re PR bootstrap/55051 (profiledbootstrap failed)
[official-gcc.git] / gcc / var-tracking.c
blobadccf7caa0da32d4039433fd91ff5f4b7bde1e64
1 /* Variable tracking routines for the GNU compiler.
2 Copyright (C) 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010, 2011, 2012
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* This file contains the variable tracking pass. It computes where
22 variables are located (which registers or where in memory) at each position
23 in instruction stream and emits notes describing the locations.
24 Debug information (DWARF2 location lists) is finally generated from
25 these notes.
26 With this debug information, it is possible to show variables
27 even when debugging optimized code.
29 How does the variable tracking pass work?
31 First, it scans RTL code for uses, stores and clobbers (register/memory
32 references in instructions), for call insns and for stack adjustments
33 separately for each basic block and saves them to an array of micro
34 operations.
35 The micro operations of one instruction are ordered so that
36 pre-modifying stack adjustment < use < use with no var < call insn <
37 < clobber < set < post-modifying stack adjustment
39 Then, a forward dataflow analysis is performed to find out how locations
40 of variables change through code and to propagate the variable locations
41 along control flow graph.
42 The IN set for basic block BB is computed as a union of OUT sets of BB's
43 predecessors, the OUT set for BB is copied from the IN set for BB and
44 is changed according to micro operations in BB.
46 The IN and OUT sets for basic blocks consist of a current stack adjustment
47 (used for adjusting offset of variables addressed using stack pointer),
48 the table of structures describing the locations of parts of a variable
49 and for each physical register a linked list for each physical register.
50 The linked list is a list of variable parts stored in the register,
51 i.e. it is a list of triplets (reg, decl, offset) where decl is
52 REG_EXPR (reg) and offset is REG_OFFSET (reg). The linked list is used for
53 effective deleting appropriate variable parts when we set or clobber the
54 register.
56 There may be more than one variable part in a register. The linked lists
57 should be pretty short so it is a good data structure here.
58 For example in the following code, register allocator may assign same
59 register to variables A and B, and both of them are stored in the same
60 register in CODE:
62 if (cond)
63 set A;
64 else
65 set B;
66 CODE;
67 if (cond)
68 use A;
69 else
70 use B;
72 Finally, the NOTE_INSN_VAR_LOCATION notes describing the variable locations
73 are emitted to appropriate positions in RTL code. Each such a note describes
74 the location of one variable at the point in instruction stream where the
75 note is. There is no need to emit a note for each variable before each
76 instruction, we only emit these notes where the location of variable changes
77 (this means that we also emit notes for changes between the OUT set of the
78 previous block and the IN set of the current block).
80 The notes consist of two parts:
81 1. the declaration (from REG_EXPR or MEM_EXPR)
82 2. the location of a variable - it is either a simple register/memory
83 reference (for simple variables, for example int),
84 or a parallel of register/memory references (for a large variables
85 which consist of several parts, for example long long).
89 #include "config.h"
90 #include "system.h"
91 #include "coretypes.h"
92 #include "tm.h"
93 #include "rtl.h"
94 #include "tree.h"
95 #include "tm_p.h"
96 #include "hard-reg-set.h"
97 #include "basic-block.h"
98 #include "flags.h"
99 #include "insn-config.h"
100 #include "reload.h"
101 #include "sbitmap.h"
102 #include "alloc-pool.h"
103 #include "fibheap.h"
104 #include "hashtab.h"
105 #include "regs.h"
106 #include "expr.h"
107 #include "tree-pass.h"
108 #include "tree-flow.h"
109 #include "cselib.h"
110 #include "target.h"
111 #include "params.h"
112 #include "diagnostic.h"
113 #include "tree-pretty-print.h"
114 #include "pointer-set.h"
115 #include "recog.h"
116 #include "tm_p.h"
117 #include "alias.h"
119 /* var-tracking.c assumes that tree code with the same value as VALUE rtx code
120 has no chance to appear in REG_EXPR/MEM_EXPRs and isn't a decl.
121 Currently the value is the same as IDENTIFIER_NODE, which has such
122 a property. If this compile time assertion ever fails, make sure that
123 the new tree code that equals (int) VALUE has the same property. */
124 extern char check_value_val[(int) VALUE == (int) IDENTIFIER_NODE ? 1 : -1];
126 /* Type of micro operation. */
127 enum micro_operation_type
129 MO_USE, /* Use location (REG or MEM). */
130 MO_USE_NO_VAR,/* Use location which is not associated with a variable
131 or the variable is not trackable. */
132 MO_VAL_USE, /* Use location which is associated with a value. */
133 MO_VAL_LOC, /* Use location which appears in a debug insn. */
134 MO_VAL_SET, /* Set location associated with a value. */
135 MO_SET, /* Set location. */
136 MO_COPY, /* Copy the same portion of a variable from one
137 location to another. */
138 MO_CLOBBER, /* Clobber location. */
139 MO_CALL, /* Call insn. */
140 MO_ADJUST /* Adjust stack pointer. */
144 static const char * const ATTRIBUTE_UNUSED
145 micro_operation_type_name[] = {
146 "MO_USE",
147 "MO_USE_NO_VAR",
148 "MO_VAL_USE",
149 "MO_VAL_LOC",
150 "MO_VAL_SET",
151 "MO_SET",
152 "MO_COPY",
153 "MO_CLOBBER",
154 "MO_CALL",
155 "MO_ADJUST"
158 /* Where shall the note be emitted? BEFORE or AFTER the instruction.
159 Notes emitted as AFTER_CALL are to take effect during the call,
160 rather than after the call. */
161 enum emit_note_where
163 EMIT_NOTE_BEFORE_INSN,
164 EMIT_NOTE_AFTER_INSN,
165 EMIT_NOTE_AFTER_CALL_INSN
168 /* Structure holding information about micro operation. */
169 typedef struct micro_operation_def
171 /* Type of micro operation. */
172 enum micro_operation_type type;
174 /* The instruction which the micro operation is in, for MO_USE,
175 MO_USE_NO_VAR, MO_CALL and MO_ADJUST, or the subsequent
176 instruction or note in the original flow (before any var-tracking
177 notes are inserted, to simplify emission of notes), for MO_SET
178 and MO_CLOBBER. */
179 rtx insn;
181 union {
182 /* Location. For MO_SET and MO_COPY, this is the SET that
183 performs the assignment, if known, otherwise it is the target
184 of the assignment. For MO_VAL_USE and MO_VAL_SET, it is a
185 CONCAT of the VALUE and the LOC associated with it. For
186 MO_VAL_LOC, it is a CONCAT of the VALUE and the VAR_LOCATION
187 associated with it. */
188 rtx loc;
190 /* Stack adjustment. */
191 HOST_WIDE_INT adjust;
192 } u;
193 } micro_operation;
195 DEF_VEC_O(micro_operation);
196 DEF_VEC_ALLOC_O(micro_operation,heap);
198 /* A declaration of a variable, or an RTL value being handled like a
199 declaration. */
200 typedef void *decl_or_value;
202 /* Structure for passing some other parameters to function
203 emit_note_insn_var_location. */
204 typedef struct emit_note_data_def
206 /* The instruction which the note will be emitted before/after. */
207 rtx insn;
209 /* Where the note will be emitted (before/after insn)? */
210 enum emit_note_where where;
212 /* The variables and values active at this point. */
213 htab_t vars;
214 } emit_note_data;
216 /* Description of location of a part of a variable. The content of a physical
217 register is described by a chain of these structures.
218 The chains are pretty short (usually 1 or 2 elements) and thus
219 chain is the best data structure. */
220 typedef struct attrs_def
222 /* Pointer to next member of the list. */
223 struct attrs_def *next;
225 /* The rtx of register. */
226 rtx loc;
228 /* The declaration corresponding to LOC. */
229 decl_or_value dv;
231 /* Offset from start of DECL. */
232 HOST_WIDE_INT offset;
233 } *attrs;
235 /* Structure holding a refcounted hash table. If refcount > 1,
236 it must be first unshared before modified. */
237 typedef struct shared_hash_def
239 /* Reference count. */
240 int refcount;
242 /* Actual hash table. */
243 htab_t htab;
244 } *shared_hash;
246 /* Structure holding the IN or OUT set for a basic block. */
247 typedef struct dataflow_set_def
249 /* Adjustment of stack offset. */
250 HOST_WIDE_INT stack_adjust;
252 /* Attributes for registers (lists of attrs). */
253 attrs regs[FIRST_PSEUDO_REGISTER];
255 /* Variable locations. */
256 shared_hash vars;
258 /* Vars that is being traversed. */
259 shared_hash traversed_vars;
260 } dataflow_set;
262 /* The structure (one for each basic block) containing the information
263 needed for variable tracking. */
264 typedef struct variable_tracking_info_def
266 /* The vector of micro operations. */
267 VEC(micro_operation, heap) *mos;
269 /* The IN and OUT set for dataflow analysis. */
270 dataflow_set in;
271 dataflow_set out;
273 /* The permanent-in dataflow set for this block. This is used to
274 hold values for which we had to compute entry values. ??? This
275 should probably be dynamically allocated, to avoid using more
276 memory in non-debug builds. */
277 dataflow_set *permp;
279 /* Has the block been visited in DFS? */
280 bool visited;
282 /* Has the block been flooded in VTA? */
283 bool flooded;
285 } *variable_tracking_info;
287 /* Structure for chaining the locations. */
288 typedef struct location_chain_def
290 /* Next element in the chain. */
291 struct location_chain_def *next;
293 /* The location (REG, MEM or VALUE). */
294 rtx loc;
296 /* The "value" stored in this location. */
297 rtx set_src;
299 /* Initialized? */
300 enum var_init_status init;
301 } *location_chain;
303 /* A vector of loc_exp_dep holds the active dependencies of a one-part
304 DV on VALUEs, i.e., the VALUEs expanded so as to form the current
305 location of DV. Each entry is also part of VALUE' s linked-list of
306 backlinks back to DV. */
307 typedef struct loc_exp_dep_s
309 /* The dependent DV. */
310 decl_or_value dv;
311 /* The dependency VALUE or DECL_DEBUG. */
312 rtx value;
313 /* The next entry in VALUE's backlinks list. */
314 struct loc_exp_dep_s *next;
315 /* A pointer to the pointer to this entry (head or prev's next) in
316 the doubly-linked list. */
317 struct loc_exp_dep_s **pprev;
318 } loc_exp_dep;
320 DEF_VEC_O (loc_exp_dep);
322 /* This data structure holds information about the depth of a variable
323 expansion. */
324 typedef struct expand_depth_struct
326 /* This measures the complexity of the expanded expression. It
327 grows by one for each level of expansion that adds more than one
328 operand. */
329 int complexity;
330 /* This counts the number of ENTRY_VALUE expressions in an
331 expansion. We want to minimize their use. */
332 int entryvals;
333 } expand_depth;
335 /* This data structure is allocated for one-part variables at the time
336 of emitting notes. */
337 struct onepart_aux
339 /* Doubly-linked list of dependent DVs. These are DVs whose cur_loc
340 computation used the expansion of this variable, and that ought
341 to be notified should this variable change. If the DV's cur_loc
342 expanded to NULL, all components of the loc list are regarded as
343 active, so that any changes in them give us a chance to get a
344 location. Otherwise, only components of the loc that expanded to
345 non-NULL are regarded as active dependencies. */
346 loc_exp_dep *backlinks;
347 /* This holds the LOC that was expanded into cur_loc. We need only
348 mark a one-part variable as changed if the FROM loc is removed,
349 or if it has no known location and a loc is added, or if it gets
350 a change notification from any of its active dependencies. */
351 rtx from;
352 /* The depth of the cur_loc expression. */
353 expand_depth depth;
354 /* Dependencies actively used when expand FROM into cur_loc. */
355 VEC (loc_exp_dep, none) deps;
358 /* Structure describing one part of variable. */
359 typedef struct variable_part_def
361 /* Chain of locations of the part. */
362 location_chain loc_chain;
364 /* Location which was last emitted to location list. */
365 rtx cur_loc;
367 union variable_aux
369 /* The offset in the variable, if !var->onepart. */
370 HOST_WIDE_INT offset;
372 /* Pointer to auxiliary data, if var->onepart and emit_notes. */
373 struct onepart_aux *onepaux;
374 } aux;
375 } variable_part;
377 /* Maximum number of location parts. */
378 #define MAX_VAR_PARTS 16
380 /* Enumeration type used to discriminate various types of one-part
381 variables. */
382 typedef enum onepart_enum
384 /* Not a one-part variable. */
385 NOT_ONEPART = 0,
386 /* A one-part DECL that is not a DEBUG_EXPR_DECL. */
387 ONEPART_VDECL = 1,
388 /* A DEBUG_EXPR_DECL. */
389 ONEPART_DEXPR = 2,
390 /* A VALUE. */
391 ONEPART_VALUE = 3
392 } onepart_enum_t;
394 /* Structure describing where the variable is located. */
395 typedef struct variable_def
397 /* The declaration of the variable, or an RTL value being handled
398 like a declaration. */
399 decl_or_value dv;
401 /* Reference count. */
402 int refcount;
404 /* Number of variable parts. */
405 char n_var_parts;
407 /* What type of DV this is, according to enum onepart_enum. */
408 ENUM_BITFIELD (onepart_enum) onepart : CHAR_BIT;
410 /* True if this variable_def struct is currently in the
411 changed_variables hash table. */
412 bool in_changed_variables;
414 /* The variable parts. */
415 variable_part var_part[1];
416 } *variable;
417 typedef const struct variable_def *const_variable;
419 /* Pointer to the BB's information specific to variable tracking pass. */
420 #define VTI(BB) ((variable_tracking_info) (BB)->aux)
422 /* Macro to access MEM_OFFSET as an HOST_WIDE_INT. Evaluates MEM twice. */
423 #define INT_MEM_OFFSET(mem) (MEM_OFFSET_KNOWN_P (mem) ? MEM_OFFSET (mem) : 0)
425 #if ENABLE_CHECKING && (GCC_VERSION >= 2007)
427 /* Access VAR's Ith part's offset, checking that it's not a one-part
428 variable. */
429 #define VAR_PART_OFFSET(var, i) __extension__ \
430 (*({ variable const __v = (var); \
431 gcc_checking_assert (!__v->onepart); \
432 &__v->var_part[(i)].aux.offset; }))
434 /* Access VAR's one-part auxiliary data, checking that it is a
435 one-part variable. */
436 #define VAR_LOC_1PAUX(var) __extension__ \
437 (*({ variable const __v = (var); \
438 gcc_checking_assert (__v->onepart); \
439 &__v->var_part[0].aux.onepaux; }))
441 #else
442 #define VAR_PART_OFFSET(var, i) ((var)->var_part[(i)].aux.offset)
443 #define VAR_LOC_1PAUX(var) ((var)->var_part[0].aux.onepaux)
444 #endif
446 /* These are accessor macros for the one-part auxiliary data. When
447 convenient for users, they're guarded by tests that the data was
448 allocated. */
449 #define VAR_LOC_DEP_LST(var) (VAR_LOC_1PAUX (var) \
450 ? VAR_LOC_1PAUX (var)->backlinks \
451 : NULL)
452 #define VAR_LOC_DEP_LSTP(var) (VAR_LOC_1PAUX (var) \
453 ? &VAR_LOC_1PAUX (var)->backlinks \
454 : NULL)
455 #define VAR_LOC_FROM(var) (VAR_LOC_1PAUX (var)->from)
456 #define VAR_LOC_DEPTH(var) (VAR_LOC_1PAUX (var)->depth)
457 #define VAR_LOC_DEP_VEC(var) (VAR_LOC_1PAUX (var) \
458 ? &VAR_LOC_1PAUX (var)->deps \
459 : NULL)
461 /* Alloc pool for struct attrs_def. */
462 static alloc_pool attrs_pool;
464 /* Alloc pool for struct variable_def with MAX_VAR_PARTS entries. */
465 static alloc_pool var_pool;
467 /* Alloc pool for struct variable_def with a single var_part entry. */
468 static alloc_pool valvar_pool;
470 /* Alloc pool for struct location_chain_def. */
471 static alloc_pool loc_chain_pool;
473 /* Alloc pool for struct shared_hash_def. */
474 static alloc_pool shared_hash_pool;
476 /* Alloc pool for struct loc_exp_dep_s for NOT_ONEPART variables. */
477 static alloc_pool loc_exp_dep_pool;
479 /* Changed variables, notes will be emitted for them. */
480 static htab_t changed_variables;
482 /* Shall notes be emitted? */
483 static bool emit_notes;
485 /* Values whose dynamic location lists have gone empty, but whose
486 cselib location lists are still usable. Use this to hold the
487 current location, the backlinks, etc, during emit_notes. */
488 static htab_t dropped_values;
490 /* Empty shared hashtable. */
491 static shared_hash empty_shared_hash;
493 /* Scratch register bitmap used by cselib_expand_value_rtx. */
494 static bitmap scratch_regs = NULL;
496 #ifdef HAVE_window_save
497 typedef struct GTY(()) parm_reg {
498 rtx outgoing;
499 rtx incoming;
500 } parm_reg_t;
502 DEF_VEC_O(parm_reg_t);
503 DEF_VEC_ALLOC_O(parm_reg_t, gc);
505 /* Vector of windowed parameter registers, if any. */
506 static VEC(parm_reg_t, gc) *windowed_parm_regs = NULL;
507 #endif
509 /* Variable used to tell whether cselib_process_insn called our hook. */
510 static bool cselib_hook_called;
512 /* Local function prototypes. */
513 static void stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
514 HOST_WIDE_INT *);
515 static void insn_stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
516 HOST_WIDE_INT *);
517 static bool vt_stack_adjustments (void);
518 static hashval_t variable_htab_hash (const void *);
519 static int variable_htab_eq (const void *, const void *);
520 static void variable_htab_free (void *);
522 static void init_attrs_list_set (attrs *);
523 static void attrs_list_clear (attrs *);
524 static attrs attrs_list_member (attrs, decl_or_value, HOST_WIDE_INT);
525 static void attrs_list_insert (attrs *, decl_or_value, HOST_WIDE_INT, rtx);
526 static void attrs_list_copy (attrs *, attrs);
527 static void attrs_list_union (attrs *, attrs);
529 static void **unshare_variable (dataflow_set *set, void **slot, variable var,
530 enum var_init_status);
531 static void vars_copy (htab_t, htab_t);
532 static tree var_debug_decl (tree);
533 static void var_reg_set (dataflow_set *, rtx, enum var_init_status, rtx);
534 static void var_reg_delete_and_set (dataflow_set *, rtx, bool,
535 enum var_init_status, rtx);
536 static void var_reg_delete (dataflow_set *, rtx, bool);
537 static void var_regno_delete (dataflow_set *, int);
538 static void var_mem_set (dataflow_set *, rtx, enum var_init_status, rtx);
539 static void var_mem_delete_and_set (dataflow_set *, rtx, bool,
540 enum var_init_status, rtx);
541 static void var_mem_delete (dataflow_set *, rtx, bool);
543 static void dataflow_set_init (dataflow_set *);
544 static void dataflow_set_clear (dataflow_set *);
545 static void dataflow_set_copy (dataflow_set *, dataflow_set *);
546 static int variable_union_info_cmp_pos (const void *, const void *);
547 static void dataflow_set_union (dataflow_set *, dataflow_set *);
548 static location_chain find_loc_in_1pdv (rtx, variable, htab_t);
549 static bool canon_value_cmp (rtx, rtx);
550 static int loc_cmp (rtx, rtx);
551 static bool variable_part_different_p (variable_part *, variable_part *);
552 static bool onepart_variable_different_p (variable, variable);
553 static bool variable_different_p (variable, variable);
554 static bool dataflow_set_different (dataflow_set *, dataflow_set *);
555 static void dataflow_set_destroy (dataflow_set *);
557 static bool contains_symbol_ref (rtx);
558 static bool track_expr_p (tree, bool);
559 static bool same_variable_part_p (rtx, tree, HOST_WIDE_INT);
560 static int add_uses (rtx *, void *);
561 static void add_uses_1 (rtx *, void *);
562 static void add_stores (rtx, const_rtx, void *);
563 static bool compute_bb_dataflow (basic_block);
564 static bool vt_find_locations (void);
566 static void dump_attrs_list (attrs);
567 static int dump_var_slot (void **, void *);
568 static void dump_var (variable);
569 static void dump_vars (htab_t);
570 static void dump_dataflow_set (dataflow_set *);
571 static void dump_dataflow_sets (void);
573 static void set_dv_changed (decl_or_value, bool);
574 static void variable_was_changed (variable, dataflow_set *);
575 static void **set_slot_part (dataflow_set *, rtx, void **,
576 decl_or_value, HOST_WIDE_INT,
577 enum var_init_status, rtx);
578 static void set_variable_part (dataflow_set *, rtx,
579 decl_or_value, HOST_WIDE_INT,
580 enum var_init_status, rtx, enum insert_option);
581 static void **clobber_slot_part (dataflow_set *, rtx,
582 void **, HOST_WIDE_INT, rtx);
583 static void clobber_variable_part (dataflow_set *, rtx,
584 decl_or_value, HOST_WIDE_INT, rtx);
585 static void **delete_slot_part (dataflow_set *, rtx, void **, HOST_WIDE_INT);
586 static void delete_variable_part (dataflow_set *, rtx,
587 decl_or_value, HOST_WIDE_INT);
588 static int emit_note_insn_var_location (void **, void *);
589 static void emit_notes_for_changes (rtx, enum emit_note_where, shared_hash);
590 static int emit_notes_for_differences_1 (void **, void *);
591 static int emit_notes_for_differences_2 (void **, void *);
592 static void emit_notes_for_differences (rtx, dataflow_set *, dataflow_set *);
593 static void emit_notes_in_bb (basic_block, dataflow_set *);
594 static void vt_emit_notes (void);
596 static bool vt_get_decl_and_offset (rtx, tree *, HOST_WIDE_INT *);
597 static void vt_add_function_parameters (void);
598 static bool vt_initialize (void);
599 static void vt_finalize (void);
601 /* Given a SET, calculate the amount of stack adjustment it contains
602 PRE- and POST-modifying stack pointer.
603 This function is similar to stack_adjust_offset. */
605 static void
606 stack_adjust_offset_pre_post (rtx pattern, HOST_WIDE_INT *pre,
607 HOST_WIDE_INT *post)
609 rtx src = SET_SRC (pattern);
610 rtx dest = SET_DEST (pattern);
611 enum rtx_code code;
613 if (dest == stack_pointer_rtx)
615 /* (set (reg sp) (plus (reg sp) (const_int))) */
616 code = GET_CODE (src);
617 if (! (code == PLUS || code == MINUS)
618 || XEXP (src, 0) != stack_pointer_rtx
619 || !CONST_INT_P (XEXP (src, 1)))
620 return;
622 if (code == MINUS)
623 *post += INTVAL (XEXP (src, 1));
624 else
625 *post -= INTVAL (XEXP (src, 1));
627 else if (MEM_P (dest))
629 /* (set (mem (pre_dec (reg sp))) (foo)) */
630 src = XEXP (dest, 0);
631 code = GET_CODE (src);
633 switch (code)
635 case PRE_MODIFY:
636 case POST_MODIFY:
637 if (XEXP (src, 0) == stack_pointer_rtx)
639 rtx val = XEXP (XEXP (src, 1), 1);
640 /* We handle only adjustments by constant amount. */
641 gcc_assert (GET_CODE (XEXP (src, 1)) == PLUS &&
642 CONST_INT_P (val));
644 if (code == PRE_MODIFY)
645 *pre -= INTVAL (val);
646 else
647 *post -= INTVAL (val);
648 break;
650 return;
652 case PRE_DEC:
653 if (XEXP (src, 0) == stack_pointer_rtx)
655 *pre += GET_MODE_SIZE (GET_MODE (dest));
656 break;
658 return;
660 case POST_DEC:
661 if (XEXP (src, 0) == stack_pointer_rtx)
663 *post += GET_MODE_SIZE (GET_MODE (dest));
664 break;
666 return;
668 case PRE_INC:
669 if (XEXP (src, 0) == stack_pointer_rtx)
671 *pre -= GET_MODE_SIZE (GET_MODE (dest));
672 break;
674 return;
676 case POST_INC:
677 if (XEXP (src, 0) == stack_pointer_rtx)
679 *post -= GET_MODE_SIZE (GET_MODE (dest));
680 break;
682 return;
684 default:
685 return;
690 /* Given an INSN, calculate the amount of stack adjustment it contains
691 PRE- and POST-modifying stack pointer. */
693 static void
694 insn_stack_adjust_offset_pre_post (rtx insn, HOST_WIDE_INT *pre,
695 HOST_WIDE_INT *post)
697 rtx pattern;
699 *pre = 0;
700 *post = 0;
702 pattern = PATTERN (insn);
703 if (RTX_FRAME_RELATED_P (insn))
705 rtx expr = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
706 if (expr)
707 pattern = XEXP (expr, 0);
710 if (GET_CODE (pattern) == SET)
711 stack_adjust_offset_pre_post (pattern, pre, post);
712 else if (GET_CODE (pattern) == PARALLEL
713 || GET_CODE (pattern) == SEQUENCE)
715 int i;
717 /* There may be stack adjustments inside compound insns. Search
718 for them. */
719 for ( i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
720 if (GET_CODE (XVECEXP (pattern, 0, i)) == SET)
721 stack_adjust_offset_pre_post (XVECEXP (pattern, 0, i), pre, post);
725 /* Compute stack adjustments for all blocks by traversing DFS tree.
726 Return true when the adjustments on all incoming edges are consistent.
727 Heavily borrowed from pre_and_rev_post_order_compute. */
729 static bool
730 vt_stack_adjustments (void)
732 edge_iterator *stack;
733 int sp;
735 /* Initialize entry block. */
736 VTI (ENTRY_BLOCK_PTR)->visited = true;
737 VTI (ENTRY_BLOCK_PTR)->in.stack_adjust = INCOMING_FRAME_SP_OFFSET;
738 VTI (ENTRY_BLOCK_PTR)->out.stack_adjust = INCOMING_FRAME_SP_OFFSET;
740 /* Allocate stack for back-tracking up CFG. */
741 stack = XNEWVEC (edge_iterator, n_basic_blocks + 1);
742 sp = 0;
744 /* Push the first edge on to the stack. */
745 stack[sp++] = ei_start (ENTRY_BLOCK_PTR->succs);
747 while (sp)
749 edge_iterator ei;
750 basic_block src;
751 basic_block dest;
753 /* Look at the edge on the top of the stack. */
754 ei = stack[sp - 1];
755 src = ei_edge (ei)->src;
756 dest = ei_edge (ei)->dest;
758 /* Check if the edge destination has been visited yet. */
759 if (!VTI (dest)->visited)
761 rtx insn;
762 HOST_WIDE_INT pre, post, offset;
763 VTI (dest)->visited = true;
764 VTI (dest)->in.stack_adjust = offset = VTI (src)->out.stack_adjust;
766 if (dest != EXIT_BLOCK_PTR)
767 for (insn = BB_HEAD (dest);
768 insn != NEXT_INSN (BB_END (dest));
769 insn = NEXT_INSN (insn))
770 if (INSN_P (insn))
772 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
773 offset += pre + post;
776 VTI (dest)->out.stack_adjust = offset;
778 if (EDGE_COUNT (dest->succs) > 0)
779 /* Since the DEST node has been visited for the first
780 time, check its successors. */
781 stack[sp++] = ei_start (dest->succs);
783 else
785 /* Check whether the adjustments on the edges are the same. */
786 if (VTI (dest)->in.stack_adjust != VTI (src)->out.stack_adjust)
788 free (stack);
789 return false;
792 if (! ei_one_before_end_p (ei))
793 /* Go to the next edge. */
794 ei_next (&stack[sp - 1]);
795 else
796 /* Return to previous level if there are no more edges. */
797 sp--;
801 free (stack);
802 return true;
805 /* arg_pointer_rtx resp. frame_pointer_rtx if stack_pointer_rtx or
806 hard_frame_pointer_rtx is being mapped to it and offset for it. */
807 static rtx cfa_base_rtx;
808 static HOST_WIDE_INT cfa_base_offset;
810 /* Compute a CFA-based value for an ADJUSTMENT made to stack_pointer_rtx
811 or hard_frame_pointer_rtx. */
813 static inline rtx
814 compute_cfa_pointer (HOST_WIDE_INT adjustment)
816 return plus_constant (Pmode, cfa_base_rtx, adjustment + cfa_base_offset);
819 /* Adjustment for hard_frame_pointer_rtx to cfa base reg,
820 or -1 if the replacement shouldn't be done. */
821 static HOST_WIDE_INT hard_frame_pointer_adjustment = -1;
823 /* Data for adjust_mems callback. */
825 struct adjust_mem_data
827 bool store;
828 enum machine_mode mem_mode;
829 HOST_WIDE_INT stack_adjust;
830 rtx side_effects;
833 /* Helper for adjust_mems. Return 1 if *loc is unsuitable for
834 transformation of wider mode arithmetics to narrower mode,
835 -1 if it is suitable and subexpressions shouldn't be
836 traversed and 0 if it is suitable and subexpressions should
837 be traversed. Called through for_each_rtx. */
839 static int
840 use_narrower_mode_test (rtx *loc, void *data)
842 rtx subreg = (rtx) data;
844 if (CONSTANT_P (*loc))
845 return -1;
846 switch (GET_CODE (*loc))
848 case REG:
849 if (cselib_lookup (*loc, GET_MODE (SUBREG_REG (subreg)), 0, VOIDmode))
850 return 1;
851 if (!validate_subreg (GET_MODE (subreg), GET_MODE (*loc),
852 *loc, subreg_lowpart_offset (GET_MODE (subreg),
853 GET_MODE (*loc))))
854 return 1;
855 return -1;
856 case PLUS:
857 case MINUS:
858 case MULT:
859 return 0;
860 case ASHIFT:
861 if (for_each_rtx (&XEXP (*loc, 0), use_narrower_mode_test, data))
862 return 1;
863 else
864 return -1;
865 default:
866 return 1;
870 /* Transform X into narrower mode MODE from wider mode WMODE. */
872 static rtx
873 use_narrower_mode (rtx x, enum machine_mode mode, enum machine_mode wmode)
875 rtx op0, op1;
876 if (CONSTANT_P (x))
877 return lowpart_subreg (mode, x, wmode);
878 switch (GET_CODE (x))
880 case REG:
881 return lowpart_subreg (mode, x, wmode);
882 case PLUS:
883 case MINUS:
884 case MULT:
885 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
886 op1 = use_narrower_mode (XEXP (x, 1), mode, wmode);
887 return simplify_gen_binary (GET_CODE (x), mode, op0, op1);
888 case ASHIFT:
889 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
890 return simplify_gen_binary (ASHIFT, mode, op0, XEXP (x, 1));
891 default:
892 gcc_unreachable ();
896 /* Helper function for adjusting used MEMs. */
898 static rtx
899 adjust_mems (rtx loc, const_rtx old_rtx, void *data)
901 struct adjust_mem_data *amd = (struct adjust_mem_data *) data;
902 rtx mem, addr = loc, tem;
903 enum machine_mode mem_mode_save;
904 bool store_save;
905 switch (GET_CODE (loc))
907 case REG:
908 /* Don't do any sp or fp replacements outside of MEM addresses
909 on the LHS. */
910 if (amd->mem_mode == VOIDmode && amd->store)
911 return loc;
912 if (loc == stack_pointer_rtx
913 && !frame_pointer_needed
914 && cfa_base_rtx)
915 return compute_cfa_pointer (amd->stack_adjust);
916 else if (loc == hard_frame_pointer_rtx
917 && frame_pointer_needed
918 && hard_frame_pointer_adjustment != -1
919 && cfa_base_rtx)
920 return compute_cfa_pointer (hard_frame_pointer_adjustment);
921 gcc_checking_assert (loc != virtual_incoming_args_rtx);
922 return loc;
923 case MEM:
924 mem = loc;
925 if (!amd->store)
927 mem = targetm.delegitimize_address (mem);
928 if (mem != loc && !MEM_P (mem))
929 return simplify_replace_fn_rtx (mem, old_rtx, adjust_mems, data);
932 addr = XEXP (mem, 0);
933 mem_mode_save = amd->mem_mode;
934 amd->mem_mode = GET_MODE (mem);
935 store_save = amd->store;
936 amd->store = false;
937 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
938 amd->store = store_save;
939 amd->mem_mode = mem_mode_save;
940 if (mem == loc)
941 addr = targetm.delegitimize_address (addr);
942 if (addr != XEXP (mem, 0))
943 mem = replace_equiv_address_nv (mem, addr);
944 if (!amd->store)
945 mem = avoid_constant_pool_reference (mem);
946 return mem;
947 case PRE_INC:
948 case PRE_DEC:
949 addr = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
950 GEN_INT (GET_CODE (loc) == PRE_INC
951 ? GET_MODE_SIZE (amd->mem_mode)
952 : -GET_MODE_SIZE (amd->mem_mode)));
953 case POST_INC:
954 case POST_DEC:
955 if (addr == loc)
956 addr = XEXP (loc, 0);
957 gcc_assert (amd->mem_mode != VOIDmode && amd->mem_mode != BLKmode);
958 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
959 tem = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
960 GEN_INT ((GET_CODE (loc) == PRE_INC
961 || GET_CODE (loc) == POST_INC)
962 ? GET_MODE_SIZE (amd->mem_mode)
963 : -GET_MODE_SIZE (amd->mem_mode)));
964 amd->side_effects = alloc_EXPR_LIST (0,
965 gen_rtx_SET (VOIDmode,
966 XEXP (loc, 0),
967 tem),
968 amd->side_effects);
969 return addr;
970 case PRE_MODIFY:
971 addr = XEXP (loc, 1);
972 case POST_MODIFY:
973 if (addr == loc)
974 addr = XEXP (loc, 0);
975 gcc_assert (amd->mem_mode != VOIDmode);
976 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
977 amd->side_effects = alloc_EXPR_LIST (0,
978 gen_rtx_SET (VOIDmode,
979 XEXP (loc, 0),
980 XEXP (loc, 1)),
981 amd->side_effects);
982 return addr;
983 case SUBREG:
984 /* First try without delegitimization of whole MEMs and
985 avoid_constant_pool_reference, which is more likely to succeed. */
986 store_save = amd->store;
987 amd->store = true;
988 addr = simplify_replace_fn_rtx (SUBREG_REG (loc), old_rtx, adjust_mems,
989 data);
990 amd->store = store_save;
991 mem = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
992 if (mem == SUBREG_REG (loc))
994 tem = loc;
995 goto finish_subreg;
997 tem = simplify_gen_subreg (GET_MODE (loc), mem,
998 GET_MODE (SUBREG_REG (loc)),
999 SUBREG_BYTE (loc));
1000 if (tem)
1001 goto finish_subreg;
1002 tem = simplify_gen_subreg (GET_MODE (loc), addr,
1003 GET_MODE (SUBREG_REG (loc)),
1004 SUBREG_BYTE (loc));
1005 if (tem == NULL_RTX)
1006 tem = gen_rtx_raw_SUBREG (GET_MODE (loc), addr, SUBREG_BYTE (loc));
1007 finish_subreg:
1008 if (MAY_HAVE_DEBUG_INSNS
1009 && GET_CODE (tem) == SUBREG
1010 && (GET_CODE (SUBREG_REG (tem)) == PLUS
1011 || GET_CODE (SUBREG_REG (tem)) == MINUS
1012 || GET_CODE (SUBREG_REG (tem)) == MULT
1013 || GET_CODE (SUBREG_REG (tem)) == ASHIFT)
1014 && GET_MODE_CLASS (GET_MODE (tem)) == MODE_INT
1015 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (tem))) == MODE_INT
1016 && GET_MODE_SIZE (GET_MODE (tem))
1017 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (tem)))
1018 && subreg_lowpart_p (tem)
1019 && !for_each_rtx (&SUBREG_REG (tem), use_narrower_mode_test, tem))
1020 return use_narrower_mode (SUBREG_REG (tem), GET_MODE (tem),
1021 GET_MODE (SUBREG_REG (tem)));
1022 return tem;
1023 case ASM_OPERANDS:
1024 /* Don't do any replacements in second and following
1025 ASM_OPERANDS of inline-asm with multiple sets.
1026 ASM_OPERANDS_INPUT_VEC, ASM_OPERANDS_INPUT_CONSTRAINT_VEC
1027 and ASM_OPERANDS_LABEL_VEC need to be equal between
1028 all the ASM_OPERANDs in the insn and adjust_insn will
1029 fix this up. */
1030 if (ASM_OPERANDS_OUTPUT_IDX (loc) != 0)
1031 return loc;
1032 break;
1033 default:
1034 break;
1036 return NULL_RTX;
1039 /* Helper function for replacement of uses. */
1041 static void
1042 adjust_mem_uses (rtx *x, void *data)
1044 rtx new_x = simplify_replace_fn_rtx (*x, NULL_RTX, adjust_mems, data);
1045 if (new_x != *x)
1046 validate_change (NULL_RTX, x, new_x, true);
1049 /* Helper function for replacement of stores. */
1051 static void
1052 adjust_mem_stores (rtx loc, const_rtx expr, void *data)
1054 if (MEM_P (loc))
1056 rtx new_dest = simplify_replace_fn_rtx (SET_DEST (expr), NULL_RTX,
1057 adjust_mems, data);
1058 if (new_dest != SET_DEST (expr))
1060 rtx xexpr = CONST_CAST_RTX (expr);
1061 validate_change (NULL_RTX, &SET_DEST (xexpr), new_dest, true);
1066 /* Simplify INSN. Remove all {PRE,POST}_{INC,DEC,MODIFY} rtxes,
1067 replace them with their value in the insn and add the side-effects
1068 as other sets to the insn. */
1070 static void
1071 adjust_insn (basic_block bb, rtx insn)
1073 struct adjust_mem_data amd;
1074 rtx set;
1076 #ifdef HAVE_window_save
1077 /* If the target machine has an explicit window save instruction, the
1078 transformation OUTGOING_REGNO -> INCOMING_REGNO is done there. */
1079 if (RTX_FRAME_RELATED_P (insn)
1080 && find_reg_note (insn, REG_CFA_WINDOW_SAVE, NULL_RTX))
1082 unsigned int i, nregs = VEC_length(parm_reg_t, windowed_parm_regs);
1083 rtx rtl = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (nregs * 2));
1084 parm_reg_t *p;
1086 FOR_EACH_VEC_ELT (parm_reg_t, windowed_parm_regs, i, p)
1088 XVECEXP (rtl, 0, i * 2)
1089 = gen_rtx_SET (VOIDmode, p->incoming, p->outgoing);
1090 /* Do not clobber the attached DECL, but only the REG. */
1091 XVECEXP (rtl, 0, i * 2 + 1)
1092 = gen_rtx_CLOBBER (GET_MODE (p->outgoing),
1093 gen_raw_REG (GET_MODE (p->outgoing),
1094 REGNO (p->outgoing)));
1097 validate_change (NULL_RTX, &PATTERN (insn), rtl, true);
1098 return;
1100 #endif
1102 amd.mem_mode = VOIDmode;
1103 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
1104 amd.side_effects = NULL_RTX;
1106 amd.store = true;
1107 note_stores (PATTERN (insn), adjust_mem_stores, &amd);
1109 amd.store = false;
1110 if (GET_CODE (PATTERN (insn)) == PARALLEL
1111 && asm_noperands (PATTERN (insn)) > 0
1112 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1114 rtx body, set0;
1115 int i;
1117 /* inline-asm with multiple sets is tiny bit more complicated,
1118 because the 3 vectors in ASM_OPERANDS need to be shared between
1119 all ASM_OPERANDS in the instruction. adjust_mems will
1120 not touch ASM_OPERANDS other than the first one, asm_noperands
1121 test above needs to be called before that (otherwise it would fail)
1122 and afterwards this code fixes it up. */
1123 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1124 body = PATTERN (insn);
1125 set0 = XVECEXP (body, 0, 0);
1126 gcc_checking_assert (GET_CODE (set0) == SET
1127 && GET_CODE (SET_SRC (set0)) == ASM_OPERANDS
1128 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set0)) == 0);
1129 for (i = 1; i < XVECLEN (body, 0); i++)
1130 if (GET_CODE (XVECEXP (body, 0, i)) != SET)
1131 break;
1132 else
1134 set = XVECEXP (body, 0, i);
1135 gcc_checking_assert (GET_CODE (SET_SRC (set)) == ASM_OPERANDS
1136 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set))
1137 == i);
1138 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (set))
1139 != ASM_OPERANDS_INPUT_VEC (SET_SRC (set0))
1140 || ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set))
1141 != ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0))
1142 || ASM_OPERANDS_LABEL_VEC (SET_SRC (set))
1143 != ASM_OPERANDS_LABEL_VEC (SET_SRC (set0)))
1145 rtx newsrc = shallow_copy_rtx (SET_SRC (set));
1146 ASM_OPERANDS_INPUT_VEC (newsrc)
1147 = ASM_OPERANDS_INPUT_VEC (SET_SRC (set0));
1148 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (newsrc)
1149 = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0));
1150 ASM_OPERANDS_LABEL_VEC (newsrc)
1151 = ASM_OPERANDS_LABEL_VEC (SET_SRC (set0));
1152 validate_change (NULL_RTX, &SET_SRC (set), newsrc, true);
1156 else
1157 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1159 /* For read-only MEMs containing some constant, prefer those
1160 constants. */
1161 set = single_set (insn);
1162 if (set && MEM_P (SET_SRC (set)) && MEM_READONLY_P (SET_SRC (set)))
1164 rtx note = find_reg_equal_equiv_note (insn);
1166 if (note && CONSTANT_P (XEXP (note, 0)))
1167 validate_change (NULL_RTX, &SET_SRC (set), XEXP (note, 0), true);
1170 if (amd.side_effects)
1172 rtx *pat, new_pat, s;
1173 int i, oldn, newn;
1175 pat = &PATTERN (insn);
1176 if (GET_CODE (*pat) == COND_EXEC)
1177 pat = &COND_EXEC_CODE (*pat);
1178 if (GET_CODE (*pat) == PARALLEL)
1179 oldn = XVECLEN (*pat, 0);
1180 else
1181 oldn = 1;
1182 for (s = amd.side_effects, newn = 0; s; newn++)
1183 s = XEXP (s, 1);
1184 new_pat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (oldn + newn));
1185 if (GET_CODE (*pat) == PARALLEL)
1186 for (i = 0; i < oldn; i++)
1187 XVECEXP (new_pat, 0, i) = XVECEXP (*pat, 0, i);
1188 else
1189 XVECEXP (new_pat, 0, 0) = *pat;
1190 for (s = amd.side_effects, i = oldn; i < oldn + newn; i++, s = XEXP (s, 1))
1191 XVECEXP (new_pat, 0, i) = XEXP (s, 0);
1192 free_EXPR_LIST_list (&amd.side_effects);
1193 validate_change (NULL_RTX, pat, new_pat, true);
1197 /* Return true if a decl_or_value DV is a DECL or NULL. */
1198 static inline bool
1199 dv_is_decl_p (decl_or_value dv)
1201 return !dv || (int) TREE_CODE ((tree) dv) != (int) VALUE;
1204 /* Return true if a decl_or_value is a VALUE rtl. */
1205 static inline bool
1206 dv_is_value_p (decl_or_value dv)
1208 return dv && !dv_is_decl_p (dv);
1211 /* Return the decl in the decl_or_value. */
1212 static inline tree
1213 dv_as_decl (decl_or_value dv)
1215 gcc_checking_assert (dv_is_decl_p (dv));
1216 return (tree) dv;
1219 /* Return the value in the decl_or_value. */
1220 static inline rtx
1221 dv_as_value (decl_or_value dv)
1223 gcc_checking_assert (dv_is_value_p (dv));
1224 return (rtx)dv;
1227 /* Return the DEBUG_EXPR of a DEBUG_EXPR_DECL or the VALUE in DV. */
1228 static inline rtx
1229 dv_as_rtx (decl_or_value dv)
1231 tree decl;
1233 if (dv_is_value_p (dv))
1234 return dv_as_value (dv);
1236 decl = dv_as_decl (dv);
1238 gcc_checking_assert (TREE_CODE (decl) == DEBUG_EXPR_DECL);
1239 return DECL_RTL_KNOWN_SET (decl);
1242 /* Return the opaque pointer in the decl_or_value. */
1243 static inline void *
1244 dv_as_opaque (decl_or_value dv)
1246 return dv;
1249 /* Return nonzero if a decl_or_value must not have more than one
1250 variable part. The returned value discriminates among various
1251 kinds of one-part DVs ccording to enum onepart_enum. */
1252 static inline onepart_enum_t
1253 dv_onepart_p (decl_or_value dv)
1255 tree decl;
1257 if (!MAY_HAVE_DEBUG_INSNS)
1258 return NOT_ONEPART;
1260 if (dv_is_value_p (dv))
1261 return ONEPART_VALUE;
1263 decl = dv_as_decl (dv);
1265 if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
1266 return ONEPART_DEXPR;
1268 if (target_for_debug_bind (decl) != NULL_TREE)
1269 return ONEPART_VDECL;
1271 return NOT_ONEPART;
1274 /* Return the variable pool to be used for a dv of type ONEPART. */
1275 static inline alloc_pool
1276 onepart_pool (onepart_enum_t onepart)
1278 return onepart ? valvar_pool : var_pool;
1281 /* Build a decl_or_value out of a decl. */
1282 static inline decl_or_value
1283 dv_from_decl (tree decl)
1285 decl_or_value dv;
1286 dv = decl;
1287 gcc_checking_assert (dv_is_decl_p (dv));
1288 return dv;
1291 /* Build a decl_or_value out of a value. */
1292 static inline decl_or_value
1293 dv_from_value (rtx value)
1295 decl_or_value dv;
1296 dv = value;
1297 gcc_checking_assert (dv_is_value_p (dv));
1298 return dv;
1301 /* Return a value or the decl of a debug_expr as a decl_or_value. */
1302 static inline decl_or_value
1303 dv_from_rtx (rtx x)
1305 decl_or_value dv;
1307 switch (GET_CODE (x))
1309 case DEBUG_EXPR:
1310 dv = dv_from_decl (DEBUG_EXPR_TREE_DECL (x));
1311 gcc_checking_assert (DECL_RTL_KNOWN_SET (DEBUG_EXPR_TREE_DECL (x)) == x);
1312 break;
1314 case VALUE:
1315 dv = dv_from_value (x);
1316 break;
1318 default:
1319 gcc_unreachable ();
1322 return dv;
1325 extern void debug_dv (decl_or_value dv);
1327 DEBUG_FUNCTION void
1328 debug_dv (decl_or_value dv)
1330 if (dv_is_value_p (dv))
1331 debug_rtx (dv_as_value (dv));
1332 else
1333 debug_generic_stmt (dv_as_decl (dv));
1336 typedef unsigned int dvuid;
1338 /* Return the uid of DV. */
1340 static inline dvuid
1341 dv_uid (decl_or_value dv)
1343 if (dv_is_value_p (dv))
1344 return CSELIB_VAL_PTR (dv_as_value (dv))->uid;
1345 else
1346 return DECL_UID (dv_as_decl (dv));
1349 /* Compute the hash from the uid. */
1351 static inline hashval_t
1352 dv_uid2hash (dvuid uid)
1354 return uid;
1357 /* The hash function for a mask table in a shared_htab chain. */
1359 static inline hashval_t
1360 dv_htab_hash (decl_or_value dv)
1362 return dv_uid2hash (dv_uid (dv));
1365 /* The hash function for variable_htab, computes the hash value
1366 from the declaration of variable X. */
1368 static hashval_t
1369 variable_htab_hash (const void *x)
1371 const_variable const v = (const_variable) x;
1373 return dv_htab_hash (v->dv);
1376 /* Compare the declaration of variable X with declaration Y. */
1378 static int
1379 variable_htab_eq (const void *x, const void *y)
1381 const_variable const v = (const_variable) x;
1382 decl_or_value dv = CONST_CAST2 (decl_or_value, const void *, y);
1384 return (dv_as_opaque (v->dv) == dv_as_opaque (dv));
1387 static void loc_exp_dep_clear (variable var);
1389 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
1391 static void
1392 variable_htab_free (void *elem)
1394 int i;
1395 variable var = (variable) elem;
1396 location_chain node, next;
1398 gcc_checking_assert (var->refcount > 0);
1400 var->refcount--;
1401 if (var->refcount > 0)
1402 return;
1404 for (i = 0; i < var->n_var_parts; i++)
1406 for (node = var->var_part[i].loc_chain; node; node = next)
1408 next = node->next;
1409 pool_free (loc_chain_pool, node);
1411 var->var_part[i].loc_chain = NULL;
1413 if (var->onepart && VAR_LOC_1PAUX (var))
1415 loc_exp_dep_clear (var);
1416 if (VAR_LOC_DEP_LST (var))
1417 VAR_LOC_DEP_LST (var)->pprev = NULL;
1418 XDELETE (VAR_LOC_1PAUX (var));
1419 /* These may be reused across functions, so reset
1420 e.g. NO_LOC_P. */
1421 if (var->onepart == ONEPART_DEXPR)
1422 set_dv_changed (var->dv, true);
1424 pool_free (onepart_pool (var->onepart), var);
1427 /* Initialize the set (array) SET of attrs to empty lists. */
1429 static void
1430 init_attrs_list_set (attrs *set)
1432 int i;
1434 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1435 set[i] = NULL;
1438 /* Make the list *LISTP empty. */
1440 static void
1441 attrs_list_clear (attrs *listp)
1443 attrs list, next;
1445 for (list = *listp; list; list = next)
1447 next = list->next;
1448 pool_free (attrs_pool, list);
1450 *listp = NULL;
1453 /* Return true if the pair of DECL and OFFSET is the member of the LIST. */
1455 static attrs
1456 attrs_list_member (attrs list, decl_or_value dv, HOST_WIDE_INT offset)
1458 for (; list; list = list->next)
1459 if (dv_as_opaque (list->dv) == dv_as_opaque (dv) && list->offset == offset)
1460 return list;
1461 return NULL;
1464 /* Insert the triplet DECL, OFFSET, LOC to the list *LISTP. */
1466 static void
1467 attrs_list_insert (attrs *listp, decl_or_value dv,
1468 HOST_WIDE_INT offset, rtx loc)
1470 attrs list;
1472 list = (attrs) pool_alloc (attrs_pool);
1473 list->loc = loc;
1474 list->dv = dv;
1475 list->offset = offset;
1476 list->next = *listp;
1477 *listp = list;
1480 /* Copy all nodes from SRC and create a list *DSTP of the copies. */
1482 static void
1483 attrs_list_copy (attrs *dstp, attrs src)
1485 attrs n;
1487 attrs_list_clear (dstp);
1488 for (; src; src = src->next)
1490 n = (attrs) pool_alloc (attrs_pool);
1491 n->loc = src->loc;
1492 n->dv = src->dv;
1493 n->offset = src->offset;
1494 n->next = *dstp;
1495 *dstp = n;
1499 /* Add all nodes from SRC which are not in *DSTP to *DSTP. */
1501 static void
1502 attrs_list_union (attrs *dstp, attrs src)
1504 for (; src; src = src->next)
1506 if (!attrs_list_member (*dstp, src->dv, src->offset))
1507 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1511 /* Combine nodes that are not onepart nodes from SRC and SRC2 into
1512 *DSTP. */
1514 static void
1515 attrs_list_mpdv_union (attrs *dstp, attrs src, attrs src2)
1517 gcc_assert (!*dstp);
1518 for (; src; src = src->next)
1520 if (!dv_onepart_p (src->dv))
1521 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1523 for (src = src2; src; src = src->next)
1525 if (!dv_onepart_p (src->dv)
1526 && !attrs_list_member (*dstp, src->dv, src->offset))
1527 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1531 /* Shared hashtable support. */
1533 /* Return true if VARS is shared. */
1535 static inline bool
1536 shared_hash_shared (shared_hash vars)
1538 return vars->refcount > 1;
1541 /* Return the hash table for VARS. */
1543 static inline htab_t
1544 shared_hash_htab (shared_hash vars)
1546 return vars->htab;
1549 /* Return true if VAR is shared, or maybe because VARS is shared. */
1551 static inline bool
1552 shared_var_p (variable var, shared_hash vars)
1554 /* Don't count an entry in the changed_variables table as a duplicate. */
1555 return ((var->refcount > 1 + (int) var->in_changed_variables)
1556 || shared_hash_shared (vars));
1559 /* Copy variables into a new hash table. */
1561 static shared_hash
1562 shared_hash_unshare (shared_hash vars)
1564 shared_hash new_vars = (shared_hash) pool_alloc (shared_hash_pool);
1565 gcc_assert (vars->refcount > 1);
1566 new_vars->refcount = 1;
1567 new_vars->htab
1568 = htab_create (htab_elements (vars->htab) + 3, variable_htab_hash,
1569 variable_htab_eq, variable_htab_free);
1570 vars_copy (new_vars->htab, vars->htab);
1571 vars->refcount--;
1572 return new_vars;
1575 /* Increment reference counter on VARS and return it. */
1577 static inline shared_hash
1578 shared_hash_copy (shared_hash vars)
1580 vars->refcount++;
1581 return vars;
1584 /* Decrement reference counter and destroy hash table if not shared
1585 anymore. */
1587 static void
1588 shared_hash_destroy (shared_hash vars)
1590 gcc_checking_assert (vars->refcount > 0);
1591 if (--vars->refcount == 0)
1593 htab_delete (vars->htab);
1594 pool_free (shared_hash_pool, vars);
1598 /* Unshare *PVARS if shared and return slot for DV. If INS is
1599 INSERT, insert it if not already present. */
1601 static inline void **
1602 shared_hash_find_slot_unshare_1 (shared_hash *pvars, decl_or_value dv,
1603 hashval_t dvhash, enum insert_option ins)
1605 if (shared_hash_shared (*pvars))
1606 *pvars = shared_hash_unshare (*pvars);
1607 return htab_find_slot_with_hash (shared_hash_htab (*pvars), dv, dvhash, ins);
1610 static inline void **
1611 shared_hash_find_slot_unshare (shared_hash *pvars, decl_or_value dv,
1612 enum insert_option ins)
1614 return shared_hash_find_slot_unshare_1 (pvars, dv, dv_htab_hash (dv), ins);
1617 /* Return slot for DV, if it is already present in the hash table.
1618 If it is not present, insert it only VARS is not shared, otherwise
1619 return NULL. */
1621 static inline void **
1622 shared_hash_find_slot_1 (shared_hash vars, decl_or_value dv, hashval_t dvhash)
1624 return htab_find_slot_with_hash (shared_hash_htab (vars), dv, dvhash,
1625 shared_hash_shared (vars)
1626 ? NO_INSERT : INSERT);
1629 static inline void **
1630 shared_hash_find_slot (shared_hash vars, decl_or_value dv)
1632 return shared_hash_find_slot_1 (vars, dv, dv_htab_hash (dv));
1635 /* Return slot for DV only if it is already present in the hash table. */
1637 static inline void **
1638 shared_hash_find_slot_noinsert_1 (shared_hash vars, decl_or_value dv,
1639 hashval_t dvhash)
1641 return htab_find_slot_with_hash (shared_hash_htab (vars), dv, dvhash,
1642 NO_INSERT);
1645 static inline void **
1646 shared_hash_find_slot_noinsert (shared_hash vars, decl_or_value dv)
1648 return shared_hash_find_slot_noinsert_1 (vars, dv, dv_htab_hash (dv));
1651 /* Return variable for DV or NULL if not already present in the hash
1652 table. */
1654 static inline variable
1655 shared_hash_find_1 (shared_hash vars, decl_or_value dv, hashval_t dvhash)
1657 return (variable) htab_find_with_hash (shared_hash_htab (vars), dv, dvhash);
1660 static inline variable
1661 shared_hash_find (shared_hash vars, decl_or_value dv)
1663 return shared_hash_find_1 (vars, dv, dv_htab_hash (dv));
1666 /* Return true if TVAL is better than CVAL as a canonival value. We
1667 choose lowest-numbered VALUEs, using the RTX address as a
1668 tie-breaker. The idea is to arrange them into a star topology,
1669 such that all of them are at most one step away from the canonical
1670 value, and the canonical value has backlinks to all of them, in
1671 addition to all the actual locations. We don't enforce this
1672 topology throughout the entire dataflow analysis, though.
1675 static inline bool
1676 canon_value_cmp (rtx tval, rtx cval)
1678 return !cval
1679 || CSELIB_VAL_PTR (tval)->uid < CSELIB_VAL_PTR (cval)->uid;
1682 static bool dst_can_be_shared;
1684 /* Return a copy of a variable VAR and insert it to dataflow set SET. */
1686 static void **
1687 unshare_variable (dataflow_set *set, void **slot, variable var,
1688 enum var_init_status initialized)
1690 variable new_var;
1691 int i;
1693 new_var = (variable) pool_alloc (onepart_pool (var->onepart));
1694 new_var->dv = var->dv;
1695 new_var->refcount = 1;
1696 var->refcount--;
1697 new_var->n_var_parts = var->n_var_parts;
1698 new_var->onepart = var->onepart;
1699 new_var->in_changed_variables = false;
1701 if (! flag_var_tracking_uninit)
1702 initialized = VAR_INIT_STATUS_INITIALIZED;
1704 for (i = 0; i < var->n_var_parts; i++)
1706 location_chain node;
1707 location_chain *nextp;
1709 if (i == 0 && var->onepart)
1711 /* One-part auxiliary data is only used while emitting
1712 notes, so propagate it to the new variable in the active
1713 dataflow set. If we're not emitting notes, this will be
1714 a no-op. */
1715 gcc_checking_assert (!VAR_LOC_1PAUX (var) || emit_notes);
1716 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (var);
1717 VAR_LOC_1PAUX (var) = NULL;
1719 else
1720 VAR_PART_OFFSET (new_var, i) = VAR_PART_OFFSET (var, i);
1721 nextp = &new_var->var_part[i].loc_chain;
1722 for (node = var->var_part[i].loc_chain; node; node = node->next)
1724 location_chain new_lc;
1726 new_lc = (location_chain) pool_alloc (loc_chain_pool);
1727 new_lc->next = NULL;
1728 if (node->init > initialized)
1729 new_lc->init = node->init;
1730 else
1731 new_lc->init = initialized;
1732 if (node->set_src && !(MEM_P (node->set_src)))
1733 new_lc->set_src = node->set_src;
1734 else
1735 new_lc->set_src = NULL;
1736 new_lc->loc = node->loc;
1738 *nextp = new_lc;
1739 nextp = &new_lc->next;
1742 new_var->var_part[i].cur_loc = var->var_part[i].cur_loc;
1745 dst_can_be_shared = false;
1746 if (shared_hash_shared (set->vars))
1747 slot = shared_hash_find_slot_unshare (&set->vars, var->dv, NO_INSERT);
1748 else if (set->traversed_vars && set->vars != set->traversed_vars)
1749 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
1750 *slot = new_var;
1751 if (var->in_changed_variables)
1753 void **cslot
1754 = htab_find_slot_with_hash (changed_variables, var->dv,
1755 dv_htab_hash (var->dv), NO_INSERT);
1756 gcc_assert (*cslot == (void *) var);
1757 var->in_changed_variables = false;
1758 variable_htab_free (var);
1759 *cslot = new_var;
1760 new_var->in_changed_variables = true;
1762 return slot;
1765 /* Copy all variables from hash table SRC to hash table DST. */
1767 static void
1768 vars_copy (htab_t dst, htab_t src)
1770 htab_iterator hi;
1771 variable var;
1773 FOR_EACH_HTAB_ELEMENT (src, var, variable, hi)
1775 void **dstp;
1776 var->refcount++;
1777 dstp = htab_find_slot_with_hash (dst, var->dv,
1778 dv_htab_hash (var->dv),
1779 INSERT);
1780 *dstp = var;
1784 /* Map a decl to its main debug decl. */
1786 static inline tree
1787 var_debug_decl (tree decl)
1789 if (decl && DECL_P (decl)
1790 && DECL_DEBUG_EXPR_IS_FROM (decl))
1792 tree debugdecl = DECL_DEBUG_EXPR (decl);
1793 if (debugdecl && DECL_P (debugdecl))
1794 decl = debugdecl;
1797 return decl;
1800 /* Set the register LOC to contain DV, OFFSET. */
1802 static void
1803 var_reg_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1804 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
1805 enum insert_option iopt)
1807 attrs node;
1808 bool decl_p = dv_is_decl_p (dv);
1810 if (decl_p)
1811 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
1813 for (node = set->regs[REGNO (loc)]; node; node = node->next)
1814 if (dv_as_opaque (node->dv) == dv_as_opaque (dv)
1815 && node->offset == offset)
1816 break;
1817 if (!node)
1818 attrs_list_insert (&set->regs[REGNO (loc)], dv, offset, loc);
1819 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
1822 /* Set the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). */
1824 static void
1825 var_reg_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1826 rtx set_src)
1828 tree decl = REG_EXPR (loc);
1829 HOST_WIDE_INT offset = REG_OFFSET (loc);
1831 var_reg_decl_set (set, loc, initialized,
1832 dv_from_decl (decl), offset, set_src, INSERT);
1835 static enum var_init_status
1836 get_init_value (dataflow_set *set, rtx loc, decl_or_value dv)
1838 variable var;
1839 int i;
1840 enum var_init_status ret_val = VAR_INIT_STATUS_UNKNOWN;
1842 if (! flag_var_tracking_uninit)
1843 return VAR_INIT_STATUS_INITIALIZED;
1845 var = shared_hash_find (set->vars, dv);
1846 if (var)
1848 for (i = 0; i < var->n_var_parts && ret_val == VAR_INIT_STATUS_UNKNOWN; i++)
1850 location_chain nextp;
1851 for (nextp = var->var_part[i].loc_chain; nextp; nextp = nextp->next)
1852 if (rtx_equal_p (nextp->loc, loc))
1854 ret_val = nextp->init;
1855 break;
1860 return ret_val;
1863 /* Delete current content of register LOC in dataflow set SET and set
1864 the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). If
1865 MODIFY is true, any other live copies of the same variable part are
1866 also deleted from the dataflow set, otherwise the variable part is
1867 assumed to be copied from another location holding the same
1868 part. */
1870 static void
1871 var_reg_delete_and_set (dataflow_set *set, rtx loc, bool modify,
1872 enum var_init_status initialized, rtx set_src)
1874 tree decl = REG_EXPR (loc);
1875 HOST_WIDE_INT offset = REG_OFFSET (loc);
1876 attrs node, next;
1877 attrs *nextp;
1879 decl = var_debug_decl (decl);
1881 if (initialized == VAR_INIT_STATUS_UNKNOWN)
1882 initialized = get_init_value (set, loc, dv_from_decl (decl));
1884 nextp = &set->regs[REGNO (loc)];
1885 for (node = *nextp; node; node = next)
1887 next = node->next;
1888 if (dv_as_opaque (node->dv) != decl || node->offset != offset)
1890 delete_variable_part (set, node->loc, node->dv, node->offset);
1891 pool_free (attrs_pool, node);
1892 *nextp = next;
1894 else
1896 node->loc = loc;
1897 nextp = &node->next;
1900 if (modify)
1901 clobber_variable_part (set, loc, dv_from_decl (decl), offset, set_src);
1902 var_reg_set (set, loc, initialized, set_src);
1905 /* Delete the association of register LOC in dataflow set SET with any
1906 variables that aren't onepart. If CLOBBER is true, also delete any
1907 other live copies of the same variable part, and delete the
1908 association with onepart dvs too. */
1910 static void
1911 var_reg_delete (dataflow_set *set, rtx loc, bool clobber)
1913 attrs *nextp = &set->regs[REGNO (loc)];
1914 attrs node, next;
1916 if (clobber)
1918 tree decl = REG_EXPR (loc);
1919 HOST_WIDE_INT offset = REG_OFFSET (loc);
1921 decl = var_debug_decl (decl);
1923 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
1926 for (node = *nextp; node; node = next)
1928 next = node->next;
1929 if (clobber || !dv_onepart_p (node->dv))
1931 delete_variable_part (set, node->loc, node->dv, node->offset);
1932 pool_free (attrs_pool, node);
1933 *nextp = next;
1935 else
1936 nextp = &node->next;
1940 /* Delete content of register with number REGNO in dataflow set SET. */
1942 static void
1943 var_regno_delete (dataflow_set *set, int regno)
1945 attrs *reg = &set->regs[regno];
1946 attrs node, next;
1948 for (node = *reg; node; node = next)
1950 next = node->next;
1951 delete_variable_part (set, node->loc, node->dv, node->offset);
1952 pool_free (attrs_pool, node);
1954 *reg = NULL;
1957 /* Strip constant offsets and alignments off of LOC. Return the base
1958 expression. */
1960 static rtx
1961 vt_get_canonicalize_base (rtx loc)
1963 while ((GET_CODE (loc) == PLUS
1964 || GET_CODE (loc) == AND)
1965 && GET_CODE (XEXP (loc, 1)) == CONST_INT
1966 && (GET_CODE (loc) != AND
1967 || INTVAL (XEXP (loc, 1)) < 0))
1968 loc = XEXP (loc, 0);
1970 return loc;
1973 /* Canonicalize LOC using equivalences from SET in addition to those
1974 in the cselib static table. */
1976 static rtx
1977 vt_canonicalize_addr (dataflow_set *set, rtx oloc)
1979 HOST_WIDE_INT ofst = 0;
1980 enum machine_mode mode = GET_MODE (oloc);
1981 rtx loc = canon_rtx (get_addr (oloc));
1983 /* Try to substitute a base VALUE for equivalent expressions as much
1984 as possible. The goal here is to expand stack-related addresses
1985 to one of the stack base registers, so that we can compare
1986 addresses for overlaps. */
1987 while (GET_CODE (vt_get_canonicalize_base (loc)) == VALUE)
1989 rtx x;
1990 decl_or_value dv;
1991 variable var;
1992 location_chain l;
1994 while (GET_CODE (loc) == PLUS)
1996 ofst += INTVAL (XEXP (loc, 1));
1997 loc = XEXP (loc, 0);
1998 continue;
2001 /* Alignment operations can't normally be combined, so just
2002 canonicalize the base and we're done. We'll normally have
2003 only one stack alignment anyway. */
2004 if (GET_CODE (loc) == AND)
2006 x = vt_canonicalize_addr (set, XEXP (loc, 0));
2007 if (x != XEXP (loc, 0))
2008 loc = gen_rtx_AND (mode, x, XEXP (loc, 1));
2009 loc = canon_rtx (get_addr (loc));
2010 break;
2013 x = canon_rtx (get_addr (loc));
2015 /* We've made progress! Start over. */
2016 if (x != loc || GET_CODE (x) != VALUE)
2018 loc = x;
2019 continue;
2022 dv = dv_from_rtx (x);
2023 var = (variable) htab_find_with_hash (shared_hash_htab (set->vars),
2024 dv, dv_htab_hash (dv));
2025 if (!var)
2026 break;
2028 /* Look for an improved equivalent expression. */
2029 for (l = var->var_part[0].loc_chain; l; l = l->next)
2031 rtx base = vt_get_canonicalize_base (l->loc);
2032 if (GET_CODE (base) == REG
2033 || (GET_CODE (base) == VALUE
2034 && canon_value_cmp (base, loc)))
2036 loc = l->loc;
2037 break;
2041 /* No luck with the dataflow set, so we're done. */
2042 if (!l)
2043 break;
2046 /* Add OFST back in. */
2047 if (ofst)
2049 /* Don't build new RTL if we can help it. */
2050 if (GET_CODE (oloc) == PLUS
2051 && XEXP (oloc, 0) == loc
2052 && INTVAL (XEXP (oloc, 1)) == ofst)
2053 return oloc;
2055 loc = plus_constant (mode, loc, ofst);
2058 return loc;
2061 /* Return true iff ADDR has a stack register as the base address. */
2063 static inline bool
2064 vt_stack_offset_p (rtx addr)
2066 rtx base = vt_get_canonicalize_base (addr);
2068 if (GET_CODE (base) != REG)
2069 return false;
2071 return REGNO_PTR_FRAME_P (REGNO (base));
2074 /* Return true iff there's a true dependence between MLOC and LOC.
2075 MADDR must be a canonicalized version of MLOC's address. */
2077 static inline bool
2078 vt_canon_true_dep (dataflow_set *set, rtx mloc, rtx maddr, rtx loc)
2080 if (GET_CODE (loc) != MEM)
2081 return false;
2083 if (!canon_true_dependence (mloc, GET_MODE (mloc), maddr, loc, NULL))
2084 return false;
2086 if (!MEM_EXPR (loc) && vt_stack_offset_p (maddr))
2088 rtx addr = vt_canonicalize_addr (set, XEXP (loc, 0));
2089 return canon_true_dependence (mloc, GET_MODE (mloc), maddr, loc, addr);
2092 return true;
2095 /* Hold parameters for the hashtab traversal function
2096 drop_overlapping_mem_locs, see below. */
2098 struct overlapping_mems
2100 dataflow_set *set;
2101 rtx loc, addr;
2104 /* Remove all MEMs that overlap with COMS->LOC from the location list
2105 of a hash table entry for a value. COMS->ADDR must be a
2106 canonicalized form of COMS->LOC's address, and COMS->LOC must be
2107 canonicalized itself. */
2109 static int
2110 drop_overlapping_mem_locs (void **slot, void *data)
2112 struct overlapping_mems *coms = (struct overlapping_mems *)data;
2113 dataflow_set *set = coms->set;
2114 rtx mloc = coms->loc, addr = coms->addr;
2115 variable var = (variable) *slot;
2117 if (var->onepart == ONEPART_VALUE)
2119 location_chain loc, *locp;
2120 bool changed = false;
2121 rtx cur_loc;
2123 gcc_assert (var->n_var_parts == 1);
2125 if (shared_var_p (var, set->vars))
2127 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
2128 if (vt_canon_true_dep (set, mloc, addr, loc->loc))
2129 break;
2131 if (!loc)
2132 return 1;
2134 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
2135 var = (variable)*slot;
2136 gcc_assert (var->n_var_parts == 1);
2139 if (VAR_LOC_1PAUX (var))
2140 cur_loc = VAR_LOC_FROM (var);
2141 else
2142 cur_loc = var->var_part[0].cur_loc;
2144 for (locp = &var->var_part[0].loc_chain, loc = *locp;
2145 loc; loc = *locp)
2147 if (!vt_canon_true_dep (set, mloc, addr, loc->loc))
2149 locp = &loc->next;
2150 continue;
2153 *locp = loc->next;
2154 /* If we have deleted the location which was last emitted
2155 we have to emit new location so add the variable to set
2156 of changed variables. */
2157 if (cur_loc == loc->loc)
2159 changed = true;
2160 var->var_part[0].cur_loc = NULL;
2161 if (VAR_LOC_1PAUX (var))
2162 VAR_LOC_FROM (var) = NULL;
2164 pool_free (loc_chain_pool, loc);
2167 if (!var->var_part[0].loc_chain)
2169 var->n_var_parts--;
2170 changed = true;
2172 if (changed)
2173 variable_was_changed (var, set);
2176 return 1;
2179 /* Remove from SET all VALUE bindings to MEMs that overlap with LOC. */
2181 static void
2182 clobber_overlapping_mems (dataflow_set *set, rtx loc)
2184 struct overlapping_mems coms;
2186 coms.set = set;
2187 coms.loc = canon_rtx (loc);
2188 coms.addr = vt_canonicalize_addr (set, XEXP (loc, 0));
2190 set->traversed_vars = set->vars;
2191 htab_traverse (shared_hash_htab (set->vars),
2192 drop_overlapping_mem_locs, &coms);
2193 set->traversed_vars = NULL;
2196 /* Set the location of DV, OFFSET as the MEM LOC. */
2198 static void
2199 var_mem_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
2200 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
2201 enum insert_option iopt)
2203 if (dv_is_decl_p (dv))
2204 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
2206 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
2209 /* Set the location part of variable MEM_EXPR (LOC) in dataflow set
2210 SET to LOC.
2211 Adjust the address first if it is stack pointer based. */
2213 static void
2214 var_mem_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
2215 rtx set_src)
2217 tree decl = MEM_EXPR (loc);
2218 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2220 var_mem_decl_set (set, loc, initialized,
2221 dv_from_decl (decl), offset, set_src, INSERT);
2224 /* Delete and set the location part of variable MEM_EXPR (LOC) in
2225 dataflow set SET to LOC. If MODIFY is true, any other live copies
2226 of the same variable part are also deleted from the dataflow set,
2227 otherwise the variable part is assumed to be copied from another
2228 location holding the same part.
2229 Adjust the address first if it is stack pointer based. */
2231 static void
2232 var_mem_delete_and_set (dataflow_set *set, rtx loc, bool modify,
2233 enum var_init_status initialized, rtx set_src)
2235 tree decl = MEM_EXPR (loc);
2236 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2238 clobber_overlapping_mems (set, loc);
2239 decl = var_debug_decl (decl);
2241 if (initialized == VAR_INIT_STATUS_UNKNOWN)
2242 initialized = get_init_value (set, loc, dv_from_decl (decl));
2244 if (modify)
2245 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, set_src);
2246 var_mem_set (set, loc, initialized, set_src);
2249 /* Delete the location part LOC from dataflow set SET. If CLOBBER is
2250 true, also delete any other live copies of the same variable part.
2251 Adjust the address first if it is stack pointer based. */
2253 static void
2254 var_mem_delete (dataflow_set *set, rtx loc, bool clobber)
2256 tree decl = MEM_EXPR (loc);
2257 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2259 clobber_overlapping_mems (set, loc);
2260 decl = var_debug_decl (decl);
2261 if (clobber)
2262 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
2263 delete_variable_part (set, loc, dv_from_decl (decl), offset);
2266 /* Return true if LOC should not be expanded for location expressions,
2267 or used in them. */
2269 static inline bool
2270 unsuitable_loc (rtx loc)
2272 switch (GET_CODE (loc))
2274 case PC:
2275 case SCRATCH:
2276 case CC0:
2277 case ASM_INPUT:
2278 case ASM_OPERANDS:
2279 return true;
2281 default:
2282 return false;
2286 /* Bind VAL to LOC in SET. If MODIFIED, detach LOC from any values
2287 bound to it. */
2289 static inline void
2290 val_bind (dataflow_set *set, rtx val, rtx loc, bool modified)
2292 if (REG_P (loc))
2294 if (modified)
2295 var_regno_delete (set, REGNO (loc));
2296 var_reg_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2297 dv_from_value (val), 0, NULL_RTX, INSERT);
2299 else if (MEM_P (loc))
2301 struct elt_loc_list *l = CSELIB_VAL_PTR (val)->locs;
2303 if (modified)
2304 clobber_overlapping_mems (set, loc);
2306 if (l && GET_CODE (l->loc) == VALUE)
2307 l = canonical_cselib_val (CSELIB_VAL_PTR (l->loc))->locs;
2309 /* If this MEM is a global constant, we don't need it in the
2310 dynamic tables. ??? We should test this before emitting the
2311 micro-op in the first place. */
2312 while (l)
2313 if (GET_CODE (l->loc) == MEM && XEXP (l->loc, 0) == XEXP (loc, 0))
2314 break;
2315 else
2316 l = l->next;
2318 if (!l)
2319 var_mem_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2320 dv_from_value (val), 0, NULL_RTX, INSERT);
2322 else
2324 /* Other kinds of equivalences are necessarily static, at least
2325 so long as we do not perform substitutions while merging
2326 expressions. */
2327 gcc_unreachable ();
2328 set_variable_part (set, loc, dv_from_value (val), 0,
2329 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2333 /* Bind a value to a location it was just stored in. If MODIFIED
2334 holds, assume the location was modified, detaching it from any
2335 values bound to it. */
2337 static void
2338 val_store (dataflow_set *set, rtx val, rtx loc, rtx insn, bool modified)
2340 cselib_val *v = CSELIB_VAL_PTR (val);
2342 gcc_assert (cselib_preserved_value_p (v));
2344 if (dump_file)
2346 fprintf (dump_file, "%i: ", insn ? INSN_UID (insn) : 0);
2347 print_inline_rtx (dump_file, loc, 0);
2348 fprintf (dump_file, " evaluates to ");
2349 print_inline_rtx (dump_file, val, 0);
2350 if (v->locs)
2352 struct elt_loc_list *l;
2353 for (l = v->locs; l; l = l->next)
2355 fprintf (dump_file, "\n%i: ", INSN_UID (l->setting_insn));
2356 print_inline_rtx (dump_file, l->loc, 0);
2359 fprintf (dump_file, "\n");
2362 gcc_checking_assert (!unsuitable_loc (loc));
2364 val_bind (set, val, loc, modified);
2367 /* Reset this node, detaching all its equivalences. Return the slot
2368 in the variable hash table that holds dv, if there is one. */
2370 static void
2371 val_reset (dataflow_set *set, decl_or_value dv)
2373 variable var = shared_hash_find (set->vars, dv) ;
2374 location_chain node;
2375 rtx cval;
2377 if (!var || !var->n_var_parts)
2378 return;
2380 gcc_assert (var->n_var_parts == 1);
2382 cval = NULL;
2383 for (node = var->var_part[0].loc_chain; node; node = node->next)
2384 if (GET_CODE (node->loc) == VALUE
2385 && canon_value_cmp (node->loc, cval))
2386 cval = node->loc;
2388 for (node = var->var_part[0].loc_chain; node; node = node->next)
2389 if (GET_CODE (node->loc) == VALUE && cval != node->loc)
2391 /* Redirect the equivalence link to the new canonical
2392 value, or simply remove it if it would point at
2393 itself. */
2394 if (cval)
2395 set_variable_part (set, cval, dv_from_value (node->loc),
2396 0, node->init, node->set_src, NO_INSERT);
2397 delete_variable_part (set, dv_as_value (dv),
2398 dv_from_value (node->loc), 0);
2401 if (cval)
2403 decl_or_value cdv = dv_from_value (cval);
2405 /* Keep the remaining values connected, accummulating links
2406 in the canonical value. */
2407 for (node = var->var_part[0].loc_chain; node; node = node->next)
2409 if (node->loc == cval)
2410 continue;
2411 else if (GET_CODE (node->loc) == REG)
2412 var_reg_decl_set (set, node->loc, node->init, cdv, 0,
2413 node->set_src, NO_INSERT);
2414 else if (GET_CODE (node->loc) == MEM)
2415 var_mem_decl_set (set, node->loc, node->init, cdv, 0,
2416 node->set_src, NO_INSERT);
2417 else
2418 set_variable_part (set, node->loc, cdv, 0,
2419 node->init, node->set_src, NO_INSERT);
2423 /* We remove this last, to make sure that the canonical value is not
2424 removed to the point of requiring reinsertion. */
2425 if (cval)
2426 delete_variable_part (set, dv_as_value (dv), dv_from_value (cval), 0);
2428 clobber_variable_part (set, NULL, dv, 0, NULL);
2431 /* Find the values in a given location and map the val to another
2432 value, if it is unique, or add the location as one holding the
2433 value. */
2435 static void
2436 val_resolve (dataflow_set *set, rtx val, rtx loc, rtx insn)
2438 decl_or_value dv = dv_from_value (val);
2440 if (dump_file && (dump_flags & TDF_DETAILS))
2442 if (insn)
2443 fprintf (dump_file, "%i: ", INSN_UID (insn));
2444 else
2445 fprintf (dump_file, "head: ");
2446 print_inline_rtx (dump_file, val, 0);
2447 fputs (" is at ", dump_file);
2448 print_inline_rtx (dump_file, loc, 0);
2449 fputc ('\n', dump_file);
2452 val_reset (set, dv);
2454 gcc_checking_assert (!unsuitable_loc (loc));
2456 if (REG_P (loc))
2458 attrs node, found = NULL;
2460 for (node = set->regs[REGNO (loc)]; node; node = node->next)
2461 if (dv_is_value_p (node->dv)
2462 && GET_MODE (dv_as_value (node->dv)) == GET_MODE (loc))
2464 found = node;
2466 /* Map incoming equivalences. ??? Wouldn't it be nice if
2467 we just started sharing the location lists? Maybe a
2468 circular list ending at the value itself or some
2469 such. */
2470 set_variable_part (set, dv_as_value (node->dv),
2471 dv_from_value (val), node->offset,
2472 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2473 set_variable_part (set, val, node->dv, node->offset,
2474 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2477 /* If we didn't find any equivalence, we need to remember that
2478 this value is held in the named register. */
2479 if (found)
2480 return;
2482 /* ??? Attempt to find and merge equivalent MEMs or other
2483 expressions too. */
2485 val_bind (set, val, loc, false);
2488 /* Initialize dataflow set SET to be empty.
2489 VARS_SIZE is the initial size of hash table VARS. */
2491 static void
2492 dataflow_set_init (dataflow_set *set)
2494 init_attrs_list_set (set->regs);
2495 set->vars = shared_hash_copy (empty_shared_hash);
2496 set->stack_adjust = 0;
2497 set->traversed_vars = NULL;
2500 /* Delete the contents of dataflow set SET. */
2502 static void
2503 dataflow_set_clear (dataflow_set *set)
2505 int i;
2507 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2508 attrs_list_clear (&set->regs[i]);
2510 shared_hash_destroy (set->vars);
2511 set->vars = shared_hash_copy (empty_shared_hash);
2514 /* Copy the contents of dataflow set SRC to DST. */
2516 static void
2517 dataflow_set_copy (dataflow_set *dst, dataflow_set *src)
2519 int i;
2521 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2522 attrs_list_copy (&dst->regs[i], src->regs[i]);
2524 shared_hash_destroy (dst->vars);
2525 dst->vars = shared_hash_copy (src->vars);
2526 dst->stack_adjust = src->stack_adjust;
2529 /* Information for merging lists of locations for a given offset of variable.
2531 struct variable_union_info
2533 /* Node of the location chain. */
2534 location_chain lc;
2536 /* The sum of positions in the input chains. */
2537 int pos;
2539 /* The position in the chain of DST dataflow set. */
2540 int pos_dst;
2543 /* Buffer for location list sorting and its allocated size. */
2544 static struct variable_union_info *vui_vec;
2545 static int vui_allocated;
2547 /* Compare function for qsort, order the structures by POS element. */
2549 static int
2550 variable_union_info_cmp_pos (const void *n1, const void *n2)
2552 const struct variable_union_info *const i1 =
2553 (const struct variable_union_info *) n1;
2554 const struct variable_union_info *const i2 =
2555 ( const struct variable_union_info *) n2;
2557 if (i1->pos != i2->pos)
2558 return i1->pos - i2->pos;
2560 return (i1->pos_dst - i2->pos_dst);
2563 /* Compute union of location parts of variable *SLOT and the same variable
2564 from hash table DATA. Compute "sorted" union of the location chains
2565 for common offsets, i.e. the locations of a variable part are sorted by
2566 a priority where the priority is the sum of the positions in the 2 chains
2567 (if a location is only in one list the position in the second list is
2568 defined to be larger than the length of the chains).
2569 When we are updating the location parts the newest location is in the
2570 beginning of the chain, so when we do the described "sorted" union
2571 we keep the newest locations in the beginning. */
2573 static int
2574 variable_union (variable src, dataflow_set *set)
2576 variable dst;
2577 void **dstp;
2578 int i, j, k;
2580 dstp = shared_hash_find_slot (set->vars, src->dv);
2581 if (!dstp || !*dstp)
2583 src->refcount++;
2585 dst_can_be_shared = false;
2586 if (!dstp)
2587 dstp = shared_hash_find_slot_unshare (&set->vars, src->dv, INSERT);
2589 *dstp = src;
2591 /* Continue traversing the hash table. */
2592 return 1;
2594 else
2595 dst = (variable) *dstp;
2597 gcc_assert (src->n_var_parts);
2598 gcc_checking_assert (src->onepart == dst->onepart);
2600 /* We can combine one-part variables very efficiently, because their
2601 entries are in canonical order. */
2602 if (src->onepart)
2604 location_chain *nodep, dnode, snode;
2606 gcc_assert (src->n_var_parts == 1
2607 && dst->n_var_parts == 1);
2609 snode = src->var_part[0].loc_chain;
2610 gcc_assert (snode);
2612 restart_onepart_unshared:
2613 nodep = &dst->var_part[0].loc_chain;
2614 dnode = *nodep;
2615 gcc_assert (dnode);
2617 while (snode)
2619 int r = dnode ? loc_cmp (dnode->loc, snode->loc) : 1;
2621 if (r > 0)
2623 location_chain nnode;
2625 if (shared_var_p (dst, set->vars))
2627 dstp = unshare_variable (set, dstp, dst,
2628 VAR_INIT_STATUS_INITIALIZED);
2629 dst = (variable)*dstp;
2630 goto restart_onepart_unshared;
2633 *nodep = nnode = (location_chain) pool_alloc (loc_chain_pool);
2634 nnode->loc = snode->loc;
2635 nnode->init = snode->init;
2636 if (!snode->set_src || MEM_P (snode->set_src))
2637 nnode->set_src = NULL;
2638 else
2639 nnode->set_src = snode->set_src;
2640 nnode->next = dnode;
2641 dnode = nnode;
2643 else if (r == 0)
2644 gcc_checking_assert (rtx_equal_p (dnode->loc, snode->loc));
2646 if (r >= 0)
2647 snode = snode->next;
2649 nodep = &dnode->next;
2650 dnode = *nodep;
2653 return 1;
2656 gcc_checking_assert (!src->onepart);
2658 /* Count the number of location parts, result is K. */
2659 for (i = 0, j = 0, k = 0;
2660 i < src->n_var_parts && j < dst->n_var_parts; k++)
2662 if (VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2664 i++;
2665 j++;
2667 else if (VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
2668 i++;
2669 else
2670 j++;
2672 k += src->n_var_parts - i;
2673 k += dst->n_var_parts - j;
2675 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
2676 thus there are at most MAX_VAR_PARTS different offsets. */
2677 gcc_checking_assert (dst->onepart ? k == 1 : k <= MAX_VAR_PARTS);
2679 if (dst->n_var_parts != k && shared_var_p (dst, set->vars))
2681 dstp = unshare_variable (set, dstp, dst, VAR_INIT_STATUS_UNKNOWN);
2682 dst = (variable)*dstp;
2685 i = src->n_var_parts - 1;
2686 j = dst->n_var_parts - 1;
2687 dst->n_var_parts = k;
2689 for (k--; k >= 0; k--)
2691 location_chain node, node2;
2693 if (i >= 0 && j >= 0
2694 && VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2696 /* Compute the "sorted" union of the chains, i.e. the locations which
2697 are in both chains go first, they are sorted by the sum of
2698 positions in the chains. */
2699 int dst_l, src_l;
2700 int ii, jj, n;
2701 struct variable_union_info *vui;
2703 /* If DST is shared compare the location chains.
2704 If they are different we will modify the chain in DST with
2705 high probability so make a copy of DST. */
2706 if (shared_var_p (dst, set->vars))
2708 for (node = src->var_part[i].loc_chain,
2709 node2 = dst->var_part[j].loc_chain; node && node2;
2710 node = node->next, node2 = node2->next)
2712 if (!((REG_P (node2->loc)
2713 && REG_P (node->loc)
2714 && REGNO (node2->loc) == REGNO (node->loc))
2715 || rtx_equal_p (node2->loc, node->loc)))
2717 if (node2->init < node->init)
2718 node2->init = node->init;
2719 break;
2722 if (node || node2)
2724 dstp = unshare_variable (set, dstp, dst,
2725 VAR_INIT_STATUS_UNKNOWN);
2726 dst = (variable)*dstp;
2730 src_l = 0;
2731 for (node = src->var_part[i].loc_chain; node; node = node->next)
2732 src_l++;
2733 dst_l = 0;
2734 for (node = dst->var_part[j].loc_chain; node; node = node->next)
2735 dst_l++;
2737 if (dst_l == 1)
2739 /* The most common case, much simpler, no qsort is needed. */
2740 location_chain dstnode = dst->var_part[j].loc_chain;
2741 dst->var_part[k].loc_chain = dstnode;
2742 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET(dst, j);
2743 node2 = dstnode;
2744 for (node = src->var_part[i].loc_chain; node; node = node->next)
2745 if (!((REG_P (dstnode->loc)
2746 && REG_P (node->loc)
2747 && REGNO (dstnode->loc) == REGNO (node->loc))
2748 || rtx_equal_p (dstnode->loc, node->loc)))
2750 location_chain new_node;
2752 /* Copy the location from SRC. */
2753 new_node = (location_chain) pool_alloc (loc_chain_pool);
2754 new_node->loc = node->loc;
2755 new_node->init = node->init;
2756 if (!node->set_src || MEM_P (node->set_src))
2757 new_node->set_src = NULL;
2758 else
2759 new_node->set_src = node->set_src;
2760 node2->next = new_node;
2761 node2 = new_node;
2763 node2->next = NULL;
2765 else
2767 if (src_l + dst_l > vui_allocated)
2769 vui_allocated = MAX (vui_allocated * 2, src_l + dst_l);
2770 vui_vec = XRESIZEVEC (struct variable_union_info, vui_vec,
2771 vui_allocated);
2773 vui = vui_vec;
2775 /* Fill in the locations from DST. */
2776 for (node = dst->var_part[j].loc_chain, jj = 0; node;
2777 node = node->next, jj++)
2779 vui[jj].lc = node;
2780 vui[jj].pos_dst = jj;
2782 /* Pos plus value larger than a sum of 2 valid positions. */
2783 vui[jj].pos = jj + src_l + dst_l;
2786 /* Fill in the locations from SRC. */
2787 n = dst_l;
2788 for (node = src->var_part[i].loc_chain, ii = 0; node;
2789 node = node->next, ii++)
2791 /* Find location from NODE. */
2792 for (jj = 0; jj < dst_l; jj++)
2794 if ((REG_P (vui[jj].lc->loc)
2795 && REG_P (node->loc)
2796 && REGNO (vui[jj].lc->loc) == REGNO (node->loc))
2797 || rtx_equal_p (vui[jj].lc->loc, node->loc))
2799 vui[jj].pos = jj + ii;
2800 break;
2803 if (jj >= dst_l) /* The location has not been found. */
2805 location_chain new_node;
2807 /* Copy the location from SRC. */
2808 new_node = (location_chain) pool_alloc (loc_chain_pool);
2809 new_node->loc = node->loc;
2810 new_node->init = node->init;
2811 if (!node->set_src || MEM_P (node->set_src))
2812 new_node->set_src = NULL;
2813 else
2814 new_node->set_src = node->set_src;
2815 vui[n].lc = new_node;
2816 vui[n].pos_dst = src_l + dst_l;
2817 vui[n].pos = ii + src_l + dst_l;
2818 n++;
2822 if (dst_l == 2)
2824 /* Special case still very common case. For dst_l == 2
2825 all entries dst_l ... n-1 are sorted, with for i >= dst_l
2826 vui[i].pos == i + src_l + dst_l. */
2827 if (vui[0].pos > vui[1].pos)
2829 /* Order should be 1, 0, 2... */
2830 dst->var_part[k].loc_chain = vui[1].lc;
2831 vui[1].lc->next = vui[0].lc;
2832 if (n >= 3)
2834 vui[0].lc->next = vui[2].lc;
2835 vui[n - 1].lc->next = NULL;
2837 else
2838 vui[0].lc->next = NULL;
2839 ii = 3;
2841 else
2843 dst->var_part[k].loc_chain = vui[0].lc;
2844 if (n >= 3 && vui[2].pos < vui[1].pos)
2846 /* Order should be 0, 2, 1, 3... */
2847 vui[0].lc->next = vui[2].lc;
2848 vui[2].lc->next = vui[1].lc;
2849 if (n >= 4)
2851 vui[1].lc->next = vui[3].lc;
2852 vui[n - 1].lc->next = NULL;
2854 else
2855 vui[1].lc->next = NULL;
2856 ii = 4;
2858 else
2860 /* Order should be 0, 1, 2... */
2861 ii = 1;
2862 vui[n - 1].lc->next = NULL;
2865 for (; ii < n; ii++)
2866 vui[ii - 1].lc->next = vui[ii].lc;
2868 else
2870 qsort (vui, n, sizeof (struct variable_union_info),
2871 variable_union_info_cmp_pos);
2873 /* Reconnect the nodes in sorted order. */
2874 for (ii = 1; ii < n; ii++)
2875 vui[ii - 1].lc->next = vui[ii].lc;
2876 vui[n - 1].lc->next = NULL;
2877 dst->var_part[k].loc_chain = vui[0].lc;
2880 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
2882 i--;
2883 j--;
2885 else if ((i >= 0 && j >= 0
2886 && VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
2887 || i < 0)
2889 dst->var_part[k] = dst->var_part[j];
2890 j--;
2892 else if ((i >= 0 && j >= 0
2893 && VAR_PART_OFFSET (src, i) > VAR_PART_OFFSET (dst, j))
2894 || j < 0)
2896 location_chain *nextp;
2898 /* Copy the chain from SRC. */
2899 nextp = &dst->var_part[k].loc_chain;
2900 for (node = src->var_part[i].loc_chain; node; node = node->next)
2902 location_chain new_lc;
2904 new_lc = (location_chain) pool_alloc (loc_chain_pool);
2905 new_lc->next = NULL;
2906 new_lc->init = node->init;
2907 if (!node->set_src || MEM_P (node->set_src))
2908 new_lc->set_src = NULL;
2909 else
2910 new_lc->set_src = node->set_src;
2911 new_lc->loc = node->loc;
2913 *nextp = new_lc;
2914 nextp = &new_lc->next;
2917 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (src, i);
2918 i--;
2920 dst->var_part[k].cur_loc = NULL;
2923 if (flag_var_tracking_uninit)
2924 for (i = 0; i < src->n_var_parts && i < dst->n_var_parts; i++)
2926 location_chain node, node2;
2927 for (node = src->var_part[i].loc_chain; node; node = node->next)
2928 for (node2 = dst->var_part[i].loc_chain; node2; node2 = node2->next)
2929 if (rtx_equal_p (node->loc, node2->loc))
2931 if (node->init > node2->init)
2932 node2->init = node->init;
2936 /* Continue traversing the hash table. */
2937 return 1;
2940 /* Compute union of dataflow sets SRC and DST and store it to DST. */
2942 static void
2943 dataflow_set_union (dataflow_set *dst, dataflow_set *src)
2945 int i;
2947 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2948 attrs_list_union (&dst->regs[i], src->regs[i]);
2950 if (dst->vars == empty_shared_hash)
2952 shared_hash_destroy (dst->vars);
2953 dst->vars = shared_hash_copy (src->vars);
2955 else
2957 htab_iterator hi;
2958 variable var;
2960 FOR_EACH_HTAB_ELEMENT (shared_hash_htab (src->vars), var, variable, hi)
2961 variable_union (var, dst);
2965 /* Whether the value is currently being expanded. */
2966 #define VALUE_RECURSED_INTO(x) \
2967 (RTL_FLAG_CHECK2 ("VALUE_RECURSED_INTO", (x), VALUE, DEBUG_EXPR)->used)
2969 /* Whether no expansion was found, saving useless lookups.
2970 It must only be set when VALUE_CHANGED is clear. */
2971 #define NO_LOC_P(x) \
2972 (RTL_FLAG_CHECK2 ("NO_LOC_P", (x), VALUE, DEBUG_EXPR)->return_val)
2974 /* Whether cur_loc in the value needs to be (re)computed. */
2975 #define VALUE_CHANGED(x) \
2976 (RTL_FLAG_CHECK1 ("VALUE_CHANGED", (x), VALUE)->frame_related)
2977 /* Whether cur_loc in the decl needs to be (re)computed. */
2978 #define DECL_CHANGED(x) TREE_VISITED (x)
2980 /* Record (if NEWV) that DV needs to have its cur_loc recomputed. For
2981 user DECLs, this means they're in changed_variables. Values and
2982 debug exprs may be left with this flag set if no user variable
2983 requires them to be evaluated. */
2985 static inline void
2986 set_dv_changed (decl_or_value dv, bool newv)
2988 switch (dv_onepart_p (dv))
2990 case ONEPART_VALUE:
2991 if (newv)
2992 NO_LOC_P (dv_as_value (dv)) = false;
2993 VALUE_CHANGED (dv_as_value (dv)) = newv;
2994 break;
2996 case ONEPART_DEXPR:
2997 if (newv)
2998 NO_LOC_P (DECL_RTL_KNOWN_SET (dv_as_decl (dv))) = false;
2999 /* Fall through... */
3001 default:
3002 DECL_CHANGED (dv_as_decl (dv)) = newv;
3003 break;
3007 /* Return true if DV needs to have its cur_loc recomputed. */
3009 static inline bool
3010 dv_changed_p (decl_or_value dv)
3012 return (dv_is_value_p (dv)
3013 ? VALUE_CHANGED (dv_as_value (dv))
3014 : DECL_CHANGED (dv_as_decl (dv)));
3017 /* Return a location list node whose loc is rtx_equal to LOC, in the
3018 location list of a one-part variable or value VAR, or in that of
3019 any values recursively mentioned in the location lists. VARS must
3020 be in star-canonical form. */
3022 static location_chain
3023 find_loc_in_1pdv (rtx loc, variable var, htab_t vars)
3025 location_chain node;
3026 enum rtx_code loc_code;
3028 if (!var)
3029 return NULL;
3031 gcc_checking_assert (var->onepart);
3033 if (!var->n_var_parts)
3034 return NULL;
3036 gcc_checking_assert (loc != dv_as_opaque (var->dv));
3038 loc_code = GET_CODE (loc);
3039 for (node = var->var_part[0].loc_chain; node; node = node->next)
3041 decl_or_value dv;
3042 variable rvar;
3044 if (GET_CODE (node->loc) != loc_code)
3046 if (GET_CODE (node->loc) != VALUE)
3047 continue;
3049 else if (loc == node->loc)
3050 return node;
3051 else if (loc_code != VALUE)
3053 if (rtx_equal_p (loc, node->loc))
3054 return node;
3055 continue;
3058 /* Since we're in star-canonical form, we don't need to visit
3059 non-canonical nodes: one-part variables and non-canonical
3060 values would only point back to the canonical node. */
3061 if (dv_is_value_p (var->dv)
3062 && !canon_value_cmp (node->loc, dv_as_value (var->dv)))
3064 /* Skip all subsequent VALUEs. */
3065 while (node->next && GET_CODE (node->next->loc) == VALUE)
3067 node = node->next;
3068 gcc_checking_assert (!canon_value_cmp (node->loc,
3069 dv_as_value (var->dv)));
3070 if (loc == node->loc)
3071 return node;
3073 continue;
3076 gcc_checking_assert (node == var->var_part[0].loc_chain);
3077 gcc_checking_assert (!node->next);
3079 dv = dv_from_value (node->loc);
3080 rvar = (variable) htab_find_with_hash (vars, dv, dv_htab_hash (dv));
3081 return find_loc_in_1pdv (loc, rvar, vars);
3084 /* ??? Gotta look in cselib_val locations too. */
3086 return NULL;
3089 /* Hash table iteration argument passed to variable_merge. */
3090 struct dfset_merge
3092 /* The set in which the merge is to be inserted. */
3093 dataflow_set *dst;
3094 /* The set that we're iterating in. */
3095 dataflow_set *cur;
3096 /* The set that may contain the other dv we are to merge with. */
3097 dataflow_set *src;
3098 /* Number of onepart dvs in src. */
3099 int src_onepart_cnt;
3102 /* Insert LOC in *DNODE, if it's not there yet. The list must be in
3103 loc_cmp order, and it is maintained as such. */
3105 static void
3106 insert_into_intersection (location_chain *nodep, rtx loc,
3107 enum var_init_status status)
3109 location_chain node;
3110 int r;
3112 for (node = *nodep; node; nodep = &node->next, node = *nodep)
3113 if ((r = loc_cmp (node->loc, loc)) == 0)
3115 node->init = MIN (node->init, status);
3116 return;
3118 else if (r > 0)
3119 break;
3121 node = (location_chain) pool_alloc (loc_chain_pool);
3123 node->loc = loc;
3124 node->set_src = NULL;
3125 node->init = status;
3126 node->next = *nodep;
3127 *nodep = node;
3130 /* Insert in DEST the intersection of the locations present in both
3131 S1NODE and S2VAR, directly or indirectly. S1NODE is from a
3132 variable in DSM->cur, whereas S2VAR is from DSM->src. dvar is in
3133 DSM->dst. */
3135 static void
3136 intersect_loc_chains (rtx val, location_chain *dest, struct dfset_merge *dsm,
3137 location_chain s1node, variable s2var)
3139 dataflow_set *s1set = dsm->cur;
3140 dataflow_set *s2set = dsm->src;
3141 location_chain found;
3143 if (s2var)
3145 location_chain s2node;
3147 gcc_checking_assert (s2var->onepart);
3149 if (s2var->n_var_parts)
3151 s2node = s2var->var_part[0].loc_chain;
3153 for (; s1node && s2node;
3154 s1node = s1node->next, s2node = s2node->next)
3155 if (s1node->loc != s2node->loc)
3156 break;
3157 else if (s1node->loc == val)
3158 continue;
3159 else
3160 insert_into_intersection (dest, s1node->loc,
3161 MIN (s1node->init, s2node->init));
3165 for (; s1node; s1node = s1node->next)
3167 if (s1node->loc == val)
3168 continue;
3170 if ((found = find_loc_in_1pdv (s1node->loc, s2var,
3171 shared_hash_htab (s2set->vars))))
3173 insert_into_intersection (dest, s1node->loc,
3174 MIN (s1node->init, found->init));
3175 continue;
3178 if (GET_CODE (s1node->loc) == VALUE
3179 && !VALUE_RECURSED_INTO (s1node->loc))
3181 decl_or_value dv = dv_from_value (s1node->loc);
3182 variable svar = shared_hash_find (s1set->vars, dv);
3183 if (svar)
3185 if (svar->n_var_parts == 1)
3187 VALUE_RECURSED_INTO (s1node->loc) = true;
3188 intersect_loc_chains (val, dest, dsm,
3189 svar->var_part[0].loc_chain,
3190 s2var);
3191 VALUE_RECURSED_INTO (s1node->loc) = false;
3196 /* ??? gotta look in cselib_val locations too. */
3198 /* ??? if the location is equivalent to any location in src,
3199 searched recursively
3201 add to dst the values needed to represent the equivalence
3203 telling whether locations S is equivalent to another dv's
3204 location list:
3206 for each location D in the list
3208 if S and D satisfy rtx_equal_p, then it is present
3210 else if D is a value, recurse without cycles
3212 else if S and D have the same CODE and MODE
3214 for each operand oS and the corresponding oD
3216 if oS and oD are not equivalent, then S an D are not equivalent
3218 else if they are RTX vectors
3220 if any vector oS element is not equivalent to its respective oD,
3221 then S and D are not equivalent
3229 /* Return -1 if X should be before Y in a location list for a 1-part
3230 variable, 1 if Y should be before X, and 0 if they're equivalent
3231 and should not appear in the list. */
3233 static int
3234 loc_cmp (rtx x, rtx y)
3236 int i, j, r;
3237 RTX_CODE code = GET_CODE (x);
3238 const char *fmt;
3240 if (x == y)
3241 return 0;
3243 if (REG_P (x))
3245 if (!REG_P (y))
3246 return -1;
3247 gcc_assert (GET_MODE (x) == GET_MODE (y));
3248 if (REGNO (x) == REGNO (y))
3249 return 0;
3250 else if (REGNO (x) < REGNO (y))
3251 return -1;
3252 else
3253 return 1;
3256 if (REG_P (y))
3257 return 1;
3259 if (MEM_P (x))
3261 if (!MEM_P (y))
3262 return -1;
3263 gcc_assert (GET_MODE (x) == GET_MODE (y));
3264 return loc_cmp (XEXP (x, 0), XEXP (y, 0));
3267 if (MEM_P (y))
3268 return 1;
3270 if (GET_CODE (x) == VALUE)
3272 if (GET_CODE (y) != VALUE)
3273 return -1;
3274 /* Don't assert the modes are the same, that is true only
3275 when not recursing. (subreg:QI (value:SI 1:1) 0)
3276 and (subreg:QI (value:DI 2:2) 0) can be compared,
3277 even when the modes are different. */
3278 if (canon_value_cmp (x, y))
3279 return -1;
3280 else
3281 return 1;
3284 if (GET_CODE (y) == VALUE)
3285 return 1;
3287 /* Entry value is the least preferable kind of expression. */
3288 if (GET_CODE (x) == ENTRY_VALUE)
3290 if (GET_CODE (y) != ENTRY_VALUE)
3291 return 1;
3292 gcc_assert (GET_MODE (x) == GET_MODE (y));
3293 return loc_cmp (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
3296 if (GET_CODE (y) == ENTRY_VALUE)
3297 return -1;
3299 if (GET_CODE (x) == GET_CODE (y))
3300 /* Compare operands below. */;
3301 else if (GET_CODE (x) < GET_CODE (y))
3302 return -1;
3303 else
3304 return 1;
3306 gcc_assert (GET_MODE (x) == GET_MODE (y));
3308 if (GET_CODE (x) == DEBUG_EXPR)
3310 if (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3311 < DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)))
3312 return -1;
3313 gcc_checking_assert (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3314 > DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)));
3315 return 1;
3318 fmt = GET_RTX_FORMAT (code);
3319 for (i = 0; i < GET_RTX_LENGTH (code); i++)
3320 switch (fmt[i])
3322 case 'w':
3323 if (XWINT (x, i) == XWINT (y, i))
3324 break;
3325 else if (XWINT (x, i) < XWINT (y, i))
3326 return -1;
3327 else
3328 return 1;
3330 case 'n':
3331 case 'i':
3332 if (XINT (x, i) == XINT (y, i))
3333 break;
3334 else if (XINT (x, i) < XINT (y, i))
3335 return -1;
3336 else
3337 return 1;
3339 case 'V':
3340 case 'E':
3341 /* Compare the vector length first. */
3342 if (XVECLEN (x, i) == XVECLEN (y, i))
3343 /* Compare the vectors elements. */;
3344 else if (XVECLEN (x, i) < XVECLEN (y, i))
3345 return -1;
3346 else
3347 return 1;
3349 for (j = 0; j < XVECLEN (x, i); j++)
3350 if ((r = loc_cmp (XVECEXP (x, i, j),
3351 XVECEXP (y, i, j))))
3352 return r;
3353 break;
3355 case 'e':
3356 if ((r = loc_cmp (XEXP (x, i), XEXP (y, i))))
3357 return r;
3358 break;
3360 case 'S':
3361 case 's':
3362 if (XSTR (x, i) == XSTR (y, i))
3363 break;
3364 if (!XSTR (x, i))
3365 return -1;
3366 if (!XSTR (y, i))
3367 return 1;
3368 if ((r = strcmp (XSTR (x, i), XSTR (y, i))) == 0)
3369 break;
3370 else if (r < 0)
3371 return -1;
3372 else
3373 return 1;
3375 case 'u':
3376 /* These are just backpointers, so they don't matter. */
3377 break;
3379 case '0':
3380 case 't':
3381 break;
3383 /* It is believed that rtx's at this level will never
3384 contain anything but integers and other rtx's,
3385 except for within LABEL_REFs and SYMBOL_REFs. */
3386 default:
3387 gcc_unreachable ();
3390 return 0;
3393 #if ENABLE_CHECKING
3394 /* Check the order of entries in one-part variables. */
3396 static int
3397 canonicalize_loc_order_check (void **slot, void *data ATTRIBUTE_UNUSED)
3399 variable var = (variable) *slot;
3400 location_chain node, next;
3402 #ifdef ENABLE_RTL_CHECKING
3403 int i;
3404 for (i = 0; i < var->n_var_parts; i++)
3405 gcc_assert (var->var_part[0].cur_loc == NULL);
3406 gcc_assert (!var->in_changed_variables);
3407 #endif
3409 if (!var->onepart)
3410 return 1;
3412 gcc_assert (var->n_var_parts == 1);
3413 node = var->var_part[0].loc_chain;
3414 gcc_assert (node);
3416 while ((next = node->next))
3418 gcc_assert (loc_cmp (node->loc, next->loc) < 0);
3419 node = next;
3422 return 1;
3424 #endif
3426 /* Mark with VALUE_RECURSED_INTO values that have neighbors that are
3427 more likely to be chosen as canonical for an equivalence set.
3428 Ensure less likely values can reach more likely neighbors, making
3429 the connections bidirectional. */
3431 static int
3432 canonicalize_values_mark (void **slot, void *data)
3434 dataflow_set *set = (dataflow_set *)data;
3435 variable var = (variable) *slot;
3436 decl_or_value dv = var->dv;
3437 rtx val;
3438 location_chain node;
3440 if (!dv_is_value_p (dv))
3441 return 1;
3443 gcc_checking_assert (var->n_var_parts == 1);
3445 val = dv_as_value (dv);
3447 for (node = var->var_part[0].loc_chain; node; node = node->next)
3448 if (GET_CODE (node->loc) == VALUE)
3450 if (canon_value_cmp (node->loc, val))
3451 VALUE_RECURSED_INTO (val) = true;
3452 else
3454 decl_or_value odv = dv_from_value (node->loc);
3455 void **oslot = shared_hash_find_slot_noinsert (set->vars, odv);
3457 set_slot_part (set, val, oslot, odv, 0,
3458 node->init, NULL_RTX);
3460 VALUE_RECURSED_INTO (node->loc) = true;
3464 return 1;
3467 /* Remove redundant entries from equivalence lists in onepart
3468 variables, canonicalizing equivalence sets into star shapes. */
3470 static int
3471 canonicalize_values_star (void **slot, void *data)
3473 dataflow_set *set = (dataflow_set *)data;
3474 variable var = (variable) *slot;
3475 decl_or_value dv = var->dv;
3476 location_chain node;
3477 decl_or_value cdv;
3478 rtx val, cval;
3479 void **cslot;
3480 bool has_value;
3481 bool has_marks;
3483 if (!var->onepart)
3484 return 1;
3486 gcc_checking_assert (var->n_var_parts == 1);
3488 if (dv_is_value_p (dv))
3490 cval = dv_as_value (dv);
3491 if (!VALUE_RECURSED_INTO (cval))
3492 return 1;
3493 VALUE_RECURSED_INTO (cval) = false;
3495 else
3496 cval = NULL_RTX;
3498 restart:
3499 val = cval;
3500 has_value = false;
3501 has_marks = false;
3503 gcc_assert (var->n_var_parts == 1);
3505 for (node = var->var_part[0].loc_chain; node; node = node->next)
3506 if (GET_CODE (node->loc) == VALUE)
3508 has_value = true;
3509 if (VALUE_RECURSED_INTO (node->loc))
3510 has_marks = true;
3511 if (canon_value_cmp (node->loc, cval))
3512 cval = node->loc;
3515 if (!has_value)
3516 return 1;
3518 if (cval == val)
3520 if (!has_marks || dv_is_decl_p (dv))
3521 return 1;
3523 /* Keep it marked so that we revisit it, either after visiting a
3524 child node, or after visiting a new parent that might be
3525 found out. */
3526 VALUE_RECURSED_INTO (val) = true;
3528 for (node = var->var_part[0].loc_chain; node; node = node->next)
3529 if (GET_CODE (node->loc) == VALUE
3530 && VALUE_RECURSED_INTO (node->loc))
3532 cval = node->loc;
3533 restart_with_cval:
3534 VALUE_RECURSED_INTO (cval) = false;
3535 dv = dv_from_value (cval);
3536 slot = shared_hash_find_slot_noinsert (set->vars, dv);
3537 if (!slot)
3539 gcc_assert (dv_is_decl_p (var->dv));
3540 /* The canonical value was reset and dropped.
3541 Remove it. */
3542 clobber_variable_part (set, NULL, var->dv, 0, NULL);
3543 return 1;
3545 var = (variable)*slot;
3546 gcc_assert (dv_is_value_p (var->dv));
3547 if (var->n_var_parts == 0)
3548 return 1;
3549 gcc_assert (var->n_var_parts == 1);
3550 goto restart;
3553 VALUE_RECURSED_INTO (val) = false;
3555 return 1;
3558 /* Push values to the canonical one. */
3559 cdv = dv_from_value (cval);
3560 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3562 for (node = var->var_part[0].loc_chain; node; node = node->next)
3563 if (node->loc != cval)
3565 cslot = set_slot_part (set, node->loc, cslot, cdv, 0,
3566 node->init, NULL_RTX);
3567 if (GET_CODE (node->loc) == VALUE)
3569 decl_or_value ndv = dv_from_value (node->loc);
3571 set_variable_part (set, cval, ndv, 0, node->init, NULL_RTX,
3572 NO_INSERT);
3574 if (canon_value_cmp (node->loc, val))
3576 /* If it could have been a local minimum, it's not any more,
3577 since it's now neighbor to cval, so it may have to push
3578 to it. Conversely, if it wouldn't have prevailed over
3579 val, then whatever mark it has is fine: if it was to
3580 push, it will now push to a more canonical node, but if
3581 it wasn't, then it has already pushed any values it might
3582 have to. */
3583 VALUE_RECURSED_INTO (node->loc) = true;
3584 /* Make sure we visit node->loc by ensuring we cval is
3585 visited too. */
3586 VALUE_RECURSED_INTO (cval) = true;
3588 else if (!VALUE_RECURSED_INTO (node->loc))
3589 /* If we have no need to "recurse" into this node, it's
3590 already "canonicalized", so drop the link to the old
3591 parent. */
3592 clobber_variable_part (set, cval, ndv, 0, NULL);
3594 else if (GET_CODE (node->loc) == REG)
3596 attrs list = set->regs[REGNO (node->loc)], *listp;
3598 /* Change an existing attribute referring to dv so that it
3599 refers to cdv, removing any duplicate this might
3600 introduce, and checking that no previous duplicates
3601 existed, all in a single pass. */
3603 while (list)
3605 if (list->offset == 0
3606 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3607 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3608 break;
3610 list = list->next;
3613 gcc_assert (list);
3614 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3616 list->dv = cdv;
3617 for (listp = &list->next; (list = *listp); listp = &list->next)
3619 if (list->offset)
3620 continue;
3622 if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3624 *listp = list->next;
3625 pool_free (attrs_pool, list);
3626 list = *listp;
3627 break;
3630 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (dv));
3633 else if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3635 for (listp = &list->next; (list = *listp); listp = &list->next)
3637 if (list->offset)
3638 continue;
3640 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3642 *listp = list->next;
3643 pool_free (attrs_pool, list);
3644 list = *listp;
3645 break;
3648 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (cdv));
3651 else
3652 gcc_unreachable ();
3654 #if ENABLE_CHECKING
3655 while (list)
3657 if (list->offset == 0
3658 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3659 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3660 gcc_unreachable ();
3662 list = list->next;
3664 #endif
3668 if (val)
3669 set_slot_part (set, val, cslot, cdv, 0,
3670 VAR_INIT_STATUS_INITIALIZED, NULL_RTX);
3672 slot = clobber_slot_part (set, cval, slot, 0, NULL);
3674 /* Variable may have been unshared. */
3675 var = (variable)*slot;
3676 gcc_checking_assert (var->n_var_parts && var->var_part[0].loc_chain->loc == cval
3677 && var->var_part[0].loc_chain->next == NULL);
3679 if (VALUE_RECURSED_INTO (cval))
3680 goto restart_with_cval;
3682 return 1;
3685 /* Bind one-part variables to the canonical value in an equivalence
3686 set. Not doing this causes dataflow convergence failure in rare
3687 circumstances, see PR42873. Unfortunately we can't do this
3688 efficiently as part of canonicalize_values_star, since we may not
3689 have determined or even seen the canonical value of a set when we
3690 get to a variable that references another member of the set. */
3692 static int
3693 canonicalize_vars_star (void **slot, void *data)
3695 dataflow_set *set = (dataflow_set *)data;
3696 variable var = (variable) *slot;
3697 decl_or_value dv = var->dv;
3698 location_chain node;
3699 rtx cval;
3700 decl_or_value cdv;
3701 void **cslot;
3702 variable cvar;
3703 location_chain cnode;
3705 if (!var->onepart || var->onepart == ONEPART_VALUE)
3706 return 1;
3708 gcc_assert (var->n_var_parts == 1);
3710 node = var->var_part[0].loc_chain;
3712 if (GET_CODE (node->loc) != VALUE)
3713 return 1;
3715 gcc_assert (!node->next);
3716 cval = node->loc;
3718 /* Push values to the canonical one. */
3719 cdv = dv_from_value (cval);
3720 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3721 if (!cslot)
3722 return 1;
3723 cvar = (variable)*cslot;
3724 gcc_assert (cvar->n_var_parts == 1);
3726 cnode = cvar->var_part[0].loc_chain;
3728 /* CVAL is canonical if its value list contains non-VALUEs or VALUEs
3729 that are not “more canonical” than it. */
3730 if (GET_CODE (cnode->loc) != VALUE
3731 || !canon_value_cmp (cnode->loc, cval))
3732 return 1;
3734 /* CVAL was found to be non-canonical. Change the variable to point
3735 to the canonical VALUE. */
3736 gcc_assert (!cnode->next);
3737 cval = cnode->loc;
3739 slot = set_slot_part (set, cval, slot, dv, 0,
3740 node->init, node->set_src);
3741 clobber_slot_part (set, cval, slot, 0, node->set_src);
3743 return 1;
3746 /* Combine variable or value in *S1SLOT (in DSM->cur) with the
3747 corresponding entry in DSM->src. Multi-part variables are combined
3748 with variable_union, whereas onepart dvs are combined with
3749 intersection. */
3751 static int
3752 variable_merge_over_cur (variable s1var, struct dfset_merge *dsm)
3754 dataflow_set *dst = dsm->dst;
3755 void **dstslot;
3756 variable s2var, dvar = NULL;
3757 decl_or_value dv = s1var->dv;
3758 onepart_enum_t onepart = s1var->onepart;
3759 rtx val;
3760 hashval_t dvhash;
3761 location_chain node, *nodep;
3763 /* If the incoming onepart variable has an empty location list, then
3764 the intersection will be just as empty. For other variables,
3765 it's always union. */
3766 gcc_checking_assert (s1var->n_var_parts
3767 && s1var->var_part[0].loc_chain);
3769 if (!onepart)
3770 return variable_union (s1var, dst);
3772 gcc_checking_assert (s1var->n_var_parts == 1);
3774 dvhash = dv_htab_hash (dv);
3775 if (dv_is_value_p (dv))
3776 val = dv_as_value (dv);
3777 else
3778 val = NULL;
3780 s2var = shared_hash_find_1 (dsm->src->vars, dv, dvhash);
3781 if (!s2var)
3783 dst_can_be_shared = false;
3784 return 1;
3787 dsm->src_onepart_cnt--;
3788 gcc_assert (s2var->var_part[0].loc_chain
3789 && s2var->onepart == onepart
3790 && s2var->n_var_parts == 1);
3792 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
3793 if (dstslot)
3795 dvar = (variable)*dstslot;
3796 gcc_assert (dvar->refcount == 1
3797 && dvar->onepart == onepart
3798 && dvar->n_var_parts == 1);
3799 nodep = &dvar->var_part[0].loc_chain;
3801 else
3803 nodep = &node;
3804 node = NULL;
3807 if (!dstslot && !onepart_variable_different_p (s1var, s2var))
3809 dstslot = shared_hash_find_slot_unshare_1 (&dst->vars, dv,
3810 dvhash, INSERT);
3811 *dstslot = dvar = s2var;
3812 dvar->refcount++;
3814 else
3816 dst_can_be_shared = false;
3818 intersect_loc_chains (val, nodep, dsm,
3819 s1var->var_part[0].loc_chain, s2var);
3821 if (!dstslot)
3823 if (node)
3825 dvar = (variable) pool_alloc (onepart_pool (onepart));
3826 dvar->dv = dv;
3827 dvar->refcount = 1;
3828 dvar->n_var_parts = 1;
3829 dvar->onepart = onepart;
3830 dvar->in_changed_variables = false;
3831 dvar->var_part[0].loc_chain = node;
3832 dvar->var_part[0].cur_loc = NULL;
3833 if (onepart)
3834 VAR_LOC_1PAUX (dvar) = NULL;
3835 else
3836 VAR_PART_OFFSET (dvar, 0) = 0;
3838 dstslot
3839 = shared_hash_find_slot_unshare_1 (&dst->vars, dv, dvhash,
3840 INSERT);
3841 gcc_assert (!*dstslot);
3842 *dstslot = dvar;
3844 else
3845 return 1;
3849 nodep = &dvar->var_part[0].loc_chain;
3850 while ((node = *nodep))
3852 location_chain *nextp = &node->next;
3854 if (GET_CODE (node->loc) == REG)
3856 attrs list;
3858 for (list = dst->regs[REGNO (node->loc)]; list; list = list->next)
3859 if (GET_MODE (node->loc) == GET_MODE (list->loc)
3860 && dv_is_value_p (list->dv))
3861 break;
3863 if (!list)
3864 attrs_list_insert (&dst->regs[REGNO (node->loc)],
3865 dv, 0, node->loc);
3866 /* If this value became canonical for another value that had
3867 this register, we want to leave it alone. */
3868 else if (dv_as_value (list->dv) != val)
3870 dstslot = set_slot_part (dst, dv_as_value (list->dv),
3871 dstslot, dv, 0,
3872 node->init, NULL_RTX);
3873 dstslot = delete_slot_part (dst, node->loc, dstslot, 0);
3875 /* Since nextp points into the removed node, we can't
3876 use it. The pointer to the next node moved to nodep.
3877 However, if the variable we're walking is unshared
3878 during our walk, we'll keep walking the location list
3879 of the previously-shared variable, in which case the
3880 node won't have been removed, and we'll want to skip
3881 it. That's why we test *nodep here. */
3882 if (*nodep != node)
3883 nextp = nodep;
3886 else
3887 /* Canonicalization puts registers first, so we don't have to
3888 walk it all. */
3889 break;
3890 nodep = nextp;
3893 if (dvar != (variable)*dstslot)
3894 dvar = (variable)*dstslot;
3895 nodep = &dvar->var_part[0].loc_chain;
3897 if (val)
3899 /* Mark all referenced nodes for canonicalization, and make sure
3900 we have mutual equivalence links. */
3901 VALUE_RECURSED_INTO (val) = true;
3902 for (node = *nodep; node; node = node->next)
3903 if (GET_CODE (node->loc) == VALUE)
3905 VALUE_RECURSED_INTO (node->loc) = true;
3906 set_variable_part (dst, val, dv_from_value (node->loc), 0,
3907 node->init, NULL, INSERT);
3910 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
3911 gcc_assert (*dstslot == dvar);
3912 canonicalize_values_star (dstslot, dst);
3913 gcc_checking_assert (dstslot
3914 == shared_hash_find_slot_noinsert_1 (dst->vars,
3915 dv, dvhash));
3916 dvar = (variable)*dstslot;
3918 else
3920 bool has_value = false, has_other = false;
3922 /* If we have one value and anything else, we're going to
3923 canonicalize this, so make sure all values have an entry in
3924 the table and are marked for canonicalization. */
3925 for (node = *nodep; node; node = node->next)
3927 if (GET_CODE (node->loc) == VALUE)
3929 /* If this was marked during register canonicalization,
3930 we know we have to canonicalize values. */
3931 if (has_value)
3932 has_other = true;
3933 has_value = true;
3934 if (has_other)
3935 break;
3937 else
3939 has_other = true;
3940 if (has_value)
3941 break;
3945 if (has_value && has_other)
3947 for (node = *nodep; node; node = node->next)
3949 if (GET_CODE (node->loc) == VALUE)
3951 decl_or_value dv = dv_from_value (node->loc);
3952 void **slot = NULL;
3954 if (shared_hash_shared (dst->vars))
3955 slot = shared_hash_find_slot_noinsert (dst->vars, dv);
3956 if (!slot)
3957 slot = shared_hash_find_slot_unshare (&dst->vars, dv,
3958 INSERT);
3959 if (!*slot)
3961 variable var = (variable) pool_alloc (onepart_pool
3962 (ONEPART_VALUE));
3963 var->dv = dv;
3964 var->refcount = 1;
3965 var->n_var_parts = 1;
3966 var->onepart = ONEPART_VALUE;
3967 var->in_changed_variables = false;
3968 var->var_part[0].loc_chain = NULL;
3969 var->var_part[0].cur_loc = NULL;
3970 VAR_LOC_1PAUX (var) = NULL;
3971 *slot = var;
3974 VALUE_RECURSED_INTO (node->loc) = true;
3978 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
3979 gcc_assert (*dstslot == dvar);
3980 canonicalize_values_star (dstslot, dst);
3981 gcc_checking_assert (dstslot
3982 == shared_hash_find_slot_noinsert_1 (dst->vars,
3983 dv, dvhash));
3984 dvar = (variable)*dstslot;
3988 if (!onepart_variable_different_p (dvar, s2var))
3990 variable_htab_free (dvar);
3991 *dstslot = dvar = s2var;
3992 dvar->refcount++;
3994 else if (s2var != s1var && !onepart_variable_different_p (dvar, s1var))
3996 variable_htab_free (dvar);
3997 *dstslot = dvar = s1var;
3998 dvar->refcount++;
3999 dst_can_be_shared = false;
4001 else
4002 dst_can_be_shared = false;
4004 return 1;
4007 /* Copy s2slot (in DSM->src) to DSM->dst if the variable is a
4008 multi-part variable. Unions of multi-part variables and
4009 intersections of one-part ones will be handled in
4010 variable_merge_over_cur(). */
4012 static int
4013 variable_merge_over_src (variable s2var, struct dfset_merge *dsm)
4015 dataflow_set *dst = dsm->dst;
4016 decl_or_value dv = s2var->dv;
4018 if (!s2var->onepart)
4020 void **dstp = shared_hash_find_slot (dst->vars, dv);
4021 *dstp = s2var;
4022 s2var->refcount++;
4023 return 1;
4026 dsm->src_onepart_cnt++;
4027 return 1;
4030 /* Combine dataflow set information from SRC2 into DST, using PDST
4031 to carry over information across passes. */
4033 static void
4034 dataflow_set_merge (dataflow_set *dst, dataflow_set *src2)
4036 dataflow_set cur = *dst;
4037 dataflow_set *src1 = &cur;
4038 struct dfset_merge dsm;
4039 int i;
4040 size_t src1_elems, src2_elems;
4041 htab_iterator hi;
4042 variable var;
4044 src1_elems = htab_elements (shared_hash_htab (src1->vars));
4045 src2_elems = htab_elements (shared_hash_htab (src2->vars));
4046 dataflow_set_init (dst);
4047 dst->stack_adjust = cur.stack_adjust;
4048 shared_hash_destroy (dst->vars);
4049 dst->vars = (shared_hash) pool_alloc (shared_hash_pool);
4050 dst->vars->refcount = 1;
4051 dst->vars->htab
4052 = htab_create (MAX (src1_elems, src2_elems), variable_htab_hash,
4053 variable_htab_eq, variable_htab_free);
4055 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4056 attrs_list_mpdv_union (&dst->regs[i], src1->regs[i], src2->regs[i]);
4058 dsm.dst = dst;
4059 dsm.src = src2;
4060 dsm.cur = src1;
4061 dsm.src_onepart_cnt = 0;
4063 FOR_EACH_HTAB_ELEMENT (shared_hash_htab (dsm.src->vars), var, variable, hi)
4064 variable_merge_over_src (var, &dsm);
4065 FOR_EACH_HTAB_ELEMENT (shared_hash_htab (dsm.cur->vars), var, variable, hi)
4066 variable_merge_over_cur (var, &dsm);
4068 if (dsm.src_onepart_cnt)
4069 dst_can_be_shared = false;
4071 dataflow_set_destroy (src1);
4074 /* Mark register equivalences. */
4076 static void
4077 dataflow_set_equiv_regs (dataflow_set *set)
4079 int i;
4080 attrs list, *listp;
4082 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4084 rtx canon[NUM_MACHINE_MODES];
4086 /* If the list is empty or one entry, no need to canonicalize
4087 anything. */
4088 if (set->regs[i] == NULL || set->regs[i]->next == NULL)
4089 continue;
4091 memset (canon, 0, sizeof (canon));
4093 for (list = set->regs[i]; list; list = list->next)
4094 if (list->offset == 0 && dv_is_value_p (list->dv))
4096 rtx val = dv_as_value (list->dv);
4097 rtx *cvalp = &canon[(int)GET_MODE (val)];
4098 rtx cval = *cvalp;
4100 if (canon_value_cmp (val, cval))
4101 *cvalp = val;
4104 for (list = set->regs[i]; list; list = list->next)
4105 if (list->offset == 0 && dv_onepart_p (list->dv))
4107 rtx cval = canon[(int)GET_MODE (list->loc)];
4109 if (!cval)
4110 continue;
4112 if (dv_is_value_p (list->dv))
4114 rtx val = dv_as_value (list->dv);
4116 if (val == cval)
4117 continue;
4119 VALUE_RECURSED_INTO (val) = true;
4120 set_variable_part (set, val, dv_from_value (cval), 0,
4121 VAR_INIT_STATUS_INITIALIZED,
4122 NULL, NO_INSERT);
4125 VALUE_RECURSED_INTO (cval) = true;
4126 set_variable_part (set, cval, list->dv, 0,
4127 VAR_INIT_STATUS_INITIALIZED, NULL, NO_INSERT);
4130 for (listp = &set->regs[i]; (list = *listp);
4131 listp = list ? &list->next : listp)
4132 if (list->offset == 0 && dv_onepart_p (list->dv))
4134 rtx cval = canon[(int)GET_MODE (list->loc)];
4135 void **slot;
4137 if (!cval)
4138 continue;
4140 if (dv_is_value_p (list->dv))
4142 rtx val = dv_as_value (list->dv);
4143 if (!VALUE_RECURSED_INTO (val))
4144 continue;
4147 slot = shared_hash_find_slot_noinsert (set->vars, list->dv);
4148 canonicalize_values_star (slot, set);
4149 if (*listp != list)
4150 list = NULL;
4155 /* Remove any redundant values in the location list of VAR, which must
4156 be unshared and 1-part. */
4158 static void
4159 remove_duplicate_values (variable var)
4161 location_chain node, *nodep;
4163 gcc_assert (var->onepart);
4164 gcc_assert (var->n_var_parts == 1);
4165 gcc_assert (var->refcount == 1);
4167 for (nodep = &var->var_part[0].loc_chain; (node = *nodep); )
4169 if (GET_CODE (node->loc) == VALUE)
4171 if (VALUE_RECURSED_INTO (node->loc))
4173 /* Remove duplicate value node. */
4174 *nodep = node->next;
4175 pool_free (loc_chain_pool, node);
4176 continue;
4178 else
4179 VALUE_RECURSED_INTO (node->loc) = true;
4181 nodep = &node->next;
4184 for (node = var->var_part[0].loc_chain; node; node = node->next)
4185 if (GET_CODE (node->loc) == VALUE)
4187 gcc_assert (VALUE_RECURSED_INTO (node->loc));
4188 VALUE_RECURSED_INTO (node->loc) = false;
4193 /* Hash table iteration argument passed to variable_post_merge. */
4194 struct dfset_post_merge
4196 /* The new input set for the current block. */
4197 dataflow_set *set;
4198 /* Pointer to the permanent input set for the current block, or
4199 NULL. */
4200 dataflow_set **permp;
4203 /* Create values for incoming expressions associated with one-part
4204 variables that don't have value numbers for them. */
4206 static int
4207 variable_post_merge_new_vals (void **slot, void *info)
4209 struct dfset_post_merge *dfpm = (struct dfset_post_merge *)info;
4210 dataflow_set *set = dfpm->set;
4211 variable var = (variable)*slot;
4212 location_chain node;
4214 if (!var->onepart || !var->n_var_parts)
4215 return 1;
4217 gcc_assert (var->n_var_parts == 1);
4219 if (dv_is_decl_p (var->dv))
4221 bool check_dupes = false;
4223 restart:
4224 for (node = var->var_part[0].loc_chain; node; node = node->next)
4226 if (GET_CODE (node->loc) == VALUE)
4227 gcc_assert (!VALUE_RECURSED_INTO (node->loc));
4228 else if (GET_CODE (node->loc) == REG)
4230 attrs att, *attp, *curp = NULL;
4232 if (var->refcount != 1)
4234 slot = unshare_variable (set, slot, var,
4235 VAR_INIT_STATUS_INITIALIZED);
4236 var = (variable)*slot;
4237 goto restart;
4240 for (attp = &set->regs[REGNO (node->loc)]; (att = *attp);
4241 attp = &att->next)
4242 if (att->offset == 0
4243 && GET_MODE (att->loc) == GET_MODE (node->loc))
4245 if (dv_is_value_p (att->dv))
4247 rtx cval = dv_as_value (att->dv);
4248 node->loc = cval;
4249 check_dupes = true;
4250 break;
4252 else if (dv_as_opaque (att->dv) == dv_as_opaque (var->dv))
4253 curp = attp;
4256 if (!curp)
4258 curp = attp;
4259 while (*curp)
4260 if ((*curp)->offset == 0
4261 && GET_MODE ((*curp)->loc) == GET_MODE (node->loc)
4262 && dv_as_opaque ((*curp)->dv) == dv_as_opaque (var->dv))
4263 break;
4264 else
4265 curp = &(*curp)->next;
4266 gcc_assert (*curp);
4269 if (!att)
4271 decl_or_value cdv;
4272 rtx cval;
4274 if (!*dfpm->permp)
4276 *dfpm->permp = XNEW (dataflow_set);
4277 dataflow_set_init (*dfpm->permp);
4280 for (att = (*dfpm->permp)->regs[REGNO (node->loc)];
4281 att; att = att->next)
4282 if (GET_MODE (att->loc) == GET_MODE (node->loc))
4284 gcc_assert (att->offset == 0
4285 && dv_is_value_p (att->dv));
4286 val_reset (set, att->dv);
4287 break;
4290 if (att)
4292 cdv = att->dv;
4293 cval = dv_as_value (cdv);
4295 else
4297 /* Create a unique value to hold this register,
4298 that ought to be found and reused in
4299 subsequent rounds. */
4300 cselib_val *v;
4301 gcc_assert (!cselib_lookup (node->loc,
4302 GET_MODE (node->loc), 0,
4303 VOIDmode));
4304 v = cselib_lookup (node->loc, GET_MODE (node->loc), 1,
4305 VOIDmode);
4306 cselib_preserve_value (v);
4307 cselib_invalidate_rtx (node->loc);
4308 cval = v->val_rtx;
4309 cdv = dv_from_value (cval);
4310 if (dump_file)
4311 fprintf (dump_file,
4312 "Created new value %u:%u for reg %i\n",
4313 v->uid, v->hash, REGNO (node->loc));
4316 var_reg_decl_set (*dfpm->permp, node->loc,
4317 VAR_INIT_STATUS_INITIALIZED,
4318 cdv, 0, NULL, INSERT);
4320 node->loc = cval;
4321 check_dupes = true;
4324 /* Remove attribute referring to the decl, which now
4325 uses the value for the register, already existing or
4326 to be added when we bring perm in. */
4327 att = *curp;
4328 *curp = att->next;
4329 pool_free (attrs_pool, att);
4333 if (check_dupes)
4334 remove_duplicate_values (var);
4337 return 1;
4340 /* Reset values in the permanent set that are not associated with the
4341 chosen expression. */
4343 static int
4344 variable_post_merge_perm_vals (void **pslot, void *info)
4346 struct dfset_post_merge *dfpm = (struct dfset_post_merge *)info;
4347 dataflow_set *set = dfpm->set;
4348 variable pvar = (variable)*pslot, var;
4349 location_chain pnode;
4350 decl_or_value dv;
4351 attrs att;
4353 gcc_assert (dv_is_value_p (pvar->dv)
4354 && pvar->n_var_parts == 1);
4355 pnode = pvar->var_part[0].loc_chain;
4356 gcc_assert (pnode
4357 && !pnode->next
4358 && REG_P (pnode->loc));
4360 dv = pvar->dv;
4362 var = shared_hash_find (set->vars, dv);
4363 if (var)
4365 /* Although variable_post_merge_new_vals may have made decls
4366 non-star-canonical, values that pre-existed in canonical form
4367 remain canonical, and newly-created values reference a single
4368 REG, so they are canonical as well. Since VAR has the
4369 location list for a VALUE, using find_loc_in_1pdv for it is
4370 fine, since VALUEs don't map back to DECLs. */
4371 if (find_loc_in_1pdv (pnode->loc, var, shared_hash_htab (set->vars)))
4372 return 1;
4373 val_reset (set, dv);
4376 for (att = set->regs[REGNO (pnode->loc)]; att; att = att->next)
4377 if (att->offset == 0
4378 && GET_MODE (att->loc) == GET_MODE (pnode->loc)
4379 && dv_is_value_p (att->dv))
4380 break;
4382 /* If there is a value associated with this register already, create
4383 an equivalence. */
4384 if (att && dv_as_value (att->dv) != dv_as_value (dv))
4386 rtx cval = dv_as_value (att->dv);
4387 set_variable_part (set, cval, dv, 0, pnode->init, NULL, INSERT);
4388 set_variable_part (set, dv_as_value (dv), att->dv, 0, pnode->init,
4389 NULL, INSERT);
4391 else if (!att)
4393 attrs_list_insert (&set->regs[REGNO (pnode->loc)],
4394 dv, 0, pnode->loc);
4395 variable_union (pvar, set);
4398 return 1;
4401 /* Just checking stuff and registering register attributes for
4402 now. */
4404 static void
4405 dataflow_post_merge_adjust (dataflow_set *set, dataflow_set **permp)
4407 struct dfset_post_merge dfpm;
4409 dfpm.set = set;
4410 dfpm.permp = permp;
4412 htab_traverse (shared_hash_htab (set->vars), variable_post_merge_new_vals,
4413 &dfpm);
4414 if (*permp)
4415 htab_traverse (shared_hash_htab ((*permp)->vars),
4416 variable_post_merge_perm_vals, &dfpm);
4417 htab_traverse (shared_hash_htab (set->vars), canonicalize_values_star, set);
4418 htab_traverse (shared_hash_htab (set->vars), canonicalize_vars_star, set);
4421 /* Return a node whose loc is a MEM that refers to EXPR in the
4422 location list of a one-part variable or value VAR, or in that of
4423 any values recursively mentioned in the location lists. */
4425 static location_chain
4426 find_mem_expr_in_1pdv (tree expr, rtx val, htab_t vars)
4428 location_chain node;
4429 decl_or_value dv;
4430 variable var;
4431 location_chain where = NULL;
4433 if (!val)
4434 return NULL;
4436 gcc_assert (GET_CODE (val) == VALUE
4437 && !VALUE_RECURSED_INTO (val));
4439 dv = dv_from_value (val);
4440 var = (variable) htab_find_with_hash (vars, dv, dv_htab_hash (dv));
4442 if (!var)
4443 return NULL;
4445 gcc_assert (var->onepart);
4447 if (!var->n_var_parts)
4448 return NULL;
4450 VALUE_RECURSED_INTO (val) = true;
4452 for (node = var->var_part[0].loc_chain; node; node = node->next)
4453 if (MEM_P (node->loc)
4454 && MEM_EXPR (node->loc) == expr
4455 && INT_MEM_OFFSET (node->loc) == 0)
4457 where = node;
4458 break;
4460 else if (GET_CODE (node->loc) == VALUE
4461 && !VALUE_RECURSED_INTO (node->loc)
4462 && (where = find_mem_expr_in_1pdv (expr, node->loc, vars)))
4463 break;
4465 VALUE_RECURSED_INTO (val) = false;
4467 return where;
4470 /* Return TRUE if the value of MEM may vary across a call. */
4472 static bool
4473 mem_dies_at_call (rtx mem)
4475 tree expr = MEM_EXPR (mem);
4476 tree decl;
4478 if (!expr)
4479 return true;
4481 decl = get_base_address (expr);
4483 if (!decl)
4484 return true;
4486 if (!DECL_P (decl))
4487 return true;
4489 return (may_be_aliased (decl)
4490 || (!TREE_READONLY (decl) && is_global_var (decl)));
4493 /* Remove all MEMs from the location list of a hash table entry for a
4494 one-part variable, except those whose MEM attributes map back to
4495 the variable itself, directly or within a VALUE. */
4497 static int
4498 dataflow_set_preserve_mem_locs (void **slot, void *data)
4500 dataflow_set *set = (dataflow_set *) data;
4501 variable var = (variable) *slot;
4503 if (var->onepart == ONEPART_VDECL || var->onepart == ONEPART_DEXPR)
4505 tree decl = dv_as_decl (var->dv);
4506 location_chain loc, *locp;
4507 bool changed = false;
4509 if (!var->n_var_parts)
4510 return 1;
4512 gcc_assert (var->n_var_parts == 1);
4514 if (shared_var_p (var, set->vars))
4516 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4518 /* We want to remove dying MEMs that doesn't refer to DECL. */
4519 if (GET_CODE (loc->loc) == MEM
4520 && (MEM_EXPR (loc->loc) != decl
4521 || INT_MEM_OFFSET (loc->loc) != 0)
4522 && !mem_dies_at_call (loc->loc))
4523 break;
4524 /* We want to move here MEMs that do refer to DECL. */
4525 else if (GET_CODE (loc->loc) == VALUE
4526 && find_mem_expr_in_1pdv (decl, loc->loc,
4527 shared_hash_htab (set->vars)))
4528 break;
4531 if (!loc)
4532 return 1;
4534 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4535 var = (variable)*slot;
4536 gcc_assert (var->n_var_parts == 1);
4539 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4540 loc; loc = *locp)
4542 rtx old_loc = loc->loc;
4543 if (GET_CODE (old_loc) == VALUE)
4545 location_chain mem_node
4546 = find_mem_expr_in_1pdv (decl, loc->loc,
4547 shared_hash_htab (set->vars));
4549 /* ??? This picks up only one out of multiple MEMs that
4550 refer to the same variable. Do we ever need to be
4551 concerned about dealing with more than one, or, given
4552 that they should all map to the same variable
4553 location, their addresses will have been merged and
4554 they will be regarded as equivalent? */
4555 if (mem_node)
4557 loc->loc = mem_node->loc;
4558 loc->set_src = mem_node->set_src;
4559 loc->init = MIN (loc->init, mem_node->init);
4563 if (GET_CODE (loc->loc) != MEM
4564 || (MEM_EXPR (loc->loc) == decl
4565 && INT_MEM_OFFSET (loc->loc) == 0)
4566 || !mem_dies_at_call (loc->loc))
4568 if (old_loc != loc->loc && emit_notes)
4570 if (old_loc == var->var_part[0].cur_loc)
4572 changed = true;
4573 var->var_part[0].cur_loc = NULL;
4576 locp = &loc->next;
4577 continue;
4580 if (emit_notes)
4582 if (old_loc == var->var_part[0].cur_loc)
4584 changed = true;
4585 var->var_part[0].cur_loc = NULL;
4588 *locp = loc->next;
4589 pool_free (loc_chain_pool, loc);
4592 if (!var->var_part[0].loc_chain)
4594 var->n_var_parts--;
4595 changed = true;
4597 if (changed)
4598 variable_was_changed (var, set);
4601 return 1;
4604 /* Remove all MEMs from the location list of a hash table entry for a
4605 value. */
4607 static int
4608 dataflow_set_remove_mem_locs (void **slot, void *data)
4610 dataflow_set *set = (dataflow_set *) data;
4611 variable var = (variable) *slot;
4613 if (var->onepart == ONEPART_VALUE)
4615 location_chain loc, *locp;
4616 bool changed = false;
4617 rtx cur_loc;
4619 gcc_assert (var->n_var_parts == 1);
4621 if (shared_var_p (var, set->vars))
4623 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4624 if (GET_CODE (loc->loc) == MEM
4625 && mem_dies_at_call (loc->loc))
4626 break;
4628 if (!loc)
4629 return 1;
4631 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4632 var = (variable)*slot;
4633 gcc_assert (var->n_var_parts == 1);
4636 if (VAR_LOC_1PAUX (var))
4637 cur_loc = VAR_LOC_FROM (var);
4638 else
4639 cur_loc = var->var_part[0].cur_loc;
4641 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4642 loc; loc = *locp)
4644 if (GET_CODE (loc->loc) != MEM
4645 || !mem_dies_at_call (loc->loc))
4647 locp = &loc->next;
4648 continue;
4651 *locp = loc->next;
4652 /* If we have deleted the location which was last emitted
4653 we have to emit new location so add the variable to set
4654 of changed variables. */
4655 if (cur_loc == loc->loc)
4657 changed = true;
4658 var->var_part[0].cur_loc = NULL;
4659 if (VAR_LOC_1PAUX (var))
4660 VAR_LOC_FROM (var) = NULL;
4662 pool_free (loc_chain_pool, loc);
4665 if (!var->var_part[0].loc_chain)
4667 var->n_var_parts--;
4668 changed = true;
4670 if (changed)
4671 variable_was_changed (var, set);
4674 return 1;
4677 /* Remove all variable-location information about call-clobbered
4678 registers, as well as associations between MEMs and VALUEs. */
4680 static void
4681 dataflow_set_clear_at_call (dataflow_set *set)
4683 unsigned int r;
4684 hard_reg_set_iterator hrsi;
4686 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, r, hrsi)
4687 var_regno_delete (set, r);
4689 if (MAY_HAVE_DEBUG_INSNS)
4691 set->traversed_vars = set->vars;
4692 htab_traverse (shared_hash_htab (set->vars),
4693 dataflow_set_preserve_mem_locs, set);
4694 set->traversed_vars = set->vars;
4695 htab_traverse (shared_hash_htab (set->vars), dataflow_set_remove_mem_locs,
4696 set);
4697 set->traversed_vars = NULL;
4701 static bool
4702 variable_part_different_p (variable_part *vp1, variable_part *vp2)
4704 location_chain lc1, lc2;
4706 for (lc1 = vp1->loc_chain; lc1; lc1 = lc1->next)
4708 for (lc2 = vp2->loc_chain; lc2; lc2 = lc2->next)
4710 if (REG_P (lc1->loc) && REG_P (lc2->loc))
4712 if (REGNO (lc1->loc) == REGNO (lc2->loc))
4713 break;
4715 if (rtx_equal_p (lc1->loc, lc2->loc))
4716 break;
4718 if (!lc2)
4719 return true;
4721 return false;
4724 /* Return true if one-part variables VAR1 and VAR2 are different.
4725 They must be in canonical order. */
4727 static bool
4728 onepart_variable_different_p (variable var1, variable var2)
4730 location_chain lc1, lc2;
4732 if (var1 == var2)
4733 return false;
4735 gcc_assert (var1->n_var_parts == 1
4736 && var2->n_var_parts == 1);
4738 lc1 = var1->var_part[0].loc_chain;
4739 lc2 = var2->var_part[0].loc_chain;
4741 gcc_assert (lc1 && lc2);
4743 while (lc1 && lc2)
4745 if (loc_cmp (lc1->loc, lc2->loc))
4746 return true;
4747 lc1 = lc1->next;
4748 lc2 = lc2->next;
4751 return lc1 != lc2;
4754 /* Return true if variables VAR1 and VAR2 are different. */
4756 static bool
4757 variable_different_p (variable var1, variable var2)
4759 int i;
4761 if (var1 == var2)
4762 return false;
4764 if (var1->onepart != var2->onepart)
4765 return true;
4767 if (var1->n_var_parts != var2->n_var_parts)
4768 return true;
4770 if (var1->onepart && var1->n_var_parts)
4772 gcc_checking_assert (dv_as_opaque (var1->dv) == dv_as_opaque (var2->dv)
4773 && var1->n_var_parts == 1);
4774 /* One-part values have locations in a canonical order. */
4775 return onepart_variable_different_p (var1, var2);
4778 for (i = 0; i < var1->n_var_parts; i++)
4780 if (VAR_PART_OFFSET (var1, i) != VAR_PART_OFFSET (var2, i))
4781 return true;
4782 if (variable_part_different_p (&var1->var_part[i], &var2->var_part[i]))
4783 return true;
4784 if (variable_part_different_p (&var2->var_part[i], &var1->var_part[i]))
4785 return true;
4787 return false;
4790 /* Return true if dataflow sets OLD_SET and NEW_SET differ. */
4792 static bool
4793 dataflow_set_different (dataflow_set *old_set, dataflow_set *new_set)
4795 htab_iterator hi;
4796 variable var1;
4798 if (old_set->vars == new_set->vars)
4799 return false;
4801 if (htab_elements (shared_hash_htab (old_set->vars))
4802 != htab_elements (shared_hash_htab (new_set->vars)))
4803 return true;
4805 FOR_EACH_HTAB_ELEMENT (shared_hash_htab (old_set->vars), var1, variable, hi)
4807 htab_t htab = shared_hash_htab (new_set->vars);
4808 variable var2 = (variable) htab_find_with_hash (htab, var1->dv,
4809 dv_htab_hash (var1->dv));
4810 if (!var2)
4812 if (dump_file && (dump_flags & TDF_DETAILS))
4814 fprintf (dump_file, "dataflow difference found: removal of:\n");
4815 dump_var (var1);
4817 return true;
4820 if (variable_different_p (var1, var2))
4822 if (dump_file && (dump_flags & TDF_DETAILS))
4824 fprintf (dump_file, "dataflow difference found: "
4825 "old and new follow:\n");
4826 dump_var (var1);
4827 dump_var (var2);
4829 return true;
4833 /* No need to traverse the second hashtab, if both have the same number
4834 of elements and the second one had all entries found in the first one,
4835 then it can't have any extra entries. */
4836 return false;
4839 /* Free the contents of dataflow set SET. */
4841 static void
4842 dataflow_set_destroy (dataflow_set *set)
4844 int i;
4846 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4847 attrs_list_clear (&set->regs[i]);
4849 shared_hash_destroy (set->vars);
4850 set->vars = NULL;
4853 /* Return true if RTL X contains a SYMBOL_REF. */
4855 static bool
4856 contains_symbol_ref (rtx x)
4858 const char *fmt;
4859 RTX_CODE code;
4860 int i;
4862 if (!x)
4863 return false;
4865 code = GET_CODE (x);
4866 if (code == SYMBOL_REF)
4867 return true;
4869 fmt = GET_RTX_FORMAT (code);
4870 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4872 if (fmt[i] == 'e')
4874 if (contains_symbol_ref (XEXP (x, i)))
4875 return true;
4877 else if (fmt[i] == 'E')
4879 int j;
4880 for (j = 0; j < XVECLEN (x, i); j++)
4881 if (contains_symbol_ref (XVECEXP (x, i, j)))
4882 return true;
4886 return false;
4889 /* Shall EXPR be tracked? */
4891 static bool
4892 track_expr_p (tree expr, bool need_rtl)
4894 rtx decl_rtl;
4895 tree realdecl;
4897 if (TREE_CODE (expr) == DEBUG_EXPR_DECL)
4898 return DECL_RTL_SET_P (expr);
4900 /* If EXPR is not a parameter or a variable do not track it. */
4901 if (TREE_CODE (expr) != VAR_DECL && TREE_CODE (expr) != PARM_DECL)
4902 return 0;
4904 /* It also must have a name... */
4905 if (!DECL_NAME (expr) && need_rtl)
4906 return 0;
4908 /* ... and a RTL assigned to it. */
4909 decl_rtl = DECL_RTL_IF_SET (expr);
4910 if (!decl_rtl && need_rtl)
4911 return 0;
4913 /* If this expression is really a debug alias of some other declaration, we
4914 don't need to track this expression if the ultimate declaration is
4915 ignored. */
4916 realdecl = expr;
4917 if (DECL_DEBUG_EXPR_IS_FROM (realdecl))
4919 realdecl = DECL_DEBUG_EXPR (realdecl);
4920 if (realdecl == NULL_TREE)
4921 realdecl = expr;
4922 else if (!DECL_P (realdecl))
4924 if (handled_component_p (realdecl)
4925 || (TREE_CODE (realdecl) == MEM_REF
4926 && TREE_CODE (TREE_OPERAND (realdecl, 0)) == ADDR_EXPR))
4928 HOST_WIDE_INT bitsize, bitpos, maxsize;
4929 tree innerdecl
4930 = get_ref_base_and_extent (realdecl, &bitpos, &bitsize,
4931 &maxsize);
4932 if (!DECL_P (innerdecl)
4933 || DECL_IGNORED_P (innerdecl)
4934 || TREE_STATIC (innerdecl)
4935 || bitsize <= 0
4936 || bitpos + bitsize > 256
4937 || bitsize != maxsize)
4938 return 0;
4939 else
4940 realdecl = expr;
4942 else
4943 return 0;
4947 /* Do not track EXPR if REALDECL it should be ignored for debugging
4948 purposes. */
4949 if (DECL_IGNORED_P (realdecl))
4950 return 0;
4952 /* Do not track global variables until we are able to emit correct location
4953 list for them. */
4954 if (TREE_STATIC (realdecl))
4955 return 0;
4957 /* When the EXPR is a DECL for alias of some variable (see example)
4958 the TREE_STATIC flag is not used. Disable tracking all DECLs whose
4959 DECL_RTL contains SYMBOL_REF.
4961 Example:
4962 extern char **_dl_argv_internal __attribute__ ((alias ("_dl_argv")));
4963 char **_dl_argv;
4965 if (decl_rtl && MEM_P (decl_rtl)
4966 && contains_symbol_ref (XEXP (decl_rtl, 0)))
4967 return 0;
4969 /* If RTX is a memory it should not be very large (because it would be
4970 an array or struct). */
4971 if (decl_rtl && MEM_P (decl_rtl))
4973 /* Do not track structures and arrays. */
4974 if (GET_MODE (decl_rtl) == BLKmode
4975 || AGGREGATE_TYPE_P (TREE_TYPE (realdecl)))
4976 return 0;
4977 if (MEM_SIZE_KNOWN_P (decl_rtl)
4978 && MEM_SIZE (decl_rtl) > MAX_VAR_PARTS)
4979 return 0;
4982 DECL_CHANGED (expr) = 0;
4983 DECL_CHANGED (realdecl) = 0;
4984 return 1;
4987 /* Determine whether a given LOC refers to the same variable part as
4988 EXPR+OFFSET. */
4990 static bool
4991 same_variable_part_p (rtx loc, tree expr, HOST_WIDE_INT offset)
4993 tree expr2;
4994 HOST_WIDE_INT offset2;
4996 if (! DECL_P (expr))
4997 return false;
4999 if (REG_P (loc))
5001 expr2 = REG_EXPR (loc);
5002 offset2 = REG_OFFSET (loc);
5004 else if (MEM_P (loc))
5006 expr2 = MEM_EXPR (loc);
5007 offset2 = INT_MEM_OFFSET (loc);
5009 else
5010 return false;
5012 if (! expr2 || ! DECL_P (expr2))
5013 return false;
5015 expr = var_debug_decl (expr);
5016 expr2 = var_debug_decl (expr2);
5018 return (expr == expr2 && offset == offset2);
5021 /* LOC is a REG or MEM that we would like to track if possible.
5022 If EXPR is null, we don't know what expression LOC refers to,
5023 otherwise it refers to EXPR + OFFSET. STORE_REG_P is true if
5024 LOC is an lvalue register.
5026 Return true if EXPR is nonnull and if LOC, or some lowpart of it,
5027 is something we can track. When returning true, store the mode of
5028 the lowpart we can track in *MODE_OUT (if nonnull) and its offset
5029 from EXPR in *OFFSET_OUT (if nonnull). */
5031 static bool
5032 track_loc_p (rtx loc, tree expr, HOST_WIDE_INT offset, bool store_reg_p,
5033 enum machine_mode *mode_out, HOST_WIDE_INT *offset_out)
5035 enum machine_mode mode;
5037 if (expr == NULL || !track_expr_p (expr, true))
5038 return false;
5040 /* If REG was a paradoxical subreg, its REG_ATTRS will describe the
5041 whole subreg, but only the old inner part is really relevant. */
5042 mode = GET_MODE (loc);
5043 if (REG_P (loc) && !HARD_REGISTER_NUM_P (ORIGINAL_REGNO (loc)))
5045 enum machine_mode pseudo_mode;
5047 pseudo_mode = PSEUDO_REGNO_MODE (ORIGINAL_REGNO (loc));
5048 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (pseudo_mode))
5050 offset += byte_lowpart_offset (pseudo_mode, mode);
5051 mode = pseudo_mode;
5055 /* If LOC is a paradoxical lowpart of EXPR, refer to EXPR itself.
5056 Do the same if we are storing to a register and EXPR occupies
5057 the whole of register LOC; in that case, the whole of EXPR is
5058 being changed. We exclude complex modes from the second case
5059 because the real and imaginary parts are represented as separate
5060 pseudo registers, even if the whole complex value fits into one
5061 hard register. */
5062 if ((GET_MODE_SIZE (mode) > GET_MODE_SIZE (DECL_MODE (expr))
5063 || (store_reg_p
5064 && !COMPLEX_MODE_P (DECL_MODE (expr))
5065 && hard_regno_nregs[REGNO (loc)][DECL_MODE (expr)] == 1))
5066 && offset + byte_lowpart_offset (DECL_MODE (expr), mode) == 0)
5068 mode = DECL_MODE (expr);
5069 offset = 0;
5072 if (offset < 0 || offset >= MAX_VAR_PARTS)
5073 return false;
5075 if (mode_out)
5076 *mode_out = mode;
5077 if (offset_out)
5078 *offset_out = offset;
5079 return true;
5082 /* Return the MODE lowpart of LOC, or null if LOC is not something we
5083 want to track. When returning nonnull, make sure that the attributes
5084 on the returned value are updated. */
5086 static rtx
5087 var_lowpart (enum machine_mode mode, rtx loc)
5089 unsigned int offset, reg_offset, regno;
5091 if (GET_MODE (loc) == mode)
5092 return loc;
5094 if (!REG_P (loc) && !MEM_P (loc))
5095 return NULL;
5097 offset = byte_lowpart_offset (mode, GET_MODE (loc));
5099 if (MEM_P (loc))
5100 return adjust_address_nv (loc, mode, offset);
5102 reg_offset = subreg_lowpart_offset (mode, GET_MODE (loc));
5103 regno = REGNO (loc) + subreg_regno_offset (REGNO (loc), GET_MODE (loc),
5104 reg_offset, mode);
5105 return gen_rtx_REG_offset (loc, mode, regno, offset);
5108 /* Carry information about uses and stores while walking rtx. */
5110 struct count_use_info
5112 /* The insn where the RTX is. */
5113 rtx insn;
5115 /* The basic block where insn is. */
5116 basic_block bb;
5118 /* The array of n_sets sets in the insn, as determined by cselib. */
5119 struct cselib_set *sets;
5120 int n_sets;
5122 /* True if we're counting stores, false otherwise. */
5123 bool store_p;
5126 /* Find a VALUE corresponding to X. */
5128 static inline cselib_val *
5129 find_use_val (rtx x, enum machine_mode mode, struct count_use_info *cui)
5131 int i;
5133 if (cui->sets)
5135 /* This is called after uses are set up and before stores are
5136 processed by cselib, so it's safe to look up srcs, but not
5137 dsts. So we look up expressions that appear in srcs or in
5138 dest expressions, but we search the sets array for dests of
5139 stores. */
5140 if (cui->store_p)
5142 /* Some targets represent memset and memcpy patterns
5143 by (set (mem:BLK ...) (reg:[QHSD]I ...)) or
5144 (set (mem:BLK ...) (const_int ...)) or
5145 (set (mem:BLK ...) (mem:BLK ...)). Don't return anything
5146 in that case, otherwise we end up with mode mismatches. */
5147 if (mode == BLKmode && MEM_P (x))
5148 return NULL;
5149 for (i = 0; i < cui->n_sets; i++)
5150 if (cui->sets[i].dest == x)
5151 return cui->sets[i].src_elt;
5153 else
5154 return cselib_lookup (x, mode, 0, VOIDmode);
5157 return NULL;
5160 /* Replace all registers and addresses in an expression with VALUE
5161 expressions that map back to them, unless the expression is a
5162 register. If no mapping is or can be performed, returns NULL. */
5164 static rtx
5165 replace_expr_with_values (rtx loc)
5167 if (REG_P (loc) || GET_CODE (loc) == ENTRY_VALUE)
5168 return NULL;
5169 else if (MEM_P (loc))
5171 cselib_val *addr = cselib_lookup (XEXP (loc, 0),
5172 get_address_mode (loc), 0,
5173 GET_MODE (loc));
5174 if (addr)
5175 return replace_equiv_address_nv (loc, addr->val_rtx);
5176 else
5177 return NULL;
5179 else
5180 return cselib_subst_to_values (loc, VOIDmode);
5183 /* Return true if *X is a DEBUG_EXPR. Usable as an argument to
5184 for_each_rtx to tell whether there are any DEBUG_EXPRs within
5185 RTX. */
5187 static int
5188 rtx_debug_expr_p (rtx *x, void *data ATTRIBUTE_UNUSED)
5190 rtx loc = *x;
5192 return GET_CODE (loc) == DEBUG_EXPR;
5195 /* Determine what kind of micro operation to choose for a USE. Return
5196 MO_CLOBBER if no micro operation is to be generated. */
5198 static enum micro_operation_type
5199 use_type (rtx loc, struct count_use_info *cui, enum machine_mode *modep)
5201 tree expr;
5203 if (cui && cui->sets)
5205 if (GET_CODE (loc) == VAR_LOCATION)
5207 if (track_expr_p (PAT_VAR_LOCATION_DECL (loc), false))
5209 rtx ploc = PAT_VAR_LOCATION_LOC (loc);
5210 if (! VAR_LOC_UNKNOWN_P (ploc))
5212 cselib_val *val = cselib_lookup (ploc, GET_MODE (loc), 1,
5213 VOIDmode);
5215 /* ??? flag_float_store and volatile mems are never
5216 given values, but we could in theory use them for
5217 locations. */
5218 gcc_assert (val || 1);
5220 return MO_VAL_LOC;
5222 else
5223 return MO_CLOBBER;
5226 if (REG_P (loc) || MEM_P (loc))
5228 if (modep)
5229 *modep = GET_MODE (loc);
5230 if (cui->store_p)
5232 if (REG_P (loc)
5233 || (find_use_val (loc, GET_MODE (loc), cui)
5234 && cselib_lookup (XEXP (loc, 0),
5235 get_address_mode (loc), 0,
5236 GET_MODE (loc))))
5237 return MO_VAL_SET;
5239 else
5241 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5243 if (val && !cselib_preserved_value_p (val))
5244 return MO_VAL_USE;
5249 if (REG_P (loc))
5251 gcc_assert (REGNO (loc) < FIRST_PSEUDO_REGISTER);
5253 if (loc == cfa_base_rtx)
5254 return MO_CLOBBER;
5255 expr = REG_EXPR (loc);
5257 if (!expr)
5258 return MO_USE_NO_VAR;
5259 else if (target_for_debug_bind (var_debug_decl (expr)))
5260 return MO_CLOBBER;
5261 else if (track_loc_p (loc, expr, REG_OFFSET (loc),
5262 false, modep, NULL))
5263 return MO_USE;
5264 else
5265 return MO_USE_NO_VAR;
5267 else if (MEM_P (loc))
5269 expr = MEM_EXPR (loc);
5271 if (!expr)
5272 return MO_CLOBBER;
5273 else if (target_for_debug_bind (var_debug_decl (expr)))
5274 return MO_CLOBBER;
5275 else if (track_loc_p (loc, expr, INT_MEM_OFFSET (loc),
5276 false, modep, NULL)
5277 /* Multi-part variables shouldn't refer to one-part
5278 variable names such as VALUEs (never happens) or
5279 DEBUG_EXPRs (only happens in the presence of debug
5280 insns). */
5281 && (!MAY_HAVE_DEBUG_INSNS
5282 || !for_each_rtx (&XEXP (loc, 0), rtx_debug_expr_p, NULL)))
5283 return MO_USE;
5284 else
5285 return MO_CLOBBER;
5288 return MO_CLOBBER;
5291 /* Log to OUT information about micro-operation MOPT involving X in
5292 INSN of BB. */
5294 static inline void
5295 log_op_type (rtx x, basic_block bb, rtx insn,
5296 enum micro_operation_type mopt, FILE *out)
5298 fprintf (out, "bb %i op %i insn %i %s ",
5299 bb->index, VEC_length (micro_operation, VTI (bb)->mos),
5300 INSN_UID (insn), micro_operation_type_name[mopt]);
5301 print_inline_rtx (out, x, 2);
5302 fputc ('\n', out);
5305 /* Tell whether the CONCAT used to holds a VALUE and its location
5306 needs value resolution, i.e., an attempt of mapping the location
5307 back to other incoming values. */
5308 #define VAL_NEEDS_RESOLUTION(x) \
5309 (RTL_FLAG_CHECK1 ("VAL_NEEDS_RESOLUTION", (x), CONCAT)->volatil)
5310 /* Whether the location in the CONCAT is a tracked expression, that
5311 should also be handled like a MO_USE. */
5312 #define VAL_HOLDS_TRACK_EXPR(x) \
5313 (RTL_FLAG_CHECK1 ("VAL_HOLDS_TRACK_EXPR", (x), CONCAT)->used)
5314 /* Whether the location in the CONCAT should be handled like a MO_COPY
5315 as well. */
5316 #define VAL_EXPR_IS_COPIED(x) \
5317 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_COPIED", (x), CONCAT)->jump)
5318 /* Whether the location in the CONCAT should be handled like a
5319 MO_CLOBBER as well. */
5320 #define VAL_EXPR_IS_CLOBBERED(x) \
5321 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_CLOBBERED", (x), CONCAT)->unchanging)
5323 /* All preserved VALUEs. */
5324 static VEC (rtx, heap) *preserved_values;
5326 /* Ensure VAL is preserved and remember it in a vector for vt_emit_notes. */
5328 static void
5329 preserve_value (cselib_val *val)
5331 cselib_preserve_value (val);
5332 VEC_safe_push (rtx, heap, preserved_values, val->val_rtx);
5335 /* Helper function for MO_VAL_LOC handling. Return non-zero if
5336 any rtxes not suitable for CONST use not replaced by VALUEs
5337 are discovered. */
5339 static int
5340 non_suitable_const (rtx *x, void *data ATTRIBUTE_UNUSED)
5342 if (*x == NULL_RTX)
5343 return 0;
5345 switch (GET_CODE (*x))
5347 case REG:
5348 case DEBUG_EXPR:
5349 case PC:
5350 case SCRATCH:
5351 case CC0:
5352 case ASM_INPUT:
5353 case ASM_OPERANDS:
5354 return 1;
5355 case MEM:
5356 return !MEM_READONLY_P (*x);
5357 default:
5358 return 0;
5362 /* Add uses (register and memory references) LOC which will be tracked
5363 to VTI (bb)->mos. INSN is instruction which the LOC is part of. */
5365 static int
5366 add_uses (rtx *ploc, void *data)
5368 rtx loc = *ploc;
5369 enum machine_mode mode = VOIDmode;
5370 struct count_use_info *cui = (struct count_use_info *)data;
5371 enum micro_operation_type type = use_type (loc, cui, &mode);
5373 if (type != MO_CLOBBER)
5375 basic_block bb = cui->bb;
5376 micro_operation mo;
5378 mo.type = type;
5379 mo.u.loc = type == MO_USE ? var_lowpart (mode, loc) : loc;
5380 mo.insn = cui->insn;
5382 if (type == MO_VAL_LOC)
5384 rtx oloc = loc;
5385 rtx vloc = PAT_VAR_LOCATION_LOC (oloc);
5386 cselib_val *val;
5388 gcc_assert (cui->sets);
5390 if (MEM_P (vloc)
5391 && !REG_P (XEXP (vloc, 0))
5392 && !MEM_P (XEXP (vloc, 0)))
5394 rtx mloc = vloc;
5395 enum machine_mode address_mode = get_address_mode (mloc);
5396 cselib_val *val
5397 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5398 GET_MODE (mloc));
5400 if (val && !cselib_preserved_value_p (val))
5401 preserve_value (val);
5404 if (CONSTANT_P (vloc)
5405 && (GET_CODE (vloc) != CONST
5406 || for_each_rtx (&vloc, non_suitable_const, NULL)))
5407 /* For constants don't look up any value. */;
5408 else if (!VAR_LOC_UNKNOWN_P (vloc) && !unsuitable_loc (vloc)
5409 && (val = find_use_val (vloc, GET_MODE (oloc), cui)))
5411 enum machine_mode mode2;
5412 enum micro_operation_type type2;
5413 rtx nloc = NULL;
5414 bool resolvable = REG_P (vloc) || MEM_P (vloc);
5416 if (resolvable)
5417 nloc = replace_expr_with_values (vloc);
5419 if (nloc)
5421 oloc = shallow_copy_rtx (oloc);
5422 PAT_VAR_LOCATION_LOC (oloc) = nloc;
5425 oloc = gen_rtx_CONCAT (mode, val->val_rtx, oloc);
5427 type2 = use_type (vloc, 0, &mode2);
5429 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5430 || type2 == MO_CLOBBER);
5432 if (type2 == MO_CLOBBER
5433 && !cselib_preserved_value_p (val))
5435 VAL_NEEDS_RESOLUTION (oloc) = resolvable;
5436 preserve_value (val);
5439 else if (!VAR_LOC_UNKNOWN_P (vloc))
5441 oloc = shallow_copy_rtx (oloc);
5442 PAT_VAR_LOCATION_LOC (oloc) = gen_rtx_UNKNOWN_VAR_LOC ();
5445 mo.u.loc = oloc;
5447 else if (type == MO_VAL_USE)
5449 enum machine_mode mode2 = VOIDmode;
5450 enum micro_operation_type type2;
5451 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5452 rtx vloc, oloc = loc, nloc;
5454 gcc_assert (cui->sets);
5456 if (MEM_P (oloc)
5457 && !REG_P (XEXP (oloc, 0))
5458 && !MEM_P (XEXP (oloc, 0)))
5460 rtx mloc = oloc;
5461 enum machine_mode address_mode = get_address_mode (mloc);
5462 cselib_val *val
5463 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5464 GET_MODE (mloc));
5466 if (val && !cselib_preserved_value_p (val))
5467 preserve_value (val);
5470 type2 = use_type (loc, 0, &mode2);
5472 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5473 || type2 == MO_CLOBBER);
5475 if (type2 == MO_USE)
5476 vloc = var_lowpart (mode2, loc);
5477 else
5478 vloc = oloc;
5480 /* The loc of a MO_VAL_USE may have two forms:
5482 (concat val src): val is at src, a value-based
5483 representation.
5485 (concat (concat val use) src): same as above, with use as
5486 the MO_USE tracked value, if it differs from src.
5490 gcc_checking_assert (REG_P (loc) || MEM_P (loc));
5491 nloc = replace_expr_with_values (loc);
5492 if (!nloc)
5493 nloc = oloc;
5495 if (vloc != nloc)
5496 oloc = gen_rtx_CONCAT (mode2, val->val_rtx, vloc);
5497 else
5498 oloc = val->val_rtx;
5500 mo.u.loc = gen_rtx_CONCAT (mode, oloc, nloc);
5502 if (type2 == MO_USE)
5503 VAL_HOLDS_TRACK_EXPR (mo.u.loc) = 1;
5504 if (!cselib_preserved_value_p (val))
5506 VAL_NEEDS_RESOLUTION (mo.u.loc) = 1;
5507 preserve_value (val);
5510 else
5511 gcc_assert (type == MO_USE || type == MO_USE_NO_VAR);
5513 if (dump_file && (dump_flags & TDF_DETAILS))
5514 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
5515 VEC_safe_push (micro_operation, heap, VTI (bb)->mos, mo);
5518 return 0;
5521 /* Helper function for finding all uses of REG/MEM in X in insn INSN. */
5523 static void
5524 add_uses_1 (rtx *x, void *cui)
5526 for_each_rtx (x, add_uses, cui);
5529 /* This is the value used during expansion of locations. We want it
5530 to be unbounded, so that variables expanded deep in a recursion
5531 nest are fully evaluated, so that their values are cached
5532 correctly. We avoid recursion cycles through other means, and we
5533 don't unshare RTL, so excess complexity is not a problem. */
5534 #define EXPR_DEPTH (INT_MAX)
5535 /* We use this to keep too-complex expressions from being emitted as
5536 location notes, and then to debug information. Users can trade
5537 compile time for ridiculously complex expressions, although they're
5538 seldom useful, and they may often have to be discarded as not
5539 representable anyway. */
5540 #define EXPR_USE_DEPTH (PARAM_VALUE (PARAM_MAX_VARTRACK_EXPR_DEPTH))
5542 /* Attempt to reverse the EXPR operation in the debug info and record
5543 it in the cselib table. Say for reg1 = reg2 + 6 even when reg2 is
5544 no longer live we can express its value as VAL - 6. */
5546 static void
5547 reverse_op (rtx val, const_rtx expr, rtx insn)
5549 rtx src, arg, ret;
5550 cselib_val *v;
5551 struct elt_loc_list *l;
5552 enum rtx_code code;
5554 if (GET_CODE (expr) != SET)
5555 return;
5557 if (!REG_P (SET_DEST (expr)) || GET_MODE (val) != GET_MODE (SET_DEST (expr)))
5558 return;
5560 src = SET_SRC (expr);
5561 switch (GET_CODE (src))
5563 case PLUS:
5564 case MINUS:
5565 case XOR:
5566 case NOT:
5567 case NEG:
5568 if (!REG_P (XEXP (src, 0)))
5569 return;
5570 break;
5571 case SIGN_EXTEND:
5572 case ZERO_EXTEND:
5573 if (!REG_P (XEXP (src, 0)) && !MEM_P (XEXP (src, 0)))
5574 return;
5575 break;
5576 default:
5577 return;
5580 if (!SCALAR_INT_MODE_P (GET_MODE (src)) || XEXP (src, 0) == cfa_base_rtx)
5581 return;
5583 v = cselib_lookup (XEXP (src, 0), GET_MODE (XEXP (src, 0)), 0, VOIDmode);
5584 if (!v || !cselib_preserved_value_p (v))
5585 return;
5587 /* Use canonical V to avoid creating multiple redundant expressions
5588 for different VALUES equivalent to V. */
5589 v = canonical_cselib_val (v);
5591 /* Adding a reverse op isn't useful if V already has an always valid
5592 location. Ignore ENTRY_VALUE, while it is always constant, we should
5593 prefer non-ENTRY_VALUE locations whenever possible. */
5594 for (l = v->locs; l; l = l->next)
5595 if (CONSTANT_P (l->loc)
5596 && (GET_CODE (l->loc) != CONST || !references_value_p (l->loc, 0)))
5597 return;
5599 switch (GET_CODE (src))
5601 case NOT:
5602 case NEG:
5603 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5604 return;
5605 ret = gen_rtx_fmt_e (GET_CODE (src), GET_MODE (val), val);
5606 break;
5607 case SIGN_EXTEND:
5608 case ZERO_EXTEND:
5609 ret = gen_lowpart_SUBREG (GET_MODE (v->val_rtx), val);
5610 break;
5611 case XOR:
5612 code = XOR;
5613 goto binary;
5614 case PLUS:
5615 code = MINUS;
5616 goto binary;
5617 case MINUS:
5618 code = PLUS;
5619 goto binary;
5620 binary:
5621 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5622 return;
5623 arg = XEXP (src, 1);
5624 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5626 arg = cselib_expand_value_rtx (arg, scratch_regs, 5);
5627 if (arg == NULL_RTX)
5628 return;
5629 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5630 return;
5632 ret = simplify_gen_binary (code, GET_MODE (val), val, arg);
5633 if (ret == val)
5634 /* Ensure ret isn't VALUE itself (which can happen e.g. for
5635 (plus (reg1) (reg2)) when reg2 is known to be 0), as that
5636 breaks a lot of routines during var-tracking. */
5637 ret = gen_rtx_fmt_ee (PLUS, GET_MODE (val), val, const0_rtx);
5638 break;
5639 default:
5640 gcc_unreachable ();
5643 cselib_add_permanent_equiv (v, ret, insn);
5646 /* Add stores (register and memory references) LOC which will be tracked
5647 to VTI (bb)->mos. EXPR is the RTL expression containing the store.
5648 CUIP->insn is instruction which the LOC is part of. */
5650 static void
5651 add_stores (rtx loc, const_rtx expr, void *cuip)
5653 enum machine_mode mode = VOIDmode, mode2;
5654 struct count_use_info *cui = (struct count_use_info *)cuip;
5655 basic_block bb = cui->bb;
5656 micro_operation mo;
5657 rtx oloc = loc, nloc, src = NULL;
5658 enum micro_operation_type type = use_type (loc, cui, &mode);
5659 bool track_p = false;
5660 cselib_val *v;
5661 bool resolve, preserve;
5663 if (type == MO_CLOBBER)
5664 return;
5666 mode2 = mode;
5668 if (REG_P (loc))
5670 gcc_assert (loc != cfa_base_rtx);
5671 if ((GET_CODE (expr) == CLOBBER && type != MO_VAL_SET)
5672 || !(track_p = use_type (loc, NULL, &mode2) == MO_USE)
5673 || GET_CODE (expr) == CLOBBER)
5675 mo.type = MO_CLOBBER;
5676 mo.u.loc = loc;
5677 if (GET_CODE (expr) == SET
5678 && SET_DEST (expr) == loc
5679 && !unsuitable_loc (SET_SRC (expr))
5680 && find_use_val (loc, mode, cui))
5682 gcc_checking_assert (type == MO_VAL_SET);
5683 mo.u.loc = gen_rtx_SET (VOIDmode, loc, SET_SRC (expr));
5686 else
5688 if (GET_CODE (expr) == SET
5689 && SET_DEST (expr) == loc
5690 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
5691 src = var_lowpart (mode2, SET_SRC (expr));
5692 loc = var_lowpart (mode2, loc);
5694 if (src == NULL)
5696 mo.type = MO_SET;
5697 mo.u.loc = loc;
5699 else
5701 rtx xexpr = gen_rtx_SET (VOIDmode, loc, src);
5702 if (same_variable_part_p (src, REG_EXPR (loc), REG_OFFSET (loc)))
5703 mo.type = MO_COPY;
5704 else
5705 mo.type = MO_SET;
5706 mo.u.loc = xexpr;
5709 mo.insn = cui->insn;
5711 else if (MEM_P (loc)
5712 && ((track_p = use_type (loc, NULL, &mode2) == MO_USE)
5713 || cui->sets))
5715 if (MEM_P (loc) && type == MO_VAL_SET
5716 && !REG_P (XEXP (loc, 0))
5717 && !MEM_P (XEXP (loc, 0)))
5719 rtx mloc = loc;
5720 enum machine_mode address_mode = get_address_mode (mloc);
5721 cselib_val *val = cselib_lookup (XEXP (mloc, 0),
5722 address_mode, 0,
5723 GET_MODE (mloc));
5725 if (val && !cselib_preserved_value_p (val))
5726 preserve_value (val);
5729 if (GET_CODE (expr) == CLOBBER || !track_p)
5731 mo.type = MO_CLOBBER;
5732 mo.u.loc = track_p ? var_lowpart (mode2, loc) : loc;
5734 else
5736 if (GET_CODE (expr) == SET
5737 && SET_DEST (expr) == loc
5738 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
5739 src = var_lowpart (mode2, SET_SRC (expr));
5740 loc = var_lowpart (mode2, loc);
5742 if (src == NULL)
5744 mo.type = MO_SET;
5745 mo.u.loc = loc;
5747 else
5749 rtx xexpr = gen_rtx_SET (VOIDmode, loc, src);
5750 if (same_variable_part_p (SET_SRC (xexpr),
5751 MEM_EXPR (loc),
5752 INT_MEM_OFFSET (loc)))
5753 mo.type = MO_COPY;
5754 else
5755 mo.type = MO_SET;
5756 mo.u.loc = xexpr;
5759 mo.insn = cui->insn;
5761 else
5762 return;
5764 if (type != MO_VAL_SET)
5765 goto log_and_return;
5767 v = find_use_val (oloc, mode, cui);
5769 if (!v)
5770 goto log_and_return;
5772 resolve = preserve = !cselib_preserved_value_p (v);
5774 if (loc == stack_pointer_rtx
5775 && hard_frame_pointer_adjustment != -1
5776 && preserve)
5777 cselib_set_value_sp_based (v);
5779 nloc = replace_expr_with_values (oloc);
5780 if (nloc)
5781 oloc = nloc;
5783 if (GET_CODE (PATTERN (cui->insn)) == COND_EXEC)
5785 cselib_val *oval = cselib_lookup (oloc, GET_MODE (oloc), 0, VOIDmode);
5787 gcc_assert (oval != v);
5788 gcc_assert (REG_P (oloc) || MEM_P (oloc));
5790 if (oval && !cselib_preserved_value_p (oval))
5792 micro_operation moa;
5794 preserve_value (oval);
5796 moa.type = MO_VAL_USE;
5797 moa.u.loc = gen_rtx_CONCAT (mode, oval->val_rtx, oloc);
5798 VAL_NEEDS_RESOLUTION (moa.u.loc) = 1;
5799 moa.insn = cui->insn;
5801 if (dump_file && (dump_flags & TDF_DETAILS))
5802 log_op_type (moa.u.loc, cui->bb, cui->insn,
5803 moa.type, dump_file);
5804 VEC_safe_push (micro_operation, heap, VTI (bb)->mos, moa);
5807 resolve = false;
5809 else if (resolve && GET_CODE (mo.u.loc) == SET)
5811 if (REG_P (SET_SRC (expr)) || MEM_P (SET_SRC (expr)))
5812 nloc = replace_expr_with_values (SET_SRC (expr));
5813 else
5814 nloc = NULL_RTX;
5816 /* Avoid the mode mismatch between oexpr and expr. */
5817 if (!nloc && mode != mode2)
5819 nloc = SET_SRC (expr);
5820 gcc_assert (oloc == SET_DEST (expr));
5823 if (nloc && nloc != SET_SRC (mo.u.loc))
5824 oloc = gen_rtx_SET (GET_MODE (mo.u.loc), oloc, nloc);
5825 else
5827 if (oloc == SET_DEST (mo.u.loc))
5828 /* No point in duplicating. */
5829 oloc = mo.u.loc;
5830 if (!REG_P (SET_SRC (mo.u.loc)))
5831 resolve = false;
5834 else if (!resolve)
5836 if (GET_CODE (mo.u.loc) == SET
5837 && oloc == SET_DEST (mo.u.loc))
5838 /* No point in duplicating. */
5839 oloc = mo.u.loc;
5841 else
5842 resolve = false;
5844 loc = gen_rtx_CONCAT (mode, v->val_rtx, oloc);
5846 if (mo.u.loc != oloc)
5847 loc = gen_rtx_CONCAT (GET_MODE (mo.u.loc), loc, mo.u.loc);
5849 /* The loc of a MO_VAL_SET may have various forms:
5851 (concat val dst): dst now holds val
5853 (concat val (set dst src)): dst now holds val, copied from src
5855 (concat (concat val dstv) dst): dst now holds val; dstv is dst
5856 after replacing mems and non-top-level regs with values.
5858 (concat (concat val dstv) (set dst src)): dst now holds val,
5859 copied from src. dstv is a value-based representation of dst, if
5860 it differs from dst. If resolution is needed, src is a REG, and
5861 its mode is the same as that of val.
5863 (concat (concat val (set dstv srcv)) (set dst src)): src
5864 copied to dst, holding val. dstv and srcv are value-based
5865 representations of dst and src, respectively.
5869 if (GET_CODE (PATTERN (cui->insn)) != COND_EXEC)
5870 reverse_op (v->val_rtx, expr, cui->insn);
5872 mo.u.loc = loc;
5874 if (track_p)
5875 VAL_HOLDS_TRACK_EXPR (loc) = 1;
5876 if (preserve)
5878 VAL_NEEDS_RESOLUTION (loc) = resolve;
5879 preserve_value (v);
5881 if (mo.type == MO_CLOBBER)
5882 VAL_EXPR_IS_CLOBBERED (loc) = 1;
5883 if (mo.type == MO_COPY)
5884 VAL_EXPR_IS_COPIED (loc) = 1;
5886 mo.type = MO_VAL_SET;
5888 log_and_return:
5889 if (dump_file && (dump_flags & TDF_DETAILS))
5890 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
5891 VEC_safe_push (micro_operation, heap, VTI (bb)->mos, mo);
5894 /* Arguments to the call. */
5895 static rtx call_arguments;
5897 /* Compute call_arguments. */
5899 static void
5900 prepare_call_arguments (basic_block bb, rtx insn)
5902 rtx link, x, call;
5903 rtx prev, cur, next;
5904 rtx this_arg = NULL_RTX;
5905 tree type = NULL_TREE, t, fndecl = NULL_TREE;
5906 tree obj_type_ref = NULL_TREE;
5907 CUMULATIVE_ARGS args_so_far_v;
5908 cumulative_args_t args_so_far;
5910 memset (&args_so_far_v, 0, sizeof (args_so_far_v));
5911 args_so_far = pack_cumulative_args (&args_so_far_v);
5912 call = get_call_rtx_from (insn);
5913 if (call)
5915 if (GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
5917 rtx symbol = XEXP (XEXP (call, 0), 0);
5918 if (SYMBOL_REF_DECL (symbol))
5919 fndecl = SYMBOL_REF_DECL (symbol);
5921 if (fndecl == NULL_TREE)
5922 fndecl = MEM_EXPR (XEXP (call, 0));
5923 if (fndecl
5924 && TREE_CODE (TREE_TYPE (fndecl)) != FUNCTION_TYPE
5925 && TREE_CODE (TREE_TYPE (fndecl)) != METHOD_TYPE)
5926 fndecl = NULL_TREE;
5927 if (fndecl && TYPE_ARG_TYPES (TREE_TYPE (fndecl)))
5928 type = TREE_TYPE (fndecl);
5929 if (fndecl && TREE_CODE (fndecl) != FUNCTION_DECL)
5931 if (TREE_CODE (fndecl) == INDIRECT_REF
5932 && TREE_CODE (TREE_OPERAND (fndecl, 0)) == OBJ_TYPE_REF)
5933 obj_type_ref = TREE_OPERAND (fndecl, 0);
5934 fndecl = NULL_TREE;
5936 if (type)
5938 for (t = TYPE_ARG_TYPES (type); t && t != void_list_node;
5939 t = TREE_CHAIN (t))
5940 if (TREE_CODE (TREE_VALUE (t)) == REFERENCE_TYPE
5941 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_VALUE (t))))
5942 break;
5943 if ((t == NULL || t == void_list_node) && obj_type_ref == NULL_TREE)
5944 type = NULL;
5945 else
5947 int nargs ATTRIBUTE_UNUSED = list_length (TYPE_ARG_TYPES (type));
5948 link = CALL_INSN_FUNCTION_USAGE (insn);
5949 #ifndef PCC_STATIC_STRUCT_RETURN
5950 if (aggregate_value_p (TREE_TYPE (type), type)
5951 && targetm.calls.struct_value_rtx (type, 0) == 0)
5953 tree struct_addr = build_pointer_type (TREE_TYPE (type));
5954 enum machine_mode mode = TYPE_MODE (struct_addr);
5955 rtx reg;
5956 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
5957 nargs + 1);
5958 reg = targetm.calls.function_arg (args_so_far, mode,
5959 struct_addr, true);
5960 targetm.calls.function_arg_advance (args_so_far, mode,
5961 struct_addr, true);
5962 if (reg == NULL_RTX)
5964 for (; link; link = XEXP (link, 1))
5965 if (GET_CODE (XEXP (link, 0)) == USE
5966 && MEM_P (XEXP (XEXP (link, 0), 0)))
5968 link = XEXP (link, 1);
5969 break;
5973 else
5974 #endif
5975 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
5976 nargs);
5977 if (obj_type_ref && TYPE_ARG_TYPES (type) != void_list_node)
5979 enum machine_mode mode;
5980 t = TYPE_ARG_TYPES (type);
5981 mode = TYPE_MODE (TREE_VALUE (t));
5982 this_arg = targetm.calls.function_arg (args_so_far, mode,
5983 TREE_VALUE (t), true);
5984 if (this_arg && !REG_P (this_arg))
5985 this_arg = NULL_RTX;
5986 else if (this_arg == NULL_RTX)
5988 for (; link; link = XEXP (link, 1))
5989 if (GET_CODE (XEXP (link, 0)) == USE
5990 && MEM_P (XEXP (XEXP (link, 0), 0)))
5992 this_arg = XEXP (XEXP (link, 0), 0);
5993 break;
6000 t = type ? TYPE_ARG_TYPES (type) : NULL_TREE;
6002 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
6003 if (GET_CODE (XEXP (link, 0)) == USE)
6005 rtx item = NULL_RTX;
6006 x = XEXP (XEXP (link, 0), 0);
6007 if (GET_MODE (link) == VOIDmode
6008 || GET_MODE (link) == BLKmode
6009 || (GET_MODE (link) != GET_MODE (x)
6010 && (GET_MODE_CLASS (GET_MODE (link)) != MODE_INT
6011 || GET_MODE_CLASS (GET_MODE (x)) != MODE_INT)))
6012 /* Can't do anything for these, if the original type mode
6013 isn't known or can't be converted. */;
6014 else if (REG_P (x))
6016 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6017 if (val && cselib_preserved_value_p (val))
6018 item = val->val_rtx;
6019 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT)
6021 enum machine_mode mode = GET_MODE (x);
6023 while ((mode = GET_MODE_WIDER_MODE (mode)) != VOIDmode
6024 && GET_MODE_BITSIZE (mode) <= BITS_PER_WORD)
6026 rtx reg = simplify_subreg (mode, x, GET_MODE (x), 0);
6028 if (reg == NULL_RTX || !REG_P (reg))
6029 continue;
6030 val = cselib_lookup (reg, mode, 0, VOIDmode);
6031 if (val && cselib_preserved_value_p (val))
6033 item = val->val_rtx;
6034 break;
6039 else if (MEM_P (x))
6041 rtx mem = x;
6042 cselib_val *val;
6044 if (!frame_pointer_needed)
6046 struct adjust_mem_data amd;
6047 amd.mem_mode = VOIDmode;
6048 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
6049 amd.side_effects = NULL_RTX;
6050 amd.store = true;
6051 mem = simplify_replace_fn_rtx (mem, NULL_RTX, adjust_mems,
6052 &amd);
6053 gcc_assert (amd.side_effects == NULL_RTX);
6055 val = cselib_lookup (mem, GET_MODE (mem), 0, VOIDmode);
6056 if (val && cselib_preserved_value_p (val))
6057 item = val->val_rtx;
6058 else if (GET_MODE_CLASS (GET_MODE (mem)) != MODE_INT)
6060 /* For non-integer stack argument see also if they weren't
6061 initialized by integers. */
6062 enum machine_mode imode = int_mode_for_mode (GET_MODE (mem));
6063 if (imode != GET_MODE (mem) && imode != BLKmode)
6065 val = cselib_lookup (adjust_address_nv (mem, imode, 0),
6066 imode, 0, VOIDmode);
6067 if (val && cselib_preserved_value_p (val))
6068 item = lowpart_subreg (GET_MODE (x), val->val_rtx,
6069 imode);
6073 if (item)
6075 rtx x2 = x;
6076 if (GET_MODE (item) != GET_MODE (link))
6077 item = lowpart_subreg (GET_MODE (link), item, GET_MODE (item));
6078 if (GET_MODE (x2) != GET_MODE (link))
6079 x2 = lowpart_subreg (GET_MODE (link), x2, GET_MODE (x2));
6080 item = gen_rtx_CONCAT (GET_MODE (link), x2, item);
6081 call_arguments
6082 = gen_rtx_EXPR_LIST (VOIDmode, item, call_arguments);
6084 if (t && t != void_list_node)
6086 tree argtype = TREE_VALUE (t);
6087 enum machine_mode mode = TYPE_MODE (argtype);
6088 rtx reg;
6089 if (pass_by_reference (&args_so_far_v, mode, argtype, true))
6091 argtype = build_pointer_type (argtype);
6092 mode = TYPE_MODE (argtype);
6094 reg = targetm.calls.function_arg (args_so_far, mode,
6095 argtype, true);
6096 if (TREE_CODE (argtype) == REFERENCE_TYPE
6097 && INTEGRAL_TYPE_P (TREE_TYPE (argtype))
6098 && reg
6099 && REG_P (reg)
6100 && GET_MODE (reg) == mode
6101 && GET_MODE_CLASS (mode) == MODE_INT
6102 && REG_P (x)
6103 && REGNO (x) == REGNO (reg)
6104 && GET_MODE (x) == mode
6105 && item)
6107 enum machine_mode indmode
6108 = TYPE_MODE (TREE_TYPE (argtype));
6109 rtx mem = gen_rtx_MEM (indmode, x);
6110 cselib_val *val = cselib_lookup (mem, indmode, 0, VOIDmode);
6111 if (val && cselib_preserved_value_p (val))
6113 item = gen_rtx_CONCAT (indmode, mem, val->val_rtx);
6114 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6115 call_arguments);
6117 else
6119 struct elt_loc_list *l;
6120 tree initial;
6122 /* Try harder, when passing address of a constant
6123 pool integer it can be easily read back. */
6124 item = XEXP (item, 1);
6125 if (GET_CODE (item) == SUBREG)
6126 item = SUBREG_REG (item);
6127 gcc_assert (GET_CODE (item) == VALUE);
6128 val = CSELIB_VAL_PTR (item);
6129 for (l = val->locs; l; l = l->next)
6130 if (GET_CODE (l->loc) == SYMBOL_REF
6131 && TREE_CONSTANT_POOL_ADDRESS_P (l->loc)
6132 && SYMBOL_REF_DECL (l->loc)
6133 && DECL_INITIAL (SYMBOL_REF_DECL (l->loc)))
6135 initial = DECL_INITIAL (SYMBOL_REF_DECL (l->loc));
6136 if (host_integerp (initial, 0))
6138 item = GEN_INT (tree_low_cst (initial, 0));
6139 item = gen_rtx_CONCAT (indmode, mem, item);
6140 call_arguments
6141 = gen_rtx_EXPR_LIST (VOIDmode, item,
6142 call_arguments);
6144 break;
6148 targetm.calls.function_arg_advance (args_so_far, mode,
6149 argtype, true);
6150 t = TREE_CHAIN (t);
6154 /* Add debug arguments. */
6155 if (fndecl
6156 && TREE_CODE (fndecl) == FUNCTION_DECL
6157 && DECL_HAS_DEBUG_ARGS_P (fndecl))
6159 VEC(tree, gc) **debug_args = decl_debug_args_lookup (fndecl);
6160 if (debug_args)
6162 unsigned int ix;
6163 tree param;
6164 for (ix = 0; VEC_iterate (tree, *debug_args, ix, param); ix += 2)
6166 rtx item;
6167 tree dtemp = VEC_index (tree, *debug_args, ix + 1);
6168 enum machine_mode mode = DECL_MODE (dtemp);
6169 item = gen_rtx_DEBUG_PARAMETER_REF (mode, param);
6170 item = gen_rtx_CONCAT (mode, item, DECL_RTL_KNOWN_SET (dtemp));
6171 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6172 call_arguments);
6177 /* Reverse call_arguments chain. */
6178 prev = NULL_RTX;
6179 for (cur = call_arguments; cur; cur = next)
6181 next = XEXP (cur, 1);
6182 XEXP (cur, 1) = prev;
6183 prev = cur;
6185 call_arguments = prev;
6187 x = get_call_rtx_from (insn);
6188 if (x)
6190 x = XEXP (XEXP (x, 0), 0);
6191 if (GET_CODE (x) == SYMBOL_REF)
6192 /* Don't record anything. */;
6193 else if (CONSTANT_P (x))
6195 x = gen_rtx_CONCAT (GET_MODE (x) == VOIDmode ? Pmode : GET_MODE (x),
6196 pc_rtx, x);
6197 call_arguments
6198 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6200 else
6202 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6203 if (val && cselib_preserved_value_p (val))
6205 x = gen_rtx_CONCAT (GET_MODE (x), pc_rtx, val->val_rtx);
6206 call_arguments
6207 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6211 if (this_arg)
6213 enum machine_mode mode
6214 = TYPE_MODE (TREE_TYPE (OBJ_TYPE_REF_EXPR (obj_type_ref)));
6215 rtx clobbered = gen_rtx_MEM (mode, this_arg);
6216 HOST_WIDE_INT token
6217 = tree_low_cst (OBJ_TYPE_REF_TOKEN (obj_type_ref), 0);
6218 if (token)
6219 clobbered = plus_constant (mode, clobbered,
6220 token * GET_MODE_SIZE (mode));
6221 clobbered = gen_rtx_MEM (mode, clobbered);
6222 x = gen_rtx_CONCAT (mode, gen_rtx_CLOBBER (VOIDmode, pc_rtx), clobbered);
6223 call_arguments
6224 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6228 /* Callback for cselib_record_sets_hook, that records as micro
6229 operations uses and stores in an insn after cselib_record_sets has
6230 analyzed the sets in an insn, but before it modifies the stored
6231 values in the internal tables, unless cselib_record_sets doesn't
6232 call it directly (perhaps because we're not doing cselib in the
6233 first place, in which case sets and n_sets will be 0). */
6235 static void
6236 add_with_sets (rtx insn, struct cselib_set *sets, int n_sets)
6238 basic_block bb = BLOCK_FOR_INSN (insn);
6239 int n1, n2;
6240 struct count_use_info cui;
6241 micro_operation *mos;
6243 cselib_hook_called = true;
6245 cui.insn = insn;
6246 cui.bb = bb;
6247 cui.sets = sets;
6248 cui.n_sets = n_sets;
6250 n1 = VEC_length (micro_operation, VTI (bb)->mos);
6251 cui.store_p = false;
6252 note_uses (&PATTERN (insn), add_uses_1, &cui);
6253 n2 = VEC_length (micro_operation, VTI (bb)->mos) - 1;
6254 mos = VEC_address (micro_operation, VTI (bb)->mos);
6256 /* Order the MO_USEs to be before MO_USE_NO_VARs and MO_VAL_USE, and
6257 MO_VAL_LOC last. */
6258 while (n1 < n2)
6260 while (n1 < n2 && mos[n1].type == MO_USE)
6261 n1++;
6262 while (n1 < n2 && mos[n2].type != MO_USE)
6263 n2--;
6264 if (n1 < n2)
6266 micro_operation sw;
6268 sw = mos[n1];
6269 mos[n1] = mos[n2];
6270 mos[n2] = sw;
6274 n2 = VEC_length (micro_operation, VTI (bb)->mos) - 1;
6275 while (n1 < n2)
6277 while (n1 < n2 && mos[n1].type != MO_VAL_LOC)
6278 n1++;
6279 while (n1 < n2 && mos[n2].type == MO_VAL_LOC)
6280 n2--;
6281 if (n1 < n2)
6283 micro_operation sw;
6285 sw = mos[n1];
6286 mos[n1] = mos[n2];
6287 mos[n2] = sw;
6291 if (CALL_P (insn))
6293 micro_operation mo;
6295 mo.type = MO_CALL;
6296 mo.insn = insn;
6297 mo.u.loc = call_arguments;
6298 call_arguments = NULL_RTX;
6300 if (dump_file && (dump_flags & TDF_DETAILS))
6301 log_op_type (PATTERN (insn), bb, insn, mo.type, dump_file);
6302 VEC_safe_push (micro_operation, heap, VTI (bb)->mos, mo);
6305 n1 = VEC_length (micro_operation, VTI (bb)->mos);
6306 /* This will record NEXT_INSN (insn), such that we can
6307 insert notes before it without worrying about any
6308 notes that MO_USEs might emit after the insn. */
6309 cui.store_p = true;
6310 note_stores (PATTERN (insn), add_stores, &cui);
6311 n2 = VEC_length (micro_operation, VTI (bb)->mos) - 1;
6312 mos = VEC_address (micro_operation, VTI (bb)->mos);
6314 /* Order the MO_VAL_USEs first (note_stores does nothing
6315 on DEBUG_INSNs, so there are no MO_VAL_LOCs from this
6316 insn), then MO_CLOBBERs, then MO_SET/MO_COPY/MO_VAL_SET. */
6317 while (n1 < n2)
6319 while (n1 < n2 && mos[n1].type == MO_VAL_USE)
6320 n1++;
6321 while (n1 < n2 && mos[n2].type != MO_VAL_USE)
6322 n2--;
6323 if (n1 < n2)
6325 micro_operation sw;
6327 sw = mos[n1];
6328 mos[n1] = mos[n2];
6329 mos[n2] = sw;
6333 n2 = VEC_length (micro_operation, VTI (bb)->mos) - 1;
6334 while (n1 < n2)
6336 while (n1 < n2 && mos[n1].type == MO_CLOBBER)
6337 n1++;
6338 while (n1 < n2 && mos[n2].type != MO_CLOBBER)
6339 n2--;
6340 if (n1 < n2)
6342 micro_operation sw;
6344 sw = mos[n1];
6345 mos[n1] = mos[n2];
6346 mos[n2] = sw;
6351 static enum var_init_status
6352 find_src_status (dataflow_set *in, rtx src)
6354 tree decl = NULL_TREE;
6355 enum var_init_status status = VAR_INIT_STATUS_UNINITIALIZED;
6357 if (! flag_var_tracking_uninit)
6358 status = VAR_INIT_STATUS_INITIALIZED;
6360 if (src && REG_P (src))
6361 decl = var_debug_decl (REG_EXPR (src));
6362 else if (src && MEM_P (src))
6363 decl = var_debug_decl (MEM_EXPR (src));
6365 if (src && decl)
6366 status = get_init_value (in, src, dv_from_decl (decl));
6368 return status;
6371 /* SRC is the source of an assignment. Use SET to try to find what
6372 was ultimately assigned to SRC. Return that value if known,
6373 otherwise return SRC itself. */
6375 static rtx
6376 find_src_set_src (dataflow_set *set, rtx src)
6378 tree decl = NULL_TREE; /* The variable being copied around. */
6379 rtx set_src = NULL_RTX; /* The value for "decl" stored in "src". */
6380 variable var;
6381 location_chain nextp;
6382 int i;
6383 bool found;
6385 if (src && REG_P (src))
6386 decl = var_debug_decl (REG_EXPR (src));
6387 else if (src && MEM_P (src))
6388 decl = var_debug_decl (MEM_EXPR (src));
6390 if (src && decl)
6392 decl_or_value dv = dv_from_decl (decl);
6394 var = shared_hash_find (set->vars, dv);
6395 if (var)
6397 found = false;
6398 for (i = 0; i < var->n_var_parts && !found; i++)
6399 for (nextp = var->var_part[i].loc_chain; nextp && !found;
6400 nextp = nextp->next)
6401 if (rtx_equal_p (nextp->loc, src))
6403 set_src = nextp->set_src;
6404 found = true;
6410 return set_src;
6413 /* Compute the changes of variable locations in the basic block BB. */
6415 static bool
6416 compute_bb_dataflow (basic_block bb)
6418 unsigned int i;
6419 micro_operation *mo;
6420 bool changed;
6421 dataflow_set old_out;
6422 dataflow_set *in = &VTI (bb)->in;
6423 dataflow_set *out = &VTI (bb)->out;
6425 dataflow_set_init (&old_out);
6426 dataflow_set_copy (&old_out, out);
6427 dataflow_set_copy (out, in);
6429 FOR_EACH_VEC_ELT (micro_operation, VTI (bb)->mos, i, mo)
6431 rtx insn = mo->insn;
6433 switch (mo->type)
6435 case MO_CALL:
6436 dataflow_set_clear_at_call (out);
6437 break;
6439 case MO_USE:
6441 rtx loc = mo->u.loc;
6443 if (REG_P (loc))
6444 var_reg_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6445 else if (MEM_P (loc))
6446 var_mem_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6448 break;
6450 case MO_VAL_LOC:
6452 rtx loc = mo->u.loc;
6453 rtx val, vloc;
6454 tree var;
6456 if (GET_CODE (loc) == CONCAT)
6458 val = XEXP (loc, 0);
6459 vloc = XEXP (loc, 1);
6461 else
6463 val = NULL_RTX;
6464 vloc = loc;
6467 var = PAT_VAR_LOCATION_DECL (vloc);
6469 clobber_variable_part (out, NULL_RTX,
6470 dv_from_decl (var), 0, NULL_RTX);
6471 if (val)
6473 if (VAL_NEEDS_RESOLUTION (loc))
6474 val_resolve (out, val, PAT_VAR_LOCATION_LOC (vloc), insn);
6475 set_variable_part (out, val, dv_from_decl (var), 0,
6476 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6477 INSERT);
6479 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
6480 set_variable_part (out, PAT_VAR_LOCATION_LOC (vloc),
6481 dv_from_decl (var), 0,
6482 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6483 INSERT);
6485 break;
6487 case MO_VAL_USE:
6489 rtx loc = mo->u.loc;
6490 rtx val, vloc, uloc;
6492 vloc = uloc = XEXP (loc, 1);
6493 val = XEXP (loc, 0);
6495 if (GET_CODE (val) == CONCAT)
6497 uloc = XEXP (val, 1);
6498 val = XEXP (val, 0);
6501 if (VAL_NEEDS_RESOLUTION (loc))
6502 val_resolve (out, val, vloc, insn);
6503 else
6504 val_store (out, val, uloc, insn, false);
6506 if (VAL_HOLDS_TRACK_EXPR (loc))
6508 if (GET_CODE (uloc) == REG)
6509 var_reg_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6510 NULL);
6511 else if (GET_CODE (uloc) == MEM)
6512 var_mem_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6513 NULL);
6516 break;
6518 case MO_VAL_SET:
6520 rtx loc = mo->u.loc;
6521 rtx val, vloc, uloc;
6522 rtx dstv, srcv;
6524 vloc = loc;
6525 uloc = XEXP (vloc, 1);
6526 val = XEXP (vloc, 0);
6527 vloc = uloc;
6529 if (GET_CODE (uloc) == SET)
6531 dstv = SET_DEST (uloc);
6532 srcv = SET_SRC (uloc);
6534 else
6536 dstv = uloc;
6537 srcv = NULL;
6540 if (GET_CODE (val) == CONCAT)
6542 dstv = vloc = XEXP (val, 1);
6543 val = XEXP (val, 0);
6546 if (GET_CODE (vloc) == SET)
6548 srcv = SET_SRC (vloc);
6550 gcc_assert (val != srcv);
6551 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
6553 dstv = vloc = SET_DEST (vloc);
6555 if (VAL_NEEDS_RESOLUTION (loc))
6556 val_resolve (out, val, srcv, insn);
6558 else if (VAL_NEEDS_RESOLUTION (loc))
6560 gcc_assert (GET_CODE (uloc) == SET
6561 && GET_CODE (SET_SRC (uloc)) == REG);
6562 val_resolve (out, val, SET_SRC (uloc), insn);
6565 if (VAL_HOLDS_TRACK_EXPR (loc))
6567 if (VAL_EXPR_IS_CLOBBERED (loc))
6569 if (REG_P (uloc))
6570 var_reg_delete (out, uloc, true);
6571 else if (MEM_P (uloc))
6573 gcc_assert (MEM_P (dstv));
6574 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
6575 var_mem_delete (out, dstv, true);
6578 else
6580 bool copied_p = VAL_EXPR_IS_COPIED (loc);
6581 rtx src = NULL, dst = uloc;
6582 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
6584 if (GET_CODE (uloc) == SET)
6586 src = SET_SRC (uloc);
6587 dst = SET_DEST (uloc);
6590 if (copied_p)
6592 if (flag_var_tracking_uninit)
6594 status = find_src_status (in, src);
6596 if (status == VAR_INIT_STATUS_UNKNOWN)
6597 status = find_src_status (out, src);
6600 src = find_src_set_src (in, src);
6603 if (REG_P (dst))
6604 var_reg_delete_and_set (out, dst, !copied_p,
6605 status, srcv);
6606 else if (MEM_P (dst))
6608 gcc_assert (MEM_P (dstv));
6609 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
6610 var_mem_delete_and_set (out, dstv, !copied_p,
6611 status, srcv);
6615 else if (REG_P (uloc))
6616 var_regno_delete (out, REGNO (uloc));
6617 else if (MEM_P (uloc))
6618 clobber_overlapping_mems (out, uloc);
6620 val_store (out, val, dstv, insn, true);
6622 break;
6624 case MO_SET:
6626 rtx loc = mo->u.loc;
6627 rtx set_src = NULL;
6629 if (GET_CODE (loc) == SET)
6631 set_src = SET_SRC (loc);
6632 loc = SET_DEST (loc);
6635 if (REG_P (loc))
6636 var_reg_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6637 set_src);
6638 else if (MEM_P (loc))
6639 var_mem_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6640 set_src);
6642 break;
6644 case MO_COPY:
6646 rtx loc = mo->u.loc;
6647 enum var_init_status src_status;
6648 rtx set_src = NULL;
6650 if (GET_CODE (loc) == SET)
6652 set_src = SET_SRC (loc);
6653 loc = SET_DEST (loc);
6656 if (! flag_var_tracking_uninit)
6657 src_status = VAR_INIT_STATUS_INITIALIZED;
6658 else
6660 src_status = find_src_status (in, set_src);
6662 if (src_status == VAR_INIT_STATUS_UNKNOWN)
6663 src_status = find_src_status (out, set_src);
6666 set_src = find_src_set_src (in, set_src);
6668 if (REG_P (loc))
6669 var_reg_delete_and_set (out, loc, false, src_status, set_src);
6670 else if (MEM_P (loc))
6671 var_mem_delete_and_set (out, loc, false, src_status, set_src);
6673 break;
6675 case MO_USE_NO_VAR:
6677 rtx loc = mo->u.loc;
6679 if (REG_P (loc))
6680 var_reg_delete (out, loc, false);
6681 else if (MEM_P (loc))
6682 var_mem_delete (out, loc, false);
6684 break;
6686 case MO_CLOBBER:
6688 rtx loc = mo->u.loc;
6690 if (REG_P (loc))
6691 var_reg_delete (out, loc, true);
6692 else if (MEM_P (loc))
6693 var_mem_delete (out, loc, true);
6695 break;
6697 case MO_ADJUST:
6698 out->stack_adjust += mo->u.adjust;
6699 break;
6703 if (MAY_HAVE_DEBUG_INSNS)
6705 dataflow_set_equiv_regs (out);
6706 htab_traverse (shared_hash_htab (out->vars), canonicalize_values_mark,
6707 out);
6708 htab_traverse (shared_hash_htab (out->vars), canonicalize_values_star,
6709 out);
6710 #if ENABLE_CHECKING
6711 htab_traverse (shared_hash_htab (out->vars),
6712 canonicalize_loc_order_check, out);
6713 #endif
6715 changed = dataflow_set_different (&old_out, out);
6716 dataflow_set_destroy (&old_out);
6717 return changed;
6720 /* Find the locations of variables in the whole function. */
6722 static bool
6723 vt_find_locations (void)
6725 fibheap_t worklist, pending, fibheap_swap;
6726 sbitmap visited, in_worklist, in_pending, sbitmap_swap;
6727 basic_block bb;
6728 edge e;
6729 int *bb_order;
6730 int *rc_order;
6731 int i;
6732 int htabsz = 0;
6733 int htabmax = PARAM_VALUE (PARAM_MAX_VARTRACK_SIZE);
6734 bool success = true;
6736 timevar_push (TV_VAR_TRACKING_DATAFLOW);
6737 /* Compute reverse completion order of depth first search of the CFG
6738 so that the data-flow runs faster. */
6739 rc_order = XNEWVEC (int, n_basic_blocks - NUM_FIXED_BLOCKS);
6740 bb_order = XNEWVEC (int, last_basic_block);
6741 pre_and_rev_post_order_compute (NULL, rc_order, false);
6742 for (i = 0; i < n_basic_blocks - NUM_FIXED_BLOCKS; i++)
6743 bb_order[rc_order[i]] = i;
6744 free (rc_order);
6746 worklist = fibheap_new ();
6747 pending = fibheap_new ();
6748 visited = sbitmap_alloc (last_basic_block);
6749 in_worklist = sbitmap_alloc (last_basic_block);
6750 in_pending = sbitmap_alloc (last_basic_block);
6751 bitmap_clear (in_worklist);
6753 FOR_EACH_BB (bb)
6754 fibheap_insert (pending, bb_order[bb->index], bb);
6755 bitmap_ones (in_pending);
6757 while (success && !fibheap_empty (pending))
6759 fibheap_swap = pending;
6760 pending = worklist;
6761 worklist = fibheap_swap;
6762 sbitmap_swap = in_pending;
6763 in_pending = in_worklist;
6764 in_worklist = sbitmap_swap;
6766 bitmap_clear (visited);
6768 while (!fibheap_empty (worklist))
6770 bb = (basic_block) fibheap_extract_min (worklist);
6771 bitmap_clear_bit (in_worklist, bb->index);
6772 gcc_assert (!bitmap_bit_p (visited, bb->index));
6773 if (!bitmap_bit_p (visited, bb->index))
6775 bool changed;
6776 edge_iterator ei;
6777 int oldinsz, oldoutsz;
6779 bitmap_set_bit (visited, bb->index);
6781 if (VTI (bb)->in.vars)
6783 htabsz
6784 -= (htab_size (shared_hash_htab (VTI (bb)->in.vars))
6785 + htab_size (shared_hash_htab (VTI (bb)->out.vars)));
6786 oldinsz
6787 = htab_elements (shared_hash_htab (VTI (bb)->in.vars));
6788 oldoutsz
6789 = htab_elements (shared_hash_htab (VTI (bb)->out.vars));
6791 else
6792 oldinsz = oldoutsz = 0;
6794 if (MAY_HAVE_DEBUG_INSNS)
6796 dataflow_set *in = &VTI (bb)->in, *first_out = NULL;
6797 bool first = true, adjust = false;
6799 /* Calculate the IN set as the intersection of
6800 predecessor OUT sets. */
6802 dataflow_set_clear (in);
6803 dst_can_be_shared = true;
6805 FOR_EACH_EDGE (e, ei, bb->preds)
6806 if (!VTI (e->src)->flooded)
6807 gcc_assert (bb_order[bb->index]
6808 <= bb_order[e->src->index]);
6809 else if (first)
6811 dataflow_set_copy (in, &VTI (e->src)->out);
6812 first_out = &VTI (e->src)->out;
6813 first = false;
6815 else
6817 dataflow_set_merge (in, &VTI (e->src)->out);
6818 adjust = true;
6821 if (adjust)
6823 dataflow_post_merge_adjust (in, &VTI (bb)->permp);
6824 #if ENABLE_CHECKING
6825 /* Merge and merge_adjust should keep entries in
6826 canonical order. */
6827 htab_traverse (shared_hash_htab (in->vars),
6828 canonicalize_loc_order_check,
6829 in);
6830 #endif
6831 if (dst_can_be_shared)
6833 shared_hash_destroy (in->vars);
6834 in->vars = shared_hash_copy (first_out->vars);
6838 VTI (bb)->flooded = true;
6840 else
6842 /* Calculate the IN set as union of predecessor OUT sets. */
6843 dataflow_set_clear (&VTI (bb)->in);
6844 FOR_EACH_EDGE (e, ei, bb->preds)
6845 dataflow_set_union (&VTI (bb)->in, &VTI (e->src)->out);
6848 changed = compute_bb_dataflow (bb);
6849 htabsz += (htab_size (shared_hash_htab (VTI (bb)->in.vars))
6850 + htab_size (shared_hash_htab (VTI (bb)->out.vars)));
6852 if (htabmax && htabsz > htabmax)
6854 if (MAY_HAVE_DEBUG_INSNS)
6855 inform (DECL_SOURCE_LOCATION (cfun->decl),
6856 "variable tracking size limit exceeded with "
6857 "-fvar-tracking-assignments, retrying without");
6858 else
6859 inform (DECL_SOURCE_LOCATION (cfun->decl),
6860 "variable tracking size limit exceeded");
6861 success = false;
6862 break;
6865 if (changed)
6867 FOR_EACH_EDGE (e, ei, bb->succs)
6869 if (e->dest == EXIT_BLOCK_PTR)
6870 continue;
6872 if (bitmap_bit_p (visited, e->dest->index))
6874 if (!bitmap_bit_p (in_pending, e->dest->index))
6876 /* Send E->DEST to next round. */
6877 bitmap_set_bit (in_pending, e->dest->index);
6878 fibheap_insert (pending,
6879 bb_order[e->dest->index],
6880 e->dest);
6883 else if (!bitmap_bit_p (in_worklist, e->dest->index))
6885 /* Add E->DEST to current round. */
6886 bitmap_set_bit (in_worklist, e->dest->index);
6887 fibheap_insert (worklist, bb_order[e->dest->index],
6888 e->dest);
6893 if (dump_file)
6894 fprintf (dump_file,
6895 "BB %i: in %i (was %i), out %i (was %i), rem %i + %i, tsz %i\n",
6896 bb->index,
6897 (int)htab_elements (shared_hash_htab (VTI (bb)->in.vars)),
6898 oldinsz,
6899 (int)htab_elements (shared_hash_htab (VTI (bb)->out.vars)),
6900 oldoutsz,
6901 (int)worklist->nodes, (int)pending->nodes, htabsz);
6903 if (dump_file && (dump_flags & TDF_DETAILS))
6905 fprintf (dump_file, "BB %i IN:\n", bb->index);
6906 dump_dataflow_set (&VTI (bb)->in);
6907 fprintf (dump_file, "BB %i OUT:\n", bb->index);
6908 dump_dataflow_set (&VTI (bb)->out);
6914 if (success && MAY_HAVE_DEBUG_INSNS)
6915 FOR_EACH_BB (bb)
6916 gcc_assert (VTI (bb)->flooded);
6918 free (bb_order);
6919 fibheap_delete (worklist);
6920 fibheap_delete (pending);
6921 sbitmap_free (visited);
6922 sbitmap_free (in_worklist);
6923 sbitmap_free (in_pending);
6925 timevar_pop (TV_VAR_TRACKING_DATAFLOW);
6926 return success;
6929 /* Print the content of the LIST to dump file. */
6931 static void
6932 dump_attrs_list (attrs list)
6934 for (; list; list = list->next)
6936 if (dv_is_decl_p (list->dv))
6937 print_mem_expr (dump_file, dv_as_decl (list->dv));
6938 else
6939 print_rtl_single (dump_file, dv_as_value (list->dv));
6940 fprintf (dump_file, "+" HOST_WIDE_INT_PRINT_DEC, list->offset);
6942 fprintf (dump_file, "\n");
6945 /* Print the information about variable *SLOT to dump file. */
6947 static int
6948 dump_var_slot (void **slot, void *data ATTRIBUTE_UNUSED)
6950 variable var = (variable) *slot;
6952 dump_var (var);
6954 /* Continue traversing the hash table. */
6955 return 1;
6958 /* Print the information about variable VAR to dump file. */
6960 static void
6961 dump_var (variable var)
6963 int i;
6964 location_chain node;
6966 if (dv_is_decl_p (var->dv))
6968 const_tree decl = dv_as_decl (var->dv);
6970 if (DECL_NAME (decl))
6972 fprintf (dump_file, " name: %s",
6973 IDENTIFIER_POINTER (DECL_NAME (decl)));
6974 if (dump_flags & TDF_UID)
6975 fprintf (dump_file, "D.%u", DECL_UID (decl));
6977 else if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
6978 fprintf (dump_file, " name: D#%u", DEBUG_TEMP_UID (decl));
6979 else
6980 fprintf (dump_file, " name: D.%u", DECL_UID (decl));
6981 fprintf (dump_file, "\n");
6983 else
6985 fputc (' ', dump_file);
6986 print_rtl_single (dump_file, dv_as_value (var->dv));
6989 for (i = 0; i < var->n_var_parts; i++)
6991 fprintf (dump_file, " offset %ld\n",
6992 (long)(var->onepart ? 0 : VAR_PART_OFFSET (var, i)));
6993 for (node = var->var_part[i].loc_chain; node; node = node->next)
6995 fprintf (dump_file, " ");
6996 if (node->init == VAR_INIT_STATUS_UNINITIALIZED)
6997 fprintf (dump_file, "[uninit]");
6998 print_rtl_single (dump_file, node->loc);
7003 /* Print the information about variables from hash table VARS to dump file. */
7005 static void
7006 dump_vars (htab_t vars)
7008 if (htab_elements (vars) > 0)
7010 fprintf (dump_file, "Variables:\n");
7011 htab_traverse (vars, dump_var_slot, NULL);
7015 /* Print the dataflow set SET to dump file. */
7017 static void
7018 dump_dataflow_set (dataflow_set *set)
7020 int i;
7022 fprintf (dump_file, "Stack adjustment: " HOST_WIDE_INT_PRINT_DEC "\n",
7023 set->stack_adjust);
7024 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
7026 if (set->regs[i])
7028 fprintf (dump_file, "Reg %d:", i);
7029 dump_attrs_list (set->regs[i]);
7032 dump_vars (shared_hash_htab (set->vars));
7033 fprintf (dump_file, "\n");
7036 /* Print the IN and OUT sets for each basic block to dump file. */
7038 static void
7039 dump_dataflow_sets (void)
7041 basic_block bb;
7043 FOR_EACH_BB (bb)
7045 fprintf (dump_file, "\nBasic block %d:\n", bb->index);
7046 fprintf (dump_file, "IN:\n");
7047 dump_dataflow_set (&VTI (bb)->in);
7048 fprintf (dump_file, "OUT:\n");
7049 dump_dataflow_set (&VTI (bb)->out);
7053 /* Return the variable for DV in dropped_values, inserting one if
7054 requested with INSERT. */
7056 static inline variable
7057 variable_from_dropped (decl_or_value dv, enum insert_option insert)
7059 void **slot;
7060 variable empty_var;
7061 onepart_enum_t onepart;
7063 slot = htab_find_slot_with_hash (dropped_values, dv, dv_htab_hash (dv),
7064 insert);
7066 if (!slot)
7067 return NULL;
7069 if (*slot)
7070 return (variable) *slot;
7072 gcc_checking_assert (insert == INSERT);
7074 onepart = dv_onepart_p (dv);
7076 gcc_checking_assert (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR);
7078 empty_var = (variable) pool_alloc (onepart_pool (onepart));
7079 empty_var->dv = dv;
7080 empty_var->refcount = 1;
7081 empty_var->n_var_parts = 0;
7082 empty_var->onepart = onepart;
7083 empty_var->in_changed_variables = false;
7084 empty_var->var_part[0].loc_chain = NULL;
7085 empty_var->var_part[0].cur_loc = NULL;
7086 VAR_LOC_1PAUX (empty_var) = NULL;
7087 set_dv_changed (dv, true);
7089 *slot = empty_var;
7091 return empty_var;
7094 /* Recover the one-part aux from dropped_values. */
7096 static struct onepart_aux *
7097 recover_dropped_1paux (variable var)
7099 variable dvar;
7101 gcc_checking_assert (var->onepart);
7103 if (VAR_LOC_1PAUX (var))
7104 return VAR_LOC_1PAUX (var);
7106 if (var->onepart == ONEPART_VDECL)
7107 return NULL;
7109 dvar = variable_from_dropped (var->dv, NO_INSERT);
7111 if (!dvar)
7112 return NULL;
7114 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (dvar);
7115 VAR_LOC_1PAUX (dvar) = NULL;
7117 return VAR_LOC_1PAUX (var);
7120 /* Add variable VAR to the hash table of changed variables and
7121 if it has no locations delete it from SET's hash table. */
7123 static void
7124 variable_was_changed (variable var, dataflow_set *set)
7126 hashval_t hash = dv_htab_hash (var->dv);
7128 if (emit_notes)
7130 void **slot;
7132 /* Remember this decl or VALUE has been added to changed_variables. */
7133 set_dv_changed (var->dv, true);
7135 slot = htab_find_slot_with_hash (changed_variables,
7136 var->dv,
7137 hash, INSERT);
7139 if (*slot)
7141 variable old_var = (variable) *slot;
7142 gcc_assert (old_var->in_changed_variables);
7143 old_var->in_changed_variables = false;
7144 if (var != old_var && var->onepart)
7146 /* Restore the auxiliary info from an empty variable
7147 previously created for changed_variables, so it is
7148 not lost. */
7149 gcc_checking_assert (!VAR_LOC_1PAUX (var));
7150 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (old_var);
7151 VAR_LOC_1PAUX (old_var) = NULL;
7153 variable_htab_free (*slot);
7156 if (set && var->n_var_parts == 0)
7158 onepart_enum_t onepart = var->onepart;
7159 variable empty_var = NULL;
7160 void **dslot = NULL;
7162 if (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR)
7164 dslot = htab_find_slot_with_hash (dropped_values, var->dv,
7165 dv_htab_hash (var->dv),
7166 INSERT);
7167 empty_var = (variable) *dslot;
7169 if (empty_var)
7171 gcc_checking_assert (!empty_var->in_changed_variables);
7172 if (!VAR_LOC_1PAUX (var))
7174 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (empty_var);
7175 VAR_LOC_1PAUX (empty_var) = NULL;
7177 else
7178 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
7182 if (!empty_var)
7184 empty_var = (variable) pool_alloc (onepart_pool (onepart));
7185 empty_var->dv = var->dv;
7186 empty_var->refcount = 1;
7187 empty_var->n_var_parts = 0;
7188 empty_var->onepart = onepart;
7189 if (dslot)
7191 empty_var->refcount++;
7192 *dslot = empty_var;
7195 else
7196 empty_var->refcount++;
7197 empty_var->in_changed_variables = true;
7198 *slot = empty_var;
7199 if (onepart)
7201 empty_var->var_part[0].loc_chain = NULL;
7202 empty_var->var_part[0].cur_loc = NULL;
7203 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (var);
7204 VAR_LOC_1PAUX (var) = NULL;
7206 goto drop_var;
7208 else
7210 if (var->onepart && !VAR_LOC_1PAUX (var))
7211 recover_dropped_1paux (var);
7212 var->refcount++;
7213 var->in_changed_variables = true;
7214 *slot = var;
7217 else
7219 gcc_assert (set);
7220 if (var->n_var_parts == 0)
7222 void **slot;
7224 drop_var:
7225 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
7226 if (slot)
7228 if (shared_hash_shared (set->vars))
7229 slot = shared_hash_find_slot_unshare (&set->vars, var->dv,
7230 NO_INSERT);
7231 htab_clear_slot (shared_hash_htab (set->vars), slot);
7237 /* Look for the index in VAR->var_part corresponding to OFFSET.
7238 Return -1 if not found. If INSERTION_POINT is non-NULL, the
7239 referenced int will be set to the index that the part has or should
7240 have, if it should be inserted. */
7242 static inline int
7243 find_variable_location_part (variable var, HOST_WIDE_INT offset,
7244 int *insertion_point)
7246 int pos, low, high;
7248 if (var->onepart)
7250 if (offset != 0)
7251 return -1;
7253 if (insertion_point)
7254 *insertion_point = 0;
7256 return var->n_var_parts - 1;
7259 /* Find the location part. */
7260 low = 0;
7261 high = var->n_var_parts;
7262 while (low != high)
7264 pos = (low + high) / 2;
7265 if (VAR_PART_OFFSET (var, pos) < offset)
7266 low = pos + 1;
7267 else
7268 high = pos;
7270 pos = low;
7272 if (insertion_point)
7273 *insertion_point = pos;
7275 if (pos < var->n_var_parts && VAR_PART_OFFSET (var, pos) == offset)
7276 return pos;
7278 return -1;
7281 static void **
7282 set_slot_part (dataflow_set *set, rtx loc, void **slot,
7283 decl_or_value dv, HOST_WIDE_INT offset,
7284 enum var_init_status initialized, rtx set_src)
7286 int pos;
7287 location_chain node, next;
7288 location_chain *nextp;
7289 variable var;
7290 onepart_enum_t onepart;
7292 var = (variable) *slot;
7294 if (var)
7295 onepart = var->onepart;
7296 else
7297 onepart = dv_onepart_p (dv);
7299 gcc_checking_assert (offset == 0 || !onepart);
7300 gcc_checking_assert (loc != dv_as_opaque (dv));
7302 if (! flag_var_tracking_uninit)
7303 initialized = VAR_INIT_STATUS_INITIALIZED;
7305 if (!var)
7307 /* Create new variable information. */
7308 var = (variable) pool_alloc (onepart_pool (onepart));
7309 var->dv = dv;
7310 var->refcount = 1;
7311 var->n_var_parts = 1;
7312 var->onepart = onepart;
7313 var->in_changed_variables = false;
7314 if (var->onepart)
7315 VAR_LOC_1PAUX (var) = NULL;
7316 else
7317 VAR_PART_OFFSET (var, 0) = offset;
7318 var->var_part[0].loc_chain = NULL;
7319 var->var_part[0].cur_loc = NULL;
7320 *slot = var;
7321 pos = 0;
7322 nextp = &var->var_part[0].loc_chain;
7324 else if (onepart)
7326 int r = -1, c = 0;
7328 gcc_assert (dv_as_opaque (var->dv) == dv_as_opaque (dv));
7330 pos = 0;
7332 if (GET_CODE (loc) == VALUE)
7334 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7335 nextp = &node->next)
7336 if (GET_CODE (node->loc) == VALUE)
7338 if (node->loc == loc)
7340 r = 0;
7341 break;
7343 if (canon_value_cmp (node->loc, loc))
7344 c++;
7345 else
7347 r = 1;
7348 break;
7351 else if (REG_P (node->loc) || MEM_P (node->loc))
7352 c++;
7353 else
7355 r = 1;
7356 break;
7359 else if (REG_P (loc))
7361 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7362 nextp = &node->next)
7363 if (REG_P (node->loc))
7365 if (REGNO (node->loc) < REGNO (loc))
7366 c++;
7367 else
7369 if (REGNO (node->loc) == REGNO (loc))
7370 r = 0;
7371 else
7372 r = 1;
7373 break;
7376 else
7378 r = 1;
7379 break;
7382 else if (MEM_P (loc))
7384 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7385 nextp = &node->next)
7386 if (REG_P (node->loc))
7387 c++;
7388 else if (MEM_P (node->loc))
7390 if ((r = loc_cmp (XEXP (node->loc, 0), XEXP (loc, 0))) >= 0)
7391 break;
7392 else
7393 c++;
7395 else
7397 r = 1;
7398 break;
7401 else
7402 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7403 nextp = &node->next)
7404 if ((r = loc_cmp (node->loc, loc)) >= 0)
7405 break;
7406 else
7407 c++;
7409 if (r == 0)
7410 return slot;
7412 if (shared_var_p (var, set->vars))
7414 slot = unshare_variable (set, slot, var, initialized);
7415 var = (variable)*slot;
7416 for (nextp = &var->var_part[0].loc_chain; c;
7417 nextp = &(*nextp)->next)
7418 c--;
7419 gcc_assert ((!node && !*nextp) || node->loc == (*nextp)->loc);
7422 else
7424 int inspos = 0;
7426 gcc_assert (dv_as_decl (var->dv) == dv_as_decl (dv));
7428 pos = find_variable_location_part (var, offset, &inspos);
7430 if (pos >= 0)
7432 node = var->var_part[pos].loc_chain;
7434 if (node
7435 && ((REG_P (node->loc) && REG_P (loc)
7436 && REGNO (node->loc) == REGNO (loc))
7437 || rtx_equal_p (node->loc, loc)))
7439 /* LOC is in the beginning of the chain so we have nothing
7440 to do. */
7441 if (node->init < initialized)
7442 node->init = initialized;
7443 if (set_src != NULL)
7444 node->set_src = set_src;
7446 return slot;
7448 else
7450 /* We have to make a copy of a shared variable. */
7451 if (shared_var_p (var, set->vars))
7453 slot = unshare_variable (set, slot, var, initialized);
7454 var = (variable)*slot;
7458 else
7460 /* We have not found the location part, new one will be created. */
7462 /* We have to make a copy of the shared variable. */
7463 if (shared_var_p (var, set->vars))
7465 slot = unshare_variable (set, slot, var, initialized);
7466 var = (variable)*slot;
7469 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
7470 thus there are at most MAX_VAR_PARTS different offsets. */
7471 gcc_assert (var->n_var_parts < MAX_VAR_PARTS
7472 && (!var->n_var_parts || !onepart));
7474 /* We have to move the elements of array starting at index
7475 inspos to the next position. */
7476 for (pos = var->n_var_parts; pos > inspos; pos--)
7477 var->var_part[pos] = var->var_part[pos - 1];
7479 var->n_var_parts++;
7480 gcc_checking_assert (!onepart);
7481 VAR_PART_OFFSET (var, pos) = offset;
7482 var->var_part[pos].loc_chain = NULL;
7483 var->var_part[pos].cur_loc = NULL;
7486 /* Delete the location from the list. */
7487 nextp = &var->var_part[pos].loc_chain;
7488 for (node = var->var_part[pos].loc_chain; node; node = next)
7490 next = node->next;
7491 if ((REG_P (node->loc) && REG_P (loc)
7492 && REGNO (node->loc) == REGNO (loc))
7493 || rtx_equal_p (node->loc, loc))
7495 /* Save these values, to assign to the new node, before
7496 deleting this one. */
7497 if (node->init > initialized)
7498 initialized = node->init;
7499 if (node->set_src != NULL && set_src == NULL)
7500 set_src = node->set_src;
7501 if (var->var_part[pos].cur_loc == node->loc)
7502 var->var_part[pos].cur_loc = NULL;
7503 pool_free (loc_chain_pool, node);
7504 *nextp = next;
7505 break;
7507 else
7508 nextp = &node->next;
7511 nextp = &var->var_part[pos].loc_chain;
7514 /* Add the location to the beginning. */
7515 node = (location_chain) pool_alloc (loc_chain_pool);
7516 node->loc = loc;
7517 node->init = initialized;
7518 node->set_src = set_src;
7519 node->next = *nextp;
7520 *nextp = node;
7522 /* If no location was emitted do so. */
7523 if (var->var_part[pos].cur_loc == NULL)
7524 variable_was_changed (var, set);
7526 return slot;
7529 /* Set the part of variable's location in the dataflow set SET. The
7530 variable part is specified by variable's declaration in DV and
7531 offset OFFSET and the part's location by LOC. IOPT should be
7532 NO_INSERT if the variable is known to be in SET already and the
7533 variable hash table must not be resized, and INSERT otherwise. */
7535 static void
7536 set_variable_part (dataflow_set *set, rtx loc,
7537 decl_or_value dv, HOST_WIDE_INT offset,
7538 enum var_init_status initialized, rtx set_src,
7539 enum insert_option iopt)
7541 void **slot;
7543 if (iopt == NO_INSERT)
7544 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7545 else
7547 slot = shared_hash_find_slot (set->vars, dv);
7548 if (!slot)
7549 slot = shared_hash_find_slot_unshare (&set->vars, dv, iopt);
7551 set_slot_part (set, loc, slot, dv, offset, initialized, set_src);
7554 /* Remove all recorded register locations for the given variable part
7555 from dataflow set SET, except for those that are identical to loc.
7556 The variable part is specified by variable's declaration or value
7557 DV and offset OFFSET. */
7559 static void **
7560 clobber_slot_part (dataflow_set *set, rtx loc, void **slot,
7561 HOST_WIDE_INT offset, rtx set_src)
7563 variable var = (variable) *slot;
7564 int pos = find_variable_location_part (var, offset, NULL);
7566 if (pos >= 0)
7568 location_chain node, next;
7570 /* Remove the register locations from the dataflow set. */
7571 next = var->var_part[pos].loc_chain;
7572 for (node = next; node; node = next)
7574 next = node->next;
7575 if (node->loc != loc
7576 && (!flag_var_tracking_uninit
7577 || !set_src
7578 || MEM_P (set_src)
7579 || !rtx_equal_p (set_src, node->set_src)))
7581 if (REG_P (node->loc))
7583 attrs anode, anext;
7584 attrs *anextp;
7586 /* Remove the variable part from the register's
7587 list, but preserve any other variable parts
7588 that might be regarded as live in that same
7589 register. */
7590 anextp = &set->regs[REGNO (node->loc)];
7591 for (anode = *anextp; anode; anode = anext)
7593 anext = anode->next;
7594 if (dv_as_opaque (anode->dv) == dv_as_opaque (var->dv)
7595 && anode->offset == offset)
7597 pool_free (attrs_pool, anode);
7598 *anextp = anext;
7600 else
7601 anextp = &anode->next;
7605 slot = delete_slot_part (set, node->loc, slot, offset);
7610 return slot;
7613 /* Remove all recorded register locations for the given variable part
7614 from dataflow set SET, except for those that are identical to loc.
7615 The variable part is specified by variable's declaration or value
7616 DV and offset OFFSET. */
7618 static void
7619 clobber_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7620 HOST_WIDE_INT offset, rtx set_src)
7622 void **slot;
7624 if (!dv_as_opaque (dv)
7625 || (!dv_is_value_p (dv) && ! DECL_P (dv_as_decl (dv))))
7626 return;
7628 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7629 if (!slot)
7630 return;
7632 clobber_slot_part (set, loc, slot, offset, set_src);
7635 /* Delete the part of variable's location from dataflow set SET. The
7636 variable part is specified by its SET->vars slot SLOT and offset
7637 OFFSET and the part's location by LOC. */
7639 static void **
7640 delete_slot_part (dataflow_set *set, rtx loc, void **slot,
7641 HOST_WIDE_INT offset)
7643 variable var = (variable) *slot;
7644 int pos = find_variable_location_part (var, offset, NULL);
7646 if (pos >= 0)
7648 location_chain node, next;
7649 location_chain *nextp;
7650 bool changed;
7651 rtx cur_loc;
7653 if (shared_var_p (var, set->vars))
7655 /* If the variable contains the location part we have to
7656 make a copy of the variable. */
7657 for (node = var->var_part[pos].loc_chain; node;
7658 node = node->next)
7660 if ((REG_P (node->loc) && REG_P (loc)
7661 && REGNO (node->loc) == REGNO (loc))
7662 || rtx_equal_p (node->loc, loc))
7664 slot = unshare_variable (set, slot, var,
7665 VAR_INIT_STATUS_UNKNOWN);
7666 var = (variable)*slot;
7667 break;
7672 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
7673 cur_loc = VAR_LOC_FROM (var);
7674 else
7675 cur_loc = var->var_part[pos].cur_loc;
7677 /* Delete the location part. */
7678 changed = false;
7679 nextp = &var->var_part[pos].loc_chain;
7680 for (node = *nextp; node; node = next)
7682 next = node->next;
7683 if ((REG_P (node->loc) && REG_P (loc)
7684 && REGNO (node->loc) == REGNO (loc))
7685 || rtx_equal_p (node->loc, loc))
7687 /* If we have deleted the location which was last emitted
7688 we have to emit new location so add the variable to set
7689 of changed variables. */
7690 if (cur_loc == node->loc)
7692 changed = true;
7693 var->var_part[pos].cur_loc = NULL;
7694 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
7695 VAR_LOC_FROM (var) = NULL;
7697 pool_free (loc_chain_pool, node);
7698 *nextp = next;
7699 break;
7701 else
7702 nextp = &node->next;
7705 if (var->var_part[pos].loc_chain == NULL)
7707 changed = true;
7708 var->n_var_parts--;
7709 while (pos < var->n_var_parts)
7711 var->var_part[pos] = var->var_part[pos + 1];
7712 pos++;
7715 if (changed)
7716 variable_was_changed (var, set);
7719 return slot;
7722 /* Delete the part of variable's location from dataflow set SET. The
7723 variable part is specified by variable's declaration or value DV
7724 and offset OFFSET and the part's location by LOC. */
7726 static void
7727 delete_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7728 HOST_WIDE_INT offset)
7730 void **slot = shared_hash_find_slot_noinsert (set->vars, dv);
7731 if (!slot)
7732 return;
7734 delete_slot_part (set, loc, slot, offset);
7737 DEF_VEC_P (variable);
7738 DEF_VEC_ALLOC_P (variable, heap);
7740 DEF_VEC_ALLOC_P_STACK (rtx);
7741 #define VEC_rtx_stack_alloc(alloc) VEC_stack_alloc (rtx, alloc)
7743 /* Structure for passing some other parameters to function
7744 vt_expand_loc_callback. */
7745 struct expand_loc_callback_data
7747 /* The variables and values active at this point. */
7748 htab_t vars;
7750 /* Stack of values and debug_exprs under expansion, and their
7751 children. */
7752 VEC (rtx, stack) *expanding;
7754 /* Stack of values and debug_exprs whose expansion hit recursion
7755 cycles. They will have VALUE_RECURSED_INTO marked when added to
7756 this list. This flag will be cleared if any of its dependencies
7757 resolves to a valid location. So, if the flag remains set at the
7758 end of the search, we know no valid location for this one can
7759 possibly exist. */
7760 VEC (rtx, stack) *pending;
7762 /* The maximum depth among the sub-expressions under expansion.
7763 Zero indicates no expansion so far. */
7764 expand_depth depth;
7767 /* Allocate the one-part auxiliary data structure for VAR, with enough
7768 room for COUNT dependencies. */
7770 static void
7771 loc_exp_dep_alloc (variable var, int count)
7773 size_t allocsize;
7775 gcc_checking_assert (var->onepart);
7777 /* We can be called with COUNT == 0 to allocate the data structure
7778 without any dependencies, e.g. for the backlinks only. However,
7779 if we are specifying a COUNT, then the dependency list must have
7780 been emptied before. It would be possible to adjust pointers or
7781 force it empty here, but this is better done at an earlier point
7782 in the algorithm, so we instead leave an assertion to catch
7783 errors. */
7784 gcc_checking_assert (!count
7785 || VEC_empty (loc_exp_dep, VAR_LOC_DEP_VEC (var)));
7787 if (VAR_LOC_1PAUX (var)
7788 && VEC_space (loc_exp_dep, VAR_LOC_DEP_VEC (var), count))
7789 return;
7791 allocsize = offsetof (struct onepart_aux, deps)
7792 + VEC_embedded_size (loc_exp_dep, count);
7794 if (VAR_LOC_1PAUX (var))
7796 VAR_LOC_1PAUX (var) = XRESIZEVAR (struct onepart_aux,
7797 VAR_LOC_1PAUX (var), allocsize);
7798 /* If the reallocation moves the onepaux structure, the
7799 back-pointer to BACKLINKS in the first list member will still
7800 point to its old location. Adjust it. */
7801 if (VAR_LOC_DEP_LST (var))
7802 VAR_LOC_DEP_LST (var)->pprev = VAR_LOC_DEP_LSTP (var);
7804 else
7806 VAR_LOC_1PAUX (var) = XNEWVAR (struct onepart_aux, allocsize);
7807 *VAR_LOC_DEP_LSTP (var) = NULL;
7808 VAR_LOC_FROM (var) = NULL;
7809 VAR_LOC_DEPTH (var).complexity = 0;
7810 VAR_LOC_DEPTH (var).entryvals = 0;
7812 VEC_embedded_init (loc_exp_dep, VAR_LOC_DEP_VEC (var), count);
7815 /* Remove all entries from the vector of active dependencies of VAR,
7816 removing them from the back-links lists too. */
7818 static void
7819 loc_exp_dep_clear (variable var)
7821 while (!VEC_empty (loc_exp_dep, VAR_LOC_DEP_VEC (var)))
7823 loc_exp_dep *led = &VEC_last (loc_exp_dep, VAR_LOC_DEP_VEC (var));
7824 if (led->next)
7825 led->next->pprev = led->pprev;
7826 if (led->pprev)
7827 *led->pprev = led->next;
7828 VEC_pop (loc_exp_dep, VAR_LOC_DEP_VEC (var));
7832 /* Insert an active dependency from VAR on X to the vector of
7833 dependencies, and add the corresponding back-link to X's list of
7834 back-links in VARS. */
7836 static void
7837 loc_exp_insert_dep (variable var, rtx x, htab_t vars)
7839 decl_or_value dv;
7840 variable xvar;
7841 loc_exp_dep *led;
7843 dv = dv_from_rtx (x);
7845 /* ??? Build a vector of variables parallel to EXPANDING, to avoid
7846 an additional look up? */
7847 xvar = (variable) htab_find_with_hash (vars, dv, dv_htab_hash (dv));
7849 if (!xvar)
7851 xvar = variable_from_dropped (dv, NO_INSERT);
7852 gcc_checking_assert (xvar);
7855 /* No point in adding the same backlink more than once. This may
7856 arise if say the same value appears in two complex expressions in
7857 the same loc_list, or even more than once in a single
7858 expression. */
7859 if (VAR_LOC_DEP_LST (xvar) && VAR_LOC_DEP_LST (xvar)->dv == var->dv)
7860 return;
7862 if (var->onepart == NOT_ONEPART)
7863 led = (loc_exp_dep *) pool_alloc (loc_exp_dep_pool);
7864 else
7866 loc_exp_dep empty;
7867 memset (&empty, 0, sizeof (empty));
7868 VEC_quick_push (loc_exp_dep, VAR_LOC_DEP_VEC (var), empty);
7869 led = &VEC_last (loc_exp_dep, VAR_LOC_DEP_VEC (var));
7871 led->dv = var->dv;
7872 led->value = x;
7874 loc_exp_dep_alloc (xvar, 0);
7875 led->pprev = VAR_LOC_DEP_LSTP (xvar);
7876 led->next = *led->pprev;
7877 if (led->next)
7878 led->next->pprev = &led->next;
7879 *led->pprev = led;
7882 /* Create active dependencies of VAR on COUNT values starting at
7883 VALUE, and corresponding back-links to the entries in VARS. Return
7884 true if we found any pending-recursion results. */
7886 static bool
7887 loc_exp_dep_set (variable var, rtx result, rtx *value, int count, htab_t vars)
7889 bool pending_recursion = false;
7891 gcc_checking_assert (VEC_empty (loc_exp_dep, VAR_LOC_DEP_VEC (var)));
7893 /* Set up all dependencies from last_child (as set up at the end of
7894 the loop above) to the end. */
7895 loc_exp_dep_alloc (var, count);
7897 while (count--)
7899 rtx x = *value++;
7901 if (!pending_recursion)
7902 pending_recursion = !result && VALUE_RECURSED_INTO (x);
7904 loc_exp_insert_dep (var, x, vars);
7907 return pending_recursion;
7910 /* Notify the back-links of IVAR that are pending recursion that we
7911 have found a non-NIL value for it, so they are cleared for another
7912 attempt to compute a current location. */
7914 static void
7915 notify_dependents_of_resolved_value (variable ivar, htab_t vars)
7917 loc_exp_dep *led, *next;
7919 for (led = VAR_LOC_DEP_LST (ivar); led; led = next)
7921 decl_or_value dv = led->dv;
7922 variable var;
7924 next = led->next;
7926 if (dv_is_value_p (dv))
7928 rtx value = dv_as_value (dv);
7930 /* If we have already resolved it, leave it alone. */
7931 if (!VALUE_RECURSED_INTO (value))
7932 continue;
7934 /* Check that VALUE_RECURSED_INTO, true from the test above,
7935 implies NO_LOC_P. */
7936 gcc_checking_assert (NO_LOC_P (value));
7938 /* We won't notify variables that are being expanded,
7939 because their dependency list is cleared before
7940 recursing. */
7941 NO_LOC_P (value) = false;
7942 VALUE_RECURSED_INTO (value) = false;
7944 gcc_checking_assert (dv_changed_p (dv));
7946 else
7948 gcc_checking_assert (dv_onepart_p (dv) != NOT_ONEPART);
7949 if (!dv_changed_p (dv))
7950 continue;
7953 var = (variable) htab_find_with_hash (vars, dv, dv_htab_hash (dv));
7955 if (!var)
7956 var = variable_from_dropped (dv, NO_INSERT);
7958 if (var)
7959 notify_dependents_of_resolved_value (var, vars);
7961 if (next)
7962 next->pprev = led->pprev;
7963 if (led->pprev)
7964 *led->pprev = next;
7965 led->next = NULL;
7966 led->pprev = NULL;
7970 static rtx vt_expand_loc_callback (rtx x, bitmap regs,
7971 int max_depth, void *data);
7973 /* Return the combined depth, when one sub-expression evaluated to
7974 BEST_DEPTH and the previous known depth was SAVED_DEPTH. */
7976 static inline expand_depth
7977 update_depth (expand_depth saved_depth, expand_depth best_depth)
7979 /* If we didn't find anything, stick with what we had. */
7980 if (!best_depth.complexity)
7981 return saved_depth;
7983 /* If we found hadn't found anything, use the depth of the current
7984 expression. Do NOT add one extra level, we want to compute the
7985 maximum depth among sub-expressions. We'll increment it later,
7986 if appropriate. */
7987 if (!saved_depth.complexity)
7988 return best_depth;
7990 /* Combine the entryval count so that regardless of which one we
7991 return, the entryval count is accurate. */
7992 best_depth.entryvals = saved_depth.entryvals
7993 = best_depth.entryvals + saved_depth.entryvals;
7995 if (saved_depth.complexity < best_depth.complexity)
7996 return best_depth;
7997 else
7998 return saved_depth;
8001 /* Expand VAR to a location RTX, updating its cur_loc. Use REGS and
8002 DATA for cselib expand callback. If PENDRECP is given, indicate in
8003 it whether any sub-expression couldn't be fully evaluated because
8004 it is pending recursion resolution. */
8006 static inline rtx
8007 vt_expand_var_loc_chain (variable var, bitmap regs, void *data, bool *pendrecp)
8009 struct expand_loc_callback_data *elcd
8010 = (struct expand_loc_callback_data *) data;
8011 location_chain loc, next;
8012 rtx result = NULL;
8013 int first_child, result_first_child, last_child;
8014 bool pending_recursion;
8015 rtx loc_from = NULL;
8016 struct elt_loc_list *cloc = NULL;
8017 expand_depth depth = { 0, 0 }, saved_depth = elcd->depth;
8018 int wanted_entryvals, found_entryvals = 0;
8020 /* Clear all backlinks pointing at this, so that we're not notified
8021 while we're active. */
8022 loc_exp_dep_clear (var);
8024 retry:
8025 if (var->onepart == ONEPART_VALUE)
8027 cselib_val *val = CSELIB_VAL_PTR (dv_as_value (var->dv));
8029 gcc_checking_assert (cselib_preserved_value_p (val));
8031 cloc = val->locs;
8034 first_child = result_first_child = last_child
8035 = VEC_length (rtx, elcd->expanding);
8037 wanted_entryvals = found_entryvals;
8039 /* Attempt to expand each available location in turn. */
8040 for (next = loc = var->n_var_parts ? var->var_part[0].loc_chain : NULL;
8041 loc || cloc; loc = next)
8043 result_first_child = last_child;
8045 if (!loc)
8047 loc_from = cloc->loc;
8048 next = loc;
8049 cloc = cloc->next;
8050 if (unsuitable_loc (loc_from))
8051 continue;
8053 else
8055 loc_from = loc->loc;
8056 next = loc->next;
8059 gcc_checking_assert (!unsuitable_loc (loc_from));
8061 elcd->depth.complexity = elcd->depth.entryvals = 0;
8062 result = cselib_expand_value_rtx_cb (loc_from, regs, EXPR_DEPTH,
8063 vt_expand_loc_callback, data);
8064 last_child = VEC_length (rtx, elcd->expanding);
8066 if (result)
8068 depth = elcd->depth;
8070 gcc_checking_assert (depth.complexity
8071 || result_first_child == last_child);
8073 if (last_child - result_first_child != 1)
8075 if (!depth.complexity && GET_CODE (result) == ENTRY_VALUE)
8076 depth.entryvals++;
8077 depth.complexity++;
8080 if (depth.complexity <= EXPR_USE_DEPTH)
8082 if (depth.entryvals <= wanted_entryvals)
8083 break;
8084 else if (!found_entryvals || depth.entryvals < found_entryvals)
8085 found_entryvals = depth.entryvals;
8088 result = NULL;
8091 /* Set it up in case we leave the loop. */
8092 depth.complexity = depth.entryvals = 0;
8093 loc_from = NULL;
8094 result_first_child = first_child;
8097 if (!loc_from && wanted_entryvals < found_entryvals)
8099 /* We found entries with ENTRY_VALUEs and skipped them. Since
8100 we could not find any expansions without ENTRY_VALUEs, but we
8101 found at least one with them, go back and get an entry with
8102 the minimum number ENTRY_VALUE count that we found. We could
8103 avoid looping, but since each sub-loc is already resolved,
8104 the re-expansion should be trivial. ??? Should we record all
8105 attempted locs as dependencies, so that we retry the
8106 expansion should any of them change, in the hope it can give
8107 us a new entry without an ENTRY_VALUE? */
8108 VEC_truncate (rtx, elcd->expanding, first_child);
8109 goto retry;
8112 /* Register all encountered dependencies as active. */
8113 pending_recursion = loc_exp_dep_set
8114 (var, result, VEC_address (rtx, elcd->expanding) + result_first_child,
8115 last_child - result_first_child, elcd->vars);
8117 VEC_truncate (rtx, elcd->expanding, first_child);
8119 /* Record where the expansion came from. */
8120 gcc_checking_assert (!result || !pending_recursion);
8121 VAR_LOC_FROM (var) = loc_from;
8122 VAR_LOC_DEPTH (var) = depth;
8124 gcc_checking_assert (!depth.complexity == !result);
8126 elcd->depth = update_depth (saved_depth, depth);
8128 /* Indicate whether any of the dependencies are pending recursion
8129 resolution. */
8130 if (pendrecp)
8131 *pendrecp = pending_recursion;
8133 if (!pendrecp || !pending_recursion)
8134 var->var_part[0].cur_loc = result;
8136 return result;
8139 /* Callback for cselib_expand_value, that looks for expressions
8140 holding the value in the var-tracking hash tables. Return X for
8141 standard processing, anything else is to be used as-is. */
8143 static rtx
8144 vt_expand_loc_callback (rtx x, bitmap regs,
8145 int max_depth ATTRIBUTE_UNUSED,
8146 void *data)
8148 struct expand_loc_callback_data *elcd
8149 = (struct expand_loc_callback_data *) data;
8150 decl_or_value dv;
8151 variable var;
8152 rtx result, subreg;
8153 bool pending_recursion = false;
8154 bool from_empty = false;
8156 switch (GET_CODE (x))
8158 case SUBREG:
8159 subreg = cselib_expand_value_rtx_cb (SUBREG_REG (x), regs,
8160 EXPR_DEPTH,
8161 vt_expand_loc_callback, data);
8163 if (!subreg)
8164 return NULL;
8166 result = simplify_gen_subreg (GET_MODE (x), subreg,
8167 GET_MODE (SUBREG_REG (x)),
8168 SUBREG_BYTE (x));
8170 /* Invalid SUBREGs are ok in debug info. ??? We could try
8171 alternate expansions for the VALUE as well. */
8172 if (!result)
8173 result = gen_rtx_raw_SUBREG (GET_MODE (x), subreg, SUBREG_BYTE (x));
8175 return result;
8177 case DEBUG_EXPR:
8178 case VALUE:
8179 dv = dv_from_rtx (x);
8180 break;
8182 default:
8183 return x;
8186 VEC_safe_push (rtx, stack, elcd->expanding, x);
8188 /* Check that VALUE_RECURSED_INTO implies NO_LOC_P. */
8189 gcc_checking_assert (!VALUE_RECURSED_INTO (x) || NO_LOC_P (x));
8191 if (NO_LOC_P (x))
8193 gcc_checking_assert (VALUE_RECURSED_INTO (x) || !dv_changed_p (dv));
8194 return NULL;
8197 var = (variable) htab_find_with_hash (elcd->vars, dv, dv_htab_hash (dv));
8199 if (!var)
8201 from_empty = true;
8202 var = variable_from_dropped (dv, INSERT);
8205 gcc_checking_assert (var);
8207 if (!dv_changed_p (dv))
8209 gcc_checking_assert (!NO_LOC_P (x));
8210 gcc_checking_assert (var->var_part[0].cur_loc);
8211 gcc_checking_assert (VAR_LOC_1PAUX (var));
8212 gcc_checking_assert (VAR_LOC_1PAUX (var)->depth.complexity);
8214 elcd->depth = update_depth (elcd->depth, VAR_LOC_1PAUX (var)->depth);
8216 return var->var_part[0].cur_loc;
8219 VALUE_RECURSED_INTO (x) = true;
8220 /* This is tentative, but it makes some tests simpler. */
8221 NO_LOC_P (x) = true;
8223 gcc_checking_assert (var->n_var_parts == 1 || from_empty);
8225 result = vt_expand_var_loc_chain (var, regs, data, &pending_recursion);
8227 if (pending_recursion)
8229 gcc_checking_assert (!result);
8230 VEC_safe_push (rtx, stack, elcd->pending, x);
8232 else
8234 NO_LOC_P (x) = !result;
8235 VALUE_RECURSED_INTO (x) = false;
8236 set_dv_changed (dv, false);
8238 if (result)
8239 notify_dependents_of_resolved_value (var, elcd->vars);
8242 return result;
8245 /* While expanding variables, we may encounter recursion cycles
8246 because of mutual (possibly indirect) dependencies between two
8247 particular variables (or values), say A and B. If we're trying to
8248 expand A when we get to B, which in turn attempts to expand A, if
8249 we can't find any other expansion for B, we'll add B to this
8250 pending-recursion stack, and tentatively return NULL for its
8251 location. This tentative value will be used for any other
8252 occurrences of B, unless A gets some other location, in which case
8253 it will notify B that it is worth another try at computing a
8254 location for it, and it will use the location computed for A then.
8255 At the end of the expansion, the tentative NULL locations become
8256 final for all members of PENDING that didn't get a notification.
8257 This function performs this finalization of NULL locations. */
8259 static void
8260 resolve_expansions_pending_recursion (VEC (rtx, stack) *pending)
8262 while (!VEC_empty (rtx, pending))
8264 rtx x = VEC_pop (rtx, pending);
8265 decl_or_value dv;
8267 if (!VALUE_RECURSED_INTO (x))
8268 continue;
8270 gcc_checking_assert (NO_LOC_P (x));
8271 VALUE_RECURSED_INTO (x) = false;
8272 dv = dv_from_rtx (x);
8273 gcc_checking_assert (dv_changed_p (dv));
8274 set_dv_changed (dv, false);
8278 /* Initialize expand_loc_callback_data D with variable hash table V.
8279 It must be a macro because of alloca (VEC stack). */
8280 #define INIT_ELCD(d, v) \
8281 do \
8283 (d).vars = (v); \
8284 (d).expanding = VEC_alloc (rtx, stack, 4); \
8285 (d).pending = VEC_alloc (rtx, stack, 4); \
8286 (d).depth.complexity = (d).depth.entryvals = 0; \
8288 while (0)
8289 /* Finalize expand_loc_callback_data D, resolved to location L. */
8290 #define FINI_ELCD(d, l) \
8291 do \
8293 resolve_expansions_pending_recursion ((d).pending); \
8294 VEC_free (rtx, stack, (d).pending); \
8295 VEC_free (rtx, stack, (d).expanding); \
8297 if ((l) && MEM_P (l)) \
8298 (l) = targetm.delegitimize_address (l); \
8300 while (0)
8302 /* Expand VALUEs and DEBUG_EXPRs in LOC to a location, using the
8303 equivalences in VARS, updating their CUR_LOCs in the process. */
8305 static rtx
8306 vt_expand_loc (rtx loc, htab_t vars)
8308 struct expand_loc_callback_data data;
8309 rtx result;
8311 if (!MAY_HAVE_DEBUG_INSNS)
8312 return loc;
8314 INIT_ELCD (data, vars);
8316 result = cselib_expand_value_rtx_cb (loc, scratch_regs, EXPR_DEPTH,
8317 vt_expand_loc_callback, &data);
8319 FINI_ELCD (data, result);
8321 return result;
8324 /* Expand the one-part VARiable to a location, using the equivalences
8325 in VARS, updating their CUR_LOCs in the process. */
8327 static rtx
8328 vt_expand_1pvar (variable var, htab_t vars)
8330 struct expand_loc_callback_data data;
8331 rtx loc;
8333 gcc_checking_assert (var->onepart && var->n_var_parts == 1);
8335 if (!dv_changed_p (var->dv))
8336 return var->var_part[0].cur_loc;
8338 INIT_ELCD (data, vars);
8340 loc = vt_expand_var_loc_chain (var, scratch_regs, &data, NULL);
8342 gcc_checking_assert (VEC_empty (rtx, data.expanding));
8344 FINI_ELCD (data, loc);
8346 return loc;
8349 /* Emit the NOTE_INSN_VAR_LOCATION for variable *VARP. DATA contains
8350 additional parameters: WHERE specifies whether the note shall be emitted
8351 before or after instruction INSN. */
8353 static int
8354 emit_note_insn_var_location (void **varp, void *data)
8356 variable var = (variable) *varp;
8357 rtx insn = ((emit_note_data *)data)->insn;
8358 enum emit_note_where where = ((emit_note_data *)data)->where;
8359 htab_t vars = ((emit_note_data *)data)->vars;
8360 rtx note, note_vl;
8361 int i, j, n_var_parts;
8362 bool complete;
8363 enum var_init_status initialized = VAR_INIT_STATUS_UNINITIALIZED;
8364 HOST_WIDE_INT last_limit;
8365 tree type_size_unit;
8366 HOST_WIDE_INT offsets[MAX_VAR_PARTS];
8367 rtx loc[MAX_VAR_PARTS];
8368 tree decl;
8369 location_chain lc;
8371 gcc_checking_assert (var->onepart == NOT_ONEPART
8372 || var->onepart == ONEPART_VDECL);
8374 decl = dv_as_decl (var->dv);
8376 complete = true;
8377 last_limit = 0;
8378 n_var_parts = 0;
8379 if (!var->onepart)
8380 for (i = 0; i < var->n_var_parts; i++)
8381 if (var->var_part[i].cur_loc == NULL && var->var_part[i].loc_chain)
8382 var->var_part[i].cur_loc = var->var_part[i].loc_chain->loc;
8383 for (i = 0; i < var->n_var_parts; i++)
8385 enum machine_mode mode, wider_mode;
8386 rtx loc2;
8387 HOST_WIDE_INT offset;
8389 if (i == 0 && var->onepart)
8391 gcc_checking_assert (var->n_var_parts == 1);
8392 offset = 0;
8393 initialized = VAR_INIT_STATUS_INITIALIZED;
8394 loc2 = vt_expand_1pvar (var, vars);
8396 else
8398 if (last_limit < VAR_PART_OFFSET (var, i))
8400 complete = false;
8401 break;
8403 else if (last_limit > VAR_PART_OFFSET (var, i))
8404 continue;
8405 offset = VAR_PART_OFFSET (var, i);
8406 loc2 = var->var_part[i].cur_loc;
8407 if (loc2 && GET_CODE (loc2) == MEM
8408 && GET_CODE (XEXP (loc2, 0)) == VALUE)
8410 rtx depval = XEXP (loc2, 0);
8412 loc2 = vt_expand_loc (loc2, vars);
8414 if (loc2)
8415 loc_exp_insert_dep (var, depval, vars);
8417 if (!loc2)
8419 complete = false;
8420 continue;
8422 gcc_checking_assert (GET_CODE (loc2) != VALUE);
8423 for (lc = var->var_part[i].loc_chain; lc; lc = lc->next)
8424 if (var->var_part[i].cur_loc == lc->loc)
8426 initialized = lc->init;
8427 break;
8429 gcc_assert (lc);
8432 offsets[n_var_parts] = offset;
8433 if (!loc2)
8435 complete = false;
8436 continue;
8438 loc[n_var_parts] = loc2;
8439 mode = GET_MODE (var->var_part[i].cur_loc);
8440 if (mode == VOIDmode && var->onepart)
8441 mode = DECL_MODE (decl);
8442 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
8444 /* Attempt to merge adjacent registers or memory. */
8445 wider_mode = GET_MODE_WIDER_MODE (mode);
8446 for (j = i + 1; j < var->n_var_parts; j++)
8447 if (last_limit <= VAR_PART_OFFSET (var, j))
8448 break;
8449 if (j < var->n_var_parts
8450 && wider_mode != VOIDmode
8451 && var->var_part[j].cur_loc
8452 && mode == GET_MODE (var->var_part[j].cur_loc)
8453 && (REG_P (loc[n_var_parts]) || MEM_P (loc[n_var_parts]))
8454 && last_limit == (var->onepart ? 0 : VAR_PART_OFFSET (var, j))
8455 && (loc2 = vt_expand_loc (var->var_part[j].cur_loc, vars))
8456 && GET_CODE (loc[n_var_parts]) == GET_CODE (loc2))
8458 rtx new_loc = NULL;
8460 if (REG_P (loc[n_var_parts])
8461 && hard_regno_nregs[REGNO (loc[n_var_parts])][mode] * 2
8462 == hard_regno_nregs[REGNO (loc[n_var_parts])][wider_mode]
8463 && end_hard_regno (mode, REGNO (loc[n_var_parts]))
8464 == REGNO (loc2))
8466 if (! WORDS_BIG_ENDIAN && ! BYTES_BIG_ENDIAN)
8467 new_loc = simplify_subreg (wider_mode, loc[n_var_parts],
8468 mode, 0);
8469 else if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
8470 new_loc = simplify_subreg (wider_mode, loc2, mode, 0);
8471 if (new_loc)
8473 if (!REG_P (new_loc)
8474 || REGNO (new_loc) != REGNO (loc[n_var_parts]))
8475 new_loc = NULL;
8476 else
8477 REG_ATTRS (new_loc) = REG_ATTRS (loc[n_var_parts]);
8480 else if (MEM_P (loc[n_var_parts])
8481 && GET_CODE (XEXP (loc2, 0)) == PLUS
8482 && REG_P (XEXP (XEXP (loc2, 0), 0))
8483 && CONST_INT_P (XEXP (XEXP (loc2, 0), 1)))
8485 if ((REG_P (XEXP (loc[n_var_parts], 0))
8486 && rtx_equal_p (XEXP (loc[n_var_parts], 0),
8487 XEXP (XEXP (loc2, 0), 0))
8488 && INTVAL (XEXP (XEXP (loc2, 0), 1))
8489 == GET_MODE_SIZE (mode))
8490 || (GET_CODE (XEXP (loc[n_var_parts], 0)) == PLUS
8491 && CONST_INT_P (XEXP (XEXP (loc[n_var_parts], 0), 1))
8492 && rtx_equal_p (XEXP (XEXP (loc[n_var_parts], 0), 0),
8493 XEXP (XEXP (loc2, 0), 0))
8494 && INTVAL (XEXP (XEXP (loc[n_var_parts], 0), 1))
8495 + GET_MODE_SIZE (mode)
8496 == INTVAL (XEXP (XEXP (loc2, 0), 1))))
8497 new_loc = adjust_address_nv (loc[n_var_parts],
8498 wider_mode, 0);
8501 if (new_loc)
8503 loc[n_var_parts] = new_loc;
8504 mode = wider_mode;
8505 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
8506 i = j;
8509 ++n_var_parts;
8511 type_size_unit = TYPE_SIZE_UNIT (TREE_TYPE (decl));
8512 if ((unsigned HOST_WIDE_INT) last_limit < TREE_INT_CST_LOW (type_size_unit))
8513 complete = false;
8515 if (! flag_var_tracking_uninit)
8516 initialized = VAR_INIT_STATUS_INITIALIZED;
8518 note_vl = NULL_RTX;
8519 if (!complete)
8520 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, NULL_RTX,
8521 (int) initialized);
8522 else if (n_var_parts == 1)
8524 rtx expr_list;
8526 if (offsets[0] || GET_CODE (loc[0]) == PARALLEL)
8527 expr_list = gen_rtx_EXPR_LIST (VOIDmode, loc[0], GEN_INT (offsets[0]));
8528 else
8529 expr_list = loc[0];
8531 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, expr_list,
8532 (int) initialized);
8534 else if (n_var_parts)
8536 rtx parallel;
8538 for (i = 0; i < n_var_parts; i++)
8539 loc[i]
8540 = gen_rtx_EXPR_LIST (VOIDmode, loc[i], GEN_INT (offsets[i]));
8542 parallel = gen_rtx_PARALLEL (VOIDmode,
8543 gen_rtvec_v (n_var_parts, loc));
8544 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl,
8545 parallel, (int) initialized);
8548 if (where != EMIT_NOTE_BEFORE_INSN)
8550 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8551 if (where == EMIT_NOTE_AFTER_CALL_INSN)
8552 NOTE_DURING_CALL_P (note) = true;
8554 else
8556 /* Make sure that the call related notes come first. */
8557 while (NEXT_INSN (insn)
8558 && NOTE_P (insn)
8559 && ((NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8560 && NOTE_DURING_CALL_P (insn))
8561 || NOTE_KIND (insn) == NOTE_INSN_CALL_ARG_LOCATION))
8562 insn = NEXT_INSN (insn);
8563 if (NOTE_P (insn)
8564 && ((NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8565 && NOTE_DURING_CALL_P (insn))
8566 || NOTE_KIND (insn) == NOTE_INSN_CALL_ARG_LOCATION))
8567 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8568 else
8569 note = emit_note_before (NOTE_INSN_VAR_LOCATION, insn);
8571 NOTE_VAR_LOCATION (note) = note_vl;
8573 set_dv_changed (var->dv, false);
8574 gcc_assert (var->in_changed_variables);
8575 var->in_changed_variables = false;
8576 htab_clear_slot (changed_variables, varp);
8578 /* Continue traversing the hash table. */
8579 return 1;
8582 /* While traversing changed_variables, push onto DATA (a stack of RTX
8583 values) entries that aren't user variables. */
8585 static int
8586 values_to_stack (void **slot, void *data)
8588 VEC (rtx, stack) **changed_values_stack = (VEC (rtx, stack) **)data;
8589 variable var = (variable) *slot;
8591 if (var->onepart == ONEPART_VALUE)
8592 VEC_safe_push (rtx, stack, *changed_values_stack, dv_as_value (var->dv));
8593 else if (var->onepart == ONEPART_DEXPR)
8594 VEC_safe_push (rtx, stack, *changed_values_stack,
8595 DECL_RTL_KNOWN_SET (dv_as_decl (var->dv)));
8597 return 1;
8600 /* Remove from changed_variables the entry whose DV corresponds to
8601 value or debug_expr VAL. */
8602 static void
8603 remove_value_from_changed_variables (rtx val)
8605 decl_or_value dv = dv_from_rtx (val);
8606 void **slot;
8607 variable var;
8609 slot = htab_find_slot_with_hash (changed_variables,
8610 dv, dv_htab_hash (dv), NO_INSERT);
8611 var = (variable) *slot;
8612 var->in_changed_variables = false;
8613 htab_clear_slot (changed_variables, slot);
8616 /* If VAL (a value or debug_expr) has backlinks to variables actively
8617 dependent on it in HTAB or in CHANGED_VARIABLES, mark them as
8618 changed, adding to CHANGED_VALUES_STACK any dependencies that may
8619 have dependencies of their own to notify. */
8621 static void
8622 notify_dependents_of_changed_value (rtx val, htab_t htab,
8623 VEC (rtx, stack) **changed_values_stack)
8625 void **slot;
8626 variable var;
8627 loc_exp_dep *led;
8628 decl_or_value dv = dv_from_rtx (val);
8630 slot = htab_find_slot_with_hash (changed_variables,
8631 dv, dv_htab_hash (dv), NO_INSERT);
8632 if (!slot)
8633 slot = htab_find_slot_with_hash (htab,
8634 dv, dv_htab_hash (dv), NO_INSERT);
8635 if (!slot)
8636 slot = htab_find_slot_with_hash (dropped_values,
8637 dv, dv_htab_hash (dv), NO_INSERT);
8638 var = (variable) *slot;
8640 while ((led = VAR_LOC_DEP_LST (var)))
8642 decl_or_value ldv = led->dv;
8643 variable ivar;
8645 /* Deactivate and remove the backlink, as it was “used up”. It
8646 makes no sense to attempt to notify the same entity again:
8647 either it will be recomputed and re-register an active
8648 dependency, or it will still have the changed mark. */
8649 if (led->next)
8650 led->next->pprev = led->pprev;
8651 if (led->pprev)
8652 *led->pprev = led->next;
8653 led->next = NULL;
8654 led->pprev = NULL;
8656 if (dv_changed_p (ldv))
8657 continue;
8659 switch (dv_onepart_p (ldv))
8661 case ONEPART_VALUE:
8662 case ONEPART_DEXPR:
8663 set_dv_changed (ldv, true);
8664 VEC_safe_push (rtx, stack, *changed_values_stack, dv_as_rtx (ldv));
8665 break;
8667 case ONEPART_VDECL:
8668 ivar = (variable) htab_find_with_hash (htab, ldv, dv_htab_hash (ldv));
8669 gcc_checking_assert (!VAR_LOC_DEP_LST (ivar));
8670 variable_was_changed (ivar, NULL);
8671 break;
8673 case NOT_ONEPART:
8674 pool_free (loc_exp_dep_pool, led);
8675 ivar = (variable) htab_find_with_hash (htab, ldv, dv_htab_hash (ldv));
8676 if (ivar)
8678 int i = ivar->n_var_parts;
8679 while (i--)
8681 rtx loc = ivar->var_part[i].cur_loc;
8683 if (loc && GET_CODE (loc) == MEM
8684 && XEXP (loc, 0) == val)
8686 variable_was_changed (ivar, NULL);
8687 break;
8691 break;
8693 default:
8694 gcc_unreachable ();
8699 /* Take out of changed_variables any entries that don't refer to use
8700 variables. Back-propagate change notifications from values and
8701 debug_exprs to their active dependencies in HTAB or in
8702 CHANGED_VARIABLES. */
8704 static void
8705 process_changed_values (htab_t htab)
8707 int i, n;
8708 rtx val;
8709 VEC (rtx, stack) *changed_values_stack = VEC_alloc (rtx, stack, 20);
8711 /* Move values from changed_variables to changed_values_stack. */
8712 htab_traverse (changed_variables, values_to_stack, &changed_values_stack);
8714 /* Back-propagate change notifications in values while popping
8715 them from the stack. */
8716 for (n = i = VEC_length (rtx, changed_values_stack);
8717 i > 0; i = VEC_length (rtx, changed_values_stack))
8719 val = VEC_pop (rtx, changed_values_stack);
8720 notify_dependents_of_changed_value (val, htab, &changed_values_stack);
8722 /* This condition will hold when visiting each of the entries
8723 originally in changed_variables. We can't remove them
8724 earlier because this could drop the backlinks before we got a
8725 chance to use them. */
8726 if (i == n)
8728 remove_value_from_changed_variables (val);
8729 n--;
8733 VEC_free (rtx, stack, changed_values_stack);
8736 /* Emit NOTE_INSN_VAR_LOCATION note for each variable from a chain
8737 CHANGED_VARIABLES and delete this chain. WHERE specifies whether
8738 the notes shall be emitted before of after instruction INSN. */
8740 static void
8741 emit_notes_for_changes (rtx insn, enum emit_note_where where,
8742 shared_hash vars)
8744 emit_note_data data;
8745 htab_t htab = shared_hash_htab (vars);
8747 if (!htab_elements (changed_variables))
8748 return;
8750 if (MAY_HAVE_DEBUG_INSNS)
8751 process_changed_values (htab);
8753 data.insn = insn;
8754 data.where = where;
8755 data.vars = htab;
8757 htab_traverse (changed_variables, emit_note_insn_var_location, &data);
8760 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it differs from the
8761 same variable in hash table DATA or is not there at all. */
8763 static int
8764 emit_notes_for_differences_1 (void **slot, void *data)
8766 htab_t new_vars = (htab_t) data;
8767 variable old_var, new_var;
8769 old_var = (variable) *slot;
8770 new_var = (variable) htab_find_with_hash (new_vars, old_var->dv,
8771 dv_htab_hash (old_var->dv));
8773 if (!new_var)
8775 /* Variable has disappeared. */
8776 variable empty_var = NULL;
8778 if (old_var->onepart == ONEPART_VALUE
8779 || old_var->onepart == ONEPART_DEXPR)
8781 empty_var = variable_from_dropped (old_var->dv, NO_INSERT);
8782 if (empty_var)
8784 gcc_checking_assert (!empty_var->in_changed_variables);
8785 if (!VAR_LOC_1PAUX (old_var))
8787 VAR_LOC_1PAUX (old_var) = VAR_LOC_1PAUX (empty_var);
8788 VAR_LOC_1PAUX (empty_var) = NULL;
8790 else
8791 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
8795 if (!empty_var)
8797 empty_var = (variable) pool_alloc (onepart_pool (old_var->onepart));
8798 empty_var->dv = old_var->dv;
8799 empty_var->refcount = 0;
8800 empty_var->n_var_parts = 0;
8801 empty_var->onepart = old_var->onepart;
8802 empty_var->in_changed_variables = false;
8805 if (empty_var->onepart)
8807 /* Propagate the auxiliary data to (ultimately)
8808 changed_variables. */
8809 empty_var->var_part[0].loc_chain = NULL;
8810 empty_var->var_part[0].cur_loc = NULL;
8811 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (old_var);
8812 VAR_LOC_1PAUX (old_var) = NULL;
8814 variable_was_changed (empty_var, NULL);
8815 /* Continue traversing the hash table. */
8816 return 1;
8818 /* Update cur_loc and one-part auxiliary data, before new_var goes
8819 through variable_was_changed. */
8820 if (old_var != new_var && new_var->onepart)
8822 gcc_checking_assert (VAR_LOC_1PAUX (new_var) == NULL);
8823 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (old_var);
8824 VAR_LOC_1PAUX (old_var) = NULL;
8825 new_var->var_part[0].cur_loc = old_var->var_part[0].cur_loc;
8827 if (variable_different_p (old_var, new_var))
8828 variable_was_changed (new_var, NULL);
8830 /* Continue traversing the hash table. */
8831 return 1;
8834 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it is not in hash
8835 table DATA. */
8837 static int
8838 emit_notes_for_differences_2 (void **slot, void *data)
8840 htab_t old_vars = (htab_t) data;
8841 variable old_var, new_var;
8843 new_var = (variable) *slot;
8844 old_var = (variable) htab_find_with_hash (old_vars, new_var->dv,
8845 dv_htab_hash (new_var->dv));
8846 if (!old_var)
8848 int i;
8849 for (i = 0; i < new_var->n_var_parts; i++)
8850 new_var->var_part[i].cur_loc = NULL;
8851 variable_was_changed (new_var, NULL);
8854 /* Continue traversing the hash table. */
8855 return 1;
8858 /* Emit notes before INSN for differences between dataflow sets OLD_SET and
8859 NEW_SET. */
8861 static void
8862 emit_notes_for_differences (rtx insn, dataflow_set *old_set,
8863 dataflow_set *new_set)
8865 htab_traverse (shared_hash_htab (old_set->vars),
8866 emit_notes_for_differences_1,
8867 shared_hash_htab (new_set->vars));
8868 htab_traverse (shared_hash_htab (new_set->vars),
8869 emit_notes_for_differences_2,
8870 shared_hash_htab (old_set->vars));
8871 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, new_set->vars);
8874 /* Return the next insn after INSN that is not a NOTE_INSN_VAR_LOCATION. */
8876 static rtx
8877 next_non_note_insn_var_location (rtx insn)
8879 while (insn)
8881 insn = NEXT_INSN (insn);
8882 if (insn == 0
8883 || !NOTE_P (insn)
8884 || NOTE_KIND (insn) != NOTE_INSN_VAR_LOCATION)
8885 break;
8888 return insn;
8891 /* Emit the notes for changes of location parts in the basic block BB. */
8893 static void
8894 emit_notes_in_bb (basic_block bb, dataflow_set *set)
8896 unsigned int i;
8897 micro_operation *mo;
8899 dataflow_set_clear (set);
8900 dataflow_set_copy (set, &VTI (bb)->in);
8902 FOR_EACH_VEC_ELT (micro_operation, VTI (bb)->mos, i, mo)
8904 rtx insn = mo->insn;
8905 rtx next_insn = next_non_note_insn_var_location (insn);
8907 switch (mo->type)
8909 case MO_CALL:
8910 dataflow_set_clear_at_call (set);
8911 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_CALL_INSN, set->vars);
8913 rtx arguments = mo->u.loc, *p = &arguments, note;
8914 while (*p)
8916 XEXP (XEXP (*p, 0), 1)
8917 = vt_expand_loc (XEXP (XEXP (*p, 0), 1),
8918 shared_hash_htab (set->vars));
8919 /* If expansion is successful, keep it in the list. */
8920 if (XEXP (XEXP (*p, 0), 1))
8921 p = &XEXP (*p, 1);
8922 /* Otherwise, if the following item is data_value for it,
8923 drop it too too. */
8924 else if (XEXP (*p, 1)
8925 && REG_P (XEXP (XEXP (*p, 0), 0))
8926 && MEM_P (XEXP (XEXP (XEXP (*p, 1), 0), 0))
8927 && REG_P (XEXP (XEXP (XEXP (XEXP (*p, 1), 0), 0),
8929 && REGNO (XEXP (XEXP (*p, 0), 0))
8930 == REGNO (XEXP (XEXP (XEXP (XEXP (*p, 1), 0),
8931 0), 0)))
8932 *p = XEXP (XEXP (*p, 1), 1);
8933 /* Just drop this item. */
8934 else
8935 *p = XEXP (*p, 1);
8937 note = emit_note_after (NOTE_INSN_CALL_ARG_LOCATION, insn);
8938 NOTE_VAR_LOCATION (note) = arguments;
8940 break;
8942 case MO_USE:
8944 rtx loc = mo->u.loc;
8946 if (REG_P (loc))
8947 var_reg_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
8948 else
8949 var_mem_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
8951 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
8953 break;
8955 case MO_VAL_LOC:
8957 rtx loc = mo->u.loc;
8958 rtx val, vloc;
8959 tree var;
8961 if (GET_CODE (loc) == CONCAT)
8963 val = XEXP (loc, 0);
8964 vloc = XEXP (loc, 1);
8966 else
8968 val = NULL_RTX;
8969 vloc = loc;
8972 var = PAT_VAR_LOCATION_DECL (vloc);
8974 clobber_variable_part (set, NULL_RTX,
8975 dv_from_decl (var), 0, NULL_RTX);
8976 if (val)
8978 if (VAL_NEEDS_RESOLUTION (loc))
8979 val_resolve (set, val, PAT_VAR_LOCATION_LOC (vloc), insn);
8980 set_variable_part (set, val, dv_from_decl (var), 0,
8981 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
8982 INSERT);
8984 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
8985 set_variable_part (set, PAT_VAR_LOCATION_LOC (vloc),
8986 dv_from_decl (var), 0,
8987 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
8988 INSERT);
8990 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
8992 break;
8994 case MO_VAL_USE:
8996 rtx loc = mo->u.loc;
8997 rtx val, vloc, uloc;
8999 vloc = uloc = XEXP (loc, 1);
9000 val = XEXP (loc, 0);
9002 if (GET_CODE (val) == CONCAT)
9004 uloc = XEXP (val, 1);
9005 val = XEXP (val, 0);
9008 if (VAL_NEEDS_RESOLUTION (loc))
9009 val_resolve (set, val, vloc, insn);
9010 else
9011 val_store (set, val, uloc, insn, false);
9013 if (VAL_HOLDS_TRACK_EXPR (loc))
9015 if (GET_CODE (uloc) == REG)
9016 var_reg_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9017 NULL);
9018 else if (GET_CODE (uloc) == MEM)
9019 var_mem_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9020 NULL);
9023 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
9025 break;
9027 case MO_VAL_SET:
9029 rtx loc = mo->u.loc;
9030 rtx val, vloc, uloc;
9031 rtx dstv, srcv;
9033 vloc = loc;
9034 uloc = XEXP (vloc, 1);
9035 val = XEXP (vloc, 0);
9036 vloc = uloc;
9038 if (GET_CODE (uloc) == SET)
9040 dstv = SET_DEST (uloc);
9041 srcv = SET_SRC (uloc);
9043 else
9045 dstv = uloc;
9046 srcv = NULL;
9049 if (GET_CODE (val) == CONCAT)
9051 dstv = vloc = XEXP (val, 1);
9052 val = XEXP (val, 0);
9055 if (GET_CODE (vloc) == SET)
9057 srcv = SET_SRC (vloc);
9059 gcc_assert (val != srcv);
9060 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
9062 dstv = vloc = SET_DEST (vloc);
9064 if (VAL_NEEDS_RESOLUTION (loc))
9065 val_resolve (set, val, srcv, insn);
9067 else if (VAL_NEEDS_RESOLUTION (loc))
9069 gcc_assert (GET_CODE (uloc) == SET
9070 && GET_CODE (SET_SRC (uloc)) == REG);
9071 val_resolve (set, val, SET_SRC (uloc), insn);
9074 if (VAL_HOLDS_TRACK_EXPR (loc))
9076 if (VAL_EXPR_IS_CLOBBERED (loc))
9078 if (REG_P (uloc))
9079 var_reg_delete (set, uloc, true);
9080 else if (MEM_P (uloc))
9082 gcc_assert (MEM_P (dstv));
9083 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
9084 var_mem_delete (set, dstv, true);
9087 else
9089 bool copied_p = VAL_EXPR_IS_COPIED (loc);
9090 rtx src = NULL, dst = uloc;
9091 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
9093 if (GET_CODE (uloc) == SET)
9095 src = SET_SRC (uloc);
9096 dst = SET_DEST (uloc);
9099 if (copied_p)
9101 status = find_src_status (set, src);
9103 src = find_src_set_src (set, src);
9106 if (REG_P (dst))
9107 var_reg_delete_and_set (set, dst, !copied_p,
9108 status, srcv);
9109 else if (MEM_P (dst))
9111 gcc_assert (MEM_P (dstv));
9112 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
9113 var_mem_delete_and_set (set, dstv, !copied_p,
9114 status, srcv);
9118 else if (REG_P (uloc))
9119 var_regno_delete (set, REGNO (uloc));
9120 else if (MEM_P (uloc))
9121 clobber_overlapping_mems (set, uloc);
9123 val_store (set, val, dstv, insn, true);
9125 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9126 set->vars);
9128 break;
9130 case MO_SET:
9132 rtx loc = mo->u.loc;
9133 rtx set_src = NULL;
9135 if (GET_CODE (loc) == SET)
9137 set_src = SET_SRC (loc);
9138 loc = SET_DEST (loc);
9141 if (REG_P (loc))
9142 var_reg_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
9143 set_src);
9144 else
9145 var_mem_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
9146 set_src);
9148 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9149 set->vars);
9151 break;
9153 case MO_COPY:
9155 rtx loc = mo->u.loc;
9156 enum var_init_status src_status;
9157 rtx set_src = NULL;
9159 if (GET_CODE (loc) == SET)
9161 set_src = SET_SRC (loc);
9162 loc = SET_DEST (loc);
9165 src_status = find_src_status (set, set_src);
9166 set_src = find_src_set_src (set, set_src);
9168 if (REG_P (loc))
9169 var_reg_delete_and_set (set, loc, false, src_status, set_src);
9170 else
9171 var_mem_delete_and_set (set, loc, false, src_status, set_src);
9173 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9174 set->vars);
9176 break;
9178 case MO_USE_NO_VAR:
9180 rtx loc = mo->u.loc;
9182 if (REG_P (loc))
9183 var_reg_delete (set, loc, false);
9184 else
9185 var_mem_delete (set, loc, false);
9187 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
9189 break;
9191 case MO_CLOBBER:
9193 rtx loc = mo->u.loc;
9195 if (REG_P (loc))
9196 var_reg_delete (set, loc, true);
9197 else
9198 var_mem_delete (set, loc, true);
9200 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9201 set->vars);
9203 break;
9205 case MO_ADJUST:
9206 set->stack_adjust += mo->u.adjust;
9207 break;
9212 /* Emit notes for the whole function. */
9214 static void
9215 vt_emit_notes (void)
9217 basic_block bb;
9218 dataflow_set cur;
9220 gcc_assert (!htab_elements (changed_variables));
9222 /* Free memory occupied by the out hash tables, as they aren't used
9223 anymore. */
9224 FOR_EACH_BB (bb)
9225 dataflow_set_clear (&VTI (bb)->out);
9227 /* Enable emitting notes by functions (mainly by set_variable_part and
9228 delete_variable_part). */
9229 emit_notes = true;
9231 if (MAY_HAVE_DEBUG_INSNS)
9233 dropped_values = htab_create (cselib_get_next_uid () * 2,
9234 variable_htab_hash, variable_htab_eq,
9235 variable_htab_free);
9236 loc_exp_dep_pool = create_alloc_pool ("loc_exp_dep pool",
9237 sizeof (loc_exp_dep), 64);
9240 dataflow_set_init (&cur);
9242 FOR_EACH_BB (bb)
9244 /* Emit the notes for changes of variable locations between two
9245 subsequent basic blocks. */
9246 emit_notes_for_differences (BB_HEAD (bb), &cur, &VTI (bb)->in);
9248 /* Emit the notes for the changes in the basic block itself. */
9249 emit_notes_in_bb (bb, &cur);
9251 /* Free memory occupied by the in hash table, we won't need it
9252 again. */
9253 dataflow_set_clear (&VTI (bb)->in);
9255 #ifdef ENABLE_CHECKING
9256 htab_traverse (shared_hash_htab (cur.vars),
9257 emit_notes_for_differences_1,
9258 shared_hash_htab (empty_shared_hash));
9259 #endif
9260 dataflow_set_destroy (&cur);
9262 if (MAY_HAVE_DEBUG_INSNS)
9263 htab_delete (dropped_values);
9265 emit_notes = false;
9268 /* If there is a declaration and offset associated with register/memory RTL
9269 assign declaration to *DECLP and offset to *OFFSETP, and return true. */
9271 static bool
9272 vt_get_decl_and_offset (rtx rtl, tree *declp, HOST_WIDE_INT *offsetp)
9274 if (REG_P (rtl))
9276 if (REG_ATTRS (rtl))
9278 *declp = REG_EXPR (rtl);
9279 *offsetp = REG_OFFSET (rtl);
9280 return true;
9283 else if (MEM_P (rtl))
9285 if (MEM_ATTRS (rtl))
9287 *declp = MEM_EXPR (rtl);
9288 *offsetp = INT_MEM_OFFSET (rtl);
9289 return true;
9292 return false;
9295 /* Record the value for the ENTRY_VALUE of RTL as a global equivalence
9296 of VAL. */
9298 static void
9299 record_entry_value (cselib_val *val, rtx rtl)
9301 rtx ev = gen_rtx_ENTRY_VALUE (GET_MODE (rtl));
9303 ENTRY_VALUE_EXP (ev) = rtl;
9305 cselib_add_permanent_equiv (val, ev, get_insns ());
9308 /* Insert function parameter PARM in IN and OUT sets of ENTRY_BLOCK. */
9310 static void
9311 vt_add_function_parameter (tree parm)
9313 rtx decl_rtl = DECL_RTL_IF_SET (parm);
9314 rtx incoming = DECL_INCOMING_RTL (parm);
9315 tree decl;
9316 enum machine_mode mode;
9317 HOST_WIDE_INT offset;
9318 dataflow_set *out;
9319 decl_or_value dv;
9321 if (TREE_CODE (parm) != PARM_DECL)
9322 return;
9324 if (!decl_rtl || !incoming)
9325 return;
9327 if (GET_MODE (decl_rtl) == BLKmode || GET_MODE (incoming) == BLKmode)
9328 return;
9330 /* If there is a DRAP register or a pseudo in internal_arg_pointer,
9331 rewrite the incoming location of parameters passed on the stack
9332 into MEMs based on the argument pointer, so that incoming doesn't
9333 depend on a pseudo. */
9334 if (MEM_P (incoming)
9335 && (XEXP (incoming, 0) == crtl->args.internal_arg_pointer
9336 || (GET_CODE (XEXP (incoming, 0)) == PLUS
9337 && XEXP (XEXP (incoming, 0), 0)
9338 == crtl->args.internal_arg_pointer
9339 && CONST_INT_P (XEXP (XEXP (incoming, 0), 1)))))
9341 HOST_WIDE_INT off = -FIRST_PARM_OFFSET (current_function_decl);
9342 if (GET_CODE (XEXP (incoming, 0)) == PLUS)
9343 off += INTVAL (XEXP (XEXP (incoming, 0), 1));
9344 incoming
9345 = replace_equiv_address_nv (incoming,
9346 plus_constant (Pmode,
9347 arg_pointer_rtx, off));
9350 #ifdef HAVE_window_save
9351 /* DECL_INCOMING_RTL uses the INCOMING_REGNO of parameter registers.
9352 If the target machine has an explicit window save instruction, the
9353 actual entry value is the corresponding OUTGOING_REGNO instead. */
9354 if (REG_P (incoming)
9355 && HARD_REGISTER_P (incoming)
9356 && OUTGOING_REGNO (REGNO (incoming)) != REGNO (incoming))
9358 parm_reg_t p;
9359 p.incoming = incoming;
9360 incoming
9361 = gen_rtx_REG_offset (incoming, GET_MODE (incoming),
9362 OUTGOING_REGNO (REGNO (incoming)), 0);
9363 p.outgoing = incoming;
9364 VEC_safe_push (parm_reg_t, gc, windowed_parm_regs, p);
9366 else if (MEM_P (incoming)
9367 && REG_P (XEXP (incoming, 0))
9368 && HARD_REGISTER_P (XEXP (incoming, 0)))
9370 rtx reg = XEXP (incoming, 0);
9371 if (OUTGOING_REGNO (REGNO (reg)) != REGNO (reg))
9373 parm_reg_t p;
9374 p.incoming = reg;
9375 reg = gen_raw_REG (GET_MODE (reg), OUTGOING_REGNO (REGNO (reg)));
9376 p.outgoing = reg;
9377 VEC_safe_push (parm_reg_t, gc, windowed_parm_regs, p);
9378 incoming = replace_equiv_address_nv (incoming, reg);
9381 #endif
9383 if (!vt_get_decl_and_offset (incoming, &decl, &offset))
9385 if (REG_P (incoming) || MEM_P (incoming))
9387 /* This means argument is passed by invisible reference. */
9388 offset = 0;
9389 decl = parm;
9390 incoming = gen_rtx_MEM (GET_MODE (decl_rtl), incoming);
9392 else
9394 if (!vt_get_decl_and_offset (decl_rtl, &decl, &offset))
9395 return;
9396 offset += byte_lowpart_offset (GET_MODE (incoming),
9397 GET_MODE (decl_rtl));
9401 if (!decl)
9402 return;
9404 if (parm != decl)
9406 /* If that DECL_RTL wasn't a pseudo that got spilled to
9407 memory, bail out. Otherwise, the spill slot sharing code
9408 will force the memory to reference spill_slot_decl (%sfp),
9409 so we don't match above. That's ok, the pseudo must have
9410 referenced the entire parameter, so just reset OFFSET. */
9411 if (decl != get_spill_slot_decl (false))
9412 return;
9413 offset = 0;
9416 if (!track_loc_p (incoming, parm, offset, false, &mode, &offset))
9417 return;
9419 out = &VTI (ENTRY_BLOCK_PTR)->out;
9421 dv = dv_from_decl (parm);
9423 if (target_for_debug_bind (parm)
9424 /* We can't deal with these right now, because this kind of
9425 variable is single-part. ??? We could handle parallels
9426 that describe multiple locations for the same single
9427 value, but ATM we don't. */
9428 && GET_CODE (incoming) != PARALLEL)
9430 cselib_val *val;
9431 rtx lowpart;
9433 /* ??? We shouldn't ever hit this, but it may happen because
9434 arguments passed by invisible reference aren't dealt with
9435 above: incoming-rtl will have Pmode rather than the
9436 expected mode for the type. */
9437 if (offset)
9438 return;
9440 lowpart = var_lowpart (mode, incoming);
9441 if (!lowpart)
9442 return;
9444 val = cselib_lookup_from_insn (lowpart, mode, true,
9445 VOIDmode, get_insns ());
9447 /* ??? Float-typed values in memory are not handled by
9448 cselib. */
9449 if (val)
9451 preserve_value (val);
9452 set_variable_part (out, val->val_rtx, dv, offset,
9453 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9454 dv = dv_from_value (val->val_rtx);
9457 if (MEM_P (incoming))
9459 val = cselib_lookup_from_insn (XEXP (incoming, 0), mode, true,
9460 VOIDmode, get_insns ());
9461 if (val)
9463 preserve_value (val);
9464 incoming = replace_equiv_address_nv (incoming, val->val_rtx);
9469 if (REG_P (incoming))
9471 incoming = var_lowpart (mode, incoming);
9472 gcc_assert (REGNO (incoming) < FIRST_PSEUDO_REGISTER);
9473 attrs_list_insert (&out->regs[REGNO (incoming)], dv, offset,
9474 incoming);
9475 set_variable_part (out, incoming, dv, offset,
9476 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9477 if (dv_is_value_p (dv))
9479 record_entry_value (CSELIB_VAL_PTR (dv_as_value (dv)), incoming);
9480 if (TREE_CODE (TREE_TYPE (parm)) == REFERENCE_TYPE
9481 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_TYPE (parm))))
9483 enum machine_mode indmode
9484 = TYPE_MODE (TREE_TYPE (TREE_TYPE (parm)));
9485 rtx mem = gen_rtx_MEM (indmode, incoming);
9486 cselib_val *val = cselib_lookup_from_insn (mem, indmode, true,
9487 VOIDmode,
9488 get_insns ());
9489 if (val)
9491 preserve_value (val);
9492 record_entry_value (val, mem);
9493 set_variable_part (out, mem, dv_from_value (val->val_rtx), 0,
9494 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9499 else if (MEM_P (incoming))
9501 incoming = var_lowpart (mode, incoming);
9502 set_variable_part (out, incoming, dv, offset,
9503 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9507 /* Insert function parameters to IN and OUT sets of ENTRY_BLOCK. */
9509 static void
9510 vt_add_function_parameters (void)
9512 tree parm;
9514 for (parm = DECL_ARGUMENTS (current_function_decl);
9515 parm; parm = DECL_CHAIN (parm))
9516 vt_add_function_parameter (parm);
9518 if (DECL_HAS_VALUE_EXPR_P (DECL_RESULT (current_function_decl)))
9520 tree vexpr = DECL_VALUE_EXPR (DECL_RESULT (current_function_decl));
9522 if (TREE_CODE (vexpr) == INDIRECT_REF)
9523 vexpr = TREE_OPERAND (vexpr, 0);
9525 if (TREE_CODE (vexpr) == PARM_DECL
9526 && DECL_ARTIFICIAL (vexpr)
9527 && !DECL_IGNORED_P (vexpr)
9528 && DECL_NAMELESS (vexpr))
9529 vt_add_function_parameter (vexpr);
9533 /* Return true if INSN in the prologue initializes hard_frame_pointer_rtx. */
9535 static bool
9536 fp_setter (rtx insn)
9538 rtx pat = PATTERN (insn);
9539 if (RTX_FRAME_RELATED_P (insn))
9541 rtx expr = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
9542 if (expr)
9543 pat = XEXP (expr, 0);
9545 if (GET_CODE (pat) == SET)
9547 if (SET_DEST (pat) != hard_frame_pointer_rtx)
9548 return false;
9550 else if (GET_CODE (pat) == PARALLEL)
9552 int i;
9553 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9554 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
9555 && SET_DEST (XVECEXP (pat, 0, i)) == hard_frame_pointer_rtx)
9556 break;
9557 if (i < 0)
9558 return false;
9560 else
9561 return false;
9562 if (find_reg_note (insn, REG_CFA_RESTORE, hard_frame_pointer_rtx))
9563 return false;
9564 return true;
9567 /* Initialize cfa_base_rtx, create a preserved VALUE for it and
9568 ensure it isn't flushed during cselib_reset_table.
9569 Can be called only if frame_pointer_rtx resp. arg_pointer_rtx
9570 has been eliminated. */
9572 static void
9573 vt_init_cfa_base (void)
9575 cselib_val *val;
9577 #ifdef FRAME_POINTER_CFA_OFFSET
9578 cfa_base_rtx = frame_pointer_rtx;
9579 cfa_base_offset = -FRAME_POINTER_CFA_OFFSET (current_function_decl);
9580 #else
9581 cfa_base_rtx = arg_pointer_rtx;
9582 cfa_base_offset = -ARG_POINTER_CFA_OFFSET (current_function_decl);
9583 #endif
9584 if (cfa_base_rtx == hard_frame_pointer_rtx
9585 || !fixed_regs[REGNO (cfa_base_rtx)])
9587 cfa_base_rtx = NULL_RTX;
9588 return;
9590 if (!MAY_HAVE_DEBUG_INSNS)
9591 return;
9593 /* Tell alias analysis that cfa_base_rtx should share
9594 find_base_term value with stack pointer or hard frame pointer. */
9595 if (!frame_pointer_needed)
9596 vt_equate_reg_base_value (cfa_base_rtx, stack_pointer_rtx);
9597 else if (!crtl->stack_realign_tried)
9598 vt_equate_reg_base_value (cfa_base_rtx, hard_frame_pointer_rtx);
9600 val = cselib_lookup_from_insn (cfa_base_rtx, GET_MODE (cfa_base_rtx), 1,
9601 VOIDmode, get_insns ());
9602 preserve_value (val);
9603 cselib_preserve_cfa_base_value (val, REGNO (cfa_base_rtx));
9606 /* Allocate and initialize the data structures for variable tracking
9607 and parse the RTL to get the micro operations. */
9609 static bool
9610 vt_initialize (void)
9612 basic_block bb;
9613 HOST_WIDE_INT fp_cfa_offset = -1;
9615 alloc_aux_for_blocks (sizeof (struct variable_tracking_info_def));
9617 attrs_pool = create_alloc_pool ("attrs_def pool",
9618 sizeof (struct attrs_def), 1024);
9619 var_pool = create_alloc_pool ("variable_def pool",
9620 sizeof (struct variable_def)
9621 + (MAX_VAR_PARTS - 1)
9622 * sizeof (((variable)NULL)->var_part[0]), 64);
9623 loc_chain_pool = create_alloc_pool ("location_chain_def pool",
9624 sizeof (struct location_chain_def),
9625 1024);
9626 shared_hash_pool = create_alloc_pool ("shared_hash_def pool",
9627 sizeof (struct shared_hash_def), 256);
9628 empty_shared_hash = (shared_hash) pool_alloc (shared_hash_pool);
9629 empty_shared_hash->refcount = 1;
9630 empty_shared_hash->htab
9631 = htab_create (1, variable_htab_hash, variable_htab_eq,
9632 variable_htab_free);
9633 changed_variables = htab_create (10, variable_htab_hash, variable_htab_eq,
9634 variable_htab_free);
9636 /* Init the IN and OUT sets. */
9637 FOR_ALL_BB (bb)
9639 VTI (bb)->visited = false;
9640 VTI (bb)->flooded = false;
9641 dataflow_set_init (&VTI (bb)->in);
9642 dataflow_set_init (&VTI (bb)->out);
9643 VTI (bb)->permp = NULL;
9646 if (MAY_HAVE_DEBUG_INSNS)
9648 cselib_init (CSELIB_RECORD_MEMORY | CSELIB_PRESERVE_CONSTANTS);
9649 scratch_regs = BITMAP_ALLOC (NULL);
9650 valvar_pool = create_alloc_pool ("small variable_def pool",
9651 sizeof (struct variable_def), 256);
9652 preserved_values = VEC_alloc (rtx, heap, 256);
9654 else
9656 scratch_regs = NULL;
9657 valvar_pool = NULL;
9660 if (MAY_HAVE_DEBUG_INSNS)
9662 rtx reg, expr;
9663 int ofst;
9664 cselib_val *val;
9666 #ifdef FRAME_POINTER_CFA_OFFSET
9667 reg = frame_pointer_rtx;
9668 ofst = FRAME_POINTER_CFA_OFFSET (current_function_decl);
9669 #else
9670 reg = arg_pointer_rtx;
9671 ofst = ARG_POINTER_CFA_OFFSET (current_function_decl);
9672 #endif
9674 ofst -= INCOMING_FRAME_SP_OFFSET;
9676 val = cselib_lookup_from_insn (reg, GET_MODE (reg), 1,
9677 VOIDmode, get_insns ());
9678 preserve_value (val);
9679 cselib_preserve_cfa_base_value (val, REGNO (reg));
9680 expr = plus_constant (GET_MODE (stack_pointer_rtx),
9681 stack_pointer_rtx, -ofst);
9682 cselib_add_permanent_equiv (val, expr, get_insns ());
9684 if (ofst)
9686 val = cselib_lookup_from_insn (stack_pointer_rtx,
9687 GET_MODE (stack_pointer_rtx), 1,
9688 VOIDmode, get_insns ());
9689 preserve_value (val);
9690 expr = plus_constant (GET_MODE (reg), reg, ofst);
9691 cselib_add_permanent_equiv (val, expr, get_insns ());
9695 /* In order to factor out the adjustments made to the stack pointer or to
9696 the hard frame pointer and thus be able to use DW_OP_fbreg operations
9697 instead of individual location lists, we're going to rewrite MEMs based
9698 on them into MEMs based on the CFA by de-eliminating stack_pointer_rtx
9699 or hard_frame_pointer_rtx to the virtual CFA pointer frame_pointer_rtx
9700 resp. arg_pointer_rtx. We can do this either when there is no frame
9701 pointer in the function and stack adjustments are consistent for all
9702 basic blocks or when there is a frame pointer and no stack realignment.
9703 But we first have to check that frame_pointer_rtx resp. arg_pointer_rtx
9704 has been eliminated. */
9705 if (!frame_pointer_needed)
9707 rtx reg, elim;
9709 if (!vt_stack_adjustments ())
9710 return false;
9712 #ifdef FRAME_POINTER_CFA_OFFSET
9713 reg = frame_pointer_rtx;
9714 #else
9715 reg = arg_pointer_rtx;
9716 #endif
9717 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
9718 if (elim != reg)
9720 if (GET_CODE (elim) == PLUS)
9721 elim = XEXP (elim, 0);
9722 if (elim == stack_pointer_rtx)
9723 vt_init_cfa_base ();
9726 else if (!crtl->stack_realign_tried)
9728 rtx reg, elim;
9730 #ifdef FRAME_POINTER_CFA_OFFSET
9731 reg = frame_pointer_rtx;
9732 fp_cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
9733 #else
9734 reg = arg_pointer_rtx;
9735 fp_cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
9736 #endif
9737 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
9738 if (elim != reg)
9740 if (GET_CODE (elim) == PLUS)
9742 fp_cfa_offset -= INTVAL (XEXP (elim, 1));
9743 elim = XEXP (elim, 0);
9745 if (elim != hard_frame_pointer_rtx)
9746 fp_cfa_offset = -1;
9748 else
9749 fp_cfa_offset = -1;
9752 /* If the stack is realigned and a DRAP register is used, we're going to
9753 rewrite MEMs based on it representing incoming locations of parameters
9754 passed on the stack into MEMs based on the argument pointer. Although
9755 we aren't going to rewrite other MEMs, we still need to initialize the
9756 virtual CFA pointer in order to ensure that the argument pointer will
9757 be seen as a constant throughout the function.
9759 ??? This doesn't work if FRAME_POINTER_CFA_OFFSET is defined. */
9760 else if (stack_realign_drap)
9762 rtx reg, elim;
9764 #ifdef FRAME_POINTER_CFA_OFFSET
9765 reg = frame_pointer_rtx;
9766 #else
9767 reg = arg_pointer_rtx;
9768 #endif
9769 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
9770 if (elim != reg)
9772 if (GET_CODE (elim) == PLUS)
9773 elim = XEXP (elim, 0);
9774 if (elim == hard_frame_pointer_rtx)
9775 vt_init_cfa_base ();
9779 hard_frame_pointer_adjustment = -1;
9781 vt_add_function_parameters ();
9783 FOR_EACH_BB (bb)
9785 rtx insn;
9786 HOST_WIDE_INT pre, post = 0;
9787 basic_block first_bb, last_bb;
9789 if (MAY_HAVE_DEBUG_INSNS)
9791 cselib_record_sets_hook = add_with_sets;
9792 if (dump_file && (dump_flags & TDF_DETAILS))
9793 fprintf (dump_file, "first value: %i\n",
9794 cselib_get_next_uid ());
9797 first_bb = bb;
9798 for (;;)
9800 edge e;
9801 if (bb->next_bb == EXIT_BLOCK_PTR
9802 || ! single_pred_p (bb->next_bb))
9803 break;
9804 e = find_edge (bb, bb->next_bb);
9805 if (! e || (e->flags & EDGE_FALLTHRU) == 0)
9806 break;
9807 bb = bb->next_bb;
9809 last_bb = bb;
9811 /* Add the micro-operations to the vector. */
9812 FOR_BB_BETWEEN (bb, first_bb, last_bb->next_bb, next_bb)
9814 HOST_WIDE_INT offset = VTI (bb)->out.stack_adjust;
9815 VTI (bb)->out.stack_adjust = VTI (bb)->in.stack_adjust;
9816 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
9817 insn = NEXT_INSN (insn))
9819 if (INSN_P (insn))
9821 if (!frame_pointer_needed)
9823 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
9824 if (pre)
9826 micro_operation mo;
9827 mo.type = MO_ADJUST;
9828 mo.u.adjust = pre;
9829 mo.insn = insn;
9830 if (dump_file && (dump_flags & TDF_DETAILS))
9831 log_op_type (PATTERN (insn), bb, insn,
9832 MO_ADJUST, dump_file);
9833 VEC_safe_push (micro_operation, heap, VTI (bb)->mos,
9834 mo);
9835 VTI (bb)->out.stack_adjust += pre;
9839 cselib_hook_called = false;
9840 adjust_insn (bb, insn);
9841 if (MAY_HAVE_DEBUG_INSNS)
9843 if (CALL_P (insn))
9844 prepare_call_arguments (bb, insn);
9845 cselib_process_insn (insn);
9846 if (dump_file && (dump_flags & TDF_DETAILS))
9848 print_rtl_single (dump_file, insn);
9849 dump_cselib_table (dump_file);
9852 if (!cselib_hook_called)
9853 add_with_sets (insn, 0, 0);
9854 cancel_changes (0);
9856 if (!frame_pointer_needed && post)
9858 micro_operation mo;
9859 mo.type = MO_ADJUST;
9860 mo.u.adjust = post;
9861 mo.insn = insn;
9862 if (dump_file && (dump_flags & TDF_DETAILS))
9863 log_op_type (PATTERN (insn), bb, insn,
9864 MO_ADJUST, dump_file);
9865 VEC_safe_push (micro_operation, heap, VTI (bb)->mos,
9866 mo);
9867 VTI (bb)->out.stack_adjust += post;
9870 if (fp_cfa_offset != -1
9871 && hard_frame_pointer_adjustment == -1
9872 && RTX_FRAME_RELATED_P (insn)
9873 && fp_setter (insn))
9875 vt_init_cfa_base ();
9876 hard_frame_pointer_adjustment = fp_cfa_offset;
9877 /* Disassociate sp from fp now. */
9878 if (MAY_HAVE_DEBUG_INSNS)
9880 cselib_val *v;
9881 cselib_invalidate_rtx (stack_pointer_rtx);
9882 v = cselib_lookup (stack_pointer_rtx, Pmode, 1,
9883 VOIDmode);
9884 if (v && !cselib_preserved_value_p (v))
9886 cselib_set_value_sp_based (v);
9887 preserve_value (v);
9893 gcc_assert (offset == VTI (bb)->out.stack_adjust);
9896 bb = last_bb;
9898 if (MAY_HAVE_DEBUG_INSNS)
9900 cselib_preserve_only_values ();
9901 cselib_reset_table (cselib_get_next_uid ());
9902 cselib_record_sets_hook = NULL;
9906 hard_frame_pointer_adjustment = -1;
9907 VTI (ENTRY_BLOCK_PTR)->flooded = true;
9908 cfa_base_rtx = NULL_RTX;
9909 return true;
9912 /* This is *not* reset after each function. It gives each
9913 NOTE_INSN_DELETED_DEBUG_LABEL in the entire compilation
9914 a unique label number. */
9916 static int debug_label_num = 1;
9918 /* Get rid of all debug insns from the insn stream. */
9920 static void
9921 delete_debug_insns (void)
9923 basic_block bb;
9924 rtx insn, next;
9926 if (!MAY_HAVE_DEBUG_INSNS)
9927 return;
9929 FOR_EACH_BB (bb)
9931 FOR_BB_INSNS_SAFE (bb, insn, next)
9932 if (DEBUG_INSN_P (insn))
9934 tree decl = INSN_VAR_LOCATION_DECL (insn);
9935 if (TREE_CODE (decl) == LABEL_DECL
9936 && DECL_NAME (decl)
9937 && !DECL_RTL_SET_P (decl))
9939 PUT_CODE (insn, NOTE);
9940 NOTE_KIND (insn) = NOTE_INSN_DELETED_DEBUG_LABEL;
9941 NOTE_DELETED_LABEL_NAME (insn)
9942 = IDENTIFIER_POINTER (DECL_NAME (decl));
9943 SET_DECL_RTL (decl, insn);
9944 CODE_LABEL_NUMBER (insn) = debug_label_num++;
9946 else
9947 delete_insn (insn);
9952 /* Run a fast, BB-local only version of var tracking, to take care of
9953 information that we don't do global analysis on, such that not all
9954 information is lost. If SKIPPED holds, we're skipping the global
9955 pass entirely, so we should try to use information it would have
9956 handled as well.. */
9958 static void
9959 vt_debug_insns_local (bool skipped ATTRIBUTE_UNUSED)
9961 /* ??? Just skip it all for now. */
9962 delete_debug_insns ();
9965 /* Free the data structures needed for variable tracking. */
9967 static void
9968 vt_finalize (void)
9970 basic_block bb;
9972 FOR_EACH_BB (bb)
9974 VEC_free (micro_operation, heap, VTI (bb)->mos);
9977 FOR_ALL_BB (bb)
9979 dataflow_set_destroy (&VTI (bb)->in);
9980 dataflow_set_destroy (&VTI (bb)->out);
9981 if (VTI (bb)->permp)
9983 dataflow_set_destroy (VTI (bb)->permp);
9984 XDELETE (VTI (bb)->permp);
9987 free_aux_for_blocks ();
9988 htab_delete (empty_shared_hash->htab);
9989 htab_delete (changed_variables);
9990 free_alloc_pool (attrs_pool);
9991 free_alloc_pool (var_pool);
9992 free_alloc_pool (loc_chain_pool);
9993 free_alloc_pool (shared_hash_pool);
9995 if (MAY_HAVE_DEBUG_INSNS)
9997 if (loc_exp_dep_pool)
9998 free_alloc_pool (loc_exp_dep_pool);
9999 loc_exp_dep_pool = NULL;
10000 free_alloc_pool (valvar_pool);
10001 VEC_free (rtx, heap, preserved_values);
10002 cselib_finish ();
10003 BITMAP_FREE (scratch_regs);
10004 scratch_regs = NULL;
10007 #ifdef HAVE_window_save
10008 VEC_free (parm_reg_t, gc, windowed_parm_regs);
10009 #endif
10011 if (vui_vec)
10012 XDELETEVEC (vui_vec);
10013 vui_vec = NULL;
10014 vui_allocated = 0;
10017 /* The entry point to variable tracking pass. */
10019 static inline unsigned int
10020 variable_tracking_main_1 (void)
10022 bool success;
10024 if (flag_var_tracking_assignments < 0)
10026 delete_debug_insns ();
10027 return 0;
10030 if (n_basic_blocks > 500 && n_edges / n_basic_blocks >= 20)
10032 vt_debug_insns_local (true);
10033 return 0;
10036 mark_dfs_back_edges ();
10037 if (!vt_initialize ())
10039 vt_finalize ();
10040 vt_debug_insns_local (true);
10041 return 0;
10044 success = vt_find_locations ();
10046 if (!success && flag_var_tracking_assignments > 0)
10048 vt_finalize ();
10050 delete_debug_insns ();
10052 /* This is later restored by our caller. */
10053 flag_var_tracking_assignments = 0;
10055 success = vt_initialize ();
10056 gcc_assert (success);
10058 success = vt_find_locations ();
10061 if (!success)
10063 vt_finalize ();
10064 vt_debug_insns_local (false);
10065 return 0;
10068 if (dump_file && (dump_flags & TDF_DETAILS))
10070 dump_dataflow_sets ();
10071 dump_reg_info (dump_file);
10072 dump_flow_info (dump_file, dump_flags);
10075 timevar_push (TV_VAR_TRACKING_EMIT);
10076 vt_emit_notes ();
10077 timevar_pop (TV_VAR_TRACKING_EMIT);
10079 vt_finalize ();
10080 vt_debug_insns_local (false);
10081 return 0;
10084 unsigned int
10085 variable_tracking_main (void)
10087 unsigned int ret;
10088 int save = flag_var_tracking_assignments;
10090 ret = variable_tracking_main_1 ();
10092 flag_var_tracking_assignments = save;
10094 return ret;
10097 static bool
10098 gate_handle_var_tracking (void)
10100 return (flag_var_tracking && !targetm.delay_vartrack);
10105 struct rtl_opt_pass pass_variable_tracking =
10108 RTL_PASS,
10109 "vartrack", /* name */
10110 OPTGROUP_NONE, /* optinfo_flags */
10111 gate_handle_var_tracking, /* gate */
10112 variable_tracking_main, /* execute */
10113 NULL, /* sub */
10114 NULL, /* next */
10115 0, /* static_pass_number */
10116 TV_VAR_TRACKING, /* tv_id */
10117 0, /* properties_required */
10118 0, /* properties_provided */
10119 0, /* properties_destroyed */
10120 0, /* todo_flags_start */
10121 TODO_verify_rtl_sharing /* todo_flags_finish */