 ret = build4 (ARRAY_REF, TREE_TYPE (ref), op0, NULL_TREE,
1369 unshare_expr (TREE_OPERAND (ref, 2)),
1370 unshare_expr (TREE_OPERAND (ref, 3)));
1371 idx = TREE_OPERAND (ref, 1);
1372 idx_p = &TREE_OPERAND (ret, 1);
1374 else
1375 return NULL_TREE;
1377 ok = simple_iv (loop, loop, idx, &iv, true);
1378 if (!ok)
1379 return NULL_TREE;
1380 iv.base = expand_simple_operations (iv.base);
1381 if (integer_zerop (iv.step))
1382 *idx_p = unshare_expr (iv.base);
1383 else
1385 type = TREE_TYPE (iv.base);
1386 if (POINTER_TYPE_P (type))
1388 val = fold_build2 (MULT_EXPR, sizetype, iv.step,
1389 size_int (iter));
1390 val = fold_build2 (POINTER_PLUS_EXPR, type, iv.base, val);
1392 else
1394 val = fold_build2 (MULT_EXPR, type, iv.step,
1395 build_int_cst_type (type, iter));
1396 val = fold_build2 (PLUS_EXPR, type, iv.base, val);
1398 *idx_p = unshare_expr (val);
1401 return ret;
1404 /* Get the initialization expression for the INDEX-th temporary variable
1405 of CHAIN. */
1407 static tree
1408 get_init_expr (chain_p chain, unsigned index)
1410 if (chain->type == CT_COMBINATION)
1412 tree e1 = get_init_expr (chain->ch1, index);
1413 tree e2 = get_init_expr (chain->ch2, index);
1415 return fold_build2 (chain->op, chain->rslt_type, e1, e2);
1417 else
1418 return VEC_index (tree, chain->inits, index);
1421 /* Marks all virtual operands of statement STMT for renaming. */
1423 void
1424 mark_virtual_ops_for_renaming (gimple stmt)
1426 tree var;
1428 if (gimple_code (stmt) == GIMPLE_PHI)
1430 var = PHI_RESULT (stmt);
1431 if (is_gimple_reg (var))
1432 return;
1434 if (TREE_CODE (var) == SSA_NAME)
1435 var = SSA_NAME_VAR (var);
1436 mark_sym_for_renaming (var);
1437 return;
1440 update_stmt (stmt);
1441 if (gimple_vuse (stmt))
1442 mark_sym_for_renaming (gimple_vop (cfun));
1445 /* Returns a new temporary variable used for the I-th variable carrying
1446 value of REF. The variable's uid is marked in TMP_VARS. */
1448 static tree
1449 predcom_tmp_var (tree ref, unsigned i, bitmap tmp_vars)
1451 tree type = TREE_TYPE (ref);
1452 tree var = create_tmp_var (type, get_lsm_tmp_name (ref, i));
1454 /* We never access the components of the temporary variable in predictive
1455 commoning. */
1456 if (TREE_CODE (type) == COMPLEX_TYPE
1457 || TREE_CODE (type) == VECTOR_TYPE)
1458 DECL_GIMPLE_REG_P (var) = 1;
1460 add_referenced_var (var);
1461 bitmap_set_bit (tmp_vars, DECL_UID (var));
1462 return var;
1465 /* Creates the variables for CHAIN, as well as phi nodes for them and
1466 initialization on entry to LOOP. Uids of the newly created
1467 temporary variables are marked in TMP_VARS. */
1469 static void
1470 initialize_root_vars (struct loop *loop, chain_p chain, bitmap tmp_vars)
1472 unsigned i;
1473 unsigned n = chain->length;
1474 dref root = get_chain_root (chain);
1475 bool reuse_first = !chain->has_max_use_after;
1476 tree ref, init, var, next;
1477 gimple phi;
1478 gimple_seq stmts;
1479 edge entry = loop_preheader_edge (loop), latch = loop_latch_edge (loop);
1481 /* If N == 0, then all the references are within the single iteration. And
1482 since this is an nonempty chain, reuse_first cannot be true. */
1483 gcc_assert (n > 0 || !reuse_first);
1485 chain->vars = VEC_alloc (tree, heap, n + 1);
1487 if (chain->type == CT_COMBINATION)
1488 ref = gimple_assign_lhs (root->stmt);
1489 else
1490 ref = DR_REF (root->ref);
1492 for (i = 0; i < n + (reuse_first ? 0 : 1); i++)
1494 var = predcom_tmp_var (ref, i, tmp_vars);
1495 VEC_quick_push (tree, chain->vars, var);
1497 if (reuse_first)
1498 VEC_quick_push (tree, chain->vars, VEC_index (tree, chain->vars, 0));
1500 for (i = 0; VEC_iterate (tree, chain->vars, i, var); i++)
1501 VEC_replace (tree, chain->vars, i, make_ssa_name (var, NULL));
1503 for (i = 0; i < n; i++)
1505 var = VEC_index (tree, chain->vars, i);
1506 next = VEC_index (tree, chain->vars, i + 1);
1507 init = get_init_expr (chain, i);
1509 init = force_gimple_operand (init, &stmts, true, NULL_TREE);
1510 if (stmts)
1511 gsi_insert_seq_on_edge_immediate (entry, stmts);
1513 phi = create_phi_node (var, loop->header);
1514 SSA_NAME_DEF_STMT (var) = phi;
1515 add_phi_arg (phi, init, entry);
1516 add_phi_arg (phi, next, latch);
1520 /* Create the variables and initialization statement for root of chain
1521 CHAIN. Uids of the newly created temporary variables are marked
1522 in TMP_VARS. */
1524 static void
1525 initialize_root (struct loop *loop, chain_p chain, bitmap tmp_vars)
1527 dref root = get_chain_root (chain);
1528 bool in_lhs = (chain->type == CT_STORE_LOAD
1529 || chain->type == CT_COMBINATION);
1531 initialize_root_vars (loop, chain, tmp_vars);
1532 replace_ref_with (root->stmt,
1533 VEC_index (tree, chain->vars, chain->length),
1534 true, in_lhs);
1537 /* Initializes a variable for load motion for ROOT and prepares phi nodes and
1538 initialization on entry to LOOP if necessary. The ssa name for the variable
1539 is stored in VARS. If WRITTEN is true, also a phi node to copy its value
1540 around the loop is created. Uid of the newly created temporary variable
1541 is marked in TMP_VARS. INITS is the list containing the (single)
1542 initializer. */
1544 static void
1545 initialize_root_vars_lm (struct loop *loop, dref root, bool written,
1546 VEC(tree, heap) **vars, VEC(tree, heap) *inits,
1547 bitmap tmp_vars)
1549 unsigned i;
1550 tree ref = DR_REF (root->ref), init, var, next;
1551 gimple_seq stmts;
1552 gimple phi;
1553 edge entry = loop_preheader_edge (loop), latch = loop_latch_edge (loop);
1555 /* Find the initializer for the variable, and check that it cannot
1556 trap. */
1557 init = VEC_index (tree, inits, 0);
1559 *vars = VEC_alloc (tree, heap, written ? 2 : 1);
1560 var = predcom_tmp_var (ref, 0, tmp_vars);
1561 VEC_quick_push (tree, *vars, var);
1562 if (written)
1563 VEC_quick_push (tree, *vars, VEC_index (tree, *vars, 0));
1565 for (i = 0; VEC_iterate (tree, *vars, i, var); i++)
1566 VEC_replace (tree, *vars, i, make_ssa_name (var, NULL));
1568 var = VEC_index (tree, *vars, 0);
1570 init = force_gimple_operand (init, &stmts, written, NULL_TREE);
1571 if (stmts)
1572 gsi_insert_seq_on_edge_immediate (entry, stmts);
1574 if (written)
1576 next = VEC_index (tree, *vars, 1);
1577 phi = create_phi_node (var, loop->header);
1578 SSA_NAME_DEF_STMT (var) = phi;
1579 add_phi_arg (phi, init, entry);
1580 add_phi_arg (phi, next, latch);
1582 else
1584 gimple init_stmt = gimple_build_assign (var, init);
1585 mark_virtual_ops_for_renaming (init_stmt);
1586 gsi_insert_on_edge_immediate (entry, init_stmt);
1591 /* Execute load motion for references in chain CHAIN. Uids of the newly
1592 created temporary variables are marked in TMP_VARS. */
1594 static void
1595 execute_load_motion (struct loop *loop, chain_p chain, bitmap tmp_vars)
1597 VEC (tree, heap) *vars;
1598 dref a;
1599 unsigned n_writes = 0, ridx, i;
1600 tree var;
1602 gcc_assert (chain->type == CT_INVARIANT);
1603 gcc_assert (!chain->combined);
1604 for (i = 0; VEC_iterate (dref, chain->refs, i, a); i++)
1605 if (!DR_IS_READ (a->ref))
1606 n_writes++;
1608 /* If there are no reads in the loop, there is nothing to do. */
1609 if (n_writes == VEC_length (dref, chain->refs))
1610 return;
1612 initialize_root_vars_lm (loop, get_chain_root (chain), n_writes > 0,
1613 &vars, chain->inits, tmp_vars);
1615 ridx = 0;
1616 for (i = 0; VEC_iterate (dref, chain->refs, i, a); i++)
1618 bool is_read = DR_IS_READ (a->ref);
1619 mark_virtual_ops_for_renaming (a->stmt);
1621 if (!DR_IS_READ (a->ref))
1623 n_writes--;
1624 if (n_writes)
1626 var = VEC_index (tree, vars, 0);
1627 var = make_ssa_name (SSA_NAME_VAR (var), NULL);
1628 VEC_replace (tree, vars, 0, var);
1630 else
1631 ridx = 1;
1634 replace_ref_with (a->stmt, VEC_index (tree, vars, ridx),
1635 !is_read, !is_read);
1638 VEC_free (tree, heap, vars);
1641 /* Returns the single statement in that NAME is used, excepting
1642 the looparound phi nodes contained in one of the chains. If there is no
1643 such statement, or more statements, NULL is returned. */
1645 static gimple
1646 single_nonlooparound_use (tree name)
1648 use_operand_p use;
1649 imm_use_iterator it;
1650 gimple stmt, ret = NULL;
1652 FOR_EACH_IMM_USE_FAST (use, it, name)
1654 stmt = USE_STMT (use);
1656 if (gimple_code (stmt) == GIMPLE_PHI)
1658 /* Ignore uses in looparound phi nodes. Uses in other phi nodes
1659 could not be processed anyway, so just fail for them. */
1660 if (bitmap_bit_p (looparound_phis,
1661 SSA_NAME_VERSION (PHI_RESULT (stmt))))
1662 continue;
1664 return NULL;
1666 else if (ret != NULL)
1667 return NULL;
1668 else
1669 ret = stmt;
1672 return ret;
1675 /* Remove statement STMT, as well as the chain of assignments in that it is
1676 used. */
1678 static void
1679 remove_stmt (gimple stmt)
1681 tree name;
1682 gimple next;
1683 gimple_stmt_iterator psi;
1685 if (gimple_code (stmt) == GIMPLE_PHI)
1687 name = PHI_RESULT (stmt);
1688 next = single_nonlooparound_use (name);
1689 psi = gsi_for_stmt (stmt);
1690 remove_phi_node (&psi, true);
1692 if (!next
1693 || !gimple_assign_ssa_name_copy_p (next)
1694 || gimple_assign_rhs1 (next) != name)
1695 return;
1697 stmt = next;
1700 while (1)
1702 gimple_stmt_iterator bsi;
1704 bsi = gsi_for_stmt (stmt);
1706 name = gimple_assign_lhs (stmt);
1707 gcc_assert (TREE_CODE (name) == SSA_NAME);
1709 next = single_nonlooparound_use (name);
1711 mark_virtual_ops_for_renaming (stmt);
1712 gsi_remove (&bsi, true);
1713 release_defs (stmt);
1715 if (!next
1716 || !gimple_assign_ssa_name_copy_p (next)
1717 || gimple_assign_rhs1 (next) != name)
1718 return;
1720 stmt = next;
1724 /* Perform the predictive commoning optimization for a chain CHAIN.
1725 Uids of the newly created temporary variables are marked in TMP_VARS.*/
1727 static void
1728 execute_pred_commoning_chain (struct loop *loop, chain_p chain,
1729 bitmap tmp_vars)
1731 unsigned i;
1732 dref a, root;
1733 tree var;
1735 if (chain->combined)
1737 /* For combined chains, just remove the statements that are used to
1738 compute the values of the expression (except for the root one). */
1739 for (i = 1; VEC_iterate (dref, chain->refs, i, a); i++)
1740 remove_stmt (a->stmt);
1742 else
1744 /* For non-combined chains, set up the variables that hold its value,
1745 and replace the uses of the original references by these
1746 variables. */
1747 root = get_chain_root (chain);
1748 mark_virtual_ops_for_renaming (root->stmt);
1750 initialize_root (loop, chain, tmp_vars);
1751 for (i = 1; VEC_iterate (dref, chain->refs, i, a); i++)
1753 mark_virtual_ops_for_renaming (a->stmt);
1754 var = VEC_index (tree, chain->vars, chain->length - a->distance);
1755 replace_ref_with (a->stmt, var, false, false);
1760 /* Determines the unroll factor necessary to remove as many temporary variable
1761 copies as possible. CHAINS is the list of chains that will be
1762 optimized. */
1764 static unsigned
1765 determine_unroll_factor (VEC (chain_p, heap) *chains)
1767 chain_p chain;
1768 unsigned factor = 1, af, nfactor, i;
1769 unsigned max = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
1771 for (i = 0; VEC_iterate (chain_p, chains, i, chain); i++)
1773 if (chain->type == CT_INVARIANT || chain->combined)
1774 continue;
1776 /* The best unroll factor for this chain is equal to the number of
1777 temporary variables that we create for it. */
1778 af = chain->length;
1779 if (chain->has_max_use_after)
1780 af++;
1782 nfactor = factor * af / gcd (factor, af);
1783 if (nfactor <= max)
1784 factor = nfactor;
1787 return factor;
1790 /* Perform the predictive commoning optimization for CHAINS.
1791 Uids of the newly created temporary variables are marked in TMP_VARS. */
1793 static void
1794 execute_pred_commoning (struct loop *loop, VEC (chain_p, heap) *chains,
1795 bitmap tmp_vars)
1797 chain_p chain;
1798 unsigned i;
1800 for (i = 0; VEC_iterate (chain_p, chains, i, chain); i++)
1802 if (chain->type == CT_INVARIANT)
1803 execute_load_motion (loop, chain, tmp_vars);
1804 else
1805 execute_pred_commoning_chain (loop, chain, tmp_vars);
1808 update_ssa (TODO_update_ssa_only_virtuals);
1811 /* For each reference in CHAINS, if its defining statement is
1812 phi node, record the ssa name that is defined by it. */
1814 static void
1815 replace_phis_by_defined_names (VEC (chain_p, heap) *chains)
1817 chain_p chain;
1818 dref a;
1819 unsigned i, j;
1821 for (i = 0; VEC_iterate (chain_p, chains, i, chain); i++)
1822 for (j = 0; VEC_iterate (dref, chain->refs, j, a); j++)
1824 if (gimple_code (a->stmt) == GIMPLE_PHI)
1826 a->name_defined_by_phi = PHI_RESULT (a->stmt);
1827 a->stmt = NULL;
1832 /* For each reference in CHAINS, if name_defined_by_phi is not
1833 NULL, use it to set the stmt field. */
1835 static void
1836 replace_names_by_phis (VEC (chain_p, heap) *chains)
1838 chain_p chain;
1839 dref a;
1840 unsigned i, j;
1842 for (i = 0; VEC_iterate (chain_p, chains, i, chain); i++)
1843 for (j = 0; VEC_iterate (dref, chain->refs, j, a); j++)
1844 if (a->stmt == NULL)
1846 a->stmt = SSA_NAME_DEF_STMT (a->name_defined_by_phi);
1847 gcc_assert (gimple_code (a->stmt) == GIMPLE_PHI);
1848 a->name_defined_by_phi = NULL_TREE;
1852 /* Wrapper over execute_pred_commoning, to pass it as a callback
1853 to tree_transform_and_unroll_loop. */
1855 struct epcc_data
1857 VEC (chain_p, heap) *chains;
1858 bitmap tmp_vars;
1861 static void
1862 execute_pred_commoning_cbck (struct loop *loop, void *data)
1864 struct epcc_data *const dta = (struct epcc_data *) data;
1866 /* Restore phi nodes that were replaced by ssa names before
1867 tree_transform_and_unroll_loop (see detailed description in
1868 tree_predictive_commoning_loop). */
1869 replace_names_by_phis (dta->chains);
1870 execute_pred_commoning (loop, dta->chains, dta->tmp_vars);
1873 /* Returns true if we can and should unroll LOOP FACTOR times. Number
1874 of iterations of the loop is returned in NITER. */
1876 static bool
1877 should_unroll_loop_p (struct loop *loop, unsigned factor,
1878 struct tree_niter_desc *niter)
1880 edge exit;
1882 if (factor == 1)
1883 return false;
1885 /* Check whether unrolling is possible. We only want to unroll loops
1886 for that we are able to determine number of iterations. We also
1887 want to split the extra iterations of the loop from its end,
1888 therefore we require that the loop has precisely one
1889 exit. */
1891 exit = single_dom_exit (loop);
1892 if (!exit)
1893 return false;
1895 if (!number_of_iterations_exit (loop, exit, niter, false))
1896 return false;
1898 /* And of course, we must be able to duplicate the loop. */
1899 if (!can_duplicate_loop_p (loop))
1900 return false;
1902 /* The final loop should be small enough. */
1903 if (tree_num_loop_insns (loop, &eni_size_weights) * factor
1904 > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS))
1905 return false;
1907 return true;
1910 /* Base NAME and all the names in the chain of phi nodes that use it
1911 on variable VAR. The phi nodes are recognized by being in the copies of
1912 the header of the LOOP. */
1914 static void
1915 base_names_in_chain_on (struct loop *loop, tree name, tree var)
1917 gimple stmt, phi;
1918 imm_use_iterator iter;
1919 edge e;
1921 SSA_NAME_VAR (name) = var;
1923 while (1)
1925 phi = NULL;
1926 FOR_EACH_IMM_USE_STMT (stmt, iter, name)
1928 if (gimple_code (stmt) == GIMPLE_PHI
1929 && flow_bb_inside_loop_p (loop, gimple_bb (stmt)))
1931 phi = stmt;
1932 BREAK_FROM_IMM_USE_STMT (iter);
1935 if (!phi)
1936 return;
1938 if (gimple_bb (phi) == loop->header)
1939 e = loop_latch_edge (loop);
1940 else
1941 e = single_pred_edge (gimple_bb (stmt));
1943 name = PHI_RESULT (phi);
1944 SSA_NAME_VAR (name) = var;
1948 /* Given an unrolled LOOP after predictive commoning, remove the
1949 register copies arising from phi nodes by changing the base
1950 variables of SSA names. TMP_VARS is the set of the temporary variables
1951 for those we want to perform this. */
1953 static void
1954 eliminate_temp_copies (struct loop *loop, bitmap tmp_vars)
1956 edge e;
1957 gimple phi, stmt;
1958 tree name, use, var;
1959 gimple_stmt_iterator psi;
1961 e = loop_latch_edge (loop);
1962 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
1964 phi = gsi_stmt (psi);
1965 name = PHI_RESULT (phi);
1966 var = SSA_NAME_VAR (name);
1967 if (!bitmap_bit_p (tmp_vars, DECL_UID (var)))
1968 continue;
1969 use = PHI_ARG_DEF_FROM_EDGE (phi, e);
1970 gcc_assert (TREE_CODE (use) == SSA_NAME);
1972 /* Base all the ssa names in the ud and du chain of NAME on VAR. */
1973 stmt = SSA_NAME_DEF_STMT (use);
1974 while (gimple_code (stmt) == GIMPLE_PHI
1975 /* In case we could not unroll the loop enough to eliminate
1976 all copies, we may reach the loop header before the defining
1977 statement (in that case, some register copies will be present
1978 in loop latch in the final code, corresponding to the newly
1979 created looparound phi nodes). */
1980 && gimple_bb (stmt) != loop->header)
1982 gcc_assert (single_pred_p (gimple_bb (stmt)));
1983 use = PHI_ARG_DEF (stmt, 0);
1984 stmt = SSA_NAME_DEF_STMT (use);
1987 base_names_in_chain_on (loop, use, var);
1991 /* Returns true if CHAIN is suitable to be combined. */
1993 static bool
1994 chain_can_be_combined_p (chain_p chain)
1996 return (!chain->combined
1997 && (chain->type == CT_LOAD || chain->type == CT_COMBINATION));
2000 /* Returns the modify statement that uses NAME. Skips over assignment
2001 statements, NAME is replaced with the actual name used in the returned
2002 statement. */
2004 static gimple
2005 find_use_stmt (tree *name)
2007 gimple stmt;
2008 tree rhs, lhs;
2010 /* Skip over assignments. */
2011 while (1)
2013 stmt = single_nonlooparound_use (*name);
2014 if (!stmt)
2015 return NULL;
2017 if (gimple_code (stmt) != GIMPLE_ASSIGN)
2018 return NULL;
2020 lhs = gimple_assign_lhs (stmt);
2021 if (TREE_CODE (lhs) != SSA_NAME)
2022 return NULL;
2024 if (gimple_assign_copy_p (stmt))
2026 rhs = gimple_assign_rhs1 (stmt);
2027 if (rhs != *name)
2028 return NULL;
2030 *name = lhs;
2032 else if (get_gimple_rhs_class (gimple_assign_rhs_code (stmt))
2033 == GIMPLE_BINARY_RHS)
2034 return stmt;
2035 else
2036 return NULL;
2040 /* Returns true if we may perform reassociation for operation CODE in TYPE. */
2042 static bool
2043 may_reassociate_p (tree type, enum tree_code code)
2045 if (FLOAT_TYPE_P (type)
2046 && !flag_unsafe_math_optimizations)
2047 return false;
2049 return (commutative_tree_code (code)
2050 && associative_tree_code (code));
2053 /* If the operation used in STMT is associative and commutative, go through the
2054 tree of the same operations and returns its root. Distance to the root
2055 is stored in DISTANCE. */
2057 static gimple
2058 find_associative_operation_root (gimple stmt, unsigned *distance)
2060 tree lhs;
2061 gimple next;
2062 enum tree_code code = gimple_assign_rhs_code (stmt);
2063 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
2064 unsigned dist = 0;
2066 if (!may_reassociate_p (type, code))
2067 return NULL;
2069 while (1)
2071 lhs = gimple_assign_lhs (stmt);
2072 gcc_assert (TREE_CODE (lhs) == SSA_NAME);
2074 next = find_use_stmt (&lhs);
2075 if (!next
2076 || gimple_assign_rhs_code (next) != code)
2077 break;
2079 stmt = next;
2080 dist++;
2083 if (distance)
2084 *distance = dist;
2085 return stmt;
2088 /* Returns the common statement in that NAME1 and NAME2 have a use. If there
2089 is no such statement, returns NULL_TREE. In case the operation used on
2090 NAME1 and NAME2 is associative and commutative, returns the root of the
2091 tree formed by this operation instead of the statement that uses NAME1 or
2092 NAME2. */
2094 static gimple
2095 find_common_use_stmt (tree *name1, tree *name2)
2097 gimple stmt1, stmt2;
2099 stmt1 = find_use_stmt (name1);
2100 if (!stmt1)
2101 return NULL;
2103 stmt2 = find_use_stmt (name2);
2104 if (!stmt2)
2105 return NULL;
2107 if (stmt1 == stmt2)
2108 return stmt1;
2110 stmt1 = find_associative_operation_root (stmt1, NULL);
2111 if (!stmt1)
2112 return NULL;
2113 stmt2 = find_associative_operation_root (stmt2, NULL);
2114 if (!stmt2)
2115 return NULL;
2117 return (stmt1 == stmt2 ? stmt1 : NULL);
2120 /* Checks whether R1 and R2 are combined together using CODE, with the result
2121 in RSLT_TYPE, in order R1 CODE R2 if SWAP is false and in order R2 CODE R1
2122 if it is true. If CODE is ERROR_MARK, set these values instead. */
2124 static bool
2125 combinable_refs_p (dref r1, dref r2,
2126 enum tree_code *code, bool *swap, tree *rslt_type)
2128 enum tree_code acode;
2129 bool aswap;
2130 tree atype;
2131 tree name1, name2;
2132 gimple stmt;
2134 name1 = name_for_ref (r1);
2135 name2 = name_for_ref (r2);
2136 gcc_assert (name1 != NULL_TREE && name2 != NULL_TREE);
2138 stmt = find_common_use_stmt (&name1, &name2);
2140 if (!stmt)
2141 return false;
2143 acode = gimple_assign_rhs_code (stmt);
2144 aswap = (!commutative_tree_code (acode)
2145 && gimple_assign_rhs1 (stmt) != name1);
2146 atype = TREE_TYPE (gimple_assign_lhs (stmt));
2148 if (*code == ERROR_MARK)
2150 *code = acode;
2151 *swap = aswap;
2152 *rslt_type = atype;
2153 return true;
2156 return (*code == acode
2157 && *swap == aswap
2158 && *rslt_type == atype);
2161 /* Remove OP from the operation on rhs of STMT, and replace STMT with
2162 an assignment of the remaining operand. */
2164 static void
2165 remove_name_from_operation (gimple stmt, tree op)
2167 tree other_op;
2168 gimple_stmt_iterator si;
2170 gcc_assert (is_gimple_assign (stmt));
2172 if (gimple_assign_rhs1 (stmt) == op)
2173 other_op = gimple_assign_rhs2 (stmt);
2174 else
2175 other_op = gimple_assign_rhs1 (stmt);
2177 si = gsi_for_stmt (stmt);
2178 gimple_assign_set_rhs_from_tree (&si, other_op);
2180 /* We should not have reallocated STMT. */
2181 gcc_assert (gsi_stmt (si) == stmt);
2183 update_stmt (stmt);
2186 /* Reassociates the expression in that NAME1 and NAME2 are used so that they
2187 are combined in a single statement, and returns this statement. */
2189 static gimple
2190 reassociate_to_the_same_stmt (tree name1, tree name2)
2192 gimple stmt1, stmt2, root1, root2, s1, s2;
2193 gimple new_stmt, tmp_stmt;
2194 tree new_name, tmp_name, var, r1, r2;
2195 unsigned dist1, dist2;
2196 enum tree_code code;
2197 tree type = TREE_TYPE (name1);
2198 gimple_stmt_iterator bsi;
2200 stmt1 = find_use_stmt (&name1);
2201 stmt2 = find_use_stmt (&name2);
2202 root1 = find_associative_operation_root (stmt1, &dist1);
2203 root2 = find_associative_operation_root (stmt2, &dist2);
2204 code = gimple_assign_rhs_code (stmt1);
2206 gcc_assert (root1 && root2 && root1 == root2
2207 && code == gimple_assign_rhs_code (stmt2));
2209 /* Find the root of the nearest expression in that both NAME1 and NAME2
2210 are used. */
2211 r1 = name1;
2212 s1 = stmt1;
2213 r2 = name2;
2214 s2 = stmt2;
2216 while (dist1 > dist2)
2218 s1 = find_use_stmt (&r1);
2219 r1 = gimple_assign_lhs (s1);
2220 dist1--;
2222 while (dist2 > dist1)
2224 s2 = find_use_stmt (&r2);
2225 r2 = gimple_assign_lhs (s2);
2226 dist2--;
2229 while (s1 != s2)
2231 s1 = find_use_stmt (&r1);
2232 r1 = gimple_assign_lhs (s1);
2233 s2 = find_use_stmt (&r2);
2234 r2 = gimple_assign_lhs (s2);
2237 /* Remove NAME1 and NAME2 from the statements in that they are used
2238 currently. */
2239 remove_name_from_operation (stmt1, name1);
2240 remove_name_from_operation (stmt2, name2);
2242 /* Insert the new statement combining NAME1 and NAME2 before S1, and
2243 combine it with the rhs of S1. */
2244 var = create_tmp_var (type, "predreastmp");
2245 add_referenced_var (var);
2246 new_name = make_ssa_name (var, NULL);
2247 new_stmt = gimple_build_assign_with_ops (code, new_name, name1, name2);
2249 var = create_tmp_var (type, "predreastmp");
2250 add_referenced_var (var);
2251 tmp_name = make_ssa_name (var, NULL);
2253 /* Rhs of S1 may now be either a binary expression with operation
2254 CODE, or gimple_val (in case that stmt1 == s1 or stmt2 == s1,
2255 so that name1 or name2 was removed from it). */
2256 tmp_stmt = gimple_build_assign_with_ops (gimple_assign_rhs_code (s1),
2257 tmp_name,
2258 gimple_assign_rhs1 (s1),
2259 gimple_assign_rhs2 (s1));
2261 bsi = gsi_for_stmt (s1);
2262 gimple_assign_set_rhs_with_ops (&bsi, code, new_name, tmp_name);
2263 s1 = gsi_stmt (bsi);
2264 update_stmt (s1);
2266 gsi_insert_before (&bsi, new_stmt, GSI_SAME_STMT);
2267 gsi_insert_before (&bsi, tmp_stmt, GSI_SAME_STMT);
2269 return new_stmt;
2272 /* Returns the statement that combines references R1 and R2. In case R1
2273 and R2 are not used in the same statement, but they are used with an
2274 associative and commutative operation in the same expression, reassociate
2275 the expression so that they are used in the same statement. */
2277 static gimple
2278 stmt_combining_refs (dref r1, dref r2)
2280 gimple stmt1, stmt2;
2281 tree name1 = name_for_ref (r1);
2282 tree name2 = name_for_ref (r2);
2284 stmt1 = find_use_stmt (&name1);
2285 stmt2 = find_use_stmt (&name2);
2286 if (stmt1 == stmt2)
2287 return stmt1;
2289 return reassociate_to_the_same_stmt (name1, name2);
2292 /* Tries to combine chains CH1 and CH2 together. If this succeeds, the
2293 description of the new chain is returned, otherwise we return NULL. */
2295 static chain_p
2296 combine_chains (chain_p ch1, chain_p ch2)
2298 dref r1, r2, nw;
2299 enum tree_code op = ERROR_MARK;
2300 bool swap = false;
2301 chain_p new_chain;
2302 unsigned i;
2303 gimple root_stmt;
2304 tree rslt_type = NULL_TREE;
2306 if (ch1 == ch2)
2307 return false;
2308 if (ch1->length != ch2->length)
2309 return NULL;
2311 if (VEC_length (dref, ch1->refs) != VEC_length (dref, ch2->refs))
2312 return NULL;
2314 for (i = 0; (VEC_iterate (dref, ch1->refs, i, r1)
2315 && VEC_iterate (dref, ch2->refs, i, r2)); i++)
2317 if (r1->distance != r2->distance)
2318 return NULL;
2320 if (!combinable_refs_p (r1, r2, &op, &swap, &rslt_type))
2321 return NULL;
2324 if (swap)
2326 chain_p tmp = ch1;
2327 ch1 = ch2;
2328 ch2 = tmp;
2331 new_chain = XCNEW (struct chain);
2332 new_chain->type = CT_COMBINATION;
2333 new_chain->op = op;
2334 new_chain->ch1 = ch1;
2335 new_chain->ch2 = ch2;
2336 new_chain->rslt_type = rslt_type;
2337 new_chain->length = ch1->length;
2339 for (i = 0; (VEC_iterate (dref, ch1->refs, i, r1)
2340 && VEC_iterate (dref, ch2->refs, i, r2)); i++)
2342 nw = XCNEW (struct dref);
2343 nw->stmt = stmt_combining_refs (r1, r2);
2344 nw->distance = r1->distance;
2346 VEC_safe_push (dref, heap, new_chain->refs, nw);
2349 new_chain->has_max_use_after = false;
2350 root_stmt = get_chain_root (new_chain)->stmt;
2351 for (i = 1; VEC_iterate (dref, new_chain->refs, i, nw); i++)
2353 if (nw->distance == new_chain->length
2354 && !stmt_dominates_stmt_p (nw->stmt, root_stmt))
2356 new_chain->has_max_use_after = true;
2357 break;
2361 ch1->combined = true;
2362 ch2->combined = true;
2363 return new_chain;
2366 /* Try to combine the CHAINS. */
2368 static void
2369 try_combine_chains (VEC (chain_p, heap) **chains)
2371 unsigned i, j;
2372 chain_p ch1, ch2, cch;
2373 VEC (chain_p, heap) *worklist = NULL;
2375 for (i = 0; VEC_iterate (chain_p, *chains, i, ch1); i++)
2376 if (chain_can_be_combined_p (ch1))
2377 VEC_safe_push (chain_p, heap, worklist, ch1);
2379 while (!VEC_empty (chain_p, worklist))
2381 ch1 = VEC_pop (chain_p, worklist);
2382 if (!chain_can_be_combined_p (ch1))
2383 continue;
2385 for (j = 0; VEC_iterate (chain_p, *chains, j, ch2); j++)
2387 if (!chain_can_be_combined_p (ch2))
2388 continue;
2390 cch = combine_chains (ch1, ch2);
2391 if (cch)
2393 VEC_safe_push (chain_p, heap, worklist, cch);
2394 VEC_safe_push (chain_p, heap, *chains, cch);
2395 break;
2401 /* Prepare initializers for CHAIN in LOOP. Returns false if this is
2402 impossible because one of these initializers may trap, true otherwise. */
2404 static bool
2405 prepare_initializers_chain (struct loop *loop, chain_p chain)
2407 unsigned i, n = (chain->type == CT_INVARIANT) ? 1 : chain->length;
2408 struct data_reference *dr = get_chain_root (chain)->ref;
2409 tree init;
2410 gimple_seq stmts;
2411 dref laref;
2412 edge entry = loop_preheader_edge (loop);
2414 /* Find the initializers for the variables, and check that they cannot
2415 trap. */
2416 chain->inits = VEC_alloc (tree, heap, n);
2417 for (i = 0; i < n; i++)
2418 VEC_quick_push (tree, chain->inits, NULL_TREE);
2420 /* If we have replaced some looparound phi nodes, use their initializers
2421 instead of creating our own. */
2422 for (i = 0; VEC_iterate (dref, chain->refs, i, laref); i++)
2424 if (gimple_code (laref->stmt) != GIMPLE_PHI)
2425 continue;
2427 gcc_assert (laref->distance > 0);
2428 VEC_replace (tree, chain->inits, n - laref->distance,
2429 PHI_ARG_DEF_FROM_EDGE (laref->stmt, entry));
2432 for (i = 0; i < n; i++)
2434 if (VEC_index (tree, chain->inits, i) != NULL_TREE)
2435 continue;
2437 init = ref_at_iteration (loop, DR_REF (dr), (int) i - n);
2438 if (!init)
2439 return false;
2441 if (!chain->all_always_accessed && tree_could_trap_p (init))
2442 return false;
2444 init = force_gimple_operand (init, &stmts, false, NULL_TREE);
2445 if (stmts)
2446 gsi_insert_seq_on_edge_immediate (entry, stmts);
2448 VEC_replace (tree, chain->inits, i, init);
2451 return true;
2454 /* Prepare initializers for CHAINS in LOOP, and free chains that cannot
2455 be used because the initializers might trap. */
2457 static void
2458 prepare_initializers (struct loop *loop, VEC (chain_p, heap) *chains)
2460 chain_p chain;
2461 unsigned i;
2463 for (i = 0; i < VEC_length (chain_p, chains); )
2465 chain = VEC_index (chain_p, chains, i);
2466 if (prepare_initializers_chain (loop, chain))
2467 i++;
2468 else
2470 release_chain (chain);
2471 VEC_unordered_remove (chain_p, chains, i);
2476 /* Performs predictive commoning for LOOP. Returns true if LOOP was
2477 unrolled. */
2479 static bool
2480 tree_predictive_commoning_loop (struct loop *loop)
2482 VEC (data_reference_p, heap) *datarefs;
2483 VEC (ddr_p, heap) *dependences;
2484 struct component *components;
2485 VEC (chain_p, heap) *chains = NULL;
2486 unsigned unroll_factor;
2487 struct tree_niter_desc desc;
2488 bool unroll = false;
2489 edge exit;
2490 bitmap tmp_vars;
2492 if (dump_file && (dump_flags & TDF_DETAILS))
2493 fprintf (dump_file, "Processing loop %d\n", loop->num);
2495 /* Find the data references and split them into components according to their
2496 dependence relations. */
2497 datarefs = VEC_alloc (data_reference_p, heap, 10);
2498 dependences = VEC_alloc (ddr_p, heap, 10);
2499 compute_data_dependences_for_loop (loop, true, &datarefs, &dependences);
2500 if (dump_file && (dump_flags & TDF_DETAILS))
2501 dump_data_dependence_relations (dump_file, dependences);
2503 components = split_data_refs_to_components (loop, datarefs, dependences);
2504 free_dependence_relations (dependences);
2505 if (!components)
2507 free_data_refs (datarefs);
2508 return false;
2511 if (dump_file && (dump_flags & TDF_DETAILS))
2513 fprintf (dump_file, "Initial state:\n\n");
2514 dump_components (dump_file, components);
2517 /* Find the suitable components and split them into chains. */
2518 components = filter_suitable_components (loop, components);
2520 tmp_vars = BITMAP_ALLOC (NULL);
2521 looparound_phis = BITMAP_ALLOC (NULL);
2522 determine_roots (loop, components, &chains);
2523 release_components (components);
2525 if (!chains)
2527 if (dump_file && (dump_flags & TDF_DETAILS))
2528 fprintf (dump_file,
2529 "Predictive commoning failed: no suitable chains\n");
2530 goto end;
2532 prepare_initializers (loop, chains);
2534 /* Try to combine the chains that are always worked with together. */
2535 try_combine_chains (&chains);
2537 if (dump_file && (dump_flags & TDF_DETAILS))
2539 fprintf (dump_file, "Before commoning:\n\n");
2540 dump_chains (dump_file, chains);
2543 /* Determine the unroll factor, and if the loop should be unrolled, ensure
2544 that its number of iterations is divisible by the factor. */
2545 unroll_factor = determine_unroll_factor (chains);
2546 scev_reset ();
2547 unroll = should_unroll_loop_p (loop, unroll_factor, &desc);
2548 exit = single_dom_exit (loop);
2550 /* Execute the predictive commoning transformations, and possibly unroll the
2551 loop. */
2552 if (unroll)
2554 struct epcc_data dta;
2556 if (dump_file && (dump_flags & TDF_DETAILS))
2557 fprintf (dump_file, "Unrolling %u times.\n", unroll_factor);
2559 dta.chains = chains;
2560 dta.tmp_vars = tmp_vars;
2562 update_ssa (TODO_update_ssa_only_virtuals);
2564 /* Cfg manipulations performed in tree_transform_and_unroll_loop before
2565 execute_pred_commoning_cbck is called may cause phi nodes to be
2566 reallocated, which is a problem since CHAINS may point to these
2567 statements. To fix this, we store the ssa names defined by the
2568 phi nodes here instead of the phi nodes themselves, and restore
2569 the phi nodes in execute_pred_commoning_cbck. A bit hacky. */
2570 replace_phis_by_defined_names (chains);
2572 tree_transform_and_unroll_loop (loop, unroll_factor, exit, &desc,
2573 execute_pred_commoning_cbck, &dta);
2574 eliminate_temp_copies (loop, tmp_vars);
2576 else
2578 if (dump_file && (dump_flags & TDF_DETAILS))
2579 fprintf (dump_file,
2580 "Executing predictive commoning without unrolling.\n");
2581 execute_pred_commoning (loop, chains, tmp_vars);
2584 end: ;
2585 release_chains (chains);
2586 free_data_refs (datarefs);
2587 BITMAP_FREE (tmp_vars);
2588 BITMAP_FREE (looparound_phis);
2590 free_affine_expand_cache (&name_expansions);
2592 return unroll;
2595 /* Runs predictive commoning. */
2597 unsigned
2598 tree_predictive_commoning (void)
2600 bool unrolled = false;
2601 struct loop *loop;
2602 loop_iterator li;
2603 unsigned ret = 0;
2605 initialize_original_copy_tables ();
2606 FOR_EACH_LOOP (li, loop, LI_ONLY_INNERMOST)
2607 if (optimize_loop_for_speed_p (loop))
2609 unrolled |= tree_predictive_commoning_loop (loop);
2612 if (unrolled)
2614 scev_reset ();
2615 ret = TODO_cleanup_cfg;
2617 free_original_copy_tables ();
2619 return ret;