Reverting merge from trunk
[official-gcc.git] / gcc / function.c
blobeddffdbb9555de7ed119295e8812cb11845af0cb
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file handles the generation of rtl code from tree structure
21 at the level of the function as a whole.
22 It creates the rtl expressions for parameters and auto variables
23 and has full responsibility for allocating stack slots.
25 `expand_function_start' is called at the beginning of a function,
26 before the function body is parsed, and `expand_function_end' is
27 called after parsing the body.
29 Call `assign_stack_local' to allocate a stack slot for a local variable.
30 This is usually done during the RTL generation for the function body,
31 but it can also be done in the reload pass when a pseudo-register does
32 not get a hard register. */
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "tm.h"
38 #include "rtl-error.h"
39 #include "tree.h"
40 #include "flags.h"
41 #include "except.h"
42 #include "function.h"
43 #include "expr.h"
44 #include "optabs.h"
45 #include "libfuncs.h"
46 #include "regs.h"
47 #include "hard-reg-set.h"
48 #include "insn-config.h"
49 #include "recog.h"
50 #include "output.h"
51 #include "basic-block.h"
52 #include "hashtab.h"
53 #include "ggc.h"
54 #include "tm_p.h"
55 #include "langhooks.h"
56 #include "target.h"
57 #include "common/common-target.h"
58 #include "gimple.h"
59 #include "gimplify.h"
60 #include "tree-pass.h"
61 #include "predict.h"
62 #include "df.h"
63 #include "params.h"
64 #include "bb-reorder.h"
66 /* So we can assign to cfun in this file. */
67 #undef cfun
69 #ifndef STACK_ALIGNMENT_NEEDED
70 #define STACK_ALIGNMENT_NEEDED 1
71 #endif
73 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
75 /* Round a value to the lowest integer less than it that is a multiple of
76 the required alignment. Avoid using division in case the value is
77 negative. Assume the alignment is a power of two. */
78 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
80 /* Similar, but round to the next highest integer that meets the
81 alignment. */
82 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
84 /* Nonzero once virtual register instantiation has been done.
85 assign_stack_local uses frame_pointer_rtx when this is nonzero.
86 calls.c:emit_library_call_value_1 uses it to set up
87 post-instantiation libcalls. */
88 int virtuals_instantiated;
90 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
91 static GTY(()) int funcdef_no;
93 /* These variables hold pointers to functions to create and destroy
94 target specific, per-function data structures. */
95 struct machine_function * (*init_machine_status) (void);
97 /* The currently compiled function. */
98 struct function *cfun = 0;
100 /* These hashes record the prologue and epilogue insns. */
101 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
102 htab_t prologue_insn_hash;
103 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
104 htab_t epilogue_insn_hash;
107 htab_t types_used_by_vars_hash = NULL;
108 vec<tree, va_gc> *types_used_by_cur_var_decl;
110 /* Forward declarations. */
112 static struct temp_slot *find_temp_slot_from_address (rtx);
113 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
114 static void pad_below (struct args_size *, enum machine_mode, tree);
115 static void reorder_blocks_1 (rtx, tree, vec<tree> *);
116 static int all_blocks (tree, tree *);
117 static tree *get_block_vector (tree, int *);
118 extern tree debug_find_var_in_block_tree (tree, tree);
119 /* We always define `record_insns' even if it's not used so that we
120 can always export `prologue_epilogue_contains'. */
121 static void record_insns (rtx, rtx, htab_t *) ATTRIBUTE_UNUSED;
122 static bool contains (const_rtx, htab_t);
123 static void prepare_function_start (void);
124 static void do_clobber_return_reg (rtx, void *);
125 static void do_use_return_reg (rtx, void *);
127 /* Stack of nested functions. */
128 /* Keep track of the cfun stack. */
130 typedef struct function *function_p;
132 static vec<function_p> function_context_stack;
134 /* Save the current context for compilation of a nested function.
135 This is called from language-specific code. */
137 void
138 push_function_context (void)
140 if (cfun == 0)
141 allocate_struct_function (NULL, false);
143 function_context_stack.safe_push (cfun);
144 set_cfun (NULL);
147 /* Restore the last saved context, at the end of a nested function.
148 This function is called from language-specific code. */
150 void
151 pop_function_context (void)
153 struct function *p = function_context_stack.pop ();
154 set_cfun (p);
155 current_function_decl = p->decl;
157 /* Reset variables that have known state during rtx generation. */
158 virtuals_instantiated = 0;
159 generating_concat_p = 1;
162 /* Clear out all parts of the state in F that can safely be discarded
163 after the function has been parsed, but not compiled, to let
164 garbage collection reclaim the memory. */
166 void
167 free_after_parsing (struct function *f)
169 f->language = 0;
172 /* Clear out all parts of the state in F that can safely be discarded
173 after the function has been compiled, to let garbage collection
174 reclaim the memory. */
176 void
177 free_after_compilation (struct function *f)
179 prologue_insn_hash = NULL;
180 epilogue_insn_hash = NULL;
182 free (crtl->emit.regno_pointer_align);
184 memset (crtl, 0, sizeof (struct rtl_data));
185 f->eh = NULL;
186 f->machine = NULL;
187 f->cfg = NULL;
189 regno_reg_rtx = NULL;
192 /* Return size needed for stack frame based on slots so far allocated.
193 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
194 the caller may have to do that. */
196 HOST_WIDE_INT
197 get_frame_size (void)
199 if (FRAME_GROWS_DOWNWARD)
200 return -frame_offset;
201 else
202 return frame_offset;
205 /* Issue an error message and return TRUE if frame OFFSET overflows in
206 the signed target pointer arithmetics for function FUNC. Otherwise
207 return FALSE. */
209 bool
210 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
212 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
214 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
215 /* Leave room for the fixed part of the frame. */
216 - 64 * UNITS_PER_WORD)
218 error_at (DECL_SOURCE_LOCATION (func),
219 "total size of local objects too large");
220 return TRUE;
223 return FALSE;
226 /* Return stack slot alignment in bits for TYPE and MODE. */
228 static unsigned int
229 get_stack_local_alignment (tree type, enum machine_mode mode)
231 unsigned int alignment;
233 if (mode == BLKmode)
234 alignment = BIGGEST_ALIGNMENT;
235 else
236 alignment = GET_MODE_ALIGNMENT (mode);
238 /* Allow the frond-end to (possibly) increase the alignment of this
239 stack slot. */
240 if (! type)
241 type = lang_hooks.types.type_for_mode (mode, 0);
243 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
246 /* Determine whether it is possible to fit a stack slot of size SIZE and
247 alignment ALIGNMENT into an area in the stack frame that starts at
248 frame offset START and has a length of LENGTH. If so, store the frame
249 offset to be used for the stack slot in *POFFSET and return true;
250 return false otherwise. This function will extend the frame size when
251 given a start/length pair that lies at the end of the frame. */
253 static bool
254 try_fit_stack_local (HOST_WIDE_INT start, HOST_WIDE_INT length,
255 HOST_WIDE_INT size, unsigned int alignment,
256 HOST_WIDE_INT *poffset)
258 HOST_WIDE_INT this_frame_offset;
259 int frame_off, frame_alignment, frame_phase;
261 /* Calculate how many bytes the start of local variables is off from
262 stack alignment. */
263 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
264 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
265 frame_phase = frame_off ? frame_alignment - frame_off : 0;
267 /* Round the frame offset to the specified alignment. */
269 /* We must be careful here, since FRAME_OFFSET might be negative and
270 division with a negative dividend isn't as well defined as we might
271 like. So we instead assume that ALIGNMENT is a power of two and
272 use logical operations which are unambiguous. */
273 if (FRAME_GROWS_DOWNWARD)
274 this_frame_offset
275 = (FLOOR_ROUND (start + length - size - frame_phase,
276 (unsigned HOST_WIDE_INT) alignment)
277 + frame_phase);
278 else
279 this_frame_offset
280 = (CEIL_ROUND (start - frame_phase,
281 (unsigned HOST_WIDE_INT) alignment)
282 + frame_phase);
284 /* See if it fits. If this space is at the edge of the frame,
285 consider extending the frame to make it fit. Our caller relies on
286 this when allocating a new slot. */
287 if (frame_offset == start && this_frame_offset < frame_offset)
288 frame_offset = this_frame_offset;
289 else if (this_frame_offset < start)
290 return false;
291 else if (start + length == frame_offset
292 && this_frame_offset + size > start + length)
293 frame_offset = this_frame_offset + size;
294 else if (this_frame_offset + size > start + length)
295 return false;
297 *poffset = this_frame_offset;
298 return true;
301 /* Create a new frame_space structure describing free space in the stack
302 frame beginning at START and ending at END, and chain it into the
303 function's frame_space_list. */
305 static void
306 add_frame_space (HOST_WIDE_INT start, HOST_WIDE_INT end)
308 struct frame_space *space = ggc_alloc_frame_space ();
309 space->next = crtl->frame_space_list;
310 crtl->frame_space_list = space;
311 space->start = start;
312 space->length = end - start;
315 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
316 with machine mode MODE.
318 ALIGN controls the amount of alignment for the address of the slot:
319 0 means according to MODE,
320 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
321 -2 means use BITS_PER_UNIT,
322 positive specifies alignment boundary in bits.
324 KIND has ASLK_REDUCE_ALIGN bit set if it is OK to reduce
325 alignment and ASLK_RECORD_PAD bit set if we should remember
326 extra space we allocated for alignment purposes. When we are
327 called from assign_stack_temp_for_type, it is not set so we don't
328 track the same stack slot in two independent lists.
330 We do not round to stack_boundary here. */
333 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size,
334 int align, int kind)
336 rtx x, addr;
337 int bigend_correction = 0;
338 HOST_WIDE_INT slot_offset = 0, old_frame_offset;
339 unsigned int alignment, alignment_in_bits;
341 if (align == 0)
343 alignment = get_stack_local_alignment (NULL, mode);
344 alignment /= BITS_PER_UNIT;
346 else if (align == -1)
348 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
349 size = CEIL_ROUND (size, alignment);
351 else if (align == -2)
352 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
353 else
354 alignment = align / BITS_PER_UNIT;
356 alignment_in_bits = alignment * BITS_PER_UNIT;
358 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
359 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
361 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
362 alignment = alignment_in_bits / BITS_PER_UNIT;
365 if (SUPPORTS_STACK_ALIGNMENT)
367 if (crtl->stack_alignment_estimated < alignment_in_bits)
369 if (!crtl->stack_realign_processed)
370 crtl->stack_alignment_estimated = alignment_in_bits;
371 else
373 /* If stack is realigned and stack alignment value
374 hasn't been finalized, it is OK not to increase
375 stack_alignment_estimated. The bigger alignment
376 requirement is recorded in stack_alignment_needed
377 below. */
378 gcc_assert (!crtl->stack_realign_finalized);
379 if (!crtl->stack_realign_needed)
381 /* It is OK to reduce the alignment as long as the
382 requested size is 0 or the estimated stack
383 alignment >= mode alignment. */
384 gcc_assert ((kind & ASLK_REDUCE_ALIGN)
385 || size == 0
386 || (crtl->stack_alignment_estimated
387 >= GET_MODE_ALIGNMENT (mode)));
388 alignment_in_bits = crtl->stack_alignment_estimated;
389 alignment = alignment_in_bits / BITS_PER_UNIT;
395 if (crtl->stack_alignment_needed < alignment_in_bits)
396 crtl->stack_alignment_needed = alignment_in_bits;
397 if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
398 crtl->max_used_stack_slot_alignment = alignment_in_bits;
400 if (mode != BLKmode || size != 0)
402 if (kind & ASLK_RECORD_PAD)
404 struct frame_space **psp;
406 for (psp = &crtl->frame_space_list; *psp; psp = &(*psp)->next)
408 struct frame_space *space = *psp;
409 if (!try_fit_stack_local (space->start, space->length, size,
410 alignment, &slot_offset))
411 continue;
412 *psp = space->next;
413 if (slot_offset > space->start)
414 add_frame_space (space->start, slot_offset);
415 if (slot_offset + size < space->start + space->length)
416 add_frame_space (slot_offset + size,
417 space->start + space->length);
418 goto found_space;
422 else if (!STACK_ALIGNMENT_NEEDED)
424 slot_offset = frame_offset;
425 goto found_space;
428 old_frame_offset = frame_offset;
430 if (FRAME_GROWS_DOWNWARD)
432 frame_offset -= size;
433 try_fit_stack_local (frame_offset, size, size, alignment, &slot_offset);
435 if (kind & ASLK_RECORD_PAD)
437 if (slot_offset > frame_offset)
438 add_frame_space (frame_offset, slot_offset);
439 if (slot_offset + size < old_frame_offset)
440 add_frame_space (slot_offset + size, old_frame_offset);
443 else
445 frame_offset += size;
446 try_fit_stack_local (old_frame_offset, size, size, alignment, &slot_offset);
448 if (kind & ASLK_RECORD_PAD)
450 if (slot_offset > old_frame_offset)
451 add_frame_space (old_frame_offset, slot_offset);
452 if (slot_offset + size < frame_offset)
453 add_frame_space (slot_offset + size, frame_offset);
457 found_space:
458 /* On a big-endian machine, if we are allocating more space than we will use,
459 use the least significant bytes of those that are allocated. */
460 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
461 bigend_correction = size - GET_MODE_SIZE (mode);
463 /* If we have already instantiated virtual registers, return the actual
464 address relative to the frame pointer. */
465 if (virtuals_instantiated)
466 addr = plus_constant (Pmode, frame_pointer_rtx,
467 trunc_int_for_mode
468 (slot_offset + bigend_correction
469 + STARTING_FRAME_OFFSET, Pmode));
470 else
471 addr = plus_constant (Pmode, virtual_stack_vars_rtx,
472 trunc_int_for_mode
473 (slot_offset + bigend_correction,
474 Pmode));
476 x = gen_rtx_MEM (mode, addr);
477 set_mem_align (x, alignment_in_bits);
478 MEM_NOTRAP_P (x) = 1;
480 stack_slot_list
481 = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list);
483 if (frame_offset_overflow (frame_offset, current_function_decl))
484 frame_offset = 0;
486 return x;
489 /* Wrap up assign_stack_local_1 with last parameter as false. */
492 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
494 return assign_stack_local_1 (mode, size, align, ASLK_RECORD_PAD);
497 /* In order to evaluate some expressions, such as function calls returning
498 structures in memory, we need to temporarily allocate stack locations.
499 We record each allocated temporary in the following structure.
501 Associated with each temporary slot is a nesting level. When we pop up
502 one level, all temporaries associated with the previous level are freed.
503 Normally, all temporaries are freed after the execution of the statement
504 in which they were created. However, if we are inside a ({...}) grouping,
505 the result may be in a temporary and hence must be preserved. If the
506 result could be in a temporary, we preserve it if we can determine which
507 one it is in. If we cannot determine which temporary may contain the
508 result, all temporaries are preserved. A temporary is preserved by
509 pretending it was allocated at the previous nesting level. */
511 struct GTY(()) temp_slot {
512 /* Points to next temporary slot. */
513 struct temp_slot *next;
514 /* Points to previous temporary slot. */
515 struct temp_slot *prev;
516 /* The rtx to used to reference the slot. */
517 rtx slot;
518 /* The size, in units, of the slot. */
519 HOST_WIDE_INT size;
520 /* The type of the object in the slot, or zero if it doesn't correspond
521 to a type. We use this to determine whether a slot can be reused.
522 It can be reused if objects of the type of the new slot will always
523 conflict with objects of the type of the old slot. */
524 tree type;
525 /* The alignment (in bits) of the slot. */
526 unsigned int align;
527 /* Nonzero if this temporary is currently in use. */
528 char in_use;
529 /* Nesting level at which this slot is being used. */
530 int level;
531 /* The offset of the slot from the frame_pointer, including extra space
532 for alignment. This info is for combine_temp_slots. */
533 HOST_WIDE_INT base_offset;
534 /* The size of the slot, including extra space for alignment. This
535 info is for combine_temp_slots. */
536 HOST_WIDE_INT full_size;
539 /* A table of addresses that represent a stack slot. The table is a mapping
540 from address RTXen to a temp slot. */
541 static GTY((param_is(struct temp_slot_address_entry))) htab_t temp_slot_address_table;
542 static size_t n_temp_slots_in_use;
544 /* Entry for the above hash table. */
545 struct GTY(()) temp_slot_address_entry {
546 hashval_t hash;
547 rtx address;
548 struct temp_slot *temp_slot;
551 /* Removes temporary slot TEMP from LIST. */
553 static void
554 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
556 if (temp->next)
557 temp->next->prev = temp->prev;
558 if (temp->prev)
559 temp->prev->next = temp->next;
560 else
561 *list = temp->next;
563 temp->prev = temp->next = NULL;
566 /* Inserts temporary slot TEMP to LIST. */
568 static void
569 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
571 temp->next = *list;
572 if (*list)
573 (*list)->prev = temp;
574 temp->prev = NULL;
575 *list = temp;
578 /* Returns the list of used temp slots at LEVEL. */
580 static struct temp_slot **
581 temp_slots_at_level (int level)
583 if (level >= (int) vec_safe_length (used_temp_slots))
584 vec_safe_grow_cleared (used_temp_slots, level + 1);
586 return &(*used_temp_slots)[level];
589 /* Returns the maximal temporary slot level. */
591 static int
592 max_slot_level (void)
594 if (!used_temp_slots)
595 return -1;
597 return used_temp_slots->length () - 1;
600 /* Moves temporary slot TEMP to LEVEL. */
602 static void
603 move_slot_to_level (struct temp_slot *temp, int level)
605 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
606 insert_slot_to_list (temp, temp_slots_at_level (level));
607 temp->level = level;
610 /* Make temporary slot TEMP available. */
612 static void
613 make_slot_available (struct temp_slot *temp)
615 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
616 insert_slot_to_list (temp, &avail_temp_slots);
617 temp->in_use = 0;
618 temp->level = -1;
619 n_temp_slots_in_use--;
622 /* Compute the hash value for an address -> temp slot mapping.
623 The value is cached on the mapping entry. */
624 static hashval_t
625 temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
627 int do_not_record = 0;
628 return hash_rtx (t->address, GET_MODE (t->address),
629 &do_not_record, NULL, false);
632 /* Return the hash value for an address -> temp slot mapping. */
633 static hashval_t
634 temp_slot_address_hash (const void *p)
636 const struct temp_slot_address_entry *t;
637 t = (const struct temp_slot_address_entry *) p;
638 return t->hash;
641 /* Compare two address -> temp slot mapping entries. */
642 static int
643 temp_slot_address_eq (const void *p1, const void *p2)
645 const struct temp_slot_address_entry *t1, *t2;
646 t1 = (const struct temp_slot_address_entry *) p1;
647 t2 = (const struct temp_slot_address_entry *) p2;
648 return exp_equiv_p (t1->address, t2->address, 0, true);
651 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
652 static void
653 insert_temp_slot_address (rtx address, struct temp_slot *temp_slot)
655 void **slot;
656 struct temp_slot_address_entry *t = ggc_alloc_temp_slot_address_entry ();
657 t->address = address;
658 t->temp_slot = temp_slot;
659 t->hash = temp_slot_address_compute_hash (t);
660 slot = htab_find_slot_with_hash (temp_slot_address_table, t, t->hash, INSERT);
661 *slot = t;
664 /* Remove an address -> temp slot mapping entry if the temp slot is
665 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
666 static int
667 remove_unused_temp_slot_addresses_1 (void **slot, void *data ATTRIBUTE_UNUSED)
669 const struct temp_slot_address_entry *t;
670 t = (const struct temp_slot_address_entry *) *slot;
671 if (! t->temp_slot->in_use)
672 htab_clear_slot (temp_slot_address_table, slot);
673 return 1;
676 /* Remove all mappings of addresses to unused temp slots. */
677 static void
678 remove_unused_temp_slot_addresses (void)
680 /* Use quicker clearing if there aren't any active temp slots. */
681 if (n_temp_slots_in_use)
682 htab_traverse (temp_slot_address_table,
683 remove_unused_temp_slot_addresses_1,
684 NULL);
685 else
686 htab_empty (temp_slot_address_table);
689 /* Find the temp slot corresponding to the object at address X. */
691 static struct temp_slot *
692 find_temp_slot_from_address (rtx x)
694 struct temp_slot *p;
695 struct temp_slot_address_entry tmp, *t;
697 /* First try the easy way:
698 See if X exists in the address -> temp slot mapping. */
699 tmp.address = x;
700 tmp.temp_slot = NULL;
701 tmp.hash = temp_slot_address_compute_hash (&tmp);
702 t = (struct temp_slot_address_entry *)
703 htab_find_with_hash (temp_slot_address_table, &tmp, tmp.hash);
704 if (t)
705 return t->temp_slot;
707 /* If we have a sum involving a register, see if it points to a temp
708 slot. */
709 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
710 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
711 return p;
712 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
713 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
714 return p;
716 /* Last resort: Address is a virtual stack var address. */
717 if (GET_CODE (x) == PLUS
718 && XEXP (x, 0) == virtual_stack_vars_rtx
719 && CONST_INT_P (XEXP (x, 1)))
721 int i;
722 for (i = max_slot_level (); i >= 0; i--)
723 for (p = *temp_slots_at_level (i); p; p = p->next)
725 if (INTVAL (XEXP (x, 1)) >= p->base_offset
726 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size)
727 return p;
731 return NULL;
734 /* Allocate a temporary stack slot and record it for possible later
735 reuse.
737 MODE is the machine mode to be given to the returned rtx.
739 SIZE is the size in units of the space required. We do no rounding here
740 since assign_stack_local will do any required rounding.
742 TYPE is the type that will be used for the stack slot. */
745 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
746 tree type)
748 unsigned int align;
749 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
750 rtx slot;
752 /* If SIZE is -1 it means that somebody tried to allocate a temporary
753 of a variable size. */
754 gcc_assert (size != -1);
756 align = get_stack_local_alignment (type, mode);
758 /* Try to find an available, already-allocated temporary of the proper
759 mode which meets the size and alignment requirements. Choose the
760 smallest one with the closest alignment.
762 If assign_stack_temp is called outside of the tree->rtl expansion,
763 we cannot reuse the stack slots (that may still refer to
764 VIRTUAL_STACK_VARS_REGNUM). */
765 if (!virtuals_instantiated)
767 for (p = avail_temp_slots; p; p = p->next)
769 if (p->align >= align && p->size >= size
770 && GET_MODE (p->slot) == mode
771 && objects_must_conflict_p (p->type, type)
772 && (best_p == 0 || best_p->size > p->size
773 || (best_p->size == p->size && best_p->align > p->align)))
775 if (p->align == align && p->size == size)
777 selected = p;
778 cut_slot_from_list (selected, &avail_temp_slots);
779 best_p = 0;
780 break;
782 best_p = p;
787 /* Make our best, if any, the one to use. */
788 if (best_p)
790 selected = best_p;
791 cut_slot_from_list (selected, &avail_temp_slots);
793 /* If there are enough aligned bytes left over, make them into a new
794 temp_slot so that the extra bytes don't get wasted. Do this only
795 for BLKmode slots, so that we can be sure of the alignment. */
796 if (GET_MODE (best_p->slot) == BLKmode)
798 int alignment = best_p->align / BITS_PER_UNIT;
799 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
801 if (best_p->size - rounded_size >= alignment)
803 p = ggc_alloc_temp_slot ();
804 p->in_use = 0;
805 p->size = best_p->size - rounded_size;
806 p->base_offset = best_p->base_offset + rounded_size;
807 p->full_size = best_p->full_size - rounded_size;
808 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
809 p->align = best_p->align;
810 p->type = best_p->type;
811 insert_slot_to_list (p, &avail_temp_slots);
813 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
814 stack_slot_list);
816 best_p->size = rounded_size;
817 best_p->full_size = rounded_size;
822 /* If we still didn't find one, make a new temporary. */
823 if (selected == 0)
825 HOST_WIDE_INT frame_offset_old = frame_offset;
827 p = ggc_alloc_temp_slot ();
829 /* We are passing an explicit alignment request to assign_stack_local.
830 One side effect of that is assign_stack_local will not round SIZE
831 to ensure the frame offset remains suitably aligned.
833 So for requests which depended on the rounding of SIZE, we go ahead
834 and round it now. We also make sure ALIGNMENT is at least
835 BIGGEST_ALIGNMENT. */
836 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
837 p->slot = assign_stack_local_1 (mode,
838 (mode == BLKmode
839 ? CEIL_ROUND (size,
840 (int) align
841 / BITS_PER_UNIT)
842 : size),
843 align, 0);
845 p->align = align;
847 /* The following slot size computation is necessary because we don't
848 know the actual size of the temporary slot until assign_stack_local
849 has performed all the frame alignment and size rounding for the
850 requested temporary. Note that extra space added for alignment
851 can be either above or below this stack slot depending on which
852 way the frame grows. We include the extra space if and only if it
853 is above this slot. */
854 if (FRAME_GROWS_DOWNWARD)
855 p->size = frame_offset_old - frame_offset;
856 else
857 p->size = size;
859 /* Now define the fields used by combine_temp_slots. */
860 if (FRAME_GROWS_DOWNWARD)
862 p->base_offset = frame_offset;
863 p->full_size = frame_offset_old - frame_offset;
865 else
867 p->base_offset = frame_offset_old;
868 p->full_size = frame_offset - frame_offset_old;
871 selected = p;
874 p = selected;
875 p->in_use = 1;
876 p->type = type;
877 p->level = temp_slot_level;
878 n_temp_slots_in_use++;
880 pp = temp_slots_at_level (p->level);
881 insert_slot_to_list (p, pp);
882 insert_temp_slot_address (XEXP (p->slot, 0), p);
884 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
885 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
886 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
888 /* If we know the alias set for the memory that will be used, use
889 it. If there's no TYPE, then we don't know anything about the
890 alias set for the memory. */
891 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
892 set_mem_align (slot, align);
894 /* If a type is specified, set the relevant flags. */
895 if (type != 0)
896 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
897 MEM_NOTRAP_P (slot) = 1;
899 return slot;
902 /* Allocate a temporary stack slot and record it for possible later
903 reuse. First two arguments are same as in preceding function. */
906 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size)
908 return assign_stack_temp_for_type (mode, size, NULL_TREE);
911 /* Assign a temporary.
912 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
913 and so that should be used in error messages. In either case, we
914 allocate of the given type.
915 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
916 it is 0 if a register is OK.
917 DONT_PROMOTE is 1 if we should not promote values in register
918 to wider modes. */
921 assign_temp (tree type_or_decl, int memory_required,
922 int dont_promote ATTRIBUTE_UNUSED)
924 tree type, decl;
925 enum machine_mode mode;
926 #ifdef PROMOTE_MODE
927 int unsignedp;
928 #endif
930 if (DECL_P (type_or_decl))
931 decl = type_or_decl, type = TREE_TYPE (decl);
932 else
933 decl = NULL, type = type_or_decl;
935 mode = TYPE_MODE (type);
936 #ifdef PROMOTE_MODE
937 unsignedp = TYPE_UNSIGNED (type);
938 #endif
940 if (mode == BLKmode || memory_required)
942 HOST_WIDE_INT size = int_size_in_bytes (type);
943 rtx tmp;
945 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
946 problems with allocating the stack space. */
947 if (size == 0)
948 size = 1;
950 /* Unfortunately, we don't yet know how to allocate variable-sized
951 temporaries. However, sometimes we can find a fixed upper limit on
952 the size, so try that instead. */
953 else if (size == -1)
954 size = max_int_size_in_bytes (type);
956 /* The size of the temporary may be too large to fit into an integer. */
957 /* ??? Not sure this should happen except for user silliness, so limit
958 this to things that aren't compiler-generated temporaries. The
959 rest of the time we'll die in assign_stack_temp_for_type. */
960 if (decl && size == -1
961 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
963 error ("size of variable %q+D is too large", decl);
964 size = 1;
967 tmp = assign_stack_temp_for_type (mode, size, type);
968 return tmp;
971 #ifdef PROMOTE_MODE
972 if (! dont_promote)
973 mode = promote_mode (type, mode, &unsignedp);
974 #endif
976 return gen_reg_rtx (mode);
979 /* Combine temporary stack slots which are adjacent on the stack.
981 This allows for better use of already allocated stack space. This is only
982 done for BLKmode slots because we can be sure that we won't have alignment
983 problems in this case. */
985 static void
986 combine_temp_slots (void)
988 struct temp_slot *p, *q, *next, *next_q;
989 int num_slots;
991 /* We can't combine slots, because the information about which slot
992 is in which alias set will be lost. */
993 if (flag_strict_aliasing)
994 return;
996 /* If there are a lot of temp slots, don't do anything unless
997 high levels of optimization. */
998 if (! flag_expensive_optimizations)
999 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
1000 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
1001 return;
1003 for (p = avail_temp_slots; p; p = next)
1005 int delete_p = 0;
1007 next = p->next;
1009 if (GET_MODE (p->slot) != BLKmode)
1010 continue;
1012 for (q = p->next; q; q = next_q)
1014 int delete_q = 0;
1016 next_q = q->next;
1018 if (GET_MODE (q->slot) != BLKmode)
1019 continue;
1021 if (p->base_offset + p->full_size == q->base_offset)
1023 /* Q comes after P; combine Q into P. */
1024 p->size += q->size;
1025 p->full_size += q->full_size;
1026 delete_q = 1;
1028 else if (q->base_offset + q->full_size == p->base_offset)
1030 /* P comes after Q; combine P into Q. */
1031 q->size += p->size;
1032 q->full_size += p->full_size;
1033 delete_p = 1;
1034 break;
1036 if (delete_q)
1037 cut_slot_from_list (q, &avail_temp_slots);
1040 /* Either delete P or advance past it. */
1041 if (delete_p)
1042 cut_slot_from_list (p, &avail_temp_slots);
1046 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1047 slot that previously was known by OLD_RTX. */
1049 void
1050 update_temp_slot_address (rtx old_rtx, rtx new_rtx)
1052 struct temp_slot *p;
1054 if (rtx_equal_p (old_rtx, new_rtx))
1055 return;
1057 p = find_temp_slot_from_address (old_rtx);
1059 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1060 NEW_RTX is a register, see if one operand of the PLUS is a
1061 temporary location. If so, NEW_RTX points into it. Otherwise,
1062 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1063 in common between them. If so, try a recursive call on those
1064 values. */
1065 if (p == 0)
1067 if (GET_CODE (old_rtx) != PLUS)
1068 return;
1070 if (REG_P (new_rtx))
1072 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1073 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
1074 return;
1076 else if (GET_CODE (new_rtx) != PLUS)
1077 return;
1079 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1080 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1081 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1082 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1083 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1084 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1085 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1086 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
1088 return;
1091 /* Otherwise add an alias for the temp's address. */
1092 insert_temp_slot_address (new_rtx, p);
1095 /* If X could be a reference to a temporary slot, mark that slot as
1096 belonging to the to one level higher than the current level. If X
1097 matched one of our slots, just mark that one. Otherwise, we can't
1098 easily predict which it is, so upgrade all of them.
1100 This is called when an ({...}) construct occurs and a statement
1101 returns a value in memory. */
1103 void
1104 preserve_temp_slots (rtx x)
1106 struct temp_slot *p = 0, *next;
1108 if (x == 0)
1109 return;
1111 /* If X is a register that is being used as a pointer, see if we have
1112 a temporary slot we know it points to. */
1113 if (REG_P (x) && REG_POINTER (x))
1114 p = find_temp_slot_from_address (x);
1116 /* If X is not in memory or is at a constant address, it cannot be in
1117 a temporary slot. */
1118 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1119 return;
1121 /* First see if we can find a match. */
1122 if (p == 0)
1123 p = find_temp_slot_from_address (XEXP (x, 0));
1125 if (p != 0)
1127 if (p->level == temp_slot_level)
1128 move_slot_to_level (p, temp_slot_level - 1);
1129 return;
1132 /* Otherwise, preserve all non-kept slots at this level. */
1133 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1135 next = p->next;
1136 move_slot_to_level (p, temp_slot_level - 1);
1140 /* Free all temporaries used so far. This is normally called at the
1141 end of generating code for a statement. */
1143 void
1144 free_temp_slots (void)
1146 struct temp_slot *p, *next;
1147 bool some_available = false;
1149 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1151 next = p->next;
1152 make_slot_available (p);
1153 some_available = true;
1156 if (some_available)
1158 remove_unused_temp_slot_addresses ();
1159 combine_temp_slots ();
1163 /* Push deeper into the nesting level for stack temporaries. */
1165 void
1166 push_temp_slots (void)
1168 temp_slot_level++;
1171 /* Pop a temporary nesting level. All slots in use in the current level
1172 are freed. */
1174 void
1175 pop_temp_slots (void)
1177 free_temp_slots ();
1178 temp_slot_level--;
1181 /* Initialize temporary slots. */
1183 void
1184 init_temp_slots (void)
1186 /* We have not allocated any temporaries yet. */
1187 avail_temp_slots = 0;
1188 vec_alloc (used_temp_slots, 0);
1189 temp_slot_level = 0;
1190 n_temp_slots_in_use = 0;
1192 /* Set up the table to map addresses to temp slots. */
1193 if (! temp_slot_address_table)
1194 temp_slot_address_table = htab_create_ggc (32,
1195 temp_slot_address_hash,
1196 temp_slot_address_eq,
1197 NULL);
1198 else
1199 htab_empty (temp_slot_address_table);
1202 /* Functions and data structures to keep track of the values hard regs
1203 had at the start of the function. */
1205 /* Private type used by get_hard_reg_initial_reg, get_hard_reg_initial_val,
1206 and has_hard_reg_initial_val.. */
1207 typedef struct GTY(()) initial_value_pair {
1208 rtx hard_reg;
1209 rtx pseudo;
1210 } initial_value_pair;
1211 /* ??? This could be a VEC but there is currently no way to define an
1212 opaque VEC type. This could be worked around by defining struct
1213 initial_value_pair in function.h. */
1214 typedef struct GTY(()) initial_value_struct {
1215 int num_entries;
1216 int max_entries;
1217 initial_value_pair * GTY ((length ("%h.num_entries"))) entries;
1218 } initial_value_struct;
1220 /* If a pseudo represents an initial hard reg (or expression), return
1221 it, else return NULL_RTX. */
1224 get_hard_reg_initial_reg (rtx reg)
1226 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1227 int i;
1229 if (ivs == 0)
1230 return NULL_RTX;
1232 for (i = 0; i < ivs->num_entries; i++)
1233 if (rtx_equal_p (ivs->entries[i].pseudo, reg))
1234 return ivs->entries[i].hard_reg;
1236 return NULL_RTX;
1239 /* Make sure that there's a pseudo register of mode MODE that stores the
1240 initial value of hard register REGNO. Return an rtx for such a pseudo. */
1243 get_hard_reg_initial_val (enum machine_mode mode, unsigned int regno)
1245 struct initial_value_struct *ivs;
1246 rtx rv;
1248 rv = has_hard_reg_initial_val (mode, regno);
1249 if (rv)
1250 return rv;
1252 ivs = crtl->hard_reg_initial_vals;
1253 if (ivs == 0)
1255 ivs = ggc_alloc_initial_value_struct ();
1256 ivs->num_entries = 0;
1257 ivs->max_entries = 5;
1258 ivs->entries = ggc_alloc_vec_initial_value_pair (5);
1259 crtl->hard_reg_initial_vals = ivs;
1262 if (ivs->num_entries >= ivs->max_entries)
1264 ivs->max_entries += 5;
1265 ivs->entries = GGC_RESIZEVEC (initial_value_pair, ivs->entries,
1266 ivs->max_entries);
1269 ivs->entries[ivs->num_entries].hard_reg = gen_rtx_REG (mode, regno);
1270 ivs->entries[ivs->num_entries].pseudo = gen_reg_rtx (mode);
1272 return ivs->entries[ivs->num_entries++].pseudo;
1275 /* See if get_hard_reg_initial_val has been used to create a pseudo
1276 for the initial value of hard register REGNO in mode MODE. Return
1277 the associated pseudo if so, otherwise return NULL. */
1280 has_hard_reg_initial_val (enum machine_mode mode, unsigned int regno)
1282 struct initial_value_struct *ivs;
1283 int i;
1285 ivs = crtl->hard_reg_initial_vals;
1286 if (ivs != 0)
1287 for (i = 0; i < ivs->num_entries; i++)
1288 if (GET_MODE (ivs->entries[i].hard_reg) == mode
1289 && REGNO (ivs->entries[i].hard_reg) == regno)
1290 return ivs->entries[i].pseudo;
1292 return NULL_RTX;
1295 unsigned int
1296 emit_initial_value_sets (void)
1298 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1299 int i;
1300 rtx seq;
1302 if (ivs == 0)
1303 return 0;
1305 start_sequence ();
1306 for (i = 0; i < ivs->num_entries; i++)
1307 emit_move_insn (ivs->entries[i].pseudo, ivs->entries[i].hard_reg);
1308 seq = get_insns ();
1309 end_sequence ();
1311 emit_insn_at_entry (seq);
1312 return 0;
1315 /* Return the hardreg-pseudoreg initial values pair entry I and
1316 TRUE if I is a valid entry, or FALSE if I is not a valid entry. */
1317 bool
1318 initial_value_entry (int i, rtx *hreg, rtx *preg)
1320 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1321 if (!ivs || i >= ivs->num_entries)
1322 return false;
1324 *hreg = ivs->entries[i].hard_reg;
1325 *preg = ivs->entries[i].pseudo;
1326 return true;
1329 /* These routines are responsible for converting virtual register references
1330 to the actual hard register references once RTL generation is complete.
1332 The following four variables are used for communication between the
1333 routines. They contain the offsets of the virtual registers from their
1334 respective hard registers. */
1336 static int in_arg_offset;
1337 static int var_offset;
1338 static int dynamic_offset;
1339 static int out_arg_offset;
1340 static int cfa_offset;
1342 /* In most machines, the stack pointer register is equivalent to the bottom
1343 of the stack. */
1345 #ifndef STACK_POINTER_OFFSET
1346 #define STACK_POINTER_OFFSET 0
1347 #endif
1349 /* If not defined, pick an appropriate default for the offset of dynamically
1350 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1351 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1353 #ifndef STACK_DYNAMIC_OFFSET
1355 /* The bottom of the stack points to the actual arguments. If
1356 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1357 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1358 stack space for register parameters is not pushed by the caller, but
1359 rather part of the fixed stack areas and hence not included in
1360 `crtl->outgoing_args_size'. Nevertheless, we must allow
1361 for it when allocating stack dynamic objects. */
1363 #if defined(REG_PARM_STACK_SPACE)
1364 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1365 ((ACCUMULATE_OUTGOING_ARGS \
1366 ? (crtl->outgoing_args_size \
1367 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1368 : REG_PARM_STACK_SPACE (FNDECL))) \
1369 : 0) + (STACK_POINTER_OFFSET))
1370 #else
1371 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1372 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0) \
1373 + (STACK_POINTER_OFFSET))
1374 #endif
1375 #endif
1378 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1379 is a virtual register, return the equivalent hard register and set the
1380 offset indirectly through the pointer. Otherwise, return 0. */
1382 static rtx
1383 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1385 rtx new_rtx;
1386 HOST_WIDE_INT offset;
1388 if (x == virtual_incoming_args_rtx)
1390 if (stack_realign_drap)
1392 /* Replace virtual_incoming_args_rtx with internal arg
1393 pointer if DRAP is used to realign stack. */
1394 new_rtx = crtl->args.internal_arg_pointer;
1395 offset = 0;
1397 else
1398 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1400 else if (x == virtual_stack_vars_rtx)
1401 new_rtx = frame_pointer_rtx, offset = var_offset;
1402 else if (x == virtual_stack_dynamic_rtx)
1403 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1404 else if (x == virtual_outgoing_args_rtx)
1405 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1406 else if (x == virtual_cfa_rtx)
1408 #ifdef FRAME_POINTER_CFA_OFFSET
1409 new_rtx = frame_pointer_rtx;
1410 #else
1411 new_rtx = arg_pointer_rtx;
1412 #endif
1413 offset = cfa_offset;
1415 else if (x == virtual_preferred_stack_boundary_rtx)
1417 new_rtx = GEN_INT (crtl->preferred_stack_boundary / BITS_PER_UNIT);
1418 offset = 0;
1420 else
1421 return NULL_RTX;
1423 *poffset = offset;
1424 return new_rtx;
1427 /* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
1428 Instantiate any virtual registers present inside of *LOC. The expression
1429 is simplified, as much as possible, but is not to be considered "valid"
1430 in any sense implied by the target. If any change is made, set CHANGED
1431 to true. */
1433 static int
1434 instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
1436 HOST_WIDE_INT offset;
1437 bool *changed = (bool *) data;
1438 rtx x, new_rtx;
1440 x = *loc;
1441 if (x == 0)
1442 return 0;
1444 switch (GET_CODE (x))
1446 case REG:
1447 new_rtx = instantiate_new_reg (x, &offset);
1448 if (new_rtx)
1450 *loc = plus_constant (GET_MODE (x), new_rtx, offset);
1451 if (changed)
1452 *changed = true;
1454 return -1;
1456 case PLUS:
1457 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1458 if (new_rtx)
1460 new_rtx = plus_constant (GET_MODE (x), new_rtx, offset);
1461 *loc = simplify_gen_binary (PLUS, GET_MODE (x), new_rtx, XEXP (x, 1));
1462 if (changed)
1463 *changed = true;
1464 return -1;
1467 /* FIXME -- from old code */
1468 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1469 we can commute the PLUS and SUBREG because pointers into the
1470 frame are well-behaved. */
1471 break;
1473 default:
1474 break;
1477 return 0;
1480 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1481 matches the predicate for insn CODE operand OPERAND. */
1483 static int
1484 safe_insn_predicate (int code, int operand, rtx x)
1486 return code < 0 || insn_operand_matches ((enum insn_code) code, operand, x);
1489 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1490 registers present inside of insn. The result will be a valid insn. */
1492 static void
1493 instantiate_virtual_regs_in_insn (rtx insn)
1495 HOST_WIDE_INT offset;
1496 int insn_code, i;
1497 bool any_change = false;
1498 rtx set, new_rtx, x, seq;
1500 /* There are some special cases to be handled first. */
1501 set = single_set (insn);
1502 if (set)
1504 /* We're allowed to assign to a virtual register. This is interpreted
1505 to mean that the underlying register gets assigned the inverse
1506 transformation. This is used, for example, in the handling of
1507 non-local gotos. */
1508 new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1509 if (new_rtx)
1511 start_sequence ();
1513 for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
1514 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
1515 gen_int_mode (-offset, GET_MODE (new_rtx)));
1516 x = force_operand (x, new_rtx);
1517 if (x != new_rtx)
1518 emit_move_insn (new_rtx, x);
1520 seq = get_insns ();
1521 end_sequence ();
1523 emit_insn_before (seq, insn);
1524 delete_insn (insn);
1525 return;
1528 /* Handle a straight copy from a virtual register by generating a
1529 new add insn. The difference between this and falling through
1530 to the generic case is avoiding a new pseudo and eliminating a
1531 move insn in the initial rtl stream. */
1532 new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1533 if (new_rtx && offset != 0
1534 && REG_P (SET_DEST (set))
1535 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1537 start_sequence ();
1539 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS, new_rtx,
1540 gen_int_mode (offset,
1541 GET_MODE (SET_DEST (set))),
1542 SET_DEST (set), 1, OPTAB_LIB_WIDEN);
1543 if (x != SET_DEST (set))
1544 emit_move_insn (SET_DEST (set), x);
1546 seq = get_insns ();
1547 end_sequence ();
1549 emit_insn_before (seq, insn);
1550 delete_insn (insn);
1551 return;
1554 extract_insn (insn);
1555 insn_code = INSN_CODE (insn);
1557 /* Handle a plus involving a virtual register by determining if the
1558 operands remain valid if they're modified in place. */
1559 if (GET_CODE (SET_SRC (set)) == PLUS
1560 && recog_data.n_operands >= 3
1561 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1562 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1563 && CONST_INT_P (recog_data.operand[2])
1564 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
1566 offset += INTVAL (recog_data.operand[2]);
1568 /* If the sum is zero, then replace with a plain move. */
1569 if (offset == 0
1570 && REG_P (SET_DEST (set))
1571 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1573 start_sequence ();
1574 emit_move_insn (SET_DEST (set), new_rtx);
1575 seq = get_insns ();
1576 end_sequence ();
1578 emit_insn_before (seq, insn);
1579 delete_insn (insn);
1580 return;
1583 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1585 /* Using validate_change and apply_change_group here leaves
1586 recog_data in an invalid state. Since we know exactly what
1587 we want to check, do those two by hand. */
1588 if (safe_insn_predicate (insn_code, 1, new_rtx)
1589 && safe_insn_predicate (insn_code, 2, x))
1591 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1592 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1593 any_change = true;
1595 /* Fall through into the regular operand fixup loop in
1596 order to take care of operands other than 1 and 2. */
1600 else
1602 extract_insn (insn);
1603 insn_code = INSN_CODE (insn);
1606 /* In the general case, we expect virtual registers to appear only in
1607 operands, and then only as either bare registers or inside memories. */
1608 for (i = 0; i < recog_data.n_operands; ++i)
1610 x = recog_data.operand[i];
1611 switch (GET_CODE (x))
1613 case MEM:
1615 rtx addr = XEXP (x, 0);
1616 bool changed = false;
1618 for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
1619 if (!changed)
1620 continue;
1622 start_sequence ();
1623 x = replace_equiv_address (x, addr);
1624 /* It may happen that the address with the virtual reg
1625 was valid (e.g. based on the virtual stack reg, which might
1626 be acceptable to the predicates with all offsets), whereas
1627 the address now isn't anymore, for instance when the address
1628 is still offsetted, but the base reg isn't virtual-stack-reg
1629 anymore. Below we would do a force_reg on the whole operand,
1630 but this insn might actually only accept memory. Hence,
1631 before doing that last resort, try to reload the address into
1632 a register, so this operand stays a MEM. */
1633 if (!safe_insn_predicate (insn_code, i, x))
1635 addr = force_reg (GET_MODE (addr), addr);
1636 x = replace_equiv_address (x, addr);
1638 seq = get_insns ();
1639 end_sequence ();
1640 if (seq)
1641 emit_insn_before (seq, insn);
1643 break;
1645 case REG:
1646 new_rtx = instantiate_new_reg (x, &offset);
1647 if (new_rtx == NULL)
1648 continue;
1649 if (offset == 0)
1650 x = new_rtx;
1651 else
1653 start_sequence ();
1655 /* Careful, special mode predicates may have stuff in
1656 insn_data[insn_code].operand[i].mode that isn't useful
1657 to us for computing a new value. */
1658 /* ??? Recognize address_operand and/or "p" constraints
1659 to see if (plus new offset) is a valid before we put
1660 this through expand_simple_binop. */
1661 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1662 gen_int_mode (offset, GET_MODE (x)),
1663 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1664 seq = get_insns ();
1665 end_sequence ();
1666 emit_insn_before (seq, insn);
1668 break;
1670 case SUBREG:
1671 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1672 if (new_rtx == NULL)
1673 continue;
1674 if (offset != 0)
1676 start_sequence ();
1677 new_rtx = expand_simple_binop
1678 (GET_MODE (new_rtx), PLUS, new_rtx,
1679 gen_int_mode (offset, GET_MODE (new_rtx)),
1680 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1681 seq = get_insns ();
1682 end_sequence ();
1683 emit_insn_before (seq, insn);
1685 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1686 GET_MODE (new_rtx), SUBREG_BYTE (x));
1687 gcc_assert (x);
1688 break;
1690 default:
1691 continue;
1694 /* At this point, X contains the new value for the operand.
1695 Validate the new value vs the insn predicate. Note that
1696 asm insns will have insn_code -1 here. */
1697 if (!safe_insn_predicate (insn_code, i, x))
1699 start_sequence ();
1700 if (REG_P (x))
1702 gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER);
1703 x = copy_to_reg (x);
1705 else
1706 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1707 seq = get_insns ();
1708 end_sequence ();
1709 if (seq)
1710 emit_insn_before (seq, insn);
1713 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1714 any_change = true;
1717 if (any_change)
1719 /* Propagate operand changes into the duplicates. */
1720 for (i = 0; i < recog_data.n_dups; ++i)
1721 *recog_data.dup_loc[i]
1722 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1724 /* Force re-recognition of the instruction for validation. */
1725 INSN_CODE (insn) = -1;
1728 if (asm_noperands (PATTERN (insn)) >= 0)
1730 if (!check_asm_operands (PATTERN (insn)))
1732 error_for_asm (insn, "impossible constraint in %<asm%>");
1733 /* For asm goto, instead of fixing up all the edges
1734 just clear the template and clear input operands
1735 (asm goto doesn't have any output operands). */
1736 if (JUMP_P (insn))
1738 rtx asm_op = extract_asm_operands (PATTERN (insn));
1739 ASM_OPERANDS_TEMPLATE (asm_op) = ggc_strdup ("");
1740 ASM_OPERANDS_INPUT_VEC (asm_op) = rtvec_alloc (0);
1741 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (asm_op) = rtvec_alloc (0);
1743 else
1744 delete_insn (insn);
1747 else
1749 if (recog_memoized (insn) < 0)
1750 fatal_insn_not_found (insn);
1754 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1755 do any instantiation required. */
1757 void
1758 instantiate_decl_rtl (rtx x)
1760 rtx addr;
1762 if (x == 0)
1763 return;
1765 /* If this is a CONCAT, recurse for the pieces. */
1766 if (GET_CODE (x) == CONCAT)
1768 instantiate_decl_rtl (XEXP (x, 0));
1769 instantiate_decl_rtl (XEXP (x, 1));
1770 return;
1773 /* If this is not a MEM, no need to do anything. Similarly if the
1774 address is a constant or a register that is not a virtual register. */
1775 if (!MEM_P (x))
1776 return;
1778 addr = XEXP (x, 0);
1779 if (CONSTANT_P (addr)
1780 || (REG_P (addr)
1781 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1782 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1783 return;
1785 for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
1788 /* Helper for instantiate_decls called via walk_tree: Process all decls
1789 in the given DECL_VALUE_EXPR. */
1791 static tree
1792 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1794 tree t = *tp;
1795 if (! EXPR_P (t))
1797 *walk_subtrees = 0;
1798 if (DECL_P (t))
1800 if (DECL_RTL_SET_P (t))
1801 instantiate_decl_rtl (DECL_RTL (t));
1802 if (TREE_CODE (t) == PARM_DECL && DECL_NAMELESS (t)
1803 && DECL_INCOMING_RTL (t))
1804 instantiate_decl_rtl (DECL_INCOMING_RTL (t));
1805 if ((TREE_CODE (t) == VAR_DECL
1806 || TREE_CODE (t) == RESULT_DECL)
1807 && DECL_HAS_VALUE_EXPR_P (t))
1809 tree v = DECL_VALUE_EXPR (t);
1810 walk_tree (&v, instantiate_expr, NULL, NULL);
1814 return NULL;
1817 /* Subroutine of instantiate_decls: Process all decls in the given
1818 BLOCK node and all its subblocks. */
1820 static void
1821 instantiate_decls_1 (tree let)
1823 tree t;
1825 for (t = BLOCK_VARS (let); t; t = DECL_CHAIN (t))
1827 if (DECL_RTL_SET_P (t))
1828 instantiate_decl_rtl (DECL_RTL (t));
1829 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1831 tree v = DECL_VALUE_EXPR (t);
1832 walk_tree (&v, instantiate_expr, NULL, NULL);
1836 /* Process all subblocks. */
1837 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1838 instantiate_decls_1 (t);
1841 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1842 all virtual registers in their DECL_RTL's. */
1844 static void
1845 instantiate_decls (tree fndecl)
1847 tree decl;
1848 unsigned ix;
1850 /* Process all parameters of the function. */
1851 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = DECL_CHAIN (decl))
1853 instantiate_decl_rtl (DECL_RTL (decl));
1854 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1855 if (DECL_HAS_VALUE_EXPR_P (decl))
1857 tree v = DECL_VALUE_EXPR (decl);
1858 walk_tree (&v, instantiate_expr, NULL, NULL);
1862 if ((decl = DECL_RESULT (fndecl))
1863 && TREE_CODE (decl) == RESULT_DECL)
1865 if (DECL_RTL_SET_P (decl))
1866 instantiate_decl_rtl (DECL_RTL (decl));
1867 if (DECL_HAS_VALUE_EXPR_P (decl))
1869 tree v = DECL_VALUE_EXPR (decl);
1870 walk_tree (&v, instantiate_expr, NULL, NULL);
1874 /* Now process all variables defined in the function or its subblocks. */
1875 instantiate_decls_1 (DECL_INITIAL (fndecl));
1877 FOR_EACH_LOCAL_DECL (cfun, ix, decl)
1878 if (DECL_RTL_SET_P (decl))
1879 instantiate_decl_rtl (DECL_RTL (decl));
1880 vec_free (cfun->local_decls);
1883 /* Pass through the INSNS of function FNDECL and convert virtual register
1884 references to hard register references. */
1886 static unsigned int
1887 instantiate_virtual_regs (void)
1889 rtx insn;
1891 /* Compute the offsets to use for this function. */
1892 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1893 var_offset = STARTING_FRAME_OFFSET;
1894 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1895 out_arg_offset = STACK_POINTER_OFFSET;
1896 #ifdef FRAME_POINTER_CFA_OFFSET
1897 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1898 #else
1899 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1900 #endif
1902 /* Initialize recognition, indicating that volatile is OK. */
1903 init_recog ();
1905 /* Scan through all the insns, instantiating every virtual register still
1906 present. */
1907 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1908 if (INSN_P (insn))
1910 /* These patterns in the instruction stream can never be recognized.
1911 Fortunately, they shouldn't contain virtual registers either. */
1912 if (GET_CODE (PATTERN (insn)) == USE
1913 || GET_CODE (PATTERN (insn)) == CLOBBER
1914 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1915 continue;
1916 else if (DEBUG_INSN_P (insn))
1917 for_each_rtx (&INSN_VAR_LOCATION (insn),
1918 instantiate_virtual_regs_in_rtx, NULL);
1919 else
1920 instantiate_virtual_regs_in_insn (insn);
1922 if (INSN_DELETED_P (insn))
1923 continue;
1925 for_each_rtx (&REG_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
1927 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1928 if (CALL_P (insn))
1929 for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
1930 instantiate_virtual_regs_in_rtx, NULL);
1933 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1934 instantiate_decls (current_function_decl);
1936 targetm.instantiate_decls ();
1938 /* Indicate that, from now on, assign_stack_local should use
1939 frame_pointer_rtx. */
1940 virtuals_instantiated = 1;
1942 return 0;
1945 namespace {
1947 const pass_data pass_data_instantiate_virtual_regs =
1949 RTL_PASS, /* type */
1950 "vregs", /* name */
1951 OPTGROUP_NONE, /* optinfo_flags */
1952 false, /* has_gate */
1953 true, /* has_execute */
1954 TV_NONE, /* tv_id */
1955 0, /* properties_required */
1956 0, /* properties_provided */
1957 0, /* properties_destroyed */
1958 0, /* todo_flags_start */
1959 0, /* todo_flags_finish */
1962 class pass_instantiate_virtual_regs : public rtl_opt_pass
1964 public:
1965 pass_instantiate_virtual_regs (gcc::context *ctxt)
1966 : rtl_opt_pass (pass_data_instantiate_virtual_regs, ctxt)
1969 /* opt_pass methods: */
1970 unsigned int execute () { return instantiate_virtual_regs (); }
1972 }; // class pass_instantiate_virtual_regs
1974 } // anon namespace
1976 rtl_opt_pass *
1977 make_pass_instantiate_virtual_regs (gcc::context *ctxt)
1979 return new pass_instantiate_virtual_regs (ctxt);
1983 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1984 This means a type for which function calls must pass an address to the
1985 function or get an address back from the function.
1986 EXP may be a type node or an expression (whose type is tested). */
1989 aggregate_value_p (const_tree exp, const_tree fntype)
1991 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1992 int i, regno, nregs;
1993 rtx reg;
1995 if (fntype)
1996 switch (TREE_CODE (fntype))
1998 case CALL_EXPR:
2000 tree fndecl = get_callee_fndecl (fntype);
2001 fntype = (fndecl
2002 ? TREE_TYPE (fndecl)
2003 : TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype))));
2005 break;
2006 case FUNCTION_DECL:
2007 fntype = TREE_TYPE (fntype);
2008 break;
2009 case FUNCTION_TYPE:
2010 case METHOD_TYPE:
2011 break;
2012 case IDENTIFIER_NODE:
2013 fntype = NULL_TREE;
2014 break;
2015 default:
2016 /* We don't expect other tree types here. */
2017 gcc_unreachable ();
2020 if (VOID_TYPE_P (type))
2021 return 0;
2023 /* If a record should be passed the same as its first (and only) member
2024 don't pass it as an aggregate. */
2025 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2026 return aggregate_value_p (first_field (type), fntype);
2028 /* If the front end has decided that this needs to be passed by
2029 reference, do so. */
2030 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
2031 && DECL_BY_REFERENCE (exp))
2032 return 1;
2034 /* Function types that are TREE_ADDRESSABLE force return in memory. */
2035 if (fntype && TREE_ADDRESSABLE (fntype))
2036 return 1;
2038 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
2039 and thus can't be returned in registers. */
2040 if (TREE_ADDRESSABLE (type))
2041 return 1;
2043 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
2044 return 1;
2046 if (targetm.calls.return_in_memory (type, fntype))
2047 return 1;
2049 /* Make sure we have suitable call-clobbered regs to return
2050 the value in; if not, we must return it in memory. */
2051 reg = hard_function_value (type, 0, fntype, 0);
2053 /* If we have something other than a REG (e.g. a PARALLEL), then assume
2054 it is OK. */
2055 if (!REG_P (reg))
2056 return 0;
2058 regno = REGNO (reg);
2059 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
2060 for (i = 0; i < nregs; i++)
2061 if (! call_used_regs[regno + i])
2062 return 1;
2064 return 0;
2067 /* Return true if we should assign DECL a pseudo register; false if it
2068 should live on the local stack. */
2070 bool
2071 use_register_for_decl (const_tree decl)
2073 if (!targetm.calls.allocate_stack_slots_for_args ())
2074 return true;
2076 /* Honor volatile. */
2077 if (TREE_SIDE_EFFECTS (decl))
2078 return false;
2080 /* Honor addressability. */
2081 if (TREE_ADDRESSABLE (decl))
2082 return false;
2084 /* Only register-like things go in registers. */
2085 if (DECL_MODE (decl) == BLKmode)
2086 return false;
2088 /* If -ffloat-store specified, don't put explicit float variables
2089 into registers. */
2090 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
2091 propagates values across these stores, and it probably shouldn't. */
2092 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
2093 return false;
2095 /* If we're not interested in tracking debugging information for
2096 this decl, then we can certainly put it in a register. */
2097 if (DECL_IGNORED_P (decl))
2098 return true;
2100 if (optimize)
2101 return true;
2103 if (!DECL_REGISTER (decl))
2104 return false;
2106 switch (TREE_CODE (TREE_TYPE (decl)))
2108 case RECORD_TYPE:
2109 case UNION_TYPE:
2110 case QUAL_UNION_TYPE:
2111 /* When not optimizing, disregard register keyword for variables with
2112 types containing methods, otherwise the methods won't be callable
2113 from the debugger. */
2114 if (TYPE_METHODS (TREE_TYPE (decl)))
2115 return false;
2116 break;
2117 default:
2118 break;
2121 return true;
2124 /* Return true if TYPE should be passed by invisible reference. */
2126 bool
2127 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2128 tree type, bool named_arg)
2130 if (type)
2132 /* If this type contains non-trivial constructors, then it is
2133 forbidden for the middle-end to create any new copies. */
2134 if (TREE_ADDRESSABLE (type))
2135 return true;
2137 /* GCC post 3.4 passes *all* variable sized types by reference. */
2138 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
2139 return true;
2141 /* If a record type should be passed the same as its first (and only)
2142 member, use the type and mode of that member. */
2143 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2145 type = TREE_TYPE (first_field (type));
2146 mode = TYPE_MODE (type);
2150 return targetm.calls.pass_by_reference (pack_cumulative_args (ca), mode,
2151 type, named_arg);
2154 /* Return true if TYPE, which is passed by reference, should be callee
2155 copied instead of caller copied. */
2157 bool
2158 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2159 tree type, bool named_arg)
2161 if (type && TREE_ADDRESSABLE (type))
2162 return false;
2163 return targetm.calls.callee_copies (pack_cumulative_args (ca), mode, type,
2164 named_arg);
2167 /* Structures to communicate between the subroutines of assign_parms.
2168 The first holds data persistent across all parameters, the second
2169 is cleared out for each parameter. */
2171 struct assign_parm_data_all
2173 /* When INIT_CUMULATIVE_ARGS gets revamped, allocating CUMULATIVE_ARGS
2174 should become a job of the target or otherwise encapsulated. */
2175 CUMULATIVE_ARGS args_so_far_v;
2176 cumulative_args_t args_so_far;
2177 struct args_size stack_args_size;
2178 tree function_result_decl;
2179 tree orig_fnargs;
2180 rtx first_conversion_insn;
2181 rtx last_conversion_insn;
2182 HOST_WIDE_INT pretend_args_size;
2183 HOST_WIDE_INT extra_pretend_bytes;
2184 int reg_parm_stack_space;
2187 struct assign_parm_data_one
2189 tree nominal_type;
2190 tree passed_type;
2191 rtx entry_parm;
2192 rtx stack_parm;
2193 enum machine_mode nominal_mode;
2194 enum machine_mode passed_mode;
2195 enum machine_mode promoted_mode;
2196 struct locate_and_pad_arg_data locate;
2197 int partial;
2198 BOOL_BITFIELD named_arg : 1;
2199 BOOL_BITFIELD passed_pointer : 1;
2200 BOOL_BITFIELD on_stack : 1;
2201 BOOL_BITFIELD loaded_in_reg : 1;
2204 /* A subroutine of assign_parms. Initialize ALL. */
2206 static void
2207 assign_parms_initialize_all (struct assign_parm_data_all *all)
2209 tree fntype ATTRIBUTE_UNUSED;
2211 memset (all, 0, sizeof (*all));
2213 fntype = TREE_TYPE (current_function_decl);
2215 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2216 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far_v, fntype, NULL_RTX);
2217 #else
2218 INIT_CUMULATIVE_ARGS (all->args_so_far_v, fntype, NULL_RTX,
2219 current_function_decl, -1);
2220 #endif
2221 all->args_so_far = pack_cumulative_args (&all->args_so_far_v);
2223 #ifdef REG_PARM_STACK_SPACE
2224 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
2225 #endif
2228 /* If ARGS contains entries with complex types, split the entry into two
2229 entries of the component type. Return a new list of substitutions are
2230 needed, else the old list. */
2232 static void
2233 split_complex_args (vec<tree> *args)
2235 unsigned i;
2236 tree p;
2238 FOR_EACH_VEC_ELT (*args, i, p)
2240 tree type = TREE_TYPE (p);
2241 if (TREE_CODE (type) == COMPLEX_TYPE
2242 && targetm.calls.split_complex_arg (type))
2244 tree decl;
2245 tree subtype = TREE_TYPE (type);
2246 bool addressable = TREE_ADDRESSABLE (p);
2248 /* Rewrite the PARM_DECL's type with its component. */
2249 p = copy_node (p);
2250 TREE_TYPE (p) = subtype;
2251 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2252 DECL_MODE (p) = VOIDmode;
2253 DECL_SIZE (p) = NULL;
2254 DECL_SIZE_UNIT (p) = NULL;
2255 /* If this arg must go in memory, put it in a pseudo here.
2256 We can't allow it to go in memory as per normal parms,
2257 because the usual place might not have the imag part
2258 adjacent to the real part. */
2259 DECL_ARTIFICIAL (p) = addressable;
2260 DECL_IGNORED_P (p) = addressable;
2261 TREE_ADDRESSABLE (p) = 0;
2262 layout_decl (p, 0);
2263 (*args)[i] = p;
2265 /* Build a second synthetic decl. */
2266 decl = build_decl (EXPR_LOCATION (p),
2267 PARM_DECL, NULL_TREE, subtype);
2268 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2269 DECL_ARTIFICIAL (decl) = addressable;
2270 DECL_IGNORED_P (decl) = addressable;
2271 layout_decl (decl, 0);
2272 args->safe_insert (++i, decl);
2277 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2278 the hidden struct return argument, and (abi willing) complex args.
2279 Return the new parameter list. */
2281 static vec<tree>
2282 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2284 tree fndecl = current_function_decl;
2285 tree fntype = TREE_TYPE (fndecl);
2286 vec<tree> fnargs = vNULL;
2287 tree arg;
2289 for (arg = DECL_ARGUMENTS (fndecl); arg; arg = DECL_CHAIN (arg))
2290 fnargs.safe_push (arg);
2292 all->orig_fnargs = DECL_ARGUMENTS (fndecl);
2294 /* If struct value address is treated as the first argument, make it so. */
2295 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2296 && ! cfun->returns_pcc_struct
2297 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2299 tree type = build_pointer_type (TREE_TYPE (fntype));
2300 tree decl;
2302 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2303 PARM_DECL, get_identifier (".result_ptr"), type);
2304 DECL_ARG_TYPE (decl) = type;
2305 DECL_ARTIFICIAL (decl) = 1;
2306 DECL_NAMELESS (decl) = 1;
2307 TREE_CONSTANT (decl) = 1;
2309 DECL_CHAIN (decl) = all->orig_fnargs;
2310 all->orig_fnargs = decl;
2311 fnargs.safe_insert (0, decl);
2313 all->function_result_decl = decl;
2316 /* If the target wants to split complex arguments into scalars, do so. */
2317 if (targetm.calls.split_complex_arg)
2318 split_complex_args (&fnargs);
2320 return fnargs;
2323 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2324 data for the parameter. Incorporate ABI specifics such as pass-by-
2325 reference and type promotion. */
2327 static void
2328 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2329 struct assign_parm_data_one *data)
2331 tree nominal_type, passed_type;
2332 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2333 int unsignedp;
2335 memset (data, 0, sizeof (*data));
2337 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2338 if (!cfun->stdarg)
2339 data->named_arg = 1; /* No variadic parms. */
2340 else if (DECL_CHAIN (parm))
2341 data->named_arg = 1; /* Not the last non-variadic parm. */
2342 else if (targetm.calls.strict_argument_naming (all->args_so_far))
2343 data->named_arg = 1; /* Only variadic ones are unnamed. */
2344 else
2345 data->named_arg = 0; /* Treat as variadic. */
2347 nominal_type = TREE_TYPE (parm);
2348 passed_type = DECL_ARG_TYPE (parm);
2350 /* Look out for errors propagating this far. Also, if the parameter's
2351 type is void then its value doesn't matter. */
2352 if (TREE_TYPE (parm) == error_mark_node
2353 /* This can happen after weird syntax errors
2354 or if an enum type is defined among the parms. */
2355 || TREE_CODE (parm) != PARM_DECL
2356 || passed_type == NULL
2357 || VOID_TYPE_P (nominal_type))
2359 nominal_type = passed_type = void_type_node;
2360 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2361 goto egress;
2364 /* Find mode of arg as it is passed, and mode of arg as it should be
2365 during execution of this function. */
2366 passed_mode = TYPE_MODE (passed_type);
2367 nominal_mode = TYPE_MODE (nominal_type);
2369 /* If the parm is to be passed as a transparent union or record, use the
2370 type of the first field for the tests below. We have already verified
2371 that the modes are the same. */
2372 if ((TREE_CODE (passed_type) == UNION_TYPE
2373 || TREE_CODE (passed_type) == RECORD_TYPE)
2374 && TYPE_TRANSPARENT_AGGR (passed_type))
2375 passed_type = TREE_TYPE (first_field (passed_type));
2377 /* See if this arg was passed by invisible reference. */
2378 if (pass_by_reference (&all->args_so_far_v, passed_mode,
2379 passed_type, data->named_arg))
2381 passed_type = nominal_type = build_pointer_type (passed_type);
2382 data->passed_pointer = true;
2383 passed_mode = nominal_mode = TYPE_MODE (nominal_type);
2386 /* Find mode as it is passed by the ABI. */
2387 unsignedp = TYPE_UNSIGNED (passed_type);
2388 promoted_mode = promote_function_mode (passed_type, passed_mode, &unsignedp,
2389 TREE_TYPE (current_function_decl), 0);
2391 egress:
2392 data->nominal_type = nominal_type;
2393 data->passed_type = passed_type;
2394 data->nominal_mode = nominal_mode;
2395 data->passed_mode = passed_mode;
2396 data->promoted_mode = promoted_mode;
2399 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2401 static void
2402 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2403 struct assign_parm_data_one *data, bool no_rtl)
2405 int varargs_pretend_bytes = 0;
2407 targetm.calls.setup_incoming_varargs (all->args_so_far,
2408 data->promoted_mode,
2409 data->passed_type,
2410 &varargs_pretend_bytes, no_rtl);
2412 /* If the back-end has requested extra stack space, record how much is
2413 needed. Do not change pretend_args_size otherwise since it may be
2414 nonzero from an earlier partial argument. */
2415 if (varargs_pretend_bytes > 0)
2416 all->pretend_args_size = varargs_pretend_bytes;
2419 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2420 the incoming location of the current parameter. */
2422 static void
2423 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2424 struct assign_parm_data_one *data)
2426 HOST_WIDE_INT pretend_bytes = 0;
2427 rtx entry_parm;
2428 bool in_regs;
2430 if (data->promoted_mode == VOIDmode)
2432 data->entry_parm = data->stack_parm = const0_rtx;
2433 return;
2436 entry_parm = targetm.calls.function_incoming_arg (all->args_so_far,
2437 data->promoted_mode,
2438 data->passed_type,
2439 data->named_arg);
2441 if (entry_parm == 0)
2442 data->promoted_mode = data->passed_mode;
2444 /* Determine parm's home in the stack, in case it arrives in the stack
2445 or we should pretend it did. Compute the stack position and rtx where
2446 the argument arrives and its size.
2448 There is one complexity here: If this was a parameter that would
2449 have been passed in registers, but wasn't only because it is
2450 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2451 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2452 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2453 as it was the previous time. */
2454 in_regs = entry_parm != 0;
2455 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2456 in_regs = true;
2457 #endif
2458 if (!in_regs && !data->named_arg)
2460 if (targetm.calls.pretend_outgoing_varargs_named (all->args_so_far))
2462 rtx tem;
2463 tem = targetm.calls.function_incoming_arg (all->args_so_far,
2464 data->promoted_mode,
2465 data->passed_type, true);
2466 in_regs = tem != NULL;
2470 /* If this parameter was passed both in registers and in the stack, use
2471 the copy on the stack. */
2472 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2473 data->passed_type))
2474 entry_parm = 0;
2476 if (entry_parm)
2478 int partial;
2480 partial = targetm.calls.arg_partial_bytes (all->args_so_far,
2481 data->promoted_mode,
2482 data->passed_type,
2483 data->named_arg);
2484 data->partial = partial;
2486 /* The caller might already have allocated stack space for the
2487 register parameters. */
2488 if (partial != 0 && all->reg_parm_stack_space == 0)
2490 /* Part of this argument is passed in registers and part
2491 is passed on the stack. Ask the prologue code to extend
2492 the stack part so that we can recreate the full value.
2494 PRETEND_BYTES is the size of the registers we need to store.
2495 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2496 stack space that the prologue should allocate.
2498 Internally, gcc assumes that the argument pointer is aligned
2499 to STACK_BOUNDARY bits. This is used both for alignment
2500 optimizations (see init_emit) and to locate arguments that are
2501 aligned to more than PARM_BOUNDARY bits. We must preserve this
2502 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2503 a stack boundary. */
2505 /* We assume at most one partial arg, and it must be the first
2506 argument on the stack. */
2507 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2509 pretend_bytes = partial;
2510 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2512 /* We want to align relative to the actual stack pointer, so
2513 don't include this in the stack size until later. */
2514 all->extra_pretend_bytes = all->pretend_args_size;
2518 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2519 all->reg_parm_stack_space,
2520 entry_parm ? data->partial : 0, current_function_decl,
2521 &all->stack_args_size, &data->locate);
2523 /* Update parm_stack_boundary if this parameter is passed in the
2524 stack. */
2525 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2526 crtl->parm_stack_boundary = data->locate.boundary;
2528 /* Adjust offsets to include the pretend args. */
2529 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2530 data->locate.slot_offset.constant += pretend_bytes;
2531 data->locate.offset.constant += pretend_bytes;
2533 data->entry_parm = entry_parm;
2536 /* A subroutine of assign_parms. If there is actually space on the stack
2537 for this parm, count it in stack_args_size and return true. */
2539 static bool
2540 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2541 struct assign_parm_data_one *data)
2543 /* Trivially true if we've no incoming register. */
2544 if (data->entry_parm == NULL)
2546 /* Also true if we're partially in registers and partially not,
2547 since we've arranged to drop the entire argument on the stack. */
2548 else if (data->partial != 0)
2550 /* Also true if the target says that it's passed in both registers
2551 and on the stack. */
2552 else if (GET_CODE (data->entry_parm) == PARALLEL
2553 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2555 /* Also true if the target says that there's stack allocated for
2556 all register parameters. */
2557 else if (all->reg_parm_stack_space > 0)
2559 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2560 else
2561 return false;
2563 all->stack_args_size.constant += data->locate.size.constant;
2564 if (data->locate.size.var)
2565 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2567 return true;
2570 /* A subroutine of assign_parms. Given that this parameter is allocated
2571 stack space by the ABI, find it. */
2573 static void
2574 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2576 rtx offset_rtx, stack_parm;
2577 unsigned int align, boundary;
2579 /* If we're passing this arg using a reg, make its stack home the
2580 aligned stack slot. */
2581 if (data->entry_parm)
2582 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2583 else
2584 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2586 stack_parm = crtl->args.internal_arg_pointer;
2587 if (offset_rtx != const0_rtx)
2588 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2589 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2591 if (!data->passed_pointer)
2593 set_mem_attributes (stack_parm, parm, 1);
2594 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2595 while promoted mode's size is needed. */
2596 if (data->promoted_mode != BLKmode
2597 && data->promoted_mode != DECL_MODE (parm))
2599 set_mem_size (stack_parm, GET_MODE_SIZE (data->promoted_mode));
2600 if (MEM_EXPR (stack_parm) && MEM_OFFSET_KNOWN_P (stack_parm))
2602 int offset = subreg_lowpart_offset (DECL_MODE (parm),
2603 data->promoted_mode);
2604 if (offset)
2605 set_mem_offset (stack_parm, MEM_OFFSET (stack_parm) - offset);
2610 boundary = data->locate.boundary;
2611 align = BITS_PER_UNIT;
2613 /* If we're padding upward, we know that the alignment of the slot
2614 is TARGET_FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2615 intentionally forcing upward padding. Otherwise we have to come
2616 up with a guess at the alignment based on OFFSET_RTX. */
2617 if (data->locate.where_pad != downward || data->entry_parm)
2618 align = boundary;
2619 else if (CONST_INT_P (offset_rtx))
2621 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2622 align = align & -align;
2624 set_mem_align (stack_parm, align);
2626 if (data->entry_parm)
2627 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2629 data->stack_parm = stack_parm;
2632 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2633 always valid and contiguous. */
2635 static void
2636 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2638 rtx entry_parm = data->entry_parm;
2639 rtx stack_parm = data->stack_parm;
2641 /* If this parm was passed part in regs and part in memory, pretend it
2642 arrived entirely in memory by pushing the register-part onto the stack.
2643 In the special case of a DImode or DFmode that is split, we could put
2644 it together in a pseudoreg directly, but for now that's not worth
2645 bothering with. */
2646 if (data->partial != 0)
2648 /* Handle calls that pass values in multiple non-contiguous
2649 locations. The Irix 6 ABI has examples of this. */
2650 if (GET_CODE (entry_parm) == PARALLEL)
2651 emit_group_store (validize_mem (stack_parm), entry_parm,
2652 data->passed_type,
2653 int_size_in_bytes (data->passed_type));
2654 else
2656 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2657 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2658 data->partial / UNITS_PER_WORD);
2661 entry_parm = stack_parm;
2664 /* If we didn't decide this parm came in a register, by default it came
2665 on the stack. */
2666 else if (entry_parm == NULL)
2667 entry_parm = stack_parm;
2669 /* When an argument is passed in multiple locations, we can't make use
2670 of this information, but we can save some copying if the whole argument
2671 is passed in a single register. */
2672 else if (GET_CODE (entry_parm) == PARALLEL
2673 && data->nominal_mode != BLKmode
2674 && data->passed_mode != BLKmode)
2676 size_t i, len = XVECLEN (entry_parm, 0);
2678 for (i = 0; i < len; i++)
2679 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2680 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2681 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2682 == data->passed_mode)
2683 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2685 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2686 break;
2690 data->entry_parm = entry_parm;
2693 /* A subroutine of assign_parms. Reconstitute any values which were
2694 passed in multiple registers and would fit in a single register. */
2696 static void
2697 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2699 rtx entry_parm = data->entry_parm;
2701 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2702 This can be done with register operations rather than on the
2703 stack, even if we will store the reconstituted parameter on the
2704 stack later. */
2705 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2707 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2708 emit_group_store (parmreg, entry_parm, data->passed_type,
2709 GET_MODE_SIZE (GET_MODE (entry_parm)));
2710 entry_parm = parmreg;
2713 data->entry_parm = entry_parm;
2716 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2717 always valid and properly aligned. */
2719 static void
2720 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2722 rtx stack_parm = data->stack_parm;
2724 /* If we can't trust the parm stack slot to be aligned enough for its
2725 ultimate type, don't use that slot after entry. We'll make another
2726 stack slot, if we need one. */
2727 if (stack_parm
2728 && ((STRICT_ALIGNMENT
2729 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2730 || (data->nominal_type
2731 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2732 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2733 stack_parm = NULL;
2735 /* If parm was passed in memory, and we need to convert it on entry,
2736 don't store it back in that same slot. */
2737 else if (data->entry_parm == stack_parm
2738 && data->nominal_mode != BLKmode
2739 && data->nominal_mode != data->passed_mode)
2740 stack_parm = NULL;
2742 /* If stack protection is in effect for this function, don't leave any
2743 pointers in their passed stack slots. */
2744 else if (crtl->stack_protect_guard
2745 && (flag_stack_protect == 2
2746 || data->passed_pointer
2747 || POINTER_TYPE_P (data->nominal_type)))
2748 stack_parm = NULL;
2750 data->stack_parm = stack_parm;
2753 /* A subroutine of assign_parms. Return true if the current parameter
2754 should be stored as a BLKmode in the current frame. */
2756 static bool
2757 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2759 if (data->nominal_mode == BLKmode)
2760 return true;
2761 if (GET_MODE (data->entry_parm) == BLKmode)
2762 return true;
2764 #ifdef BLOCK_REG_PADDING
2765 /* Only assign_parm_setup_block knows how to deal with register arguments
2766 that are padded at the least significant end. */
2767 if (REG_P (data->entry_parm)
2768 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2769 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2770 == (BYTES_BIG_ENDIAN ? upward : downward)))
2771 return true;
2772 #endif
2774 return false;
2777 /* A subroutine of assign_parms. Arrange for the parameter to be
2778 present and valid in DATA->STACK_RTL. */
2780 static void
2781 assign_parm_setup_block (struct assign_parm_data_all *all,
2782 tree parm, struct assign_parm_data_one *data)
2784 rtx entry_parm = data->entry_parm;
2785 rtx stack_parm = data->stack_parm;
2786 HOST_WIDE_INT size;
2787 HOST_WIDE_INT size_stored;
2789 if (GET_CODE (entry_parm) == PARALLEL)
2790 entry_parm = emit_group_move_into_temps (entry_parm);
2792 size = int_size_in_bytes (data->passed_type);
2793 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2794 if (stack_parm == 0)
2796 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2797 stack_parm = assign_stack_local (BLKmode, size_stored,
2798 DECL_ALIGN (parm));
2799 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2800 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2801 set_mem_attributes (stack_parm, parm, 1);
2804 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2805 calls that pass values in multiple non-contiguous locations. */
2806 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2808 rtx mem;
2810 /* Note that we will be storing an integral number of words.
2811 So we have to be careful to ensure that we allocate an
2812 integral number of words. We do this above when we call
2813 assign_stack_local if space was not allocated in the argument
2814 list. If it was, this will not work if PARM_BOUNDARY is not
2815 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2816 if it becomes a problem. Exception is when BLKmode arrives
2817 with arguments not conforming to word_mode. */
2819 if (data->stack_parm == 0)
2821 else if (GET_CODE (entry_parm) == PARALLEL)
2823 else
2824 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2826 mem = validize_mem (stack_parm);
2828 /* Handle values in multiple non-contiguous locations. */
2829 if (GET_CODE (entry_parm) == PARALLEL)
2831 push_to_sequence2 (all->first_conversion_insn,
2832 all->last_conversion_insn);
2833 emit_group_store (mem, entry_parm, data->passed_type, size);
2834 all->first_conversion_insn = get_insns ();
2835 all->last_conversion_insn = get_last_insn ();
2836 end_sequence ();
2839 else if (size == 0)
2842 /* If SIZE is that of a mode no bigger than a word, just use
2843 that mode's store operation. */
2844 else if (size <= UNITS_PER_WORD)
2846 enum machine_mode mode
2847 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2849 if (mode != BLKmode
2850 #ifdef BLOCK_REG_PADDING
2851 && (size == UNITS_PER_WORD
2852 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2853 != (BYTES_BIG_ENDIAN ? upward : downward)))
2854 #endif
2857 rtx reg;
2859 /* We are really truncating a word_mode value containing
2860 SIZE bytes into a value of mode MODE. If such an
2861 operation requires no actual instructions, we can refer
2862 to the value directly in mode MODE, otherwise we must
2863 start with the register in word_mode and explicitly
2864 convert it. */
2865 if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
2866 reg = gen_rtx_REG (mode, REGNO (entry_parm));
2867 else
2869 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2870 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
2872 emit_move_insn (change_address (mem, mode, 0), reg);
2875 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2876 machine must be aligned to the left before storing
2877 to memory. Note that the previous test doesn't
2878 handle all cases (e.g. SIZE == 3). */
2879 else if (size != UNITS_PER_WORD
2880 #ifdef BLOCK_REG_PADDING
2881 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2882 == downward)
2883 #else
2884 && BYTES_BIG_ENDIAN
2885 #endif
2888 rtx tem, x;
2889 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2890 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2892 x = expand_shift (LSHIFT_EXPR, word_mode, reg, by, NULL_RTX, 1);
2893 tem = change_address (mem, word_mode, 0);
2894 emit_move_insn (tem, x);
2896 else
2897 move_block_from_reg (REGNO (entry_parm), mem,
2898 size_stored / UNITS_PER_WORD);
2900 else
2901 move_block_from_reg (REGNO (entry_parm), mem,
2902 size_stored / UNITS_PER_WORD);
2904 else if (data->stack_parm == 0)
2906 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2907 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2908 BLOCK_OP_NORMAL);
2909 all->first_conversion_insn = get_insns ();
2910 all->last_conversion_insn = get_last_insn ();
2911 end_sequence ();
2914 data->stack_parm = stack_parm;
2915 SET_DECL_RTL (parm, stack_parm);
2918 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2919 parameter. Get it there. Perform all ABI specified conversions. */
2921 static void
2922 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2923 struct assign_parm_data_one *data)
2925 rtx parmreg, validated_mem;
2926 rtx equiv_stack_parm;
2927 enum machine_mode promoted_nominal_mode;
2928 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2929 bool did_conversion = false;
2930 bool need_conversion, moved;
2932 /* Store the parm in a pseudoregister during the function, but we may
2933 need to do it in a wider mode. Using 2 here makes the result
2934 consistent with promote_decl_mode and thus expand_expr_real_1. */
2935 promoted_nominal_mode
2936 = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
2937 TREE_TYPE (current_function_decl), 2);
2939 parmreg = gen_reg_rtx (promoted_nominal_mode);
2941 if (!DECL_ARTIFICIAL (parm))
2942 mark_user_reg (parmreg);
2944 /* If this was an item that we received a pointer to,
2945 set DECL_RTL appropriately. */
2946 if (data->passed_pointer)
2948 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2949 set_mem_attributes (x, parm, 1);
2950 SET_DECL_RTL (parm, x);
2952 else
2953 SET_DECL_RTL (parm, parmreg);
2955 assign_parm_remove_parallels (data);
2957 /* Copy the value into the register, thus bridging between
2958 assign_parm_find_data_types and expand_expr_real_1. */
2960 equiv_stack_parm = data->stack_parm;
2961 validated_mem = validize_mem (data->entry_parm);
2963 need_conversion = (data->nominal_mode != data->passed_mode
2964 || promoted_nominal_mode != data->promoted_mode);
2965 moved = false;
2967 if (need_conversion
2968 && GET_MODE_CLASS (data->nominal_mode) == MODE_INT
2969 && data->nominal_mode == data->passed_mode
2970 && data->nominal_mode == GET_MODE (data->entry_parm))
2972 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2973 mode, by the caller. We now have to convert it to
2974 NOMINAL_MODE, if different. However, PARMREG may be in
2975 a different mode than NOMINAL_MODE if it is being stored
2976 promoted.
2978 If ENTRY_PARM is a hard register, it might be in a register
2979 not valid for operating in its mode (e.g., an odd-numbered
2980 register for a DFmode). In that case, moves are the only
2981 thing valid, so we can't do a convert from there. This
2982 occurs when the calling sequence allow such misaligned
2983 usages.
2985 In addition, the conversion may involve a call, which could
2986 clobber parameters which haven't been copied to pseudo
2987 registers yet.
2989 First, we try to emit an insn which performs the necessary
2990 conversion. We verify that this insn does not clobber any
2991 hard registers. */
2993 enum insn_code icode;
2994 rtx op0, op1;
2996 icode = can_extend_p (promoted_nominal_mode, data->passed_mode,
2997 unsignedp);
2999 op0 = parmreg;
3000 op1 = validated_mem;
3001 if (icode != CODE_FOR_nothing
3002 && insn_operand_matches (icode, 0, op0)
3003 && insn_operand_matches (icode, 1, op1))
3005 enum rtx_code code = unsignedp ? ZERO_EXTEND : SIGN_EXTEND;
3006 rtx insn, insns, t = op1;
3007 HARD_REG_SET hardregs;
3009 start_sequence ();
3010 /* If op1 is a hard register that is likely spilled, first
3011 force it into a pseudo, otherwise combiner might extend
3012 its lifetime too much. */
3013 if (GET_CODE (t) == SUBREG)
3014 t = SUBREG_REG (t);
3015 if (REG_P (t)
3016 && HARD_REGISTER_P (t)
3017 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (t))
3018 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (t))))
3020 t = gen_reg_rtx (GET_MODE (op1));
3021 emit_move_insn (t, op1);
3023 else
3024 t = op1;
3025 insn = gen_extend_insn (op0, t, promoted_nominal_mode,
3026 data->passed_mode, unsignedp);
3027 emit_insn (insn);
3028 insns = get_insns ();
3030 moved = true;
3031 CLEAR_HARD_REG_SET (hardregs);
3032 for (insn = insns; insn && moved; insn = NEXT_INSN (insn))
3034 if (INSN_P (insn))
3035 note_stores (PATTERN (insn), record_hard_reg_sets,
3036 &hardregs);
3037 if (!hard_reg_set_empty_p (hardregs))
3038 moved = false;
3041 end_sequence ();
3043 if (moved)
3045 emit_insn (insns);
3046 if (equiv_stack_parm != NULL_RTX)
3047 equiv_stack_parm = gen_rtx_fmt_e (code, GET_MODE (parmreg),
3048 equiv_stack_parm);
3053 if (moved)
3054 /* Nothing to do. */
3056 else if (need_conversion)
3058 /* We did not have an insn to convert directly, or the sequence
3059 generated appeared unsafe. We must first copy the parm to a
3060 pseudo reg, and save the conversion until after all
3061 parameters have been moved. */
3063 int save_tree_used;
3064 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3066 emit_move_insn (tempreg, validated_mem);
3068 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3069 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
3071 if (GET_CODE (tempreg) == SUBREG
3072 && GET_MODE (tempreg) == data->nominal_mode
3073 && REG_P (SUBREG_REG (tempreg))
3074 && data->nominal_mode == data->passed_mode
3075 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
3076 && GET_MODE_SIZE (GET_MODE (tempreg))
3077 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
3079 /* The argument is already sign/zero extended, so note it
3080 into the subreg. */
3081 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
3082 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
3085 /* TREE_USED gets set erroneously during expand_assignment. */
3086 save_tree_used = TREE_USED (parm);
3087 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
3088 TREE_USED (parm) = save_tree_used;
3089 all->first_conversion_insn = get_insns ();
3090 all->last_conversion_insn = get_last_insn ();
3091 end_sequence ();
3093 did_conversion = true;
3095 else
3096 emit_move_insn (parmreg, validated_mem);
3098 /* If we were passed a pointer but the actual value can safely live
3099 in a register, retrieve it and use it directly. */
3100 if (data->passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode)
3102 /* We can't use nominal_mode, because it will have been set to
3103 Pmode above. We must use the actual mode of the parm. */
3104 if (use_register_for_decl (parm))
3106 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
3107 mark_user_reg (parmreg);
3109 else
3111 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3112 TYPE_MODE (TREE_TYPE (parm)),
3113 TYPE_ALIGN (TREE_TYPE (parm)));
3114 parmreg
3115 = assign_stack_local (TYPE_MODE (TREE_TYPE (parm)),
3116 GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (parm))),
3117 align);
3118 set_mem_attributes (parmreg, parm, 1);
3121 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
3123 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
3124 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
3126 push_to_sequence2 (all->first_conversion_insn,
3127 all->last_conversion_insn);
3128 emit_move_insn (tempreg, DECL_RTL (parm));
3129 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
3130 emit_move_insn (parmreg, tempreg);
3131 all->first_conversion_insn = get_insns ();
3132 all->last_conversion_insn = get_last_insn ();
3133 end_sequence ();
3135 did_conversion = true;
3137 else
3138 emit_move_insn (parmreg, DECL_RTL (parm));
3140 SET_DECL_RTL (parm, parmreg);
3142 /* STACK_PARM is the pointer, not the parm, and PARMREG is
3143 now the parm. */
3144 data->stack_parm = NULL;
3147 /* Mark the register as eliminable if we did no conversion and it was
3148 copied from memory at a fixed offset, and the arg pointer was not
3149 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
3150 offset formed an invalid address, such memory-equivalences as we
3151 make here would screw up life analysis for it. */
3152 if (data->nominal_mode == data->passed_mode
3153 && !did_conversion
3154 && data->stack_parm != 0
3155 && MEM_P (data->stack_parm)
3156 && data->locate.offset.var == 0
3157 && reg_mentioned_p (virtual_incoming_args_rtx,
3158 XEXP (data->stack_parm, 0)))
3160 rtx linsn = get_last_insn ();
3161 rtx sinsn, set;
3163 /* Mark complex types separately. */
3164 if (GET_CODE (parmreg) == CONCAT)
3166 enum machine_mode submode
3167 = GET_MODE_INNER (GET_MODE (parmreg));
3168 int regnor = REGNO (XEXP (parmreg, 0));
3169 int regnoi = REGNO (XEXP (parmreg, 1));
3170 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
3171 rtx stacki = adjust_address_nv (data->stack_parm, submode,
3172 GET_MODE_SIZE (submode));
3174 /* Scan backwards for the set of the real and
3175 imaginary parts. */
3176 for (sinsn = linsn; sinsn != 0;
3177 sinsn = prev_nonnote_insn (sinsn))
3179 set = single_set (sinsn);
3180 if (set == 0)
3181 continue;
3183 if (SET_DEST (set) == regno_reg_rtx [regnoi])
3184 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
3185 else if (SET_DEST (set) == regno_reg_rtx [regnor])
3186 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
3189 else
3190 set_dst_reg_note (linsn, REG_EQUIV, equiv_stack_parm, parmreg);
3193 /* For pointer data type, suggest pointer register. */
3194 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3195 mark_reg_pointer (parmreg,
3196 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
3199 /* A subroutine of assign_parms. Allocate stack space to hold the current
3200 parameter. Get it there. Perform all ABI specified conversions. */
3202 static void
3203 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
3204 struct assign_parm_data_one *data)
3206 /* Value must be stored in the stack slot STACK_PARM during function
3207 execution. */
3208 bool to_conversion = false;
3210 assign_parm_remove_parallels (data);
3212 if (data->promoted_mode != data->nominal_mode)
3214 /* Conversion is required. */
3215 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3217 emit_move_insn (tempreg, validize_mem (data->entry_parm));
3219 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3220 to_conversion = true;
3222 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
3223 TYPE_UNSIGNED (TREE_TYPE (parm)));
3225 if (data->stack_parm)
3227 int offset = subreg_lowpart_offset (data->nominal_mode,
3228 GET_MODE (data->stack_parm));
3229 /* ??? This may need a big-endian conversion on sparc64. */
3230 data->stack_parm
3231 = adjust_address (data->stack_parm, data->nominal_mode, 0);
3232 if (offset && MEM_OFFSET_KNOWN_P (data->stack_parm))
3233 set_mem_offset (data->stack_parm,
3234 MEM_OFFSET (data->stack_parm) + offset);
3238 if (data->entry_parm != data->stack_parm)
3240 rtx src, dest;
3242 if (data->stack_parm == 0)
3244 int align = STACK_SLOT_ALIGNMENT (data->passed_type,
3245 GET_MODE (data->entry_parm),
3246 TYPE_ALIGN (data->passed_type));
3247 data->stack_parm
3248 = assign_stack_local (GET_MODE (data->entry_parm),
3249 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
3250 align);
3251 set_mem_attributes (data->stack_parm, parm, 1);
3254 dest = validize_mem (data->stack_parm);
3255 src = validize_mem (data->entry_parm);
3257 if (MEM_P (src))
3259 /* Use a block move to handle potentially misaligned entry_parm. */
3260 if (!to_conversion)
3261 push_to_sequence2 (all->first_conversion_insn,
3262 all->last_conversion_insn);
3263 to_conversion = true;
3265 emit_block_move (dest, src,
3266 GEN_INT (int_size_in_bytes (data->passed_type)),
3267 BLOCK_OP_NORMAL);
3269 else
3270 emit_move_insn (dest, src);
3273 if (to_conversion)
3275 all->first_conversion_insn = get_insns ();
3276 all->last_conversion_insn = get_last_insn ();
3277 end_sequence ();
3280 SET_DECL_RTL (parm, data->stack_parm);
3283 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3284 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3286 static void
3287 assign_parms_unsplit_complex (struct assign_parm_data_all *all,
3288 vec<tree> fnargs)
3290 tree parm;
3291 tree orig_fnargs = all->orig_fnargs;
3292 unsigned i = 0;
3294 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm), ++i)
3296 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3297 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3299 rtx tmp, real, imag;
3300 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3302 real = DECL_RTL (fnargs[i]);
3303 imag = DECL_RTL (fnargs[i + 1]);
3304 if (inner != GET_MODE (real))
3306 real = gen_lowpart_SUBREG (inner, real);
3307 imag = gen_lowpart_SUBREG (inner, imag);
3310 if (TREE_ADDRESSABLE (parm))
3312 rtx rmem, imem;
3313 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3314 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3315 DECL_MODE (parm),
3316 TYPE_ALIGN (TREE_TYPE (parm)));
3318 /* split_complex_arg put the real and imag parts in
3319 pseudos. Move them to memory. */
3320 tmp = assign_stack_local (DECL_MODE (parm), size, align);
3321 set_mem_attributes (tmp, parm, 1);
3322 rmem = adjust_address_nv (tmp, inner, 0);
3323 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3324 push_to_sequence2 (all->first_conversion_insn,
3325 all->last_conversion_insn);
3326 emit_move_insn (rmem, real);
3327 emit_move_insn (imem, imag);
3328 all->first_conversion_insn = get_insns ();
3329 all->last_conversion_insn = get_last_insn ();
3330 end_sequence ();
3332 else
3333 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3334 SET_DECL_RTL (parm, tmp);
3336 real = DECL_INCOMING_RTL (fnargs[i]);
3337 imag = DECL_INCOMING_RTL (fnargs[i + 1]);
3338 if (inner != GET_MODE (real))
3340 real = gen_lowpart_SUBREG (inner, real);
3341 imag = gen_lowpart_SUBREG (inner, imag);
3343 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3344 set_decl_incoming_rtl (parm, tmp, false);
3345 i++;
3350 /* Assign RTL expressions to the function's parameters. This may involve
3351 copying them into registers and using those registers as the DECL_RTL. */
3353 static void
3354 assign_parms (tree fndecl)
3356 struct assign_parm_data_all all;
3357 tree parm;
3358 vec<tree> fnargs;
3359 unsigned i;
3361 crtl->args.internal_arg_pointer
3362 = targetm.calls.internal_arg_pointer ();
3364 assign_parms_initialize_all (&all);
3365 fnargs = assign_parms_augmented_arg_list (&all);
3367 FOR_EACH_VEC_ELT (fnargs, i, parm)
3369 struct assign_parm_data_one data;
3371 /* Extract the type of PARM; adjust it according to ABI. */
3372 assign_parm_find_data_types (&all, parm, &data);
3374 /* Early out for errors and void parameters. */
3375 if (data.passed_mode == VOIDmode)
3377 SET_DECL_RTL (parm, const0_rtx);
3378 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3379 continue;
3382 /* Estimate stack alignment from parameter alignment. */
3383 if (SUPPORTS_STACK_ALIGNMENT)
3385 unsigned int align
3386 = targetm.calls.function_arg_boundary (data.promoted_mode,
3387 data.passed_type);
3388 align = MINIMUM_ALIGNMENT (data.passed_type, data.promoted_mode,
3389 align);
3390 if (TYPE_ALIGN (data.nominal_type) > align)
3391 align = MINIMUM_ALIGNMENT (data.nominal_type,
3392 TYPE_MODE (data.nominal_type),
3393 TYPE_ALIGN (data.nominal_type));
3394 if (crtl->stack_alignment_estimated < align)
3396 gcc_assert (!crtl->stack_realign_processed);
3397 crtl->stack_alignment_estimated = align;
3401 if (cfun->stdarg && !DECL_CHAIN (parm))
3402 assign_parms_setup_varargs (&all, &data, false);
3404 /* Find out where the parameter arrives in this function. */
3405 assign_parm_find_entry_rtl (&all, &data);
3407 /* Find out where stack space for this parameter might be. */
3408 if (assign_parm_is_stack_parm (&all, &data))
3410 assign_parm_find_stack_rtl (parm, &data);
3411 assign_parm_adjust_entry_rtl (&data);
3414 /* Record permanently how this parm was passed. */
3415 if (data.passed_pointer)
3417 rtx incoming_rtl
3418 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data.passed_type)),
3419 data.entry_parm);
3420 set_decl_incoming_rtl (parm, incoming_rtl, true);
3422 else
3423 set_decl_incoming_rtl (parm, data.entry_parm, false);
3425 /* Update info on where next arg arrives in registers. */
3426 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3427 data.passed_type, data.named_arg);
3429 assign_parm_adjust_stack_rtl (&data);
3431 if (assign_parm_setup_block_p (&data))
3432 assign_parm_setup_block (&all, parm, &data);
3433 else if (data.passed_pointer || use_register_for_decl (parm))
3434 assign_parm_setup_reg (&all, parm, &data);
3435 else
3436 assign_parm_setup_stack (&all, parm, &data);
3439 if (targetm.calls.split_complex_arg)
3440 assign_parms_unsplit_complex (&all, fnargs);
3442 fnargs.release ();
3444 /* Output all parameter conversion instructions (possibly including calls)
3445 now that all parameters have been copied out of hard registers. */
3446 emit_insn (all.first_conversion_insn);
3448 /* Estimate reload stack alignment from scalar return mode. */
3449 if (SUPPORTS_STACK_ALIGNMENT)
3451 if (DECL_RESULT (fndecl))
3453 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3454 enum machine_mode mode = TYPE_MODE (type);
3456 if (mode != BLKmode
3457 && mode != VOIDmode
3458 && !AGGREGATE_TYPE_P (type))
3460 unsigned int align = GET_MODE_ALIGNMENT (mode);
3461 if (crtl->stack_alignment_estimated < align)
3463 gcc_assert (!crtl->stack_realign_processed);
3464 crtl->stack_alignment_estimated = align;
3470 /* If we are receiving a struct value address as the first argument, set up
3471 the RTL for the function result. As this might require code to convert
3472 the transmitted address to Pmode, we do this here to ensure that possible
3473 preliminary conversions of the address have been emitted already. */
3474 if (all.function_result_decl)
3476 tree result = DECL_RESULT (current_function_decl);
3477 rtx addr = DECL_RTL (all.function_result_decl);
3478 rtx x;
3480 if (DECL_BY_REFERENCE (result))
3482 SET_DECL_VALUE_EXPR (result, all.function_result_decl);
3483 x = addr;
3485 else
3487 SET_DECL_VALUE_EXPR (result,
3488 build1 (INDIRECT_REF, TREE_TYPE (result),
3489 all.function_result_decl));
3490 addr = convert_memory_address (Pmode, addr);
3491 x = gen_rtx_MEM (DECL_MODE (result), addr);
3492 set_mem_attributes (x, result, 1);
3495 DECL_HAS_VALUE_EXPR_P (result) = 1;
3497 SET_DECL_RTL (result, x);
3500 /* We have aligned all the args, so add space for the pretend args. */
3501 crtl->args.pretend_args_size = all.pretend_args_size;
3502 all.stack_args_size.constant += all.extra_pretend_bytes;
3503 crtl->args.size = all.stack_args_size.constant;
3505 /* Adjust function incoming argument size for alignment and
3506 minimum length. */
3508 crtl->args.size = MAX (crtl->args.size, all.reg_parm_stack_space);
3509 crtl->args.size = CEIL_ROUND (crtl->args.size,
3510 PARM_BOUNDARY / BITS_PER_UNIT);
3512 #ifdef ARGS_GROW_DOWNWARD
3513 crtl->args.arg_offset_rtx
3514 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3515 : expand_expr (size_diffop (all.stack_args_size.var,
3516 size_int (-all.stack_args_size.constant)),
3517 NULL_RTX, VOIDmode, EXPAND_NORMAL));
3518 #else
3519 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3520 #endif
3522 /* See how many bytes, if any, of its args a function should try to pop
3523 on return. */
3525 crtl->args.pops_args = targetm.calls.return_pops_args (fndecl,
3526 TREE_TYPE (fndecl),
3527 crtl->args.size);
3529 /* For stdarg.h function, save info about
3530 regs and stack space used by the named args. */
3532 crtl->args.info = all.args_so_far_v;
3534 /* Set the rtx used for the function return value. Put this in its
3535 own variable so any optimizers that need this information don't have
3536 to include tree.h. Do this here so it gets done when an inlined
3537 function gets output. */
3539 crtl->return_rtx
3540 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3541 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3543 /* If scalar return value was computed in a pseudo-reg, or was a named
3544 return value that got dumped to the stack, copy that to the hard
3545 return register. */
3546 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3548 tree decl_result = DECL_RESULT (fndecl);
3549 rtx decl_rtl = DECL_RTL (decl_result);
3551 if (REG_P (decl_rtl)
3552 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3553 : DECL_REGISTER (decl_result))
3555 rtx real_decl_rtl;
3557 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3558 fndecl, true);
3559 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3560 /* The delay slot scheduler assumes that crtl->return_rtx
3561 holds the hard register containing the return value, not a
3562 temporary pseudo. */
3563 crtl->return_rtx = real_decl_rtl;
3568 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3569 For all seen types, gimplify their sizes. */
3571 static tree
3572 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3574 tree t = *tp;
3576 *walk_subtrees = 0;
3577 if (TYPE_P (t))
3579 if (POINTER_TYPE_P (t))
3580 *walk_subtrees = 1;
3581 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3582 && !TYPE_SIZES_GIMPLIFIED (t))
3584 gimplify_type_sizes (t, (gimple_seq *) data);
3585 *walk_subtrees = 1;
3589 return NULL;
3592 /* Gimplify the parameter list for current_function_decl. This involves
3593 evaluating SAVE_EXPRs of variable sized parameters and generating code
3594 to implement callee-copies reference parameters. Returns a sequence of
3595 statements to add to the beginning of the function. */
3597 gimple_seq
3598 gimplify_parameters (void)
3600 struct assign_parm_data_all all;
3601 tree parm;
3602 gimple_seq stmts = NULL;
3603 vec<tree> fnargs;
3604 unsigned i;
3606 assign_parms_initialize_all (&all);
3607 fnargs = assign_parms_augmented_arg_list (&all);
3609 FOR_EACH_VEC_ELT (fnargs, i, parm)
3611 struct assign_parm_data_one data;
3613 /* Extract the type of PARM; adjust it according to ABI. */
3614 assign_parm_find_data_types (&all, parm, &data);
3616 /* Early out for errors and void parameters. */
3617 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3618 continue;
3620 /* Update info on where next arg arrives in registers. */
3621 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3622 data.passed_type, data.named_arg);
3624 /* ??? Once upon a time variable_size stuffed parameter list
3625 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3626 turned out to be less than manageable in the gimple world.
3627 Now we have to hunt them down ourselves. */
3628 walk_tree_without_duplicates (&data.passed_type,
3629 gimplify_parm_type, &stmts);
3631 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
3633 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3634 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3637 if (data.passed_pointer)
3639 tree type = TREE_TYPE (data.passed_type);
3640 if (reference_callee_copied (&all.args_so_far_v, TYPE_MODE (type),
3641 type, data.named_arg))
3643 tree local, t;
3645 /* For constant-sized objects, this is trivial; for
3646 variable-sized objects, we have to play games. */
3647 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
3648 && !(flag_stack_check == GENERIC_STACK_CHECK
3649 && compare_tree_int (DECL_SIZE_UNIT (parm),
3650 STACK_CHECK_MAX_VAR_SIZE) > 0))
3652 local = create_tmp_var (type, get_name (parm));
3653 DECL_IGNORED_P (local) = 0;
3654 /* If PARM was addressable, move that flag over
3655 to the local copy, as its address will be taken,
3656 not the PARMs. Keep the parms address taken
3657 as we'll query that flag during gimplification. */
3658 if (TREE_ADDRESSABLE (parm))
3659 TREE_ADDRESSABLE (local) = 1;
3660 else if (TREE_CODE (type) == COMPLEX_TYPE
3661 || TREE_CODE (type) == VECTOR_TYPE)
3662 DECL_GIMPLE_REG_P (local) = 1;
3664 else
3666 tree ptr_type, addr;
3668 ptr_type = build_pointer_type (type);
3669 addr = create_tmp_reg (ptr_type, get_name (parm));
3670 DECL_IGNORED_P (addr) = 0;
3671 local = build_fold_indirect_ref (addr);
3673 t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN);
3674 t = build_call_expr (t, 2, DECL_SIZE_UNIT (parm),
3675 size_int (DECL_ALIGN (parm)));
3677 /* The call has been built for a variable-sized object. */
3678 CALL_ALLOCA_FOR_VAR_P (t) = 1;
3679 t = fold_convert (ptr_type, t);
3680 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
3681 gimplify_and_add (t, &stmts);
3684 gimplify_assign (local, parm, &stmts);
3686 SET_DECL_VALUE_EXPR (parm, local);
3687 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3692 fnargs.release ();
3694 return stmts;
3697 /* Compute the size and offset from the start of the stacked arguments for a
3698 parm passed in mode PASSED_MODE and with type TYPE.
3700 INITIAL_OFFSET_PTR points to the current offset into the stacked
3701 arguments.
3703 The starting offset and size for this parm are returned in
3704 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3705 nonzero, the offset is that of stack slot, which is returned in
3706 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3707 padding required from the initial offset ptr to the stack slot.
3709 IN_REGS is nonzero if the argument will be passed in registers. It will
3710 never be set if REG_PARM_STACK_SPACE is not defined.
3712 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
3713 for arguments which are passed in registers.
3715 FNDECL is the function in which the argument was defined.
3717 There are two types of rounding that are done. The first, controlled by
3718 TARGET_FUNCTION_ARG_BOUNDARY, forces the offset from the start of the
3719 argument list to be aligned to the specific boundary (in bits). This
3720 rounding affects the initial and starting offsets, but not the argument
3721 size.
3723 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3724 optionally rounds the size of the parm to PARM_BOUNDARY. The
3725 initial offset is not affected by this rounding, while the size always
3726 is and the starting offset may be. */
3728 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3729 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3730 callers pass in the total size of args so far as
3731 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3733 void
3734 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3735 int reg_parm_stack_space, int partial,
3736 tree fndecl ATTRIBUTE_UNUSED,
3737 struct args_size *initial_offset_ptr,
3738 struct locate_and_pad_arg_data *locate)
3740 tree sizetree;
3741 enum direction where_pad;
3742 unsigned int boundary, round_boundary;
3743 int part_size_in_regs;
3745 /* If we have found a stack parm before we reach the end of the
3746 area reserved for registers, skip that area. */
3747 if (! in_regs)
3749 if (reg_parm_stack_space > 0)
3751 if (initial_offset_ptr->var)
3753 initial_offset_ptr->var
3754 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3755 ssize_int (reg_parm_stack_space));
3756 initial_offset_ptr->constant = 0;
3758 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3759 initial_offset_ptr->constant = reg_parm_stack_space;
3763 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3765 sizetree
3766 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3767 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3768 boundary = targetm.calls.function_arg_boundary (passed_mode, type);
3769 round_boundary = targetm.calls.function_arg_round_boundary (passed_mode,
3770 type);
3771 locate->where_pad = where_pad;
3773 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
3774 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
3775 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
3777 locate->boundary = boundary;
3779 if (SUPPORTS_STACK_ALIGNMENT)
3781 /* stack_alignment_estimated can't change after stack has been
3782 realigned. */
3783 if (crtl->stack_alignment_estimated < boundary)
3785 if (!crtl->stack_realign_processed)
3786 crtl->stack_alignment_estimated = boundary;
3787 else
3789 /* If stack is realigned and stack alignment value
3790 hasn't been finalized, it is OK not to increase
3791 stack_alignment_estimated. The bigger alignment
3792 requirement is recorded in stack_alignment_needed
3793 below. */
3794 gcc_assert (!crtl->stack_realign_finalized
3795 && crtl->stack_realign_needed);
3800 /* Remember if the outgoing parameter requires extra alignment on the
3801 calling function side. */
3802 if (crtl->stack_alignment_needed < boundary)
3803 crtl->stack_alignment_needed = boundary;
3804 if (crtl->preferred_stack_boundary < boundary)
3805 crtl->preferred_stack_boundary = boundary;
3807 #ifdef ARGS_GROW_DOWNWARD
3808 locate->slot_offset.constant = -initial_offset_ptr->constant;
3809 if (initial_offset_ptr->var)
3810 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3811 initial_offset_ptr->var);
3814 tree s2 = sizetree;
3815 if (where_pad != none
3816 && (!host_integerp (sizetree, 1)
3817 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % round_boundary))
3818 s2 = round_up (s2, round_boundary / BITS_PER_UNIT);
3819 SUB_PARM_SIZE (locate->slot_offset, s2);
3822 locate->slot_offset.constant += part_size_in_regs;
3824 if (!in_regs || reg_parm_stack_space > 0)
3825 pad_to_arg_alignment (&locate->slot_offset, boundary,
3826 &locate->alignment_pad);
3828 locate->size.constant = (-initial_offset_ptr->constant
3829 - locate->slot_offset.constant);
3830 if (initial_offset_ptr->var)
3831 locate->size.var = size_binop (MINUS_EXPR,
3832 size_binop (MINUS_EXPR,
3833 ssize_int (0),
3834 initial_offset_ptr->var),
3835 locate->slot_offset.var);
3837 /* Pad_below needs the pre-rounded size to know how much to pad
3838 below. */
3839 locate->offset = locate->slot_offset;
3840 if (where_pad == downward)
3841 pad_below (&locate->offset, passed_mode, sizetree);
3843 #else /* !ARGS_GROW_DOWNWARD */
3844 if (!in_regs || reg_parm_stack_space > 0)
3845 pad_to_arg_alignment (initial_offset_ptr, boundary,
3846 &locate->alignment_pad);
3847 locate->slot_offset = *initial_offset_ptr;
3849 #ifdef PUSH_ROUNDING
3850 if (passed_mode != BLKmode)
3851 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3852 #endif
3854 /* Pad_below needs the pre-rounded size to know how much to pad below
3855 so this must be done before rounding up. */
3856 locate->offset = locate->slot_offset;
3857 if (where_pad == downward)
3858 pad_below (&locate->offset, passed_mode, sizetree);
3860 if (where_pad != none
3861 && (!host_integerp (sizetree, 1)
3862 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % round_boundary))
3863 sizetree = round_up (sizetree, round_boundary / BITS_PER_UNIT);
3865 ADD_PARM_SIZE (locate->size, sizetree);
3867 locate->size.constant -= part_size_in_regs;
3868 #endif /* ARGS_GROW_DOWNWARD */
3870 #ifdef FUNCTION_ARG_OFFSET
3871 locate->offset.constant += FUNCTION_ARG_OFFSET (passed_mode, type);
3872 #endif
3875 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3876 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3878 static void
3879 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3880 struct args_size *alignment_pad)
3882 tree save_var = NULL_TREE;
3883 HOST_WIDE_INT save_constant = 0;
3884 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3885 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3887 #ifdef SPARC_STACK_BOUNDARY_HACK
3888 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
3889 the real alignment of %sp. However, when it does this, the
3890 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
3891 if (SPARC_STACK_BOUNDARY_HACK)
3892 sp_offset = 0;
3893 #endif
3895 if (boundary > PARM_BOUNDARY)
3897 save_var = offset_ptr->var;
3898 save_constant = offset_ptr->constant;
3901 alignment_pad->var = NULL_TREE;
3902 alignment_pad->constant = 0;
3904 if (boundary > BITS_PER_UNIT)
3906 if (offset_ptr->var)
3908 tree sp_offset_tree = ssize_int (sp_offset);
3909 tree offset = size_binop (PLUS_EXPR,
3910 ARGS_SIZE_TREE (*offset_ptr),
3911 sp_offset_tree);
3912 #ifdef ARGS_GROW_DOWNWARD
3913 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3914 #else
3915 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3916 #endif
3918 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3919 /* ARGS_SIZE_TREE includes constant term. */
3920 offset_ptr->constant = 0;
3921 if (boundary > PARM_BOUNDARY)
3922 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3923 save_var);
3925 else
3927 offset_ptr->constant = -sp_offset +
3928 #ifdef ARGS_GROW_DOWNWARD
3929 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3930 #else
3931 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3932 #endif
3933 if (boundary > PARM_BOUNDARY)
3934 alignment_pad->constant = offset_ptr->constant - save_constant;
3939 static void
3940 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3942 if (passed_mode != BLKmode)
3944 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3945 offset_ptr->constant
3946 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3947 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3948 - GET_MODE_SIZE (passed_mode));
3950 else
3952 if (TREE_CODE (sizetree) != INTEGER_CST
3953 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3955 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3956 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3957 /* Add it in. */
3958 ADD_PARM_SIZE (*offset_ptr, s2);
3959 SUB_PARM_SIZE (*offset_ptr, sizetree);
3965 /* True if register REGNO was alive at a place where `setjmp' was
3966 called and was set more than once or is an argument. Such regs may
3967 be clobbered by `longjmp'. */
3969 static bool
3970 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
3972 /* There appear to be cases where some local vars never reach the
3973 backend but have bogus regnos. */
3974 if (regno >= max_reg_num ())
3975 return false;
3977 return ((REG_N_SETS (regno) > 1
3978 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR), regno))
3979 && REGNO_REG_SET_P (setjmp_crosses, regno));
3982 /* Walk the tree of blocks describing the binding levels within a
3983 function and warn about variables the might be killed by setjmp or
3984 vfork. This is done after calling flow_analysis before register
3985 allocation since that will clobber the pseudo-regs to hard
3986 regs. */
3988 static void
3989 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
3991 tree decl, sub;
3993 for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl))
3995 if (TREE_CODE (decl) == VAR_DECL
3996 && DECL_RTL_SET_P (decl)
3997 && REG_P (DECL_RTL (decl))
3998 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3999 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
4000 " %<longjmp%> or %<vfork%>", decl);
4003 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
4004 setjmp_vars_warning (setjmp_crosses, sub);
4007 /* Do the appropriate part of setjmp_vars_warning
4008 but for arguments instead of local variables. */
4010 static void
4011 setjmp_args_warning (bitmap setjmp_crosses)
4013 tree decl;
4014 for (decl = DECL_ARGUMENTS (current_function_decl);
4015 decl; decl = DECL_CHAIN (decl))
4016 if (DECL_RTL (decl) != 0
4017 && REG_P (DECL_RTL (decl))
4018 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4019 warning (OPT_Wclobbered,
4020 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
4021 decl);
4024 /* Generate warning messages for variables live across setjmp. */
4026 void
4027 generate_setjmp_warnings (void)
4029 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
4031 if (n_basic_blocks == NUM_FIXED_BLOCKS
4032 || bitmap_empty_p (setjmp_crosses))
4033 return;
4035 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
4036 setjmp_args_warning (setjmp_crosses);
4040 /* Reverse the order of elements in the fragment chain T of blocks,
4041 and return the new head of the chain (old last element).
4042 In addition to that clear BLOCK_SAME_RANGE flags when needed
4043 and adjust BLOCK_SUPERCONTEXT from the super fragment to
4044 its super fragment origin. */
4046 static tree
4047 block_fragments_nreverse (tree t)
4049 tree prev = 0, block, next, prev_super = 0;
4050 tree super = BLOCK_SUPERCONTEXT (t);
4051 if (BLOCK_FRAGMENT_ORIGIN (super))
4052 super = BLOCK_FRAGMENT_ORIGIN (super);
4053 for (block = t; block; block = next)
4055 next = BLOCK_FRAGMENT_CHAIN (block);
4056 BLOCK_FRAGMENT_CHAIN (block) = prev;
4057 if ((prev && !BLOCK_SAME_RANGE (prev))
4058 || (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (block))
4059 != prev_super))
4060 BLOCK_SAME_RANGE (block) = 0;
4061 prev_super = BLOCK_SUPERCONTEXT (block);
4062 BLOCK_SUPERCONTEXT (block) = super;
4063 prev = block;
4065 t = BLOCK_FRAGMENT_ORIGIN (t);
4066 if (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (t))
4067 != prev_super)
4068 BLOCK_SAME_RANGE (t) = 0;
4069 BLOCK_SUPERCONTEXT (t) = super;
4070 return prev;
4073 /* Reverse the order of elements in the chain T of blocks,
4074 and return the new head of the chain (old last element).
4075 Also do the same on subblocks and reverse the order of elements
4076 in BLOCK_FRAGMENT_CHAIN as well. */
4078 static tree
4079 blocks_nreverse_all (tree t)
4081 tree prev = 0, block, next;
4082 for (block = t; block; block = next)
4084 next = BLOCK_CHAIN (block);
4085 BLOCK_CHAIN (block) = prev;
4086 if (BLOCK_FRAGMENT_CHAIN (block)
4087 && BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE)
4089 BLOCK_FRAGMENT_CHAIN (block)
4090 = block_fragments_nreverse (BLOCK_FRAGMENT_CHAIN (block));
4091 if (!BLOCK_SAME_RANGE (BLOCK_FRAGMENT_CHAIN (block)))
4092 BLOCK_SAME_RANGE (block) = 0;
4094 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4095 prev = block;
4097 return prev;
4101 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
4102 and create duplicate blocks. */
4103 /* ??? Need an option to either create block fragments or to create
4104 abstract origin duplicates of a source block. It really depends
4105 on what optimization has been performed. */
4107 void
4108 reorder_blocks (void)
4110 tree block = DECL_INITIAL (current_function_decl);
4112 if (block == NULL_TREE)
4113 return;
4115 stack_vec<tree, 10> block_stack;
4117 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
4118 clear_block_marks (block);
4120 /* Prune the old trees away, so that they don't get in the way. */
4121 BLOCK_SUBBLOCKS (block) = NULL_TREE;
4122 BLOCK_CHAIN (block) = NULL_TREE;
4124 /* Recreate the block tree from the note nesting. */
4125 reorder_blocks_1 (get_insns (), block, &block_stack);
4126 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4129 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
4131 void
4132 clear_block_marks (tree block)
4134 while (block)
4136 TREE_ASM_WRITTEN (block) = 0;
4137 clear_block_marks (BLOCK_SUBBLOCKS (block));
4138 block = BLOCK_CHAIN (block);
4142 static void
4143 reorder_blocks_1 (rtx insns, tree current_block, vec<tree> *p_block_stack)
4145 rtx insn;
4146 tree prev_beg = NULL_TREE, prev_end = NULL_TREE;
4148 for (insn = insns; insn; insn = NEXT_INSN (insn))
4150 if (NOTE_P (insn))
4152 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
4154 tree block = NOTE_BLOCK (insn);
4155 tree origin;
4157 gcc_assert (BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE);
4158 origin = block;
4160 if (prev_end)
4161 BLOCK_SAME_RANGE (prev_end) = 0;
4162 prev_end = NULL_TREE;
4164 /* If we have seen this block before, that means it now
4165 spans multiple address regions. Create a new fragment. */
4166 if (TREE_ASM_WRITTEN (block))
4168 tree new_block = copy_node (block);
4170 BLOCK_SAME_RANGE (new_block) = 0;
4171 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
4172 BLOCK_FRAGMENT_CHAIN (new_block)
4173 = BLOCK_FRAGMENT_CHAIN (origin);
4174 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
4176 NOTE_BLOCK (insn) = new_block;
4177 block = new_block;
4180 if (prev_beg == current_block && prev_beg)
4181 BLOCK_SAME_RANGE (block) = 1;
4183 prev_beg = origin;
4185 BLOCK_SUBBLOCKS (block) = 0;
4186 TREE_ASM_WRITTEN (block) = 1;
4187 /* When there's only one block for the entire function,
4188 current_block == block and we mustn't do this, it
4189 will cause infinite recursion. */
4190 if (block != current_block)
4192 tree super;
4193 if (block != origin)
4194 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block
4195 || BLOCK_FRAGMENT_ORIGIN (BLOCK_SUPERCONTEXT
4196 (origin))
4197 == current_block);
4198 if (p_block_stack->is_empty ())
4199 super = current_block;
4200 else
4202 super = p_block_stack->last ();
4203 gcc_assert (super == current_block
4204 || BLOCK_FRAGMENT_ORIGIN (super)
4205 == current_block);
4207 BLOCK_SUPERCONTEXT (block) = super;
4208 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
4209 BLOCK_SUBBLOCKS (current_block) = block;
4210 current_block = origin;
4212 p_block_stack->safe_push (block);
4214 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
4216 NOTE_BLOCK (insn) = p_block_stack->pop ();
4217 current_block = BLOCK_SUPERCONTEXT (current_block);
4218 if (BLOCK_FRAGMENT_ORIGIN (current_block))
4219 current_block = BLOCK_FRAGMENT_ORIGIN (current_block);
4220 prev_beg = NULL_TREE;
4221 prev_end = BLOCK_SAME_RANGE (NOTE_BLOCK (insn))
4222 ? NOTE_BLOCK (insn) : NULL_TREE;
4225 else
4227 prev_beg = NULL_TREE;
4228 if (prev_end)
4229 BLOCK_SAME_RANGE (prev_end) = 0;
4230 prev_end = NULL_TREE;
4235 /* Reverse the order of elements in the chain T of blocks,
4236 and return the new head of the chain (old last element). */
4238 tree
4239 blocks_nreverse (tree t)
4241 tree prev = 0, block, next;
4242 for (block = t; block; block = next)
4244 next = BLOCK_CHAIN (block);
4245 BLOCK_CHAIN (block) = prev;
4246 prev = block;
4248 return prev;
4251 /* Concatenate two chains of blocks (chained through BLOCK_CHAIN)
4252 by modifying the last node in chain 1 to point to chain 2. */
4254 tree
4255 block_chainon (tree op1, tree op2)
4257 tree t1;
4259 if (!op1)
4260 return op2;
4261 if (!op2)
4262 return op1;
4264 for (t1 = op1; BLOCK_CHAIN (t1); t1 = BLOCK_CHAIN (t1))
4265 continue;
4266 BLOCK_CHAIN (t1) = op2;
4268 #ifdef ENABLE_TREE_CHECKING
4270 tree t2;
4271 for (t2 = op2; t2; t2 = BLOCK_CHAIN (t2))
4272 gcc_assert (t2 != t1);
4274 #endif
4276 return op1;
4279 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
4280 non-NULL, list them all into VECTOR, in a depth-first preorder
4281 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
4282 blocks. */
4284 static int
4285 all_blocks (tree block, tree *vector)
4287 int n_blocks = 0;
4289 while (block)
4291 TREE_ASM_WRITTEN (block) = 0;
4293 /* Record this block. */
4294 if (vector)
4295 vector[n_blocks] = block;
4297 ++n_blocks;
4299 /* Record the subblocks, and their subblocks... */
4300 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
4301 vector ? vector + n_blocks : 0);
4302 block = BLOCK_CHAIN (block);
4305 return n_blocks;
4308 /* Return a vector containing all the blocks rooted at BLOCK. The
4309 number of elements in the vector is stored in N_BLOCKS_P. The
4310 vector is dynamically allocated; it is the caller's responsibility
4311 to call `free' on the pointer returned. */
4313 static tree *
4314 get_block_vector (tree block, int *n_blocks_p)
4316 tree *block_vector;
4318 *n_blocks_p = all_blocks (block, NULL);
4319 block_vector = XNEWVEC (tree, *n_blocks_p);
4320 all_blocks (block, block_vector);
4322 return block_vector;
4325 static GTY(()) int next_block_index = 2;
4327 /* Set BLOCK_NUMBER for all the blocks in FN. */
4329 void
4330 number_blocks (tree fn)
4332 int i;
4333 int n_blocks;
4334 tree *block_vector;
4336 /* For SDB and XCOFF debugging output, we start numbering the blocks
4337 from 1 within each function, rather than keeping a running
4338 count. */
4339 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
4340 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
4341 next_block_index = 1;
4342 #endif
4344 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
4346 /* The top-level BLOCK isn't numbered at all. */
4347 for (i = 1; i < n_blocks; ++i)
4348 /* We number the blocks from two. */
4349 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
4351 free (block_vector);
4353 return;
4356 /* If VAR is present in a subblock of BLOCK, return the subblock. */
4358 DEBUG_FUNCTION tree
4359 debug_find_var_in_block_tree (tree var, tree block)
4361 tree t;
4363 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
4364 if (t == var)
4365 return block;
4367 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
4369 tree ret = debug_find_var_in_block_tree (var, t);
4370 if (ret)
4371 return ret;
4374 return NULL_TREE;
4377 /* Keep track of whether we're in a dummy function context. If we are,
4378 we don't want to invoke the set_current_function hook, because we'll
4379 get into trouble if the hook calls target_reinit () recursively or
4380 when the initial initialization is not yet complete. */
4382 static bool in_dummy_function;
4384 /* Invoke the target hook when setting cfun. Update the optimization options
4385 if the function uses different options than the default. */
4387 static void
4388 invoke_set_current_function_hook (tree fndecl)
4390 if (!in_dummy_function)
4392 tree opts = ((fndecl)
4393 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
4394 : optimization_default_node);
4396 if (!opts)
4397 opts = optimization_default_node;
4399 /* Change optimization options if needed. */
4400 if (optimization_current_node != opts)
4402 optimization_current_node = opts;
4403 cl_optimization_restore (&global_options, TREE_OPTIMIZATION (opts));
4406 targetm.set_current_function (fndecl);
4407 this_fn_optabs = this_target_optabs;
4409 if (opts != optimization_default_node)
4411 init_tree_optimization_optabs (opts);
4412 if (TREE_OPTIMIZATION_OPTABS (opts))
4413 this_fn_optabs = (struct target_optabs *)
4414 TREE_OPTIMIZATION_OPTABS (opts);
4419 /* cfun should never be set directly; use this function. */
4421 void
4422 set_cfun (struct function *new_cfun)
4424 if (cfun != new_cfun)
4426 cfun = new_cfun;
4427 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
4431 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4433 static vec<function_p> cfun_stack;
4435 /* Push the current cfun onto the stack, and set cfun to new_cfun. Also set
4436 current_function_decl accordingly. */
4438 void
4439 push_cfun (struct function *new_cfun)
4441 gcc_assert ((!cfun && !current_function_decl)
4442 || (cfun && current_function_decl == cfun->decl));
4443 cfun_stack.safe_push (cfun);
4444 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4445 set_cfun (new_cfun);
4448 /* Pop cfun from the stack. Also set current_function_decl accordingly. */
4450 void
4451 pop_cfun (void)
4453 struct function *new_cfun = cfun_stack.pop ();
4454 /* When in_dummy_function, we do have a cfun but current_function_decl is
4455 NULL. We also allow pushing NULL cfun and subsequently changing
4456 current_function_decl to something else and have both restored by
4457 pop_cfun. */
4458 gcc_checking_assert (in_dummy_function
4459 || !cfun
4460 || current_function_decl == cfun->decl);
4461 set_cfun (new_cfun);
4462 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4465 /* Return value of funcdef and increase it. */
4467 get_next_funcdef_no (void)
4469 return funcdef_no++;
4472 /* Return value of funcdef. */
4474 get_last_funcdef_no (void)
4476 return funcdef_no;
4479 /* Allocate a function structure for FNDECL and set its contents
4480 to the defaults. Set cfun to the newly-allocated object.
4481 Some of the helper functions invoked during initialization assume
4482 that cfun has already been set. Therefore, assign the new object
4483 directly into cfun and invoke the back end hook explicitly at the
4484 very end, rather than initializing a temporary and calling set_cfun
4485 on it.
4487 ABSTRACT_P is true if this is a function that will never be seen by
4488 the middle-end. Such functions are front-end concepts (like C++
4489 function templates) that do not correspond directly to functions
4490 placed in object files. */
4492 void
4493 allocate_struct_function (tree fndecl, bool abstract_p)
4495 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
4497 cfun = ggc_alloc_cleared_function ();
4499 init_eh_for_function ();
4501 if (init_machine_status)
4502 cfun->machine = (*init_machine_status) ();
4504 #ifdef OVERRIDE_ABI_FORMAT
4505 OVERRIDE_ABI_FORMAT (fndecl);
4506 #endif
4508 if (fndecl != NULL_TREE)
4510 DECL_STRUCT_FUNCTION (fndecl) = cfun;
4511 cfun->decl = fndecl;
4512 current_function_funcdef_no = get_next_funcdef_no ();
4515 invoke_set_current_function_hook (fndecl);
4517 if (fndecl != NULL_TREE)
4519 tree result = DECL_RESULT (fndecl);
4520 if (!abstract_p && aggregate_value_p (result, fndecl))
4522 #ifdef PCC_STATIC_STRUCT_RETURN
4523 cfun->returns_pcc_struct = 1;
4524 #endif
4525 cfun->returns_struct = 1;
4528 cfun->stdarg = stdarg_p (fntype);
4530 /* Assume all registers in stdarg functions need to be saved. */
4531 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
4532 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
4534 /* ??? This could be set on a per-function basis by the front-end
4535 but is this worth the hassle? */
4536 cfun->can_throw_non_call_exceptions = flag_non_call_exceptions;
4540 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4541 instead of just setting it. */
4543 void
4544 push_struct_function (tree fndecl)
4546 /* When in_dummy_function we might be in the middle of a pop_cfun and
4547 current_function_decl and cfun may not match. */
4548 gcc_assert (in_dummy_function
4549 || (!cfun && !current_function_decl)
4550 || (cfun && current_function_decl == cfun->decl));
4551 cfun_stack.safe_push (cfun);
4552 current_function_decl = fndecl;
4553 allocate_struct_function (fndecl, false);
4556 /* Reset crtl and other non-struct-function variables to defaults as
4557 appropriate for emitting rtl at the start of a function. */
4559 static void
4560 prepare_function_start (void)
4562 gcc_assert (!crtl->emit.x_last_insn);
4563 init_temp_slots ();
4564 init_emit ();
4565 init_varasm_status ();
4566 init_expr ();
4567 default_rtl_profile ();
4569 if (flag_stack_usage_info)
4571 cfun->su = ggc_alloc_cleared_stack_usage ();
4572 cfun->su->static_stack_size = -1;
4575 cse_not_expected = ! optimize;
4577 /* Caller save not needed yet. */
4578 caller_save_needed = 0;
4580 /* We haven't done register allocation yet. */
4581 reg_renumber = 0;
4583 /* Indicate that we have not instantiated virtual registers yet. */
4584 virtuals_instantiated = 0;
4586 /* Indicate that we want CONCATs now. */
4587 generating_concat_p = 1;
4589 /* Indicate we have no need of a frame pointer yet. */
4590 frame_pointer_needed = 0;
4593 /* Initialize the rtl expansion mechanism so that we can do simple things
4594 like generate sequences. This is used to provide a context during global
4595 initialization of some passes. You must call expand_dummy_function_end
4596 to exit this context. */
4598 void
4599 init_dummy_function_start (void)
4601 gcc_assert (!in_dummy_function);
4602 in_dummy_function = true;
4603 push_struct_function (NULL_TREE);
4604 prepare_function_start ();
4607 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4608 and initialize static variables for generating RTL for the statements
4609 of the function. */
4611 void
4612 init_function_start (tree subr)
4614 if (subr && DECL_STRUCT_FUNCTION (subr))
4615 set_cfun (DECL_STRUCT_FUNCTION (subr));
4616 else
4617 allocate_struct_function (subr, false);
4618 prepare_function_start ();
4619 decide_function_section (subr);
4621 /* Warn if this value is an aggregate type,
4622 regardless of which calling convention we are using for it. */
4623 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4624 warning (OPT_Waggregate_return, "function returns an aggregate");
4627 /* Expand code to verify the stack_protect_guard. This is invoked at
4628 the end of a function to be protected. */
4630 #ifndef HAVE_stack_protect_test
4631 # define HAVE_stack_protect_test 0
4632 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
4633 #endif
4635 void
4636 stack_protect_epilogue (void)
4638 tree guard_decl = targetm.stack_protect_guard ();
4639 rtx label = gen_label_rtx ();
4640 rtx x, y, tmp;
4642 x = expand_normal (crtl->stack_protect_guard);
4643 y = expand_normal (guard_decl);
4645 /* Allow the target to compare Y with X without leaking either into
4646 a register. */
4647 switch (HAVE_stack_protect_test != 0)
4649 case 1:
4650 tmp = gen_stack_protect_test (x, y, label);
4651 if (tmp)
4653 emit_insn (tmp);
4654 break;
4656 /* FALLTHRU */
4658 default:
4659 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4660 break;
4663 /* The noreturn predictor has been moved to the tree level. The rtl-level
4664 predictors estimate this branch about 20%, which isn't enough to get
4665 things moved out of line. Since this is the only extant case of adding
4666 a noreturn function at the rtl level, it doesn't seem worth doing ought
4667 except adding the prediction by hand. */
4668 tmp = get_last_insn ();
4669 if (JUMP_P (tmp))
4670 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
4672 expand_call (targetm.stack_protect_fail (), NULL_RTX, /*ignore=*/true);
4673 free_temp_slots ();
4674 emit_label (label);
4677 /* Start the RTL for a new function, and set variables used for
4678 emitting RTL.
4679 SUBR is the FUNCTION_DECL node.
4680 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4681 the function's parameters, which must be run at any return statement. */
4683 void
4684 expand_function_start (tree subr)
4686 /* Make sure volatile mem refs aren't considered
4687 valid operands of arithmetic insns. */
4688 init_recog_no_volatile ();
4690 crtl->profile
4691 = (profile_flag
4692 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4694 crtl->limit_stack
4695 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4697 /* Make the label for return statements to jump to. Do not special
4698 case machines with special return instructions -- they will be
4699 handled later during jump, ifcvt, or epilogue creation. */
4700 return_label = gen_label_rtx ();
4702 /* Initialize rtx used to return the value. */
4703 /* Do this before assign_parms so that we copy the struct value address
4704 before any library calls that assign parms might generate. */
4706 /* Decide whether to return the value in memory or in a register. */
4707 if (aggregate_value_p (DECL_RESULT (subr), subr))
4709 /* Returning something that won't go in a register. */
4710 rtx value_address = 0;
4712 #ifdef PCC_STATIC_STRUCT_RETURN
4713 if (cfun->returns_pcc_struct)
4715 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4716 value_address = assemble_static_space (size);
4718 else
4719 #endif
4721 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
4722 /* Expect to be passed the address of a place to store the value.
4723 If it is passed as an argument, assign_parms will take care of
4724 it. */
4725 if (sv)
4727 value_address = gen_reg_rtx (Pmode);
4728 emit_move_insn (value_address, sv);
4731 if (value_address)
4733 rtx x = value_address;
4734 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4736 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4737 set_mem_attributes (x, DECL_RESULT (subr), 1);
4739 SET_DECL_RTL (DECL_RESULT (subr), x);
4742 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4743 /* If return mode is void, this decl rtl should not be used. */
4744 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4745 else
4747 /* Compute the return values into a pseudo reg, which we will copy
4748 into the true return register after the cleanups are done. */
4749 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4750 if (TYPE_MODE (return_type) != BLKmode
4751 && targetm.calls.return_in_msb (return_type))
4752 /* expand_function_end will insert the appropriate padding in
4753 this case. Use the return value's natural (unpadded) mode
4754 within the function proper. */
4755 SET_DECL_RTL (DECL_RESULT (subr),
4756 gen_reg_rtx (TYPE_MODE (return_type)));
4757 else
4759 /* In order to figure out what mode to use for the pseudo, we
4760 figure out what the mode of the eventual return register will
4761 actually be, and use that. */
4762 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
4764 /* Structures that are returned in registers are not
4765 aggregate_value_p, so we may see a PARALLEL or a REG. */
4766 if (REG_P (hard_reg))
4767 SET_DECL_RTL (DECL_RESULT (subr),
4768 gen_reg_rtx (GET_MODE (hard_reg)));
4769 else
4771 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4772 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4776 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4777 result to the real return register(s). */
4778 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4781 /* Initialize rtx for parameters and local variables.
4782 In some cases this requires emitting insns. */
4783 assign_parms (subr);
4785 /* If function gets a static chain arg, store it. */
4786 if (cfun->static_chain_decl)
4788 tree parm = cfun->static_chain_decl;
4789 rtx local, chain, insn;
4791 local = gen_reg_rtx (Pmode);
4792 chain = targetm.calls.static_chain (current_function_decl, true);
4794 set_decl_incoming_rtl (parm, chain, false);
4795 SET_DECL_RTL (parm, local);
4796 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4798 insn = emit_move_insn (local, chain);
4800 /* Mark the register as eliminable, similar to parameters. */
4801 if (MEM_P (chain)
4802 && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0)))
4803 set_dst_reg_note (insn, REG_EQUIV, chain, local);
4806 /* If the function receives a non-local goto, then store the
4807 bits we need to restore the frame pointer. */
4808 if (cfun->nonlocal_goto_save_area)
4810 tree t_save;
4811 rtx r_save;
4813 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
4814 gcc_assert (DECL_RTL_SET_P (var));
4816 t_save = build4 (ARRAY_REF,
4817 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
4818 cfun->nonlocal_goto_save_area,
4819 integer_zero_node, NULL_TREE, NULL_TREE);
4820 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4821 gcc_assert (GET_MODE (r_save) == Pmode);
4823 emit_move_insn (r_save, targetm.builtin_setjmp_frame_value ());
4824 update_nonlocal_goto_save_area ();
4827 /* The following was moved from init_function_start.
4828 The move is supposed to make sdb output more accurate. */
4829 /* Indicate the beginning of the function body,
4830 as opposed to parm setup. */
4831 emit_note (NOTE_INSN_FUNCTION_BEG);
4833 gcc_assert (NOTE_P (get_last_insn ()));
4835 parm_birth_insn = get_last_insn ();
4837 if (crtl->profile)
4839 #ifdef PROFILE_HOOK
4840 PROFILE_HOOK (current_function_funcdef_no);
4841 #endif
4844 /* If we are doing generic stack checking, the probe should go here. */
4845 if (flag_stack_check == GENERIC_STACK_CHECK)
4846 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
4849 /* Undo the effects of init_dummy_function_start. */
4850 void
4851 expand_dummy_function_end (void)
4853 gcc_assert (in_dummy_function);
4855 /* End any sequences that failed to be closed due to syntax errors. */
4856 while (in_sequence_p ())
4857 end_sequence ();
4859 /* Outside function body, can't compute type's actual size
4860 until next function's body starts. */
4862 free_after_parsing (cfun);
4863 free_after_compilation (cfun);
4864 pop_cfun ();
4865 in_dummy_function = false;
4868 /* Call DOIT for each hard register used as a return value from
4869 the current function. */
4871 void
4872 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4874 rtx outgoing = crtl->return_rtx;
4876 if (! outgoing)
4877 return;
4879 if (REG_P (outgoing))
4880 (*doit) (outgoing, arg);
4881 else if (GET_CODE (outgoing) == PARALLEL)
4883 int i;
4885 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4887 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4889 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4890 (*doit) (x, arg);
4895 static void
4896 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4898 emit_clobber (reg);
4901 void
4902 clobber_return_register (void)
4904 diddle_return_value (do_clobber_return_reg, NULL);
4906 /* In case we do use pseudo to return value, clobber it too. */
4907 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4909 tree decl_result = DECL_RESULT (current_function_decl);
4910 rtx decl_rtl = DECL_RTL (decl_result);
4911 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4913 do_clobber_return_reg (decl_rtl, NULL);
4918 static void
4919 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4921 emit_use (reg);
4924 static void
4925 use_return_register (void)
4927 diddle_return_value (do_use_return_reg, NULL);
4930 /* Possibly warn about unused parameters. */
4931 void
4932 do_warn_unused_parameter (tree fn)
4934 tree decl;
4936 for (decl = DECL_ARGUMENTS (fn);
4937 decl; decl = DECL_CHAIN (decl))
4938 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4939 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl)
4940 && !TREE_NO_WARNING (decl))
4941 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
4944 /* Set the location of the insn chain starting at INSN to LOC. */
4946 static void
4947 set_insn_locations (rtx insn, int loc)
4949 while (insn != NULL_RTX)
4951 if (INSN_P (insn))
4952 INSN_LOCATION (insn) = loc;
4953 insn = NEXT_INSN (insn);
4957 /* Generate RTL for the end of the current function. */
4959 void
4960 expand_function_end (void)
4962 rtx clobber_after;
4964 /* If arg_pointer_save_area was referenced only from a nested
4965 function, we will not have initialized it yet. Do that now. */
4966 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
4967 get_arg_pointer_save_area ();
4969 /* If we are doing generic stack checking and this function makes calls,
4970 do a stack probe at the start of the function to ensure we have enough
4971 space for another stack frame. */
4972 if (flag_stack_check == GENERIC_STACK_CHECK)
4974 rtx insn, seq;
4976 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4977 if (CALL_P (insn))
4979 rtx max_frame_size = GEN_INT (STACK_CHECK_MAX_FRAME_SIZE);
4980 start_sequence ();
4981 if (STACK_CHECK_MOVING_SP)
4982 anti_adjust_stack_and_probe (max_frame_size, true);
4983 else
4984 probe_stack_range (STACK_OLD_CHECK_PROTECT, max_frame_size);
4985 seq = get_insns ();
4986 end_sequence ();
4987 set_insn_locations (seq, prologue_location);
4988 emit_insn_before (seq, stack_check_probe_note);
4989 break;
4993 /* End any sequences that failed to be closed due to syntax errors. */
4994 while (in_sequence_p ())
4995 end_sequence ();
4997 clear_pending_stack_adjust ();
4998 do_pending_stack_adjust ();
5000 /* Output a linenumber for the end of the function.
5001 SDB depends on this. */
5002 set_curr_insn_location (input_location);
5004 /* Before the return label (if any), clobber the return
5005 registers so that they are not propagated live to the rest of
5006 the function. This can only happen with functions that drop
5007 through; if there had been a return statement, there would
5008 have either been a return rtx, or a jump to the return label.
5010 We delay actual code generation after the current_function_value_rtx
5011 is computed. */
5012 clobber_after = get_last_insn ();
5014 /* Output the label for the actual return from the function. */
5015 emit_label (return_label);
5017 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
5019 /* Let except.c know where it should emit the call to unregister
5020 the function context for sjlj exceptions. */
5021 if (flag_exceptions)
5022 sjlj_emit_function_exit_after (get_last_insn ());
5024 else
5026 /* We want to ensure that instructions that may trap are not
5027 moved into the epilogue by scheduling, because we don't
5028 always emit unwind information for the epilogue. */
5029 if (cfun->can_throw_non_call_exceptions)
5030 emit_insn (gen_blockage ());
5033 /* If this is an implementation of throw, do what's necessary to
5034 communicate between __builtin_eh_return and the epilogue. */
5035 expand_eh_return ();
5037 /* If scalar return value was computed in a pseudo-reg, or was a named
5038 return value that got dumped to the stack, copy that to the hard
5039 return register. */
5040 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5042 tree decl_result = DECL_RESULT (current_function_decl);
5043 rtx decl_rtl = DECL_RTL (decl_result);
5045 if (REG_P (decl_rtl)
5046 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
5047 : DECL_REGISTER (decl_result))
5049 rtx real_decl_rtl = crtl->return_rtx;
5051 /* This should be set in assign_parms. */
5052 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
5054 /* If this is a BLKmode structure being returned in registers,
5055 then use the mode computed in expand_return. Note that if
5056 decl_rtl is memory, then its mode may have been changed,
5057 but that crtl->return_rtx has not. */
5058 if (GET_MODE (real_decl_rtl) == BLKmode)
5059 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
5061 /* If a non-BLKmode return value should be padded at the least
5062 significant end of the register, shift it left by the appropriate
5063 amount. BLKmode results are handled using the group load/store
5064 machinery. */
5065 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
5066 && REG_P (real_decl_rtl)
5067 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
5069 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
5070 REGNO (real_decl_rtl)),
5071 decl_rtl);
5072 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
5074 /* If a named return value dumped decl_return to memory, then
5075 we may need to re-do the PROMOTE_MODE signed/unsigned
5076 extension. */
5077 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
5079 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
5080 promote_function_mode (TREE_TYPE (decl_result),
5081 GET_MODE (decl_rtl), &unsignedp,
5082 TREE_TYPE (current_function_decl), 1);
5084 convert_move (real_decl_rtl, decl_rtl, unsignedp);
5086 else if (GET_CODE (real_decl_rtl) == PARALLEL)
5088 /* If expand_function_start has created a PARALLEL for decl_rtl,
5089 move the result to the real return registers. Otherwise, do
5090 a group load from decl_rtl for a named return. */
5091 if (GET_CODE (decl_rtl) == PARALLEL)
5092 emit_group_move (real_decl_rtl, decl_rtl);
5093 else
5094 emit_group_load (real_decl_rtl, decl_rtl,
5095 TREE_TYPE (decl_result),
5096 int_size_in_bytes (TREE_TYPE (decl_result)));
5098 /* In the case of complex integer modes smaller than a word, we'll
5099 need to generate some non-trivial bitfield insertions. Do that
5100 on a pseudo and not the hard register. */
5101 else if (GET_CODE (decl_rtl) == CONCAT
5102 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
5103 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
5105 int old_generating_concat_p;
5106 rtx tmp;
5108 old_generating_concat_p = generating_concat_p;
5109 generating_concat_p = 0;
5110 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
5111 generating_concat_p = old_generating_concat_p;
5113 emit_move_insn (tmp, decl_rtl);
5114 emit_move_insn (real_decl_rtl, tmp);
5116 else
5117 emit_move_insn (real_decl_rtl, decl_rtl);
5121 /* If returning a structure, arrange to return the address of the value
5122 in a place where debuggers expect to find it.
5124 If returning a structure PCC style,
5125 the caller also depends on this value.
5126 And cfun->returns_pcc_struct is not necessarily set. */
5127 if (cfun->returns_struct
5128 || cfun->returns_pcc_struct)
5130 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
5131 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
5132 rtx outgoing;
5134 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
5135 type = TREE_TYPE (type);
5136 else
5137 value_address = XEXP (value_address, 0);
5139 outgoing = targetm.calls.function_value (build_pointer_type (type),
5140 current_function_decl, true);
5142 /* Mark this as a function return value so integrate will delete the
5143 assignment and USE below when inlining this function. */
5144 REG_FUNCTION_VALUE_P (outgoing) = 1;
5146 /* The address may be ptr_mode and OUTGOING may be Pmode. */
5147 value_address = convert_memory_address (GET_MODE (outgoing),
5148 value_address);
5150 emit_move_insn (outgoing, value_address);
5152 /* Show return register used to hold result (in this case the address
5153 of the result. */
5154 crtl->return_rtx = outgoing;
5157 /* Emit the actual code to clobber return register. */
5159 rtx seq;
5161 start_sequence ();
5162 clobber_return_register ();
5163 seq = get_insns ();
5164 end_sequence ();
5166 emit_insn_after (seq, clobber_after);
5169 /* Output the label for the naked return from the function. */
5170 if (naked_return_label)
5171 emit_label (naked_return_label);
5173 /* @@@ This is a kludge. We want to ensure that instructions that
5174 may trap are not moved into the epilogue by scheduling, because
5175 we don't always emit unwind information for the epilogue. */
5176 if (cfun->can_throw_non_call_exceptions
5177 && targetm_common.except_unwind_info (&global_options) != UI_SJLJ)
5178 emit_insn (gen_blockage ());
5180 /* If stack protection is enabled for this function, check the guard. */
5181 if (crtl->stack_protect_guard)
5182 stack_protect_epilogue ();
5184 /* If we had calls to alloca, and this machine needs
5185 an accurate stack pointer to exit the function,
5186 insert some code to save and restore the stack pointer. */
5187 if (! EXIT_IGNORE_STACK
5188 && cfun->calls_alloca)
5190 rtx tem = 0, seq;
5192 start_sequence ();
5193 emit_stack_save (SAVE_FUNCTION, &tem);
5194 seq = get_insns ();
5195 end_sequence ();
5196 emit_insn_before (seq, parm_birth_insn);
5198 emit_stack_restore (SAVE_FUNCTION, tem);
5201 /* ??? This should no longer be necessary since stupid is no longer with
5202 us, but there are some parts of the compiler (eg reload_combine, and
5203 sh mach_dep_reorg) that still try and compute their own lifetime info
5204 instead of using the general framework. */
5205 use_return_register ();
5209 get_arg_pointer_save_area (void)
5211 rtx ret = arg_pointer_save_area;
5213 if (! ret)
5215 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5216 arg_pointer_save_area = ret;
5219 if (! crtl->arg_pointer_save_area_init)
5221 rtx seq;
5223 /* Save the arg pointer at the beginning of the function. The
5224 generated stack slot may not be a valid memory address, so we
5225 have to check it and fix it if necessary. */
5226 start_sequence ();
5227 emit_move_insn (validize_mem (ret),
5228 crtl->args.internal_arg_pointer);
5229 seq = get_insns ();
5230 end_sequence ();
5232 push_topmost_sequence ();
5233 emit_insn_after (seq, entry_of_function ());
5234 pop_topmost_sequence ();
5236 crtl->arg_pointer_save_area_init = true;
5239 return ret;
5242 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
5243 for the first time. */
5245 static void
5246 record_insns (rtx insns, rtx end, htab_t *hashp)
5248 rtx tmp;
5249 htab_t hash = *hashp;
5251 if (hash == NULL)
5252 *hashp = hash
5253 = htab_create_ggc (17, htab_hash_pointer, htab_eq_pointer, NULL);
5255 for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
5257 void **slot = htab_find_slot (hash, tmp, INSERT);
5258 gcc_assert (*slot == NULL);
5259 *slot = tmp;
5263 /* INSN has been duplicated or replaced by as COPY, perhaps by duplicating a
5264 basic block, splitting or peepholes. If INSN is a prologue or epilogue
5265 insn, then record COPY as well. */
5267 void
5268 maybe_copy_prologue_epilogue_insn (rtx insn, rtx copy)
5270 htab_t hash;
5271 void **slot;
5273 hash = epilogue_insn_hash;
5274 if (!hash || !htab_find (hash, insn))
5276 hash = prologue_insn_hash;
5277 if (!hash || !htab_find (hash, insn))
5278 return;
5281 slot = htab_find_slot (hash, copy, INSERT);
5282 gcc_assert (*slot == NULL);
5283 *slot = copy;
5286 /* Determine if any INSNs in HASH are, or are part of, INSN. Because
5287 we can be running after reorg, SEQUENCE rtl is possible. */
5289 static bool
5290 contains (const_rtx insn, htab_t hash)
5292 if (hash == NULL)
5293 return false;
5295 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
5297 int i;
5298 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
5299 if (htab_find (hash, XVECEXP (PATTERN (insn), 0, i)))
5300 return true;
5301 return false;
5304 return htab_find (hash, insn) != NULL;
5308 prologue_epilogue_contains (const_rtx insn)
5310 if (contains (insn, prologue_insn_hash))
5311 return 1;
5312 if (contains (insn, epilogue_insn_hash))
5313 return 1;
5314 return 0;
5317 #ifdef HAVE_simple_return
5319 /* Return true if INSN requires the stack frame to be set up.
5320 PROLOGUE_USED contains the hard registers used in the function
5321 prologue. SET_UP_BY_PROLOGUE is the set of registers we expect the
5322 prologue to set up for the function. */
5323 bool
5324 requires_stack_frame_p (rtx insn, HARD_REG_SET prologue_used,
5325 HARD_REG_SET set_up_by_prologue)
5327 df_ref *df_rec;
5328 HARD_REG_SET hardregs;
5329 unsigned regno;
5331 if (CALL_P (insn))
5332 return !SIBLING_CALL_P (insn);
5334 /* We need a frame to get the unique CFA expected by the unwinder. */
5335 if (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
5336 return true;
5338 CLEAR_HARD_REG_SET (hardregs);
5339 for (df_rec = DF_INSN_DEFS (insn); *df_rec; df_rec++)
5341 rtx dreg = DF_REF_REG (*df_rec);
5343 if (!REG_P (dreg))
5344 continue;
5346 add_to_hard_reg_set (&hardregs, GET_MODE (dreg),
5347 REGNO (dreg));
5349 if (hard_reg_set_intersect_p (hardregs, prologue_used))
5350 return true;
5351 AND_COMPL_HARD_REG_SET (hardregs, call_used_reg_set);
5352 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5353 if (TEST_HARD_REG_BIT (hardregs, regno)
5354 && df_regs_ever_live_p (regno))
5355 return true;
5357 for (df_rec = DF_INSN_USES (insn); *df_rec; df_rec++)
5359 rtx reg = DF_REF_REG (*df_rec);
5361 if (!REG_P (reg))
5362 continue;
5364 add_to_hard_reg_set (&hardregs, GET_MODE (reg),
5365 REGNO (reg));
5367 if (hard_reg_set_intersect_p (hardregs, set_up_by_prologue))
5368 return true;
5370 return false;
5373 /* See whether BB has a single successor that uses [REGNO, END_REGNO),
5374 and if BB is its only predecessor. Return that block if so,
5375 otherwise return null. */
5377 static basic_block
5378 next_block_for_reg (basic_block bb, int regno, int end_regno)
5380 edge e, live_edge;
5381 edge_iterator ei;
5382 bitmap live;
5383 int i;
5385 live_edge = NULL;
5386 FOR_EACH_EDGE (e, ei, bb->succs)
5388 live = df_get_live_in (e->dest);
5389 for (i = regno; i < end_regno; i++)
5390 if (REGNO_REG_SET_P (live, i))
5392 if (live_edge && live_edge != e)
5393 return NULL;
5394 live_edge = e;
5398 /* We can sometimes encounter dead code. Don't try to move it
5399 into the exit block. */
5400 if (!live_edge || live_edge->dest == EXIT_BLOCK_PTR)
5401 return NULL;
5403 /* Reject targets of abnormal edges. This is needed for correctness
5404 on ports like Alpha and MIPS, whose pic_offset_table_rtx can die on
5405 exception edges even though it is generally treated as call-saved
5406 for the majority of the compilation. Moving across abnormal edges
5407 isn't going to be interesting for shrink-wrap usage anyway. */
5408 if (live_edge->flags & EDGE_ABNORMAL)
5409 return NULL;
5411 if (EDGE_COUNT (live_edge->dest->preds) > 1)
5412 return NULL;
5414 return live_edge->dest;
5417 /* Try to move INSN from BB to a successor. Return true on success.
5418 USES and DEFS are the set of registers that are used and defined
5419 after INSN in BB. */
5421 static bool
5422 move_insn_for_shrink_wrap (basic_block bb, rtx insn,
5423 const HARD_REG_SET uses,
5424 const HARD_REG_SET defs)
5426 rtx set, src, dest;
5427 bitmap live_out, live_in, bb_uses, bb_defs;
5428 unsigned int i, dregno, end_dregno, sregno, end_sregno;
5429 basic_block next_block;
5431 /* Look for a simple register copy. */
5432 set = single_set (insn);
5433 if (!set)
5434 return false;
5435 src = SET_SRC (set);
5436 dest = SET_DEST (set);
5437 if (!REG_P (dest) || !REG_P (src))
5438 return false;
5440 /* Make sure that the source register isn't defined later in BB. */
5441 sregno = REGNO (src);
5442 end_sregno = END_REGNO (src);
5443 if (overlaps_hard_reg_set_p (defs, GET_MODE (src), sregno))
5444 return false;
5446 /* Make sure that the destination register isn't referenced later in BB. */
5447 dregno = REGNO (dest);
5448 end_dregno = END_REGNO (dest);
5449 if (overlaps_hard_reg_set_p (uses, GET_MODE (dest), dregno)
5450 || overlaps_hard_reg_set_p (defs, GET_MODE (dest), dregno))
5451 return false;
5453 /* See whether there is a successor block to which we could move INSN. */
5454 next_block = next_block_for_reg (bb, dregno, end_dregno);
5455 if (!next_block)
5456 return false;
5458 /* At this point we are committed to moving INSN, but let's try to
5459 move it as far as we can. */
5462 live_out = df_get_live_out (bb);
5463 live_in = df_get_live_in (next_block);
5464 bb = next_block;
5466 /* Check whether BB uses DEST or clobbers DEST. We need to add
5467 INSN to BB if so. Either way, DEST is no longer live on entry,
5468 except for any part that overlaps SRC (next loop). */
5469 bb_uses = &DF_LR_BB_INFO (bb)->use;
5470 bb_defs = &DF_LR_BB_INFO (bb)->def;
5471 if (df_live)
5473 for (i = dregno; i < end_dregno; i++)
5475 if (REGNO_REG_SET_P (bb_uses, i) || REGNO_REG_SET_P (bb_defs, i)
5476 || REGNO_REG_SET_P (&DF_LIVE_BB_INFO (bb)->gen, i))
5477 next_block = NULL;
5478 CLEAR_REGNO_REG_SET (live_out, i);
5479 CLEAR_REGNO_REG_SET (live_in, i);
5482 /* Check whether BB clobbers SRC. We need to add INSN to BB if so.
5483 Either way, SRC is now live on entry. */
5484 for (i = sregno; i < end_sregno; i++)
5486 if (REGNO_REG_SET_P (bb_defs, i)
5487 || REGNO_REG_SET_P (&DF_LIVE_BB_INFO (bb)->gen, i))
5488 next_block = NULL;
5489 SET_REGNO_REG_SET (live_out, i);
5490 SET_REGNO_REG_SET (live_in, i);
5493 else
5495 /* DF_LR_BB_INFO (bb)->def does not comprise the DF_REF_PARTIAL and
5496 DF_REF_CONDITIONAL defs. So if DF_LIVE doesn't exist, i.e.
5497 at -O1, just give up searching NEXT_BLOCK. */
5498 next_block = NULL;
5499 for (i = dregno; i < end_dregno; i++)
5501 CLEAR_REGNO_REG_SET (live_out, i);
5502 CLEAR_REGNO_REG_SET (live_in, i);
5505 for (i = sregno; i < end_sregno; i++)
5507 SET_REGNO_REG_SET (live_out, i);
5508 SET_REGNO_REG_SET (live_in, i);
5512 /* If we don't need to add the move to BB, look for a single
5513 successor block. */
5514 if (next_block)
5515 next_block = next_block_for_reg (next_block, dregno, end_dregno);
5517 while (next_block);
5519 /* BB now defines DEST. It only uses the parts of DEST that overlap SRC
5520 (next loop). */
5521 for (i = dregno; i < end_dregno; i++)
5523 CLEAR_REGNO_REG_SET (bb_uses, i);
5524 SET_REGNO_REG_SET (bb_defs, i);
5527 /* BB now uses SRC. */
5528 for (i = sregno; i < end_sregno; i++)
5529 SET_REGNO_REG_SET (bb_uses, i);
5531 emit_insn_after (PATTERN (insn), bb_note (bb));
5532 delete_insn (insn);
5533 return true;
5536 /* Look for register copies in the first block of the function, and move
5537 them down into successor blocks if the register is used only on one
5538 path. This exposes more opportunities for shrink-wrapping. These
5539 kinds of sets often occur when incoming argument registers are moved
5540 to call-saved registers because their values are live across one or
5541 more calls during the function. */
5543 static void
5544 prepare_shrink_wrap (basic_block entry_block)
5546 rtx insn, curr, x;
5547 HARD_REG_SET uses, defs;
5548 df_ref *ref;
5550 CLEAR_HARD_REG_SET (uses);
5551 CLEAR_HARD_REG_SET (defs);
5552 FOR_BB_INSNS_REVERSE_SAFE (entry_block, insn, curr)
5553 if (NONDEBUG_INSN_P (insn)
5554 && !move_insn_for_shrink_wrap (entry_block, insn, uses, defs))
5556 /* Add all defined registers to DEFs. */
5557 for (ref = DF_INSN_DEFS (insn); *ref; ref++)
5559 x = DF_REF_REG (*ref);
5560 if (REG_P (x) && HARD_REGISTER_P (x))
5561 SET_HARD_REG_BIT (defs, REGNO (x));
5564 /* Add all used registers to USESs. */
5565 for (ref = DF_INSN_USES (insn); *ref; ref++)
5567 x = DF_REF_REG (*ref);
5568 if (REG_P (x) && HARD_REGISTER_P (x))
5569 SET_HARD_REG_BIT (uses, REGNO (x));
5574 #endif
5576 #ifdef HAVE_return
5577 /* Insert use of return register before the end of BB. */
5579 static void
5580 emit_use_return_register_into_block (basic_block bb)
5582 rtx seq, insn;
5583 start_sequence ();
5584 use_return_register ();
5585 seq = get_insns ();
5586 end_sequence ();
5587 insn = BB_END (bb);
5588 #ifdef HAVE_cc0
5589 if (reg_mentioned_p (cc0_rtx, PATTERN (insn)))
5590 insn = prev_cc0_setter (insn);
5591 #endif
5592 emit_insn_before (seq, insn);
5596 /* Create a return pattern, either simple_return or return, depending on
5597 simple_p. */
5599 static rtx
5600 gen_return_pattern (bool simple_p)
5602 #ifdef HAVE_simple_return
5603 return simple_p ? gen_simple_return () : gen_return ();
5604 #else
5605 gcc_assert (!simple_p);
5606 return gen_return ();
5607 #endif
5610 /* Insert an appropriate return pattern at the end of block BB. This
5611 also means updating block_for_insn appropriately. SIMPLE_P is
5612 the same as in gen_return_pattern and passed to it. */
5614 static void
5615 emit_return_into_block (bool simple_p, basic_block bb)
5617 rtx jump, pat;
5618 jump = emit_jump_insn_after (gen_return_pattern (simple_p), BB_END (bb));
5619 pat = PATTERN (jump);
5620 if (GET_CODE (pat) == PARALLEL)
5621 pat = XVECEXP (pat, 0, 0);
5622 gcc_assert (ANY_RETURN_P (pat));
5623 JUMP_LABEL (jump) = pat;
5625 #endif
5627 /* Set JUMP_LABEL for a return insn. */
5629 void
5630 set_return_jump_label (rtx returnjump)
5632 rtx pat = PATTERN (returnjump);
5633 if (GET_CODE (pat) == PARALLEL)
5634 pat = XVECEXP (pat, 0, 0);
5635 if (ANY_RETURN_P (pat))
5636 JUMP_LABEL (returnjump) = pat;
5637 else
5638 JUMP_LABEL (returnjump) = ret_rtx;
5641 #ifdef HAVE_simple_return
5642 /* Create a copy of BB instructions and insert at BEFORE. Redirect
5643 preds of BB to COPY_BB if they don't appear in NEED_PROLOGUE. */
5644 static void
5645 dup_block_and_redirect (basic_block bb, basic_block copy_bb, rtx before,
5646 bitmap_head *need_prologue)
5648 edge_iterator ei;
5649 edge e;
5650 rtx insn = BB_END (bb);
5652 /* We know BB has a single successor, so there is no need to copy a
5653 simple jump at the end of BB. */
5654 if (simplejump_p (insn))
5655 insn = PREV_INSN (insn);
5657 start_sequence ();
5658 duplicate_insn_chain (BB_HEAD (bb), insn);
5659 if (dump_file)
5661 unsigned count = 0;
5662 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5663 if (active_insn_p (insn))
5664 ++count;
5665 fprintf (dump_file, "Duplicating bb %d to bb %d, %u active insns.\n",
5666 bb->index, copy_bb->index, count);
5668 insn = get_insns ();
5669 end_sequence ();
5670 emit_insn_before (insn, before);
5672 /* Redirect all the paths that need no prologue into copy_bb. */
5673 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
5674 if (!bitmap_bit_p (need_prologue, e->src->index))
5676 int freq = EDGE_FREQUENCY (e);
5677 copy_bb->count += e->count;
5678 copy_bb->frequency += EDGE_FREQUENCY (e);
5679 e->dest->count -= e->count;
5680 if (e->dest->count < 0)
5681 e->dest->count = 0;
5682 e->dest->frequency -= freq;
5683 if (e->dest->frequency < 0)
5684 e->dest->frequency = 0;
5685 redirect_edge_and_branch_force (e, copy_bb);
5686 continue;
5688 else
5689 ei_next (&ei);
5691 #endif
5693 #if defined (HAVE_return) || defined (HAVE_simple_return)
5694 /* Return true if there are any active insns between HEAD and TAIL. */
5695 static bool
5696 active_insn_between (rtx head, rtx tail)
5698 while (tail)
5700 if (active_insn_p (tail))
5701 return true;
5702 if (tail == head)
5703 return false;
5704 tail = PREV_INSN (tail);
5706 return false;
5709 /* LAST_BB is a block that exits, and empty of active instructions.
5710 Examine its predecessors for jumps that can be converted to
5711 (conditional) returns. */
5712 static vec<edge>
5713 convert_jumps_to_returns (basic_block last_bb, bool simple_p,
5714 vec<edge> unconverted ATTRIBUTE_UNUSED)
5716 int i;
5717 basic_block bb;
5718 rtx label;
5719 edge_iterator ei;
5720 edge e;
5721 vec<basic_block> src_bbs;
5723 src_bbs.create (EDGE_COUNT (last_bb->preds));
5724 FOR_EACH_EDGE (e, ei, last_bb->preds)
5725 if (e->src != ENTRY_BLOCK_PTR)
5726 src_bbs.quick_push (e->src);
5728 label = BB_HEAD (last_bb);
5730 FOR_EACH_VEC_ELT (src_bbs, i, bb)
5732 rtx jump = BB_END (bb);
5734 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5735 continue;
5737 e = find_edge (bb, last_bb);
5739 /* If we have an unconditional jump, we can replace that
5740 with a simple return instruction. */
5741 if (simplejump_p (jump))
5743 /* The use of the return register might be present in the exit
5744 fallthru block. Either:
5745 - removing the use is safe, and we should remove the use in
5746 the exit fallthru block, or
5747 - removing the use is not safe, and we should add it here.
5748 For now, we conservatively choose the latter. Either of the
5749 2 helps in crossjumping. */
5750 emit_use_return_register_into_block (bb);
5752 emit_return_into_block (simple_p, bb);
5753 delete_insn (jump);
5756 /* If we have a conditional jump branching to the last
5757 block, we can try to replace that with a conditional
5758 return instruction. */
5759 else if (condjump_p (jump))
5761 rtx dest;
5763 if (simple_p)
5764 dest = simple_return_rtx;
5765 else
5766 dest = ret_rtx;
5767 if (!redirect_jump (jump, dest, 0))
5769 #ifdef HAVE_simple_return
5770 if (simple_p)
5772 if (dump_file)
5773 fprintf (dump_file,
5774 "Failed to redirect bb %d branch.\n", bb->index);
5775 unconverted.safe_push (e);
5777 #endif
5778 continue;
5781 /* See comment in simplejump_p case above. */
5782 emit_use_return_register_into_block (bb);
5784 /* If this block has only one successor, it both jumps
5785 and falls through to the fallthru block, so we can't
5786 delete the edge. */
5787 if (single_succ_p (bb))
5788 continue;
5790 else
5792 #ifdef HAVE_simple_return
5793 if (simple_p)
5795 if (dump_file)
5796 fprintf (dump_file,
5797 "Failed to redirect bb %d branch.\n", bb->index);
5798 unconverted.safe_push (e);
5800 #endif
5801 continue;
5804 /* Fix up the CFG for the successful change we just made. */
5805 redirect_edge_succ (e, EXIT_BLOCK_PTR);
5806 e->flags &= ~EDGE_CROSSING;
5808 src_bbs.release ();
5809 return unconverted;
5812 /* Emit a return insn for the exit fallthru block. */
5813 static basic_block
5814 emit_return_for_exit (edge exit_fallthru_edge, bool simple_p)
5816 basic_block last_bb = exit_fallthru_edge->src;
5818 if (JUMP_P (BB_END (last_bb)))
5820 last_bb = split_edge (exit_fallthru_edge);
5821 exit_fallthru_edge = single_succ_edge (last_bb);
5823 emit_barrier_after (BB_END (last_bb));
5824 emit_return_into_block (simple_p, last_bb);
5825 exit_fallthru_edge->flags &= ~EDGE_FALLTHRU;
5826 return last_bb;
5828 #endif
5831 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5832 this into place with notes indicating where the prologue ends and where
5833 the epilogue begins. Update the basic block information when possible.
5835 Notes on epilogue placement:
5836 There are several kinds of edges to the exit block:
5837 * a single fallthru edge from LAST_BB
5838 * possibly, edges from blocks containing sibcalls
5839 * possibly, fake edges from infinite loops
5841 The epilogue is always emitted on the fallthru edge from the last basic
5842 block in the function, LAST_BB, into the exit block.
5844 If LAST_BB is empty except for a label, it is the target of every
5845 other basic block in the function that ends in a return. If a
5846 target has a return or simple_return pattern (possibly with
5847 conditional variants), these basic blocks can be changed so that a
5848 return insn is emitted into them, and their target is adjusted to
5849 the real exit block.
5851 Notes on shrink wrapping: We implement a fairly conservative
5852 version of shrink-wrapping rather than the textbook one. We only
5853 generate a single prologue and a single epilogue. This is
5854 sufficient to catch a number of interesting cases involving early
5855 exits.
5857 First, we identify the blocks that require the prologue to occur before
5858 them. These are the ones that modify a call-saved register, or reference
5859 any of the stack or frame pointer registers. To simplify things, we then
5860 mark everything reachable from these blocks as also requiring a prologue.
5861 This takes care of loops automatically, and avoids the need to examine
5862 whether MEMs reference the frame, since it is sufficient to check for
5863 occurrences of the stack or frame pointer.
5865 We then compute the set of blocks for which the need for a prologue
5866 is anticipatable (borrowing terminology from the shrink-wrapping
5867 description in Muchnick's book). These are the blocks which either
5868 require a prologue themselves, or those that have only successors
5869 where the prologue is anticipatable. The prologue needs to be
5870 inserted on all edges from BB1->BB2 where BB2 is in ANTIC and BB1
5871 is not. For the moment, we ensure that only one such edge exists.
5873 The epilogue is placed as described above, but we make a
5874 distinction between inserting return and simple_return patterns
5875 when modifying other blocks that end in a return. Blocks that end
5876 in a sibcall omit the sibcall_epilogue if the block is not in
5877 ANTIC. */
5879 static void
5880 thread_prologue_and_epilogue_insns (void)
5882 bool inserted;
5883 #ifdef HAVE_simple_return
5884 vec<edge> unconverted_simple_returns = vNULL;
5885 bool nonempty_prologue;
5886 bitmap_head bb_flags;
5887 unsigned max_grow_size;
5888 #endif
5889 rtx returnjump;
5890 rtx seq ATTRIBUTE_UNUSED, epilogue_end ATTRIBUTE_UNUSED;
5891 rtx prologue_seq ATTRIBUTE_UNUSED, split_prologue_seq ATTRIBUTE_UNUSED;
5892 edge e, entry_edge, orig_entry_edge, exit_fallthru_edge;
5893 edge_iterator ei;
5895 df_analyze ();
5897 rtl_profile_for_bb (ENTRY_BLOCK_PTR);
5899 inserted = false;
5900 seq = NULL_RTX;
5901 epilogue_end = NULL_RTX;
5902 returnjump = NULL_RTX;
5904 /* Can't deal with multiple successors of the entry block at the
5905 moment. Function should always have at least one entry
5906 point. */
5907 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR));
5908 entry_edge = single_succ_edge (ENTRY_BLOCK_PTR);
5909 orig_entry_edge = entry_edge;
5911 split_prologue_seq = NULL_RTX;
5912 if (flag_split_stack
5913 && (lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (cfun->decl))
5914 == NULL))
5916 #ifndef HAVE_split_stack_prologue
5917 gcc_unreachable ();
5918 #else
5919 gcc_assert (HAVE_split_stack_prologue);
5921 start_sequence ();
5922 emit_insn (gen_split_stack_prologue ());
5923 split_prologue_seq = get_insns ();
5924 end_sequence ();
5926 record_insns (split_prologue_seq, NULL, &prologue_insn_hash);
5927 set_insn_locations (split_prologue_seq, prologue_location);
5928 #endif
5931 prologue_seq = NULL_RTX;
5932 #ifdef HAVE_prologue
5933 if (HAVE_prologue)
5935 start_sequence ();
5936 seq = gen_prologue ();
5937 emit_insn (seq);
5939 /* Insert an explicit USE for the frame pointer
5940 if the profiling is on and the frame pointer is required. */
5941 if (crtl->profile && frame_pointer_needed)
5942 emit_use (hard_frame_pointer_rtx);
5944 /* Retain a map of the prologue insns. */
5945 record_insns (seq, NULL, &prologue_insn_hash);
5946 emit_note (NOTE_INSN_PROLOGUE_END);
5948 /* Ensure that instructions are not moved into the prologue when
5949 profiling is on. The call to the profiling routine can be
5950 emitted within the live range of a call-clobbered register. */
5951 if (!targetm.profile_before_prologue () && crtl->profile)
5952 emit_insn (gen_blockage ());
5954 prologue_seq = get_insns ();
5955 end_sequence ();
5956 set_insn_locations (prologue_seq, prologue_location);
5958 #endif
5960 #ifdef HAVE_simple_return
5961 bitmap_initialize (&bb_flags, &bitmap_default_obstack);
5963 /* Try to perform a kind of shrink-wrapping, making sure the
5964 prologue/epilogue is emitted only around those parts of the
5965 function that require it. */
5967 nonempty_prologue = false;
5968 for (seq = prologue_seq; seq; seq = NEXT_INSN (seq))
5969 if (!NOTE_P (seq) || NOTE_KIND (seq) != NOTE_INSN_PROLOGUE_END)
5971 nonempty_prologue = true;
5972 break;
5975 if (flag_shrink_wrap && HAVE_simple_return
5976 && (targetm.profile_before_prologue () || !crtl->profile)
5977 && nonempty_prologue && !crtl->calls_eh_return)
5979 HARD_REG_SET prologue_clobbered, prologue_used, live_on_edge;
5980 struct hard_reg_set_container set_up_by_prologue;
5981 rtx p_insn;
5982 vec<basic_block> vec;
5983 basic_block bb;
5984 bitmap_head bb_antic_flags;
5985 bitmap_head bb_on_list;
5986 bitmap_head bb_tail;
5988 if (dump_file)
5989 fprintf (dump_file, "Attempting shrink-wrapping optimization.\n");
5991 /* Compute the registers set and used in the prologue. */
5992 CLEAR_HARD_REG_SET (prologue_clobbered);
5993 CLEAR_HARD_REG_SET (prologue_used);
5994 for (p_insn = prologue_seq; p_insn; p_insn = NEXT_INSN (p_insn))
5996 HARD_REG_SET this_used;
5997 if (!NONDEBUG_INSN_P (p_insn))
5998 continue;
6000 CLEAR_HARD_REG_SET (this_used);
6001 note_uses (&PATTERN (p_insn), record_hard_reg_uses,
6002 &this_used);
6003 AND_COMPL_HARD_REG_SET (this_used, prologue_clobbered);
6004 IOR_HARD_REG_SET (prologue_used, this_used);
6005 note_stores (PATTERN (p_insn), record_hard_reg_sets,
6006 &prologue_clobbered);
6009 prepare_shrink_wrap (entry_edge->dest);
6011 bitmap_initialize (&bb_antic_flags, &bitmap_default_obstack);
6012 bitmap_initialize (&bb_on_list, &bitmap_default_obstack);
6013 bitmap_initialize (&bb_tail, &bitmap_default_obstack);
6015 /* Find the set of basic blocks that require a stack frame,
6016 and blocks that are too big to be duplicated. */
6018 vec.create (n_basic_blocks);
6020 CLEAR_HARD_REG_SET (set_up_by_prologue.set);
6021 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
6022 STACK_POINTER_REGNUM);
6023 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode, ARG_POINTER_REGNUM);
6024 if (frame_pointer_needed)
6025 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
6026 HARD_FRAME_POINTER_REGNUM);
6027 if (pic_offset_table_rtx)
6028 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
6029 PIC_OFFSET_TABLE_REGNUM);
6030 if (crtl->drap_reg)
6031 add_to_hard_reg_set (&set_up_by_prologue.set,
6032 GET_MODE (crtl->drap_reg),
6033 REGNO (crtl->drap_reg));
6034 if (targetm.set_up_by_prologue)
6035 targetm.set_up_by_prologue (&set_up_by_prologue);
6037 /* We don't use a different max size depending on
6038 optimize_bb_for_speed_p because increasing shrink-wrapping
6039 opportunities by duplicating tail blocks can actually result
6040 in an overall decrease in code size. */
6041 max_grow_size = get_uncond_jump_length ();
6042 max_grow_size *= PARAM_VALUE (PARAM_MAX_GROW_COPY_BB_INSNS);
6044 FOR_EACH_BB (bb)
6046 rtx insn;
6047 unsigned size = 0;
6049 FOR_BB_INSNS (bb, insn)
6050 if (NONDEBUG_INSN_P (insn))
6052 if (requires_stack_frame_p (insn, prologue_used,
6053 set_up_by_prologue.set))
6055 if (bb == entry_edge->dest)
6056 goto fail_shrinkwrap;
6057 bitmap_set_bit (&bb_flags, bb->index);
6058 vec.quick_push (bb);
6059 break;
6061 else if (size <= max_grow_size)
6063 size += get_attr_min_length (insn);
6064 if (size > max_grow_size)
6065 bitmap_set_bit (&bb_on_list, bb->index);
6070 /* Blocks that really need a prologue, or are too big for tails. */
6071 bitmap_ior_into (&bb_on_list, &bb_flags);
6073 /* For every basic block that needs a prologue, mark all blocks
6074 reachable from it, so as to ensure they are also seen as
6075 requiring a prologue. */
6076 while (!vec.is_empty ())
6078 basic_block tmp_bb = vec.pop ();
6080 FOR_EACH_EDGE (e, ei, tmp_bb->succs)
6081 if (e->dest != EXIT_BLOCK_PTR
6082 && bitmap_set_bit (&bb_flags, e->dest->index))
6083 vec.quick_push (e->dest);
6086 /* Find the set of basic blocks that need no prologue, have a
6087 single successor, can be duplicated, meet a max size
6088 requirement, and go to the exit via like blocks. */
6089 vec.quick_push (EXIT_BLOCK_PTR);
6090 while (!vec.is_empty ())
6092 basic_block tmp_bb = vec.pop ();
6094 FOR_EACH_EDGE (e, ei, tmp_bb->preds)
6095 if (single_succ_p (e->src)
6096 && !bitmap_bit_p (&bb_on_list, e->src->index)
6097 && can_duplicate_block_p (e->src))
6099 edge pe;
6100 edge_iterator pei;
6102 /* If there is predecessor of e->src which doesn't
6103 need prologue and the edge is complex,
6104 we might not be able to redirect the branch
6105 to a copy of e->src. */
6106 FOR_EACH_EDGE (pe, pei, e->src->preds)
6107 if ((pe->flags & EDGE_COMPLEX) != 0
6108 && !bitmap_bit_p (&bb_flags, pe->src->index))
6109 break;
6110 if (pe == NULL && bitmap_set_bit (&bb_tail, e->src->index))
6111 vec.quick_push (e->src);
6115 /* Now walk backwards from every block that is marked as needing
6116 a prologue to compute the bb_antic_flags bitmap. Exclude
6117 tail blocks; They can be duplicated to be used on paths not
6118 needing a prologue. */
6119 bitmap_clear (&bb_on_list);
6120 bitmap_and_compl (&bb_antic_flags, &bb_flags, &bb_tail);
6121 FOR_EACH_BB (bb)
6123 if (!bitmap_bit_p (&bb_antic_flags, bb->index))
6124 continue;
6125 FOR_EACH_EDGE (e, ei, bb->preds)
6126 if (!bitmap_bit_p (&bb_antic_flags, e->src->index)
6127 && bitmap_set_bit (&bb_on_list, e->src->index))
6128 vec.quick_push (e->src);
6130 while (!vec.is_empty ())
6132 basic_block tmp_bb = vec.pop ();
6133 bool all_set = true;
6135 bitmap_clear_bit (&bb_on_list, tmp_bb->index);
6136 FOR_EACH_EDGE (e, ei, tmp_bb->succs)
6137 if (!bitmap_bit_p (&bb_antic_flags, e->dest->index))
6139 all_set = false;
6140 break;
6143 if (all_set)
6145 bitmap_set_bit (&bb_antic_flags, tmp_bb->index);
6146 FOR_EACH_EDGE (e, ei, tmp_bb->preds)
6147 if (!bitmap_bit_p (&bb_antic_flags, e->src->index)
6148 && bitmap_set_bit (&bb_on_list, e->src->index))
6149 vec.quick_push (e->src);
6152 /* Find exactly one edge that leads to a block in ANTIC from
6153 a block that isn't. */
6154 if (!bitmap_bit_p (&bb_antic_flags, entry_edge->dest->index))
6155 FOR_EACH_BB (bb)
6157 if (!bitmap_bit_p (&bb_antic_flags, bb->index))
6158 continue;
6159 FOR_EACH_EDGE (e, ei, bb->preds)
6160 if (!bitmap_bit_p (&bb_antic_flags, e->src->index))
6162 if (entry_edge != orig_entry_edge)
6164 entry_edge = orig_entry_edge;
6165 if (dump_file)
6166 fprintf (dump_file, "More than one candidate edge.\n");
6167 goto fail_shrinkwrap;
6169 if (dump_file)
6170 fprintf (dump_file, "Found candidate edge for "
6171 "shrink-wrapping, %d->%d.\n", e->src->index,
6172 e->dest->index);
6173 entry_edge = e;
6177 if (entry_edge != orig_entry_edge)
6179 /* Test whether the prologue is known to clobber any register
6180 (other than FP or SP) which are live on the edge. */
6181 CLEAR_HARD_REG_BIT (prologue_clobbered, STACK_POINTER_REGNUM);
6182 if (frame_pointer_needed)
6183 CLEAR_HARD_REG_BIT (prologue_clobbered, HARD_FRAME_POINTER_REGNUM);
6184 REG_SET_TO_HARD_REG_SET (live_on_edge,
6185 df_get_live_in (entry_edge->dest));
6186 if (hard_reg_set_intersect_p (live_on_edge, prologue_clobbered))
6188 entry_edge = orig_entry_edge;
6189 if (dump_file)
6190 fprintf (dump_file,
6191 "Shrink-wrapping aborted due to clobber.\n");
6194 if (entry_edge != orig_entry_edge)
6196 crtl->shrink_wrapped = true;
6197 if (dump_file)
6198 fprintf (dump_file, "Performing shrink-wrapping.\n");
6200 /* Find tail blocks reachable from both blocks needing a
6201 prologue and blocks not needing a prologue. */
6202 if (!bitmap_empty_p (&bb_tail))
6203 FOR_EACH_BB (bb)
6205 bool some_pro, some_no_pro;
6206 if (!bitmap_bit_p (&bb_tail, bb->index))
6207 continue;
6208 some_pro = some_no_pro = false;
6209 FOR_EACH_EDGE (e, ei, bb->preds)
6211 if (bitmap_bit_p (&bb_flags, e->src->index))
6212 some_pro = true;
6213 else
6214 some_no_pro = true;
6216 if (some_pro && some_no_pro)
6217 vec.quick_push (bb);
6218 else
6219 bitmap_clear_bit (&bb_tail, bb->index);
6221 /* Find the head of each tail. */
6222 while (!vec.is_empty ())
6224 basic_block tbb = vec.pop ();
6226 if (!bitmap_bit_p (&bb_tail, tbb->index))
6227 continue;
6229 while (single_succ_p (tbb))
6231 tbb = single_succ (tbb);
6232 bitmap_clear_bit (&bb_tail, tbb->index);
6235 /* Now duplicate the tails. */
6236 if (!bitmap_empty_p (&bb_tail))
6237 FOR_EACH_BB_REVERSE (bb)
6239 basic_block copy_bb, tbb;
6240 rtx insert_point;
6241 int eflags;
6243 if (!bitmap_clear_bit (&bb_tail, bb->index))
6244 continue;
6246 /* Create a copy of BB, instructions and all, for
6247 use on paths that don't need a prologue.
6248 Ideal placement of the copy is on a fall-thru edge
6249 or after a block that would jump to the copy. */
6250 FOR_EACH_EDGE (e, ei, bb->preds)
6251 if (!bitmap_bit_p (&bb_flags, e->src->index)
6252 && single_succ_p (e->src))
6253 break;
6254 if (e)
6256 /* Make sure we insert after any barriers. */
6257 rtx end = get_last_bb_insn (e->src);
6258 copy_bb = create_basic_block (NEXT_INSN (end),
6259 NULL_RTX, e->src);
6260 BB_COPY_PARTITION (copy_bb, e->src);
6262 else
6264 /* Otherwise put the copy at the end of the function. */
6265 copy_bb = create_basic_block (NULL_RTX, NULL_RTX,
6266 EXIT_BLOCK_PTR->prev_bb);
6267 BB_COPY_PARTITION (copy_bb, bb);
6270 insert_point = emit_note_after (NOTE_INSN_DELETED,
6271 BB_END (copy_bb));
6272 emit_barrier_after (BB_END (copy_bb));
6274 tbb = bb;
6275 while (1)
6277 dup_block_and_redirect (tbb, copy_bb, insert_point,
6278 &bb_flags);
6279 tbb = single_succ (tbb);
6280 if (tbb == EXIT_BLOCK_PTR)
6281 break;
6282 e = split_block (copy_bb, PREV_INSN (insert_point));
6283 copy_bb = e->dest;
6286 /* Quiet verify_flow_info by (ab)using EDGE_FAKE.
6287 We have yet to add a simple_return to the tails,
6288 as we'd like to first convert_jumps_to_returns in
6289 case the block is no longer used after that. */
6290 eflags = EDGE_FAKE;
6291 if (CALL_P (PREV_INSN (insert_point))
6292 && SIBLING_CALL_P (PREV_INSN (insert_point)))
6293 eflags = EDGE_SIBCALL | EDGE_ABNORMAL;
6294 make_single_succ_edge (copy_bb, EXIT_BLOCK_PTR, eflags);
6296 /* verify_flow_info doesn't like a note after a
6297 sibling call. */
6298 delete_insn (insert_point);
6299 if (bitmap_empty_p (&bb_tail))
6300 break;
6304 fail_shrinkwrap:
6305 bitmap_clear (&bb_tail);
6306 bitmap_clear (&bb_antic_flags);
6307 bitmap_clear (&bb_on_list);
6308 vec.release ();
6310 #endif
6312 if (split_prologue_seq != NULL_RTX)
6314 insert_insn_on_edge (split_prologue_seq, orig_entry_edge);
6315 inserted = true;
6317 if (prologue_seq != NULL_RTX)
6319 insert_insn_on_edge (prologue_seq, entry_edge);
6320 inserted = true;
6323 /* If the exit block has no non-fake predecessors, we don't need
6324 an epilogue. */
6325 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6326 if ((e->flags & EDGE_FAKE) == 0)
6327 break;
6328 if (e == NULL)
6329 goto epilogue_done;
6331 rtl_profile_for_bb (EXIT_BLOCK_PTR);
6333 exit_fallthru_edge = find_fallthru_edge (EXIT_BLOCK_PTR->preds);
6335 /* If we're allowed to generate a simple return instruction, then by
6336 definition we don't need a full epilogue. If the last basic
6337 block before the exit block does not contain active instructions,
6338 examine its predecessors and try to emit (conditional) return
6339 instructions. */
6340 #ifdef HAVE_simple_return
6341 if (entry_edge != orig_entry_edge)
6343 if (optimize)
6345 unsigned i, last;
6347 /* convert_jumps_to_returns may add to EXIT_BLOCK_PTR->preds
6348 (but won't remove). Stop at end of current preds. */
6349 last = EDGE_COUNT (EXIT_BLOCK_PTR->preds);
6350 for (i = 0; i < last; i++)
6352 e = EDGE_I (EXIT_BLOCK_PTR->preds, i);
6353 if (LABEL_P (BB_HEAD (e->src))
6354 && !bitmap_bit_p (&bb_flags, e->src->index)
6355 && !active_insn_between (BB_HEAD (e->src), BB_END (e->src)))
6356 unconverted_simple_returns
6357 = convert_jumps_to_returns (e->src, true,
6358 unconverted_simple_returns);
6362 if (exit_fallthru_edge != NULL
6363 && EDGE_COUNT (exit_fallthru_edge->src->preds) != 0
6364 && !bitmap_bit_p (&bb_flags, exit_fallthru_edge->src->index))
6366 basic_block last_bb;
6368 last_bb = emit_return_for_exit (exit_fallthru_edge, true);
6369 returnjump = BB_END (last_bb);
6370 exit_fallthru_edge = NULL;
6373 #endif
6374 #ifdef HAVE_return
6375 if (HAVE_return)
6377 if (exit_fallthru_edge == NULL)
6378 goto epilogue_done;
6380 if (optimize)
6382 basic_block last_bb = exit_fallthru_edge->src;
6384 if (LABEL_P (BB_HEAD (last_bb))
6385 && !active_insn_between (BB_HEAD (last_bb), BB_END (last_bb)))
6386 convert_jumps_to_returns (last_bb, false, vNULL);
6388 if (EDGE_COUNT (last_bb->preds) != 0
6389 && single_succ_p (last_bb))
6391 last_bb = emit_return_for_exit (exit_fallthru_edge, false);
6392 epilogue_end = returnjump = BB_END (last_bb);
6393 #ifdef HAVE_simple_return
6394 /* Emitting the return may add a basic block.
6395 Fix bb_flags for the added block. */
6396 if (last_bb != exit_fallthru_edge->src)
6397 bitmap_set_bit (&bb_flags, last_bb->index);
6398 #endif
6399 goto epilogue_done;
6403 #endif
6405 /* A small fib -- epilogue is not yet completed, but we wish to re-use
6406 this marker for the splits of EH_RETURN patterns, and nothing else
6407 uses the flag in the meantime. */
6408 epilogue_completed = 1;
6410 #ifdef HAVE_eh_return
6411 /* Find non-fallthru edges that end with EH_RETURN instructions. On
6412 some targets, these get split to a special version of the epilogue
6413 code. In order to be able to properly annotate these with unwind
6414 info, try to split them now. If we get a valid split, drop an
6415 EPILOGUE_BEG note and mark the insns as epilogue insns. */
6416 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6418 rtx prev, last, trial;
6420 if (e->flags & EDGE_FALLTHRU)
6421 continue;
6422 last = BB_END (e->src);
6423 if (!eh_returnjump_p (last))
6424 continue;
6426 prev = PREV_INSN (last);
6427 trial = try_split (PATTERN (last), last, 1);
6428 if (trial == last)
6429 continue;
6431 record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
6432 emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
6434 #endif
6436 /* If nothing falls through into the exit block, we don't need an
6437 epilogue. */
6439 if (exit_fallthru_edge == NULL)
6440 goto epilogue_done;
6442 #ifdef HAVE_epilogue
6443 if (HAVE_epilogue)
6445 start_sequence ();
6446 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
6447 seq = gen_epilogue ();
6448 if (seq)
6449 emit_jump_insn (seq);
6451 /* Retain a map of the epilogue insns. */
6452 record_insns (seq, NULL, &epilogue_insn_hash);
6453 set_insn_locations (seq, epilogue_location);
6455 seq = get_insns ();
6456 returnjump = get_last_insn ();
6457 end_sequence ();
6459 insert_insn_on_edge (seq, exit_fallthru_edge);
6460 inserted = true;
6462 if (JUMP_P (returnjump))
6463 set_return_jump_label (returnjump);
6465 else
6466 #endif
6468 basic_block cur_bb;
6470 if (! next_active_insn (BB_END (exit_fallthru_edge->src)))
6471 goto epilogue_done;
6472 /* We have a fall-through edge to the exit block, the source is not
6473 at the end of the function, and there will be an assembler epilogue
6474 at the end of the function.
6475 We can't use force_nonfallthru here, because that would try to
6476 use return. Inserting a jump 'by hand' is extremely messy, so
6477 we take advantage of cfg_layout_finalize using
6478 fixup_fallthru_exit_predecessor. */
6479 cfg_layout_initialize (0);
6480 FOR_EACH_BB (cur_bb)
6481 if (cur_bb->index >= NUM_FIXED_BLOCKS
6482 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
6483 cur_bb->aux = cur_bb->next_bb;
6484 cfg_layout_finalize ();
6487 epilogue_done:
6489 default_rtl_profile ();
6491 if (inserted)
6493 sbitmap blocks;
6495 commit_edge_insertions ();
6497 /* Look for basic blocks within the prologue insns. */
6498 blocks = sbitmap_alloc (last_basic_block);
6499 bitmap_clear (blocks);
6500 bitmap_set_bit (blocks, entry_edge->dest->index);
6501 bitmap_set_bit (blocks, orig_entry_edge->dest->index);
6502 find_many_sub_basic_blocks (blocks);
6503 sbitmap_free (blocks);
6505 /* The epilogue insns we inserted may cause the exit edge to no longer
6506 be fallthru. */
6507 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6509 if (((e->flags & EDGE_FALLTHRU) != 0)
6510 && returnjump_p (BB_END (e->src)))
6511 e->flags &= ~EDGE_FALLTHRU;
6515 #ifdef HAVE_simple_return
6516 /* If there were branches to an empty LAST_BB which we tried to
6517 convert to conditional simple_returns, but couldn't for some
6518 reason, create a block to hold a simple_return insn and redirect
6519 those remaining edges. */
6520 if (!unconverted_simple_returns.is_empty ())
6522 basic_block simple_return_block_hot = NULL;
6523 basic_block simple_return_block_cold = NULL;
6524 edge pending_edge_hot = NULL;
6525 edge pending_edge_cold = NULL;
6526 basic_block exit_pred;
6527 int i;
6529 gcc_assert (entry_edge != orig_entry_edge);
6531 /* See if we can reuse the last insn that was emitted for the
6532 epilogue. */
6533 if (returnjump != NULL_RTX
6534 && JUMP_LABEL (returnjump) == simple_return_rtx)
6536 e = split_block (BLOCK_FOR_INSN (returnjump), PREV_INSN (returnjump));
6537 if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
6538 simple_return_block_hot = e->dest;
6539 else
6540 simple_return_block_cold = e->dest;
6543 /* Also check returns we might need to add to tail blocks. */
6544 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6545 if (EDGE_COUNT (e->src->preds) != 0
6546 && (e->flags & EDGE_FAKE) != 0
6547 && !bitmap_bit_p (&bb_flags, e->src->index))
6549 if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
6550 pending_edge_hot = e;
6551 else
6552 pending_edge_cold = e;
6555 /* Save a pointer to the exit's predecessor BB for use in
6556 inserting new BBs at the end of the function. Do this
6557 after the call to split_block above which may split
6558 the original exit pred. */
6559 exit_pred = EXIT_BLOCK_PTR->prev_bb;
6561 FOR_EACH_VEC_ELT (unconverted_simple_returns, i, e)
6563 basic_block *pdest_bb;
6564 edge pending;
6566 if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
6568 pdest_bb = &simple_return_block_hot;
6569 pending = pending_edge_hot;
6571 else
6573 pdest_bb = &simple_return_block_cold;
6574 pending = pending_edge_cold;
6577 if (*pdest_bb == NULL && pending != NULL)
6579 emit_return_into_block (true, pending->src);
6580 pending->flags &= ~(EDGE_FALLTHRU | EDGE_FAKE);
6581 *pdest_bb = pending->src;
6583 else if (*pdest_bb == NULL)
6585 basic_block bb;
6586 rtx start;
6588 bb = create_basic_block (NULL, NULL, exit_pred);
6589 BB_COPY_PARTITION (bb, e->src);
6590 start = emit_jump_insn_after (gen_simple_return (),
6591 BB_END (bb));
6592 JUMP_LABEL (start) = simple_return_rtx;
6593 emit_barrier_after (start);
6595 *pdest_bb = bb;
6596 make_edge (bb, EXIT_BLOCK_PTR, 0);
6598 redirect_edge_and_branch_force (e, *pdest_bb);
6600 unconverted_simple_returns.release ();
6603 if (entry_edge != orig_entry_edge)
6605 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6606 if (EDGE_COUNT (e->src->preds) != 0
6607 && (e->flags & EDGE_FAKE) != 0
6608 && !bitmap_bit_p (&bb_flags, e->src->index))
6610 emit_return_into_block (true, e->src);
6611 e->flags &= ~(EDGE_FALLTHRU | EDGE_FAKE);
6614 #endif
6616 #ifdef HAVE_sibcall_epilogue
6617 /* Emit sibling epilogues before any sibling call sites. */
6618 for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
6620 basic_block bb = e->src;
6621 rtx insn = BB_END (bb);
6622 rtx ep_seq;
6624 if (!CALL_P (insn)
6625 || ! SIBLING_CALL_P (insn)
6626 #ifdef HAVE_simple_return
6627 || (entry_edge != orig_entry_edge
6628 && !bitmap_bit_p (&bb_flags, bb->index))
6629 #endif
6632 ei_next (&ei);
6633 continue;
6636 ep_seq = gen_sibcall_epilogue ();
6637 if (ep_seq)
6639 start_sequence ();
6640 emit_note (NOTE_INSN_EPILOGUE_BEG);
6641 emit_insn (ep_seq);
6642 seq = get_insns ();
6643 end_sequence ();
6645 /* Retain a map of the epilogue insns. Used in life analysis to
6646 avoid getting rid of sibcall epilogue insns. Do this before we
6647 actually emit the sequence. */
6648 record_insns (seq, NULL, &epilogue_insn_hash);
6649 set_insn_locations (seq, epilogue_location);
6651 emit_insn_before (seq, insn);
6653 ei_next (&ei);
6655 #endif
6657 #ifdef HAVE_epilogue
6658 if (epilogue_end)
6660 rtx insn, next;
6662 /* Similarly, move any line notes that appear after the epilogue.
6663 There is no need, however, to be quite so anal about the existence
6664 of such a note. Also possibly move
6665 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
6666 info generation. */
6667 for (insn = epilogue_end; insn; insn = next)
6669 next = NEXT_INSN (insn);
6670 if (NOTE_P (insn)
6671 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
6672 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
6675 #endif
6677 #ifdef HAVE_simple_return
6678 bitmap_clear (&bb_flags);
6679 #endif
6681 /* Threading the prologue and epilogue changes the artificial refs
6682 in the entry and exit blocks. */
6683 epilogue_completed = 1;
6684 df_update_entry_exit_and_calls ();
6687 /* Reposition the prologue-end and epilogue-begin notes after
6688 instruction scheduling. */
6690 void
6691 reposition_prologue_and_epilogue_notes (void)
6693 #if defined (HAVE_prologue) || defined (HAVE_epilogue) \
6694 || defined (HAVE_sibcall_epilogue)
6695 /* Since the hash table is created on demand, the fact that it is
6696 non-null is a signal that it is non-empty. */
6697 if (prologue_insn_hash != NULL)
6699 size_t len = htab_elements (prologue_insn_hash);
6700 rtx insn, last = NULL, note = NULL;
6702 /* Scan from the beginning until we reach the last prologue insn. */
6703 /* ??? While we do have the CFG intact, there are two problems:
6704 (1) The prologue can contain loops (typically probing the stack),
6705 which means that the end of the prologue isn't in the first bb.
6706 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
6707 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6709 if (NOTE_P (insn))
6711 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
6712 note = insn;
6714 else if (contains (insn, prologue_insn_hash))
6716 last = insn;
6717 if (--len == 0)
6718 break;
6722 if (last)
6724 if (note == NULL)
6726 /* Scan forward looking for the PROLOGUE_END note. It should
6727 be right at the beginning of the block, possibly with other
6728 insn notes that got moved there. */
6729 for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
6731 if (NOTE_P (note)
6732 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
6733 break;
6737 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
6738 if (LABEL_P (last))
6739 last = NEXT_INSN (last);
6740 reorder_insns (note, note, last);
6744 if (epilogue_insn_hash != NULL)
6746 edge_iterator ei;
6747 edge e;
6749 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6751 rtx insn, first = NULL, note = NULL;
6752 basic_block bb = e->src;
6754 /* Scan from the beginning until we reach the first epilogue insn. */
6755 FOR_BB_INSNS (bb, insn)
6757 if (NOTE_P (insn))
6759 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
6761 note = insn;
6762 if (first != NULL)
6763 break;
6766 else if (first == NULL && contains (insn, epilogue_insn_hash))
6768 first = insn;
6769 if (note != NULL)
6770 break;
6774 if (note)
6776 /* If the function has a single basic block, and no real
6777 epilogue insns (e.g. sibcall with no cleanup), the
6778 epilogue note can get scheduled before the prologue
6779 note. If we have frame related prologue insns, having
6780 them scanned during the epilogue will result in a crash.
6781 In this case re-order the epilogue note to just before
6782 the last insn in the block. */
6783 if (first == NULL)
6784 first = BB_END (bb);
6786 if (PREV_INSN (first) != note)
6787 reorder_insns (note, note, PREV_INSN (first));
6791 #endif /* HAVE_prologue or HAVE_epilogue */
6794 /* Returns the name of function declared by FNDECL. */
6795 const char *
6796 fndecl_name (tree fndecl)
6798 if (fndecl == NULL)
6799 return "(nofn)";
6800 return lang_hooks.decl_printable_name (fndecl, 2);
6803 /* Returns the name of function FN. */
6804 const char *
6805 function_name (struct function *fn)
6807 tree fndecl = (fn == NULL) ? NULL : fn->decl;
6808 return fndecl_name (fndecl);
6811 /* Returns the name of the current function. */
6812 const char *
6813 current_function_name (void)
6815 return function_name (cfun);
6819 static unsigned int
6820 rest_of_handle_check_leaf_regs (void)
6822 #ifdef LEAF_REGISTERS
6823 crtl->uses_only_leaf_regs
6824 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
6825 #endif
6826 return 0;
6829 /* Insert a TYPE into the used types hash table of CFUN. */
6831 static void
6832 used_types_insert_helper (tree type, struct function *func)
6834 if (type != NULL && func != NULL)
6836 void **slot;
6838 if (func->used_types_hash == NULL)
6839 func->used_types_hash = htab_create_ggc (37, htab_hash_pointer,
6840 htab_eq_pointer, NULL);
6841 slot = htab_find_slot (func->used_types_hash, type, INSERT);
6842 if (*slot == NULL)
6843 *slot = type;
6847 /* Given a type, insert it into the used hash table in cfun. */
6848 void
6849 used_types_insert (tree t)
6851 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
6852 if (TYPE_NAME (t))
6853 break;
6854 else
6855 t = TREE_TYPE (t);
6856 if (TREE_CODE (t) == ERROR_MARK)
6857 return;
6858 if (TYPE_NAME (t) == NULL_TREE
6859 || TYPE_NAME (t) == TYPE_NAME (TYPE_MAIN_VARIANT (t)))
6860 t = TYPE_MAIN_VARIANT (t);
6861 if (debug_info_level > DINFO_LEVEL_NONE)
6863 if (cfun)
6864 used_types_insert_helper (t, cfun);
6865 else
6867 /* So this might be a type referenced by a global variable.
6868 Record that type so that we can later decide to emit its
6869 debug information. */
6870 vec_safe_push (types_used_by_cur_var_decl, t);
6875 /* Helper to Hash a struct types_used_by_vars_entry. */
6877 static hashval_t
6878 hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry)
6880 gcc_assert (entry && entry->var_decl && entry->type);
6882 return iterative_hash_object (entry->type,
6883 iterative_hash_object (entry->var_decl, 0));
6886 /* Hash function of the types_used_by_vars_entry hash table. */
6888 hashval_t
6889 types_used_by_vars_do_hash (const void *x)
6891 const struct types_used_by_vars_entry *entry =
6892 (const struct types_used_by_vars_entry *) x;
6894 return hash_types_used_by_vars_entry (entry);
6897 /*Equality function of the types_used_by_vars_entry hash table. */
6900 types_used_by_vars_eq (const void *x1, const void *x2)
6902 const struct types_used_by_vars_entry *e1 =
6903 (const struct types_used_by_vars_entry *) x1;
6904 const struct types_used_by_vars_entry *e2 =
6905 (const struct types_used_by_vars_entry *)x2;
6907 return (e1->var_decl == e2->var_decl && e1->type == e2->type);
6910 /* Inserts an entry into the types_used_by_vars_hash hash table. */
6912 void
6913 types_used_by_var_decl_insert (tree type, tree var_decl)
6915 if (type != NULL && var_decl != NULL)
6917 void **slot;
6918 struct types_used_by_vars_entry e;
6919 e.var_decl = var_decl;
6920 e.type = type;
6921 if (types_used_by_vars_hash == NULL)
6922 types_used_by_vars_hash =
6923 htab_create_ggc (37, types_used_by_vars_do_hash,
6924 types_used_by_vars_eq, NULL);
6925 slot = htab_find_slot_with_hash (types_used_by_vars_hash, &e,
6926 hash_types_used_by_vars_entry (&e), INSERT);
6927 if (*slot == NULL)
6929 struct types_used_by_vars_entry *entry;
6930 entry = ggc_alloc_types_used_by_vars_entry ();
6931 entry->type = type;
6932 entry->var_decl = var_decl;
6933 *slot = entry;
6938 namespace {
6940 const pass_data pass_data_leaf_regs =
6942 RTL_PASS, /* type */
6943 "*leaf_regs", /* name */
6944 OPTGROUP_NONE, /* optinfo_flags */
6945 false, /* has_gate */
6946 true, /* has_execute */
6947 TV_NONE, /* tv_id */
6948 0, /* properties_required */
6949 0, /* properties_provided */
6950 0, /* properties_destroyed */
6951 0, /* todo_flags_start */
6952 0, /* todo_flags_finish */
6955 class pass_leaf_regs : public rtl_opt_pass
6957 public:
6958 pass_leaf_regs (gcc::context *ctxt)
6959 : rtl_opt_pass (pass_data_leaf_regs, ctxt)
6962 /* opt_pass methods: */
6963 unsigned int execute () { return rest_of_handle_check_leaf_regs (); }
6965 }; // class pass_leaf_regs
6967 } // anon namespace
6969 rtl_opt_pass *
6970 make_pass_leaf_regs (gcc::context *ctxt)
6972 return new pass_leaf_regs (ctxt);
6975 static unsigned int
6976 rest_of_handle_thread_prologue_and_epilogue (void)
6978 if (optimize)
6979 cleanup_cfg (CLEANUP_EXPENSIVE);
6981 /* On some machines, the prologue and epilogue code, or parts thereof,
6982 can be represented as RTL. Doing so lets us schedule insns between
6983 it and the rest of the code and also allows delayed branch
6984 scheduling to operate in the epilogue. */
6985 thread_prologue_and_epilogue_insns ();
6987 /* The stack usage info is finalized during prologue expansion. */
6988 if (flag_stack_usage_info)
6989 output_stack_usage ();
6991 return 0;
6994 namespace {
6996 const pass_data pass_data_thread_prologue_and_epilogue =
6998 RTL_PASS, /* type */
6999 "pro_and_epilogue", /* name */
7000 OPTGROUP_NONE, /* optinfo_flags */
7001 false, /* has_gate */
7002 true, /* has_execute */
7003 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
7004 0, /* properties_required */
7005 0, /* properties_provided */
7006 0, /* properties_destroyed */
7007 TODO_verify_flow, /* todo_flags_start */
7008 ( TODO_df_verify | TODO_df_finish
7009 | TODO_verify_rtl_sharing ), /* todo_flags_finish */
7012 class pass_thread_prologue_and_epilogue : public rtl_opt_pass
7014 public:
7015 pass_thread_prologue_and_epilogue (gcc::context *ctxt)
7016 : rtl_opt_pass (pass_data_thread_prologue_and_epilogue, ctxt)
7019 /* opt_pass methods: */
7020 unsigned int execute () {
7021 return rest_of_handle_thread_prologue_and_epilogue ();
7024 }; // class pass_thread_prologue_and_epilogue
7026 } // anon namespace
7028 rtl_opt_pass *
7029 make_pass_thread_prologue_and_epilogue (gcc::context *ctxt)
7031 return new pass_thread_prologue_and_epilogue (ctxt);
7035 /* This mini-pass fixes fall-out from SSA in asm statements that have
7036 in-out constraints. Say you start with
7038 orig = inout;
7039 asm ("": "+mr" (inout));
7040 use (orig);
7042 which is transformed very early to use explicit output and match operands:
7044 orig = inout;
7045 asm ("": "=mr" (inout) : "0" (inout));
7046 use (orig);
7048 Or, after SSA and copyprop,
7050 asm ("": "=mr" (inout_2) : "0" (inout_1));
7051 use (inout_1);
7053 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
7054 they represent two separate values, so they will get different pseudo
7055 registers during expansion. Then, since the two operands need to match
7056 per the constraints, but use different pseudo registers, reload can
7057 only register a reload for these operands. But reloads can only be
7058 satisfied by hardregs, not by memory, so we need a register for this
7059 reload, just because we are presented with non-matching operands.
7060 So, even though we allow memory for this operand, no memory can be
7061 used for it, just because the two operands don't match. This can
7062 cause reload failures on register-starved targets.
7064 So it's a symptom of reload not being able to use memory for reloads
7065 or, alternatively it's also a symptom of both operands not coming into
7066 reload as matching (in which case the pseudo could go to memory just
7067 fine, as the alternative allows it, and no reload would be necessary).
7068 We fix the latter problem here, by transforming
7070 asm ("": "=mr" (inout_2) : "0" (inout_1));
7072 back to
7074 inout_2 = inout_1;
7075 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
7077 static void
7078 match_asm_constraints_1 (rtx insn, rtx *p_sets, int noutputs)
7080 int i;
7081 bool changed = false;
7082 rtx op = SET_SRC (p_sets[0]);
7083 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
7084 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
7085 bool *output_matched = XALLOCAVEC (bool, noutputs);
7087 memset (output_matched, 0, noutputs * sizeof (bool));
7088 for (i = 0; i < ninputs; i++)
7090 rtx input, output, insns;
7091 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
7092 char *end;
7093 int match, j;
7095 if (*constraint == '%')
7096 constraint++;
7098 match = strtoul (constraint, &end, 10);
7099 if (end == constraint)
7100 continue;
7102 gcc_assert (match < noutputs);
7103 output = SET_DEST (p_sets[match]);
7104 input = RTVEC_ELT (inputs, i);
7105 /* Only do the transformation for pseudos. */
7106 if (! REG_P (output)
7107 || rtx_equal_p (output, input)
7108 || (GET_MODE (input) != VOIDmode
7109 && GET_MODE (input) != GET_MODE (output)))
7110 continue;
7112 /* We can't do anything if the output is also used as input,
7113 as we're going to overwrite it. */
7114 for (j = 0; j < ninputs; j++)
7115 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
7116 break;
7117 if (j != ninputs)
7118 continue;
7120 /* Avoid changing the same input several times. For
7121 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
7122 only change in once (to out1), rather than changing it
7123 first to out1 and afterwards to out2. */
7124 if (i > 0)
7126 for (j = 0; j < noutputs; j++)
7127 if (output_matched[j] && input == SET_DEST (p_sets[j]))
7128 break;
7129 if (j != noutputs)
7130 continue;
7132 output_matched[match] = true;
7134 start_sequence ();
7135 emit_move_insn (output, input);
7136 insns = get_insns ();
7137 end_sequence ();
7138 emit_insn_before (insns, insn);
7140 /* Now replace all mentions of the input with output. We can't
7141 just replace the occurrence in inputs[i], as the register might
7142 also be used in some other input (or even in an address of an
7143 output), which would mean possibly increasing the number of
7144 inputs by one (namely 'output' in addition), which might pose
7145 a too complicated problem for reload to solve. E.g. this situation:
7147 asm ("" : "=r" (output), "=m" (input) : "0" (input))
7149 Here 'input' is used in two occurrences as input (once for the
7150 input operand, once for the address in the second output operand).
7151 If we would replace only the occurrence of the input operand (to
7152 make the matching) we would be left with this:
7154 output = input
7155 asm ("" : "=r" (output), "=m" (input) : "0" (output))
7157 Now we suddenly have two different input values (containing the same
7158 value, but different pseudos) where we formerly had only one.
7159 With more complicated asms this might lead to reload failures
7160 which wouldn't have happen without this pass. So, iterate over
7161 all operands and replace all occurrences of the register used. */
7162 for (j = 0; j < noutputs; j++)
7163 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
7164 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
7165 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
7166 input, output);
7167 for (j = 0; j < ninputs; j++)
7168 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
7169 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
7170 input, output);
7172 changed = true;
7175 if (changed)
7176 df_insn_rescan (insn);
7179 static unsigned
7180 rest_of_match_asm_constraints (void)
7182 basic_block bb;
7183 rtx insn, pat, *p_sets;
7184 int noutputs;
7186 if (!crtl->has_asm_statement)
7187 return 0;
7189 df_set_flags (DF_DEFER_INSN_RESCAN);
7190 FOR_EACH_BB (bb)
7192 FOR_BB_INSNS (bb, insn)
7194 if (!INSN_P (insn))
7195 continue;
7197 pat = PATTERN (insn);
7198 if (GET_CODE (pat) == PARALLEL)
7199 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
7200 else if (GET_CODE (pat) == SET)
7201 p_sets = &PATTERN (insn), noutputs = 1;
7202 else
7203 continue;
7205 if (GET_CODE (*p_sets) == SET
7206 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
7207 match_asm_constraints_1 (insn, p_sets, noutputs);
7211 return TODO_df_finish;
7214 namespace {
7216 const pass_data pass_data_match_asm_constraints =
7218 RTL_PASS, /* type */
7219 "asmcons", /* name */
7220 OPTGROUP_NONE, /* optinfo_flags */
7221 false, /* has_gate */
7222 true, /* has_execute */
7223 TV_NONE, /* tv_id */
7224 0, /* properties_required */
7225 0, /* properties_provided */
7226 0, /* properties_destroyed */
7227 0, /* todo_flags_start */
7228 0, /* todo_flags_finish */
7231 class pass_match_asm_constraints : public rtl_opt_pass
7233 public:
7234 pass_match_asm_constraints (gcc::context *ctxt)
7235 : rtl_opt_pass (pass_data_match_asm_constraints, ctxt)
7238 /* opt_pass methods: */
7239 unsigned int execute () { return rest_of_match_asm_constraints (); }
7241 }; // class pass_match_asm_constraints
7243 } // anon namespace
7245 rtl_opt_pass *
7246 make_pass_match_asm_constraints (gcc::context *ctxt)
7248 return new pass_match_asm_constraints (ctxt);
7252 #include "gt-function.h"