ada: Further cleanup in finalization machinery
[official-gcc.git] / gcc / ada / exp_fixd.adb
blobb7a996ab6151db621dd22193d03129ae74f00dc9
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- E X P _ F I X D --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2023, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Debug; use Debug;
29 with Einfo; use Einfo;
30 with Einfo.Entities; use Einfo.Entities;
31 with Einfo.Utils; use Einfo.Utils;
32 with Exp_Util; use Exp_Util;
33 with Nlists; use Nlists;
34 with Nmake; use Nmake;
35 with Restrict; use Restrict;
36 with Rident; use Rident;
37 with Rtsfind; use Rtsfind;
38 with Sem; use Sem;
39 with Sem_Eval; use Sem_Eval;
40 with Sem_Res; use Sem_Res;
41 with Sem_Util; use Sem_Util;
42 with Sinfo; use Sinfo;
43 with Sinfo.Nodes; use Sinfo.Nodes;
44 with Stand; use Stand;
45 with Tbuild; use Tbuild;
46 with Ttypes; use Ttypes;
47 with Uintp; use Uintp;
48 with Urealp; use Urealp;
50 package body Exp_Fixd is
52 -----------------------
53 -- Local Subprograms --
54 -----------------------
56 -- General note; in this unit, a number of routines are driven by the
57 -- types (Etype) of their operands. Since we are dealing with unanalyzed
58 -- expressions as they are constructed, the Etypes would not normally be
59 -- set, but the construction routines that we use in this unit do in fact
60 -- set the Etype values correctly. In addition, setting the Etype ensures
61 -- that the analyzer does not try to redetermine the type when the node
62 -- is analyzed (which would be wrong, since in the case where we set the
63 -- Conversion_OK flag, it would think it was still dealing with a normal
64 -- fixed-point operation and mess it up).
66 function Build_Conversion
67 (N : Node_Id;
68 Typ : Entity_Id;
69 Expr : Node_Id;
70 Rchk : Boolean := False;
71 Trunc : Boolean := False) return Node_Id;
72 -- Build an expression that converts the expression Expr to type Typ,
73 -- taking the source location from Sloc (N). If the conversions involve
74 -- fixed-point types, then the Conversion_OK flag will be set so that the
75 -- resulting conversions do not get re-expanded. On return, the resulting
76 -- node has its Etype set. If Rchk is set, then Do_Range_Check is set
77 -- in the resulting conversion node. If Trunc is set, then the
78 -- Float_Truncate flag is set on the conversion, which must be from
79 -- a floating-point type to an integer type.
81 function Build_Divide (N : Node_Id; L, R : Node_Id) return Node_Id;
82 -- Builds an N_Op_Divide node from the given left and right operand
83 -- expressions, using the source location from Sloc (N). The operands are
84 -- either both Universal_Real, in which case Build_Divide differs from
85 -- Make_Op_Divide only in that the Etype of the resulting node is set (to
86 -- Universal_Real), or they can be integer or fixed-point types. In this
87 -- case the types need not be the same, and Build_Divide chooses a type
88 -- long enough to hold both operands (i.e. the size of the longer of the
89 -- two operand types), and both operands are converted to this type. The
90 -- Etype of the result is also set to this value. The Rounded_Result flag
91 -- of the result in this case is set from the Rounded_Result flag of node
92 -- N. On return, the resulting node has its Etype set.
94 function Build_Double_Divide
95 (N : Node_Id;
96 X, Y, Z : Node_Id) return Node_Id;
97 -- Returns a node corresponding to the value X/(Y*Z) using the source
98 -- location from Sloc (N). The division is rounded if the Rounded_Result
99 -- flag of N is set. The integer types of X, Y, Z may be different. On
100 -- return, the resulting node has its Etype set.
102 procedure Build_Double_Divide_Code
103 (N : Node_Id;
104 X, Y, Z : Node_Id;
105 Qnn, Rnn : out Entity_Id;
106 Code : out List_Id);
107 -- Generates a sequence of code for determining the quotient and remainder
108 -- of the division X/(Y*Z), using the source location from Sloc (N).
109 -- Entities of appropriate types are allocated for the quotient and
110 -- remainder and returned in Qnn and Rnn. The result is rounded if the
111 -- Rounded_Result flag of N is set. The Etype fields of Qnn and Rnn are
112 -- appropriately set on return.
114 function Build_Multiply (N : Node_Id; L, R : Node_Id) return Node_Id;
115 -- Builds an N_Op_Multiply node from the given left and right operand
116 -- expressions, using the source location from Sloc (N). The operands are
117 -- either both Universal_Real, in which case Build_Multiply differs from
118 -- Make_Op_Multiply only in that the Etype of the resulting node is set (to
119 -- Universal_Real), or they can be integer or fixed-point types. In this
120 -- case the types need not be the same, and Build_Multiply chooses a type
121 -- long enough to hold the product and both operands are converted to this
122 -- type. The type of the result is also set to this value. On return, the
123 -- resulting node has its Etype set.
125 function Build_Rem (N : Node_Id; L, R : Node_Id) return Node_Id;
126 -- Builds an N_Op_Rem node from the given left and right operand
127 -- expressions, using the source location from Sloc (N). The operands are
128 -- both integer types, which need not be the same. Build_Rem converts the
129 -- operand with the smaller sized type to match the type of the other
130 -- operand and sets this as the result type. The result is never rounded
131 -- (rem operations cannot be rounded in any case). On return, the resulting
132 -- node has its Etype set.
134 function Build_Scaled_Divide
135 (N : Node_Id;
136 X, Y, Z : Node_Id) return Node_Id;
137 -- Returns a node corresponding to the value X*Y/Z using the source
138 -- location from Sloc (N). The division is rounded if the Rounded_Result
139 -- flag of N is set. The integer types of X, Y, Z may be different. On
140 -- return the resulting node has its Etype set.
142 procedure Build_Scaled_Divide_Code
143 (N : Node_Id;
144 X, Y, Z : Node_Id;
145 Qnn, Rnn : out Entity_Id;
146 Code : out List_Id);
147 -- Generates a sequence of code for determining the quotient and remainder
148 -- of the division X*Y/Z, using the source location from Sloc (N). Entities
149 -- of appropriate types are allocated for the quotient and remainder and
150 -- returned in Qnn and Rrr. The integer types for X, Y, Z may be different.
151 -- The division is rounded if the Rounded_Result flag of N is set. The
152 -- Etype fields of Qnn and Rnn are appropriately set on return.
154 procedure Do_Divide_Fixed_Fixed (N : Node_Id);
155 -- Handles expansion of divide for case of two fixed-point operands
156 -- (neither of them universal), with an integer or fixed-point result.
157 -- N is the N_Op_Divide node to be expanded.
159 procedure Do_Divide_Fixed_Universal (N : Node_Id);
160 -- Handles expansion of divide for case of a fixed-point operand divided
161 -- by a universal real operand, with an integer or fixed-point result. N
162 -- is the N_Op_Divide node to be expanded.
164 procedure Do_Divide_Universal_Fixed (N : Node_Id);
165 -- Handles expansion of divide for case of a universal real operand
166 -- divided by a fixed-point operand, with an integer or fixed-point
167 -- result. N is the N_Op_Divide node to be expanded.
169 procedure Do_Multiply_Fixed_Fixed (N : Node_Id);
170 -- Handles expansion of multiply for case of two fixed-point operands
171 -- (neither of them universal), with an integer or fixed-point result.
172 -- N is the N_Op_Multiply node to be expanded.
174 procedure Do_Multiply_Fixed_Universal (N : Node_Id; Left, Right : Node_Id);
175 -- Handles expansion of multiply for case of a fixed-point operand
176 -- multiplied by a universal real operand, with an integer or fixed-
177 -- point result. N is the N_Op_Multiply node to be expanded, and
178 -- Left, Right are the operands (which may have been switched).
180 procedure Expand_Convert_Fixed_Static (N : Node_Id);
181 -- This routine is called where the node N is a conversion of a literal
182 -- or other static expression of a fixed-point type to some other type.
183 -- In such cases, we simply rewrite the operand as a real literal and
184 -- reanalyze. This avoids problems which would otherwise result from
185 -- attempting to build and fold expressions involving constants.
187 function Fpt_Value (N : Node_Id) return Node_Id;
188 -- Given an operand of fixed-point operation, return an expression that
189 -- represents the corresponding Universal_Real value. The expression
190 -- can be of integer type, floating-point type, or fixed-point type.
191 -- The expression returned is neither analyzed nor resolved. The Etype
192 -- of the result is properly set (to Universal_Real).
194 function Get_Size_For_Value (V : Uint) return Pos;
195 -- Given a non-negative universal integer value, return the size of a small
196 -- signed integer type covering -V .. V, or Pos'Max if no such type exists.
198 function Get_Type_For_Size (Siz : Pos; Force : Boolean) return Entity_Id;
199 -- Return the smallest signed integer type containing at least Siz bits.
200 -- If no such type exists, return Empty if Force is False or the largest
201 -- signed integer type if Force is True.
203 function Integer_Literal
204 (N : Node_Id;
205 V : Uint;
206 Negative : Boolean := False) return Node_Id;
207 -- Given a non-negative universal integer value, build a typed integer
208 -- literal node, using the smallest applicable standard integer type.
209 -- If Negative is true, then a negative literal is built. If V exceeds
210 -- 2**(System_Max_Integer_Size - 1) - 1, the largest value allowed for
211 -- perfect result set scaling factors (see RM G.2.3(22)), then Empty is
212 -- returned. The node N provides the Sloc value for the constructed
213 -- literal. The Etype of the resulting literal is correctly set, and it
214 -- is marked as analyzed.
216 function Real_Literal (N : Node_Id; V : Ureal) return Node_Id;
217 -- Build a real literal node from the given value, the Etype of the
218 -- returned node is set to Universal_Real, since all floating-point
219 -- arithmetic operations that we construct use Universal_Real
221 function Rounded_Result_Set (N : Node_Id) return Boolean;
222 -- Returns True if N is a node that contains the Rounded_Result flag
223 -- and if the flag is true or the target type is an integer type.
225 procedure Set_Result
226 (N : Node_Id;
227 Expr : Node_Id;
228 Rchk : Boolean := False;
229 Trunc : Boolean := False);
230 -- N is the node for the current conversion, division or multiplication
231 -- operation, and Expr is an expression representing the result. Expr may
232 -- be of floating-point or integer type. If the operation result is fixed-
233 -- point, then the value of Expr is in units of small of the result type
234 -- (i.e. small's have already been dealt with). The result of the call is
235 -- to replace N by an appropriate conversion to the result type, dealing
236 -- with rounding for the decimal types case. The node is then analyzed and
237 -- resolved using the result type. If Rchk or Trunc are True, then
238 -- respectively Do_Range_Check and Float_Truncate are set in the
239 -- resulting conversion.
241 ----------------------
242 -- Build_Conversion --
243 ----------------------
245 function Build_Conversion
246 (N : Node_Id;
247 Typ : Entity_Id;
248 Expr : Node_Id;
249 Rchk : Boolean := False;
250 Trunc : Boolean := False) return Node_Id
252 Loc : constant Source_Ptr := Sloc (N);
253 Result : Node_Id;
254 Rcheck : Boolean := Rchk;
256 begin
257 -- A special case, if the expression is an integer literal and the
258 -- target type is an integer type, then just retype the integer
259 -- literal to the desired target type. Don't do this if we need
260 -- a range check.
262 if Nkind (Expr) = N_Integer_Literal
263 and then Is_Integer_Type (Typ)
264 and then not Rchk
265 then
266 Result := Expr;
268 -- Cases where we end up with a conversion. Note that we do not use the
269 -- Convert_To abstraction here, since we may be decorating the resulting
270 -- conversion with Rounded_Result and/or Conversion_OK, so we want the
271 -- conversion node present, even if it appears to be redundant.
273 else
274 -- Remove inner conversion if both inner and outer conversions are
275 -- to integer types, since the inner one serves no purpose (except
276 -- perhaps to set rounding, so we preserve the Rounded_Result flag)
277 -- and also preserve the Conversion_OK and Do_Range_Check flags of
278 -- the inner conversion.
280 if Is_Integer_Type (Typ)
281 and then Is_Integer_Type (Etype (Expr))
282 and then Nkind (Expr) = N_Type_Conversion
283 then
284 Result :=
285 Make_Type_Conversion (Loc,
286 Subtype_Mark => New_Occurrence_Of (Typ, Loc),
287 Expression => Expression (Expr));
288 Set_Rounded_Result (Result, Rounded_Result_Set (Expr));
289 Set_Conversion_OK (Result, Conversion_OK (Expr));
290 Rcheck := Rcheck or Do_Range_Check (Expr);
292 -- For all other cases, a simple type conversion will work
294 else
295 Result :=
296 Make_Type_Conversion (Loc,
297 Subtype_Mark => New_Occurrence_Of (Typ, Loc),
298 Expression => Expr);
300 Set_Float_Truncate (Result, Trunc);
301 end if;
303 -- Set Conversion_OK if either result or expression type is a
304 -- fixed-point type, since from a semantic point of view, we are
305 -- treating fixed-point values as integers at this stage.
307 if Is_Fixed_Point_Type (Typ)
308 or else Is_Fixed_Point_Type (Etype (Expression (Result)))
309 then
310 Set_Conversion_OK (Result);
311 end if;
313 -- Set Do_Range_Check if either it was requested by the caller,
314 -- or if an eliminated inner conversion had a range check.
316 if Rcheck then
317 Enable_Range_Check (Result);
318 else
319 Set_Do_Range_Check (Result, False);
320 end if;
321 end if;
323 Set_Etype (Result, Typ);
324 return Result;
325 end Build_Conversion;
327 ------------------
328 -- Build_Divide --
329 ------------------
331 function Build_Divide (N : Node_Id; L, R : Node_Id) return Node_Id is
332 Loc : constant Source_Ptr := Sloc (N);
333 Left_Type : constant Entity_Id := Base_Type (Etype (L));
334 Right_Type : constant Entity_Id := Base_Type (Etype (R));
335 Left_Size : Int;
336 Right_Size : Int;
337 Result_Type : Entity_Id;
338 Rnode : Node_Id;
340 begin
341 -- Deal with floating-point case first
343 if Is_Floating_Point_Type (Left_Type) then
344 pragma Assert (Left_Type = Universal_Real);
345 pragma Assert (Right_Type = Universal_Real);
347 Rnode := Make_Op_Divide (Loc, L, R);
348 Result_Type := Universal_Real;
350 -- Integer and fixed-point cases
352 else
353 -- An optimization. If the right operand is the literal 1, then we
354 -- can just return the left hand operand. Putting the optimization
355 -- here allows us to omit the check at the call site.
357 if Nkind (R) = N_Integer_Literal and then Intval (R) = 1 then
358 return L;
359 end if;
361 -- Otherwise we need to figure out the correct result type size
362 -- First figure out the effective sizes of the operands. Normally
363 -- the effective size of an operand is the RM_Size of the operand.
364 -- But a special case arises with operands whose size is known at
365 -- compile time. In this case, we can use the actual value of the
366 -- operand to get a size if it would fit in a small signed integer.
368 Left_Size := UI_To_Int (RM_Size (Left_Type));
370 if Compile_Time_Known_Value (L) then
371 declare
372 Siz : constant Int :=
373 Get_Size_For_Value (UI_Abs (Expr_Value (L)));
374 begin
375 if Siz < Left_Size then
376 Left_Size := Siz;
377 end if;
378 end;
379 end if;
381 Right_Size := UI_To_Int (RM_Size (Right_Type));
383 if Compile_Time_Known_Value (R) then
384 declare
385 Siz : constant Int :=
386 Get_Size_For_Value (UI_Abs (Expr_Value (R)));
387 begin
388 if Siz < Right_Size then
389 Right_Size := Siz;
390 end if;
391 end;
392 end if;
394 -- Do the operation using the longer of the two sizes
396 Result_Type :=
397 Get_Type_For_Size (Int'Max (Left_Size, Right_Size), Force => True);
399 Rnode :=
400 Make_Op_Divide (Loc,
401 Left_Opnd => Build_Conversion (N, Result_Type, L),
402 Right_Opnd => Build_Conversion (N, Result_Type, R));
403 end if;
405 -- We now have a divide node built with Result_Type set. First
406 -- set Etype of result, as required for all Build_xxx routines
408 Set_Etype (Rnode, Base_Type (Result_Type));
410 -- The result is rounded if the target of the operation is decimal
411 -- and Rounded_Result is set, or if the target of the operation
412 -- is an integer type, as determined by Rounded_Result_Set.
414 Set_Rounded_Result (Rnode, Rounded_Result_Set (N));
416 -- One more check. We did the divide operation using the longer of
417 -- the two sizes, which is reasonable. However, in the case where the
418 -- two types have unequal sizes, it is impossible for the result of
419 -- a divide operation to be larger than the dividend, so we can put
420 -- a conversion round the result to keep the evolving operation size
421 -- as small as possible.
423 if not Is_Floating_Point_Type (Left_Type) then
424 Rnode := Build_Conversion (N, Left_Type, Rnode);
425 end if;
427 return Rnode;
428 end Build_Divide;
430 -------------------------
431 -- Build_Double_Divide --
432 -------------------------
434 function Build_Double_Divide
435 (N : Node_Id;
436 X, Y, Z : Node_Id) return Node_Id
438 X_Size : constant Nat := UI_To_Int (RM_Size (Etype (X)));
439 Y_Size : constant Nat := UI_To_Int (RM_Size (Etype (Y)));
440 Z_Size : constant Nat := UI_To_Int (RM_Size (Etype (Z)));
441 D_Size : constant Nat := Y_Size + Z_Size;
442 M_Size : constant Nat := Nat'Max (X_Size, Nat'Max (Y_Size, Z_Size));
443 Expr : Node_Id;
445 begin
446 -- If the denominator fits in Max_Integer_Size bits, we can build the
447 -- operations directly without causing any intermediate overflow. But
448 -- for backward compatibility reasons, we use a 128-bit divide only
449 -- if one of the operands is already larger than 64 bits.
451 if D_Size <= System_Max_Integer_Size
452 and then (D_Size <= 64 or else M_Size > 64)
453 then
454 return Build_Divide (N, X, Build_Multiply (N, Y, Z));
456 -- Otherwise we use the runtime routine
458 -- [Qnn : Interfaces.Integer_{64|128};
459 -- Rnn : Interfaces.Integer_{64|128};
460 -- Double_Divide{64|128} (X, Y, Z, Qnn, Rnn, Round);
461 -- Qnn]
463 else
464 declare
465 Loc : constant Source_Ptr := Sloc (N);
466 Qnn : Entity_Id;
467 Rnn : Entity_Id;
468 Code : List_Id;
470 pragma Warnings (Off, Rnn);
472 begin
473 Build_Double_Divide_Code (N, X, Y, Z, Qnn, Rnn, Code);
474 Insert_Actions (N, Code);
475 Expr := New_Occurrence_Of (Qnn, Loc);
477 -- Set type of result in case used elsewhere (see note at start)
479 Set_Etype (Expr, Etype (Qnn));
481 -- Set result as analyzed (see note at start on build routines)
483 return Expr;
484 end;
485 end if;
486 end Build_Double_Divide;
488 ------------------------------
489 -- Build_Double_Divide_Code --
490 ------------------------------
492 -- If the denominator can be computed in Max_Integer_Size bits, we build
494 -- [Nnn : constant typ := typ (X);
495 -- Dnn : constant typ := typ (Y) * typ (Z)
496 -- Qnn : constant typ := Nnn / Dnn;
497 -- Rnn : constant typ := Nnn rem Dnn;
499 -- If the denominator cannot be computed in Max_Integer_Size bits, we build
501 -- [Qnn : Interfaces.Integer_{64|128};
502 -- Rnn : Interfaces.Integer_{64|128};
503 -- Double_Divide{64|128} (X, Y, Z, Qnn, Rnn, Round);]
505 procedure Build_Double_Divide_Code
506 (N : Node_Id;
507 X, Y, Z : Node_Id;
508 Qnn, Rnn : out Entity_Id;
509 Code : out List_Id)
511 Loc : constant Source_Ptr := Sloc (N);
513 X_Size : constant Nat := UI_To_Int (RM_Size (Etype (X)));
514 Y_Size : constant Nat := UI_To_Int (RM_Size (Etype (Y)));
515 Z_Size : constant Nat := UI_To_Int (RM_Size (Etype (Z)));
516 M_Size : constant Nat := Nat'Max (X_Size, Nat'Max (Y_Size, Z_Size));
518 QR_Id : RE_Id;
519 QR_Siz : Nat;
520 QR_Typ : Entity_Id;
522 Nnn : Entity_Id;
523 Dnn : Entity_Id;
525 Quo : Node_Id;
526 Rnd : Entity_Id;
528 begin
529 -- Find type that will allow computation of denominator
531 QR_Siz := Nat'Max (X_Size, Y_Size + Z_Size);
533 if QR_Siz <= 16 then
534 QR_Typ := Standard_Integer_16;
535 QR_Id := RE_Null;
537 elsif QR_Siz <= 32 then
538 QR_Typ := Standard_Integer_32;
539 QR_Id := RE_Null;
541 elsif QR_Siz <= 64 then
542 QR_Typ := Standard_Integer_64;
543 QR_Id := RE_Null;
545 -- For backward compatibility reasons, we use a 128-bit divide only
546 -- if one of the operands is already larger than 64 bits.
548 elsif System_Max_Integer_Size < 128 or else M_Size <= 64 then
549 QR_Typ := RTE (RE_Integer_64);
550 QR_Id := RE_Double_Divide64;
552 elsif QR_Siz <= 128 then
553 QR_Typ := Standard_Integer_128;
554 QR_Id := RE_Null;
556 else
557 QR_Typ := RTE (RE_Integer_128);
558 QR_Id := RE_Double_Divide128;
559 end if;
561 -- Define quotient and remainder, and set their Etypes, so
562 -- that they can be picked up by Build_xxx routines.
564 Qnn := Make_Temporary (Loc, 'S');
565 Rnn := Make_Temporary (Loc, 'R');
567 Set_Etype (Qnn, QR_Typ);
568 Set_Etype (Rnn, QR_Typ);
570 -- Case where we can compute the denominator in Max_Integer_Size bits
572 if QR_Id = RE_Null then
574 -- Create temporaries for numerator and denominator and set Etypes,
575 -- so that New_Occurrence_Of picks them up for Build_xxx calls.
577 Nnn := Make_Temporary (Loc, 'N');
578 Dnn := Make_Temporary (Loc, 'D');
580 Set_Etype (Nnn, QR_Typ);
581 Set_Etype (Dnn, QR_Typ);
583 Code := New_List (
584 Make_Object_Declaration (Loc,
585 Defining_Identifier => Nnn,
586 Object_Definition => New_Occurrence_Of (QR_Typ, Loc),
587 Constant_Present => True,
588 Expression => Build_Conversion (N, QR_Typ, X)),
590 Make_Object_Declaration (Loc,
591 Defining_Identifier => Dnn,
592 Object_Definition => New_Occurrence_Of (QR_Typ, Loc),
593 Constant_Present => True,
594 Expression => Build_Multiply (N, Y, Z)));
596 Quo :=
597 Build_Divide (N,
598 New_Occurrence_Of (Nnn, Loc),
599 New_Occurrence_Of (Dnn, Loc));
601 Set_Rounded_Result (Quo, Rounded_Result_Set (N));
603 Append_To (Code,
604 Make_Object_Declaration (Loc,
605 Defining_Identifier => Qnn,
606 Object_Definition => New_Occurrence_Of (QR_Typ, Loc),
607 Constant_Present => True,
608 Expression => Quo));
610 Append_To (Code,
611 Make_Object_Declaration (Loc,
612 Defining_Identifier => Rnn,
613 Object_Definition => New_Occurrence_Of (QR_Typ, Loc),
614 Constant_Present => True,
615 Expression =>
616 Build_Rem (N,
617 New_Occurrence_Of (Nnn, Loc),
618 New_Occurrence_Of (Dnn, Loc))));
620 -- Case where denominator does not fit in Max_Integer_Size bits, we have
621 -- to call the runtime routine to compute the quotient and remainder.
623 else
624 Rnd := Boolean_Literals (Rounded_Result_Set (N));
626 Code := New_List (
627 Make_Object_Declaration (Loc,
628 Defining_Identifier => Qnn,
629 Object_Definition => New_Occurrence_Of (QR_Typ, Loc)),
631 Make_Object_Declaration (Loc,
632 Defining_Identifier => Rnn,
633 Object_Definition => New_Occurrence_Of (QR_Typ, Loc)),
635 Make_Procedure_Call_Statement (Loc,
636 Name => New_Occurrence_Of (RTE (QR_Id), Loc),
637 Parameter_Associations => New_List (
638 Build_Conversion (N, QR_Typ, X),
639 Build_Conversion (N, QR_Typ, Y),
640 Build_Conversion (N, QR_Typ, Z),
641 New_Occurrence_Of (Qnn, Loc),
642 New_Occurrence_Of (Rnn, Loc),
643 New_Occurrence_Of (Rnd, Loc))));
644 end if;
645 end Build_Double_Divide_Code;
647 --------------------
648 -- Build_Multiply --
649 --------------------
651 function Build_Multiply (N : Node_Id; L, R : Node_Id) return Node_Id is
652 Loc : constant Source_Ptr := Sloc (N);
653 Left_Type : constant Entity_Id := Etype (L);
654 Right_Type : constant Entity_Id := Etype (R);
655 Left_Size : Int;
656 Right_Size : Int;
657 Result_Type : Entity_Id;
658 Rnode : Node_Id;
660 begin
661 -- Deal with floating-point case first
663 if Is_Floating_Point_Type (Left_Type) then
664 pragma Assert (Left_Type = Universal_Real);
665 pragma Assert (Right_Type = Universal_Real);
667 Result_Type := Universal_Real;
668 Rnode := Make_Op_Multiply (Loc, L, R);
670 -- Integer and fixed-point cases
672 else
673 -- An optimization. If the right operand is the literal 1, then we
674 -- can just return the left hand operand. Putting the optimization
675 -- here allows us to omit the check at the call site. Similarly, if
676 -- the left operand is the integer 1 we can return the right operand.
678 if Nkind (R) = N_Integer_Literal and then Intval (R) = 1 then
679 return L;
680 elsif Nkind (L) = N_Integer_Literal and then Intval (L) = 1 then
681 return R;
682 end if;
684 -- Otherwise we need to figure out the correct result type size
685 -- First figure out the effective sizes of the operands. Normally
686 -- the effective size of an operand is the RM_Size of the operand.
687 -- But a special case arises with operands whose size is known at
688 -- compile time. In this case, we can use the actual value of the
689 -- operand to get a size if it would fit in a small signed integer.
691 Left_Size := UI_To_Int (RM_Size (Left_Type));
693 if Compile_Time_Known_Value (L) then
694 declare
695 Siz : constant Int :=
696 Get_Size_For_Value (UI_Abs (Expr_Value (L)));
697 begin
698 if Siz < Left_Size then
699 Left_Size := Siz;
700 end if;
701 end;
702 end if;
704 Right_Size := UI_To_Int (RM_Size (Right_Type));
706 if Compile_Time_Known_Value (R) then
707 declare
708 Siz : constant Int :=
709 Get_Size_For_Value (UI_Abs (Expr_Value (R)));
710 begin
711 if Siz < Right_Size then
712 Right_Size := Siz;
713 end if;
714 end;
715 end if;
717 -- Now the result size must be at least the sum of the two sizes,
718 -- to accommodate all possible results.
720 Result_Type :=
721 Get_Type_For_Size (Left_Size + Right_Size, Force => True);
723 Rnode :=
724 Make_Op_Multiply (Loc,
725 Left_Opnd => Build_Conversion (N, Result_Type, L),
726 Right_Opnd => Build_Conversion (N, Result_Type, R));
727 end if;
729 -- We now have a multiply node built with Result_Type set. First
730 -- set Etype of result, as required for all Build_xxx routines
732 Set_Etype (Rnode, Base_Type (Result_Type));
734 return Rnode;
735 end Build_Multiply;
737 ---------------
738 -- Build_Rem --
739 ---------------
741 function Build_Rem (N : Node_Id; L, R : Node_Id) return Node_Id is
742 Loc : constant Source_Ptr := Sloc (N);
743 Left_Type : constant Entity_Id := Etype (L);
744 Right_Type : constant Entity_Id := Etype (R);
745 Result_Type : Entity_Id;
746 Rnode : Node_Id;
748 begin
749 if Left_Type = Right_Type then
750 Result_Type := Left_Type;
751 Rnode :=
752 Make_Op_Rem (Loc,
753 Left_Opnd => L,
754 Right_Opnd => R);
756 -- If left size is larger, we do the remainder operation using the
757 -- size of the left type (i.e. the larger of the two integer types).
759 elsif Esize (Left_Type) >= Esize (Right_Type) then
760 Result_Type := Left_Type;
761 Rnode :=
762 Make_Op_Rem (Loc,
763 Left_Opnd => L,
764 Right_Opnd => Build_Conversion (N, Left_Type, R));
766 -- Similarly, if the right size is larger, we do the remainder
767 -- operation using the right type.
769 else
770 Result_Type := Right_Type;
771 Rnode :=
772 Make_Op_Rem (Loc,
773 Left_Opnd => Build_Conversion (N, Right_Type, L),
774 Right_Opnd => R);
775 end if;
777 -- We now have an N_Op_Rem node built with Result_Type set. First
778 -- set Etype of result, as required for all Build_xxx routines
780 Set_Etype (Rnode, Base_Type (Result_Type));
782 -- One more check. We did the rem operation using the larger of the
783 -- two types, which is reasonable. However, in the case where the
784 -- two types have unequal sizes, it is impossible for the result of
785 -- a remainder operation to be larger than the smaller of the two
786 -- types, so we can put a conversion round the result to keep the
787 -- evolving operation size as small as possible.
789 if Esize (Left_Type) >= Esize (Right_Type) then
790 Rnode := Build_Conversion (N, Right_Type, Rnode);
791 elsif Esize (Right_Type) >= Esize (Left_Type) then
792 Rnode := Build_Conversion (N, Left_Type, Rnode);
793 end if;
795 return Rnode;
796 end Build_Rem;
798 -------------------------
799 -- Build_Scaled_Divide --
800 -------------------------
802 function Build_Scaled_Divide
803 (N : Node_Id;
804 X, Y, Z : Node_Id) return Node_Id
806 X_Size : constant Nat := UI_To_Int (RM_Size (Etype (X)));
807 Y_Size : constant Nat := UI_To_Int (RM_Size (Etype (Y)));
808 Z_Size : constant Nat := UI_To_Int (RM_Size (Etype (Z)));
809 N_Size : constant Nat := X_Size + Y_Size;
810 M_Size : constant Nat := Nat'Max (X_Size, Nat'Max (Y_Size, Z_Size));
811 Expr : Node_Id;
813 begin
814 -- If the numerator fits in Max_Integer_Size bits, we can build the
815 -- operations directly without causing any intermediate overflow. But
816 -- for backward compatibility reasons, we use a 128-bit divide only
817 -- if one of the operands is already larger than 64 bits.
819 if N_Size <= System_Max_Integer_Size
820 and then (N_Size <= 64 or else M_Size > 64)
821 then
822 return Build_Divide (N, Build_Multiply (N, X, Y), Z);
824 -- Otherwise we use the runtime routine
826 -- [Qnn : Integer_{64|128},
827 -- Rnn : Integer_{64|128};
828 -- Scaled_Divide{64|128} (X, Y, Z, Qnn, Rnn, Round);
829 -- Qnn]
831 else
832 declare
833 Loc : constant Source_Ptr := Sloc (N);
834 Qnn : Entity_Id;
835 Rnn : Entity_Id;
836 Code : List_Id;
838 pragma Warnings (Off, Rnn);
840 begin
841 Build_Scaled_Divide_Code (N, X, Y, Z, Qnn, Rnn, Code);
842 Insert_Actions (N, Code);
843 Expr := New_Occurrence_Of (Qnn, Loc);
845 -- Set type of result in case used elsewhere (see note at start)
847 Set_Etype (Expr, Etype (Qnn));
848 return Expr;
849 end;
850 end if;
851 end Build_Scaled_Divide;
853 ------------------------------
854 -- Build_Scaled_Divide_Code --
855 ------------------------------
857 -- If the numerator can be computed in Max_Integer_Size bits, we build
859 -- [Nnn : constant typ := typ (X) * typ (Y);
860 -- Dnn : constant typ := typ (Z)
861 -- Qnn : constant typ := Nnn / Dnn;
862 -- Rnn : constant typ := Nnn rem Dnn;
864 -- If the numerator cannot be computed in Max_Integer_Size bits, we build
866 -- [Qnn : Interfaces.Integer_{64|128};
867 -- Rnn : Interfaces.Integer_{64|128};
868 -- Scaled_Divide_{64|128} (X, Y, Z, Qnn, Rnn, Round);]
870 procedure Build_Scaled_Divide_Code
871 (N : Node_Id;
872 X, Y, Z : Node_Id;
873 Qnn, Rnn : out Entity_Id;
874 Code : out List_Id)
876 Loc : constant Source_Ptr := Sloc (N);
878 X_Size : constant Nat := UI_To_Int (RM_Size (Etype (X)));
879 Y_Size : constant Nat := UI_To_Int (RM_Size (Etype (Y)));
880 Z_Size : constant Nat := UI_To_Int (RM_Size (Etype (Z)));
881 M_Size : constant Nat := Nat'Max (X_Size, Nat'Max (Y_Size, Z_Size));
883 QR_Id : RE_Id;
884 QR_Siz : Nat;
885 QR_Typ : Entity_Id;
887 Nnn : Entity_Id;
888 Dnn : Entity_Id;
890 Quo : Node_Id;
891 Rnd : Entity_Id;
893 begin
894 -- Find type that will allow computation of numerator
896 QR_Siz := Nat'Max (X_Size + Y_Size, Z_Size);
898 if QR_Siz <= 16 then
899 QR_Typ := Standard_Integer_16;
900 QR_Id := RE_Null;
902 elsif QR_Siz <= 32 then
903 QR_Typ := Standard_Integer_32;
904 QR_Id := RE_Null;
906 elsif QR_Siz <= 64 then
907 QR_Typ := Standard_Integer_64;
908 QR_Id := RE_Null;
910 -- For backward compatibility reasons, we use a 128-bit divide only
911 -- if one of the operands is already larger than 64 bits.
913 elsif System_Max_Integer_Size < 128 or else M_Size <= 64 then
914 QR_Typ := RTE (RE_Integer_64);
915 QR_Id := RE_Scaled_Divide64;
917 elsif QR_Siz <= 128 then
918 QR_Typ := Standard_Integer_128;
919 QR_Id := RE_Null;
921 else
922 QR_Typ := RTE (RE_Integer_128);
923 QR_Id := RE_Scaled_Divide128;
924 end if;
926 -- Define quotient and remainder, and set their Etypes, so
927 -- that they can be picked up by Build_xxx routines.
929 Qnn := Make_Temporary (Loc, 'S');
930 Rnn := Make_Temporary (Loc, 'R');
932 Set_Etype (Qnn, QR_Typ);
933 Set_Etype (Rnn, QR_Typ);
935 -- Case where we can compute the numerator in Max_Integer_Size bits
937 if QR_Id = RE_Null then
938 Nnn := Make_Temporary (Loc, 'N');
939 Dnn := Make_Temporary (Loc, 'D');
941 -- Set Etypes, so that they can be picked up by New_Occurrence_Of
943 Set_Etype (Nnn, QR_Typ);
944 Set_Etype (Dnn, QR_Typ);
946 Code := New_List (
947 Make_Object_Declaration (Loc,
948 Defining_Identifier => Nnn,
949 Object_Definition => New_Occurrence_Of (QR_Typ, Loc),
950 Constant_Present => True,
951 Expression => Build_Multiply (N, X, Y)),
953 Make_Object_Declaration (Loc,
954 Defining_Identifier => Dnn,
955 Object_Definition => New_Occurrence_Of (QR_Typ, Loc),
956 Constant_Present => True,
957 Expression => Build_Conversion (N, QR_Typ, Z)));
959 Quo :=
960 Build_Divide (N,
961 New_Occurrence_Of (Nnn, Loc),
962 New_Occurrence_Of (Dnn, Loc));
964 Append_To (Code,
965 Make_Object_Declaration (Loc,
966 Defining_Identifier => Qnn,
967 Object_Definition => New_Occurrence_Of (QR_Typ, Loc),
968 Constant_Present => True,
969 Expression => Quo));
971 Append_To (Code,
972 Make_Object_Declaration (Loc,
973 Defining_Identifier => Rnn,
974 Object_Definition => New_Occurrence_Of (QR_Typ, Loc),
975 Constant_Present => True,
976 Expression =>
977 Build_Rem (N,
978 New_Occurrence_Of (Nnn, Loc),
979 New_Occurrence_Of (Dnn, Loc))));
981 -- Case where numerator does not fit in Max_Integer_Size bits, we have
982 -- to call the runtime routine to compute the quotient and remainder.
984 else
985 Rnd := Boolean_Literals (Rounded_Result_Set (N));
987 Code := New_List (
988 Make_Object_Declaration (Loc,
989 Defining_Identifier => Qnn,
990 Object_Definition => New_Occurrence_Of (QR_Typ, Loc)),
992 Make_Object_Declaration (Loc,
993 Defining_Identifier => Rnn,
994 Object_Definition => New_Occurrence_Of (QR_Typ, Loc)),
996 Make_Procedure_Call_Statement (Loc,
997 Name => New_Occurrence_Of (RTE (QR_Id), Loc),
998 Parameter_Associations => New_List (
999 Build_Conversion (N, QR_Typ, X),
1000 Build_Conversion (N, QR_Typ, Y),
1001 Build_Conversion (N, QR_Typ, Z),
1002 New_Occurrence_Of (Qnn, Loc),
1003 New_Occurrence_Of (Rnn, Loc),
1004 New_Occurrence_Of (Rnd, Loc))));
1005 end if;
1007 -- Set type of result, for use in caller
1009 Set_Etype (Qnn, QR_Typ);
1010 end Build_Scaled_Divide_Code;
1012 ---------------------------
1013 -- Do_Divide_Fixed_Fixed --
1014 ---------------------------
1016 -- We have:
1018 -- (Result_Value * Result_Small) =
1019 -- (Left_Value * Left_Small) / (Right_Value * Right_Small)
1021 -- Result_Value = (Left_Value / Right_Value) *
1022 -- (Left_Small / (Right_Small * Result_Small));
1024 -- we can do the operation in integer arithmetic if this fraction is an
1025 -- integer or the reciprocal of an integer, as detailed in (RM G.2.3(21)).
1026 -- Otherwise the result is in the close result set and our approach is to
1027 -- use floating-point to compute this close result.
1029 procedure Do_Divide_Fixed_Fixed (N : Node_Id) is
1030 Left : constant Node_Id := Left_Opnd (N);
1031 Right : constant Node_Id := Right_Opnd (N);
1032 Left_Type : constant Entity_Id := Etype (Left);
1033 Right_Type : constant Entity_Id := Etype (Right);
1034 Result_Type : constant Entity_Id := Etype (N);
1035 Right_Small : constant Ureal := Small_Value (Right_Type);
1036 Left_Small : constant Ureal := Small_Value (Left_Type);
1038 Result_Small : Ureal;
1039 Frac : Ureal;
1040 Frac_Num : Uint;
1041 Frac_Den : Uint;
1042 Lit_Int : Node_Id;
1044 begin
1045 -- Rounding is required if the result is integral
1047 if Is_Integer_Type (Result_Type) then
1048 Set_Rounded_Result (N);
1049 end if;
1051 -- Get result small. If the result is an integer, treat it as though
1052 -- it had a small of 1.0, all other processing is identical.
1054 if Is_Integer_Type (Result_Type) then
1055 Result_Small := Ureal_1;
1056 else
1057 Result_Small := Small_Value (Result_Type);
1058 end if;
1060 -- Get small ratio
1062 Frac := Left_Small / (Right_Small * Result_Small);
1063 Frac_Num := Norm_Num (Frac);
1064 Frac_Den := Norm_Den (Frac);
1066 -- If the fraction is an integer, then we get the result by multiplying
1067 -- the left operand by the integer, and then dividing by the right
1068 -- operand (the order is important, if we did the divide first, we
1069 -- would lose precision).
1071 if Frac_Den = 1 then
1072 Lit_Int := Integer_Literal (N, Frac_Num); -- always positive
1074 if Present (Lit_Int) then
1075 Set_Result (N, Build_Scaled_Divide (N, Left, Lit_Int, Right));
1076 return;
1077 end if;
1079 -- If the fraction is the reciprocal of an integer, then we get the
1080 -- result by first multiplying the divisor by the integer, and then
1081 -- doing the division with the adjusted divisor.
1083 -- Note: this is much better than doing two divisions: multiplications
1084 -- are much faster than divisions (and certainly faster than rounded
1085 -- divisions), and we don't get inaccuracies from double rounding.
1087 elsif Frac_Num = 1 then
1088 Lit_Int := Integer_Literal (N, Frac_Den); -- always positive
1090 if Present (Lit_Int) then
1091 Set_Result (N, Build_Double_Divide (N, Left, Right, Lit_Int));
1092 return;
1093 end if;
1094 end if;
1096 -- If we fall through, we use floating-point to compute the result
1098 Set_Result (N,
1099 Build_Multiply (N,
1100 Build_Divide (N, Fpt_Value (Left), Fpt_Value (Right)),
1101 Real_Literal (N, Frac)));
1102 end Do_Divide_Fixed_Fixed;
1104 -------------------------------
1105 -- Do_Divide_Fixed_Universal --
1106 -------------------------------
1108 -- We have:
1110 -- (Result_Value * Result_Small) = (Left_Value * Left_Small) / Lit_Value;
1111 -- Result_Value = Left_Value * Left_Small /(Lit_Value * Result_Small);
1113 -- The result is required to be in the perfect result set if the literal
1114 -- can be factored so that the resulting small ratio is an integer or the
1115 -- reciprocal of an integer (RM G.2.3(21-22)). We now give a detailed
1116 -- analysis of these RM requirements:
1118 -- We must factor the literal, finding an integer K:
1120 -- Lit_Value = K * Right_Small
1121 -- Right_Small = Lit_Value / K
1123 -- such that the small ratio:
1125 -- Left_Small
1126 -- ------------------------------
1127 -- (Lit_Value / K) * Result_Small
1129 -- Left_Small
1130 -- = ------------------------ * K
1131 -- Lit_Value * Result_Small
1133 -- is an integer or the reciprocal of an integer, and for
1134 -- implementation efficiency we need the smallest such K.
1136 -- First we reduce the left fraction to lowest terms
1138 -- If numerator = 1, then for K = 1, the small ratio is the reciprocal
1139 -- of an integer, and this is clearly the minimum K case, so set K = 1,
1140 -- Right_Small = Lit_Value.
1142 -- If numerator > 1, then set K to the denominator of the fraction so
1143 -- that the resulting small ratio is an integer (the numerator value).
1145 procedure Do_Divide_Fixed_Universal (N : Node_Id) is
1146 Left : constant Node_Id := Left_Opnd (N);
1147 Right : constant Node_Id := Right_Opnd (N);
1148 Left_Type : constant Entity_Id := Etype (Left);
1149 Result_Type : constant Entity_Id := Etype (N);
1150 Left_Small : constant Ureal := Small_Value (Left_Type);
1151 Lit_Value : constant Ureal := Realval (Right);
1153 Result_Small : Ureal;
1154 Frac : Ureal;
1155 Frac_Num : Uint;
1156 Frac_Den : Uint;
1157 Lit_K : Node_Id;
1158 Lit_Int : Node_Id;
1160 begin
1161 -- Get result small. If the result is an integer, treat it as though
1162 -- it had a small of 1.0, all other processing is identical.
1164 if Is_Integer_Type (Result_Type) then
1165 Result_Small := Ureal_1;
1166 else
1167 Result_Small := Small_Value (Result_Type);
1168 end if;
1170 -- Determine if literal can be rewritten successfully
1172 Frac := Left_Small / (Lit_Value * Result_Small);
1173 Frac_Num := Norm_Num (Frac);
1174 Frac_Den := Norm_Den (Frac);
1176 -- Case where fraction is the reciprocal of an integer (K = 1, integer
1177 -- = denominator). If this integer is not too large, this is the case
1178 -- where the result can be obtained by dividing by this integer value.
1180 if Frac_Num = 1 then
1181 Lit_Int := Integer_Literal (N, Frac_Den, UR_Is_Negative (Frac));
1183 if Present (Lit_Int) then
1184 Set_Result (N, Build_Divide (N, Left, Lit_Int));
1185 return;
1186 end if;
1188 -- Case where we choose K to make fraction an integer (K = denominator
1189 -- of fraction, integer = numerator of fraction). If both K and the
1190 -- numerator are small enough, this is the case where the result can
1191 -- be obtained by first multiplying by the integer value and then
1192 -- dividing by K (the order is important, if we divided first, we
1193 -- would lose precision).
1195 else
1196 Lit_Int := Integer_Literal (N, Frac_Num, UR_Is_Negative (Frac));
1197 Lit_K := Integer_Literal (N, Frac_Den, False);
1199 if Present (Lit_Int) and then Present (Lit_K) then
1200 Set_Result (N, Build_Scaled_Divide (N, Left, Lit_Int, Lit_K));
1201 return;
1202 end if;
1203 end if;
1205 -- Fall through if the literal cannot be successfully rewritten, or if
1206 -- the small ratio is out of range of integer arithmetic. In the former
1207 -- case it is fine to use floating-point to get the close result set,
1208 -- and in the latter case, it means that the result is zero or raises
1209 -- constraint error, and we can do that accurately in floating-point.
1211 -- If we end up using floating-point, then we take the right integer
1212 -- to be one, and its small to be the value of the original right real
1213 -- literal. That way, we need only one floating-point multiplication.
1215 Set_Result (N,
1216 Build_Multiply (N, Fpt_Value (Left), Real_Literal (N, Frac)));
1217 end Do_Divide_Fixed_Universal;
1219 -------------------------------
1220 -- Do_Divide_Universal_Fixed --
1221 -------------------------------
1223 -- We have:
1225 -- (Result_Value * Result_Small) =
1226 -- Lit_Value / (Right_Value * Right_Small)
1227 -- Result_Value =
1228 -- (Lit_Value / (Right_Small * Result_Small)) / Right_Value
1230 -- The result is required to be in the perfect result set if the literal
1231 -- can be factored so that the resulting small ratio is an integer or the
1232 -- reciprocal of an integer (RM G.2.3(21-22)). We now give a detailed
1233 -- analysis of these RM requirements:
1235 -- We must factor the literal, finding an integer K:
1237 -- Lit_Value = K * Left_Small
1238 -- Left_Small = Lit_Value / K
1240 -- such that the small ratio:
1242 -- (Lit_Value / K)
1243 -- --------------------------
1244 -- Right_Small * Result_Small
1246 -- Lit_Value 1
1247 -- = -------------------------- * -
1248 -- Right_Small * Result_Small K
1250 -- is an integer or the reciprocal of an integer, and for
1251 -- implementation efficiency we need the smallest such K.
1253 -- First we reduce the left fraction to lowest terms
1255 -- If denominator = 1, then for K = 1, the small ratio is an integer
1256 -- (the numerator) and this is clearly the minimum K case, so set K = 1,
1257 -- and Left_Small = Lit_Value.
1259 -- If denominator > 1, then set K to the numerator of the fraction so
1260 -- that the resulting small ratio is the reciprocal of an integer (the
1261 -- numerator value).
1263 procedure Do_Divide_Universal_Fixed (N : Node_Id) is
1264 Left : constant Node_Id := Left_Opnd (N);
1265 Right : constant Node_Id := Right_Opnd (N);
1266 Right_Type : constant Entity_Id := Etype (Right);
1267 Result_Type : constant Entity_Id := Etype (N);
1268 Right_Small : constant Ureal := Small_Value (Right_Type);
1269 Lit_Value : constant Ureal := Realval (Left);
1271 Result_Small : Ureal;
1272 Frac : Ureal;
1273 Frac_Num : Uint;
1274 Frac_Den : Uint;
1275 Lit_K : Node_Id;
1276 Lit_Int : Node_Id;
1278 begin
1279 -- Get result small. If the result is an integer, treat it as though
1280 -- it had a small of 1.0, all other processing is identical.
1282 if Is_Integer_Type (Result_Type) then
1283 Result_Small := Ureal_1;
1284 else
1285 Result_Small := Small_Value (Result_Type);
1286 end if;
1288 -- Determine if literal can be rewritten successfully
1290 Frac := Lit_Value / (Right_Small * Result_Small);
1291 Frac_Num := Norm_Num (Frac);
1292 Frac_Den := Norm_Den (Frac);
1294 -- Case where fraction is an integer (K = 1, integer = numerator). If
1295 -- this integer is not too large, this is the case where the result
1296 -- can be obtained by dividing this integer by the right operand.
1298 if Frac_Den = 1 then
1299 Lit_Int := Integer_Literal (N, Frac_Num, UR_Is_Negative (Frac));
1301 if Present (Lit_Int) then
1302 Set_Result (N, Build_Divide (N, Lit_Int, Right));
1303 return;
1304 end if;
1306 -- Case where we choose K to make the fraction the reciprocal of an
1307 -- integer (K = numerator of fraction, integer = numerator of fraction).
1308 -- If both K and the integer are small enough, this is the case where
1309 -- the result can be obtained by multiplying the right operand by K
1310 -- and then dividing by the integer value. The order of the operations
1311 -- is important (if we divided first, we would lose precision).
1313 else
1314 Lit_Int := Integer_Literal (N, Frac_Den, UR_Is_Negative (Frac));
1315 Lit_K := Integer_Literal (N, Frac_Num, False);
1317 if Present (Lit_Int) and then Present (Lit_K) then
1318 Set_Result (N, Build_Double_Divide (N, Lit_K, Right, Lit_Int));
1319 return;
1320 end if;
1321 end if;
1323 -- Fall through if the literal cannot be successfully rewritten, or if
1324 -- the small ratio is out of range of integer arithmetic. In the former
1325 -- case it is fine to use floating-point to get the close result set,
1326 -- and in the latter case, it means that the result is zero or raises
1327 -- constraint error, and we can do that accurately in floating-point.
1329 -- If we end up using floating-point, then we take the right integer
1330 -- to be one, and its small to be the value of the original right real
1331 -- literal. That way, we need only one floating-point division.
1333 Set_Result (N,
1334 Build_Divide (N, Real_Literal (N, Frac), Fpt_Value (Right)));
1335 end Do_Divide_Universal_Fixed;
1337 -----------------------------
1338 -- Do_Multiply_Fixed_Fixed --
1339 -----------------------------
1341 -- We have:
1343 -- (Result_Value * Result_Small) =
1344 -- (Left_Value * Left_Small) * (Right_Value * Right_Small)
1346 -- Result_Value = (Left_Value * Right_Value) *
1347 -- (Left_Small * Right_Small) / Result_Small;
1349 -- we can do the operation in integer arithmetic if this fraction is an
1350 -- integer or the reciprocal of an integer, as detailed in (RM G.2.3(21)).
1351 -- Otherwise the result is in the close result set and our approach is to
1352 -- use floating-point to compute this close result.
1354 procedure Do_Multiply_Fixed_Fixed (N : Node_Id) is
1355 Left : constant Node_Id := Left_Opnd (N);
1356 Right : constant Node_Id := Right_Opnd (N);
1358 Left_Type : constant Entity_Id := Etype (Left);
1359 Right_Type : constant Entity_Id := Etype (Right);
1360 Result_Type : constant Entity_Id := Etype (N);
1361 Right_Small : constant Ureal := Small_Value (Right_Type);
1362 Left_Small : constant Ureal := Small_Value (Left_Type);
1364 Result_Small : Ureal;
1365 Frac : Ureal;
1366 Frac_Num : Uint;
1367 Frac_Den : Uint;
1368 Lit_Int : Node_Id;
1370 begin
1371 -- Get result small. If the result is an integer, treat it as though
1372 -- it had a small of 1.0, all other processing is identical.
1374 if Is_Integer_Type (Result_Type) then
1375 Result_Small := Ureal_1;
1376 else
1377 Result_Small := Small_Value (Result_Type);
1378 end if;
1380 -- Get small ratio
1382 Frac := (Left_Small * Right_Small) / Result_Small;
1383 Frac_Num := Norm_Num (Frac);
1384 Frac_Den := Norm_Den (Frac);
1386 -- If the fraction is an integer, then we get the result by multiplying
1387 -- the operands, and then multiplying the result by the integer value.
1389 if Frac_Den = 1 then
1390 Lit_Int := Integer_Literal (N, Frac_Num); -- always positive
1392 if Present (Lit_Int) then
1393 Set_Result (N,
1394 Build_Multiply (N, Build_Multiply (N, Left, Right), Lit_Int));
1395 return;
1396 end if;
1398 -- If the fraction is the reciprocal of an integer, then we get the
1399 -- result by multiplying the operands, and then dividing the result by
1400 -- the integer value. The order of the operations is important, if we
1401 -- divided first, we would lose precision.
1403 elsif Frac_Num = 1 then
1404 Lit_Int := Integer_Literal (N, Frac_Den); -- always positive
1406 if Present (Lit_Int) then
1407 Set_Result (N, Build_Scaled_Divide (N, Left, Right, Lit_Int));
1408 return;
1409 end if;
1410 end if;
1412 -- If we fall through, we use floating-point to compute the result
1414 Set_Result (N,
1415 Build_Multiply (N,
1416 Build_Multiply (N, Fpt_Value (Left), Fpt_Value (Right)),
1417 Real_Literal (N, Frac)));
1418 end Do_Multiply_Fixed_Fixed;
1420 ---------------------------------
1421 -- Do_Multiply_Fixed_Universal --
1422 ---------------------------------
1424 -- We have:
1426 -- (Result_Value * Result_Small) = (Left_Value * Left_Small) * Lit_Value;
1427 -- Result_Value = Left_Value * (Left_Small * Lit_Value) / Result_Small;
1429 -- The result is required to be in the perfect result set if the literal
1430 -- can be factored so that the resulting small ratio is an integer or the
1431 -- reciprocal of an integer (RM G.2.3(21-22)). We now give a detailed
1432 -- analysis of these RM requirements:
1434 -- We must factor the literal, finding an integer K:
1436 -- Lit_Value = K * Right_Small
1437 -- Right_Small = Lit_Value / K
1439 -- such that the small ratio:
1441 -- Left_Small * (Lit_Value / K)
1442 -- ----------------------------
1443 -- Result_Small
1445 -- Left_Small * Lit_Value 1
1446 -- = ---------------------- * -
1447 -- Result_Small K
1449 -- is an integer or the reciprocal of an integer, and for
1450 -- implementation efficiency we need the smallest such K.
1452 -- First we reduce the left fraction to lowest terms
1454 -- If denominator = 1, then for K = 1, the small ratio is an integer, and
1455 -- this is clearly the minimum K case, so set
1457 -- K = 1, Right_Small = Lit_Value
1459 -- If denominator > 1, then set K to the numerator of the fraction, so
1460 -- that the resulting small ratio is the reciprocal of the integer (the
1461 -- denominator value).
1463 procedure Do_Multiply_Fixed_Universal
1464 (N : Node_Id;
1465 Left, Right : Node_Id)
1467 Left_Type : constant Entity_Id := Etype (Left);
1468 Result_Type : constant Entity_Id := Etype (N);
1469 Left_Small : constant Ureal := Small_Value (Left_Type);
1470 Lit_Value : constant Ureal := Realval (Right);
1472 Result_Small : Ureal;
1473 Frac : Ureal;
1474 Frac_Num : Uint;
1475 Frac_Den : Uint;
1476 Lit_K : Node_Id;
1477 Lit_Int : Node_Id;
1479 begin
1480 -- Get result small. If the result is an integer, treat it as though
1481 -- it had a small of 1.0, all other processing is identical.
1483 if Is_Integer_Type (Result_Type) then
1484 Result_Small := Ureal_1;
1485 else
1486 Result_Small := Small_Value (Result_Type);
1487 end if;
1489 -- Determine if literal can be rewritten successfully
1491 Frac := (Left_Small * Lit_Value) / Result_Small;
1492 Frac_Num := Norm_Num (Frac);
1493 Frac_Den := Norm_Den (Frac);
1495 -- Case where fraction is an integer (K = 1, integer = numerator). If
1496 -- this integer is not too large, this is the case where the result can
1497 -- be obtained by multiplying by this integer value.
1499 if Frac_Den = 1 then
1500 Lit_Int := Integer_Literal (N, Frac_Num, UR_Is_Negative (Frac));
1502 if Present (Lit_Int) then
1503 Set_Result (N, Build_Multiply (N, Left, Lit_Int));
1504 return;
1505 end if;
1507 -- Case where we choose K to make fraction the reciprocal of an integer
1508 -- (K = numerator of fraction, integer = denominator of fraction). If
1509 -- both K and the denominator are small enough, this is the case where
1510 -- the result can be obtained by first multiplying by K, and then
1511 -- dividing by the integer value.
1513 else
1514 Lit_Int := Integer_Literal (N, Frac_Den, UR_Is_Negative (Frac));
1515 Lit_K := Integer_Literal (N, Frac_Num, False);
1517 if Present (Lit_Int) and then Present (Lit_K) then
1518 Set_Result (N, Build_Scaled_Divide (N, Left, Lit_K, Lit_Int));
1519 return;
1520 end if;
1521 end if;
1523 -- Fall through if the literal cannot be successfully rewritten, or if
1524 -- the small ratio is out of range of integer arithmetic. In the former
1525 -- case it is fine to use floating-point to get the close result set,
1526 -- and in the latter case, it means that the result is zero or raises
1527 -- constraint error, and we can do that accurately in floating-point.
1529 -- If we end up using floating-point, then we take the right integer
1530 -- to be one, and its small to be the value of the original right real
1531 -- literal. That way, we need only one floating-point multiplication.
1533 Set_Result (N,
1534 Build_Multiply (N, Fpt_Value (Left), Real_Literal (N, Frac)));
1535 end Do_Multiply_Fixed_Universal;
1537 ---------------------------------
1538 -- Expand_Convert_Fixed_Static --
1539 ---------------------------------
1541 procedure Expand_Convert_Fixed_Static (N : Node_Id) is
1542 begin
1543 Rewrite (N,
1544 Convert_To (Etype (N),
1545 Make_Real_Literal (Sloc (N), Expr_Value_R (Expression (N)))));
1546 Analyze_And_Resolve (N);
1547 end Expand_Convert_Fixed_Static;
1549 -----------------------------------
1550 -- Expand_Convert_Fixed_To_Fixed --
1551 -----------------------------------
1553 -- We have:
1555 -- Result_Value * Result_Small = Source_Value * Source_Small
1556 -- Result_Value = Source_Value * (Source_Small / Result_Small)
1558 -- If the small ratio (Source_Small / Result_Small) is a sufficiently small
1559 -- integer, then the perfect result set is obtained by a single integer
1560 -- multiplication.
1562 -- If the small ratio is the reciprocal of a sufficiently small integer,
1563 -- then the perfect result set is obtained by a single integer division.
1565 -- If the numerator and denominator of the small ratio are sufficiently
1566 -- small integers, then the perfect result set is obtained by a scaled
1567 -- divide operation.
1569 -- In other cases, we obtain the close result set by calculating the
1570 -- result in floating-point.
1572 procedure Expand_Convert_Fixed_To_Fixed (N : Node_Id) is
1573 Rng_Check : constant Boolean := Do_Range_Check (N);
1574 Expr : constant Node_Id := Expression (N);
1575 Result_Type : constant Entity_Id := Etype (N);
1576 Source_Type : constant Entity_Id := Etype (Expr);
1577 Small_Ratio : Ureal;
1578 Ratio_Num : Uint;
1579 Ratio_Den : Uint;
1580 Lit_Num : Node_Id;
1581 Lit_Den : Node_Id;
1583 begin
1584 if Is_OK_Static_Expression (Expr) then
1585 Expand_Convert_Fixed_Static (N);
1586 return;
1587 end if;
1589 Small_Ratio := Small_Value (Source_Type) / Small_Value (Result_Type);
1590 Ratio_Num := Norm_Num (Small_Ratio);
1591 Ratio_Den := Norm_Den (Small_Ratio);
1593 if Ratio_Den = 1 then
1594 if Ratio_Num = 1 then
1595 Set_Result (N, Expr);
1596 return;
1598 else
1599 Lit_Num := Integer_Literal (N, Ratio_Num);
1601 if Present (Lit_Num) then
1602 Set_Result (N, Build_Multiply (N, Expr, Lit_Num));
1603 return;
1604 end if;
1605 end if;
1607 elsif Ratio_Num = 1 then
1608 Lit_Den := Integer_Literal (N, Ratio_Den);
1610 if Present (Lit_Den) then
1611 Set_Result (N, Build_Divide (N, Expr, Lit_Den), Rng_Check);
1612 return;
1613 end if;
1615 else
1616 Lit_Num := Integer_Literal (N, Ratio_Num);
1617 Lit_Den := Integer_Literal (N, Ratio_Den);
1619 if Present (Lit_Num) and then Present (Lit_Den) then
1620 Set_Result
1621 (N, Build_Scaled_Divide (N, Expr, Lit_Num, Lit_Den), Rng_Check);
1622 return;
1623 end if;
1624 end if;
1626 -- Fall through to use floating-point for the close result set case,
1627 -- as a result of the numerator or denominator of the small ratio not
1628 -- being sufficiently small. See also Expand_Convert_Float_To_Fixed.
1630 Set_Result (N,
1631 Build_Multiply (N,
1632 Fpt_Value (Expr),
1633 Real_Literal (N, Small_Ratio)),
1634 Rng_Check,
1635 Trunc => not Rounded_Result (N));
1636 end Expand_Convert_Fixed_To_Fixed;
1638 -----------------------------------
1639 -- Expand_Convert_Fixed_To_Float --
1640 -----------------------------------
1642 -- If the small of the fixed type is 1.0, then we simply convert the
1643 -- integer value directly to the target floating-point type, otherwise
1644 -- we first have to multiply by the small, in Universal_Real, and then
1645 -- convert the result to the target floating-point type.
1647 procedure Expand_Convert_Fixed_To_Float (N : Node_Id) is
1648 Rng_Check : constant Boolean := Do_Range_Check (N);
1649 Expr : constant Node_Id := Expression (N);
1650 Source_Type : constant Entity_Id := Etype (Expr);
1651 Small : constant Ureal := Small_Value (Source_Type);
1653 begin
1654 if Is_OK_Static_Expression (Expr) then
1655 Expand_Convert_Fixed_Static (N);
1656 return;
1657 end if;
1659 if Small = Ureal_1 then
1660 Set_Result (N, Expr);
1662 else
1663 Set_Result (N,
1664 Build_Multiply (N,
1665 Fpt_Value (Expr),
1666 Real_Literal (N, Small)),
1667 Rng_Check);
1668 end if;
1669 end Expand_Convert_Fixed_To_Float;
1671 -------------------------------------
1672 -- Expand_Convert_Fixed_To_Integer --
1673 -------------------------------------
1675 -- We have:
1677 -- Result_Value = Source_Value * Source_Small
1679 -- If the small value is a sufficiently small integer, then the perfect
1680 -- result set is obtained by a single integer multiplication.
1682 -- If the small value is the reciprocal of a sufficiently small integer,
1683 -- then the perfect result set is obtained by a single integer division.
1685 -- If the numerator and denominator of the small value are sufficiently
1686 -- small integers, then the perfect result set is obtained by a scaled
1687 -- divide operation.
1689 -- In other cases, we obtain the close result set by calculating the
1690 -- result in floating-point.
1692 procedure Expand_Convert_Fixed_To_Integer (N : Node_Id) is
1693 Rng_Check : constant Boolean := Do_Range_Check (N);
1694 Expr : constant Node_Id := Expression (N);
1695 Source_Type : constant Entity_Id := Etype (Expr);
1696 Small : constant Ureal := Small_Value (Source_Type);
1697 Small_Num : constant Uint := Norm_Num (Small);
1698 Small_Den : constant Uint := Norm_Den (Small);
1699 Lit_Num : Node_Id;
1700 Lit_Den : Node_Id;
1702 begin
1703 if Is_OK_Static_Expression (Expr) then
1704 Expand_Convert_Fixed_Static (N);
1705 return;
1706 end if;
1708 if Small_Den = 1 then
1709 Lit_Num := Integer_Literal (N, Small_Num);
1711 if Present (Lit_Num) then
1712 Set_Result (N, Build_Multiply (N, Expr, Lit_Num), Rng_Check);
1713 return;
1714 end if;
1716 elsif Small_Num = 1 then
1717 Lit_Den := Integer_Literal (N, Small_Den);
1719 if Present (Lit_Den) then
1720 Set_Result (N, Build_Divide (N, Expr, Lit_Den), Rng_Check);
1721 return;
1722 end if;
1724 else
1725 Lit_Num := Integer_Literal (N, Small_Num);
1726 Lit_Den := Integer_Literal (N, Small_Den);
1728 if Present (Lit_Num) and then Present (Lit_Den) then
1729 Set_Result
1730 (N, Build_Scaled_Divide (N, Expr, Lit_Num, Lit_Den), Rng_Check);
1731 return;
1732 end if;
1733 end if;
1735 -- Fall through to use floating-point for the close result set case,
1736 -- as a result of the numerator or denominator of the small value not
1737 -- being a sufficiently small integer.
1739 Set_Result (N,
1740 Build_Multiply (N,
1741 Fpt_Value (Expr),
1742 Real_Literal (N, Small)),
1743 Rng_Check);
1744 end Expand_Convert_Fixed_To_Integer;
1746 -----------------------------------
1747 -- Expand_Convert_Float_To_Fixed --
1748 -----------------------------------
1750 -- We have
1752 -- Result_Value * Result_Small = Operand_Value
1754 -- so compute:
1756 -- Result_Value = Operand_Value * (1.0 / Result_Small)
1758 -- We do the small scaling in floating-point, and we do a multiplication
1759 -- rather than a division, since it is accurate enough for the perfect
1760 -- result cases, and faster.
1762 procedure Expand_Convert_Float_To_Fixed (N : Node_Id) is
1763 Expr : constant Node_Id := Expression (N);
1764 Result_Type : constant Entity_Id := Etype (N);
1765 Rng_Check : constant Boolean := Do_Range_Check (N);
1766 Small : constant Ureal := Small_Value (Result_Type);
1768 begin
1769 -- Optimize small = 1, where we can avoid the multiply completely
1771 if Small = Ureal_1 then
1772 Set_Result (N, Expr, Rng_Check, Trunc => True);
1774 -- Normal case where multiply is required. The conversion is truncating
1775 -- for fixed-point types, see RM 4.6(29), except if the conversion comes
1776 -- from an attribute reference 'Round (RM 3.5.10 (14)): the attribute is
1777 -- implemented by means of a conversion that needs to round. However, if
1778 -- the switch -gnatd.N is specified, we use rounding for ordinary fixed-
1779 -- point types, for compatibility with earlier versions of the compiler.
1781 else
1782 Set_Result (N,
1783 Build_Multiply (N,
1784 L => Fpt_Value (Expr),
1785 R => Real_Literal (N, Ureal_1 / Small)),
1786 Rchk => Rng_Check,
1787 Trunc => not Rounded_Result (N)
1788 and then not
1789 (Debug_Flag_Dot_NN
1790 and then Is_Ordinary_Fixed_Point_Type (Result_Type)));
1791 end if;
1792 end Expand_Convert_Float_To_Fixed;
1794 -------------------------------------
1795 -- Expand_Convert_Integer_To_Fixed --
1796 -------------------------------------
1798 -- We have
1800 -- Result_Value * Result_Small = Operand_Value
1801 -- Result_Value = Operand_Value / Result_Small
1803 -- If the small value is a sufficiently small integer, then the perfect
1804 -- result set is obtained by a single integer division.
1806 -- If the small value is the reciprocal of a sufficiently small integer,
1807 -- the perfect result set is obtained by a single integer multiplication.
1809 -- If the numerator and denominator of the small value are sufficiently
1810 -- small integers, then the perfect result set is obtained by a scaled
1811 -- divide operation.
1813 -- In other cases, we obtain the close result set by calculating the
1814 -- result in floating-point using a multiplication by the reciprocal
1815 -- of the Result_Small.
1817 procedure Expand_Convert_Integer_To_Fixed (N : Node_Id) is
1818 Rng_Check : constant Boolean := Do_Range_Check (N);
1819 Expr : constant Node_Id := Expression (N);
1820 Result_Type : constant Entity_Id := Etype (N);
1821 Small : constant Ureal := Small_Value (Result_Type);
1822 Small_Num : constant Uint := Norm_Num (Small);
1823 Small_Den : constant Uint := Norm_Den (Small);
1824 Lit_Num : Node_Id;
1825 Lit_Den : Node_Id;
1827 begin
1828 if Small_Den = 1 then
1829 Lit_Num := Integer_Literal (N, Small_Num);
1831 if Present (Lit_Num) then
1832 Set_Result (N, Build_Divide (N, Expr, Lit_Num), Rng_Check);
1833 return;
1834 end if;
1836 elsif Small_Num = 1 then
1837 Lit_Den := Integer_Literal (N, Small_Den);
1839 if Present (Lit_Den) then
1840 Set_Result (N, Build_Multiply (N, Expr, Lit_Den), Rng_Check);
1841 return;
1842 end if;
1844 else
1845 Lit_Num := Integer_Literal (N, Small_Num);
1846 Lit_Den := Integer_Literal (N, Small_Den);
1848 if Present (Lit_Num) and then Present (Lit_Den) then
1849 Set_Result
1850 (N, Build_Scaled_Divide (N, Expr, Lit_Den, Lit_Num), Rng_Check);
1851 return;
1852 end if;
1853 end if;
1855 -- Fall through to use floating-point for the close result set case,
1856 -- as a result of the numerator or denominator of the small value not
1857 -- being sufficiently small. See also Expand_Convert_Float_To_Fixed.
1859 Set_Result (N,
1860 Build_Multiply (N,
1861 Fpt_Value (Expr),
1862 Real_Literal (N, Ureal_1 / Small)),
1863 Rng_Check,
1864 Trunc => not Rounded_Result (N));
1865 end Expand_Convert_Integer_To_Fixed;
1867 --------------------------------
1868 -- Expand_Decimal_Divide_Call --
1869 --------------------------------
1871 -- We have four operands
1873 -- Dividend
1874 -- Divisor
1875 -- Quotient
1876 -- Remainder
1878 -- All of which are decimal types, and which thus have associated
1879 -- decimal scales.
1881 -- Computing the quotient is a similar problem to that faced by the
1882 -- normal fixed-point division, except that it is simpler, because
1883 -- we always have compatible smalls.
1885 -- Quotient = (Dividend / Divisor) * 10**q
1887 -- where 10 ** q = Dividend'Small / (Divisor'Small * Quotient'Small)
1888 -- so q = Divisor'Scale + Quotient'Scale - Dividend'Scale
1890 -- For q >= 0, we compute
1892 -- Numerator := Dividend * 10 ** q
1893 -- Denominator := Divisor
1894 -- Quotient := Numerator / Denominator
1896 -- For q < 0, we compute
1898 -- Numerator := Dividend
1899 -- Denominator := Divisor * 10 ** q
1900 -- Quotient := Numerator / Denominator
1902 -- Both these divisions are done in truncated mode, and the remainder
1903 -- from these divisions is used to compute the result Remainder. This
1904 -- remainder has the effective scale of the numerator of the division,
1906 -- For q >= 0, the remainder scale is Dividend'Scale + q
1907 -- For q < 0, the remainder scale is Dividend'Scale
1909 -- The result Remainder is then computed by a normal truncating decimal
1910 -- conversion from this scale to the scale of the remainder, i.e. by a
1911 -- division or multiplication by the appropriate power of 10.
1913 procedure Expand_Decimal_Divide_Call (N : Node_Id) is
1914 Loc : constant Source_Ptr := Sloc (N);
1916 Dividend : Node_Id := First_Actual (N);
1917 Divisor : Node_Id := Next_Actual (Dividend);
1918 Quotient : Node_Id := Next_Actual (Divisor);
1919 Remainder : Node_Id := Next_Actual (Quotient);
1921 Dividend_Type : constant Entity_Id := Etype (Dividend);
1922 Divisor_Type : constant Entity_Id := Etype (Divisor);
1923 Quotient_Type : constant Entity_Id := Etype (Quotient);
1924 Remainder_Type : constant Entity_Id := Etype (Remainder);
1926 Dividend_Scale : constant Uint := Scale_Value (Dividend_Type);
1927 Divisor_Scale : constant Uint := Scale_Value (Divisor_Type);
1928 Quotient_Scale : constant Uint := Scale_Value (Quotient_Type);
1929 Remainder_Scale : constant Uint := Scale_Value (Remainder_Type);
1931 Q : Uint;
1932 Numerator_Scale : Uint;
1933 Stmts : List_Id;
1934 Qnn : Entity_Id;
1935 Rnn : Entity_Id;
1936 Computed_Remainder : Node_Id;
1937 Adjusted_Remainder : Node_Id;
1938 Scale_Adjust : Uint;
1940 begin
1941 -- Relocate the operands, since they are now list elements, and we
1942 -- need to reference them separately as operands in the expanded code.
1944 Dividend := Relocate_Node (Dividend);
1945 Divisor := Relocate_Node (Divisor);
1946 Quotient := Relocate_Node (Quotient);
1947 Remainder := Relocate_Node (Remainder);
1949 -- Now compute Q, the adjustment scale
1951 Q := Divisor_Scale + Quotient_Scale - Dividend_Scale;
1953 -- If Q is non-negative then we need a scaled divide
1955 if Q >= 0 then
1956 Build_Scaled_Divide_Code
1958 Dividend,
1959 Integer_Literal (N, Uint_10 ** Q),
1960 Divisor,
1961 Qnn, Rnn, Stmts);
1963 Numerator_Scale := Dividend_Scale + Q;
1965 -- If Q is negative, then we need a double divide
1967 else
1968 Build_Double_Divide_Code
1970 Dividend,
1971 Divisor,
1972 Integer_Literal (N, Uint_10 ** (-Q)),
1973 Qnn, Rnn, Stmts);
1975 Numerator_Scale := Dividend_Scale;
1976 end if;
1978 -- Add statement to set quotient value
1980 -- Quotient := quotient-type!(Qnn);
1982 Append_To (Stmts,
1983 Make_Assignment_Statement (Loc,
1984 Name => Quotient,
1985 Expression =>
1986 Unchecked_Convert_To (Quotient_Type,
1987 Build_Conversion (N, Quotient_Type,
1988 New_Occurrence_Of (Qnn, Loc)))));
1990 -- Now we need to deal with computing and setting the remainder. The
1991 -- scale of the remainder is in Numerator_Scale, and the desired
1992 -- scale is the scale of the given Remainder argument. There are
1993 -- three cases:
1995 -- Numerator_Scale > Remainder_Scale
1997 -- in this case, there are extra digits in the computed remainder
1998 -- which must be eliminated by an extra division:
2000 -- computed-remainder := Numerator rem Denominator
2001 -- scale_adjust = Numerator_Scale - Remainder_Scale
2002 -- adjusted-remainder := computed-remainder / 10 ** scale_adjust
2004 -- Numerator_Scale = Remainder_Scale
2006 -- in this case, the we have the remainder we need
2008 -- computed-remainder := Numerator rem Denominator
2009 -- adjusted-remainder := computed-remainder
2011 -- Numerator_Scale < Remainder_Scale
2013 -- in this case, we have insufficient digits in the computed
2014 -- remainder, which must be eliminated by an extra multiply
2016 -- computed-remainder := Numerator rem Denominator
2017 -- scale_adjust = Remainder_Scale - Numerator_Scale
2018 -- adjusted-remainder := computed-remainder * 10 ** scale_adjust
2020 -- Finally we assign the adjusted-remainder to the result Remainder
2021 -- with conversions to get the proper fixed-point type representation.
2023 Computed_Remainder := New_Occurrence_Of (Rnn, Loc);
2025 if Numerator_Scale > Remainder_Scale then
2026 Scale_Adjust := Numerator_Scale - Remainder_Scale;
2027 Adjusted_Remainder :=
2028 Build_Divide
2029 (N, Computed_Remainder, Integer_Literal (N, 10 ** Scale_Adjust));
2031 elsif Numerator_Scale = Remainder_Scale then
2032 Adjusted_Remainder := Computed_Remainder;
2034 else -- Numerator_Scale < Remainder_Scale
2035 Scale_Adjust := Remainder_Scale - Numerator_Scale;
2036 Adjusted_Remainder :=
2037 Build_Multiply
2038 (N, Computed_Remainder, Integer_Literal (N, 10 ** Scale_Adjust));
2039 end if;
2041 -- Assignment of remainder result
2043 Append_To (Stmts,
2044 Make_Assignment_Statement (Loc,
2045 Name => Remainder,
2046 Expression =>
2047 Unchecked_Convert_To (Remainder_Type, Adjusted_Remainder)));
2049 -- Final step is to rewrite the call with a block containing the
2050 -- above sequence of constructed statements for the divide operation.
2052 Rewrite (N,
2053 Make_Block_Statement (Loc,
2054 Handled_Statement_Sequence =>
2055 Make_Handled_Sequence_Of_Statements (Loc,
2056 Statements => Stmts)));
2058 Analyze (N);
2059 end Expand_Decimal_Divide_Call;
2061 -----------------------------------------------
2062 -- Expand_Divide_Fixed_By_Fixed_Giving_Fixed --
2063 -----------------------------------------------
2065 procedure Expand_Divide_Fixed_By_Fixed_Giving_Fixed (N : Node_Id) is
2066 Left : constant Node_Id := Left_Opnd (N);
2067 Right : constant Node_Id := Right_Opnd (N);
2069 begin
2070 if Etype (Left) = Universal_Real then
2071 Do_Divide_Universal_Fixed (N);
2073 elsif Etype (Right) = Universal_Real then
2074 Do_Divide_Fixed_Universal (N);
2076 else
2077 Do_Divide_Fixed_Fixed (N);
2079 -- A focused optimization: if after constant folding the
2080 -- expression is of the form: T ((Exp * D) / D), where D is
2081 -- a static constant, return T (Exp). This form will show up
2082 -- when D is the denominator of the static expression for the
2083 -- 'small of fixed-point types involved. This transformation
2084 -- removes a division that may be expensive on some targets.
2086 if Nkind (N) = N_Type_Conversion
2087 and then Nkind (Expression (N)) = N_Op_Divide
2088 then
2089 declare
2090 Num : constant Node_Id := Left_Opnd (Expression (N));
2091 Den : constant Node_Id := Right_Opnd (Expression (N));
2093 begin
2094 if Nkind (Den) = N_Integer_Literal
2095 and then Nkind (Num) = N_Op_Multiply
2096 and then Nkind (Right_Opnd (Num)) = N_Integer_Literal
2097 and then Intval (Den) = Intval (Right_Opnd (Num))
2098 then
2099 Rewrite (Expression (N), Left_Opnd (Num));
2100 end if;
2101 end;
2102 end if;
2103 end if;
2104 end Expand_Divide_Fixed_By_Fixed_Giving_Fixed;
2106 -----------------------------------------------
2107 -- Expand_Divide_Fixed_By_Fixed_Giving_Float --
2108 -----------------------------------------------
2110 -- The division is done in Universal_Real, and the result is multiplied
2111 -- by the small ratio, which is Small (Right) / Small (Left). Special
2112 -- treatment is required for universal operands, which represent their
2113 -- own value and do not require conversion.
2115 procedure Expand_Divide_Fixed_By_Fixed_Giving_Float (N : Node_Id) is
2116 Left : constant Node_Id := Left_Opnd (N);
2117 Right : constant Node_Id := Right_Opnd (N);
2119 Left_Type : constant Entity_Id := Etype (Left);
2120 Right_Type : constant Entity_Id := Etype (Right);
2122 begin
2123 -- Case of left operand is universal real, the result we want is:
2125 -- Left_Value / (Right_Value * Right_Small)
2127 -- so we compute this as:
2129 -- (Left_Value / Right_Small) / Right_Value
2131 if Left_Type = Universal_Real then
2132 Set_Result (N,
2133 Build_Divide (N,
2134 Real_Literal (N, Realval (Left) / Small_Value (Right_Type)),
2135 Fpt_Value (Right)));
2137 -- Case of right operand is universal real, the result we want is
2139 -- (Left_Value * Left_Small) / Right_Value
2141 -- so we compute this as:
2143 -- Left_Value * (Left_Small / Right_Value)
2145 -- Note we invert to a multiplication since usually floating-point
2146 -- multiplication is much faster than floating-point division.
2148 elsif Right_Type = Universal_Real then
2149 Set_Result (N,
2150 Build_Multiply (N,
2151 Fpt_Value (Left),
2152 Real_Literal (N, Small_Value (Left_Type) / Realval (Right))));
2154 -- Both operands are fixed, so the value we want is
2156 -- (Left_Value * Left_Small) / (Right_Value * Right_Small)
2158 -- which we compute as:
2160 -- (Left_Value / Right_Value) * (Left_Small / Right_Small)
2162 else
2163 Set_Result (N,
2164 Build_Multiply (N,
2165 Build_Divide (N, Fpt_Value (Left), Fpt_Value (Right)),
2166 Real_Literal (N,
2167 Small_Value (Left_Type) / Small_Value (Right_Type))));
2168 end if;
2169 end Expand_Divide_Fixed_By_Fixed_Giving_Float;
2171 -------------------------------------------------
2172 -- Expand_Divide_Fixed_By_Fixed_Giving_Integer --
2173 -------------------------------------------------
2175 procedure Expand_Divide_Fixed_By_Fixed_Giving_Integer (N : Node_Id) is
2176 Left : constant Node_Id := Left_Opnd (N);
2177 Right : constant Node_Id := Right_Opnd (N);
2178 begin
2179 if Etype (Left) = Universal_Real then
2180 Do_Divide_Universal_Fixed (N);
2181 elsif Etype (Right) = Universal_Real then
2182 Do_Divide_Fixed_Universal (N);
2183 else
2184 Do_Divide_Fixed_Fixed (N);
2185 end if;
2186 end Expand_Divide_Fixed_By_Fixed_Giving_Integer;
2188 -------------------------------------------------
2189 -- Expand_Divide_Fixed_By_Integer_Giving_Fixed --
2190 -------------------------------------------------
2192 -- Since the operand and result fixed-point type is the same, this is
2193 -- a straight divide by the right operand, the small can be ignored.
2195 procedure Expand_Divide_Fixed_By_Integer_Giving_Fixed (N : Node_Id) is
2196 Left : constant Node_Id := Left_Opnd (N);
2197 Right : constant Node_Id := Right_Opnd (N);
2198 begin
2199 Set_Result (N, Build_Divide (N, Left, Right));
2200 end Expand_Divide_Fixed_By_Integer_Giving_Fixed;
2202 -------------------------------------------------
2203 -- Expand_Multiply_Fixed_By_Fixed_Giving_Fixed --
2204 -------------------------------------------------
2206 procedure Expand_Multiply_Fixed_By_Fixed_Giving_Fixed (N : Node_Id) is
2207 Left : constant Node_Id := Left_Opnd (N);
2208 Right : constant Node_Id := Right_Opnd (N);
2210 procedure Rewrite_Non_Static_Universal (Opnd : Node_Id);
2211 -- The operand may be a non-static universal value, such an
2212 -- exponentiation with a non-static exponent. In that case, treat
2213 -- as a fixed * fixed multiplication, and convert the argument to
2214 -- the target fixed type.
2216 ----------------------------------
2217 -- Rewrite_Non_Static_Universal --
2218 ----------------------------------
2220 procedure Rewrite_Non_Static_Universal (Opnd : Node_Id) is
2221 Loc : constant Source_Ptr := Sloc (N);
2222 begin
2223 Rewrite (Opnd,
2224 Make_Type_Conversion (Loc,
2225 Subtype_Mark => New_Occurrence_Of (Etype (N), Loc),
2226 Expression => Expression (Opnd)));
2227 Analyze_And_Resolve (Opnd, Etype (N));
2228 end Rewrite_Non_Static_Universal;
2230 -- Start of processing for Expand_Multiply_Fixed_By_Fixed_Giving_Fixed
2232 begin
2233 if Etype (Left) = Universal_Real then
2234 if Nkind (Left) = N_Real_Literal then
2235 Do_Multiply_Fixed_Universal (N, Left => Right, Right => Left);
2237 elsif Nkind (Left) = N_Type_Conversion then
2238 Rewrite_Non_Static_Universal (Left);
2239 Do_Multiply_Fixed_Fixed (N);
2240 end if;
2242 elsif Etype (Right) = Universal_Real then
2243 if Nkind (Right) = N_Real_Literal then
2244 Do_Multiply_Fixed_Universal (N, Left, Right);
2246 elsif Nkind (Right) = N_Type_Conversion then
2247 Rewrite_Non_Static_Universal (Right);
2248 Do_Multiply_Fixed_Fixed (N);
2249 end if;
2251 else
2252 Do_Multiply_Fixed_Fixed (N);
2253 end if;
2254 end Expand_Multiply_Fixed_By_Fixed_Giving_Fixed;
2256 -------------------------------------------------
2257 -- Expand_Multiply_Fixed_By_Fixed_Giving_Float --
2258 -------------------------------------------------
2260 -- The multiply is done in Universal_Real, and the result is multiplied
2261 -- by the adjustment for the smalls which is Small (Right) * Small (Left).
2262 -- Special treatment is required for universal operands.
2264 procedure Expand_Multiply_Fixed_By_Fixed_Giving_Float (N : Node_Id) is
2265 Left : constant Node_Id := Left_Opnd (N);
2266 Right : constant Node_Id := Right_Opnd (N);
2268 Left_Type : constant Entity_Id := Etype (Left);
2269 Right_Type : constant Entity_Id := Etype (Right);
2271 begin
2272 -- Case of left operand is universal real, the result we want is
2274 -- Left_Value * (Right_Value * Right_Small)
2276 -- so we compute this as:
2278 -- (Left_Value * Right_Small) * Right_Value;
2280 if Left_Type = Universal_Real then
2281 Set_Result (N,
2282 Build_Multiply (N,
2283 Real_Literal (N, Realval (Left) * Small_Value (Right_Type)),
2284 Fpt_Value (Right)));
2286 -- Case of right operand is universal real, the result we want is
2288 -- (Left_Value * Left_Small) * Right_Value
2290 -- so we compute this as:
2292 -- Left_Value * (Left_Small * Right_Value)
2294 elsif Right_Type = Universal_Real then
2295 Set_Result (N,
2296 Build_Multiply (N,
2297 Fpt_Value (Left),
2298 Real_Literal (N, Small_Value (Left_Type) * Realval (Right))));
2300 -- Both operands are fixed, so the value we want is
2302 -- (Left_Value * Left_Small) * (Right_Value * Right_Small)
2304 -- which we compute as:
2306 -- (Left_Value * Right_Value) * (Right_Small * Left_Small)
2308 else
2309 Set_Result (N,
2310 Build_Multiply (N,
2311 Build_Multiply (N, Fpt_Value (Left), Fpt_Value (Right)),
2312 Real_Literal (N,
2313 Small_Value (Right_Type) * Small_Value (Left_Type))));
2314 end if;
2315 end Expand_Multiply_Fixed_By_Fixed_Giving_Float;
2317 ---------------------------------------------------
2318 -- Expand_Multiply_Fixed_By_Fixed_Giving_Integer --
2319 ---------------------------------------------------
2321 procedure Expand_Multiply_Fixed_By_Fixed_Giving_Integer (N : Node_Id) is
2322 Loc : constant Source_Ptr := Sloc (N);
2323 Left : constant Node_Id := Left_Opnd (N);
2324 Right : constant Node_Id := Right_Opnd (N);
2326 begin
2327 if Etype (Left) = Universal_Real then
2328 Do_Multiply_Fixed_Universal (N, Left => Right, Right => Left);
2330 elsif Etype (Right) = Universal_Real then
2331 Do_Multiply_Fixed_Universal (N, Left, Right);
2333 -- If both types are equal and we need to avoid floating point
2334 -- instructions, it's worth introducing a temporary with the
2335 -- common type, because it may be evaluated more simply without
2336 -- the need for run-time use of floating point.
2338 elsif Etype (Right) = Etype (Left)
2339 and then Restriction_Active (No_Floating_Point)
2340 then
2341 declare
2342 Temp : constant Entity_Id := Make_Temporary (Loc, 'F');
2343 Mult : constant Node_Id := Make_Op_Multiply (Loc, Left, Right);
2344 Decl : constant Node_Id :=
2345 Make_Object_Declaration (Loc,
2346 Defining_Identifier => Temp,
2347 Object_Definition => New_Occurrence_Of (Etype (Right), Loc),
2348 Expression => Mult);
2350 begin
2351 Insert_Action (N, Decl);
2352 Rewrite (N,
2353 OK_Convert_To (Etype (N), New_Occurrence_Of (Temp, Loc)));
2354 Analyze_And_Resolve (N, Standard_Integer);
2355 end;
2357 else
2358 Do_Multiply_Fixed_Fixed (N);
2359 end if;
2360 end Expand_Multiply_Fixed_By_Fixed_Giving_Integer;
2362 ---------------------------------------------------
2363 -- Expand_Multiply_Fixed_By_Integer_Giving_Fixed --
2364 ---------------------------------------------------
2366 -- Since the operand and result fixed-point type is the same, this is
2367 -- a straight multiply by the right operand, the small can be ignored.
2369 procedure Expand_Multiply_Fixed_By_Integer_Giving_Fixed (N : Node_Id) is
2370 begin
2371 Set_Result (N,
2372 Build_Multiply (N, Left_Opnd (N), Right_Opnd (N)));
2373 end Expand_Multiply_Fixed_By_Integer_Giving_Fixed;
2375 ---------------------------------------------------
2376 -- Expand_Multiply_Integer_By_Fixed_Giving_Fixed --
2377 ---------------------------------------------------
2379 -- Since the operand and result fixed-point type is the same, this is
2380 -- a straight multiply by the right operand, the small can be ignored.
2382 procedure Expand_Multiply_Integer_By_Fixed_Giving_Fixed (N : Node_Id) is
2383 begin
2384 Set_Result (N,
2385 Build_Multiply (N, Left_Opnd (N), Right_Opnd (N)));
2386 end Expand_Multiply_Integer_By_Fixed_Giving_Fixed;
2388 ---------------
2389 -- Fpt_Value --
2390 ---------------
2392 function Fpt_Value (N : Node_Id) return Node_Id is
2393 begin
2394 return Build_Conversion (N, Universal_Real, N);
2395 end Fpt_Value;
2397 ------------------------
2398 -- Get_Size_For_Value --
2399 ------------------------
2401 function Get_Size_For_Value (V : Uint) return Pos is
2402 begin
2403 pragma Assert (V >= Uint_0);
2405 if V < Uint_2 ** 7 then
2406 return 8;
2408 elsif V < Uint_2 ** 15 then
2409 return 16;
2411 elsif V < Uint_2 ** 31 then
2412 return 32;
2414 elsif V < Uint_2 ** 63 then
2415 return 64;
2417 elsif V < Uint_2 ** 127 then
2418 return 128;
2420 else
2421 return Pos'Last;
2422 end if;
2423 end Get_Size_For_Value;
2425 -----------------------
2426 -- Get_Type_For_Size --
2427 -----------------------
2429 function Get_Type_For_Size (Siz : Pos; Force : Boolean) return Entity_Id is
2430 begin
2431 if Siz <= 8 then
2432 return Standard_Integer_8;
2434 elsif Siz <= 16 then
2435 return Standard_Integer_16;
2437 elsif Siz <= 32 then
2438 return Standard_Integer_32;
2440 elsif Siz <= 64
2441 or else (Force and then System_Max_Integer_Size < 128)
2442 then
2443 return Standard_Integer_64;
2445 elsif (Siz <= 128 and then System_Max_Integer_Size = 128)
2446 or else Force
2447 then
2448 return Standard_Integer_128;
2450 else
2451 return Empty;
2452 end if;
2453 end Get_Type_For_Size;
2455 ---------------------
2456 -- Integer_Literal --
2457 ---------------------
2459 function Integer_Literal
2460 (N : Node_Id;
2461 V : Uint;
2462 Negative : Boolean := False) return Node_Id
2464 T : Entity_Id;
2465 L : Node_Id;
2467 begin
2468 T := Get_Type_For_Size (Get_Size_For_Value (V), Force => False);
2469 if No (T) then
2470 return Empty;
2471 end if;
2473 if Negative then
2474 L := Make_Integer_Literal (Sloc (N), UI_Negate (V));
2475 else
2476 L := Make_Integer_Literal (Sloc (N), V);
2477 end if;
2479 -- Set type of result in case used elsewhere (see note at start)
2481 Set_Etype (L, T);
2482 Set_Is_Static_Expression (L);
2484 -- We really need to set Analyzed here because we may be creating a
2485 -- very strange beast, namely an integer literal typed as fixed-point
2486 -- and the analyzer won't like that.
2488 Set_Analyzed (L);
2489 return L;
2490 end Integer_Literal;
2492 ------------------
2493 -- Real_Literal --
2494 ------------------
2496 function Real_Literal (N : Node_Id; V : Ureal) return Node_Id is
2497 L : Node_Id;
2499 begin
2500 L := Make_Real_Literal (Sloc (N), V);
2502 -- Set type of result in case used elsewhere (see note at start)
2504 Set_Etype (L, Universal_Real);
2505 return L;
2506 end Real_Literal;
2508 ------------------------
2509 -- Rounded_Result_Set --
2510 ------------------------
2512 function Rounded_Result_Set (N : Node_Id) return Boolean is
2513 K : constant Node_Kind := Nkind (N);
2514 begin
2515 if (K = N_Type_Conversion or else
2516 K = N_Op_Divide or else
2517 K = N_Op_Multiply)
2518 and then
2519 (Rounded_Result (N) or else Is_Integer_Type (Etype (N)))
2520 then
2521 return True;
2522 else
2523 return False;
2524 end if;
2525 end Rounded_Result_Set;
2527 ----------------
2528 -- Set_Result --
2529 ----------------
2531 procedure Set_Result
2532 (N : Node_Id;
2533 Expr : Node_Id;
2534 Rchk : Boolean := False;
2535 Trunc : Boolean := False)
2537 Cnode : Node_Id;
2539 Expr_Type : constant Entity_Id := Etype (Expr);
2540 Result_Type : constant Entity_Id := Etype (N);
2542 begin
2543 -- No conversion required if types match and no range check or truncate
2545 if Result_Type = Expr_Type and then not (Rchk or Trunc) then
2546 Cnode := Expr;
2548 -- Else perform required conversion
2550 else
2551 Cnode := Build_Conversion (N, Result_Type, Expr, Rchk, Trunc);
2552 end if;
2554 Rewrite (N, Cnode);
2555 Analyze_And_Resolve (N, Result_Type);
2556 end Set_Result;
2558 end Exp_Fixd;