* doc/invoke.texi (Optimize Options): Document -frename-registers
[official-gcc.git] / gcc / cp / search.c
blobda9a7cfdc7fdd4c93f6185c3244509b0ad3085b1
1 /* Breadth-first and depth-first routines for
2 searching multiple-inheritance lattice for GNU C++.
3 Copyright (C) 1987, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2002, 2003, 2004 Free Software Foundation, Inc.
5 Contributed by Michael Tiemann (tiemann@cygnus.com)
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2, or (at your option)
12 any later version.
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to
21 the Free Software Foundation, 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
24 /* High-level class interface. */
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "tm.h"
30 #include "tree.h"
31 #include "cp-tree.h"
32 #include "obstack.h"
33 #include "flags.h"
34 #include "rtl.h"
35 #include "output.h"
36 #include "toplev.h"
37 #include "stack.h"
39 /* Obstack used for remembering decision points of breadth-first. */
41 static struct obstack search_obstack;
43 /* Methods for pushing and popping objects to and from obstacks. */
45 struct stack_level *
46 push_stack_level (struct obstack *obstack, char *tp,/* Sony NewsOS 5.0 compiler doesn't like void * here. */
47 int size)
49 struct stack_level *stack;
50 obstack_grow (obstack, tp, size);
51 stack = (struct stack_level *) ((char*)obstack_next_free (obstack) - size);
52 obstack_finish (obstack);
53 stack->obstack = obstack;
54 stack->first = (tree *) obstack_base (obstack);
55 stack->limit = obstack_room (obstack) / sizeof (tree *);
56 return stack;
59 struct stack_level *
60 pop_stack_level (struct stack_level *stack)
62 struct stack_level *tem = stack;
63 struct obstack *obstack = tem->obstack;
64 stack = tem->prev;
65 obstack_free (obstack, tem);
66 return stack;
69 #define search_level stack_level
70 static struct search_level *search_stack;
72 struct vbase_info
74 /* The class dominating the hierarchy. */
75 tree type;
76 /* A pointer to a complete object of the indicated TYPE. */
77 tree decl_ptr;
78 tree inits;
81 static tree dfs_check_overlap (tree, void *);
82 static tree dfs_no_overlap_yet (tree, int, void *);
83 static base_kind lookup_base_r (tree, tree, base_access, bool, tree *);
84 static int dynamic_cast_base_recurse (tree, tree, bool, tree *);
85 static tree marked_pushdecls_p (tree, int, void *);
86 static tree unmarked_pushdecls_p (tree, int, void *);
87 static tree dfs_debug_unmarkedp (tree, int, void *);
88 static tree dfs_debug_mark (tree, void *);
89 static tree dfs_push_type_decls (tree, void *);
90 static tree dfs_push_decls (tree, void *);
91 static tree add_conversions (tree, void *);
92 static int look_for_overrides_r (tree, tree);
93 static struct search_level *push_search_level (struct stack_level *,
94 struct obstack *);
95 static struct search_level *pop_search_level (struct stack_level *);
96 static tree bfs_walk (tree, tree (*) (tree, void *),
97 tree (*) (tree, int, void *), void *);
98 static tree lookup_field_queue_p (tree, int, void *);
99 static int shared_member_p (tree);
100 static tree lookup_field_r (tree, void *);
101 static tree dfs_accessible_queue_p (tree, int, void *);
102 static tree dfs_accessible_p (tree, void *);
103 static tree dfs_access_in_type (tree, void *);
104 static access_kind access_in_type (tree, tree);
105 static int protected_accessible_p (tree, tree, tree);
106 static int friend_accessible_p (tree, tree, tree);
107 static void setup_class_bindings (tree, int);
108 static int template_self_reference_p (tree, tree);
109 static tree dfs_get_pure_virtuals (tree, void *);
111 /* Allocate a level of searching. */
113 static struct search_level *
114 push_search_level (struct stack_level *stack, struct obstack *obstack)
116 struct search_level tem;
118 tem.prev = stack;
119 return push_stack_level (obstack, (char *)&tem, sizeof (tem));
122 /* Discard a level of search allocation. */
124 static struct search_level *
125 pop_search_level (struct stack_level *obstack)
127 struct search_level *stack = pop_stack_level (obstack);
129 return stack;
132 /* Variables for gathering statistics. */
133 #ifdef GATHER_STATISTICS
134 static int n_fields_searched;
135 static int n_calls_lookup_field, n_calls_lookup_field_1;
136 static int n_calls_lookup_fnfields, n_calls_lookup_fnfields_1;
137 static int n_calls_get_base_type;
138 static int n_outer_fields_searched;
139 static int n_contexts_saved;
140 #endif /* GATHER_STATISTICS */
143 /* Worker for lookup_base. BINFO is the binfo we are searching at,
144 BASE is the RECORD_TYPE we are searching for. ACCESS is the
145 required access checks. IS_VIRTUAL indicates if BINFO is morally
146 virtual.
148 If BINFO is of the required type, then *BINFO_PTR is examined to
149 compare with any other instance of BASE we might have already
150 discovered. *BINFO_PTR is initialized and a base_kind return value
151 indicates what kind of base was located.
153 Otherwise BINFO's bases are searched. */
155 static base_kind
156 lookup_base_r (tree binfo, tree base, base_access access,
157 bool is_virtual, /* inside a virtual part */
158 tree *binfo_ptr)
160 int i;
161 tree bases, accesses;
162 base_kind found = bk_not_base;
164 if (same_type_p (BINFO_TYPE (binfo), base))
166 /* We have found a base. Check against what we have found
167 already. */
168 found = bk_same_type;
169 if (is_virtual)
170 found = bk_via_virtual;
172 if (!*binfo_ptr)
173 *binfo_ptr = binfo;
174 else if (binfo != *binfo_ptr)
176 if (access != ba_any)
177 *binfo_ptr = NULL;
178 else if (!is_virtual)
179 /* Prefer a non-virtual base. */
180 *binfo_ptr = binfo;
181 found = bk_ambig;
184 return found;
187 bases = BINFO_BASE_BINFOS (binfo);
188 accesses = BINFO_BASE_ACCESSES (binfo);
189 if (!bases)
190 return bk_not_base;
192 for (i = TREE_VEC_LENGTH (bases); i--;)
194 tree base_binfo = TREE_VEC_ELT (bases, i);
195 base_kind bk;
197 bk = lookup_base_r (base_binfo, base,
198 access,
199 is_virtual || BINFO_VIRTUAL_P (base_binfo),
200 binfo_ptr);
202 switch (bk)
204 case bk_ambig:
205 if (access != ba_any)
206 return bk;
207 found = bk;
208 break;
210 case bk_same_type:
211 bk = bk_proper_base;
212 /* Fall through. */
213 case bk_proper_base:
214 my_friendly_assert (found == bk_not_base, 20010723);
215 found = bk;
216 break;
218 case bk_via_virtual:
219 if (found != bk_ambig)
220 found = bk;
221 break;
223 case bk_not_base:
224 break;
226 default:
227 abort ();
230 return found;
233 /* Returns true if type BASE is accessible in T. (BASE is known to be
234 a (possibly non-proper) base class of T.) */
236 bool
237 accessible_base_p (tree t, tree base)
239 tree decl;
241 /* [class.access.base]
243 A base class is said to be accessible if an invented public
244 member of the base class is accessible.
246 If BASE is a non-proper base, this condition is trivially
247 true. */
248 if (same_type_p (t, base))
249 return true;
250 /* Rather than inventing a public member, we use the implicit
251 public typedef created in the scope of every class. */
252 decl = TYPE_FIELDS (base);
253 while (!DECL_SELF_REFERENCE_P (decl))
254 decl = TREE_CHAIN (decl);
255 while (ANON_AGGR_TYPE_P (t))
256 t = TYPE_CONTEXT (t);
257 return accessible_p (t, decl);
260 /* Lookup BASE in the hierarchy dominated by T. Do access checking as
261 ACCESS specifies. Return the binfo we discover. If KIND_PTR is
262 non-NULL, fill with information about what kind of base we
263 discovered.
265 If the base is inaccessible, or ambiguous, and the ba_quiet bit is
266 not set in ACCESS, then an error is issued and error_mark_node is
267 returned. If the ba_quiet bit is set, then no error is issued and
268 NULL_TREE is returned. */
270 tree
271 lookup_base (tree t, tree base, base_access access, base_kind *kind_ptr)
273 tree binfo = NULL; /* The binfo we've found so far. */
274 tree t_binfo = NULL;
275 base_kind bk;
277 if (t == error_mark_node || base == error_mark_node)
279 if (kind_ptr)
280 *kind_ptr = bk_not_base;
281 return error_mark_node;
283 my_friendly_assert (TYPE_P (base), 20011127);
285 if (!TYPE_P (t))
287 t_binfo = t;
288 t = BINFO_TYPE (t);
290 else
291 t_binfo = TYPE_BINFO (t);
293 /* Ensure that the types are instantiated. */
294 t = complete_type (TYPE_MAIN_VARIANT (t));
295 base = complete_type (TYPE_MAIN_VARIANT (base));
297 bk = lookup_base_r (t_binfo, base, access, 0, &binfo);
299 /* Check that the base is unambiguous and accessible. */
300 if (access != ba_any)
301 switch (bk)
303 case bk_not_base:
304 break;
306 case bk_ambig:
307 binfo = NULL_TREE;
308 if (!(access & ba_quiet))
310 error ("`%T' is an ambiguous base of `%T'", base, t);
311 binfo = error_mark_node;
313 break;
315 default:
316 if ((access & ~ba_quiet) != ba_ignore
317 /* If BASE is incomplete, then BASE and TYPE are probably
318 the same, in which case BASE is accessible. If they
319 are not the same, then TYPE is invalid. In that case,
320 there's no need to issue another error here, and
321 there's no implicit typedef to use in the code that
322 follows, so we skip the check. */
323 && COMPLETE_TYPE_P (base)
324 && !accessible_base_p (t, base))
326 if (!(access & ba_quiet))
328 error ("`%T' is an inaccessible base of `%T'", base, t);
329 binfo = error_mark_node;
331 else
332 binfo = NULL_TREE;
333 bk = bk_inaccessible;
335 break;
338 if (kind_ptr)
339 *kind_ptr = bk;
341 return binfo;
344 /* Worker function for get_dynamic_cast_base_type. */
346 static int
347 dynamic_cast_base_recurse (tree subtype, tree binfo, bool is_via_virtual,
348 tree *offset_ptr)
350 tree binfos, accesses;
351 int i, n_baselinks;
352 int worst = -2;
354 if (BINFO_TYPE (binfo) == subtype)
356 if (is_via_virtual)
357 return -1;
358 else
360 *offset_ptr = BINFO_OFFSET (binfo);
361 return 0;
365 binfos = BINFO_BASE_BINFOS (binfo);
366 accesses = BINFO_BASE_ACCESSES (binfo);
367 n_baselinks = binfos ? TREE_VEC_LENGTH (binfos) : 0;
368 for (i = 0; i < n_baselinks; i++)
370 tree base_binfo = TREE_VEC_ELT (binfos, i);
371 tree base_access = TREE_VEC_ELT (accesses, i);
372 int rval;
374 if (base_access != access_public_node)
375 continue;
376 rval = dynamic_cast_base_recurse
377 (subtype, base_binfo,
378 is_via_virtual || BINFO_VIRTUAL_P (base_binfo), offset_ptr);
379 if (worst == -2)
380 worst = rval;
381 else if (rval >= 0)
382 worst = worst >= 0 ? -3 : worst;
383 else if (rval == -1)
384 worst = -1;
385 else if (rval == -3 && worst != -1)
386 worst = -3;
388 return worst;
391 /* The dynamic cast runtime needs a hint about how the static SUBTYPE type
392 started from is related to the required TARGET type, in order to optimize
393 the inheritance graph search. This information is independent of the
394 current context, and ignores private paths, hence get_base_distance is
395 inappropriate. Return a TREE specifying the base offset, BOFF.
396 BOFF >= 0, there is only one public non-virtual SUBTYPE base at offset BOFF,
397 and there are no public virtual SUBTYPE bases.
398 BOFF == -1, SUBTYPE occurs as multiple public virtual or non-virtual bases.
399 BOFF == -2, SUBTYPE is not a public base.
400 BOFF == -3, SUBTYPE occurs as multiple public non-virtual bases. */
402 tree
403 get_dynamic_cast_base_type (tree subtype, tree target)
405 tree offset = NULL_TREE;
406 int boff = dynamic_cast_base_recurse (subtype, TYPE_BINFO (target),
407 false, &offset);
409 if (!boff)
410 return offset;
411 offset = build_int_2 (boff, -1);
412 TREE_TYPE (offset) = ssizetype;
413 return offset;
416 /* Search for a member with name NAME in a multiple inheritance
417 lattice specified by TYPE. If it does not exist, return NULL_TREE.
418 If the member is ambiguously referenced, return `error_mark_node'.
419 Otherwise, return a DECL with the indicated name. If WANT_TYPE is
420 true, type declarations are preferred. */
422 /* Do a 1-level search for NAME as a member of TYPE. The caller must
423 figure out whether it can access this field. (Since it is only one
424 level, this is reasonable.) */
426 tree
427 lookup_field_1 (tree type, tree name, bool want_type)
429 tree field;
431 if (TREE_CODE (type) == TEMPLATE_TYPE_PARM
432 || TREE_CODE (type) == BOUND_TEMPLATE_TEMPLATE_PARM
433 || TREE_CODE (type) == TYPENAME_TYPE)
434 /* The TYPE_FIELDS of a TEMPLATE_TYPE_PARM and
435 BOUND_TEMPLATE_TEMPLATE_PARM are not fields at all;
436 instead TYPE_FIELDS is the TEMPLATE_PARM_INDEX. (Miraculously,
437 the code often worked even when we treated the index as a list
438 of fields!)
439 The TYPE_FIELDS of TYPENAME_TYPE is its TYPENAME_TYPE_FULLNAME. */
440 return NULL_TREE;
442 if (TYPE_NAME (type)
443 && DECL_LANG_SPECIFIC (TYPE_NAME (type))
444 && DECL_SORTED_FIELDS (TYPE_NAME (type)))
446 tree *fields = &DECL_SORTED_FIELDS (TYPE_NAME (type))->elts[0];
447 int lo = 0, hi = DECL_SORTED_FIELDS (TYPE_NAME (type))->len;
448 int i;
450 while (lo < hi)
452 i = (lo + hi) / 2;
454 #ifdef GATHER_STATISTICS
455 n_fields_searched++;
456 #endif /* GATHER_STATISTICS */
458 if (DECL_NAME (fields[i]) > name)
459 hi = i;
460 else if (DECL_NAME (fields[i]) < name)
461 lo = i + 1;
462 else
464 field = NULL_TREE;
466 /* We might have a nested class and a field with the
467 same name; we sorted them appropriately via
468 field_decl_cmp, so just look for the first or last
469 field with this name. */
470 if (want_type)
473 field = fields[i--];
474 while (i >= lo && DECL_NAME (fields[i]) == name);
475 if (TREE_CODE (field) != TYPE_DECL
476 && !DECL_CLASS_TEMPLATE_P (field))
477 field = NULL_TREE;
479 else
482 field = fields[i++];
483 while (i < hi && DECL_NAME (fields[i]) == name);
485 return field;
488 return NULL_TREE;
491 field = TYPE_FIELDS (type);
493 #ifdef GATHER_STATISTICS
494 n_calls_lookup_field_1++;
495 #endif /* GATHER_STATISTICS */
496 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
498 #ifdef GATHER_STATISTICS
499 n_fields_searched++;
500 #endif /* GATHER_STATISTICS */
501 my_friendly_assert (DECL_P (field), 0);
502 if (DECL_NAME (field) == NULL_TREE
503 && ANON_AGGR_TYPE_P (TREE_TYPE (field)))
505 tree temp = lookup_field_1 (TREE_TYPE (field), name, want_type);
506 if (temp)
507 return temp;
509 if (TREE_CODE (field) == USING_DECL)
510 /* For now, we're just treating member using declarations as
511 old ARM-style access declarations. Thus, there's no reason
512 to return a USING_DECL, and the rest of the compiler can't
513 handle it. Once the class is defined, these are purged
514 from TYPE_FIELDS anyhow; see handle_using_decl. */
515 continue;
517 if (DECL_NAME (field) == name
518 && (!want_type
519 || TREE_CODE (field) == TYPE_DECL
520 || DECL_CLASS_TEMPLATE_P (field)))
521 return field;
523 /* Not found. */
524 if (name == vptr_identifier)
526 /* Give the user what s/he thinks s/he wants. */
527 if (TYPE_POLYMORPHIC_P (type))
528 return TYPE_VFIELD (type);
530 return NULL_TREE;
533 /* There are a number of cases we need to be aware of here:
534 current_class_type current_function_decl
535 global NULL NULL
536 fn-local NULL SET
537 class-local SET NULL
538 class->fn SET SET
539 fn->class SET SET
541 Those last two make life interesting. If we're in a function which is
542 itself inside a class, we need decls to go into the fn's decls (our
543 second case below). But if we're in a class and the class itself is
544 inside a function, we need decls to go into the decls for the class. To
545 achieve this last goal, we must see if, when both current_class_ptr and
546 current_function_decl are set, the class was declared inside that
547 function. If so, we know to put the decls into the class's scope. */
549 tree
550 current_scope (void)
552 if (current_function_decl == NULL_TREE)
553 return current_class_type;
554 if (current_class_type == NULL_TREE)
555 return current_function_decl;
556 if ((DECL_FUNCTION_MEMBER_P (current_function_decl)
557 && same_type_p (DECL_CONTEXT (current_function_decl),
558 current_class_type))
559 || (DECL_FRIEND_CONTEXT (current_function_decl)
560 && same_type_p (DECL_FRIEND_CONTEXT (current_function_decl),
561 current_class_type)))
562 return current_function_decl;
564 return current_class_type;
567 /* Returns nonzero if we are currently in a function scope. Note
568 that this function returns zero if we are within a local class, but
569 not within a member function body of the local class. */
572 at_function_scope_p (void)
574 tree cs = current_scope ();
575 return cs && TREE_CODE (cs) == FUNCTION_DECL;
578 /* Returns true if the innermost active scope is a class scope. */
580 bool
581 at_class_scope_p (void)
583 tree cs = current_scope ();
584 return cs && TYPE_P (cs);
587 /* Returns true if the innermost active scope is a namespace scope. */
589 bool
590 at_namespace_scope_p (void)
592 /* We are in a namespace scope if we are not it a class scope or a
593 function scope. */
594 return !current_scope();
597 /* Return the scope of DECL, as appropriate when doing name-lookup. */
599 tree
600 context_for_name_lookup (tree decl)
602 /* [class.union]
604 For the purposes of name lookup, after the anonymous union
605 definition, the members of the anonymous union are considered to
606 have been defined in the scope in which the anonymous union is
607 declared. */
608 tree context = DECL_CONTEXT (decl);
610 while (context && TYPE_P (context) && ANON_AGGR_TYPE_P (context))
611 context = TYPE_CONTEXT (context);
612 if (!context)
613 context = global_namespace;
615 return context;
618 /* The accessibility routines use BINFO_ACCESS for scratch space
619 during the computation of the accessibility of some declaration. */
621 #define BINFO_ACCESS(NODE) \
622 ((access_kind) ((TREE_PUBLIC (NODE) << 1) | TREE_PRIVATE (NODE)))
624 /* Set the access associated with NODE to ACCESS. */
626 #define SET_BINFO_ACCESS(NODE, ACCESS) \
627 ((TREE_PUBLIC (NODE) = ((ACCESS) & 2) != 0), \
628 (TREE_PRIVATE (NODE) = ((ACCESS) & 1) != 0))
630 /* Called from access_in_type via dfs_walk. Calculate the access to
631 DATA (which is really a DECL) in BINFO. */
633 static tree
634 dfs_access_in_type (tree binfo, void *data)
636 tree decl = (tree) data;
637 tree type = BINFO_TYPE (binfo);
638 access_kind access = ak_none;
640 if (context_for_name_lookup (decl) == type)
642 /* If we have descended to the scope of DECL, just note the
643 appropriate access. */
644 if (TREE_PRIVATE (decl))
645 access = ak_private;
646 else if (TREE_PROTECTED (decl))
647 access = ak_protected;
648 else
649 access = ak_public;
651 else
653 /* First, check for an access-declaration that gives us more
654 access to the DECL. The CONST_DECL for an enumeration
655 constant will not have DECL_LANG_SPECIFIC, and thus no
656 DECL_ACCESS. */
657 if (DECL_LANG_SPECIFIC (decl) && !DECL_DISCRIMINATOR_P (decl))
659 tree decl_access = purpose_member (type, DECL_ACCESS (decl));
661 if (decl_access)
663 decl_access = TREE_VALUE (decl_access);
665 if (decl_access == access_public_node)
666 access = ak_public;
667 else if (decl_access == access_protected_node)
668 access = ak_protected;
669 else if (decl_access == access_private_node)
670 access = ak_private;
671 else
672 my_friendly_assert (false, 20030217);
676 if (!access)
678 int i;
679 int n_baselinks;
680 tree binfos, accesses;
682 /* Otherwise, scan our baseclasses, and pick the most favorable
683 access. */
684 binfos = BINFO_BASE_BINFOS (binfo);
685 accesses = BINFO_BASE_ACCESSES (binfo);
686 n_baselinks = binfos ? TREE_VEC_LENGTH (binfos) : 0;
687 for (i = 0; i < n_baselinks; ++i)
689 tree base_binfo = TREE_VEC_ELT (binfos, i);
690 tree base_access = TREE_VEC_ELT (accesses, i);
691 access_kind base_access_now = BINFO_ACCESS (base_binfo);
693 if (base_access_now == ak_none || base_access_now == ak_private)
694 /* If it was not accessible in the base, or only
695 accessible as a private member, we can't access it
696 all. */
697 base_access_now = ak_none;
698 else if (base_access == access_protected_node)
699 /* Public and protected members in the base become
700 protected here. */
701 base_access_now = ak_protected;
702 else if (base_access == access_private_node)
703 /* Public and protected members in the base become
704 private here. */
705 base_access_now = ak_private;
707 /* See if the new access, via this base, gives more
708 access than our previous best access. */
709 if (base_access_now != ak_none
710 && (access == ak_none || base_access_now < access))
712 access = base_access_now;
714 /* If the new access is public, we can't do better. */
715 if (access == ak_public)
716 break;
722 /* Note the access to DECL in TYPE. */
723 SET_BINFO_ACCESS (binfo, access);
725 /* Mark TYPE as visited so that if we reach it again we do not
726 duplicate our efforts here. */
727 BINFO_MARKED (binfo) = 1;
729 return NULL_TREE;
732 /* Return the access to DECL in TYPE. */
734 static access_kind
735 access_in_type (tree type, tree decl)
737 tree binfo = TYPE_BINFO (type);
739 /* We must take into account
741 [class.paths]
743 If a name can be reached by several paths through a multiple
744 inheritance graph, the access is that of the path that gives
745 most access.
747 The algorithm we use is to make a post-order depth-first traversal
748 of the base-class hierarchy. As we come up the tree, we annotate
749 each node with the most lenient access. */
750 dfs_walk_real (binfo, 0, dfs_access_in_type, unmarkedp, decl);
751 dfs_walk (binfo, dfs_unmark, markedp, 0);
753 return BINFO_ACCESS (binfo);
756 /* Called from accessible_p via dfs_walk. */
758 static tree
759 dfs_accessible_queue_p (tree derived, int ix, void *data ATTRIBUTE_UNUSED)
761 tree binfo = BINFO_BASE_BINFO (derived, ix);
763 if (BINFO_MARKED (binfo))
764 return NULL_TREE;
766 /* If this class is inherited via private or protected inheritance,
767 then we can't see it, unless we are a friend of the derived class. */
768 if (BINFO_BASE_ACCESS (derived, ix) != access_public_node
769 && !is_friend (BINFO_TYPE (derived), current_scope ()))
770 return NULL_TREE;
772 return binfo;
775 /* Called from accessible_p via dfs_walk. */
777 static tree
778 dfs_accessible_p (tree binfo, void *data ATTRIBUTE_UNUSED)
780 access_kind access;
782 BINFO_MARKED (binfo) = 1;
783 access = BINFO_ACCESS (binfo);
784 if (access != ak_none
785 && is_friend (BINFO_TYPE (binfo), current_scope ()))
786 return binfo;
788 return NULL_TREE;
791 /* Returns nonzero if it is OK to access DECL through an object
792 indicated by BINFO in the context of DERIVED. */
794 static int
795 protected_accessible_p (tree decl, tree derived, tree binfo)
797 access_kind access;
799 /* We're checking this clause from [class.access.base]
801 m as a member of N is protected, and the reference occurs in a
802 member or friend of class N, or in a member or friend of a
803 class P derived from N, where m as a member of P is private or
804 protected.
806 Here DERIVED is a possible P and DECL is m. accessible_p will
807 iterate over various values of N, but the access to m in DERIVED
808 does not change.
810 Note that I believe that the passage above is wrong, and should read
811 "...is private or protected or public"; otherwise you get bizarre results
812 whereby a public using-decl can prevent you from accessing a protected
813 member of a base. (jason 2000/02/28) */
815 /* If DERIVED isn't derived from m's class, then it can't be a P. */
816 if (!DERIVED_FROM_P (context_for_name_lookup (decl), derived))
817 return 0;
819 access = access_in_type (derived, decl);
821 /* If m is inaccessible in DERIVED, then it's not a P. */
822 if (access == ak_none)
823 return 0;
825 /* [class.protected]
827 When a friend or a member function of a derived class references
828 a protected nonstatic member of a base class, an access check
829 applies in addition to those described earlier in clause
830 _class.access_) Except when forming a pointer to member
831 (_expr.unary.op_), the access must be through a pointer to,
832 reference to, or object of the derived class itself (or any class
833 derived from that class) (_expr.ref_). If the access is to form
834 a pointer to member, the nested-name-specifier shall name the
835 derived class (or any class derived from that class). */
836 if (DECL_NONSTATIC_MEMBER_P (decl))
838 /* We can tell through what the reference is occurring by
839 chasing BINFO up to the root. */
840 tree t = binfo;
841 while (BINFO_INHERITANCE_CHAIN (t))
842 t = BINFO_INHERITANCE_CHAIN (t);
844 if (!DERIVED_FROM_P (derived, BINFO_TYPE (t)))
845 return 0;
848 return 1;
851 /* Returns nonzero if SCOPE is a friend of a type which would be able
852 to access DECL through the object indicated by BINFO. */
854 static int
855 friend_accessible_p (tree scope, tree decl, tree binfo)
857 tree befriending_classes;
858 tree t;
860 if (!scope)
861 return 0;
863 if (TREE_CODE (scope) == FUNCTION_DECL
864 || DECL_FUNCTION_TEMPLATE_P (scope))
865 befriending_classes = DECL_BEFRIENDING_CLASSES (scope);
866 else if (TYPE_P (scope))
867 befriending_classes = CLASSTYPE_BEFRIENDING_CLASSES (scope);
868 else
869 return 0;
871 for (t = befriending_classes; t; t = TREE_CHAIN (t))
872 if (protected_accessible_p (decl, TREE_VALUE (t), binfo))
873 return 1;
875 /* Nested classes are implicitly friends of their enclosing types, as
876 per core issue 45 (this is a change from the standard). */
877 if (TYPE_P (scope))
878 for (t = TYPE_CONTEXT (scope); t && TYPE_P (t); t = TYPE_CONTEXT (t))
879 if (protected_accessible_p (decl, t, binfo))
880 return 1;
882 if (TREE_CODE (scope) == FUNCTION_DECL
883 || DECL_FUNCTION_TEMPLATE_P (scope))
885 /* Perhaps this SCOPE is a member of a class which is a
886 friend. */
887 if (DECL_CLASS_SCOPE_P (decl)
888 && friend_accessible_p (DECL_CONTEXT (scope), decl, binfo))
889 return 1;
891 /* Or an instantiation of something which is a friend. */
892 if (DECL_TEMPLATE_INFO (scope))
893 return friend_accessible_p (DECL_TI_TEMPLATE (scope), decl, binfo);
895 else if (CLASSTYPE_TEMPLATE_INFO (scope))
896 return friend_accessible_p (CLASSTYPE_TI_TEMPLATE (scope), decl, binfo);
898 return 0;
901 /* DECL is a declaration from a base class of TYPE, which was the
902 class used to name DECL. Return nonzero if, in the current
903 context, DECL is accessible. If TYPE is actually a BINFO node,
904 then we can tell in what context the access is occurring by looking
905 at the most derived class along the path indicated by BINFO. */
907 int
908 accessible_p (tree type, tree decl)
910 tree binfo;
911 tree t;
912 tree scope;
913 access_kind access;
915 /* Nonzero if it's OK to access DECL if it has protected
916 accessibility in TYPE. */
917 int protected_ok = 0;
919 /* If this declaration is in a block or namespace scope, there's no
920 access control. */
921 if (!TYPE_P (context_for_name_lookup (decl)))
922 return 1;
924 /* There is no need to perform access checks inside a thunk. */
925 scope = current_scope ();
926 if (scope && DECL_THUNK_P (scope))
927 return 1;
929 /* In a template declaration, we cannot be sure whether the
930 particular specialization that is instantiated will be a friend
931 or not. Therefore, all access checks are deferred until
932 instantiation. */
933 if (processing_template_decl)
934 return 1;
936 if (!TYPE_P (type))
938 binfo = type;
939 type = BINFO_TYPE (type);
941 else
942 binfo = TYPE_BINFO (type);
944 /* [class.access.base]
946 A member m is accessible when named in class N if
948 --m as a member of N is public, or
950 --m as a member of N is private, and the reference occurs in a
951 member or friend of class N, or
953 --m as a member of N is protected, and the reference occurs in a
954 member or friend of class N, or in a member or friend of a
955 class P derived from N, where m as a member of P is private or
956 protected, or
958 --there exists a base class B of N that is accessible at the point
959 of reference, and m is accessible when named in class B.
961 We walk the base class hierarchy, checking these conditions. */
963 /* Figure out where the reference is occurring. Check to see if
964 DECL is private or protected in this scope, since that will
965 determine whether protected access is allowed. */
966 if (current_class_type)
967 protected_ok = protected_accessible_p (decl, current_class_type, binfo);
969 /* Now, loop through the classes of which we are a friend. */
970 if (!protected_ok)
971 protected_ok = friend_accessible_p (scope, decl, binfo);
973 /* Standardize the binfo that access_in_type will use. We don't
974 need to know what path was chosen from this point onwards. */
975 binfo = TYPE_BINFO (type);
977 /* Compute the accessibility of DECL in the class hierarchy
978 dominated by type. */
979 access = access_in_type (type, decl);
980 if (access == ak_public
981 || (access == ak_protected && protected_ok))
982 return 1;
983 else
985 /* Walk the hierarchy again, looking for a base class that allows
986 access. */
987 t = dfs_walk (binfo, dfs_accessible_p, dfs_accessible_queue_p, 0);
988 /* Clear any mark bits. Note that we have to walk the whole tree
989 here, since we have aborted the previous walk from some point
990 deep in the tree. */
991 dfs_walk (binfo, dfs_unmark, 0, 0);
993 return t != NULL_TREE;
997 struct lookup_field_info {
998 /* The type in which we're looking. */
999 tree type;
1000 /* The name of the field for which we're looking. */
1001 tree name;
1002 /* If non-NULL, the current result of the lookup. */
1003 tree rval;
1004 /* The path to RVAL. */
1005 tree rval_binfo;
1006 /* If non-NULL, the lookup was ambiguous, and this is a list of the
1007 candidates. */
1008 tree ambiguous;
1009 /* If nonzero, we are looking for types, not data members. */
1010 int want_type;
1011 /* If something went wrong, a message indicating what. */
1012 const char *errstr;
1015 /* Returns nonzero if BINFO is not hidden by the value found by the
1016 lookup so far. If BINFO is hidden, then there's no need to look in
1017 it. DATA is really a struct lookup_field_info. Called from
1018 lookup_field via breadth_first_search. */
1020 static tree
1021 lookup_field_queue_p (tree derived, int ix, void *data)
1023 tree binfo = BINFO_BASE_BINFO (derived, ix);
1024 struct lookup_field_info *lfi = (struct lookup_field_info *) data;
1026 /* Don't look for constructors or destructors in base classes. */
1027 if (IDENTIFIER_CTOR_OR_DTOR_P (lfi->name))
1028 return NULL_TREE;
1030 /* If this base class is hidden by the best-known value so far, we
1031 don't need to look. */
1032 if (lfi->rval_binfo && original_binfo (binfo, lfi->rval_binfo))
1033 return NULL_TREE;
1035 /* If this is a dependent base, don't look in it. */
1036 if (BINFO_DEPENDENT_BASE_P (binfo))
1037 return NULL_TREE;
1039 return binfo;
1042 /* Within the scope of a template class, you can refer to the to the
1043 current specialization with the name of the template itself. For
1044 example:
1046 template <typename T> struct S { S* sp; }
1048 Returns nonzero if DECL is such a declaration in a class TYPE. */
1050 static int
1051 template_self_reference_p (tree type, tree decl)
1053 return (CLASSTYPE_USE_TEMPLATE (type)
1054 && PRIMARY_TEMPLATE_P (CLASSTYPE_TI_TEMPLATE (type))
1055 && TREE_CODE (decl) == TYPE_DECL
1056 && DECL_ARTIFICIAL (decl)
1057 && DECL_NAME (decl) == constructor_name (type));
1061 /* Nonzero for a class member means that it is shared between all objects
1062 of that class.
1064 [class.member.lookup]:If the resulting set of declarations are not all
1065 from sub-objects of the same type, or the set has a nonstatic member
1066 and includes members from distinct sub-objects, there is an ambiguity
1067 and the program is ill-formed.
1069 This function checks that T contains no nonstatic members. */
1071 static int
1072 shared_member_p (tree t)
1074 if (TREE_CODE (t) == VAR_DECL || TREE_CODE (t) == TYPE_DECL \
1075 || TREE_CODE (t) == CONST_DECL)
1076 return 1;
1077 if (is_overloaded_fn (t))
1079 for (; t; t = OVL_NEXT (t))
1081 tree fn = OVL_CURRENT (t);
1082 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn))
1083 return 0;
1085 return 1;
1087 return 0;
1090 /* DATA is really a struct lookup_field_info. Look for a field with
1091 the name indicated there in BINFO. If this function returns a
1092 non-NULL value it is the result of the lookup. Called from
1093 lookup_field via breadth_first_search. */
1095 static tree
1096 lookup_field_r (tree binfo, void *data)
1098 struct lookup_field_info *lfi = (struct lookup_field_info *) data;
1099 tree type = BINFO_TYPE (binfo);
1100 tree nval = NULL_TREE;
1102 /* First, look for a function. There can't be a function and a data
1103 member with the same name, and if there's a function and a type
1104 with the same name, the type is hidden by the function. */
1105 if (!lfi->want_type)
1107 int idx = lookup_fnfields_1 (type, lfi->name);
1108 if (idx >= 0)
1109 nval = TREE_VEC_ELT (CLASSTYPE_METHOD_VEC (type), idx);
1112 if (!nval)
1113 /* Look for a data member or type. */
1114 nval = lookup_field_1 (type, lfi->name, lfi->want_type);
1116 /* If there is no declaration with the indicated name in this type,
1117 then there's nothing to do. */
1118 if (!nval)
1119 return NULL_TREE;
1121 /* If we're looking up a type (as with an elaborated type specifier)
1122 we ignore all non-types we find. */
1123 if (lfi->want_type && TREE_CODE (nval) != TYPE_DECL
1124 && !DECL_CLASS_TEMPLATE_P (nval))
1126 if (lfi->name == TYPE_IDENTIFIER (type))
1128 /* If the aggregate has no user defined constructors, we allow
1129 it to have fields with the same name as the enclosing type.
1130 If we are looking for that name, find the corresponding
1131 TYPE_DECL. */
1132 for (nval = TREE_CHAIN (nval); nval; nval = TREE_CHAIN (nval))
1133 if (DECL_NAME (nval) == lfi->name
1134 && TREE_CODE (nval) == TYPE_DECL)
1135 break;
1137 else
1138 nval = NULL_TREE;
1139 if (!nval && CLASSTYPE_NESTED_UTDS (type) != NULL)
1141 binding_entry e = binding_table_find (CLASSTYPE_NESTED_UTDS (type),
1142 lfi->name);
1143 if (e != NULL)
1144 nval = TYPE_MAIN_DECL (e->type);
1145 else
1146 return NULL_TREE;
1150 /* You must name a template base class with a template-id. */
1151 if (!same_type_p (type, lfi->type)
1152 && template_self_reference_p (type, nval))
1153 return NULL_TREE;
1155 /* If the lookup already found a match, and the new value doesn't
1156 hide the old one, we might have an ambiguity. */
1157 if (lfi->rval_binfo && !original_binfo (lfi->rval_binfo, binfo))
1159 if (nval == lfi->rval && shared_member_p (nval))
1160 /* The two things are really the same. */
1162 else if (original_binfo (binfo, lfi->rval_binfo))
1163 /* The previous value hides the new one. */
1165 else
1167 /* We have a real ambiguity. We keep a chain of all the
1168 candidates. */
1169 if (!lfi->ambiguous && lfi->rval)
1171 /* This is the first time we noticed an ambiguity. Add
1172 what we previously thought was a reasonable candidate
1173 to the list. */
1174 lfi->ambiguous = tree_cons (NULL_TREE, lfi->rval, NULL_TREE);
1175 TREE_TYPE (lfi->ambiguous) = error_mark_node;
1178 /* Add the new value. */
1179 lfi->ambiguous = tree_cons (NULL_TREE, nval, lfi->ambiguous);
1180 TREE_TYPE (lfi->ambiguous) = error_mark_node;
1181 lfi->errstr = "request for member `%D' is ambiguous";
1184 else
1186 lfi->rval = nval;
1187 lfi->rval_binfo = binfo;
1190 return NULL_TREE;
1193 /* Return a "baselink" which BASELINK_BINFO, BASELINK_ACCESS_BINFO,
1194 BASELINK_FUNCTIONS, and BASELINK_OPTYPE set to BINFO, ACCESS_BINFO,
1195 FUNCTIONS, and OPTYPE respectively. */
1197 tree
1198 build_baselink (tree binfo, tree access_binfo, tree functions, tree optype)
1200 tree baselink;
1202 my_friendly_assert (TREE_CODE (functions) == FUNCTION_DECL
1203 || TREE_CODE (functions) == TEMPLATE_DECL
1204 || TREE_CODE (functions) == TEMPLATE_ID_EXPR
1205 || TREE_CODE (functions) == OVERLOAD,
1206 20020730);
1207 my_friendly_assert (!optype || TYPE_P (optype), 20020730);
1208 my_friendly_assert (TREE_TYPE (functions), 20020805);
1210 baselink = make_node (BASELINK);
1211 TREE_TYPE (baselink) = TREE_TYPE (functions);
1212 BASELINK_BINFO (baselink) = binfo;
1213 BASELINK_ACCESS_BINFO (baselink) = access_binfo;
1214 BASELINK_FUNCTIONS (baselink) = functions;
1215 BASELINK_OPTYPE (baselink) = optype;
1217 return baselink;
1220 /* Look for a member named NAME in an inheritance lattice dominated by
1221 XBASETYPE. If PROTECT is 0 or two, we do not check access. If it
1222 is 1, we enforce accessibility. If PROTECT is zero, then, for an
1223 ambiguous lookup, we return NULL. If PROTECT is 1, we issue error
1224 messages about inaccessible or ambiguous lookup. If PROTECT is 2,
1225 we return a TREE_LIST whose TREE_TYPE is error_mark_node and whose
1226 TREE_VALUEs are the list of ambiguous candidates.
1228 WANT_TYPE is 1 when we should only return TYPE_DECLs.
1230 If nothing can be found return NULL_TREE and do not issue an error. */
1232 tree
1233 lookup_member (tree xbasetype, tree name, int protect, bool want_type)
1235 tree rval, rval_binfo = NULL_TREE;
1236 tree type = NULL_TREE, basetype_path = NULL_TREE;
1237 struct lookup_field_info lfi;
1239 /* rval_binfo is the binfo associated with the found member, note,
1240 this can be set with useful information, even when rval is not
1241 set, because it must deal with ALL members, not just non-function
1242 members. It is used for ambiguity checking and the hidden
1243 checks. Whereas rval is only set if a proper (not hidden)
1244 non-function member is found. */
1246 const char *errstr = 0;
1248 my_friendly_assert (TREE_CODE (name) == IDENTIFIER_NODE, 20030624);
1250 if (TREE_CODE (xbasetype) == TREE_BINFO)
1252 type = BINFO_TYPE (xbasetype);
1253 basetype_path = xbasetype;
1255 else
1257 my_friendly_assert (IS_AGGR_TYPE_CODE (TREE_CODE (xbasetype)), 20030624);
1258 type = xbasetype;
1259 basetype_path = TYPE_BINFO (type);
1260 my_friendly_assert (!BINFO_INHERITANCE_CHAIN (basetype_path), 980827);
1263 if (type == current_class_type && TYPE_BEING_DEFINED (type)
1264 && IDENTIFIER_CLASS_VALUE (name))
1266 tree field = IDENTIFIER_CLASS_VALUE (name);
1267 if (! is_overloaded_fn (field)
1268 && ! (want_type && TREE_CODE (field) != TYPE_DECL))
1269 /* We're in the scope of this class, and the value has already
1270 been looked up. Just return the cached value. */
1271 return field;
1274 complete_type (type);
1276 #ifdef GATHER_STATISTICS
1277 n_calls_lookup_field++;
1278 #endif /* GATHER_STATISTICS */
1280 memset (&lfi, 0, sizeof (lfi));
1281 lfi.type = type;
1282 lfi.name = name;
1283 lfi.want_type = want_type;
1284 bfs_walk (basetype_path, &lookup_field_r, &lookup_field_queue_p, &lfi);
1285 rval = lfi.rval;
1286 rval_binfo = lfi.rval_binfo;
1287 if (rval_binfo)
1288 type = BINFO_TYPE (rval_binfo);
1289 errstr = lfi.errstr;
1291 /* If we are not interested in ambiguities, don't report them;
1292 just return NULL_TREE. */
1293 if (!protect && lfi.ambiguous)
1294 return NULL_TREE;
1296 if (protect == 2)
1298 if (lfi.ambiguous)
1299 return lfi.ambiguous;
1300 else
1301 protect = 0;
1304 /* [class.access]
1306 In the case of overloaded function names, access control is
1307 applied to the function selected by overloaded resolution. */
1308 if (rval && protect && !is_overloaded_fn (rval))
1309 perform_or_defer_access_check (basetype_path, rval);
1311 if (errstr && protect)
1313 error (errstr, name, type);
1314 if (lfi.ambiguous)
1315 print_candidates (lfi.ambiguous);
1316 rval = error_mark_node;
1319 if (rval && is_overloaded_fn (rval))
1320 rval = build_baselink (rval_binfo, basetype_path, rval,
1321 (IDENTIFIER_TYPENAME_P (name)
1322 ? TREE_TYPE (name): NULL_TREE));
1323 return rval;
1326 /* Like lookup_member, except that if we find a function member we
1327 return NULL_TREE. */
1329 tree
1330 lookup_field (tree xbasetype, tree name, int protect, bool want_type)
1332 tree rval = lookup_member (xbasetype, name, protect, want_type);
1334 /* Ignore functions, but propagate the ambiguity list. */
1335 if (!error_operand_p (rval)
1336 && (rval && BASELINK_P (rval)))
1337 return NULL_TREE;
1339 return rval;
1342 /* Like lookup_member, except that if we find a non-function member we
1343 return NULL_TREE. */
1345 tree
1346 lookup_fnfields (tree xbasetype, tree name, int protect)
1348 tree rval = lookup_member (xbasetype, name, protect, /*want_type=*/false);
1350 /* Ignore non-functions, but propagate the ambiguity list. */
1351 if (!error_operand_p (rval)
1352 && (rval && !BASELINK_P (rval)))
1353 return NULL_TREE;
1355 return rval;
1358 /* Return the index in the CLASSTYPE_METHOD_VEC for CLASS_TYPE
1359 corresponding to "operator TYPE ()", or -1 if there is no such
1360 operator. Only CLASS_TYPE itself is searched; this routine does
1361 not scan the base classes of CLASS_TYPE. */
1363 static int
1364 lookup_conversion_operator (tree class_type, tree type)
1366 int pass;
1367 int i;
1369 tree methods = CLASSTYPE_METHOD_VEC (class_type);
1371 for (pass = 0; pass < 2; ++pass)
1372 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
1373 i < TREE_VEC_LENGTH (methods);
1374 ++i)
1376 tree fn = TREE_VEC_ELT (methods, i);
1377 /* The size of the vector may have some unused slots at the
1378 end. */
1379 if (!fn)
1380 break;
1382 /* All the conversion operators come near the beginning of the
1383 class. Therefore, if FN is not a conversion operator, there
1384 is no matching conversion operator in CLASS_TYPE. */
1385 fn = OVL_CURRENT (fn);
1386 if (!DECL_CONV_FN_P (fn))
1387 break;
1389 if (pass == 0)
1391 /* On the first pass we only consider exact matches. If
1392 the types match, this slot is the one where the right
1393 conversion operators can be found. */
1394 if (TREE_CODE (fn) != TEMPLATE_DECL
1395 && same_type_p (DECL_CONV_FN_TYPE (fn), type))
1396 return i;
1398 else
1400 /* On the second pass we look for template conversion
1401 operators. It may be possible to instantiate the
1402 template to get the type desired. All of the template
1403 conversion operators share a slot. By looking for
1404 templates second we ensure that specializations are
1405 preferred over templates. */
1406 if (TREE_CODE (fn) == TEMPLATE_DECL)
1407 return i;
1411 return -1;
1414 /* TYPE is a class type. Return the index of the fields within
1415 the method vector with name NAME, or -1 is no such field exists. */
1418 lookup_fnfields_1 (tree type, tree name)
1420 tree method_vec;
1421 tree *methods;
1422 tree tmp;
1423 int i;
1424 int len;
1426 if (!CLASS_TYPE_P (type))
1427 return -1;
1429 method_vec = CLASSTYPE_METHOD_VEC (type);
1431 if (!method_vec)
1432 return -1;
1434 methods = &TREE_VEC_ELT (method_vec, 0);
1435 len = TREE_VEC_LENGTH (method_vec);
1437 #ifdef GATHER_STATISTICS
1438 n_calls_lookup_fnfields_1++;
1439 #endif /* GATHER_STATISTICS */
1441 /* Constructors are first... */
1442 if (name == ctor_identifier)
1443 return (methods[CLASSTYPE_CONSTRUCTOR_SLOT]
1444 ? CLASSTYPE_CONSTRUCTOR_SLOT : -1);
1445 /* and destructors are second. */
1446 if (name == dtor_identifier)
1447 return (methods[CLASSTYPE_DESTRUCTOR_SLOT]
1448 ? CLASSTYPE_DESTRUCTOR_SLOT : -1);
1449 if (IDENTIFIER_TYPENAME_P (name))
1450 return lookup_conversion_operator (type, TREE_TYPE (name));
1452 /* Skip the conversion operators. */
1453 i = CLASSTYPE_FIRST_CONVERSION_SLOT;
1454 while (i < len && methods[i] && DECL_CONV_FN_P (OVL_CURRENT (methods[i])))
1455 i++;
1457 /* If the type is complete, use binary search. */
1458 if (COMPLETE_TYPE_P (type))
1460 int lo = i;
1461 int hi = len;
1463 while (lo < hi)
1465 i = (lo + hi) / 2;
1467 #ifdef GATHER_STATISTICS
1468 n_outer_fields_searched++;
1469 #endif /* GATHER_STATISTICS */
1471 tmp = methods[i];
1472 /* This slot may be empty; we allocate more slots than we
1473 need. In that case, the entry we're looking for is
1474 closer to the beginning of the list. */
1475 if (tmp)
1476 tmp = DECL_NAME (OVL_CURRENT (tmp));
1477 if (!tmp || tmp > name)
1478 hi = i;
1479 else if (tmp < name)
1480 lo = i + 1;
1481 else
1482 return i;
1485 else
1486 for (; i < len && methods[i]; ++i)
1488 #ifdef GATHER_STATISTICS
1489 n_outer_fields_searched++;
1490 #endif /* GATHER_STATISTICS */
1492 tmp = OVL_CURRENT (methods[i]);
1493 if (DECL_NAME (tmp) == name)
1494 return i;
1497 return -1;
1500 /* DECL is the result of a qualified name lookup. QUALIFYING_SCOPE is
1501 the class or namespace used to qualify the name. CONTEXT_CLASS is
1502 the class corresponding to the object in which DECL will be used.
1503 Return a possibly modified version of DECL that takes into account
1504 the CONTEXT_CLASS.
1506 In particular, consider an expression like `B::m' in the context of
1507 a derived class `D'. If `B::m' has been resolved to a BASELINK,
1508 then the most derived class indicated by the BASELINK_BINFO will be
1509 `B', not `D'. This function makes that adjustment. */
1511 tree
1512 adjust_result_of_qualified_name_lookup (tree decl,
1513 tree qualifying_scope,
1514 tree context_class)
1516 if (context_class && CLASS_TYPE_P (qualifying_scope)
1517 && DERIVED_FROM_P (qualifying_scope, context_class)
1518 && BASELINK_P (decl))
1520 tree base;
1522 my_friendly_assert (CLASS_TYPE_P (context_class), 20020808);
1524 /* Look for the QUALIFYING_SCOPE as a base of the CONTEXT_CLASS.
1525 Because we do not yet know which function will be chosen by
1526 overload resolution, we cannot yet check either accessibility
1527 or ambiguity -- in either case, the choice of a static member
1528 function might make the usage valid. */
1529 base = lookup_base (context_class, qualifying_scope,
1530 ba_ignore | ba_quiet, NULL);
1531 if (base)
1533 BASELINK_ACCESS_BINFO (decl) = base;
1534 BASELINK_BINFO (decl)
1535 = lookup_base (base, BINFO_TYPE (BASELINK_BINFO (decl)),
1536 ba_ignore | ba_quiet,
1537 NULL);
1541 return decl;
1545 /* Walk the class hierarchy dominated by TYPE. FN is called for each
1546 type in the hierarchy, in a breadth-first preorder traversal.
1547 If it ever returns a non-NULL value, that value is immediately
1548 returned and the walk is terminated. At each node, FN is passed a
1549 BINFO indicating the path from the currently visited base-class to
1550 TYPE. Before each base-class is walked QFN is called. If the
1551 value returned is nonzero, the base-class is walked; otherwise it
1552 is not. If QFN is NULL, it is treated as a function which always
1553 returns 1. Both FN and QFN are passed the DATA whenever they are
1554 called.
1556 Implementation notes: Uses a circular queue, which starts off on
1557 the stack but gets moved to the malloc arena if it needs to be
1558 enlarged. The underflow and overflow conditions are
1559 indistinguishable except by context: if head == tail and we just
1560 moved the head pointer, the queue is empty, but if we just moved
1561 the tail pointer, the queue is full.
1562 Start with enough room for ten concurrent base classes. That
1563 will be enough for most hierarchies. */
1564 #define BFS_WALK_INITIAL_QUEUE_SIZE 10
1566 static tree
1567 bfs_walk (tree binfo,
1568 tree (*fn) (tree, void *),
1569 tree (*qfn) (tree, int, void *),
1570 void *data)
1572 tree rval = NULL_TREE;
1574 tree bases_initial[BFS_WALK_INITIAL_QUEUE_SIZE];
1575 /* A circular queue of the base classes of BINFO. These will be
1576 built up in breadth-first order, except where QFN prunes the
1577 search. */
1578 size_t head, tail;
1579 size_t base_buffer_size = BFS_WALK_INITIAL_QUEUE_SIZE;
1580 tree *base_buffer = bases_initial;
1582 head = tail = 0;
1583 base_buffer[tail++] = binfo;
1585 while (head != tail)
1587 int n_bases, ix;
1588 tree binfo = base_buffer[head++];
1589 if (head == base_buffer_size)
1590 head = 0;
1592 /* Is this the one we're looking for? If so, we're done. */
1593 rval = fn (binfo, data);
1594 if (rval)
1595 goto done;
1597 n_bases = BINFO_N_BASE_BINFOS (binfo);
1598 for (ix = 0; ix != n_bases; ix++)
1600 tree base_binfo;
1602 if (qfn)
1603 base_binfo = (*qfn) (binfo, ix, data);
1604 else
1605 base_binfo = BINFO_BASE_BINFO (binfo, ix);
1607 if (base_binfo)
1609 base_buffer[tail++] = base_binfo;
1610 if (tail == base_buffer_size)
1611 tail = 0;
1612 if (tail == head)
1614 tree *new_buffer = xmalloc (2 * base_buffer_size
1615 * sizeof (tree));
1616 memcpy (&new_buffer[0], &base_buffer[0],
1617 tail * sizeof (tree));
1618 memcpy (&new_buffer[head + base_buffer_size],
1619 &base_buffer[head],
1620 (base_buffer_size - head) * sizeof (tree));
1621 if (base_buffer_size != BFS_WALK_INITIAL_QUEUE_SIZE)
1622 free (base_buffer);
1623 base_buffer = new_buffer;
1624 head += base_buffer_size;
1625 base_buffer_size *= 2;
1631 done:
1632 if (base_buffer_size != BFS_WALK_INITIAL_QUEUE_SIZE)
1633 free (base_buffer);
1634 return rval;
1637 /* Exactly like bfs_walk, except that a depth-first traversal is
1638 performed, and PREFN is called in preorder, while POSTFN is called
1639 in postorder. */
1641 tree
1642 dfs_walk_real (tree binfo,
1643 tree (*prefn) (tree, void *),
1644 tree (*postfn) (tree, void *),
1645 tree (*qfn) (tree, int, void *),
1646 void *data)
1648 tree rval = NULL_TREE;
1650 /* Call the pre-order walking function. */
1651 if (prefn)
1653 rval = (*prefn) (binfo, data);
1654 if (rval)
1655 return rval;
1658 /* Process the basetypes. */
1659 if (BINFO_BASE_BINFOS (binfo))
1661 int i, n = TREE_VEC_LENGTH (BINFO_BASE_BINFOS (binfo));
1662 for (i = 0; i != n; i++)
1664 tree base_binfo;
1666 if (qfn)
1667 base_binfo = (*qfn) (binfo, i, data);
1668 else
1669 base_binfo = BINFO_BASE_BINFO (binfo, i);
1671 if (base_binfo)
1673 rval = dfs_walk_real (base_binfo, prefn, postfn, qfn, data);
1674 if (rval)
1675 return rval;
1680 /* Call the post-order walking function. */
1681 if (postfn)
1682 rval = (*postfn) (binfo, data);
1684 return rval;
1687 /* Exactly like bfs_walk, except that a depth-first post-order traversal is
1688 performed. */
1690 tree
1691 dfs_walk (tree binfo,
1692 tree (*fn) (tree, void *),
1693 tree (*qfn) (tree, int, void *),
1694 void *data)
1696 return dfs_walk_real (binfo, 0, fn, qfn, data);
1699 /* Check that virtual overrider OVERRIDER is acceptable for base function
1700 BASEFN. Issue diagnostic, and return zero, if unacceptable. */
1703 check_final_overrider (tree overrider, tree basefn)
1705 tree over_type = TREE_TYPE (overrider);
1706 tree base_type = TREE_TYPE (basefn);
1707 tree over_return = TREE_TYPE (over_type);
1708 tree base_return = TREE_TYPE (base_type);
1709 tree over_throw = TYPE_RAISES_EXCEPTIONS (over_type);
1710 tree base_throw = TYPE_RAISES_EXCEPTIONS (base_type);
1711 int fail = 0;
1713 if (DECL_INVALID_OVERRIDER_P (overrider))
1714 return 0;
1716 if (same_type_p (base_return, over_return))
1717 /* OK */;
1718 else if ((CLASS_TYPE_P (over_return) && CLASS_TYPE_P (base_return))
1719 || (TREE_CODE (base_return) == TREE_CODE (over_return)
1720 && POINTER_TYPE_P (base_return)))
1722 /* Potentially covariant. */
1723 unsigned base_quals, over_quals;
1725 fail = !POINTER_TYPE_P (base_return);
1726 if (!fail)
1728 fail = cp_type_quals (base_return) != cp_type_quals (over_return);
1730 base_return = TREE_TYPE (base_return);
1731 over_return = TREE_TYPE (over_return);
1733 base_quals = cp_type_quals (base_return);
1734 over_quals = cp_type_quals (over_return);
1736 if ((base_quals & over_quals) != over_quals)
1737 fail = 1;
1739 if (CLASS_TYPE_P (base_return) && CLASS_TYPE_P (over_return))
1741 tree binfo = lookup_base (over_return, base_return,
1742 ba_check | ba_quiet, NULL);
1744 if (!binfo)
1745 fail = 1;
1747 else if (!pedantic
1748 && can_convert (TREE_TYPE (base_type), TREE_TYPE (over_type)))
1749 /* GNU extension, allow trivial pointer conversions such as
1750 converting to void *, or qualification conversion. */
1752 /* can_convert will permit user defined conversion from a
1753 (reference to) class type. We must reject them. */
1754 over_return = non_reference (TREE_TYPE (over_type));
1755 if (CLASS_TYPE_P (over_return))
1756 fail = 2;
1758 else
1759 fail = 2;
1761 else
1762 fail = 2;
1763 if (!fail)
1764 /* OK */;
1765 else
1767 if (fail == 1)
1769 cp_error_at ("invalid covariant return type for `%#D'", overrider);
1770 cp_error_at (" overriding `%#D'", basefn);
1772 else
1774 cp_error_at ("conflicting return type specified for `%#D'",
1775 overrider);
1776 cp_error_at (" overriding `%#D'", basefn);
1778 DECL_INVALID_OVERRIDER_P (overrider) = 1;
1779 return 0;
1782 /* Check throw specifier is at least as strict. */
1783 if (!comp_except_specs (base_throw, over_throw, 0))
1785 cp_error_at ("looser throw specifier for `%#F'", overrider);
1786 cp_error_at (" overriding `%#F'", basefn);
1787 DECL_INVALID_OVERRIDER_P (overrider) = 1;
1788 return 0;
1791 return 1;
1794 /* Given a class TYPE, and a function decl FNDECL, look for
1795 virtual functions in TYPE's hierarchy which FNDECL overrides.
1796 We do not look in TYPE itself, only its bases.
1798 Returns nonzero, if we find any. Set FNDECL's DECL_VIRTUAL_P, if we
1799 find that it overrides anything.
1801 We check that every function which is overridden, is correctly
1802 overridden. */
1805 look_for_overrides (tree type, tree fndecl)
1807 tree binfo = TYPE_BINFO (type);
1808 tree basebinfos = BINFO_BASE_BINFOS (binfo);
1809 int nbasebinfos = basebinfos ? TREE_VEC_LENGTH (basebinfos) : 0;
1810 int ix;
1811 int found = 0;
1813 for (ix = 0; ix != nbasebinfos; ix++)
1815 tree basetype = BINFO_TYPE (TREE_VEC_ELT (basebinfos, ix));
1817 if (TYPE_POLYMORPHIC_P (basetype))
1818 found += look_for_overrides_r (basetype, fndecl);
1820 return found;
1823 /* Look in TYPE for virtual functions with the same signature as
1824 FNDECL. */
1826 tree
1827 look_for_overrides_here (tree type, tree fndecl)
1829 int ix;
1831 if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fndecl))
1832 ix = CLASSTYPE_DESTRUCTOR_SLOT;
1833 else
1834 ix = lookup_fnfields_1 (type, DECL_NAME (fndecl));
1835 if (ix >= 0)
1837 tree fns = TREE_VEC_ELT (CLASSTYPE_METHOD_VEC (type), ix);
1839 for (; fns; fns = OVL_NEXT (fns))
1841 tree fn = OVL_CURRENT (fns);
1843 if (!DECL_VIRTUAL_P (fn))
1844 /* Not a virtual. */;
1845 else if (DECL_CONTEXT (fn) != type)
1846 /* Introduced with a using declaration. */;
1847 else if (DECL_STATIC_FUNCTION_P (fndecl))
1849 tree btypes = TYPE_ARG_TYPES (TREE_TYPE (fn));
1850 tree dtypes = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
1851 if (compparms (TREE_CHAIN (btypes), dtypes))
1852 return fn;
1854 else if (same_signature_p (fndecl, fn))
1855 return fn;
1858 return NULL_TREE;
1861 /* Look in TYPE for virtual functions overridden by FNDECL. Check both
1862 TYPE itself and its bases. */
1864 static int
1865 look_for_overrides_r (tree type, tree fndecl)
1867 tree fn = look_for_overrides_here (type, fndecl);
1868 if (fn)
1870 if (DECL_STATIC_FUNCTION_P (fndecl))
1872 /* A static member function cannot match an inherited
1873 virtual member function. */
1874 cp_error_at ("`%#D' cannot be declared", fndecl);
1875 cp_error_at (" since `%#D' declared in base class", fn);
1877 else
1879 /* It's definitely virtual, even if not explicitly set. */
1880 DECL_VIRTUAL_P (fndecl) = 1;
1881 check_final_overrider (fndecl, fn);
1883 return 1;
1886 /* We failed to find one declared in this class. Look in its bases. */
1887 return look_for_overrides (type, fndecl);
1890 /* Called via dfs_walk from dfs_get_pure_virtuals. */
1892 static tree
1893 dfs_get_pure_virtuals (tree binfo, void *data)
1895 tree type = (tree) data;
1897 /* We're not interested in primary base classes; the derived class
1898 of which they are a primary base will contain the information we
1899 need. */
1900 if (!BINFO_PRIMARY_P (binfo))
1902 tree virtuals;
1904 for (virtuals = BINFO_VIRTUALS (binfo);
1905 virtuals;
1906 virtuals = TREE_CHAIN (virtuals))
1907 if (DECL_PURE_VIRTUAL_P (BV_FN (virtuals)))
1908 CLASSTYPE_PURE_VIRTUALS (type)
1909 = tree_cons (NULL_TREE, BV_FN (virtuals),
1910 CLASSTYPE_PURE_VIRTUALS (type));
1913 BINFO_MARKED (binfo) = 1;
1915 return NULL_TREE;
1918 /* Set CLASSTYPE_PURE_VIRTUALS for TYPE. */
1920 void
1921 get_pure_virtuals (tree type)
1923 unsigned ix;
1924 tree binfo;
1926 /* Clear the CLASSTYPE_PURE_VIRTUALS list; whatever is already there
1927 is going to be overridden. */
1928 CLASSTYPE_PURE_VIRTUALS (type) = NULL_TREE;
1929 /* Now, run through all the bases which are not primary bases, and
1930 collect the pure virtual functions. We look at the vtable in
1931 each class to determine what pure virtual functions are present.
1932 (A primary base is not interesting because the derived class of
1933 which it is a primary base will contain vtable entries for the
1934 pure virtuals in the base class. */
1935 dfs_walk (TYPE_BINFO (type), dfs_get_pure_virtuals, unmarkedp, type);
1936 dfs_walk (TYPE_BINFO (type), dfs_unmark, markedp, type);
1938 /* Put the pure virtuals in dfs order. */
1939 CLASSTYPE_PURE_VIRTUALS (type) = nreverse (CLASSTYPE_PURE_VIRTUALS (type));
1941 for (ix = 0; (binfo = VEC_iterate
1942 (tree, CLASSTYPE_VBASECLASSES (type), ix)); ix++)
1944 tree virtuals;
1946 for (virtuals = BINFO_VIRTUALS (binfo); virtuals;
1947 virtuals = TREE_CHAIN (virtuals))
1949 tree base_fndecl = BV_FN (virtuals);
1950 if (DECL_NEEDS_FINAL_OVERRIDER_P (base_fndecl))
1951 error ("`%#D' needs a final overrider", base_fndecl);
1956 /* DEPTH-FIRST SEARCH ROUTINES. */
1958 tree
1959 markedp (tree derived, int ix, void *data ATTRIBUTE_UNUSED)
1961 tree binfo = BINFO_BASE_BINFO (derived, ix);
1963 return BINFO_MARKED (binfo) ? binfo : NULL_TREE;
1966 tree
1967 unmarkedp (tree derived, int ix, void *data ATTRIBUTE_UNUSED)
1969 tree binfo = BINFO_BASE_BINFO (derived, ix);
1971 return !BINFO_MARKED (binfo) ? binfo : NULL_TREE;
1974 static tree
1975 marked_pushdecls_p (tree derived, int ix, void *data ATTRIBUTE_UNUSED)
1977 tree binfo = BINFO_BASE_BINFO (derived, ix);
1979 return (!BINFO_DEPENDENT_BASE_P (binfo)
1980 && BINFO_PUSHDECLS_MARKED (binfo)) ? binfo : NULL_TREE;
1983 static tree
1984 unmarked_pushdecls_p (tree derived, int ix, void *data ATTRIBUTE_UNUSED)
1986 tree binfo = BINFO_BASE_BINFO (derived, ix);
1988 return (!BINFO_DEPENDENT_BASE_P (binfo)
1989 && !BINFO_PUSHDECLS_MARKED (binfo)) ? binfo : NULL_TREE;
1992 /* The worker functions for `dfs_walk'. These do not need to
1993 test anything (vis a vis marking) if they are paired with
1994 a predicate function (above). */
1996 tree
1997 dfs_unmark (tree binfo, void *data ATTRIBUTE_UNUSED)
1999 BINFO_MARKED (binfo) = 0;
2000 return NULL_TREE;
2004 /* Debug info for C++ classes can get very large; try to avoid
2005 emitting it everywhere.
2007 Note that this optimization wins even when the target supports
2008 BINCL (if only slightly), and reduces the amount of work for the
2009 linker. */
2011 void
2012 maybe_suppress_debug_info (tree t)
2014 /* We can't do the usual TYPE_DECL_SUPPRESS_DEBUG thing with DWARF, which
2015 does not support name references between translation units. It supports
2016 symbolic references between translation units, but only within a single
2017 executable or shared library.
2019 For DWARF 2, we handle TYPE_DECL_SUPPRESS_DEBUG by pretending
2020 that the type was never defined, so we only get the members we
2021 actually define. */
2022 if (write_symbols == DWARF_DEBUG || write_symbols == NO_DEBUG)
2023 return;
2025 /* We might have set this earlier in cp_finish_decl. */
2026 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 0;
2028 /* If we already know how we're handling this class, handle debug info
2029 the same way. */
2030 if (CLASSTYPE_INTERFACE_KNOWN (t))
2032 if (CLASSTYPE_INTERFACE_ONLY (t))
2033 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 1;
2034 /* else don't set it. */
2036 /* If the class has a vtable, write out the debug info along with
2037 the vtable. */
2038 else if (TYPE_CONTAINS_VPTR_P (t))
2039 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 1;
2041 /* Otherwise, just emit the debug info normally. */
2044 /* Note that we want debugging information for a base class of a class
2045 whose vtable is being emitted. Normally, this would happen because
2046 calling the constructor for a derived class implies calling the
2047 constructors for all bases, which involve initializing the
2048 appropriate vptr with the vtable for the base class; but in the
2049 presence of optimization, this initialization may be optimized
2050 away, so we tell finish_vtable_vardecl that we want the debugging
2051 information anyway. */
2053 static tree
2054 dfs_debug_mark (tree binfo, void *data ATTRIBUTE_UNUSED)
2056 tree t = BINFO_TYPE (binfo);
2058 CLASSTYPE_DEBUG_REQUESTED (t) = 1;
2060 return NULL_TREE;
2063 /* Returns BINFO if we haven't already noted that we want debugging
2064 info for this base class. */
2066 static tree
2067 dfs_debug_unmarkedp (tree derived, int ix, void *data ATTRIBUTE_UNUSED)
2069 tree binfo = BINFO_BASE_BINFO (derived, ix);
2071 return (!CLASSTYPE_DEBUG_REQUESTED (BINFO_TYPE (binfo))
2072 ? binfo : NULL_TREE);
2075 /* Write out the debugging information for TYPE, whose vtable is being
2076 emitted. Also walk through our bases and note that we want to
2077 write out information for them. This avoids the problem of not
2078 writing any debug info for intermediate basetypes whose
2079 constructors, and thus the references to their vtables, and thus
2080 the vtables themselves, were optimized away. */
2082 void
2083 note_debug_info_needed (tree type)
2085 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (type)))
2087 TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (type)) = 0;
2088 rest_of_type_compilation (type, toplevel_bindings_p ());
2091 dfs_walk (TYPE_BINFO (type), dfs_debug_mark, dfs_debug_unmarkedp, 0);
2094 /* Subroutines of push_class_decls (). */
2096 static void
2097 setup_class_bindings (tree name, int type_binding_p)
2099 tree type_binding = NULL_TREE;
2100 tree value_binding;
2102 /* If we've already done the lookup for this declaration, we're
2103 done. */
2104 if (IDENTIFIER_CLASS_VALUE (name))
2105 return;
2107 /* First, deal with the type binding. */
2108 if (type_binding_p)
2110 type_binding = lookup_member (current_class_type, name,
2111 /*protect=*/2, /*want_type=*/true);
2112 if (TREE_CODE (type_binding) == TREE_LIST
2113 && TREE_TYPE (type_binding) == error_mark_node)
2114 /* NAME is ambiguous. */
2115 push_class_level_binding (name, type_binding);
2116 else
2117 pushdecl_class_level (type_binding);
2120 /* Now, do the value binding. */
2121 value_binding = lookup_member (current_class_type, name,
2122 /*protect=*/2, /*want_type=*/false);
2124 if (type_binding_p
2125 && (TREE_CODE (value_binding) == TYPE_DECL
2126 || DECL_CLASS_TEMPLATE_P (value_binding)
2127 || (TREE_CODE (value_binding) == TREE_LIST
2128 && TREE_TYPE (value_binding) == error_mark_node
2129 && (TREE_CODE (TREE_VALUE (value_binding))
2130 == TYPE_DECL))))
2131 /* We found a type-binding, even when looking for a non-type
2132 binding. This means that we already processed this binding
2133 above. */;
2134 else if (value_binding)
2136 if (TREE_CODE (value_binding) == TREE_LIST
2137 && TREE_TYPE (value_binding) == error_mark_node)
2138 /* NAME is ambiguous. */
2139 push_class_level_binding (name, value_binding);
2140 else
2142 if (BASELINK_P (value_binding))
2143 /* NAME is some overloaded functions. */
2144 value_binding = BASELINK_FUNCTIONS (value_binding);
2145 /* Two conversion operators that convert to the same type
2146 may have different names. (See
2147 mangle_conv_op_name_for_type.) To avoid recording the
2148 same conversion operator declaration more than once we
2149 must check to see that the same operator was not already
2150 found under another name. */
2151 if (IDENTIFIER_TYPENAME_P (name)
2152 && is_overloaded_fn (value_binding))
2154 tree fns;
2155 for (fns = value_binding; fns; fns = OVL_NEXT (fns))
2156 if (IDENTIFIER_CLASS_VALUE (DECL_NAME (OVL_CURRENT (fns))))
2157 return;
2159 pushdecl_class_level (value_binding);
2164 /* Push class-level declarations for any names appearing in BINFO that
2165 are TYPE_DECLS. */
2167 static tree
2168 dfs_push_type_decls (tree binfo, void *data ATTRIBUTE_UNUSED)
2170 tree type;
2171 tree fields;
2173 type = BINFO_TYPE (binfo);
2174 for (fields = TYPE_FIELDS (type); fields; fields = TREE_CHAIN (fields))
2175 if (DECL_NAME (fields) && TREE_CODE (fields) == TYPE_DECL
2176 && !(!same_type_p (type, current_class_type)
2177 && template_self_reference_p (type, fields)))
2178 setup_class_bindings (DECL_NAME (fields), /*type_binding_p=*/1);
2180 /* We can't just use BINFO_MARKED because envelope_add_decl uses
2181 DERIVED_FROM_P, which calls get_base_distance. */
2182 BINFO_PUSHDECLS_MARKED (binfo) = 1;
2184 return NULL_TREE;
2187 /* Push class-level declarations for any names appearing in BINFO that
2188 are not TYPE_DECLS. */
2190 static tree
2191 dfs_push_decls (tree binfo, void *data)
2193 tree type = BINFO_TYPE (binfo);
2194 tree method_vec;
2195 tree fields;
2197 for (fields = TYPE_FIELDS (type); fields; fields = TREE_CHAIN (fields))
2198 if (DECL_NAME (fields)
2199 && TREE_CODE (fields) != TYPE_DECL
2200 && TREE_CODE (fields) != USING_DECL
2201 && !DECL_ARTIFICIAL (fields))
2202 setup_class_bindings (DECL_NAME (fields), /*type_binding_p=*/0);
2203 else if (TREE_CODE (fields) == FIELD_DECL
2204 && ANON_AGGR_TYPE_P (TREE_TYPE (fields)))
2205 dfs_push_decls (TYPE_BINFO (TREE_TYPE (fields)), data);
2207 method_vec = (CLASS_TYPE_P (type)
2208 ? CLASSTYPE_METHOD_VEC (type) : NULL_TREE);
2210 if (method_vec && TREE_VEC_LENGTH (method_vec) >= 3)
2212 tree *methods;
2213 tree *end;
2215 /* Farm out constructors and destructors. */
2216 end = TREE_VEC_END (method_vec);
2218 for (methods = &TREE_VEC_ELT (method_vec, 2);
2219 methods < end && *methods;
2220 methods++)
2221 setup_class_bindings (DECL_NAME (OVL_CURRENT (*methods)),
2222 /*type_binding_p=*/0);
2225 BINFO_PUSHDECLS_MARKED (binfo) = 0;
2227 return NULL_TREE;
2230 /* When entering the scope of a class, we cache all of the
2231 fields that that class provides within its inheritance
2232 lattice. Where ambiguities result, we mark them
2233 with `error_mark_node' so that if they are encountered
2234 without explicit qualification, we can emit an error
2235 message. */
2237 void
2238 push_class_decls (tree type)
2240 search_stack = push_search_level (search_stack, &search_obstack);
2242 /* Enter type declarations and mark. */
2243 dfs_walk (TYPE_BINFO (type), dfs_push_type_decls, unmarked_pushdecls_p, 0);
2245 /* Enter non-type declarations and unmark. */
2246 dfs_walk (TYPE_BINFO (type), dfs_push_decls, marked_pushdecls_p, 0);
2249 void
2250 pop_class_decls (void)
2252 /* We haven't pushed a search level when dealing with cached classes,
2253 so we'd better not try to pop it. */
2254 if (search_stack)
2255 search_stack = pop_search_level (search_stack);
2258 void
2259 print_search_statistics (void)
2261 #ifdef GATHER_STATISTICS
2262 fprintf (stderr, "%d fields searched in %d[%d] calls to lookup_field[_1]\n",
2263 n_fields_searched, n_calls_lookup_field, n_calls_lookup_field_1);
2264 fprintf (stderr, "%d fnfields searched in %d calls to lookup_fnfields\n",
2265 n_outer_fields_searched, n_calls_lookup_fnfields);
2266 fprintf (stderr, "%d calls to get_base_type\n", n_calls_get_base_type);
2267 #else /* GATHER_STATISTICS */
2268 fprintf (stderr, "no search statistics\n");
2269 #endif /* GATHER_STATISTICS */
2272 void
2273 init_search_processing (void)
2275 gcc_obstack_init (&search_obstack);
2278 void
2279 reinit_search_statistics (void)
2281 #ifdef GATHER_STATISTICS
2282 n_fields_searched = 0;
2283 n_calls_lookup_field = 0, n_calls_lookup_field_1 = 0;
2284 n_calls_lookup_fnfields = 0, n_calls_lookup_fnfields_1 = 0;
2285 n_calls_get_base_type = 0;
2286 n_outer_fields_searched = 0;
2287 n_contexts_saved = 0;
2288 #endif /* GATHER_STATISTICS */
2291 static tree
2292 add_conversions (tree binfo, void *data)
2294 int i;
2295 tree method_vec = CLASSTYPE_METHOD_VEC (BINFO_TYPE (binfo));
2296 tree *conversions = (tree *) data;
2298 /* Some builtin types have no method vector, not even an empty one. */
2299 if (!method_vec)
2300 return NULL_TREE;
2302 for (i = 2; i < TREE_VEC_LENGTH (method_vec); ++i)
2304 tree tmp = TREE_VEC_ELT (method_vec, i);
2305 tree name;
2307 if (!tmp || ! DECL_CONV_FN_P (OVL_CURRENT (tmp)))
2308 break;
2310 name = DECL_NAME (OVL_CURRENT (tmp));
2312 /* Make sure we don't already have this conversion. */
2313 if (! IDENTIFIER_MARKED (name))
2315 tree t;
2317 /* Make sure that we do not already have a conversion
2318 operator for this type. Merely checking the NAME is not
2319 enough because two conversion operators to the same type
2320 may not have the same NAME. */
2321 for (t = *conversions; t; t = TREE_CHAIN (t))
2323 tree fn;
2324 for (fn = TREE_VALUE (t); fn; fn = OVL_NEXT (fn))
2325 if (same_type_p (TREE_TYPE (name),
2326 DECL_CONV_FN_TYPE (OVL_CURRENT (fn))))
2327 break;
2328 if (fn)
2329 break;
2331 if (!t)
2333 *conversions = tree_cons (binfo, tmp, *conversions);
2334 IDENTIFIER_MARKED (name) = 1;
2338 return NULL_TREE;
2341 /* Return a TREE_LIST containing all the non-hidden user-defined
2342 conversion functions for TYPE (and its base-classes). The
2343 TREE_VALUE of each node is a FUNCTION_DECL or an OVERLOAD
2344 containing the conversion functions. The TREE_PURPOSE is the BINFO
2345 from which the conversion functions in this node were selected. */
2347 tree
2348 lookup_conversions (tree type)
2350 tree t;
2351 tree conversions = NULL_TREE;
2353 complete_type (type);
2354 bfs_walk (TYPE_BINFO (type), add_conversions, 0, &conversions);
2356 for (t = conversions; t; t = TREE_CHAIN (t))
2357 IDENTIFIER_MARKED (DECL_NAME (OVL_CURRENT (TREE_VALUE (t)))) = 0;
2359 return conversions;
2362 struct overlap_info
2364 tree compare_type;
2365 int found_overlap;
2368 /* Check whether the empty class indicated by EMPTY_BINFO is also present
2369 at offset 0 in COMPARE_TYPE, and set found_overlap if so. */
2371 static tree
2372 dfs_check_overlap (tree empty_binfo, void *data)
2374 struct overlap_info *oi = (struct overlap_info *) data;
2375 tree binfo;
2376 for (binfo = TYPE_BINFO (oi->compare_type);
2378 binfo = BINFO_BASE_BINFO (binfo, 0))
2380 if (BINFO_TYPE (binfo) == BINFO_TYPE (empty_binfo))
2382 oi->found_overlap = 1;
2383 break;
2385 else if (BINFO_BASE_BINFOS (binfo) == NULL_TREE)
2386 break;
2389 return NULL_TREE;
2392 /* Trivial function to stop base traversal when we find something. */
2394 static tree
2395 dfs_no_overlap_yet (tree derived, int ix, void *data)
2397 tree binfo = BINFO_BASE_BINFO (derived, ix);
2398 struct overlap_info *oi = (struct overlap_info *) data;
2400 return !oi->found_overlap ? binfo : NULL_TREE;
2403 /* Returns nonzero if EMPTY_TYPE or any of its bases can also be found at
2404 offset 0 in NEXT_TYPE. Used in laying out empty base class subobjects. */
2407 types_overlap_p (tree empty_type, tree next_type)
2409 struct overlap_info oi;
2411 if (! IS_AGGR_TYPE (next_type))
2412 return 0;
2413 oi.compare_type = next_type;
2414 oi.found_overlap = 0;
2415 dfs_walk (TYPE_BINFO (empty_type), dfs_check_overlap,
2416 dfs_no_overlap_yet, &oi);
2417 return oi.found_overlap;
2420 /* Given a vtable VAR, determine which of the inherited classes the vtable
2421 inherits (in a loose sense) functions from.
2423 FIXME: This does not work with the new ABI. */
2425 tree
2426 binfo_for_vtable (tree var)
2428 tree main_binfo = TYPE_BINFO (DECL_CONTEXT (var));
2429 tree binfos = BINFO_BASE_BINFOS (TYPE_BINFO (BINFO_TYPE (main_binfo)));
2430 int n_baseclasses = BINFO_N_BASE_BINFOS (TYPE_BINFO (BINFO_TYPE (main_binfo)));
2431 int i;
2433 for (i = 0; i < n_baseclasses; i++)
2435 tree base_binfo = TREE_VEC_ELT (binfos, i);
2436 if (base_binfo != NULL_TREE && BINFO_VTABLE (base_binfo) == var)
2437 return base_binfo;
2440 /* If no secondary base classes matched, return the primary base, if
2441 there is one. */
2442 if (CLASSTYPE_HAS_PRIMARY_BASE_P (BINFO_TYPE (main_binfo)))
2443 return get_primary_binfo (main_binfo);
2445 return main_binfo;
2448 /* Returns the binfo of the first direct or indirect virtual base derived
2449 from BINFO, or NULL if binfo is not via virtual. */
2451 tree
2452 binfo_from_vbase (tree binfo)
2454 for (; binfo; binfo = BINFO_INHERITANCE_CHAIN (binfo))
2456 if (BINFO_VIRTUAL_P (binfo))
2457 return binfo;
2459 return NULL_TREE;
2462 /* Returns the binfo of the first direct or indirect virtual base derived
2463 from BINFO up to the TREE_TYPE, LIMIT, or NULL if binfo is not
2464 via virtual. */
2466 tree
2467 binfo_via_virtual (tree binfo, tree limit)
2469 for (; binfo && (!limit || !same_type_p (BINFO_TYPE (binfo), limit));
2470 binfo = BINFO_INHERITANCE_CHAIN (binfo))
2472 if (BINFO_VIRTUAL_P (binfo))
2473 return binfo;
2475 return NULL_TREE;
2478 /* BINFO is a base binfo in the complete type BINFO_TYPE (HERE).
2479 Find the equivalent binfo within whatever graph HERE is located.
2480 This is the inverse of original_binfo. */
2482 tree
2483 copied_binfo (tree binfo, tree here)
2485 tree result = NULL_TREE;
2487 if (BINFO_VIRTUAL_P (binfo))
2489 tree t;
2491 for (t = here; BINFO_INHERITANCE_CHAIN (t);
2492 t = BINFO_INHERITANCE_CHAIN (t))
2493 continue;
2495 result = binfo_for_vbase (BINFO_TYPE (binfo), BINFO_TYPE (t));
2497 else if (BINFO_INHERITANCE_CHAIN (binfo))
2499 tree base_binfos;
2500 int ix, n;
2502 base_binfos = copied_binfo (BINFO_INHERITANCE_CHAIN (binfo), here);
2503 base_binfos = BINFO_BASE_BINFOS (base_binfos);
2504 n = TREE_VEC_LENGTH (base_binfos);
2505 for (ix = 0; ix != n; ix++)
2507 tree base = TREE_VEC_ELT (base_binfos, ix);
2509 if (BINFO_TYPE (base) == BINFO_TYPE (binfo))
2511 result = base;
2512 break;
2516 else
2518 my_friendly_assert (BINFO_TYPE (here) == BINFO_TYPE (binfo), 20030202);
2519 result = here;
2522 my_friendly_assert (result, 20030202);
2523 return result;
2526 tree
2527 binfo_for_vbase (tree base, tree t)
2529 unsigned ix;
2530 tree binfo;
2532 for (ix = 0; (binfo = VEC_iterate
2533 (tree, CLASSTYPE_VBASECLASSES (t), ix)); ix++)
2534 if (BINFO_TYPE (binfo) == base)
2535 return binfo;
2536 return NULL;
2539 /* BINFO is some base binfo of HERE, within some other
2540 hierarchy. Return the equivalent binfo, but in the hierarchy
2541 dominated by HERE. This is the inverse of copied_binfo. If BINFO
2542 is not a base binfo of HERE, returns NULL_TREE. */
2544 tree
2545 original_binfo (tree binfo, tree here)
2547 tree result = NULL;
2549 if (BINFO_TYPE (binfo) == BINFO_TYPE (here))
2550 result = here;
2551 else if (BINFO_VIRTUAL_P (binfo))
2552 result = (CLASSTYPE_VBASECLASSES (BINFO_TYPE (here))
2553 ? binfo_for_vbase (BINFO_TYPE (binfo), BINFO_TYPE (here))
2554 : NULL_TREE);
2555 else if (BINFO_INHERITANCE_CHAIN (binfo))
2557 tree base_binfos;
2559 base_binfos = original_binfo (BINFO_INHERITANCE_CHAIN (binfo), here);
2560 if (base_binfos)
2562 int ix, n;
2564 base_binfos = BINFO_BASE_BINFOS (base_binfos);
2565 n = TREE_VEC_LENGTH (base_binfos);
2566 for (ix = 0; ix != n; ix++)
2568 tree base = TREE_VEC_ELT (base_binfos, ix);
2570 if (BINFO_TYPE (base) == BINFO_TYPE (binfo))
2572 result = base;
2573 break;
2579 return result;