Reverting merge from trunk
[official-gcc.git] / libgo / go / reflect / value.go
blob216ee3f1ca202a2c3da09fbb2696c8cc5f0e3b5c
1 // Copyright 2009 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
5 package reflect
7 import (
8 "math"
9 "runtime"
10 "strconv"
11 "unsafe"
14 const bigEndian = false // can be smarter if we find a big-endian machine
15 const ptrSize = unsafe.Sizeof((*byte)(nil))
16 const cannotSet = "cannot set value obtained from unexported struct field"
18 // TODO: This will have to go away when
19 // the new gc goes in.
20 func memmove(adst, asrc unsafe.Pointer, n uintptr) {
21 dst := uintptr(adst)
22 src := uintptr(asrc)
23 switch {
24 case src < dst && src+n > dst:
25 // byte copy backward
26 // careful: i is unsigned
27 for i := n; i > 0; {
28 i--
29 *(*byte)(unsafe.Pointer(dst + i)) = *(*byte)(unsafe.Pointer(src + i))
31 case (n|src|dst)&(ptrSize-1) != 0:
32 // byte copy forward
33 for i := uintptr(0); i < n; i++ {
34 *(*byte)(unsafe.Pointer(dst + i)) = *(*byte)(unsafe.Pointer(src + i))
36 default:
37 // word copy forward
38 for i := uintptr(0); i < n; i += ptrSize {
39 *(*uintptr)(unsafe.Pointer(dst + i)) = *(*uintptr)(unsafe.Pointer(src + i))
44 // Value is the reflection interface to a Go value.
46 // Not all methods apply to all kinds of values. Restrictions,
47 // if any, are noted in the documentation for each method.
48 // Use the Kind method to find out the kind of value before
49 // calling kind-specific methods. Calling a method
50 // inappropriate to the kind of type causes a run time panic.
52 // The zero Value represents no value.
53 // Its IsValid method returns false, its Kind method returns Invalid,
54 // its String method returns "<invalid Value>", and all other methods panic.
55 // Most functions and methods never return an invalid value.
56 // If one does, its documentation states the conditions explicitly.
58 // A Value can be used concurrently by multiple goroutines provided that
59 // the underlying Go value can be used concurrently for the equivalent
60 // direct operations.
61 type Value struct {
62 // typ holds the type of the value represented by a Value.
63 typ *rtype
65 // val holds the 1-word representation of the value.
66 // If flag's flagIndir bit is set, then val is a pointer to the data.
67 // Otherwise val is a word holding the actual data.
68 // When the data is smaller than a word, it begins at
69 // the first byte (in the memory address sense) of val.
70 // We use unsafe.Pointer so that the garbage collector
71 // knows that val could be a pointer.
72 val unsafe.Pointer
74 // flag holds metadata about the value.
75 // The lowest bits are flag bits:
76 // - flagRO: obtained via unexported field, so read-only
77 // - flagIndir: val holds a pointer to the data
78 // - flagAddr: v.CanAddr is true (implies flagIndir)
79 // - flagMethod: v is a method value.
80 // The next five bits give the Kind of the value.
81 // This repeats typ.Kind() except for method values.
82 // The remaining 23+ bits give a method number for method values.
83 // If flag.kind() != Func, code can assume that flagMethod is unset.
84 // If typ.size > ptrSize, code can assume that flagIndir is set.
85 flag
87 // A method value represents a curried method invocation
88 // like r.Read for some receiver r. The typ+val+flag bits describe
89 // the receiver r, but the flag's Kind bits say Func (methods are
90 // functions), and the top bits of the flag give the method number
91 // in r's type's method table.
94 type flag uintptr
96 const (
97 flagRO flag = 1 << iota
98 flagIndir
99 flagAddr
100 flagMethod
101 flagKindShift = iota
102 flagKindWidth = 5 // there are 27 kinds
103 flagKindMask flag = 1<<flagKindWidth - 1
104 flagMethodShift = flagKindShift + flagKindWidth
107 func (f flag) kind() Kind {
108 return Kind((f >> flagKindShift) & flagKindMask)
111 // A ValueError occurs when a Value method is invoked on
112 // a Value that does not support it. Such cases are documented
113 // in the description of each method.
114 type ValueError struct {
115 Method string
116 Kind Kind
119 func (e *ValueError) Error() string {
120 if e.Kind == 0 {
121 return "reflect: call of " + e.Method + " on zero Value"
123 return "reflect: call of " + e.Method + " on " + e.Kind.String() + " Value"
126 // methodName returns the name of the calling method,
127 // assumed to be two stack frames above.
128 func methodName() string {
129 pc, _, _, _ := runtime.Caller(2)
130 f := runtime.FuncForPC(pc)
131 if f == nil {
132 return "unknown method"
134 return f.Name()
137 // An iword is the word that would be stored in an
138 // interface to represent a given value v. Specifically, if v is
139 // bigger than a pointer, its word is a pointer to v's data.
140 // Otherwise, its word holds the data stored
141 // in its leading bytes (so is not a pointer).
142 // Because the value sometimes holds a pointer, we use
143 // unsafe.Pointer to represent it, so that if iword appears
144 // in a struct, the garbage collector knows that might be
145 // a pointer.
146 type iword unsafe.Pointer
148 func (v Value) iword() iword {
149 if v.flag&flagIndir != 0 && (v.kind() == Ptr || v.kind() == UnsafePointer) {
150 // Have indirect but want direct word.
151 return loadIword(v.val, v.typ.size)
153 return iword(v.val)
156 // loadIword loads n bytes at p from memory into an iword.
157 func loadIword(p unsafe.Pointer, n uintptr) iword {
158 // Run the copy ourselves instead of calling memmove
159 // to avoid moving w to the heap.
160 var w iword
161 switch n {
162 default:
163 panic("reflect: internal error: loadIword of " + strconv.Itoa(int(n)) + "-byte value")
164 case 0:
165 case 1:
166 *(*uint8)(unsafe.Pointer(&w)) = *(*uint8)(p)
167 case 2:
168 *(*uint16)(unsafe.Pointer(&w)) = *(*uint16)(p)
169 case 3:
170 *(*[3]byte)(unsafe.Pointer(&w)) = *(*[3]byte)(p)
171 case 4:
172 *(*uint32)(unsafe.Pointer(&w)) = *(*uint32)(p)
173 case 5:
174 *(*[5]byte)(unsafe.Pointer(&w)) = *(*[5]byte)(p)
175 case 6:
176 *(*[6]byte)(unsafe.Pointer(&w)) = *(*[6]byte)(p)
177 case 7:
178 *(*[7]byte)(unsafe.Pointer(&w)) = *(*[7]byte)(p)
179 case 8:
180 *(*uint64)(unsafe.Pointer(&w)) = *(*uint64)(p)
182 return w
185 // storeIword stores n bytes from w into p.
186 func storeIword(p unsafe.Pointer, w iword, n uintptr) {
187 // Run the copy ourselves instead of calling memmove
188 // to avoid moving w to the heap.
189 switch n {
190 default:
191 panic("reflect: internal error: storeIword of " + strconv.Itoa(int(n)) + "-byte value")
192 case 0:
193 case 1:
194 *(*uint8)(p) = *(*uint8)(unsafe.Pointer(&w))
195 case 2:
196 *(*uint16)(p) = *(*uint16)(unsafe.Pointer(&w))
197 case 3:
198 *(*[3]byte)(p) = *(*[3]byte)(unsafe.Pointer(&w))
199 case 4:
200 *(*uint32)(p) = *(*uint32)(unsafe.Pointer(&w))
201 case 5:
202 *(*[5]byte)(p) = *(*[5]byte)(unsafe.Pointer(&w))
203 case 6:
204 *(*[6]byte)(p) = *(*[6]byte)(unsafe.Pointer(&w))
205 case 7:
206 *(*[7]byte)(p) = *(*[7]byte)(unsafe.Pointer(&w))
207 case 8:
208 *(*uint64)(p) = *(*uint64)(unsafe.Pointer(&w))
212 // emptyInterface is the header for an interface{} value.
213 type emptyInterface struct {
214 typ *rtype
215 word iword
218 // nonEmptyInterface is the header for a interface value with methods.
219 type nonEmptyInterface struct {
220 // see ../runtime/iface.c:/Itab
221 itab *struct {
222 typ *rtype // dynamic concrete type
223 fun [100000]unsafe.Pointer // method table
225 word iword
228 // mustBe panics if f's kind is not expected.
229 // Making this a method on flag instead of on Value
230 // (and embedding flag in Value) means that we can write
231 // the very clear v.mustBe(Bool) and have it compile into
232 // v.flag.mustBe(Bool), which will only bother to copy the
233 // single important word for the receiver.
234 func (f flag) mustBe(expected Kind) {
235 k := f.kind()
236 if k != expected {
237 panic(&ValueError{methodName(), k})
241 // mustBeExported panics if f records that the value was obtained using
242 // an unexported field.
243 func (f flag) mustBeExported() {
244 if f == 0 {
245 panic(&ValueError{methodName(), 0})
247 if f&flagRO != 0 {
248 panic("reflect: " + methodName() + " using value obtained using unexported field")
252 // mustBeAssignable panics if f records that the value is not assignable,
253 // which is to say that either it was obtained using an unexported field
254 // or it is not addressable.
255 func (f flag) mustBeAssignable() {
256 if f == 0 {
257 panic(&ValueError{methodName(), Invalid})
259 // Assignable if addressable and not read-only.
260 if f&flagRO != 0 {
261 panic("reflect: " + methodName() + " using value obtained using unexported field")
263 if f&flagAddr == 0 {
264 panic("reflect: " + methodName() + " using unaddressable value")
268 // Addr returns a pointer value representing the address of v.
269 // It panics if CanAddr() returns false.
270 // Addr is typically used to obtain a pointer to a struct field
271 // or slice element in order to call a method that requires a
272 // pointer receiver.
273 func (v Value) Addr() Value {
274 if v.flag&flagAddr == 0 {
275 panic("reflect.Value.Addr of unaddressable value")
277 return Value{v.typ.ptrTo(), v.val, (v.flag & flagRO) | flag(Ptr)<<flagKindShift}
280 // Bool returns v's underlying value.
281 // It panics if v's kind is not Bool.
282 func (v Value) Bool() bool {
283 v.mustBe(Bool)
284 if v.flag&flagIndir != 0 {
285 return *(*bool)(v.val)
287 return *(*bool)(unsafe.Pointer(&v.val))
290 // Bytes returns v's underlying value.
291 // It panics if v's underlying value is not a slice of bytes.
292 func (v Value) Bytes() []byte {
293 v.mustBe(Slice)
294 if v.typ.Elem().Kind() != Uint8 {
295 panic("reflect.Value.Bytes of non-byte slice")
297 // Slice is always bigger than a word; assume flagIndir.
298 return *(*[]byte)(v.val)
301 // runes returns v's underlying value.
302 // It panics if v's underlying value is not a slice of runes (int32s).
303 func (v Value) runes() []rune {
304 v.mustBe(Slice)
305 if v.typ.Elem().Kind() != Int32 {
306 panic("reflect.Value.Bytes of non-rune slice")
308 // Slice is always bigger than a word; assume flagIndir.
309 return *(*[]rune)(v.val)
312 // CanAddr returns true if the value's address can be obtained with Addr.
313 // Such values are called addressable. A value is addressable if it is
314 // an element of a slice, an element of an addressable array,
315 // a field of an addressable struct, or the result of dereferencing a pointer.
316 // If CanAddr returns false, calling Addr will panic.
317 func (v Value) CanAddr() bool {
318 return v.flag&flagAddr != 0
321 // CanSet returns true if the value of v can be changed.
322 // A Value can be changed only if it is addressable and was not
323 // obtained by the use of unexported struct fields.
324 // If CanSet returns false, calling Set or any type-specific
325 // setter (e.g., SetBool, SetInt64) will panic.
326 func (v Value) CanSet() bool {
327 return v.flag&(flagAddr|flagRO) == flagAddr
330 // Call calls the function v with the input arguments in.
331 // For example, if len(in) == 3, v.Call(in) represents the Go call v(in[0], in[1], in[2]).
332 // Call panics if v's Kind is not Func.
333 // It returns the output results as Values.
334 // As in Go, each input argument must be assignable to the
335 // type of the function's corresponding input parameter.
336 // If v is a variadic function, Call creates the variadic slice parameter
337 // itself, copying in the corresponding values.
338 func (v Value) Call(in []Value) []Value {
339 v.mustBe(Func)
340 v.mustBeExported()
341 return v.call("Call", in)
344 // CallSlice calls the variadic function v with the input arguments in,
345 // assigning the slice in[len(in)-1] to v's final variadic argument.
346 // For example, if len(in) == 3, v.Call(in) represents the Go call v(in[0], in[1], in[2]...).
347 // Call panics if v's Kind is not Func or if v is not variadic.
348 // It returns the output results as Values.
349 // As in Go, each input argument must be assignable to the
350 // type of the function's corresponding input parameter.
351 func (v Value) CallSlice(in []Value) []Value {
352 v.mustBe(Func)
353 v.mustBeExported()
354 return v.call("CallSlice", in)
357 func (v Value) call(op string, in []Value) []Value {
358 // Get function pointer, type.
359 t := v.typ
360 var (
361 fn unsafe.Pointer
362 rcvr iword
364 if v.flag&flagMethod != 0 {
365 t, fn, rcvr = methodReceiver(op, v, int(v.flag)>>flagMethodShift)
366 } else if v.flag&flagIndir != 0 {
367 fn = *(*unsafe.Pointer)(v.val)
368 } else {
369 fn = v.val
372 if fn == nil {
373 panic("reflect.Value.Call: call of nil function")
376 isSlice := op == "CallSlice"
377 n := t.NumIn()
378 if isSlice {
379 if !t.IsVariadic() {
380 panic("reflect: CallSlice of non-variadic function")
382 if len(in) < n {
383 panic("reflect: CallSlice with too few input arguments")
385 if len(in) > n {
386 panic("reflect: CallSlice with too many input arguments")
388 } else {
389 if t.IsVariadic() {
392 if len(in) < n {
393 panic("reflect: Call with too few input arguments")
395 if !t.IsVariadic() && len(in) > n {
396 panic("reflect: Call with too many input arguments")
399 for _, x := range in {
400 if x.Kind() == Invalid {
401 panic("reflect: " + op + " using zero Value argument")
404 for i := 0; i < n; i++ {
405 if xt, targ := in[i].Type(), t.In(i); !xt.AssignableTo(targ) {
406 panic("reflect: " + op + " using " + xt.String() + " as type " + targ.String())
409 if !isSlice && t.IsVariadic() {
410 // prepare slice for remaining values
411 m := len(in) - n
412 slice := MakeSlice(t.In(n), m, m)
413 elem := t.In(n).Elem()
414 for i := 0; i < m; i++ {
415 x := in[n+i]
416 if xt := x.Type(); !xt.AssignableTo(elem) {
417 panic("reflect: cannot use " + xt.String() + " as type " + elem.String() + " in " + op)
419 slice.Index(i).Set(x)
421 origIn := in
422 in = make([]Value, n+1)
423 copy(in[:n], origIn)
424 in[n] = slice
427 nin := len(in)
428 if nin != t.NumIn() {
429 panic("reflect.Value.Call: wrong argument count")
431 nout := t.NumOut()
433 if v.flag&flagMethod != 0 {
434 nin++
436 firstPointer := len(in) > 0 && t.In(0).Kind() != Ptr && v.flag&flagMethod == 0 && isMethod(v.typ)
437 params := make([]unsafe.Pointer, nin)
438 off := 0
439 if v.flag&flagMethod != 0 {
440 // Hard-wired first argument.
441 p := new(iword)
442 *p = rcvr
443 params[0] = unsafe.Pointer(p)
444 off = 1
446 for i, pv := range in {
447 pv.mustBeExported()
448 targ := t.In(i).(*rtype)
449 pv = pv.assignTo("reflect.Value.Call", targ, nil)
450 if pv.flag&flagIndir == 0 {
451 p := new(unsafe.Pointer)
452 *p = pv.val
453 params[off] = unsafe.Pointer(p)
454 } else {
455 params[off] = pv.val
457 if i == 0 && firstPointer {
458 p := new(unsafe.Pointer)
459 *p = params[off]
460 params[off] = unsafe.Pointer(p)
462 off++
465 ret := make([]Value, nout)
466 results := make([]unsafe.Pointer, nout)
467 for i := 0; i < nout; i++ {
468 v := New(t.Out(i))
469 results[i] = unsafe.Pointer(v.Pointer())
470 ret[i] = Indirect(v)
473 var pp *unsafe.Pointer
474 if len(params) > 0 {
475 pp = &params[0]
477 var pr *unsafe.Pointer
478 if len(results) > 0 {
479 pr = &results[0]
482 call(t, fn, v.flag&flagMethod != 0, firstPointer, pp, pr)
484 return ret
487 // gccgo specific test to see if typ is a method. We can tell by
488 // looking at the string to see if there is a receiver. We need this
489 // because for gccgo all methods take pointer receivers.
490 func isMethod(t *rtype) bool {
491 if Kind(t.kind) != Func {
492 return false
494 s := *t.string
495 parens := 0
496 params := 0
497 sawRet := false
498 for i, c := range s {
499 if c == '(' {
500 if parens == 0 {
501 params++
503 parens++
504 } else if c == ')' {
505 parens--
506 } else if parens == 0 && c == ' ' && s[i+1] != '(' && !sawRet {
507 params++
508 sawRet = true
511 return params > 2
514 // methodReceiver returns information about the receiver
515 // described by v. The Value v may or may not have the
516 // flagMethod bit set, so the kind cached in v.flag should
517 // not be used.
518 func methodReceiver(op string, v Value, methodIndex int) (t *rtype, fn unsafe.Pointer, rcvr iword) {
519 i := methodIndex
520 if v.typ.Kind() == Interface {
521 tt := (*interfaceType)(unsafe.Pointer(v.typ))
522 if i < 0 || i >= len(tt.methods) {
523 panic("reflect: internal error: invalid method index")
525 m := &tt.methods[i]
526 if m.pkgPath != nil {
527 panic("reflect: " + op + " of unexported method")
529 t = m.typ
530 iface := (*nonEmptyInterface)(v.val)
531 if iface.itab == nil {
532 panic("reflect: " + op + " of method on nil interface value")
534 fn = unsafe.Pointer(&iface.itab.fun[i])
535 rcvr = iface.word
536 } else {
537 ut := v.typ.uncommon()
538 if ut == nil || i < 0 || i >= len(ut.methods) {
539 panic("reflect: internal error: invalid method index")
541 m := &ut.methods[i]
542 if m.pkgPath != nil {
543 panic("reflect: " + op + " of unexported method")
545 fn = unsafe.Pointer(&m.tfn)
546 t = m.mtyp
547 // Can't call iword here, because it checks v.kind,
548 // and that is always Func.
549 if v.flag&flagIndir != 0 && (v.typ.Kind() == Ptr || v.typ.Kind() == UnsafePointer) {
550 rcvr = loadIword(v.val, v.typ.size)
551 } else {
552 rcvr = iword(v.val)
555 return
558 // align returns the result of rounding x up to a multiple of n.
559 // n must be a power of two.
560 func align(x, n uintptr) uintptr {
561 return (x + n - 1) &^ (n - 1)
564 // funcName returns the name of f, for use in error messages.
565 func funcName(f func([]Value) []Value) string {
566 pc := *(*uintptr)(unsafe.Pointer(&f))
567 rf := runtime.FuncForPC(pc)
568 if rf != nil {
569 return rf.Name()
571 return "closure"
574 // Cap returns v's capacity.
575 // It panics if v's Kind is not Array, Chan, or Slice.
576 func (v Value) Cap() int {
577 k := v.kind()
578 switch k {
579 case Array:
580 return v.typ.Len()
581 case Chan:
582 return int(chancap(*(*iword)(v.iword())))
583 case Slice:
584 // Slice is always bigger than a word; assume flagIndir.
585 return (*SliceHeader)(v.val).Cap
587 panic(&ValueError{"reflect.Value.Cap", k})
590 // Close closes the channel v.
591 // It panics if v's Kind is not Chan.
592 func (v Value) Close() {
593 v.mustBe(Chan)
594 v.mustBeExported()
595 chanclose(*(*iword)(v.iword()))
598 // Complex returns v's underlying value, as a complex128.
599 // It panics if v's Kind is not Complex64 or Complex128
600 func (v Value) Complex() complex128 {
601 k := v.kind()
602 switch k {
603 case Complex64:
604 if v.flag&flagIndir != 0 {
605 return complex128(*(*complex64)(v.val))
607 return complex128(*(*complex64)(unsafe.Pointer(&v.val)))
608 case Complex128:
609 // complex128 is always bigger than a word; assume flagIndir.
610 return *(*complex128)(v.val)
612 panic(&ValueError{"reflect.Value.Complex", k})
615 // Elem returns the value that the interface v contains
616 // or that the pointer v points to.
617 // It panics if v's Kind is not Interface or Ptr.
618 // It returns the zero Value if v is nil.
619 func (v Value) Elem() Value {
620 k := v.kind()
621 switch k {
622 case Interface:
623 var (
624 typ *rtype
625 val unsafe.Pointer
627 if v.typ.NumMethod() == 0 {
628 eface := (*emptyInterface)(v.val)
629 if eface.typ == nil {
630 // nil interface value
631 return Value{}
633 typ = eface.typ
634 val = unsafe.Pointer(eface.word)
635 } else {
636 iface := (*nonEmptyInterface)(v.val)
637 if iface.itab == nil {
638 // nil interface value
639 return Value{}
641 typ = iface.itab.typ
642 val = unsafe.Pointer(iface.word)
644 fl := v.flag & flagRO
645 fl |= flag(typ.Kind()) << flagKindShift
646 if typ.Kind() != Ptr && typ.Kind() != UnsafePointer {
647 fl |= flagIndir
649 return Value{typ, val, fl}
651 case Ptr:
652 val := v.val
653 if v.flag&flagIndir != 0 {
654 val = *(*unsafe.Pointer)(val)
656 // The returned value's address is v's value.
657 if val == nil {
658 return Value{}
660 tt := (*ptrType)(unsafe.Pointer(v.typ))
661 typ := tt.elem
662 fl := v.flag&flagRO | flagIndir | flagAddr
663 fl |= flag(typ.Kind() << flagKindShift)
664 return Value{typ, val, fl}
666 panic(&ValueError{"reflect.Value.Elem", k})
669 // Field returns the i'th field of the struct v.
670 // It panics if v's Kind is not Struct or i is out of range.
671 func (v Value) Field(i int) Value {
672 v.mustBe(Struct)
673 tt := (*structType)(unsafe.Pointer(v.typ))
674 if i < 0 || i >= len(tt.fields) {
675 panic("reflect: Field index out of range")
677 field := &tt.fields[i]
678 typ := field.typ
680 // Inherit permission bits from v.
681 fl := v.flag & (flagRO | flagIndir | flagAddr)
682 // Using an unexported field forces flagRO.
683 if field.pkgPath != nil {
684 fl |= flagRO
686 fl |= flag(typ.Kind()) << flagKindShift
688 var val unsafe.Pointer
689 switch {
690 case fl&flagIndir != 0:
691 // Indirect. Just bump pointer.
692 val = unsafe.Pointer(uintptr(v.val) + field.offset)
693 case bigEndian:
694 // Direct. Discard leading bytes.
695 val = unsafe.Pointer(uintptr(v.val) << (field.offset * 8))
696 default:
697 // Direct. Discard leading bytes.
698 val = unsafe.Pointer(uintptr(v.val) >> (field.offset * 8))
701 return Value{typ, val, fl}
704 // FieldByIndex returns the nested field corresponding to index.
705 // It panics if v's Kind is not struct.
706 func (v Value) FieldByIndex(index []int) Value {
707 v.mustBe(Struct)
708 for i, x := range index {
709 if i > 0 {
710 if v.Kind() == Ptr && v.Elem().Kind() == Struct {
711 v = v.Elem()
714 v = v.Field(x)
716 return v
719 // FieldByName returns the struct field with the given name.
720 // It returns the zero Value if no field was found.
721 // It panics if v's Kind is not struct.
722 func (v Value) FieldByName(name string) Value {
723 v.mustBe(Struct)
724 if f, ok := v.typ.FieldByName(name); ok {
725 return v.FieldByIndex(f.Index)
727 return Value{}
730 // FieldByNameFunc returns the struct field with a name
731 // that satisfies the match function.
732 // It panics if v's Kind is not struct.
733 // It returns the zero Value if no field was found.
734 func (v Value) FieldByNameFunc(match func(string) bool) Value {
735 v.mustBe(Struct)
736 if f, ok := v.typ.FieldByNameFunc(match); ok {
737 return v.FieldByIndex(f.Index)
739 return Value{}
742 // Float returns v's underlying value, as a float64.
743 // It panics if v's Kind is not Float32 or Float64
744 func (v Value) Float() float64 {
745 k := v.kind()
746 switch k {
747 case Float32:
748 if v.flag&flagIndir != 0 {
749 return float64(*(*float32)(v.val))
751 return float64(*(*float32)(unsafe.Pointer(&v.val)))
752 case Float64:
753 if v.flag&flagIndir != 0 {
754 return *(*float64)(v.val)
756 return *(*float64)(unsafe.Pointer(&v.val))
758 panic(&ValueError{"reflect.Value.Float", k})
761 var uint8Type = TypeOf(uint8(0)).(*rtype)
763 // Index returns v's i'th element.
764 // It panics if v's Kind is not Array, Slice, or String or i is out of range.
765 func (v Value) Index(i int) Value {
766 k := v.kind()
767 switch k {
768 case Array:
769 tt := (*arrayType)(unsafe.Pointer(v.typ))
770 if i < 0 || i > int(tt.len) {
771 panic("reflect: array index out of range")
773 typ := tt.elem
774 fl := v.flag & (flagRO | flagIndir | flagAddr) // bits same as overall array
775 fl |= flag(typ.Kind()) << flagKindShift
776 offset := uintptr(i) * typ.size
778 var val unsafe.Pointer
779 switch {
780 case fl&flagIndir != 0:
781 // Indirect. Just bump pointer.
782 val = unsafe.Pointer(uintptr(v.val) + offset)
783 case bigEndian:
784 // Direct. Discard leading bytes.
785 val = unsafe.Pointer(uintptr(v.val) << (offset * 8))
786 default:
787 // Direct. Discard leading bytes.
788 val = unsafe.Pointer(uintptr(v.val) >> (offset * 8))
790 return Value{typ, val, fl}
792 case Slice:
793 // Element flag same as Elem of Ptr.
794 // Addressable, indirect, possibly read-only.
795 fl := flagAddr | flagIndir | v.flag&flagRO
796 s := (*SliceHeader)(v.val)
797 if i < 0 || i >= s.Len {
798 panic("reflect: slice index out of range")
800 tt := (*sliceType)(unsafe.Pointer(v.typ))
801 typ := tt.elem
802 fl |= flag(typ.Kind()) << flagKindShift
803 val := unsafe.Pointer(s.Data + uintptr(i)*typ.size)
804 return Value{typ, val, fl}
806 case String:
807 fl := v.flag&flagRO | flag(Uint8<<flagKindShift) | flagIndir
808 s := (*StringHeader)(v.val)
809 if i < 0 || i >= s.Len {
810 panic("reflect: string index out of range")
812 val := *(*byte)(unsafe.Pointer(s.Data + uintptr(i)))
813 return Value{uint8Type, unsafe.Pointer(&val), fl}
815 panic(&ValueError{"reflect.Value.Index", k})
818 // Int returns v's underlying value, as an int64.
819 // It panics if v's Kind is not Int, Int8, Int16, Int32, or Int64.
820 func (v Value) Int() int64 {
821 k := v.kind()
822 var p unsafe.Pointer
823 if v.flag&flagIndir != 0 {
824 p = v.val
825 } else {
826 // The escape analysis is good enough that &v.val
827 // does not trigger a heap allocation.
828 p = unsafe.Pointer(&v.val)
830 switch k {
831 case Int:
832 return int64(*(*int)(p))
833 case Int8:
834 return int64(*(*int8)(p))
835 case Int16:
836 return int64(*(*int16)(p))
837 case Int32:
838 return int64(*(*int32)(p))
839 case Int64:
840 return int64(*(*int64)(p))
842 panic(&ValueError{"reflect.Value.Int", k})
845 // CanInterface returns true if Interface can be used without panicking.
846 func (v Value) CanInterface() bool {
847 if v.flag == 0 {
848 panic(&ValueError{"reflect.Value.CanInterface", Invalid})
850 return v.flag&flagRO == 0
853 // Interface returns v's current value as an interface{}.
854 // It is equivalent to:
855 // var i interface{} = (v's underlying value)
856 // It panics if the Value was obtained by accessing
857 // unexported struct fields.
858 func (v Value) Interface() (i interface{}) {
859 return valueInterface(v, true)
862 func valueInterface(v Value, safe bool) interface{} {
863 if v.flag == 0 {
864 panic(&ValueError{"reflect.Value.Interface", 0})
866 if safe && v.flag&flagRO != 0 {
867 // Do not allow access to unexported values via Interface,
868 // because they might be pointers that should not be
869 // writable or methods or function that should not be callable.
870 panic("reflect.Value.Interface: cannot return value obtained from unexported field or method")
872 if v.flag&flagMethod != 0 {
873 v = makeMethodValue("Interface", v)
876 k := v.kind()
877 if k == Interface {
878 // Special case: return the element inside the interface.
879 // Empty interface has one layout, all interfaces with
880 // methods have a second layout.
881 if v.NumMethod() == 0 {
882 return *(*interface{})(v.val)
884 return *(*interface {
886 })(v.val)
889 // Non-interface value.
890 var eface emptyInterface
891 eface.typ = toType(v.typ).common()
892 eface.word = v.iword()
894 // Don't need to allocate if v is not addressable or fits in one word.
895 if v.flag&flagAddr != 0 && v.kind() != Ptr && v.kind() != UnsafePointer {
896 // eface.word is a pointer to the actual data,
897 // which might be changed. We need to return
898 // a pointer to unchanging data, so make a copy.
899 ptr := unsafe_New(v.typ)
900 memmove(ptr, unsafe.Pointer(eface.word), v.typ.size)
901 eface.word = iword(ptr)
904 if v.flag&flagIndir == 0 && v.kind() != Ptr && v.kind() != UnsafePointer {
905 panic("missing flagIndir")
908 return *(*interface{})(unsafe.Pointer(&eface))
911 // InterfaceData returns the interface v's value as a uintptr pair.
912 // It panics if v's Kind is not Interface.
913 func (v Value) InterfaceData() [2]uintptr {
914 v.mustBe(Interface)
915 // We treat this as a read operation, so we allow
916 // it even for unexported data, because the caller
917 // has to import "unsafe" to turn it into something
918 // that can be abused.
919 // Interface value is always bigger than a word; assume flagIndir.
920 return *(*[2]uintptr)(v.val)
923 // IsNil returns true if v is a nil value.
924 // It panics if v's Kind is not Chan, Func, Interface, Map, Ptr, or Slice.
925 func (v Value) IsNil() bool {
926 k := v.kind()
927 switch k {
928 case Chan, Func, Map, Ptr:
929 if v.flag&flagMethod != 0 {
930 return false
932 ptr := v.val
933 if v.flag&flagIndir != 0 {
934 ptr = *(*unsafe.Pointer)(ptr)
936 return ptr == nil
937 case Interface, Slice:
938 // Both interface and slice are nil if first word is 0.
939 // Both are always bigger than a word; assume flagIndir.
940 return *(*unsafe.Pointer)(v.val) == nil
942 panic(&ValueError{"reflect.Value.IsNil", k})
945 // IsValid returns true if v represents a value.
946 // It returns false if v is the zero Value.
947 // If IsValid returns false, all other methods except String panic.
948 // Most functions and methods never return an invalid value.
949 // If one does, its documentation states the conditions explicitly.
950 func (v Value) IsValid() bool {
951 return v.flag != 0
954 // Kind returns v's Kind.
955 // If v is the zero Value (IsValid returns false), Kind returns Invalid.
956 func (v Value) Kind() Kind {
957 return v.kind()
960 // Len returns v's length.
961 // It panics if v's Kind is not Array, Chan, Map, Slice, or String.
962 func (v Value) Len() int {
963 k := v.kind()
964 switch k {
965 case Array:
966 tt := (*arrayType)(unsafe.Pointer(v.typ))
967 return int(tt.len)
968 case Chan:
969 return chanlen(*(*iword)(v.iword()))
970 case Map:
971 return maplen(*(*iword)(v.iword()))
972 case Slice:
973 // Slice is bigger than a word; assume flagIndir.
974 return (*SliceHeader)(v.val).Len
975 case String:
976 // String is bigger than a word; assume flagIndir.
977 return (*StringHeader)(v.val).Len
979 panic(&ValueError{"reflect.Value.Len", k})
982 // MapIndex returns the value associated with key in the map v.
983 // It panics if v's Kind is not Map.
984 // It returns the zero Value if key is not found in the map or if v represents a nil map.
985 // As in Go, the key's value must be assignable to the map's key type.
986 func (v Value) MapIndex(key Value) Value {
987 v.mustBe(Map)
988 tt := (*mapType)(unsafe.Pointer(v.typ))
990 // Do not require key to be exported, so that DeepEqual
991 // and other programs can use all the keys returned by
992 // MapKeys as arguments to MapIndex. If either the map
993 // or the key is unexported, though, the result will be
994 // considered unexported. This is consistent with the
995 // behavior for structs, which allow read but not write
996 // of unexported fields.
997 key = key.assignTo("reflect.Value.MapIndex", tt.key, nil)
999 word, ok := mapaccess(v.typ, *(*iword)(v.iword()), key.iword())
1000 if !ok {
1001 return Value{}
1003 typ := tt.elem
1004 fl := (v.flag | key.flag) & flagRO
1005 if typ.Kind() != Ptr && typ.Kind() != UnsafePointer {
1006 fl |= flagIndir
1008 fl |= flag(typ.Kind()) << flagKindShift
1009 return Value{typ, unsafe.Pointer(word), fl}
1012 // MapKeys returns a slice containing all the keys present in the map,
1013 // in unspecified order.
1014 // It panics if v's Kind is not Map.
1015 // It returns an empty slice if v represents a nil map.
1016 func (v Value) MapKeys() []Value {
1017 v.mustBe(Map)
1018 tt := (*mapType)(unsafe.Pointer(v.typ))
1019 keyType := tt.key
1021 fl := v.flag & flagRO
1022 fl |= flag(keyType.Kind()) << flagKindShift
1023 if keyType.Kind() != Ptr && keyType.Kind() != UnsafePointer {
1024 fl |= flagIndir
1027 m := *(*iword)(v.iword())
1028 mlen := int(0)
1029 if m != nil {
1030 mlen = maplen(m)
1032 it := mapiterinit(v.typ, m)
1033 a := make([]Value, mlen)
1034 var i int
1035 for i = 0; i < len(a); i++ {
1036 keyWord, ok := mapiterkey(it)
1037 if !ok {
1038 break
1040 a[i] = Value{keyType, unsafe.Pointer(keyWord), fl}
1041 mapiternext(it)
1043 return a[:i]
1046 // Method returns a function value corresponding to v's i'th method.
1047 // The arguments to a Call on the returned function should not include
1048 // a receiver; the returned function will always use v as the receiver.
1049 // Method panics if i is out of range or if v is a nil interface value.
1050 func (v Value) Method(i int) Value {
1051 if v.typ == nil {
1052 panic(&ValueError{"reflect.Value.Method", Invalid})
1054 if v.flag&flagMethod != 0 || i < 0 || i >= v.typ.NumMethod() {
1055 panic("reflect: Method index out of range")
1057 if v.typ.Kind() == Interface && v.IsNil() {
1058 panic("reflect: Method on nil interface value")
1060 fl := v.flag & (flagRO | flagIndir)
1061 fl |= flag(Func) << flagKindShift
1062 fl |= flag(i)<<flagMethodShift | flagMethod
1063 return Value{v.typ, v.val, fl}
1066 // NumMethod returns the number of methods in the value's method set.
1067 func (v Value) NumMethod() int {
1068 if v.typ == nil {
1069 panic(&ValueError{"reflect.Value.NumMethod", Invalid})
1071 if v.flag&flagMethod != 0 {
1072 return 0
1074 return v.typ.NumMethod()
1077 // MethodByName returns a function value corresponding to the method
1078 // of v with the given name.
1079 // The arguments to a Call on the returned function should not include
1080 // a receiver; the returned function will always use v as the receiver.
1081 // It returns the zero Value if no method was found.
1082 func (v Value) MethodByName(name string) Value {
1083 if v.typ == nil {
1084 panic(&ValueError{"reflect.Value.MethodByName", Invalid})
1086 if v.flag&flagMethod != 0 {
1087 return Value{}
1089 m, ok := v.typ.MethodByName(name)
1090 if !ok {
1091 return Value{}
1093 return v.Method(m.Index)
1096 // NumField returns the number of fields in the struct v.
1097 // It panics if v's Kind is not Struct.
1098 func (v Value) NumField() int {
1099 v.mustBe(Struct)
1100 tt := (*structType)(unsafe.Pointer(v.typ))
1101 return len(tt.fields)
1104 // OverflowComplex returns true if the complex128 x cannot be represented by v's type.
1105 // It panics if v's Kind is not Complex64 or Complex128.
1106 func (v Value) OverflowComplex(x complex128) bool {
1107 k := v.kind()
1108 switch k {
1109 case Complex64:
1110 return overflowFloat32(real(x)) || overflowFloat32(imag(x))
1111 case Complex128:
1112 return false
1114 panic(&ValueError{"reflect.Value.OverflowComplex", k})
1117 // OverflowFloat returns true if the float64 x cannot be represented by v's type.
1118 // It panics if v's Kind is not Float32 or Float64.
1119 func (v Value) OverflowFloat(x float64) bool {
1120 k := v.kind()
1121 switch k {
1122 case Float32:
1123 return overflowFloat32(x)
1124 case Float64:
1125 return false
1127 panic(&ValueError{"reflect.Value.OverflowFloat", k})
1130 func overflowFloat32(x float64) bool {
1131 if x < 0 {
1132 x = -x
1134 return math.MaxFloat32 < x && x <= math.MaxFloat64
1137 // OverflowInt returns true if the int64 x cannot be represented by v's type.
1138 // It panics if v's Kind is not Int, Int8, int16, Int32, or Int64.
1139 func (v Value) OverflowInt(x int64) bool {
1140 k := v.kind()
1141 switch k {
1142 case Int, Int8, Int16, Int32, Int64:
1143 bitSize := v.typ.size * 8
1144 trunc := (x << (64 - bitSize)) >> (64 - bitSize)
1145 return x != trunc
1147 panic(&ValueError{"reflect.Value.OverflowInt", k})
1150 // OverflowUint returns true if the uint64 x cannot be represented by v's type.
1151 // It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64.
1152 func (v Value) OverflowUint(x uint64) bool {
1153 k := v.kind()
1154 switch k {
1155 case Uint, Uintptr, Uint8, Uint16, Uint32, Uint64:
1156 bitSize := v.typ.size * 8
1157 trunc := (x << (64 - bitSize)) >> (64 - bitSize)
1158 return x != trunc
1160 panic(&ValueError{"reflect.Value.OverflowUint", k})
1163 // Pointer returns v's value as a uintptr.
1164 // It returns uintptr instead of unsafe.Pointer so that
1165 // code using reflect cannot obtain unsafe.Pointers
1166 // without importing the unsafe package explicitly.
1167 // It panics if v's Kind is not Chan, Func, Map, Ptr, Slice, or UnsafePointer.
1169 // If v's Kind is Func, the returned pointer is an underlying
1170 // code pointer, but not necessarily enough to identify a
1171 // single function uniquely. The only guarantee is that the
1172 // result is zero if and only if v is a nil func Value.
1173 func (v Value) Pointer() uintptr {
1174 k := v.kind()
1175 switch k {
1176 case Chan, Map, Ptr, UnsafePointer:
1177 p := v.val
1178 if v.flag&flagIndir != 0 {
1179 p = *(*unsafe.Pointer)(p)
1181 return uintptr(p)
1182 case Func:
1183 if v.flag&flagMethod != 0 {
1184 // As the doc comment says, the returned pointer is an
1185 // underlying code pointer but not necessarily enough to
1186 // identify a single function uniquely. All method expressions
1187 // created via reflect have the same underlying code pointer,
1188 // so their Pointers are equal. The function used here must
1189 // match the one used in makeMethodValue.
1190 // This is not properly implemented for gccgo.
1191 f := Zero
1192 return **(**uintptr)(unsafe.Pointer(&f))
1194 p := v.val
1195 if v.flag&flagIndir != 0 {
1196 p = *(*unsafe.Pointer)(p)
1198 // Non-nil func value points at data block.
1199 // First word of data block is actual code.
1200 if p != nil {
1201 p = *(*unsafe.Pointer)(p)
1203 return uintptr(p)
1205 case Slice:
1206 return (*SliceHeader)(v.val).Data
1208 panic(&ValueError{"reflect.Value.Pointer", k})
1211 // Recv receives and returns a value from the channel v.
1212 // It panics if v's Kind is not Chan.
1213 // The receive blocks until a value is ready.
1214 // The boolean value ok is true if the value x corresponds to a send
1215 // on the channel, false if it is a zero value received because the channel is closed.
1216 func (v Value) Recv() (x Value, ok bool) {
1217 v.mustBe(Chan)
1218 v.mustBeExported()
1219 return v.recv(false)
1222 // internal recv, possibly non-blocking (nb).
1223 // v is known to be a channel.
1224 func (v Value) recv(nb bool) (val Value, ok bool) {
1225 tt := (*chanType)(unsafe.Pointer(v.typ))
1226 if ChanDir(tt.dir)&RecvDir == 0 {
1227 panic("reflect: recv on send-only channel")
1229 word, selected, ok := chanrecv(v.typ, *(*iword)(v.iword()), nb)
1230 if selected {
1231 typ := tt.elem
1232 fl := flag(typ.Kind()) << flagKindShift
1233 if typ.Kind() != Ptr && typ.Kind() != UnsafePointer {
1234 fl |= flagIndir
1236 val = Value{typ, unsafe.Pointer(word), fl}
1238 return
1241 // Send sends x on the channel v.
1242 // It panics if v's kind is not Chan or if x's type is not the same type as v's element type.
1243 // As in Go, x's value must be assignable to the channel's element type.
1244 func (v Value) Send(x Value) {
1245 v.mustBe(Chan)
1246 v.mustBeExported()
1247 v.send(x, false)
1250 // internal send, possibly non-blocking.
1251 // v is known to be a channel.
1252 func (v Value) send(x Value, nb bool) (selected bool) {
1253 tt := (*chanType)(unsafe.Pointer(v.typ))
1254 if ChanDir(tt.dir)&SendDir == 0 {
1255 panic("reflect: send on recv-only channel")
1257 x.mustBeExported()
1258 x = x.assignTo("reflect.Value.Send", tt.elem, nil)
1259 return chansend(v.typ, *(*iword)(v.iword()), x.iword(), nb)
1262 // Set assigns x to the value v.
1263 // It panics if CanSet returns false.
1264 // As in Go, x's value must be assignable to v's type.
1265 func (v Value) Set(x Value) {
1266 v.mustBeAssignable()
1267 x.mustBeExported() // do not let unexported x leak
1268 var target *interface{}
1269 if v.kind() == Interface {
1270 target = (*interface{})(v.val)
1272 x = x.assignTo("reflect.Set", v.typ, target)
1273 if x.flag&flagIndir != 0 {
1274 memmove(v.val, x.val, v.typ.size)
1275 } else {
1276 storeIword(v.val, iword(x.val), v.typ.size)
1280 // SetBool sets v's underlying value.
1281 // It panics if v's Kind is not Bool or if CanSet() is false.
1282 func (v Value) SetBool(x bool) {
1283 v.mustBeAssignable()
1284 v.mustBe(Bool)
1285 *(*bool)(v.val) = x
1288 // SetBytes sets v's underlying value.
1289 // It panics if v's underlying value is not a slice of bytes.
1290 func (v Value) SetBytes(x []byte) {
1291 v.mustBeAssignable()
1292 v.mustBe(Slice)
1293 if v.typ.Elem().Kind() != Uint8 {
1294 panic("reflect.Value.SetBytes of non-byte slice")
1296 *(*[]byte)(v.val) = x
1299 // setRunes sets v's underlying value.
1300 // It panics if v's underlying value is not a slice of runes (int32s).
1301 func (v Value) setRunes(x []rune) {
1302 v.mustBeAssignable()
1303 v.mustBe(Slice)
1304 if v.typ.Elem().Kind() != Int32 {
1305 panic("reflect.Value.setRunes of non-rune slice")
1307 *(*[]rune)(v.val) = x
1310 // SetComplex sets v's underlying value to x.
1311 // It panics if v's Kind is not Complex64 or Complex128, or if CanSet() is false.
1312 func (v Value) SetComplex(x complex128) {
1313 v.mustBeAssignable()
1314 switch k := v.kind(); k {
1315 default:
1316 panic(&ValueError{"reflect.Value.SetComplex", k})
1317 case Complex64:
1318 *(*complex64)(v.val) = complex64(x)
1319 case Complex128:
1320 *(*complex128)(v.val) = x
1324 // SetFloat sets v's underlying value to x.
1325 // It panics if v's Kind is not Float32 or Float64, or if CanSet() is false.
1326 func (v Value) SetFloat(x float64) {
1327 v.mustBeAssignable()
1328 switch k := v.kind(); k {
1329 default:
1330 panic(&ValueError{"reflect.Value.SetFloat", k})
1331 case Float32:
1332 *(*float32)(v.val) = float32(x)
1333 case Float64:
1334 *(*float64)(v.val) = x
1338 // SetInt sets v's underlying value to x.
1339 // It panics if v's Kind is not Int, Int8, Int16, Int32, or Int64, or if CanSet() is false.
1340 func (v Value) SetInt(x int64) {
1341 v.mustBeAssignable()
1342 switch k := v.kind(); k {
1343 default:
1344 panic(&ValueError{"reflect.Value.SetInt", k})
1345 case Int:
1346 *(*int)(v.val) = int(x)
1347 case Int8:
1348 *(*int8)(v.val) = int8(x)
1349 case Int16:
1350 *(*int16)(v.val) = int16(x)
1351 case Int32:
1352 *(*int32)(v.val) = int32(x)
1353 case Int64:
1354 *(*int64)(v.val) = x
1358 // SetLen sets v's length to n.
1359 // It panics if v's Kind is not Slice or if n is negative or
1360 // greater than the capacity of the slice.
1361 func (v Value) SetLen(n int) {
1362 v.mustBeAssignable()
1363 v.mustBe(Slice)
1364 s := (*SliceHeader)(v.val)
1365 if n < 0 || n > int(s.Cap) {
1366 panic("reflect: slice length out of range in SetLen")
1368 s.Len = n
1371 // SetCap sets v's capacity to n.
1372 // It panics if v's Kind is not Slice or if n is smaller than the length or
1373 // greater than the capacity of the slice.
1374 func (v Value) SetCap(n int) {
1375 v.mustBeAssignable()
1376 v.mustBe(Slice)
1377 s := (*SliceHeader)(v.val)
1378 if n < int(s.Len) || n > int(s.Cap) {
1379 panic("reflect: slice capacity out of range in SetCap")
1381 s.Cap = n
1384 // SetMapIndex sets the value associated with key in the map v to val.
1385 // It panics if v's Kind is not Map.
1386 // If val is the zero Value, SetMapIndex deletes the key from the map.
1387 // As in Go, key's value must be assignable to the map's key type,
1388 // and val's value must be assignable to the map's value type.
1389 func (v Value) SetMapIndex(key, val Value) {
1390 v.mustBe(Map)
1391 v.mustBeExported()
1392 key.mustBeExported()
1393 tt := (*mapType)(unsafe.Pointer(v.typ))
1394 key = key.assignTo("reflect.Value.SetMapIndex", tt.key, nil)
1395 if val.typ != nil {
1396 val.mustBeExported()
1397 val = val.assignTo("reflect.Value.SetMapIndex", tt.elem, nil)
1399 mapassign(v.typ, *(*iword)(v.iword()), key.iword(), val.iword(), val.typ != nil)
1402 // SetUint sets v's underlying value to x.
1403 // It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64, or if CanSet() is false.
1404 func (v Value) SetUint(x uint64) {
1405 v.mustBeAssignable()
1406 switch k := v.kind(); k {
1407 default:
1408 panic(&ValueError{"reflect.Value.SetUint", k})
1409 case Uint:
1410 *(*uint)(v.val) = uint(x)
1411 case Uint8:
1412 *(*uint8)(v.val) = uint8(x)
1413 case Uint16:
1414 *(*uint16)(v.val) = uint16(x)
1415 case Uint32:
1416 *(*uint32)(v.val) = uint32(x)
1417 case Uint64:
1418 *(*uint64)(v.val) = x
1419 case Uintptr:
1420 *(*uintptr)(v.val) = uintptr(x)
1424 // SetPointer sets the unsafe.Pointer value v to x.
1425 // It panics if v's Kind is not UnsafePointer.
1426 func (v Value) SetPointer(x unsafe.Pointer) {
1427 v.mustBeAssignable()
1428 v.mustBe(UnsafePointer)
1429 *(*unsafe.Pointer)(v.val) = x
1432 // SetString sets v's underlying value to x.
1433 // It panics if v's Kind is not String or if CanSet() is false.
1434 func (v Value) SetString(x string) {
1435 v.mustBeAssignable()
1436 v.mustBe(String)
1437 *(*string)(v.val) = x
1440 // Slice returns v[i:j].
1441 // It panics if v's Kind is not Array, Slice or String, or if v is an unaddressable array,
1442 // or if the indexes are out of bounds.
1443 func (v Value) Slice(i, j int) Value {
1444 var (
1445 cap int
1446 typ *sliceType
1447 base unsafe.Pointer
1449 switch kind := v.kind(); kind {
1450 default:
1451 panic(&ValueError{"reflect.Value.Slice", kind})
1453 case Array:
1454 if v.flag&flagAddr == 0 {
1455 panic("reflect.Value.Slice: slice of unaddressable array")
1457 tt := (*arrayType)(unsafe.Pointer(v.typ))
1458 cap = int(tt.len)
1459 typ = (*sliceType)(unsafe.Pointer(tt.slice))
1460 base = v.val
1462 case Slice:
1463 typ = (*sliceType)(unsafe.Pointer(v.typ))
1464 s := (*SliceHeader)(v.val)
1465 base = unsafe.Pointer(s.Data)
1466 cap = s.Cap
1468 case String:
1469 s := (*StringHeader)(v.val)
1470 if i < 0 || j < i || j > s.Len {
1471 panic("reflect.Value.Slice: string slice index out of bounds")
1473 var x string
1474 val := (*StringHeader)(unsafe.Pointer(&x))
1475 val.Data = s.Data + uintptr(i)
1476 val.Len = j - i
1477 return Value{v.typ, unsafe.Pointer(&x), v.flag}
1480 if i < 0 || j < i || j > cap {
1481 panic("reflect.Value.Slice: slice index out of bounds")
1484 // Declare slice so that gc can see the base pointer in it.
1485 var x []unsafe.Pointer
1487 // Reinterpret as *SliceHeader to edit.
1488 s := (*SliceHeader)(unsafe.Pointer(&x))
1489 s.Data = uintptr(base) + uintptr(i)*typ.elem.Size()
1490 s.Len = j - i
1491 s.Cap = cap - i
1493 fl := v.flag&flagRO | flagIndir | flag(Slice)<<flagKindShift
1494 return Value{typ.common(), unsafe.Pointer(&x), fl}
1497 // Slice3 is the 3-index form of the slice operation: it returns v[i:j:k].
1498 // It panics if v's Kind is not Array or Slice, or if v is an unaddressable array,
1499 // or if the indexes are out of bounds.
1500 func (v Value) Slice3(i, j, k int) Value {
1501 var (
1502 cap int
1503 typ *sliceType
1504 base unsafe.Pointer
1506 switch kind := v.kind(); kind {
1507 default:
1508 panic(&ValueError{"reflect.Value.Slice3", kind})
1510 case Array:
1511 if v.flag&flagAddr == 0 {
1512 panic("reflect.Value.Slice: slice of unaddressable array")
1514 tt := (*arrayType)(unsafe.Pointer(v.typ))
1515 cap = int(tt.len)
1516 typ = (*sliceType)(unsafe.Pointer(tt.slice))
1517 base = v.val
1519 case Slice:
1520 typ = (*sliceType)(unsafe.Pointer(v.typ))
1521 s := (*SliceHeader)(v.val)
1522 base = unsafe.Pointer(s.Data)
1523 cap = s.Cap
1526 if i < 0 || j < i || k < j || k > cap {
1527 panic("reflect.Value.Slice3: slice index out of bounds")
1530 // Declare slice so that the garbage collector
1531 // can see the base pointer in it.
1532 var x []unsafe.Pointer
1534 // Reinterpret as *SliceHeader to edit.
1535 s := (*SliceHeader)(unsafe.Pointer(&x))
1536 s.Data = uintptr(base) + uintptr(i)*typ.elem.Size()
1537 s.Len = j - i
1538 s.Cap = k - i
1540 fl := v.flag&flagRO | flagIndir | flag(Slice)<<flagKindShift
1541 return Value{typ.common(), unsafe.Pointer(&x), fl}
1544 // String returns the string v's underlying value, as a string.
1545 // String is a special case because of Go's String method convention.
1546 // Unlike the other getters, it does not panic if v's Kind is not String.
1547 // Instead, it returns a string of the form "<T value>" where T is v's type.
1548 func (v Value) String() string {
1549 switch k := v.kind(); k {
1550 case Invalid:
1551 return "<invalid Value>"
1552 case String:
1553 return *(*string)(v.val)
1555 // If you call String on a reflect.Value of other type, it's better to
1556 // print something than to panic. Useful in debugging.
1557 return "<" + v.typ.String() + " Value>"
1560 // TryRecv attempts to receive a value from the channel v but will not block.
1561 // It panics if v's Kind is not Chan.
1562 // If the receive cannot finish without blocking, x is the zero Value.
1563 // The boolean ok is true if the value x corresponds to a send
1564 // on the channel, false if it is a zero value received because the channel is closed.
1565 func (v Value) TryRecv() (x Value, ok bool) {
1566 v.mustBe(Chan)
1567 v.mustBeExported()
1568 return v.recv(true)
1571 // TrySend attempts to send x on the channel v but will not block.
1572 // It panics if v's Kind is not Chan.
1573 // It returns true if the value was sent, false otherwise.
1574 // As in Go, x's value must be assignable to the channel's element type.
1575 func (v Value) TrySend(x Value) bool {
1576 v.mustBe(Chan)
1577 v.mustBeExported()
1578 return v.send(x, true)
1581 // Type returns v's type.
1582 func (v Value) Type() Type {
1583 f := v.flag
1584 if f == 0 {
1585 panic(&ValueError{"reflect.Value.Type", Invalid})
1587 if f&flagMethod == 0 {
1588 // Easy case
1589 return toType(v.typ)
1592 // Method value.
1593 // v.typ describes the receiver, not the method type.
1594 i := int(v.flag) >> flagMethodShift
1595 if v.typ.Kind() == Interface {
1596 // Method on interface.
1597 tt := (*interfaceType)(unsafe.Pointer(v.typ))
1598 if i < 0 || i >= len(tt.methods) {
1599 panic("reflect: internal error: invalid method index")
1601 m := &tt.methods[i]
1602 return toType(m.typ)
1604 // Method on concrete type.
1605 ut := v.typ.uncommon()
1606 if ut == nil || i < 0 || i >= len(ut.methods) {
1607 panic("reflect: internal error: invalid method index")
1609 m := &ut.methods[i]
1610 return toType(m.mtyp)
1613 // Uint returns v's underlying value, as a uint64.
1614 // It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64.
1615 func (v Value) Uint() uint64 {
1616 k := v.kind()
1617 var p unsafe.Pointer
1618 if v.flag&flagIndir != 0 {
1619 p = v.val
1620 } else {
1621 // The escape analysis is good enough that &v.val
1622 // does not trigger a heap allocation.
1623 p = unsafe.Pointer(&v.val)
1625 switch k {
1626 case Uint:
1627 return uint64(*(*uint)(p))
1628 case Uint8:
1629 return uint64(*(*uint8)(p))
1630 case Uint16:
1631 return uint64(*(*uint16)(p))
1632 case Uint32:
1633 return uint64(*(*uint32)(p))
1634 case Uint64:
1635 return uint64(*(*uint64)(p))
1636 case Uintptr:
1637 return uint64(*(*uintptr)(p))
1639 panic(&ValueError{"reflect.Value.Uint", k})
1642 // UnsafeAddr returns a pointer to v's data.
1643 // It is for advanced clients that also import the "unsafe" package.
1644 // It panics if v is not addressable.
1645 func (v Value) UnsafeAddr() uintptr {
1646 if v.typ == nil {
1647 panic(&ValueError{"reflect.Value.UnsafeAddr", Invalid})
1649 if v.flag&flagAddr == 0 {
1650 panic("reflect.Value.UnsafeAddr of unaddressable value")
1652 return uintptr(v.val)
1655 // StringHeader is the runtime representation of a string.
1656 // It cannot be used safely or portably and its representation may
1657 // change in a later release.
1658 // Moreover, the Data field is not sufficient to guarantee the data
1659 // it references will not be garbage collected, so programs must keep
1660 // a separate, correctly typed pointer to the underlying data.
1661 type StringHeader struct {
1662 Data uintptr
1663 Len int
1666 // SliceHeader is the runtime representation of a slice.
1667 // It cannot be used safely or portably and its representation may
1668 // change in a later release.
1669 // Moreover, the Data field is not sufficient to guarantee the data
1670 // it references will not be garbage collected, so programs must keep
1671 // a separate, correctly typed pointer to the underlying data.
1672 type SliceHeader struct {
1673 Data uintptr
1674 Len int
1675 Cap int
1678 func typesMustMatch(what string, t1, t2 Type) {
1679 if t1 != t2 {
1680 panic(what + ": " + t1.String() + " != " + t2.String())
1684 // grow grows the slice s so that it can hold extra more values, allocating
1685 // more capacity if needed. It also returns the old and new slice lengths.
1686 func grow(s Value, extra int) (Value, int, int) {
1687 i0 := s.Len()
1688 i1 := i0 + extra
1689 if i1 < i0 {
1690 panic("reflect.Append: slice overflow")
1692 m := s.Cap()
1693 if i1 <= m {
1694 return s.Slice(0, i1), i0, i1
1696 if m == 0 {
1697 m = extra
1698 } else {
1699 for m < i1 {
1700 if i0 < 1024 {
1701 m += m
1702 } else {
1703 m += m / 4
1707 t := MakeSlice(s.Type(), i1, m)
1708 Copy(t, s)
1709 return t, i0, i1
1712 // Append appends the values x to a slice s and returns the resulting slice.
1713 // As in Go, each x's value must be assignable to the slice's element type.
1714 func Append(s Value, x ...Value) Value {
1715 s.mustBe(Slice)
1716 s, i0, i1 := grow(s, len(x))
1717 for i, j := i0, 0; i < i1; i, j = i+1, j+1 {
1718 s.Index(i).Set(x[j])
1720 return s
1723 // AppendSlice appends a slice t to a slice s and returns the resulting slice.
1724 // The slices s and t must have the same element type.
1725 func AppendSlice(s, t Value) Value {
1726 s.mustBe(Slice)
1727 t.mustBe(Slice)
1728 typesMustMatch("reflect.AppendSlice", s.Type().Elem(), t.Type().Elem())
1729 s, i0, i1 := grow(s, t.Len())
1730 Copy(s.Slice(i0, i1), t)
1731 return s
1734 // Copy copies the contents of src into dst until either
1735 // dst has been filled or src has been exhausted.
1736 // It returns the number of elements copied.
1737 // Dst and src each must have kind Slice or Array, and
1738 // dst and src must have the same element type.
1739 func Copy(dst, src Value) int {
1740 dk := dst.kind()
1741 if dk != Array && dk != Slice {
1742 panic(&ValueError{"reflect.Copy", dk})
1744 if dk == Array {
1745 dst.mustBeAssignable()
1747 dst.mustBeExported()
1749 sk := src.kind()
1750 if sk != Array && sk != Slice {
1751 panic(&ValueError{"reflect.Copy", sk})
1753 src.mustBeExported()
1755 de := dst.typ.Elem()
1756 se := src.typ.Elem()
1757 typesMustMatch("reflect.Copy", de, se)
1759 n := dst.Len()
1760 if sn := src.Len(); n > sn {
1761 n = sn
1764 // If sk is an in-line array, cannot take its address.
1765 // Instead, copy element by element.
1766 if src.flag&flagIndir == 0 {
1767 for i := 0; i < n; i++ {
1768 dst.Index(i).Set(src.Index(i))
1770 return n
1773 // Copy via memmove.
1774 var da, sa unsafe.Pointer
1775 if dk == Array {
1776 da = dst.val
1777 } else {
1778 da = unsafe.Pointer((*SliceHeader)(dst.val).Data)
1780 if sk == Array {
1781 sa = src.val
1782 } else {
1783 sa = unsafe.Pointer((*SliceHeader)(src.val).Data)
1785 memmove(da, sa, uintptr(n)*de.Size())
1786 return n
1789 // A runtimeSelect is a single case passed to rselect.
1790 // This must match ../runtime/chan.c:/runtimeSelect
1791 type runtimeSelect struct {
1792 dir uintptr // 0, SendDir, or RecvDir
1793 typ *rtype // channel type
1794 ch iword // interface word for channel
1795 val iword // interface word for value (for SendDir)
1798 // rselect runs a select. It returns the index of the chosen case,
1799 // and if the case was a receive, the interface word of the received
1800 // value and the conventional OK bool to indicate whether the receive
1801 // corresponds to a sent value.
1802 func rselect([]runtimeSelect) (chosen int, recv iword, recvOK bool)
1804 // A SelectDir describes the communication direction of a select case.
1805 type SelectDir int
1807 // NOTE: These values must match ../runtime/chan.c:/SelectDir.
1809 const (
1810 _ SelectDir = iota
1811 SelectSend // case Chan <- Send
1812 SelectRecv // case <-Chan:
1813 SelectDefault // default
1816 // A SelectCase describes a single case in a select operation.
1817 // The kind of case depends on Dir, the communication direction.
1819 // If Dir is SelectDefault, the case represents a default case.
1820 // Chan and Send must be zero Values.
1822 // If Dir is SelectSend, the case represents a send operation.
1823 // Normally Chan's underlying value must be a channel, and Send's underlying value must be
1824 // assignable to the channel's element type. As a special case, if Chan is a zero Value,
1825 // then the case is ignored, and the field Send will also be ignored and may be either zero
1826 // or non-zero.
1828 // If Dir is SelectRecv, the case represents a receive operation.
1829 // Normally Chan's underlying value must be a channel and Send must be a zero Value.
1830 // If Chan is a zero Value, then the case is ignored, but Send must still be a zero Value.
1831 // When a receive operation is selected, the received Value is returned by Select.
1833 type SelectCase struct {
1834 Dir SelectDir // direction of case
1835 Chan Value // channel to use (for send or receive)
1836 Send Value // value to send (for send)
1839 // Select executes a select operation described by the list of cases.
1840 // Like the Go select statement, it blocks until at least one of the cases
1841 // can proceed, makes a uniform pseudo-random choice,
1842 // and then executes that case. It returns the index of the chosen case
1843 // and, if that case was a receive operation, the value received and a
1844 // boolean indicating whether the value corresponds to a send on the channel
1845 // (as opposed to a zero value received because the channel is closed).
1846 func Select(cases []SelectCase) (chosen int, recv Value, recvOK bool) {
1847 // NOTE: Do not trust that caller is not modifying cases data underfoot.
1848 // The range is safe because the caller cannot modify our copy of the len
1849 // and each iteration makes its own copy of the value c.
1850 runcases := make([]runtimeSelect, len(cases))
1851 haveDefault := false
1852 for i, c := range cases {
1853 rc := &runcases[i]
1854 rc.dir = uintptr(c.Dir)
1855 switch c.Dir {
1856 default:
1857 panic("reflect.Select: invalid Dir")
1859 case SelectDefault: // default
1860 if haveDefault {
1861 panic("reflect.Select: multiple default cases")
1863 haveDefault = true
1864 if c.Chan.IsValid() {
1865 panic("reflect.Select: default case has Chan value")
1867 if c.Send.IsValid() {
1868 panic("reflect.Select: default case has Send value")
1871 case SelectSend:
1872 ch := c.Chan
1873 if !ch.IsValid() {
1874 break
1876 ch.mustBe(Chan)
1877 ch.mustBeExported()
1878 tt := (*chanType)(unsafe.Pointer(ch.typ))
1879 if ChanDir(tt.dir)&SendDir == 0 {
1880 panic("reflect.Select: SendDir case using recv-only channel")
1882 rc.ch = *(*iword)(ch.iword())
1883 rc.typ = &tt.rtype
1884 v := c.Send
1885 if !v.IsValid() {
1886 panic("reflect.Select: SendDir case missing Send value")
1888 v.mustBeExported()
1889 v = v.assignTo("reflect.Select", tt.elem, nil)
1890 rc.val = v.iword()
1892 case SelectRecv:
1893 if c.Send.IsValid() {
1894 panic("reflect.Select: RecvDir case has Send value")
1896 ch := c.Chan
1897 if !ch.IsValid() {
1898 break
1900 ch.mustBe(Chan)
1901 ch.mustBeExported()
1902 tt := (*chanType)(unsafe.Pointer(ch.typ))
1903 rc.typ = &tt.rtype
1904 if ChanDir(tt.dir)&RecvDir == 0 {
1905 panic("reflect.Select: RecvDir case using send-only channel")
1907 rc.ch = *(*iword)(ch.iword())
1911 chosen, word, recvOK := rselect(runcases)
1912 if runcases[chosen].dir == uintptr(SelectRecv) {
1913 tt := (*chanType)(unsafe.Pointer(runcases[chosen].typ))
1914 typ := tt.elem
1915 fl := flag(typ.Kind()) << flagKindShift
1916 if typ.Kind() != Ptr && typ.Kind() != UnsafePointer {
1917 fl |= flagIndir
1919 recv = Value{typ, unsafe.Pointer(word), fl}
1921 return chosen, recv, recvOK
1925 * constructors
1928 // implemented in package runtime
1929 func unsafe_New(*rtype) unsafe.Pointer
1930 func unsafe_NewArray(*rtype, int) unsafe.Pointer
1932 // MakeSlice creates a new zero-initialized slice value
1933 // for the specified slice type, length, and capacity.
1934 func MakeSlice(typ Type, len, cap int) Value {
1935 if typ.Kind() != Slice {
1936 panic("reflect.MakeSlice of non-slice type")
1938 if len < 0 {
1939 panic("reflect.MakeSlice: negative len")
1941 if cap < 0 {
1942 panic("reflect.MakeSlice: negative cap")
1944 if len > cap {
1945 panic("reflect.MakeSlice: len > cap")
1948 // Declare slice so that gc can see the base pointer in it.
1949 var x []unsafe.Pointer
1951 // Reinterpret as *SliceHeader to edit.
1952 s := (*SliceHeader)(unsafe.Pointer(&x))
1953 s.Data = uintptr(unsafe_NewArray(typ.Elem().(*rtype), cap))
1954 s.Len = len
1955 s.Cap = cap
1957 return Value{typ.common(), unsafe.Pointer(&x), flagIndir | flag(Slice)<<flagKindShift}
1960 // MakeChan creates a new channel with the specified type and buffer size.
1961 func MakeChan(typ Type, buffer int) Value {
1962 if typ.Kind() != Chan {
1963 panic("reflect.MakeChan of non-chan type")
1965 if buffer < 0 {
1966 panic("reflect.MakeChan: negative buffer size")
1968 if typ.ChanDir() != BothDir {
1969 panic("reflect.MakeChan: unidirectional channel type")
1971 ch := makechan(typ.(*rtype), uint64(buffer))
1972 return Value{typ.common(), unsafe.Pointer(ch), flagIndir | (flag(Chan) << flagKindShift)}
1975 // MakeMap creates a new map of the specified type.
1976 func MakeMap(typ Type) Value {
1977 if typ.Kind() != Map {
1978 panic("reflect.MakeMap of non-map type")
1980 m := makemap(typ.(*rtype))
1981 return Value{typ.common(), unsafe.Pointer(m), flagIndir | (flag(Map) << flagKindShift)}
1984 // Indirect returns the value that v points to.
1985 // If v is a nil pointer, Indirect returns a zero Value.
1986 // If v is not a pointer, Indirect returns v.
1987 func Indirect(v Value) Value {
1988 if v.Kind() != Ptr {
1989 return v
1991 return v.Elem()
1994 // ValueOf returns a new Value initialized to the concrete value
1995 // stored in the interface i. ValueOf(nil) returns the zero Value.
1996 func ValueOf(i interface{}) Value {
1997 if i == nil {
1998 return Value{}
2001 // TODO(rsc): Eliminate this terrible hack.
2002 // In the call to packValue, eface.typ doesn't escape,
2003 // and eface.word is an integer. So it looks like
2004 // i (= eface) doesn't escape. But really it does,
2005 // because eface.word is actually a pointer.
2006 escapes(i)
2008 // For an interface value with the noAddr bit set,
2009 // the representation is identical to an empty interface.
2010 eface := *(*emptyInterface)(unsafe.Pointer(&i))
2011 typ := eface.typ
2012 fl := flag(typ.Kind()) << flagKindShift
2013 if typ.Kind() != Ptr && typ.Kind() != UnsafePointer {
2014 fl |= flagIndir
2016 return Value{typ, unsafe.Pointer(eface.word), fl}
2019 // Zero returns a Value representing the zero value for the specified type.
2020 // The result is different from the zero value of the Value struct,
2021 // which represents no value at all.
2022 // For example, Zero(TypeOf(42)) returns a Value with Kind Int and value 0.
2023 // The returned value is neither addressable nor settable.
2024 func Zero(typ Type) Value {
2025 if typ == nil {
2026 panic("reflect: Zero(nil)")
2028 t := typ.common()
2029 fl := flag(t.Kind()) << flagKindShift
2030 if t.Kind() == Ptr || t.Kind() == UnsafePointer {
2031 return Value{t, nil, fl}
2033 return Value{t, unsafe_New(typ.(*rtype)), fl | flagIndir}
2036 // New returns a Value representing a pointer to a new zero value
2037 // for the specified type. That is, the returned Value's Type is PtrTo(t).
2038 func New(typ Type) Value {
2039 if typ == nil {
2040 panic("reflect: New(nil)")
2042 ptr := unsafe_New(typ.(*rtype))
2043 fl := flag(Ptr) << flagKindShift
2044 return Value{typ.common().ptrTo(), ptr, fl}
2047 // NewAt returns a Value representing a pointer to a value of the
2048 // specified type, using p as that pointer.
2049 func NewAt(typ Type, p unsafe.Pointer) Value {
2050 fl := flag(Ptr) << flagKindShift
2051 return Value{typ.common().ptrTo(), p, fl}
2054 // assignTo returns a value v that can be assigned directly to typ.
2055 // It panics if v is not assignable to typ.
2056 // For a conversion to an interface type, target is a suggested scratch space to use.
2057 func (v Value) assignTo(context string, dst *rtype, target *interface{}) Value {
2058 if v.flag&flagMethod != 0 {
2059 v = makeMethodValue(context, v)
2062 switch {
2063 case directlyAssignable(dst, v.typ):
2064 // Overwrite type so that they match.
2065 // Same memory layout, so no harm done.
2066 v.typ = dst
2067 fl := v.flag & (flagRO | flagAddr | flagIndir)
2068 fl |= flag(dst.Kind()) << flagKindShift
2069 return Value{dst, v.val, fl}
2071 case implements(dst, v.typ):
2072 if target == nil {
2073 target = new(interface{})
2075 x := valueInterface(v, false)
2076 if dst.NumMethod() == 0 {
2077 *target = x
2078 } else {
2079 ifaceE2I(dst, x, unsafe.Pointer(target))
2081 return Value{dst, unsafe.Pointer(target), flagIndir | flag(Interface)<<flagKindShift}
2084 // Failed.
2085 panic(context + ": value of type " + v.typ.String() + " is not assignable to type " + dst.String())
2088 // Convert returns the value v converted to type t.
2089 // If the usual Go conversion rules do not allow conversion
2090 // of the value v to type t, Convert panics.
2091 func (v Value) Convert(t Type) Value {
2092 if v.flag&flagMethod != 0 {
2093 v = makeMethodValue("Convert", v)
2095 op := convertOp(t.common(), v.typ)
2096 if op == nil {
2097 panic("reflect.Value.Convert: value of type " + v.typ.String() + " cannot be converted to type " + t.String())
2099 return op(v, t)
2102 // convertOp returns the function to convert a value of type src
2103 // to a value of type dst. If the conversion is illegal, convertOp returns nil.
2104 func convertOp(dst, src *rtype) func(Value, Type) Value {
2105 switch src.Kind() {
2106 case Int, Int8, Int16, Int32, Int64:
2107 switch dst.Kind() {
2108 case Int, Int8, Int16, Int32, Int64, Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
2109 return cvtInt
2110 case Float32, Float64:
2111 return cvtIntFloat
2112 case String:
2113 return cvtIntString
2116 case Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
2117 switch dst.Kind() {
2118 case Int, Int8, Int16, Int32, Int64, Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
2119 return cvtUint
2120 case Float32, Float64:
2121 return cvtUintFloat
2122 case String:
2123 return cvtUintString
2126 case Float32, Float64:
2127 switch dst.Kind() {
2128 case Int, Int8, Int16, Int32, Int64:
2129 return cvtFloatInt
2130 case Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
2131 return cvtFloatUint
2132 case Float32, Float64:
2133 return cvtFloat
2136 case Complex64, Complex128:
2137 switch dst.Kind() {
2138 case Complex64, Complex128:
2139 return cvtComplex
2142 case String:
2143 if dst.Kind() == Slice && dst.Elem().PkgPath() == "" {
2144 switch dst.Elem().Kind() {
2145 case Uint8:
2146 return cvtStringBytes
2147 case Int32:
2148 return cvtStringRunes
2152 case Slice:
2153 if dst.Kind() == String && src.Elem().PkgPath() == "" {
2154 switch src.Elem().Kind() {
2155 case Uint8:
2156 return cvtBytesString
2157 case Int32:
2158 return cvtRunesString
2163 // dst and src have same underlying type.
2164 if haveIdenticalUnderlyingType(dst, src) {
2165 return cvtDirect
2168 // dst and src are unnamed pointer types with same underlying base type.
2169 if dst.Kind() == Ptr && dst.Name() == "" &&
2170 src.Kind() == Ptr && src.Name() == "" &&
2171 haveIdenticalUnderlyingType(dst.Elem().common(), src.Elem().common()) {
2172 return cvtDirect
2175 if implements(dst, src) {
2176 if src.Kind() == Interface {
2177 return cvtI2I
2179 return cvtT2I
2182 return nil
2185 // makeInt returns a Value of type t equal to bits (possibly truncated),
2186 // where t is a signed or unsigned int type.
2187 func makeInt(f flag, bits uint64, t Type) Value {
2188 typ := t.common()
2189 if typ.size > ptrSize {
2190 // Assume ptrSize >= 4, so this must be uint64.
2191 ptr := unsafe_New(typ)
2192 *(*uint64)(unsafe.Pointer(ptr)) = bits
2193 return Value{typ, ptr, f | flagIndir | flag(typ.Kind())<<flagKindShift}
2195 var w iword
2196 switch typ.size {
2197 case 1:
2198 *(*uint8)(unsafe.Pointer(&w)) = uint8(bits)
2199 case 2:
2200 *(*uint16)(unsafe.Pointer(&w)) = uint16(bits)
2201 case 4:
2202 *(*uint32)(unsafe.Pointer(&w)) = uint32(bits)
2203 case 8:
2204 *(*uint64)(unsafe.Pointer(&w)) = uint64(bits)
2206 return Value{typ, unsafe.Pointer(&w), f | flag(typ.Kind())<<flagKindShift | flagIndir}
2209 // makeFloat returns a Value of type t equal to v (possibly truncated to float32),
2210 // where t is a float32 or float64 type.
2211 func makeFloat(f flag, v float64, t Type) Value {
2212 typ := t.common()
2213 if typ.size > ptrSize {
2214 // Assume ptrSize >= 4, so this must be float64.
2215 ptr := unsafe_New(typ)
2216 *(*float64)(unsafe.Pointer(ptr)) = v
2217 return Value{typ, ptr, f | flagIndir | flag(typ.Kind())<<flagKindShift}
2220 var w iword
2221 switch typ.size {
2222 case 4:
2223 *(*float32)(unsafe.Pointer(&w)) = float32(v)
2224 case 8:
2225 *(*float64)(unsafe.Pointer(&w)) = v
2227 return Value{typ, unsafe.Pointer(&w), f | flag(typ.Kind())<<flagKindShift | flagIndir}
2230 // makeComplex returns a Value of type t equal to v (possibly truncated to complex64),
2231 // where t is a complex64 or complex128 type.
2232 func makeComplex(f flag, v complex128, t Type) Value {
2233 typ := t.common()
2234 if typ.size > ptrSize {
2235 ptr := unsafe_New(typ)
2236 switch typ.size {
2237 case 8:
2238 *(*complex64)(unsafe.Pointer(ptr)) = complex64(v)
2239 case 16:
2240 *(*complex128)(unsafe.Pointer(ptr)) = v
2242 return Value{typ, ptr, f | flagIndir | flag(typ.Kind())<<flagKindShift}
2245 // Assume ptrSize <= 8 so this must be complex64.
2246 var w iword
2247 *(*complex64)(unsafe.Pointer(&w)) = complex64(v)
2248 return Value{typ, unsafe.Pointer(&w), f | flag(typ.Kind())<<flagKindShift | flagIndir}
2251 func makeString(f flag, v string, t Type) Value {
2252 ret := New(t).Elem()
2253 ret.SetString(v)
2254 ret.flag = ret.flag&^flagAddr | f | flagIndir
2255 return ret
2258 func makeBytes(f flag, v []byte, t Type) Value {
2259 ret := New(t).Elem()
2260 ret.SetBytes(v)
2261 ret.flag = ret.flag&^flagAddr | f | flagIndir
2262 return ret
2265 func makeRunes(f flag, v []rune, t Type) Value {
2266 ret := New(t).Elem()
2267 ret.setRunes(v)
2268 ret.flag = ret.flag&^flagAddr | f | flagIndir
2269 return ret
2272 // These conversion functions are returned by convertOp
2273 // for classes of conversions. For example, the first function, cvtInt,
2274 // takes any value v of signed int type and returns the value converted
2275 // to type t, where t is any signed or unsigned int type.
2277 // convertOp: intXX -> [u]intXX
2278 func cvtInt(v Value, t Type) Value {
2279 return makeInt(v.flag&flagRO, uint64(v.Int()), t)
2282 // convertOp: uintXX -> [u]intXX
2283 func cvtUint(v Value, t Type) Value {
2284 return makeInt(v.flag&flagRO, v.Uint(), t)
2287 // convertOp: floatXX -> intXX
2288 func cvtFloatInt(v Value, t Type) Value {
2289 return makeInt(v.flag&flagRO, uint64(int64(v.Float())), t)
2292 // convertOp: floatXX -> uintXX
2293 func cvtFloatUint(v Value, t Type) Value {
2294 return makeInt(v.flag&flagRO, uint64(v.Float()), t)
2297 // convertOp: intXX -> floatXX
2298 func cvtIntFloat(v Value, t Type) Value {
2299 return makeFloat(v.flag&flagRO, float64(v.Int()), t)
2302 // convertOp: uintXX -> floatXX
2303 func cvtUintFloat(v Value, t Type) Value {
2304 return makeFloat(v.flag&flagRO, float64(v.Uint()), t)
2307 // convertOp: floatXX -> floatXX
2308 func cvtFloat(v Value, t Type) Value {
2309 return makeFloat(v.flag&flagRO, v.Float(), t)
2312 // convertOp: complexXX -> complexXX
2313 func cvtComplex(v Value, t Type) Value {
2314 return makeComplex(v.flag&flagRO, v.Complex(), t)
2317 // convertOp: intXX -> string
2318 func cvtIntString(v Value, t Type) Value {
2319 return makeString(v.flag&flagRO, string(v.Int()), t)
2322 // convertOp: uintXX -> string
2323 func cvtUintString(v Value, t Type) Value {
2324 return makeString(v.flag&flagRO, string(v.Uint()), t)
2327 // convertOp: []byte -> string
2328 func cvtBytesString(v Value, t Type) Value {
2329 return makeString(v.flag&flagRO, string(v.Bytes()), t)
2332 // convertOp: string -> []byte
2333 func cvtStringBytes(v Value, t Type) Value {
2334 return makeBytes(v.flag&flagRO, []byte(v.String()), t)
2337 // convertOp: []rune -> string
2338 func cvtRunesString(v Value, t Type) Value {
2339 return makeString(v.flag&flagRO, string(v.runes()), t)
2342 // convertOp: string -> []rune
2343 func cvtStringRunes(v Value, t Type) Value {
2344 return makeRunes(v.flag&flagRO, []rune(v.String()), t)
2347 // convertOp: direct copy
2348 func cvtDirect(v Value, typ Type) Value {
2349 f := v.flag
2350 t := typ.common()
2351 val := v.val
2352 if f&flagAddr != 0 {
2353 // indirect, mutable word - make a copy
2354 ptr := unsafe_New(t)
2355 memmove(ptr, val, t.size)
2356 val = ptr
2357 f &^= flagAddr
2359 return Value{t, val, v.flag&flagRO | f}
2362 // convertOp: concrete -> interface
2363 func cvtT2I(v Value, typ Type) Value {
2364 target := new(interface{})
2365 x := valueInterface(v, false)
2366 if typ.NumMethod() == 0 {
2367 *target = x
2368 } else {
2369 ifaceE2I(typ.(*rtype), x, unsafe.Pointer(target))
2371 return Value{typ.common(), unsafe.Pointer(target), v.flag&flagRO | flagIndir | flag(Interface)<<flagKindShift}
2374 // convertOp: interface -> interface
2375 func cvtI2I(v Value, typ Type) Value {
2376 if v.IsNil() {
2377 ret := Zero(typ)
2378 ret.flag |= v.flag & flagRO
2379 return ret
2381 return cvtT2I(v.Elem(), typ)
2384 // implemented in ../pkg/runtime
2385 func chancap(ch iword) int
2386 func chanclose(ch iword)
2387 func chanlen(ch iword) int
2388 func chanrecv(t *rtype, ch iword, nb bool) (val iword, selected, received bool)
2389 func chansend(t *rtype, ch iword, val iword, nb bool) bool
2391 func makechan(typ *rtype, size uint64) (ch iword)
2392 func makemap(t *rtype) (m iword)
2393 func mapaccess(t *rtype, m iword, key iword) (val iword, ok bool)
2394 func mapassign(t *rtype, m iword, key, val iword, ok bool)
2395 func mapiterinit(t *rtype, m iword) *byte
2396 func mapiterkey(it *byte) (key iword, ok bool)
2397 func mapiternext(it *byte)
2398 func maplen(m iword) int
2400 func call(typ *rtype, fnaddr unsafe.Pointer, isInterface bool, isMethod bool, params *unsafe.Pointer, results *unsafe.Pointer)
2401 func ifaceE2I(t *rtype, src interface{}, dst unsafe.Pointer)
2403 // Dummy annotation marking that the value x escapes,
2404 // for use in cases where the reflect code is so clever that
2405 // the compiler cannot follow.
2406 func escapes(x interface{}) {
2407 if dummy.b {
2408 dummy.x = x
2412 var dummy struct {
2413 b bool
2414 x interface{}