Reverting merge from trunk
[official-gcc.git] / gcc / ada / sem_ch3.adb
blob01d6dddd1024c76b41c954b1867be718b3f9cbf7
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2013, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Debug; use Debug;
30 with Elists; use Elists;
31 with Einfo; use Einfo;
32 with Errout; use Errout;
33 with Eval_Fat; use Eval_Fat;
34 with Exp_Ch3; use Exp_Ch3;
35 with Exp_Ch9; use Exp_Ch9;
36 with Exp_Disp; use Exp_Disp;
37 with Exp_Dist; use Exp_Dist;
38 with Exp_Pakd; use Exp_Pakd;
39 with Exp_Tss; use Exp_Tss;
40 with Exp_Util; use Exp_Util;
41 with Fname; use Fname;
42 with Freeze; use Freeze;
43 with Itypes; use Itypes;
44 with Layout; use Layout;
45 with Lib; use Lib;
46 with Lib.Xref; use Lib.Xref;
47 with Namet; use Namet;
48 with Nmake; use Nmake;
49 with Opt; use Opt;
50 with Restrict; use Restrict;
51 with Rident; use Rident;
52 with Rtsfind; use Rtsfind;
53 with Sem; use Sem;
54 with Sem_Aux; use Sem_Aux;
55 with Sem_Case; use Sem_Case;
56 with Sem_Cat; use Sem_Cat;
57 with Sem_Ch6; use Sem_Ch6;
58 with Sem_Ch7; use Sem_Ch7;
59 with Sem_Ch8; use Sem_Ch8;
60 with Sem_Ch13; use Sem_Ch13;
61 with Sem_Dim; use Sem_Dim;
62 with Sem_Disp; use Sem_Disp;
63 with Sem_Dist; use Sem_Dist;
64 with Sem_Elim; use Sem_Elim;
65 with Sem_Eval; use Sem_Eval;
66 with Sem_Mech; use Sem_Mech;
67 with Sem_Prag; use Sem_Prag;
68 with Sem_Res; use Sem_Res;
69 with Sem_Smem; use Sem_Smem;
70 with Sem_Type; use Sem_Type;
71 with Sem_Util; use Sem_Util;
72 with Sem_Warn; use Sem_Warn;
73 with Stand; use Stand;
74 with Sinfo; use Sinfo;
75 with Sinput; use Sinput;
76 with Snames; use Snames;
77 with Targparm; use Targparm;
78 with Tbuild; use Tbuild;
79 with Ttypes; use Ttypes;
80 with Uintp; use Uintp;
81 with Urealp; use Urealp;
83 package body Sem_Ch3 is
85 -----------------------
86 -- Local Subprograms --
87 -----------------------
89 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id);
90 -- Ada 2005 (AI-251): Add the tag components corresponding to all the
91 -- abstract interface types implemented by a record type or a derived
92 -- record type.
94 procedure Build_Derived_Type
95 (N : Node_Id;
96 Parent_Type : Entity_Id;
97 Derived_Type : Entity_Id;
98 Is_Completion : Boolean;
99 Derive_Subps : Boolean := True);
100 -- Create and decorate a Derived_Type given the Parent_Type entity. N is
101 -- the N_Full_Type_Declaration node containing the derived type definition.
102 -- Parent_Type is the entity for the parent type in the derived type
103 -- definition and Derived_Type the actual derived type. Is_Completion must
104 -- be set to False if Derived_Type is the N_Defining_Identifier node in N
105 -- (i.e. Derived_Type = Defining_Identifier (N)). In this case N is not the
106 -- completion of a private type declaration. If Is_Completion is set to
107 -- True, N is the completion of a private type declaration and Derived_Type
108 -- is different from the defining identifier inside N (i.e. Derived_Type /=
109 -- Defining_Identifier (N)). Derive_Subps indicates whether the parent
110 -- subprograms should be derived. The only case where this parameter is
111 -- False is when Build_Derived_Type is recursively called to process an
112 -- implicit derived full type for a type derived from a private type (in
113 -- that case the subprograms must only be derived for the private view of
114 -- the type).
116 -- ??? These flags need a bit of re-examination and re-documentation:
117 -- ??? are they both necessary (both seem related to the recursion)?
119 procedure Build_Derived_Access_Type
120 (N : Node_Id;
121 Parent_Type : Entity_Id;
122 Derived_Type : Entity_Id);
123 -- Subsidiary procedure to Build_Derived_Type. For a derived access type,
124 -- create an implicit base if the parent type is constrained or if the
125 -- subtype indication has a constraint.
127 procedure Build_Derived_Array_Type
128 (N : Node_Id;
129 Parent_Type : Entity_Id;
130 Derived_Type : Entity_Id);
131 -- Subsidiary procedure to Build_Derived_Type. For a derived array type,
132 -- create an implicit base if the parent type is constrained or if the
133 -- subtype indication has a constraint.
135 procedure Build_Derived_Concurrent_Type
136 (N : Node_Id;
137 Parent_Type : Entity_Id;
138 Derived_Type : Entity_Id);
139 -- Subsidiary procedure to Build_Derived_Type. For a derived task or
140 -- protected type, inherit entries and protected subprograms, check
141 -- legality of discriminant constraints if any.
143 procedure Build_Derived_Enumeration_Type
144 (N : Node_Id;
145 Parent_Type : Entity_Id;
146 Derived_Type : Entity_Id);
147 -- Subsidiary procedure to Build_Derived_Type. For a derived enumeration
148 -- type, we must create a new list of literals. Types derived from
149 -- Character and [Wide_]Wide_Character are special-cased.
151 procedure Build_Derived_Numeric_Type
152 (N : Node_Id;
153 Parent_Type : Entity_Id;
154 Derived_Type : Entity_Id);
155 -- Subsidiary procedure to Build_Derived_Type. For numeric types, create
156 -- an anonymous base type, and propagate constraint to subtype if needed.
158 procedure Build_Derived_Private_Type
159 (N : Node_Id;
160 Parent_Type : Entity_Id;
161 Derived_Type : Entity_Id;
162 Is_Completion : Boolean;
163 Derive_Subps : Boolean := True);
164 -- Subsidiary procedure to Build_Derived_Type. This procedure is complex
165 -- because the parent may or may not have a completion, and the derivation
166 -- may itself be a completion.
168 procedure Build_Derived_Record_Type
169 (N : Node_Id;
170 Parent_Type : Entity_Id;
171 Derived_Type : Entity_Id;
172 Derive_Subps : Boolean := True);
173 -- Subsidiary procedure used for tagged and untagged record types
174 -- by Build_Derived_Type and Analyze_Private_Extension_Declaration.
175 -- All parameters are as in Build_Derived_Type except that N, in
176 -- addition to being an N_Full_Type_Declaration node, can also be an
177 -- N_Private_Extension_Declaration node. See the definition of this routine
178 -- for much more info. Derive_Subps indicates whether subprograms should be
179 -- derived from the parent type. The only case where Derive_Subps is False
180 -- is for an implicit derived full type for a type derived from a private
181 -- type (see Build_Derived_Type).
183 procedure Build_Discriminal (Discrim : Entity_Id);
184 -- Create the discriminal corresponding to discriminant Discrim, that is
185 -- the parameter corresponding to Discrim to be used in initialization
186 -- procedures for the type where Discrim is a discriminant. Discriminals
187 -- are not used during semantic analysis, and are not fully defined
188 -- entities until expansion. Thus they are not given a scope until
189 -- initialization procedures are built.
191 function Build_Discriminant_Constraints
192 (T : Entity_Id;
193 Def : Node_Id;
194 Derived_Def : Boolean := False) return Elist_Id;
195 -- Validate discriminant constraints and return the list of the constraints
196 -- in order of discriminant declarations, where T is the discriminated
197 -- unconstrained type. Def is the N_Subtype_Indication node where the
198 -- discriminants constraints for T are specified. Derived_Def is True
199 -- when building the discriminant constraints in a derived type definition
200 -- of the form "type D (...) is new T (xxx)". In this case T is the parent
201 -- type and Def is the constraint "(xxx)" on T and this routine sets the
202 -- Corresponding_Discriminant field of the discriminants in the derived
203 -- type D to point to the corresponding discriminants in the parent type T.
205 procedure Build_Discriminated_Subtype
206 (T : Entity_Id;
207 Def_Id : Entity_Id;
208 Elist : Elist_Id;
209 Related_Nod : Node_Id;
210 For_Access : Boolean := False);
211 -- Subsidiary procedure to Constrain_Discriminated_Type and to
212 -- Process_Incomplete_Dependents. Given
214 -- T (a possibly discriminated base type)
215 -- Def_Id (a very partially built subtype for T),
217 -- the call completes Def_Id to be the appropriate E_*_Subtype.
219 -- The Elist is the list of discriminant constraints if any (it is set
220 -- to No_Elist if T is not a discriminated type, and to an empty list if
221 -- T has discriminants but there are no discriminant constraints). The
222 -- Related_Nod is the same as Decl_Node in Create_Constrained_Components.
223 -- The For_Access says whether or not this subtype is really constraining
224 -- an access type. That is its sole purpose is the designated type of an
225 -- access type -- in which case a Private_Subtype Is_For_Access_Subtype
226 -- is built to avoid freezing T when the access subtype is frozen.
228 function Build_Scalar_Bound
229 (Bound : Node_Id;
230 Par_T : Entity_Id;
231 Der_T : Entity_Id) return Node_Id;
232 -- The bounds of a derived scalar type are conversions of the bounds of
233 -- the parent type. Optimize the representation if the bounds are literals.
234 -- Needs a more complete spec--what are the parameters exactly, and what
235 -- exactly is the returned value, and how is Bound affected???
237 procedure Build_Underlying_Full_View
238 (N : Node_Id;
239 Typ : Entity_Id;
240 Par : Entity_Id);
241 -- If the completion of a private type is itself derived from a private
242 -- type, or if the full view of a private subtype is itself private, the
243 -- back-end has no way to compute the actual size of this type. We build
244 -- an internal subtype declaration of the proper parent type to convey
245 -- this information. This extra mechanism is needed because a full
246 -- view cannot itself have a full view (it would get clobbered during
247 -- view exchanges).
249 procedure Check_Access_Discriminant_Requires_Limited
250 (D : Node_Id;
251 Loc : Node_Id);
252 -- Check the restriction that the type to which an access discriminant
253 -- belongs must be a concurrent type or a descendant of a type with
254 -- the reserved word 'limited' in its declaration.
256 procedure Check_Anonymous_Access_Components
257 (Typ_Decl : Node_Id;
258 Typ : Entity_Id;
259 Prev : Entity_Id;
260 Comp_List : Node_Id);
261 -- Ada 2005 AI-382: an access component in a record definition can refer to
262 -- the enclosing record, in which case it denotes the type itself, and not
263 -- the current instance of the type. We create an anonymous access type for
264 -- the component, and flag it as an access to a component, so accessibility
265 -- checks are properly performed on it. The declaration of the access type
266 -- is placed ahead of that of the record to prevent order-of-elaboration
267 -- circularity issues in Gigi. We create an incomplete type for the record
268 -- declaration, which is the designated type of the anonymous access.
270 procedure Check_Delta_Expression (E : Node_Id);
271 -- Check that the expression represented by E is suitable for use as a
272 -- delta expression, i.e. it is of real type and is static.
274 procedure Check_Digits_Expression (E : Node_Id);
275 -- Check that the expression represented by E is suitable for use as a
276 -- digits expression, i.e. it is of integer type, positive and static.
278 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id);
279 -- Validate the initialization of an object declaration. T is the required
280 -- type, and Exp is the initialization expression.
282 procedure Check_Interfaces (N : Node_Id; Def : Node_Id);
283 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
285 procedure Check_Or_Process_Discriminants
286 (N : Node_Id;
287 T : Entity_Id;
288 Prev : Entity_Id := Empty);
289 -- If N is the full declaration of the completion T of an incomplete or
290 -- private type, check its discriminants (which are already known to be
291 -- conformant with those of the partial view, see Find_Type_Name),
292 -- otherwise process them. Prev is the entity of the partial declaration,
293 -- if any.
295 procedure Check_Real_Bound (Bound : Node_Id);
296 -- Check given bound for being of real type and static. If not, post an
297 -- appropriate message, and rewrite the bound with the real literal zero.
299 procedure Constant_Redeclaration
300 (Id : Entity_Id;
301 N : Node_Id;
302 T : out Entity_Id);
303 -- Various checks on legality of full declaration of deferred constant.
304 -- Id is the entity for the redeclaration, N is the N_Object_Declaration,
305 -- node. The caller has not yet set any attributes of this entity.
307 function Contain_Interface
308 (Iface : Entity_Id;
309 Ifaces : Elist_Id) return Boolean;
310 -- Ada 2005: Determine whether Iface is present in the list Ifaces
312 procedure Convert_Scalar_Bounds
313 (N : Node_Id;
314 Parent_Type : Entity_Id;
315 Derived_Type : Entity_Id;
316 Loc : Source_Ptr);
317 -- For derived scalar types, convert the bounds in the type definition to
318 -- the derived type, and complete their analysis. Given a constraint of the
319 -- form ".. new T range Lo .. Hi", Lo and Hi are analyzed and resolved with
320 -- T'Base, the parent_type. The bounds of the derived type (the anonymous
321 -- base) are copies of Lo and Hi. Finally, the bounds of the derived
322 -- subtype are conversions of those bounds to the derived_type, so that
323 -- their typing is consistent.
325 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id);
326 -- Copies attributes from array base type T2 to array base type T1. Copies
327 -- only attributes that apply to base types, but not subtypes.
329 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id);
330 -- Copies attributes from array subtype T2 to array subtype T1. Copies
331 -- attributes that apply to both subtypes and base types.
333 procedure Create_Constrained_Components
334 (Subt : Entity_Id;
335 Decl_Node : Node_Id;
336 Typ : Entity_Id;
337 Constraints : Elist_Id);
338 -- Build the list of entities for a constrained discriminated record
339 -- subtype. If a component depends on a discriminant, replace its subtype
340 -- using the discriminant values in the discriminant constraint. Subt
341 -- is the defining identifier for the subtype whose list of constrained
342 -- entities we will create. Decl_Node is the type declaration node where
343 -- we will attach all the itypes created. Typ is the base discriminated
344 -- type for the subtype Subt. Constraints is the list of discriminant
345 -- constraints for Typ.
347 function Constrain_Component_Type
348 (Comp : Entity_Id;
349 Constrained_Typ : Entity_Id;
350 Related_Node : Node_Id;
351 Typ : Entity_Id;
352 Constraints : Elist_Id) return Entity_Id;
353 -- Given a discriminated base type Typ, a list of discriminant constraint
354 -- Constraints for Typ and a component of Typ, with type Compon_Type,
355 -- create and return the type corresponding to Compon_type where all
356 -- discriminant references are replaced with the corresponding constraint.
357 -- If no discriminant references occur in Compon_Typ then return it as is.
358 -- Constrained_Typ is the final constrained subtype to which the
359 -- constrained Compon_Type belongs. Related_Node is the node where we will
360 -- attach all the itypes created.
362 -- Above description is confused, what is Compon_Type???
364 procedure Constrain_Access
365 (Def_Id : in out Entity_Id;
366 S : Node_Id;
367 Related_Nod : Node_Id);
368 -- Apply a list of constraints to an access type. If Def_Id is empty, it is
369 -- an anonymous type created for a subtype indication. In that case it is
370 -- created in the procedure and attached to Related_Nod.
372 procedure Constrain_Array
373 (Def_Id : in out Entity_Id;
374 SI : Node_Id;
375 Related_Nod : Node_Id;
376 Related_Id : Entity_Id;
377 Suffix : Character);
378 -- Apply a list of index constraints to an unconstrained array type. The
379 -- first parameter is the entity for the resulting subtype. A value of
380 -- Empty for Def_Id indicates that an implicit type must be created, but
381 -- creation is delayed (and must be done by this procedure) because other
382 -- subsidiary implicit types must be created first (which is why Def_Id
383 -- is an in/out parameter). The second parameter is a subtype indication
384 -- node for the constrained array to be created (e.g. something of the
385 -- form string (1 .. 10)). Related_Nod gives the place where this type
386 -- has to be inserted in the tree. The Related_Id and Suffix parameters
387 -- are used to build the associated Implicit type name.
389 procedure Constrain_Concurrent
390 (Def_Id : in out Entity_Id;
391 SI : Node_Id;
392 Related_Nod : Node_Id;
393 Related_Id : Entity_Id;
394 Suffix : Character);
395 -- Apply list of discriminant constraints to an unconstrained concurrent
396 -- type.
398 -- SI is the N_Subtype_Indication node containing the constraint and
399 -- the unconstrained type to constrain.
401 -- Def_Id is the entity for the resulting constrained subtype. A value
402 -- of Empty for Def_Id indicates that an implicit type must be created,
403 -- but creation is delayed (and must be done by this procedure) because
404 -- other subsidiary implicit types must be created first (which is why
405 -- Def_Id is an in/out parameter).
407 -- Related_Nod gives the place where this type has to be inserted
408 -- in the tree
410 -- The last two arguments are used to create its external name if needed.
412 function Constrain_Corresponding_Record
413 (Prot_Subt : Entity_Id;
414 Corr_Rec : Entity_Id;
415 Related_Nod : Node_Id;
416 Related_Id : Entity_Id) return Entity_Id;
417 -- When constraining a protected type or task type with discriminants,
418 -- constrain the corresponding record with the same discriminant values.
420 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id);
421 -- Constrain a decimal fixed point type with a digits constraint and/or a
422 -- range constraint, and build E_Decimal_Fixed_Point_Subtype entity.
424 procedure Constrain_Discriminated_Type
425 (Def_Id : Entity_Id;
426 S : Node_Id;
427 Related_Nod : Node_Id;
428 For_Access : Boolean := False);
429 -- Process discriminant constraints of composite type. Verify that values
430 -- have been provided for all discriminants, that the original type is
431 -- unconstrained, and that the types of the supplied expressions match
432 -- the discriminant types. The first three parameters are like in routine
433 -- Constrain_Concurrent. See Build_Discriminated_Subtype for an explanation
434 -- of For_Access.
436 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id);
437 -- Constrain an enumeration type with a range constraint. This is identical
438 -- to Constrain_Integer, but for the Ekind of the resulting subtype.
440 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id);
441 -- Constrain a floating point type with either a digits constraint
442 -- and/or a range constraint, building a E_Floating_Point_Subtype.
444 procedure Constrain_Index
445 (Index : Node_Id;
446 S : Node_Id;
447 Related_Nod : Node_Id;
448 Related_Id : Entity_Id;
449 Suffix : Character;
450 Suffix_Index : Nat);
451 -- Process an index constraint S in a constrained array declaration. The
452 -- constraint can be a subtype name, or a range with or without an explicit
453 -- subtype mark. The index is the corresponding index of the unconstrained
454 -- array. The Related_Id and Suffix parameters are used to build the
455 -- associated Implicit type name.
457 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id);
458 -- Build subtype of a signed or modular integer type
460 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id);
461 -- Constrain an ordinary fixed point type with a range constraint, and
462 -- build an E_Ordinary_Fixed_Point_Subtype entity.
464 procedure Copy_And_Swap (Priv, Full : Entity_Id);
465 -- Copy the Priv entity into the entity of its full declaration then swap
466 -- the two entities in such a manner that the former private type is now
467 -- seen as a full type.
469 procedure Decimal_Fixed_Point_Type_Declaration
470 (T : Entity_Id;
471 Def : Node_Id);
472 -- Create a new decimal fixed point type, and apply the constraint to
473 -- obtain a subtype of this new type.
475 procedure Complete_Private_Subtype
476 (Priv : Entity_Id;
477 Full : Entity_Id;
478 Full_Base : Entity_Id;
479 Related_Nod : Node_Id);
480 -- Complete the implicit full view of a private subtype by setting the
481 -- appropriate semantic fields. If the full view of the parent is a record
482 -- type, build constrained components of subtype.
484 procedure Derive_Progenitor_Subprograms
485 (Parent_Type : Entity_Id;
486 Tagged_Type : Entity_Id);
487 -- Ada 2005 (AI-251): To complete type derivation, collect the primitive
488 -- operations of progenitors of Tagged_Type, and replace the subsidiary
489 -- subtypes with Tagged_Type, to build the specs of the inherited interface
490 -- primitives. The derived primitives are aliased to those of the
491 -- interface. This routine takes care also of transferring to the full view
492 -- subprograms associated with the partial view of Tagged_Type that cover
493 -- interface primitives.
495 procedure Derived_Standard_Character
496 (N : Node_Id;
497 Parent_Type : Entity_Id;
498 Derived_Type : Entity_Id);
499 -- Subsidiary procedure to Build_Derived_Enumeration_Type which handles
500 -- derivations from types Standard.Character and Standard.Wide_Character.
502 procedure Derived_Type_Declaration
503 (T : Entity_Id;
504 N : Node_Id;
505 Is_Completion : Boolean);
506 -- Process a derived type declaration. Build_Derived_Type is invoked
507 -- to process the actual derived type definition. Parameters N and
508 -- Is_Completion have the same meaning as in Build_Derived_Type.
509 -- T is the N_Defining_Identifier for the entity defined in the
510 -- N_Full_Type_Declaration node N, that is T is the derived type.
512 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id);
513 -- Insert each literal in symbol table, as an overloadable identifier. Each
514 -- enumeration type is mapped into a sequence of integers, and each literal
515 -- is defined as a constant with integer value. If any of the literals are
516 -- character literals, the type is a character type, which means that
517 -- strings are legal aggregates for arrays of components of the type.
519 function Expand_To_Stored_Constraint
520 (Typ : Entity_Id;
521 Constraint : Elist_Id) return Elist_Id;
522 -- Given a constraint (i.e. a list of expressions) on the discriminants of
523 -- Typ, expand it into a constraint on the stored discriminants and return
524 -- the new list of expressions constraining the stored discriminants.
526 function Find_Type_Of_Object
527 (Obj_Def : Node_Id;
528 Related_Nod : Node_Id) return Entity_Id;
529 -- Get type entity for object referenced by Obj_Def, attaching the
530 -- implicit types generated to Related_Nod
532 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id);
533 -- Create a new float and apply the constraint to obtain subtype of it
535 function Has_Range_Constraint (N : Node_Id) return Boolean;
536 -- Given an N_Subtype_Indication node N, return True if a range constraint
537 -- is present, either directly, or as part of a digits or delta constraint.
538 -- In addition, a digits constraint in the decimal case returns True, since
539 -- it establishes a default range if no explicit range is present.
541 function Inherit_Components
542 (N : Node_Id;
543 Parent_Base : Entity_Id;
544 Derived_Base : Entity_Id;
545 Is_Tagged : Boolean;
546 Inherit_Discr : Boolean;
547 Discs : Elist_Id) return Elist_Id;
548 -- Called from Build_Derived_Record_Type to inherit the components of
549 -- Parent_Base (a base type) into the Derived_Base (the derived base type).
550 -- For more information on derived types and component inheritance please
551 -- consult the comment above the body of Build_Derived_Record_Type.
553 -- N is the original derived type declaration
555 -- Is_Tagged is set if we are dealing with tagged types
557 -- If Inherit_Discr is set, Derived_Base inherits its discriminants from
558 -- Parent_Base, otherwise no discriminants are inherited.
560 -- Discs gives the list of constraints that apply to Parent_Base in the
561 -- derived type declaration. If Discs is set to No_Elist, then we have
562 -- the following situation:
564 -- type Parent (D1..Dn : ..) is [tagged] record ...;
565 -- type Derived is new Parent [with ...];
567 -- which gets treated as
569 -- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...];
571 -- For untagged types the returned value is an association list. The list
572 -- starts from the association (Parent_Base => Derived_Base), and then it
573 -- contains a sequence of the associations of the form
575 -- (Old_Component => New_Component),
577 -- where Old_Component is the Entity_Id of a component in Parent_Base and
578 -- New_Component is the Entity_Id of the corresponding component in
579 -- Derived_Base. For untagged records, this association list is needed when
580 -- copying the record declaration for the derived base. In the tagged case
581 -- the value returned is irrelevant.
583 function Is_Valid_Constraint_Kind
584 (T_Kind : Type_Kind;
585 Constraint_Kind : Node_Kind) return Boolean;
586 -- Returns True if it is legal to apply the given kind of constraint to the
587 -- given kind of type (index constraint to an array type, for example).
589 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id);
590 -- Create new modular type. Verify that modulus is in bounds
592 procedure New_Concatenation_Op (Typ : Entity_Id);
593 -- Create an abbreviated declaration for an operator in order to
594 -- materialize concatenation on array types.
596 procedure Ordinary_Fixed_Point_Type_Declaration
597 (T : Entity_Id;
598 Def : Node_Id);
599 -- Create a new ordinary fixed point type, and apply the constraint to
600 -- obtain subtype of it.
602 procedure Prepare_Private_Subtype_Completion
603 (Id : Entity_Id;
604 Related_Nod : Node_Id);
605 -- Id is a subtype of some private type. Creates the full declaration
606 -- associated with Id whenever possible, i.e. when the full declaration
607 -- of the base type is already known. Records each subtype into
608 -- Private_Dependents of the base type.
610 procedure Process_Incomplete_Dependents
611 (N : Node_Id;
612 Full_T : Entity_Id;
613 Inc_T : Entity_Id);
614 -- Process all entities that depend on an incomplete type. There include
615 -- subtypes, subprogram types that mention the incomplete type in their
616 -- profiles, and subprogram with access parameters that designate the
617 -- incomplete type.
619 -- Inc_T is the defining identifier of an incomplete type declaration, its
620 -- Ekind is E_Incomplete_Type.
622 -- N is the corresponding N_Full_Type_Declaration for Inc_T.
624 -- Full_T is N's defining identifier.
626 -- Subtypes of incomplete types with discriminants are completed when the
627 -- parent type is. This is simpler than private subtypes, because they can
628 -- only appear in the same scope, and there is no need to exchange views.
629 -- Similarly, access_to_subprogram types may have a parameter or a return
630 -- type that is an incomplete type, and that must be replaced with the
631 -- full type.
633 -- If the full type is tagged, subprogram with access parameters that
634 -- designated the incomplete may be primitive operations of the full type,
635 -- and have to be processed accordingly.
637 procedure Process_Real_Range_Specification (Def : Node_Id);
638 -- Given the type definition for a real type, this procedure processes and
639 -- checks the real range specification of this type definition if one is
640 -- present. If errors are found, error messages are posted, and the
641 -- Real_Range_Specification of Def is reset to Empty.
643 procedure Record_Type_Declaration
644 (T : Entity_Id;
645 N : Node_Id;
646 Prev : Entity_Id);
647 -- Process a record type declaration (for both untagged and tagged
648 -- records). Parameters T and N are exactly like in procedure
649 -- Derived_Type_Declaration, except that no flag Is_Completion is needed
650 -- for this routine. If this is the completion of an incomplete type
651 -- declaration, Prev is the entity of the incomplete declaration, used for
652 -- cross-referencing. Otherwise Prev = T.
654 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id);
655 -- This routine is used to process the actual record type definition (both
656 -- for untagged and tagged records). Def is a record type definition node.
657 -- This procedure analyzes the components in this record type definition.
658 -- Prev_T is the entity for the enclosing record type. It is provided so
659 -- that its Has_Task flag can be set if any of the component have Has_Task
660 -- set. If the declaration is the completion of an incomplete type
661 -- declaration, Prev_T is the original incomplete type, whose full view is
662 -- the record type.
664 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id);
665 -- Subsidiary to Build_Derived_Record_Type. For untagged records, we
666 -- build a copy of the declaration tree of the parent, and we create
667 -- independently the list of components for the derived type. Semantic
668 -- information uses the component entities, but record representation
669 -- clauses are validated on the declaration tree. This procedure replaces
670 -- discriminants and components in the declaration with those that have
671 -- been created by Inherit_Components.
673 procedure Set_Fixed_Range
674 (E : Entity_Id;
675 Loc : Source_Ptr;
676 Lo : Ureal;
677 Hi : Ureal);
678 -- Build a range node with the given bounds and set it as the Scalar_Range
679 -- of the given fixed-point type entity. Loc is the source location used
680 -- for the constructed range. See body for further details.
682 procedure Set_Scalar_Range_For_Subtype
683 (Def_Id : Entity_Id;
684 R : Node_Id;
685 Subt : Entity_Id);
686 -- This routine is used to set the scalar range field for a subtype given
687 -- Def_Id, the entity for the subtype, and R, the range expression for the
688 -- scalar range. Subt provides the parent subtype to be used to analyze,
689 -- resolve, and check the given range.
691 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id);
692 -- Create a new signed integer entity, and apply the constraint to obtain
693 -- the required first named subtype of this type.
695 procedure Set_Stored_Constraint_From_Discriminant_Constraint
696 (E : Entity_Id);
697 -- E is some record type. This routine computes E's Stored_Constraint
698 -- from its Discriminant_Constraint.
700 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id);
701 -- Check that an entity in a list of progenitors is an interface,
702 -- emit error otherwise.
704 -----------------------
705 -- Access_Definition --
706 -----------------------
708 function Access_Definition
709 (Related_Nod : Node_Id;
710 N : Node_Id) return Entity_Id
712 Anon_Type : Entity_Id;
713 Anon_Scope : Entity_Id;
714 Desig_Type : Entity_Id;
715 Enclosing_Prot_Type : Entity_Id := Empty;
717 begin
718 Check_SPARK_Restriction ("access type is not allowed", N);
720 if Is_Entry (Current_Scope)
721 and then Is_Task_Type (Etype (Scope (Current_Scope)))
722 then
723 Error_Msg_N ("task entries cannot have access parameters", N);
724 return Empty;
725 end if;
727 -- Ada 2005: for an object declaration the corresponding anonymous
728 -- type is declared in the current scope.
730 -- If the access definition is the return type of another access to
731 -- function, scope is the current one, because it is the one of the
732 -- current type declaration, except for the pathological case below.
734 if Nkind_In (Related_Nod, N_Object_Declaration,
735 N_Access_Function_Definition)
736 then
737 Anon_Scope := Current_Scope;
739 -- A pathological case: function returning access functions that
740 -- return access functions, etc. Each anonymous access type created
741 -- is in the enclosing scope of the outermost function.
743 declare
744 Par : Node_Id;
746 begin
747 Par := Related_Nod;
748 while Nkind_In (Par, N_Access_Function_Definition,
749 N_Access_Definition)
750 loop
751 Par := Parent (Par);
752 end loop;
754 if Nkind (Par) = N_Function_Specification then
755 Anon_Scope := Scope (Defining_Entity (Par));
756 end if;
757 end;
759 -- For the anonymous function result case, retrieve the scope of the
760 -- function specification's associated entity rather than using the
761 -- current scope. The current scope will be the function itself if the
762 -- formal part is currently being analyzed, but will be the parent scope
763 -- in the case of a parameterless function, and we always want to use
764 -- the function's parent scope. Finally, if the function is a child
765 -- unit, we must traverse the tree to retrieve the proper entity.
767 elsif Nkind (Related_Nod) = N_Function_Specification
768 and then Nkind (Parent (N)) /= N_Parameter_Specification
769 then
770 -- If the current scope is a protected type, the anonymous access
771 -- is associated with one of the protected operations, and must
772 -- be available in the scope that encloses the protected declaration.
773 -- Otherwise the type is in the scope enclosing the subprogram.
775 -- If the function has formals, The return type of a subprogram
776 -- declaration is analyzed in the scope of the subprogram (see
777 -- Process_Formals) and thus the protected type, if present, is
778 -- the scope of the current function scope.
780 if Ekind (Current_Scope) = E_Protected_Type then
781 Enclosing_Prot_Type := Current_Scope;
783 elsif Ekind (Current_Scope) = E_Function
784 and then Ekind (Scope (Current_Scope)) = E_Protected_Type
785 then
786 Enclosing_Prot_Type := Scope (Current_Scope);
787 end if;
789 if Present (Enclosing_Prot_Type) then
790 Anon_Scope := Scope (Enclosing_Prot_Type);
792 else
793 Anon_Scope := Scope (Defining_Entity (Related_Nod));
794 end if;
796 -- For an access type definition, if the current scope is a child
797 -- unit it is the scope of the type.
799 elsif Is_Compilation_Unit (Current_Scope) then
800 Anon_Scope := Current_Scope;
802 -- For access formals, access components, and access discriminants, the
803 -- scope is that of the enclosing declaration,
805 else
806 Anon_Scope := Scope (Current_Scope);
807 end if;
809 Anon_Type :=
810 Create_Itype
811 (E_Anonymous_Access_Type, Related_Nod, Scope_Id => Anon_Scope);
813 if All_Present (N)
814 and then Ada_Version >= Ada_2005
815 then
816 Error_Msg_N ("ALL is not permitted for anonymous access types", N);
817 end if;
819 -- Ada 2005 (AI-254): In case of anonymous access to subprograms call
820 -- the corresponding semantic routine
822 if Present (Access_To_Subprogram_Definition (N)) then
824 -- Compiler runtime units are compiled in Ada 2005 mode when building
825 -- the runtime library but must also be compilable in Ada 95 mode
826 -- (when bootstrapping the compiler).
828 Check_Compiler_Unit (N);
830 Access_Subprogram_Declaration
831 (T_Name => Anon_Type,
832 T_Def => Access_To_Subprogram_Definition (N));
834 if Ekind (Anon_Type) = E_Access_Protected_Subprogram_Type then
835 Set_Ekind
836 (Anon_Type, E_Anonymous_Access_Protected_Subprogram_Type);
837 else
838 Set_Ekind
839 (Anon_Type, E_Anonymous_Access_Subprogram_Type);
840 end if;
842 Set_Can_Use_Internal_Rep
843 (Anon_Type, not Always_Compatible_Rep_On_Target);
845 -- If the anonymous access is associated with a protected operation,
846 -- create a reference to it after the enclosing protected definition
847 -- because the itype will be used in the subsequent bodies.
849 if Ekind (Current_Scope) = E_Protected_Type then
850 Build_Itype_Reference (Anon_Type, Parent (Current_Scope));
851 end if;
853 return Anon_Type;
854 end if;
856 Find_Type (Subtype_Mark (N));
857 Desig_Type := Entity (Subtype_Mark (N));
859 Set_Directly_Designated_Type (Anon_Type, Desig_Type);
860 Set_Etype (Anon_Type, Anon_Type);
862 -- Make sure the anonymous access type has size and alignment fields
863 -- set, as required by gigi. This is necessary in the case of the
864 -- Task_Body_Procedure.
866 if not Has_Private_Component (Desig_Type) then
867 Layout_Type (Anon_Type);
868 end if;
870 -- Ada 2005 (AI-231): Ada 2005 semantics for anonymous access differs
871 -- from Ada 95 semantics. In Ada 2005, anonymous access must specify if
872 -- the null value is allowed. In Ada 95 the null value is never allowed.
874 if Ada_Version >= Ada_2005 then
875 Set_Can_Never_Be_Null (Anon_Type, Null_Exclusion_Present (N));
876 else
877 Set_Can_Never_Be_Null (Anon_Type, True);
878 end if;
880 -- The anonymous access type is as public as the discriminated type or
881 -- subprogram that defines it. It is imported (for back-end purposes)
882 -- if the designated type is.
884 Set_Is_Public (Anon_Type, Is_Public (Scope (Anon_Type)));
886 -- Ada 2005 (AI-231): Propagate the access-constant attribute
888 Set_Is_Access_Constant (Anon_Type, Constant_Present (N));
890 -- The context is either a subprogram declaration, object declaration,
891 -- or an access discriminant, in a private or a full type declaration.
892 -- In the case of a subprogram, if the designated type is incomplete,
893 -- the operation will be a primitive operation of the full type, to be
894 -- updated subsequently. If the type is imported through a limited_with
895 -- clause, the subprogram is not a primitive operation of the type
896 -- (which is declared elsewhere in some other scope).
898 if Ekind (Desig_Type) = E_Incomplete_Type
899 and then not From_Limited_With (Desig_Type)
900 and then Is_Overloadable (Current_Scope)
901 then
902 Append_Elmt (Current_Scope, Private_Dependents (Desig_Type));
903 Set_Has_Delayed_Freeze (Current_Scope);
904 end if;
906 -- Ada 2005: if the designated type is an interface that may contain
907 -- tasks, create a Master entity for the declaration. This must be done
908 -- before expansion of the full declaration, because the declaration may
909 -- include an expression that is an allocator, whose expansion needs the
910 -- proper Master for the created tasks.
912 if Nkind (Related_Nod) = N_Object_Declaration
913 and then Expander_Active
914 then
915 if Is_Interface (Desig_Type)
916 and then Is_Limited_Record (Desig_Type)
917 then
918 Build_Class_Wide_Master (Anon_Type);
920 -- Similarly, if the type is an anonymous access that designates
921 -- tasks, create a master entity for it in the current context.
923 elsif Has_Task (Desig_Type)
924 and then Comes_From_Source (Related_Nod)
925 then
926 Build_Master_Entity (Defining_Identifier (Related_Nod));
927 Build_Master_Renaming (Anon_Type);
928 end if;
929 end if;
931 -- For a private component of a protected type, it is imperative that
932 -- the back-end elaborate the type immediately after the protected
933 -- declaration, because this type will be used in the declarations
934 -- created for the component within each protected body, so we must
935 -- create an itype reference for it now.
937 if Nkind (Parent (Related_Nod)) = N_Protected_Definition then
938 Build_Itype_Reference (Anon_Type, Parent (Parent (Related_Nod)));
940 -- Similarly, if the access definition is the return result of a
941 -- function, create an itype reference for it because it will be used
942 -- within the function body. For a regular function that is not a
943 -- compilation unit, insert reference after the declaration. For a
944 -- protected operation, insert it after the enclosing protected type
945 -- declaration. In either case, do not create a reference for a type
946 -- obtained through a limited_with clause, because this would introduce
947 -- semantic dependencies.
949 -- Similarly, do not create a reference if the designated type is a
950 -- generic formal, because no use of it will reach the backend.
952 elsif Nkind (Related_Nod) = N_Function_Specification
953 and then not From_Limited_With (Desig_Type)
954 and then not Is_Generic_Type (Desig_Type)
955 then
956 if Present (Enclosing_Prot_Type) then
957 Build_Itype_Reference (Anon_Type, Parent (Enclosing_Prot_Type));
959 elsif Is_List_Member (Parent (Related_Nod))
960 and then Nkind (Parent (N)) /= N_Parameter_Specification
961 then
962 Build_Itype_Reference (Anon_Type, Parent (Related_Nod));
963 end if;
965 -- Finally, create an itype reference for an object declaration of an
966 -- anonymous access type. This is strictly necessary only for deferred
967 -- constants, but in any case will avoid out-of-scope problems in the
968 -- back-end.
970 elsif Nkind (Related_Nod) = N_Object_Declaration then
971 Build_Itype_Reference (Anon_Type, Related_Nod);
972 end if;
974 return Anon_Type;
975 end Access_Definition;
977 -----------------------------------
978 -- Access_Subprogram_Declaration --
979 -----------------------------------
981 procedure Access_Subprogram_Declaration
982 (T_Name : Entity_Id;
983 T_Def : Node_Id)
985 procedure Check_For_Premature_Usage (Def : Node_Id);
986 -- Check that type T_Name is not used, directly or recursively, as a
987 -- parameter or a return type in Def. Def is either a subtype, an
988 -- access_definition, or an access_to_subprogram_definition.
990 -------------------------------
991 -- Check_For_Premature_Usage --
992 -------------------------------
994 procedure Check_For_Premature_Usage (Def : Node_Id) is
995 Param : Node_Id;
997 begin
998 -- Check for a subtype mark
1000 if Nkind (Def) in N_Has_Etype then
1001 if Etype (Def) = T_Name then
1002 Error_Msg_N
1003 ("type& cannot be used before end of its declaration", Def);
1004 end if;
1006 -- If this is not a subtype, then this is an access_definition
1008 elsif Nkind (Def) = N_Access_Definition then
1009 if Present (Access_To_Subprogram_Definition (Def)) then
1010 Check_For_Premature_Usage
1011 (Access_To_Subprogram_Definition (Def));
1012 else
1013 Check_For_Premature_Usage (Subtype_Mark (Def));
1014 end if;
1016 -- The only cases left are N_Access_Function_Definition and
1017 -- N_Access_Procedure_Definition.
1019 else
1020 if Present (Parameter_Specifications (Def)) then
1021 Param := First (Parameter_Specifications (Def));
1022 while Present (Param) loop
1023 Check_For_Premature_Usage (Parameter_Type (Param));
1024 Param := Next (Param);
1025 end loop;
1026 end if;
1028 if Nkind (Def) = N_Access_Function_Definition then
1029 Check_For_Premature_Usage (Result_Definition (Def));
1030 end if;
1031 end if;
1032 end Check_For_Premature_Usage;
1034 -- Local variables
1036 Formals : constant List_Id := Parameter_Specifications (T_Def);
1037 Formal : Entity_Id;
1038 D_Ityp : Node_Id;
1039 Desig_Type : constant Entity_Id :=
1040 Create_Itype (E_Subprogram_Type, Parent (T_Def));
1042 -- Start of processing for Access_Subprogram_Declaration
1044 begin
1045 Check_SPARK_Restriction ("access type is not allowed", T_Def);
1047 -- Associate the Itype node with the inner full-type declaration or
1048 -- subprogram spec or entry body. This is required to handle nested
1049 -- anonymous declarations. For example:
1051 -- procedure P
1052 -- (X : access procedure
1053 -- (Y : access procedure
1054 -- (Z : access T)))
1056 D_Ityp := Associated_Node_For_Itype (Desig_Type);
1057 while not (Nkind_In (D_Ityp, N_Full_Type_Declaration,
1058 N_Private_Type_Declaration,
1059 N_Private_Extension_Declaration,
1060 N_Procedure_Specification,
1061 N_Function_Specification,
1062 N_Entry_Body)
1064 or else
1065 Nkind_In (D_Ityp, N_Object_Declaration,
1066 N_Object_Renaming_Declaration,
1067 N_Formal_Object_Declaration,
1068 N_Formal_Type_Declaration,
1069 N_Task_Type_Declaration,
1070 N_Protected_Type_Declaration))
1071 loop
1072 D_Ityp := Parent (D_Ityp);
1073 pragma Assert (D_Ityp /= Empty);
1074 end loop;
1076 Set_Associated_Node_For_Itype (Desig_Type, D_Ityp);
1078 if Nkind_In (D_Ityp, N_Procedure_Specification,
1079 N_Function_Specification)
1080 then
1081 Set_Scope (Desig_Type, Scope (Defining_Entity (D_Ityp)));
1083 elsif Nkind_In (D_Ityp, N_Full_Type_Declaration,
1084 N_Object_Declaration,
1085 N_Object_Renaming_Declaration,
1086 N_Formal_Type_Declaration)
1087 then
1088 Set_Scope (Desig_Type, Scope (Defining_Identifier (D_Ityp)));
1089 end if;
1091 if Nkind (T_Def) = N_Access_Function_Definition then
1092 if Nkind (Result_Definition (T_Def)) = N_Access_Definition then
1093 declare
1094 Acc : constant Node_Id := Result_Definition (T_Def);
1096 begin
1097 if Present (Access_To_Subprogram_Definition (Acc))
1098 and then
1099 Protected_Present (Access_To_Subprogram_Definition (Acc))
1100 then
1101 Set_Etype
1102 (Desig_Type,
1103 Replace_Anonymous_Access_To_Protected_Subprogram
1104 (T_Def));
1106 else
1107 Set_Etype
1108 (Desig_Type,
1109 Access_Definition (T_Def, Result_Definition (T_Def)));
1110 end if;
1111 end;
1113 else
1114 Analyze (Result_Definition (T_Def));
1116 declare
1117 Typ : constant Entity_Id := Entity (Result_Definition (T_Def));
1119 begin
1120 -- If a null exclusion is imposed on the result type, then
1121 -- create a null-excluding itype (an access subtype) and use
1122 -- it as the function's Etype.
1124 if Is_Access_Type (Typ)
1125 and then Null_Exclusion_In_Return_Present (T_Def)
1126 then
1127 Set_Etype (Desig_Type,
1128 Create_Null_Excluding_Itype
1129 (T => Typ,
1130 Related_Nod => T_Def,
1131 Scope_Id => Current_Scope));
1133 else
1134 if From_Limited_With (Typ) then
1136 -- AI05-151: Incomplete types are allowed in all basic
1137 -- declarations, including access to subprograms.
1139 if Ada_Version >= Ada_2012 then
1140 null;
1142 else
1143 Error_Msg_NE
1144 ("illegal use of incomplete type&",
1145 Result_Definition (T_Def), Typ);
1146 end if;
1148 elsif Ekind (Current_Scope) = E_Package
1149 and then In_Private_Part (Current_Scope)
1150 then
1151 if Ekind (Typ) = E_Incomplete_Type then
1152 Append_Elmt (Desig_Type, Private_Dependents (Typ));
1154 elsif Is_Class_Wide_Type (Typ)
1155 and then Ekind (Etype (Typ)) = E_Incomplete_Type
1156 then
1157 Append_Elmt
1158 (Desig_Type, Private_Dependents (Etype (Typ)));
1159 end if;
1160 end if;
1162 Set_Etype (Desig_Type, Typ);
1163 end if;
1164 end;
1165 end if;
1167 if not (Is_Type (Etype (Desig_Type))) then
1168 Error_Msg_N
1169 ("expect type in function specification",
1170 Result_Definition (T_Def));
1171 end if;
1173 else
1174 Set_Etype (Desig_Type, Standard_Void_Type);
1175 end if;
1177 if Present (Formals) then
1178 Push_Scope (Desig_Type);
1180 -- A bit of a kludge here. These kludges will be removed when Itypes
1181 -- have proper parent pointers to their declarations???
1183 -- Kludge 1) Link defining_identifier of formals. Required by
1184 -- First_Formal to provide its functionality.
1186 declare
1187 F : Node_Id;
1189 begin
1190 F := First (Formals);
1192 -- In ASIS mode, the access_to_subprogram may be analyzed twice,
1193 -- when it is part of an unconstrained type and subtype expansion
1194 -- is disabled. To avoid back-end problems with shared profiles,
1195 -- use previous subprogram type as the designated type, and then
1196 -- remove scope added above.
1198 if ASIS_Mode
1199 and then Present (Scope (Defining_Identifier (F)))
1200 then
1201 Set_Etype (T_Name, T_Name);
1202 Init_Size_Align (T_Name);
1203 Set_Directly_Designated_Type (T_Name,
1204 Scope (Defining_Identifier (F)));
1205 End_Scope;
1206 return;
1207 end if;
1209 while Present (F) loop
1210 if No (Parent (Defining_Identifier (F))) then
1211 Set_Parent (Defining_Identifier (F), F);
1212 end if;
1214 Next (F);
1215 end loop;
1216 end;
1218 Process_Formals (Formals, Parent (T_Def));
1220 -- Kludge 2) End_Scope requires that the parent pointer be set to
1221 -- something reasonable, but Itypes don't have parent pointers. So
1222 -- we set it and then unset it ???
1224 Set_Parent (Desig_Type, T_Name);
1225 End_Scope;
1226 Set_Parent (Desig_Type, Empty);
1227 end if;
1229 -- Check for premature usage of the type being defined
1231 Check_For_Premature_Usage (T_Def);
1233 -- The return type and/or any parameter type may be incomplete. Mark the
1234 -- subprogram_type as depending on the incomplete type, so that it can
1235 -- be updated when the full type declaration is seen. This only applies
1236 -- to incomplete types declared in some enclosing scope, not to limited
1237 -- views from other packages.
1238 -- Prior to Ada 2012, access to functions can only have in_parameters.
1240 if Present (Formals) then
1241 Formal := First_Formal (Desig_Type);
1242 while Present (Formal) loop
1243 if Ekind (Formal) /= E_In_Parameter
1244 and then Nkind (T_Def) = N_Access_Function_Definition
1245 and then Ada_Version < Ada_2012
1246 then
1247 Error_Msg_N ("functions can only have IN parameters", Formal);
1248 end if;
1250 if Ekind (Etype (Formal)) = E_Incomplete_Type
1251 and then In_Open_Scopes (Scope (Etype (Formal)))
1252 then
1253 Append_Elmt (Desig_Type, Private_Dependents (Etype (Formal)));
1254 Set_Has_Delayed_Freeze (Desig_Type);
1255 end if;
1257 Next_Formal (Formal);
1258 end loop;
1259 end if;
1261 -- Check whether an indirect call without actuals may be possible. This
1262 -- is used when resolving calls whose result is then indexed.
1264 May_Need_Actuals (Desig_Type);
1266 -- If the return type is incomplete, this is legal as long as the type
1267 -- is declared in the current scope and will be completed in it (rather
1268 -- than being part of limited view).
1270 if Ekind (Etype (Desig_Type)) = E_Incomplete_Type
1271 and then not Has_Delayed_Freeze (Desig_Type)
1272 and then In_Open_Scopes (Scope (Etype (Desig_Type)))
1273 then
1274 Append_Elmt (Desig_Type, Private_Dependents (Etype (Desig_Type)));
1275 Set_Has_Delayed_Freeze (Desig_Type);
1276 end if;
1278 Check_Delayed_Subprogram (Desig_Type);
1280 if Protected_Present (T_Def) then
1281 Set_Ekind (T_Name, E_Access_Protected_Subprogram_Type);
1282 Set_Convention (Desig_Type, Convention_Protected);
1283 else
1284 Set_Ekind (T_Name, E_Access_Subprogram_Type);
1285 end if;
1287 Set_Can_Use_Internal_Rep (T_Name, not Always_Compatible_Rep_On_Target);
1289 Set_Etype (T_Name, T_Name);
1290 Init_Size_Align (T_Name);
1291 Set_Directly_Designated_Type (T_Name, Desig_Type);
1293 Generate_Reference_To_Formals (T_Name);
1295 -- Ada 2005 (AI-231): Propagate the null-excluding attribute
1297 Set_Can_Never_Be_Null (T_Name, Null_Exclusion_Present (T_Def));
1299 Check_Restriction (No_Access_Subprograms, T_Def);
1300 end Access_Subprogram_Declaration;
1302 ----------------------------
1303 -- Access_Type_Declaration --
1304 ----------------------------
1306 procedure Access_Type_Declaration (T : Entity_Id; Def : Node_Id) is
1307 P : constant Node_Id := Parent (Def);
1308 S : constant Node_Id := Subtype_Indication (Def);
1310 Full_Desig : Entity_Id;
1312 begin
1313 Check_SPARK_Restriction ("access type is not allowed", Def);
1315 -- Check for permissible use of incomplete type
1317 if Nkind (S) /= N_Subtype_Indication then
1318 Analyze (S);
1320 if Ekind (Root_Type (Entity (S))) = E_Incomplete_Type then
1321 Set_Directly_Designated_Type (T, Entity (S));
1322 else
1323 Set_Directly_Designated_Type (T,
1324 Process_Subtype (S, P, T, 'P'));
1325 end if;
1327 else
1328 Set_Directly_Designated_Type (T,
1329 Process_Subtype (S, P, T, 'P'));
1330 end if;
1332 if All_Present (Def) or Constant_Present (Def) then
1333 Set_Ekind (T, E_General_Access_Type);
1334 else
1335 Set_Ekind (T, E_Access_Type);
1336 end if;
1338 Full_Desig := Designated_Type (T);
1340 if Base_Type (Full_Desig) = T then
1341 Error_Msg_N ("access type cannot designate itself", S);
1343 -- In Ada 2005, the type may have a limited view through some unit in
1344 -- its own context, allowing the following circularity that cannot be
1345 -- detected earlier
1347 elsif Is_Class_Wide_Type (Full_Desig)
1348 and then Etype (Full_Desig) = T
1349 then
1350 Error_Msg_N
1351 ("access type cannot designate its own classwide type", S);
1353 -- Clean up indication of tagged status to prevent cascaded errors
1355 Set_Is_Tagged_Type (T, False);
1356 end if;
1358 Set_Etype (T, T);
1360 -- If the type has appeared already in a with_type clause, it is frozen
1361 -- and the pointer size is already set. Else, initialize.
1363 if not From_Limited_With (T) then
1364 Init_Size_Align (T);
1365 end if;
1367 -- Note that Has_Task is always false, since the access type itself
1368 -- is not a task type. See Einfo for more description on this point.
1369 -- Exactly the same consideration applies to Has_Controlled_Component.
1371 Set_Has_Task (T, False);
1372 Set_Has_Controlled_Component (T, False);
1374 -- Initialize field Finalization_Master explicitly to Empty, to avoid
1375 -- problems where an incomplete view of this entity has been previously
1376 -- established by a limited with and an overlaid version of this field
1377 -- (Stored_Constraint) was initialized for the incomplete view.
1379 -- This reset is performed in most cases except where the access type
1380 -- has been created for the purposes of allocating or deallocating a
1381 -- build-in-place object. Such access types have explicitly set pools
1382 -- and finalization masters.
1384 if No (Associated_Storage_Pool (T)) then
1385 Set_Finalization_Master (T, Empty);
1386 end if;
1388 -- Ada 2005 (AI-231): Propagate the null-excluding and access-constant
1389 -- attributes
1391 Set_Can_Never_Be_Null (T, Null_Exclusion_Present (Def));
1392 Set_Is_Access_Constant (T, Constant_Present (Def));
1393 end Access_Type_Declaration;
1395 ----------------------------------
1396 -- Add_Interface_Tag_Components --
1397 ----------------------------------
1399 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id) is
1400 Loc : constant Source_Ptr := Sloc (N);
1401 L : List_Id;
1402 Last_Tag : Node_Id;
1404 procedure Add_Tag (Iface : Entity_Id);
1405 -- Add tag for one of the progenitor interfaces
1407 -------------
1408 -- Add_Tag --
1409 -------------
1411 procedure Add_Tag (Iface : Entity_Id) is
1412 Decl : Node_Id;
1413 Def : Node_Id;
1414 Tag : Entity_Id;
1415 Offset : Entity_Id;
1417 begin
1418 pragma Assert (Is_Tagged_Type (Iface) and then Is_Interface (Iface));
1420 -- This is a reasonable place to propagate predicates
1422 if Has_Predicates (Iface) then
1423 Set_Has_Predicates (Typ);
1424 end if;
1426 Def :=
1427 Make_Component_Definition (Loc,
1428 Aliased_Present => True,
1429 Subtype_Indication =>
1430 New_Occurrence_Of (RTE (RE_Interface_Tag), Loc));
1432 Tag := Make_Temporary (Loc, 'V');
1434 Decl :=
1435 Make_Component_Declaration (Loc,
1436 Defining_Identifier => Tag,
1437 Component_Definition => Def);
1439 Analyze_Component_Declaration (Decl);
1441 Set_Analyzed (Decl);
1442 Set_Ekind (Tag, E_Component);
1443 Set_Is_Tag (Tag);
1444 Set_Is_Aliased (Tag);
1445 Set_Related_Type (Tag, Iface);
1446 Init_Component_Location (Tag);
1448 pragma Assert (Is_Frozen (Iface));
1450 Set_DT_Entry_Count (Tag,
1451 DT_Entry_Count (First_Entity (Iface)));
1453 if No (Last_Tag) then
1454 Prepend (Decl, L);
1455 else
1456 Insert_After (Last_Tag, Decl);
1457 end if;
1459 Last_Tag := Decl;
1461 -- If the ancestor has discriminants we need to give special support
1462 -- to store the offset_to_top value of the secondary dispatch tables.
1463 -- For this purpose we add a supplementary component just after the
1464 -- field that contains the tag associated with each secondary DT.
1466 if Typ /= Etype (Typ) and then Has_Discriminants (Etype (Typ)) then
1467 Def :=
1468 Make_Component_Definition (Loc,
1469 Subtype_Indication =>
1470 New_Occurrence_Of (RTE (RE_Storage_Offset), Loc));
1472 Offset := Make_Temporary (Loc, 'V');
1474 Decl :=
1475 Make_Component_Declaration (Loc,
1476 Defining_Identifier => Offset,
1477 Component_Definition => Def);
1479 Analyze_Component_Declaration (Decl);
1481 Set_Analyzed (Decl);
1482 Set_Ekind (Offset, E_Component);
1483 Set_Is_Aliased (Offset);
1484 Set_Related_Type (Offset, Iface);
1485 Init_Component_Location (Offset);
1486 Insert_After (Last_Tag, Decl);
1487 Last_Tag := Decl;
1488 end if;
1489 end Add_Tag;
1491 -- Local variables
1493 Elmt : Elmt_Id;
1494 Ext : Node_Id;
1495 Comp : Node_Id;
1497 -- Start of processing for Add_Interface_Tag_Components
1499 begin
1500 if not RTE_Available (RE_Interface_Tag) then
1501 Error_Msg
1502 ("(Ada 2005) interface types not supported by this run-time!",
1503 Sloc (N));
1504 return;
1505 end if;
1507 if Ekind (Typ) /= E_Record_Type
1508 or else (Is_Concurrent_Record_Type (Typ)
1509 and then Is_Empty_List (Abstract_Interface_List (Typ)))
1510 or else (not Is_Concurrent_Record_Type (Typ)
1511 and then No (Interfaces (Typ))
1512 and then Is_Empty_Elmt_List (Interfaces (Typ)))
1513 then
1514 return;
1515 end if;
1517 -- Find the current last tag
1519 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1520 Ext := Record_Extension_Part (Type_Definition (N));
1521 else
1522 pragma Assert (Nkind (Type_Definition (N)) = N_Record_Definition);
1523 Ext := Type_Definition (N);
1524 end if;
1526 Last_Tag := Empty;
1528 if not (Present (Component_List (Ext))) then
1529 Set_Null_Present (Ext, False);
1530 L := New_List;
1531 Set_Component_List (Ext,
1532 Make_Component_List (Loc,
1533 Component_Items => L,
1534 Null_Present => False));
1535 else
1536 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1537 L := Component_Items
1538 (Component_List
1539 (Record_Extension_Part
1540 (Type_Definition (N))));
1541 else
1542 L := Component_Items
1543 (Component_List
1544 (Type_Definition (N)));
1545 end if;
1547 -- Find the last tag component
1549 Comp := First (L);
1550 while Present (Comp) loop
1551 if Nkind (Comp) = N_Component_Declaration
1552 and then Is_Tag (Defining_Identifier (Comp))
1553 then
1554 Last_Tag := Comp;
1555 end if;
1557 Next (Comp);
1558 end loop;
1559 end if;
1561 -- At this point L references the list of components and Last_Tag
1562 -- references the current last tag (if any). Now we add the tag
1563 -- corresponding with all the interfaces that are not implemented
1564 -- by the parent.
1566 if Present (Interfaces (Typ)) then
1567 Elmt := First_Elmt (Interfaces (Typ));
1568 while Present (Elmt) loop
1569 Add_Tag (Node (Elmt));
1570 Next_Elmt (Elmt);
1571 end loop;
1572 end if;
1573 end Add_Interface_Tag_Components;
1575 -------------------------------------
1576 -- Add_Internal_Interface_Entities --
1577 -------------------------------------
1579 procedure Add_Internal_Interface_Entities (Tagged_Type : Entity_Id) is
1580 Elmt : Elmt_Id;
1581 Iface : Entity_Id;
1582 Iface_Elmt : Elmt_Id;
1583 Iface_Prim : Entity_Id;
1584 Ifaces_List : Elist_Id;
1585 New_Subp : Entity_Id := Empty;
1586 Prim : Entity_Id;
1587 Restore_Scope : Boolean := False;
1589 begin
1590 pragma Assert (Ada_Version >= Ada_2005
1591 and then Is_Record_Type (Tagged_Type)
1592 and then Is_Tagged_Type (Tagged_Type)
1593 and then Has_Interfaces (Tagged_Type)
1594 and then not Is_Interface (Tagged_Type));
1596 -- Ensure that the internal entities are added to the scope of the type
1598 if Scope (Tagged_Type) /= Current_Scope then
1599 Push_Scope (Scope (Tagged_Type));
1600 Restore_Scope := True;
1601 end if;
1603 Collect_Interfaces (Tagged_Type, Ifaces_List);
1605 Iface_Elmt := First_Elmt (Ifaces_List);
1606 while Present (Iface_Elmt) loop
1607 Iface := Node (Iface_Elmt);
1609 -- Originally we excluded here from this processing interfaces that
1610 -- are parents of Tagged_Type because their primitives are located
1611 -- in the primary dispatch table (and hence no auxiliary internal
1612 -- entities are required to handle secondary dispatch tables in such
1613 -- case). However, these auxiliary entities are also required to
1614 -- handle derivations of interfaces in formals of generics (see
1615 -- Derive_Subprograms).
1617 Elmt := First_Elmt (Primitive_Operations (Iface));
1618 while Present (Elmt) loop
1619 Iface_Prim := Node (Elmt);
1621 if not Is_Predefined_Dispatching_Operation (Iface_Prim) then
1622 Prim :=
1623 Find_Primitive_Covering_Interface
1624 (Tagged_Type => Tagged_Type,
1625 Iface_Prim => Iface_Prim);
1627 if No (Prim) and then Serious_Errors_Detected > 0 then
1628 goto Continue;
1629 end if;
1631 pragma Assert (Present (Prim));
1633 -- Ada 2012 (AI05-0197): If the name of the covering primitive
1634 -- differs from the name of the interface primitive then it is
1635 -- a private primitive inherited from a parent type. In such
1636 -- case, given that Tagged_Type covers the interface, the
1637 -- inherited private primitive becomes visible. For such
1638 -- purpose we add a new entity that renames the inherited
1639 -- private primitive.
1641 if Chars (Prim) /= Chars (Iface_Prim) then
1642 pragma Assert (Has_Suffix (Prim, 'P'));
1643 Derive_Subprogram
1644 (New_Subp => New_Subp,
1645 Parent_Subp => Iface_Prim,
1646 Derived_Type => Tagged_Type,
1647 Parent_Type => Iface);
1648 Set_Alias (New_Subp, Prim);
1649 Set_Is_Abstract_Subprogram
1650 (New_Subp, Is_Abstract_Subprogram (Prim));
1651 end if;
1653 Derive_Subprogram
1654 (New_Subp => New_Subp,
1655 Parent_Subp => Iface_Prim,
1656 Derived_Type => Tagged_Type,
1657 Parent_Type => Iface);
1659 -- Ada 2005 (AI-251): Decorate internal entity Iface_Subp
1660 -- associated with interface types. These entities are
1661 -- only registered in the list of primitives of its
1662 -- corresponding tagged type because they are only used
1663 -- to fill the contents of the secondary dispatch tables.
1664 -- Therefore they are removed from the homonym chains.
1666 Set_Is_Hidden (New_Subp);
1667 Set_Is_Internal (New_Subp);
1668 Set_Alias (New_Subp, Prim);
1669 Set_Is_Abstract_Subprogram
1670 (New_Subp, Is_Abstract_Subprogram (Prim));
1671 Set_Interface_Alias (New_Subp, Iface_Prim);
1673 -- If the returned type is an interface then propagate it to
1674 -- the returned type. Needed by the thunk to generate the code
1675 -- which displaces "this" to reference the corresponding
1676 -- secondary dispatch table in the returned object.
1678 if Is_Interface (Etype (Iface_Prim)) then
1679 Set_Etype (New_Subp, Etype (Iface_Prim));
1680 end if;
1682 -- Internal entities associated with interface types are
1683 -- only registered in the list of primitives of the tagged
1684 -- type. They are only used to fill the contents of the
1685 -- secondary dispatch tables. Therefore they are not needed
1686 -- in the homonym chains.
1688 Remove_Homonym (New_Subp);
1690 -- Hidden entities associated with interfaces must have set
1691 -- the Has_Delay_Freeze attribute to ensure that, in case of
1692 -- locally defined tagged types (or compiling with static
1693 -- dispatch tables generation disabled) the corresponding
1694 -- entry of the secondary dispatch table is filled when
1695 -- such an entity is frozen.
1697 Set_Has_Delayed_Freeze (New_Subp);
1698 end if;
1700 <<Continue>>
1701 Next_Elmt (Elmt);
1702 end loop;
1704 Next_Elmt (Iface_Elmt);
1705 end loop;
1707 if Restore_Scope then
1708 Pop_Scope;
1709 end if;
1710 end Add_Internal_Interface_Entities;
1712 -----------------------------------
1713 -- Analyze_Component_Declaration --
1714 -----------------------------------
1716 procedure Analyze_Component_Declaration (N : Node_Id) is
1717 Id : constant Entity_Id := Defining_Identifier (N);
1718 E : constant Node_Id := Expression (N);
1719 Typ : constant Node_Id :=
1720 Subtype_Indication (Component_Definition (N));
1721 T : Entity_Id;
1722 P : Entity_Id;
1724 function Contains_POC (Constr : Node_Id) return Boolean;
1725 -- Determines whether a constraint uses the discriminant of a record
1726 -- type thus becoming a per-object constraint (POC).
1728 function Is_Known_Limited (Typ : Entity_Id) return Boolean;
1729 -- Typ is the type of the current component, check whether this type is
1730 -- a limited type. Used to validate declaration against that of
1731 -- enclosing record.
1733 ------------------
1734 -- Contains_POC --
1735 ------------------
1737 function Contains_POC (Constr : Node_Id) return Boolean is
1738 begin
1739 -- Prevent cascaded errors
1741 if Error_Posted (Constr) then
1742 return False;
1743 end if;
1745 case Nkind (Constr) is
1746 when N_Attribute_Reference =>
1747 return
1748 Attribute_Name (Constr) = Name_Access
1749 and then Prefix (Constr) = Scope (Entity (Prefix (Constr)));
1751 when N_Discriminant_Association =>
1752 return Denotes_Discriminant (Expression (Constr));
1754 when N_Identifier =>
1755 return Denotes_Discriminant (Constr);
1757 when N_Index_Or_Discriminant_Constraint =>
1758 declare
1759 IDC : Node_Id;
1761 begin
1762 IDC := First (Constraints (Constr));
1763 while Present (IDC) loop
1765 -- One per-object constraint is sufficient
1767 if Contains_POC (IDC) then
1768 return True;
1769 end if;
1771 Next (IDC);
1772 end loop;
1774 return False;
1775 end;
1777 when N_Range =>
1778 return Denotes_Discriminant (Low_Bound (Constr))
1779 or else
1780 Denotes_Discriminant (High_Bound (Constr));
1782 when N_Range_Constraint =>
1783 return Denotes_Discriminant (Range_Expression (Constr));
1785 when others =>
1786 return False;
1788 end case;
1789 end Contains_POC;
1791 ----------------------
1792 -- Is_Known_Limited --
1793 ----------------------
1795 function Is_Known_Limited (Typ : Entity_Id) return Boolean is
1796 P : constant Entity_Id := Etype (Typ);
1797 R : constant Entity_Id := Root_Type (Typ);
1799 begin
1800 if Is_Limited_Record (Typ) then
1801 return True;
1803 -- If the root type is limited (and not a limited interface)
1804 -- so is the current type
1806 elsif Is_Limited_Record (R)
1807 and then (not Is_Interface (R) or else not Is_Limited_Interface (R))
1808 then
1809 return True;
1811 -- Else the type may have a limited interface progenitor, but a
1812 -- limited record parent.
1814 elsif R /= P and then Is_Limited_Record (P) then
1815 return True;
1817 else
1818 return False;
1819 end if;
1820 end Is_Known_Limited;
1822 -- Start of processing for Analyze_Component_Declaration
1824 begin
1825 Generate_Definition (Id);
1826 Enter_Name (Id);
1828 if Present (Typ) then
1829 T := Find_Type_Of_Object
1830 (Subtype_Indication (Component_Definition (N)), N);
1832 if not Nkind_In (Typ, N_Identifier, N_Expanded_Name) then
1833 Check_SPARK_Restriction ("subtype mark required", Typ);
1834 end if;
1836 -- Ada 2005 (AI-230): Access Definition case
1838 else
1839 pragma Assert (Present
1840 (Access_Definition (Component_Definition (N))));
1842 T := Access_Definition
1843 (Related_Nod => N,
1844 N => Access_Definition (Component_Definition (N)));
1845 Set_Is_Local_Anonymous_Access (T);
1847 -- Ada 2005 (AI-254)
1849 if Present (Access_To_Subprogram_Definition
1850 (Access_Definition (Component_Definition (N))))
1851 and then Protected_Present (Access_To_Subprogram_Definition
1852 (Access_Definition
1853 (Component_Definition (N))))
1854 then
1855 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
1856 end if;
1857 end if;
1859 -- If the subtype is a constrained subtype of the enclosing record,
1860 -- (which must have a partial view) the back-end does not properly
1861 -- handle the recursion. Rewrite the component declaration with an
1862 -- explicit subtype indication, which is acceptable to Gigi. We can copy
1863 -- the tree directly because side effects have already been removed from
1864 -- discriminant constraints.
1866 if Ekind (T) = E_Access_Subtype
1867 and then Is_Entity_Name (Subtype_Indication (Component_Definition (N)))
1868 and then Comes_From_Source (T)
1869 and then Nkind (Parent (T)) = N_Subtype_Declaration
1870 and then Etype (Directly_Designated_Type (T)) = Current_Scope
1871 then
1872 Rewrite
1873 (Subtype_Indication (Component_Definition (N)),
1874 New_Copy_Tree (Subtype_Indication (Parent (T))));
1875 T := Find_Type_Of_Object
1876 (Subtype_Indication (Component_Definition (N)), N);
1877 end if;
1879 -- If the component declaration includes a default expression, then we
1880 -- check that the component is not of a limited type (RM 3.7(5)),
1881 -- and do the special preanalysis of the expression (see section on
1882 -- "Handling of Default and Per-Object Expressions" in the spec of
1883 -- package Sem).
1885 if Present (E) then
1886 Check_SPARK_Restriction ("default expression is not allowed", E);
1887 Preanalyze_Spec_Expression (E, T);
1888 Check_Initialization (T, E);
1890 if Ada_Version >= Ada_2005
1891 and then Ekind (T) = E_Anonymous_Access_Type
1892 and then Etype (E) /= Any_Type
1893 then
1894 -- Check RM 3.9.2(9): "if the expected type for an expression is
1895 -- an anonymous access-to-specific tagged type, then the object
1896 -- designated by the expression shall not be dynamically tagged
1897 -- unless it is a controlling operand in a call on a dispatching
1898 -- operation"
1900 if Is_Tagged_Type (Directly_Designated_Type (T))
1901 and then
1902 Ekind (Directly_Designated_Type (T)) /= E_Class_Wide_Type
1903 and then
1904 Ekind (Directly_Designated_Type (Etype (E))) =
1905 E_Class_Wide_Type
1906 then
1907 Error_Msg_N
1908 ("access to specific tagged type required (RM 3.9.2(9))", E);
1909 end if;
1911 -- (Ada 2005: AI-230): Accessibility check for anonymous
1912 -- components
1914 if Type_Access_Level (Etype (E)) >
1915 Deepest_Type_Access_Level (T)
1916 then
1917 Error_Msg_N
1918 ("expression has deeper access level than component " &
1919 "(RM 3.10.2 (12.2))", E);
1920 end if;
1922 -- The initialization expression is a reference to an access
1923 -- discriminant. The type of the discriminant is always deeper
1924 -- than any access type.
1926 if Ekind (Etype (E)) = E_Anonymous_Access_Type
1927 and then Is_Entity_Name (E)
1928 and then Ekind (Entity (E)) = E_In_Parameter
1929 and then Present (Discriminal_Link (Entity (E)))
1930 then
1931 Error_Msg_N
1932 ("discriminant has deeper accessibility level than target",
1934 end if;
1935 end if;
1936 end if;
1938 -- The parent type may be a private view with unknown discriminants,
1939 -- and thus unconstrained. Regular components must be constrained.
1941 if Is_Indefinite_Subtype (T) and then Chars (Id) /= Name_uParent then
1942 if Is_Class_Wide_Type (T) then
1943 Error_Msg_N
1944 ("class-wide subtype with unknown discriminants" &
1945 " in component declaration",
1946 Subtype_Indication (Component_Definition (N)));
1947 else
1948 Error_Msg_N
1949 ("unconstrained subtype in component declaration",
1950 Subtype_Indication (Component_Definition (N)));
1951 end if;
1953 -- Components cannot be abstract, except for the special case of
1954 -- the _Parent field (case of extending an abstract tagged type)
1956 elsif Is_Abstract_Type (T) and then Chars (Id) /= Name_uParent then
1957 Error_Msg_N ("type of a component cannot be abstract", N);
1958 end if;
1960 Set_Etype (Id, T);
1961 Set_Is_Aliased (Id, Aliased_Present (Component_Definition (N)));
1963 -- The component declaration may have a per-object constraint, set
1964 -- the appropriate flag in the defining identifier of the subtype.
1966 if Present (Subtype_Indication (Component_Definition (N))) then
1967 declare
1968 Sindic : constant Node_Id :=
1969 Subtype_Indication (Component_Definition (N));
1970 begin
1971 if Nkind (Sindic) = N_Subtype_Indication
1972 and then Present (Constraint (Sindic))
1973 and then Contains_POC (Constraint (Sindic))
1974 then
1975 Set_Has_Per_Object_Constraint (Id);
1976 end if;
1977 end;
1978 end if;
1980 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
1981 -- out some static checks.
1983 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (T) then
1984 Null_Exclusion_Static_Checks (N);
1985 end if;
1987 -- If this component is private (or depends on a private type), flag the
1988 -- record type to indicate that some operations are not available.
1990 P := Private_Component (T);
1992 if Present (P) then
1994 -- Check for circular definitions
1996 if P = Any_Type then
1997 Set_Etype (Id, Any_Type);
1999 -- There is a gap in the visibility of operations only if the
2000 -- component type is not defined in the scope of the record type.
2002 elsif Scope (P) = Scope (Current_Scope) then
2003 null;
2005 elsif Is_Limited_Type (P) then
2006 Set_Is_Limited_Composite (Current_Scope);
2008 else
2009 Set_Is_Private_Composite (Current_Scope);
2010 end if;
2011 end if;
2013 if P /= Any_Type
2014 and then Is_Limited_Type (T)
2015 and then Chars (Id) /= Name_uParent
2016 and then Is_Tagged_Type (Current_Scope)
2017 then
2018 if Is_Derived_Type (Current_Scope)
2019 and then not Is_Known_Limited (Current_Scope)
2020 then
2021 Error_Msg_N
2022 ("extension of nonlimited type cannot have limited components",
2025 if Is_Interface (Root_Type (Current_Scope)) then
2026 Error_Msg_N
2027 ("\limitedness is not inherited from limited interface", N);
2028 Error_Msg_N ("\add LIMITED to type indication", N);
2029 end if;
2031 Explain_Limited_Type (T, N);
2032 Set_Etype (Id, Any_Type);
2033 Set_Is_Limited_Composite (Current_Scope, False);
2035 elsif not Is_Derived_Type (Current_Scope)
2036 and then not Is_Limited_Record (Current_Scope)
2037 and then not Is_Concurrent_Type (Current_Scope)
2038 then
2039 Error_Msg_N
2040 ("nonlimited tagged type cannot have limited components", N);
2041 Explain_Limited_Type (T, N);
2042 Set_Etype (Id, Any_Type);
2043 Set_Is_Limited_Composite (Current_Scope, False);
2044 end if;
2045 end if;
2047 Set_Original_Record_Component (Id, Id);
2049 if Has_Aspects (N) then
2050 Analyze_Aspect_Specifications (N, Id);
2051 end if;
2053 Analyze_Dimension (N);
2054 end Analyze_Component_Declaration;
2056 --------------------------
2057 -- Analyze_Declarations --
2058 --------------------------
2060 procedure Analyze_Declarations (L : List_Id) is
2061 Decl : Node_Id;
2063 procedure Adjust_Decl;
2064 -- Adjust Decl not to include implicit label declarations, since these
2065 -- have strange Sloc values that result in elaboration check problems.
2066 -- (They have the sloc of the label as found in the source, and that
2067 -- is ahead of the current declarative part).
2069 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id);
2070 -- Spec_Id is the entity of a package that may define abstract states.
2071 -- If the states have visible refinement, remove the visibility of each
2072 -- constituent at the end of the package body declarations.
2074 function Requires_State_Refinement
2075 (Spec_Id : Entity_Id;
2076 Body_Id : Entity_Id) return Boolean;
2077 -- Determine whether a package denoted by its spec and body entities
2078 -- requires refinement of abstract states.
2080 -----------------
2081 -- Adjust_Decl --
2082 -----------------
2084 procedure Adjust_Decl is
2085 begin
2086 while Present (Prev (Decl))
2087 and then Nkind (Decl) = N_Implicit_Label_Declaration
2088 loop
2089 Prev (Decl);
2090 end loop;
2091 end Adjust_Decl;
2093 --------------------------------
2094 -- Remove_Visible_Refinements --
2095 --------------------------------
2097 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id) is
2098 State_Elmt : Elmt_Id;
2099 begin
2100 if Present (Abstract_States (Spec_Id)) then
2101 State_Elmt := First_Elmt (Abstract_States (Spec_Id));
2102 while Present (State_Elmt) loop
2103 Set_Has_Visible_Refinement (Node (State_Elmt), False);
2104 Next_Elmt (State_Elmt);
2105 end loop;
2106 end if;
2107 end Remove_Visible_Refinements;
2109 -------------------------------
2110 -- Requires_State_Refinement --
2111 -------------------------------
2113 function Requires_State_Refinement
2114 (Spec_Id : Entity_Id;
2115 Body_Id : Entity_Id) return Boolean
2117 function Mode_Is_Off (Prag : Node_Id) return Boolean;
2118 -- Given pragma SPARK_Mode, determine whether the mode is Off
2120 -----------------
2121 -- Mode_Is_Off --
2122 -----------------
2124 function Mode_Is_Off (Prag : Node_Id) return Boolean is
2125 Mode : Node_Id;
2127 begin
2128 -- The default SPARK mode is On
2130 if No (Prag) then
2131 return False;
2132 end if;
2134 Mode :=
2135 Get_Pragma_Arg (First (Pragma_Argument_Associations (Prag)));
2137 -- Then the pragma lacks an argument, the default mode is On
2139 if No (Mode) then
2140 return False;
2141 else
2142 return Chars (Mode) = Name_Off;
2143 end if;
2144 end Mode_Is_Off;
2146 -- Start of processing for Requires_State_Refinement
2148 begin
2149 -- A package that does not define at least one abstract state cannot
2150 -- possibly require refinement.
2152 if No (Abstract_States (Spec_Id)) then
2153 return False;
2155 -- The package instroduces a single null state which does not merit
2156 -- refinement.
2158 elsif Has_Null_Abstract_State (Spec_Id) then
2159 return False;
2161 -- Check whether the package body is subject to pragma SPARK_Mode. If
2162 -- it is and the mode is Off, the package body is considered to be in
2163 -- regular Ada and does not require refinement.
2165 elsif Mode_Is_Off (SPARK_Mode_Pragmas (Body_Id)) then
2166 return False;
2168 -- The body's SPARK_Mode may be inherited from a similar pragma that
2169 -- appears in the private declarations of the spec. The pragma we are
2170 -- interested appears as the second entry in SPARK_Mode_Pragmas.
2172 elsif Present (SPARK_Mode_Pragmas (Spec_Id))
2173 and then Mode_Is_Off (Next_Pragma (SPARK_Mode_Pragmas (Spec_Id)))
2174 then
2175 return False;
2177 -- The spec defines at least one abstract state and the body has no
2178 -- way of circumventing the refinement.
2180 else
2181 return True;
2182 end if;
2183 end Requires_State_Refinement;
2185 -- Local variables
2187 Body_Id : Entity_Id;
2188 Context : Node_Id;
2189 Freeze_From : Entity_Id := Empty;
2190 Next_Decl : Node_Id;
2191 Prag : Node_Id;
2192 Spec_Id : Entity_Id;
2194 In_Package_Body : Boolean := False;
2195 -- Flag set when the current declaration list belongs to a package body
2197 -- Start of processing for Analyze_Declarations
2199 begin
2200 if Restriction_Check_Required (SPARK_05) then
2201 Check_Later_Vs_Basic_Declarations (L, During_Parsing => False);
2202 end if;
2204 Decl := First (L);
2205 while Present (Decl) loop
2207 -- Package spec cannot contain a package declaration in SPARK
2209 if Nkind (Decl) = N_Package_Declaration
2210 and then Nkind (Parent (L)) = N_Package_Specification
2211 then
2212 Check_SPARK_Restriction
2213 ("package specification cannot contain a package declaration",
2214 Decl);
2215 end if;
2217 -- Complete analysis of declaration
2219 Analyze (Decl);
2220 Next_Decl := Next (Decl);
2222 if No (Freeze_From) then
2223 Freeze_From := First_Entity (Current_Scope);
2224 end if;
2226 -- At the end of a declarative part, freeze remaining entities
2227 -- declared in it. The end of the visible declarations of package
2228 -- specification is not the end of a declarative part if private
2229 -- declarations are present. The end of a package declaration is a
2230 -- freezing point only if it a library package. A task definition or
2231 -- protected type definition is not a freeze point either. Finally,
2232 -- we do not freeze entities in generic scopes, because there is no
2233 -- code generated for them and freeze nodes will be generated for
2234 -- the instance.
2236 -- The end of a package instantiation is not a freeze point, but
2237 -- for now we make it one, because the generic body is inserted
2238 -- (currently) immediately after. Generic instantiations will not
2239 -- be a freeze point once delayed freezing of bodies is implemented.
2240 -- (This is needed in any case for early instantiations ???).
2242 if No (Next_Decl) then
2243 if Nkind_In (Parent (L), N_Component_List,
2244 N_Task_Definition,
2245 N_Protected_Definition)
2246 then
2247 null;
2249 elsif Nkind (Parent (L)) /= N_Package_Specification then
2250 if Nkind (Parent (L)) = N_Package_Body then
2251 Freeze_From := First_Entity (Current_Scope);
2252 end if;
2254 Adjust_Decl;
2255 Freeze_All (Freeze_From, Decl);
2256 Freeze_From := Last_Entity (Current_Scope);
2258 elsif Scope (Current_Scope) /= Standard_Standard
2259 and then not Is_Child_Unit (Current_Scope)
2260 and then No (Generic_Parent (Parent (L)))
2261 then
2262 null;
2264 elsif L /= Visible_Declarations (Parent (L))
2265 or else No (Private_Declarations (Parent (L)))
2266 or else Is_Empty_List (Private_Declarations (Parent (L)))
2267 then
2268 Adjust_Decl;
2269 Freeze_All (Freeze_From, Decl);
2270 Freeze_From := Last_Entity (Current_Scope);
2271 end if;
2273 -- If next node is a body then freeze all types before the body.
2274 -- An exception occurs for some expander-generated bodies. If these
2275 -- are generated at places where in general language rules would not
2276 -- allow a freeze point, then we assume that the expander has
2277 -- explicitly checked that all required types are properly frozen,
2278 -- and we do not cause general freezing here. This special circuit
2279 -- is used when the encountered body is marked as having already
2280 -- been analyzed.
2282 -- In all other cases (bodies that come from source, and expander
2283 -- generated bodies that have not been analyzed yet), freeze all
2284 -- types now. Note that in the latter case, the expander must take
2285 -- care to attach the bodies at a proper place in the tree so as to
2286 -- not cause unwanted freezing at that point.
2288 elsif not Analyzed (Next_Decl)
2289 and then (Nkind_In (Next_Decl, N_Subprogram_Body,
2290 N_Entry_Body,
2291 N_Package_Body,
2292 N_Protected_Body,
2293 N_Task_Body)
2294 or else
2295 Nkind (Next_Decl) in N_Body_Stub)
2296 then
2297 Adjust_Decl;
2298 Freeze_All (Freeze_From, Decl);
2299 Freeze_From := Last_Entity (Current_Scope);
2300 end if;
2302 Decl := Next_Decl;
2303 end loop;
2305 if Present (L) then
2306 Context := Parent (L);
2308 -- Analyze pragmas Initializes and Initial_Condition of a package at
2309 -- the end of the visible declarations as the pragmas have visibility
2310 -- over the said region.
2312 if Nkind (Context) = N_Package_Specification
2313 and then L = Visible_Declarations (Context)
2314 then
2315 Spec_Id := Defining_Entity (Parent (Context));
2316 Prag := Get_Pragma (Spec_Id, Pragma_Initializes);
2318 if Present (Prag) then
2319 Analyze_Initializes_In_Decl_Part (Prag);
2320 end if;
2322 Prag := Get_Pragma (Spec_Id, Pragma_Initial_Condition);
2324 if Present (Prag) then
2325 Analyze_Initial_Condition_In_Decl_Part (Prag);
2326 end if;
2328 -- Analyze the state refinements within a package body now, after
2329 -- all hidden states have been encountered and freely visible.
2330 -- Refinements must be processed before pragmas Refined_Depends and
2331 -- Refined_Global because the last two may mention constituents.
2333 elsif Nkind (Context) = N_Package_Body then
2334 In_Package_Body := True;
2336 Body_Id := Defining_Entity (Context);
2337 Spec_Id := Corresponding_Spec (Context);
2338 Prag := Get_Pragma (Body_Id, Pragma_Refined_State);
2340 -- The analysis of pragma Refined_State detects whether the spec
2341 -- has abstract states available for refinement.
2343 if Present (Prag) then
2344 Analyze_Refined_State_In_Decl_Part (Prag);
2346 -- State refinement is required when the package declaration has
2347 -- abstract states. Null states are not considered.
2349 elsif Requires_State_Refinement (Spec_Id, Body_Id) then
2350 Error_Msg_NE
2351 ("package & requires state refinement", Context, Spec_Id);
2352 end if;
2353 end if;
2354 end if;
2356 -- Analyze the contracts of a subprogram declaration or a body now due
2357 -- to delayed visibility requirements of aspects.
2359 Decl := First (L);
2360 while Present (Decl) loop
2361 if Nkind (Decl) = N_Subprogram_Body then
2362 Analyze_Subprogram_Body_Contract (Defining_Entity (Decl));
2364 elsif Nkind (Decl) = N_Subprogram_Declaration then
2365 Analyze_Subprogram_Contract (Defining_Entity (Decl));
2366 end if;
2368 Next (Decl);
2369 end loop;
2371 -- State refinements are visible upto the end the of the package body
2372 -- declarations. Hide the refinements from visibility to restore the
2373 -- original state conditions.
2375 if In_Package_Body then
2376 Remove_Visible_Refinements (Spec_Id);
2377 end if;
2378 end Analyze_Declarations;
2380 -----------------------------------
2381 -- Analyze_Full_Type_Declaration --
2382 -----------------------------------
2384 procedure Analyze_Full_Type_Declaration (N : Node_Id) is
2385 Def : constant Node_Id := Type_Definition (N);
2386 Def_Id : constant Entity_Id := Defining_Identifier (N);
2387 T : Entity_Id;
2388 Prev : Entity_Id;
2390 Is_Remote : constant Boolean :=
2391 (Is_Remote_Types (Current_Scope)
2392 or else Is_Remote_Call_Interface (Current_Scope))
2393 and then not (In_Private_Part (Current_Scope)
2394 or else In_Package_Body (Current_Scope));
2396 procedure Check_Ops_From_Incomplete_Type;
2397 -- If there is a tagged incomplete partial view of the type, traverse
2398 -- the primitives of the incomplete view and change the type of any
2399 -- controlling formals and result to indicate the full view. The
2400 -- primitives will be added to the full type's primitive operations
2401 -- list later in Sem_Disp.Check_Operation_From_Incomplete_Type (which
2402 -- is called from Process_Incomplete_Dependents).
2404 ------------------------------------
2405 -- Check_Ops_From_Incomplete_Type --
2406 ------------------------------------
2408 procedure Check_Ops_From_Incomplete_Type is
2409 Elmt : Elmt_Id;
2410 Formal : Entity_Id;
2411 Op : Entity_Id;
2413 begin
2414 if Prev /= T
2415 and then Ekind (Prev) = E_Incomplete_Type
2416 and then Is_Tagged_Type (Prev)
2417 and then Is_Tagged_Type (T)
2418 then
2419 Elmt := First_Elmt (Primitive_Operations (Prev));
2420 while Present (Elmt) loop
2421 Op := Node (Elmt);
2423 Formal := First_Formal (Op);
2424 while Present (Formal) loop
2425 if Etype (Formal) = Prev then
2426 Set_Etype (Formal, T);
2427 end if;
2429 Next_Formal (Formal);
2430 end loop;
2432 if Etype (Op) = Prev then
2433 Set_Etype (Op, T);
2434 end if;
2436 Next_Elmt (Elmt);
2437 end loop;
2438 end if;
2439 end Check_Ops_From_Incomplete_Type;
2441 -- Start of processing for Analyze_Full_Type_Declaration
2443 begin
2444 Prev := Find_Type_Name (N);
2446 -- The full view, if present, now points to the current type
2448 -- Ada 2005 (AI-50217): If the type was previously decorated when
2449 -- imported through a LIMITED WITH clause, it appears as incomplete
2450 -- but has no full view.
2452 if Ekind (Prev) = E_Incomplete_Type
2453 and then Present (Full_View (Prev))
2454 then
2455 T := Full_View (Prev);
2456 else
2457 T := Prev;
2458 end if;
2460 Set_Is_Pure (T, Is_Pure (Current_Scope));
2462 -- We set the flag Is_First_Subtype here. It is needed to set the
2463 -- corresponding flag for the Implicit class-wide-type created
2464 -- during tagged types processing.
2466 Set_Is_First_Subtype (T, True);
2468 -- Only composite types other than array types are allowed to have
2469 -- discriminants.
2471 case Nkind (Def) is
2473 -- For derived types, the rule will be checked once we've figured
2474 -- out the parent type.
2476 when N_Derived_Type_Definition =>
2477 null;
2479 -- For record types, discriminants are allowed, unless we are in
2480 -- SPARK.
2482 when N_Record_Definition =>
2483 if Present (Discriminant_Specifications (N)) then
2484 Check_SPARK_Restriction
2485 ("discriminant type is not allowed",
2486 Defining_Identifier
2487 (First (Discriminant_Specifications (N))));
2488 end if;
2490 when others =>
2491 if Present (Discriminant_Specifications (N)) then
2492 Error_Msg_N
2493 ("elementary or array type cannot have discriminants",
2494 Defining_Identifier
2495 (First (Discriminant_Specifications (N))));
2496 end if;
2497 end case;
2499 -- Elaborate the type definition according to kind, and generate
2500 -- subsidiary (implicit) subtypes where needed. We skip this if it was
2501 -- already done (this happens during the reanalysis that follows a call
2502 -- to the high level optimizer).
2504 if not Analyzed (T) then
2505 Set_Analyzed (T);
2507 case Nkind (Def) is
2509 when N_Access_To_Subprogram_Definition =>
2510 Access_Subprogram_Declaration (T, Def);
2512 -- If this is a remote access to subprogram, we must create the
2513 -- equivalent fat pointer type, and related subprograms.
2515 if Is_Remote then
2516 Process_Remote_AST_Declaration (N);
2517 end if;
2519 -- Validate categorization rule against access type declaration
2520 -- usually a violation in Pure unit, Shared_Passive unit.
2522 Validate_Access_Type_Declaration (T, N);
2524 when N_Access_To_Object_Definition =>
2525 Access_Type_Declaration (T, Def);
2527 -- Validate categorization rule against access type declaration
2528 -- usually a violation in Pure unit, Shared_Passive unit.
2530 Validate_Access_Type_Declaration (T, N);
2532 -- If we are in a Remote_Call_Interface package and define a
2533 -- RACW, then calling stubs and specific stream attributes
2534 -- must be added.
2536 if Is_Remote
2537 and then Is_Remote_Access_To_Class_Wide_Type (Def_Id)
2538 then
2539 Add_RACW_Features (Def_Id);
2540 end if;
2542 -- Set no strict aliasing flag if config pragma seen
2544 if Opt.No_Strict_Aliasing then
2545 Set_No_Strict_Aliasing (Base_Type (Def_Id));
2546 end if;
2548 when N_Array_Type_Definition =>
2549 Array_Type_Declaration (T, Def);
2551 when N_Derived_Type_Definition =>
2552 Derived_Type_Declaration (T, N, T /= Def_Id);
2554 when N_Enumeration_Type_Definition =>
2555 Enumeration_Type_Declaration (T, Def);
2557 when N_Floating_Point_Definition =>
2558 Floating_Point_Type_Declaration (T, Def);
2560 when N_Decimal_Fixed_Point_Definition =>
2561 Decimal_Fixed_Point_Type_Declaration (T, Def);
2563 when N_Ordinary_Fixed_Point_Definition =>
2564 Ordinary_Fixed_Point_Type_Declaration (T, Def);
2566 when N_Signed_Integer_Type_Definition =>
2567 Signed_Integer_Type_Declaration (T, Def);
2569 when N_Modular_Type_Definition =>
2570 Modular_Type_Declaration (T, Def);
2572 when N_Record_Definition =>
2573 Record_Type_Declaration (T, N, Prev);
2575 -- If declaration has a parse error, nothing to elaborate.
2577 when N_Error =>
2578 null;
2580 when others =>
2581 raise Program_Error;
2583 end case;
2584 end if;
2586 if Etype (T) = Any_Type then
2587 return;
2588 end if;
2590 -- Controlled type is not allowed in SPARK
2592 if Is_Visibly_Controlled (T) then
2593 Check_SPARK_Restriction ("controlled type is not allowed", N);
2594 end if;
2596 -- Some common processing for all types
2598 Set_Depends_On_Private (T, Has_Private_Component (T));
2599 Check_Ops_From_Incomplete_Type;
2601 -- Both the declared entity, and its anonymous base type if one
2602 -- was created, need freeze nodes allocated.
2604 declare
2605 B : constant Entity_Id := Base_Type (T);
2607 begin
2608 -- In the case where the base type differs from the first subtype, we
2609 -- pre-allocate a freeze node, and set the proper link to the first
2610 -- subtype. Freeze_Entity will use this preallocated freeze node when
2611 -- it freezes the entity.
2613 -- This does not apply if the base type is a generic type, whose
2614 -- declaration is independent of the current derived definition.
2616 if B /= T and then not Is_Generic_Type (B) then
2617 Ensure_Freeze_Node (B);
2618 Set_First_Subtype_Link (Freeze_Node (B), T);
2619 end if;
2621 -- A type that is imported through a limited_with clause cannot
2622 -- generate any code, and thus need not be frozen. However, an access
2623 -- type with an imported designated type needs a finalization list,
2624 -- which may be referenced in some other package that has non-limited
2625 -- visibility on the designated type. Thus we must create the
2626 -- finalization list at the point the access type is frozen, to
2627 -- prevent unsatisfied references at link time.
2629 if not From_Limited_With (T) or else Is_Access_Type (T) then
2630 Set_Has_Delayed_Freeze (T);
2631 end if;
2632 end;
2634 -- Case where T is the full declaration of some private type which has
2635 -- been swapped in Defining_Identifier (N).
2637 if T /= Def_Id and then Is_Private_Type (Def_Id) then
2638 Process_Full_View (N, T, Def_Id);
2640 -- Record the reference. The form of this is a little strange, since
2641 -- the full declaration has been swapped in. So the first parameter
2642 -- here represents the entity to which a reference is made which is
2643 -- the "real" entity, i.e. the one swapped in, and the second
2644 -- parameter provides the reference location.
2646 -- Also, we want to kill Has_Pragma_Unreferenced temporarily here
2647 -- since we don't want a complaint about the full type being an
2648 -- unwanted reference to the private type
2650 declare
2651 B : constant Boolean := Has_Pragma_Unreferenced (T);
2652 begin
2653 Set_Has_Pragma_Unreferenced (T, False);
2654 Generate_Reference (T, T, 'c');
2655 Set_Has_Pragma_Unreferenced (T, B);
2656 end;
2658 Set_Completion_Referenced (Def_Id);
2660 -- For completion of incomplete type, process incomplete dependents
2661 -- and always mark the full type as referenced (it is the incomplete
2662 -- type that we get for any real reference).
2664 elsif Ekind (Prev) = E_Incomplete_Type then
2665 Process_Incomplete_Dependents (N, T, Prev);
2666 Generate_Reference (Prev, Def_Id, 'c');
2667 Set_Completion_Referenced (Def_Id);
2669 -- If not private type or incomplete type completion, this is a real
2670 -- definition of a new entity, so record it.
2672 else
2673 Generate_Definition (Def_Id);
2674 end if;
2676 if Chars (Scope (Def_Id)) = Name_System
2677 and then Chars (Def_Id) = Name_Address
2678 and then Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (N)))
2679 then
2680 Set_Is_Descendent_Of_Address (Def_Id);
2681 Set_Is_Descendent_Of_Address (Base_Type (Def_Id));
2682 Set_Is_Descendent_Of_Address (Prev);
2683 end if;
2685 Set_Optimize_Alignment_Flags (Def_Id);
2686 Check_Eliminated (Def_Id);
2688 -- If the declaration is a completion and aspects are present, apply
2689 -- them to the entity for the type which is currently the partial
2690 -- view, but which is the one that will be frozen.
2692 if Has_Aspects (N) then
2693 if Prev /= Def_Id then
2694 Analyze_Aspect_Specifications (N, Prev);
2695 else
2696 Analyze_Aspect_Specifications (N, Def_Id);
2697 end if;
2698 end if;
2699 end Analyze_Full_Type_Declaration;
2701 ----------------------------------
2702 -- Analyze_Incomplete_Type_Decl --
2703 ----------------------------------
2705 procedure Analyze_Incomplete_Type_Decl (N : Node_Id) is
2706 F : constant Boolean := Is_Pure (Current_Scope);
2707 T : Entity_Id;
2709 begin
2710 Check_SPARK_Restriction ("incomplete type is not allowed", N);
2712 Generate_Definition (Defining_Identifier (N));
2714 -- Process an incomplete declaration. The identifier must not have been
2715 -- declared already in the scope. However, an incomplete declaration may
2716 -- appear in the private part of a package, for a private type that has
2717 -- already been declared.
2719 -- In this case, the discriminants (if any) must match
2721 T := Find_Type_Name (N);
2723 Set_Ekind (T, E_Incomplete_Type);
2724 Init_Size_Align (T);
2725 Set_Is_First_Subtype (T, True);
2726 Set_Etype (T, T);
2728 -- Ada 2005 (AI-326): Minimum decoration to give support to tagged
2729 -- incomplete types.
2731 if Tagged_Present (N) then
2732 Set_Is_Tagged_Type (T);
2733 Make_Class_Wide_Type (T);
2734 Set_Direct_Primitive_Operations (T, New_Elmt_List);
2735 end if;
2737 Push_Scope (T);
2739 Set_Stored_Constraint (T, No_Elist);
2741 if Present (Discriminant_Specifications (N)) then
2742 Process_Discriminants (N);
2743 end if;
2745 End_Scope;
2747 -- If the type has discriminants, non-trivial subtypes may be
2748 -- declared before the full view of the type. The full views of those
2749 -- subtypes will be built after the full view of the type.
2751 Set_Private_Dependents (T, New_Elmt_List);
2752 Set_Is_Pure (T, F);
2753 end Analyze_Incomplete_Type_Decl;
2755 -----------------------------------
2756 -- Analyze_Interface_Declaration --
2757 -----------------------------------
2759 procedure Analyze_Interface_Declaration (T : Entity_Id; Def : Node_Id) is
2760 CW : constant Entity_Id := Class_Wide_Type (T);
2762 begin
2763 Set_Is_Tagged_Type (T);
2765 Set_Is_Limited_Record (T, Limited_Present (Def)
2766 or else Task_Present (Def)
2767 or else Protected_Present (Def)
2768 or else Synchronized_Present (Def));
2770 -- Type is abstract if full declaration carries keyword, or if previous
2771 -- partial view did.
2773 Set_Is_Abstract_Type (T);
2774 Set_Is_Interface (T);
2776 -- Type is a limited interface if it includes the keyword limited, task,
2777 -- protected, or synchronized.
2779 Set_Is_Limited_Interface
2780 (T, Limited_Present (Def)
2781 or else Protected_Present (Def)
2782 or else Synchronized_Present (Def)
2783 or else Task_Present (Def));
2785 Set_Interfaces (T, New_Elmt_List);
2786 Set_Direct_Primitive_Operations (T, New_Elmt_List);
2788 -- Complete the decoration of the class-wide entity if it was already
2789 -- built (i.e. during the creation of the limited view)
2791 if Present (CW) then
2792 Set_Is_Interface (CW);
2793 Set_Is_Limited_Interface (CW, Is_Limited_Interface (T));
2794 end if;
2796 -- Check runtime support for synchronized interfaces
2798 if VM_Target = No_VM
2799 and then (Is_Task_Interface (T)
2800 or else Is_Protected_Interface (T)
2801 or else Is_Synchronized_Interface (T))
2802 and then not RTE_Available (RE_Select_Specific_Data)
2803 then
2804 Error_Msg_CRT ("synchronized interfaces", T);
2805 end if;
2806 end Analyze_Interface_Declaration;
2808 -----------------------------
2809 -- Analyze_Itype_Reference --
2810 -----------------------------
2812 -- Nothing to do. This node is placed in the tree only for the benefit of
2813 -- back end processing, and has no effect on the semantic processing.
2815 procedure Analyze_Itype_Reference (N : Node_Id) is
2816 begin
2817 pragma Assert (Is_Itype (Itype (N)));
2818 null;
2819 end Analyze_Itype_Reference;
2821 --------------------------------
2822 -- Analyze_Number_Declaration --
2823 --------------------------------
2825 procedure Analyze_Number_Declaration (N : Node_Id) is
2826 Id : constant Entity_Id := Defining_Identifier (N);
2827 E : constant Node_Id := Expression (N);
2828 T : Entity_Id;
2829 Index : Interp_Index;
2830 It : Interp;
2832 begin
2833 Generate_Definition (Id);
2834 Enter_Name (Id);
2836 -- This is an optimization of a common case of an integer literal
2838 if Nkind (E) = N_Integer_Literal then
2839 Set_Is_Static_Expression (E, True);
2840 Set_Etype (E, Universal_Integer);
2842 Set_Etype (Id, Universal_Integer);
2843 Set_Ekind (Id, E_Named_Integer);
2844 Set_Is_Frozen (Id, True);
2845 return;
2846 end if;
2848 Set_Is_Pure (Id, Is_Pure (Current_Scope));
2850 -- Process expression, replacing error by integer zero, to avoid
2851 -- cascaded errors or aborts further along in the processing
2853 -- Replace Error by integer zero, which seems least likely to cause
2854 -- cascaded errors.
2856 if E = Error then
2857 Rewrite (E, Make_Integer_Literal (Sloc (E), Uint_0));
2858 Set_Error_Posted (E);
2859 end if;
2861 Analyze (E);
2863 -- Verify that the expression is static and numeric. If
2864 -- the expression is overloaded, we apply the preference
2865 -- rule that favors root numeric types.
2867 if not Is_Overloaded (E) then
2868 T := Etype (E);
2870 else
2871 T := Any_Type;
2873 Get_First_Interp (E, Index, It);
2874 while Present (It.Typ) loop
2875 if (Is_Integer_Type (It.Typ) or else Is_Real_Type (It.Typ))
2876 and then (Scope (Base_Type (It.Typ))) = Standard_Standard
2877 then
2878 if T = Any_Type then
2879 T := It.Typ;
2881 elsif It.Typ = Universal_Real
2882 or else It.Typ = Universal_Integer
2883 then
2884 -- Choose universal interpretation over any other
2886 T := It.Typ;
2887 exit;
2888 end if;
2889 end if;
2891 Get_Next_Interp (Index, It);
2892 end loop;
2893 end if;
2895 if Is_Integer_Type (T) then
2896 Resolve (E, T);
2897 Set_Etype (Id, Universal_Integer);
2898 Set_Ekind (Id, E_Named_Integer);
2900 elsif Is_Real_Type (T) then
2902 -- Because the real value is converted to universal_real, this is a
2903 -- legal context for a universal fixed expression.
2905 if T = Universal_Fixed then
2906 declare
2907 Loc : constant Source_Ptr := Sloc (N);
2908 Conv : constant Node_Id := Make_Type_Conversion (Loc,
2909 Subtype_Mark =>
2910 New_Occurrence_Of (Universal_Real, Loc),
2911 Expression => Relocate_Node (E));
2913 begin
2914 Rewrite (E, Conv);
2915 Analyze (E);
2916 end;
2918 elsif T = Any_Fixed then
2919 Error_Msg_N ("illegal context for mixed mode operation", E);
2921 -- Expression is of the form : universal_fixed * integer. Try to
2922 -- resolve as universal_real.
2924 T := Universal_Real;
2925 Set_Etype (E, T);
2926 end if;
2928 Resolve (E, T);
2929 Set_Etype (Id, Universal_Real);
2930 Set_Ekind (Id, E_Named_Real);
2932 else
2933 Wrong_Type (E, Any_Numeric);
2934 Resolve (E, T);
2936 Set_Etype (Id, T);
2937 Set_Ekind (Id, E_Constant);
2938 Set_Never_Set_In_Source (Id, True);
2939 Set_Is_True_Constant (Id, True);
2940 return;
2941 end if;
2943 if Nkind_In (E, N_Integer_Literal, N_Real_Literal) then
2944 Set_Etype (E, Etype (Id));
2945 end if;
2947 if not Is_OK_Static_Expression (E) then
2948 Flag_Non_Static_Expr
2949 ("non-static expression used in number declaration!", E);
2950 Rewrite (E, Make_Integer_Literal (Sloc (N), 1));
2951 Set_Etype (E, Any_Type);
2952 end if;
2953 end Analyze_Number_Declaration;
2955 --------------------------------
2956 -- Analyze_Object_Declaration --
2957 --------------------------------
2959 procedure Analyze_Object_Declaration (N : Node_Id) is
2960 Loc : constant Source_Ptr := Sloc (N);
2961 Id : constant Entity_Id := Defining_Identifier (N);
2962 T : Entity_Id;
2963 Act_T : Entity_Id;
2965 E : Node_Id := Expression (N);
2966 -- E is set to Expression (N) throughout this routine. When
2967 -- Expression (N) is modified, E is changed accordingly.
2969 Prev_Entity : Entity_Id := Empty;
2971 function Count_Tasks (T : Entity_Id) return Uint;
2972 -- This function is called when a non-generic library level object of a
2973 -- task type is declared. Its function is to count the static number of
2974 -- tasks declared within the type (it is only called if Has_Tasks is set
2975 -- for T). As a side effect, if an array of tasks with non-static bounds
2976 -- or a variant record type is encountered, Check_Restrictions is called
2977 -- indicating the count is unknown.
2979 -----------------
2980 -- Count_Tasks --
2981 -----------------
2983 function Count_Tasks (T : Entity_Id) return Uint is
2984 C : Entity_Id;
2985 X : Node_Id;
2986 V : Uint;
2988 begin
2989 if Is_Task_Type (T) then
2990 return Uint_1;
2992 elsif Is_Record_Type (T) then
2993 if Has_Discriminants (T) then
2994 Check_Restriction (Max_Tasks, N);
2995 return Uint_0;
2997 else
2998 V := Uint_0;
2999 C := First_Component (T);
3000 while Present (C) loop
3001 V := V + Count_Tasks (Etype (C));
3002 Next_Component (C);
3003 end loop;
3005 return V;
3006 end if;
3008 elsif Is_Array_Type (T) then
3009 X := First_Index (T);
3010 V := Count_Tasks (Component_Type (T));
3011 while Present (X) loop
3012 C := Etype (X);
3014 if not Is_Static_Subtype (C) then
3015 Check_Restriction (Max_Tasks, N);
3016 return Uint_0;
3017 else
3018 V := V * (UI_Max (Uint_0,
3019 Expr_Value (Type_High_Bound (C)) -
3020 Expr_Value (Type_Low_Bound (C)) + Uint_1));
3021 end if;
3023 Next_Index (X);
3024 end loop;
3026 return V;
3028 else
3029 return Uint_0;
3030 end if;
3031 end Count_Tasks;
3033 -- Start of processing for Analyze_Object_Declaration
3035 begin
3036 -- There are three kinds of implicit types generated by an
3037 -- object declaration:
3039 -- 1. Those generated by the original Object Definition
3041 -- 2. Those generated by the Expression
3043 -- 3. Those used to constrain the Object Definition with the
3044 -- expression constraints when the definition is unconstrained.
3046 -- They must be generated in this order to avoid order of elaboration
3047 -- issues. Thus the first step (after entering the name) is to analyze
3048 -- the object definition.
3050 if Constant_Present (N) then
3051 Prev_Entity := Current_Entity_In_Scope (Id);
3053 if Present (Prev_Entity)
3054 and then
3056 -- If the homograph is an implicit subprogram, it is overridden
3057 -- by the current declaration.
3059 ((Is_Overloadable (Prev_Entity)
3060 and then Is_Inherited_Operation (Prev_Entity))
3062 -- The current object is a discriminal generated for an entry
3063 -- family index. Even though the index is a constant, in this
3064 -- particular context there is no true constant redeclaration.
3065 -- Enter_Name will handle the visibility.
3067 or else
3068 (Is_Discriminal (Id)
3069 and then Ekind (Discriminal_Link (Id)) =
3070 E_Entry_Index_Parameter)
3072 -- The current object is the renaming for a generic declared
3073 -- within the instance.
3075 or else
3076 (Ekind (Prev_Entity) = E_Package
3077 and then Nkind (Parent (Prev_Entity)) =
3078 N_Package_Renaming_Declaration
3079 and then not Comes_From_Source (Prev_Entity)
3080 and then Is_Generic_Instance (Renamed_Entity (Prev_Entity))))
3081 then
3082 Prev_Entity := Empty;
3083 end if;
3084 end if;
3086 if Present (Prev_Entity) then
3087 Constant_Redeclaration (Id, N, T);
3089 Generate_Reference (Prev_Entity, Id, 'c');
3090 Set_Completion_Referenced (Id);
3092 if Error_Posted (N) then
3094 -- Type mismatch or illegal redeclaration, Do not analyze
3095 -- expression to avoid cascaded errors.
3097 T := Find_Type_Of_Object (Object_Definition (N), N);
3098 Set_Etype (Id, T);
3099 Set_Ekind (Id, E_Variable);
3100 goto Leave;
3101 end if;
3103 -- In the normal case, enter identifier at the start to catch premature
3104 -- usage in the initialization expression.
3106 else
3107 Generate_Definition (Id);
3108 Enter_Name (Id);
3110 Mark_Coextensions (N, Object_Definition (N));
3112 T := Find_Type_Of_Object (Object_Definition (N), N);
3114 if Nkind (Object_Definition (N)) = N_Access_Definition
3115 and then Present
3116 (Access_To_Subprogram_Definition (Object_Definition (N)))
3117 and then Protected_Present
3118 (Access_To_Subprogram_Definition (Object_Definition (N)))
3119 then
3120 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
3121 end if;
3123 if Error_Posted (Id) then
3124 Set_Etype (Id, T);
3125 Set_Ekind (Id, E_Variable);
3126 goto Leave;
3127 end if;
3128 end if;
3130 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
3131 -- out some static checks
3133 if Ada_Version >= Ada_2005
3134 and then Can_Never_Be_Null (T)
3135 then
3136 -- In case of aggregates we must also take care of the correct
3137 -- initialization of nested aggregates bug this is done at the
3138 -- point of the analysis of the aggregate (see sem_aggr.adb)
3140 if Present (Expression (N))
3141 and then Nkind (Expression (N)) = N_Aggregate
3142 then
3143 null;
3145 else
3146 declare
3147 Save_Typ : constant Entity_Id := Etype (Id);
3148 begin
3149 Set_Etype (Id, T); -- Temp. decoration for static checks
3150 Null_Exclusion_Static_Checks (N);
3151 Set_Etype (Id, Save_Typ);
3152 end;
3153 end if;
3154 end if;
3156 -- Object is marked pure if it is in a pure scope
3158 Set_Is_Pure (Id, Is_Pure (Current_Scope));
3160 -- If deferred constant, make sure context is appropriate. We detect
3161 -- a deferred constant as a constant declaration with no expression.
3162 -- A deferred constant can appear in a package body if its completion
3163 -- is by means of an interface pragma.
3165 if Constant_Present (N) and then No (E) then
3167 -- A deferred constant may appear in the declarative part of the
3168 -- following constructs:
3170 -- blocks
3171 -- entry bodies
3172 -- extended return statements
3173 -- package specs
3174 -- package bodies
3175 -- subprogram bodies
3176 -- task bodies
3178 -- When declared inside a package spec, a deferred constant must be
3179 -- completed by a full constant declaration or pragma Import. In all
3180 -- other cases, the only proper completion is pragma Import. Extended
3181 -- return statements are flagged as invalid contexts because they do
3182 -- not have a declarative part and so cannot accommodate the pragma.
3184 if Ekind (Current_Scope) = E_Return_Statement then
3185 Error_Msg_N
3186 ("invalid context for deferred constant declaration (RM 7.4)",
3188 Error_Msg_N
3189 ("\declaration requires an initialization expression",
3191 Set_Constant_Present (N, False);
3193 -- In Ada 83, deferred constant must be of private type
3195 elsif not Is_Private_Type (T) then
3196 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
3197 Error_Msg_N
3198 ("(Ada 83) deferred constant must be private type", N);
3199 end if;
3200 end if;
3202 -- If not a deferred constant, then object declaration freezes its type
3204 else
3205 Check_Fully_Declared (T, N);
3206 Freeze_Before (N, T);
3207 end if;
3209 -- If the object was created by a constrained array definition, then
3210 -- set the link in both the anonymous base type and anonymous subtype
3211 -- that are built to represent the array type to point to the object.
3213 if Nkind (Object_Definition (Declaration_Node (Id))) =
3214 N_Constrained_Array_Definition
3215 then
3216 Set_Related_Array_Object (T, Id);
3217 Set_Related_Array_Object (Base_Type (T), Id);
3218 end if;
3220 -- Special checks for protected objects not at library level
3222 if Is_Protected_Type (T)
3223 and then not Is_Library_Level_Entity (Id)
3224 then
3225 Check_Restriction (No_Local_Protected_Objects, Id);
3227 -- Protected objects with interrupt handlers must be at library level
3229 -- Ada 2005: this test is not needed (and the corresponding clause
3230 -- in the RM is removed) because accessibility checks are sufficient
3231 -- to make handlers not at the library level illegal.
3233 -- AI05-0303: the AI is in fact a binding interpretation, and thus
3234 -- applies to the '95 version of the language as well.
3236 if Has_Interrupt_Handler (T) and then Ada_Version < Ada_95 then
3237 Error_Msg_N
3238 ("interrupt object can only be declared at library level", Id);
3239 end if;
3240 end if;
3242 -- The actual subtype of the object is the nominal subtype, unless
3243 -- the nominal one is unconstrained and obtained from the expression.
3245 Act_T := T;
3247 -- These checks should be performed before the initialization expression
3248 -- is considered, so that the Object_Definition node is still the same
3249 -- as in source code.
3251 -- In SPARK, the nominal subtype shall be given by a subtype mark and
3252 -- shall not be unconstrained. (The only exception to this is the
3253 -- admission of declarations of constants of type String.)
3255 if not
3256 Nkind_In (Object_Definition (N), N_Identifier, N_Expanded_Name)
3257 then
3258 Check_SPARK_Restriction
3259 ("subtype mark required", Object_Definition (N));
3261 elsif Is_Array_Type (T)
3262 and then not Is_Constrained (T)
3263 and then T /= Standard_String
3264 then
3265 Check_SPARK_Restriction
3266 ("subtype mark of constrained type expected",
3267 Object_Definition (N));
3268 end if;
3270 -- There are no aliased objects in SPARK
3272 if Aliased_Present (N) then
3273 Check_SPARK_Restriction ("aliased object is not allowed", N);
3274 end if;
3276 -- Process initialization expression if present and not in error
3278 if Present (E) and then E /= Error then
3280 -- Generate an error in case of CPP class-wide object initialization.
3281 -- Required because otherwise the expansion of the class-wide
3282 -- assignment would try to use 'size to initialize the object
3283 -- (primitive that is not available in CPP tagged types).
3285 if Is_Class_Wide_Type (Act_T)
3286 and then
3287 (Is_CPP_Class (Root_Type (Etype (Act_T)))
3288 or else
3289 (Present (Full_View (Root_Type (Etype (Act_T))))
3290 and then
3291 Is_CPP_Class (Full_View (Root_Type (Etype (Act_T))))))
3292 then
3293 Error_Msg_N
3294 ("predefined assignment not available for 'C'P'P tagged types",
3296 end if;
3298 Mark_Coextensions (N, E);
3299 Analyze (E);
3301 -- In case of errors detected in the analysis of the expression,
3302 -- decorate it with the expected type to avoid cascaded errors
3304 if No (Etype (E)) then
3305 Set_Etype (E, T);
3306 end if;
3308 -- If an initialization expression is present, then we set the
3309 -- Is_True_Constant flag. It will be reset if this is a variable
3310 -- and it is indeed modified.
3312 Set_Is_True_Constant (Id, True);
3314 -- If we are analyzing a constant declaration, set its completion
3315 -- flag after analyzing and resolving the expression.
3317 if Constant_Present (N) then
3318 Set_Has_Completion (Id);
3319 end if;
3321 -- Set type and resolve (type may be overridden later on). Note:
3322 -- Ekind (Id) must still be E_Void at this point so that incorrect
3323 -- early usage within E is properly diagnosed.
3325 Set_Etype (Id, T);
3326 Resolve (E, T);
3328 -- No further action needed if E is a call to an inlined function
3329 -- which returns an unconstrained type and it has been expanded into
3330 -- a procedure call. In that case N has been replaced by an object
3331 -- declaration without initializing expression and it has been
3332 -- analyzed (see Expand_Inlined_Call).
3334 if Debug_Flag_Dot_K
3335 and then Expander_Active
3336 and then Nkind (E) = N_Function_Call
3337 and then Nkind (Name (E)) in N_Has_Entity
3338 and then Is_Inlined (Entity (Name (E)))
3339 and then not Is_Constrained (Etype (E))
3340 and then Analyzed (N)
3341 and then No (Expression (N))
3342 then
3343 return;
3344 end if;
3346 -- If E is null and has been replaced by an N_Raise_Constraint_Error
3347 -- node (which was marked already-analyzed), we need to set the type
3348 -- to something other than Any_Access in order to keep gigi happy.
3350 if Etype (E) = Any_Access then
3351 Set_Etype (E, T);
3352 end if;
3354 -- If the object is an access to variable, the initialization
3355 -- expression cannot be an access to constant.
3357 if Is_Access_Type (T)
3358 and then not Is_Access_Constant (T)
3359 and then Is_Access_Type (Etype (E))
3360 and then Is_Access_Constant (Etype (E))
3361 then
3362 Error_Msg_N
3363 ("access to variable cannot be initialized "
3364 & "with an access-to-constant expression", E);
3365 end if;
3367 if not Assignment_OK (N) then
3368 Check_Initialization (T, E);
3369 end if;
3371 Check_Unset_Reference (E);
3373 -- If this is a variable, then set current value. If this is a
3374 -- declared constant of a scalar type with a static expression,
3375 -- indicate that it is always valid.
3377 if not Constant_Present (N) then
3378 if Compile_Time_Known_Value (E) then
3379 Set_Current_Value (Id, E);
3380 end if;
3382 elsif Is_Scalar_Type (T)
3383 and then Is_OK_Static_Expression (E)
3384 then
3385 Set_Is_Known_Valid (Id);
3386 end if;
3388 -- Deal with setting of null flags
3390 if Is_Access_Type (T) then
3391 if Known_Non_Null (E) then
3392 Set_Is_Known_Non_Null (Id, True);
3393 elsif Known_Null (E)
3394 and then not Can_Never_Be_Null (Id)
3395 then
3396 Set_Is_Known_Null (Id, True);
3397 end if;
3398 end if;
3400 -- Check incorrect use of dynamically tagged expressions
3402 if Is_Tagged_Type (T) then
3403 Check_Dynamically_Tagged_Expression
3404 (Expr => E,
3405 Typ => T,
3406 Related_Nod => N);
3407 end if;
3409 Apply_Scalar_Range_Check (E, T);
3410 Apply_Static_Length_Check (E, T);
3412 if Nkind (Original_Node (N)) = N_Object_Declaration
3413 and then Comes_From_Source (Original_Node (N))
3415 -- Only call test if needed
3417 and then Restriction_Check_Required (SPARK_05)
3418 and then not Is_SPARK_Initialization_Expr (Original_Node (E))
3419 then
3420 Check_SPARK_Restriction
3421 ("initialization expression is not appropriate", E);
3422 end if;
3423 end if;
3425 -- If the No_Streams restriction is set, check that the type of the
3426 -- object is not, and does not contain, any subtype derived from
3427 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
3428 -- Has_Stream just for efficiency reasons. There is no point in
3429 -- spending time on a Has_Stream check if the restriction is not set.
3431 if Restriction_Check_Required (No_Streams) then
3432 if Has_Stream (T) then
3433 Check_Restriction (No_Streams, N);
3434 end if;
3435 end if;
3437 -- Deal with predicate check before we start to do major rewriting. It
3438 -- is OK to initialize and then check the initialized value, since the
3439 -- object goes out of scope if we get a predicate failure. Note that we
3440 -- do this in the analyzer and not the expander because the analyzer
3441 -- does some substantial rewriting in some cases.
3443 -- We need a predicate check if the type has predicates, and if either
3444 -- there is an initializing expression, or for default initialization
3445 -- when we have at least one case of an explicit default initial value.
3447 if not Suppress_Assignment_Checks (N)
3448 and then Present (Predicate_Function (T))
3449 and then
3450 (Present (E)
3451 or else
3452 Is_Partially_Initialized_Type (T, Include_Implicit => False))
3453 then
3454 -- If the type has a static predicate and the expression is known at
3455 -- compile time, see if the expression satisfies the predicate.
3457 if Present (E) then
3458 Check_Expression_Against_Static_Predicate (E, T);
3459 end if;
3461 Insert_After (N,
3462 Make_Predicate_Check (T, New_Occurrence_Of (Id, Loc)));
3463 end if;
3465 -- Case of unconstrained type
3467 if Is_Indefinite_Subtype (T) then
3469 -- In SPARK, a declaration of unconstrained type is allowed
3470 -- only for constants of type string.
3472 if Is_String_Type (T) and then not Constant_Present (N) then
3473 Check_SPARK_Restriction
3474 ("declaration of object of unconstrained type not allowed", N);
3475 end if;
3477 -- Nothing to do in deferred constant case
3479 if Constant_Present (N) and then No (E) then
3480 null;
3482 -- Case of no initialization present
3484 elsif No (E) then
3485 if No_Initialization (N) then
3486 null;
3488 elsif Is_Class_Wide_Type (T) then
3489 Error_Msg_N
3490 ("initialization required in class-wide declaration ", N);
3492 else
3493 Error_Msg_N
3494 ("unconstrained subtype not allowed (need initialization)",
3495 Object_Definition (N));
3497 if Is_Record_Type (T) and then Has_Discriminants (T) then
3498 Error_Msg_N
3499 ("\provide initial value or explicit discriminant values",
3500 Object_Definition (N));
3502 Error_Msg_NE
3503 ("\or give default discriminant values for type&",
3504 Object_Definition (N), T);
3506 elsif Is_Array_Type (T) then
3507 Error_Msg_N
3508 ("\provide initial value or explicit array bounds",
3509 Object_Definition (N));
3510 end if;
3511 end if;
3513 -- Case of initialization present but in error. Set initial
3514 -- expression as absent (but do not make above complaints)
3516 elsif E = Error then
3517 Set_Expression (N, Empty);
3518 E := Empty;
3520 -- Case of initialization present
3522 else
3523 -- Check restrictions in Ada 83
3525 if not Constant_Present (N) then
3527 -- Unconstrained variables not allowed in Ada 83 mode
3529 if Ada_Version = Ada_83
3530 and then Comes_From_Source (Object_Definition (N))
3531 then
3532 Error_Msg_N
3533 ("(Ada 83) unconstrained variable not allowed",
3534 Object_Definition (N));
3535 end if;
3536 end if;
3538 -- Now we constrain the variable from the initializing expression
3540 -- If the expression is an aggregate, it has been expanded into
3541 -- individual assignments. Retrieve the actual type from the
3542 -- expanded construct.
3544 if Is_Array_Type (T)
3545 and then No_Initialization (N)
3546 and then Nkind (Original_Node (E)) = N_Aggregate
3547 then
3548 Act_T := Etype (E);
3550 -- In case of class-wide interface object declarations we delay
3551 -- the generation of the equivalent record type declarations until
3552 -- its expansion because there are cases in they are not required.
3554 elsif Is_Interface (T) then
3555 null;
3557 else
3558 Expand_Subtype_From_Expr (N, T, Object_Definition (N), E);
3559 Act_T := Find_Type_Of_Object (Object_Definition (N), N);
3560 end if;
3562 Set_Is_Constr_Subt_For_U_Nominal (Act_T);
3564 if Aliased_Present (N) then
3565 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
3566 end if;
3568 Freeze_Before (N, Act_T);
3569 Freeze_Before (N, T);
3570 end if;
3572 elsif Is_Array_Type (T)
3573 and then No_Initialization (N)
3574 and then Nkind (Original_Node (E)) = N_Aggregate
3575 then
3576 if not Is_Entity_Name (Object_Definition (N)) then
3577 Act_T := Etype (E);
3578 Check_Compile_Time_Size (Act_T);
3580 if Aliased_Present (N) then
3581 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
3582 end if;
3583 end if;
3585 -- When the given object definition and the aggregate are specified
3586 -- independently, and their lengths might differ do a length check.
3587 -- This cannot happen if the aggregate is of the form (others =>...)
3589 if not Is_Constrained (T) then
3590 null;
3592 elsif Nkind (E) = N_Raise_Constraint_Error then
3594 -- Aggregate is statically illegal. Place back in declaration
3596 Set_Expression (N, E);
3597 Set_No_Initialization (N, False);
3599 elsif T = Etype (E) then
3600 null;
3602 elsif Nkind (E) = N_Aggregate
3603 and then Present (Component_Associations (E))
3604 and then Present (Choices (First (Component_Associations (E))))
3605 and then Nkind (First
3606 (Choices (First (Component_Associations (E))))) = N_Others_Choice
3607 then
3608 null;
3610 else
3611 Apply_Length_Check (E, T);
3612 end if;
3614 -- If the type is limited unconstrained with defaulted discriminants and
3615 -- there is no expression, then the object is constrained by the
3616 -- defaults, so it is worthwhile building the corresponding subtype.
3618 elsif (Is_Limited_Record (T) or else Is_Concurrent_Type (T))
3619 and then not Is_Constrained (T)
3620 and then Has_Discriminants (T)
3621 then
3622 if No (E) then
3623 Act_T := Build_Default_Subtype (T, N);
3624 else
3625 -- Ada 2005: a limited object may be initialized by means of an
3626 -- aggregate. If the type has default discriminants it has an
3627 -- unconstrained nominal type, Its actual subtype will be obtained
3628 -- from the aggregate, and not from the default discriminants.
3630 Act_T := Etype (E);
3631 end if;
3633 Rewrite (Object_Definition (N), New_Occurrence_Of (Act_T, Loc));
3635 elsif Present (Underlying_Type (T))
3636 and then not Is_Constrained (Underlying_Type (T))
3637 and then Has_Discriminants (Underlying_Type (T))
3638 and then Nkind (E) = N_Function_Call
3639 and then Constant_Present (N)
3640 then
3641 -- The back-end has problems with constants of a discriminated type
3642 -- with defaults, if the initial value is a function call. We
3643 -- generate an intermediate temporary for the result of the call.
3644 -- It is unclear why this should make it acceptable to gcc. ???
3646 Remove_Side_Effects (E);
3648 -- If this is a constant declaration of an unconstrained type and
3649 -- the initialization is an aggregate, we can use the subtype of the
3650 -- aggregate for the declared entity because it is immutable.
3652 elsif not Is_Constrained (T)
3653 and then Has_Discriminants (T)
3654 and then Constant_Present (N)
3655 and then not Has_Unchecked_Union (T)
3656 and then Nkind (E) = N_Aggregate
3657 then
3658 Act_T := Etype (E);
3659 end if;
3661 -- Check No_Wide_Characters restriction
3663 Check_Wide_Character_Restriction (T, Object_Definition (N));
3665 -- Indicate this is not set in source. Certainly true for constants, and
3666 -- true for variables so far (will be reset for a variable if and when
3667 -- we encounter a modification in the source).
3669 Set_Never_Set_In_Source (Id, True);
3671 -- Now establish the proper kind and type of the object
3673 if Constant_Present (N) then
3674 Set_Ekind (Id, E_Constant);
3675 Set_Is_True_Constant (Id);
3677 else
3678 Set_Ekind (Id, E_Variable);
3680 -- A variable is set as shared passive if it appears in a shared
3681 -- passive package, and is at the outer level. This is not done for
3682 -- entities generated during expansion, because those are always
3683 -- manipulated locally.
3685 if Is_Shared_Passive (Current_Scope)
3686 and then Is_Library_Level_Entity (Id)
3687 and then Comes_From_Source (Id)
3688 then
3689 Set_Is_Shared_Passive (Id);
3690 Check_Shared_Var (Id, T, N);
3691 end if;
3693 -- Set Has_Initial_Value if initializing expression present. Note
3694 -- that if there is no initializing expression, we leave the state
3695 -- of this flag unchanged (usually it will be False, but notably in
3696 -- the case of exception choice variables, it will already be true).
3698 if Present (E) then
3699 Set_Has_Initial_Value (Id, True);
3700 end if;
3701 end if;
3703 -- Initialize alignment and size and capture alignment setting
3705 Init_Alignment (Id);
3706 Init_Esize (Id);
3707 Set_Optimize_Alignment_Flags (Id);
3709 -- Deal with aliased case
3711 if Aliased_Present (N) then
3712 Set_Is_Aliased (Id);
3714 -- If the object is aliased and the type is unconstrained with
3715 -- defaulted discriminants and there is no expression, then the
3716 -- object is constrained by the defaults, so it is worthwhile
3717 -- building the corresponding subtype.
3719 -- Ada 2005 (AI-363): If the aliased object is discriminated and
3720 -- unconstrained, then only establish an actual subtype if the
3721 -- nominal subtype is indefinite. In definite cases the object is
3722 -- unconstrained in Ada 2005.
3724 if No (E)
3725 and then Is_Record_Type (T)
3726 and then not Is_Constrained (T)
3727 and then Has_Discriminants (T)
3728 and then (Ada_Version < Ada_2005 or else Is_Indefinite_Subtype (T))
3729 then
3730 Set_Actual_Subtype (Id, Build_Default_Subtype (T, N));
3731 end if;
3732 end if;
3734 -- Now we can set the type of the object
3736 Set_Etype (Id, Act_T);
3738 -- Object is marked to be treated as volatile if type is volatile and
3739 -- we clear the Current_Value setting that may have been set above.
3741 if Treat_As_Volatile (Etype (Id)) then
3742 Set_Treat_As_Volatile (Id);
3743 Set_Current_Value (Id, Empty);
3744 end if;
3746 -- Deal with controlled types
3748 if Has_Controlled_Component (Etype (Id))
3749 or else Is_Controlled (Etype (Id))
3750 then
3751 if not Is_Library_Level_Entity (Id) then
3752 Check_Restriction (No_Nested_Finalization, N);
3753 else
3754 Validate_Controlled_Object (Id);
3755 end if;
3756 end if;
3758 if Has_Task (Etype (Id)) then
3759 Check_Restriction (No_Tasking, N);
3761 -- Deal with counting max tasks
3763 -- Nothing to do if inside a generic
3765 if Inside_A_Generic then
3766 null;
3768 -- If library level entity, then count tasks
3770 elsif Is_Library_Level_Entity (Id) then
3771 Check_Restriction (Max_Tasks, N, Count_Tasks (Etype (Id)));
3773 -- If not library level entity, then indicate we don't know max
3774 -- tasks and also check task hierarchy restriction and blocking
3775 -- operation (since starting a task is definitely blocking!)
3777 else
3778 Check_Restriction (Max_Tasks, N);
3779 Check_Restriction (No_Task_Hierarchy, N);
3780 Check_Potentially_Blocking_Operation (N);
3781 end if;
3783 -- A rather specialized test. If we see two tasks being declared
3784 -- of the same type in the same object declaration, and the task
3785 -- has an entry with an address clause, we know that program error
3786 -- will be raised at run time since we can't have two tasks with
3787 -- entries at the same address.
3789 if Is_Task_Type (Etype (Id)) and then More_Ids (N) then
3790 declare
3791 E : Entity_Id;
3793 begin
3794 E := First_Entity (Etype (Id));
3795 while Present (E) loop
3796 if Ekind (E) = E_Entry
3797 and then Present (Get_Attribute_Definition_Clause
3798 (E, Attribute_Address))
3799 then
3800 Error_Msg_N
3801 ("??more than one task with same entry address", N);
3802 Error_Msg_N
3803 ("\??Program_Error will be raised at run time", N);
3804 Insert_Action (N,
3805 Make_Raise_Program_Error (Loc,
3806 Reason => PE_Duplicated_Entry_Address));
3807 exit;
3808 end if;
3810 Next_Entity (E);
3811 end loop;
3812 end;
3813 end if;
3814 end if;
3816 -- Some simple constant-propagation: if the expression is a constant
3817 -- string initialized with a literal, share the literal. This avoids
3818 -- a run-time copy.
3820 if Present (E)
3821 and then Is_Entity_Name (E)
3822 and then Ekind (Entity (E)) = E_Constant
3823 and then Base_Type (Etype (E)) = Standard_String
3824 then
3825 declare
3826 Val : constant Node_Id := Constant_Value (Entity (E));
3827 begin
3828 if Present (Val)
3829 and then Nkind (Val) = N_String_Literal
3830 then
3831 Rewrite (E, New_Copy (Val));
3832 end if;
3833 end;
3834 end if;
3836 -- Another optimization: if the nominal subtype is unconstrained and
3837 -- the expression is a function call that returns an unconstrained
3838 -- type, rewrite the declaration as a renaming of the result of the
3839 -- call. The exceptions below are cases where the copy is expected,
3840 -- either by the back end (Aliased case) or by the semantics, as for
3841 -- initializing controlled types or copying tags for classwide types.
3843 if Present (E)
3844 and then Nkind (E) = N_Explicit_Dereference
3845 and then Nkind (Original_Node (E)) = N_Function_Call
3846 and then not Is_Library_Level_Entity (Id)
3847 and then not Is_Constrained (Underlying_Type (T))
3848 and then not Is_Aliased (Id)
3849 and then not Is_Class_Wide_Type (T)
3850 and then not Is_Controlled (T)
3851 and then not Has_Controlled_Component (Base_Type (T))
3852 and then Expander_Active
3853 then
3854 Rewrite (N,
3855 Make_Object_Renaming_Declaration (Loc,
3856 Defining_Identifier => Id,
3857 Access_Definition => Empty,
3858 Subtype_Mark => New_Occurrence_Of
3859 (Base_Type (Etype (Id)), Loc),
3860 Name => E));
3862 Set_Renamed_Object (Id, E);
3864 -- Force generation of debugging information for the constant and for
3865 -- the renamed function call.
3867 Set_Debug_Info_Needed (Id);
3868 Set_Debug_Info_Needed (Entity (Prefix (E)));
3869 end if;
3871 if Present (Prev_Entity)
3872 and then Is_Frozen (Prev_Entity)
3873 and then not Error_Posted (Id)
3874 then
3875 Error_Msg_N ("full constant declaration appears too late", N);
3876 end if;
3878 Check_Eliminated (Id);
3880 -- Deal with setting In_Private_Part flag if in private part
3882 if Ekind (Scope (Id)) = E_Package
3883 and then In_Private_Part (Scope (Id))
3884 then
3885 Set_In_Private_Part (Id);
3886 end if;
3888 -- Check for violation of No_Local_Timing_Events
3890 if Restriction_Check_Required (No_Local_Timing_Events)
3891 and then not Is_Library_Level_Entity (Id)
3892 and then Is_RTE (Etype (Id), RE_Timing_Event)
3893 then
3894 Check_Restriction (No_Local_Timing_Events, N);
3895 end if;
3897 <<Leave>>
3898 -- Initialize the refined state of a variable here because this is a
3899 -- common destination for legal and illegal object declarations.
3901 if Ekind (Id) = E_Variable then
3902 Set_Refined_State (Id, Empty);
3903 end if;
3905 if Has_Aspects (N) then
3906 Analyze_Aspect_Specifications (N, Id);
3907 end if;
3909 Analyze_Dimension (N);
3911 -- Verify whether the object declaration introduces an illegal hidden
3912 -- state within a package subject to a null abstract state.
3914 if Formal_Extensions and then Ekind (Id) = E_Variable then
3915 Check_No_Hidden_State (Id);
3916 end if;
3917 end Analyze_Object_Declaration;
3919 ---------------------------
3920 -- Analyze_Others_Choice --
3921 ---------------------------
3923 -- Nothing to do for the others choice node itself, the semantic analysis
3924 -- of the others choice will occur as part of the processing of the parent
3926 procedure Analyze_Others_Choice (N : Node_Id) is
3927 pragma Warnings (Off, N);
3928 begin
3929 null;
3930 end Analyze_Others_Choice;
3932 -------------------------------------------
3933 -- Analyze_Private_Extension_Declaration --
3934 -------------------------------------------
3936 procedure Analyze_Private_Extension_Declaration (N : Node_Id) is
3937 T : constant Entity_Id := Defining_Identifier (N);
3938 Indic : constant Node_Id := Subtype_Indication (N);
3939 Parent_Type : Entity_Id;
3940 Parent_Base : Entity_Id;
3942 begin
3943 -- Ada 2005 (AI-251): Decorate all names in list of ancestor interfaces
3945 if Is_Non_Empty_List (Interface_List (N)) then
3946 declare
3947 Intf : Node_Id;
3948 T : Entity_Id;
3950 begin
3951 Intf := First (Interface_List (N));
3952 while Present (Intf) loop
3953 T := Find_Type_Of_Subtype_Indic (Intf);
3955 Diagnose_Interface (Intf, T);
3956 Next (Intf);
3957 end loop;
3958 end;
3959 end if;
3961 Generate_Definition (T);
3963 -- For other than Ada 2012, just enter the name in the current scope
3965 if Ada_Version < Ada_2012 then
3966 Enter_Name (T);
3968 -- Ada 2012 (AI05-0162): Enter the name in the current scope handling
3969 -- case of private type that completes an incomplete type.
3971 else
3972 declare
3973 Prev : Entity_Id;
3975 begin
3976 Prev := Find_Type_Name (N);
3978 pragma Assert (Prev = T
3979 or else (Ekind (Prev) = E_Incomplete_Type
3980 and then Present (Full_View (Prev))
3981 and then Full_View (Prev) = T));
3982 end;
3983 end if;
3985 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
3986 Parent_Base := Base_Type (Parent_Type);
3988 if Parent_Type = Any_Type
3989 or else Etype (Parent_Type) = Any_Type
3990 then
3991 Set_Ekind (T, Ekind (Parent_Type));
3992 Set_Etype (T, Any_Type);
3993 goto Leave;
3995 elsif not Is_Tagged_Type (Parent_Type) then
3996 Error_Msg_N
3997 ("parent of type extension must be a tagged type ", Indic);
3998 goto Leave;
4000 elsif Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
4001 Error_Msg_N ("premature derivation of incomplete type", Indic);
4002 goto Leave;
4004 elsif Is_Concurrent_Type (Parent_Type) then
4005 Error_Msg_N
4006 ("parent type of a private extension cannot be "
4007 & "a synchronized tagged type (RM 3.9.1 (3/1))", N);
4009 Set_Etype (T, Any_Type);
4010 Set_Ekind (T, E_Limited_Private_Type);
4011 Set_Private_Dependents (T, New_Elmt_List);
4012 Set_Error_Posted (T);
4013 goto Leave;
4014 end if;
4016 -- Perhaps the parent type should be changed to the class-wide type's
4017 -- specific type in this case to prevent cascading errors ???
4019 if Is_Class_Wide_Type (Parent_Type) then
4020 Error_Msg_N
4021 ("parent of type extension must not be a class-wide type", Indic);
4022 goto Leave;
4023 end if;
4025 if (not Is_Package_Or_Generic_Package (Current_Scope)
4026 and then Nkind (Parent (N)) /= N_Generic_Subprogram_Declaration)
4027 or else In_Private_Part (Current_Scope)
4029 then
4030 Error_Msg_N ("invalid context for private extension", N);
4031 end if;
4033 -- Set common attributes
4035 Set_Is_Pure (T, Is_Pure (Current_Scope));
4036 Set_Scope (T, Current_Scope);
4037 Set_Ekind (T, E_Record_Type_With_Private);
4038 Init_Size_Align (T);
4040 Set_Etype (T, Parent_Base);
4041 Set_Has_Task (T, Has_Task (Parent_Base));
4043 Set_Convention (T, Convention (Parent_Type));
4044 Set_First_Rep_Item (T, First_Rep_Item (Parent_Type));
4045 Set_Is_First_Subtype (T);
4046 Make_Class_Wide_Type (T);
4048 if Unknown_Discriminants_Present (N) then
4049 Set_Discriminant_Constraint (T, No_Elist);
4050 end if;
4052 Build_Derived_Record_Type (N, Parent_Type, T);
4054 -- Propagate inherited invariant information. The new type has
4055 -- invariants, if the parent type has inheritable invariants,
4056 -- and these invariants can in turn be inherited.
4058 if Has_Inheritable_Invariants (Parent_Type) then
4059 Set_Has_Inheritable_Invariants (T);
4060 Set_Has_Invariants (T);
4061 end if;
4063 -- Ada 2005 (AI-443): Synchronized private extension or a rewritten
4064 -- synchronized formal derived type.
4066 if Ada_Version >= Ada_2005
4067 and then Synchronized_Present (N)
4068 then
4069 Set_Is_Limited_Record (T);
4071 -- Formal derived type case
4073 if Is_Generic_Type (T) then
4075 -- The parent must be a tagged limited type or a synchronized
4076 -- interface.
4078 if (not Is_Tagged_Type (Parent_Type)
4079 or else not Is_Limited_Type (Parent_Type))
4080 and then
4081 (not Is_Interface (Parent_Type)
4082 or else not Is_Synchronized_Interface (Parent_Type))
4083 then
4084 Error_Msg_NE ("parent type of & must be tagged limited " &
4085 "or synchronized", N, T);
4086 end if;
4088 -- The progenitors (if any) must be limited or synchronized
4089 -- interfaces.
4091 if Present (Interfaces (T)) then
4092 declare
4093 Iface : Entity_Id;
4094 Iface_Elmt : Elmt_Id;
4096 begin
4097 Iface_Elmt := First_Elmt (Interfaces (T));
4098 while Present (Iface_Elmt) loop
4099 Iface := Node (Iface_Elmt);
4101 if not Is_Limited_Interface (Iface)
4102 and then not Is_Synchronized_Interface (Iface)
4103 then
4104 Error_Msg_NE ("progenitor & must be limited " &
4105 "or synchronized", N, Iface);
4106 end if;
4108 Next_Elmt (Iface_Elmt);
4109 end loop;
4110 end;
4111 end if;
4113 -- Regular derived extension, the parent must be a limited or
4114 -- synchronized interface.
4116 else
4117 if not Is_Interface (Parent_Type)
4118 or else (not Is_Limited_Interface (Parent_Type)
4119 and then
4120 not Is_Synchronized_Interface (Parent_Type))
4121 then
4122 Error_Msg_NE
4123 ("parent type of & must be limited interface", N, T);
4124 end if;
4125 end if;
4127 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
4128 -- extension with a synchronized parent must be explicitly declared
4129 -- synchronized, because the full view will be a synchronized type.
4130 -- This must be checked before the check for limited types below,
4131 -- to ensure that types declared limited are not allowed to extend
4132 -- synchronized interfaces.
4134 elsif Is_Interface (Parent_Type)
4135 and then Is_Synchronized_Interface (Parent_Type)
4136 and then not Synchronized_Present (N)
4137 then
4138 Error_Msg_NE
4139 ("private extension of& must be explicitly synchronized",
4140 N, Parent_Type);
4142 elsif Limited_Present (N) then
4143 Set_Is_Limited_Record (T);
4145 if not Is_Limited_Type (Parent_Type)
4146 and then
4147 (not Is_Interface (Parent_Type)
4148 or else not Is_Limited_Interface (Parent_Type))
4149 then
4150 Error_Msg_NE ("parent type& of limited extension must be limited",
4151 N, Parent_Type);
4152 end if;
4153 end if;
4155 <<Leave>>
4156 if Has_Aspects (N) then
4157 Analyze_Aspect_Specifications (N, T);
4158 end if;
4159 end Analyze_Private_Extension_Declaration;
4161 ---------------------------------
4162 -- Analyze_Subtype_Declaration --
4163 ---------------------------------
4165 procedure Analyze_Subtype_Declaration
4166 (N : Node_Id;
4167 Skip : Boolean := False)
4169 Id : constant Entity_Id := Defining_Identifier (N);
4170 T : Entity_Id;
4171 R_Checks : Check_Result;
4173 begin
4174 Generate_Definition (Id);
4175 Set_Is_Pure (Id, Is_Pure (Current_Scope));
4176 Init_Size_Align (Id);
4178 -- The following guard condition on Enter_Name is to handle cases where
4179 -- the defining identifier has already been entered into the scope but
4180 -- the declaration as a whole needs to be analyzed.
4182 -- This case in particular happens for derived enumeration types. The
4183 -- derived enumeration type is processed as an inserted enumeration type
4184 -- declaration followed by a rewritten subtype declaration. The defining
4185 -- identifier, however, is entered into the name scope very early in the
4186 -- processing of the original type declaration and therefore needs to be
4187 -- avoided here, when the created subtype declaration is analyzed. (See
4188 -- Build_Derived_Types)
4190 -- This also happens when the full view of a private type is derived
4191 -- type with constraints. In this case the entity has been introduced
4192 -- in the private declaration.
4194 -- Finally this happens in some complex cases when validity checks are
4195 -- enabled, where the same subtype declaration may be analyzed twice.
4196 -- This can happen if the subtype is created by the pre-analysis of
4197 -- an attribute tht gives the range of a loop statement, and the loop
4198 -- itself appears within an if_statement that will be rewritten during
4199 -- expansion.
4201 if Skip
4202 or else (Present (Etype (Id))
4203 and then (Is_Private_Type (Etype (Id))
4204 or else Is_Task_Type (Etype (Id))
4205 or else Is_Rewrite_Substitution (N)))
4206 then
4207 null;
4209 elsif Current_Entity (Id) = Id then
4210 null;
4212 else
4213 Enter_Name (Id);
4214 end if;
4216 T := Process_Subtype (Subtype_Indication (N), N, Id, 'P');
4218 -- Class-wide equivalent types of records with unknown discriminants
4219 -- involve the generation of an itype which serves as the private view
4220 -- of a constrained record subtype. In such cases the base type of the
4221 -- current subtype we are processing is the private itype. Use the full
4222 -- of the private itype when decorating various attributes.
4224 if Is_Itype (T)
4225 and then Is_Private_Type (T)
4226 and then Present (Full_View (T))
4227 then
4228 T := Full_View (T);
4229 end if;
4231 -- Inherit common attributes
4233 Set_Is_Volatile (Id, Is_Volatile (T));
4234 Set_Treat_As_Volatile (Id, Treat_As_Volatile (T));
4235 Set_Is_Generic_Type (Id, Is_Generic_Type (Base_Type (T)));
4236 Set_Convention (Id, Convention (T));
4238 -- If ancestor has predicates then so does the subtype, and in addition
4239 -- we must delay the freeze to properly arrange predicate inheritance.
4241 -- The Ancestor_Type test is a big kludge, there seem to be cases in
4242 -- which T = ID, so the above tests and assignments do nothing???
4244 if Has_Predicates (T)
4245 or else (Present (Ancestor_Subtype (T))
4246 and then Has_Predicates (Ancestor_Subtype (T)))
4247 then
4248 Set_Has_Predicates (Id);
4249 Set_Has_Delayed_Freeze (Id);
4250 end if;
4252 -- Subtype of Boolean cannot have a constraint in SPARK
4254 if Is_Boolean_Type (T)
4255 and then Nkind (Subtype_Indication (N)) = N_Subtype_Indication
4256 then
4257 Check_SPARK_Restriction
4258 ("subtype of Boolean cannot have constraint", N);
4259 end if;
4261 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
4262 declare
4263 Cstr : constant Node_Id := Constraint (Subtype_Indication (N));
4264 One_Cstr : Node_Id;
4265 Low : Node_Id;
4266 High : Node_Id;
4268 begin
4269 if Nkind (Cstr) = N_Index_Or_Discriminant_Constraint then
4270 One_Cstr := First (Constraints (Cstr));
4271 while Present (One_Cstr) loop
4273 -- Index or discriminant constraint in SPARK must be a
4274 -- subtype mark.
4276 if not
4277 Nkind_In (One_Cstr, N_Identifier, N_Expanded_Name)
4278 then
4279 Check_SPARK_Restriction
4280 ("subtype mark required", One_Cstr);
4282 -- String subtype must have a lower bound of 1 in SPARK.
4283 -- Note that we do not need to test for the non-static case
4284 -- here, since that was already taken care of in
4285 -- Process_Range_Expr_In_Decl.
4287 elsif Base_Type (T) = Standard_String then
4288 Get_Index_Bounds (One_Cstr, Low, High);
4290 if Is_OK_Static_Expression (Low)
4291 and then Expr_Value (Low) /= 1
4292 then
4293 Check_SPARK_Restriction
4294 ("String subtype must have lower bound of 1", N);
4295 end if;
4296 end if;
4298 Next (One_Cstr);
4299 end loop;
4300 end if;
4301 end;
4302 end if;
4304 -- In the case where there is no constraint given in the subtype
4305 -- indication, Process_Subtype just returns the Subtype_Mark, so its
4306 -- semantic attributes must be established here.
4308 if Nkind (Subtype_Indication (N)) /= N_Subtype_Indication then
4309 Set_Etype (Id, Base_Type (T));
4311 -- Subtype of unconstrained array without constraint is not allowed
4312 -- in SPARK.
4314 if Is_Array_Type (T)
4315 and then not Is_Constrained (T)
4316 then
4317 Check_SPARK_Restriction
4318 ("subtype of unconstrained array must have constraint", N);
4319 end if;
4321 case Ekind (T) is
4322 when Array_Kind =>
4323 Set_Ekind (Id, E_Array_Subtype);
4324 Copy_Array_Subtype_Attributes (Id, T);
4326 when Decimal_Fixed_Point_Kind =>
4327 Set_Ekind (Id, E_Decimal_Fixed_Point_Subtype);
4328 Set_Digits_Value (Id, Digits_Value (T));
4329 Set_Delta_Value (Id, Delta_Value (T));
4330 Set_Scale_Value (Id, Scale_Value (T));
4331 Set_Small_Value (Id, Small_Value (T));
4332 Set_Scalar_Range (Id, Scalar_Range (T));
4333 Set_Machine_Radix_10 (Id, Machine_Radix_10 (T));
4334 Set_Is_Constrained (Id, Is_Constrained (T));
4335 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4336 Set_RM_Size (Id, RM_Size (T));
4338 when Enumeration_Kind =>
4339 Set_Ekind (Id, E_Enumeration_Subtype);
4340 Set_First_Literal (Id, First_Literal (Base_Type (T)));
4341 Set_Scalar_Range (Id, Scalar_Range (T));
4342 Set_Is_Character_Type (Id, Is_Character_Type (T));
4343 Set_Is_Constrained (Id, Is_Constrained (T));
4344 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4345 Set_RM_Size (Id, RM_Size (T));
4347 when Ordinary_Fixed_Point_Kind =>
4348 Set_Ekind (Id, E_Ordinary_Fixed_Point_Subtype);
4349 Set_Scalar_Range (Id, Scalar_Range (T));
4350 Set_Small_Value (Id, Small_Value (T));
4351 Set_Delta_Value (Id, Delta_Value (T));
4352 Set_Is_Constrained (Id, Is_Constrained (T));
4353 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4354 Set_RM_Size (Id, RM_Size (T));
4356 when Float_Kind =>
4357 Set_Ekind (Id, E_Floating_Point_Subtype);
4358 Set_Scalar_Range (Id, Scalar_Range (T));
4359 Set_Digits_Value (Id, Digits_Value (T));
4360 Set_Is_Constrained (Id, Is_Constrained (T));
4362 when Signed_Integer_Kind =>
4363 Set_Ekind (Id, E_Signed_Integer_Subtype);
4364 Set_Scalar_Range (Id, Scalar_Range (T));
4365 Set_Is_Constrained (Id, Is_Constrained (T));
4366 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4367 Set_RM_Size (Id, RM_Size (T));
4369 when Modular_Integer_Kind =>
4370 Set_Ekind (Id, E_Modular_Integer_Subtype);
4371 Set_Scalar_Range (Id, Scalar_Range (T));
4372 Set_Is_Constrained (Id, Is_Constrained (T));
4373 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4374 Set_RM_Size (Id, RM_Size (T));
4376 when Class_Wide_Kind =>
4377 Set_Ekind (Id, E_Class_Wide_Subtype);
4378 Set_First_Entity (Id, First_Entity (T));
4379 Set_Last_Entity (Id, Last_Entity (T));
4380 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4381 Set_Cloned_Subtype (Id, T);
4382 Set_Is_Tagged_Type (Id, True);
4383 Set_Has_Unknown_Discriminants
4384 (Id, True);
4386 if Ekind (T) = E_Class_Wide_Subtype then
4387 Set_Equivalent_Type (Id, Equivalent_Type (T));
4388 end if;
4390 when E_Record_Type | E_Record_Subtype =>
4391 Set_Ekind (Id, E_Record_Subtype);
4393 if Ekind (T) = E_Record_Subtype
4394 and then Present (Cloned_Subtype (T))
4395 then
4396 Set_Cloned_Subtype (Id, Cloned_Subtype (T));
4397 else
4398 Set_Cloned_Subtype (Id, T);
4399 end if;
4401 Set_First_Entity (Id, First_Entity (T));
4402 Set_Last_Entity (Id, Last_Entity (T));
4403 Set_Has_Discriminants (Id, Has_Discriminants (T));
4404 Set_Is_Constrained (Id, Is_Constrained (T));
4405 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
4406 Set_Has_Implicit_Dereference
4407 (Id, Has_Implicit_Dereference (T));
4408 Set_Has_Unknown_Discriminants
4409 (Id, Has_Unknown_Discriminants (T));
4411 if Has_Discriminants (T) then
4412 Set_Discriminant_Constraint
4413 (Id, Discriminant_Constraint (T));
4414 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4416 elsif Has_Unknown_Discriminants (Id) then
4417 Set_Discriminant_Constraint (Id, No_Elist);
4418 end if;
4420 if Is_Tagged_Type (T) then
4421 Set_Is_Tagged_Type (Id);
4422 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
4423 Set_Direct_Primitive_Operations
4424 (Id, Direct_Primitive_Operations (T));
4425 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4427 if Is_Interface (T) then
4428 Set_Is_Interface (Id);
4429 Set_Is_Limited_Interface (Id, Is_Limited_Interface (T));
4430 end if;
4431 end if;
4433 when Private_Kind =>
4434 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
4435 Set_Has_Discriminants (Id, Has_Discriminants (T));
4436 Set_Is_Constrained (Id, Is_Constrained (T));
4437 Set_First_Entity (Id, First_Entity (T));
4438 Set_Last_Entity (Id, Last_Entity (T));
4439 Set_Private_Dependents (Id, New_Elmt_List);
4440 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
4441 Set_Has_Implicit_Dereference
4442 (Id, Has_Implicit_Dereference (T));
4443 Set_Has_Unknown_Discriminants
4444 (Id, Has_Unknown_Discriminants (T));
4445 Set_Known_To_Have_Preelab_Init
4446 (Id, Known_To_Have_Preelab_Init (T));
4448 if Is_Tagged_Type (T) then
4449 Set_Is_Tagged_Type (Id);
4450 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
4451 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4452 Set_Direct_Primitive_Operations (Id,
4453 Direct_Primitive_Operations (T));
4454 end if;
4456 -- In general the attributes of the subtype of a private type
4457 -- are the attributes of the partial view of parent. However,
4458 -- the full view may be a discriminated type, and the subtype
4459 -- must share the discriminant constraint to generate correct
4460 -- calls to initialization procedures.
4462 if Has_Discriminants (T) then
4463 Set_Discriminant_Constraint
4464 (Id, Discriminant_Constraint (T));
4465 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4467 elsif Present (Full_View (T))
4468 and then Has_Discriminants (Full_View (T))
4469 then
4470 Set_Discriminant_Constraint
4471 (Id, Discriminant_Constraint (Full_View (T)));
4472 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4474 -- This would seem semantically correct, but apparently
4475 -- generates spurious errors about missing components ???
4477 -- Set_Has_Discriminants (Id);
4478 end if;
4480 Prepare_Private_Subtype_Completion (Id, N);
4482 -- If this is the subtype of a constrained private type with
4483 -- discriminants that has got a full view and we also have
4484 -- built a completion just above, show that the completion
4485 -- is a clone of the full view to the back-end.
4487 if Has_Discriminants (T)
4488 and then not Has_Unknown_Discriminants (T)
4489 and then not Is_Empty_Elmt_List (Discriminant_Constraint (T))
4490 and then Present (Full_View (T))
4491 and then Present (Full_View (Id))
4492 then
4493 Set_Cloned_Subtype (Full_View (Id), Full_View (T));
4494 end if;
4496 when Access_Kind =>
4497 Set_Ekind (Id, E_Access_Subtype);
4498 Set_Is_Constrained (Id, Is_Constrained (T));
4499 Set_Is_Access_Constant
4500 (Id, Is_Access_Constant (T));
4501 Set_Directly_Designated_Type
4502 (Id, Designated_Type (T));
4503 Set_Can_Never_Be_Null (Id, Can_Never_Be_Null (T));
4505 -- A Pure library_item must not contain the declaration of a
4506 -- named access type, except within a subprogram, generic
4507 -- subprogram, task unit, or protected unit, or if it has
4508 -- a specified Storage_Size of zero (RM05-10.2.1(15.4-15.5)).
4510 if Comes_From_Source (Id)
4511 and then In_Pure_Unit
4512 and then not In_Subprogram_Task_Protected_Unit
4513 and then not No_Pool_Assigned (Id)
4514 then
4515 Error_Msg_N
4516 ("named access types not allowed in pure unit", N);
4517 end if;
4519 when Concurrent_Kind =>
4520 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
4521 Set_Corresponding_Record_Type (Id,
4522 Corresponding_Record_Type (T));
4523 Set_First_Entity (Id, First_Entity (T));
4524 Set_First_Private_Entity (Id, First_Private_Entity (T));
4525 Set_Has_Discriminants (Id, Has_Discriminants (T));
4526 Set_Is_Constrained (Id, Is_Constrained (T));
4527 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
4528 Set_Last_Entity (Id, Last_Entity (T));
4530 if Has_Discriminants (T) then
4531 Set_Discriminant_Constraint (Id,
4532 Discriminant_Constraint (T));
4533 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4534 end if;
4536 when E_Incomplete_Type =>
4537 if Ada_Version >= Ada_2005 then
4539 -- In Ada 2005 an incomplete type can be explicitly tagged:
4540 -- propagate indication.
4542 Set_Ekind (Id, E_Incomplete_Subtype);
4543 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
4544 Set_Private_Dependents (Id, New_Elmt_List);
4546 -- Ada 2005 (AI-412): Decorate an incomplete subtype of an
4547 -- incomplete type visible through a limited with clause.
4549 if From_Limited_With (T)
4550 and then Present (Non_Limited_View (T))
4551 then
4552 Set_From_Limited_With (Id);
4553 Set_Non_Limited_View (Id, Non_Limited_View (T));
4555 -- Ada 2005 (AI-412): Add the regular incomplete subtype
4556 -- to the private dependents of the original incomplete
4557 -- type for future transformation.
4559 else
4560 Append_Elmt (Id, Private_Dependents (T));
4561 end if;
4563 -- If the subtype name denotes an incomplete type an error
4564 -- was already reported by Process_Subtype.
4566 else
4567 Set_Etype (Id, Any_Type);
4568 end if;
4570 when others =>
4571 raise Program_Error;
4572 end case;
4573 end if;
4575 if Etype (Id) = Any_Type then
4576 goto Leave;
4577 end if;
4579 -- Some common processing on all types
4581 Set_Size_Info (Id, T);
4582 Set_First_Rep_Item (Id, First_Rep_Item (T));
4584 -- If the parent type is a generic actual, so is the subtype. This may
4585 -- happen in a nested instance. Why Comes_From_Source test???
4587 if not Comes_From_Source (N) then
4588 Set_Is_Generic_Actual_Type (Id, Is_Generic_Actual_Type (T));
4589 end if;
4591 T := Etype (Id);
4593 Set_Is_Immediately_Visible (Id, True);
4594 Set_Depends_On_Private (Id, Has_Private_Component (T));
4595 Set_Is_Descendent_Of_Address (Id, Is_Descendent_Of_Address (T));
4597 if Is_Interface (T) then
4598 Set_Is_Interface (Id);
4599 end if;
4601 if Present (Generic_Parent_Type (N))
4602 and then
4603 (Nkind
4604 (Parent (Generic_Parent_Type (N))) /= N_Formal_Type_Declaration
4605 or else Nkind
4606 (Formal_Type_Definition (Parent (Generic_Parent_Type (N))))
4607 /= N_Formal_Private_Type_Definition)
4608 then
4609 if Is_Tagged_Type (Id) then
4611 -- If this is a generic actual subtype for a synchronized type,
4612 -- the primitive operations are those of the corresponding record
4613 -- for which there is a separate subtype declaration.
4615 if Is_Concurrent_Type (Id) then
4616 null;
4617 elsif Is_Class_Wide_Type (Id) then
4618 Derive_Subprograms (Generic_Parent_Type (N), Id, Etype (T));
4619 else
4620 Derive_Subprograms (Generic_Parent_Type (N), Id, T);
4621 end if;
4623 elsif Scope (Etype (Id)) /= Standard_Standard then
4624 Derive_Subprograms (Generic_Parent_Type (N), Id);
4625 end if;
4626 end if;
4628 if Is_Private_Type (T)
4629 and then Present (Full_View (T))
4630 then
4631 Conditional_Delay (Id, Full_View (T));
4633 -- The subtypes of components or subcomponents of protected types
4634 -- do not need freeze nodes, which would otherwise appear in the
4635 -- wrong scope (before the freeze node for the protected type). The
4636 -- proper subtypes are those of the subcomponents of the corresponding
4637 -- record.
4639 elsif Ekind (Scope (Id)) /= E_Protected_Type
4640 and then Present (Scope (Scope (Id))) -- error defense!
4641 and then Ekind (Scope (Scope (Id))) /= E_Protected_Type
4642 then
4643 Conditional_Delay (Id, T);
4644 end if;
4646 -- Check that Constraint_Error is raised for a scalar subtype indication
4647 -- when the lower or upper bound of a non-null range lies outside the
4648 -- range of the type mark.
4650 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
4651 if Is_Scalar_Type (Etype (Id))
4652 and then Scalar_Range (Id) /=
4653 Scalar_Range (Etype (Subtype_Mark
4654 (Subtype_Indication (N))))
4655 then
4656 Apply_Range_Check
4657 (Scalar_Range (Id),
4658 Etype (Subtype_Mark (Subtype_Indication (N))));
4660 -- In the array case, check compatibility for each index
4662 elsif Is_Array_Type (Etype (Id))
4663 and then Present (First_Index (Id))
4664 then
4665 -- This really should be a subprogram that finds the indications
4666 -- to check???
4668 declare
4669 Subt_Index : Node_Id := First_Index (Id);
4670 Target_Index : Node_Id :=
4671 First_Index (Etype
4672 (Subtype_Mark (Subtype_Indication (N))));
4673 Has_Dyn_Chk : Boolean := Has_Dynamic_Range_Check (N);
4675 begin
4676 while Present (Subt_Index) loop
4677 if ((Nkind (Subt_Index) = N_Identifier
4678 and then Ekind (Entity (Subt_Index)) in Scalar_Kind)
4679 or else Nkind (Subt_Index) = N_Subtype_Indication)
4680 and then
4681 Nkind (Scalar_Range (Etype (Subt_Index))) = N_Range
4682 then
4683 declare
4684 Target_Typ : constant Entity_Id :=
4685 Etype (Target_Index);
4686 begin
4687 R_Checks :=
4688 Get_Range_Checks
4689 (Scalar_Range (Etype (Subt_Index)),
4690 Target_Typ,
4691 Etype (Subt_Index),
4692 Defining_Identifier (N));
4694 -- Reset Has_Dynamic_Range_Check on the subtype to
4695 -- prevent elision of the index check due to a dynamic
4696 -- check generated for a preceding index (needed since
4697 -- Insert_Range_Checks tries to avoid generating
4698 -- redundant checks on a given declaration).
4700 Set_Has_Dynamic_Range_Check (N, False);
4702 Insert_Range_Checks
4703 (R_Checks,
4705 Target_Typ,
4706 Sloc (Defining_Identifier (N)));
4708 -- Record whether this index involved a dynamic check
4710 Has_Dyn_Chk :=
4711 Has_Dyn_Chk or else Has_Dynamic_Range_Check (N);
4712 end;
4713 end if;
4715 Next_Index (Subt_Index);
4716 Next_Index (Target_Index);
4717 end loop;
4719 -- Finally, mark whether the subtype involves dynamic checks
4721 Set_Has_Dynamic_Range_Check (N, Has_Dyn_Chk);
4722 end;
4723 end if;
4724 end if;
4726 -- Make sure that generic actual types are properly frozen. The subtype
4727 -- is marked as a generic actual type when the enclosing instance is
4728 -- analyzed, so here we identify the subtype from the tree structure.
4730 if Expander_Active
4731 and then Is_Generic_Actual_Type (Id)
4732 and then In_Instance
4733 and then not Comes_From_Source (N)
4734 and then Nkind (Subtype_Indication (N)) /= N_Subtype_Indication
4735 and then Is_Frozen (T)
4736 then
4737 Freeze_Before (N, Id);
4738 end if;
4740 Set_Optimize_Alignment_Flags (Id);
4741 Check_Eliminated (Id);
4743 <<Leave>>
4744 if Has_Aspects (N) then
4745 Analyze_Aspect_Specifications (N, Id);
4746 end if;
4748 Analyze_Dimension (N);
4749 end Analyze_Subtype_Declaration;
4751 --------------------------------
4752 -- Analyze_Subtype_Indication --
4753 --------------------------------
4755 procedure Analyze_Subtype_Indication (N : Node_Id) is
4756 T : constant Entity_Id := Subtype_Mark (N);
4757 R : constant Node_Id := Range_Expression (Constraint (N));
4759 begin
4760 Analyze (T);
4762 if R /= Error then
4763 Analyze (R);
4764 Set_Etype (N, Etype (R));
4765 Resolve (R, Entity (T));
4766 else
4767 Set_Error_Posted (R);
4768 Set_Error_Posted (T);
4769 end if;
4770 end Analyze_Subtype_Indication;
4772 --------------------------
4773 -- Analyze_Variant_Part --
4774 --------------------------
4776 procedure Analyze_Variant_Part (N : Node_Id) is
4777 Discr_Name : Node_Id;
4778 Discr_Type : Entity_Id;
4780 procedure Process_Variant (A : Node_Id);
4781 -- Analyze declarations for a single variant
4783 package Analyze_Variant_Choices is
4784 new Generic_Analyze_Choices (Process_Variant);
4785 use Analyze_Variant_Choices;
4787 ---------------------
4788 -- Process_Variant --
4789 ---------------------
4791 procedure Process_Variant (A : Node_Id) is
4792 CL : constant Node_Id := Component_List (A);
4793 begin
4794 if not Null_Present (CL) then
4795 Analyze_Declarations (Component_Items (CL));
4797 if Present (Variant_Part (CL)) then
4798 Analyze (Variant_Part (CL));
4799 end if;
4800 end if;
4801 end Process_Variant;
4803 -- Start of processing for Analyze_Variant_Part
4805 begin
4806 Discr_Name := Name (N);
4807 Analyze (Discr_Name);
4809 -- If Discr_Name bad, get out (prevent cascaded errors)
4811 if Etype (Discr_Name) = Any_Type then
4812 return;
4813 end if;
4815 -- Check invalid discriminant in variant part
4817 if Ekind (Entity (Discr_Name)) /= E_Discriminant then
4818 Error_Msg_N ("invalid discriminant name in variant part", Discr_Name);
4819 end if;
4821 Discr_Type := Etype (Entity (Discr_Name));
4823 if not Is_Discrete_Type (Discr_Type) then
4824 Error_Msg_N
4825 ("discriminant in a variant part must be of a discrete type",
4826 Name (N));
4827 return;
4828 end if;
4830 -- Now analyze the choices, which also analyzes the declarations that
4831 -- are associated with each choice.
4833 Analyze_Choices (Variants (N), Discr_Type);
4835 -- Note: we used to instantiate and call Check_Choices here to check
4836 -- that the choices covered the discriminant, but it's too early to do
4837 -- that because of statically predicated subtypes, whose analysis may
4838 -- be deferred to their freeze point which may be as late as the freeze
4839 -- point of the containing record. So this call is now to be found in
4840 -- Freeze_Record_Declaration.
4842 end Analyze_Variant_Part;
4844 ----------------------------
4845 -- Array_Type_Declaration --
4846 ----------------------------
4848 procedure Array_Type_Declaration (T : in out Entity_Id; Def : Node_Id) is
4849 Component_Def : constant Node_Id := Component_Definition (Def);
4850 Component_Typ : constant Node_Id := Subtype_Indication (Component_Def);
4851 Element_Type : Entity_Id;
4852 Implicit_Base : Entity_Id;
4853 Index : Node_Id;
4854 Related_Id : Entity_Id := Empty;
4855 Nb_Index : Nat;
4856 P : constant Node_Id := Parent (Def);
4857 Priv : Entity_Id;
4859 begin
4860 if Nkind (Def) = N_Constrained_Array_Definition then
4861 Index := First (Discrete_Subtype_Definitions (Def));
4862 else
4863 Index := First (Subtype_Marks (Def));
4864 end if;
4866 -- Find proper names for the implicit types which may be public. In case
4867 -- of anonymous arrays we use the name of the first object of that type
4868 -- as prefix.
4870 if No (T) then
4871 Related_Id := Defining_Identifier (P);
4872 else
4873 Related_Id := T;
4874 end if;
4876 Nb_Index := 1;
4877 while Present (Index) loop
4878 Analyze (Index);
4880 if not Nkind_In (Index, N_Identifier, N_Expanded_Name) then
4881 Check_SPARK_Restriction ("subtype mark required", Index);
4882 end if;
4884 -- Add a subtype declaration for each index of private array type
4885 -- declaration whose etype is also private. For example:
4887 -- package Pkg is
4888 -- type Index is private;
4889 -- private
4890 -- type Table is array (Index) of ...
4891 -- end;
4893 -- This is currently required by the expander for the internally
4894 -- generated equality subprogram of records with variant parts in
4895 -- which the etype of some component is such private type.
4897 if Ekind (Current_Scope) = E_Package
4898 and then In_Private_Part (Current_Scope)
4899 and then Has_Private_Declaration (Etype (Index))
4900 then
4901 declare
4902 Loc : constant Source_Ptr := Sloc (Def);
4903 New_E : Entity_Id;
4904 Decl : Entity_Id;
4906 begin
4907 New_E := Make_Temporary (Loc, 'T');
4908 Set_Is_Internal (New_E);
4910 Decl :=
4911 Make_Subtype_Declaration (Loc,
4912 Defining_Identifier => New_E,
4913 Subtype_Indication =>
4914 New_Occurrence_Of (Etype (Index), Loc));
4916 Insert_Before (Parent (Def), Decl);
4917 Analyze (Decl);
4918 Set_Etype (Index, New_E);
4920 -- If the index is a range the Entity attribute is not
4921 -- available. Example:
4923 -- package Pkg is
4924 -- type T is private;
4925 -- private
4926 -- type T is new Natural;
4927 -- Table : array (T(1) .. T(10)) of Boolean;
4928 -- end Pkg;
4930 if Nkind (Index) /= N_Range then
4931 Set_Entity (Index, New_E);
4932 end if;
4933 end;
4934 end if;
4936 Make_Index (Index, P, Related_Id, Nb_Index);
4938 -- Check error of subtype with predicate for index type
4940 Bad_Predicated_Subtype_Use
4941 ("subtype& has predicate, not allowed as index subtype",
4942 Index, Etype (Index));
4944 -- Move to next index
4946 Next_Index (Index);
4947 Nb_Index := Nb_Index + 1;
4948 end loop;
4950 -- Process subtype indication if one is present
4952 if Present (Component_Typ) then
4953 Element_Type := Process_Subtype (Component_Typ, P, Related_Id, 'C');
4955 Set_Etype (Component_Typ, Element_Type);
4957 if not Nkind_In (Component_Typ, N_Identifier, N_Expanded_Name) then
4958 Check_SPARK_Restriction ("subtype mark required", Component_Typ);
4959 end if;
4961 -- Ada 2005 (AI-230): Access Definition case
4963 else pragma Assert (Present (Access_Definition (Component_Def)));
4965 -- Indicate that the anonymous access type is created by the
4966 -- array type declaration.
4968 Element_Type := Access_Definition
4969 (Related_Nod => P,
4970 N => Access_Definition (Component_Def));
4971 Set_Is_Local_Anonymous_Access (Element_Type);
4973 -- Propagate the parent. This field is needed if we have to generate
4974 -- the master_id associated with an anonymous access to task type
4975 -- component (see Expand_N_Full_Type_Declaration.Build_Master)
4977 Set_Parent (Element_Type, Parent (T));
4979 -- Ada 2005 (AI-230): In case of components that are anonymous access
4980 -- types the level of accessibility depends on the enclosing type
4981 -- declaration
4983 Set_Scope (Element_Type, Current_Scope); -- Ada 2005 (AI-230)
4985 -- Ada 2005 (AI-254)
4987 declare
4988 CD : constant Node_Id :=
4989 Access_To_Subprogram_Definition
4990 (Access_Definition (Component_Def));
4991 begin
4992 if Present (CD) and then Protected_Present (CD) then
4993 Element_Type :=
4994 Replace_Anonymous_Access_To_Protected_Subprogram (Def);
4995 end if;
4996 end;
4997 end if;
4999 -- Constrained array case
5001 if No (T) then
5002 T := Create_Itype (E_Void, P, Related_Id, 'T');
5003 end if;
5005 if Nkind (Def) = N_Constrained_Array_Definition then
5007 -- Establish Implicit_Base as unconstrained base type
5009 Implicit_Base := Create_Itype (E_Array_Type, P, Related_Id, 'B');
5011 Set_Etype (Implicit_Base, Implicit_Base);
5012 Set_Scope (Implicit_Base, Current_Scope);
5013 Set_Has_Delayed_Freeze (Implicit_Base);
5015 -- The constrained array type is a subtype of the unconstrained one
5017 Set_Ekind (T, E_Array_Subtype);
5018 Init_Size_Align (T);
5019 Set_Etype (T, Implicit_Base);
5020 Set_Scope (T, Current_Scope);
5021 Set_Is_Constrained (T, True);
5022 Set_First_Index (T, First (Discrete_Subtype_Definitions (Def)));
5023 Set_Has_Delayed_Freeze (T);
5025 -- Complete setup of implicit base type
5027 Set_First_Index (Implicit_Base, First_Index (T));
5028 Set_Component_Type (Implicit_Base, Element_Type);
5029 Set_Has_Task (Implicit_Base, Has_Task (Element_Type));
5030 Set_Component_Size (Implicit_Base, Uint_0);
5031 Set_Packed_Array_Type (Implicit_Base, Empty);
5032 Set_Has_Controlled_Component
5033 (Implicit_Base, Has_Controlled_Component
5034 (Element_Type)
5035 or else Is_Controlled
5036 (Element_Type));
5037 Set_Finalize_Storage_Only
5038 (Implicit_Base, Finalize_Storage_Only
5039 (Element_Type));
5041 -- Unconstrained array case
5043 else
5044 Set_Ekind (T, E_Array_Type);
5045 Init_Size_Align (T);
5046 Set_Etype (T, T);
5047 Set_Scope (T, Current_Scope);
5048 Set_Component_Size (T, Uint_0);
5049 Set_Is_Constrained (T, False);
5050 Set_First_Index (T, First (Subtype_Marks (Def)));
5051 Set_Has_Delayed_Freeze (T, True);
5052 Set_Has_Task (T, Has_Task (Element_Type));
5053 Set_Has_Controlled_Component (T, Has_Controlled_Component
5054 (Element_Type)
5055 or else
5056 Is_Controlled (Element_Type));
5057 Set_Finalize_Storage_Only (T, Finalize_Storage_Only
5058 (Element_Type));
5059 end if;
5061 -- Common attributes for both cases
5063 Set_Component_Type (Base_Type (T), Element_Type);
5064 Set_Packed_Array_Type (T, Empty);
5066 if Aliased_Present (Component_Definition (Def)) then
5067 Check_SPARK_Restriction
5068 ("aliased is not allowed", Component_Definition (Def));
5069 Set_Has_Aliased_Components (Etype (T));
5070 end if;
5072 -- Ada 2005 (AI-231): Propagate the null-excluding attribute to the
5073 -- array type to ensure that objects of this type are initialized.
5075 if Ada_Version >= Ada_2005
5076 and then Can_Never_Be_Null (Element_Type)
5077 then
5078 Set_Can_Never_Be_Null (T);
5080 if Null_Exclusion_Present (Component_Definition (Def))
5082 -- No need to check itypes because in their case this check was
5083 -- done at their point of creation
5085 and then not Is_Itype (Element_Type)
5086 then
5087 Error_Msg_N
5088 ("`NOT NULL` not allowed (null already excluded)",
5089 Subtype_Indication (Component_Definition (Def)));
5090 end if;
5091 end if;
5093 Priv := Private_Component (Element_Type);
5095 if Present (Priv) then
5097 -- Check for circular definitions
5099 if Priv = Any_Type then
5100 Set_Component_Type (Etype (T), Any_Type);
5102 -- There is a gap in the visibility of operations on the composite
5103 -- type only if the component type is defined in a different scope.
5105 elsif Scope (Priv) = Current_Scope then
5106 null;
5108 elsif Is_Limited_Type (Priv) then
5109 Set_Is_Limited_Composite (Etype (T));
5110 Set_Is_Limited_Composite (T);
5111 else
5112 Set_Is_Private_Composite (Etype (T));
5113 Set_Is_Private_Composite (T);
5114 end if;
5115 end if;
5117 -- A syntax error in the declaration itself may lead to an empty index
5118 -- list, in which case do a minimal patch.
5120 if No (First_Index (T)) then
5121 Error_Msg_N ("missing index definition in array type declaration", T);
5123 declare
5124 Indexes : constant List_Id :=
5125 New_List (New_Occurrence_Of (Any_Id, Sloc (T)));
5126 begin
5127 Set_Discrete_Subtype_Definitions (Def, Indexes);
5128 Set_First_Index (T, First (Indexes));
5129 return;
5130 end;
5131 end if;
5133 -- Create a concatenation operator for the new type. Internal array
5134 -- types created for packed entities do not need such, they are
5135 -- compatible with the user-defined type.
5137 if Number_Dimensions (T) = 1
5138 and then not Is_Packed_Array_Type (T)
5139 then
5140 New_Concatenation_Op (T);
5141 end if;
5143 -- In the case of an unconstrained array the parser has already verified
5144 -- that all the indexes are unconstrained but we still need to make sure
5145 -- that the element type is constrained.
5147 if Is_Indefinite_Subtype (Element_Type) then
5148 Error_Msg_N
5149 ("unconstrained element type in array declaration",
5150 Subtype_Indication (Component_Def));
5152 elsif Is_Abstract_Type (Element_Type) then
5153 Error_Msg_N
5154 ("the type of a component cannot be abstract",
5155 Subtype_Indication (Component_Def));
5156 end if;
5158 -- There may be an invariant declared for the component type, but
5159 -- the construction of the component invariant checking procedure
5160 -- takes place during expansion.
5161 end Array_Type_Declaration;
5163 ------------------------------------------------------
5164 -- Replace_Anonymous_Access_To_Protected_Subprogram --
5165 ------------------------------------------------------
5167 function Replace_Anonymous_Access_To_Protected_Subprogram
5168 (N : Node_Id) return Entity_Id
5170 Loc : constant Source_Ptr := Sloc (N);
5172 Curr_Scope : constant Scope_Stack_Entry :=
5173 Scope_Stack.Table (Scope_Stack.Last);
5175 Anon : constant Entity_Id := Make_Temporary (Loc, 'S');
5177 Acc : Node_Id;
5178 -- Access definition in declaration
5180 Comp : Node_Id;
5181 -- Object definition or formal definition with an access definition
5183 Decl : Node_Id;
5184 -- Declaration of anonymous access to subprogram type
5186 Spec : Node_Id;
5187 -- Original specification in access to subprogram
5189 P : Node_Id;
5191 begin
5192 Set_Is_Internal (Anon);
5194 case Nkind (N) is
5195 when N_Component_Declaration |
5196 N_Unconstrained_Array_Definition |
5197 N_Constrained_Array_Definition =>
5198 Comp := Component_Definition (N);
5199 Acc := Access_Definition (Comp);
5201 when N_Discriminant_Specification =>
5202 Comp := Discriminant_Type (N);
5203 Acc := Comp;
5205 when N_Parameter_Specification =>
5206 Comp := Parameter_Type (N);
5207 Acc := Comp;
5209 when N_Access_Function_Definition =>
5210 Comp := Result_Definition (N);
5211 Acc := Comp;
5213 when N_Object_Declaration =>
5214 Comp := Object_Definition (N);
5215 Acc := Comp;
5217 when N_Function_Specification =>
5218 Comp := Result_Definition (N);
5219 Acc := Comp;
5221 when others =>
5222 raise Program_Error;
5223 end case;
5225 Spec := Access_To_Subprogram_Definition (Acc);
5227 Decl :=
5228 Make_Full_Type_Declaration (Loc,
5229 Defining_Identifier => Anon,
5230 Type_Definition => Copy_Separate_Tree (Spec));
5232 Mark_Rewrite_Insertion (Decl);
5234 -- In ASIS mode, analyze the profile on the original node, because
5235 -- the separate copy does not provide enough links to recover the
5236 -- original tree. Analysis is limited to type annotations, within
5237 -- a temporary scope that serves as an anonymous subprogram to collect
5238 -- otherwise useless temporaries and itypes.
5240 if ASIS_Mode then
5241 declare
5242 Typ : constant Entity_Id := Make_Temporary (Loc, 'S');
5244 begin
5245 if Nkind (Spec) = N_Access_Function_Definition then
5246 Set_Ekind (Typ, E_Function);
5247 else
5248 Set_Ekind (Typ, E_Procedure);
5249 end if;
5251 Set_Parent (Typ, N);
5252 Set_Scope (Typ, Current_Scope);
5253 Push_Scope (Typ);
5255 Process_Formals (Parameter_Specifications (Spec), Spec);
5257 if Nkind (Spec) = N_Access_Function_Definition then
5258 declare
5259 Def : constant Node_Id := Result_Definition (Spec);
5261 begin
5262 -- The result might itself be an anonymous access type, so
5263 -- have to recurse.
5265 if Nkind (Def) = N_Access_Definition then
5266 if Present (Access_To_Subprogram_Definition (Def)) then
5267 Set_Etype
5268 (Def,
5269 Replace_Anonymous_Access_To_Protected_Subprogram
5270 (Spec));
5271 else
5272 Find_Type (Subtype_Mark (Def));
5273 end if;
5275 else
5276 Find_Type (Def);
5277 end if;
5278 end;
5279 end if;
5281 End_Scope;
5282 end;
5283 end if;
5285 -- Insert the new declaration in the nearest enclosing scope. If the
5286 -- node is a body and N is its return type, the declaration belongs in
5287 -- the enclosing scope.
5289 P := Parent (N);
5291 if Nkind (P) = N_Subprogram_Body
5292 and then Nkind (N) = N_Function_Specification
5293 then
5294 P := Parent (P);
5295 end if;
5297 while Present (P) and then not Has_Declarations (P) loop
5298 P := Parent (P);
5299 end loop;
5301 pragma Assert (Present (P));
5303 if Nkind (P) = N_Package_Specification then
5304 Prepend (Decl, Visible_Declarations (P));
5305 else
5306 Prepend (Decl, Declarations (P));
5307 end if;
5309 -- Replace the anonymous type with an occurrence of the new declaration.
5310 -- In all cases the rewritten node does not have the null-exclusion
5311 -- attribute because (if present) it was already inherited by the
5312 -- anonymous entity (Anon). Thus, in case of components we do not
5313 -- inherit this attribute.
5315 if Nkind (N) = N_Parameter_Specification then
5316 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5317 Set_Etype (Defining_Identifier (N), Anon);
5318 Set_Null_Exclusion_Present (N, False);
5320 elsif Nkind (N) = N_Object_Declaration then
5321 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5322 Set_Etype (Defining_Identifier (N), Anon);
5324 elsif Nkind (N) = N_Access_Function_Definition then
5325 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5327 elsif Nkind (N) = N_Function_Specification then
5328 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5329 Set_Etype (Defining_Unit_Name (N), Anon);
5331 else
5332 Rewrite (Comp,
5333 Make_Component_Definition (Loc,
5334 Subtype_Indication => New_Occurrence_Of (Anon, Loc)));
5335 end if;
5337 Mark_Rewrite_Insertion (Comp);
5339 if Nkind_In (N, N_Object_Declaration, N_Access_Function_Definition) then
5340 Analyze (Decl);
5342 else
5343 -- Temporarily remove the current scope (record or subprogram) from
5344 -- the stack to add the new declarations to the enclosing scope.
5346 Scope_Stack.Decrement_Last;
5347 Analyze (Decl);
5348 Set_Is_Itype (Anon);
5349 Scope_Stack.Append (Curr_Scope);
5350 end if;
5352 Set_Ekind (Anon, E_Anonymous_Access_Protected_Subprogram_Type);
5353 Set_Can_Use_Internal_Rep (Anon, not Always_Compatible_Rep_On_Target);
5354 return Anon;
5355 end Replace_Anonymous_Access_To_Protected_Subprogram;
5357 -------------------------------
5358 -- Build_Derived_Access_Type --
5359 -------------------------------
5361 procedure Build_Derived_Access_Type
5362 (N : Node_Id;
5363 Parent_Type : Entity_Id;
5364 Derived_Type : Entity_Id)
5366 S : constant Node_Id := Subtype_Indication (Type_Definition (N));
5368 Desig_Type : Entity_Id;
5369 Discr : Entity_Id;
5370 Discr_Con_Elist : Elist_Id;
5371 Discr_Con_El : Elmt_Id;
5372 Subt : Entity_Id;
5374 begin
5375 -- Set the designated type so it is available in case this is an access
5376 -- to a self-referential type, e.g. a standard list type with a next
5377 -- pointer. Will be reset after subtype is built.
5379 Set_Directly_Designated_Type
5380 (Derived_Type, Designated_Type (Parent_Type));
5382 Subt := Process_Subtype (S, N);
5384 if Nkind (S) /= N_Subtype_Indication
5385 and then Subt /= Base_Type (Subt)
5386 then
5387 Set_Ekind (Derived_Type, E_Access_Subtype);
5388 end if;
5390 if Ekind (Derived_Type) = E_Access_Subtype then
5391 declare
5392 Pbase : constant Entity_Id := Base_Type (Parent_Type);
5393 Ibase : constant Entity_Id :=
5394 Create_Itype (Ekind (Pbase), N, Derived_Type, 'B');
5395 Svg_Chars : constant Name_Id := Chars (Ibase);
5396 Svg_Next_E : constant Entity_Id := Next_Entity (Ibase);
5398 begin
5399 Copy_Node (Pbase, Ibase);
5401 Set_Chars (Ibase, Svg_Chars);
5402 Set_Next_Entity (Ibase, Svg_Next_E);
5403 Set_Sloc (Ibase, Sloc (Derived_Type));
5404 Set_Scope (Ibase, Scope (Derived_Type));
5405 Set_Freeze_Node (Ibase, Empty);
5406 Set_Is_Frozen (Ibase, False);
5407 Set_Comes_From_Source (Ibase, False);
5408 Set_Is_First_Subtype (Ibase, False);
5410 Set_Etype (Ibase, Pbase);
5411 Set_Etype (Derived_Type, Ibase);
5412 end;
5413 end if;
5415 Set_Directly_Designated_Type
5416 (Derived_Type, Designated_Type (Subt));
5418 Set_Is_Constrained (Derived_Type, Is_Constrained (Subt));
5419 Set_Is_Access_Constant (Derived_Type, Is_Access_Constant (Parent_Type));
5420 Set_Size_Info (Derived_Type, Parent_Type);
5421 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
5422 Set_Depends_On_Private (Derived_Type,
5423 Has_Private_Component (Derived_Type));
5424 Conditional_Delay (Derived_Type, Subt);
5426 -- Ada 2005 (AI-231): Set the null-exclusion attribute, and verify
5427 -- that it is not redundant.
5429 if Null_Exclusion_Present (Type_Definition (N)) then
5430 Set_Can_Never_Be_Null (Derived_Type);
5432 if Can_Never_Be_Null (Parent_Type)
5433 and then False
5434 then
5435 Error_Msg_NE
5436 ("`NOT NULL` not allowed (& already excludes null)",
5437 N, Parent_Type);
5438 end if;
5440 elsif Can_Never_Be_Null (Parent_Type) then
5441 Set_Can_Never_Be_Null (Derived_Type);
5442 end if;
5444 -- Note: we do not copy the Storage_Size_Variable, since we always go to
5445 -- the root type for this information.
5447 -- Apply range checks to discriminants for derived record case
5448 -- ??? THIS CODE SHOULD NOT BE HERE REALLY.
5450 Desig_Type := Designated_Type (Derived_Type);
5451 if Is_Composite_Type (Desig_Type)
5452 and then (not Is_Array_Type (Desig_Type))
5453 and then Has_Discriminants (Desig_Type)
5454 and then Base_Type (Desig_Type) /= Desig_Type
5455 then
5456 Discr_Con_Elist := Discriminant_Constraint (Desig_Type);
5457 Discr_Con_El := First_Elmt (Discr_Con_Elist);
5459 Discr := First_Discriminant (Base_Type (Desig_Type));
5460 while Present (Discr_Con_El) loop
5461 Apply_Range_Check (Node (Discr_Con_El), Etype (Discr));
5462 Next_Elmt (Discr_Con_El);
5463 Next_Discriminant (Discr);
5464 end loop;
5465 end if;
5466 end Build_Derived_Access_Type;
5468 ------------------------------
5469 -- Build_Derived_Array_Type --
5470 ------------------------------
5472 procedure Build_Derived_Array_Type
5473 (N : Node_Id;
5474 Parent_Type : Entity_Id;
5475 Derived_Type : Entity_Id)
5477 Loc : constant Source_Ptr := Sloc (N);
5478 Tdef : constant Node_Id := Type_Definition (N);
5479 Indic : constant Node_Id := Subtype_Indication (Tdef);
5480 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
5481 Implicit_Base : Entity_Id;
5482 New_Indic : Node_Id;
5484 procedure Make_Implicit_Base;
5485 -- If the parent subtype is constrained, the derived type is a subtype
5486 -- of an implicit base type derived from the parent base.
5488 ------------------------
5489 -- Make_Implicit_Base --
5490 ------------------------
5492 procedure Make_Implicit_Base is
5493 begin
5494 Implicit_Base :=
5495 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
5497 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
5498 Set_Etype (Implicit_Base, Parent_Base);
5500 Copy_Array_Subtype_Attributes (Implicit_Base, Parent_Base);
5501 Copy_Array_Base_Type_Attributes (Implicit_Base, Parent_Base);
5503 Set_Has_Delayed_Freeze (Implicit_Base, True);
5504 end Make_Implicit_Base;
5506 -- Start of processing for Build_Derived_Array_Type
5508 begin
5509 if not Is_Constrained (Parent_Type) then
5510 if Nkind (Indic) /= N_Subtype_Indication then
5511 Set_Ekind (Derived_Type, E_Array_Type);
5513 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
5514 Copy_Array_Base_Type_Attributes (Derived_Type, Parent_Type);
5516 Set_Has_Delayed_Freeze (Derived_Type, True);
5518 else
5519 Make_Implicit_Base;
5520 Set_Etype (Derived_Type, Implicit_Base);
5522 New_Indic :=
5523 Make_Subtype_Declaration (Loc,
5524 Defining_Identifier => Derived_Type,
5525 Subtype_Indication =>
5526 Make_Subtype_Indication (Loc,
5527 Subtype_Mark => New_Reference_To (Implicit_Base, Loc),
5528 Constraint => Constraint (Indic)));
5530 Rewrite (N, New_Indic);
5531 Analyze (N);
5532 end if;
5534 else
5535 if Nkind (Indic) /= N_Subtype_Indication then
5536 Make_Implicit_Base;
5538 Set_Ekind (Derived_Type, Ekind (Parent_Type));
5539 Set_Etype (Derived_Type, Implicit_Base);
5540 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
5542 else
5543 Error_Msg_N ("illegal constraint on constrained type", Indic);
5544 end if;
5545 end if;
5547 -- If parent type is not a derived type itself, and is declared in
5548 -- closed scope (e.g. a subprogram), then we must explicitly introduce
5549 -- the new type's concatenation operator since Derive_Subprograms
5550 -- will not inherit the parent's operator. If the parent type is
5551 -- unconstrained, the operator is of the unconstrained base type.
5553 if Number_Dimensions (Parent_Type) = 1
5554 and then not Is_Limited_Type (Parent_Type)
5555 and then not Is_Derived_Type (Parent_Type)
5556 and then not Is_Package_Or_Generic_Package
5557 (Scope (Base_Type (Parent_Type)))
5558 then
5559 if not Is_Constrained (Parent_Type)
5560 and then Is_Constrained (Derived_Type)
5561 then
5562 New_Concatenation_Op (Implicit_Base);
5563 else
5564 New_Concatenation_Op (Derived_Type);
5565 end if;
5566 end if;
5567 end Build_Derived_Array_Type;
5569 -----------------------------------
5570 -- Build_Derived_Concurrent_Type --
5571 -----------------------------------
5573 procedure Build_Derived_Concurrent_Type
5574 (N : Node_Id;
5575 Parent_Type : Entity_Id;
5576 Derived_Type : Entity_Id)
5578 Loc : constant Source_Ptr := Sloc (N);
5580 Corr_Record : constant Entity_Id := Make_Temporary (Loc, 'C');
5581 Corr_Decl : Node_Id;
5582 Corr_Decl_Needed : Boolean;
5583 -- If the derived type has fewer discriminants than its parent, the
5584 -- corresponding record is also a derived type, in order to account for
5585 -- the bound discriminants. We create a full type declaration for it in
5586 -- this case.
5588 Constraint_Present : constant Boolean :=
5589 Nkind (Subtype_Indication (Type_Definition (N))) =
5590 N_Subtype_Indication;
5592 D_Constraint : Node_Id;
5593 New_Constraint : Elist_Id;
5594 Old_Disc : Entity_Id;
5595 New_Disc : Entity_Id;
5596 New_N : Node_Id;
5598 begin
5599 Set_Stored_Constraint (Derived_Type, No_Elist);
5600 Corr_Decl_Needed := False;
5601 Old_Disc := Empty;
5603 if Present (Discriminant_Specifications (N))
5604 and then Constraint_Present
5605 then
5606 Old_Disc := First_Discriminant (Parent_Type);
5607 New_Disc := First (Discriminant_Specifications (N));
5608 while Present (New_Disc) and then Present (Old_Disc) loop
5609 Next_Discriminant (Old_Disc);
5610 Next (New_Disc);
5611 end loop;
5612 end if;
5614 if Present (Old_Disc) and then Expander_Active then
5616 -- The new type has fewer discriminants, so we need to create a new
5617 -- corresponding record, which is derived from the corresponding
5618 -- record of the parent, and has a stored constraint that captures
5619 -- the values of the discriminant constraints. The corresponding
5620 -- record is needed only if expander is active and code generation is
5621 -- enabled.
5623 -- The type declaration for the derived corresponding record has the
5624 -- same discriminant part and constraints as the current declaration.
5625 -- Copy the unanalyzed tree to build declaration.
5627 Corr_Decl_Needed := True;
5628 New_N := Copy_Separate_Tree (N);
5630 Corr_Decl :=
5631 Make_Full_Type_Declaration (Loc,
5632 Defining_Identifier => Corr_Record,
5633 Discriminant_Specifications =>
5634 Discriminant_Specifications (New_N),
5635 Type_Definition =>
5636 Make_Derived_Type_Definition (Loc,
5637 Subtype_Indication =>
5638 Make_Subtype_Indication (Loc,
5639 Subtype_Mark =>
5640 New_Occurrence_Of
5641 (Corresponding_Record_Type (Parent_Type), Loc),
5642 Constraint =>
5643 Constraint
5644 (Subtype_Indication (Type_Definition (New_N))))));
5645 end if;
5647 -- Copy Storage_Size and Relative_Deadline variables if task case
5649 if Is_Task_Type (Parent_Type) then
5650 Set_Storage_Size_Variable (Derived_Type,
5651 Storage_Size_Variable (Parent_Type));
5652 Set_Relative_Deadline_Variable (Derived_Type,
5653 Relative_Deadline_Variable (Parent_Type));
5654 end if;
5656 if Present (Discriminant_Specifications (N)) then
5657 Push_Scope (Derived_Type);
5658 Check_Or_Process_Discriminants (N, Derived_Type);
5660 if Constraint_Present then
5661 New_Constraint :=
5662 Expand_To_Stored_Constraint
5663 (Parent_Type,
5664 Build_Discriminant_Constraints
5665 (Parent_Type,
5666 Subtype_Indication (Type_Definition (N)), True));
5667 end if;
5669 End_Scope;
5671 elsif Constraint_Present then
5673 -- Build constrained subtype, copying the constraint, and derive
5674 -- from it to create a derived constrained type.
5676 declare
5677 Loc : constant Source_Ptr := Sloc (N);
5678 Anon : constant Entity_Id :=
5679 Make_Defining_Identifier (Loc,
5680 Chars => New_External_Name (Chars (Derived_Type), 'T'));
5681 Decl : Node_Id;
5683 begin
5684 Decl :=
5685 Make_Subtype_Declaration (Loc,
5686 Defining_Identifier => Anon,
5687 Subtype_Indication =>
5688 New_Copy_Tree (Subtype_Indication (Type_Definition (N))));
5689 Insert_Before (N, Decl);
5690 Analyze (Decl);
5692 Rewrite (Subtype_Indication (Type_Definition (N)),
5693 New_Occurrence_Of (Anon, Loc));
5694 Set_Analyzed (Derived_Type, False);
5695 Analyze (N);
5696 return;
5697 end;
5698 end if;
5700 -- By default, operations and private data are inherited from parent.
5701 -- However, in the presence of bound discriminants, a new corresponding
5702 -- record will be created, see below.
5704 Set_Has_Discriminants
5705 (Derived_Type, Has_Discriminants (Parent_Type));
5706 Set_Corresponding_Record_Type
5707 (Derived_Type, Corresponding_Record_Type (Parent_Type));
5709 -- Is_Constrained is set according the parent subtype, but is set to
5710 -- False if the derived type is declared with new discriminants.
5712 Set_Is_Constrained
5713 (Derived_Type,
5714 (Is_Constrained (Parent_Type) or else Constraint_Present)
5715 and then not Present (Discriminant_Specifications (N)));
5717 if Constraint_Present then
5718 if not Has_Discriminants (Parent_Type) then
5719 Error_Msg_N ("untagged parent must have discriminants", N);
5721 elsif Present (Discriminant_Specifications (N)) then
5723 -- Verify that new discriminants are used to constrain old ones
5725 D_Constraint :=
5726 First
5727 (Constraints
5728 (Constraint (Subtype_Indication (Type_Definition (N)))));
5730 Old_Disc := First_Discriminant (Parent_Type);
5732 while Present (D_Constraint) loop
5733 if Nkind (D_Constraint) /= N_Discriminant_Association then
5735 -- Positional constraint. If it is a reference to a new
5736 -- discriminant, it constrains the corresponding old one.
5738 if Nkind (D_Constraint) = N_Identifier then
5739 New_Disc := First_Discriminant (Derived_Type);
5740 while Present (New_Disc) loop
5741 exit when Chars (New_Disc) = Chars (D_Constraint);
5742 Next_Discriminant (New_Disc);
5743 end loop;
5745 if Present (New_Disc) then
5746 Set_Corresponding_Discriminant (New_Disc, Old_Disc);
5747 end if;
5748 end if;
5750 Next_Discriminant (Old_Disc);
5752 -- if this is a named constraint, search by name for the old
5753 -- discriminants constrained by the new one.
5755 elsif Nkind (Expression (D_Constraint)) = N_Identifier then
5757 -- Find new discriminant with that name
5759 New_Disc := First_Discriminant (Derived_Type);
5760 while Present (New_Disc) loop
5761 exit when
5762 Chars (New_Disc) = Chars (Expression (D_Constraint));
5763 Next_Discriminant (New_Disc);
5764 end loop;
5766 if Present (New_Disc) then
5768 -- Verify that new discriminant renames some discriminant
5769 -- of the parent type, and associate the new discriminant
5770 -- with one or more old ones that it renames.
5772 declare
5773 Selector : Node_Id;
5775 begin
5776 Selector := First (Selector_Names (D_Constraint));
5777 while Present (Selector) loop
5778 Old_Disc := First_Discriminant (Parent_Type);
5779 while Present (Old_Disc) loop
5780 exit when Chars (Old_Disc) = Chars (Selector);
5781 Next_Discriminant (Old_Disc);
5782 end loop;
5784 if Present (Old_Disc) then
5785 Set_Corresponding_Discriminant
5786 (New_Disc, Old_Disc);
5787 end if;
5789 Next (Selector);
5790 end loop;
5791 end;
5792 end if;
5793 end if;
5795 Next (D_Constraint);
5796 end loop;
5798 New_Disc := First_Discriminant (Derived_Type);
5799 while Present (New_Disc) loop
5800 if No (Corresponding_Discriminant (New_Disc)) then
5801 Error_Msg_NE
5802 ("new discriminant& must constrain old one", N, New_Disc);
5804 elsif not
5805 Subtypes_Statically_Compatible
5806 (Etype (New_Disc),
5807 Etype (Corresponding_Discriminant (New_Disc)))
5808 then
5809 Error_Msg_NE
5810 ("& not statically compatible with parent discriminant",
5811 N, New_Disc);
5812 end if;
5814 Next_Discriminant (New_Disc);
5815 end loop;
5816 end if;
5818 elsif Present (Discriminant_Specifications (N)) then
5819 Error_Msg_N
5820 ("missing discriminant constraint in untagged derivation", N);
5821 end if;
5823 -- The entity chain of the derived type includes the new discriminants
5824 -- but shares operations with the parent.
5826 if Present (Discriminant_Specifications (N)) then
5827 Old_Disc := First_Discriminant (Parent_Type);
5828 while Present (Old_Disc) loop
5829 if No (Next_Entity (Old_Disc))
5830 or else Ekind (Next_Entity (Old_Disc)) /= E_Discriminant
5831 then
5832 Set_Next_Entity
5833 (Last_Entity (Derived_Type), Next_Entity (Old_Disc));
5834 exit;
5835 end if;
5837 Next_Discriminant (Old_Disc);
5838 end loop;
5840 else
5841 Set_First_Entity (Derived_Type, First_Entity (Parent_Type));
5842 if Has_Discriminants (Parent_Type) then
5843 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
5844 Set_Discriminant_Constraint (
5845 Derived_Type, Discriminant_Constraint (Parent_Type));
5846 end if;
5847 end if;
5849 Set_Last_Entity (Derived_Type, Last_Entity (Parent_Type));
5851 Set_Has_Completion (Derived_Type);
5853 if Corr_Decl_Needed then
5854 Set_Stored_Constraint (Derived_Type, New_Constraint);
5855 Insert_After (N, Corr_Decl);
5856 Analyze (Corr_Decl);
5857 Set_Corresponding_Record_Type (Derived_Type, Corr_Record);
5858 end if;
5859 end Build_Derived_Concurrent_Type;
5861 ------------------------------------
5862 -- Build_Derived_Enumeration_Type --
5863 ------------------------------------
5865 procedure Build_Derived_Enumeration_Type
5866 (N : Node_Id;
5867 Parent_Type : Entity_Id;
5868 Derived_Type : Entity_Id)
5870 Loc : constant Source_Ptr := Sloc (N);
5871 Def : constant Node_Id := Type_Definition (N);
5872 Indic : constant Node_Id := Subtype_Indication (Def);
5873 Implicit_Base : Entity_Id;
5874 Literal : Entity_Id;
5875 New_Lit : Entity_Id;
5876 Literals_List : List_Id;
5877 Type_Decl : Node_Id;
5878 Hi, Lo : Node_Id;
5879 Rang_Expr : Node_Id;
5881 begin
5882 -- Since types Standard.Character and Standard.[Wide_]Wide_Character do
5883 -- not have explicit literals lists we need to process types derived
5884 -- from them specially. This is handled by Derived_Standard_Character.
5885 -- If the parent type is a generic type, there are no literals either,
5886 -- and we construct the same skeletal representation as for the generic
5887 -- parent type.
5889 if Is_Standard_Character_Type (Parent_Type) then
5890 Derived_Standard_Character (N, Parent_Type, Derived_Type);
5892 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
5893 declare
5894 Lo : Node_Id;
5895 Hi : Node_Id;
5897 begin
5898 if Nkind (Indic) /= N_Subtype_Indication then
5899 Lo :=
5900 Make_Attribute_Reference (Loc,
5901 Attribute_Name => Name_First,
5902 Prefix => New_Reference_To (Derived_Type, Loc));
5903 Set_Etype (Lo, Derived_Type);
5905 Hi :=
5906 Make_Attribute_Reference (Loc,
5907 Attribute_Name => Name_Last,
5908 Prefix => New_Reference_To (Derived_Type, Loc));
5909 Set_Etype (Hi, Derived_Type);
5911 Set_Scalar_Range (Derived_Type,
5912 Make_Range (Loc,
5913 Low_Bound => Lo,
5914 High_Bound => Hi));
5915 else
5917 -- Analyze subtype indication and verify compatibility
5918 -- with parent type.
5920 if Base_Type (Process_Subtype (Indic, N)) /=
5921 Base_Type (Parent_Type)
5922 then
5923 Error_Msg_N
5924 ("illegal constraint for formal discrete type", N);
5925 end if;
5926 end if;
5927 end;
5929 else
5930 -- If a constraint is present, analyze the bounds to catch
5931 -- premature usage of the derived literals.
5933 if Nkind (Indic) = N_Subtype_Indication
5934 and then Nkind (Range_Expression (Constraint (Indic))) = N_Range
5935 then
5936 Analyze (Low_Bound (Range_Expression (Constraint (Indic))));
5937 Analyze (High_Bound (Range_Expression (Constraint (Indic))));
5938 end if;
5940 -- Introduce an implicit base type for the derived type even if there
5941 -- is no constraint attached to it, since this seems closer to the
5942 -- Ada semantics. Build a full type declaration tree for the derived
5943 -- type using the implicit base type as the defining identifier. The
5944 -- build a subtype declaration tree which applies the constraint (if
5945 -- any) have it replace the derived type declaration.
5947 Literal := First_Literal (Parent_Type);
5948 Literals_List := New_List;
5949 while Present (Literal)
5950 and then Ekind (Literal) = E_Enumeration_Literal
5951 loop
5952 -- Literals of the derived type have the same representation as
5953 -- those of the parent type, but this representation can be
5954 -- overridden by an explicit representation clause. Indicate
5955 -- that there is no explicit representation given yet. These
5956 -- derived literals are implicit operations of the new type,
5957 -- and can be overridden by explicit ones.
5959 if Nkind (Literal) = N_Defining_Character_Literal then
5960 New_Lit :=
5961 Make_Defining_Character_Literal (Loc, Chars (Literal));
5962 else
5963 New_Lit := Make_Defining_Identifier (Loc, Chars (Literal));
5964 end if;
5966 Set_Ekind (New_Lit, E_Enumeration_Literal);
5967 Set_Enumeration_Pos (New_Lit, Enumeration_Pos (Literal));
5968 Set_Enumeration_Rep (New_Lit, Enumeration_Rep (Literal));
5969 Set_Enumeration_Rep_Expr (New_Lit, Empty);
5970 Set_Alias (New_Lit, Literal);
5971 Set_Is_Known_Valid (New_Lit, True);
5973 Append (New_Lit, Literals_List);
5974 Next_Literal (Literal);
5975 end loop;
5977 Implicit_Base :=
5978 Make_Defining_Identifier (Sloc (Derived_Type),
5979 Chars => New_External_Name (Chars (Derived_Type), 'B'));
5981 -- Indicate the proper nature of the derived type. This must be done
5982 -- before analysis of the literals, to recognize cases when a literal
5983 -- may be hidden by a previous explicit function definition (cf.
5984 -- c83031a).
5986 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
5987 Set_Etype (Derived_Type, Implicit_Base);
5989 Type_Decl :=
5990 Make_Full_Type_Declaration (Loc,
5991 Defining_Identifier => Implicit_Base,
5992 Discriminant_Specifications => No_List,
5993 Type_Definition =>
5994 Make_Enumeration_Type_Definition (Loc, Literals_List));
5996 Mark_Rewrite_Insertion (Type_Decl);
5997 Insert_Before (N, Type_Decl);
5998 Analyze (Type_Decl);
6000 -- After the implicit base is analyzed its Etype needs to be changed
6001 -- to reflect the fact that it is derived from the parent type which
6002 -- was ignored during analysis. We also set the size at this point.
6004 Set_Etype (Implicit_Base, Parent_Type);
6006 Set_Size_Info (Implicit_Base, Parent_Type);
6007 Set_RM_Size (Implicit_Base, RM_Size (Parent_Type));
6008 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Type));
6010 -- Copy other flags from parent type
6012 Set_Has_Non_Standard_Rep
6013 (Implicit_Base, Has_Non_Standard_Rep
6014 (Parent_Type));
6015 Set_Has_Pragma_Ordered
6016 (Implicit_Base, Has_Pragma_Ordered
6017 (Parent_Type));
6018 Set_Has_Delayed_Freeze (Implicit_Base);
6020 -- Process the subtype indication including a validation check on the
6021 -- constraint, if any. If a constraint is given, its bounds must be
6022 -- implicitly converted to the new type.
6024 if Nkind (Indic) = N_Subtype_Indication then
6025 declare
6026 R : constant Node_Id :=
6027 Range_Expression (Constraint (Indic));
6029 begin
6030 if Nkind (R) = N_Range then
6031 Hi := Build_Scalar_Bound
6032 (High_Bound (R), Parent_Type, Implicit_Base);
6033 Lo := Build_Scalar_Bound
6034 (Low_Bound (R), Parent_Type, Implicit_Base);
6036 else
6037 -- Constraint is a Range attribute. Replace with explicit
6038 -- mention of the bounds of the prefix, which must be a
6039 -- subtype.
6041 Analyze (Prefix (R));
6042 Hi :=
6043 Convert_To (Implicit_Base,
6044 Make_Attribute_Reference (Loc,
6045 Attribute_Name => Name_Last,
6046 Prefix =>
6047 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
6049 Lo :=
6050 Convert_To (Implicit_Base,
6051 Make_Attribute_Reference (Loc,
6052 Attribute_Name => Name_First,
6053 Prefix =>
6054 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
6055 end if;
6056 end;
6058 else
6059 Hi :=
6060 Build_Scalar_Bound
6061 (Type_High_Bound (Parent_Type),
6062 Parent_Type, Implicit_Base);
6063 Lo :=
6064 Build_Scalar_Bound
6065 (Type_Low_Bound (Parent_Type),
6066 Parent_Type, Implicit_Base);
6067 end if;
6069 Rang_Expr :=
6070 Make_Range (Loc,
6071 Low_Bound => Lo,
6072 High_Bound => Hi);
6074 -- If we constructed a default range for the case where no range
6075 -- was given, then the expressions in the range must not freeze
6076 -- since they do not correspond to expressions in the source.
6078 if Nkind (Indic) /= N_Subtype_Indication then
6079 Set_Must_Not_Freeze (Lo);
6080 Set_Must_Not_Freeze (Hi);
6081 Set_Must_Not_Freeze (Rang_Expr);
6082 end if;
6084 Rewrite (N,
6085 Make_Subtype_Declaration (Loc,
6086 Defining_Identifier => Derived_Type,
6087 Subtype_Indication =>
6088 Make_Subtype_Indication (Loc,
6089 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
6090 Constraint =>
6091 Make_Range_Constraint (Loc,
6092 Range_Expression => Rang_Expr))));
6094 Analyze (N);
6096 -- Apply a range check. Since this range expression doesn't have an
6097 -- Etype, we have to specifically pass the Source_Typ parameter. Is
6098 -- this right???
6100 if Nkind (Indic) = N_Subtype_Indication then
6101 Apply_Range_Check (Range_Expression (Constraint (Indic)),
6102 Parent_Type,
6103 Source_Typ => Entity (Subtype_Mark (Indic)));
6104 end if;
6105 end if;
6106 end Build_Derived_Enumeration_Type;
6108 --------------------------------
6109 -- Build_Derived_Numeric_Type --
6110 --------------------------------
6112 procedure Build_Derived_Numeric_Type
6113 (N : Node_Id;
6114 Parent_Type : Entity_Id;
6115 Derived_Type : Entity_Id)
6117 Loc : constant Source_Ptr := Sloc (N);
6118 Tdef : constant Node_Id := Type_Definition (N);
6119 Indic : constant Node_Id := Subtype_Indication (Tdef);
6120 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
6121 No_Constraint : constant Boolean := Nkind (Indic) /=
6122 N_Subtype_Indication;
6123 Implicit_Base : Entity_Id;
6125 Lo : Node_Id;
6126 Hi : Node_Id;
6128 begin
6129 -- Process the subtype indication including a validation check on
6130 -- the constraint if any.
6132 Discard_Node (Process_Subtype (Indic, N));
6134 -- Introduce an implicit base type for the derived type even if there
6135 -- is no constraint attached to it, since this seems closer to the Ada
6136 -- semantics.
6138 Implicit_Base :=
6139 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
6141 Set_Etype (Implicit_Base, Parent_Base);
6142 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
6143 Set_Size_Info (Implicit_Base, Parent_Base);
6144 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Base));
6145 Set_Parent (Implicit_Base, Parent (Derived_Type));
6146 Set_Is_Known_Valid (Implicit_Base, Is_Known_Valid (Parent_Base));
6148 -- Set RM Size for discrete type or decimal fixed-point type
6149 -- Ordinary fixed-point is excluded, why???
6151 if Is_Discrete_Type (Parent_Base)
6152 or else Is_Decimal_Fixed_Point_Type (Parent_Base)
6153 then
6154 Set_RM_Size (Implicit_Base, RM_Size (Parent_Base));
6155 end if;
6157 Set_Has_Delayed_Freeze (Implicit_Base);
6159 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
6160 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
6162 Set_Scalar_Range (Implicit_Base,
6163 Make_Range (Loc,
6164 Low_Bound => Lo,
6165 High_Bound => Hi));
6167 if Has_Infinities (Parent_Base) then
6168 Set_Includes_Infinities (Scalar_Range (Implicit_Base));
6169 end if;
6171 -- The Derived_Type, which is the entity of the declaration, is a
6172 -- subtype of the implicit base. Its Ekind is a subtype, even in the
6173 -- absence of an explicit constraint.
6175 Set_Etype (Derived_Type, Implicit_Base);
6177 -- If we did not have a constraint, then the Ekind is set from the
6178 -- parent type (otherwise Process_Subtype has set the bounds)
6180 if No_Constraint then
6181 Set_Ekind (Derived_Type, Subtype_Kind (Ekind (Parent_Type)));
6182 end if;
6184 -- If we did not have a range constraint, then set the range from the
6185 -- parent type. Otherwise, the Process_Subtype call has set the bounds.
6187 if No_Constraint
6188 or else not Has_Range_Constraint (Indic)
6189 then
6190 Set_Scalar_Range (Derived_Type,
6191 Make_Range (Loc,
6192 Low_Bound => New_Copy_Tree (Type_Low_Bound (Parent_Type)),
6193 High_Bound => New_Copy_Tree (Type_High_Bound (Parent_Type))));
6194 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
6196 if Has_Infinities (Parent_Type) then
6197 Set_Includes_Infinities (Scalar_Range (Derived_Type));
6198 end if;
6200 Set_Is_Known_Valid (Derived_Type, Is_Known_Valid (Parent_Type));
6201 end if;
6203 Set_Is_Descendent_Of_Address (Derived_Type,
6204 Is_Descendent_Of_Address (Parent_Type));
6205 Set_Is_Descendent_Of_Address (Implicit_Base,
6206 Is_Descendent_Of_Address (Parent_Type));
6208 -- Set remaining type-specific fields, depending on numeric type
6210 if Is_Modular_Integer_Type (Parent_Type) then
6211 Set_Modulus (Implicit_Base, Modulus (Parent_Base));
6213 Set_Non_Binary_Modulus
6214 (Implicit_Base, Non_Binary_Modulus (Parent_Base));
6216 Set_Is_Known_Valid
6217 (Implicit_Base, Is_Known_Valid (Parent_Base));
6219 elsif Is_Floating_Point_Type (Parent_Type) then
6221 -- Digits of base type is always copied from the digits value of
6222 -- the parent base type, but the digits of the derived type will
6223 -- already have been set if there was a constraint present.
6225 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
6226 Set_Float_Rep (Implicit_Base, Float_Rep (Parent_Base));
6228 if No_Constraint then
6229 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Type));
6230 end if;
6232 elsif Is_Fixed_Point_Type (Parent_Type) then
6234 -- Small of base type and derived type are always copied from the
6235 -- parent base type, since smalls never change. The delta of the
6236 -- base type is also copied from the parent base type. However the
6237 -- delta of the derived type will have been set already if a
6238 -- constraint was present.
6240 Set_Small_Value (Derived_Type, Small_Value (Parent_Base));
6241 Set_Small_Value (Implicit_Base, Small_Value (Parent_Base));
6242 Set_Delta_Value (Implicit_Base, Delta_Value (Parent_Base));
6244 if No_Constraint then
6245 Set_Delta_Value (Derived_Type, Delta_Value (Parent_Type));
6246 end if;
6248 -- The scale and machine radix in the decimal case are always
6249 -- copied from the parent base type.
6251 if Is_Decimal_Fixed_Point_Type (Parent_Type) then
6252 Set_Scale_Value (Derived_Type, Scale_Value (Parent_Base));
6253 Set_Scale_Value (Implicit_Base, Scale_Value (Parent_Base));
6255 Set_Machine_Radix_10
6256 (Derived_Type, Machine_Radix_10 (Parent_Base));
6257 Set_Machine_Radix_10
6258 (Implicit_Base, Machine_Radix_10 (Parent_Base));
6260 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
6262 if No_Constraint then
6263 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Base));
6265 else
6266 -- the analysis of the subtype_indication sets the
6267 -- digits value of the derived type.
6269 null;
6270 end if;
6271 end if;
6272 end if;
6274 -- The type of the bounds is that of the parent type, and they
6275 -- must be converted to the derived type.
6277 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
6279 -- The implicit_base should be frozen when the derived type is frozen,
6280 -- but note that it is used in the conversions of the bounds. For fixed
6281 -- types we delay the determination of the bounds until the proper
6282 -- freezing point. For other numeric types this is rejected by GCC, for
6283 -- reasons that are currently unclear (???), so we choose to freeze the
6284 -- implicit base now. In the case of integers and floating point types
6285 -- this is harmless because subsequent representation clauses cannot
6286 -- affect anything, but it is still baffling that we cannot use the
6287 -- same mechanism for all derived numeric types.
6289 -- There is a further complication: actually some representation
6290 -- clauses can affect the implicit base type. For example, attribute
6291 -- definition clauses for stream-oriented attributes need to set the
6292 -- corresponding TSS entries on the base type, and this normally
6293 -- cannot be done after the base type is frozen, so the circuitry in
6294 -- Sem_Ch13.New_Stream_Subprogram must account for this possibility
6295 -- and not use Set_TSS in this case.
6297 -- There are also consequences for the case of delayed representation
6298 -- aspects for some cases. For example, a Size aspect is delayed and
6299 -- should not be evaluated to the freeze point. This early freezing
6300 -- means that the size attribute evaluation happens too early???
6302 if Is_Fixed_Point_Type (Parent_Type) then
6303 Conditional_Delay (Implicit_Base, Parent_Type);
6304 else
6305 Freeze_Before (N, Implicit_Base);
6306 end if;
6307 end Build_Derived_Numeric_Type;
6309 --------------------------------
6310 -- Build_Derived_Private_Type --
6311 --------------------------------
6313 procedure Build_Derived_Private_Type
6314 (N : Node_Id;
6315 Parent_Type : Entity_Id;
6316 Derived_Type : Entity_Id;
6317 Is_Completion : Boolean;
6318 Derive_Subps : Boolean := True)
6320 Loc : constant Source_Ptr := Sloc (N);
6321 Der_Base : Entity_Id;
6322 Discr : Entity_Id;
6323 Full_Decl : Node_Id := Empty;
6324 Full_Der : Entity_Id;
6325 Full_P : Entity_Id;
6326 Last_Discr : Entity_Id;
6327 Par_Scope : constant Entity_Id := Scope (Base_Type (Parent_Type));
6328 Swapped : Boolean := False;
6330 procedure Copy_And_Build;
6331 -- Copy derived type declaration, replace parent with its full view,
6332 -- and analyze new declaration.
6334 --------------------
6335 -- Copy_And_Build --
6336 --------------------
6338 procedure Copy_And_Build is
6339 Full_N : Node_Id;
6341 begin
6342 if Ekind (Parent_Type) in Record_Kind
6343 or else
6344 (Ekind (Parent_Type) in Enumeration_Kind
6345 and then not Is_Standard_Character_Type (Parent_Type)
6346 and then not Is_Generic_Type (Root_Type (Parent_Type)))
6347 then
6348 Full_N := New_Copy_Tree (N);
6349 Insert_After (N, Full_N);
6350 Build_Derived_Type (
6351 Full_N, Parent_Type, Full_Der, True, Derive_Subps => False);
6353 else
6354 Build_Derived_Type (
6355 N, Parent_Type, Full_Der, True, Derive_Subps => False);
6356 end if;
6357 end Copy_And_Build;
6359 -- Start of processing for Build_Derived_Private_Type
6361 begin
6362 if Is_Tagged_Type (Parent_Type) then
6363 Full_P := Full_View (Parent_Type);
6365 -- A type extension of a type with unknown discriminants is an
6366 -- indefinite type that the back-end cannot handle directly.
6367 -- We treat it as a private type, and build a completion that is
6368 -- derived from the full view of the parent, and hopefully has
6369 -- known discriminants.
6371 -- If the full view of the parent type has an underlying record view,
6372 -- use it to generate the underlying record view of this derived type
6373 -- (required for chains of derivations with unknown discriminants).
6375 -- Minor optimization: we avoid the generation of useless underlying
6376 -- record view entities if the private type declaration has unknown
6377 -- discriminants but its corresponding full view has no
6378 -- discriminants.
6380 if Has_Unknown_Discriminants (Parent_Type)
6381 and then Present (Full_P)
6382 and then (Has_Discriminants (Full_P)
6383 or else Present (Underlying_Record_View (Full_P)))
6384 and then not In_Open_Scopes (Par_Scope)
6385 and then Expander_Active
6386 then
6387 declare
6388 Full_Der : constant Entity_Id := Make_Temporary (Loc, 'T');
6389 New_Ext : constant Node_Id :=
6390 Copy_Separate_Tree
6391 (Record_Extension_Part (Type_Definition (N)));
6392 Decl : Node_Id;
6394 begin
6395 Build_Derived_Record_Type
6396 (N, Parent_Type, Derived_Type, Derive_Subps);
6398 -- Build anonymous completion, as a derivation from the full
6399 -- view of the parent. This is not a completion in the usual
6400 -- sense, because the current type is not private.
6402 Decl :=
6403 Make_Full_Type_Declaration (Loc,
6404 Defining_Identifier => Full_Der,
6405 Type_Definition =>
6406 Make_Derived_Type_Definition (Loc,
6407 Subtype_Indication =>
6408 New_Copy_Tree
6409 (Subtype_Indication (Type_Definition (N))),
6410 Record_Extension_Part => New_Ext));
6412 -- If the parent type has an underlying record view, use it
6413 -- here to build the new underlying record view.
6415 if Present (Underlying_Record_View (Full_P)) then
6416 pragma Assert
6417 (Nkind (Subtype_Indication (Type_Definition (Decl)))
6418 = N_Identifier);
6419 Set_Entity (Subtype_Indication (Type_Definition (Decl)),
6420 Underlying_Record_View (Full_P));
6421 end if;
6423 Install_Private_Declarations (Par_Scope);
6424 Install_Visible_Declarations (Par_Scope);
6425 Insert_Before (N, Decl);
6427 -- Mark entity as an underlying record view before analysis,
6428 -- to avoid generating the list of its primitive operations
6429 -- (which is not really required for this entity) and thus
6430 -- prevent spurious errors associated with missing overriding
6431 -- of abstract primitives (overridden only for Derived_Type).
6433 Set_Ekind (Full_Der, E_Record_Type);
6434 Set_Is_Underlying_Record_View (Full_Der);
6436 Analyze (Decl);
6438 pragma Assert (Has_Discriminants (Full_Der)
6439 and then not Has_Unknown_Discriminants (Full_Der));
6441 Uninstall_Declarations (Par_Scope);
6443 -- Freeze the underlying record view, to prevent generation of
6444 -- useless dispatching information, which is simply shared with
6445 -- the real derived type.
6447 Set_Is_Frozen (Full_Der);
6449 -- Set up links between real entity and underlying record view
6451 Set_Underlying_Record_View (Derived_Type, Base_Type (Full_Der));
6452 Set_Underlying_Record_View (Base_Type (Full_Der), Derived_Type);
6453 end;
6455 -- If discriminants are known, build derived record
6457 else
6458 Build_Derived_Record_Type
6459 (N, Parent_Type, Derived_Type, Derive_Subps);
6460 end if;
6462 return;
6464 elsif Has_Discriminants (Parent_Type) then
6465 if Present (Full_View (Parent_Type)) then
6466 if not Is_Completion then
6468 -- Copy declaration for subsequent analysis, to provide a
6469 -- completion for what is a private declaration. Indicate that
6470 -- the full type is internally generated.
6472 Full_Decl := New_Copy_Tree (N);
6473 Full_Der := New_Copy (Derived_Type);
6474 Set_Comes_From_Source (Full_Decl, False);
6475 Set_Comes_From_Source (Full_Der, False);
6476 Set_Parent (Full_Der, Full_Decl);
6478 Insert_After (N, Full_Decl);
6480 else
6481 -- If this is a completion, the full view being built is itself
6482 -- private. We build a subtype of the parent with the same
6483 -- constraints as this full view, to convey to the back end the
6484 -- constrained components and the size of this subtype. If the
6485 -- parent is constrained, its full view can serve as the
6486 -- underlying full view of the derived type.
6488 if No (Discriminant_Specifications (N)) then
6489 if Nkind (Subtype_Indication (Type_Definition (N))) =
6490 N_Subtype_Indication
6491 then
6492 Build_Underlying_Full_View (N, Derived_Type, Parent_Type);
6494 elsif Is_Constrained (Full_View (Parent_Type)) then
6495 Set_Underlying_Full_View
6496 (Derived_Type, Full_View (Parent_Type));
6497 end if;
6499 else
6500 -- If there are new discriminants, the parent subtype is
6501 -- constrained by them, but it is not clear how to build
6502 -- the Underlying_Full_View in this case???
6504 null;
6505 end if;
6506 end if;
6507 end if;
6509 -- Build partial view of derived type from partial view of parent
6511 Build_Derived_Record_Type
6512 (N, Parent_Type, Derived_Type, Derive_Subps);
6514 if Present (Full_View (Parent_Type)) and then not Is_Completion then
6515 if not In_Open_Scopes (Par_Scope)
6516 or else not In_Same_Source_Unit (N, Parent_Type)
6517 then
6518 -- Swap partial and full views temporarily
6520 Install_Private_Declarations (Par_Scope);
6521 Install_Visible_Declarations (Par_Scope);
6522 Swapped := True;
6523 end if;
6525 -- Build full view of derived type from full view of parent which
6526 -- is now installed. Subprograms have been derived on the partial
6527 -- view, the completion does not derive them anew.
6529 if not Is_Tagged_Type (Parent_Type) then
6531 -- If the parent is itself derived from another private type,
6532 -- installing the private declarations has not affected its
6533 -- privacy status, so use its own full view explicitly.
6535 if Is_Private_Type (Parent_Type) then
6536 Build_Derived_Record_Type
6537 (Full_Decl, Full_View (Parent_Type), Full_Der, False);
6538 else
6539 Build_Derived_Record_Type
6540 (Full_Decl, Parent_Type, Full_Der, False);
6541 end if;
6543 else
6544 -- If full view of parent is tagged, the completion inherits
6545 -- the proper primitive operations.
6547 Set_Defining_Identifier (Full_Decl, Full_Der);
6548 Build_Derived_Record_Type
6549 (Full_Decl, Parent_Type, Full_Der, Derive_Subps);
6550 end if;
6552 -- The full declaration has been introduced into the tree and
6553 -- processed in the step above. It should not be analyzed again
6554 -- (when encountered later in the current list of declarations)
6555 -- to prevent spurious name conflicts. The full entity remains
6556 -- invisible.
6558 Set_Analyzed (Full_Decl);
6560 if Swapped then
6561 Uninstall_Declarations (Par_Scope);
6563 if In_Open_Scopes (Par_Scope) then
6564 Install_Visible_Declarations (Par_Scope);
6565 end if;
6566 end if;
6568 Der_Base := Base_Type (Derived_Type);
6569 Set_Full_View (Derived_Type, Full_Der);
6570 Set_Full_View (Der_Base, Base_Type (Full_Der));
6572 -- Copy the discriminant list from full view to the partial views
6573 -- (base type and its subtype). Gigi requires that the partial and
6574 -- full views have the same discriminants.
6576 -- Note that since the partial view is pointing to discriminants
6577 -- in the full view, their scope will be that of the full view.
6578 -- This might cause some front end problems and need adjustment???
6580 Discr := First_Discriminant (Base_Type (Full_Der));
6581 Set_First_Entity (Der_Base, Discr);
6583 loop
6584 Last_Discr := Discr;
6585 Next_Discriminant (Discr);
6586 exit when No (Discr);
6587 end loop;
6589 Set_Last_Entity (Der_Base, Last_Discr);
6591 Set_First_Entity (Derived_Type, First_Entity (Der_Base));
6592 Set_Last_Entity (Derived_Type, Last_Entity (Der_Base));
6593 Set_Stored_Constraint (Full_Der, Stored_Constraint (Derived_Type));
6595 else
6596 -- If this is a completion, the derived type stays private and
6597 -- there is no need to create a further full view, except in the
6598 -- unusual case when the derivation is nested within a child unit,
6599 -- see below.
6601 null;
6602 end if;
6604 elsif Present (Full_View (Parent_Type))
6605 and then Has_Discriminants (Full_View (Parent_Type))
6606 then
6607 if Has_Unknown_Discriminants (Parent_Type)
6608 and then Nkind (Subtype_Indication (Type_Definition (N))) =
6609 N_Subtype_Indication
6610 then
6611 Error_Msg_N
6612 ("cannot constrain type with unknown discriminants",
6613 Subtype_Indication (Type_Definition (N)));
6614 return;
6615 end if;
6617 -- If full view of parent is a record type, build full view as a
6618 -- derivation from the parent's full view. Partial view remains
6619 -- private. For code generation and linking, the full view must have
6620 -- the same public status as the partial one. This full view is only
6621 -- needed if the parent type is in an enclosing scope, so that the
6622 -- full view may actually become visible, e.g. in a child unit. This
6623 -- is both more efficient, and avoids order of freezing problems with
6624 -- the added entities.
6626 if not Is_Private_Type (Full_View (Parent_Type))
6627 and then (In_Open_Scopes (Scope (Parent_Type)))
6628 then
6629 Full_Der :=
6630 Make_Defining_Identifier (Sloc (Derived_Type),
6631 Chars => Chars (Derived_Type));
6633 Set_Is_Itype (Full_Der);
6634 Set_Has_Private_Declaration (Full_Der);
6635 Set_Has_Private_Declaration (Derived_Type);
6636 Set_Associated_Node_For_Itype (Full_Der, N);
6637 Set_Parent (Full_Der, Parent (Derived_Type));
6638 Set_Full_View (Derived_Type, Full_Der);
6639 Set_Is_Public (Full_Der, Is_Public (Derived_Type));
6640 Full_P := Full_View (Parent_Type);
6641 Exchange_Declarations (Parent_Type);
6642 Copy_And_Build;
6643 Exchange_Declarations (Full_P);
6645 else
6646 Build_Derived_Record_Type
6647 (N, Full_View (Parent_Type), Derived_Type,
6648 Derive_Subps => False);
6650 -- Except in the context of the full view of the parent, there
6651 -- are no non-extension aggregates for the derived type.
6653 Set_Has_Private_Ancestor (Derived_Type);
6654 end if;
6656 -- In any case, the primitive operations are inherited from the
6657 -- parent type, not from the internal full view.
6659 Set_Etype (Base_Type (Derived_Type), Base_Type (Parent_Type));
6661 if Derive_Subps then
6662 Derive_Subprograms (Parent_Type, Derived_Type);
6663 end if;
6665 else
6666 -- Untagged type, No discriminants on either view
6668 if Nkind (Subtype_Indication (Type_Definition (N))) =
6669 N_Subtype_Indication
6670 then
6671 Error_Msg_N
6672 ("illegal constraint on type without discriminants", N);
6673 end if;
6675 if Present (Discriminant_Specifications (N))
6676 and then Present (Full_View (Parent_Type))
6677 and then not Is_Tagged_Type (Full_View (Parent_Type))
6678 then
6679 Error_Msg_N ("cannot add discriminants to untagged type", N);
6680 end if;
6682 Set_Stored_Constraint (Derived_Type, No_Elist);
6683 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
6684 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
6685 Set_Has_Controlled_Component
6686 (Derived_Type, Has_Controlled_Component
6687 (Parent_Type));
6689 -- Direct controlled types do not inherit Finalize_Storage_Only flag
6691 if not Is_Controlled (Parent_Type) then
6692 Set_Finalize_Storage_Only
6693 (Base_Type (Derived_Type), Finalize_Storage_Only (Parent_Type));
6694 end if;
6696 -- Construct the implicit full view by deriving from full view of the
6697 -- parent type. In order to get proper visibility, we install the
6698 -- parent scope and its declarations.
6700 -- ??? If the parent is untagged private and its completion is
6701 -- tagged, this mechanism will not work because we cannot derive from
6702 -- the tagged full view unless we have an extension.
6704 if Present (Full_View (Parent_Type))
6705 and then not Is_Tagged_Type (Full_View (Parent_Type))
6706 and then not Is_Completion
6707 then
6708 Full_Der :=
6709 Make_Defining_Identifier
6710 (Sloc (Derived_Type), Chars (Derived_Type));
6711 Set_Is_Itype (Full_Der);
6712 Set_Has_Private_Declaration (Full_Der);
6713 Set_Has_Private_Declaration (Derived_Type);
6714 Set_Associated_Node_For_Itype (Full_Der, N);
6715 Set_Parent (Full_Der, Parent (Derived_Type));
6716 Set_Full_View (Derived_Type, Full_Der);
6718 if not In_Open_Scopes (Par_Scope) then
6719 Install_Private_Declarations (Par_Scope);
6720 Install_Visible_Declarations (Par_Scope);
6721 Copy_And_Build;
6722 Uninstall_Declarations (Par_Scope);
6724 -- If parent scope is open and in another unit, and parent has a
6725 -- completion, then the derivation is taking place in the visible
6726 -- part of a child unit. In that case retrieve the full view of
6727 -- the parent momentarily.
6729 elsif not In_Same_Source_Unit (N, Parent_Type) then
6730 Full_P := Full_View (Parent_Type);
6731 Exchange_Declarations (Parent_Type);
6732 Copy_And_Build;
6733 Exchange_Declarations (Full_P);
6735 -- Otherwise it is a local derivation
6737 else
6738 Copy_And_Build;
6739 end if;
6741 Set_Scope (Full_Der, Current_Scope);
6742 Set_Is_First_Subtype (Full_Der,
6743 Is_First_Subtype (Derived_Type));
6744 Set_Has_Size_Clause (Full_Der, False);
6745 Set_Has_Alignment_Clause (Full_Der, False);
6746 Set_Next_Entity (Full_Der, Empty);
6747 Set_Has_Delayed_Freeze (Full_Der);
6748 Set_Is_Frozen (Full_Der, False);
6749 Set_Freeze_Node (Full_Der, Empty);
6750 Set_Depends_On_Private (Full_Der,
6751 Has_Private_Component (Full_Der));
6752 Set_Public_Status (Full_Der);
6753 end if;
6754 end if;
6756 Set_Has_Unknown_Discriminants (Derived_Type,
6757 Has_Unknown_Discriminants (Parent_Type));
6759 if Is_Private_Type (Derived_Type) then
6760 Set_Private_Dependents (Derived_Type, New_Elmt_List);
6761 end if;
6763 if Is_Private_Type (Parent_Type)
6764 and then Base_Type (Parent_Type) = Parent_Type
6765 and then In_Open_Scopes (Scope (Parent_Type))
6766 then
6767 Append_Elmt (Derived_Type, Private_Dependents (Parent_Type));
6769 -- Check for unusual case where a type completed by a private
6770 -- derivation occurs within a package nested in a child unit, and
6771 -- the parent is declared in an ancestor.
6773 if Is_Child_Unit (Scope (Current_Scope))
6774 and then Is_Completion
6775 and then In_Private_Part (Current_Scope)
6776 and then Scope (Parent_Type) /= Current_Scope
6778 -- Note that if the parent has a completion in the private part,
6779 -- (which is itself a derivation from some other private type)
6780 -- it is that completion that is visible, there is no full view
6781 -- available, and no special processing is needed.
6783 and then Present (Full_View (Parent_Type))
6784 then
6785 -- In this case, the full view of the parent type will become
6786 -- visible in the body of the enclosing child, and only then will
6787 -- the current type be possibly non-private. We build an
6788 -- underlying full view that will be installed when the enclosing
6789 -- child body is compiled.
6791 Full_Der :=
6792 Make_Defining_Identifier
6793 (Sloc (Derived_Type), Chars (Derived_Type));
6794 Set_Is_Itype (Full_Der);
6795 Build_Itype_Reference (Full_Der, N);
6797 -- The full view will be used to swap entities on entry/exit to
6798 -- the body, and must appear in the entity list for the package.
6800 Append_Entity (Full_Der, Scope (Derived_Type));
6801 Set_Has_Private_Declaration (Full_Der);
6802 Set_Has_Private_Declaration (Derived_Type);
6803 Set_Associated_Node_For_Itype (Full_Der, N);
6804 Set_Parent (Full_Der, Parent (Derived_Type));
6805 Full_P := Full_View (Parent_Type);
6806 Exchange_Declarations (Parent_Type);
6807 Copy_And_Build;
6808 Exchange_Declarations (Full_P);
6809 Set_Underlying_Full_View (Derived_Type, Full_Der);
6810 end if;
6811 end if;
6812 end Build_Derived_Private_Type;
6814 -------------------------------
6815 -- Build_Derived_Record_Type --
6816 -------------------------------
6818 -- 1. INTRODUCTION
6820 -- Ideally we would like to use the same model of type derivation for
6821 -- tagged and untagged record types. Unfortunately this is not quite
6822 -- possible because the semantics of representation clauses is different
6823 -- for tagged and untagged records under inheritance. Consider the
6824 -- following:
6826 -- type R (...) is [tagged] record ... end record;
6827 -- type T (...) is new R (...) [with ...];
6829 -- The representation clauses for T can specify a completely different
6830 -- record layout from R's. Hence the same component can be placed in two
6831 -- very different positions in objects of type T and R. If R and T are
6832 -- tagged types, representation clauses for T can only specify the layout
6833 -- of non inherited components, thus components that are common in R and T
6834 -- have the same position in objects of type R and T.
6836 -- This has two implications. The first is that the entire tree for R's
6837 -- declaration needs to be copied for T in the untagged case, so that T
6838 -- can be viewed as a record type of its own with its own representation
6839 -- clauses. The second implication is the way we handle discriminants.
6840 -- Specifically, in the untagged case we need a way to communicate to Gigi
6841 -- what are the real discriminants in the record, while for the semantics
6842 -- we need to consider those introduced by the user to rename the
6843 -- discriminants in the parent type. This is handled by introducing the
6844 -- notion of stored discriminants. See below for more.
6846 -- Fortunately the way regular components are inherited can be handled in
6847 -- the same way in tagged and untagged types.
6849 -- To complicate things a bit more the private view of a private extension
6850 -- cannot be handled in the same way as the full view (for one thing the
6851 -- semantic rules are somewhat different). We will explain what differs
6852 -- below.
6854 -- 2. DISCRIMINANTS UNDER INHERITANCE
6856 -- The semantic rules governing the discriminants of derived types are
6857 -- quite subtle.
6859 -- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new
6860 -- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART]
6862 -- If parent type has discriminants, then the discriminants that are
6863 -- declared in the derived type are [3.4 (11)]:
6865 -- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if
6866 -- there is one;
6868 -- o Otherwise, each discriminant of the parent type (implicitly declared
6869 -- in the same order with the same specifications). In this case, the
6870 -- discriminants are said to be "inherited", or if unknown in the parent
6871 -- are also unknown in the derived type.
6873 -- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]:
6875 -- o The parent subtype shall be constrained;
6877 -- o If the parent type is not a tagged type, then each discriminant of
6878 -- the derived type shall be used in the constraint defining a parent
6879 -- subtype. [Implementation note: This ensures that the new discriminant
6880 -- can share storage with an existing discriminant.]
6882 -- For the derived type each discriminant of the parent type is either
6883 -- inherited, constrained to equal some new discriminant of the derived
6884 -- type, or constrained to the value of an expression.
6886 -- When inherited or constrained to equal some new discriminant, the
6887 -- parent discriminant and the discriminant of the derived type are said
6888 -- to "correspond".
6890 -- If a discriminant of the parent type is constrained to a specific value
6891 -- in the derived type definition, then the discriminant is said to be
6892 -- "specified" by that derived type definition.
6894 -- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES
6896 -- We have spoken about stored discriminants in point 1 (introduction)
6897 -- above. There are two sort of stored discriminants: implicit and
6898 -- explicit. As long as the derived type inherits the same discriminants as
6899 -- the root record type, stored discriminants are the same as regular
6900 -- discriminants, and are said to be implicit. However, if any discriminant
6901 -- in the root type was renamed in the derived type, then the derived
6902 -- type will contain explicit stored discriminants. Explicit stored
6903 -- discriminants are discriminants in addition to the semantically visible
6904 -- discriminants defined for the derived type. Stored discriminants are
6905 -- used by Gigi to figure out what are the physical discriminants in
6906 -- objects of the derived type (see precise definition in einfo.ads).
6907 -- As an example, consider the following:
6909 -- type R (D1, D2, D3 : Int) is record ... end record;
6910 -- type T1 is new R;
6911 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1);
6912 -- type T3 is new T2;
6913 -- type T4 (Y : Int) is new T3 (Y, 99);
6915 -- The following table summarizes the discriminants and stored
6916 -- discriminants in R and T1 through T4.
6918 -- Type Discrim Stored Discrim Comment
6919 -- R (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in R
6920 -- T1 (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in T1
6921 -- T2 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T2
6922 -- T3 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T3
6923 -- T4 (Y) (D1, D2, D3) Girder discrims EXPLICIT in T4
6925 -- Field Corresponding_Discriminant (abbreviated CD below) allows us to
6926 -- find the corresponding discriminant in the parent type, while
6927 -- Original_Record_Component (abbreviated ORC below), the actual physical
6928 -- component that is renamed. Finally the field Is_Completely_Hidden
6929 -- (abbreviated ICH below) is set for all explicit stored discriminants
6930 -- (see einfo.ads for more info). For the above example this gives:
6932 -- Discrim CD ORC ICH
6933 -- ^^^^^^^ ^^ ^^^ ^^^
6934 -- D1 in R empty itself no
6935 -- D2 in R empty itself no
6936 -- D3 in R empty itself no
6938 -- D1 in T1 D1 in R itself no
6939 -- D2 in T1 D2 in R itself no
6940 -- D3 in T1 D3 in R itself no
6942 -- X1 in T2 D3 in T1 D3 in T2 no
6943 -- X2 in T2 D1 in T1 D1 in T2 no
6944 -- D1 in T2 empty itself yes
6945 -- D2 in T2 empty itself yes
6946 -- D3 in T2 empty itself yes
6948 -- X1 in T3 X1 in T2 D3 in T3 no
6949 -- X2 in T3 X2 in T2 D1 in T3 no
6950 -- D1 in T3 empty itself yes
6951 -- D2 in T3 empty itself yes
6952 -- D3 in T3 empty itself yes
6954 -- Y in T4 X1 in T3 D3 in T3 no
6955 -- D1 in T3 empty itself yes
6956 -- D2 in T3 empty itself yes
6957 -- D3 in T3 empty itself yes
6959 -- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES
6961 -- Type derivation for tagged types is fairly straightforward. If no
6962 -- discriminants are specified by the derived type, these are inherited
6963 -- from the parent. No explicit stored discriminants are ever necessary.
6964 -- The only manipulation that is done to the tree is that of adding a
6965 -- _parent field with parent type and constrained to the same constraint
6966 -- specified for the parent in the derived type definition. For instance:
6968 -- type R (D1, D2, D3 : Int) is tagged record ... end record;
6969 -- type T1 is new R with null record;
6970 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record;
6972 -- are changed into:
6974 -- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record
6975 -- _parent : R (D1, D2, D3);
6976 -- end record;
6978 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record
6979 -- _parent : T1 (X2, 88, X1);
6980 -- end record;
6982 -- The discriminants actually present in R, T1 and T2 as well as their CD,
6983 -- ORC and ICH fields are:
6985 -- Discrim CD ORC ICH
6986 -- ^^^^^^^ ^^ ^^^ ^^^
6987 -- D1 in R empty itself no
6988 -- D2 in R empty itself no
6989 -- D3 in R empty itself no
6991 -- D1 in T1 D1 in R D1 in R no
6992 -- D2 in T1 D2 in R D2 in R no
6993 -- D3 in T1 D3 in R D3 in R no
6995 -- X1 in T2 D3 in T1 D3 in R no
6996 -- X2 in T2 D1 in T1 D1 in R no
6998 -- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS
7000 -- Regardless of whether we dealing with a tagged or untagged type
7001 -- we will transform all derived type declarations of the form
7003 -- type T is new R (...) [with ...];
7004 -- or
7005 -- subtype S is R (...);
7006 -- type T is new S [with ...];
7007 -- into
7008 -- type BT is new R [with ...];
7009 -- subtype T is BT (...);
7011 -- That is, the base derived type is constrained only if it has no
7012 -- discriminants. The reason for doing this is that GNAT's semantic model
7013 -- assumes that a base type with discriminants is unconstrained.
7015 -- Note that, strictly speaking, the above transformation is not always
7016 -- correct. Consider for instance the following excerpt from ACVC b34011a:
7018 -- procedure B34011A is
7019 -- type REC (D : integer := 0) is record
7020 -- I : Integer;
7021 -- end record;
7023 -- package P is
7024 -- type T6 is new Rec;
7025 -- function F return T6;
7026 -- end P;
7028 -- use P;
7029 -- package Q6 is
7030 -- type U is new T6 (Q6.F.I); -- ERROR: Q6.F.
7031 -- end Q6;
7033 -- The definition of Q6.U is illegal. However transforming Q6.U into
7035 -- type BaseU is new T6;
7036 -- subtype U is BaseU (Q6.F.I)
7038 -- turns U into a legal subtype, which is incorrect. To avoid this problem
7039 -- we always analyze the constraint (in this case (Q6.F.I)) before applying
7040 -- the transformation described above.
7042 -- There is another instance where the above transformation is incorrect.
7043 -- Consider:
7045 -- package Pack is
7046 -- type Base (D : Integer) is tagged null record;
7047 -- procedure P (X : Base);
7049 -- type Der is new Base (2) with null record;
7050 -- procedure P (X : Der);
7051 -- end Pack;
7053 -- Then the above transformation turns this into
7055 -- type Der_Base is new Base with null record;
7056 -- -- procedure P (X : Base) is implicitly inherited here
7057 -- -- as procedure P (X : Der_Base).
7059 -- subtype Der is Der_Base (2);
7060 -- procedure P (X : Der);
7061 -- -- The overriding of P (X : Der_Base) is illegal since we
7062 -- -- have a parameter conformance problem.
7064 -- To get around this problem, after having semantically processed Der_Base
7065 -- and the rewritten subtype declaration for Der, we copy Der_Base field
7066 -- Discriminant_Constraint from Der so that when parameter conformance is
7067 -- checked when P is overridden, no semantic errors are flagged.
7069 -- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS
7071 -- Regardless of whether we are dealing with a tagged or untagged type
7072 -- we will transform all derived type declarations of the form
7074 -- type R (D1, .., Dn : ...) is [tagged] record ...;
7075 -- type T is new R [with ...];
7076 -- into
7077 -- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...];
7079 -- The reason for such transformation is that it allows us to implement a
7080 -- very clean form of component inheritance as explained below.
7082 -- Note that this transformation is not achieved by direct tree rewriting
7083 -- and manipulation, but rather by redoing the semantic actions that the
7084 -- above transformation will entail. This is done directly in routine
7085 -- Inherit_Components.
7087 -- 7. TYPE DERIVATION AND COMPONENT INHERITANCE
7089 -- In both tagged and untagged derived types, regular non discriminant
7090 -- components are inherited in the derived type from the parent type. In
7091 -- the absence of discriminants component, inheritance is straightforward
7092 -- as components can simply be copied from the parent.
7094 -- If the parent has discriminants, inheriting components constrained with
7095 -- these discriminants requires caution. Consider the following example:
7097 -- type R (D1, D2 : Positive) is [tagged] record
7098 -- S : String (D1 .. D2);
7099 -- end record;
7101 -- type T1 is new R [with null record];
7102 -- type T2 (X : positive) is new R (1, X) [with null record];
7104 -- As explained in 6. above, T1 is rewritten as
7105 -- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record];
7106 -- which makes the treatment for T1 and T2 identical.
7108 -- What we want when inheriting S, is that references to D1 and D2 in R are
7109 -- replaced with references to their correct constraints, i.e. D1 and D2 in
7110 -- T1 and 1 and X in T2. So all R's discriminant references are replaced
7111 -- with either discriminant references in the derived type or expressions.
7112 -- This replacement is achieved as follows: before inheriting R's
7113 -- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is
7114 -- created in the scope of T1 (resp. scope of T2) so that discriminants D1
7115 -- and D2 of T1 are visible (resp. discriminant X of T2 is visible).
7116 -- For T2, for instance, this has the effect of replacing String (D1 .. D2)
7117 -- by String (1 .. X).
7119 -- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS
7121 -- We explain here the rules governing private type extensions relevant to
7122 -- type derivation. These rules are explained on the following example:
7124 -- type D [(...)] is new A [(...)] with private; <-- partial view
7125 -- type D [(...)] is new P [(...)] with null record; <-- full view
7127 -- Type A is called the ancestor subtype of the private extension.
7128 -- Type P is the parent type of the full view of the private extension. It
7129 -- must be A or a type derived from A.
7131 -- The rules concerning the discriminants of private type extensions are
7132 -- [7.3(10-13)]:
7134 -- o If a private extension inherits known discriminants from the ancestor
7135 -- subtype, then the full view shall also inherit its discriminants from
7136 -- the ancestor subtype and the parent subtype of the full view shall be
7137 -- constrained if and only if the ancestor subtype is constrained.
7139 -- o If a partial view has unknown discriminants, then the full view may
7140 -- define a definite or an indefinite subtype, with or without
7141 -- discriminants.
7143 -- o If a partial view has neither known nor unknown discriminants, then
7144 -- the full view shall define a definite subtype.
7146 -- o If the ancestor subtype of a private extension has constrained
7147 -- discriminants, then the parent subtype of the full view shall impose a
7148 -- statically matching constraint on those discriminants.
7150 -- This means that only the following forms of private extensions are
7151 -- allowed:
7153 -- type D is new A with private; <-- partial view
7154 -- type D is new P with null record; <-- full view
7156 -- If A has no discriminants than P has no discriminants, otherwise P must
7157 -- inherit A's discriminants.
7159 -- type D is new A (...) with private; <-- partial view
7160 -- type D is new P (:::) with null record; <-- full view
7162 -- P must inherit A's discriminants and (...) and (:::) must statically
7163 -- match.
7165 -- subtype A is R (...);
7166 -- type D is new A with private; <-- partial view
7167 -- type D is new P with null record; <-- full view
7169 -- P must have inherited R's discriminants and must be derived from A or
7170 -- any of its subtypes.
7172 -- type D (..) is new A with private; <-- partial view
7173 -- type D (..) is new P [(:::)] with null record; <-- full view
7175 -- No specific constraints on P's discriminants or constraint (:::).
7176 -- Note that A can be unconstrained, but the parent subtype P must either
7177 -- be constrained or (:::) must be present.
7179 -- type D (..) is new A [(...)] with private; <-- partial view
7180 -- type D (..) is new P [(:::)] with null record; <-- full view
7182 -- P's constraints on A's discriminants must statically match those
7183 -- imposed by (...).
7185 -- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS
7187 -- The full view of a private extension is handled exactly as described
7188 -- above. The model chose for the private view of a private extension is
7189 -- the same for what concerns discriminants (i.e. they receive the same
7190 -- treatment as in the tagged case). However, the private view of the
7191 -- private extension always inherits the components of the parent base,
7192 -- without replacing any discriminant reference. Strictly speaking this is
7193 -- incorrect. However, Gigi never uses this view to generate code so this
7194 -- is a purely semantic issue. In theory, a set of transformations similar
7195 -- to those given in 5. and 6. above could be applied to private views of
7196 -- private extensions to have the same model of component inheritance as
7197 -- for non private extensions. However, this is not done because it would
7198 -- further complicate private type processing. Semantically speaking, this
7199 -- leaves us in an uncomfortable situation. As an example consider:
7201 -- package Pack is
7202 -- type R (D : integer) is tagged record
7203 -- S : String (1 .. D);
7204 -- end record;
7205 -- procedure P (X : R);
7206 -- type T is new R (1) with private;
7207 -- private
7208 -- type T is new R (1) with null record;
7209 -- end;
7211 -- This is transformed into:
7213 -- package Pack is
7214 -- type R (D : integer) is tagged record
7215 -- S : String (1 .. D);
7216 -- end record;
7217 -- procedure P (X : R);
7218 -- type T is new R (1) with private;
7219 -- private
7220 -- type BaseT is new R with null record;
7221 -- subtype T is BaseT (1);
7222 -- end;
7224 -- (strictly speaking the above is incorrect Ada)
7226 -- From the semantic standpoint the private view of private extension T
7227 -- should be flagged as constrained since one can clearly have
7229 -- Obj : T;
7231 -- in a unit withing Pack. However, when deriving subprograms for the
7232 -- private view of private extension T, T must be seen as unconstrained
7233 -- since T has discriminants (this is a constraint of the current
7234 -- subprogram derivation model). Thus, when processing the private view of
7235 -- a private extension such as T, we first mark T as unconstrained, we
7236 -- process it, we perform program derivation and just before returning from
7237 -- Build_Derived_Record_Type we mark T as constrained.
7239 -- ??? Are there are other uncomfortable cases that we will have to
7240 -- deal with.
7242 -- 10. RECORD_TYPE_WITH_PRIVATE complications
7244 -- Types that are derived from a visible record type and have a private
7245 -- extension present other peculiarities. They behave mostly like private
7246 -- types, but if they have primitive operations defined, these will not
7247 -- have the proper signatures for further inheritance, because other
7248 -- primitive operations will use the implicit base that we define for
7249 -- private derivations below. This affect subprogram inheritance (see
7250 -- Derive_Subprograms for details). We also derive the implicit base from
7251 -- the base type of the full view, so that the implicit base is a record
7252 -- type and not another private type, This avoids infinite loops.
7254 procedure Build_Derived_Record_Type
7255 (N : Node_Id;
7256 Parent_Type : Entity_Id;
7257 Derived_Type : Entity_Id;
7258 Derive_Subps : Boolean := True)
7260 Discriminant_Specs : constant Boolean :=
7261 Present (Discriminant_Specifications (N));
7262 Is_Tagged : constant Boolean := Is_Tagged_Type (Parent_Type);
7263 Loc : constant Source_Ptr := Sloc (N);
7264 Private_Extension : constant Boolean :=
7265 Nkind (N) = N_Private_Extension_Declaration;
7266 Assoc_List : Elist_Id;
7267 Constraint_Present : Boolean;
7268 Constrs : Elist_Id;
7269 Discrim : Entity_Id;
7270 Indic : Node_Id;
7271 Inherit_Discrims : Boolean := False;
7272 Last_Discrim : Entity_Id;
7273 New_Base : Entity_Id;
7274 New_Decl : Node_Id;
7275 New_Discrs : Elist_Id;
7276 New_Indic : Node_Id;
7277 Parent_Base : Entity_Id;
7278 Save_Etype : Entity_Id;
7279 Save_Discr_Constr : Elist_Id;
7280 Save_Next_Entity : Entity_Id;
7281 Type_Def : Node_Id;
7283 Discs : Elist_Id := New_Elmt_List;
7284 -- An empty Discs list means that there were no constraints in the
7285 -- subtype indication or that there was an error processing it.
7287 begin
7288 if Ekind (Parent_Type) = E_Record_Type_With_Private
7289 and then Present (Full_View (Parent_Type))
7290 and then Has_Discriminants (Parent_Type)
7291 then
7292 Parent_Base := Base_Type (Full_View (Parent_Type));
7293 else
7294 Parent_Base := Base_Type (Parent_Type);
7295 end if;
7297 -- AI05-0115 : if this is a derivation from a private type in some
7298 -- other scope that may lead to invisible components for the derived
7299 -- type, mark it accordingly.
7301 if Is_Private_Type (Parent_Type) then
7302 if Scope (Parent_Type) = Scope (Derived_Type) then
7303 null;
7305 elsif In_Open_Scopes (Scope (Parent_Type))
7306 and then In_Private_Part (Scope (Parent_Type))
7307 then
7308 null;
7310 else
7311 Set_Has_Private_Ancestor (Derived_Type);
7312 end if;
7314 else
7315 Set_Has_Private_Ancestor
7316 (Derived_Type, Has_Private_Ancestor (Parent_Type));
7317 end if;
7319 -- Before we start the previously documented transformations, here is
7320 -- little fix for size and alignment of tagged types. Normally when we
7321 -- derive type D from type P, we copy the size and alignment of P as the
7322 -- default for D, and in the absence of explicit representation clauses
7323 -- for D, the size and alignment are indeed the same as the parent.
7325 -- But this is wrong for tagged types, since fields may be added, and
7326 -- the default size may need to be larger, and the default alignment may
7327 -- need to be larger.
7329 -- We therefore reset the size and alignment fields in the tagged case.
7330 -- Note that the size and alignment will in any case be at least as
7331 -- large as the parent type (since the derived type has a copy of the
7332 -- parent type in the _parent field)
7334 -- The type is also marked as being tagged here, which is needed when
7335 -- processing components with a self-referential anonymous access type
7336 -- in the call to Check_Anonymous_Access_Components below. Note that
7337 -- this flag is also set later on for completeness.
7339 if Is_Tagged then
7340 Set_Is_Tagged_Type (Derived_Type);
7341 Init_Size_Align (Derived_Type);
7342 end if;
7344 -- STEP 0a: figure out what kind of derived type declaration we have
7346 if Private_Extension then
7347 Type_Def := N;
7348 Set_Ekind (Derived_Type, E_Record_Type_With_Private);
7350 else
7351 Type_Def := Type_Definition (N);
7353 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
7354 -- Parent_Base can be a private type or private extension. However,
7355 -- for tagged types with an extension the newly added fields are
7356 -- visible and hence the Derived_Type is always an E_Record_Type.
7357 -- (except that the parent may have its own private fields).
7358 -- For untagged types we preserve the Ekind of the Parent_Base.
7360 if Present (Record_Extension_Part (Type_Def)) then
7361 Set_Ekind (Derived_Type, E_Record_Type);
7363 -- Create internal access types for components with anonymous
7364 -- access types.
7366 if Ada_Version >= Ada_2005 then
7367 Check_Anonymous_Access_Components
7368 (N, Derived_Type, Derived_Type,
7369 Component_List (Record_Extension_Part (Type_Def)));
7370 end if;
7372 else
7373 Set_Ekind (Derived_Type, Ekind (Parent_Base));
7374 end if;
7375 end if;
7377 -- Indic can either be an N_Identifier if the subtype indication
7378 -- contains no constraint or an N_Subtype_Indication if the subtype
7379 -- indication has a constraint.
7381 Indic := Subtype_Indication (Type_Def);
7382 Constraint_Present := (Nkind (Indic) = N_Subtype_Indication);
7384 -- Check that the type has visible discriminants. The type may be
7385 -- a private type with unknown discriminants whose full view has
7386 -- discriminants which are invisible.
7388 if Constraint_Present then
7389 if not Has_Discriminants (Parent_Base)
7390 or else
7391 (Has_Unknown_Discriminants (Parent_Base)
7392 and then Is_Private_Type (Parent_Base))
7393 then
7394 Error_Msg_N
7395 ("invalid constraint: type has no discriminant",
7396 Constraint (Indic));
7398 Constraint_Present := False;
7399 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
7401 elsif Is_Constrained (Parent_Type) then
7402 Error_Msg_N
7403 ("invalid constraint: parent type is already constrained",
7404 Constraint (Indic));
7406 Constraint_Present := False;
7407 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
7408 end if;
7409 end if;
7411 -- STEP 0b: If needed, apply transformation given in point 5. above
7413 if not Private_Extension
7414 and then Has_Discriminants (Parent_Type)
7415 and then not Discriminant_Specs
7416 and then (Is_Constrained (Parent_Type) or else Constraint_Present)
7417 then
7418 -- First, we must analyze the constraint (see comment in point 5.)
7419 -- The constraint may come from the subtype indication of the full
7420 -- declaration.
7422 if Constraint_Present then
7423 New_Discrs := Build_Discriminant_Constraints (Parent_Type, Indic);
7425 -- If there is no explicit constraint, there might be one that is
7426 -- inherited from a constrained parent type. In that case verify that
7427 -- it conforms to the constraint in the partial view. In perverse
7428 -- cases the parent subtypes of the partial and full view can have
7429 -- different constraints.
7431 elsif Present (Stored_Constraint (Parent_Type)) then
7432 New_Discrs := Stored_Constraint (Parent_Type);
7434 else
7435 New_Discrs := No_Elist;
7436 end if;
7438 if Has_Discriminants (Derived_Type)
7439 and then Has_Private_Declaration (Derived_Type)
7440 and then Present (Discriminant_Constraint (Derived_Type))
7441 and then Present (New_Discrs)
7442 then
7443 -- Verify that constraints of the full view statically match
7444 -- those given in the partial view.
7446 declare
7447 C1, C2 : Elmt_Id;
7449 begin
7450 C1 := First_Elmt (New_Discrs);
7451 C2 := First_Elmt (Discriminant_Constraint (Derived_Type));
7452 while Present (C1) and then Present (C2) loop
7453 if Fully_Conformant_Expressions (Node (C1), Node (C2))
7454 or else
7455 (Is_OK_Static_Expression (Node (C1))
7456 and then Is_OK_Static_Expression (Node (C2))
7457 and then
7458 Expr_Value (Node (C1)) = Expr_Value (Node (C2)))
7459 then
7460 null;
7462 else
7463 if Constraint_Present then
7464 Error_Msg_N
7465 ("constraint not conformant to previous declaration",
7466 Node (C1));
7467 else
7468 Error_Msg_N
7469 ("constraint of full view is incompatible "
7470 & "with partial view", N);
7471 end if;
7472 end if;
7474 Next_Elmt (C1);
7475 Next_Elmt (C2);
7476 end loop;
7477 end;
7478 end if;
7480 -- Insert and analyze the declaration for the unconstrained base type
7482 New_Base := Create_Itype (Ekind (Derived_Type), N, Derived_Type, 'B');
7484 New_Decl :=
7485 Make_Full_Type_Declaration (Loc,
7486 Defining_Identifier => New_Base,
7487 Type_Definition =>
7488 Make_Derived_Type_Definition (Loc,
7489 Abstract_Present => Abstract_Present (Type_Def),
7490 Limited_Present => Limited_Present (Type_Def),
7491 Subtype_Indication =>
7492 New_Occurrence_Of (Parent_Base, Loc),
7493 Record_Extension_Part =>
7494 Relocate_Node (Record_Extension_Part (Type_Def)),
7495 Interface_List => Interface_List (Type_Def)));
7497 Set_Parent (New_Decl, Parent (N));
7498 Mark_Rewrite_Insertion (New_Decl);
7499 Insert_Before (N, New_Decl);
7501 -- In the extension case, make sure ancestor is frozen appropriately
7502 -- (see also non-discriminated case below).
7504 if Present (Record_Extension_Part (Type_Def))
7505 or else Is_Interface (Parent_Base)
7506 then
7507 Freeze_Before (New_Decl, Parent_Type);
7508 end if;
7510 -- Note that this call passes False for the Derive_Subps parameter
7511 -- because subprogram derivation is deferred until after creating
7512 -- the subtype (see below).
7514 Build_Derived_Type
7515 (New_Decl, Parent_Base, New_Base,
7516 Is_Completion => True, Derive_Subps => False);
7518 -- ??? This needs re-examination to determine whether the
7519 -- above call can simply be replaced by a call to Analyze.
7521 Set_Analyzed (New_Decl);
7523 -- Insert and analyze the declaration for the constrained subtype
7525 if Constraint_Present then
7526 New_Indic :=
7527 Make_Subtype_Indication (Loc,
7528 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
7529 Constraint => Relocate_Node (Constraint (Indic)));
7531 else
7532 declare
7533 Constr_List : constant List_Id := New_List;
7534 C : Elmt_Id;
7535 Expr : Node_Id;
7537 begin
7538 C := First_Elmt (Discriminant_Constraint (Parent_Type));
7539 while Present (C) loop
7540 Expr := Node (C);
7542 -- It is safe here to call New_Copy_Tree since
7543 -- Force_Evaluation was called on each constraint in
7544 -- Build_Discriminant_Constraints.
7546 Append (New_Copy_Tree (Expr), To => Constr_List);
7548 Next_Elmt (C);
7549 end loop;
7551 New_Indic :=
7552 Make_Subtype_Indication (Loc,
7553 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
7554 Constraint =>
7555 Make_Index_Or_Discriminant_Constraint (Loc, Constr_List));
7556 end;
7557 end if;
7559 Rewrite (N,
7560 Make_Subtype_Declaration (Loc,
7561 Defining_Identifier => Derived_Type,
7562 Subtype_Indication => New_Indic));
7564 Analyze (N);
7566 -- Derivation of subprograms must be delayed until the full subtype
7567 -- has been established, to ensure proper overriding of subprograms
7568 -- inherited by full types. If the derivations occurred as part of
7569 -- the call to Build_Derived_Type above, then the check for type
7570 -- conformance would fail because earlier primitive subprograms
7571 -- could still refer to the full type prior the change to the new
7572 -- subtype and hence would not match the new base type created here.
7573 -- Subprograms are not derived, however, when Derive_Subps is False
7574 -- (since otherwise there could be redundant derivations).
7576 if Derive_Subps then
7577 Derive_Subprograms (Parent_Type, Derived_Type);
7578 end if;
7580 -- For tagged types the Discriminant_Constraint of the new base itype
7581 -- is inherited from the first subtype so that no subtype conformance
7582 -- problem arise when the first subtype overrides primitive
7583 -- operations inherited by the implicit base type.
7585 if Is_Tagged then
7586 Set_Discriminant_Constraint
7587 (New_Base, Discriminant_Constraint (Derived_Type));
7588 end if;
7590 return;
7591 end if;
7593 -- If we get here Derived_Type will have no discriminants or it will be
7594 -- a discriminated unconstrained base type.
7596 -- STEP 1a: perform preliminary actions/checks for derived tagged types
7598 if Is_Tagged then
7600 -- The parent type is frozen for non-private extensions (RM 13.14(7))
7601 -- The declaration of a specific descendant of an interface type
7602 -- freezes the interface type (RM 13.14).
7604 if not Private_Extension or else Is_Interface (Parent_Base) then
7605 Freeze_Before (N, Parent_Type);
7606 end if;
7608 -- In Ada 2005 (AI-344), the restriction that a derived tagged type
7609 -- cannot be declared at a deeper level than its parent type is
7610 -- removed. The check on derivation within a generic body is also
7611 -- relaxed, but there's a restriction that a derived tagged type
7612 -- cannot be declared in a generic body if it's derived directly
7613 -- or indirectly from a formal type of that generic.
7615 if Ada_Version >= Ada_2005 then
7616 if Present (Enclosing_Generic_Body (Derived_Type)) then
7617 declare
7618 Ancestor_Type : Entity_Id;
7620 begin
7621 -- Check to see if any ancestor of the derived type is a
7622 -- formal type.
7624 Ancestor_Type := Parent_Type;
7625 while not Is_Generic_Type (Ancestor_Type)
7626 and then Etype (Ancestor_Type) /= Ancestor_Type
7627 loop
7628 Ancestor_Type := Etype (Ancestor_Type);
7629 end loop;
7631 -- If the derived type does have a formal type as an
7632 -- ancestor, then it's an error if the derived type is
7633 -- declared within the body of the generic unit that
7634 -- declares the formal type in its generic formal part. It's
7635 -- sufficient to check whether the ancestor type is declared
7636 -- inside the same generic body as the derived type (such as
7637 -- within a nested generic spec), in which case the
7638 -- derivation is legal. If the formal type is declared
7639 -- outside of that generic body, then it's guaranteed that
7640 -- the derived type is declared within the generic body of
7641 -- the generic unit declaring the formal type.
7643 if Is_Generic_Type (Ancestor_Type)
7644 and then Enclosing_Generic_Body (Ancestor_Type) /=
7645 Enclosing_Generic_Body (Derived_Type)
7646 then
7647 Error_Msg_NE
7648 ("parent type of& must not be descendant of formal type"
7649 & " of an enclosing generic body",
7650 Indic, Derived_Type);
7651 end if;
7652 end;
7653 end if;
7655 elsif Type_Access_Level (Derived_Type) /=
7656 Type_Access_Level (Parent_Type)
7657 and then not Is_Generic_Type (Derived_Type)
7658 then
7659 if Is_Controlled (Parent_Type) then
7660 Error_Msg_N
7661 ("controlled type must be declared at the library level",
7662 Indic);
7663 else
7664 Error_Msg_N
7665 ("type extension at deeper accessibility level than parent",
7666 Indic);
7667 end if;
7669 else
7670 declare
7671 GB : constant Node_Id := Enclosing_Generic_Body (Derived_Type);
7673 begin
7674 if Present (GB)
7675 and then GB /= Enclosing_Generic_Body (Parent_Base)
7676 then
7677 Error_Msg_NE
7678 ("parent type of& must not be outside generic body"
7679 & " (RM 3.9.1(4))",
7680 Indic, Derived_Type);
7681 end if;
7682 end;
7683 end if;
7684 end if;
7686 -- Ada 2005 (AI-251)
7688 if Ada_Version >= Ada_2005 and then Is_Tagged then
7690 -- "The declaration of a specific descendant of an interface type
7691 -- freezes the interface type" (RM 13.14).
7693 declare
7694 Iface : Node_Id;
7695 begin
7696 if Is_Non_Empty_List (Interface_List (Type_Def)) then
7697 Iface := First (Interface_List (Type_Def));
7698 while Present (Iface) loop
7699 Freeze_Before (N, Etype (Iface));
7700 Next (Iface);
7701 end loop;
7702 end if;
7703 end;
7704 end if;
7706 -- STEP 1b : preliminary cleanup of the full view of private types
7708 -- If the type is already marked as having discriminants, then it's the
7709 -- completion of a private type or private extension and we need to
7710 -- retain the discriminants from the partial view if the current
7711 -- declaration has Discriminant_Specifications so that we can verify
7712 -- conformance. However, we must remove any existing components that
7713 -- were inherited from the parent (and attached in Copy_And_Swap)
7714 -- because the full type inherits all appropriate components anyway, and
7715 -- we do not want the partial view's components interfering.
7717 if Has_Discriminants (Derived_Type) and then Discriminant_Specs then
7718 Discrim := First_Discriminant (Derived_Type);
7719 loop
7720 Last_Discrim := Discrim;
7721 Next_Discriminant (Discrim);
7722 exit when No (Discrim);
7723 end loop;
7725 Set_Last_Entity (Derived_Type, Last_Discrim);
7727 -- In all other cases wipe out the list of inherited components (even
7728 -- inherited discriminants), it will be properly rebuilt here.
7730 else
7731 Set_First_Entity (Derived_Type, Empty);
7732 Set_Last_Entity (Derived_Type, Empty);
7733 end if;
7735 -- STEP 1c: Initialize some flags for the Derived_Type
7737 -- The following flags must be initialized here so that
7738 -- Process_Discriminants can check that discriminants of tagged types do
7739 -- not have a default initial value and that access discriminants are
7740 -- only specified for limited records. For completeness, these flags are
7741 -- also initialized along with all the other flags below.
7743 -- AI-419: Limitedness is not inherited from an interface parent, so to
7744 -- be limited in that case the type must be explicitly declared as
7745 -- limited. However, task and protected interfaces are always limited.
7747 if Limited_Present (Type_Def) then
7748 Set_Is_Limited_Record (Derived_Type);
7750 elsif Is_Limited_Record (Parent_Type)
7751 or else (Present (Full_View (Parent_Type))
7752 and then Is_Limited_Record (Full_View (Parent_Type)))
7753 then
7754 if not Is_Interface (Parent_Type)
7755 or else Is_Synchronized_Interface (Parent_Type)
7756 or else Is_Protected_Interface (Parent_Type)
7757 or else Is_Task_Interface (Parent_Type)
7758 then
7759 Set_Is_Limited_Record (Derived_Type);
7760 end if;
7761 end if;
7763 -- STEP 2a: process discriminants of derived type if any
7765 Push_Scope (Derived_Type);
7767 if Discriminant_Specs then
7768 Set_Has_Unknown_Discriminants (Derived_Type, False);
7770 -- The following call initializes fields Has_Discriminants and
7771 -- Discriminant_Constraint, unless we are processing the completion
7772 -- of a private type declaration.
7774 Check_Or_Process_Discriminants (N, Derived_Type);
7776 -- For untagged types, the constraint on the Parent_Type must be
7777 -- present and is used to rename the discriminants.
7779 if not Is_Tagged and then not Has_Discriminants (Parent_Type) then
7780 Error_Msg_N ("untagged parent must have discriminants", Indic);
7782 elsif not Is_Tagged and then not Constraint_Present then
7783 Error_Msg_N
7784 ("discriminant constraint needed for derived untagged records",
7785 Indic);
7787 -- Otherwise the parent subtype must be constrained unless we have a
7788 -- private extension.
7790 elsif not Constraint_Present
7791 and then not Private_Extension
7792 and then not Is_Constrained (Parent_Type)
7793 then
7794 Error_Msg_N
7795 ("unconstrained type not allowed in this context", Indic);
7797 elsif Constraint_Present then
7798 -- The following call sets the field Corresponding_Discriminant
7799 -- for the discriminants in the Derived_Type.
7801 Discs := Build_Discriminant_Constraints (Parent_Type, Indic, True);
7803 -- For untagged types all new discriminants must rename
7804 -- discriminants in the parent. For private extensions new
7805 -- discriminants cannot rename old ones (implied by [7.3(13)]).
7807 Discrim := First_Discriminant (Derived_Type);
7808 while Present (Discrim) loop
7809 if not Is_Tagged
7810 and then No (Corresponding_Discriminant (Discrim))
7811 then
7812 Error_Msg_N
7813 ("new discriminants must constrain old ones", Discrim);
7815 elsif Private_Extension
7816 and then Present (Corresponding_Discriminant (Discrim))
7817 then
7818 Error_Msg_N
7819 ("only static constraints allowed for parent"
7820 & " discriminants in the partial view", Indic);
7821 exit;
7822 end if;
7824 -- If a new discriminant is used in the constraint, then its
7825 -- subtype must be statically compatible with the parent
7826 -- discriminant's subtype (3.7(15)).
7828 -- However, if the record contains an array constrained by
7829 -- the discriminant but with some different bound, the compiler
7830 -- attemps to create a smaller range for the discriminant type.
7831 -- (See exp_ch3.Adjust_Discriminants). In this case, where
7832 -- the discriminant type is a scalar type, the check must use
7833 -- the original discriminant type in the parent declaration.
7835 declare
7836 Corr_Disc : constant Entity_Id :=
7837 Corresponding_Discriminant (Discrim);
7838 Disc_Type : constant Entity_Id := Etype (Discrim);
7839 Corr_Type : Entity_Id;
7841 begin
7842 if Present (Corr_Disc) then
7843 if Is_Scalar_Type (Disc_Type) then
7844 Corr_Type :=
7845 Entity (Discriminant_Type (Parent (Corr_Disc)));
7846 else
7847 Corr_Type := Etype (Corr_Disc);
7848 end if;
7850 if not
7851 Subtypes_Statically_Compatible (Disc_Type, Corr_Type)
7852 then
7853 Error_Msg_N
7854 ("subtype must be compatible "
7855 & "with parent discriminant",
7856 Discrim);
7857 end if;
7858 end if;
7859 end;
7861 Next_Discriminant (Discrim);
7862 end loop;
7864 -- Check whether the constraints of the full view statically
7865 -- match those imposed by the parent subtype [7.3(13)].
7867 if Present (Stored_Constraint (Derived_Type)) then
7868 declare
7869 C1, C2 : Elmt_Id;
7871 begin
7872 C1 := First_Elmt (Discs);
7873 C2 := First_Elmt (Stored_Constraint (Derived_Type));
7874 while Present (C1) and then Present (C2) loop
7875 if not
7876 Fully_Conformant_Expressions (Node (C1), Node (C2))
7877 then
7878 Error_Msg_N
7879 ("not conformant with previous declaration",
7880 Node (C1));
7881 end if;
7883 Next_Elmt (C1);
7884 Next_Elmt (C2);
7885 end loop;
7886 end;
7887 end if;
7888 end if;
7890 -- STEP 2b: No new discriminants, inherit discriminants if any
7892 else
7893 if Private_Extension then
7894 Set_Has_Unknown_Discriminants
7895 (Derived_Type,
7896 Has_Unknown_Discriminants (Parent_Type)
7897 or else Unknown_Discriminants_Present (N));
7899 -- The partial view of the parent may have unknown discriminants,
7900 -- but if the full view has discriminants and the parent type is
7901 -- in scope they must be inherited.
7903 elsif Has_Unknown_Discriminants (Parent_Type)
7904 and then
7905 (not Has_Discriminants (Parent_Type)
7906 or else not In_Open_Scopes (Scope (Parent_Type)))
7907 then
7908 Set_Has_Unknown_Discriminants (Derived_Type);
7909 end if;
7911 if not Has_Unknown_Discriminants (Derived_Type)
7912 and then not Has_Unknown_Discriminants (Parent_Base)
7913 and then Has_Discriminants (Parent_Type)
7914 then
7915 Inherit_Discrims := True;
7916 Set_Has_Discriminants
7917 (Derived_Type, True);
7918 Set_Discriminant_Constraint
7919 (Derived_Type, Discriminant_Constraint (Parent_Base));
7920 end if;
7922 -- The following test is true for private types (remember
7923 -- transformation 5. is not applied to those) and in an error
7924 -- situation.
7926 if Constraint_Present then
7927 Discs := Build_Discriminant_Constraints (Parent_Type, Indic);
7928 end if;
7930 -- For now mark a new derived type as constrained only if it has no
7931 -- discriminants. At the end of Build_Derived_Record_Type we properly
7932 -- set this flag in the case of private extensions. See comments in
7933 -- point 9. just before body of Build_Derived_Record_Type.
7935 Set_Is_Constrained
7936 (Derived_Type,
7937 not (Inherit_Discrims
7938 or else Has_Unknown_Discriminants (Derived_Type)));
7939 end if;
7941 -- STEP 3: initialize fields of derived type
7943 Set_Is_Tagged_Type (Derived_Type, Is_Tagged);
7944 Set_Stored_Constraint (Derived_Type, No_Elist);
7946 -- Ada 2005 (AI-251): Private type-declarations can implement interfaces
7947 -- but cannot be interfaces
7949 if not Private_Extension
7950 and then Ekind (Derived_Type) /= E_Private_Type
7951 and then Ekind (Derived_Type) /= E_Limited_Private_Type
7952 then
7953 if Interface_Present (Type_Def) then
7954 Analyze_Interface_Declaration (Derived_Type, Type_Def);
7955 end if;
7957 Set_Interfaces (Derived_Type, No_Elist);
7958 end if;
7960 -- Fields inherited from the Parent_Type
7962 Set_Has_Specified_Layout
7963 (Derived_Type, Has_Specified_Layout (Parent_Type));
7964 Set_Is_Limited_Composite
7965 (Derived_Type, Is_Limited_Composite (Parent_Type));
7966 Set_Is_Private_Composite
7967 (Derived_Type, Is_Private_Composite (Parent_Type));
7969 -- Fields inherited from the Parent_Base
7971 Set_Has_Controlled_Component
7972 (Derived_Type, Has_Controlled_Component (Parent_Base));
7973 Set_Has_Non_Standard_Rep
7974 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
7975 Set_Has_Primitive_Operations
7976 (Derived_Type, Has_Primitive_Operations (Parent_Base));
7978 -- Fields inherited from the Parent_Base in the non-private case
7980 if Ekind (Derived_Type) = E_Record_Type then
7981 Set_Has_Complex_Representation
7982 (Derived_Type, Has_Complex_Representation (Parent_Base));
7983 end if;
7985 -- Fields inherited from the Parent_Base for record types
7987 if Is_Record_Type (Derived_Type) then
7989 declare
7990 Parent_Full : Entity_Id;
7992 begin
7993 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
7994 -- Parent_Base can be a private type or private extension. Go
7995 -- to the full view here to get the E_Record_Type specific flags.
7997 if Present (Full_View (Parent_Base)) then
7998 Parent_Full := Full_View (Parent_Base);
7999 else
8000 Parent_Full := Parent_Base;
8001 end if;
8003 Set_OK_To_Reorder_Components
8004 (Derived_Type, OK_To_Reorder_Components (Parent_Full));
8005 end;
8006 end if;
8008 -- Set fields for private derived types
8010 if Is_Private_Type (Derived_Type) then
8011 Set_Depends_On_Private (Derived_Type, True);
8012 Set_Private_Dependents (Derived_Type, New_Elmt_List);
8014 -- Inherit fields from non private record types. If this is the
8015 -- completion of a derivation from a private type, the parent itself
8016 -- is private, and the attributes come from its full view, which must
8017 -- be present.
8019 else
8020 if Is_Private_Type (Parent_Base)
8021 and then not Is_Record_Type (Parent_Base)
8022 then
8023 Set_Component_Alignment
8024 (Derived_Type, Component_Alignment (Full_View (Parent_Base)));
8025 Set_C_Pass_By_Copy
8026 (Derived_Type, C_Pass_By_Copy (Full_View (Parent_Base)));
8027 else
8028 Set_Component_Alignment
8029 (Derived_Type, Component_Alignment (Parent_Base));
8030 Set_C_Pass_By_Copy
8031 (Derived_Type, C_Pass_By_Copy (Parent_Base));
8032 end if;
8033 end if;
8035 -- Set fields for tagged types
8037 if Is_Tagged then
8038 Set_Direct_Primitive_Operations (Derived_Type, New_Elmt_List);
8040 -- All tagged types defined in Ada.Finalization are controlled
8042 if Chars (Scope (Derived_Type)) = Name_Finalization
8043 and then Chars (Scope (Scope (Derived_Type))) = Name_Ada
8044 and then Scope (Scope (Scope (Derived_Type))) = Standard_Standard
8045 then
8046 Set_Is_Controlled (Derived_Type);
8047 else
8048 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Base));
8049 end if;
8051 -- Minor optimization: there is no need to generate the class-wide
8052 -- entity associated with an underlying record view.
8054 if not Is_Underlying_Record_View (Derived_Type) then
8055 Make_Class_Wide_Type (Derived_Type);
8056 end if;
8058 Set_Is_Abstract_Type (Derived_Type, Abstract_Present (Type_Def));
8060 if Has_Discriminants (Derived_Type)
8061 and then Constraint_Present
8062 then
8063 Set_Stored_Constraint
8064 (Derived_Type, Expand_To_Stored_Constraint (Parent_Base, Discs));
8065 end if;
8067 if Ada_Version >= Ada_2005 then
8068 declare
8069 Ifaces_List : Elist_Id;
8071 begin
8072 -- Checks rules 3.9.4 (13/2 and 14/2)
8074 if Comes_From_Source (Derived_Type)
8075 and then not Is_Private_Type (Derived_Type)
8076 and then Is_Interface (Parent_Type)
8077 and then not Is_Interface (Derived_Type)
8078 then
8079 if Is_Task_Interface (Parent_Type) then
8080 Error_Msg_N
8081 ("(Ada 2005) task type required (RM 3.9.4 (13.2))",
8082 Derived_Type);
8084 elsif Is_Protected_Interface (Parent_Type) then
8085 Error_Msg_N
8086 ("(Ada 2005) protected type required (RM 3.9.4 (14.2))",
8087 Derived_Type);
8088 end if;
8089 end if;
8091 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
8093 Check_Interfaces (N, Type_Def);
8095 -- Ada 2005 (AI-251): Collect the list of progenitors that are
8096 -- not already in the parents.
8098 Collect_Interfaces
8099 (T => Derived_Type,
8100 Ifaces_List => Ifaces_List,
8101 Exclude_Parents => True);
8103 Set_Interfaces (Derived_Type, Ifaces_List);
8105 -- If the derived type is the anonymous type created for
8106 -- a declaration whose parent has a constraint, propagate
8107 -- the interface list to the source type. This must be done
8108 -- prior to the completion of the analysis of the source type
8109 -- because the components in the extension may contain current
8110 -- instances whose legality depends on some ancestor.
8112 if Is_Itype (Derived_Type) then
8113 declare
8114 Def : constant Node_Id :=
8115 Associated_Node_For_Itype (Derived_Type);
8116 begin
8117 if Present (Def)
8118 and then Nkind (Def) = N_Full_Type_Declaration
8119 then
8120 Set_Interfaces
8121 (Defining_Identifier (Def), Ifaces_List);
8122 end if;
8123 end;
8124 end if;
8125 end;
8126 end if;
8128 else
8129 Set_Is_Packed (Derived_Type, Is_Packed (Parent_Base));
8130 Set_Has_Non_Standard_Rep
8131 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
8132 end if;
8134 -- STEP 4: Inherit components from the parent base and constrain them.
8135 -- Apply the second transformation described in point 6. above.
8137 if (not Is_Empty_Elmt_List (Discs) or else Inherit_Discrims)
8138 or else not Has_Discriminants (Parent_Type)
8139 or else not Is_Constrained (Parent_Type)
8140 then
8141 Constrs := Discs;
8142 else
8143 Constrs := Discriminant_Constraint (Parent_Type);
8144 end if;
8146 Assoc_List :=
8147 Inherit_Components
8148 (N, Parent_Base, Derived_Type, Is_Tagged, Inherit_Discrims, Constrs);
8150 -- STEP 5a: Copy the parent record declaration for untagged types
8152 if not Is_Tagged then
8154 -- Discriminant_Constraint (Derived_Type) has been properly
8155 -- constructed. Save it and temporarily set it to Empty because we
8156 -- do not want the call to New_Copy_Tree below to mess this list.
8158 if Has_Discriminants (Derived_Type) then
8159 Save_Discr_Constr := Discriminant_Constraint (Derived_Type);
8160 Set_Discriminant_Constraint (Derived_Type, No_Elist);
8161 else
8162 Save_Discr_Constr := No_Elist;
8163 end if;
8165 -- Save the Etype field of Derived_Type. It is correctly set now,
8166 -- but the call to New_Copy tree may remap it to point to itself,
8167 -- which is not what we want. Ditto for the Next_Entity field.
8169 Save_Etype := Etype (Derived_Type);
8170 Save_Next_Entity := Next_Entity (Derived_Type);
8172 -- Assoc_List maps all stored discriminants in the Parent_Base to
8173 -- stored discriminants in the Derived_Type. It is fundamental that
8174 -- no types or itypes with discriminants other than the stored
8175 -- discriminants appear in the entities declared inside
8176 -- Derived_Type, since the back end cannot deal with it.
8178 New_Decl :=
8179 New_Copy_Tree
8180 (Parent (Parent_Base), Map => Assoc_List, New_Sloc => Loc);
8182 -- Restore the fields saved prior to the New_Copy_Tree call
8183 -- and compute the stored constraint.
8185 Set_Etype (Derived_Type, Save_Etype);
8186 Set_Next_Entity (Derived_Type, Save_Next_Entity);
8188 if Has_Discriminants (Derived_Type) then
8189 Set_Discriminant_Constraint
8190 (Derived_Type, Save_Discr_Constr);
8191 Set_Stored_Constraint
8192 (Derived_Type, Expand_To_Stored_Constraint (Parent_Type, Discs));
8193 Replace_Components (Derived_Type, New_Decl);
8194 Set_Has_Implicit_Dereference
8195 (Derived_Type, Has_Implicit_Dereference (Parent_Type));
8196 end if;
8198 -- Insert the new derived type declaration
8200 Rewrite (N, New_Decl);
8202 -- STEP 5b: Complete the processing for record extensions in generics
8204 -- There is no completion for record extensions declared in the
8205 -- parameter part of a generic, so we need to complete processing for
8206 -- these generic record extensions here. The Record_Type_Definition call
8207 -- will change the Ekind of the components from E_Void to E_Component.
8209 elsif Private_Extension and then Is_Generic_Type (Derived_Type) then
8210 Record_Type_Definition (Empty, Derived_Type);
8212 -- STEP 5c: Process the record extension for non private tagged types
8214 elsif not Private_Extension then
8216 -- Add the _parent field in the derived type
8218 Expand_Record_Extension (Derived_Type, Type_Def);
8220 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
8221 -- implemented interfaces if we are in expansion mode
8223 if Expander_Active
8224 and then Has_Interfaces (Derived_Type)
8225 then
8226 Add_Interface_Tag_Components (N, Derived_Type);
8227 end if;
8229 -- Analyze the record extension
8231 Record_Type_Definition
8232 (Record_Extension_Part (Type_Def), Derived_Type);
8233 end if;
8235 End_Scope;
8237 -- Nothing else to do if there is an error in the derivation.
8238 -- An unusual case: the full view may be derived from a type in an
8239 -- instance, when the partial view was used illegally as an actual
8240 -- in that instance, leading to a circular definition.
8242 if Etype (Derived_Type) = Any_Type
8243 or else Etype (Parent_Type) = Derived_Type
8244 then
8245 return;
8246 end if;
8248 -- Set delayed freeze and then derive subprograms, we need to do
8249 -- this in this order so that derived subprograms inherit the
8250 -- derived freeze if necessary.
8252 Set_Has_Delayed_Freeze (Derived_Type);
8254 if Derive_Subps then
8255 Derive_Subprograms (Parent_Type, Derived_Type);
8256 end if;
8258 -- If we have a private extension which defines a constrained derived
8259 -- type mark as constrained here after we have derived subprograms. See
8260 -- comment on point 9. just above the body of Build_Derived_Record_Type.
8262 if Private_Extension and then Inherit_Discrims then
8263 if Constraint_Present and then not Is_Empty_Elmt_List (Discs) then
8264 Set_Is_Constrained (Derived_Type, True);
8265 Set_Discriminant_Constraint (Derived_Type, Discs);
8267 elsif Is_Constrained (Parent_Type) then
8268 Set_Is_Constrained
8269 (Derived_Type, True);
8270 Set_Discriminant_Constraint
8271 (Derived_Type, Discriminant_Constraint (Parent_Type));
8272 end if;
8273 end if;
8275 -- Update the class-wide type, which shares the now-completed entity
8276 -- list with its specific type. In case of underlying record views,
8277 -- we do not generate the corresponding class wide entity.
8279 if Is_Tagged
8280 and then not Is_Underlying_Record_View (Derived_Type)
8281 then
8282 Set_First_Entity
8283 (Class_Wide_Type (Derived_Type), First_Entity (Derived_Type));
8284 Set_Last_Entity
8285 (Class_Wide_Type (Derived_Type), Last_Entity (Derived_Type));
8286 end if;
8288 Check_Function_Writable_Actuals (N);
8289 end Build_Derived_Record_Type;
8291 ------------------------
8292 -- Build_Derived_Type --
8293 ------------------------
8295 procedure Build_Derived_Type
8296 (N : Node_Id;
8297 Parent_Type : Entity_Id;
8298 Derived_Type : Entity_Id;
8299 Is_Completion : Boolean;
8300 Derive_Subps : Boolean := True)
8302 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
8304 begin
8305 -- Set common attributes
8307 Set_Scope (Derived_Type, Current_Scope);
8309 Set_Ekind (Derived_Type, Ekind (Parent_Base));
8310 Set_Etype (Derived_Type, Parent_Base);
8311 Set_Has_Task (Derived_Type, Has_Task (Parent_Base));
8313 Set_Size_Info (Derived_Type, Parent_Type);
8314 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
8315 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
8316 Set_Is_Tagged_Type (Derived_Type, Is_Tagged_Type (Parent_Type));
8318 -- If the parent type is a private subtype, the convention on the base
8319 -- type may be set in the private part, and not propagated to the
8320 -- subtype until later, so we obtain the convention from the base type.
8322 Set_Convention (Derived_Type, Convention (Parent_Base));
8324 -- Propagate invariant information. The new type has invariants if
8325 -- they are inherited from the parent type, and these invariants can
8326 -- be further inherited, so both flags are set.
8328 -- We similarly inherit predicates
8330 if Has_Predicates (Parent_Type) then
8331 Set_Has_Predicates (Derived_Type);
8332 end if;
8334 -- The derived type inherits the representation clauses of the parent.
8335 -- However, for a private type that is completed by a derivation, there
8336 -- may be operation attributes that have been specified already (stream
8337 -- attributes and External_Tag) and those must be provided. Finally,
8338 -- if the partial view is a private extension, the representation items
8339 -- of the parent have been inherited already, and should not be chained
8340 -- twice to the derived type.
8342 if Is_Tagged_Type (Parent_Type)
8343 and then Present (First_Rep_Item (Derived_Type))
8344 then
8345 -- The existing items are either operational items or items inherited
8346 -- from a private extension declaration.
8348 declare
8349 Rep : Node_Id;
8350 -- Used to iterate over representation items of the derived type
8352 Last_Rep : Node_Id;
8353 -- Last representation item of the (non-empty) representation
8354 -- item list of the derived type.
8356 Found : Boolean := False;
8358 begin
8359 Rep := First_Rep_Item (Derived_Type);
8360 Last_Rep := Rep;
8361 while Present (Rep) loop
8362 if Rep = First_Rep_Item (Parent_Type) then
8363 Found := True;
8364 exit;
8366 else
8367 Rep := Next_Rep_Item (Rep);
8369 if Present (Rep) then
8370 Last_Rep := Rep;
8371 end if;
8372 end if;
8373 end loop;
8375 -- Here if we either encountered the parent type's first rep
8376 -- item on the derived type's rep item list (in which case
8377 -- Found is True, and we have nothing else to do), or if we
8378 -- reached the last rep item of the derived type, which is
8379 -- Last_Rep, in which case we further chain the parent type's
8380 -- rep items to those of the derived type.
8382 if not Found then
8383 Set_Next_Rep_Item (Last_Rep, First_Rep_Item (Parent_Type));
8384 end if;
8385 end;
8387 else
8388 Set_First_Rep_Item (Derived_Type, First_Rep_Item (Parent_Type));
8389 end if;
8391 -- If the parent type has delayed rep aspects, then mark the derived
8392 -- type as possibly inheriting a delayed rep aspect.
8394 if Has_Delayed_Rep_Aspects (Parent_Type) then
8395 Set_May_Inherit_Delayed_Rep_Aspects (Derived_Type);
8396 end if;
8398 -- Type dependent processing
8400 case Ekind (Parent_Type) is
8401 when Numeric_Kind =>
8402 Build_Derived_Numeric_Type (N, Parent_Type, Derived_Type);
8404 when Array_Kind =>
8405 Build_Derived_Array_Type (N, Parent_Type, Derived_Type);
8407 when E_Record_Type
8408 | E_Record_Subtype
8409 | Class_Wide_Kind =>
8410 Build_Derived_Record_Type
8411 (N, Parent_Type, Derived_Type, Derive_Subps);
8412 return;
8414 when Enumeration_Kind =>
8415 Build_Derived_Enumeration_Type (N, Parent_Type, Derived_Type);
8417 when Access_Kind =>
8418 Build_Derived_Access_Type (N, Parent_Type, Derived_Type);
8420 when Incomplete_Or_Private_Kind =>
8421 Build_Derived_Private_Type
8422 (N, Parent_Type, Derived_Type, Is_Completion, Derive_Subps);
8424 -- For discriminated types, the derivation includes deriving
8425 -- primitive operations. For others it is done below.
8427 if Is_Tagged_Type (Parent_Type)
8428 or else Has_Discriminants (Parent_Type)
8429 or else (Present (Full_View (Parent_Type))
8430 and then Has_Discriminants (Full_View (Parent_Type)))
8431 then
8432 return;
8433 end if;
8435 when Concurrent_Kind =>
8436 Build_Derived_Concurrent_Type (N, Parent_Type, Derived_Type);
8438 when others =>
8439 raise Program_Error;
8440 end case;
8442 -- Nothing more to do if some error occurred
8444 if Etype (Derived_Type) = Any_Type then
8445 return;
8446 end if;
8448 -- Set delayed freeze and then derive subprograms, we need to do this
8449 -- in this order so that derived subprograms inherit the derived freeze
8450 -- if necessary.
8452 Set_Has_Delayed_Freeze (Derived_Type);
8454 if Derive_Subps then
8455 Derive_Subprograms (Parent_Type, Derived_Type);
8456 end if;
8458 Set_Has_Primitive_Operations
8459 (Base_Type (Derived_Type), Has_Primitive_Operations (Parent_Type));
8460 end Build_Derived_Type;
8462 -----------------------
8463 -- Build_Discriminal --
8464 -----------------------
8466 procedure Build_Discriminal (Discrim : Entity_Id) is
8467 D_Minal : Entity_Id;
8468 CR_Disc : Entity_Id;
8470 begin
8471 -- A discriminal has the same name as the discriminant
8473 D_Minal := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
8475 Set_Ekind (D_Minal, E_In_Parameter);
8476 Set_Mechanism (D_Minal, Default_Mechanism);
8477 Set_Etype (D_Minal, Etype (Discrim));
8478 Set_Scope (D_Minal, Current_Scope);
8480 Set_Discriminal (Discrim, D_Minal);
8481 Set_Discriminal_Link (D_Minal, Discrim);
8483 -- For task types, build at once the discriminants of the corresponding
8484 -- record, which are needed if discriminants are used in entry defaults
8485 -- and in family bounds.
8487 if Is_Concurrent_Type (Current_Scope)
8488 or else Is_Limited_Type (Current_Scope)
8489 then
8490 CR_Disc := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
8492 Set_Ekind (CR_Disc, E_In_Parameter);
8493 Set_Mechanism (CR_Disc, Default_Mechanism);
8494 Set_Etype (CR_Disc, Etype (Discrim));
8495 Set_Scope (CR_Disc, Current_Scope);
8496 Set_Discriminal_Link (CR_Disc, Discrim);
8497 Set_CR_Discriminant (Discrim, CR_Disc);
8498 end if;
8499 end Build_Discriminal;
8501 ------------------------------------
8502 -- Build_Discriminant_Constraints --
8503 ------------------------------------
8505 function Build_Discriminant_Constraints
8506 (T : Entity_Id;
8507 Def : Node_Id;
8508 Derived_Def : Boolean := False) return Elist_Id
8510 C : constant Node_Id := Constraint (Def);
8511 Nb_Discr : constant Nat := Number_Discriminants (T);
8513 Discr_Expr : array (1 .. Nb_Discr) of Node_Id := (others => Empty);
8514 -- Saves the expression corresponding to a given discriminant in T
8516 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat;
8517 -- Return the Position number within array Discr_Expr of a discriminant
8518 -- D within the discriminant list of the discriminated type T.
8520 procedure Process_Discriminant_Expression
8521 (Expr : Node_Id;
8522 D : Entity_Id);
8523 -- If this is a discriminant constraint on a partial view, do not
8524 -- generate an overflow check on the discriminant expression. The check
8525 -- will be generated when constraining the full view. Otherwise the
8526 -- backend creates duplicate symbols for the temporaries corresponding
8527 -- to the expressions to be checked, causing spurious assembler errors.
8529 ------------------
8530 -- Pos_Of_Discr --
8531 ------------------
8533 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat is
8534 Disc : Entity_Id;
8536 begin
8537 Disc := First_Discriminant (T);
8538 for J in Discr_Expr'Range loop
8539 if Disc = D then
8540 return J;
8541 end if;
8543 Next_Discriminant (Disc);
8544 end loop;
8546 -- Note: Since this function is called on discriminants that are
8547 -- known to belong to the discriminated type, falling through the
8548 -- loop with no match signals an internal compiler error.
8550 raise Program_Error;
8551 end Pos_Of_Discr;
8553 -------------------------------------
8554 -- Process_Discriminant_Expression --
8555 -------------------------------------
8557 procedure Process_Discriminant_Expression
8558 (Expr : Node_Id;
8559 D : Entity_Id)
8561 BDT : constant Entity_Id := Base_Type (Etype (D));
8563 begin
8564 -- If this is a discriminant constraint on a partial view, do
8565 -- not generate an overflow on the discriminant expression. The
8566 -- check will be generated when constraining the full view.
8568 if Is_Private_Type (T)
8569 and then Present (Full_View (T))
8570 then
8571 Analyze_And_Resolve (Expr, BDT, Suppress => Overflow_Check);
8572 else
8573 Analyze_And_Resolve (Expr, BDT);
8574 end if;
8575 end Process_Discriminant_Expression;
8577 -- Declarations local to Build_Discriminant_Constraints
8579 Discr : Entity_Id;
8580 E : Entity_Id;
8581 Elist : constant Elist_Id := New_Elmt_List;
8583 Constr : Node_Id;
8584 Expr : Node_Id;
8585 Id : Node_Id;
8586 Position : Nat;
8587 Found : Boolean;
8589 Discrim_Present : Boolean := False;
8591 -- Start of processing for Build_Discriminant_Constraints
8593 begin
8594 -- The following loop will process positional associations only.
8595 -- For a positional association, the (single) discriminant is
8596 -- implicitly specified by position, in textual order (RM 3.7.2).
8598 Discr := First_Discriminant (T);
8599 Constr := First (Constraints (C));
8600 for D in Discr_Expr'Range loop
8601 exit when Nkind (Constr) = N_Discriminant_Association;
8603 if No (Constr) then
8604 Error_Msg_N ("too few discriminants given in constraint", C);
8605 return New_Elmt_List;
8607 elsif Nkind (Constr) = N_Range
8608 or else (Nkind (Constr) = N_Attribute_Reference
8609 and then
8610 Attribute_Name (Constr) = Name_Range)
8611 then
8612 Error_Msg_N
8613 ("a range is not a valid discriminant constraint", Constr);
8614 Discr_Expr (D) := Error;
8616 else
8617 Process_Discriminant_Expression (Constr, Discr);
8618 Discr_Expr (D) := Constr;
8619 end if;
8621 Next_Discriminant (Discr);
8622 Next (Constr);
8623 end loop;
8625 if No (Discr) and then Present (Constr) then
8626 Error_Msg_N ("too many discriminants given in constraint", Constr);
8627 return New_Elmt_List;
8628 end if;
8630 -- Named associations can be given in any order, but if both positional
8631 -- and named associations are used in the same discriminant constraint,
8632 -- then positional associations must occur first, at their normal
8633 -- position. Hence once a named association is used, the rest of the
8634 -- discriminant constraint must use only named associations.
8636 while Present (Constr) loop
8638 -- Positional association forbidden after a named association
8640 if Nkind (Constr) /= N_Discriminant_Association then
8641 Error_Msg_N ("positional association follows named one", Constr);
8642 return New_Elmt_List;
8644 -- Otherwise it is a named association
8646 else
8647 -- E records the type of the discriminants in the named
8648 -- association. All the discriminants specified in the same name
8649 -- association must have the same type.
8651 E := Empty;
8653 -- Search the list of discriminants in T to see if the simple name
8654 -- given in the constraint matches any of them.
8656 Id := First (Selector_Names (Constr));
8657 while Present (Id) loop
8658 Found := False;
8660 -- If Original_Discriminant is present, we are processing a
8661 -- generic instantiation and this is an instance node. We need
8662 -- to find the name of the corresponding discriminant in the
8663 -- actual record type T and not the name of the discriminant in
8664 -- the generic formal. Example:
8666 -- generic
8667 -- type G (D : int) is private;
8668 -- package P is
8669 -- subtype W is G (D => 1);
8670 -- end package;
8671 -- type Rec (X : int) is record ... end record;
8672 -- package Q is new P (G => Rec);
8674 -- At the point of the instantiation, formal type G is Rec
8675 -- and therefore when reanalyzing "subtype W is G (D => 1);"
8676 -- which really looks like "subtype W is Rec (D => 1);" at
8677 -- the point of instantiation, we want to find the discriminant
8678 -- that corresponds to D in Rec, i.e. X.
8680 if Present (Original_Discriminant (Id))
8681 and then In_Instance
8682 then
8683 Discr := Find_Corresponding_Discriminant (Id, T);
8684 Found := True;
8686 else
8687 Discr := First_Discriminant (T);
8688 while Present (Discr) loop
8689 if Chars (Discr) = Chars (Id) then
8690 Found := True;
8691 exit;
8692 end if;
8694 Next_Discriminant (Discr);
8695 end loop;
8697 if not Found then
8698 Error_Msg_N ("& does not match any discriminant", Id);
8699 return New_Elmt_List;
8701 -- If the parent type is a generic formal, preserve the
8702 -- name of the discriminant for subsequent instances.
8703 -- see comment at the beginning of this if statement.
8705 elsif Is_Generic_Type (Root_Type (T)) then
8706 Set_Original_Discriminant (Id, Discr);
8707 end if;
8708 end if;
8710 Position := Pos_Of_Discr (T, Discr);
8712 if Present (Discr_Expr (Position)) then
8713 Error_Msg_N ("duplicate constraint for discriminant&", Id);
8715 else
8716 -- Each discriminant specified in the same named association
8717 -- must be associated with a separate copy of the
8718 -- corresponding expression.
8720 if Present (Next (Id)) then
8721 Expr := New_Copy_Tree (Expression (Constr));
8722 Set_Parent (Expr, Parent (Expression (Constr)));
8723 else
8724 Expr := Expression (Constr);
8725 end if;
8727 Discr_Expr (Position) := Expr;
8728 Process_Discriminant_Expression (Expr, Discr);
8729 end if;
8731 -- A discriminant association with more than one discriminant
8732 -- name is only allowed if the named discriminants are all of
8733 -- the same type (RM 3.7.1(8)).
8735 if E = Empty then
8736 E := Base_Type (Etype (Discr));
8738 elsif Base_Type (Etype (Discr)) /= E then
8739 Error_Msg_N
8740 ("all discriminants in an association " &
8741 "must have the same type", Id);
8742 end if;
8744 Next (Id);
8745 end loop;
8746 end if;
8748 Next (Constr);
8749 end loop;
8751 -- A discriminant constraint must provide exactly one value for each
8752 -- discriminant of the type (RM 3.7.1(8)).
8754 for J in Discr_Expr'Range loop
8755 if No (Discr_Expr (J)) then
8756 Error_Msg_N ("too few discriminants given in constraint", C);
8757 return New_Elmt_List;
8758 end if;
8759 end loop;
8761 -- Determine if there are discriminant expressions in the constraint
8763 for J in Discr_Expr'Range loop
8764 if Denotes_Discriminant
8765 (Discr_Expr (J), Check_Concurrent => True)
8766 then
8767 Discrim_Present := True;
8768 end if;
8769 end loop;
8771 -- Build an element list consisting of the expressions given in the
8772 -- discriminant constraint and apply the appropriate checks. The list
8773 -- is constructed after resolving any named discriminant associations
8774 -- and therefore the expressions appear in the textual order of the
8775 -- discriminants.
8777 Discr := First_Discriminant (T);
8778 for J in Discr_Expr'Range loop
8779 if Discr_Expr (J) /= Error then
8780 Append_Elmt (Discr_Expr (J), Elist);
8782 -- If any of the discriminant constraints is given by a
8783 -- discriminant and we are in a derived type declaration we
8784 -- have a discriminant renaming. Establish link between new
8785 -- and old discriminant.
8787 if Denotes_Discriminant (Discr_Expr (J)) then
8788 if Derived_Def then
8789 Set_Corresponding_Discriminant
8790 (Entity (Discr_Expr (J)), Discr);
8791 end if;
8793 -- Force the evaluation of non-discriminant expressions.
8794 -- If we have found a discriminant in the constraint 3.4(26)
8795 -- and 3.8(18) demand that no range checks are performed are
8796 -- after evaluation. If the constraint is for a component
8797 -- definition that has a per-object constraint, expressions are
8798 -- evaluated but not checked either. In all other cases perform
8799 -- a range check.
8801 else
8802 if Discrim_Present then
8803 null;
8805 elsif Nkind (Parent (Parent (Def))) = N_Component_Declaration
8806 and then
8807 Has_Per_Object_Constraint
8808 (Defining_Identifier (Parent (Parent (Def))))
8809 then
8810 null;
8812 elsif Is_Access_Type (Etype (Discr)) then
8813 Apply_Constraint_Check (Discr_Expr (J), Etype (Discr));
8815 else
8816 Apply_Range_Check (Discr_Expr (J), Etype (Discr));
8817 end if;
8819 Force_Evaluation (Discr_Expr (J));
8820 end if;
8822 -- Check that the designated type of an access discriminant's
8823 -- expression is not a class-wide type unless the discriminant's
8824 -- designated type is also class-wide.
8826 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type
8827 and then not Is_Class_Wide_Type
8828 (Designated_Type (Etype (Discr)))
8829 and then Etype (Discr_Expr (J)) /= Any_Type
8830 and then Is_Class_Wide_Type
8831 (Designated_Type (Etype (Discr_Expr (J))))
8832 then
8833 Wrong_Type (Discr_Expr (J), Etype (Discr));
8835 elsif Is_Access_Type (Etype (Discr))
8836 and then not Is_Access_Constant (Etype (Discr))
8837 and then Is_Access_Type (Etype (Discr_Expr (J)))
8838 and then Is_Access_Constant (Etype (Discr_Expr (J)))
8839 then
8840 Error_Msg_NE
8841 ("constraint for discriminant& must be access to variable",
8842 Def, Discr);
8843 end if;
8844 end if;
8846 Next_Discriminant (Discr);
8847 end loop;
8849 return Elist;
8850 end Build_Discriminant_Constraints;
8852 ---------------------------------
8853 -- Build_Discriminated_Subtype --
8854 ---------------------------------
8856 procedure Build_Discriminated_Subtype
8857 (T : Entity_Id;
8858 Def_Id : Entity_Id;
8859 Elist : Elist_Id;
8860 Related_Nod : Node_Id;
8861 For_Access : Boolean := False)
8863 Has_Discrs : constant Boolean := Has_Discriminants (T);
8864 Constrained : constant Boolean :=
8865 (Has_Discrs
8866 and then not Is_Empty_Elmt_List (Elist)
8867 and then not Is_Class_Wide_Type (T))
8868 or else Is_Constrained (T);
8870 begin
8871 if Ekind (T) = E_Record_Type then
8872 if For_Access then
8873 Set_Ekind (Def_Id, E_Private_Subtype);
8874 Set_Is_For_Access_Subtype (Def_Id, True);
8875 else
8876 Set_Ekind (Def_Id, E_Record_Subtype);
8877 end if;
8879 -- Inherit preelaboration flag from base, for types for which it
8880 -- may have been set: records, private types, protected types.
8882 Set_Known_To_Have_Preelab_Init
8883 (Def_Id, Known_To_Have_Preelab_Init (T));
8885 elsif Ekind (T) = E_Task_Type then
8886 Set_Ekind (Def_Id, E_Task_Subtype);
8888 elsif Ekind (T) = E_Protected_Type then
8889 Set_Ekind (Def_Id, E_Protected_Subtype);
8890 Set_Known_To_Have_Preelab_Init
8891 (Def_Id, Known_To_Have_Preelab_Init (T));
8893 elsif Is_Private_Type (T) then
8894 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
8895 Set_Known_To_Have_Preelab_Init
8896 (Def_Id, Known_To_Have_Preelab_Init (T));
8898 -- Private subtypes may have private dependents
8900 Set_Private_Dependents (Def_Id, New_Elmt_List);
8902 elsif Is_Class_Wide_Type (T) then
8903 Set_Ekind (Def_Id, E_Class_Wide_Subtype);
8905 else
8906 -- Incomplete type. Attach subtype to list of dependents, to be
8907 -- completed with full view of parent type, unless is it the
8908 -- designated subtype of a record component within an init_proc.
8909 -- This last case arises for a component of an access type whose
8910 -- designated type is incomplete (e.g. a Taft Amendment type).
8911 -- The designated subtype is within an inner scope, and needs no
8912 -- elaboration, because only the access type is needed in the
8913 -- initialization procedure.
8915 Set_Ekind (Def_Id, Ekind (T));
8917 if For_Access and then Within_Init_Proc then
8918 null;
8919 else
8920 Append_Elmt (Def_Id, Private_Dependents (T));
8921 end if;
8922 end if;
8924 Set_Etype (Def_Id, T);
8925 Init_Size_Align (Def_Id);
8926 Set_Has_Discriminants (Def_Id, Has_Discrs);
8927 Set_Is_Constrained (Def_Id, Constrained);
8929 Set_First_Entity (Def_Id, First_Entity (T));
8930 Set_Last_Entity (Def_Id, Last_Entity (T));
8931 Set_Has_Implicit_Dereference
8932 (Def_Id, Has_Implicit_Dereference (T));
8934 -- If the subtype is the completion of a private declaration, there may
8935 -- have been representation clauses for the partial view, and they must
8936 -- be preserved. Build_Derived_Type chains the inherited clauses with
8937 -- the ones appearing on the extension. If this comes from a subtype
8938 -- declaration, all clauses are inherited.
8940 if No (First_Rep_Item (Def_Id)) then
8941 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
8942 end if;
8944 if Is_Tagged_Type (T) then
8945 Set_Is_Tagged_Type (Def_Id);
8946 Make_Class_Wide_Type (Def_Id);
8947 end if;
8949 Set_Stored_Constraint (Def_Id, No_Elist);
8951 if Has_Discrs then
8952 Set_Discriminant_Constraint (Def_Id, Elist);
8953 Set_Stored_Constraint_From_Discriminant_Constraint (Def_Id);
8954 end if;
8956 if Is_Tagged_Type (T) then
8958 -- Ada 2005 (AI-251): In case of concurrent types we inherit the
8959 -- concurrent record type (which has the list of primitive
8960 -- operations).
8962 if Ada_Version >= Ada_2005
8963 and then Is_Concurrent_Type (T)
8964 then
8965 Set_Corresponding_Record_Type (Def_Id,
8966 Corresponding_Record_Type (T));
8967 else
8968 Set_Direct_Primitive_Operations (Def_Id,
8969 Direct_Primitive_Operations (T));
8970 end if;
8972 Set_Is_Abstract_Type (Def_Id, Is_Abstract_Type (T));
8973 end if;
8975 -- Subtypes introduced by component declarations do not need to be
8976 -- marked as delayed, and do not get freeze nodes, because the semantics
8977 -- verifies that the parents of the subtypes are frozen before the
8978 -- enclosing record is frozen.
8980 if not Is_Type (Scope (Def_Id)) then
8981 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
8983 if Is_Private_Type (T)
8984 and then Present (Full_View (T))
8985 then
8986 Conditional_Delay (Def_Id, Full_View (T));
8987 else
8988 Conditional_Delay (Def_Id, T);
8989 end if;
8990 end if;
8992 if Is_Record_Type (T) then
8993 Set_Is_Limited_Record (Def_Id, Is_Limited_Record (T));
8995 if Has_Discrs
8996 and then not Is_Empty_Elmt_List (Elist)
8997 and then not For_Access
8998 then
8999 Create_Constrained_Components (Def_Id, Related_Nod, T, Elist);
9000 elsif not For_Access then
9001 Set_Cloned_Subtype (Def_Id, T);
9002 end if;
9003 end if;
9004 end Build_Discriminated_Subtype;
9006 ---------------------------
9007 -- Build_Itype_Reference --
9008 ---------------------------
9010 procedure Build_Itype_Reference
9011 (Ityp : Entity_Id;
9012 Nod : Node_Id)
9014 IR : constant Node_Id := Make_Itype_Reference (Sloc (Nod));
9015 begin
9017 -- Itype references are only created for use by the back-end
9019 if Inside_A_Generic then
9020 return;
9021 else
9022 Set_Itype (IR, Ityp);
9023 Insert_After (Nod, IR);
9024 end if;
9025 end Build_Itype_Reference;
9027 ------------------------
9028 -- Build_Scalar_Bound --
9029 ------------------------
9031 function Build_Scalar_Bound
9032 (Bound : Node_Id;
9033 Par_T : Entity_Id;
9034 Der_T : Entity_Id) return Node_Id
9036 New_Bound : Entity_Id;
9038 begin
9039 -- Note: not clear why this is needed, how can the original bound
9040 -- be unanalyzed at this point? and if it is, what business do we
9041 -- have messing around with it? and why is the base type of the
9042 -- parent type the right type for the resolution. It probably is
9043 -- not! It is OK for the new bound we are creating, but not for
9044 -- the old one??? Still if it never happens, no problem!
9046 Analyze_And_Resolve (Bound, Base_Type (Par_T));
9048 if Nkind_In (Bound, N_Integer_Literal, N_Real_Literal) then
9049 New_Bound := New_Copy (Bound);
9050 Set_Etype (New_Bound, Der_T);
9051 Set_Analyzed (New_Bound);
9053 elsif Is_Entity_Name (Bound) then
9054 New_Bound := OK_Convert_To (Der_T, New_Copy (Bound));
9056 -- The following is almost certainly wrong. What business do we have
9057 -- relocating a node (Bound) that is presumably still attached to
9058 -- the tree elsewhere???
9060 else
9061 New_Bound := OK_Convert_To (Der_T, Relocate_Node (Bound));
9062 end if;
9064 Set_Etype (New_Bound, Der_T);
9065 return New_Bound;
9066 end Build_Scalar_Bound;
9068 --------------------------------
9069 -- Build_Underlying_Full_View --
9070 --------------------------------
9072 procedure Build_Underlying_Full_View
9073 (N : Node_Id;
9074 Typ : Entity_Id;
9075 Par : Entity_Id)
9077 Loc : constant Source_Ptr := Sloc (N);
9078 Subt : constant Entity_Id :=
9079 Make_Defining_Identifier
9080 (Loc, New_External_Name (Chars (Typ), 'S'));
9082 Constr : Node_Id;
9083 Indic : Node_Id;
9084 C : Node_Id;
9085 Id : Node_Id;
9087 procedure Set_Discriminant_Name (Id : Node_Id);
9088 -- If the derived type has discriminants, they may rename discriminants
9089 -- of the parent. When building the full view of the parent, we need to
9090 -- recover the names of the original discriminants if the constraint is
9091 -- given by named associations.
9093 ---------------------------
9094 -- Set_Discriminant_Name --
9095 ---------------------------
9097 procedure Set_Discriminant_Name (Id : Node_Id) is
9098 Disc : Entity_Id;
9100 begin
9101 Set_Original_Discriminant (Id, Empty);
9103 if Has_Discriminants (Typ) then
9104 Disc := First_Discriminant (Typ);
9105 while Present (Disc) loop
9106 if Chars (Disc) = Chars (Id)
9107 and then Present (Corresponding_Discriminant (Disc))
9108 then
9109 Set_Chars (Id, Chars (Corresponding_Discriminant (Disc)));
9110 end if;
9111 Next_Discriminant (Disc);
9112 end loop;
9113 end if;
9114 end Set_Discriminant_Name;
9116 -- Start of processing for Build_Underlying_Full_View
9118 begin
9119 if Nkind (N) = N_Full_Type_Declaration then
9120 Constr := Constraint (Subtype_Indication (Type_Definition (N)));
9122 elsif Nkind (N) = N_Subtype_Declaration then
9123 Constr := New_Copy_Tree (Constraint (Subtype_Indication (N)));
9125 elsif Nkind (N) = N_Component_Declaration then
9126 Constr :=
9127 New_Copy_Tree
9128 (Constraint (Subtype_Indication (Component_Definition (N))));
9130 else
9131 raise Program_Error;
9132 end if;
9134 C := First (Constraints (Constr));
9135 while Present (C) loop
9136 if Nkind (C) = N_Discriminant_Association then
9137 Id := First (Selector_Names (C));
9138 while Present (Id) loop
9139 Set_Discriminant_Name (Id);
9140 Next (Id);
9141 end loop;
9142 end if;
9144 Next (C);
9145 end loop;
9147 Indic :=
9148 Make_Subtype_Declaration (Loc,
9149 Defining_Identifier => Subt,
9150 Subtype_Indication =>
9151 Make_Subtype_Indication (Loc,
9152 Subtype_Mark => New_Reference_To (Par, Loc),
9153 Constraint => New_Copy_Tree (Constr)));
9155 -- If this is a component subtype for an outer itype, it is not
9156 -- a list member, so simply set the parent link for analysis: if
9157 -- the enclosing type does not need to be in a declarative list,
9158 -- neither do the components.
9160 if Is_List_Member (N)
9161 and then Nkind (N) /= N_Component_Declaration
9162 then
9163 Insert_Before (N, Indic);
9164 else
9165 Set_Parent (Indic, Parent (N));
9166 end if;
9168 Analyze (Indic);
9169 Set_Underlying_Full_View (Typ, Full_View (Subt));
9170 end Build_Underlying_Full_View;
9172 -------------------------------
9173 -- Check_Abstract_Overriding --
9174 -------------------------------
9176 procedure Check_Abstract_Overriding (T : Entity_Id) is
9177 Alias_Subp : Entity_Id;
9178 Elmt : Elmt_Id;
9179 Op_List : Elist_Id;
9180 Subp : Entity_Id;
9181 Type_Def : Node_Id;
9183 procedure Check_Pragma_Implemented (Subp : Entity_Id);
9184 -- Ada 2012 (AI05-0030): Subprogram Subp overrides an interface routine
9185 -- which has pragma Implemented already set. Check whether Subp's entity
9186 -- kind conforms to the implementation kind of the overridden routine.
9188 procedure Check_Pragma_Implemented
9189 (Subp : Entity_Id;
9190 Iface_Subp : Entity_Id);
9191 -- Ada 2012 (AI05-0030): Subprogram Subp overrides interface routine
9192 -- Iface_Subp and both entities have pragma Implemented already set on
9193 -- them. Check whether the two implementation kinds are conforming.
9195 procedure Inherit_Pragma_Implemented
9196 (Subp : Entity_Id;
9197 Iface_Subp : Entity_Id);
9198 -- Ada 2012 (AI05-0030): Interface primitive Subp overrides interface
9199 -- subprogram Iface_Subp which has been marked by pragma Implemented.
9200 -- Propagate the implementation kind of Iface_Subp to Subp.
9202 ------------------------------
9203 -- Check_Pragma_Implemented --
9204 ------------------------------
9206 procedure Check_Pragma_Implemented (Subp : Entity_Id) is
9207 Iface_Alias : constant Entity_Id := Interface_Alias (Subp);
9208 Impl_Kind : constant Name_Id := Implementation_Kind (Iface_Alias);
9209 Subp_Alias : constant Entity_Id := Alias (Subp);
9210 Contr_Typ : Entity_Id;
9211 Impl_Subp : Entity_Id;
9213 begin
9214 -- Subp must have an alias since it is a hidden entity used to link
9215 -- an interface subprogram to its overriding counterpart.
9217 pragma Assert (Present (Subp_Alias));
9219 -- Handle aliases to synchronized wrappers
9221 Impl_Subp := Subp_Alias;
9223 if Is_Primitive_Wrapper (Impl_Subp) then
9224 Impl_Subp := Wrapped_Entity (Impl_Subp);
9225 end if;
9227 -- Extract the type of the controlling formal
9229 Contr_Typ := Etype (First_Formal (Subp_Alias));
9231 if Is_Concurrent_Record_Type (Contr_Typ) then
9232 Contr_Typ := Corresponding_Concurrent_Type (Contr_Typ);
9233 end if;
9235 -- An interface subprogram whose implementation kind is By_Entry must
9236 -- be implemented by an entry.
9238 if Impl_Kind = Name_By_Entry
9239 and then Ekind (Impl_Subp) /= E_Entry
9240 then
9241 Error_Msg_Node_2 := Iface_Alias;
9242 Error_Msg_NE
9243 ("type & must implement abstract subprogram & with an entry",
9244 Subp_Alias, Contr_Typ);
9246 elsif Impl_Kind = Name_By_Protected_Procedure then
9248 -- An interface subprogram whose implementation kind is By_
9249 -- Protected_Procedure cannot be implemented by a primitive
9250 -- procedure of a task type.
9252 if Ekind (Contr_Typ) /= E_Protected_Type then
9253 Error_Msg_Node_2 := Contr_Typ;
9254 Error_Msg_NE
9255 ("interface subprogram & cannot be implemented by a " &
9256 "primitive procedure of task type &", Subp_Alias,
9257 Iface_Alias);
9259 -- An interface subprogram whose implementation kind is By_
9260 -- Protected_Procedure must be implemented by a procedure.
9262 elsif Ekind (Impl_Subp) /= E_Procedure then
9263 Error_Msg_Node_2 := Iface_Alias;
9264 Error_Msg_NE
9265 ("type & must implement abstract subprogram & with a " &
9266 "procedure", Subp_Alias, Contr_Typ);
9267 end if;
9268 end if;
9269 end Check_Pragma_Implemented;
9271 ------------------------------
9272 -- Check_Pragma_Implemented --
9273 ------------------------------
9275 procedure Check_Pragma_Implemented
9276 (Subp : Entity_Id;
9277 Iface_Subp : Entity_Id)
9279 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
9280 Subp_Kind : constant Name_Id := Implementation_Kind (Subp);
9282 begin
9283 -- Ada 2012 (AI05-0030): The implementation kinds of an overridden
9284 -- and overriding subprogram are different. In general this is an
9285 -- error except when the implementation kind of the overridden
9286 -- subprograms is By_Any or Optional.
9288 if Iface_Kind /= Subp_Kind
9289 and then Iface_Kind /= Name_By_Any
9290 and then Iface_Kind /= Name_Optional
9291 then
9292 if Iface_Kind = Name_By_Entry then
9293 Error_Msg_N
9294 ("incompatible implementation kind, overridden subprogram " &
9295 "is marked By_Entry", Subp);
9296 else
9297 Error_Msg_N
9298 ("incompatible implementation kind, overridden subprogram " &
9299 "is marked By_Protected_Procedure", Subp);
9300 end if;
9301 end if;
9302 end Check_Pragma_Implemented;
9304 --------------------------------
9305 -- Inherit_Pragma_Implemented --
9306 --------------------------------
9308 procedure Inherit_Pragma_Implemented
9309 (Subp : Entity_Id;
9310 Iface_Subp : Entity_Id)
9312 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
9313 Loc : constant Source_Ptr := Sloc (Subp);
9314 Impl_Prag : Node_Id;
9316 begin
9317 -- Since the implementation kind is stored as a representation item
9318 -- rather than a flag, create a pragma node.
9320 Impl_Prag :=
9321 Make_Pragma (Loc,
9322 Chars => Name_Implemented,
9323 Pragma_Argument_Associations => New_List (
9324 Make_Pragma_Argument_Association (Loc,
9325 Expression => New_Reference_To (Subp, Loc)),
9327 Make_Pragma_Argument_Association (Loc,
9328 Expression => Make_Identifier (Loc, Iface_Kind))));
9330 -- The pragma doesn't need to be analyzed because it is internally
9331 -- built. It is safe to directly register it as a rep item since we
9332 -- are only interested in the characters of the implementation kind.
9334 Record_Rep_Item (Subp, Impl_Prag);
9335 end Inherit_Pragma_Implemented;
9337 -- Start of processing for Check_Abstract_Overriding
9339 begin
9340 Op_List := Primitive_Operations (T);
9342 -- Loop to check primitive operations
9344 Elmt := First_Elmt (Op_List);
9345 while Present (Elmt) loop
9346 Subp := Node (Elmt);
9347 Alias_Subp := Alias (Subp);
9349 -- Inherited subprograms are identified by the fact that they do not
9350 -- come from source, and the associated source location is the
9351 -- location of the first subtype of the derived type.
9353 -- Ada 2005 (AI-228): Apply the rules of RM-3.9.3(6/2) for
9354 -- subprograms that "require overriding".
9356 -- Special exception, do not complain about failure to override the
9357 -- stream routines _Input and _Output, as well as the primitive
9358 -- operations used in dispatching selects since we always provide
9359 -- automatic overridings for these subprograms.
9361 -- Also ignore this rule for convention CIL since .NET libraries
9362 -- do bizarre things with interfaces???
9364 -- The partial view of T may have been a private extension, for
9365 -- which inherited functions dispatching on result are abstract.
9366 -- If the full view is a null extension, there is no need for
9367 -- overriding in Ada 2005, but wrappers need to be built for them
9368 -- (see exp_ch3, Build_Controlling_Function_Wrappers).
9370 if Is_Null_Extension (T)
9371 and then Has_Controlling_Result (Subp)
9372 and then Ada_Version >= Ada_2005
9373 and then Present (Alias_Subp)
9374 and then not Comes_From_Source (Subp)
9375 and then not Is_Abstract_Subprogram (Alias_Subp)
9376 and then not Is_Access_Type (Etype (Subp))
9377 then
9378 null;
9380 -- Ada 2005 (AI-251): Internal entities of interfaces need no
9381 -- processing because this check is done with the aliased
9382 -- entity
9384 elsif Present (Interface_Alias (Subp)) then
9385 null;
9387 elsif (Is_Abstract_Subprogram (Subp)
9388 or else Requires_Overriding (Subp)
9389 or else
9390 (Has_Controlling_Result (Subp)
9391 and then Present (Alias_Subp)
9392 and then not Comes_From_Source (Subp)
9393 and then Sloc (Subp) = Sloc (First_Subtype (T))))
9394 and then not Is_TSS (Subp, TSS_Stream_Input)
9395 and then not Is_TSS (Subp, TSS_Stream_Output)
9396 and then not Is_Abstract_Type (T)
9397 and then Convention (T) /= Convention_CIL
9398 and then not Is_Predefined_Interface_Primitive (Subp)
9400 -- Ada 2005 (AI-251): Do not consider hidden entities associated
9401 -- with abstract interface types because the check will be done
9402 -- with the aliased entity (otherwise we generate a duplicated
9403 -- error message).
9405 and then not Present (Interface_Alias (Subp))
9406 then
9407 if Present (Alias_Subp) then
9409 -- Only perform the check for a derived subprogram when the
9410 -- type has an explicit record extension. This avoids incorrect
9411 -- flagging of abstract subprograms for the case of a type
9412 -- without an extension that is derived from a formal type
9413 -- with a tagged actual (can occur within a private part).
9415 -- Ada 2005 (AI-391): In the case of an inherited function with
9416 -- a controlling result of the type, the rule does not apply if
9417 -- the type is a null extension (unless the parent function
9418 -- itself is abstract, in which case the function must still be
9419 -- be overridden). The expander will generate an overriding
9420 -- wrapper function calling the parent subprogram (see
9421 -- Exp_Ch3.Make_Controlling_Wrapper_Functions).
9423 Type_Def := Type_Definition (Parent (T));
9425 if Nkind (Type_Def) = N_Derived_Type_Definition
9426 and then Present (Record_Extension_Part (Type_Def))
9427 and then
9428 (Ada_Version < Ada_2005
9429 or else not Is_Null_Extension (T)
9430 or else Ekind (Subp) = E_Procedure
9431 or else not Has_Controlling_Result (Subp)
9432 or else Is_Abstract_Subprogram (Alias_Subp)
9433 or else Requires_Overriding (Subp)
9434 or else Is_Access_Type (Etype (Subp)))
9435 then
9436 -- Avoid reporting error in case of abstract predefined
9437 -- primitive inherited from interface type because the
9438 -- body of internally generated predefined primitives
9439 -- of tagged types are generated later by Freeze_Type
9441 if Is_Interface (Root_Type (T))
9442 and then Is_Abstract_Subprogram (Subp)
9443 and then Is_Predefined_Dispatching_Operation (Subp)
9444 and then not Comes_From_Source (Ultimate_Alias (Subp))
9445 then
9446 null;
9448 else
9449 Error_Msg_NE
9450 ("type must be declared abstract or & overridden",
9451 T, Subp);
9453 -- Traverse the whole chain of aliased subprograms to
9454 -- complete the error notification. This is especially
9455 -- useful for traceability of the chain of entities when
9456 -- the subprogram corresponds with an interface
9457 -- subprogram (which may be defined in another package).
9459 if Present (Alias_Subp) then
9460 declare
9461 E : Entity_Id;
9463 begin
9464 E := Subp;
9465 while Present (Alias (E)) loop
9467 -- Avoid reporting redundant errors on entities
9468 -- inherited from interfaces
9470 if Sloc (E) /= Sloc (T) then
9471 Error_Msg_Sloc := Sloc (E);
9472 Error_Msg_NE
9473 ("\& has been inherited #", T, Subp);
9474 end if;
9476 E := Alias (E);
9477 end loop;
9479 Error_Msg_Sloc := Sloc (E);
9481 -- AI05-0068: report if there is an overriding
9482 -- non-abstract subprogram that is invisible.
9484 if Is_Hidden (E)
9485 and then not Is_Abstract_Subprogram (E)
9486 then
9487 Error_Msg_NE
9488 ("\& subprogram# is not visible",
9489 T, Subp);
9491 else
9492 Error_Msg_NE
9493 ("\& has been inherited from subprogram #",
9494 T, Subp);
9495 end if;
9496 end;
9497 end if;
9498 end if;
9500 -- Ada 2005 (AI-345): Protected or task type implementing
9501 -- abstract interfaces.
9503 elsif Is_Concurrent_Record_Type (T)
9504 and then Present (Interfaces (T))
9505 then
9506 -- The controlling formal of Subp must be of mode "out",
9507 -- "in out" or an access-to-variable to be overridden.
9509 if Ekind (First_Formal (Subp)) = E_In_Parameter
9510 and then Ekind (Subp) /= E_Function
9511 then
9512 if not Is_Predefined_Dispatching_Operation (Subp)
9513 and then Is_Protected_Type
9514 (Corresponding_Concurrent_Type (T))
9515 then
9516 Error_Msg_PT (T, Subp);
9517 end if;
9519 -- Some other kind of overriding failure
9521 else
9522 Error_Msg_NE
9523 ("interface subprogram & must be overridden",
9524 T, Subp);
9526 -- Examine primitive operations of synchronized type,
9527 -- to find homonyms that have the wrong profile.
9529 declare
9530 Prim : Entity_Id;
9532 begin
9533 Prim :=
9534 First_Entity (Corresponding_Concurrent_Type (T));
9535 while Present (Prim) loop
9536 if Chars (Prim) = Chars (Subp) then
9537 Error_Msg_NE
9538 ("profile is not type conformant with "
9539 & "prefixed view profile of "
9540 & "inherited operation&", Prim, Subp);
9541 end if;
9543 Next_Entity (Prim);
9544 end loop;
9545 end;
9546 end if;
9547 end if;
9549 else
9550 Error_Msg_Node_2 := T;
9551 Error_Msg_N
9552 ("abstract subprogram& not allowed for type&", Subp);
9554 -- Also post unconditional warning on the type (unconditional
9555 -- so that if there are more than one of these cases, we get
9556 -- them all, and not just the first one).
9558 Error_Msg_Node_2 := Subp;
9559 Error_Msg_N ("nonabstract type& has abstract subprogram&!", T);
9560 end if;
9561 end if;
9563 -- Ada 2012 (AI05-0030): Perform some checks related to pragma
9564 -- Implemented
9566 -- Subp is an expander-generated procedure which maps an interface
9567 -- alias to a protected wrapper. The interface alias is flagged by
9568 -- pragma Implemented. Ensure that Subp is a procedure when the
9569 -- implementation kind is By_Protected_Procedure or an entry when
9570 -- By_Entry.
9572 if Ada_Version >= Ada_2012
9573 and then Is_Hidden (Subp)
9574 and then Present (Interface_Alias (Subp))
9575 and then Has_Rep_Pragma (Interface_Alias (Subp), Name_Implemented)
9576 then
9577 Check_Pragma_Implemented (Subp);
9578 end if;
9580 -- Subp is an interface primitive which overrides another interface
9581 -- primitive marked with pragma Implemented.
9583 if Ada_Version >= Ada_2012
9584 and then Present (Overridden_Operation (Subp))
9585 and then Has_Rep_Pragma
9586 (Overridden_Operation (Subp), Name_Implemented)
9587 then
9588 -- If the overriding routine is also marked by Implemented, check
9589 -- that the two implementation kinds are conforming.
9591 if Has_Rep_Pragma (Subp, Name_Implemented) then
9592 Check_Pragma_Implemented
9593 (Subp => Subp,
9594 Iface_Subp => Overridden_Operation (Subp));
9596 -- Otherwise the overriding routine inherits the implementation
9597 -- kind from the overridden subprogram.
9599 else
9600 Inherit_Pragma_Implemented
9601 (Subp => Subp,
9602 Iface_Subp => Overridden_Operation (Subp));
9603 end if;
9604 end if;
9606 -- If the operation is a wrapper for a synchronized primitive, it
9607 -- may be called indirectly through a dispatching select. We assume
9608 -- that it will be referenced elsewhere indirectly, and suppress
9609 -- warnings about an unused entity.
9611 if Is_Primitive_Wrapper (Subp)
9612 and then Present (Wrapped_Entity (Subp))
9613 then
9614 Set_Referenced (Wrapped_Entity (Subp));
9615 end if;
9617 Next_Elmt (Elmt);
9618 end loop;
9619 end Check_Abstract_Overriding;
9621 ------------------------------------------------
9622 -- Check_Access_Discriminant_Requires_Limited --
9623 ------------------------------------------------
9625 procedure Check_Access_Discriminant_Requires_Limited
9626 (D : Node_Id;
9627 Loc : Node_Id)
9629 begin
9630 -- A discriminant_specification for an access discriminant shall appear
9631 -- only in the declaration for a task or protected type, or for a type
9632 -- with the reserved word 'limited' in its definition or in one of its
9633 -- ancestors (RM 3.7(10)).
9635 -- AI-0063: The proper condition is that type must be immutably limited,
9636 -- or else be a partial view.
9638 if Nkind (Discriminant_Type (D)) = N_Access_Definition then
9639 if Is_Limited_View (Current_Scope)
9640 or else
9641 (Nkind (Parent (Current_Scope)) = N_Private_Type_Declaration
9642 and then Limited_Present (Parent (Current_Scope)))
9643 then
9644 null;
9646 else
9647 Error_Msg_N
9648 ("access discriminants allowed only for limited types", Loc);
9649 end if;
9650 end if;
9651 end Check_Access_Discriminant_Requires_Limited;
9653 -----------------------------------
9654 -- Check_Aliased_Component_Types --
9655 -----------------------------------
9657 procedure Check_Aliased_Component_Types (T : Entity_Id) is
9658 C : Entity_Id;
9660 begin
9661 -- ??? Also need to check components of record extensions, but not
9662 -- components of protected types (which are always limited).
9664 -- Ada 2005: AI-363 relaxes this rule, to allow heap objects of such
9665 -- types to be unconstrained. This is safe because it is illegal to
9666 -- create access subtypes to such types with explicit discriminant
9667 -- constraints.
9669 if not Is_Limited_Type (T) then
9670 if Ekind (T) = E_Record_Type then
9671 C := First_Component (T);
9672 while Present (C) loop
9673 if Is_Aliased (C)
9674 and then Has_Discriminants (Etype (C))
9675 and then not Is_Constrained (Etype (C))
9676 and then not In_Instance_Body
9677 and then Ada_Version < Ada_2005
9678 then
9679 Error_Msg_N
9680 ("aliased component must be constrained (RM 3.6(11))",
9682 end if;
9684 Next_Component (C);
9685 end loop;
9687 elsif Ekind (T) = E_Array_Type then
9688 if Has_Aliased_Components (T)
9689 and then Has_Discriminants (Component_Type (T))
9690 and then not Is_Constrained (Component_Type (T))
9691 and then not In_Instance_Body
9692 and then Ada_Version < Ada_2005
9693 then
9694 Error_Msg_N
9695 ("aliased component type must be constrained (RM 3.6(11))",
9697 end if;
9698 end if;
9699 end if;
9700 end Check_Aliased_Component_Types;
9702 ----------------------
9703 -- Check_Completion --
9704 ----------------------
9706 procedure Check_Completion (Body_Id : Node_Id := Empty) is
9707 E : Entity_Id;
9709 procedure Post_Error;
9710 -- Post error message for lack of completion for entity E
9712 ----------------
9713 -- Post_Error --
9714 ----------------
9716 procedure Post_Error is
9718 procedure Missing_Body;
9719 -- Output missing body message
9721 ------------------
9722 -- Missing_Body --
9723 ------------------
9725 procedure Missing_Body is
9726 begin
9727 -- Spec is in same unit, so we can post on spec
9729 if In_Same_Source_Unit (Body_Id, E) then
9730 Error_Msg_N ("missing body for &", E);
9732 -- Spec is in a separate unit, so we have to post on the body
9734 else
9735 Error_Msg_NE ("missing body for & declared#!", Body_Id, E);
9736 end if;
9737 end Missing_Body;
9739 -- Start of processing for Post_Error
9741 begin
9742 if not Comes_From_Source (E) then
9744 if Ekind_In (E, E_Task_Type, E_Protected_Type) then
9745 -- It may be an anonymous protected type created for a
9746 -- single variable. Post error on variable, if present.
9748 declare
9749 Var : Entity_Id;
9751 begin
9752 Var := First_Entity (Current_Scope);
9753 while Present (Var) loop
9754 exit when Etype (Var) = E
9755 and then Comes_From_Source (Var);
9757 Next_Entity (Var);
9758 end loop;
9760 if Present (Var) then
9761 E := Var;
9762 end if;
9763 end;
9764 end if;
9765 end if;
9767 -- If a generated entity has no completion, then either previous
9768 -- semantic errors have disabled the expansion phase, or else we had
9769 -- missing subunits, or else we are compiling without expansion,
9770 -- or else something is very wrong.
9772 if not Comes_From_Source (E) then
9773 pragma Assert
9774 (Serious_Errors_Detected > 0
9775 or else Configurable_Run_Time_Violations > 0
9776 or else Subunits_Missing
9777 or else not Expander_Active);
9778 return;
9780 -- Here for source entity
9782 else
9783 -- Here if no body to post the error message, so we post the error
9784 -- on the declaration that has no completion. This is not really
9785 -- the right place to post it, think about this later ???
9787 if No (Body_Id) then
9788 if Is_Type (E) then
9789 Error_Msg_NE
9790 ("missing full declaration for }", Parent (E), E);
9791 else
9792 Error_Msg_NE ("missing body for &", Parent (E), E);
9793 end if;
9795 -- Package body has no completion for a declaration that appears
9796 -- in the corresponding spec. Post error on the body, with a
9797 -- reference to the non-completed declaration.
9799 else
9800 Error_Msg_Sloc := Sloc (E);
9802 if Is_Type (E) then
9803 Error_Msg_NE ("missing full declaration for }!", Body_Id, E);
9805 elsif Is_Overloadable (E)
9806 and then Current_Entity_In_Scope (E) /= E
9807 then
9808 -- It may be that the completion is mistyped and appears as
9809 -- a distinct overloading of the entity.
9811 declare
9812 Candidate : constant Entity_Id :=
9813 Current_Entity_In_Scope (E);
9814 Decl : constant Node_Id :=
9815 Unit_Declaration_Node (Candidate);
9817 begin
9818 if Is_Overloadable (Candidate)
9819 and then Ekind (Candidate) = Ekind (E)
9820 and then Nkind (Decl) = N_Subprogram_Body
9821 and then Acts_As_Spec (Decl)
9822 then
9823 Check_Type_Conformant (Candidate, E);
9825 else
9826 Missing_Body;
9827 end if;
9828 end;
9830 else
9831 Missing_Body;
9832 end if;
9833 end if;
9834 end if;
9835 end Post_Error;
9837 -- Start of processing for Check_Completion
9839 begin
9840 E := First_Entity (Current_Scope);
9841 while Present (E) loop
9842 if Is_Intrinsic_Subprogram (E) then
9843 null;
9845 -- The following situation requires special handling: a child unit
9846 -- that appears in the context clause of the body of its parent:
9848 -- procedure Parent.Child (...);
9850 -- with Parent.Child;
9851 -- package body Parent is
9853 -- Here Parent.Child appears as a local entity, but should not be
9854 -- flagged as requiring completion, because it is a compilation
9855 -- unit.
9857 -- Ignore missing completion for a subprogram that does not come from
9858 -- source (including the _Call primitive operation of RAS types,
9859 -- which has to have the flag Comes_From_Source for other purposes):
9860 -- we assume that the expander will provide the missing completion.
9861 -- In case of previous errors, other expansion actions that provide
9862 -- bodies for null procedures with not be invoked, so inhibit message
9863 -- in those cases.
9865 -- Note that E_Operator is not in the list that follows, because
9866 -- this kind is reserved for predefined operators, that are
9867 -- intrinsic and do not need completion.
9869 elsif Ekind (E) = E_Function
9870 or else Ekind (E) = E_Procedure
9871 or else Ekind (E) = E_Generic_Function
9872 or else Ekind (E) = E_Generic_Procedure
9873 then
9874 if Has_Completion (E) then
9875 null;
9877 elsif Is_Subprogram (E) and then Is_Abstract_Subprogram (E) then
9878 null;
9880 elsif Is_Subprogram (E)
9881 and then (not Comes_From_Source (E)
9882 or else Chars (E) = Name_uCall)
9883 then
9884 null;
9886 elsif
9887 Nkind (Parent (Unit_Declaration_Node (E))) = N_Compilation_Unit
9888 then
9889 null;
9891 elsif Nkind (Parent (E)) = N_Procedure_Specification
9892 and then Null_Present (Parent (E))
9893 and then Serious_Errors_Detected > 0
9894 then
9895 null;
9897 else
9898 Post_Error;
9899 end if;
9901 elsif Is_Entry (E) then
9902 if not Has_Completion (E) and then
9903 (Ekind (Scope (E)) = E_Protected_Object
9904 or else Ekind (Scope (E)) = E_Protected_Type)
9905 then
9906 Post_Error;
9907 end if;
9909 elsif Is_Package_Or_Generic_Package (E) then
9910 if Unit_Requires_Body (E) then
9911 if not Has_Completion (E)
9912 and then Nkind (Parent (Unit_Declaration_Node (E))) /=
9913 N_Compilation_Unit
9914 then
9915 Post_Error;
9916 end if;
9918 elsif not Is_Child_Unit (E) then
9919 May_Need_Implicit_Body (E);
9920 end if;
9922 -- A formal incomplete type (Ada 2012) does not require a completion;
9923 -- other incomplete type declarations do.
9925 elsif Ekind (E) = E_Incomplete_Type
9926 and then No (Underlying_Type (E))
9927 and then not Is_Generic_Type (E)
9928 then
9929 Post_Error;
9931 elsif (Ekind (E) = E_Task_Type or else
9932 Ekind (E) = E_Protected_Type)
9933 and then not Has_Completion (E)
9934 then
9935 Post_Error;
9937 -- A single task declared in the current scope is a constant, verify
9938 -- that the body of its anonymous type is in the same scope. If the
9939 -- task is defined elsewhere, this may be a renaming declaration for
9940 -- which no completion is needed.
9942 elsif Ekind (E) = E_Constant
9943 and then Ekind (Etype (E)) = E_Task_Type
9944 and then not Has_Completion (Etype (E))
9945 and then Scope (Etype (E)) = Current_Scope
9946 then
9947 Post_Error;
9949 elsif Ekind (E) = E_Protected_Object
9950 and then not Has_Completion (Etype (E))
9951 then
9952 Post_Error;
9954 elsif Ekind (E) = E_Record_Type then
9955 if Is_Tagged_Type (E) then
9956 Check_Abstract_Overriding (E);
9957 Check_Conventions (E);
9958 end if;
9960 Check_Aliased_Component_Types (E);
9962 elsif Ekind (E) = E_Array_Type then
9963 Check_Aliased_Component_Types (E);
9965 end if;
9967 Next_Entity (E);
9968 end loop;
9969 end Check_Completion;
9971 ------------------------------------
9972 -- Check_CPP_Type_Has_No_Defaults --
9973 ------------------------------------
9975 procedure Check_CPP_Type_Has_No_Defaults (T : Entity_Id) is
9976 Tdef : constant Node_Id := Type_Definition (Declaration_Node (T));
9977 Clist : Node_Id;
9978 Comp : Node_Id;
9980 begin
9981 -- Obtain the component list
9983 if Nkind (Tdef) = N_Record_Definition then
9984 Clist := Component_List (Tdef);
9985 else pragma Assert (Nkind (Tdef) = N_Derived_Type_Definition);
9986 Clist := Component_List (Record_Extension_Part (Tdef));
9987 end if;
9989 -- Check all components to ensure no default expressions
9991 if Present (Clist) then
9992 Comp := First (Component_Items (Clist));
9993 while Present (Comp) loop
9994 if Present (Expression (Comp)) then
9995 Error_Msg_N
9996 ("component of imported 'C'P'P type cannot have "
9997 & "default expression", Expression (Comp));
9998 end if;
10000 Next (Comp);
10001 end loop;
10002 end if;
10003 end Check_CPP_Type_Has_No_Defaults;
10005 ----------------------------
10006 -- Check_Delta_Expression --
10007 ----------------------------
10009 procedure Check_Delta_Expression (E : Node_Id) is
10010 begin
10011 if not (Is_Real_Type (Etype (E))) then
10012 Wrong_Type (E, Any_Real);
10014 elsif not Is_OK_Static_Expression (E) then
10015 Flag_Non_Static_Expr
10016 ("non-static expression used for delta value!", E);
10018 elsif not UR_Is_Positive (Expr_Value_R (E)) then
10019 Error_Msg_N ("delta expression must be positive", E);
10021 else
10022 return;
10023 end if;
10025 -- If any of above errors occurred, then replace the incorrect
10026 -- expression by the real 0.1, which should prevent further errors.
10028 Rewrite (E,
10029 Make_Real_Literal (Sloc (E), Ureal_Tenth));
10030 Analyze_And_Resolve (E, Standard_Float);
10031 end Check_Delta_Expression;
10033 -----------------------------
10034 -- Check_Digits_Expression --
10035 -----------------------------
10037 procedure Check_Digits_Expression (E : Node_Id) is
10038 begin
10039 if not (Is_Integer_Type (Etype (E))) then
10040 Wrong_Type (E, Any_Integer);
10042 elsif not Is_OK_Static_Expression (E) then
10043 Flag_Non_Static_Expr
10044 ("non-static expression used for digits value!", E);
10046 elsif Expr_Value (E) <= 0 then
10047 Error_Msg_N ("digits value must be greater than zero", E);
10049 else
10050 return;
10051 end if;
10053 -- If any of above errors occurred, then replace the incorrect
10054 -- expression by the integer 1, which should prevent further errors.
10056 Rewrite (E, Make_Integer_Literal (Sloc (E), 1));
10057 Analyze_And_Resolve (E, Standard_Integer);
10059 end Check_Digits_Expression;
10061 --------------------------
10062 -- Check_Initialization --
10063 --------------------------
10065 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id) is
10066 begin
10067 if Is_Limited_Type (T)
10068 and then not In_Instance
10069 and then not In_Inlined_Body
10070 then
10071 if not OK_For_Limited_Init (T, Exp) then
10073 -- In GNAT mode, this is just a warning, to allow it to be evilly
10074 -- turned off. Otherwise it is a real error.
10076 if GNAT_Mode then
10077 Error_Msg_N
10078 ("?cannot initialize entities of limited type!", Exp);
10080 elsif Ada_Version < Ada_2005 then
10082 -- The side effect removal machinery may generate illegal Ada
10083 -- code to avoid the usage of access types and 'reference in
10084 -- SPARK mode. Since this is legal code with respect to theorem
10085 -- proving, do not emit the error.
10087 if SPARK_Mode
10088 and then Nkind (Exp) = N_Function_Call
10089 and then Nkind (Parent (Exp)) = N_Object_Declaration
10090 and then not Comes_From_Source
10091 (Defining_Identifier (Parent (Exp)))
10092 then
10093 null;
10095 else
10096 Error_Msg_N
10097 ("cannot initialize entities of limited type", Exp);
10098 Explain_Limited_Type (T, Exp);
10099 end if;
10101 else
10102 -- Specialize error message according to kind of illegal
10103 -- initial expression.
10105 if Nkind (Exp) = N_Type_Conversion
10106 and then Nkind (Expression (Exp)) = N_Function_Call
10107 then
10108 Error_Msg_N
10109 ("illegal context for call"
10110 & " to function with limited result", Exp);
10112 else
10113 Error_Msg_N
10114 ("initialization of limited object requires aggregate "
10115 & "or function call", Exp);
10116 end if;
10117 end if;
10118 end if;
10119 end if;
10120 end Check_Initialization;
10122 ----------------------
10123 -- Check_Interfaces --
10124 ----------------------
10126 procedure Check_Interfaces (N : Node_Id; Def : Node_Id) is
10127 Parent_Type : constant Entity_Id := Etype (Defining_Identifier (N));
10129 Iface : Node_Id;
10130 Iface_Def : Node_Id;
10131 Iface_Typ : Entity_Id;
10132 Parent_Node : Node_Id;
10134 Is_Task : Boolean := False;
10135 -- Set True if parent type or any progenitor is a task interface
10137 Is_Protected : Boolean := False;
10138 -- Set True if parent type or any progenitor is a protected interface
10140 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id);
10141 -- Check that a progenitor is compatible with declaration.
10142 -- Error is posted on Error_Node.
10144 ------------------
10145 -- Check_Ifaces --
10146 ------------------
10148 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id) is
10149 Iface_Id : constant Entity_Id :=
10150 Defining_Identifier (Parent (Iface_Def));
10151 Type_Def : Node_Id;
10153 begin
10154 if Nkind (N) = N_Private_Extension_Declaration then
10155 Type_Def := N;
10156 else
10157 Type_Def := Type_Definition (N);
10158 end if;
10160 if Is_Task_Interface (Iface_Id) then
10161 Is_Task := True;
10163 elsif Is_Protected_Interface (Iface_Id) then
10164 Is_Protected := True;
10165 end if;
10167 if Is_Synchronized_Interface (Iface_Id) then
10169 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
10170 -- extension derived from a synchronized interface must explicitly
10171 -- be declared synchronized, because the full view will be a
10172 -- synchronized type.
10174 if Nkind (N) = N_Private_Extension_Declaration then
10175 if not Synchronized_Present (N) then
10176 Error_Msg_NE
10177 ("private extension of& must be explicitly synchronized",
10178 N, Iface_Id);
10179 end if;
10181 -- However, by 3.9.4(16/2), a full type that is a record extension
10182 -- is never allowed to derive from a synchronized interface (note
10183 -- that interfaces must be excluded from this check, because those
10184 -- are represented by derived type definitions in some cases).
10186 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition
10187 and then not Interface_Present (Type_Definition (N))
10188 then
10189 Error_Msg_N ("record extension cannot derive from synchronized"
10190 & " interface", Error_Node);
10191 end if;
10192 end if;
10194 -- Check that the characteristics of the progenitor are compatible
10195 -- with the explicit qualifier in the declaration.
10196 -- The check only applies to qualifiers that come from source.
10197 -- Limited_Present also appears in the declaration of corresponding
10198 -- records, and the check does not apply to them.
10200 if Limited_Present (Type_Def)
10201 and then not
10202 Is_Concurrent_Record_Type (Defining_Identifier (N))
10203 then
10204 if Is_Limited_Interface (Parent_Type)
10205 and then not Is_Limited_Interface (Iface_Id)
10206 then
10207 Error_Msg_NE
10208 ("progenitor& must be limited interface",
10209 Error_Node, Iface_Id);
10211 elsif
10212 (Task_Present (Iface_Def)
10213 or else Protected_Present (Iface_Def)
10214 or else Synchronized_Present (Iface_Def))
10215 and then Nkind (N) /= N_Private_Extension_Declaration
10216 and then not Error_Posted (N)
10217 then
10218 Error_Msg_NE
10219 ("progenitor& must be limited interface",
10220 Error_Node, Iface_Id);
10221 end if;
10223 -- Protected interfaces can only inherit from limited, synchronized
10224 -- or protected interfaces.
10226 elsif Nkind (N) = N_Full_Type_Declaration
10227 and then Protected_Present (Type_Def)
10228 then
10229 if Limited_Present (Iface_Def)
10230 or else Synchronized_Present (Iface_Def)
10231 or else Protected_Present (Iface_Def)
10232 then
10233 null;
10235 elsif Task_Present (Iface_Def) then
10236 Error_Msg_N ("(Ada 2005) protected interface cannot inherit"
10237 & " from task interface", Error_Node);
10239 else
10240 Error_Msg_N ("(Ada 2005) protected interface cannot inherit"
10241 & " from non-limited interface", Error_Node);
10242 end if;
10244 -- Ada 2005 (AI-345): Synchronized interfaces can only inherit from
10245 -- limited and synchronized.
10247 elsif Synchronized_Present (Type_Def) then
10248 if Limited_Present (Iface_Def)
10249 or else Synchronized_Present (Iface_Def)
10250 then
10251 null;
10253 elsif Protected_Present (Iface_Def)
10254 and then Nkind (N) /= N_Private_Extension_Declaration
10255 then
10256 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit"
10257 & " from protected interface", Error_Node);
10259 elsif Task_Present (Iface_Def)
10260 and then Nkind (N) /= N_Private_Extension_Declaration
10261 then
10262 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit"
10263 & " from task interface", Error_Node);
10265 elsif not Is_Limited_Interface (Iface_Id) then
10266 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit"
10267 & " from non-limited interface", Error_Node);
10268 end if;
10270 -- Ada 2005 (AI-345): Task interfaces can only inherit from limited,
10271 -- synchronized or task interfaces.
10273 elsif Nkind (N) = N_Full_Type_Declaration
10274 and then Task_Present (Type_Def)
10275 then
10276 if Limited_Present (Iface_Def)
10277 or else Synchronized_Present (Iface_Def)
10278 or else Task_Present (Iface_Def)
10279 then
10280 null;
10282 elsif Protected_Present (Iface_Def) then
10283 Error_Msg_N ("(Ada 2005) task interface cannot inherit from"
10284 & " protected interface", Error_Node);
10286 else
10287 Error_Msg_N ("(Ada 2005) task interface cannot inherit from"
10288 & " non-limited interface", Error_Node);
10289 end if;
10290 end if;
10291 end Check_Ifaces;
10293 -- Start of processing for Check_Interfaces
10295 begin
10296 if Is_Interface (Parent_Type) then
10297 if Is_Task_Interface (Parent_Type) then
10298 Is_Task := True;
10300 elsif Is_Protected_Interface (Parent_Type) then
10301 Is_Protected := True;
10302 end if;
10303 end if;
10305 if Nkind (N) = N_Private_Extension_Declaration then
10307 -- Check that progenitors are compatible with declaration
10309 Iface := First (Interface_List (Def));
10310 while Present (Iface) loop
10311 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
10313 Parent_Node := Parent (Base_Type (Iface_Typ));
10314 Iface_Def := Type_Definition (Parent_Node);
10316 if not Is_Interface (Iface_Typ) then
10317 Diagnose_Interface (Iface, Iface_Typ);
10319 else
10320 Check_Ifaces (Iface_Def, Iface);
10321 end if;
10323 Next (Iface);
10324 end loop;
10326 if Is_Task and Is_Protected then
10327 Error_Msg_N
10328 ("type cannot derive from task and protected interface", N);
10329 end if;
10331 return;
10332 end if;
10334 -- Full type declaration of derived type.
10335 -- Check compatibility with parent if it is interface type
10337 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition
10338 and then Is_Interface (Parent_Type)
10339 then
10340 Parent_Node := Parent (Parent_Type);
10342 -- More detailed checks for interface varieties
10344 Check_Ifaces
10345 (Iface_Def => Type_Definition (Parent_Node),
10346 Error_Node => Subtype_Indication (Type_Definition (N)));
10347 end if;
10349 Iface := First (Interface_List (Def));
10350 while Present (Iface) loop
10351 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
10353 Parent_Node := Parent (Base_Type (Iface_Typ));
10354 Iface_Def := Type_Definition (Parent_Node);
10356 if not Is_Interface (Iface_Typ) then
10357 Diagnose_Interface (Iface, Iface_Typ);
10359 else
10360 -- "The declaration of a specific descendant of an interface
10361 -- type freezes the interface type" RM 13.14
10363 Freeze_Before (N, Iface_Typ);
10364 Check_Ifaces (Iface_Def, Error_Node => Iface);
10365 end if;
10367 Next (Iface);
10368 end loop;
10370 if Is_Task and Is_Protected then
10371 Error_Msg_N
10372 ("type cannot derive from task and protected interface", N);
10373 end if;
10374 end Check_Interfaces;
10376 ------------------------------------
10377 -- Check_Or_Process_Discriminants --
10378 ------------------------------------
10380 -- If an incomplete or private type declaration was already given for the
10381 -- type, the discriminants may have already been processed if they were
10382 -- present on the incomplete declaration. In this case a full conformance
10383 -- check has been performed in Find_Type_Name, and we then recheck here
10384 -- some properties that can't be checked on the partial view alone.
10385 -- Otherwise we call Process_Discriminants.
10387 procedure Check_Or_Process_Discriminants
10388 (N : Node_Id;
10389 T : Entity_Id;
10390 Prev : Entity_Id := Empty)
10392 begin
10393 if Has_Discriminants (T) then
10395 -- Discriminants are already set on T if they were already present
10396 -- on the partial view. Make them visible to component declarations.
10398 declare
10399 D : Entity_Id;
10400 -- Discriminant on T (full view) referencing expr on partial view
10402 Prev_D : Entity_Id;
10403 -- Entity of corresponding discriminant on partial view
10405 New_D : Node_Id;
10406 -- Discriminant specification for full view, expression is the
10407 -- syntactic copy on full view (which has been checked for
10408 -- conformance with partial view), only used here to post error
10409 -- message.
10411 begin
10412 D := First_Discriminant (T);
10413 New_D := First (Discriminant_Specifications (N));
10414 while Present (D) loop
10415 Prev_D := Current_Entity (D);
10416 Set_Current_Entity (D);
10417 Set_Is_Immediately_Visible (D);
10418 Set_Homonym (D, Prev_D);
10420 -- Handle the case where there is an untagged partial view and
10421 -- the full view is tagged: must disallow discriminants with
10422 -- defaults, unless compiling for Ada 2012, which allows a
10423 -- limited tagged type to have defaulted discriminants (see
10424 -- AI05-0214). However, suppress the error here if it was
10425 -- already reported on the default expression of the partial
10426 -- view.
10428 if Is_Tagged_Type (T)
10429 and then Present (Expression (Parent (D)))
10430 and then (not Is_Limited_Type (Current_Scope)
10431 or else Ada_Version < Ada_2012)
10432 and then not Error_Posted (Expression (Parent (D)))
10433 then
10434 if Ada_Version >= Ada_2012 then
10435 Error_Msg_N
10436 ("discriminants of nonlimited tagged type cannot have"
10437 & " defaults",
10438 Expression (New_D));
10439 else
10440 Error_Msg_N
10441 ("discriminants of tagged type cannot have defaults",
10442 Expression (New_D));
10443 end if;
10444 end if;
10446 -- Ada 2005 (AI-230): Access discriminant allowed in
10447 -- non-limited record types.
10449 if Ada_Version < Ada_2005 then
10451 -- This restriction gets applied to the full type here. It
10452 -- has already been applied earlier to the partial view.
10454 Check_Access_Discriminant_Requires_Limited (Parent (D), N);
10455 end if;
10457 Next_Discriminant (D);
10458 Next (New_D);
10459 end loop;
10460 end;
10462 elsif Present (Discriminant_Specifications (N)) then
10463 Process_Discriminants (N, Prev);
10464 end if;
10465 end Check_Or_Process_Discriminants;
10467 ----------------------
10468 -- Check_Real_Bound --
10469 ----------------------
10471 procedure Check_Real_Bound (Bound : Node_Id) is
10472 begin
10473 if not Is_Real_Type (Etype (Bound)) then
10474 Error_Msg_N
10475 ("bound in real type definition must be of real type", Bound);
10477 elsif not Is_OK_Static_Expression (Bound) then
10478 Flag_Non_Static_Expr
10479 ("non-static expression used for real type bound!", Bound);
10481 else
10482 return;
10483 end if;
10485 Rewrite
10486 (Bound, Make_Real_Literal (Sloc (Bound), Ureal_0));
10487 Analyze (Bound);
10488 Resolve (Bound, Standard_Float);
10489 end Check_Real_Bound;
10491 ------------------------------
10492 -- Complete_Private_Subtype --
10493 ------------------------------
10495 procedure Complete_Private_Subtype
10496 (Priv : Entity_Id;
10497 Full : Entity_Id;
10498 Full_Base : Entity_Id;
10499 Related_Nod : Node_Id)
10501 Save_Next_Entity : Entity_Id;
10502 Save_Homonym : Entity_Id;
10504 begin
10505 -- Set semantic attributes for (implicit) private subtype completion.
10506 -- If the full type has no discriminants, then it is a copy of the full
10507 -- view of the base. Otherwise, it is a subtype of the base with a
10508 -- possible discriminant constraint. Save and restore the original
10509 -- Next_Entity field of full to ensure that the calls to Copy_Node
10510 -- do not corrupt the entity chain.
10512 -- Note that the type of the full view is the same entity as the type of
10513 -- the partial view. In this fashion, the subtype has access to the
10514 -- correct view of the parent.
10516 Save_Next_Entity := Next_Entity (Full);
10517 Save_Homonym := Homonym (Priv);
10519 case Ekind (Full_Base) is
10520 when E_Record_Type |
10521 E_Record_Subtype |
10522 Class_Wide_Kind |
10523 Private_Kind |
10524 Task_Kind |
10525 Protected_Kind =>
10526 Copy_Node (Priv, Full);
10528 Set_Has_Discriminants
10529 (Full, Has_Discriminants (Full_Base));
10530 Set_Has_Unknown_Discriminants
10531 (Full, Has_Unknown_Discriminants (Full_Base));
10532 Set_First_Entity (Full, First_Entity (Full_Base));
10533 Set_Last_Entity (Full, Last_Entity (Full_Base));
10535 -- If the underlying base type is constrained, we know that the
10536 -- full view of the subtype is constrained as well (the converse
10537 -- is not necessarily true).
10539 if Is_Constrained (Full_Base) then
10540 Set_Is_Constrained (Full);
10541 end if;
10543 when others =>
10544 Copy_Node (Full_Base, Full);
10546 Set_Chars (Full, Chars (Priv));
10547 Conditional_Delay (Full, Priv);
10548 Set_Sloc (Full, Sloc (Priv));
10549 end case;
10551 Set_Next_Entity (Full, Save_Next_Entity);
10552 Set_Homonym (Full, Save_Homonym);
10553 Set_Associated_Node_For_Itype (Full, Related_Nod);
10555 -- Set common attributes for all subtypes: kind, convention, etc.
10557 Set_Ekind (Full, Subtype_Kind (Ekind (Full_Base)));
10558 Set_Convention (Full, Convention (Full_Base));
10560 -- The Etype of the full view is inconsistent. Gigi needs to see the
10561 -- structural full view, which is what the current scheme gives:
10562 -- the Etype of the full view is the etype of the full base. However,
10563 -- if the full base is a derived type, the full view then looks like
10564 -- a subtype of the parent, not a subtype of the full base. If instead
10565 -- we write:
10567 -- Set_Etype (Full, Full_Base);
10569 -- then we get inconsistencies in the front-end (confusion between
10570 -- views). Several outstanding bugs are related to this ???
10572 Set_Is_First_Subtype (Full, False);
10573 Set_Scope (Full, Scope (Priv));
10574 Set_Size_Info (Full, Full_Base);
10575 Set_RM_Size (Full, RM_Size (Full_Base));
10576 Set_Is_Itype (Full);
10578 -- A subtype of a private-type-without-discriminants, whose full-view
10579 -- has discriminants with default expressions, is not constrained!
10581 if not Has_Discriminants (Priv) then
10582 Set_Is_Constrained (Full, Is_Constrained (Full_Base));
10584 if Has_Discriminants (Full_Base) then
10585 Set_Discriminant_Constraint
10586 (Full, Discriminant_Constraint (Full_Base));
10588 -- The partial view may have been indefinite, the full view
10589 -- might not be.
10591 Set_Has_Unknown_Discriminants
10592 (Full, Has_Unknown_Discriminants (Full_Base));
10593 end if;
10594 end if;
10596 Set_First_Rep_Item (Full, First_Rep_Item (Full_Base));
10597 Set_Depends_On_Private (Full, Has_Private_Component (Full));
10599 -- Freeze the private subtype entity if its parent is delayed, and not
10600 -- already frozen. We skip this processing if the type is an anonymous
10601 -- subtype of a record component, or is the corresponding record of a
10602 -- protected type, since ???
10604 if not Is_Type (Scope (Full)) then
10605 Set_Has_Delayed_Freeze (Full,
10606 Has_Delayed_Freeze (Full_Base)
10607 and then (not Is_Frozen (Full_Base)));
10608 end if;
10610 Set_Freeze_Node (Full, Empty);
10611 Set_Is_Frozen (Full, False);
10612 Set_Full_View (Priv, Full);
10614 if Has_Discriminants (Full) then
10615 Set_Stored_Constraint_From_Discriminant_Constraint (Full);
10616 Set_Stored_Constraint (Priv, Stored_Constraint (Full));
10618 if Has_Unknown_Discriminants (Full) then
10619 Set_Discriminant_Constraint (Full, No_Elist);
10620 end if;
10621 end if;
10623 if Ekind (Full_Base) = E_Record_Type
10624 and then Has_Discriminants (Full_Base)
10625 and then Has_Discriminants (Priv) -- might not, if errors
10626 and then not Has_Unknown_Discriminants (Priv)
10627 and then not Is_Empty_Elmt_List (Discriminant_Constraint (Priv))
10628 then
10629 Create_Constrained_Components
10630 (Full, Related_Nod, Full_Base, Discriminant_Constraint (Priv));
10632 -- If the full base is itself derived from private, build a congruent
10633 -- subtype of its underlying type, for use by the back end. For a
10634 -- constrained record component, the declaration cannot be placed on
10635 -- the component list, but it must nevertheless be built an analyzed, to
10636 -- supply enough information for Gigi to compute the size of component.
10638 elsif Ekind (Full_Base) in Private_Kind
10639 and then Is_Derived_Type (Full_Base)
10640 and then Has_Discriminants (Full_Base)
10641 and then (Ekind (Current_Scope) /= E_Record_Subtype)
10642 then
10643 if not Is_Itype (Priv)
10644 and then
10645 Nkind (Subtype_Indication (Parent (Priv))) = N_Subtype_Indication
10646 then
10647 Build_Underlying_Full_View
10648 (Parent (Priv), Full, Etype (Full_Base));
10650 elsif Nkind (Related_Nod) = N_Component_Declaration then
10651 Build_Underlying_Full_View (Related_Nod, Full, Etype (Full_Base));
10652 end if;
10654 elsif Is_Record_Type (Full_Base) then
10656 -- Show Full is simply a renaming of Full_Base
10658 Set_Cloned_Subtype (Full, Full_Base);
10659 end if;
10661 -- It is unsafe to share the bounds of a scalar type, because the Itype
10662 -- is elaborated on demand, and if a bound is non-static then different
10663 -- orders of elaboration in different units will lead to different
10664 -- external symbols.
10666 if Is_Scalar_Type (Full_Base) then
10667 Set_Scalar_Range (Full,
10668 Make_Range (Sloc (Related_Nod),
10669 Low_Bound =>
10670 Duplicate_Subexpr_No_Checks (Type_Low_Bound (Full_Base)),
10671 High_Bound =>
10672 Duplicate_Subexpr_No_Checks (Type_High_Bound (Full_Base))));
10674 -- This completion inherits the bounds of the full parent, but if
10675 -- the parent is an unconstrained floating point type, so is the
10676 -- completion.
10678 if Is_Floating_Point_Type (Full_Base) then
10679 Set_Includes_Infinities
10680 (Scalar_Range (Full), Has_Infinities (Full_Base));
10681 end if;
10682 end if;
10684 -- ??? It seems that a lot of fields are missing that should be copied
10685 -- from Full_Base to Full. Here are some that are introduced in a
10686 -- non-disruptive way but a cleanup is necessary.
10688 if Is_Tagged_Type (Full_Base) then
10689 Set_Is_Tagged_Type (Full);
10690 Set_Direct_Primitive_Operations (Full,
10691 Direct_Primitive_Operations (Full_Base));
10693 -- Inherit class_wide type of full_base in case the partial view was
10694 -- not tagged. Otherwise it has already been created when the private
10695 -- subtype was analyzed.
10697 if No (Class_Wide_Type (Full)) then
10698 Set_Class_Wide_Type (Full, Class_Wide_Type (Full_Base));
10699 end if;
10701 -- If this is a subtype of a protected or task type, constrain its
10702 -- corresponding record, unless this is a subtype without constraints,
10703 -- i.e. a simple renaming as with an actual subtype in an instance.
10705 elsif Is_Concurrent_Type (Full_Base) then
10706 if Has_Discriminants (Full)
10707 and then Present (Corresponding_Record_Type (Full_Base))
10708 and then
10709 not Is_Empty_Elmt_List (Discriminant_Constraint (Full))
10710 then
10711 Set_Corresponding_Record_Type (Full,
10712 Constrain_Corresponding_Record
10713 (Full, Corresponding_Record_Type (Full_Base),
10714 Related_Nod, Full_Base));
10716 else
10717 Set_Corresponding_Record_Type (Full,
10718 Corresponding_Record_Type (Full_Base));
10719 end if;
10720 end if;
10722 -- Link rep item chain, and also setting of Has_Predicates from private
10723 -- subtype to full subtype, since we will need these on the full subtype
10724 -- to create the predicate function. Note that the full subtype may
10725 -- already have rep items, inherited from the full view of the base
10726 -- type, so we must be sure not to overwrite these entries.
10728 declare
10729 Append : Boolean;
10730 Item : Node_Id;
10731 Next_Item : Node_Id;
10733 begin
10734 Item := First_Rep_Item (Full);
10736 -- If no existing rep items on full type, we can just link directly
10737 -- to the list of items on the private type.
10739 if No (Item) then
10740 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
10742 -- Otherwise, search to the end of items currently linked to the full
10743 -- subtype and append the private items to the end. However, if Priv
10744 -- and Full already have the same list of rep items, then the append
10745 -- is not done, as that would create a circularity.
10747 elsif Item /= First_Rep_Item (Priv) then
10748 Append := True;
10750 loop
10751 Next_Item := Next_Rep_Item (Item);
10752 exit when No (Next_Item);
10753 Item := Next_Item;
10755 -- If the private view has aspect specifications, the full view
10756 -- inherits them. Since these aspects may already have been
10757 -- attached to the full view during derivation, do not append
10758 -- them if already present.
10760 if Item = First_Rep_Item (Priv) then
10761 Append := False;
10762 exit;
10763 end if;
10764 end loop;
10766 -- And link the private type items at the end of the chain
10768 if Append then
10769 Set_Next_Rep_Item (Item, First_Rep_Item (Priv));
10770 end if;
10771 end if;
10772 end;
10774 -- Make sure Has_Predicates is set on full type if it is set on the
10775 -- private type. Note that it may already be set on the full type and
10776 -- if so, we don't want to unset it.
10778 if Has_Predicates (Priv) then
10779 Set_Has_Predicates (Full);
10780 end if;
10781 end Complete_Private_Subtype;
10783 ----------------------------
10784 -- Constant_Redeclaration --
10785 ----------------------------
10787 procedure Constant_Redeclaration
10788 (Id : Entity_Id;
10789 N : Node_Id;
10790 T : out Entity_Id)
10792 Prev : constant Entity_Id := Current_Entity_In_Scope (Id);
10793 Obj_Def : constant Node_Id := Object_Definition (N);
10794 New_T : Entity_Id;
10796 procedure Check_Possible_Deferred_Completion
10797 (Prev_Id : Entity_Id;
10798 Prev_Obj_Def : Node_Id;
10799 Curr_Obj_Def : Node_Id);
10800 -- Determine whether the two object definitions describe the partial
10801 -- and the full view of a constrained deferred constant. Generate
10802 -- a subtype for the full view and verify that it statically matches
10803 -- the subtype of the partial view.
10805 procedure Check_Recursive_Declaration (Typ : Entity_Id);
10806 -- If deferred constant is an access type initialized with an allocator,
10807 -- check whether there is an illegal recursion in the definition,
10808 -- through a default value of some record subcomponent. This is normally
10809 -- detected when generating init procs, but requires this additional
10810 -- mechanism when expansion is disabled.
10812 ----------------------------------------
10813 -- Check_Possible_Deferred_Completion --
10814 ----------------------------------------
10816 procedure Check_Possible_Deferred_Completion
10817 (Prev_Id : Entity_Id;
10818 Prev_Obj_Def : Node_Id;
10819 Curr_Obj_Def : Node_Id)
10821 begin
10822 if Nkind (Prev_Obj_Def) = N_Subtype_Indication
10823 and then Present (Constraint (Prev_Obj_Def))
10824 and then Nkind (Curr_Obj_Def) = N_Subtype_Indication
10825 and then Present (Constraint (Curr_Obj_Def))
10826 then
10827 declare
10828 Loc : constant Source_Ptr := Sloc (N);
10829 Def_Id : constant Entity_Id := Make_Temporary (Loc, 'S');
10830 Decl : constant Node_Id :=
10831 Make_Subtype_Declaration (Loc,
10832 Defining_Identifier => Def_Id,
10833 Subtype_Indication =>
10834 Relocate_Node (Curr_Obj_Def));
10836 begin
10837 Insert_Before_And_Analyze (N, Decl);
10838 Set_Etype (Id, Def_Id);
10840 if not Subtypes_Statically_Match (Etype (Prev_Id), Def_Id) then
10841 Error_Msg_Sloc := Sloc (Prev_Id);
10842 Error_Msg_N ("subtype does not statically match deferred " &
10843 "declaration#", N);
10844 end if;
10845 end;
10846 end if;
10847 end Check_Possible_Deferred_Completion;
10849 ---------------------------------
10850 -- Check_Recursive_Declaration --
10851 ---------------------------------
10853 procedure Check_Recursive_Declaration (Typ : Entity_Id) is
10854 Comp : Entity_Id;
10856 begin
10857 if Is_Record_Type (Typ) then
10858 Comp := First_Component (Typ);
10859 while Present (Comp) loop
10860 if Comes_From_Source (Comp) then
10861 if Present (Expression (Parent (Comp)))
10862 and then Is_Entity_Name (Expression (Parent (Comp)))
10863 and then Entity (Expression (Parent (Comp))) = Prev
10864 then
10865 Error_Msg_Sloc := Sloc (Parent (Comp));
10866 Error_Msg_NE
10867 ("illegal circularity with declaration for&#",
10868 N, Comp);
10869 return;
10871 elsif Is_Record_Type (Etype (Comp)) then
10872 Check_Recursive_Declaration (Etype (Comp));
10873 end if;
10874 end if;
10876 Next_Component (Comp);
10877 end loop;
10878 end if;
10879 end Check_Recursive_Declaration;
10881 -- Start of processing for Constant_Redeclaration
10883 begin
10884 if Nkind (Parent (Prev)) = N_Object_Declaration then
10885 if Nkind (Object_Definition
10886 (Parent (Prev))) = N_Subtype_Indication
10887 then
10888 -- Find type of new declaration. The constraints of the two
10889 -- views must match statically, but there is no point in
10890 -- creating an itype for the full view.
10892 if Nkind (Obj_Def) = N_Subtype_Indication then
10893 Find_Type (Subtype_Mark (Obj_Def));
10894 New_T := Entity (Subtype_Mark (Obj_Def));
10896 else
10897 Find_Type (Obj_Def);
10898 New_T := Entity (Obj_Def);
10899 end if;
10901 T := Etype (Prev);
10903 else
10904 -- The full view may impose a constraint, even if the partial
10905 -- view does not, so construct the subtype.
10907 New_T := Find_Type_Of_Object (Obj_Def, N);
10908 T := New_T;
10909 end if;
10911 else
10912 -- Current declaration is illegal, diagnosed below in Enter_Name
10914 T := Empty;
10915 New_T := Any_Type;
10916 end if;
10918 -- If previous full declaration or a renaming declaration exists, or if
10919 -- a homograph is present, let Enter_Name handle it, either with an
10920 -- error or with the removal of an overridden implicit subprogram.
10922 if Ekind (Prev) /= E_Constant
10923 or else Nkind (Parent (Prev)) = N_Object_Renaming_Declaration
10924 or else Present (Expression (Parent (Prev)))
10925 or else Present (Full_View (Prev))
10926 then
10927 Enter_Name (Id);
10929 -- Verify that types of both declarations match, or else that both types
10930 -- are anonymous access types whose designated subtypes statically match
10931 -- (as allowed in Ada 2005 by AI-385).
10933 elsif Base_Type (Etype (Prev)) /= Base_Type (New_T)
10934 and then
10935 (Ekind (Etype (Prev)) /= E_Anonymous_Access_Type
10936 or else Ekind (Etype (New_T)) /= E_Anonymous_Access_Type
10937 or else Is_Access_Constant (Etype (New_T)) /=
10938 Is_Access_Constant (Etype (Prev))
10939 or else Can_Never_Be_Null (Etype (New_T)) /=
10940 Can_Never_Be_Null (Etype (Prev))
10941 or else Null_Exclusion_Present (Parent (Prev)) /=
10942 Null_Exclusion_Present (Parent (Id))
10943 or else not Subtypes_Statically_Match
10944 (Designated_Type (Etype (Prev)),
10945 Designated_Type (Etype (New_T))))
10946 then
10947 Error_Msg_Sloc := Sloc (Prev);
10948 Error_Msg_N ("type does not match declaration#", N);
10949 Set_Full_View (Prev, Id);
10950 Set_Etype (Id, Any_Type);
10952 elsif
10953 Null_Exclusion_Present (Parent (Prev))
10954 and then not Null_Exclusion_Present (N)
10955 then
10956 Error_Msg_Sloc := Sloc (Prev);
10957 Error_Msg_N ("null-exclusion does not match declaration#", N);
10958 Set_Full_View (Prev, Id);
10959 Set_Etype (Id, Any_Type);
10961 -- If so, process the full constant declaration
10963 else
10964 -- RM 7.4 (6): If the subtype defined by the subtype_indication in
10965 -- the deferred declaration is constrained, then the subtype defined
10966 -- by the subtype_indication in the full declaration shall match it
10967 -- statically.
10969 Check_Possible_Deferred_Completion
10970 (Prev_Id => Prev,
10971 Prev_Obj_Def => Object_Definition (Parent (Prev)),
10972 Curr_Obj_Def => Obj_Def);
10974 Set_Full_View (Prev, Id);
10975 Set_Is_Public (Id, Is_Public (Prev));
10976 Set_Is_Internal (Id);
10977 Append_Entity (Id, Current_Scope);
10979 -- Check ALIASED present if present before (RM 7.4(7))
10981 if Is_Aliased (Prev)
10982 and then not Aliased_Present (N)
10983 then
10984 Error_Msg_Sloc := Sloc (Prev);
10985 Error_Msg_N ("ALIASED required (see declaration#)", N);
10986 end if;
10988 -- Check that placement is in private part and that the incomplete
10989 -- declaration appeared in the visible part.
10991 if Ekind (Current_Scope) = E_Package
10992 and then not In_Private_Part (Current_Scope)
10993 then
10994 Error_Msg_Sloc := Sloc (Prev);
10995 Error_Msg_N
10996 ("full constant for declaration#"
10997 & " must be in private part", N);
10999 elsif Ekind (Current_Scope) = E_Package
11000 and then
11001 List_Containing (Parent (Prev)) /=
11002 Visible_Declarations (Package_Specification (Current_Scope))
11003 then
11004 Error_Msg_N
11005 ("deferred constant must be declared in visible part",
11006 Parent (Prev));
11007 end if;
11009 if Is_Access_Type (T)
11010 and then Nkind (Expression (N)) = N_Allocator
11011 then
11012 Check_Recursive_Declaration (Designated_Type (T));
11013 end if;
11015 -- A deferred constant is a visible entity. If type has invariants,
11016 -- verify that the initial value satisfies them.
11018 if Has_Invariants (T) and then Present (Invariant_Procedure (T)) then
11019 Insert_After (N,
11020 Make_Invariant_Call (New_Occurrence_Of (Prev, Sloc (N))));
11021 end if;
11022 end if;
11023 end Constant_Redeclaration;
11025 ----------------------
11026 -- Constrain_Access --
11027 ----------------------
11029 procedure Constrain_Access
11030 (Def_Id : in out Entity_Id;
11031 S : Node_Id;
11032 Related_Nod : Node_Id)
11034 T : constant Entity_Id := Entity (Subtype_Mark (S));
11035 Desig_Type : constant Entity_Id := Designated_Type (T);
11036 Desig_Subtype : Entity_Id := Create_Itype (E_Void, Related_Nod);
11037 Constraint_OK : Boolean := True;
11039 function Has_Defaulted_Discriminants (Typ : Entity_Id) return Boolean;
11040 -- Simple predicate to test for defaulted discriminants
11041 -- Shouldn't this be in sem_util???
11043 ---------------------------------
11044 -- Has_Defaulted_Discriminants --
11045 ---------------------------------
11047 function Has_Defaulted_Discriminants (Typ : Entity_Id) return Boolean is
11048 begin
11049 return Has_Discriminants (Typ)
11050 and then Present (First_Discriminant (Typ))
11051 and then Present
11052 (Discriminant_Default_Value (First_Discriminant (Typ)));
11053 end Has_Defaulted_Discriminants;
11055 -- Start of processing for Constrain_Access
11057 begin
11058 if Is_Array_Type (Desig_Type) then
11059 Constrain_Array (Desig_Subtype, S, Related_Nod, Def_Id, 'P');
11061 elsif (Is_Record_Type (Desig_Type)
11062 or else Is_Incomplete_Or_Private_Type (Desig_Type))
11063 and then not Is_Constrained (Desig_Type)
11064 then
11065 -- ??? The following code is a temporary kludge to ignore a
11066 -- discriminant constraint on access type if it is constraining
11067 -- the current record. Avoid creating the implicit subtype of the
11068 -- record we are currently compiling since right now, we cannot
11069 -- handle these. For now, just return the access type itself.
11071 if Desig_Type = Current_Scope
11072 and then No (Def_Id)
11073 then
11074 Set_Ekind (Desig_Subtype, E_Record_Subtype);
11075 Def_Id := Entity (Subtype_Mark (S));
11077 -- This call added to ensure that the constraint is analyzed
11078 -- (needed for a B test). Note that we still return early from
11079 -- this procedure to avoid recursive processing. ???
11081 Constrain_Discriminated_Type
11082 (Desig_Subtype, S, Related_Nod, For_Access => True);
11083 return;
11084 end if;
11086 -- Enforce rule that the constraint is illegal if there is an
11087 -- unconstrained view of the designated type. This means that the
11088 -- partial view (either a private type declaration or a derivation
11089 -- from a private type) has no discriminants. (Defect Report
11090 -- 8652/0008, Technical Corrigendum 1, checked by ACATS B371001).
11092 -- Rule updated for Ada 2005: the private type is said to have
11093 -- a constrained partial view, given that objects of the type
11094 -- can be declared. Furthermore, the rule applies to all access
11095 -- types, unlike the rule concerning default discriminants (see
11096 -- RM 3.7.1(7/3))
11098 if (Ekind (T) = E_General_Access_Type
11099 or else Ada_Version >= Ada_2005)
11100 and then Has_Private_Declaration (Desig_Type)
11101 and then In_Open_Scopes (Scope (Desig_Type))
11102 and then Has_Discriminants (Desig_Type)
11103 then
11104 declare
11105 Pack : constant Node_Id :=
11106 Unit_Declaration_Node (Scope (Desig_Type));
11107 Decls : List_Id;
11108 Decl : Node_Id;
11110 begin
11111 if Nkind (Pack) = N_Package_Declaration then
11112 Decls := Visible_Declarations (Specification (Pack));
11113 Decl := First (Decls);
11114 while Present (Decl) loop
11115 if (Nkind (Decl) = N_Private_Type_Declaration
11116 and then
11117 Chars (Defining_Identifier (Decl)) =
11118 Chars (Desig_Type))
11120 or else
11121 (Nkind (Decl) = N_Full_Type_Declaration
11122 and then
11123 Chars (Defining_Identifier (Decl)) =
11124 Chars (Desig_Type)
11125 and then Is_Derived_Type (Desig_Type)
11126 and then
11127 Has_Private_Declaration (Etype (Desig_Type)))
11128 then
11129 if No (Discriminant_Specifications (Decl)) then
11130 Error_Msg_N
11131 ("cannot constrain access type if designated " &
11132 "type has constrained partial view", S);
11133 end if;
11135 exit;
11136 end if;
11138 Next (Decl);
11139 end loop;
11140 end if;
11141 end;
11142 end if;
11144 Constrain_Discriminated_Type (Desig_Subtype, S, Related_Nod,
11145 For_Access => True);
11147 elsif (Is_Task_Type (Desig_Type)
11148 or else Is_Protected_Type (Desig_Type))
11149 and then not Is_Constrained (Desig_Type)
11150 then
11151 Constrain_Concurrent
11152 (Desig_Subtype, S, Related_Nod, Desig_Type, ' ');
11154 else
11155 Error_Msg_N ("invalid constraint on access type", S);
11156 Desig_Subtype := Desig_Type; -- Ignore invalid constraint.
11157 Constraint_OK := False;
11158 end if;
11160 if No (Def_Id) then
11161 Def_Id := Create_Itype (E_Access_Subtype, Related_Nod);
11162 else
11163 Set_Ekind (Def_Id, E_Access_Subtype);
11164 end if;
11166 if Constraint_OK then
11167 Set_Etype (Def_Id, Base_Type (T));
11169 if Is_Private_Type (Desig_Type) then
11170 Prepare_Private_Subtype_Completion (Desig_Subtype, Related_Nod);
11171 end if;
11172 else
11173 Set_Etype (Def_Id, Any_Type);
11174 end if;
11176 Set_Size_Info (Def_Id, T);
11177 Set_Is_Constrained (Def_Id, Constraint_OK);
11178 Set_Directly_Designated_Type (Def_Id, Desig_Subtype);
11179 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
11180 Set_Is_Access_Constant (Def_Id, Is_Access_Constant (T));
11182 Conditional_Delay (Def_Id, T);
11184 -- AI-363 : Subtypes of general access types whose designated types have
11185 -- default discriminants are disallowed. In instances, the rule has to
11186 -- be checked against the actual, of which T is the subtype. In a
11187 -- generic body, the rule is checked assuming that the actual type has
11188 -- defaulted discriminants.
11190 if Ada_Version >= Ada_2005 or else Warn_On_Ada_2005_Compatibility then
11191 if Ekind (Base_Type (T)) = E_General_Access_Type
11192 and then Has_Defaulted_Discriminants (Desig_Type)
11193 then
11194 if Ada_Version < Ada_2005 then
11195 Error_Msg_N
11196 ("access subtype of general access type would not " &
11197 "be allowed in Ada 2005?y?", S);
11198 else
11199 Error_Msg_N
11200 ("access subtype of general access type not allowed", S);
11201 end if;
11203 Error_Msg_N ("\discriminants have defaults", S);
11205 elsif Is_Access_Type (T)
11206 and then Is_Generic_Type (Desig_Type)
11207 and then Has_Discriminants (Desig_Type)
11208 and then In_Package_Body (Current_Scope)
11209 then
11210 if Ada_Version < Ada_2005 then
11211 Error_Msg_N
11212 ("access subtype would not be allowed in generic body " &
11213 "in Ada 2005?y?", S);
11214 else
11215 Error_Msg_N
11216 ("access subtype not allowed in generic body", S);
11217 end if;
11219 Error_Msg_N
11220 ("\designated type is a discriminated formal", S);
11221 end if;
11222 end if;
11223 end Constrain_Access;
11225 ---------------------
11226 -- Constrain_Array --
11227 ---------------------
11229 procedure Constrain_Array
11230 (Def_Id : in out Entity_Id;
11231 SI : Node_Id;
11232 Related_Nod : Node_Id;
11233 Related_Id : Entity_Id;
11234 Suffix : Character)
11236 C : constant Node_Id := Constraint (SI);
11237 Number_Of_Constraints : Nat := 0;
11238 Index : Node_Id;
11239 S, T : Entity_Id;
11240 Constraint_OK : Boolean := True;
11242 begin
11243 T := Entity (Subtype_Mark (SI));
11245 if Ekind (T) in Access_Kind then
11246 T := Designated_Type (T);
11247 end if;
11249 -- If an index constraint follows a subtype mark in a subtype indication
11250 -- then the type or subtype denoted by the subtype mark must not already
11251 -- impose an index constraint. The subtype mark must denote either an
11252 -- unconstrained array type or an access type whose designated type
11253 -- is such an array type... (RM 3.6.1)
11255 if Is_Constrained (T) then
11256 Error_Msg_N ("array type is already constrained", Subtype_Mark (SI));
11257 Constraint_OK := False;
11259 else
11260 S := First (Constraints (C));
11261 while Present (S) loop
11262 Number_Of_Constraints := Number_Of_Constraints + 1;
11263 Next (S);
11264 end loop;
11266 -- In either case, the index constraint must provide a discrete
11267 -- range for each index of the array type and the type of each
11268 -- discrete range must be the same as that of the corresponding
11269 -- index. (RM 3.6.1)
11271 if Number_Of_Constraints /= Number_Dimensions (T) then
11272 Error_Msg_NE ("incorrect number of index constraints for }", C, T);
11273 Constraint_OK := False;
11275 else
11276 S := First (Constraints (C));
11277 Index := First_Index (T);
11278 Analyze (Index);
11280 -- Apply constraints to each index type
11282 for J in 1 .. Number_Of_Constraints loop
11283 Constrain_Index (Index, S, Related_Nod, Related_Id, Suffix, J);
11284 Next (Index);
11285 Next (S);
11286 end loop;
11288 end if;
11289 end if;
11291 if No (Def_Id) then
11292 Def_Id :=
11293 Create_Itype (E_Array_Subtype, Related_Nod, Related_Id, Suffix);
11294 Set_Parent (Def_Id, Related_Nod);
11296 else
11297 Set_Ekind (Def_Id, E_Array_Subtype);
11298 end if;
11300 Set_Size_Info (Def_Id, (T));
11301 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
11302 Set_Etype (Def_Id, Base_Type (T));
11304 if Constraint_OK then
11305 Set_First_Index (Def_Id, First (Constraints (C)));
11306 else
11307 Set_First_Index (Def_Id, First_Index (T));
11308 end if;
11310 Set_Is_Constrained (Def_Id, True);
11311 Set_Is_Aliased (Def_Id, Is_Aliased (T));
11312 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
11314 Set_Is_Private_Composite (Def_Id, Is_Private_Composite (T));
11315 Set_Is_Limited_Composite (Def_Id, Is_Limited_Composite (T));
11317 -- A subtype does not inherit the packed_array_type of is parent. We
11318 -- need to initialize the attribute because if Def_Id is previously
11319 -- analyzed through a limited_with clause, it will have the attributes
11320 -- of an incomplete type, one of which is an Elist that overlaps the
11321 -- Packed_Array_Type field.
11323 Set_Packed_Array_Type (Def_Id, Empty);
11325 -- Build a freeze node if parent still needs one. Also make sure that
11326 -- the Depends_On_Private status is set because the subtype will need
11327 -- reprocessing at the time the base type does, and also we must set a
11328 -- conditional delay.
11330 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
11331 Conditional_Delay (Def_Id, T);
11332 end Constrain_Array;
11334 ------------------------------
11335 -- Constrain_Component_Type --
11336 ------------------------------
11338 function Constrain_Component_Type
11339 (Comp : Entity_Id;
11340 Constrained_Typ : Entity_Id;
11341 Related_Node : Node_Id;
11342 Typ : Entity_Id;
11343 Constraints : Elist_Id) return Entity_Id
11345 Loc : constant Source_Ptr := Sloc (Constrained_Typ);
11346 Compon_Type : constant Entity_Id := Etype (Comp);
11347 Array_Comp : Node_Id;
11349 function Build_Constrained_Array_Type
11350 (Old_Type : Entity_Id) return Entity_Id;
11351 -- If Old_Type is an array type, one of whose indexes is constrained
11352 -- by a discriminant, build an Itype whose constraint replaces the
11353 -- discriminant with its value in the constraint.
11355 function Build_Constrained_Discriminated_Type
11356 (Old_Type : Entity_Id) return Entity_Id;
11357 -- Ditto for record components
11359 function Build_Constrained_Access_Type
11360 (Old_Type : Entity_Id) return Entity_Id;
11361 -- Ditto for access types. Makes use of previous two functions, to
11362 -- constrain designated type.
11364 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id;
11365 -- T is an array or discriminated type, C is a list of constraints
11366 -- that apply to T. This routine builds the constrained subtype.
11368 function Is_Discriminant (Expr : Node_Id) return Boolean;
11369 -- Returns True if Expr is a discriminant
11371 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id;
11372 -- Find the value of discriminant Discrim in Constraint
11374 -----------------------------------
11375 -- Build_Constrained_Access_Type --
11376 -----------------------------------
11378 function Build_Constrained_Access_Type
11379 (Old_Type : Entity_Id) return Entity_Id
11381 Desig_Type : constant Entity_Id := Designated_Type (Old_Type);
11382 Itype : Entity_Id;
11383 Desig_Subtype : Entity_Id;
11384 Scop : Entity_Id;
11386 begin
11387 -- if the original access type was not embedded in the enclosing
11388 -- type definition, there is no need to produce a new access
11389 -- subtype. In fact every access type with an explicit constraint
11390 -- generates an itype whose scope is the enclosing record.
11392 if not Is_Type (Scope (Old_Type)) then
11393 return Old_Type;
11395 elsif Is_Array_Type (Desig_Type) then
11396 Desig_Subtype := Build_Constrained_Array_Type (Desig_Type);
11398 elsif Has_Discriminants (Desig_Type) then
11400 -- This may be an access type to an enclosing record type for
11401 -- which we are constructing the constrained components. Return
11402 -- the enclosing record subtype. This is not always correct,
11403 -- but avoids infinite recursion. ???
11405 Desig_Subtype := Any_Type;
11407 for J in reverse 0 .. Scope_Stack.Last loop
11408 Scop := Scope_Stack.Table (J).Entity;
11410 if Is_Type (Scop)
11411 and then Base_Type (Scop) = Base_Type (Desig_Type)
11412 then
11413 Desig_Subtype := Scop;
11414 end if;
11416 exit when not Is_Type (Scop);
11417 end loop;
11419 if Desig_Subtype = Any_Type then
11420 Desig_Subtype :=
11421 Build_Constrained_Discriminated_Type (Desig_Type);
11422 end if;
11424 else
11425 return Old_Type;
11426 end if;
11428 if Desig_Subtype /= Desig_Type then
11430 -- The Related_Node better be here or else we won't be able
11431 -- to attach new itypes to a node in the tree.
11433 pragma Assert (Present (Related_Node));
11435 Itype := Create_Itype (E_Access_Subtype, Related_Node);
11437 Set_Etype (Itype, Base_Type (Old_Type));
11438 Set_Size_Info (Itype, (Old_Type));
11439 Set_Directly_Designated_Type (Itype, Desig_Subtype);
11440 Set_Depends_On_Private (Itype, Has_Private_Component
11441 (Old_Type));
11442 Set_Is_Access_Constant (Itype, Is_Access_Constant
11443 (Old_Type));
11445 -- The new itype needs freezing when it depends on a not frozen
11446 -- type and the enclosing subtype needs freezing.
11448 if Has_Delayed_Freeze (Constrained_Typ)
11449 and then not Is_Frozen (Constrained_Typ)
11450 then
11451 Conditional_Delay (Itype, Base_Type (Old_Type));
11452 end if;
11454 return Itype;
11456 else
11457 return Old_Type;
11458 end if;
11459 end Build_Constrained_Access_Type;
11461 ----------------------------------
11462 -- Build_Constrained_Array_Type --
11463 ----------------------------------
11465 function Build_Constrained_Array_Type
11466 (Old_Type : Entity_Id) return Entity_Id
11468 Lo_Expr : Node_Id;
11469 Hi_Expr : Node_Id;
11470 Old_Index : Node_Id;
11471 Range_Node : Node_Id;
11472 Constr_List : List_Id;
11474 Need_To_Create_Itype : Boolean := False;
11476 begin
11477 Old_Index := First_Index (Old_Type);
11478 while Present (Old_Index) loop
11479 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
11481 if Is_Discriminant (Lo_Expr)
11482 or else Is_Discriminant (Hi_Expr)
11483 then
11484 Need_To_Create_Itype := True;
11485 end if;
11487 Next_Index (Old_Index);
11488 end loop;
11490 if Need_To_Create_Itype then
11491 Constr_List := New_List;
11493 Old_Index := First_Index (Old_Type);
11494 while Present (Old_Index) loop
11495 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
11497 if Is_Discriminant (Lo_Expr) then
11498 Lo_Expr := Get_Discr_Value (Lo_Expr);
11499 end if;
11501 if Is_Discriminant (Hi_Expr) then
11502 Hi_Expr := Get_Discr_Value (Hi_Expr);
11503 end if;
11505 Range_Node :=
11506 Make_Range
11507 (Loc, New_Copy_Tree (Lo_Expr), New_Copy_Tree (Hi_Expr));
11509 Append (Range_Node, To => Constr_List);
11511 Next_Index (Old_Index);
11512 end loop;
11514 return Build_Subtype (Old_Type, Constr_List);
11516 else
11517 return Old_Type;
11518 end if;
11519 end Build_Constrained_Array_Type;
11521 ------------------------------------------
11522 -- Build_Constrained_Discriminated_Type --
11523 ------------------------------------------
11525 function Build_Constrained_Discriminated_Type
11526 (Old_Type : Entity_Id) return Entity_Id
11528 Expr : Node_Id;
11529 Constr_List : List_Id;
11530 Old_Constraint : Elmt_Id;
11532 Need_To_Create_Itype : Boolean := False;
11534 begin
11535 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
11536 while Present (Old_Constraint) loop
11537 Expr := Node (Old_Constraint);
11539 if Is_Discriminant (Expr) then
11540 Need_To_Create_Itype := True;
11541 end if;
11543 Next_Elmt (Old_Constraint);
11544 end loop;
11546 if Need_To_Create_Itype then
11547 Constr_List := New_List;
11549 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
11550 while Present (Old_Constraint) loop
11551 Expr := Node (Old_Constraint);
11553 if Is_Discriminant (Expr) then
11554 Expr := Get_Discr_Value (Expr);
11555 end if;
11557 Append (New_Copy_Tree (Expr), To => Constr_List);
11559 Next_Elmt (Old_Constraint);
11560 end loop;
11562 return Build_Subtype (Old_Type, Constr_List);
11564 else
11565 return Old_Type;
11566 end if;
11567 end Build_Constrained_Discriminated_Type;
11569 -------------------
11570 -- Build_Subtype --
11571 -------------------
11573 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id is
11574 Indic : Node_Id;
11575 Subtyp_Decl : Node_Id;
11576 Def_Id : Entity_Id;
11577 Btyp : Entity_Id := Base_Type (T);
11579 begin
11580 -- The Related_Node better be here or else we won't be able to
11581 -- attach new itypes to a node in the tree.
11583 pragma Assert (Present (Related_Node));
11585 -- If the view of the component's type is incomplete or private
11586 -- with unknown discriminants, then the constraint must be applied
11587 -- to the full type.
11589 if Has_Unknown_Discriminants (Btyp)
11590 and then Present (Underlying_Type (Btyp))
11591 then
11592 Btyp := Underlying_Type (Btyp);
11593 end if;
11595 Indic :=
11596 Make_Subtype_Indication (Loc,
11597 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
11598 Constraint => Make_Index_Or_Discriminant_Constraint (Loc, C));
11600 Def_Id := Create_Itype (Ekind (T), Related_Node);
11602 Subtyp_Decl :=
11603 Make_Subtype_Declaration (Loc,
11604 Defining_Identifier => Def_Id,
11605 Subtype_Indication => Indic);
11607 Set_Parent (Subtyp_Decl, Parent (Related_Node));
11609 -- Itypes must be analyzed with checks off (see package Itypes)
11611 Analyze (Subtyp_Decl, Suppress => All_Checks);
11613 return Def_Id;
11614 end Build_Subtype;
11616 ---------------------
11617 -- Get_Discr_Value --
11618 ---------------------
11620 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id is
11621 D : Entity_Id;
11622 E : Elmt_Id;
11624 begin
11625 -- The discriminant may be declared for the type, in which case we
11626 -- find it by iterating over the list of discriminants. If the
11627 -- discriminant is inherited from a parent type, it appears as the
11628 -- corresponding discriminant of the current type. This will be the
11629 -- case when constraining an inherited component whose constraint is
11630 -- given by a discriminant of the parent.
11632 D := First_Discriminant (Typ);
11633 E := First_Elmt (Constraints);
11635 while Present (D) loop
11636 if D = Entity (Discrim)
11637 or else D = CR_Discriminant (Entity (Discrim))
11638 or else Corresponding_Discriminant (D) = Entity (Discrim)
11639 then
11640 return Node (E);
11641 end if;
11643 Next_Discriminant (D);
11644 Next_Elmt (E);
11645 end loop;
11647 -- The Corresponding_Discriminant mechanism is incomplete, because
11648 -- the correspondence between new and old discriminants is not one
11649 -- to one: one new discriminant can constrain several old ones. In
11650 -- that case, scan sequentially the stored_constraint, the list of
11651 -- discriminants of the parents, and the constraints.
11653 -- Previous code checked for the present of the Stored_Constraint
11654 -- list for the derived type, but did not use it at all. Should it
11655 -- be present when the component is a discriminated task type?
11657 if Is_Derived_Type (Typ)
11658 and then Scope (Entity (Discrim)) = Etype (Typ)
11659 then
11660 D := First_Discriminant (Etype (Typ));
11661 E := First_Elmt (Constraints);
11662 while Present (D) loop
11663 if D = Entity (Discrim) then
11664 return Node (E);
11665 end if;
11667 Next_Discriminant (D);
11668 Next_Elmt (E);
11669 end loop;
11670 end if;
11672 -- Something is wrong if we did not find the value
11674 raise Program_Error;
11675 end Get_Discr_Value;
11677 ---------------------
11678 -- Is_Discriminant --
11679 ---------------------
11681 function Is_Discriminant (Expr : Node_Id) return Boolean is
11682 Discrim_Scope : Entity_Id;
11684 begin
11685 if Denotes_Discriminant (Expr) then
11686 Discrim_Scope := Scope (Entity (Expr));
11688 -- Either we have a reference to one of Typ's discriminants,
11690 pragma Assert (Discrim_Scope = Typ
11692 -- or to the discriminants of the parent type, in the case
11693 -- of a derivation of a tagged type with variants.
11695 or else Discrim_Scope = Etype (Typ)
11696 or else Full_View (Discrim_Scope) = Etype (Typ)
11698 -- or same as above for the case where the discriminants
11699 -- were declared in Typ's private view.
11701 or else (Is_Private_Type (Discrim_Scope)
11702 and then Chars (Discrim_Scope) = Chars (Typ))
11704 -- or else we are deriving from the full view and the
11705 -- discriminant is declared in the private entity.
11707 or else (Is_Private_Type (Typ)
11708 and then Chars (Discrim_Scope) = Chars (Typ))
11710 -- Or we are constrained the corresponding record of a
11711 -- synchronized type that completes a private declaration.
11713 or else (Is_Concurrent_Record_Type (Typ)
11714 and then
11715 Corresponding_Concurrent_Type (Typ) = Discrim_Scope)
11717 -- or we have a class-wide type, in which case make sure the
11718 -- discriminant found belongs to the root type.
11720 or else (Is_Class_Wide_Type (Typ)
11721 and then Etype (Typ) = Discrim_Scope));
11723 return True;
11724 end if;
11726 -- In all other cases we have something wrong
11728 return False;
11729 end Is_Discriminant;
11731 -- Start of processing for Constrain_Component_Type
11733 begin
11734 if Nkind (Parent (Comp)) = N_Component_Declaration
11735 and then Comes_From_Source (Parent (Comp))
11736 and then Comes_From_Source
11737 (Subtype_Indication (Component_Definition (Parent (Comp))))
11738 and then
11739 Is_Entity_Name
11740 (Subtype_Indication (Component_Definition (Parent (Comp))))
11741 then
11742 return Compon_Type;
11744 elsif Is_Array_Type (Compon_Type) then
11745 Array_Comp := Build_Constrained_Array_Type (Compon_Type);
11747 -- If the component of the parent is packed, and the record type is
11748 -- already frozen, as is the case for an itype, the component type
11749 -- itself will not be frozen, and the packed array type for it must
11750 -- be constructed explicitly. Since the creation of packed types is
11751 -- an expansion activity, we only do this if expansion is active.
11753 if Expander_Active
11754 and then Is_Packed (Compon_Type)
11755 and then Is_Frozen (Current_Scope)
11756 then
11757 Create_Packed_Array_Type (Array_Comp);
11758 end if;
11760 return Array_Comp;
11762 elsif Has_Discriminants (Compon_Type) then
11763 return Build_Constrained_Discriminated_Type (Compon_Type);
11765 elsif Is_Access_Type (Compon_Type) then
11766 return Build_Constrained_Access_Type (Compon_Type);
11768 else
11769 return Compon_Type;
11770 end if;
11771 end Constrain_Component_Type;
11773 --------------------------
11774 -- Constrain_Concurrent --
11775 --------------------------
11777 -- For concurrent types, the associated record value type carries the same
11778 -- discriminants, so when we constrain a concurrent type, we must constrain
11779 -- the corresponding record type as well.
11781 procedure Constrain_Concurrent
11782 (Def_Id : in out Entity_Id;
11783 SI : Node_Id;
11784 Related_Nod : Node_Id;
11785 Related_Id : Entity_Id;
11786 Suffix : Character)
11788 -- Retrieve Base_Type to ensure getting to the concurrent type in the
11789 -- case of a private subtype (needed when only doing semantic analysis).
11791 T_Ent : Entity_Id := Base_Type (Entity (Subtype_Mark (SI)));
11792 T_Val : Entity_Id;
11794 begin
11795 if Ekind (T_Ent) in Access_Kind then
11796 T_Ent := Designated_Type (T_Ent);
11797 end if;
11799 T_Val := Corresponding_Record_Type (T_Ent);
11801 if Present (T_Val) then
11803 if No (Def_Id) then
11804 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
11805 end if;
11807 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
11809 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
11810 Set_Corresponding_Record_Type (Def_Id,
11811 Constrain_Corresponding_Record
11812 (Def_Id, T_Val, Related_Nod, Related_Id));
11814 else
11815 -- If there is no associated record, expansion is disabled and this
11816 -- is a generic context. Create a subtype in any case, so that
11817 -- semantic analysis can proceed.
11819 if No (Def_Id) then
11820 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
11821 end if;
11823 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
11824 end if;
11825 end Constrain_Concurrent;
11827 ------------------------------------
11828 -- Constrain_Corresponding_Record --
11829 ------------------------------------
11831 function Constrain_Corresponding_Record
11832 (Prot_Subt : Entity_Id;
11833 Corr_Rec : Entity_Id;
11834 Related_Nod : Node_Id;
11835 Related_Id : Entity_Id) return Entity_Id
11837 T_Sub : constant Entity_Id :=
11838 Create_Itype (E_Record_Subtype, Related_Nod, Related_Id, 'V');
11840 begin
11841 Set_Etype (T_Sub, Corr_Rec);
11842 Set_Has_Discriminants (T_Sub, Has_Discriminants (Prot_Subt));
11843 Set_Is_Constrained (T_Sub, True);
11844 Set_First_Entity (T_Sub, First_Entity (Corr_Rec));
11845 Set_Last_Entity (T_Sub, Last_Entity (Corr_Rec));
11847 -- As elsewhere, we do not want to create a freeze node for this itype
11848 -- if it is created for a constrained component of an enclosing record
11849 -- because references to outer discriminants will appear out of scope.
11851 if Ekind (Scope (Prot_Subt)) /= E_Record_Type then
11852 Conditional_Delay (T_Sub, Corr_Rec);
11853 else
11854 Set_Is_Frozen (T_Sub);
11855 end if;
11857 if Has_Discriminants (Prot_Subt) then -- False only if errors.
11858 Set_Discriminant_Constraint
11859 (T_Sub, Discriminant_Constraint (Prot_Subt));
11860 Set_Stored_Constraint_From_Discriminant_Constraint (T_Sub);
11861 Create_Constrained_Components
11862 (T_Sub, Related_Nod, Corr_Rec, Discriminant_Constraint (T_Sub));
11863 end if;
11865 Set_Depends_On_Private (T_Sub, Has_Private_Component (T_Sub));
11867 return T_Sub;
11868 end Constrain_Corresponding_Record;
11870 -----------------------
11871 -- Constrain_Decimal --
11872 -----------------------
11874 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id) is
11875 T : constant Entity_Id := Entity (Subtype_Mark (S));
11876 C : constant Node_Id := Constraint (S);
11877 Loc : constant Source_Ptr := Sloc (C);
11878 Range_Expr : Node_Id;
11879 Digits_Expr : Node_Id;
11880 Digits_Val : Uint;
11881 Bound_Val : Ureal;
11883 begin
11884 Set_Ekind (Def_Id, E_Decimal_Fixed_Point_Subtype);
11886 if Nkind (C) = N_Range_Constraint then
11887 Range_Expr := Range_Expression (C);
11888 Digits_Val := Digits_Value (T);
11890 else
11891 pragma Assert (Nkind (C) = N_Digits_Constraint);
11893 Check_SPARK_Restriction ("digits constraint is not allowed", S);
11895 Digits_Expr := Digits_Expression (C);
11896 Analyze_And_Resolve (Digits_Expr, Any_Integer);
11898 Check_Digits_Expression (Digits_Expr);
11899 Digits_Val := Expr_Value (Digits_Expr);
11901 if Digits_Val > Digits_Value (T) then
11902 Error_Msg_N
11903 ("digits expression is incompatible with subtype", C);
11904 Digits_Val := Digits_Value (T);
11905 end if;
11907 if Present (Range_Constraint (C)) then
11908 Range_Expr := Range_Expression (Range_Constraint (C));
11909 else
11910 Range_Expr := Empty;
11911 end if;
11912 end if;
11914 Set_Etype (Def_Id, Base_Type (T));
11915 Set_Size_Info (Def_Id, (T));
11916 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
11917 Set_Delta_Value (Def_Id, Delta_Value (T));
11918 Set_Scale_Value (Def_Id, Scale_Value (T));
11919 Set_Small_Value (Def_Id, Small_Value (T));
11920 Set_Machine_Radix_10 (Def_Id, Machine_Radix_10 (T));
11921 Set_Digits_Value (Def_Id, Digits_Val);
11923 -- Manufacture range from given digits value if no range present
11925 if No (Range_Expr) then
11926 Bound_Val := (Ureal_10 ** Digits_Val - Ureal_1) * Small_Value (T);
11927 Range_Expr :=
11928 Make_Range (Loc,
11929 Low_Bound =>
11930 Convert_To (T, Make_Real_Literal (Loc, (-Bound_Val))),
11931 High_Bound =>
11932 Convert_To (T, Make_Real_Literal (Loc, Bound_Val)));
11933 end if;
11935 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expr, T);
11936 Set_Discrete_RM_Size (Def_Id);
11938 -- Unconditionally delay the freeze, since we cannot set size
11939 -- information in all cases correctly until the freeze point.
11941 Set_Has_Delayed_Freeze (Def_Id);
11942 end Constrain_Decimal;
11944 ----------------------------------
11945 -- Constrain_Discriminated_Type --
11946 ----------------------------------
11948 procedure Constrain_Discriminated_Type
11949 (Def_Id : Entity_Id;
11950 S : Node_Id;
11951 Related_Nod : Node_Id;
11952 For_Access : Boolean := False)
11954 E : constant Entity_Id := Entity (Subtype_Mark (S));
11955 T : Entity_Id;
11956 C : Node_Id;
11957 Elist : Elist_Id := New_Elmt_List;
11959 procedure Fixup_Bad_Constraint;
11960 -- This is called after finding a bad constraint, and after having
11961 -- posted an appropriate error message. The mission is to leave the
11962 -- entity T in as reasonable state as possible!
11964 --------------------------
11965 -- Fixup_Bad_Constraint --
11966 --------------------------
11968 procedure Fixup_Bad_Constraint is
11969 begin
11970 -- Set a reasonable Ekind for the entity. For an incomplete type,
11971 -- we can't do much, but for other types, we can set the proper
11972 -- corresponding subtype kind.
11974 if Ekind (T) = E_Incomplete_Type then
11975 Set_Ekind (Def_Id, Ekind (T));
11976 else
11977 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
11978 end if;
11980 -- Set Etype to the known type, to reduce chances of cascaded errors
11982 Set_Etype (Def_Id, E);
11983 Set_Error_Posted (Def_Id);
11984 end Fixup_Bad_Constraint;
11986 -- Start of processing for Constrain_Discriminated_Type
11988 begin
11989 C := Constraint (S);
11991 -- A discriminant constraint is only allowed in a subtype indication,
11992 -- after a subtype mark. This subtype mark must denote either a type
11993 -- with discriminants, or an access type whose designated type is a
11994 -- type with discriminants. A discriminant constraint specifies the
11995 -- values of these discriminants (RM 3.7.2(5)).
11997 T := Base_Type (Entity (Subtype_Mark (S)));
11999 if Ekind (T) in Access_Kind then
12000 T := Designated_Type (T);
12001 end if;
12003 -- Ada 2005 (AI-412): Constrained incomplete subtypes are illegal.
12004 -- Avoid generating an error for access-to-incomplete subtypes.
12006 if Ada_Version >= Ada_2005
12007 and then Ekind (T) = E_Incomplete_Type
12008 and then Nkind (Parent (S)) = N_Subtype_Declaration
12009 and then not Is_Itype (Def_Id)
12010 then
12011 -- A little sanity check, emit an error message if the type
12012 -- has discriminants to begin with. Type T may be a regular
12013 -- incomplete type or imported via a limited with clause.
12015 if Has_Discriminants (T)
12016 or else (From_Limited_With (T)
12017 and then Present (Non_Limited_View (T))
12018 and then Nkind (Parent (Non_Limited_View (T))) =
12019 N_Full_Type_Declaration
12020 and then Present (Discriminant_Specifications
12021 (Parent (Non_Limited_View (T)))))
12022 then
12023 Error_Msg_N
12024 ("(Ada 2005) incomplete subtype may not be constrained", C);
12025 else
12026 Error_Msg_N ("invalid constraint: type has no discriminant", C);
12027 end if;
12029 Fixup_Bad_Constraint;
12030 return;
12032 -- Check that the type has visible discriminants. The type may be
12033 -- a private type with unknown discriminants whose full view has
12034 -- discriminants which are invisible.
12036 elsif not Has_Discriminants (T)
12037 or else
12038 (Has_Unknown_Discriminants (T)
12039 and then Is_Private_Type (T))
12040 then
12041 Error_Msg_N ("invalid constraint: type has no discriminant", C);
12042 Fixup_Bad_Constraint;
12043 return;
12045 elsif Is_Constrained (E)
12046 or else (Ekind (E) = E_Class_Wide_Subtype
12047 and then Present (Discriminant_Constraint (E)))
12048 then
12049 Error_Msg_N ("type is already constrained", Subtype_Mark (S));
12050 Fixup_Bad_Constraint;
12051 return;
12052 end if;
12054 -- T may be an unconstrained subtype (e.g. a generic actual).
12055 -- Constraint applies to the base type.
12057 T := Base_Type (T);
12059 Elist := Build_Discriminant_Constraints (T, S);
12061 -- If the list returned was empty we had an error in building the
12062 -- discriminant constraint. We have also already signalled an error
12063 -- in the incomplete type case
12065 if Is_Empty_Elmt_List (Elist) then
12066 Fixup_Bad_Constraint;
12067 return;
12068 end if;
12070 Build_Discriminated_Subtype (T, Def_Id, Elist, Related_Nod, For_Access);
12071 end Constrain_Discriminated_Type;
12073 ---------------------------
12074 -- Constrain_Enumeration --
12075 ---------------------------
12077 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id) is
12078 T : constant Entity_Id := Entity (Subtype_Mark (S));
12079 C : constant Node_Id := Constraint (S);
12081 begin
12082 Set_Ekind (Def_Id, E_Enumeration_Subtype);
12084 Set_First_Literal (Def_Id, First_Literal (Base_Type (T)));
12086 Set_Etype (Def_Id, Base_Type (T));
12087 Set_Size_Info (Def_Id, (T));
12088 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12089 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
12091 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
12093 Set_Discrete_RM_Size (Def_Id);
12094 end Constrain_Enumeration;
12096 ----------------------
12097 -- Constrain_Float --
12098 ----------------------
12100 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id) is
12101 T : constant Entity_Id := Entity (Subtype_Mark (S));
12102 C : Node_Id;
12103 D : Node_Id;
12104 Rais : Node_Id;
12106 begin
12107 Set_Ekind (Def_Id, E_Floating_Point_Subtype);
12109 Set_Etype (Def_Id, Base_Type (T));
12110 Set_Size_Info (Def_Id, (T));
12111 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12113 -- Process the constraint
12115 C := Constraint (S);
12117 -- Digits constraint present
12119 if Nkind (C) = N_Digits_Constraint then
12121 Check_SPARK_Restriction ("digits constraint is not allowed", S);
12122 Check_Restriction (No_Obsolescent_Features, C);
12124 if Warn_On_Obsolescent_Feature then
12125 Error_Msg_N
12126 ("subtype digits constraint is an " &
12127 "obsolescent feature (RM J.3(8))?j?", C);
12128 end if;
12130 D := Digits_Expression (C);
12131 Analyze_And_Resolve (D, Any_Integer);
12132 Check_Digits_Expression (D);
12133 Set_Digits_Value (Def_Id, Expr_Value (D));
12135 -- Check that digits value is in range. Obviously we can do this
12136 -- at compile time, but it is strictly a runtime check, and of
12137 -- course there is an ACVC test that checks this!
12139 if Digits_Value (Def_Id) > Digits_Value (T) then
12140 Error_Msg_Uint_1 := Digits_Value (T);
12141 Error_Msg_N ("??digits value is too large, maximum is ^", D);
12142 Rais :=
12143 Make_Raise_Constraint_Error (Sloc (D),
12144 Reason => CE_Range_Check_Failed);
12145 Insert_Action (Declaration_Node (Def_Id), Rais);
12146 end if;
12148 C := Range_Constraint (C);
12150 -- No digits constraint present
12152 else
12153 Set_Digits_Value (Def_Id, Digits_Value (T));
12154 end if;
12156 -- Range constraint present
12158 if Nkind (C) = N_Range_Constraint then
12159 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
12161 -- No range constraint present
12163 else
12164 pragma Assert (No (C));
12165 Set_Scalar_Range (Def_Id, Scalar_Range (T));
12166 end if;
12168 Set_Is_Constrained (Def_Id);
12169 end Constrain_Float;
12171 ---------------------
12172 -- Constrain_Index --
12173 ---------------------
12175 procedure Constrain_Index
12176 (Index : Node_Id;
12177 S : Node_Id;
12178 Related_Nod : Node_Id;
12179 Related_Id : Entity_Id;
12180 Suffix : Character;
12181 Suffix_Index : Nat)
12183 Def_Id : Entity_Id;
12184 R : Node_Id := Empty;
12185 T : constant Entity_Id := Etype (Index);
12187 begin
12188 if Nkind (S) = N_Range
12189 or else
12190 (Nkind (S) = N_Attribute_Reference
12191 and then Attribute_Name (S) = Name_Range)
12192 then
12193 -- A Range attribute will be transformed into N_Range by Resolve
12195 Analyze (S);
12196 Set_Etype (S, T);
12197 R := S;
12199 Process_Range_Expr_In_Decl (R, T, Empty_List);
12201 if not Error_Posted (S)
12202 and then
12203 (Nkind (S) /= N_Range
12204 or else not Covers (T, (Etype (Low_Bound (S))))
12205 or else not Covers (T, (Etype (High_Bound (S)))))
12206 then
12207 if Base_Type (T) /= Any_Type
12208 and then Etype (Low_Bound (S)) /= Any_Type
12209 and then Etype (High_Bound (S)) /= Any_Type
12210 then
12211 Error_Msg_N ("range expected", S);
12212 end if;
12213 end if;
12215 elsif Nkind (S) = N_Subtype_Indication then
12217 -- The parser has verified that this is a discrete indication
12219 Resolve_Discrete_Subtype_Indication (S, T);
12220 R := Range_Expression (Constraint (S));
12222 -- Capture values of bounds and generate temporaries for them if
12223 -- needed, since checks may cause duplication of the expressions
12224 -- which must not be reevaluated.
12226 -- The forced evaluation removes side effects from expressions,
12227 -- which should occur also in SPARK mode. Otherwise, we end up with
12228 -- unexpected insertions of actions at places where this is not
12229 -- supposed to occur, e.g. on default parameters of a call.
12231 if Expander_Active then
12232 Force_Evaluation (Low_Bound (R));
12233 Force_Evaluation (High_Bound (R));
12234 end if;
12236 elsif Nkind (S) = N_Discriminant_Association then
12238 -- Syntactically valid in subtype indication
12240 Error_Msg_N ("invalid index constraint", S);
12241 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
12242 return;
12244 -- Subtype_Mark case, no anonymous subtypes to construct
12246 else
12247 Analyze (S);
12249 if Is_Entity_Name (S) then
12250 if not Is_Type (Entity (S)) then
12251 Error_Msg_N ("expect subtype mark for index constraint", S);
12253 elsif Base_Type (Entity (S)) /= Base_Type (T) then
12254 Wrong_Type (S, Base_Type (T));
12256 -- Check error of subtype with predicate in index constraint
12258 else
12259 Bad_Predicated_Subtype_Use
12260 ("subtype& has predicate, not allowed in index constraint",
12261 S, Entity (S));
12262 end if;
12264 return;
12266 else
12267 Error_Msg_N ("invalid index constraint", S);
12268 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
12269 return;
12270 end if;
12271 end if;
12273 Def_Id :=
12274 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix, Suffix_Index);
12276 Set_Etype (Def_Id, Base_Type (T));
12278 if Is_Modular_Integer_Type (T) then
12279 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
12281 elsif Is_Integer_Type (T) then
12282 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
12284 else
12285 Set_Ekind (Def_Id, E_Enumeration_Subtype);
12286 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
12287 Set_First_Literal (Def_Id, First_Literal (T));
12288 end if;
12290 Set_Size_Info (Def_Id, (T));
12291 Set_RM_Size (Def_Id, RM_Size (T));
12292 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12294 Set_Scalar_Range (Def_Id, R);
12296 Set_Etype (S, Def_Id);
12297 Set_Discrete_RM_Size (Def_Id);
12298 end Constrain_Index;
12300 -----------------------
12301 -- Constrain_Integer --
12302 -----------------------
12304 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id) is
12305 T : constant Entity_Id := Entity (Subtype_Mark (S));
12306 C : constant Node_Id := Constraint (S);
12308 begin
12309 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
12311 if Is_Modular_Integer_Type (T) then
12312 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
12313 else
12314 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
12315 end if;
12317 Set_Etype (Def_Id, Base_Type (T));
12318 Set_Size_Info (Def_Id, (T));
12319 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12320 Set_Discrete_RM_Size (Def_Id);
12321 end Constrain_Integer;
12323 ------------------------------
12324 -- Constrain_Ordinary_Fixed --
12325 ------------------------------
12327 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id) is
12328 T : constant Entity_Id := Entity (Subtype_Mark (S));
12329 C : Node_Id;
12330 D : Node_Id;
12331 Rais : Node_Id;
12333 begin
12334 Set_Ekind (Def_Id, E_Ordinary_Fixed_Point_Subtype);
12335 Set_Etype (Def_Id, Base_Type (T));
12336 Set_Size_Info (Def_Id, (T));
12337 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12338 Set_Small_Value (Def_Id, Small_Value (T));
12340 -- Process the constraint
12342 C := Constraint (S);
12344 -- Delta constraint present
12346 if Nkind (C) = N_Delta_Constraint then
12348 Check_SPARK_Restriction ("delta constraint is not allowed", S);
12349 Check_Restriction (No_Obsolescent_Features, C);
12351 if Warn_On_Obsolescent_Feature then
12352 Error_Msg_S
12353 ("subtype delta constraint is an " &
12354 "obsolescent feature (RM J.3(7))?j?");
12355 end if;
12357 D := Delta_Expression (C);
12358 Analyze_And_Resolve (D, Any_Real);
12359 Check_Delta_Expression (D);
12360 Set_Delta_Value (Def_Id, Expr_Value_R (D));
12362 -- Check that delta value is in range. Obviously we can do this
12363 -- at compile time, but it is strictly a runtime check, and of
12364 -- course there is an ACVC test that checks this!
12366 if Delta_Value (Def_Id) < Delta_Value (T) then
12367 Error_Msg_N ("??delta value is too small", D);
12368 Rais :=
12369 Make_Raise_Constraint_Error (Sloc (D),
12370 Reason => CE_Range_Check_Failed);
12371 Insert_Action (Declaration_Node (Def_Id), Rais);
12372 end if;
12374 C := Range_Constraint (C);
12376 -- No delta constraint present
12378 else
12379 Set_Delta_Value (Def_Id, Delta_Value (T));
12380 end if;
12382 -- Range constraint present
12384 if Nkind (C) = N_Range_Constraint then
12385 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
12387 -- No range constraint present
12389 else
12390 pragma Assert (No (C));
12391 Set_Scalar_Range (Def_Id, Scalar_Range (T));
12393 end if;
12395 Set_Discrete_RM_Size (Def_Id);
12397 -- Unconditionally delay the freeze, since we cannot set size
12398 -- information in all cases correctly until the freeze point.
12400 Set_Has_Delayed_Freeze (Def_Id);
12401 end Constrain_Ordinary_Fixed;
12403 -----------------------
12404 -- Contain_Interface --
12405 -----------------------
12407 function Contain_Interface
12408 (Iface : Entity_Id;
12409 Ifaces : Elist_Id) return Boolean
12411 Iface_Elmt : Elmt_Id;
12413 begin
12414 if Present (Ifaces) then
12415 Iface_Elmt := First_Elmt (Ifaces);
12416 while Present (Iface_Elmt) loop
12417 if Node (Iface_Elmt) = Iface then
12418 return True;
12419 end if;
12421 Next_Elmt (Iface_Elmt);
12422 end loop;
12423 end if;
12425 return False;
12426 end Contain_Interface;
12428 ---------------------------
12429 -- Convert_Scalar_Bounds --
12430 ---------------------------
12432 procedure Convert_Scalar_Bounds
12433 (N : Node_Id;
12434 Parent_Type : Entity_Id;
12435 Derived_Type : Entity_Id;
12436 Loc : Source_Ptr)
12438 Implicit_Base : constant Entity_Id := Base_Type (Derived_Type);
12440 Lo : Node_Id;
12441 Hi : Node_Id;
12442 Rng : Node_Id;
12444 begin
12445 -- Defend against previous errors
12447 if No (Scalar_Range (Derived_Type)) then
12448 Check_Error_Detected;
12449 return;
12450 end if;
12452 Lo := Build_Scalar_Bound
12453 (Type_Low_Bound (Derived_Type),
12454 Parent_Type, Implicit_Base);
12456 Hi := Build_Scalar_Bound
12457 (Type_High_Bound (Derived_Type),
12458 Parent_Type, Implicit_Base);
12460 Rng :=
12461 Make_Range (Loc,
12462 Low_Bound => Lo,
12463 High_Bound => Hi);
12465 Set_Includes_Infinities (Rng, Has_Infinities (Derived_Type));
12467 Set_Parent (Rng, N);
12468 Set_Scalar_Range (Derived_Type, Rng);
12470 -- Analyze the bounds
12472 Analyze_And_Resolve (Lo, Implicit_Base);
12473 Analyze_And_Resolve (Hi, Implicit_Base);
12475 -- Analyze the range itself, except that we do not analyze it if
12476 -- the bounds are real literals, and we have a fixed-point type.
12477 -- The reason for this is that we delay setting the bounds in this
12478 -- case till we know the final Small and Size values (see circuit
12479 -- in Freeze.Freeze_Fixed_Point_Type for further details).
12481 if Is_Fixed_Point_Type (Parent_Type)
12482 and then Nkind (Lo) = N_Real_Literal
12483 and then Nkind (Hi) = N_Real_Literal
12484 then
12485 return;
12487 -- Here we do the analysis of the range
12489 -- Note: we do this manually, since if we do a normal Analyze and
12490 -- Resolve call, there are problems with the conversions used for
12491 -- the derived type range.
12493 else
12494 Set_Etype (Rng, Implicit_Base);
12495 Set_Analyzed (Rng, True);
12496 end if;
12497 end Convert_Scalar_Bounds;
12499 -------------------
12500 -- Copy_And_Swap --
12501 -------------------
12503 procedure Copy_And_Swap (Priv, Full : Entity_Id) is
12504 begin
12505 -- Initialize new full declaration entity by copying the pertinent
12506 -- fields of the corresponding private declaration entity.
12508 -- We temporarily set Ekind to a value appropriate for a type to
12509 -- avoid assert failures in Einfo from checking for setting type
12510 -- attributes on something that is not a type. Ekind (Priv) is an
12511 -- appropriate choice, since it allowed the attributes to be set
12512 -- in the first place. This Ekind value will be modified later.
12514 Set_Ekind (Full, Ekind (Priv));
12516 -- Also set Etype temporarily to Any_Type, again, in the absence
12517 -- of errors, it will be properly reset, and if there are errors,
12518 -- then we want a value of Any_Type to remain.
12520 Set_Etype (Full, Any_Type);
12522 -- Now start copying attributes
12524 Set_Has_Discriminants (Full, Has_Discriminants (Priv));
12526 if Has_Discriminants (Full) then
12527 Set_Discriminant_Constraint (Full, Discriminant_Constraint (Priv));
12528 Set_Stored_Constraint (Full, Stored_Constraint (Priv));
12529 end if;
12531 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
12532 Set_Homonym (Full, Homonym (Priv));
12533 Set_Is_Immediately_Visible (Full, Is_Immediately_Visible (Priv));
12534 Set_Is_Public (Full, Is_Public (Priv));
12535 Set_Is_Pure (Full, Is_Pure (Priv));
12536 Set_Is_Tagged_Type (Full, Is_Tagged_Type (Priv));
12537 Set_Has_Pragma_Unmodified (Full, Has_Pragma_Unmodified (Priv));
12538 Set_Has_Pragma_Unreferenced (Full, Has_Pragma_Unreferenced (Priv));
12539 Set_Has_Pragma_Unreferenced_Objects
12540 (Full, Has_Pragma_Unreferenced_Objects
12541 (Priv));
12543 Conditional_Delay (Full, Priv);
12545 if Is_Tagged_Type (Full) then
12546 Set_Direct_Primitive_Operations (Full,
12547 Direct_Primitive_Operations (Priv));
12549 if Is_Base_Type (Priv) then
12550 Set_Class_Wide_Type (Full, Class_Wide_Type (Priv));
12551 end if;
12552 end if;
12554 Set_Is_Volatile (Full, Is_Volatile (Priv));
12555 Set_Treat_As_Volatile (Full, Treat_As_Volatile (Priv));
12556 Set_Scope (Full, Scope (Priv));
12557 Set_Next_Entity (Full, Next_Entity (Priv));
12558 Set_First_Entity (Full, First_Entity (Priv));
12559 Set_Last_Entity (Full, Last_Entity (Priv));
12561 -- If access types have been recorded for later handling, keep them in
12562 -- the full view so that they get handled when the full view freeze
12563 -- node is expanded.
12565 if Present (Freeze_Node (Priv))
12566 and then Present (Access_Types_To_Process (Freeze_Node (Priv)))
12567 then
12568 Ensure_Freeze_Node (Full);
12569 Set_Access_Types_To_Process
12570 (Freeze_Node (Full),
12571 Access_Types_To_Process (Freeze_Node (Priv)));
12572 end if;
12574 -- Swap the two entities. Now Private is the full type entity and Full
12575 -- is the private one. They will be swapped back at the end of the
12576 -- private part. This swapping ensures that the entity that is visible
12577 -- in the private part is the full declaration.
12579 Exchange_Entities (Priv, Full);
12580 Append_Entity (Full, Scope (Full));
12581 end Copy_And_Swap;
12583 -------------------------------------
12584 -- Copy_Array_Base_Type_Attributes --
12585 -------------------------------------
12587 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id) is
12588 begin
12589 Set_Component_Alignment (T1, Component_Alignment (T2));
12590 Set_Component_Type (T1, Component_Type (T2));
12591 Set_Component_Size (T1, Component_Size (T2));
12592 Set_Has_Controlled_Component (T1, Has_Controlled_Component (T2));
12593 Set_Has_Non_Standard_Rep (T1, Has_Non_Standard_Rep (T2));
12594 Set_Has_Task (T1, Has_Task (T2));
12595 Set_Is_Packed (T1, Is_Packed (T2));
12596 Set_Has_Aliased_Components (T1, Has_Aliased_Components (T2));
12597 Set_Has_Atomic_Components (T1, Has_Atomic_Components (T2));
12598 Set_Has_Volatile_Components (T1, Has_Volatile_Components (T2));
12599 end Copy_Array_Base_Type_Attributes;
12601 -----------------------------------
12602 -- Copy_Array_Subtype_Attributes --
12603 -----------------------------------
12605 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id) is
12606 begin
12607 Set_Size_Info (T1, T2);
12609 Set_First_Index (T1, First_Index (T2));
12610 Set_Is_Aliased (T1, Is_Aliased (T2));
12611 Set_Is_Volatile (T1, Is_Volatile (T2));
12612 Set_Treat_As_Volatile (T1, Treat_As_Volatile (T2));
12613 Set_Is_Constrained (T1, Is_Constrained (T2));
12614 Set_Depends_On_Private (T1, Has_Private_Component (T2));
12615 Set_First_Rep_Item (T1, First_Rep_Item (T2));
12616 Set_Convention (T1, Convention (T2));
12617 Set_Is_Limited_Composite (T1, Is_Limited_Composite (T2));
12618 Set_Is_Private_Composite (T1, Is_Private_Composite (T2));
12619 Set_Packed_Array_Type (T1, Packed_Array_Type (T2));
12620 end Copy_Array_Subtype_Attributes;
12622 -----------------------------------
12623 -- Create_Constrained_Components --
12624 -----------------------------------
12626 procedure Create_Constrained_Components
12627 (Subt : Entity_Id;
12628 Decl_Node : Node_Id;
12629 Typ : Entity_Id;
12630 Constraints : Elist_Id)
12632 Loc : constant Source_Ptr := Sloc (Subt);
12633 Comp_List : constant Elist_Id := New_Elmt_List;
12634 Parent_Type : constant Entity_Id := Etype (Typ);
12635 Assoc_List : constant List_Id := New_List;
12636 Discr_Val : Elmt_Id;
12637 Errors : Boolean;
12638 New_C : Entity_Id;
12639 Old_C : Entity_Id;
12640 Is_Static : Boolean := True;
12642 procedure Collect_Fixed_Components (Typ : Entity_Id);
12643 -- Collect parent type components that do not appear in a variant part
12645 procedure Create_All_Components;
12646 -- Iterate over Comp_List to create the components of the subtype
12648 function Create_Component (Old_Compon : Entity_Id) return Entity_Id;
12649 -- Creates a new component from Old_Compon, copying all the fields from
12650 -- it, including its Etype, inserts the new component in the Subt entity
12651 -- chain and returns the new component.
12653 function Is_Variant_Record (T : Entity_Id) return Boolean;
12654 -- If true, and discriminants are static, collect only components from
12655 -- variants selected by discriminant values.
12657 ------------------------------
12658 -- Collect_Fixed_Components --
12659 ------------------------------
12661 procedure Collect_Fixed_Components (Typ : Entity_Id) is
12662 begin
12663 -- Build association list for discriminants, and find components of the
12664 -- variant part selected by the values of the discriminants.
12666 Old_C := First_Discriminant (Typ);
12667 Discr_Val := First_Elmt (Constraints);
12668 while Present (Old_C) loop
12669 Append_To (Assoc_List,
12670 Make_Component_Association (Loc,
12671 Choices => New_List (New_Occurrence_Of (Old_C, Loc)),
12672 Expression => New_Copy (Node (Discr_Val))));
12674 Next_Elmt (Discr_Val);
12675 Next_Discriminant (Old_C);
12676 end loop;
12678 -- The tag and the possible parent component are unconditionally in
12679 -- the subtype.
12681 if Is_Tagged_Type (Typ)
12682 or else Has_Controlled_Component (Typ)
12683 then
12684 Old_C := First_Component (Typ);
12685 while Present (Old_C) loop
12686 if Nam_In (Chars (Old_C), Name_uTag, Name_uParent) then
12687 Append_Elmt (Old_C, Comp_List);
12688 end if;
12690 Next_Component (Old_C);
12691 end loop;
12692 end if;
12693 end Collect_Fixed_Components;
12695 ---------------------------
12696 -- Create_All_Components --
12697 ---------------------------
12699 procedure Create_All_Components is
12700 Comp : Elmt_Id;
12702 begin
12703 Comp := First_Elmt (Comp_List);
12704 while Present (Comp) loop
12705 Old_C := Node (Comp);
12706 New_C := Create_Component (Old_C);
12708 Set_Etype
12709 (New_C,
12710 Constrain_Component_Type
12711 (Old_C, Subt, Decl_Node, Typ, Constraints));
12712 Set_Is_Public (New_C, Is_Public (Subt));
12714 Next_Elmt (Comp);
12715 end loop;
12716 end Create_All_Components;
12718 ----------------------
12719 -- Create_Component --
12720 ----------------------
12722 function Create_Component (Old_Compon : Entity_Id) return Entity_Id is
12723 New_Compon : constant Entity_Id := New_Copy (Old_Compon);
12725 begin
12726 if Ekind (Old_Compon) = E_Discriminant
12727 and then Is_Completely_Hidden (Old_Compon)
12728 then
12729 -- This is a shadow discriminant created for a discriminant of
12730 -- the parent type, which needs to be present in the subtype.
12731 -- Give the shadow discriminant an internal name that cannot
12732 -- conflict with that of visible components.
12734 Set_Chars (New_Compon, New_Internal_Name ('C'));
12735 end if;
12737 -- Set the parent so we have a proper link for freezing etc. This is
12738 -- not a real parent pointer, since of course our parent does not own
12739 -- up to us and reference us, we are an illegitimate child of the
12740 -- original parent!
12742 Set_Parent (New_Compon, Parent (Old_Compon));
12744 -- If the old component's Esize was already determined and is a
12745 -- static value, then the new component simply inherits it. Otherwise
12746 -- the old component's size may require run-time determination, but
12747 -- the new component's size still might be statically determinable
12748 -- (if, for example it has a static constraint). In that case we want
12749 -- Layout_Type to recompute the component's size, so we reset its
12750 -- size and positional fields.
12752 if Frontend_Layout_On_Target
12753 and then not Known_Static_Esize (Old_Compon)
12754 then
12755 Set_Esize (New_Compon, Uint_0);
12756 Init_Normalized_First_Bit (New_Compon);
12757 Init_Normalized_Position (New_Compon);
12758 Init_Normalized_Position_Max (New_Compon);
12759 end if;
12761 -- We do not want this node marked as Comes_From_Source, since
12762 -- otherwise it would get first class status and a separate cross-
12763 -- reference line would be generated. Illegitimate children do not
12764 -- rate such recognition.
12766 Set_Comes_From_Source (New_Compon, False);
12768 -- But it is a real entity, and a birth certificate must be properly
12769 -- registered by entering it into the entity list.
12771 Enter_Name (New_Compon);
12773 return New_Compon;
12774 end Create_Component;
12776 -----------------------
12777 -- Is_Variant_Record --
12778 -----------------------
12780 function Is_Variant_Record (T : Entity_Id) return Boolean is
12781 begin
12782 return Nkind (Parent (T)) = N_Full_Type_Declaration
12783 and then Nkind (Type_Definition (Parent (T))) = N_Record_Definition
12784 and then Present (Component_List (Type_Definition (Parent (T))))
12785 and then
12786 Present
12787 (Variant_Part (Component_List (Type_Definition (Parent (T)))));
12788 end Is_Variant_Record;
12790 -- Start of processing for Create_Constrained_Components
12792 begin
12793 pragma Assert (Subt /= Base_Type (Subt));
12794 pragma Assert (Typ = Base_Type (Typ));
12796 Set_First_Entity (Subt, Empty);
12797 Set_Last_Entity (Subt, Empty);
12799 -- Check whether constraint is fully static, in which case we can
12800 -- optimize the list of components.
12802 Discr_Val := First_Elmt (Constraints);
12803 while Present (Discr_Val) loop
12804 if not Is_OK_Static_Expression (Node (Discr_Val)) then
12805 Is_Static := False;
12806 exit;
12807 end if;
12809 Next_Elmt (Discr_Val);
12810 end loop;
12812 Set_Has_Static_Discriminants (Subt, Is_Static);
12814 Push_Scope (Subt);
12816 -- Inherit the discriminants of the parent type
12818 Add_Discriminants : declare
12819 Num_Disc : Int;
12820 Num_Gird : Int;
12822 begin
12823 Num_Disc := 0;
12824 Old_C := First_Discriminant (Typ);
12826 while Present (Old_C) loop
12827 Num_Disc := Num_Disc + 1;
12828 New_C := Create_Component (Old_C);
12829 Set_Is_Public (New_C, Is_Public (Subt));
12830 Next_Discriminant (Old_C);
12831 end loop;
12833 -- For an untagged derived subtype, the number of discriminants may
12834 -- be smaller than the number of inherited discriminants, because
12835 -- several of them may be renamed by a single new discriminant or
12836 -- constrained. In this case, add the hidden discriminants back into
12837 -- the subtype, because they need to be present if the optimizer of
12838 -- the GCC 4.x back-end decides to break apart assignments between
12839 -- objects using the parent view into member-wise assignments.
12841 Num_Gird := 0;
12843 if Is_Derived_Type (Typ)
12844 and then not Is_Tagged_Type (Typ)
12845 then
12846 Old_C := First_Stored_Discriminant (Typ);
12848 while Present (Old_C) loop
12849 Num_Gird := Num_Gird + 1;
12850 Next_Stored_Discriminant (Old_C);
12851 end loop;
12852 end if;
12854 if Num_Gird > Num_Disc then
12856 -- Find out multiple uses of new discriminants, and add hidden
12857 -- components for the extra renamed discriminants. We recognize
12858 -- multiple uses through the Corresponding_Discriminant of a
12859 -- new discriminant: if it constrains several old discriminants,
12860 -- this field points to the last one in the parent type. The
12861 -- stored discriminants of the derived type have the same name
12862 -- as those of the parent.
12864 declare
12865 Constr : Elmt_Id;
12866 New_Discr : Entity_Id;
12867 Old_Discr : Entity_Id;
12869 begin
12870 Constr := First_Elmt (Stored_Constraint (Typ));
12871 Old_Discr := First_Stored_Discriminant (Typ);
12872 while Present (Constr) loop
12873 if Is_Entity_Name (Node (Constr))
12874 and then Ekind (Entity (Node (Constr))) = E_Discriminant
12875 then
12876 New_Discr := Entity (Node (Constr));
12878 if Chars (Corresponding_Discriminant (New_Discr)) /=
12879 Chars (Old_Discr)
12880 then
12881 -- The new discriminant has been used to rename a
12882 -- subsequent old discriminant. Introduce a shadow
12883 -- component for the current old discriminant.
12885 New_C := Create_Component (Old_Discr);
12886 Set_Original_Record_Component (New_C, Old_Discr);
12887 end if;
12889 else
12890 -- The constraint has eliminated the old discriminant.
12891 -- Introduce a shadow component.
12893 New_C := Create_Component (Old_Discr);
12894 Set_Original_Record_Component (New_C, Old_Discr);
12895 end if;
12897 Next_Elmt (Constr);
12898 Next_Stored_Discriminant (Old_Discr);
12899 end loop;
12900 end;
12901 end if;
12902 end Add_Discriminants;
12904 if Is_Static
12905 and then Is_Variant_Record (Typ)
12906 then
12907 Collect_Fixed_Components (Typ);
12909 Gather_Components (
12910 Typ,
12911 Component_List (Type_Definition (Parent (Typ))),
12912 Governed_By => Assoc_List,
12913 Into => Comp_List,
12914 Report_Errors => Errors);
12915 pragma Assert (not Errors);
12917 Create_All_Components;
12919 -- If the subtype declaration is created for a tagged type derivation
12920 -- with constraints, we retrieve the record definition of the parent
12921 -- type to select the components of the proper variant.
12923 elsif Is_Static
12924 and then Is_Tagged_Type (Typ)
12925 and then Nkind (Parent (Typ)) = N_Full_Type_Declaration
12926 and then
12927 Nkind (Type_Definition (Parent (Typ))) = N_Derived_Type_Definition
12928 and then Is_Variant_Record (Parent_Type)
12929 then
12930 Collect_Fixed_Components (Typ);
12932 Gather_Components (
12933 Typ,
12934 Component_List (Type_Definition (Parent (Parent_Type))),
12935 Governed_By => Assoc_List,
12936 Into => Comp_List,
12937 Report_Errors => Errors);
12938 pragma Assert (not Errors);
12940 -- If the tagged derivation has a type extension, collect all the
12941 -- new components therein.
12943 if Present
12944 (Record_Extension_Part (Type_Definition (Parent (Typ))))
12945 then
12946 Old_C := First_Component (Typ);
12947 while Present (Old_C) loop
12948 if Original_Record_Component (Old_C) = Old_C
12949 and then Chars (Old_C) /= Name_uTag
12950 and then Chars (Old_C) /= Name_uParent
12951 then
12952 Append_Elmt (Old_C, Comp_List);
12953 end if;
12955 Next_Component (Old_C);
12956 end loop;
12957 end if;
12959 Create_All_Components;
12961 else
12962 -- If discriminants are not static, or if this is a multi-level type
12963 -- extension, we have to include all components of the parent type.
12965 Old_C := First_Component (Typ);
12966 while Present (Old_C) loop
12967 New_C := Create_Component (Old_C);
12969 Set_Etype
12970 (New_C,
12971 Constrain_Component_Type
12972 (Old_C, Subt, Decl_Node, Typ, Constraints));
12973 Set_Is_Public (New_C, Is_Public (Subt));
12975 Next_Component (Old_C);
12976 end loop;
12977 end if;
12979 End_Scope;
12980 end Create_Constrained_Components;
12982 ------------------------------------------
12983 -- Decimal_Fixed_Point_Type_Declaration --
12984 ------------------------------------------
12986 procedure Decimal_Fixed_Point_Type_Declaration
12987 (T : Entity_Id;
12988 Def : Node_Id)
12990 Loc : constant Source_Ptr := Sloc (Def);
12991 Digs_Expr : constant Node_Id := Digits_Expression (Def);
12992 Delta_Expr : constant Node_Id := Delta_Expression (Def);
12993 Implicit_Base : Entity_Id;
12994 Digs_Val : Uint;
12995 Delta_Val : Ureal;
12996 Scale_Val : Uint;
12997 Bound_Val : Ureal;
12999 begin
13000 Check_SPARK_Restriction
13001 ("decimal fixed point type is not allowed", Def);
13002 Check_Restriction (No_Fixed_Point, Def);
13004 -- Create implicit base type
13006 Implicit_Base :=
13007 Create_Itype (E_Decimal_Fixed_Point_Type, Parent (Def), T, 'B');
13008 Set_Etype (Implicit_Base, Implicit_Base);
13010 -- Analyze and process delta expression
13012 Analyze_And_Resolve (Delta_Expr, Universal_Real);
13014 Check_Delta_Expression (Delta_Expr);
13015 Delta_Val := Expr_Value_R (Delta_Expr);
13017 -- Check delta is power of 10, and determine scale value from it
13019 declare
13020 Val : Ureal;
13022 begin
13023 Scale_Val := Uint_0;
13024 Val := Delta_Val;
13026 if Val < Ureal_1 then
13027 while Val < Ureal_1 loop
13028 Val := Val * Ureal_10;
13029 Scale_Val := Scale_Val + 1;
13030 end loop;
13032 if Scale_Val > 18 then
13033 Error_Msg_N ("scale exceeds maximum value of 18", Def);
13034 Scale_Val := UI_From_Int (+18);
13035 end if;
13037 else
13038 while Val > Ureal_1 loop
13039 Val := Val / Ureal_10;
13040 Scale_Val := Scale_Val - 1;
13041 end loop;
13043 if Scale_Val < -18 then
13044 Error_Msg_N ("scale is less than minimum value of -18", Def);
13045 Scale_Val := UI_From_Int (-18);
13046 end if;
13047 end if;
13049 if Val /= Ureal_1 then
13050 Error_Msg_N ("delta expression must be a power of 10", Def);
13051 Delta_Val := Ureal_10 ** (-Scale_Val);
13052 end if;
13053 end;
13055 -- Set delta, scale and small (small = delta for decimal type)
13057 Set_Delta_Value (Implicit_Base, Delta_Val);
13058 Set_Scale_Value (Implicit_Base, Scale_Val);
13059 Set_Small_Value (Implicit_Base, Delta_Val);
13061 -- Analyze and process digits expression
13063 Analyze_And_Resolve (Digs_Expr, Any_Integer);
13064 Check_Digits_Expression (Digs_Expr);
13065 Digs_Val := Expr_Value (Digs_Expr);
13067 if Digs_Val > 18 then
13068 Digs_Val := UI_From_Int (+18);
13069 Error_Msg_N ("digits value out of range, maximum is 18", Digs_Expr);
13070 end if;
13072 Set_Digits_Value (Implicit_Base, Digs_Val);
13073 Bound_Val := UR_From_Uint (10 ** Digs_Val - 1) * Delta_Val;
13075 -- Set range of base type from digits value for now. This will be
13076 -- expanded to represent the true underlying base range by Freeze.
13078 Set_Fixed_Range (Implicit_Base, Loc, -Bound_Val, Bound_Val);
13080 -- Note: We leave size as zero for now, size will be set at freeze
13081 -- time. We have to do this for ordinary fixed-point, because the size
13082 -- depends on the specified small, and we might as well do the same for
13083 -- decimal fixed-point.
13085 pragma Assert (Esize (Implicit_Base) = Uint_0);
13087 -- If there are bounds given in the declaration use them as the
13088 -- bounds of the first named subtype.
13090 if Present (Real_Range_Specification (Def)) then
13091 declare
13092 RRS : constant Node_Id := Real_Range_Specification (Def);
13093 Low : constant Node_Id := Low_Bound (RRS);
13094 High : constant Node_Id := High_Bound (RRS);
13095 Low_Val : Ureal;
13096 High_Val : Ureal;
13098 begin
13099 Analyze_And_Resolve (Low, Any_Real);
13100 Analyze_And_Resolve (High, Any_Real);
13101 Check_Real_Bound (Low);
13102 Check_Real_Bound (High);
13103 Low_Val := Expr_Value_R (Low);
13104 High_Val := Expr_Value_R (High);
13106 if Low_Val < (-Bound_Val) then
13107 Error_Msg_N
13108 ("range low bound too small for digits value", Low);
13109 Low_Val := -Bound_Val;
13110 end if;
13112 if High_Val > Bound_Val then
13113 Error_Msg_N
13114 ("range high bound too large for digits value", High);
13115 High_Val := Bound_Val;
13116 end if;
13118 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
13119 end;
13121 -- If no explicit range, use range that corresponds to given
13122 -- digits value. This will end up as the final range for the
13123 -- first subtype.
13125 else
13126 Set_Fixed_Range (T, Loc, -Bound_Val, Bound_Val);
13127 end if;
13129 -- Complete entity for first subtype
13131 Set_Ekind (T, E_Decimal_Fixed_Point_Subtype);
13132 Set_Etype (T, Implicit_Base);
13133 Set_Size_Info (T, Implicit_Base);
13134 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
13135 Set_Digits_Value (T, Digs_Val);
13136 Set_Delta_Value (T, Delta_Val);
13137 Set_Small_Value (T, Delta_Val);
13138 Set_Scale_Value (T, Scale_Val);
13139 Set_Is_Constrained (T);
13140 end Decimal_Fixed_Point_Type_Declaration;
13142 -----------------------------------
13143 -- Derive_Progenitor_Subprograms --
13144 -----------------------------------
13146 procedure Derive_Progenitor_Subprograms
13147 (Parent_Type : Entity_Id;
13148 Tagged_Type : Entity_Id)
13150 E : Entity_Id;
13151 Elmt : Elmt_Id;
13152 Iface : Entity_Id;
13153 Iface_Elmt : Elmt_Id;
13154 Iface_Subp : Entity_Id;
13155 New_Subp : Entity_Id := Empty;
13156 Prim_Elmt : Elmt_Id;
13157 Subp : Entity_Id;
13158 Typ : Entity_Id;
13160 begin
13161 pragma Assert (Ada_Version >= Ada_2005
13162 and then Is_Record_Type (Tagged_Type)
13163 and then Is_Tagged_Type (Tagged_Type)
13164 and then Has_Interfaces (Tagged_Type));
13166 -- Step 1: Transfer to the full-view primitives associated with the
13167 -- partial-view that cover interface primitives. Conceptually this
13168 -- work should be done later by Process_Full_View; done here to
13169 -- simplify its implementation at later stages. It can be safely
13170 -- done here because interfaces must be visible in the partial and
13171 -- private view (RM 7.3(7.3/2)).
13173 -- Small optimization: This work is only required if the parent may
13174 -- have entities whose Alias attribute reference an interface primitive.
13175 -- Such a situation may occur if the parent is an abstract type and the
13176 -- primitive has not been yet overridden or if the parent is a generic
13177 -- formal type covering interfaces.
13179 -- If the tagged type is not abstract, it cannot have abstract
13180 -- primitives (the only entities in the list of primitives of
13181 -- non-abstract tagged types that can reference abstract primitives
13182 -- through its Alias attribute are the internal entities that have
13183 -- attribute Interface_Alias, and these entities are generated later
13184 -- by Add_Internal_Interface_Entities).
13186 if In_Private_Part (Current_Scope)
13187 and then (Is_Abstract_Type (Parent_Type)
13188 or else
13189 Is_Generic_Type (Parent_Type))
13190 then
13191 Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
13192 while Present (Elmt) loop
13193 Subp := Node (Elmt);
13195 -- At this stage it is not possible to have entities in the list
13196 -- of primitives that have attribute Interface_Alias.
13198 pragma Assert (No (Interface_Alias (Subp)));
13200 Typ := Find_Dispatching_Type (Ultimate_Alias (Subp));
13202 if Is_Interface (Typ) then
13203 E := Find_Primitive_Covering_Interface
13204 (Tagged_Type => Tagged_Type,
13205 Iface_Prim => Subp);
13207 if Present (E)
13208 and then Find_Dispatching_Type (Ultimate_Alias (E)) /= Typ
13209 then
13210 Replace_Elmt (Elmt, E);
13211 Remove_Homonym (Subp);
13212 end if;
13213 end if;
13215 Next_Elmt (Elmt);
13216 end loop;
13217 end if;
13219 -- Step 2: Add primitives of progenitors that are not implemented by
13220 -- parents of Tagged_Type.
13222 if Present (Interfaces (Base_Type (Tagged_Type))) then
13223 Iface_Elmt := First_Elmt (Interfaces (Base_Type (Tagged_Type)));
13224 while Present (Iface_Elmt) loop
13225 Iface := Node (Iface_Elmt);
13227 Prim_Elmt := First_Elmt (Primitive_Operations (Iface));
13228 while Present (Prim_Elmt) loop
13229 Iface_Subp := Node (Prim_Elmt);
13231 -- Exclude derivation of predefined primitives except those
13232 -- that come from source, or are inherited from one that comes
13233 -- from source. Required to catch declarations of equality
13234 -- operators of interfaces. For example:
13236 -- type Iface is interface;
13237 -- function "=" (Left, Right : Iface) return Boolean;
13239 if not Is_Predefined_Dispatching_Operation (Iface_Subp)
13240 or else Comes_From_Source (Ultimate_Alias (Iface_Subp))
13241 then
13242 E := Find_Primitive_Covering_Interface
13243 (Tagged_Type => Tagged_Type,
13244 Iface_Prim => Iface_Subp);
13246 -- If not found we derive a new primitive leaving its alias
13247 -- attribute referencing the interface primitive.
13249 if No (E) then
13250 Derive_Subprogram
13251 (New_Subp, Iface_Subp, Tagged_Type, Iface);
13253 -- Ada 2012 (AI05-0197): If the covering primitive's name
13254 -- differs from the name of the interface primitive then it
13255 -- is a private primitive inherited from a parent type. In
13256 -- such case, given that Tagged_Type covers the interface,
13257 -- the inherited private primitive becomes visible. For such
13258 -- purpose we add a new entity that renames the inherited
13259 -- private primitive.
13261 elsif Chars (E) /= Chars (Iface_Subp) then
13262 pragma Assert (Has_Suffix (E, 'P'));
13263 Derive_Subprogram
13264 (New_Subp, Iface_Subp, Tagged_Type, Iface);
13265 Set_Alias (New_Subp, E);
13266 Set_Is_Abstract_Subprogram (New_Subp,
13267 Is_Abstract_Subprogram (E));
13269 -- Propagate to the full view interface entities associated
13270 -- with the partial view.
13272 elsif In_Private_Part (Current_Scope)
13273 and then Present (Alias (E))
13274 and then Alias (E) = Iface_Subp
13275 and then
13276 List_Containing (Parent (E)) /=
13277 Private_Declarations
13278 (Specification
13279 (Unit_Declaration_Node (Current_Scope)))
13280 then
13281 Append_Elmt (E, Primitive_Operations (Tagged_Type));
13282 end if;
13283 end if;
13285 Next_Elmt (Prim_Elmt);
13286 end loop;
13288 Next_Elmt (Iface_Elmt);
13289 end loop;
13290 end if;
13291 end Derive_Progenitor_Subprograms;
13293 -----------------------
13294 -- Derive_Subprogram --
13295 -----------------------
13297 procedure Derive_Subprogram
13298 (New_Subp : in out Entity_Id;
13299 Parent_Subp : Entity_Id;
13300 Derived_Type : Entity_Id;
13301 Parent_Type : Entity_Id;
13302 Actual_Subp : Entity_Id := Empty)
13304 Formal : Entity_Id;
13305 -- Formal parameter of parent primitive operation
13307 Formal_Of_Actual : Entity_Id;
13308 -- Formal parameter of actual operation, when the derivation is to
13309 -- create a renaming for a primitive operation of an actual in an
13310 -- instantiation.
13312 New_Formal : Entity_Id;
13313 -- Formal of inherited operation
13315 Visible_Subp : Entity_Id := Parent_Subp;
13317 function Is_Private_Overriding return Boolean;
13318 -- If Subp is a private overriding of a visible operation, the inherited
13319 -- operation derives from the overridden op (even though its body is the
13320 -- overriding one) and the inherited operation is visible now. See
13321 -- sem_disp to see the full details of the handling of the overridden
13322 -- subprogram, which is removed from the list of primitive operations of
13323 -- the type. The overridden subprogram is saved locally in Visible_Subp,
13324 -- and used to diagnose abstract operations that need overriding in the
13325 -- derived type.
13327 procedure Replace_Type (Id, New_Id : Entity_Id);
13328 -- When the type is an anonymous access type, create a new access type
13329 -- designating the derived type.
13331 procedure Set_Derived_Name;
13332 -- This procedure sets the appropriate Chars name for New_Subp. This
13333 -- is normally just a copy of the parent name. An exception arises for
13334 -- type support subprograms, where the name is changed to reflect the
13335 -- name of the derived type, e.g. if type foo is derived from type bar,
13336 -- then a procedure barDA is derived with a name fooDA.
13338 ---------------------------
13339 -- Is_Private_Overriding --
13340 ---------------------------
13342 function Is_Private_Overriding return Boolean is
13343 Prev : Entity_Id;
13345 begin
13346 -- If the parent is not a dispatching operation there is no
13347 -- need to investigate overridings
13349 if not Is_Dispatching_Operation (Parent_Subp) then
13350 return False;
13351 end if;
13353 -- The visible operation that is overridden is a homonym of the
13354 -- parent subprogram. We scan the homonym chain to find the one
13355 -- whose alias is the subprogram we are deriving.
13357 Prev := Current_Entity (Parent_Subp);
13358 while Present (Prev) loop
13359 if Ekind (Prev) = Ekind (Parent_Subp)
13360 and then Alias (Prev) = Parent_Subp
13361 and then Scope (Parent_Subp) = Scope (Prev)
13362 and then not Is_Hidden (Prev)
13363 then
13364 Visible_Subp := Prev;
13365 return True;
13366 end if;
13368 Prev := Homonym (Prev);
13369 end loop;
13371 return False;
13372 end Is_Private_Overriding;
13374 ------------------
13375 -- Replace_Type --
13376 ------------------
13378 procedure Replace_Type (Id, New_Id : Entity_Id) is
13379 Acc_Type : Entity_Id;
13380 Par : constant Node_Id := Parent (Derived_Type);
13382 begin
13383 -- When the type is an anonymous access type, create a new access
13384 -- type designating the derived type. This itype must be elaborated
13385 -- at the point of the derivation, not on subsequent calls that may
13386 -- be out of the proper scope for Gigi, so we insert a reference to
13387 -- it after the derivation.
13389 if Ekind (Etype (Id)) = E_Anonymous_Access_Type then
13390 declare
13391 Desig_Typ : Entity_Id := Designated_Type (Etype (Id));
13393 begin
13394 if Ekind (Desig_Typ) = E_Record_Type_With_Private
13395 and then Present (Full_View (Desig_Typ))
13396 and then not Is_Private_Type (Parent_Type)
13397 then
13398 Desig_Typ := Full_View (Desig_Typ);
13399 end if;
13401 if Base_Type (Desig_Typ) = Base_Type (Parent_Type)
13403 -- Ada 2005 (AI-251): Handle also derivations of abstract
13404 -- interface primitives.
13406 or else (Is_Interface (Desig_Typ)
13407 and then not Is_Class_Wide_Type (Desig_Typ))
13408 then
13409 Acc_Type := New_Copy (Etype (Id));
13410 Set_Etype (Acc_Type, Acc_Type);
13411 Set_Scope (Acc_Type, New_Subp);
13413 -- Compute size of anonymous access type
13415 if Is_Array_Type (Desig_Typ)
13416 and then not Is_Constrained (Desig_Typ)
13417 then
13418 Init_Size (Acc_Type, 2 * System_Address_Size);
13419 else
13420 Init_Size (Acc_Type, System_Address_Size);
13421 end if;
13423 Init_Alignment (Acc_Type);
13424 Set_Directly_Designated_Type (Acc_Type, Derived_Type);
13426 Set_Etype (New_Id, Acc_Type);
13427 Set_Scope (New_Id, New_Subp);
13429 -- Create a reference to it
13430 Build_Itype_Reference (Acc_Type, Parent (Derived_Type));
13432 else
13433 Set_Etype (New_Id, Etype (Id));
13434 end if;
13435 end;
13437 elsif Base_Type (Etype (Id)) = Base_Type (Parent_Type)
13438 or else
13439 (Ekind (Etype (Id)) = E_Record_Type_With_Private
13440 and then Present (Full_View (Etype (Id)))
13441 and then
13442 Base_Type (Full_View (Etype (Id))) = Base_Type (Parent_Type))
13443 then
13444 -- Constraint checks on formals are generated during expansion,
13445 -- based on the signature of the original subprogram. The bounds
13446 -- of the derived type are not relevant, and thus we can use
13447 -- the base type for the formals. However, the return type may be
13448 -- used in a context that requires that the proper static bounds
13449 -- be used (a case statement, for example) and for those cases
13450 -- we must use the derived type (first subtype), not its base.
13452 -- If the derived_type_definition has no constraints, we know that
13453 -- the derived type has the same constraints as the first subtype
13454 -- of the parent, and we can also use it rather than its base,
13455 -- which can lead to more efficient code.
13457 if Etype (Id) = Parent_Type then
13458 if Is_Scalar_Type (Parent_Type)
13459 and then
13460 Subtypes_Statically_Compatible (Parent_Type, Derived_Type)
13461 then
13462 Set_Etype (New_Id, Derived_Type);
13464 elsif Nkind (Par) = N_Full_Type_Declaration
13465 and then
13466 Nkind (Type_Definition (Par)) = N_Derived_Type_Definition
13467 and then
13468 Is_Entity_Name
13469 (Subtype_Indication (Type_Definition (Par)))
13470 then
13471 Set_Etype (New_Id, Derived_Type);
13473 else
13474 Set_Etype (New_Id, Base_Type (Derived_Type));
13475 end if;
13477 else
13478 Set_Etype (New_Id, Base_Type (Derived_Type));
13479 end if;
13481 else
13482 Set_Etype (New_Id, Etype (Id));
13483 end if;
13484 end Replace_Type;
13486 ----------------------
13487 -- Set_Derived_Name --
13488 ----------------------
13490 procedure Set_Derived_Name is
13491 Nm : constant TSS_Name_Type := Get_TSS_Name (Parent_Subp);
13492 begin
13493 if Nm = TSS_Null then
13494 Set_Chars (New_Subp, Chars (Parent_Subp));
13495 else
13496 Set_Chars (New_Subp, Make_TSS_Name (Base_Type (Derived_Type), Nm));
13497 end if;
13498 end Set_Derived_Name;
13500 -- Start of processing for Derive_Subprogram
13502 begin
13503 New_Subp :=
13504 New_Entity (Nkind (Parent_Subp), Sloc (Derived_Type));
13505 Set_Ekind (New_Subp, Ekind (Parent_Subp));
13506 Set_Contract (New_Subp, Make_Contract (Sloc (New_Subp)));
13508 -- Check whether the inherited subprogram is a private operation that
13509 -- should be inherited but not yet made visible. Such subprograms can
13510 -- become visible at a later point (e.g., the private part of a public
13511 -- child unit) via Declare_Inherited_Private_Subprograms. If the
13512 -- following predicate is true, then this is not such a private
13513 -- operation and the subprogram simply inherits the name of the parent
13514 -- subprogram. Note the special check for the names of controlled
13515 -- operations, which are currently exempted from being inherited with
13516 -- a hidden name because they must be findable for generation of
13517 -- implicit run-time calls.
13519 if not Is_Hidden (Parent_Subp)
13520 or else Is_Internal (Parent_Subp)
13521 or else Is_Private_Overriding
13522 or else Is_Internal_Name (Chars (Parent_Subp))
13523 or else Nam_In (Chars (Parent_Subp), Name_Initialize,
13524 Name_Adjust,
13525 Name_Finalize)
13526 then
13527 Set_Derived_Name;
13529 -- An inherited dispatching equality will be overridden by an internally
13530 -- generated one, or by an explicit one, so preserve its name and thus
13531 -- its entry in the dispatch table. Otherwise, if Parent_Subp is a
13532 -- private operation it may become invisible if the full view has
13533 -- progenitors, and the dispatch table will be malformed.
13534 -- We check that the type is limited to handle the anomalous declaration
13535 -- of Limited_Controlled, which is derived from a non-limited type, and
13536 -- which is handled specially elsewhere as well.
13538 elsif Chars (Parent_Subp) = Name_Op_Eq
13539 and then Is_Dispatching_Operation (Parent_Subp)
13540 and then Etype (Parent_Subp) = Standard_Boolean
13541 and then not Is_Limited_Type (Etype (First_Formal (Parent_Subp)))
13542 and then
13543 Etype (First_Formal (Parent_Subp)) =
13544 Etype (Next_Formal (First_Formal (Parent_Subp)))
13545 then
13546 Set_Derived_Name;
13548 -- If parent is hidden, this can be a regular derivation if the
13549 -- parent is immediately visible in a non-instantiating context,
13550 -- or if we are in the private part of an instance. This test
13551 -- should still be refined ???
13553 -- The test for In_Instance_Not_Visible avoids inheriting the derived
13554 -- operation as a non-visible operation in cases where the parent
13555 -- subprogram might not be visible now, but was visible within the
13556 -- original generic, so it would be wrong to make the inherited
13557 -- subprogram non-visible now. (Not clear if this test is fully
13558 -- correct; are there any cases where we should declare the inherited
13559 -- operation as not visible to avoid it being overridden, e.g., when
13560 -- the parent type is a generic actual with private primitives ???)
13562 -- (they should be treated the same as other private inherited
13563 -- subprograms, but it's not clear how to do this cleanly). ???
13565 elsif (In_Open_Scopes (Scope (Base_Type (Parent_Type)))
13566 and then Is_Immediately_Visible (Parent_Subp)
13567 and then not In_Instance)
13568 or else In_Instance_Not_Visible
13569 then
13570 Set_Derived_Name;
13572 -- Ada 2005 (AI-251): Regular derivation if the parent subprogram
13573 -- overrides an interface primitive because interface primitives
13574 -- must be visible in the partial view of the parent (RM 7.3 (7.3/2))
13576 elsif Ada_Version >= Ada_2005
13577 and then Is_Dispatching_Operation (Parent_Subp)
13578 and then Covers_Some_Interface (Parent_Subp)
13579 then
13580 Set_Derived_Name;
13582 -- Otherwise, the type is inheriting a private operation, so enter
13583 -- it with a special name so it can't be overridden.
13585 else
13586 Set_Chars (New_Subp, New_External_Name (Chars (Parent_Subp), 'P'));
13587 end if;
13589 Set_Parent (New_Subp, Parent (Derived_Type));
13591 if Present (Actual_Subp) then
13592 Replace_Type (Actual_Subp, New_Subp);
13593 else
13594 Replace_Type (Parent_Subp, New_Subp);
13595 end if;
13597 Conditional_Delay (New_Subp, Parent_Subp);
13599 -- If we are creating a renaming for a primitive operation of an
13600 -- actual of a generic derived type, we must examine the signature
13601 -- of the actual primitive, not that of the generic formal, which for
13602 -- example may be an interface. However the name and initial value
13603 -- of the inherited operation are those of the formal primitive.
13605 Formal := First_Formal (Parent_Subp);
13607 if Present (Actual_Subp) then
13608 Formal_Of_Actual := First_Formal (Actual_Subp);
13609 else
13610 Formal_Of_Actual := Empty;
13611 end if;
13613 while Present (Formal) loop
13614 New_Formal := New_Copy (Formal);
13616 -- Normally we do not go copying parents, but in the case of
13617 -- formals, we need to link up to the declaration (which is the
13618 -- parameter specification), and it is fine to link up to the
13619 -- original formal's parameter specification in this case.
13621 Set_Parent (New_Formal, Parent (Formal));
13622 Append_Entity (New_Formal, New_Subp);
13624 if Present (Formal_Of_Actual) then
13625 Replace_Type (Formal_Of_Actual, New_Formal);
13626 Next_Formal (Formal_Of_Actual);
13627 else
13628 Replace_Type (Formal, New_Formal);
13629 end if;
13631 Next_Formal (Formal);
13632 end loop;
13634 -- If this derivation corresponds to a tagged generic actual, then
13635 -- primitive operations rename those of the actual. Otherwise the
13636 -- primitive operations rename those of the parent type, If the parent
13637 -- renames an intrinsic operator, so does the new subprogram. We except
13638 -- concatenation, which is always properly typed, and does not get
13639 -- expanded as other intrinsic operations.
13641 if No (Actual_Subp) then
13642 if Is_Intrinsic_Subprogram (Parent_Subp) then
13643 Set_Is_Intrinsic_Subprogram (New_Subp);
13645 if Present (Alias (Parent_Subp))
13646 and then Chars (Parent_Subp) /= Name_Op_Concat
13647 then
13648 Set_Alias (New_Subp, Alias (Parent_Subp));
13649 else
13650 Set_Alias (New_Subp, Parent_Subp);
13651 end if;
13653 else
13654 Set_Alias (New_Subp, Parent_Subp);
13655 end if;
13657 else
13658 Set_Alias (New_Subp, Actual_Subp);
13659 end if;
13661 -- Derived subprograms of a tagged type must inherit the convention
13662 -- of the parent subprogram (a requirement of AI-117). Derived
13663 -- subprograms of untagged types simply get convention Ada by default.
13665 -- If the derived type is a tagged generic formal type with unknown
13666 -- discriminants, its convention is intrinsic (RM 6.3.1 (8)).
13668 -- However, if the type is derived from a generic formal, the further
13669 -- inherited subprogram has the convention of the non-generic ancestor.
13670 -- Otherwise there would be no way to override the operation.
13671 -- (This is subject to forthcoming ARG discussions).
13673 if Is_Tagged_Type (Derived_Type) then
13674 if Is_Generic_Type (Derived_Type)
13675 and then Has_Unknown_Discriminants (Derived_Type)
13676 then
13677 Set_Convention (New_Subp, Convention_Intrinsic);
13679 else
13680 if Is_Generic_Type (Parent_Type)
13681 and then Has_Unknown_Discriminants (Parent_Type)
13682 then
13683 Set_Convention (New_Subp, Convention (Alias (Parent_Subp)));
13684 else
13685 Set_Convention (New_Subp, Convention (Parent_Subp));
13686 end if;
13687 end if;
13688 end if;
13690 -- Predefined controlled operations retain their name even if the parent
13691 -- is hidden (see above), but they are not primitive operations if the
13692 -- ancestor is not visible, for example if the parent is a private
13693 -- extension completed with a controlled extension. Note that a full
13694 -- type that is controlled can break privacy: the flag Is_Controlled is
13695 -- set on both views of the type.
13697 if Is_Controlled (Parent_Type)
13698 and then Nam_In (Chars (Parent_Subp), Name_Initialize,
13699 Name_Adjust,
13700 Name_Finalize)
13701 and then Is_Hidden (Parent_Subp)
13702 and then not Is_Visibly_Controlled (Parent_Type)
13703 then
13704 Set_Is_Hidden (New_Subp);
13705 end if;
13707 Set_Is_Imported (New_Subp, Is_Imported (Parent_Subp));
13708 Set_Is_Exported (New_Subp, Is_Exported (Parent_Subp));
13710 if Ekind (Parent_Subp) = E_Procedure then
13711 Set_Is_Valued_Procedure
13712 (New_Subp, Is_Valued_Procedure (Parent_Subp));
13713 else
13714 Set_Has_Controlling_Result
13715 (New_Subp, Has_Controlling_Result (Parent_Subp));
13716 end if;
13718 -- No_Return must be inherited properly. If this is overridden in the
13719 -- case of a dispatching operation, then a check is made in Sem_Disp
13720 -- that the overriding operation is also No_Return (no such check is
13721 -- required for the case of non-dispatching operation.
13723 Set_No_Return (New_Subp, No_Return (Parent_Subp));
13725 -- A derived function with a controlling result is abstract. If the
13726 -- Derived_Type is a nonabstract formal generic derived type, then
13727 -- inherited operations are not abstract: the required check is done at
13728 -- instantiation time. If the derivation is for a generic actual, the
13729 -- function is not abstract unless the actual is.
13731 if Is_Generic_Type (Derived_Type)
13732 and then not Is_Abstract_Type (Derived_Type)
13733 then
13734 null;
13736 -- Ada 2005 (AI-228): Calculate the "require overriding" and "abstract"
13737 -- properties of the subprogram, as defined in RM-3.9.3(4/2-6/2).
13739 elsif Ada_Version >= Ada_2005
13740 and then (Is_Abstract_Subprogram (Alias (New_Subp))
13741 or else (Is_Tagged_Type (Derived_Type)
13742 and then Etype (New_Subp) = Derived_Type
13743 and then not Is_Null_Extension (Derived_Type))
13744 or else (Is_Tagged_Type (Derived_Type)
13745 and then Ekind (Etype (New_Subp)) =
13746 E_Anonymous_Access_Type
13747 and then Designated_Type (Etype (New_Subp)) =
13748 Derived_Type
13749 and then not Is_Null_Extension (Derived_Type)))
13750 and then No (Actual_Subp)
13751 then
13752 if not Is_Tagged_Type (Derived_Type)
13753 or else Is_Abstract_Type (Derived_Type)
13754 or else Is_Abstract_Subprogram (Alias (New_Subp))
13755 then
13756 Set_Is_Abstract_Subprogram (New_Subp);
13757 else
13758 Set_Requires_Overriding (New_Subp);
13759 end if;
13761 elsif Ada_Version < Ada_2005
13762 and then (Is_Abstract_Subprogram (Alias (New_Subp))
13763 or else (Is_Tagged_Type (Derived_Type)
13764 and then Etype (New_Subp) = Derived_Type
13765 and then No (Actual_Subp)))
13766 then
13767 Set_Is_Abstract_Subprogram (New_Subp);
13769 -- AI05-0097 : an inherited operation that dispatches on result is
13770 -- abstract if the derived type is abstract, even if the parent type
13771 -- is concrete and the derived type is a null extension.
13773 elsif Has_Controlling_Result (Alias (New_Subp))
13774 and then Is_Abstract_Type (Etype (New_Subp))
13775 then
13776 Set_Is_Abstract_Subprogram (New_Subp);
13778 -- Finally, if the parent type is abstract we must verify that all
13779 -- inherited operations are either non-abstract or overridden, or that
13780 -- the derived type itself is abstract (this check is performed at the
13781 -- end of a package declaration, in Check_Abstract_Overriding). A
13782 -- private overriding in the parent type will not be visible in the
13783 -- derivation if we are not in an inner package or in a child unit of
13784 -- the parent type, in which case the abstractness of the inherited
13785 -- operation is carried to the new subprogram.
13787 elsif Is_Abstract_Type (Parent_Type)
13788 and then not In_Open_Scopes (Scope (Parent_Type))
13789 and then Is_Private_Overriding
13790 and then Is_Abstract_Subprogram (Visible_Subp)
13791 then
13792 if No (Actual_Subp) then
13793 Set_Alias (New_Subp, Visible_Subp);
13794 Set_Is_Abstract_Subprogram (New_Subp, True);
13796 else
13797 -- If this is a derivation for an instance of a formal derived
13798 -- type, abstractness comes from the primitive operation of the
13799 -- actual, not from the operation inherited from the ancestor.
13801 Set_Is_Abstract_Subprogram
13802 (New_Subp, Is_Abstract_Subprogram (Actual_Subp));
13803 end if;
13804 end if;
13806 New_Overloaded_Entity (New_Subp, Derived_Type);
13808 -- Check for case of a derived subprogram for the instantiation of a
13809 -- formal derived tagged type, if so mark the subprogram as dispatching
13810 -- and inherit the dispatching attributes of the actual subprogram. The
13811 -- derived subprogram is effectively renaming of the actual subprogram,
13812 -- so it needs to have the same attributes as the actual.
13814 if Present (Actual_Subp)
13815 and then Is_Dispatching_Operation (Actual_Subp)
13816 then
13817 Set_Is_Dispatching_Operation (New_Subp);
13819 if Present (DTC_Entity (Actual_Subp)) then
13820 Set_DTC_Entity (New_Subp, DTC_Entity (Actual_Subp));
13821 Set_DT_Position (New_Subp, DT_Position (Actual_Subp));
13822 end if;
13823 end if;
13825 -- Indicate that a derived subprogram does not require a body and that
13826 -- it does not require processing of default expressions.
13828 Set_Has_Completion (New_Subp);
13829 Set_Default_Expressions_Processed (New_Subp);
13831 if Ekind (New_Subp) = E_Function then
13832 Set_Mechanism (New_Subp, Mechanism (Parent_Subp));
13833 end if;
13834 end Derive_Subprogram;
13836 ------------------------
13837 -- Derive_Subprograms --
13838 ------------------------
13840 procedure Derive_Subprograms
13841 (Parent_Type : Entity_Id;
13842 Derived_Type : Entity_Id;
13843 Generic_Actual : Entity_Id := Empty)
13845 Op_List : constant Elist_Id :=
13846 Collect_Primitive_Operations (Parent_Type);
13848 function Check_Derived_Type return Boolean;
13849 -- Check that all the entities derived from Parent_Type are found in
13850 -- the list of primitives of Derived_Type exactly in the same order.
13852 procedure Derive_Interface_Subprogram
13853 (New_Subp : in out Entity_Id;
13854 Subp : Entity_Id;
13855 Actual_Subp : Entity_Id);
13856 -- Derive New_Subp from the ultimate alias of the parent subprogram Subp
13857 -- (which is an interface primitive). If Generic_Actual is present then
13858 -- Actual_Subp is the actual subprogram corresponding with the generic
13859 -- subprogram Subp.
13861 function Check_Derived_Type return Boolean is
13862 E : Entity_Id;
13863 Elmt : Elmt_Id;
13864 List : Elist_Id;
13865 New_Subp : Entity_Id;
13866 Op_Elmt : Elmt_Id;
13867 Subp : Entity_Id;
13869 begin
13870 -- Traverse list of entities in the current scope searching for
13871 -- an incomplete type whose full-view is derived type
13873 E := First_Entity (Scope (Derived_Type));
13874 while Present (E) and then E /= Derived_Type loop
13875 if Ekind (E) = E_Incomplete_Type
13876 and then Present (Full_View (E))
13877 and then Full_View (E) = Derived_Type
13878 then
13879 -- Disable this test if Derived_Type completes an incomplete
13880 -- type because in such case more primitives can be added
13881 -- later to the list of primitives of Derived_Type by routine
13882 -- Process_Incomplete_Dependents
13884 return True;
13885 end if;
13887 E := Next_Entity (E);
13888 end loop;
13890 List := Collect_Primitive_Operations (Derived_Type);
13891 Elmt := First_Elmt (List);
13893 Op_Elmt := First_Elmt (Op_List);
13894 while Present (Op_Elmt) loop
13895 Subp := Node (Op_Elmt);
13896 New_Subp := Node (Elmt);
13898 -- At this early stage Derived_Type has no entities with attribute
13899 -- Interface_Alias. In addition, such primitives are always
13900 -- located at the end of the list of primitives of Parent_Type.
13901 -- Therefore, if found we can safely stop processing pending
13902 -- entities.
13904 exit when Present (Interface_Alias (Subp));
13906 -- Handle hidden entities
13908 if not Is_Predefined_Dispatching_Operation (Subp)
13909 and then Is_Hidden (Subp)
13910 then
13911 if Present (New_Subp)
13912 and then Primitive_Names_Match (Subp, New_Subp)
13913 then
13914 Next_Elmt (Elmt);
13915 end if;
13917 else
13918 if not Present (New_Subp)
13919 or else Ekind (Subp) /= Ekind (New_Subp)
13920 or else not Primitive_Names_Match (Subp, New_Subp)
13921 then
13922 return False;
13923 end if;
13925 Next_Elmt (Elmt);
13926 end if;
13928 Next_Elmt (Op_Elmt);
13929 end loop;
13931 return True;
13932 end Check_Derived_Type;
13934 ---------------------------------
13935 -- Derive_Interface_Subprogram --
13936 ---------------------------------
13938 procedure Derive_Interface_Subprogram
13939 (New_Subp : in out Entity_Id;
13940 Subp : Entity_Id;
13941 Actual_Subp : Entity_Id)
13943 Iface_Subp : constant Entity_Id := Ultimate_Alias (Subp);
13944 Iface_Type : constant Entity_Id := Find_Dispatching_Type (Iface_Subp);
13946 begin
13947 pragma Assert (Is_Interface (Iface_Type));
13949 Derive_Subprogram
13950 (New_Subp => New_Subp,
13951 Parent_Subp => Iface_Subp,
13952 Derived_Type => Derived_Type,
13953 Parent_Type => Iface_Type,
13954 Actual_Subp => Actual_Subp);
13956 -- Given that this new interface entity corresponds with a primitive
13957 -- of the parent that was not overridden we must leave it associated
13958 -- with its parent primitive to ensure that it will share the same
13959 -- dispatch table slot when overridden.
13961 if No (Actual_Subp) then
13962 Set_Alias (New_Subp, Subp);
13964 -- For instantiations this is not needed since the previous call to
13965 -- Derive_Subprogram leaves the entity well decorated.
13967 else
13968 pragma Assert (Alias (New_Subp) = Actual_Subp);
13969 null;
13970 end if;
13971 end Derive_Interface_Subprogram;
13973 -- Local variables
13975 Alias_Subp : Entity_Id;
13976 Act_List : Elist_Id;
13977 Act_Elmt : Elmt_Id;
13978 Act_Subp : Entity_Id := Empty;
13979 Elmt : Elmt_Id;
13980 Need_Search : Boolean := False;
13981 New_Subp : Entity_Id := Empty;
13982 Parent_Base : Entity_Id;
13983 Subp : Entity_Id;
13985 -- Start of processing for Derive_Subprograms
13987 begin
13988 if Ekind (Parent_Type) = E_Record_Type_With_Private
13989 and then Has_Discriminants (Parent_Type)
13990 and then Present (Full_View (Parent_Type))
13991 then
13992 Parent_Base := Full_View (Parent_Type);
13993 else
13994 Parent_Base := Parent_Type;
13995 end if;
13997 if Present (Generic_Actual) then
13998 Act_List := Collect_Primitive_Operations (Generic_Actual);
13999 Act_Elmt := First_Elmt (Act_List);
14000 else
14001 Act_List := No_Elist;
14002 Act_Elmt := No_Elmt;
14003 end if;
14005 -- Derive primitives inherited from the parent. Note that if the generic
14006 -- actual is present, this is not really a type derivation, it is a
14007 -- completion within an instance.
14009 -- Case 1: Derived_Type does not implement interfaces
14011 if not Is_Tagged_Type (Derived_Type)
14012 or else (not Has_Interfaces (Derived_Type)
14013 and then not (Present (Generic_Actual)
14014 and then Has_Interfaces (Generic_Actual)))
14015 then
14016 Elmt := First_Elmt (Op_List);
14017 while Present (Elmt) loop
14018 Subp := Node (Elmt);
14020 -- Literals are derived earlier in the process of building the
14021 -- derived type, and are skipped here.
14023 if Ekind (Subp) = E_Enumeration_Literal then
14024 null;
14026 -- The actual is a direct descendant and the common primitive
14027 -- operations appear in the same order.
14029 -- If the generic parent type is present, the derived type is an
14030 -- instance of a formal derived type, and within the instance its
14031 -- operations are those of the actual. We derive from the formal
14032 -- type but make the inherited operations aliases of the
14033 -- corresponding operations of the actual.
14035 else
14036 pragma Assert (No (Node (Act_Elmt))
14037 or else (Primitive_Names_Match (Subp, Node (Act_Elmt))
14038 and then
14039 Type_Conformant
14040 (Subp, Node (Act_Elmt),
14041 Skip_Controlling_Formals => True)));
14043 Derive_Subprogram
14044 (New_Subp, Subp, Derived_Type, Parent_Base, Node (Act_Elmt));
14046 if Present (Act_Elmt) then
14047 Next_Elmt (Act_Elmt);
14048 end if;
14049 end if;
14051 Next_Elmt (Elmt);
14052 end loop;
14054 -- Case 2: Derived_Type implements interfaces
14056 else
14057 -- If the parent type has no predefined primitives we remove
14058 -- predefined primitives from the list of primitives of generic
14059 -- actual to simplify the complexity of this algorithm.
14061 if Present (Generic_Actual) then
14062 declare
14063 Has_Predefined_Primitives : Boolean := False;
14065 begin
14066 -- Check if the parent type has predefined primitives
14068 Elmt := First_Elmt (Op_List);
14069 while Present (Elmt) loop
14070 Subp := Node (Elmt);
14072 if Is_Predefined_Dispatching_Operation (Subp)
14073 and then not Comes_From_Source (Ultimate_Alias (Subp))
14074 then
14075 Has_Predefined_Primitives := True;
14076 exit;
14077 end if;
14079 Next_Elmt (Elmt);
14080 end loop;
14082 -- Remove predefined primitives of Generic_Actual. We must use
14083 -- an auxiliary list because in case of tagged types the value
14084 -- returned by Collect_Primitive_Operations is the value stored
14085 -- in its Primitive_Operations attribute (and we don't want to
14086 -- modify its current contents).
14088 if not Has_Predefined_Primitives then
14089 declare
14090 Aux_List : constant Elist_Id := New_Elmt_List;
14092 begin
14093 Elmt := First_Elmt (Act_List);
14094 while Present (Elmt) loop
14095 Subp := Node (Elmt);
14097 if not Is_Predefined_Dispatching_Operation (Subp)
14098 or else Comes_From_Source (Subp)
14099 then
14100 Append_Elmt (Subp, Aux_List);
14101 end if;
14103 Next_Elmt (Elmt);
14104 end loop;
14106 Act_List := Aux_List;
14107 end;
14108 end if;
14110 Act_Elmt := First_Elmt (Act_List);
14111 Act_Subp := Node (Act_Elmt);
14112 end;
14113 end if;
14115 -- Stage 1: If the generic actual is not present we derive the
14116 -- primitives inherited from the parent type. If the generic parent
14117 -- type is present, the derived type is an instance of a formal
14118 -- derived type, and within the instance its operations are those of
14119 -- the actual. We derive from the formal type but make the inherited
14120 -- operations aliases of the corresponding operations of the actual.
14122 Elmt := First_Elmt (Op_List);
14123 while Present (Elmt) loop
14124 Subp := Node (Elmt);
14125 Alias_Subp := Ultimate_Alias (Subp);
14127 -- Do not derive internal entities of the parent that link
14128 -- interface primitives with their covering primitive. These
14129 -- entities will be added to this type when frozen.
14131 if Present (Interface_Alias (Subp)) then
14132 goto Continue;
14133 end if;
14135 -- If the generic actual is present find the corresponding
14136 -- operation in the generic actual. If the parent type is a
14137 -- direct ancestor of the derived type then, even if it is an
14138 -- interface, the operations are inherited from the primary
14139 -- dispatch table and are in the proper order. If we detect here
14140 -- that primitives are not in the same order we traverse the list
14141 -- of primitive operations of the actual to find the one that
14142 -- implements the interface primitive.
14144 if Need_Search
14145 or else
14146 (Present (Generic_Actual)
14147 and then Present (Act_Subp)
14148 and then not
14149 (Primitive_Names_Match (Subp, Act_Subp)
14150 and then
14151 Type_Conformant (Subp, Act_Subp,
14152 Skip_Controlling_Formals => True)))
14153 then
14154 pragma Assert (not Is_Ancestor (Parent_Base, Generic_Actual,
14155 Use_Full_View => True));
14157 -- Remember that we need searching for all pending primitives
14159 Need_Search := True;
14161 -- Handle entities associated with interface primitives
14163 if Present (Alias_Subp)
14164 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
14165 and then not Is_Predefined_Dispatching_Operation (Subp)
14166 then
14167 -- Search for the primitive in the homonym chain
14169 Act_Subp :=
14170 Find_Primitive_Covering_Interface
14171 (Tagged_Type => Generic_Actual,
14172 Iface_Prim => Alias_Subp);
14174 -- Previous search may not locate primitives covering
14175 -- interfaces defined in generics units or instantiations.
14176 -- (it fails if the covering primitive has formals whose
14177 -- type is also defined in generics or instantiations).
14178 -- In such case we search in the list of primitives of the
14179 -- generic actual for the internal entity that links the
14180 -- interface primitive and the covering primitive.
14182 if No (Act_Subp)
14183 and then Is_Generic_Type (Parent_Type)
14184 then
14185 -- This code has been designed to handle only generic
14186 -- formals that implement interfaces that are defined
14187 -- in a generic unit or instantiation. If this code is
14188 -- needed for other cases we must review it because
14189 -- (given that it relies on Original_Location to locate
14190 -- the primitive of Generic_Actual that covers the
14191 -- interface) it could leave linked through attribute
14192 -- Alias entities of unrelated instantiations).
14194 pragma Assert
14195 (Is_Generic_Unit
14196 (Scope (Find_Dispatching_Type (Alias_Subp)))
14197 or else
14198 Instantiation_Depth
14199 (Sloc (Find_Dispatching_Type (Alias_Subp))) > 0);
14201 declare
14202 Iface_Prim_Loc : constant Source_Ptr :=
14203 Original_Location (Sloc (Alias_Subp));
14205 Elmt : Elmt_Id;
14206 Prim : Entity_Id;
14208 begin
14209 Elmt :=
14210 First_Elmt (Primitive_Operations (Generic_Actual));
14212 Search : while Present (Elmt) loop
14213 Prim := Node (Elmt);
14215 if Present (Interface_Alias (Prim))
14216 and then Original_Location
14217 (Sloc (Interface_Alias (Prim))) =
14218 Iface_Prim_Loc
14219 then
14220 Act_Subp := Alias (Prim);
14221 exit Search;
14222 end if;
14224 Next_Elmt (Elmt);
14225 end loop Search;
14226 end;
14227 end if;
14229 pragma Assert (Present (Act_Subp)
14230 or else Is_Abstract_Type (Generic_Actual)
14231 or else Serious_Errors_Detected > 0);
14233 -- Handle predefined primitives plus the rest of user-defined
14234 -- primitives
14236 else
14237 Act_Elmt := First_Elmt (Act_List);
14238 while Present (Act_Elmt) loop
14239 Act_Subp := Node (Act_Elmt);
14241 exit when Primitive_Names_Match (Subp, Act_Subp)
14242 and then Type_Conformant
14243 (Subp, Act_Subp,
14244 Skip_Controlling_Formals => True)
14245 and then No (Interface_Alias (Act_Subp));
14247 Next_Elmt (Act_Elmt);
14248 end loop;
14250 if No (Act_Elmt) then
14251 Act_Subp := Empty;
14252 end if;
14253 end if;
14254 end if;
14256 -- Case 1: If the parent is a limited interface then it has the
14257 -- predefined primitives of synchronized interfaces. However, the
14258 -- actual type may be a non-limited type and hence it does not
14259 -- have such primitives.
14261 if Present (Generic_Actual)
14262 and then not Present (Act_Subp)
14263 and then Is_Limited_Interface (Parent_Base)
14264 and then Is_Predefined_Interface_Primitive (Subp)
14265 then
14266 null;
14268 -- Case 2: Inherit entities associated with interfaces that were
14269 -- not covered by the parent type. We exclude here null interface
14270 -- primitives because they do not need special management.
14272 -- We also exclude interface operations that are renamings. If the
14273 -- subprogram is an explicit renaming of an interface primitive,
14274 -- it is a regular primitive operation, and the presence of its
14275 -- alias is not relevant: it has to be derived like any other
14276 -- primitive.
14278 elsif Present (Alias (Subp))
14279 and then Nkind (Unit_Declaration_Node (Subp)) /=
14280 N_Subprogram_Renaming_Declaration
14281 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
14282 and then not
14283 (Nkind (Parent (Alias_Subp)) = N_Procedure_Specification
14284 and then Null_Present (Parent (Alias_Subp)))
14285 then
14286 -- If this is an abstract private type then we transfer the
14287 -- derivation of the interface primitive from the partial view
14288 -- to the full view. This is safe because all the interfaces
14289 -- must be visible in the partial view. Done to avoid adding
14290 -- a new interface derivation to the private part of the
14291 -- enclosing package; otherwise this new derivation would be
14292 -- decorated as hidden when the analysis of the enclosing
14293 -- package completes.
14295 if Is_Abstract_Type (Derived_Type)
14296 and then In_Private_Part (Current_Scope)
14297 and then Has_Private_Declaration (Derived_Type)
14298 then
14299 declare
14300 Partial_View : Entity_Id;
14301 Elmt : Elmt_Id;
14302 Ent : Entity_Id;
14304 begin
14305 Partial_View := First_Entity (Current_Scope);
14306 loop
14307 exit when No (Partial_View)
14308 or else (Has_Private_Declaration (Partial_View)
14309 and then
14310 Full_View (Partial_View) = Derived_Type);
14312 Next_Entity (Partial_View);
14313 end loop;
14315 -- If the partial view was not found then the source code
14316 -- has errors and the derivation is not needed.
14318 if Present (Partial_View) then
14319 Elmt :=
14320 First_Elmt (Primitive_Operations (Partial_View));
14321 while Present (Elmt) loop
14322 Ent := Node (Elmt);
14324 if Present (Alias (Ent))
14325 and then Ultimate_Alias (Ent) = Alias (Subp)
14326 then
14327 Append_Elmt
14328 (Ent, Primitive_Operations (Derived_Type));
14329 exit;
14330 end if;
14332 Next_Elmt (Elmt);
14333 end loop;
14335 -- If the interface primitive was not found in the
14336 -- partial view then this interface primitive was
14337 -- overridden. We add a derivation to activate in
14338 -- Derive_Progenitor_Subprograms the machinery to
14339 -- search for it.
14341 if No (Elmt) then
14342 Derive_Interface_Subprogram
14343 (New_Subp => New_Subp,
14344 Subp => Subp,
14345 Actual_Subp => Act_Subp);
14346 end if;
14347 end if;
14348 end;
14349 else
14350 Derive_Interface_Subprogram
14351 (New_Subp => New_Subp,
14352 Subp => Subp,
14353 Actual_Subp => Act_Subp);
14354 end if;
14356 -- Case 3: Common derivation
14358 else
14359 Derive_Subprogram
14360 (New_Subp => New_Subp,
14361 Parent_Subp => Subp,
14362 Derived_Type => Derived_Type,
14363 Parent_Type => Parent_Base,
14364 Actual_Subp => Act_Subp);
14365 end if;
14367 -- No need to update Act_Elm if we must search for the
14368 -- corresponding operation in the generic actual
14370 if not Need_Search
14371 and then Present (Act_Elmt)
14372 then
14373 Next_Elmt (Act_Elmt);
14374 Act_Subp := Node (Act_Elmt);
14375 end if;
14377 <<Continue>>
14378 Next_Elmt (Elmt);
14379 end loop;
14381 -- Inherit additional operations from progenitors. If the derived
14382 -- type is a generic actual, there are not new primitive operations
14383 -- for the type because it has those of the actual, and therefore
14384 -- nothing needs to be done. The renamings generated above are not
14385 -- primitive operations, and their purpose is simply to make the
14386 -- proper operations visible within an instantiation.
14388 if No (Generic_Actual) then
14389 Derive_Progenitor_Subprograms (Parent_Base, Derived_Type);
14390 end if;
14391 end if;
14393 -- Final check: Direct descendants must have their primitives in the
14394 -- same order. We exclude from this test untagged types and instances
14395 -- of formal derived types. We skip this test if we have already
14396 -- reported serious errors in the sources.
14398 pragma Assert (not Is_Tagged_Type (Derived_Type)
14399 or else Present (Generic_Actual)
14400 or else Serious_Errors_Detected > 0
14401 or else Check_Derived_Type);
14402 end Derive_Subprograms;
14404 --------------------------------
14405 -- Derived_Standard_Character --
14406 --------------------------------
14408 procedure Derived_Standard_Character
14409 (N : Node_Id;
14410 Parent_Type : Entity_Id;
14411 Derived_Type : Entity_Id)
14413 Loc : constant Source_Ptr := Sloc (N);
14414 Def : constant Node_Id := Type_Definition (N);
14415 Indic : constant Node_Id := Subtype_Indication (Def);
14416 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
14417 Implicit_Base : constant Entity_Id :=
14418 Create_Itype
14419 (E_Enumeration_Type, N, Derived_Type, 'B');
14421 Lo : Node_Id;
14422 Hi : Node_Id;
14424 begin
14425 Discard_Node (Process_Subtype (Indic, N));
14427 Set_Etype (Implicit_Base, Parent_Base);
14428 Set_Size_Info (Implicit_Base, Root_Type (Parent_Type));
14429 Set_RM_Size (Implicit_Base, RM_Size (Root_Type (Parent_Type)));
14431 Set_Is_Character_Type (Implicit_Base, True);
14432 Set_Has_Delayed_Freeze (Implicit_Base);
14434 -- The bounds of the implicit base are the bounds of the parent base.
14435 -- Note that their type is the parent base.
14437 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
14438 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
14440 Set_Scalar_Range (Implicit_Base,
14441 Make_Range (Loc,
14442 Low_Bound => Lo,
14443 High_Bound => Hi));
14445 Conditional_Delay (Derived_Type, Parent_Type);
14447 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
14448 Set_Etype (Derived_Type, Implicit_Base);
14449 Set_Size_Info (Derived_Type, Parent_Type);
14451 if Unknown_RM_Size (Derived_Type) then
14452 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
14453 end if;
14455 Set_Is_Character_Type (Derived_Type, True);
14457 if Nkind (Indic) /= N_Subtype_Indication then
14459 -- If no explicit constraint, the bounds are those
14460 -- of the parent type.
14462 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Type));
14463 Hi := New_Copy_Tree (Type_High_Bound (Parent_Type));
14464 Set_Scalar_Range (Derived_Type, Make_Range (Loc, Lo, Hi));
14465 end if;
14467 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
14469 -- Because the implicit base is used in the conversion of the bounds, we
14470 -- have to freeze it now. This is similar to what is done for numeric
14471 -- types, and it equally suspicious, but otherwise a non-static bound
14472 -- will have a reference to an unfrozen type, which is rejected by Gigi
14473 -- (???). This requires specific care for definition of stream
14474 -- attributes. For details, see comments at the end of
14475 -- Build_Derived_Numeric_Type.
14477 Freeze_Before (N, Implicit_Base);
14478 end Derived_Standard_Character;
14480 ------------------------------
14481 -- Derived_Type_Declaration --
14482 ------------------------------
14484 procedure Derived_Type_Declaration
14485 (T : Entity_Id;
14486 N : Node_Id;
14487 Is_Completion : Boolean)
14489 Parent_Type : Entity_Id;
14491 function Comes_From_Generic (Typ : Entity_Id) return Boolean;
14492 -- Check whether the parent type is a generic formal, or derives
14493 -- directly or indirectly from one.
14495 ------------------------
14496 -- Comes_From_Generic --
14497 ------------------------
14499 function Comes_From_Generic (Typ : Entity_Id) return Boolean is
14500 begin
14501 if Is_Generic_Type (Typ) then
14502 return True;
14504 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
14505 return True;
14507 elsif Is_Private_Type (Typ)
14508 and then Present (Full_View (Typ))
14509 and then Is_Generic_Type (Root_Type (Full_View (Typ)))
14510 then
14511 return True;
14513 elsif Is_Generic_Actual_Type (Typ) then
14514 return True;
14516 else
14517 return False;
14518 end if;
14519 end Comes_From_Generic;
14521 -- Local variables
14523 Def : constant Node_Id := Type_Definition (N);
14524 Iface_Def : Node_Id;
14525 Indic : constant Node_Id := Subtype_Indication (Def);
14526 Extension : constant Node_Id := Record_Extension_Part (Def);
14527 Parent_Node : Node_Id;
14528 Taggd : Boolean;
14530 -- Start of processing for Derived_Type_Declaration
14532 begin
14533 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
14535 -- Ada 2005 (AI-251): In case of interface derivation check that the
14536 -- parent is also an interface.
14538 if Interface_Present (Def) then
14539 Check_SPARK_Restriction ("interface is not allowed", Def);
14541 if not Is_Interface (Parent_Type) then
14542 Diagnose_Interface (Indic, Parent_Type);
14544 else
14545 Parent_Node := Parent (Base_Type (Parent_Type));
14546 Iface_Def := Type_Definition (Parent_Node);
14548 -- Ada 2005 (AI-251): Limited interfaces can only inherit from
14549 -- other limited interfaces.
14551 if Limited_Present (Def) then
14552 if Limited_Present (Iface_Def) then
14553 null;
14555 elsif Protected_Present (Iface_Def) then
14556 Error_Msg_NE
14557 ("descendant of& must be declared"
14558 & " as a protected interface",
14559 N, Parent_Type);
14561 elsif Synchronized_Present (Iface_Def) then
14562 Error_Msg_NE
14563 ("descendant of& must be declared"
14564 & " as a synchronized interface",
14565 N, Parent_Type);
14567 elsif Task_Present (Iface_Def) then
14568 Error_Msg_NE
14569 ("descendant of& must be declared as a task interface",
14570 N, Parent_Type);
14572 else
14573 Error_Msg_N
14574 ("(Ada 2005) limited interface cannot "
14575 & "inherit from non-limited interface", Indic);
14576 end if;
14578 -- Ada 2005 (AI-345): Non-limited interfaces can only inherit
14579 -- from non-limited or limited interfaces.
14581 elsif not Protected_Present (Def)
14582 and then not Synchronized_Present (Def)
14583 and then not Task_Present (Def)
14584 then
14585 if Limited_Present (Iface_Def) then
14586 null;
14588 elsif Protected_Present (Iface_Def) then
14589 Error_Msg_NE
14590 ("descendant of& must be declared"
14591 & " as a protected interface",
14592 N, Parent_Type);
14594 elsif Synchronized_Present (Iface_Def) then
14595 Error_Msg_NE
14596 ("descendant of& must be declared"
14597 & " as a synchronized interface",
14598 N, Parent_Type);
14600 elsif Task_Present (Iface_Def) then
14601 Error_Msg_NE
14602 ("descendant of& must be declared as a task interface",
14603 N, Parent_Type);
14604 else
14605 null;
14606 end if;
14607 end if;
14608 end if;
14609 end if;
14611 if Is_Tagged_Type (Parent_Type)
14612 and then Is_Concurrent_Type (Parent_Type)
14613 and then not Is_Interface (Parent_Type)
14614 then
14615 Error_Msg_N
14616 ("parent type of a record extension cannot be "
14617 & "a synchronized tagged type (RM 3.9.1 (3/1))", N);
14618 Set_Etype (T, Any_Type);
14619 return;
14620 end if;
14622 -- Ada 2005 (AI-251): Decorate all the names in the list of ancestor
14623 -- interfaces
14625 if Is_Tagged_Type (Parent_Type)
14626 and then Is_Non_Empty_List (Interface_List (Def))
14627 then
14628 declare
14629 Intf : Node_Id;
14630 T : Entity_Id;
14632 begin
14633 Intf := First (Interface_List (Def));
14634 while Present (Intf) loop
14635 T := Find_Type_Of_Subtype_Indic (Intf);
14637 if not Is_Interface (T) then
14638 Diagnose_Interface (Intf, T);
14640 -- Check the rules of 3.9.4(12/2) and 7.5(2/2) that disallow
14641 -- a limited type from having a nonlimited progenitor.
14643 elsif (Limited_Present (Def)
14644 or else (not Is_Interface (Parent_Type)
14645 and then Is_Limited_Type (Parent_Type)))
14646 and then not Is_Limited_Interface (T)
14647 then
14648 Error_Msg_NE
14649 ("progenitor interface& of limited type must be limited",
14650 N, T);
14651 end if;
14653 Next (Intf);
14654 end loop;
14655 end;
14656 end if;
14658 if Parent_Type = Any_Type
14659 or else Etype (Parent_Type) = Any_Type
14660 or else (Is_Class_Wide_Type (Parent_Type)
14661 and then Etype (Parent_Type) = T)
14662 then
14663 -- If Parent_Type is undefined or illegal, make new type into a
14664 -- subtype of Any_Type, and set a few attributes to prevent cascaded
14665 -- errors. If this is a self-definition, emit error now.
14667 if T = Parent_Type
14668 or else T = Etype (Parent_Type)
14669 then
14670 Error_Msg_N ("type cannot be used in its own definition", Indic);
14671 end if;
14673 Set_Ekind (T, Ekind (Parent_Type));
14674 Set_Etype (T, Any_Type);
14675 Set_Scalar_Range (T, Scalar_Range (Any_Type));
14677 if Is_Tagged_Type (T)
14678 and then Is_Record_Type (T)
14679 then
14680 Set_Direct_Primitive_Operations (T, New_Elmt_List);
14681 end if;
14683 return;
14684 end if;
14686 -- Ada 2005 (AI-251): The case in which the parent of the full-view is
14687 -- an interface is special because the list of interfaces in the full
14688 -- view can be given in any order. For example:
14690 -- type A is interface;
14691 -- type B is interface and A;
14692 -- type D is new B with private;
14693 -- private
14694 -- type D is new A and B with null record; -- 1 --
14696 -- In this case we perform the following transformation of -1-:
14698 -- type D is new B and A with null record;
14700 -- If the parent of the full-view covers the parent of the partial-view
14701 -- we have two possible cases:
14703 -- 1) They have the same parent
14704 -- 2) The parent of the full-view implements some further interfaces
14706 -- In both cases we do not need to perform the transformation. In the
14707 -- first case the source program is correct and the transformation is
14708 -- not needed; in the second case the source program does not fulfill
14709 -- the no-hidden interfaces rule (AI-396) and the error will be reported
14710 -- later.
14712 -- This transformation not only simplifies the rest of the analysis of
14713 -- this type declaration but also simplifies the correct generation of
14714 -- the object layout to the expander.
14716 if In_Private_Part (Current_Scope)
14717 and then Is_Interface (Parent_Type)
14718 then
14719 declare
14720 Iface : Node_Id;
14721 Partial_View : Entity_Id;
14722 Partial_View_Parent : Entity_Id;
14723 New_Iface : Node_Id;
14725 begin
14726 -- Look for the associated private type declaration
14728 Partial_View := First_Entity (Current_Scope);
14729 loop
14730 exit when No (Partial_View)
14731 or else (Has_Private_Declaration (Partial_View)
14732 and then Full_View (Partial_View) = T);
14734 Next_Entity (Partial_View);
14735 end loop;
14737 -- If the partial view was not found then the source code has
14738 -- errors and the transformation is not needed.
14740 if Present (Partial_View) then
14741 Partial_View_Parent := Etype (Partial_View);
14743 -- If the parent of the full-view covers the parent of the
14744 -- partial-view we have nothing else to do.
14746 if Interface_Present_In_Ancestor
14747 (Parent_Type, Partial_View_Parent)
14748 then
14749 null;
14751 -- Traverse the list of interfaces of the full-view to look
14752 -- for the parent of the partial-view and perform the tree
14753 -- transformation.
14755 else
14756 Iface := First (Interface_List (Def));
14757 while Present (Iface) loop
14758 if Etype (Iface) = Etype (Partial_View) then
14759 Rewrite (Subtype_Indication (Def),
14760 New_Copy (Subtype_Indication
14761 (Parent (Partial_View))));
14763 New_Iface :=
14764 Make_Identifier (Sloc (N), Chars (Parent_Type));
14765 Append (New_Iface, Interface_List (Def));
14767 -- Analyze the transformed code
14769 Derived_Type_Declaration (T, N, Is_Completion);
14770 return;
14771 end if;
14773 Next (Iface);
14774 end loop;
14775 end if;
14776 end if;
14777 end;
14778 end if;
14780 -- Only composite types other than array types are allowed to have
14781 -- discriminants. In SPARK, no types are allowed to have discriminants.
14783 if Present (Discriminant_Specifications (N)) then
14784 if (Is_Elementary_Type (Parent_Type)
14785 or else Is_Array_Type (Parent_Type))
14786 and then not Error_Posted (N)
14787 then
14788 Error_Msg_N
14789 ("elementary or array type cannot have discriminants",
14790 Defining_Identifier (First (Discriminant_Specifications (N))));
14791 Set_Has_Discriminants (T, False);
14792 else
14793 Check_SPARK_Restriction ("discriminant type is not allowed", N);
14794 end if;
14795 end if;
14797 -- In Ada 83, a derived type defined in a package specification cannot
14798 -- be used for further derivation until the end of its visible part.
14799 -- Note that derivation in the private part of the package is allowed.
14801 if Ada_Version = Ada_83
14802 and then Is_Derived_Type (Parent_Type)
14803 and then In_Visible_Part (Scope (Parent_Type))
14804 then
14805 if Ada_Version = Ada_83 and then Comes_From_Source (Indic) then
14806 Error_Msg_N
14807 ("(Ada 83): premature use of type for derivation", Indic);
14808 end if;
14809 end if;
14811 -- Check for early use of incomplete or private type
14813 if Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
14814 Error_Msg_N ("premature derivation of incomplete type", Indic);
14815 return;
14817 elsif (Is_Incomplete_Or_Private_Type (Parent_Type)
14818 and then not Comes_From_Generic (Parent_Type))
14819 or else Has_Private_Component (Parent_Type)
14820 then
14821 -- The ancestor type of a formal type can be incomplete, in which
14822 -- case only the operations of the partial view are available in the
14823 -- generic. Subsequent checks may be required when the full view is
14824 -- analyzed to verify that a derivation from a tagged type has an
14825 -- extension.
14827 if Nkind (Original_Node (N)) = N_Formal_Type_Declaration then
14828 null;
14830 elsif No (Underlying_Type (Parent_Type))
14831 or else Has_Private_Component (Parent_Type)
14832 then
14833 Error_Msg_N
14834 ("premature derivation of derived or private type", Indic);
14836 -- Flag the type itself as being in error, this prevents some
14837 -- nasty problems with subsequent uses of the malformed type.
14839 Set_Error_Posted (T);
14841 -- Check that within the immediate scope of an untagged partial
14842 -- view it's illegal to derive from the partial view if the
14843 -- full view is tagged. (7.3(7))
14845 -- We verify that the Parent_Type is a partial view by checking
14846 -- that it is not a Full_Type_Declaration (i.e. a private type or
14847 -- private extension declaration), to distinguish a partial view
14848 -- from a derivation from a private type which also appears as
14849 -- E_Private_Type. If the parent base type is not declared in an
14850 -- enclosing scope there is no need to check.
14852 elsif Present (Full_View (Parent_Type))
14853 and then Nkind (Parent (Parent_Type)) /= N_Full_Type_Declaration
14854 and then not Is_Tagged_Type (Parent_Type)
14855 and then Is_Tagged_Type (Full_View (Parent_Type))
14856 and then In_Open_Scopes (Scope (Base_Type (Parent_Type)))
14857 then
14858 Error_Msg_N
14859 ("premature derivation from type with tagged full view",
14860 Indic);
14861 end if;
14862 end if;
14864 -- Check that form of derivation is appropriate
14866 Taggd := Is_Tagged_Type (Parent_Type);
14868 -- Perhaps the parent type should be changed to the class-wide type's
14869 -- specific type in this case to prevent cascading errors ???
14871 if Present (Extension) and then Is_Class_Wide_Type (Parent_Type) then
14872 Error_Msg_N ("parent type must not be a class-wide type", Indic);
14873 return;
14874 end if;
14876 if Present (Extension) and then not Taggd then
14877 Error_Msg_N
14878 ("type derived from untagged type cannot have extension", Indic);
14880 elsif No (Extension) and then Taggd then
14882 -- If this declaration is within a private part (or body) of a
14883 -- generic instantiation then the derivation is allowed (the parent
14884 -- type can only appear tagged in this case if it's a generic actual
14885 -- type, since it would otherwise have been rejected in the analysis
14886 -- of the generic template).
14888 if not Is_Generic_Actual_Type (Parent_Type)
14889 or else In_Visible_Part (Scope (Parent_Type))
14890 then
14891 if Is_Class_Wide_Type (Parent_Type) then
14892 Error_Msg_N
14893 ("parent type must not be a class-wide type", Indic);
14895 -- Use specific type to prevent cascaded errors.
14897 Parent_Type := Etype (Parent_Type);
14899 else
14900 Error_Msg_N
14901 ("type derived from tagged type must have extension", Indic);
14902 end if;
14903 end if;
14904 end if;
14906 -- AI-443: Synchronized formal derived types require a private
14907 -- extension. There is no point in checking the ancestor type or
14908 -- the progenitors since the construct is wrong to begin with.
14910 if Ada_Version >= Ada_2005
14911 and then Is_Generic_Type (T)
14912 and then Present (Original_Node (N))
14913 then
14914 declare
14915 Decl : constant Node_Id := Original_Node (N);
14917 begin
14918 if Nkind (Decl) = N_Formal_Type_Declaration
14919 and then Nkind (Formal_Type_Definition (Decl)) =
14920 N_Formal_Derived_Type_Definition
14921 and then Synchronized_Present (Formal_Type_Definition (Decl))
14922 and then No (Extension)
14924 -- Avoid emitting a duplicate error message
14926 and then not Error_Posted (Indic)
14927 then
14928 Error_Msg_N
14929 ("synchronized derived type must have extension", N);
14930 end if;
14931 end;
14932 end if;
14934 if Null_Exclusion_Present (Def)
14935 and then not Is_Access_Type (Parent_Type)
14936 then
14937 Error_Msg_N ("null exclusion can only apply to an access type", N);
14938 end if;
14940 -- Avoid deriving parent primitives of underlying record views
14942 Build_Derived_Type (N, Parent_Type, T, Is_Completion,
14943 Derive_Subps => not Is_Underlying_Record_View (T));
14945 -- AI-419: The parent type of an explicitly limited derived type must
14946 -- be a limited type or a limited interface.
14948 if Limited_Present (Def) then
14949 Set_Is_Limited_Record (T);
14951 if Is_Interface (T) then
14952 Set_Is_Limited_Interface (T);
14953 end if;
14955 if not Is_Limited_Type (Parent_Type)
14956 and then
14957 (not Is_Interface (Parent_Type)
14958 or else not Is_Limited_Interface (Parent_Type))
14959 then
14960 -- AI05-0096: a derivation in the private part of an instance is
14961 -- legal if the generic formal is untagged limited, and the actual
14962 -- is non-limited.
14964 if Is_Generic_Actual_Type (Parent_Type)
14965 and then In_Private_Part (Current_Scope)
14966 and then
14967 not Is_Tagged_Type
14968 (Generic_Parent_Type (Parent (Parent_Type)))
14969 then
14970 null;
14972 else
14973 Error_Msg_NE
14974 ("parent type& of limited type must be limited",
14975 N, Parent_Type);
14976 end if;
14977 end if;
14978 end if;
14980 -- In SPARK, there are no derived type definitions other than type
14981 -- extensions of tagged record types.
14983 if No (Extension) then
14984 Check_SPARK_Restriction
14985 ("derived type is not allowed", Original_Node (N));
14986 end if;
14987 end Derived_Type_Declaration;
14989 ------------------------
14990 -- Diagnose_Interface --
14991 ------------------------
14993 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id) is
14994 begin
14995 if not Is_Interface (E)
14996 and then E /= Any_Type
14997 then
14998 Error_Msg_NE ("(Ada 2005) & must be an interface", N, E);
14999 end if;
15000 end Diagnose_Interface;
15002 ----------------------------------
15003 -- Enumeration_Type_Declaration --
15004 ----------------------------------
15006 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id) is
15007 Ev : Uint;
15008 L : Node_Id;
15009 R_Node : Node_Id;
15010 B_Node : Node_Id;
15012 begin
15013 -- Create identifier node representing lower bound
15015 B_Node := New_Node (N_Identifier, Sloc (Def));
15016 L := First (Literals (Def));
15017 Set_Chars (B_Node, Chars (L));
15018 Set_Entity (B_Node, L);
15019 Set_Etype (B_Node, T);
15020 Set_Is_Static_Expression (B_Node, True);
15022 R_Node := New_Node (N_Range, Sloc (Def));
15023 Set_Low_Bound (R_Node, B_Node);
15025 Set_Ekind (T, E_Enumeration_Type);
15026 Set_First_Literal (T, L);
15027 Set_Etype (T, T);
15028 Set_Is_Constrained (T);
15030 Ev := Uint_0;
15032 -- Loop through literals of enumeration type setting pos and rep values
15033 -- except that if the Ekind is already set, then it means the literal
15034 -- was already constructed (case of a derived type declaration and we
15035 -- should not disturb the Pos and Rep values.
15037 while Present (L) loop
15038 if Ekind (L) /= E_Enumeration_Literal then
15039 Set_Ekind (L, E_Enumeration_Literal);
15040 Set_Enumeration_Pos (L, Ev);
15041 Set_Enumeration_Rep (L, Ev);
15042 Set_Is_Known_Valid (L, True);
15043 end if;
15045 Set_Etype (L, T);
15046 New_Overloaded_Entity (L);
15047 Generate_Definition (L);
15048 Set_Convention (L, Convention_Intrinsic);
15050 -- Case of character literal
15052 if Nkind (L) = N_Defining_Character_Literal then
15053 Set_Is_Character_Type (T, True);
15055 -- Check violation of No_Wide_Characters
15057 if Restriction_Check_Required (No_Wide_Characters) then
15058 Get_Name_String (Chars (L));
15060 if Name_Len >= 3 and then Name_Buffer (1 .. 2) = "QW" then
15061 Check_Restriction (No_Wide_Characters, L);
15062 end if;
15063 end if;
15064 end if;
15066 Ev := Ev + 1;
15067 Next (L);
15068 end loop;
15070 -- Now create a node representing upper bound
15072 B_Node := New_Node (N_Identifier, Sloc (Def));
15073 Set_Chars (B_Node, Chars (Last (Literals (Def))));
15074 Set_Entity (B_Node, Last (Literals (Def)));
15075 Set_Etype (B_Node, T);
15076 Set_Is_Static_Expression (B_Node, True);
15078 Set_High_Bound (R_Node, B_Node);
15080 -- Initialize various fields of the type. Some of this information
15081 -- may be overwritten later through rep.clauses.
15083 Set_Scalar_Range (T, R_Node);
15084 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
15085 Set_Enum_Esize (T);
15086 Set_Enum_Pos_To_Rep (T, Empty);
15088 -- Set Discard_Names if configuration pragma set, or if there is
15089 -- a parameterless pragma in the current declarative region
15091 if Global_Discard_Names or else Discard_Names (Scope (T)) then
15092 Set_Discard_Names (T);
15093 end if;
15095 -- Process end label if there is one
15097 if Present (Def) then
15098 Process_End_Label (Def, 'e', T);
15099 end if;
15100 end Enumeration_Type_Declaration;
15102 ---------------------------------
15103 -- Expand_To_Stored_Constraint --
15104 ---------------------------------
15106 function Expand_To_Stored_Constraint
15107 (Typ : Entity_Id;
15108 Constraint : Elist_Id) return Elist_Id
15110 Explicitly_Discriminated_Type : Entity_Id;
15111 Expansion : Elist_Id;
15112 Discriminant : Entity_Id;
15114 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id;
15115 -- Find the nearest type that actually specifies discriminants
15117 ---------------------------------
15118 -- Type_With_Explicit_Discrims --
15119 ---------------------------------
15121 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id is
15122 Typ : constant E := Base_Type (Id);
15124 begin
15125 if Ekind (Typ) in Incomplete_Or_Private_Kind then
15126 if Present (Full_View (Typ)) then
15127 return Type_With_Explicit_Discrims (Full_View (Typ));
15128 end if;
15130 else
15131 if Has_Discriminants (Typ) then
15132 return Typ;
15133 end if;
15134 end if;
15136 if Etype (Typ) = Typ then
15137 return Empty;
15138 elsif Has_Discriminants (Typ) then
15139 return Typ;
15140 else
15141 return Type_With_Explicit_Discrims (Etype (Typ));
15142 end if;
15144 end Type_With_Explicit_Discrims;
15146 -- Start of processing for Expand_To_Stored_Constraint
15148 begin
15149 if No (Constraint)
15150 or else Is_Empty_Elmt_List (Constraint)
15151 then
15152 return No_Elist;
15153 end if;
15155 Explicitly_Discriminated_Type := Type_With_Explicit_Discrims (Typ);
15157 if No (Explicitly_Discriminated_Type) then
15158 return No_Elist;
15159 end if;
15161 Expansion := New_Elmt_List;
15163 Discriminant :=
15164 First_Stored_Discriminant (Explicitly_Discriminated_Type);
15165 while Present (Discriminant) loop
15166 Append_Elmt (
15167 Get_Discriminant_Value (
15168 Discriminant, Explicitly_Discriminated_Type, Constraint),
15169 Expansion);
15170 Next_Stored_Discriminant (Discriminant);
15171 end loop;
15173 return Expansion;
15174 end Expand_To_Stored_Constraint;
15176 ---------------------------
15177 -- Find_Hidden_Interface --
15178 ---------------------------
15180 function Find_Hidden_Interface
15181 (Src : Elist_Id;
15182 Dest : Elist_Id) return Entity_Id
15184 Iface : Entity_Id;
15185 Iface_Elmt : Elmt_Id;
15187 begin
15188 if Present (Src) and then Present (Dest) then
15189 Iface_Elmt := First_Elmt (Src);
15190 while Present (Iface_Elmt) loop
15191 Iface := Node (Iface_Elmt);
15193 if Is_Interface (Iface)
15194 and then not Contain_Interface (Iface, Dest)
15195 then
15196 return Iface;
15197 end if;
15199 Next_Elmt (Iface_Elmt);
15200 end loop;
15201 end if;
15203 return Empty;
15204 end Find_Hidden_Interface;
15206 --------------------
15207 -- Find_Type_Name --
15208 --------------------
15210 function Find_Type_Name (N : Node_Id) return Entity_Id is
15211 Id : constant Entity_Id := Defining_Identifier (N);
15212 Prev : Entity_Id;
15213 New_Id : Entity_Id;
15214 Prev_Par : Node_Id;
15216 procedure Check_Duplicate_Aspects;
15217 -- Check that aspects specified in a completion have not been specified
15218 -- already in the partial view. Type_Invariant and others can be
15219 -- specified on either view but never on both.
15221 procedure Tag_Mismatch;
15222 -- Diagnose a tagged partial view whose full view is untagged.
15223 -- We post the message on the full view, with a reference to
15224 -- the previous partial view. The partial view can be private
15225 -- or incomplete, and these are handled in a different manner,
15226 -- so we determine the position of the error message from the
15227 -- respective slocs of both.
15229 -----------------------------
15230 -- Check_Duplicate_Aspects --
15231 -----------------------------
15232 procedure Check_Duplicate_Aspects is
15233 Prev_Aspects : constant List_Id := Aspect_Specifications (Prev_Par);
15234 Full_Aspects : constant List_Id := Aspect_Specifications (N);
15235 F_Spec, P_Spec : Node_Id;
15237 begin
15238 if Present (Prev_Aspects) and then Present (Full_Aspects) then
15239 F_Spec := First (Full_Aspects);
15240 while Present (F_Spec) loop
15241 P_Spec := First (Prev_Aspects);
15242 while Present (P_Spec) loop
15244 Chars (Identifier (P_Spec)) = Chars (Identifier (F_Spec))
15245 then
15246 Error_Msg_N
15247 ("aspect already specified in private declaration",
15248 F_Spec);
15249 Remove (F_Spec);
15250 return;
15251 end if;
15253 Next (P_Spec);
15254 end loop;
15256 Next (F_Spec);
15257 end loop;
15258 end if;
15259 end Check_Duplicate_Aspects;
15261 ------------------
15262 -- Tag_Mismatch --
15263 ------------------
15265 procedure Tag_Mismatch is
15266 begin
15267 if Sloc (Prev) < Sloc (Id) then
15268 if Ada_Version >= Ada_2012
15269 and then Nkind (N) = N_Private_Type_Declaration
15270 then
15271 Error_Msg_NE
15272 ("declaration of private } must be a tagged type ", Id, Prev);
15273 else
15274 Error_Msg_NE
15275 ("full declaration of } must be a tagged type ", Id, Prev);
15276 end if;
15277 else
15278 if Ada_Version >= Ada_2012
15279 and then Nkind (N) = N_Private_Type_Declaration
15280 then
15281 Error_Msg_NE
15282 ("declaration of private } must be a tagged type ", Prev, Id);
15283 else
15284 Error_Msg_NE
15285 ("full declaration of } must be a tagged type ", Prev, Id);
15286 end if;
15287 end if;
15288 end Tag_Mismatch;
15290 -- Start of processing for Find_Type_Name
15292 begin
15293 -- Find incomplete declaration, if one was given
15295 Prev := Current_Entity_In_Scope (Id);
15297 -- New type declaration
15299 if No (Prev) then
15300 Enter_Name (Id);
15301 return Id;
15303 -- Previous declaration exists
15305 else
15306 Prev_Par := Parent (Prev);
15308 -- Error if not incomplete/private case except if previous
15309 -- declaration is implicit, etc. Enter_Name will emit error if
15310 -- appropriate.
15312 if not Is_Incomplete_Or_Private_Type (Prev) then
15313 Enter_Name (Id);
15314 New_Id := Id;
15316 -- Check invalid completion of private or incomplete type
15318 elsif not Nkind_In (N, N_Full_Type_Declaration,
15319 N_Task_Type_Declaration,
15320 N_Protected_Type_Declaration)
15321 and then
15322 (Ada_Version < Ada_2012
15323 or else not Is_Incomplete_Type (Prev)
15324 or else not Nkind_In (N, N_Private_Type_Declaration,
15325 N_Private_Extension_Declaration))
15326 then
15327 -- Completion must be a full type declarations (RM 7.3(4))
15329 Error_Msg_Sloc := Sloc (Prev);
15330 Error_Msg_NE ("invalid completion of }", Id, Prev);
15332 -- Set scope of Id to avoid cascaded errors. Entity is never
15333 -- examined again, except when saving globals in generics.
15335 Set_Scope (Id, Current_Scope);
15336 New_Id := Id;
15338 -- If this is a repeated incomplete declaration, no further
15339 -- checks are possible.
15341 if Nkind (N) = N_Incomplete_Type_Declaration then
15342 return Prev;
15343 end if;
15345 -- Case of full declaration of incomplete type
15347 elsif Ekind (Prev) = E_Incomplete_Type
15348 and then (Ada_Version < Ada_2012
15349 or else No (Full_View (Prev))
15350 or else not Is_Private_Type (Full_View (Prev)))
15351 then
15353 -- Indicate that the incomplete declaration has a matching full
15354 -- declaration. The defining occurrence of the incomplete
15355 -- declaration remains the visible one, and the procedure
15356 -- Get_Full_View dereferences it whenever the type is used.
15358 if Present (Full_View (Prev)) then
15359 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
15360 end if;
15362 Set_Full_View (Prev, Id);
15363 Append_Entity (Id, Current_Scope);
15364 Set_Is_Public (Id, Is_Public (Prev));
15365 Set_Is_Internal (Id);
15366 New_Id := Prev;
15368 -- If the incomplete view is tagged, a class_wide type has been
15369 -- created already. Use it for the private type as well, in order
15370 -- to prevent multiple incompatible class-wide types that may be
15371 -- created for self-referential anonymous access components.
15373 if Is_Tagged_Type (Prev)
15374 and then Present (Class_Wide_Type (Prev))
15375 then
15376 Set_Ekind (Id, Ekind (Prev)); -- will be reset later
15377 Set_Class_Wide_Type (Id, Class_Wide_Type (Prev));
15379 -- If the incomplete type is completed by a private declaration
15380 -- the class-wide type remains associated with the incomplete
15381 -- type, to prevent order-of-elaboration issues in gigi, else
15382 -- we associate the class-wide type with the known full view.
15384 if Nkind (N) /= N_Private_Type_Declaration then
15385 Set_Etype (Class_Wide_Type (Id), Id);
15386 end if;
15387 end if;
15389 -- Case of full declaration of private type
15391 else
15392 -- If the private type was a completion of an incomplete type then
15393 -- update Prev to reference the private type
15395 if Ada_Version >= Ada_2012
15396 and then Ekind (Prev) = E_Incomplete_Type
15397 and then Present (Full_View (Prev))
15398 and then Is_Private_Type (Full_View (Prev))
15399 then
15400 Prev := Full_View (Prev);
15401 Prev_Par := Parent (Prev);
15402 end if;
15404 if Nkind (Parent (Prev)) /= N_Private_Extension_Declaration then
15405 if Etype (Prev) /= Prev then
15407 -- Prev is a private subtype or a derived type, and needs
15408 -- no completion.
15410 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
15411 New_Id := Id;
15413 elsif Ekind (Prev) = E_Private_Type
15414 and then Nkind_In (N, N_Task_Type_Declaration,
15415 N_Protected_Type_Declaration)
15416 then
15417 Error_Msg_N
15418 ("completion of nonlimited type cannot be limited", N);
15420 elsif Ekind (Prev) = E_Record_Type_With_Private
15421 and then Nkind_In (N, N_Task_Type_Declaration,
15422 N_Protected_Type_Declaration)
15423 then
15424 if not Is_Limited_Record (Prev) then
15425 Error_Msg_N
15426 ("completion of nonlimited type cannot be limited", N);
15428 elsif No (Interface_List (N)) then
15429 Error_Msg_N
15430 ("completion of tagged private type must be tagged",
15432 end if;
15434 elsif Nkind (N) = N_Full_Type_Declaration
15435 and then
15436 Nkind (Type_Definition (N)) = N_Record_Definition
15437 and then Interface_Present (Type_Definition (N))
15438 then
15439 Error_Msg_N
15440 ("completion of private type cannot be an interface", N);
15441 end if;
15443 -- Ada 2005 (AI-251): Private extension declaration of a task
15444 -- type or a protected type. This case arises when covering
15445 -- interface types.
15447 elsif Nkind_In (N, N_Task_Type_Declaration,
15448 N_Protected_Type_Declaration)
15449 then
15450 null;
15452 elsif Nkind (N) /= N_Full_Type_Declaration
15453 or else Nkind (Type_Definition (N)) /= N_Derived_Type_Definition
15454 then
15455 Error_Msg_N
15456 ("full view of private extension must be an extension", N);
15458 elsif not (Abstract_Present (Parent (Prev)))
15459 and then Abstract_Present (Type_Definition (N))
15460 then
15461 Error_Msg_N
15462 ("full view of non-abstract extension cannot be abstract", N);
15463 end if;
15465 if not In_Private_Part (Current_Scope) then
15466 Error_Msg_N
15467 ("declaration of full view must appear in private part", N);
15468 end if;
15470 if Ada_Version >= Ada_2012 then
15471 Check_Duplicate_Aspects;
15472 end if;
15474 Copy_And_Swap (Prev, Id);
15475 Set_Has_Private_Declaration (Prev);
15476 Set_Has_Private_Declaration (Id);
15478 -- Preserve aspect and iterator flags that may have been set on
15479 -- the partial view.
15481 Set_Has_Delayed_Aspects (Prev, Has_Delayed_Aspects (Id));
15482 Set_Has_Implicit_Dereference (Prev, Has_Implicit_Dereference (Id));
15484 -- If no error, propagate freeze_node from private to full view.
15485 -- It may have been generated for an early operational item.
15487 if Present (Freeze_Node (Id))
15488 and then Serious_Errors_Detected = 0
15489 and then No (Full_View (Id))
15490 then
15491 Set_Freeze_Node (Prev, Freeze_Node (Id));
15492 Set_Freeze_Node (Id, Empty);
15493 Set_First_Rep_Item (Prev, First_Rep_Item (Id));
15494 end if;
15496 Set_Full_View (Id, Prev);
15497 New_Id := Prev;
15498 end if;
15500 -- Verify that full declaration conforms to partial one
15502 if Is_Incomplete_Or_Private_Type (Prev)
15503 and then Present (Discriminant_Specifications (Prev_Par))
15504 then
15505 if Present (Discriminant_Specifications (N)) then
15506 if Ekind (Prev) = E_Incomplete_Type then
15507 Check_Discriminant_Conformance (N, Prev, Prev);
15508 else
15509 Check_Discriminant_Conformance (N, Prev, Id);
15510 end if;
15512 else
15513 Error_Msg_N
15514 ("missing discriminants in full type declaration", N);
15516 -- To avoid cascaded errors on subsequent use, share the
15517 -- discriminants of the partial view.
15519 Set_Discriminant_Specifications (N,
15520 Discriminant_Specifications (Prev_Par));
15521 end if;
15522 end if;
15524 -- A prior untagged partial view can have an associated class-wide
15525 -- type due to use of the class attribute, and in this case the full
15526 -- type must also be tagged. This Ada 95 usage is deprecated in favor
15527 -- of incomplete tagged declarations, but we check for it.
15529 if Is_Type (Prev)
15530 and then (Is_Tagged_Type (Prev)
15531 or else Present (Class_Wide_Type (Prev)))
15532 then
15533 -- Ada 2012 (AI05-0162): A private type may be the completion of
15534 -- an incomplete type
15536 if Ada_Version >= Ada_2012
15537 and then Is_Incomplete_Type (Prev)
15538 and then Nkind_In (N, N_Private_Type_Declaration,
15539 N_Private_Extension_Declaration)
15540 then
15541 -- No need to check private extensions since they are tagged
15543 if Nkind (N) = N_Private_Type_Declaration
15544 and then not Tagged_Present (N)
15545 then
15546 Tag_Mismatch;
15547 end if;
15549 -- The full declaration is either a tagged type (including
15550 -- a synchronized type that implements interfaces) or a
15551 -- type extension, otherwise this is an error.
15553 elsif Nkind_In (N, N_Task_Type_Declaration,
15554 N_Protected_Type_Declaration)
15555 then
15556 if No (Interface_List (N))
15557 and then not Error_Posted (N)
15558 then
15559 Tag_Mismatch;
15560 end if;
15562 elsif Nkind (Type_Definition (N)) = N_Record_Definition then
15564 -- Indicate that the previous declaration (tagged incomplete
15565 -- or private declaration) requires the same on the full one.
15567 if not Tagged_Present (Type_Definition (N)) then
15568 Tag_Mismatch;
15569 Set_Is_Tagged_Type (Id);
15570 end if;
15572 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
15573 if No (Record_Extension_Part (Type_Definition (N))) then
15574 Error_Msg_NE
15575 ("full declaration of } must be a record extension",
15576 Prev, Id);
15578 -- Set some attributes to produce a usable full view
15580 Set_Is_Tagged_Type (Id);
15581 end if;
15583 else
15584 Tag_Mismatch;
15585 end if;
15586 end if;
15588 if Present (Prev)
15589 and then Nkind (Parent (Prev)) = N_Incomplete_Type_Declaration
15590 and then Present (Premature_Use (Parent (Prev)))
15591 then
15592 Error_Msg_Sloc := Sloc (N);
15593 Error_Msg_N
15594 ("\full declaration #", Premature_Use (Parent (Prev)));
15595 end if;
15597 return New_Id;
15598 end if;
15599 end Find_Type_Name;
15601 -------------------------
15602 -- Find_Type_Of_Object --
15603 -------------------------
15605 function Find_Type_Of_Object
15606 (Obj_Def : Node_Id;
15607 Related_Nod : Node_Id) return Entity_Id
15609 Def_Kind : constant Node_Kind := Nkind (Obj_Def);
15610 P : Node_Id := Parent (Obj_Def);
15611 T : Entity_Id;
15612 Nam : Name_Id;
15614 begin
15615 -- If the parent is a component_definition node we climb to the
15616 -- component_declaration node
15618 if Nkind (P) = N_Component_Definition then
15619 P := Parent (P);
15620 end if;
15622 -- Case of an anonymous array subtype
15624 if Nkind_In (Def_Kind, N_Constrained_Array_Definition,
15625 N_Unconstrained_Array_Definition)
15626 then
15627 T := Empty;
15628 Array_Type_Declaration (T, Obj_Def);
15630 -- Create an explicit subtype whenever possible
15632 elsif Nkind (P) /= N_Component_Declaration
15633 and then Def_Kind = N_Subtype_Indication
15634 then
15635 -- Base name of subtype on object name, which will be unique in
15636 -- the current scope.
15638 -- If this is a duplicate declaration, return base type, to avoid
15639 -- generating duplicate anonymous types.
15641 if Error_Posted (P) then
15642 Analyze (Subtype_Mark (Obj_Def));
15643 return Entity (Subtype_Mark (Obj_Def));
15644 end if;
15646 Nam :=
15647 New_External_Name
15648 (Chars (Defining_Identifier (Related_Nod)), 'S', 0, 'T');
15650 T := Make_Defining_Identifier (Sloc (P), Nam);
15652 Insert_Action (Obj_Def,
15653 Make_Subtype_Declaration (Sloc (P),
15654 Defining_Identifier => T,
15655 Subtype_Indication => Relocate_Node (Obj_Def)));
15657 -- This subtype may need freezing, and this will not be done
15658 -- automatically if the object declaration is not in declarative
15659 -- part. Since this is an object declaration, the type cannot always
15660 -- be frozen here. Deferred constants do not freeze their type
15661 -- (which often enough will be private).
15663 if Nkind (P) = N_Object_Declaration
15664 and then Constant_Present (P)
15665 and then No (Expression (P))
15666 then
15667 null;
15668 else
15669 Insert_Actions (Obj_Def, Freeze_Entity (T, P));
15670 end if;
15672 -- Ada 2005 AI-406: the object definition in an object declaration
15673 -- can be an access definition.
15675 elsif Def_Kind = N_Access_Definition then
15676 T := Access_Definition (Related_Nod, Obj_Def);
15678 Set_Is_Local_Anonymous_Access
15680 V => (Ada_Version < Ada_2012)
15681 or else (Nkind (P) /= N_Object_Declaration)
15682 or else Is_Library_Level_Entity (Defining_Identifier (P)));
15684 -- Otherwise, the object definition is just a subtype_mark
15686 else
15687 T := Process_Subtype (Obj_Def, Related_Nod);
15689 -- If expansion is disabled an object definition that is an aggregate
15690 -- will not get expanded and may lead to scoping problems in the back
15691 -- end, if the object is referenced in an inner scope. In that case
15692 -- create an itype reference for the object definition now. This
15693 -- may be redundant in some cases, but harmless.
15695 if Is_Itype (T)
15696 and then Nkind (Related_Nod) = N_Object_Declaration
15697 and then ASIS_Mode
15698 then
15699 Build_Itype_Reference (T, Related_Nod);
15700 end if;
15701 end if;
15703 return T;
15704 end Find_Type_Of_Object;
15706 --------------------------------
15707 -- Find_Type_Of_Subtype_Indic --
15708 --------------------------------
15710 function Find_Type_Of_Subtype_Indic (S : Node_Id) return Entity_Id is
15711 Typ : Entity_Id;
15713 begin
15714 -- Case of subtype mark with a constraint
15716 if Nkind (S) = N_Subtype_Indication then
15717 Find_Type (Subtype_Mark (S));
15718 Typ := Entity (Subtype_Mark (S));
15720 if not
15721 Is_Valid_Constraint_Kind (Ekind (Typ), Nkind (Constraint (S)))
15722 then
15723 Error_Msg_N
15724 ("incorrect constraint for this kind of type", Constraint (S));
15725 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
15726 end if;
15728 -- Otherwise we have a subtype mark without a constraint
15730 elsif Error_Posted (S) then
15731 Rewrite (S, New_Occurrence_Of (Any_Id, Sloc (S)));
15732 return Any_Type;
15734 else
15735 Find_Type (S);
15736 Typ := Entity (S);
15737 end if;
15739 -- Check No_Wide_Characters restriction
15741 Check_Wide_Character_Restriction (Typ, S);
15743 return Typ;
15744 end Find_Type_Of_Subtype_Indic;
15746 -------------------------------------
15747 -- Floating_Point_Type_Declaration --
15748 -------------------------------------
15750 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id) is
15751 Digs : constant Node_Id := Digits_Expression (Def);
15752 Max_Digs_Val : constant Uint := Digits_Value (Standard_Long_Long_Float);
15753 Digs_Val : Uint;
15754 Base_Typ : Entity_Id;
15755 Implicit_Base : Entity_Id;
15756 Bound : Node_Id;
15758 function Can_Derive_From (E : Entity_Id) return Boolean;
15759 -- Find if given digits value, and possibly a specified range, allows
15760 -- derivation from specified type
15762 function Find_Base_Type return Entity_Id;
15763 -- Find a predefined base type that Def can derive from, or generate
15764 -- an error and substitute Long_Long_Float if none exists.
15766 ---------------------
15767 -- Can_Derive_From --
15768 ---------------------
15770 function Can_Derive_From (E : Entity_Id) return Boolean is
15771 Spec : constant Entity_Id := Real_Range_Specification (Def);
15773 begin
15774 -- Check specified "digits" constraint
15776 if Digs_Val > Digits_Value (E) then
15777 return False;
15778 end if;
15780 -- Avoid types not matching pragma Float_Representation, if present
15782 if (Opt.Float_Format = 'I' and then Float_Rep (E) /= IEEE_Binary)
15783 or else
15784 (Opt.Float_Format = 'V' and then Float_Rep (E) /= VAX_Native)
15785 then
15786 return False;
15787 end if;
15789 -- Check for matching range, if specified
15791 if Present (Spec) then
15792 if Expr_Value_R (Type_Low_Bound (E)) >
15793 Expr_Value_R (Low_Bound (Spec))
15794 then
15795 return False;
15796 end if;
15798 if Expr_Value_R (Type_High_Bound (E)) <
15799 Expr_Value_R (High_Bound (Spec))
15800 then
15801 return False;
15802 end if;
15803 end if;
15805 return True;
15806 end Can_Derive_From;
15808 --------------------
15809 -- Find_Base_Type --
15810 --------------------
15812 function Find_Base_Type return Entity_Id is
15813 Choice : Elmt_Id := First_Elmt (Predefined_Float_Types);
15815 begin
15816 -- Iterate over the predefined types in order, returning the first
15817 -- one that Def can derive from.
15819 while Present (Choice) loop
15820 if Can_Derive_From (Node (Choice)) then
15821 return Node (Choice);
15822 end if;
15824 Next_Elmt (Choice);
15825 end loop;
15827 -- If we can't derive from any existing type, use Long_Long_Float
15828 -- and give appropriate message explaining the problem.
15830 if Digs_Val > Max_Digs_Val then
15831 -- It might be the case that there is a type with the requested
15832 -- range, just not the combination of digits and range.
15834 Error_Msg_N
15835 ("no predefined type has requested range and precision",
15836 Real_Range_Specification (Def));
15838 else
15839 Error_Msg_N
15840 ("range too large for any predefined type",
15841 Real_Range_Specification (Def));
15842 end if;
15844 return Standard_Long_Long_Float;
15845 end Find_Base_Type;
15847 -- Start of processing for Floating_Point_Type_Declaration
15849 begin
15850 Check_Restriction (No_Floating_Point, Def);
15852 -- Create an implicit base type
15854 Implicit_Base :=
15855 Create_Itype (E_Floating_Point_Type, Parent (Def), T, 'B');
15857 -- Analyze and verify digits value
15859 Analyze_And_Resolve (Digs, Any_Integer);
15860 Check_Digits_Expression (Digs);
15861 Digs_Val := Expr_Value (Digs);
15863 -- Process possible range spec and find correct type to derive from
15865 Process_Real_Range_Specification (Def);
15867 -- Check that requested number of digits is not too high.
15869 if Digs_Val > Max_Digs_Val then
15870 -- The check for Max_Base_Digits may be somewhat expensive, as it
15871 -- requires reading System, so only do it when necessary.
15873 declare
15874 Max_Base_Digits : constant Uint :=
15875 Expr_Value
15876 (Expression
15877 (Parent (RTE (RE_Max_Base_Digits))));
15879 begin
15880 if Digs_Val > Max_Base_Digits then
15881 Error_Msg_Uint_1 := Max_Base_Digits;
15882 Error_Msg_N ("digits value out of range, maximum is ^", Digs);
15884 elsif No (Real_Range_Specification (Def)) then
15885 Error_Msg_Uint_1 := Max_Digs_Val;
15886 Error_Msg_N ("types with more than ^ digits need range spec "
15887 & "(RM 3.5.7(6))", Digs);
15888 end if;
15889 end;
15890 end if;
15892 -- Find a suitable type to derive from or complain and use a substitute
15894 Base_Typ := Find_Base_Type;
15896 -- If there are bounds given in the declaration use them as the bounds
15897 -- of the type, otherwise use the bounds of the predefined base type
15898 -- that was chosen based on the Digits value.
15900 if Present (Real_Range_Specification (Def)) then
15901 Set_Scalar_Range (T, Real_Range_Specification (Def));
15902 Set_Is_Constrained (T);
15904 -- The bounds of this range must be converted to machine numbers
15905 -- in accordance with RM 4.9(38).
15907 Bound := Type_Low_Bound (T);
15909 if Nkind (Bound) = N_Real_Literal then
15910 Set_Realval
15911 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
15912 Set_Is_Machine_Number (Bound);
15913 end if;
15915 Bound := Type_High_Bound (T);
15917 if Nkind (Bound) = N_Real_Literal then
15918 Set_Realval
15919 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
15920 Set_Is_Machine_Number (Bound);
15921 end if;
15923 else
15924 Set_Scalar_Range (T, Scalar_Range (Base_Typ));
15925 end if;
15927 -- Complete definition of implicit base and declared first subtype
15929 Set_Etype (Implicit_Base, Base_Typ);
15931 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
15932 Set_Size_Info (Implicit_Base, (Base_Typ));
15933 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
15934 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
15935 Set_Digits_Value (Implicit_Base, Digits_Value (Base_Typ));
15936 Set_Float_Rep (Implicit_Base, Float_Rep (Base_Typ));
15938 Set_Ekind (T, E_Floating_Point_Subtype);
15939 Set_Etype (T, Implicit_Base);
15941 Set_Size_Info (T, (Implicit_Base));
15942 Set_RM_Size (T, RM_Size (Implicit_Base));
15943 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
15944 Set_Digits_Value (T, Digs_Val);
15945 end Floating_Point_Type_Declaration;
15947 ----------------------------
15948 -- Get_Discriminant_Value --
15949 ----------------------------
15951 -- This is the situation:
15953 -- There is a non-derived type
15955 -- type T0 (Dx, Dy, Dz...)
15957 -- There are zero or more levels of derivation, with each derivation
15958 -- either purely inheriting the discriminants, or defining its own.
15960 -- type Ti is new Ti-1
15961 -- or
15962 -- type Ti (Dw) is new Ti-1(Dw, 1, X+Y)
15963 -- or
15964 -- subtype Ti is ...
15966 -- The subtype issue is avoided by the use of Original_Record_Component,
15967 -- and the fact that derived subtypes also derive the constraints.
15969 -- This chain leads back from
15971 -- Typ_For_Constraint
15973 -- Typ_For_Constraint has discriminants, and the value for each
15974 -- discriminant is given by its corresponding Elmt of Constraints.
15976 -- Discriminant is some discriminant in this hierarchy
15978 -- We need to return its value
15980 -- We do this by recursively searching each level, and looking for
15981 -- Discriminant. Once we get to the bottom, we start backing up
15982 -- returning the value for it which may in turn be a discriminant
15983 -- further up, so on the backup we continue the substitution.
15985 function Get_Discriminant_Value
15986 (Discriminant : Entity_Id;
15987 Typ_For_Constraint : Entity_Id;
15988 Constraint : Elist_Id) return Node_Id
15990 function Root_Corresponding_Discriminant
15991 (Discr : Entity_Id) return Entity_Id;
15992 -- Given a discriminant, traverse the chain of inherited discriminants
15993 -- and return the topmost discriminant.
15995 function Search_Derivation_Levels
15996 (Ti : Entity_Id;
15997 Discrim_Values : Elist_Id;
15998 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id;
15999 -- This is the routine that performs the recursive search of levels
16000 -- as described above.
16002 -------------------------------------
16003 -- Root_Corresponding_Discriminant --
16004 -------------------------------------
16006 function Root_Corresponding_Discriminant
16007 (Discr : Entity_Id) return Entity_Id
16009 D : Entity_Id;
16011 begin
16012 D := Discr;
16013 while Present (Corresponding_Discriminant (D)) loop
16014 D := Corresponding_Discriminant (D);
16015 end loop;
16017 return D;
16018 end Root_Corresponding_Discriminant;
16020 ------------------------------
16021 -- Search_Derivation_Levels --
16022 ------------------------------
16024 function Search_Derivation_Levels
16025 (Ti : Entity_Id;
16026 Discrim_Values : Elist_Id;
16027 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id
16029 Assoc : Elmt_Id;
16030 Disc : Entity_Id;
16031 Result : Node_Or_Entity_Id;
16032 Result_Entity : Node_Id;
16034 begin
16035 -- If inappropriate type, return Error, this happens only in
16036 -- cascaded error situations, and we want to avoid a blow up.
16038 if not Is_Composite_Type (Ti) or else Is_Array_Type (Ti) then
16039 return Error;
16040 end if;
16042 -- Look deeper if possible. Use Stored_Constraints only for
16043 -- untagged types. For tagged types use the given constraint.
16044 -- This asymmetry needs explanation???
16046 if not Stored_Discrim_Values
16047 and then Present (Stored_Constraint (Ti))
16048 and then not Is_Tagged_Type (Ti)
16049 then
16050 Result :=
16051 Search_Derivation_Levels (Ti, Stored_Constraint (Ti), True);
16052 else
16053 declare
16054 Td : constant Entity_Id := Etype (Ti);
16056 begin
16057 if Td = Ti then
16058 Result := Discriminant;
16060 else
16061 if Present (Stored_Constraint (Ti)) then
16062 Result :=
16063 Search_Derivation_Levels
16064 (Td, Stored_Constraint (Ti), True);
16065 else
16066 Result :=
16067 Search_Derivation_Levels
16068 (Td, Discrim_Values, Stored_Discrim_Values);
16069 end if;
16070 end if;
16071 end;
16072 end if;
16074 -- Extra underlying places to search, if not found above. For
16075 -- concurrent types, the relevant discriminant appears in the
16076 -- corresponding record. For a type derived from a private type
16077 -- without discriminant, the full view inherits the discriminants
16078 -- of the full view of the parent.
16080 if Result = Discriminant then
16081 if Is_Concurrent_Type (Ti)
16082 and then Present (Corresponding_Record_Type (Ti))
16083 then
16084 Result :=
16085 Search_Derivation_Levels (
16086 Corresponding_Record_Type (Ti),
16087 Discrim_Values,
16088 Stored_Discrim_Values);
16090 elsif Is_Private_Type (Ti)
16091 and then not Has_Discriminants (Ti)
16092 and then Present (Full_View (Ti))
16093 and then Etype (Full_View (Ti)) /= Ti
16094 then
16095 Result :=
16096 Search_Derivation_Levels (
16097 Full_View (Ti),
16098 Discrim_Values,
16099 Stored_Discrim_Values);
16100 end if;
16101 end if;
16103 -- If Result is not a (reference to a) discriminant, return it,
16104 -- otherwise set Result_Entity to the discriminant.
16106 if Nkind (Result) = N_Defining_Identifier then
16107 pragma Assert (Result = Discriminant);
16108 Result_Entity := Result;
16110 else
16111 if not Denotes_Discriminant (Result) then
16112 return Result;
16113 end if;
16115 Result_Entity := Entity (Result);
16116 end if;
16118 -- See if this level of derivation actually has discriminants
16119 -- because tagged derivations can add them, hence the lower
16120 -- levels need not have any.
16122 if not Has_Discriminants (Ti) then
16123 return Result;
16124 end if;
16126 -- Scan Ti's discriminants for Result_Entity,
16127 -- and return its corresponding value, if any.
16129 Result_Entity := Original_Record_Component (Result_Entity);
16131 Assoc := First_Elmt (Discrim_Values);
16133 if Stored_Discrim_Values then
16134 Disc := First_Stored_Discriminant (Ti);
16135 else
16136 Disc := First_Discriminant (Ti);
16137 end if;
16139 while Present (Disc) loop
16140 pragma Assert (Present (Assoc));
16142 if Original_Record_Component (Disc) = Result_Entity then
16143 return Node (Assoc);
16144 end if;
16146 Next_Elmt (Assoc);
16148 if Stored_Discrim_Values then
16149 Next_Stored_Discriminant (Disc);
16150 else
16151 Next_Discriminant (Disc);
16152 end if;
16153 end loop;
16155 -- Could not find it
16157 return Result;
16158 end Search_Derivation_Levels;
16160 -- Local Variables
16162 Result : Node_Or_Entity_Id;
16164 -- Start of processing for Get_Discriminant_Value
16166 begin
16167 -- ??? This routine is a gigantic mess and will be deleted. For the
16168 -- time being just test for the trivial case before calling recurse.
16170 if Base_Type (Scope (Discriminant)) = Base_Type (Typ_For_Constraint) then
16171 declare
16172 D : Entity_Id;
16173 E : Elmt_Id;
16175 begin
16176 D := First_Discriminant (Typ_For_Constraint);
16177 E := First_Elmt (Constraint);
16178 while Present (D) loop
16179 if Chars (D) = Chars (Discriminant) then
16180 return Node (E);
16181 end if;
16183 Next_Discriminant (D);
16184 Next_Elmt (E);
16185 end loop;
16186 end;
16187 end if;
16189 Result := Search_Derivation_Levels
16190 (Typ_For_Constraint, Constraint, False);
16192 -- ??? hack to disappear when this routine is gone
16194 if Nkind (Result) = N_Defining_Identifier then
16195 declare
16196 D : Entity_Id;
16197 E : Elmt_Id;
16199 begin
16200 D := First_Discriminant (Typ_For_Constraint);
16201 E := First_Elmt (Constraint);
16202 while Present (D) loop
16203 if Root_Corresponding_Discriminant (D) = Discriminant then
16204 return Node (E);
16205 end if;
16207 Next_Discriminant (D);
16208 Next_Elmt (E);
16209 end loop;
16210 end;
16211 end if;
16213 pragma Assert (Nkind (Result) /= N_Defining_Identifier);
16214 return Result;
16215 end Get_Discriminant_Value;
16217 --------------------------
16218 -- Has_Range_Constraint --
16219 --------------------------
16221 function Has_Range_Constraint (N : Node_Id) return Boolean is
16222 C : constant Node_Id := Constraint (N);
16224 begin
16225 if Nkind (C) = N_Range_Constraint then
16226 return True;
16228 elsif Nkind (C) = N_Digits_Constraint then
16229 return
16230 Is_Decimal_Fixed_Point_Type (Entity (Subtype_Mark (N)))
16231 or else
16232 Present (Range_Constraint (C));
16234 elsif Nkind (C) = N_Delta_Constraint then
16235 return Present (Range_Constraint (C));
16237 else
16238 return False;
16239 end if;
16240 end Has_Range_Constraint;
16242 ------------------------
16243 -- Inherit_Components --
16244 ------------------------
16246 function Inherit_Components
16247 (N : Node_Id;
16248 Parent_Base : Entity_Id;
16249 Derived_Base : Entity_Id;
16250 Is_Tagged : Boolean;
16251 Inherit_Discr : Boolean;
16252 Discs : Elist_Id) return Elist_Id
16254 Assoc_List : constant Elist_Id := New_Elmt_List;
16256 procedure Inherit_Component
16257 (Old_C : Entity_Id;
16258 Plain_Discrim : Boolean := False;
16259 Stored_Discrim : Boolean := False);
16260 -- Inherits component Old_C from Parent_Base to the Derived_Base. If
16261 -- Plain_Discrim is True, Old_C is a discriminant. If Stored_Discrim is
16262 -- True, Old_C is a stored discriminant. If they are both false then
16263 -- Old_C is a regular component.
16265 -----------------------
16266 -- Inherit_Component --
16267 -----------------------
16269 procedure Inherit_Component
16270 (Old_C : Entity_Id;
16271 Plain_Discrim : Boolean := False;
16272 Stored_Discrim : Boolean := False)
16274 procedure Set_Anonymous_Type (Id : Entity_Id);
16275 -- Id denotes the entity of an access discriminant or anonymous
16276 -- access component. Set the type of Id to either the same type of
16277 -- Old_C or create a new one depending on whether the parent and
16278 -- the child types are in the same scope.
16280 ------------------------
16281 -- Set_Anonymous_Type --
16282 ------------------------
16284 procedure Set_Anonymous_Type (Id : Entity_Id) is
16285 Old_Typ : constant Entity_Id := Etype (Old_C);
16287 begin
16288 if Scope (Parent_Base) = Scope (Derived_Base) then
16289 Set_Etype (Id, Old_Typ);
16291 -- The parent and the derived type are in two different scopes.
16292 -- Reuse the type of the original discriminant / component by
16293 -- copying it in order to preserve all attributes.
16295 else
16296 declare
16297 Typ : constant Entity_Id := New_Copy (Old_Typ);
16299 begin
16300 Set_Etype (Id, Typ);
16302 -- Since we do not generate component declarations for
16303 -- inherited components, associate the itype with the
16304 -- derived type.
16306 Set_Associated_Node_For_Itype (Typ, Parent (Derived_Base));
16307 Set_Scope (Typ, Derived_Base);
16308 end;
16309 end if;
16310 end Set_Anonymous_Type;
16312 -- Local variables and constants
16314 New_C : constant Entity_Id := New_Copy (Old_C);
16316 Corr_Discrim : Entity_Id;
16317 Discrim : Entity_Id;
16319 -- Start of processing for Inherit_Component
16321 begin
16322 pragma Assert (not Is_Tagged or else not Stored_Discrim);
16324 Set_Parent (New_C, Parent (Old_C));
16326 -- Regular discriminants and components must be inserted in the scope
16327 -- of the Derived_Base. Do it here.
16329 if not Stored_Discrim then
16330 Enter_Name (New_C);
16331 end if;
16333 -- For tagged types the Original_Record_Component must point to
16334 -- whatever this field was pointing to in the parent type. This has
16335 -- already been achieved by the call to New_Copy above.
16337 if not Is_Tagged then
16338 Set_Original_Record_Component (New_C, New_C);
16339 end if;
16341 -- Set the proper type of an access discriminant
16343 if Ekind (New_C) = E_Discriminant
16344 and then Ekind (Etype (New_C)) = E_Anonymous_Access_Type
16345 then
16346 Set_Anonymous_Type (New_C);
16347 end if;
16349 -- If we have inherited a component then see if its Etype contains
16350 -- references to Parent_Base discriminants. In this case, replace
16351 -- these references with the constraints given in Discs. We do not
16352 -- do this for the partial view of private types because this is
16353 -- not needed (only the components of the full view will be used
16354 -- for code generation) and cause problem. We also avoid this
16355 -- transformation in some error situations.
16357 if Ekind (New_C) = E_Component then
16359 -- Set the proper type of an anonymous access component
16361 if Ekind (Etype (New_C)) = E_Anonymous_Access_Type then
16362 Set_Anonymous_Type (New_C);
16364 elsif (Is_Private_Type (Derived_Base)
16365 and then not Is_Generic_Type (Derived_Base))
16366 or else (Is_Empty_Elmt_List (Discs)
16367 and then not Expander_Active)
16368 then
16369 Set_Etype (New_C, Etype (Old_C));
16371 else
16372 -- The current component introduces a circularity of the
16373 -- following kind:
16375 -- limited with Pack_2;
16376 -- package Pack_1 is
16377 -- type T_1 is tagged record
16378 -- Comp : access Pack_2.T_2;
16379 -- ...
16380 -- end record;
16381 -- end Pack_1;
16383 -- with Pack_1;
16384 -- package Pack_2 is
16385 -- type T_2 is new Pack_1.T_1 with ...;
16386 -- end Pack_2;
16388 Set_Etype
16389 (New_C,
16390 Constrain_Component_Type
16391 (Old_C, Derived_Base, N, Parent_Base, Discs));
16392 end if;
16393 end if;
16395 -- In derived tagged types it is illegal to reference a non
16396 -- discriminant component in the parent type. To catch this, mark
16397 -- these components with an Ekind of E_Void. This will be reset in
16398 -- Record_Type_Definition after processing the record extension of
16399 -- the derived type.
16401 -- If the declaration is a private extension, there is no further
16402 -- record extension to process, and the components retain their
16403 -- current kind, because they are visible at this point.
16405 if Is_Tagged and then Ekind (New_C) = E_Component
16406 and then Nkind (N) /= N_Private_Extension_Declaration
16407 then
16408 Set_Ekind (New_C, E_Void);
16409 end if;
16411 if Plain_Discrim then
16412 Set_Corresponding_Discriminant (New_C, Old_C);
16413 Build_Discriminal (New_C);
16415 -- If we are explicitly inheriting a stored discriminant it will be
16416 -- completely hidden.
16418 elsif Stored_Discrim then
16419 Set_Corresponding_Discriminant (New_C, Empty);
16420 Set_Discriminal (New_C, Empty);
16421 Set_Is_Completely_Hidden (New_C);
16423 -- Set the Original_Record_Component of each discriminant in the
16424 -- derived base to point to the corresponding stored that we just
16425 -- created.
16427 Discrim := First_Discriminant (Derived_Base);
16428 while Present (Discrim) loop
16429 Corr_Discrim := Corresponding_Discriminant (Discrim);
16431 -- Corr_Discrim could be missing in an error situation
16433 if Present (Corr_Discrim)
16434 and then Original_Record_Component (Corr_Discrim) = Old_C
16435 then
16436 Set_Original_Record_Component (Discrim, New_C);
16437 end if;
16439 Next_Discriminant (Discrim);
16440 end loop;
16442 Append_Entity (New_C, Derived_Base);
16443 end if;
16445 if not Is_Tagged then
16446 Append_Elmt (Old_C, Assoc_List);
16447 Append_Elmt (New_C, Assoc_List);
16448 end if;
16449 end Inherit_Component;
16451 -- Variables local to Inherit_Component
16453 Loc : constant Source_Ptr := Sloc (N);
16455 Parent_Discrim : Entity_Id;
16456 Stored_Discrim : Entity_Id;
16457 D : Entity_Id;
16458 Component : Entity_Id;
16460 -- Start of processing for Inherit_Components
16462 begin
16463 if not Is_Tagged then
16464 Append_Elmt (Parent_Base, Assoc_List);
16465 Append_Elmt (Derived_Base, Assoc_List);
16466 end if;
16468 -- Inherit parent discriminants if needed
16470 if Inherit_Discr then
16471 Parent_Discrim := First_Discriminant (Parent_Base);
16472 while Present (Parent_Discrim) loop
16473 Inherit_Component (Parent_Discrim, Plain_Discrim => True);
16474 Next_Discriminant (Parent_Discrim);
16475 end loop;
16476 end if;
16478 -- Create explicit stored discrims for untagged types when necessary
16480 if not Has_Unknown_Discriminants (Derived_Base)
16481 and then Has_Discriminants (Parent_Base)
16482 and then not Is_Tagged
16483 and then
16484 (not Inherit_Discr
16485 or else First_Discriminant (Parent_Base) /=
16486 First_Stored_Discriminant (Parent_Base))
16487 then
16488 Stored_Discrim := First_Stored_Discriminant (Parent_Base);
16489 while Present (Stored_Discrim) loop
16490 Inherit_Component (Stored_Discrim, Stored_Discrim => True);
16491 Next_Stored_Discriminant (Stored_Discrim);
16492 end loop;
16493 end if;
16495 -- See if we can apply the second transformation for derived types, as
16496 -- explained in point 6. in the comments above Build_Derived_Record_Type
16497 -- This is achieved by appending Derived_Base discriminants into Discs,
16498 -- which has the side effect of returning a non empty Discs list to the
16499 -- caller of Inherit_Components, which is what we want. This must be
16500 -- done for private derived types if there are explicit stored
16501 -- discriminants, to ensure that we can retrieve the values of the
16502 -- constraints provided in the ancestors.
16504 if Inherit_Discr
16505 and then Is_Empty_Elmt_List (Discs)
16506 and then Present (First_Discriminant (Derived_Base))
16507 and then
16508 (not Is_Private_Type (Derived_Base)
16509 or else Is_Completely_Hidden
16510 (First_Stored_Discriminant (Derived_Base))
16511 or else Is_Generic_Type (Derived_Base))
16512 then
16513 D := First_Discriminant (Derived_Base);
16514 while Present (D) loop
16515 Append_Elmt (New_Reference_To (D, Loc), Discs);
16516 Next_Discriminant (D);
16517 end loop;
16518 end if;
16520 -- Finally, inherit non-discriminant components unless they are not
16521 -- visible because defined or inherited from the full view of the
16522 -- parent. Don't inherit the _parent field of the parent type.
16524 Component := First_Entity (Parent_Base);
16525 while Present (Component) loop
16527 -- Ada 2005 (AI-251): Do not inherit components associated with
16528 -- secondary tags of the parent.
16530 if Ekind (Component) = E_Component
16531 and then Present (Related_Type (Component))
16532 then
16533 null;
16535 elsif Ekind (Component) /= E_Component
16536 or else Chars (Component) = Name_uParent
16537 then
16538 null;
16540 -- If the derived type is within the parent type's declarative
16541 -- region, then the components can still be inherited even though
16542 -- they aren't visible at this point. This can occur for cases
16543 -- such as within public child units where the components must
16544 -- become visible upon entering the child unit's private part.
16546 elsif not Is_Visible_Component (Component)
16547 and then not In_Open_Scopes (Scope (Parent_Base))
16548 then
16549 null;
16551 elsif Ekind_In (Derived_Base, E_Private_Type,
16552 E_Limited_Private_Type)
16553 then
16554 null;
16556 else
16557 Inherit_Component (Component);
16558 end if;
16560 Next_Entity (Component);
16561 end loop;
16563 -- For tagged derived types, inherited discriminants cannot be used in
16564 -- component declarations of the record extension part. To achieve this
16565 -- we mark the inherited discriminants as not visible.
16567 if Is_Tagged and then Inherit_Discr then
16568 D := First_Discriminant (Derived_Base);
16569 while Present (D) loop
16570 Set_Is_Immediately_Visible (D, False);
16571 Next_Discriminant (D);
16572 end loop;
16573 end if;
16575 return Assoc_List;
16576 end Inherit_Components;
16578 -----------------------
16579 -- Is_Null_Extension --
16580 -----------------------
16582 function Is_Null_Extension (T : Entity_Id) return Boolean is
16583 Type_Decl : constant Node_Id := Parent (Base_Type (T));
16584 Comp_List : Node_Id;
16585 Comp : Node_Id;
16587 begin
16588 if Nkind (Type_Decl) /= N_Full_Type_Declaration
16589 or else not Is_Tagged_Type (T)
16590 or else Nkind (Type_Definition (Type_Decl)) /=
16591 N_Derived_Type_Definition
16592 or else No (Record_Extension_Part (Type_Definition (Type_Decl)))
16593 then
16594 return False;
16595 end if;
16597 Comp_List :=
16598 Component_List (Record_Extension_Part (Type_Definition (Type_Decl)));
16600 if Present (Discriminant_Specifications (Type_Decl)) then
16601 return False;
16603 elsif Present (Comp_List)
16604 and then Is_Non_Empty_List (Component_Items (Comp_List))
16605 then
16606 Comp := First (Component_Items (Comp_List));
16608 -- Only user-defined components are relevant. The component list
16609 -- may also contain a parent component and internal components
16610 -- corresponding to secondary tags, but these do not determine
16611 -- whether this is a null extension.
16613 while Present (Comp) loop
16614 if Comes_From_Source (Comp) then
16615 return False;
16616 end if;
16618 Next (Comp);
16619 end loop;
16621 return True;
16622 else
16623 return True;
16624 end if;
16625 end Is_Null_Extension;
16627 ------------------------------
16628 -- Is_Valid_Constraint_Kind --
16629 ------------------------------
16631 function Is_Valid_Constraint_Kind
16632 (T_Kind : Type_Kind;
16633 Constraint_Kind : Node_Kind) return Boolean
16635 begin
16636 case T_Kind is
16637 when Enumeration_Kind |
16638 Integer_Kind =>
16639 return Constraint_Kind = N_Range_Constraint;
16641 when Decimal_Fixed_Point_Kind =>
16642 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
16643 N_Range_Constraint);
16645 when Ordinary_Fixed_Point_Kind =>
16646 return Nkind_In (Constraint_Kind, N_Delta_Constraint,
16647 N_Range_Constraint);
16649 when Float_Kind =>
16650 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
16651 N_Range_Constraint);
16653 when Access_Kind |
16654 Array_Kind |
16655 E_Record_Type |
16656 E_Record_Subtype |
16657 Class_Wide_Kind |
16658 E_Incomplete_Type |
16659 Private_Kind |
16660 Concurrent_Kind =>
16661 return Constraint_Kind = N_Index_Or_Discriminant_Constraint;
16663 when others =>
16664 return True; -- Error will be detected later
16665 end case;
16666 end Is_Valid_Constraint_Kind;
16668 --------------------------
16669 -- Is_Visible_Component --
16670 --------------------------
16672 function Is_Visible_Component
16673 (C : Entity_Id;
16674 N : Node_Id := Empty) return Boolean
16676 Original_Comp : Entity_Id := Empty;
16677 Original_Scope : Entity_Id;
16678 Type_Scope : Entity_Id;
16680 function Is_Local_Type (Typ : Entity_Id) return Boolean;
16681 -- Check whether parent type of inherited component is declared locally,
16682 -- possibly within a nested package or instance. The current scope is
16683 -- the derived record itself.
16685 -------------------
16686 -- Is_Local_Type --
16687 -------------------
16689 function Is_Local_Type (Typ : Entity_Id) return Boolean is
16690 Scop : Entity_Id;
16692 begin
16693 Scop := Scope (Typ);
16694 while Present (Scop)
16695 and then Scop /= Standard_Standard
16696 loop
16697 if Scop = Scope (Current_Scope) then
16698 return True;
16699 end if;
16701 Scop := Scope (Scop);
16702 end loop;
16704 return False;
16705 end Is_Local_Type;
16707 -- Start of processing for Is_Visible_Component
16709 begin
16710 if Ekind_In (C, E_Component, E_Discriminant) then
16711 Original_Comp := Original_Record_Component (C);
16712 end if;
16714 if No (Original_Comp) then
16716 -- Premature usage, or previous error
16718 return False;
16720 else
16721 Original_Scope := Scope (Original_Comp);
16722 Type_Scope := Scope (Base_Type (Scope (C)));
16723 end if;
16725 -- For an untagged type derived from a private type, the only visible
16726 -- components are new discriminants. In an instance all components are
16727 -- visible (see Analyze_Selected_Component).
16729 if not Is_Tagged_Type (Original_Scope) then
16730 return not Has_Private_Ancestor (Original_Scope)
16731 or else In_Open_Scopes (Scope (Original_Scope))
16732 or else In_Instance
16733 or else (Ekind (Original_Comp) = E_Discriminant
16734 and then Original_Scope = Type_Scope);
16736 -- If it is _Parent or _Tag, there is no visibility issue
16738 elsif not Comes_From_Source (Original_Comp) then
16739 return True;
16741 -- Discriminants are visible unless the (private) type has unknown
16742 -- discriminants. If the discriminant reference is inserted for a
16743 -- discriminant check on a full view it is also visible.
16745 elsif Ekind (Original_Comp) = E_Discriminant
16746 and then
16747 (not Has_Unknown_Discriminants (Original_Scope)
16748 or else (Present (N)
16749 and then Nkind (N) = N_Selected_Component
16750 and then Nkind (Prefix (N)) = N_Type_Conversion
16751 and then not Comes_From_Source (Prefix (N))))
16752 then
16753 return True;
16755 -- In the body of an instantiation, no need to check for the visibility
16756 -- of a component.
16758 elsif In_Instance_Body then
16759 return True;
16761 -- If the component has been declared in an ancestor which is currently
16762 -- a private type, then it is not visible. The same applies if the
16763 -- component's containing type is not in an open scope and the original
16764 -- component's enclosing type is a visible full view of a private type
16765 -- (which can occur in cases where an attempt is being made to reference
16766 -- a component in a sibling package that is inherited from a visible
16767 -- component of a type in an ancestor package; the component in the
16768 -- sibling package should not be visible even though the component it
16769 -- inherited from is visible). This does not apply however in the case
16770 -- where the scope of the type is a private child unit, or when the
16771 -- parent comes from a local package in which the ancestor is currently
16772 -- visible. The latter suppression of visibility is needed for cases
16773 -- that are tested in B730006.
16775 elsif Is_Private_Type (Original_Scope)
16776 or else
16777 (not Is_Private_Descendant (Type_Scope)
16778 and then not In_Open_Scopes (Type_Scope)
16779 and then Has_Private_Declaration (Original_Scope))
16780 then
16781 -- If the type derives from an entity in a formal package, there
16782 -- are no additional visible components.
16784 if Nkind (Original_Node (Unit_Declaration_Node (Type_Scope))) =
16785 N_Formal_Package_Declaration
16786 then
16787 return False;
16789 -- if we are not in the private part of the current package, there
16790 -- are no additional visible components.
16792 elsif Ekind (Scope (Current_Scope)) = E_Package
16793 and then not In_Private_Part (Scope (Current_Scope))
16794 then
16795 return False;
16796 else
16797 return
16798 Is_Child_Unit (Cunit_Entity (Current_Sem_Unit))
16799 and then In_Open_Scopes (Scope (Original_Scope))
16800 and then Is_Local_Type (Type_Scope);
16801 end if;
16803 -- There is another weird way in which a component may be invisible when
16804 -- the private and the full view are not derived from the same ancestor.
16805 -- Here is an example :
16807 -- type A1 is tagged record F1 : integer; end record;
16808 -- type A2 is new A1 with record F2 : integer; end record;
16809 -- type T is new A1 with private;
16810 -- private
16811 -- type T is new A2 with null record;
16813 -- In this case, the full view of T inherits F1 and F2 but the private
16814 -- view inherits only F1
16816 else
16817 declare
16818 Ancestor : Entity_Id := Scope (C);
16820 begin
16821 loop
16822 if Ancestor = Original_Scope then
16823 return True;
16824 elsif Ancestor = Etype (Ancestor) then
16825 return False;
16826 end if;
16828 Ancestor := Etype (Ancestor);
16829 end loop;
16830 end;
16831 end if;
16832 end Is_Visible_Component;
16834 --------------------------
16835 -- Make_Class_Wide_Type --
16836 --------------------------
16838 procedure Make_Class_Wide_Type (T : Entity_Id) is
16839 CW_Type : Entity_Id;
16840 CW_Name : Name_Id;
16841 Next_E : Entity_Id;
16843 begin
16844 if Present (Class_Wide_Type (T)) then
16846 -- The class-wide type is a partially decorated entity created for a
16847 -- unanalyzed tagged type referenced through a limited with clause.
16848 -- When the tagged type is analyzed, its class-wide type needs to be
16849 -- redecorated. Note that we reuse the entity created by Decorate_
16850 -- Tagged_Type in order to preserve all links.
16852 if Materialize_Entity (Class_Wide_Type (T)) then
16853 CW_Type := Class_Wide_Type (T);
16854 Set_Materialize_Entity (CW_Type, False);
16856 -- The class wide type can have been defined by the partial view, in
16857 -- which case everything is already done.
16859 else
16860 return;
16861 end if;
16863 -- Default case, we need to create a new class-wide type
16865 else
16866 CW_Type :=
16867 New_External_Entity (E_Void, Scope (T), Sloc (T), T, 'C', 0, 'T');
16868 end if;
16870 -- Inherit root type characteristics
16872 CW_Name := Chars (CW_Type);
16873 Next_E := Next_Entity (CW_Type);
16874 Copy_Node (T, CW_Type);
16875 Set_Comes_From_Source (CW_Type, False);
16876 Set_Chars (CW_Type, CW_Name);
16877 Set_Parent (CW_Type, Parent (T));
16878 Set_Next_Entity (CW_Type, Next_E);
16880 -- Ensure we have a new freeze node for the class-wide type. The partial
16881 -- view may have freeze action of its own, requiring a proper freeze
16882 -- node, and the same freeze node cannot be shared between the two
16883 -- types.
16885 Set_Has_Delayed_Freeze (CW_Type);
16886 Set_Freeze_Node (CW_Type, Empty);
16888 -- Customize the class-wide type: It has no prim. op., it cannot be
16889 -- abstract and its Etype points back to the specific root type.
16891 Set_Ekind (CW_Type, E_Class_Wide_Type);
16892 Set_Is_Tagged_Type (CW_Type, True);
16893 Set_Direct_Primitive_Operations (CW_Type, New_Elmt_List);
16894 Set_Is_Abstract_Type (CW_Type, False);
16895 Set_Is_Constrained (CW_Type, False);
16896 Set_Is_First_Subtype (CW_Type, Is_First_Subtype (T));
16898 if Ekind (T) = E_Class_Wide_Subtype then
16899 Set_Etype (CW_Type, Etype (Base_Type (T)));
16900 else
16901 Set_Etype (CW_Type, T);
16902 end if;
16904 -- If this is the class_wide type of a constrained subtype, it does
16905 -- not have discriminants.
16907 Set_Has_Discriminants (CW_Type,
16908 Has_Discriminants (T) and then not Is_Constrained (T));
16910 Set_Has_Unknown_Discriminants (CW_Type, True);
16911 Set_Class_Wide_Type (T, CW_Type);
16912 Set_Equivalent_Type (CW_Type, Empty);
16914 -- The class-wide type of a class-wide type is itself (RM 3.9(14))
16916 Set_Class_Wide_Type (CW_Type, CW_Type);
16917 end Make_Class_Wide_Type;
16919 ----------------
16920 -- Make_Index --
16921 ----------------
16923 procedure Make_Index
16924 (I : Node_Id;
16925 Related_Nod : Node_Id;
16926 Related_Id : Entity_Id := Empty;
16927 Suffix_Index : Nat := 1;
16928 In_Iter_Schm : Boolean := False)
16930 R : Node_Id;
16931 T : Entity_Id;
16932 Def_Id : Entity_Id := Empty;
16933 Found : Boolean := False;
16935 begin
16936 -- For a discrete range used in a constrained array definition and
16937 -- defined by a range, an implicit conversion to the predefined type
16938 -- INTEGER is assumed if each bound is either a numeric literal, a named
16939 -- number, or an attribute, and the type of both bounds (prior to the
16940 -- implicit conversion) is the type universal_integer. Otherwise, both
16941 -- bounds must be of the same discrete type, other than universal
16942 -- integer; this type must be determinable independently of the
16943 -- context, but using the fact that the type must be discrete and that
16944 -- both bounds must have the same type.
16946 -- Character literals also have a universal type in the absence of
16947 -- of additional context, and are resolved to Standard_Character.
16949 if Nkind (I) = N_Range then
16951 -- The index is given by a range constraint. The bounds are known
16952 -- to be of a consistent type.
16954 if not Is_Overloaded (I) then
16955 T := Etype (I);
16957 -- For universal bounds, choose the specific predefined type
16959 if T = Universal_Integer then
16960 T := Standard_Integer;
16962 elsif T = Any_Character then
16963 Ambiguous_Character (Low_Bound (I));
16965 T := Standard_Character;
16966 end if;
16968 -- The node may be overloaded because some user-defined operators
16969 -- are available, but if a universal interpretation exists it is
16970 -- also the selected one.
16972 elsif Universal_Interpretation (I) = Universal_Integer then
16973 T := Standard_Integer;
16975 else
16976 T := Any_Type;
16978 declare
16979 Ind : Interp_Index;
16980 It : Interp;
16982 begin
16983 Get_First_Interp (I, Ind, It);
16984 while Present (It.Typ) loop
16985 if Is_Discrete_Type (It.Typ) then
16987 if Found
16988 and then not Covers (It.Typ, T)
16989 and then not Covers (T, It.Typ)
16990 then
16991 Error_Msg_N ("ambiguous bounds in discrete range", I);
16992 exit;
16993 else
16994 T := It.Typ;
16995 Found := True;
16996 end if;
16997 end if;
16999 Get_Next_Interp (Ind, It);
17000 end loop;
17002 if T = Any_Type then
17003 Error_Msg_N ("discrete type required for range", I);
17004 Set_Etype (I, Any_Type);
17005 return;
17007 elsif T = Universal_Integer then
17008 T := Standard_Integer;
17009 end if;
17010 end;
17011 end if;
17013 if not Is_Discrete_Type (T) then
17014 Error_Msg_N ("discrete type required for range", I);
17015 Set_Etype (I, Any_Type);
17016 return;
17017 end if;
17019 if Nkind (Low_Bound (I)) = N_Attribute_Reference
17020 and then Attribute_Name (Low_Bound (I)) = Name_First
17021 and then Is_Entity_Name (Prefix (Low_Bound (I)))
17022 and then Is_Type (Entity (Prefix (Low_Bound (I))))
17023 and then Is_Discrete_Type (Entity (Prefix (Low_Bound (I))))
17024 then
17025 -- The type of the index will be the type of the prefix, as long
17026 -- as the upper bound is 'Last of the same type.
17028 Def_Id := Entity (Prefix (Low_Bound (I)));
17030 if Nkind (High_Bound (I)) /= N_Attribute_Reference
17031 or else Attribute_Name (High_Bound (I)) /= Name_Last
17032 or else not Is_Entity_Name (Prefix (High_Bound (I)))
17033 or else Entity (Prefix (High_Bound (I))) /= Def_Id
17034 then
17035 Def_Id := Empty;
17036 end if;
17037 end if;
17039 R := I;
17040 Process_Range_Expr_In_Decl (R, T, In_Iter_Schm => In_Iter_Schm);
17042 elsif Nkind (I) = N_Subtype_Indication then
17044 -- The index is given by a subtype with a range constraint
17046 T := Base_Type (Entity (Subtype_Mark (I)));
17048 if not Is_Discrete_Type (T) then
17049 Error_Msg_N ("discrete type required for range", I);
17050 Set_Etype (I, Any_Type);
17051 return;
17052 end if;
17054 R := Range_Expression (Constraint (I));
17056 Resolve (R, T);
17057 Process_Range_Expr_In_Decl
17058 (R, Entity (Subtype_Mark (I)), In_Iter_Schm => In_Iter_Schm);
17060 elsif Nkind (I) = N_Attribute_Reference then
17062 -- The parser guarantees that the attribute is a RANGE attribute
17064 -- If the node denotes the range of a type mark, that is also the
17065 -- resulting type, and we do no need to create an Itype for it.
17067 if Is_Entity_Name (Prefix (I))
17068 and then Comes_From_Source (I)
17069 and then Is_Type (Entity (Prefix (I)))
17070 and then Is_Discrete_Type (Entity (Prefix (I)))
17071 then
17072 Def_Id := Entity (Prefix (I));
17073 end if;
17075 Analyze_And_Resolve (I);
17076 T := Etype (I);
17077 R := I;
17079 -- If none of the above, must be a subtype. We convert this to a
17080 -- range attribute reference because in the case of declared first
17081 -- named subtypes, the types in the range reference can be different
17082 -- from the type of the entity. A range attribute normalizes the
17083 -- reference and obtains the correct types for the bounds.
17085 -- This transformation is in the nature of an expansion, is only
17086 -- done if expansion is active. In particular, it is not done on
17087 -- formal generic types, because we need to retain the name of the
17088 -- original index for instantiation purposes.
17090 else
17091 if not Is_Entity_Name (I) or else not Is_Type (Entity (I)) then
17092 Error_Msg_N ("invalid subtype mark in discrete range ", I);
17093 Set_Etype (I, Any_Integer);
17094 return;
17096 else
17097 -- The type mark may be that of an incomplete type. It is only
17098 -- now that we can get the full view, previous analysis does
17099 -- not look specifically for a type mark.
17101 Set_Entity (I, Get_Full_View (Entity (I)));
17102 Set_Etype (I, Entity (I));
17103 Def_Id := Entity (I);
17105 if not Is_Discrete_Type (Def_Id) then
17106 Error_Msg_N ("discrete type required for index", I);
17107 Set_Etype (I, Any_Type);
17108 return;
17109 end if;
17110 end if;
17112 if Expander_Active then
17113 Rewrite (I,
17114 Make_Attribute_Reference (Sloc (I),
17115 Attribute_Name => Name_Range,
17116 Prefix => Relocate_Node (I)));
17118 -- The original was a subtype mark that does not freeze. This
17119 -- means that the rewritten version must not freeze either.
17121 Set_Must_Not_Freeze (I);
17122 Set_Must_Not_Freeze (Prefix (I));
17123 Analyze_And_Resolve (I);
17124 T := Etype (I);
17125 R := I;
17127 -- If expander is inactive, type is legal, nothing else to construct
17129 else
17130 return;
17131 end if;
17132 end if;
17134 if not Is_Discrete_Type (T) then
17135 Error_Msg_N ("discrete type required for range", I);
17136 Set_Etype (I, Any_Type);
17137 return;
17139 elsif T = Any_Type then
17140 Set_Etype (I, Any_Type);
17141 return;
17142 end if;
17144 -- We will now create the appropriate Itype to describe the range, but
17145 -- first a check. If we originally had a subtype, then we just label
17146 -- the range with this subtype. Not only is there no need to construct
17147 -- a new subtype, but it is wrong to do so for two reasons:
17149 -- 1. A legality concern, if we have a subtype, it must not freeze,
17150 -- and the Itype would cause freezing incorrectly
17152 -- 2. An efficiency concern, if we created an Itype, it would not be
17153 -- recognized as the same type for the purposes of eliminating
17154 -- checks in some circumstances.
17156 -- We signal this case by setting the subtype entity in Def_Id
17158 if No (Def_Id) then
17159 Def_Id :=
17160 Create_Itype (E_Void, Related_Nod, Related_Id, 'D', Suffix_Index);
17161 Set_Etype (Def_Id, Base_Type (T));
17163 if Is_Signed_Integer_Type (T) then
17164 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
17166 elsif Is_Modular_Integer_Type (T) then
17167 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
17169 else
17170 Set_Ekind (Def_Id, E_Enumeration_Subtype);
17171 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
17172 Set_First_Literal (Def_Id, First_Literal (T));
17173 end if;
17175 Set_Size_Info (Def_Id, (T));
17176 Set_RM_Size (Def_Id, RM_Size (T));
17177 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
17179 Set_Scalar_Range (Def_Id, R);
17180 Conditional_Delay (Def_Id, T);
17182 -- In the subtype indication case, if the immediate parent of the
17183 -- new subtype is non-static, then the subtype we create is non-
17184 -- static, even if its bounds are static.
17186 if Nkind (I) = N_Subtype_Indication
17187 and then not Is_Static_Subtype (Entity (Subtype_Mark (I)))
17188 then
17189 Set_Is_Non_Static_Subtype (Def_Id);
17190 end if;
17191 end if;
17193 -- Final step is to label the index with this constructed type
17195 Set_Etype (I, Def_Id);
17196 end Make_Index;
17198 ------------------------------
17199 -- Modular_Type_Declaration --
17200 ------------------------------
17202 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id) is
17203 Mod_Expr : constant Node_Id := Expression (Def);
17204 M_Val : Uint;
17206 procedure Set_Modular_Size (Bits : Int);
17207 -- Sets RM_Size to Bits, and Esize to normal word size above this
17209 ----------------------
17210 -- Set_Modular_Size --
17211 ----------------------
17213 procedure Set_Modular_Size (Bits : Int) is
17214 begin
17215 Set_RM_Size (T, UI_From_Int (Bits));
17217 if Bits <= 8 then
17218 Init_Esize (T, 8);
17220 elsif Bits <= 16 then
17221 Init_Esize (T, 16);
17223 elsif Bits <= 32 then
17224 Init_Esize (T, 32);
17226 else
17227 Init_Esize (T, System_Max_Binary_Modulus_Power);
17228 end if;
17230 if not Non_Binary_Modulus (T)
17231 and then Esize (T) = RM_Size (T)
17232 then
17233 Set_Is_Known_Valid (T);
17234 end if;
17235 end Set_Modular_Size;
17237 -- Start of processing for Modular_Type_Declaration
17239 begin
17240 -- If the mod expression is (exactly) 2 * literal, where literal is
17241 -- 64 or less,then almost certainly the * was meant to be **. Warn!
17243 if Warn_On_Suspicious_Modulus_Value
17244 and then Nkind (Mod_Expr) = N_Op_Multiply
17245 and then Nkind (Left_Opnd (Mod_Expr)) = N_Integer_Literal
17246 and then Intval (Left_Opnd (Mod_Expr)) = Uint_2
17247 and then Nkind (Right_Opnd (Mod_Expr)) = N_Integer_Literal
17248 and then Intval (Right_Opnd (Mod_Expr)) <= Uint_64
17249 then
17250 Error_Msg_N
17251 ("suspicious MOD value, was '*'* intended'??M?", Mod_Expr);
17252 end if;
17254 -- Proceed with analysis of mod expression
17256 Analyze_And_Resolve (Mod_Expr, Any_Integer);
17257 Set_Etype (T, T);
17258 Set_Ekind (T, E_Modular_Integer_Type);
17259 Init_Alignment (T);
17260 Set_Is_Constrained (T);
17262 if not Is_OK_Static_Expression (Mod_Expr) then
17263 Flag_Non_Static_Expr
17264 ("non-static expression used for modular type bound!", Mod_Expr);
17265 M_Val := 2 ** System_Max_Binary_Modulus_Power;
17266 else
17267 M_Val := Expr_Value (Mod_Expr);
17268 end if;
17270 if M_Val < 1 then
17271 Error_Msg_N ("modulus value must be positive", Mod_Expr);
17272 M_Val := 2 ** System_Max_Binary_Modulus_Power;
17273 end if;
17275 Set_Modulus (T, M_Val);
17277 -- Create bounds for the modular type based on the modulus given in
17278 -- the type declaration and then analyze and resolve those bounds.
17280 Set_Scalar_Range (T,
17281 Make_Range (Sloc (Mod_Expr),
17282 Low_Bound => Make_Integer_Literal (Sloc (Mod_Expr), 0),
17283 High_Bound => Make_Integer_Literal (Sloc (Mod_Expr), M_Val - 1)));
17285 -- Properly analyze the literals for the range. We do this manually
17286 -- because we can't go calling Resolve, since we are resolving these
17287 -- bounds with the type, and this type is certainly not complete yet!
17289 Set_Etype (Low_Bound (Scalar_Range (T)), T);
17290 Set_Etype (High_Bound (Scalar_Range (T)), T);
17291 Set_Is_Static_Expression (Low_Bound (Scalar_Range (T)));
17292 Set_Is_Static_Expression (High_Bound (Scalar_Range (T)));
17294 -- Loop through powers of two to find number of bits required
17296 for Bits in Int range 0 .. System_Max_Binary_Modulus_Power loop
17298 -- Binary case
17300 if M_Val = 2 ** Bits then
17301 Set_Modular_Size (Bits);
17302 return;
17304 -- Non-binary case
17306 elsif M_Val < 2 ** Bits then
17307 Check_SPARK_Restriction ("modulus should be a power of 2", T);
17308 Set_Non_Binary_Modulus (T);
17310 if Bits > System_Max_Nonbinary_Modulus_Power then
17311 Error_Msg_Uint_1 :=
17312 UI_From_Int (System_Max_Nonbinary_Modulus_Power);
17313 Error_Msg_F
17314 ("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr);
17315 Set_Modular_Size (System_Max_Binary_Modulus_Power);
17316 return;
17318 else
17319 -- In the non-binary case, set size as per RM 13.3(55)
17321 Set_Modular_Size (Bits);
17322 return;
17323 end if;
17324 end if;
17326 end loop;
17328 -- If we fall through, then the size exceed System.Max_Binary_Modulus
17329 -- so we just signal an error and set the maximum size.
17331 Error_Msg_Uint_1 := UI_From_Int (System_Max_Binary_Modulus_Power);
17332 Error_Msg_F ("modulus exceeds limit (2 '*'*^)", Mod_Expr);
17334 Set_Modular_Size (System_Max_Binary_Modulus_Power);
17335 Init_Alignment (T);
17337 end Modular_Type_Declaration;
17339 --------------------------
17340 -- New_Concatenation_Op --
17341 --------------------------
17343 procedure New_Concatenation_Op (Typ : Entity_Id) is
17344 Loc : constant Source_Ptr := Sloc (Typ);
17345 Op : Entity_Id;
17347 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id;
17348 -- Create abbreviated declaration for the formal of a predefined
17349 -- Operator 'Op' of type 'Typ'
17351 --------------------
17352 -- Make_Op_Formal --
17353 --------------------
17355 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id is
17356 Formal : Entity_Id;
17357 begin
17358 Formal := New_Internal_Entity (E_In_Parameter, Op, Loc, 'P');
17359 Set_Etype (Formal, Typ);
17360 Set_Mechanism (Formal, Default_Mechanism);
17361 return Formal;
17362 end Make_Op_Formal;
17364 -- Start of processing for New_Concatenation_Op
17366 begin
17367 Op := Make_Defining_Operator_Symbol (Loc, Name_Op_Concat);
17369 Set_Ekind (Op, E_Operator);
17370 Set_Scope (Op, Current_Scope);
17371 Set_Etype (Op, Typ);
17372 Set_Homonym (Op, Get_Name_Entity_Id (Name_Op_Concat));
17373 Set_Is_Immediately_Visible (Op);
17374 Set_Is_Intrinsic_Subprogram (Op);
17375 Set_Has_Completion (Op);
17376 Append_Entity (Op, Current_Scope);
17378 Set_Name_Entity_Id (Name_Op_Concat, Op);
17380 Append_Entity (Make_Op_Formal (Typ, Op), Op);
17381 Append_Entity (Make_Op_Formal (Typ, Op), Op);
17382 end New_Concatenation_Op;
17384 -------------------------
17385 -- OK_For_Limited_Init --
17386 -------------------------
17388 -- ???Check all calls of this, and compare the conditions under which it's
17389 -- called.
17391 function OK_For_Limited_Init
17392 (Typ : Entity_Id;
17393 Exp : Node_Id) return Boolean
17395 begin
17396 return Is_CPP_Constructor_Call (Exp)
17397 or else (Ada_Version >= Ada_2005
17398 and then not Debug_Flag_Dot_L
17399 and then OK_For_Limited_Init_In_05 (Typ, Exp));
17400 end OK_For_Limited_Init;
17402 -------------------------------
17403 -- OK_For_Limited_Init_In_05 --
17404 -------------------------------
17406 function OK_For_Limited_Init_In_05
17407 (Typ : Entity_Id;
17408 Exp : Node_Id) return Boolean
17410 begin
17411 -- An object of a limited interface type can be initialized with any
17412 -- expression of a nonlimited descendant type.
17414 if Is_Class_Wide_Type (Typ)
17415 and then Is_Limited_Interface (Typ)
17416 and then not Is_Limited_Type (Etype (Exp))
17417 then
17418 return True;
17419 end if;
17421 -- Ada 2005 (AI-287, AI-318): Relax the strictness of the front end in
17422 -- case of limited aggregates (including extension aggregates), and
17423 -- function calls. The function call may have been given in prefixed
17424 -- notation, in which case the original node is an indexed component.
17425 -- If the function is parameterless, the original node was an explicit
17426 -- dereference. The function may also be parameterless, in which case
17427 -- the source node is just an identifier.
17429 case Nkind (Original_Node (Exp)) is
17430 when N_Aggregate | N_Extension_Aggregate | N_Function_Call | N_Op =>
17431 return True;
17433 when N_Identifier =>
17434 return Present (Entity (Original_Node (Exp)))
17435 and then Ekind (Entity (Original_Node (Exp))) = E_Function;
17437 when N_Qualified_Expression =>
17438 return
17439 OK_For_Limited_Init_In_05
17440 (Typ, Expression (Original_Node (Exp)));
17442 -- Ada 2005 (AI-251): If a class-wide interface object is initialized
17443 -- with a function call, the expander has rewritten the call into an
17444 -- N_Type_Conversion node to force displacement of the pointer to
17445 -- reference the component containing the secondary dispatch table.
17446 -- Otherwise a type conversion is not a legal context.
17447 -- A return statement for a build-in-place function returning a
17448 -- synchronized type also introduces an unchecked conversion.
17450 when N_Type_Conversion |
17451 N_Unchecked_Type_Conversion =>
17452 return not Comes_From_Source (Exp)
17453 and then
17454 OK_For_Limited_Init_In_05
17455 (Typ, Expression (Original_Node (Exp)));
17457 when N_Indexed_Component |
17458 N_Selected_Component |
17459 N_Explicit_Dereference =>
17460 return Nkind (Exp) = N_Function_Call;
17462 -- A use of 'Input is a function call, hence allowed. Normally the
17463 -- attribute will be changed to a call, but the attribute by itself
17464 -- can occur with -gnatc.
17466 when N_Attribute_Reference =>
17467 return Attribute_Name (Original_Node (Exp)) = Name_Input;
17469 -- For a case expression, all dependent expressions must be legal
17471 when N_Case_Expression =>
17472 declare
17473 Alt : Node_Id;
17475 begin
17476 Alt := First (Alternatives (Original_Node (Exp)));
17477 while Present (Alt) loop
17478 if not OK_For_Limited_Init_In_05 (Typ, Expression (Alt)) then
17479 return False;
17480 end if;
17482 Next (Alt);
17483 end loop;
17485 return True;
17486 end;
17488 -- For an if expression, all dependent expressions must be legal
17490 when N_If_Expression =>
17491 declare
17492 Then_Expr : constant Node_Id :=
17493 Next (First (Expressions (Original_Node (Exp))));
17494 Else_Expr : constant Node_Id := Next (Then_Expr);
17495 begin
17496 return OK_For_Limited_Init_In_05 (Typ, Then_Expr)
17497 and then
17498 OK_For_Limited_Init_In_05 (Typ, Else_Expr);
17499 end;
17501 when others =>
17502 return False;
17503 end case;
17504 end OK_For_Limited_Init_In_05;
17506 -------------------------------------------
17507 -- Ordinary_Fixed_Point_Type_Declaration --
17508 -------------------------------------------
17510 procedure Ordinary_Fixed_Point_Type_Declaration
17511 (T : Entity_Id;
17512 Def : Node_Id)
17514 Loc : constant Source_Ptr := Sloc (Def);
17515 Delta_Expr : constant Node_Id := Delta_Expression (Def);
17516 RRS : constant Node_Id := Real_Range_Specification (Def);
17517 Implicit_Base : Entity_Id;
17518 Delta_Val : Ureal;
17519 Small_Val : Ureal;
17520 Low_Val : Ureal;
17521 High_Val : Ureal;
17523 begin
17524 Check_Restriction (No_Fixed_Point, Def);
17526 -- Create implicit base type
17528 Implicit_Base :=
17529 Create_Itype (E_Ordinary_Fixed_Point_Type, Parent (Def), T, 'B');
17530 Set_Etype (Implicit_Base, Implicit_Base);
17532 -- Analyze and process delta expression
17534 Analyze_And_Resolve (Delta_Expr, Any_Real);
17536 Check_Delta_Expression (Delta_Expr);
17537 Delta_Val := Expr_Value_R (Delta_Expr);
17539 Set_Delta_Value (Implicit_Base, Delta_Val);
17541 -- Compute default small from given delta, which is the largest power
17542 -- of two that does not exceed the given delta value.
17544 declare
17545 Tmp : Ureal;
17546 Scale : Int;
17548 begin
17549 Tmp := Ureal_1;
17550 Scale := 0;
17552 if Delta_Val < Ureal_1 then
17553 while Delta_Val < Tmp loop
17554 Tmp := Tmp / Ureal_2;
17555 Scale := Scale + 1;
17556 end loop;
17558 else
17559 loop
17560 Tmp := Tmp * Ureal_2;
17561 exit when Tmp > Delta_Val;
17562 Scale := Scale - 1;
17563 end loop;
17564 end if;
17566 Small_Val := UR_From_Components (Uint_1, UI_From_Int (Scale), 2);
17567 end;
17569 Set_Small_Value (Implicit_Base, Small_Val);
17571 -- If no range was given, set a dummy range
17573 if RRS <= Empty_Or_Error then
17574 Low_Val := -Small_Val;
17575 High_Val := Small_Val;
17577 -- Otherwise analyze and process given range
17579 else
17580 declare
17581 Low : constant Node_Id := Low_Bound (RRS);
17582 High : constant Node_Id := High_Bound (RRS);
17584 begin
17585 Analyze_And_Resolve (Low, Any_Real);
17586 Analyze_And_Resolve (High, Any_Real);
17587 Check_Real_Bound (Low);
17588 Check_Real_Bound (High);
17590 -- Obtain and set the range
17592 Low_Val := Expr_Value_R (Low);
17593 High_Val := Expr_Value_R (High);
17595 if Low_Val > High_Val then
17596 Error_Msg_NE ("??fixed point type& has null range", Def, T);
17597 end if;
17598 end;
17599 end if;
17601 -- The range for both the implicit base and the declared first subtype
17602 -- cannot be set yet, so we use the special routine Set_Fixed_Range to
17603 -- set a temporary range in place. Note that the bounds of the base
17604 -- type will be widened to be symmetrical and to fill the available
17605 -- bits when the type is frozen.
17607 -- We could do this with all discrete types, and probably should, but
17608 -- we absolutely have to do it for fixed-point, since the end-points
17609 -- of the range and the size are determined by the small value, which
17610 -- could be reset before the freeze point.
17612 Set_Fixed_Range (Implicit_Base, Loc, Low_Val, High_Val);
17613 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
17615 -- Complete definition of first subtype
17617 Set_Ekind (T, E_Ordinary_Fixed_Point_Subtype);
17618 Set_Etype (T, Implicit_Base);
17619 Init_Size_Align (T);
17620 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
17621 Set_Small_Value (T, Small_Val);
17622 Set_Delta_Value (T, Delta_Val);
17623 Set_Is_Constrained (T);
17625 end Ordinary_Fixed_Point_Type_Declaration;
17627 ----------------------------------------
17628 -- Prepare_Private_Subtype_Completion --
17629 ----------------------------------------
17631 procedure Prepare_Private_Subtype_Completion
17632 (Id : Entity_Id;
17633 Related_Nod : Node_Id)
17635 Id_B : constant Entity_Id := Base_Type (Id);
17636 Full_B : constant Entity_Id := Full_View (Id_B);
17637 Full : Entity_Id;
17639 begin
17640 if Present (Full_B) then
17642 -- The Base_Type is already completed, we can complete the subtype
17643 -- now. We have to create a new entity with the same name, Thus we
17644 -- can't use Create_Itype.
17646 Full := Make_Defining_Identifier (Sloc (Id), Chars (Id));
17647 Set_Is_Itype (Full);
17648 Set_Associated_Node_For_Itype (Full, Related_Nod);
17649 Complete_Private_Subtype (Id, Full, Full_B, Related_Nod);
17650 end if;
17652 -- The parent subtype may be private, but the base might not, in some
17653 -- nested instances. In that case, the subtype does not need to be
17654 -- exchanged. It would still be nice to make private subtypes and their
17655 -- bases consistent at all times ???
17657 if Is_Private_Type (Id_B) then
17658 Append_Elmt (Id, Private_Dependents (Id_B));
17659 end if;
17660 end Prepare_Private_Subtype_Completion;
17662 ---------------------------
17663 -- Process_Discriminants --
17664 ---------------------------
17666 procedure Process_Discriminants
17667 (N : Node_Id;
17668 Prev : Entity_Id := Empty)
17670 Elist : constant Elist_Id := New_Elmt_List;
17671 Id : Node_Id;
17672 Discr : Node_Id;
17673 Discr_Number : Uint;
17674 Discr_Type : Entity_Id;
17675 Default_Present : Boolean := False;
17676 Default_Not_Present : Boolean := False;
17678 begin
17679 -- A composite type other than an array type can have discriminants.
17680 -- On entry, the current scope is the composite type.
17682 -- The discriminants are initially entered into the scope of the type
17683 -- via Enter_Name with the default Ekind of E_Void to prevent premature
17684 -- use, as explained at the end of this procedure.
17686 Discr := First (Discriminant_Specifications (N));
17687 while Present (Discr) loop
17688 Enter_Name (Defining_Identifier (Discr));
17690 -- For navigation purposes we add a reference to the discriminant
17691 -- in the entity for the type. If the current declaration is a
17692 -- completion, place references on the partial view. Otherwise the
17693 -- type is the current scope.
17695 if Present (Prev) then
17697 -- The references go on the partial view, if present. If the
17698 -- partial view has discriminants, the references have been
17699 -- generated already.
17701 if not Has_Discriminants (Prev) then
17702 Generate_Reference (Prev, Defining_Identifier (Discr), 'd');
17703 end if;
17704 else
17705 Generate_Reference
17706 (Current_Scope, Defining_Identifier (Discr), 'd');
17707 end if;
17709 if Nkind (Discriminant_Type (Discr)) = N_Access_Definition then
17710 Discr_Type := Access_Definition (Discr, Discriminant_Type (Discr));
17712 -- Ada 2005 (AI-254)
17714 if Present (Access_To_Subprogram_Definition
17715 (Discriminant_Type (Discr)))
17716 and then Protected_Present (Access_To_Subprogram_Definition
17717 (Discriminant_Type (Discr)))
17718 then
17719 Discr_Type :=
17720 Replace_Anonymous_Access_To_Protected_Subprogram (Discr);
17721 end if;
17723 else
17724 Find_Type (Discriminant_Type (Discr));
17725 Discr_Type := Etype (Discriminant_Type (Discr));
17727 if Error_Posted (Discriminant_Type (Discr)) then
17728 Discr_Type := Any_Type;
17729 end if;
17730 end if;
17732 if Is_Access_Type (Discr_Type) then
17734 -- Ada 2005 (AI-230): Access discriminant allowed in non-limited
17735 -- record types
17737 if Ada_Version < Ada_2005 then
17738 Check_Access_Discriminant_Requires_Limited
17739 (Discr, Discriminant_Type (Discr));
17740 end if;
17742 if Ada_Version = Ada_83 and then Comes_From_Source (Discr) then
17743 Error_Msg_N
17744 ("(Ada 83) access discriminant not allowed", Discr);
17745 end if;
17747 elsif not Is_Discrete_Type (Discr_Type) then
17748 Error_Msg_N ("discriminants must have a discrete or access type",
17749 Discriminant_Type (Discr));
17750 end if;
17752 Set_Etype (Defining_Identifier (Discr), Discr_Type);
17754 -- If a discriminant specification includes the assignment compound
17755 -- delimiter followed by an expression, the expression is the default
17756 -- expression of the discriminant; the default expression must be of
17757 -- the type of the discriminant. (RM 3.7.1) Since this expression is
17758 -- a default expression, we do the special preanalysis, since this
17759 -- expression does not freeze (see "Handling of Default and Per-
17760 -- Object Expressions" in spec of package Sem).
17762 if Present (Expression (Discr)) then
17763 Preanalyze_Spec_Expression (Expression (Discr), Discr_Type);
17765 if Nkind (N) = N_Formal_Type_Declaration then
17766 Error_Msg_N
17767 ("discriminant defaults not allowed for formal type",
17768 Expression (Discr));
17770 -- Flag an error for a tagged type with defaulted discriminants,
17771 -- excluding limited tagged types when compiling for Ada 2012
17772 -- (see AI05-0214).
17774 elsif Is_Tagged_Type (Current_Scope)
17775 and then (not Is_Limited_Type (Current_Scope)
17776 or else Ada_Version < Ada_2012)
17777 and then Comes_From_Source (N)
17778 then
17779 -- Note: see similar test in Check_Or_Process_Discriminants, to
17780 -- handle the (illegal) case of the completion of an untagged
17781 -- view with discriminants with defaults by a tagged full view.
17782 -- We skip the check if Discr does not come from source, to
17783 -- account for the case of an untagged derived type providing
17784 -- defaults for a renamed discriminant from a private untagged
17785 -- ancestor with a tagged full view (ACATS B460006).
17787 if Ada_Version >= Ada_2012 then
17788 Error_Msg_N
17789 ("discriminants of nonlimited tagged type cannot have"
17790 & " defaults",
17791 Expression (Discr));
17792 else
17793 Error_Msg_N
17794 ("discriminants of tagged type cannot have defaults",
17795 Expression (Discr));
17796 end if;
17798 else
17799 Default_Present := True;
17800 Append_Elmt (Expression (Discr), Elist);
17802 -- Tag the defining identifiers for the discriminants with
17803 -- their corresponding default expressions from the tree.
17805 Set_Discriminant_Default_Value
17806 (Defining_Identifier (Discr), Expression (Discr));
17807 end if;
17809 else
17810 Default_Not_Present := True;
17811 end if;
17813 -- Ada 2005 (AI-231): Create an Itype that is a duplicate of
17814 -- Discr_Type but with the null-exclusion attribute
17816 if Ada_Version >= Ada_2005 then
17818 -- Ada 2005 (AI-231): Static checks
17820 if Can_Never_Be_Null (Discr_Type) then
17821 Null_Exclusion_Static_Checks (Discr);
17823 elsif Is_Access_Type (Discr_Type)
17824 and then Null_Exclusion_Present (Discr)
17826 -- No need to check itypes because in their case this check
17827 -- was done at their point of creation
17829 and then not Is_Itype (Discr_Type)
17830 then
17831 if Can_Never_Be_Null (Discr_Type) then
17832 Error_Msg_NE
17833 ("`NOT NULL` not allowed (& already excludes null)",
17834 Discr,
17835 Discr_Type);
17836 end if;
17838 Set_Etype (Defining_Identifier (Discr),
17839 Create_Null_Excluding_Itype
17840 (T => Discr_Type,
17841 Related_Nod => Discr));
17843 -- Check for improper null exclusion if the type is otherwise
17844 -- legal for a discriminant.
17846 elsif Null_Exclusion_Present (Discr)
17847 and then Is_Discrete_Type (Discr_Type)
17848 then
17849 Error_Msg_N
17850 ("null exclusion can only apply to an access type", Discr);
17851 end if;
17853 -- Ada 2005 (AI-402): access discriminants of nonlimited types
17854 -- can't have defaults. Synchronized types, or types that are
17855 -- explicitly limited are fine, but special tests apply to derived
17856 -- types in generics: in a generic body we have to assume the
17857 -- worst, and therefore defaults are not allowed if the parent is
17858 -- a generic formal private type (see ACATS B370001).
17860 if Is_Access_Type (Discr_Type) and then Default_Present then
17861 if Ekind (Discr_Type) /= E_Anonymous_Access_Type
17862 or else Is_Limited_Record (Current_Scope)
17863 or else Is_Concurrent_Type (Current_Scope)
17864 or else Is_Concurrent_Record_Type (Current_Scope)
17865 or else Ekind (Current_Scope) = E_Limited_Private_Type
17866 then
17867 if not Is_Derived_Type (Current_Scope)
17868 or else not Is_Generic_Type (Etype (Current_Scope))
17869 or else not In_Package_Body (Scope (Etype (Current_Scope)))
17870 or else Limited_Present
17871 (Type_Definition (Parent (Current_Scope)))
17872 then
17873 null;
17875 else
17876 Error_Msg_N ("access discriminants of nonlimited types",
17877 Expression (Discr));
17878 Error_Msg_N ("\cannot have defaults", Expression (Discr));
17879 end if;
17881 elsif Present (Expression (Discr)) then
17882 Error_Msg_N
17883 ("(Ada 2005) access discriminants of nonlimited types",
17884 Expression (Discr));
17885 Error_Msg_N ("\cannot have defaults", Expression (Discr));
17886 end if;
17887 end if;
17888 end if;
17890 Next (Discr);
17891 end loop;
17893 -- An element list consisting of the default expressions of the
17894 -- discriminants is constructed in the above loop and used to set
17895 -- the Discriminant_Constraint attribute for the type. If an object
17896 -- is declared of this (record or task) type without any explicit
17897 -- discriminant constraint given, this element list will form the
17898 -- actual parameters for the corresponding initialization procedure
17899 -- for the type.
17901 Set_Discriminant_Constraint (Current_Scope, Elist);
17902 Set_Stored_Constraint (Current_Scope, No_Elist);
17904 -- Default expressions must be provided either for all or for none
17905 -- of the discriminants of a discriminant part. (RM 3.7.1)
17907 if Default_Present and then Default_Not_Present then
17908 Error_Msg_N
17909 ("incomplete specification of defaults for discriminants", N);
17910 end if;
17912 -- The use of the name of a discriminant is not allowed in default
17913 -- expressions of a discriminant part if the specification of the
17914 -- discriminant is itself given in the discriminant part. (RM 3.7.1)
17916 -- To detect this, the discriminant names are entered initially with an
17917 -- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any
17918 -- attempt to use a void entity (for example in an expression that is
17919 -- type-checked) produces the error message: premature usage. Now after
17920 -- completing the semantic analysis of the discriminant part, we can set
17921 -- the Ekind of all the discriminants appropriately.
17923 Discr := First (Discriminant_Specifications (N));
17924 Discr_Number := Uint_1;
17925 while Present (Discr) loop
17926 Id := Defining_Identifier (Discr);
17927 Set_Ekind (Id, E_Discriminant);
17928 Init_Component_Location (Id);
17929 Init_Esize (Id);
17930 Set_Discriminant_Number (Id, Discr_Number);
17932 -- Make sure this is always set, even in illegal programs
17934 Set_Corresponding_Discriminant (Id, Empty);
17936 -- Initialize the Original_Record_Component to the entity itself.
17937 -- Inherit_Components will propagate the right value to
17938 -- discriminants in derived record types.
17940 Set_Original_Record_Component (Id, Id);
17942 -- Create the discriminal for the discriminant
17944 Build_Discriminal (Id);
17946 Next (Discr);
17947 Discr_Number := Discr_Number + 1;
17948 end loop;
17950 Set_Has_Discriminants (Current_Scope);
17951 end Process_Discriminants;
17953 -----------------------
17954 -- Process_Full_View --
17955 -----------------------
17957 procedure Process_Full_View (N : Node_Id; Full_T, Priv_T : Entity_Id) is
17958 Priv_Parent : Entity_Id;
17959 Full_Parent : Entity_Id;
17960 Full_Indic : Node_Id;
17962 procedure Collect_Implemented_Interfaces
17963 (Typ : Entity_Id;
17964 Ifaces : Elist_Id);
17965 -- Ada 2005: Gather all the interfaces that Typ directly or
17966 -- inherently implements. Duplicate entries are not added to
17967 -- the list Ifaces.
17969 ------------------------------------
17970 -- Collect_Implemented_Interfaces --
17971 ------------------------------------
17973 procedure Collect_Implemented_Interfaces
17974 (Typ : Entity_Id;
17975 Ifaces : Elist_Id)
17977 Iface : Entity_Id;
17978 Iface_Elmt : Elmt_Id;
17980 begin
17981 -- Abstract interfaces are only associated with tagged record types
17983 if not Is_Tagged_Type (Typ)
17984 or else not Is_Record_Type (Typ)
17985 then
17986 return;
17987 end if;
17989 -- Recursively climb to the ancestors
17991 if Etype (Typ) /= Typ
17993 -- Protect the frontend against wrong cyclic declarations like:
17995 -- type B is new A with private;
17996 -- type C is new A with private;
17997 -- private
17998 -- type B is new C with null record;
17999 -- type C is new B with null record;
18001 and then Etype (Typ) /= Priv_T
18002 and then Etype (Typ) /= Full_T
18003 then
18004 -- Keep separate the management of private type declarations
18006 if Ekind (Typ) = E_Record_Type_With_Private then
18008 -- Handle the following erroneous case:
18009 -- type Private_Type is tagged private;
18010 -- private
18011 -- type Private_Type is new Type_Implementing_Iface;
18013 if Present (Full_View (Typ))
18014 and then Etype (Typ) /= Full_View (Typ)
18015 then
18016 if Is_Interface (Etype (Typ)) then
18017 Append_Unique_Elmt (Etype (Typ), Ifaces);
18018 end if;
18020 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
18021 end if;
18023 -- Non-private types
18025 else
18026 if Is_Interface (Etype (Typ)) then
18027 Append_Unique_Elmt (Etype (Typ), Ifaces);
18028 end if;
18030 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
18031 end if;
18032 end if;
18034 -- Handle entities in the list of abstract interfaces
18036 if Present (Interfaces (Typ)) then
18037 Iface_Elmt := First_Elmt (Interfaces (Typ));
18038 while Present (Iface_Elmt) loop
18039 Iface := Node (Iface_Elmt);
18041 pragma Assert (Is_Interface (Iface));
18043 if not Contain_Interface (Iface, Ifaces) then
18044 Append_Elmt (Iface, Ifaces);
18045 Collect_Implemented_Interfaces (Iface, Ifaces);
18046 end if;
18048 Next_Elmt (Iface_Elmt);
18049 end loop;
18050 end if;
18051 end Collect_Implemented_Interfaces;
18053 -- Start of processing for Process_Full_View
18055 begin
18056 -- First some sanity checks that must be done after semantic
18057 -- decoration of the full view and thus cannot be placed with other
18058 -- similar checks in Find_Type_Name
18060 if not Is_Limited_Type (Priv_T)
18061 and then (Is_Limited_Type (Full_T)
18062 or else Is_Limited_Composite (Full_T))
18063 then
18064 if In_Instance then
18065 null;
18066 else
18067 Error_Msg_N
18068 ("completion of nonlimited type cannot be limited", Full_T);
18069 Explain_Limited_Type (Full_T, Full_T);
18070 end if;
18072 elsif Is_Abstract_Type (Full_T)
18073 and then not Is_Abstract_Type (Priv_T)
18074 then
18075 Error_Msg_N
18076 ("completion of nonabstract type cannot be abstract", Full_T);
18078 elsif Is_Tagged_Type (Priv_T)
18079 and then Is_Limited_Type (Priv_T)
18080 and then not Is_Limited_Type (Full_T)
18081 then
18082 -- If pragma CPP_Class was applied to the private declaration
18083 -- propagate the limitedness to the full-view
18085 if Is_CPP_Class (Priv_T) then
18086 Set_Is_Limited_Record (Full_T);
18088 -- GNAT allow its own definition of Limited_Controlled to disobey
18089 -- this rule in order in ease the implementation. This test is safe
18090 -- because Root_Controlled is defined in a child of System that
18091 -- normal programs are not supposed to use.
18093 elsif Is_RTE (Etype (Full_T), RE_Root_Controlled) then
18094 Set_Is_Limited_Composite (Full_T);
18095 else
18096 Error_Msg_N
18097 ("completion of limited tagged type must be limited", Full_T);
18098 end if;
18100 elsif Is_Generic_Type (Priv_T) then
18101 Error_Msg_N ("generic type cannot have a completion", Full_T);
18102 end if;
18104 -- Check that ancestor interfaces of private and full views are
18105 -- consistent. We omit this check for synchronized types because
18106 -- they are performed on the corresponding record type when frozen.
18108 if Ada_Version >= Ada_2005
18109 and then Is_Tagged_Type (Priv_T)
18110 and then Is_Tagged_Type (Full_T)
18111 and then not Is_Concurrent_Type (Full_T)
18112 then
18113 declare
18114 Iface : Entity_Id;
18115 Priv_T_Ifaces : constant Elist_Id := New_Elmt_List;
18116 Full_T_Ifaces : constant Elist_Id := New_Elmt_List;
18118 begin
18119 Collect_Implemented_Interfaces (Priv_T, Priv_T_Ifaces);
18120 Collect_Implemented_Interfaces (Full_T, Full_T_Ifaces);
18122 -- Ada 2005 (AI-251): The partial view shall be a descendant of
18123 -- an interface type if and only if the full type is descendant
18124 -- of the interface type (AARM 7.3 (7.3/2)).
18126 Iface := Find_Hidden_Interface (Priv_T_Ifaces, Full_T_Ifaces);
18128 if Present (Iface) then
18129 Error_Msg_NE
18130 ("interface & not implemented by full type " &
18131 "(RM-2005 7.3 (7.3/2))", Priv_T, Iface);
18132 end if;
18134 Iface := Find_Hidden_Interface (Full_T_Ifaces, Priv_T_Ifaces);
18136 if Present (Iface) then
18137 Error_Msg_NE
18138 ("interface & not implemented by partial view " &
18139 "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
18140 end if;
18141 end;
18142 end if;
18144 if Is_Tagged_Type (Priv_T)
18145 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
18146 and then Is_Derived_Type (Full_T)
18147 then
18148 Priv_Parent := Etype (Priv_T);
18150 -- The full view of a private extension may have been transformed
18151 -- into an unconstrained derived type declaration and a subtype
18152 -- declaration (see build_derived_record_type for details).
18154 if Nkind (N) = N_Subtype_Declaration then
18155 Full_Indic := Subtype_Indication (N);
18156 Full_Parent := Etype (Base_Type (Full_T));
18157 else
18158 Full_Indic := Subtype_Indication (Type_Definition (N));
18159 Full_Parent := Etype (Full_T);
18160 end if;
18162 -- Check that the parent type of the full type is a descendant of
18163 -- the ancestor subtype given in the private extension. If either
18164 -- entity has an Etype equal to Any_Type then we had some previous
18165 -- error situation [7.3(8)].
18167 if Priv_Parent = Any_Type or else Full_Parent = Any_Type then
18168 return;
18170 -- Ada 2005 (AI-251): Interfaces in the full-typ can be given in
18171 -- any order. Therefore we don't have to check that its parent must
18172 -- be a descendant of the parent of the private type declaration.
18174 elsif Is_Interface (Priv_Parent)
18175 and then Is_Interface (Full_Parent)
18176 then
18177 null;
18179 -- Ada 2005 (AI-251): If the parent of the private type declaration
18180 -- is an interface there is no need to check that it is an ancestor
18181 -- of the associated full type declaration. The required tests for
18182 -- this case are performed by Build_Derived_Record_Type.
18184 elsif not Is_Interface (Base_Type (Priv_Parent))
18185 and then not Is_Ancestor (Base_Type (Priv_Parent), Full_Parent)
18186 then
18187 Error_Msg_N
18188 ("parent of full type must descend from parent"
18189 & " of private extension", Full_Indic);
18191 -- First check a formal restriction, and then proceed with checking
18192 -- Ada rules. Since the formal restriction is not a serious error, we
18193 -- don't prevent further error detection for this check, hence the
18194 -- ELSE.
18196 else
18198 -- In formal mode, when completing a private extension the type
18199 -- named in the private part must be exactly the same as that
18200 -- named in the visible part.
18202 if Priv_Parent /= Full_Parent then
18203 Error_Msg_Name_1 := Chars (Priv_Parent);
18204 Check_SPARK_Restriction ("% expected", Full_Indic);
18205 end if;
18207 -- Check the rules of 7.3(10): if the private extension inherits
18208 -- known discriminants, then the full type must also inherit those
18209 -- discriminants from the same (ancestor) type, and the parent
18210 -- subtype of the full type must be constrained if and only if
18211 -- the ancestor subtype of the private extension is constrained.
18213 if No (Discriminant_Specifications (Parent (Priv_T)))
18214 and then not Has_Unknown_Discriminants (Priv_T)
18215 and then Has_Discriminants (Base_Type (Priv_Parent))
18216 then
18217 declare
18218 Priv_Indic : constant Node_Id :=
18219 Subtype_Indication (Parent (Priv_T));
18221 Priv_Constr : constant Boolean :=
18222 Is_Constrained (Priv_Parent)
18223 or else
18224 Nkind (Priv_Indic) = N_Subtype_Indication
18225 or else
18226 Is_Constrained (Entity (Priv_Indic));
18228 Full_Constr : constant Boolean :=
18229 Is_Constrained (Full_Parent)
18230 or else
18231 Nkind (Full_Indic) = N_Subtype_Indication
18232 or else
18233 Is_Constrained (Entity (Full_Indic));
18235 Priv_Discr : Entity_Id;
18236 Full_Discr : Entity_Id;
18238 begin
18239 Priv_Discr := First_Discriminant (Priv_Parent);
18240 Full_Discr := First_Discriminant (Full_Parent);
18241 while Present (Priv_Discr) and then Present (Full_Discr) loop
18242 if Original_Record_Component (Priv_Discr) =
18243 Original_Record_Component (Full_Discr)
18244 or else
18245 Corresponding_Discriminant (Priv_Discr) =
18246 Corresponding_Discriminant (Full_Discr)
18247 then
18248 null;
18249 else
18250 exit;
18251 end if;
18253 Next_Discriminant (Priv_Discr);
18254 Next_Discriminant (Full_Discr);
18255 end loop;
18257 if Present (Priv_Discr) or else Present (Full_Discr) then
18258 Error_Msg_N
18259 ("full view must inherit discriminants of the parent"
18260 & " type used in the private extension", Full_Indic);
18262 elsif Priv_Constr and then not Full_Constr then
18263 Error_Msg_N
18264 ("parent subtype of full type must be constrained",
18265 Full_Indic);
18267 elsif Full_Constr and then not Priv_Constr then
18268 Error_Msg_N
18269 ("parent subtype of full type must be unconstrained",
18270 Full_Indic);
18271 end if;
18272 end;
18274 -- Check the rules of 7.3(12): if a partial view has neither
18275 -- known or unknown discriminants, then the full type
18276 -- declaration shall define a definite subtype.
18278 elsif not Has_Unknown_Discriminants (Priv_T)
18279 and then not Has_Discriminants (Priv_T)
18280 and then not Is_Constrained (Full_T)
18281 then
18282 Error_Msg_N
18283 ("full view must define a constrained type if partial view"
18284 & " has no discriminants", Full_T);
18285 end if;
18287 -- ??????? Do we implement the following properly ?????
18288 -- If the ancestor subtype of a private extension has constrained
18289 -- discriminants, then the parent subtype of the full view shall
18290 -- impose a statically matching constraint on those discriminants
18291 -- [7.3(13)].
18292 end if;
18294 else
18295 -- For untagged types, verify that a type without discriminants
18296 -- is not completed with an unconstrained type.
18298 if not Is_Indefinite_Subtype (Priv_T)
18299 and then Is_Indefinite_Subtype (Full_T)
18300 then
18301 Error_Msg_N ("full view of type must be definite subtype", Full_T);
18302 end if;
18303 end if;
18305 -- AI-419: verify that the use of "limited" is consistent
18307 declare
18308 Orig_Decl : constant Node_Id := Original_Node (N);
18310 begin
18311 if Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
18312 and then not Limited_Present (Parent (Priv_T))
18313 and then not Synchronized_Present (Parent (Priv_T))
18314 and then Nkind (Orig_Decl) = N_Full_Type_Declaration
18315 and then Nkind
18316 (Type_Definition (Orig_Decl)) = N_Derived_Type_Definition
18317 and then Limited_Present (Type_Definition (Orig_Decl))
18318 then
18319 Error_Msg_N
18320 ("full view of non-limited extension cannot be limited", N);
18321 end if;
18322 end;
18324 -- Ada 2005 (AI-443): A synchronized private extension must be
18325 -- completed by a task or protected type.
18327 if Ada_Version >= Ada_2005
18328 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
18329 and then Synchronized_Present (Parent (Priv_T))
18330 and then not Is_Concurrent_Type (Full_T)
18331 then
18332 Error_Msg_N ("full view of synchronized extension must " &
18333 "be synchronized type", N);
18334 end if;
18336 -- Ada 2005 AI-363: if the full view has discriminants with
18337 -- defaults, it is illegal to declare constrained access subtypes
18338 -- whose designated type is the current type. This allows objects
18339 -- of the type that are declared in the heap to be unconstrained.
18341 if not Has_Unknown_Discriminants (Priv_T)
18342 and then not Has_Discriminants (Priv_T)
18343 and then Has_Discriminants (Full_T)
18344 and then
18345 Present (Discriminant_Default_Value (First_Discriminant (Full_T)))
18346 then
18347 Set_Has_Constrained_Partial_View (Full_T);
18348 Set_Has_Constrained_Partial_View (Priv_T);
18349 end if;
18351 -- Create a full declaration for all its subtypes recorded in
18352 -- Private_Dependents and swap them similarly to the base type. These
18353 -- are subtypes that have been define before the full declaration of
18354 -- the private type. We also swap the entry in Private_Dependents list
18355 -- so we can properly restore the private view on exit from the scope.
18357 declare
18358 Priv_Elmt : Elmt_Id;
18359 Priv : Entity_Id;
18360 Full : Entity_Id;
18362 begin
18363 Priv_Elmt := First_Elmt (Private_Dependents (Priv_T));
18364 while Present (Priv_Elmt) loop
18365 Priv := Node (Priv_Elmt);
18367 if Ekind_In (Priv, E_Private_Subtype,
18368 E_Limited_Private_Subtype,
18369 E_Record_Subtype_With_Private)
18370 then
18371 Full := Make_Defining_Identifier (Sloc (Priv), Chars (Priv));
18372 Set_Is_Itype (Full);
18373 Set_Parent (Full, Parent (Priv));
18374 Set_Associated_Node_For_Itype (Full, N);
18376 -- Now we need to complete the private subtype, but since the
18377 -- base type has already been swapped, we must also swap the
18378 -- subtypes (and thus, reverse the arguments in the call to
18379 -- Complete_Private_Subtype).
18381 Copy_And_Swap (Priv, Full);
18382 Complete_Private_Subtype (Full, Priv, Full_T, N);
18383 Replace_Elmt (Priv_Elmt, Full);
18384 end if;
18386 Next_Elmt (Priv_Elmt);
18387 end loop;
18388 end;
18390 -- If the private view was tagged, copy the new primitive operations
18391 -- from the private view to the full view.
18393 if Is_Tagged_Type (Full_T) then
18394 declare
18395 Disp_Typ : Entity_Id;
18396 Full_List : Elist_Id;
18397 Prim : Entity_Id;
18398 Prim_Elmt : Elmt_Id;
18399 Priv_List : Elist_Id;
18401 function Contains
18402 (E : Entity_Id;
18403 L : Elist_Id) return Boolean;
18404 -- Determine whether list L contains element E
18406 --------------
18407 -- Contains --
18408 --------------
18410 function Contains
18411 (E : Entity_Id;
18412 L : Elist_Id) return Boolean
18414 List_Elmt : Elmt_Id;
18416 begin
18417 List_Elmt := First_Elmt (L);
18418 while Present (List_Elmt) loop
18419 if Node (List_Elmt) = E then
18420 return True;
18421 end if;
18423 Next_Elmt (List_Elmt);
18424 end loop;
18426 return False;
18427 end Contains;
18429 -- Start of processing
18431 begin
18432 if Is_Tagged_Type (Priv_T) then
18433 Priv_List := Primitive_Operations (Priv_T);
18434 Prim_Elmt := First_Elmt (Priv_List);
18436 -- In the case of a concurrent type completing a private tagged
18437 -- type, primitives may have been declared in between the two
18438 -- views. These subprograms need to be wrapped the same way
18439 -- entries and protected procedures are handled because they
18440 -- cannot be directly shared by the two views.
18442 if Is_Concurrent_Type (Full_T) then
18443 declare
18444 Conc_Typ : constant Entity_Id :=
18445 Corresponding_Record_Type (Full_T);
18446 Curr_Nod : Node_Id := Parent (Conc_Typ);
18447 Wrap_Spec : Node_Id;
18449 begin
18450 while Present (Prim_Elmt) loop
18451 Prim := Node (Prim_Elmt);
18453 if Comes_From_Source (Prim)
18454 and then not Is_Abstract_Subprogram (Prim)
18455 then
18456 Wrap_Spec :=
18457 Make_Subprogram_Declaration (Sloc (Prim),
18458 Specification =>
18459 Build_Wrapper_Spec
18460 (Subp_Id => Prim,
18461 Obj_Typ => Conc_Typ,
18462 Formals =>
18463 Parameter_Specifications (
18464 Parent (Prim))));
18466 Insert_After (Curr_Nod, Wrap_Spec);
18467 Curr_Nod := Wrap_Spec;
18469 Analyze (Wrap_Spec);
18470 end if;
18472 Next_Elmt (Prim_Elmt);
18473 end loop;
18475 return;
18476 end;
18478 -- For non-concurrent types, transfer explicit primitives, but
18479 -- omit those inherited from the parent of the private view
18480 -- since they will be re-inherited later on.
18482 else
18483 Full_List := Primitive_Operations (Full_T);
18485 while Present (Prim_Elmt) loop
18486 Prim := Node (Prim_Elmt);
18488 if Comes_From_Source (Prim)
18489 and then not Contains (Prim, Full_List)
18490 then
18491 Append_Elmt (Prim, Full_List);
18492 end if;
18494 Next_Elmt (Prim_Elmt);
18495 end loop;
18496 end if;
18498 -- Untagged private view
18500 else
18501 Full_List := Primitive_Operations (Full_T);
18503 -- In this case the partial view is untagged, so here we locate
18504 -- all of the earlier primitives that need to be treated as
18505 -- dispatching (those that appear between the two views). Note
18506 -- that these additional operations must all be new operations
18507 -- (any earlier operations that override inherited operations
18508 -- of the full view will already have been inserted in the
18509 -- primitives list, marked by Check_Operation_From_Private_View
18510 -- as dispatching. Note that implicit "/=" operators are
18511 -- excluded from being added to the primitives list since they
18512 -- shouldn't be treated as dispatching (tagged "/=" is handled
18513 -- specially).
18515 Prim := Next_Entity (Full_T);
18516 while Present (Prim) and then Prim /= Priv_T loop
18517 if Ekind_In (Prim, E_Procedure, E_Function) then
18518 Disp_Typ := Find_Dispatching_Type (Prim);
18520 if Disp_Typ = Full_T
18521 and then (Chars (Prim) /= Name_Op_Ne
18522 or else Comes_From_Source (Prim))
18523 then
18524 Check_Controlling_Formals (Full_T, Prim);
18526 if not Is_Dispatching_Operation (Prim) then
18527 Append_Elmt (Prim, Full_List);
18528 Set_Is_Dispatching_Operation (Prim, True);
18529 Set_DT_Position (Prim, No_Uint);
18530 end if;
18532 elsif Is_Dispatching_Operation (Prim)
18533 and then Disp_Typ /= Full_T
18534 then
18536 -- Verify that it is not otherwise controlled by a
18537 -- formal or a return value of type T.
18539 Check_Controlling_Formals (Disp_Typ, Prim);
18540 end if;
18541 end if;
18543 Next_Entity (Prim);
18544 end loop;
18545 end if;
18547 -- For the tagged case, the two views can share the same primitive
18548 -- operations list and the same class-wide type. Update attributes
18549 -- of the class-wide type which depend on the full declaration.
18551 if Is_Tagged_Type (Priv_T) then
18552 Set_Direct_Primitive_Operations (Priv_T, Full_List);
18553 Set_Class_Wide_Type
18554 (Base_Type (Full_T), Class_Wide_Type (Priv_T));
18556 Set_Has_Task (Class_Wide_Type (Priv_T), Has_Task (Full_T));
18557 end if;
18558 end;
18559 end if;
18561 -- Ada 2005 AI 161: Check preelaboratable initialization consistency
18563 if Known_To_Have_Preelab_Init (Priv_T) then
18565 -- Case where there is a pragma Preelaborable_Initialization. We
18566 -- always allow this in predefined units, which is a bit of a kludge,
18567 -- but it means we don't have to struggle to meet the requirements in
18568 -- the RM for having Preelaborable Initialization. Otherwise we
18569 -- require that the type meets the RM rules. But we can't check that
18570 -- yet, because of the rule about overriding Initialize, so we simply
18571 -- set a flag that will be checked at freeze time.
18573 if not In_Predefined_Unit (Full_T) then
18574 Set_Must_Have_Preelab_Init (Full_T);
18575 end if;
18576 end if;
18578 -- If pragma CPP_Class was applied to the private type declaration,
18579 -- propagate it now to the full type declaration.
18581 if Is_CPP_Class (Priv_T) then
18582 Set_Is_CPP_Class (Full_T);
18583 Set_Convention (Full_T, Convention_CPP);
18585 -- Check that components of imported CPP types do not have default
18586 -- expressions.
18588 Check_CPP_Type_Has_No_Defaults (Full_T);
18589 end if;
18591 -- If the private view has user specified stream attributes, then so has
18592 -- the full view.
18594 -- Why the test, how could these flags be already set in Full_T ???
18596 if Has_Specified_Stream_Read (Priv_T) then
18597 Set_Has_Specified_Stream_Read (Full_T);
18598 end if;
18600 if Has_Specified_Stream_Write (Priv_T) then
18601 Set_Has_Specified_Stream_Write (Full_T);
18602 end if;
18604 if Has_Specified_Stream_Input (Priv_T) then
18605 Set_Has_Specified_Stream_Input (Full_T);
18606 end if;
18608 if Has_Specified_Stream_Output (Priv_T) then
18609 Set_Has_Specified_Stream_Output (Full_T);
18610 end if;
18612 -- Propagate invariants to full type
18614 if Has_Invariants (Priv_T) then
18615 Set_Has_Invariants (Full_T);
18616 Set_Invariant_Procedure (Full_T, Invariant_Procedure (Priv_T));
18617 end if;
18619 if Has_Inheritable_Invariants (Priv_T) then
18620 Set_Has_Inheritable_Invariants (Full_T);
18621 end if;
18623 -- Propagate predicates to full type
18625 if Has_Predicates (Priv_T) then
18626 Set_Predicate_Function (Priv_T, Predicate_Function (Full_T));
18627 Set_Has_Predicates (Full_T);
18628 end if;
18629 end Process_Full_View;
18631 -----------------------------------
18632 -- Process_Incomplete_Dependents --
18633 -----------------------------------
18635 procedure Process_Incomplete_Dependents
18636 (N : Node_Id;
18637 Full_T : Entity_Id;
18638 Inc_T : Entity_Id)
18640 Inc_Elmt : Elmt_Id;
18641 Priv_Dep : Entity_Id;
18642 New_Subt : Entity_Id;
18644 Disc_Constraint : Elist_Id;
18646 begin
18647 if No (Private_Dependents (Inc_T)) then
18648 return;
18649 end if;
18651 -- Itypes that may be generated by the completion of an incomplete
18652 -- subtype are not used by the back-end and not attached to the tree.
18653 -- They are created only for constraint-checking purposes.
18655 Inc_Elmt := First_Elmt (Private_Dependents (Inc_T));
18656 while Present (Inc_Elmt) loop
18657 Priv_Dep := Node (Inc_Elmt);
18659 if Ekind (Priv_Dep) = E_Subprogram_Type then
18661 -- An Access_To_Subprogram type may have a return type or a
18662 -- parameter type that is incomplete. Replace with the full view.
18664 if Etype (Priv_Dep) = Inc_T then
18665 Set_Etype (Priv_Dep, Full_T);
18666 end if;
18668 declare
18669 Formal : Entity_Id;
18671 begin
18672 Formal := First_Formal (Priv_Dep);
18673 while Present (Formal) loop
18674 if Etype (Formal) = Inc_T then
18675 Set_Etype (Formal, Full_T);
18676 end if;
18678 Next_Formal (Formal);
18679 end loop;
18680 end;
18682 elsif Is_Overloadable (Priv_Dep) then
18684 -- If a subprogram in the incomplete dependents list is primitive
18685 -- for a tagged full type then mark it as a dispatching operation,
18686 -- check whether it overrides an inherited subprogram, and check
18687 -- restrictions on its controlling formals. Note that a protected
18688 -- operation is never dispatching: only its wrapper operation
18689 -- (which has convention Ada) is.
18691 if Is_Tagged_Type (Full_T)
18692 and then Is_Primitive (Priv_Dep)
18693 and then Convention (Priv_Dep) /= Convention_Protected
18694 then
18695 Check_Operation_From_Incomplete_Type (Priv_Dep, Inc_T);
18696 Set_Is_Dispatching_Operation (Priv_Dep);
18697 Check_Controlling_Formals (Full_T, Priv_Dep);
18698 end if;
18700 elsif Ekind (Priv_Dep) = E_Subprogram_Body then
18702 -- Can happen during processing of a body before the completion
18703 -- of a TA type. Ignore, because spec is also on dependent list.
18705 return;
18707 -- Ada 2005 (AI-412): Transform a regular incomplete subtype into a
18708 -- corresponding subtype of the full view.
18710 elsif Ekind (Priv_Dep) = E_Incomplete_Subtype then
18711 Set_Subtype_Indication
18712 (Parent (Priv_Dep), New_Reference_To (Full_T, Sloc (Priv_Dep)));
18713 Set_Etype (Priv_Dep, Full_T);
18714 Set_Ekind (Priv_Dep, Subtype_Kind (Ekind (Full_T)));
18715 Set_Analyzed (Parent (Priv_Dep), False);
18717 -- Reanalyze the declaration, suppressing the call to
18718 -- Enter_Name to avoid duplicate names.
18720 Analyze_Subtype_Declaration
18721 (N => Parent (Priv_Dep),
18722 Skip => True);
18724 -- Dependent is a subtype
18726 else
18727 -- We build a new subtype indication using the full view of the
18728 -- incomplete parent. The discriminant constraints have been
18729 -- elaborated already at the point of the subtype declaration.
18731 New_Subt := Create_Itype (E_Void, N);
18733 if Has_Discriminants (Full_T) then
18734 Disc_Constraint := Discriminant_Constraint (Priv_Dep);
18735 else
18736 Disc_Constraint := No_Elist;
18737 end if;
18739 Build_Discriminated_Subtype (Full_T, New_Subt, Disc_Constraint, N);
18740 Set_Full_View (Priv_Dep, New_Subt);
18741 end if;
18743 Next_Elmt (Inc_Elmt);
18744 end loop;
18745 end Process_Incomplete_Dependents;
18747 --------------------------------
18748 -- Process_Range_Expr_In_Decl --
18749 --------------------------------
18751 procedure Process_Range_Expr_In_Decl
18752 (R : Node_Id;
18753 T : Entity_Id;
18754 Check_List : List_Id := Empty_List;
18755 R_Check_Off : Boolean := False;
18756 In_Iter_Schm : Boolean := False)
18758 Lo, Hi : Node_Id;
18759 R_Checks : Check_Result;
18760 Insert_Node : Node_Id;
18761 Def_Id : Entity_Id;
18763 begin
18764 Analyze_And_Resolve (R, Base_Type (T));
18766 if Nkind (R) = N_Range then
18768 -- In SPARK, all ranges should be static, with the exception of the
18769 -- discrete type definition of a loop parameter specification.
18771 if not In_Iter_Schm
18772 and then not Is_Static_Range (R)
18773 then
18774 Check_SPARK_Restriction ("range should be static", R);
18775 end if;
18777 Lo := Low_Bound (R);
18778 Hi := High_Bound (R);
18780 -- We need to ensure validity of the bounds here, because if we
18781 -- go ahead and do the expansion, then the expanded code will get
18782 -- analyzed with range checks suppressed and we miss the check.
18784 Validity_Check_Range (R);
18786 -- If there were errors in the declaration, try and patch up some
18787 -- common mistakes in the bounds. The cases handled are literals
18788 -- which are Integer where the expected type is Real and vice versa.
18789 -- These corrections allow the compilation process to proceed further
18790 -- along since some basic assumptions of the format of the bounds
18791 -- are guaranteed.
18793 if Etype (R) = Any_Type then
18795 if Nkind (Lo) = N_Integer_Literal and then Is_Real_Type (T) then
18796 Rewrite (Lo,
18797 Make_Real_Literal (Sloc (Lo), UR_From_Uint (Intval (Lo))));
18799 elsif Nkind (Hi) = N_Integer_Literal and then Is_Real_Type (T) then
18800 Rewrite (Hi,
18801 Make_Real_Literal (Sloc (Hi), UR_From_Uint (Intval (Hi))));
18803 elsif Nkind (Lo) = N_Real_Literal and then Is_Integer_Type (T) then
18804 Rewrite (Lo,
18805 Make_Integer_Literal (Sloc (Lo), UR_To_Uint (Realval (Lo))));
18807 elsif Nkind (Hi) = N_Real_Literal and then Is_Integer_Type (T) then
18808 Rewrite (Hi,
18809 Make_Integer_Literal (Sloc (Hi), UR_To_Uint (Realval (Hi))));
18810 end if;
18812 Set_Etype (Lo, T);
18813 Set_Etype (Hi, T);
18814 end if;
18816 -- If the bounds of the range have been mistakenly given as string
18817 -- literals (perhaps in place of character literals), then an error
18818 -- has already been reported, but we rewrite the string literal as a
18819 -- bound of the range's type to avoid blowups in later processing
18820 -- that looks at static values.
18822 if Nkind (Lo) = N_String_Literal then
18823 Rewrite (Lo,
18824 Make_Attribute_Reference (Sloc (Lo),
18825 Attribute_Name => Name_First,
18826 Prefix => New_Reference_To (T, Sloc (Lo))));
18827 Analyze_And_Resolve (Lo);
18828 end if;
18830 if Nkind (Hi) = N_String_Literal then
18831 Rewrite (Hi,
18832 Make_Attribute_Reference (Sloc (Hi),
18833 Attribute_Name => Name_First,
18834 Prefix => New_Reference_To (T, Sloc (Hi))));
18835 Analyze_And_Resolve (Hi);
18836 end if;
18838 -- If bounds aren't scalar at this point then exit, avoiding
18839 -- problems with further processing of the range in this procedure.
18841 if not Is_Scalar_Type (Etype (Lo)) then
18842 return;
18843 end if;
18845 -- Resolve (actually Sem_Eval) has checked that the bounds are in
18846 -- then range of the base type. Here we check whether the bounds
18847 -- are in the range of the subtype itself. Note that if the bounds
18848 -- represent the null range the Constraint_Error exception should
18849 -- not be raised.
18851 -- ??? The following code should be cleaned up as follows
18853 -- 1. The Is_Null_Range (Lo, Hi) test should disappear since it
18854 -- is done in the call to Range_Check (R, T); below
18856 -- 2. The use of R_Check_Off should be investigated and possibly
18857 -- removed, this would clean up things a bit.
18859 if Is_Null_Range (Lo, Hi) then
18860 null;
18862 else
18863 -- Capture values of bounds and generate temporaries for them
18864 -- if needed, before applying checks, since checks may cause
18865 -- duplication of the expression without forcing evaluation.
18867 -- The forced evaluation removes side effects from expressions,
18868 -- which should occur also in SPARK mode. Otherwise, we end up
18869 -- with unexpected insertions of actions at places where this is
18870 -- not supposed to occur, e.g. on default parameters of a call.
18872 if Expander_Active then
18873 Force_Evaluation (Lo);
18874 Force_Evaluation (Hi);
18875 end if;
18877 -- We use a flag here instead of suppressing checks on the
18878 -- type because the type we check against isn't necessarily
18879 -- the place where we put the check.
18881 if not R_Check_Off then
18882 R_Checks := Get_Range_Checks (R, T);
18884 -- Look up tree to find an appropriate insertion point. We
18885 -- can't just use insert_actions because later processing
18886 -- depends on the insertion node. Prior to Ada 2012 the
18887 -- insertion point could only be a declaration or a loop, but
18888 -- quantified expressions can appear within any context in an
18889 -- expression, and the insertion point can be any statement,
18890 -- pragma, or declaration.
18892 Insert_Node := Parent (R);
18893 while Present (Insert_Node) loop
18894 exit when
18895 Nkind (Insert_Node) in N_Declaration
18896 and then
18897 not Nkind_In
18898 (Insert_Node, N_Component_Declaration,
18899 N_Loop_Parameter_Specification,
18900 N_Function_Specification,
18901 N_Procedure_Specification);
18903 exit when Nkind (Insert_Node) in N_Later_Decl_Item
18904 or else Nkind (Insert_Node) in
18905 N_Statement_Other_Than_Procedure_Call
18906 or else Nkind_In (Insert_Node, N_Procedure_Call_Statement,
18907 N_Pragma);
18909 Insert_Node := Parent (Insert_Node);
18910 end loop;
18912 -- Why would Type_Decl not be present??? Without this test,
18913 -- short regression tests fail.
18915 if Present (Insert_Node) then
18917 -- Case of loop statement. Verify that the range is part
18918 -- of the subtype indication of the iteration scheme.
18920 if Nkind (Insert_Node) = N_Loop_Statement then
18921 declare
18922 Indic : Node_Id;
18924 begin
18925 Indic := Parent (R);
18926 while Present (Indic)
18927 and then Nkind (Indic) /= N_Subtype_Indication
18928 loop
18929 Indic := Parent (Indic);
18930 end loop;
18932 if Present (Indic) then
18933 Def_Id := Etype (Subtype_Mark (Indic));
18935 Insert_Range_Checks
18936 (R_Checks,
18937 Insert_Node,
18938 Def_Id,
18939 Sloc (Insert_Node),
18941 Do_Before => True);
18942 end if;
18943 end;
18945 -- Insertion before a declaration. If the declaration
18946 -- includes discriminants, the list of applicable checks
18947 -- is given by the caller.
18949 elsif Nkind (Insert_Node) in N_Declaration then
18950 Def_Id := Defining_Identifier (Insert_Node);
18952 if (Ekind (Def_Id) = E_Record_Type
18953 and then Depends_On_Discriminant (R))
18954 or else
18955 (Ekind (Def_Id) = E_Protected_Type
18956 and then Has_Discriminants (Def_Id))
18957 then
18958 Append_Range_Checks
18959 (R_Checks,
18960 Check_List, Def_Id, Sloc (Insert_Node), R);
18962 else
18963 Insert_Range_Checks
18964 (R_Checks,
18965 Insert_Node, Def_Id, Sloc (Insert_Node), R);
18967 end if;
18969 -- Insertion before a statement. Range appears in the
18970 -- context of a quantified expression. Insertion will
18971 -- take place when expression is expanded.
18973 else
18974 null;
18975 end if;
18976 end if;
18977 end if;
18978 end if;
18980 -- Case of other than an explicit N_Range node
18982 -- The forced evaluation removes side effects from expressions, which
18983 -- should occur also in SPARK mode. Otherwise, we end up with unexpected
18984 -- insertions of actions at places where this is not supposed to occur,
18985 -- e.g. on default parameters of a call.
18987 elsif Expander_Active then
18988 Get_Index_Bounds (R, Lo, Hi);
18989 Force_Evaluation (Lo);
18990 Force_Evaluation (Hi);
18991 end if;
18992 end Process_Range_Expr_In_Decl;
18994 --------------------------------------
18995 -- Process_Real_Range_Specification --
18996 --------------------------------------
18998 procedure Process_Real_Range_Specification (Def : Node_Id) is
18999 Spec : constant Node_Id := Real_Range_Specification (Def);
19000 Lo : Node_Id;
19001 Hi : Node_Id;
19002 Err : Boolean := False;
19004 procedure Analyze_Bound (N : Node_Id);
19005 -- Analyze and check one bound
19007 -------------------
19008 -- Analyze_Bound --
19009 -------------------
19011 procedure Analyze_Bound (N : Node_Id) is
19012 begin
19013 Analyze_And_Resolve (N, Any_Real);
19015 if not Is_OK_Static_Expression (N) then
19016 Flag_Non_Static_Expr
19017 ("bound in real type definition is not static!", N);
19018 Err := True;
19019 end if;
19020 end Analyze_Bound;
19022 -- Start of processing for Process_Real_Range_Specification
19024 begin
19025 if Present (Spec) then
19026 Lo := Low_Bound (Spec);
19027 Hi := High_Bound (Spec);
19028 Analyze_Bound (Lo);
19029 Analyze_Bound (Hi);
19031 -- If error, clear away junk range specification
19033 if Err then
19034 Set_Real_Range_Specification (Def, Empty);
19035 end if;
19036 end if;
19037 end Process_Real_Range_Specification;
19039 ---------------------
19040 -- Process_Subtype --
19041 ---------------------
19043 function Process_Subtype
19044 (S : Node_Id;
19045 Related_Nod : Node_Id;
19046 Related_Id : Entity_Id := Empty;
19047 Suffix : Character := ' ') return Entity_Id
19049 P : Node_Id;
19050 Def_Id : Entity_Id;
19051 Error_Node : Node_Id;
19052 Full_View_Id : Entity_Id;
19053 Subtype_Mark_Id : Entity_Id;
19055 May_Have_Null_Exclusion : Boolean;
19057 procedure Check_Incomplete (T : Entity_Id);
19058 -- Called to verify that an incomplete type is not used prematurely
19060 ----------------------
19061 -- Check_Incomplete --
19062 ----------------------
19064 procedure Check_Incomplete (T : Entity_Id) is
19065 begin
19066 -- Ada 2005 (AI-412): Incomplete subtypes are legal
19068 if Ekind (Root_Type (Entity (T))) = E_Incomplete_Type
19069 and then
19070 not (Ada_Version >= Ada_2005
19071 and then
19072 (Nkind (Parent (T)) = N_Subtype_Declaration
19073 or else
19074 (Nkind (Parent (T)) = N_Subtype_Indication
19075 and then Nkind (Parent (Parent (T))) =
19076 N_Subtype_Declaration)))
19077 then
19078 Error_Msg_N ("invalid use of type before its full declaration", T);
19079 end if;
19080 end Check_Incomplete;
19082 -- Start of processing for Process_Subtype
19084 begin
19085 -- Case of no constraints present
19087 if Nkind (S) /= N_Subtype_Indication then
19088 Find_Type (S);
19089 Check_Incomplete (S);
19090 P := Parent (S);
19092 -- Ada 2005 (AI-231): Static check
19094 if Ada_Version >= Ada_2005
19095 and then Present (P)
19096 and then Null_Exclusion_Present (P)
19097 and then Nkind (P) /= N_Access_To_Object_Definition
19098 and then not Is_Access_Type (Entity (S))
19099 then
19100 Error_Msg_N ("`NOT NULL` only allowed for an access type", S);
19101 end if;
19103 -- The following is ugly, can't we have a range or even a flag???
19105 May_Have_Null_Exclusion :=
19106 Nkind_In (P, N_Access_Definition,
19107 N_Access_Function_Definition,
19108 N_Access_Procedure_Definition,
19109 N_Access_To_Object_Definition,
19110 N_Allocator,
19111 N_Component_Definition)
19112 or else
19113 Nkind_In (P, N_Derived_Type_Definition,
19114 N_Discriminant_Specification,
19115 N_Formal_Object_Declaration,
19116 N_Object_Declaration,
19117 N_Object_Renaming_Declaration,
19118 N_Parameter_Specification,
19119 N_Subtype_Declaration);
19121 -- Create an Itype that is a duplicate of Entity (S) but with the
19122 -- null-exclusion attribute.
19124 if May_Have_Null_Exclusion
19125 and then Is_Access_Type (Entity (S))
19126 and then Null_Exclusion_Present (P)
19128 -- No need to check the case of an access to object definition.
19129 -- It is correct to define double not-null pointers.
19131 -- Example:
19132 -- type Not_Null_Int_Ptr is not null access Integer;
19133 -- type Acc is not null access Not_Null_Int_Ptr;
19135 and then Nkind (P) /= N_Access_To_Object_Definition
19136 then
19137 if Can_Never_Be_Null (Entity (S)) then
19138 case Nkind (Related_Nod) is
19139 when N_Full_Type_Declaration =>
19140 if Nkind (Type_Definition (Related_Nod))
19141 in N_Array_Type_Definition
19142 then
19143 Error_Node :=
19144 Subtype_Indication
19145 (Component_Definition
19146 (Type_Definition (Related_Nod)));
19147 else
19148 Error_Node :=
19149 Subtype_Indication (Type_Definition (Related_Nod));
19150 end if;
19152 when N_Subtype_Declaration =>
19153 Error_Node := Subtype_Indication (Related_Nod);
19155 when N_Object_Declaration =>
19156 Error_Node := Object_Definition (Related_Nod);
19158 when N_Component_Declaration =>
19159 Error_Node :=
19160 Subtype_Indication (Component_Definition (Related_Nod));
19162 when N_Allocator =>
19163 Error_Node := Expression (Related_Nod);
19165 when others =>
19166 pragma Assert (False);
19167 Error_Node := Related_Nod;
19168 end case;
19170 Error_Msg_NE
19171 ("`NOT NULL` not allowed (& already excludes null)",
19172 Error_Node,
19173 Entity (S));
19174 end if;
19176 Set_Etype (S,
19177 Create_Null_Excluding_Itype
19178 (T => Entity (S),
19179 Related_Nod => P));
19180 Set_Entity (S, Etype (S));
19181 end if;
19183 return Entity (S);
19185 -- Case of constraint present, so that we have an N_Subtype_Indication
19186 -- node (this node is created only if constraints are present).
19188 else
19189 Find_Type (Subtype_Mark (S));
19191 if Nkind (Parent (S)) /= N_Access_To_Object_Definition
19192 and then not
19193 (Nkind (Parent (S)) = N_Subtype_Declaration
19194 and then Is_Itype (Defining_Identifier (Parent (S))))
19195 then
19196 Check_Incomplete (Subtype_Mark (S));
19197 end if;
19199 P := Parent (S);
19200 Subtype_Mark_Id := Entity (Subtype_Mark (S));
19202 -- Explicit subtype declaration case
19204 if Nkind (P) = N_Subtype_Declaration then
19205 Def_Id := Defining_Identifier (P);
19207 -- Explicit derived type definition case
19209 elsif Nkind (P) = N_Derived_Type_Definition then
19210 Def_Id := Defining_Identifier (Parent (P));
19212 -- Implicit case, the Def_Id must be created as an implicit type.
19213 -- The one exception arises in the case of concurrent types, array
19214 -- and access types, where other subsidiary implicit types may be
19215 -- created and must appear before the main implicit type. In these
19216 -- cases we leave Def_Id set to Empty as a signal that Create_Itype
19217 -- has not yet been called to create Def_Id.
19219 else
19220 if Is_Array_Type (Subtype_Mark_Id)
19221 or else Is_Concurrent_Type (Subtype_Mark_Id)
19222 or else Is_Access_Type (Subtype_Mark_Id)
19223 then
19224 Def_Id := Empty;
19226 -- For the other cases, we create a new unattached Itype,
19227 -- and set the indication to ensure it gets attached later.
19229 else
19230 Def_Id :=
19231 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
19232 end if;
19233 end if;
19235 -- If the kind of constraint is invalid for this kind of type,
19236 -- then give an error, and then pretend no constraint was given.
19238 if not Is_Valid_Constraint_Kind
19239 (Ekind (Subtype_Mark_Id), Nkind (Constraint (S)))
19240 then
19241 Error_Msg_N
19242 ("incorrect constraint for this kind of type", Constraint (S));
19244 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
19246 -- Set Ekind of orphan itype, to prevent cascaded errors
19248 if Present (Def_Id) then
19249 Set_Ekind (Def_Id, Ekind (Any_Type));
19250 end if;
19252 -- Make recursive call, having got rid of the bogus constraint
19254 return Process_Subtype (S, Related_Nod, Related_Id, Suffix);
19255 end if;
19257 -- Remaining processing depends on type. Select on Base_Type kind to
19258 -- ensure getting to the concrete type kind in the case of a private
19259 -- subtype (needed when only doing semantic analysis).
19261 case Ekind (Base_Type (Subtype_Mark_Id)) is
19262 when Access_Kind =>
19264 -- If this is a constraint on a class-wide type, discard it.
19265 -- There is currently no way to express a partial discriminant
19266 -- constraint on a type with unknown discriminants. This is
19267 -- a pathology that the ACATS wisely decides not to test.
19269 if Is_Class_Wide_Type (Designated_Type (Subtype_Mark_Id)) then
19270 if Comes_From_Source (S) then
19271 Error_Msg_N
19272 ("constraint on class-wide type ignored?",
19273 Constraint (S));
19274 end if;
19276 if Nkind (P) = N_Subtype_Declaration then
19277 Set_Subtype_Indication (P,
19278 New_Occurrence_Of (Subtype_Mark_Id, Sloc (S)));
19279 end if;
19281 return Subtype_Mark_Id;
19282 end if;
19284 Constrain_Access (Def_Id, S, Related_Nod);
19286 if Expander_Active
19287 and then Is_Itype (Designated_Type (Def_Id))
19288 and then Nkind (Related_Nod) = N_Subtype_Declaration
19289 and then not Is_Incomplete_Type (Designated_Type (Def_Id))
19290 then
19291 Build_Itype_Reference
19292 (Designated_Type (Def_Id), Related_Nod);
19293 end if;
19295 when Array_Kind =>
19296 Constrain_Array (Def_Id, S, Related_Nod, Related_Id, Suffix);
19298 when Decimal_Fixed_Point_Kind =>
19299 Constrain_Decimal (Def_Id, S);
19301 when Enumeration_Kind =>
19302 Constrain_Enumeration (Def_Id, S);
19304 when Ordinary_Fixed_Point_Kind =>
19305 Constrain_Ordinary_Fixed (Def_Id, S);
19307 when Float_Kind =>
19308 Constrain_Float (Def_Id, S);
19310 when Integer_Kind =>
19311 Constrain_Integer (Def_Id, S);
19313 when E_Record_Type |
19314 E_Record_Subtype |
19315 Class_Wide_Kind |
19316 E_Incomplete_Type =>
19317 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
19319 if Ekind (Def_Id) = E_Incomplete_Type then
19320 Set_Private_Dependents (Def_Id, New_Elmt_List);
19321 end if;
19323 when Private_Kind =>
19324 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
19325 Set_Private_Dependents (Def_Id, New_Elmt_List);
19327 -- In case of an invalid constraint prevent further processing
19328 -- since the type constructed is missing expected fields.
19330 if Etype (Def_Id) = Any_Type then
19331 return Def_Id;
19332 end if;
19334 -- If the full view is that of a task with discriminants,
19335 -- we must constrain both the concurrent type and its
19336 -- corresponding record type. Otherwise we will just propagate
19337 -- the constraint to the full view, if available.
19339 if Present (Full_View (Subtype_Mark_Id))
19340 and then Has_Discriminants (Subtype_Mark_Id)
19341 and then Is_Concurrent_Type (Full_View (Subtype_Mark_Id))
19342 then
19343 Full_View_Id :=
19344 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
19346 Set_Entity (Subtype_Mark (S), Full_View (Subtype_Mark_Id));
19347 Constrain_Concurrent (Full_View_Id, S,
19348 Related_Nod, Related_Id, Suffix);
19349 Set_Entity (Subtype_Mark (S), Subtype_Mark_Id);
19350 Set_Full_View (Def_Id, Full_View_Id);
19352 -- Introduce an explicit reference to the private subtype,
19353 -- to prevent scope anomalies in gigi if first use appears
19354 -- in a nested context, e.g. a later function body.
19355 -- Should this be generated in other contexts than a full
19356 -- type declaration?
19358 if Is_Itype (Def_Id)
19359 and then
19360 Nkind (Parent (P)) = N_Full_Type_Declaration
19361 then
19362 Build_Itype_Reference (Def_Id, Parent (P));
19363 end if;
19365 else
19366 Prepare_Private_Subtype_Completion (Def_Id, Related_Nod);
19367 end if;
19369 when Concurrent_Kind =>
19370 Constrain_Concurrent (Def_Id, S,
19371 Related_Nod, Related_Id, Suffix);
19373 when others =>
19374 Error_Msg_N ("invalid subtype mark in subtype indication", S);
19375 end case;
19377 -- Size and Convention are always inherited from the base type
19379 Set_Size_Info (Def_Id, (Subtype_Mark_Id));
19380 Set_Convention (Def_Id, Convention (Subtype_Mark_Id));
19382 return Def_Id;
19383 end if;
19384 end Process_Subtype;
19386 ---------------------------------------
19387 -- Check_Anonymous_Access_Components --
19388 ---------------------------------------
19390 procedure Check_Anonymous_Access_Components
19391 (Typ_Decl : Node_Id;
19392 Typ : Entity_Id;
19393 Prev : Entity_Id;
19394 Comp_List : Node_Id)
19396 Loc : constant Source_Ptr := Sloc (Typ_Decl);
19397 Anon_Access : Entity_Id;
19398 Acc_Def : Node_Id;
19399 Comp : Node_Id;
19400 Comp_Def : Node_Id;
19401 Decl : Node_Id;
19402 Type_Def : Node_Id;
19404 procedure Build_Incomplete_Type_Declaration;
19405 -- If the record type contains components that include an access to the
19406 -- current record, then create an incomplete type declaration for the
19407 -- record, to be used as the designated type of the anonymous access.
19408 -- This is done only once, and only if there is no previous partial
19409 -- view of the type.
19411 function Designates_T (Subt : Node_Id) return Boolean;
19412 -- Check whether a node designates the enclosing record type, or 'Class
19413 -- of that type
19415 function Mentions_T (Acc_Def : Node_Id) return Boolean;
19416 -- Check whether an access definition includes a reference to
19417 -- the enclosing record type. The reference can be a subtype mark
19418 -- in the access definition itself, a 'Class attribute reference, or
19419 -- recursively a reference appearing in a parameter specification
19420 -- or result definition of an access_to_subprogram definition.
19422 --------------------------------------
19423 -- Build_Incomplete_Type_Declaration --
19424 --------------------------------------
19426 procedure Build_Incomplete_Type_Declaration is
19427 Decl : Node_Id;
19428 Inc_T : Entity_Id;
19429 H : Entity_Id;
19431 -- Is_Tagged indicates whether the type is tagged. It is tagged if
19432 -- it's "is new ... with record" or else "is tagged record ...".
19434 Is_Tagged : constant Boolean :=
19435 (Nkind (Type_Definition (Typ_Decl)) = N_Derived_Type_Definition
19436 and then
19437 Present
19438 (Record_Extension_Part (Type_Definition (Typ_Decl))))
19439 or else
19440 (Nkind (Type_Definition (Typ_Decl)) = N_Record_Definition
19441 and then Tagged_Present (Type_Definition (Typ_Decl)));
19443 begin
19444 -- If there is a previous partial view, no need to create a new one
19445 -- If the partial view, given by Prev, is incomplete, If Prev is
19446 -- a private declaration, full declaration is flagged accordingly.
19448 if Prev /= Typ then
19449 if Is_Tagged then
19450 Make_Class_Wide_Type (Prev);
19451 Set_Class_Wide_Type (Typ, Class_Wide_Type (Prev));
19452 Set_Etype (Class_Wide_Type (Typ), Typ);
19453 end if;
19455 return;
19457 elsif Has_Private_Declaration (Typ) then
19459 -- If we refer to T'Class inside T, and T is the completion of a
19460 -- private type, then we need to make sure the class-wide type
19461 -- exists.
19463 if Is_Tagged then
19464 Make_Class_Wide_Type (Typ);
19465 end if;
19467 return;
19469 -- If there was a previous anonymous access type, the incomplete
19470 -- type declaration will have been created already.
19472 elsif Present (Current_Entity (Typ))
19473 and then Ekind (Current_Entity (Typ)) = E_Incomplete_Type
19474 and then Full_View (Current_Entity (Typ)) = Typ
19475 then
19476 if Is_Tagged
19477 and then Comes_From_Source (Current_Entity (Typ))
19478 and then not Is_Tagged_Type (Current_Entity (Typ))
19479 then
19480 Make_Class_Wide_Type (Typ);
19481 Error_Msg_N
19482 ("incomplete view of tagged type should be declared tagged??",
19483 Parent (Current_Entity (Typ)));
19484 end if;
19485 return;
19487 else
19488 Inc_T := Make_Defining_Identifier (Loc, Chars (Typ));
19489 Decl := Make_Incomplete_Type_Declaration (Loc, Inc_T);
19491 -- Type has already been inserted into the current scope. Remove
19492 -- it, and add incomplete declaration for type, so that subsequent
19493 -- anonymous access types can use it. The entity is unchained from
19494 -- the homonym list and from immediate visibility. After analysis,
19495 -- the entity in the incomplete declaration becomes immediately
19496 -- visible in the record declaration that follows.
19498 H := Current_Entity (Typ);
19500 if H = Typ then
19501 Set_Name_Entity_Id (Chars (Typ), Homonym (Typ));
19502 else
19503 while Present (H)
19504 and then Homonym (H) /= Typ
19505 loop
19506 H := Homonym (Typ);
19507 end loop;
19509 Set_Homonym (H, Homonym (Typ));
19510 end if;
19512 Insert_Before (Typ_Decl, Decl);
19513 Analyze (Decl);
19514 Set_Full_View (Inc_T, Typ);
19516 if Is_Tagged then
19518 -- Create a common class-wide type for both views, and set the
19519 -- Etype of the class-wide type to the full view.
19521 Make_Class_Wide_Type (Inc_T);
19522 Set_Class_Wide_Type (Typ, Class_Wide_Type (Inc_T));
19523 Set_Etype (Class_Wide_Type (Typ), Typ);
19524 end if;
19525 end if;
19526 end Build_Incomplete_Type_Declaration;
19528 ------------------
19529 -- Designates_T --
19530 ------------------
19532 function Designates_T (Subt : Node_Id) return Boolean is
19533 Type_Id : constant Name_Id := Chars (Typ);
19535 function Names_T (Nam : Node_Id) return Boolean;
19536 -- The record type has not been introduced in the current scope
19537 -- yet, so we must examine the name of the type itself, either
19538 -- an identifier T, or an expanded name of the form P.T, where
19539 -- P denotes the current scope.
19541 -------------
19542 -- Names_T --
19543 -------------
19545 function Names_T (Nam : Node_Id) return Boolean is
19546 begin
19547 if Nkind (Nam) = N_Identifier then
19548 return Chars (Nam) = Type_Id;
19550 elsif Nkind (Nam) = N_Selected_Component then
19551 if Chars (Selector_Name (Nam)) = Type_Id then
19552 if Nkind (Prefix (Nam)) = N_Identifier then
19553 return Chars (Prefix (Nam)) = Chars (Current_Scope);
19555 elsif Nkind (Prefix (Nam)) = N_Selected_Component then
19556 return Chars (Selector_Name (Prefix (Nam))) =
19557 Chars (Current_Scope);
19558 else
19559 return False;
19560 end if;
19562 else
19563 return False;
19564 end if;
19566 else
19567 return False;
19568 end if;
19569 end Names_T;
19571 -- Start of processing for Designates_T
19573 begin
19574 if Nkind (Subt) = N_Identifier then
19575 return Chars (Subt) = Type_Id;
19577 -- Reference can be through an expanded name which has not been
19578 -- analyzed yet, and which designates enclosing scopes.
19580 elsif Nkind (Subt) = N_Selected_Component then
19581 if Names_T (Subt) then
19582 return True;
19584 -- Otherwise it must denote an entity that is already visible.
19585 -- The access definition may name a subtype of the enclosing
19586 -- type, if there is a previous incomplete declaration for it.
19588 else
19589 Find_Selected_Component (Subt);
19590 return
19591 Is_Entity_Name (Subt)
19592 and then Scope (Entity (Subt)) = Current_Scope
19593 and then
19594 (Chars (Base_Type (Entity (Subt))) = Type_Id
19595 or else
19596 (Is_Class_Wide_Type (Entity (Subt))
19597 and then
19598 Chars (Etype (Base_Type (Entity (Subt)))) =
19599 Type_Id));
19600 end if;
19602 -- A reference to the current type may appear as the prefix of
19603 -- a 'Class attribute.
19605 elsif Nkind (Subt) = N_Attribute_Reference
19606 and then Attribute_Name (Subt) = Name_Class
19607 then
19608 return Names_T (Prefix (Subt));
19610 else
19611 return False;
19612 end if;
19613 end Designates_T;
19615 ----------------
19616 -- Mentions_T --
19617 ----------------
19619 function Mentions_T (Acc_Def : Node_Id) return Boolean is
19620 Param_Spec : Node_Id;
19622 Acc_Subprg : constant Node_Id :=
19623 Access_To_Subprogram_Definition (Acc_Def);
19625 begin
19626 if No (Acc_Subprg) then
19627 return Designates_T (Subtype_Mark (Acc_Def));
19628 end if;
19630 -- Component is an access_to_subprogram: examine its formals,
19631 -- and result definition in the case of an access_to_function.
19633 Param_Spec := First (Parameter_Specifications (Acc_Subprg));
19634 while Present (Param_Spec) loop
19635 if Nkind (Parameter_Type (Param_Spec)) = N_Access_Definition
19636 and then Mentions_T (Parameter_Type (Param_Spec))
19637 then
19638 return True;
19640 elsif Designates_T (Parameter_Type (Param_Spec)) then
19641 return True;
19642 end if;
19644 Next (Param_Spec);
19645 end loop;
19647 if Nkind (Acc_Subprg) = N_Access_Function_Definition then
19648 if Nkind (Result_Definition (Acc_Subprg)) =
19649 N_Access_Definition
19650 then
19651 return Mentions_T (Result_Definition (Acc_Subprg));
19652 else
19653 return Designates_T (Result_Definition (Acc_Subprg));
19654 end if;
19655 end if;
19657 return False;
19658 end Mentions_T;
19660 -- Start of processing for Check_Anonymous_Access_Components
19662 begin
19663 if No (Comp_List) then
19664 return;
19665 end if;
19667 Comp := First (Component_Items (Comp_List));
19668 while Present (Comp) loop
19669 if Nkind (Comp) = N_Component_Declaration
19670 and then Present
19671 (Access_Definition (Component_Definition (Comp)))
19672 and then
19673 Mentions_T (Access_Definition (Component_Definition (Comp)))
19674 then
19675 Comp_Def := Component_Definition (Comp);
19676 Acc_Def :=
19677 Access_To_Subprogram_Definition
19678 (Access_Definition (Comp_Def));
19680 Build_Incomplete_Type_Declaration;
19681 Anon_Access := Make_Temporary (Loc, 'S');
19683 -- Create a declaration for the anonymous access type: either
19684 -- an access_to_object or an access_to_subprogram.
19686 if Present (Acc_Def) then
19687 if Nkind (Acc_Def) = N_Access_Function_Definition then
19688 Type_Def :=
19689 Make_Access_Function_Definition (Loc,
19690 Parameter_Specifications =>
19691 Parameter_Specifications (Acc_Def),
19692 Result_Definition => Result_Definition (Acc_Def));
19693 else
19694 Type_Def :=
19695 Make_Access_Procedure_Definition (Loc,
19696 Parameter_Specifications =>
19697 Parameter_Specifications (Acc_Def));
19698 end if;
19700 else
19701 Type_Def :=
19702 Make_Access_To_Object_Definition (Loc,
19703 Subtype_Indication =>
19704 Relocate_Node
19705 (Subtype_Mark
19706 (Access_Definition (Comp_Def))));
19708 Set_Constant_Present
19709 (Type_Def, Constant_Present (Access_Definition (Comp_Def)));
19710 Set_All_Present
19711 (Type_Def, All_Present (Access_Definition (Comp_Def)));
19712 end if;
19714 Set_Null_Exclusion_Present
19715 (Type_Def,
19716 Null_Exclusion_Present (Access_Definition (Comp_Def)));
19718 Decl :=
19719 Make_Full_Type_Declaration (Loc,
19720 Defining_Identifier => Anon_Access,
19721 Type_Definition => Type_Def);
19723 Insert_Before (Typ_Decl, Decl);
19724 Analyze (Decl);
19726 -- If an access to subprogram, create the extra formals
19728 if Present (Acc_Def) then
19729 Create_Extra_Formals (Designated_Type (Anon_Access));
19731 -- If an access to object, preserve entity of designated type,
19732 -- for ASIS use, before rewriting the component definition.
19734 else
19735 declare
19736 Desig : Entity_Id;
19738 begin
19739 Desig := Entity (Subtype_Indication (Type_Def));
19741 -- If the access definition is to the current record,
19742 -- the visible entity at this point is an incomplete
19743 -- type. Retrieve the full view to simplify ASIS queries
19745 if Ekind (Desig) = E_Incomplete_Type then
19746 Desig := Full_View (Desig);
19747 end if;
19749 Set_Entity
19750 (Subtype_Mark (Access_Definition (Comp_Def)), Desig);
19751 end;
19752 end if;
19754 Rewrite (Comp_Def,
19755 Make_Component_Definition (Loc,
19756 Subtype_Indication =>
19757 New_Occurrence_Of (Anon_Access, Loc)));
19759 if Ekind (Designated_Type (Anon_Access)) = E_Subprogram_Type then
19760 Set_Ekind (Anon_Access, E_Anonymous_Access_Subprogram_Type);
19761 else
19762 Set_Ekind (Anon_Access, E_Anonymous_Access_Type);
19763 end if;
19765 Set_Is_Local_Anonymous_Access (Anon_Access);
19766 end if;
19768 Next (Comp);
19769 end loop;
19771 if Present (Variant_Part (Comp_List)) then
19772 declare
19773 V : Node_Id;
19774 begin
19775 V := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
19776 while Present (V) loop
19777 Check_Anonymous_Access_Components
19778 (Typ_Decl, Typ, Prev, Component_List (V));
19779 Next_Non_Pragma (V);
19780 end loop;
19781 end;
19782 end if;
19783 end Check_Anonymous_Access_Components;
19785 ----------------------------------
19786 -- Preanalyze_Assert_Expression --
19787 ----------------------------------
19789 procedure Preanalyze_Assert_Expression (N : Node_Id; T : Entity_Id) is
19790 begin
19791 In_Assertion_Expr := In_Assertion_Expr + 1;
19792 Preanalyze_Spec_Expression (N, T);
19793 In_Assertion_Expr := In_Assertion_Expr - 1;
19794 end Preanalyze_Assert_Expression;
19796 --------------------------------
19797 -- Preanalyze_Spec_Expression --
19798 --------------------------------
19800 procedure Preanalyze_Spec_Expression (N : Node_Id; T : Entity_Id) is
19801 Save_In_Spec_Expression : constant Boolean := In_Spec_Expression;
19802 begin
19803 In_Spec_Expression := True;
19804 Preanalyze_And_Resolve (N, T);
19805 In_Spec_Expression := Save_In_Spec_Expression;
19806 end Preanalyze_Spec_Expression;
19808 -----------------------------
19809 -- Record_Type_Declaration --
19810 -----------------------------
19812 procedure Record_Type_Declaration
19813 (T : Entity_Id;
19814 N : Node_Id;
19815 Prev : Entity_Id)
19817 Def : constant Node_Id := Type_Definition (N);
19818 Is_Tagged : Boolean;
19819 Tag_Comp : Entity_Id;
19821 begin
19822 -- These flags must be initialized before calling Process_Discriminants
19823 -- because this routine makes use of them.
19825 Set_Ekind (T, E_Record_Type);
19826 Set_Etype (T, T);
19827 Init_Size_Align (T);
19828 Set_Interfaces (T, No_Elist);
19829 Set_Stored_Constraint (T, No_Elist);
19831 -- Normal case
19833 if Ada_Version < Ada_2005
19834 or else not Interface_Present (Def)
19835 then
19836 if Limited_Present (Def) then
19837 Check_SPARK_Restriction ("limited is not allowed", N);
19838 end if;
19840 if Abstract_Present (Def) then
19841 Check_SPARK_Restriction ("abstract is not allowed", N);
19842 end if;
19844 -- The flag Is_Tagged_Type might have already been set by
19845 -- Find_Type_Name if it detected an error for declaration T. This
19846 -- arises in the case of private tagged types where the full view
19847 -- omits the word tagged.
19849 Is_Tagged :=
19850 Tagged_Present (Def)
19851 or else (Serious_Errors_Detected > 0 and then Is_Tagged_Type (T));
19853 Set_Is_Tagged_Type (T, Is_Tagged);
19854 Set_Is_Limited_Record (T, Limited_Present (Def));
19856 -- Type is abstract if full declaration carries keyword, or if
19857 -- previous partial view did.
19859 Set_Is_Abstract_Type (T, Is_Abstract_Type (T)
19860 or else Abstract_Present (Def));
19862 else
19863 Check_SPARK_Restriction ("interface is not allowed", N);
19865 Is_Tagged := True;
19866 Analyze_Interface_Declaration (T, Def);
19868 if Present (Discriminant_Specifications (N)) then
19869 Error_Msg_N
19870 ("interface types cannot have discriminants",
19871 Defining_Identifier
19872 (First (Discriminant_Specifications (N))));
19873 end if;
19874 end if;
19876 -- First pass: if there are self-referential access components,
19877 -- create the required anonymous access type declarations, and if
19878 -- need be an incomplete type declaration for T itself.
19880 Check_Anonymous_Access_Components (N, T, Prev, Component_List (Def));
19882 if Ada_Version >= Ada_2005
19883 and then Present (Interface_List (Def))
19884 then
19885 Check_Interfaces (N, Def);
19887 declare
19888 Ifaces_List : Elist_Id;
19890 begin
19891 -- Ada 2005 (AI-251): Collect the list of progenitors that are not
19892 -- already in the parents.
19894 Collect_Interfaces
19895 (T => T,
19896 Ifaces_List => Ifaces_List,
19897 Exclude_Parents => True);
19899 Set_Interfaces (T, Ifaces_List);
19900 end;
19901 end if;
19903 -- Records constitute a scope for the component declarations within.
19904 -- The scope is created prior to the processing of these declarations.
19905 -- Discriminants are processed first, so that they are visible when
19906 -- processing the other components. The Ekind of the record type itself
19907 -- is set to E_Record_Type (subtypes appear as E_Record_Subtype).
19909 -- Enter record scope
19911 Push_Scope (T);
19913 -- If an incomplete or private type declaration was already given for
19914 -- the type, then this scope already exists, and the discriminants have
19915 -- been declared within. We must verify that the full declaration
19916 -- matches the incomplete one.
19918 Check_Or_Process_Discriminants (N, T, Prev);
19920 Set_Is_Constrained (T, not Has_Discriminants (T));
19921 Set_Has_Delayed_Freeze (T, True);
19923 -- For tagged types add a manually analyzed component corresponding
19924 -- to the component _tag, the corresponding piece of tree will be
19925 -- expanded as part of the freezing actions if it is not a CPP_Class.
19927 if Is_Tagged then
19929 -- Do not add the tag unless we are in expansion mode
19931 if Expander_Active then
19932 Tag_Comp := Make_Defining_Identifier (Sloc (Def), Name_uTag);
19933 Enter_Name (Tag_Comp);
19935 Set_Ekind (Tag_Comp, E_Component);
19936 Set_Is_Tag (Tag_Comp);
19937 Set_Is_Aliased (Tag_Comp);
19938 Set_Etype (Tag_Comp, RTE (RE_Tag));
19939 Set_DT_Entry_Count (Tag_Comp, No_Uint);
19940 Set_Original_Record_Component (Tag_Comp, Tag_Comp);
19941 Init_Component_Location (Tag_Comp);
19943 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
19944 -- implemented interfaces.
19946 if Has_Interfaces (T) then
19947 Add_Interface_Tag_Components (N, T);
19948 end if;
19949 end if;
19951 Make_Class_Wide_Type (T);
19952 Set_Direct_Primitive_Operations (T, New_Elmt_List);
19953 end if;
19955 -- We must suppress range checks when processing record components in
19956 -- the presence of discriminants, since we don't want spurious checks to
19957 -- be generated during their analysis, but Suppress_Range_Checks flags
19958 -- must be reset the after processing the record definition.
19960 -- Note: this is the only use of Kill_Range_Checks, and is a bit odd,
19961 -- couldn't we just use the normal range check suppression method here.
19962 -- That would seem cleaner ???
19964 if Has_Discriminants (T) and then not Range_Checks_Suppressed (T) then
19965 Set_Kill_Range_Checks (T, True);
19966 Record_Type_Definition (Def, Prev);
19967 Set_Kill_Range_Checks (T, False);
19968 else
19969 Record_Type_Definition (Def, Prev);
19970 end if;
19972 -- Exit from record scope
19974 End_Scope;
19976 -- Ada 2005 (AI-251 and AI-345): Derive the interface subprograms of all
19977 -- the implemented interfaces and associate them an aliased entity.
19979 if Is_Tagged
19980 and then not Is_Empty_List (Interface_List (Def))
19981 then
19982 Derive_Progenitor_Subprograms (T, T);
19983 end if;
19985 Check_Function_Writable_Actuals (N);
19986 end Record_Type_Declaration;
19988 ----------------------------
19989 -- Record_Type_Definition --
19990 ----------------------------
19992 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id) is
19993 Component : Entity_Id;
19994 Ctrl_Components : Boolean := False;
19995 Final_Storage_Only : Boolean;
19996 T : Entity_Id;
19998 begin
19999 if Ekind (Prev_T) = E_Incomplete_Type then
20000 T := Full_View (Prev_T);
20001 else
20002 T := Prev_T;
20003 end if;
20005 -- In SPARK, tagged types and type extensions may only be declared in
20006 -- the specification of library unit packages.
20008 if Present (Def) and then Is_Tagged_Type (T) then
20009 declare
20010 Typ : Node_Id;
20011 Ctxt : Node_Id;
20013 begin
20014 if Nkind (Parent (Def)) = N_Full_Type_Declaration then
20015 Typ := Parent (Def);
20016 else
20017 pragma Assert
20018 (Nkind (Parent (Def)) = N_Derived_Type_Definition);
20019 Typ := Parent (Parent (Def));
20020 end if;
20022 Ctxt := Parent (Typ);
20024 if Nkind (Ctxt) = N_Package_Body
20025 and then Nkind (Parent (Ctxt)) = N_Compilation_Unit
20026 then
20027 Check_SPARK_Restriction
20028 ("type should be defined in package specification", Typ);
20030 elsif Nkind (Ctxt) /= N_Package_Specification
20031 or else Nkind (Parent (Parent (Ctxt))) /= N_Compilation_Unit
20032 then
20033 Check_SPARK_Restriction
20034 ("type should be defined in library unit package", Typ);
20035 end if;
20036 end;
20037 end if;
20039 Final_Storage_Only := not Is_Controlled (T);
20041 -- Ada 2005: check whether an explicit Limited is present in a derived
20042 -- type declaration.
20044 if Nkind (Parent (Def)) = N_Derived_Type_Definition
20045 and then Limited_Present (Parent (Def))
20046 then
20047 Set_Is_Limited_Record (T);
20048 end if;
20050 -- If the component list of a record type is defined by the reserved
20051 -- word null and there is no discriminant part, then the record type has
20052 -- no components and all records of the type are null records (RM 3.7)
20053 -- This procedure is also called to process the extension part of a
20054 -- record extension, in which case the current scope may have inherited
20055 -- components.
20057 if No (Def)
20058 or else No (Component_List (Def))
20059 or else Null_Present (Component_List (Def))
20060 then
20061 if not Is_Tagged_Type (T) then
20062 Check_SPARK_Restriction ("non-tagged record cannot be null", Def);
20063 end if;
20065 else
20066 Analyze_Declarations (Component_Items (Component_List (Def)));
20068 if Present (Variant_Part (Component_List (Def))) then
20069 Check_SPARK_Restriction ("variant part is not allowed", Def);
20070 Analyze (Variant_Part (Component_List (Def)));
20071 end if;
20072 end if;
20074 -- After completing the semantic analysis of the record definition,
20075 -- record components, both new and inherited, are accessible. Set their
20076 -- kind accordingly. Exclude malformed itypes from illegal declarations,
20077 -- whose Ekind may be void.
20079 Component := First_Entity (Current_Scope);
20080 while Present (Component) loop
20081 if Ekind (Component) = E_Void
20082 and then not Is_Itype (Component)
20083 then
20084 Set_Ekind (Component, E_Component);
20085 Init_Component_Location (Component);
20086 end if;
20088 if Has_Task (Etype (Component)) then
20089 Set_Has_Task (T);
20090 end if;
20092 if Ekind (Component) /= E_Component then
20093 null;
20095 -- Do not set Has_Controlled_Component on a class-wide equivalent
20096 -- type. See Make_CW_Equivalent_Type.
20098 elsif not Is_Class_Wide_Equivalent_Type (T)
20099 and then (Has_Controlled_Component (Etype (Component))
20100 or else (Chars (Component) /= Name_uParent
20101 and then Is_Controlled (Etype (Component))))
20102 then
20103 Set_Has_Controlled_Component (T, True);
20104 Final_Storage_Only :=
20105 Final_Storage_Only
20106 and then Finalize_Storage_Only (Etype (Component));
20107 Ctrl_Components := True;
20108 end if;
20110 Next_Entity (Component);
20111 end loop;
20113 -- A Type is Finalize_Storage_Only only if all its controlled components
20114 -- are also.
20116 if Ctrl_Components then
20117 Set_Finalize_Storage_Only (T, Final_Storage_Only);
20118 end if;
20120 -- Place reference to end record on the proper entity, which may
20121 -- be a partial view.
20123 if Present (Def) then
20124 Process_End_Label (Def, 'e', Prev_T);
20125 end if;
20126 end Record_Type_Definition;
20128 ------------------------
20129 -- Replace_Components --
20130 ------------------------
20132 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id) is
20133 function Process (N : Node_Id) return Traverse_Result;
20135 -------------
20136 -- Process --
20137 -------------
20139 function Process (N : Node_Id) return Traverse_Result is
20140 Comp : Entity_Id;
20142 begin
20143 if Nkind (N) = N_Discriminant_Specification then
20144 Comp := First_Discriminant (Typ);
20145 while Present (Comp) loop
20146 if Chars (Comp) = Chars (Defining_Identifier (N)) then
20147 Set_Defining_Identifier (N, Comp);
20148 exit;
20149 end if;
20151 Next_Discriminant (Comp);
20152 end loop;
20154 elsif Nkind (N) = N_Component_Declaration then
20155 Comp := First_Component (Typ);
20156 while Present (Comp) loop
20157 if Chars (Comp) = Chars (Defining_Identifier (N)) then
20158 Set_Defining_Identifier (N, Comp);
20159 exit;
20160 end if;
20162 Next_Component (Comp);
20163 end loop;
20164 end if;
20166 return OK;
20167 end Process;
20169 procedure Replace is new Traverse_Proc (Process);
20171 -- Start of processing for Replace_Components
20173 begin
20174 Replace (Decl);
20175 end Replace_Components;
20177 -------------------------------
20178 -- Set_Completion_Referenced --
20179 -------------------------------
20181 procedure Set_Completion_Referenced (E : Entity_Id) is
20182 begin
20183 -- If in main unit, mark entity that is a completion as referenced,
20184 -- warnings go on the partial view when needed.
20186 if In_Extended_Main_Source_Unit (E) then
20187 Set_Referenced (E);
20188 end if;
20189 end Set_Completion_Referenced;
20191 ---------------------
20192 -- Set_Fixed_Range --
20193 ---------------------
20195 -- The range for fixed-point types is complicated by the fact that we
20196 -- do not know the exact end points at the time of the declaration. This
20197 -- is true for three reasons:
20199 -- A size clause may affect the fudging of the end-points.
20200 -- A small clause may affect the values of the end-points.
20201 -- We try to include the end-points if it does not affect the size.
20203 -- This means that the actual end-points must be established at the
20204 -- point when the type is frozen. Meanwhile, we first narrow the range
20205 -- as permitted (so that it will fit if necessary in a small specified
20206 -- size), and then build a range subtree with these narrowed bounds.
20207 -- Set_Fixed_Range constructs the range from real literal values, and
20208 -- sets the range as the Scalar_Range of the given fixed-point type entity.
20210 -- The parent of this range is set to point to the entity so that it is
20211 -- properly hooked into the tree (unlike normal Scalar_Range entries for
20212 -- other scalar types, which are just pointers to the range in the
20213 -- original tree, this would otherwise be an orphan).
20215 -- The tree is left unanalyzed. When the type is frozen, the processing
20216 -- in Freeze.Freeze_Fixed_Point_Type notices that the range is not
20217 -- analyzed, and uses this as an indication that it should complete
20218 -- work on the range (it will know the final small and size values).
20220 procedure Set_Fixed_Range
20221 (E : Entity_Id;
20222 Loc : Source_Ptr;
20223 Lo : Ureal;
20224 Hi : Ureal)
20226 S : constant Node_Id :=
20227 Make_Range (Loc,
20228 Low_Bound => Make_Real_Literal (Loc, Lo),
20229 High_Bound => Make_Real_Literal (Loc, Hi));
20230 begin
20231 Set_Scalar_Range (E, S);
20232 Set_Parent (S, E);
20234 -- Before the freeze point, the bounds of a fixed point are universal
20235 -- and carry the corresponding type.
20237 Set_Etype (Low_Bound (S), Universal_Real);
20238 Set_Etype (High_Bound (S), Universal_Real);
20239 end Set_Fixed_Range;
20241 ----------------------------------
20242 -- Set_Scalar_Range_For_Subtype --
20243 ----------------------------------
20245 procedure Set_Scalar_Range_For_Subtype
20246 (Def_Id : Entity_Id;
20247 R : Node_Id;
20248 Subt : Entity_Id)
20250 Kind : constant Entity_Kind := Ekind (Def_Id);
20252 begin
20253 -- Defend against previous error
20255 if Nkind (R) = N_Error then
20256 return;
20257 end if;
20259 Set_Scalar_Range (Def_Id, R);
20261 -- We need to link the range into the tree before resolving it so
20262 -- that types that are referenced, including importantly the subtype
20263 -- itself, are properly frozen (Freeze_Expression requires that the
20264 -- expression be properly linked into the tree). Of course if it is
20265 -- already linked in, then we do not disturb the current link.
20267 if No (Parent (R)) then
20268 Set_Parent (R, Def_Id);
20269 end if;
20271 -- Reset the kind of the subtype during analysis of the range, to
20272 -- catch possible premature use in the bounds themselves.
20274 Set_Ekind (Def_Id, E_Void);
20275 Process_Range_Expr_In_Decl (R, Subt);
20276 Set_Ekind (Def_Id, Kind);
20277 end Set_Scalar_Range_For_Subtype;
20279 --------------------------------------------------------
20280 -- Set_Stored_Constraint_From_Discriminant_Constraint --
20281 --------------------------------------------------------
20283 procedure Set_Stored_Constraint_From_Discriminant_Constraint
20284 (E : Entity_Id)
20286 begin
20287 -- Make sure set if encountered during Expand_To_Stored_Constraint
20289 Set_Stored_Constraint (E, No_Elist);
20291 -- Give it the right value
20293 if Is_Constrained (E) and then Has_Discriminants (E) then
20294 Set_Stored_Constraint (E,
20295 Expand_To_Stored_Constraint (E, Discriminant_Constraint (E)));
20296 end if;
20297 end Set_Stored_Constraint_From_Discriminant_Constraint;
20299 -------------------------------------
20300 -- Signed_Integer_Type_Declaration --
20301 -------------------------------------
20303 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id) is
20304 Implicit_Base : Entity_Id;
20305 Base_Typ : Entity_Id;
20306 Lo_Val : Uint;
20307 Hi_Val : Uint;
20308 Errs : Boolean := False;
20309 Lo : Node_Id;
20310 Hi : Node_Id;
20312 function Can_Derive_From (E : Entity_Id) return Boolean;
20313 -- Determine whether given bounds allow derivation from specified type
20315 procedure Check_Bound (Expr : Node_Id);
20316 -- Check bound to make sure it is integral and static. If not, post
20317 -- appropriate error message and set Errs flag
20319 ---------------------
20320 -- Can_Derive_From --
20321 ---------------------
20323 -- Note we check both bounds against both end values, to deal with
20324 -- strange types like ones with a range of 0 .. -12341234.
20326 function Can_Derive_From (E : Entity_Id) return Boolean is
20327 Lo : constant Uint := Expr_Value (Type_Low_Bound (E));
20328 Hi : constant Uint := Expr_Value (Type_High_Bound (E));
20329 begin
20330 return Lo <= Lo_Val and then Lo_Val <= Hi
20331 and then
20332 Lo <= Hi_Val and then Hi_Val <= Hi;
20333 end Can_Derive_From;
20335 -----------------
20336 -- Check_Bound --
20337 -----------------
20339 procedure Check_Bound (Expr : Node_Id) is
20340 begin
20341 -- If a range constraint is used as an integer type definition, each
20342 -- bound of the range must be defined by a static expression of some
20343 -- integer type, but the two bounds need not have the same integer
20344 -- type (Negative bounds are allowed.) (RM 3.5.4)
20346 if not Is_Integer_Type (Etype (Expr)) then
20347 Error_Msg_N
20348 ("integer type definition bounds must be of integer type", Expr);
20349 Errs := True;
20351 elsif not Is_OK_Static_Expression (Expr) then
20352 Flag_Non_Static_Expr
20353 ("non-static expression used for integer type bound!", Expr);
20354 Errs := True;
20356 -- The bounds are folded into literals, and we set their type to be
20357 -- universal, to avoid typing difficulties: we cannot set the type
20358 -- of the literal to the new type, because this would be a forward
20359 -- reference for the back end, and if the original type is user-
20360 -- defined this can lead to spurious semantic errors (e.g. 2928-003).
20362 else
20363 if Is_Entity_Name (Expr) then
20364 Fold_Uint (Expr, Expr_Value (Expr), True);
20365 end if;
20367 Set_Etype (Expr, Universal_Integer);
20368 end if;
20369 end Check_Bound;
20371 -- Start of processing for Signed_Integer_Type_Declaration
20373 begin
20374 -- Create an anonymous base type
20376 Implicit_Base :=
20377 Create_Itype (E_Signed_Integer_Type, Parent (Def), T, 'B');
20379 -- Analyze and check the bounds, they can be of any integer type
20381 Lo := Low_Bound (Def);
20382 Hi := High_Bound (Def);
20384 -- Arbitrarily use Integer as the type if either bound had an error
20386 if Hi = Error or else Lo = Error then
20387 Base_Typ := Any_Integer;
20388 Set_Error_Posted (T, True);
20390 -- Here both bounds are OK expressions
20392 else
20393 Analyze_And_Resolve (Lo, Any_Integer);
20394 Analyze_And_Resolve (Hi, Any_Integer);
20396 Check_Bound (Lo);
20397 Check_Bound (Hi);
20399 if Errs then
20400 Hi := Type_High_Bound (Standard_Long_Long_Integer);
20401 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
20402 end if;
20404 -- Find type to derive from
20406 Lo_Val := Expr_Value (Lo);
20407 Hi_Val := Expr_Value (Hi);
20409 if Can_Derive_From (Standard_Short_Short_Integer) then
20410 Base_Typ := Base_Type (Standard_Short_Short_Integer);
20412 elsif Can_Derive_From (Standard_Short_Integer) then
20413 Base_Typ := Base_Type (Standard_Short_Integer);
20415 elsif Can_Derive_From (Standard_Integer) then
20416 Base_Typ := Base_Type (Standard_Integer);
20418 elsif Can_Derive_From (Standard_Long_Integer) then
20419 Base_Typ := Base_Type (Standard_Long_Integer);
20421 elsif Can_Derive_From (Standard_Long_Long_Integer) then
20422 Base_Typ := Base_Type (Standard_Long_Long_Integer);
20424 else
20425 Base_Typ := Base_Type (Standard_Long_Long_Integer);
20426 Error_Msg_N ("integer type definition bounds out of range", Def);
20427 Hi := Type_High_Bound (Standard_Long_Long_Integer);
20428 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
20429 end if;
20430 end if;
20432 -- Complete both implicit base and declared first subtype entities
20434 Set_Etype (Implicit_Base, Base_Typ);
20435 Set_Size_Info (Implicit_Base, (Base_Typ));
20436 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
20437 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
20439 Set_Ekind (T, E_Signed_Integer_Subtype);
20440 Set_Etype (T, Implicit_Base);
20442 -- In formal verification mode, restrict the base type's range to the
20443 -- minimum allowed by RM 3.5.4, namely the smallest symmetric range
20444 -- around zero with a possible extra negative value that contains the
20445 -- subtype range. Keep Size, RM_Size and First_Rep_Item info, which
20446 -- should not be relied upon in formal verification.
20448 if SPARK_Strict_Mode then
20449 declare
20450 Sym_Hi_Val : Uint;
20451 Sym_Lo_Val : Uint;
20452 Dloc : constant Source_Ptr := Sloc (Def);
20453 Lbound : Node_Id;
20454 Ubound : Node_Id;
20455 Bounds : Node_Id;
20457 begin
20458 -- If the subtype range is empty, the smallest base type range
20459 -- is the symmetric range around zero containing Lo_Val and
20460 -- Hi_Val.
20462 if UI_Gt (Lo_Val, Hi_Val) then
20463 Sym_Hi_Val := UI_Max (UI_Abs (Lo_Val), UI_Abs (Hi_Val));
20464 Sym_Lo_Val := UI_Negate (Sym_Hi_Val);
20466 -- Otherwise, if the subtype range is not empty and Hi_Val has
20467 -- the largest absolute value, Hi_Val is non negative and the
20468 -- smallest base type range is the symmetric range around zero
20469 -- containing Hi_Val.
20471 elsif UI_Le (UI_Abs (Lo_Val), UI_Abs (Hi_Val)) then
20472 Sym_Hi_Val := Hi_Val;
20473 Sym_Lo_Val := UI_Negate (Hi_Val);
20475 -- Otherwise, the subtype range is not empty, Lo_Val has the
20476 -- strictly largest absolute value, Lo_Val is negative and the
20477 -- smallest base type range is the symmetric range around zero
20478 -- with an extra negative value Lo_Val.
20480 else
20481 Sym_Lo_Val := Lo_Val;
20482 Sym_Hi_Val := UI_Sub (UI_Negate (Lo_Val), Uint_1);
20483 end if;
20485 Lbound := Make_Integer_Literal (Dloc, Sym_Lo_Val);
20486 Ubound := Make_Integer_Literal (Dloc, Sym_Hi_Val);
20487 Set_Is_Static_Expression (Lbound);
20488 Set_Is_Static_Expression (Ubound);
20489 Analyze_And_Resolve (Lbound, Any_Integer);
20490 Analyze_And_Resolve (Ubound, Any_Integer);
20492 Bounds := Make_Range (Dloc, Lbound, Ubound);
20493 Set_Etype (Bounds, Base_Typ);
20495 Set_Scalar_Range (Implicit_Base, Bounds);
20496 end;
20498 else
20499 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
20500 end if;
20502 Set_Size_Info (T, (Implicit_Base));
20503 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
20504 Set_Scalar_Range (T, Def);
20505 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
20506 Set_Is_Constrained (T);
20507 end Signed_Integer_Type_Declaration;
20509 end Sem_Ch3;