1 /* Perform instruction reorganizations for delay slot filling.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
4 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu).
5 Hacked by Michael Tiemann (tiemann@cygnus.com).
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 2, or (at your option) any later
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to the Free
21 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
24 /* Instruction reorganization pass.
26 This pass runs after register allocation and final jump
27 optimization. It should be the last pass to run before peephole.
28 It serves primarily to fill delay slots of insns, typically branch
29 and call insns. Other insns typically involve more complicated
30 interactions of data dependencies and resource constraints, and
31 are better handled by scheduling before register allocation (by the
32 function `schedule_insns').
34 The Branch Penalty is the number of extra cycles that are needed to
35 execute a branch insn. On an ideal machine, branches take a single
36 cycle, and the Branch Penalty is 0. Several RISC machines approach
37 branch delays differently:
39 The MIPS and AMD 29000 have a single branch delay slot. Most insns
40 (except other branches) can be used to fill this slot. When the
41 slot is filled, two insns execute in two cycles, reducing the
42 branch penalty to zero.
44 The Motorola 88000 conditionally exposes its branch delay slot,
45 so code is shorter when it is turned off, but will run faster
46 when useful insns are scheduled there.
48 The IBM ROMP has two forms of branch and call insns, both with and
49 without a delay slot. Much like the 88k, insns not using the delay
50 slot can be shorted (2 bytes vs. 4 bytes), but will run slowed.
52 The SPARC always has a branch delay slot, but its effects can be
53 annulled when the branch is not taken. This means that failing to
54 find other sources of insns, we can hoist an insn from the branch
55 target that would only be safe to execute knowing that the branch
58 The HP-PA always has a branch delay slot. For unconditional branches
59 its effects can be annulled when the branch is taken. The effects
60 of the delay slot in a conditional branch can be nullified for forward
61 taken branches, or for untaken backward branches. This means
62 we can hoist insns from the fall-through path for forward branches or
63 steal insns from the target of backward branches.
65 The TMS320C3x and C4x have three branch delay slots. When the three
66 slots are filled, the branch penalty is zero. Most insns can fill the
67 delay slots except jump insns.
69 Three techniques for filling delay slots have been implemented so far:
71 (1) `fill_simple_delay_slots' is the simplest, most efficient way
72 to fill delay slots. This pass first looks for insns which come
73 from before the branch and which are safe to execute after the
74 branch. Then it searches after the insn requiring delay slots or,
75 in the case of a branch, for insns that are after the point at
76 which the branch merges into the fallthrough code, if such a point
77 exists. When such insns are found, the branch penalty decreases
78 and no code expansion takes place.
80 (2) `fill_eager_delay_slots' is more complicated: it is used for
81 scheduling conditional jumps, or for scheduling jumps which cannot
82 be filled using (1). A machine need not have annulled jumps to use
83 this strategy, but it helps (by keeping more options open).
84 `fill_eager_delay_slots' tries to guess the direction the branch
85 will go; if it guesses right 100% of the time, it can reduce the
86 branch penalty as much as `fill_simple_delay_slots' does. If it
87 guesses wrong 100% of the time, it might as well schedule nops (or
88 on the m88k, unexpose the branch slot). When
89 `fill_eager_delay_slots' takes insns from the fall-through path of
90 the jump, usually there is no code expansion; when it takes insns
91 from the branch target, there is code expansion if it is not the
92 only way to reach that target.
94 (3) `relax_delay_slots' uses a set of rules to simplify code that
95 has been reorganized by (1) and (2). It finds cases where
96 conditional test can be eliminated, jumps can be threaded, extra
97 insns can be eliminated, etc. It is the job of (1) and (2) to do a
98 good job of scheduling locally; `relax_delay_slots' takes care of
99 making the various individual schedules work well together. It is
100 especially tuned to handle the control flow interactions of branch
101 insns. It does nothing for insns with delay slots that do not
104 On machines that use CC0, we are very conservative. We will not make
105 a copy of an insn involving CC0 since we want to maintain a 1-1
106 correspondence between the insn that sets and uses CC0. The insns are
107 allowed to be separated by placing an insn that sets CC0 (but not an insn
108 that uses CC0; we could do this, but it doesn't seem worthwhile) in a
109 delay slot. In that case, we point each insn at the other with REG_CC_USER
110 and REG_CC_SETTER notes. Note that these restrictions affect very few
111 machines because most RISC machines with delay slots will not use CC0
112 (the RT is the only known exception at this point).
116 The Acorn Risc Machine can conditionally execute most insns, so
117 it is profitable to move single insns into a position to execute
118 based on the condition code of the previous insn.
120 The HP-PA can conditionally nullify insns, providing a similar
121 effect to the ARM, differing mostly in which insn is "in charge". */
125 #include "coretypes.h"
131 #include "function.h"
132 #include "insn-config.h"
133 #include "conditions.h"
134 #include "hard-reg-set.h"
135 #include "basic-block.h"
141 #include "insn-attr.h"
142 #include "resource.h"
148 #ifndef ANNUL_IFTRUE_SLOTS
149 #define eligible_for_annul_true(INSN, SLOTS, TRIAL, FLAGS) 0
151 #ifndef ANNUL_IFFALSE_SLOTS
152 #define eligible_for_annul_false(INSN, SLOTS, TRIAL, FLAGS) 0
155 /* Insns which have delay slots that have not yet been filled. */
157 static struct obstack unfilled_slots_obstack
;
158 static rtx
*unfilled_firstobj
;
160 /* Define macros to refer to the first and last slot containing unfilled
161 insns. These are used because the list may move and its address
162 should be recomputed at each use. */
164 #define unfilled_slots_base \
165 ((rtx *) obstack_base (&unfilled_slots_obstack))
167 #define unfilled_slots_next \
168 ((rtx *) obstack_next_free (&unfilled_slots_obstack))
170 /* Points to the label before the end of the function. */
171 static rtx end_of_function_label
;
173 /* Mapping between INSN_UID's and position in the code since INSN_UID's do
174 not always monotonically increase. */
175 static int *uid_to_ruid
;
177 /* Highest valid index in `uid_to_ruid'. */
180 static int stop_search_p (rtx
, int);
181 static int resource_conflicts_p (struct resources
*, struct resources
*);
182 static int insn_references_resource_p (rtx
, struct resources
*, int);
183 static int insn_sets_resource_p (rtx
, struct resources
*, int);
184 static rtx
find_end_label (void);
185 static rtx
emit_delay_sequence (rtx
, rtx
, int);
186 static rtx
add_to_delay_list (rtx
, rtx
);
187 static rtx
delete_from_delay_slot (rtx
);
188 static void delete_scheduled_jump (rtx
);
189 static void note_delay_statistics (int, int);
190 #if defined(ANNUL_IFFALSE_SLOTS) || defined(ANNUL_IFTRUE_SLOTS)
191 static rtx
optimize_skip (rtx
);
193 static int get_jump_flags (rtx
, rtx
);
194 static int rare_destination (rtx
);
195 static int mostly_true_jump (rtx
, rtx
);
196 static rtx
get_branch_condition (rtx
, rtx
);
197 static int condition_dominates_p (rtx
, rtx
);
198 static int redirect_with_delay_slots_safe_p (rtx
, rtx
, rtx
);
199 static int redirect_with_delay_list_safe_p (rtx
, rtx
, rtx
);
200 static int check_annul_list_true_false (int, rtx
);
201 static rtx
steal_delay_list_from_target (rtx
, rtx
, rtx
, rtx
,
205 int, int *, int *, rtx
*);
206 static rtx
steal_delay_list_from_fallthrough (rtx
, rtx
, rtx
, rtx
,
211 static void try_merge_delay_insns (rtx
, rtx
);
212 static rtx
redundant_insn (rtx
, rtx
, rtx
);
213 static int own_thread_p (rtx
, rtx
, int);
214 static void update_block (rtx
, rtx
);
215 static int reorg_redirect_jump (rtx
, rtx
);
216 static void update_reg_dead_notes (rtx
, rtx
);
217 static void fix_reg_dead_note (rtx
, rtx
);
218 static void update_reg_unused_notes (rtx
, rtx
);
219 static void fill_simple_delay_slots (int);
220 static rtx
fill_slots_from_thread (rtx
, rtx
, rtx
, rtx
, int, int, int, int,
222 static void fill_eager_delay_slots (void);
223 static void relax_delay_slots (rtx
);
225 static void make_return_insns (rtx
);
228 /* Return TRUE if this insn should stop the search for insn to fill delay
229 slots. LABELS_P indicates that labels should terminate the search.
230 In all cases, jumps terminate the search. */
233 stop_search_p (rtx insn
, int labels_p
)
238 /* If the insn can throw an exception that is caught within the function,
239 it may effectively perform a jump from the viewpoint of the function.
240 Therefore act like for a jump. */
241 if (can_throw_internal (insn
))
244 switch (GET_CODE (insn
))
258 /* OK unless it contains a delay slot or is an `asm' insn of some type.
259 We don't know anything about these. */
260 return (GET_CODE (PATTERN (insn
)) == SEQUENCE
261 || GET_CODE (PATTERN (insn
)) == ASM_INPUT
262 || asm_noperands (PATTERN (insn
)) >= 0);
269 /* Return TRUE if any resources are marked in both RES1 and RES2 or if either
270 resource set contains a volatile memory reference. Otherwise, return FALSE. */
273 resource_conflicts_p (struct resources
*res1
, struct resources
*res2
)
275 if ((res1
->cc
&& res2
->cc
) || (res1
->memory
&& res2
->memory
)
276 || (res1
->unch_memory
&& res2
->unch_memory
)
277 || res1
->volatil
|| res2
->volatil
)
281 return (res1
->regs
& res2
->regs
) != HARD_CONST (0);
286 for (i
= 0; i
< HARD_REG_SET_LONGS
; i
++)
287 if ((res1
->regs
[i
] & res2
->regs
[i
]) != 0)
294 /* Return TRUE if any resource marked in RES, a `struct resources', is
295 referenced by INSN. If INCLUDE_DELAYED_EFFECTS is set, return if the called
296 routine is using those resources.
298 We compute this by computing all the resources referenced by INSN and
299 seeing if this conflicts with RES. It might be faster to directly check
300 ourselves, and this is the way it used to work, but it means duplicating
301 a large block of complex code. */
304 insn_references_resource_p (rtx insn
, struct resources
*res
,
305 int include_delayed_effects
)
307 struct resources insn_res
;
309 CLEAR_RESOURCE (&insn_res
);
310 mark_referenced_resources (insn
, &insn_res
, include_delayed_effects
);
311 return resource_conflicts_p (&insn_res
, res
);
314 /* Return TRUE if INSN modifies resources that are marked in RES.
315 INCLUDE_DELAYED_EFFECTS is set if the actions of that routine should be
316 included. CC0 is only modified if it is explicitly set; see comments
317 in front of mark_set_resources for details. */
320 insn_sets_resource_p (rtx insn
, struct resources
*res
,
321 int include_delayed_effects
)
323 struct resources insn_sets
;
325 CLEAR_RESOURCE (&insn_sets
);
326 mark_set_resources (insn
, &insn_sets
, 0, include_delayed_effects
);
327 return resource_conflicts_p (&insn_sets
, res
);
330 /* Find a label at the end of the function or before a RETURN. If there is
334 find_end_label (void)
338 /* If we found one previously, return it. */
339 if (end_of_function_label
)
340 return end_of_function_label
;
342 /* Otherwise, see if there is a label at the end of the function. If there
343 is, it must be that RETURN insns aren't needed, so that is our return
344 label and we don't have to do anything else. */
346 insn
= get_last_insn ();
347 while (GET_CODE (insn
) == NOTE
348 || (GET_CODE (insn
) == INSN
349 && (GET_CODE (PATTERN (insn
)) == USE
350 || GET_CODE (PATTERN (insn
)) == CLOBBER
)))
351 insn
= PREV_INSN (insn
);
353 /* When a target threads its epilogue we might already have a
354 suitable return insn. If so put a label before it for the
355 end_of_function_label. */
356 if (GET_CODE (insn
) == BARRIER
357 && GET_CODE (PREV_INSN (insn
)) == JUMP_INSN
358 && GET_CODE (PATTERN (PREV_INSN (insn
))) == RETURN
)
360 rtx temp
= PREV_INSN (PREV_INSN (insn
));
361 end_of_function_label
= gen_label_rtx ();
362 LABEL_NUSES (end_of_function_label
) = 0;
364 /* Put the label before an USE insns that may proceed the RETURN insn. */
365 while (GET_CODE (temp
) == USE
)
366 temp
= PREV_INSN (temp
);
368 emit_label_after (end_of_function_label
, temp
);
371 else if (GET_CODE (insn
) == CODE_LABEL
)
372 end_of_function_label
= insn
;
375 end_of_function_label
= gen_label_rtx ();
376 LABEL_NUSES (end_of_function_label
) = 0;
377 /* If the basic block reorder pass moves the return insn to
378 some other place try to locate it again and put our
379 end_of_function_label there. */
380 while (insn
&& ! (GET_CODE (insn
) == JUMP_INSN
381 && (GET_CODE (PATTERN (insn
)) == RETURN
)))
382 insn
= PREV_INSN (insn
);
385 insn
= PREV_INSN (insn
);
387 /* Put the label before an USE insns that may proceed the
389 while (GET_CODE (insn
) == USE
)
390 insn
= PREV_INSN (insn
);
392 emit_label_after (end_of_function_label
, insn
);
396 /* Otherwise, make a new label and emit a RETURN and BARRIER,
398 emit_label (end_of_function_label
);
402 /* The return we make may have delay slots too. */
403 rtx insn
= gen_return ();
404 insn
= emit_jump_insn (insn
);
406 if (num_delay_slots (insn
) > 0)
407 obstack_ptr_grow (&unfilled_slots_obstack
, insn
);
413 /* Show one additional use for this label so it won't go away until
415 ++LABEL_NUSES (end_of_function_label
);
417 return end_of_function_label
;
420 /* Put INSN and LIST together in a SEQUENCE rtx of LENGTH, and replace
421 the pattern of INSN with the SEQUENCE.
423 Chain the insns so that NEXT_INSN of each insn in the sequence points to
424 the next and NEXT_INSN of the last insn in the sequence points to
425 the first insn after the sequence. Similarly for PREV_INSN. This makes
426 it easier to scan all insns.
428 Returns the SEQUENCE that replaces INSN. */
431 emit_delay_sequence (rtx insn
, rtx list
, int length
)
437 /* Allocate the rtvec to hold the insns and the SEQUENCE. */
438 rtvec seqv
= rtvec_alloc (length
+ 1);
439 rtx seq
= gen_rtx_SEQUENCE (VOIDmode
, seqv
);
440 rtx seq_insn
= make_insn_raw (seq
);
441 rtx first
= get_insns ();
442 rtx last
= get_last_insn ();
444 /* Make a copy of the insn having delay slots. */
445 rtx delay_insn
= copy_rtx (insn
);
447 /* If INSN is followed by a BARRIER, delete the BARRIER since it will only
448 confuse further processing. Update LAST in case it was the last insn.
449 We will put the BARRIER back in later. */
450 if (NEXT_INSN (insn
) && GET_CODE (NEXT_INSN (insn
)) == BARRIER
)
452 delete_related_insns (NEXT_INSN (insn
));
453 last
= get_last_insn ();
457 /* Splice our SEQUENCE into the insn stream where INSN used to be. */
458 NEXT_INSN (seq_insn
) = NEXT_INSN (insn
);
459 PREV_INSN (seq_insn
) = PREV_INSN (insn
);
462 PREV_INSN (NEXT_INSN (seq_insn
)) = seq_insn
;
465 NEXT_INSN (PREV_INSN (seq_insn
)) = seq_insn
;
467 /* Note the calls to set_new_first_and_last_insn must occur after
468 SEQ_INSN has been completely spliced into the insn stream.
470 Otherwise CUR_INSN_UID will get set to an incorrect value because
471 set_new_first_and_last_insn will not find SEQ_INSN in the chain. */
473 set_new_first_and_last_insn (first
, seq_insn
);
476 set_new_first_and_last_insn (seq_insn
, last
);
478 /* Build our SEQUENCE and rebuild the insn chain. */
479 XVECEXP (seq
, 0, 0) = delay_insn
;
480 INSN_DELETED_P (delay_insn
) = 0;
481 PREV_INSN (delay_insn
) = PREV_INSN (seq_insn
);
483 for (li
= list
; li
; li
= XEXP (li
, 1), i
++)
485 rtx tem
= XEXP (li
, 0);
488 /* Show that this copy of the insn isn't deleted. */
489 INSN_DELETED_P (tem
) = 0;
491 XVECEXP (seq
, 0, i
) = tem
;
492 PREV_INSN (tem
) = XVECEXP (seq
, 0, i
- 1);
493 NEXT_INSN (XVECEXP (seq
, 0, i
- 1)) = tem
;
495 /* SPARC assembler, for instance, emit warning when debug info is output
496 into the delay slot. */
497 if (INSN_LOCATOR (tem
) && !INSN_LOCATOR (seq_insn
))
498 INSN_LOCATOR (seq_insn
) = INSN_LOCATOR (tem
);
499 INSN_LOCATOR (tem
) = 0;
501 for (note
= REG_NOTES (tem
); note
; note
= next
)
503 next
= XEXP (note
, 1);
504 switch (REG_NOTE_KIND (note
))
507 /* Remove any REG_DEAD notes because we can't rely on them now
508 that the insn has been moved. */
509 remove_note (tem
, note
);
513 /* Keep the label reference count up to date. */
514 if (GET_CODE (XEXP (note
, 0)) == CODE_LABEL
)
515 LABEL_NUSES (XEXP (note
, 0)) ++;
524 NEXT_INSN (XVECEXP (seq
, 0, length
)) = NEXT_INSN (seq_insn
);
526 /* If the previous insn is a SEQUENCE, update the NEXT_INSN pointer on the
527 last insn in that SEQUENCE to point to us. Similarly for the first
528 insn in the following insn if it is a SEQUENCE. */
530 if (PREV_INSN (seq_insn
) && GET_CODE (PREV_INSN (seq_insn
)) == INSN
531 && GET_CODE (PATTERN (PREV_INSN (seq_insn
))) == SEQUENCE
)
532 NEXT_INSN (XVECEXP (PATTERN (PREV_INSN (seq_insn
)), 0,
533 XVECLEN (PATTERN (PREV_INSN (seq_insn
)), 0) - 1))
536 if (NEXT_INSN (seq_insn
) && GET_CODE (NEXT_INSN (seq_insn
)) == INSN
537 && GET_CODE (PATTERN (NEXT_INSN (seq_insn
))) == SEQUENCE
)
538 PREV_INSN (XVECEXP (PATTERN (NEXT_INSN (seq_insn
)), 0, 0)) = seq_insn
;
540 /* If there used to be a BARRIER, put it back. */
542 emit_barrier_after (seq_insn
);
550 /* Add INSN to DELAY_LIST and return the head of the new list. The list must
551 be in the order in which the insns are to be executed. */
554 add_to_delay_list (rtx insn
, rtx delay_list
)
556 /* If we have an empty list, just make a new list element. If
557 INSN has its block number recorded, clear it since we may
558 be moving the insn to a new block. */
562 clear_hashed_info_for_insn (insn
);
563 return gen_rtx_INSN_LIST (VOIDmode
, insn
, NULL_RTX
);
566 /* Otherwise this must be an INSN_LIST. Add INSN to the end of the
568 XEXP (delay_list
, 1) = add_to_delay_list (insn
, XEXP (delay_list
, 1));
573 /* Delete INSN from the delay slot of the insn that it is in, which may
574 produce an insn with no delay slots. Return the new insn. */
577 delete_from_delay_slot (rtx insn
)
579 rtx trial
, seq_insn
, seq
, prev
;
583 /* We first must find the insn containing the SEQUENCE with INSN in its
584 delay slot. Do this by finding an insn, TRIAL, where
585 PREV_INSN (NEXT_INSN (TRIAL)) != TRIAL. */
588 PREV_INSN (NEXT_INSN (trial
)) == trial
;
589 trial
= NEXT_INSN (trial
))
592 seq_insn
= PREV_INSN (NEXT_INSN (trial
));
593 seq
= PATTERN (seq_insn
);
595 /* Create a delay list consisting of all the insns other than the one
596 we are deleting (unless we were the only one). */
597 if (XVECLEN (seq
, 0) > 2)
598 for (i
= 1; i
< XVECLEN (seq
, 0); i
++)
599 if (XVECEXP (seq
, 0, i
) != insn
)
600 delay_list
= add_to_delay_list (XVECEXP (seq
, 0, i
), delay_list
);
602 /* Delete the old SEQUENCE, re-emit the insn that used to have the delay
603 list, and rebuild the delay list if non-empty. */
604 prev
= PREV_INSN (seq_insn
);
605 trial
= XVECEXP (seq
, 0, 0);
606 delete_related_insns (seq_insn
);
607 add_insn_after (trial
, prev
);
609 if (GET_CODE (trial
) == JUMP_INSN
610 && (simplejump_p (trial
) || GET_CODE (PATTERN (trial
)) == RETURN
))
611 emit_barrier_after (trial
);
613 /* If there are any delay insns, remit them. Otherwise clear the
616 trial
= emit_delay_sequence (trial
, delay_list
, XVECLEN (seq
, 0) - 2);
617 else if (GET_CODE (trial
) == JUMP_INSN
618 || GET_CODE (trial
) == CALL_INSN
619 || GET_CODE (trial
) == INSN
)
620 INSN_ANNULLED_BRANCH_P (trial
) = 0;
622 INSN_FROM_TARGET_P (insn
) = 0;
624 /* Show we need to fill this insn again. */
625 obstack_ptr_grow (&unfilled_slots_obstack
, trial
);
630 /* Delete INSN, a JUMP_INSN. If it is a conditional jump, we must track down
631 the insn that sets CC0 for it and delete it too. */
634 delete_scheduled_jump (rtx insn
)
636 /* Delete the insn that sets cc0 for us. On machines without cc0, we could
637 delete the insn that sets the condition code, but it is hard to find it.
638 Since this case is rare anyway, don't bother trying; there would likely
639 be other insns that became dead anyway, which we wouldn't know to
643 if (reg_mentioned_p (cc0_rtx
, insn
))
645 rtx note
= find_reg_note (insn
, REG_CC_SETTER
, NULL_RTX
);
647 /* If a reg-note was found, it points to an insn to set CC0. This
648 insn is in the delay list of some other insn. So delete it from
649 the delay list it was in. */
652 if (! FIND_REG_INC_NOTE (XEXP (note
, 0), NULL_RTX
)
653 && sets_cc0_p (PATTERN (XEXP (note
, 0))) == 1)
654 delete_from_delay_slot (XEXP (note
, 0));
658 /* The insn setting CC0 is our previous insn, but it may be in
659 a delay slot. It will be the last insn in the delay slot, if
661 rtx trial
= previous_insn (insn
);
662 if (GET_CODE (trial
) == NOTE
)
663 trial
= prev_nonnote_insn (trial
);
664 if (sets_cc0_p (PATTERN (trial
)) != 1
665 || FIND_REG_INC_NOTE (trial
, NULL_RTX
))
667 if (PREV_INSN (NEXT_INSN (trial
)) == trial
)
668 delete_related_insns (trial
);
670 delete_from_delay_slot (trial
);
675 delete_related_insns (insn
);
678 /* Counters for delay-slot filling. */
680 #define NUM_REORG_FUNCTIONS 2
681 #define MAX_DELAY_HISTOGRAM 3
682 #define MAX_REORG_PASSES 2
684 static int num_insns_needing_delays
[NUM_REORG_FUNCTIONS
][MAX_REORG_PASSES
];
686 static int num_filled_delays
[NUM_REORG_FUNCTIONS
][MAX_DELAY_HISTOGRAM
+1][MAX_REORG_PASSES
];
688 static int reorg_pass_number
;
691 note_delay_statistics (int slots_filled
, int index
)
693 num_insns_needing_delays
[index
][reorg_pass_number
]++;
694 if (slots_filled
> MAX_DELAY_HISTOGRAM
)
695 slots_filled
= MAX_DELAY_HISTOGRAM
;
696 num_filled_delays
[index
][slots_filled
][reorg_pass_number
]++;
699 #if defined(ANNUL_IFFALSE_SLOTS) || defined(ANNUL_IFTRUE_SLOTS)
701 /* Optimize the following cases:
703 1. When a conditional branch skips over only one instruction,
704 use an annulling branch and put that insn in the delay slot.
705 Use either a branch that annuls when the condition if true or
706 invert the test with a branch that annuls when the condition is
707 false. This saves insns, since otherwise we must copy an insn
710 (orig) (skip) (otherwise)
711 Bcc.n L1 Bcc',a L1 Bcc,a L1'
718 2. When a conditional branch skips over only one instruction,
719 and after that, it unconditionally branches somewhere else,
720 perform the similar optimization. This saves executing the
721 second branch in the case where the inverted condition is true.
730 This should be expanded to skip over N insns, where N is the number
731 of delay slots required. */
734 optimize_skip (rtx insn
)
736 rtx trial
= next_nonnote_insn (insn
);
737 rtx next_trial
= next_active_insn (trial
);
742 flags
= get_jump_flags (insn
, JUMP_LABEL (insn
));
745 || GET_CODE (trial
) != INSN
746 || GET_CODE (PATTERN (trial
)) == SEQUENCE
747 || recog_memoized (trial
) < 0
748 || (! eligible_for_annul_false (insn
, 0, trial
, flags
)
749 && ! eligible_for_annul_true (insn
, 0, trial
, flags
))
750 || can_throw_internal (trial
))
753 /* There are two cases where we are just executing one insn (we assume
754 here that a branch requires only one insn; this should be generalized
755 at some point): Where the branch goes around a single insn or where
756 we have one insn followed by a branch to the same label we branch to.
757 In both of these cases, inverting the jump and annulling the delay
758 slot give the same effect in fewer insns. */
759 if ((next_trial
== next_active_insn (JUMP_LABEL (insn
))
760 && ! (next_trial
== 0 && current_function_epilogue_delay_list
!= 0))
762 && GET_CODE (next_trial
) == JUMP_INSN
763 && JUMP_LABEL (insn
) == JUMP_LABEL (next_trial
)
764 && (simplejump_p (next_trial
)
765 || GET_CODE (PATTERN (next_trial
)) == RETURN
)))
767 if (eligible_for_annul_false (insn
, 0, trial
, flags
))
769 if (invert_jump (insn
, JUMP_LABEL (insn
), 1))
770 INSN_FROM_TARGET_P (trial
) = 1;
771 else if (! eligible_for_annul_true (insn
, 0, trial
, flags
))
775 delay_list
= add_to_delay_list (trial
, NULL_RTX
);
776 next_trial
= next_active_insn (trial
);
777 update_block (trial
, trial
);
778 delete_related_insns (trial
);
780 /* Also, if we are targeting an unconditional
781 branch, thread our jump to the target of that branch. Don't
782 change this into a RETURN here, because it may not accept what
783 we have in the delay slot. We'll fix this up later. */
784 if (next_trial
&& GET_CODE (next_trial
) == JUMP_INSN
785 && (simplejump_p (next_trial
)
786 || GET_CODE (PATTERN (next_trial
)) == RETURN
))
788 target_label
= JUMP_LABEL (next_trial
);
789 if (target_label
== 0)
790 target_label
= find_end_label ();
792 /* Recompute the flags based on TARGET_LABEL since threading
793 the jump to TARGET_LABEL may change the direction of the
794 jump (which may change the circumstances in which the
795 delay slot is nullified). */
796 flags
= get_jump_flags (insn
, target_label
);
797 if (eligible_for_annul_true (insn
, 0, trial
, flags
))
798 reorg_redirect_jump (insn
, target_label
);
801 INSN_ANNULLED_BRANCH_P (insn
) = 1;
808 /* Encode and return branch direction and prediction information for
809 INSN assuming it will jump to LABEL.
811 Non conditional branches return no direction information and
812 are predicted as very likely taken. */
815 get_jump_flags (rtx insn
, rtx label
)
819 /* get_jump_flags can be passed any insn with delay slots, these may
820 be INSNs, CALL_INSNs, or JUMP_INSNs. Only JUMP_INSNs have branch
821 direction information, and only if they are conditional jumps.
823 If LABEL is zero, then there is no way to determine the branch
825 if (GET_CODE (insn
) == JUMP_INSN
826 && (condjump_p (insn
) || condjump_in_parallel_p (insn
))
827 && INSN_UID (insn
) <= max_uid
829 && INSN_UID (label
) <= max_uid
)
831 = (uid_to_ruid
[INSN_UID (label
)] > uid_to_ruid
[INSN_UID (insn
)])
832 ? ATTR_FLAG_forward
: ATTR_FLAG_backward
;
833 /* No valid direction information. */
837 /* If insn is a conditional branch call mostly_true_jump to get
838 determine the branch prediction.
840 Non conditional branches are predicted as very likely taken. */
841 if (GET_CODE (insn
) == JUMP_INSN
842 && (condjump_p (insn
) || condjump_in_parallel_p (insn
)))
846 prediction
= mostly_true_jump (insn
, get_branch_condition (insn
, label
));
850 flags
|= (ATTR_FLAG_very_likely
| ATTR_FLAG_likely
);
853 flags
|= ATTR_FLAG_likely
;
856 flags
|= ATTR_FLAG_unlikely
;
859 flags
|= (ATTR_FLAG_very_unlikely
| ATTR_FLAG_unlikely
);
867 flags
|= (ATTR_FLAG_very_likely
| ATTR_FLAG_likely
);
872 /* Return 1 if INSN is a destination that will be branched to rarely (the
873 return point of a function); return 2 if DEST will be branched to very
874 rarely (a call to a function that doesn't return). Otherwise,
878 rare_destination (rtx insn
)
883 for (; insn
; insn
= next
)
885 if (GET_CODE (insn
) == INSN
&& GET_CODE (PATTERN (insn
)) == SEQUENCE
)
886 insn
= XVECEXP (PATTERN (insn
), 0, 0);
888 next
= NEXT_INSN (insn
);
890 switch (GET_CODE (insn
))
895 /* A BARRIER can either be after a JUMP_INSN or a CALL_INSN. We
896 don't scan past JUMP_INSNs, so any barrier we find here must
897 have been after a CALL_INSN and hence mean the call doesn't
901 if (GET_CODE (PATTERN (insn
)) == RETURN
)
903 else if (simplejump_p (insn
)
904 && jump_count
++ < 10)
905 next
= JUMP_LABEL (insn
);
914 /* If we got here it means we hit the end of the function. So this
915 is an unlikely destination. */
920 /* Return truth value of the statement that this branch
921 is mostly taken. If we think that the branch is extremely likely
922 to be taken, we return 2. If the branch is slightly more likely to be
923 taken, return 1. If the branch is slightly less likely to be taken,
924 return 0 and if the branch is highly unlikely to be taken, return -1.
926 CONDITION, if nonzero, is the condition that JUMP_INSN is testing. */
929 mostly_true_jump (rtx jump_insn
, rtx condition
)
931 rtx target_label
= JUMP_LABEL (jump_insn
);
933 int rare_dest
= rare_destination (target_label
);
934 int rare_fallthrough
= rare_destination (NEXT_INSN (jump_insn
));
936 /* If branch probabilities are available, then use that number since it
937 always gives a correct answer. */
938 note
= find_reg_note (jump_insn
, REG_BR_PROB
, 0);
941 int prob
= INTVAL (XEXP (note
, 0));
943 if (prob
>= REG_BR_PROB_BASE
* 9 / 10)
945 else if (prob
>= REG_BR_PROB_BASE
/ 2)
947 else if (prob
>= REG_BR_PROB_BASE
/ 10)
953 /* ??? Ought to use estimate_probability instead. */
955 /* If this is a branch outside a loop, it is highly unlikely. */
956 if (GET_CODE (PATTERN (jump_insn
)) == SET
957 && GET_CODE (SET_SRC (PATTERN (jump_insn
))) == IF_THEN_ELSE
958 && ((GET_CODE (XEXP (SET_SRC (PATTERN (jump_insn
)), 1)) == LABEL_REF
959 && LABEL_OUTSIDE_LOOP_P (XEXP (SET_SRC (PATTERN (jump_insn
)), 1)))
960 || (GET_CODE (XEXP (SET_SRC (PATTERN (jump_insn
)), 2)) == LABEL_REF
961 && LABEL_OUTSIDE_LOOP_P (XEXP (SET_SRC (PATTERN (jump_insn
)), 2)))))
966 /* If this is the test of a loop, it is very likely true. We scan
967 backwards from the target label. If we find a NOTE_INSN_LOOP_BEG
968 before the next real insn, we assume the branch is to the top of
970 for (insn
= PREV_INSN (target_label
);
971 insn
&& GET_CODE (insn
) == NOTE
;
972 insn
= PREV_INSN (insn
))
973 if (NOTE_LINE_NUMBER (insn
) == NOTE_INSN_LOOP_BEG
)
976 /* If this is a jump to the test of a loop, it is likely true. We scan
977 forwards from the target label. If we find a NOTE_INSN_LOOP_VTOP
978 before the next real insn, we assume the branch is to the loop branch
980 for (insn
= NEXT_INSN (target_label
);
981 insn
&& GET_CODE (insn
) == NOTE
;
982 insn
= PREV_INSN (insn
))
983 if (NOTE_LINE_NUMBER (insn
) == NOTE_INSN_LOOP_VTOP
)
987 /* Look at the relative rarities of the fallthrough and destination. If
988 they differ, we can predict the branch that way. */
990 switch (rare_fallthrough
- rare_dest
)
1004 /* If we couldn't figure out what this jump was, assume it won't be
1005 taken. This should be rare. */
1009 /* EQ tests are usually false and NE tests are usually true. Also,
1010 most quantities are positive, so we can make the appropriate guesses
1011 about signed comparisons against zero. */
1012 switch (GET_CODE (condition
))
1015 /* Unconditional branch. */
1023 if (XEXP (condition
, 1) == const0_rtx
)
1028 if (XEXP (condition
, 1) == const0_rtx
)
1036 /* Predict backward branches usually take, forward branches usually not. If
1037 we don't know whether this is forward or backward, assume the branch
1038 will be taken, since most are. */
1039 return (target_label
== 0 || INSN_UID (jump_insn
) > max_uid
1040 || INSN_UID (target_label
) > max_uid
1041 || (uid_to_ruid
[INSN_UID (jump_insn
)]
1042 > uid_to_ruid
[INSN_UID (target_label
)]));
1045 /* Return the condition under which INSN will branch to TARGET. If TARGET
1046 is zero, return the condition under which INSN will return. If INSN is
1047 an unconditional branch, return const_true_rtx. If INSN isn't a simple
1048 type of jump, or it doesn't go to TARGET, return 0. */
1051 get_branch_condition (rtx insn
, rtx target
)
1053 rtx pat
= PATTERN (insn
);
1056 if (condjump_in_parallel_p (insn
))
1057 pat
= XVECEXP (pat
, 0, 0);
1059 if (GET_CODE (pat
) == RETURN
)
1060 return target
== 0 ? const_true_rtx
: 0;
1062 else if (GET_CODE (pat
) != SET
|| SET_DEST (pat
) != pc_rtx
)
1065 src
= SET_SRC (pat
);
1066 if (GET_CODE (src
) == LABEL_REF
&& XEXP (src
, 0) == target
)
1067 return const_true_rtx
;
1069 else if (GET_CODE (src
) == IF_THEN_ELSE
1070 && ((target
== 0 && GET_CODE (XEXP (src
, 1)) == RETURN
)
1071 || (GET_CODE (XEXP (src
, 1)) == LABEL_REF
1072 && XEXP (XEXP (src
, 1), 0) == target
))
1073 && XEXP (src
, 2) == pc_rtx
)
1074 return XEXP (src
, 0);
1076 else if (GET_CODE (src
) == IF_THEN_ELSE
1077 && ((target
== 0 && GET_CODE (XEXP (src
, 2)) == RETURN
)
1078 || (GET_CODE (XEXP (src
, 2)) == LABEL_REF
1079 && XEXP (XEXP (src
, 2), 0) == target
))
1080 && XEXP (src
, 1) == pc_rtx
)
1083 rev
= reversed_comparison_code (XEXP (src
, 0), insn
);
1085 return gen_rtx_fmt_ee (rev
, GET_MODE (XEXP (src
, 0)),
1086 XEXP (XEXP (src
, 0), 0),
1087 XEXP (XEXP (src
, 0), 1));
1093 /* Return nonzero if CONDITION is more strict than the condition of
1094 INSN, i.e., if INSN will always branch if CONDITION is true. */
1097 condition_dominates_p (rtx condition
, rtx insn
)
1099 rtx other_condition
= get_branch_condition (insn
, JUMP_LABEL (insn
));
1100 enum rtx_code code
= GET_CODE (condition
);
1101 enum rtx_code other_code
;
1103 if (rtx_equal_p (condition
, other_condition
)
1104 || other_condition
== const_true_rtx
)
1107 else if (condition
== const_true_rtx
|| other_condition
== 0)
1110 other_code
= GET_CODE (other_condition
);
1111 if (GET_RTX_LENGTH (code
) != 2 || GET_RTX_LENGTH (other_code
) != 2
1112 || ! rtx_equal_p (XEXP (condition
, 0), XEXP (other_condition
, 0))
1113 || ! rtx_equal_p (XEXP (condition
, 1), XEXP (other_condition
, 1)))
1116 return comparison_dominates_p (code
, other_code
);
1119 /* Return nonzero if redirecting JUMP to NEWLABEL does not invalidate
1120 any insns already in the delay slot of JUMP. */
1123 redirect_with_delay_slots_safe_p (rtx jump
, rtx newlabel
, rtx seq
)
1126 rtx pat
= PATTERN (seq
);
1128 /* Make sure all the delay slots of this jump would still
1129 be valid after threading the jump. If they are still
1130 valid, then return nonzero. */
1132 flags
= get_jump_flags (jump
, newlabel
);
1133 for (i
= 1; i
< XVECLEN (pat
, 0); i
++)
1135 #ifdef ANNUL_IFFALSE_SLOTS
1136 (INSN_ANNULLED_BRANCH_P (jump
)
1137 && INSN_FROM_TARGET_P (XVECEXP (pat
, 0, i
)))
1138 ? eligible_for_annul_false (jump
, i
- 1,
1139 XVECEXP (pat
, 0, i
), flags
) :
1141 #ifdef ANNUL_IFTRUE_SLOTS
1142 (INSN_ANNULLED_BRANCH_P (jump
)
1143 && ! INSN_FROM_TARGET_P (XVECEXP (pat
, 0, i
)))
1144 ? eligible_for_annul_true (jump
, i
- 1,
1145 XVECEXP (pat
, 0, i
), flags
) :
1147 eligible_for_delay (jump
, i
- 1, XVECEXP (pat
, 0, i
), flags
)))
1150 return (i
== XVECLEN (pat
, 0));
1153 /* Return nonzero if redirecting JUMP to NEWLABEL does not invalidate
1154 any insns we wish to place in the delay slot of JUMP. */
1157 redirect_with_delay_list_safe_p (rtx jump
, rtx newlabel
, rtx delay_list
)
1162 /* Make sure all the insns in DELAY_LIST would still be
1163 valid after threading the jump. If they are still
1164 valid, then return nonzero. */
1166 flags
= get_jump_flags (jump
, newlabel
);
1167 for (li
= delay_list
, i
= 0; li
; li
= XEXP (li
, 1), i
++)
1169 #ifdef ANNUL_IFFALSE_SLOTS
1170 (INSN_ANNULLED_BRANCH_P (jump
)
1171 && INSN_FROM_TARGET_P (XEXP (li
, 0)))
1172 ? eligible_for_annul_false (jump
, i
, XEXP (li
, 0), flags
) :
1174 #ifdef ANNUL_IFTRUE_SLOTS
1175 (INSN_ANNULLED_BRANCH_P (jump
)
1176 && ! INSN_FROM_TARGET_P (XEXP (li
, 0)))
1177 ? eligible_for_annul_true (jump
, i
, XEXP (li
, 0), flags
) :
1179 eligible_for_delay (jump
, i
, XEXP (li
, 0), flags
)))
1182 return (li
== NULL
);
1185 /* DELAY_LIST is a list of insns that have already been placed into delay
1186 slots. See if all of them have the same annulling status as ANNUL_TRUE_P.
1187 If not, return 0; otherwise return 1. */
1190 check_annul_list_true_false (int annul_true_p
, rtx delay_list
)
1196 for (temp
= delay_list
; temp
; temp
= XEXP (temp
, 1))
1198 rtx trial
= XEXP (temp
, 0);
1200 if ((annul_true_p
&& INSN_FROM_TARGET_P (trial
))
1201 || (!annul_true_p
&& !INSN_FROM_TARGET_P (trial
)))
1209 /* INSN branches to an insn whose pattern SEQ is a SEQUENCE. Given that
1210 the condition tested by INSN is CONDITION and the resources shown in
1211 OTHER_NEEDED are needed after INSN, see whether INSN can take all the insns
1212 from SEQ's delay list, in addition to whatever insns it may execute
1213 (in DELAY_LIST). SETS and NEEDED are denote resources already set and
1214 needed while searching for delay slot insns. Return the concatenated
1215 delay list if possible, otherwise, return 0.
1217 SLOTS_TO_FILL is the total number of slots required by INSN, and
1218 PSLOTS_FILLED points to the number filled so far (also the number of
1219 insns in DELAY_LIST). It is updated with the number that have been
1220 filled from the SEQUENCE, if any.
1222 PANNUL_P points to a nonzero value if we already know that we need
1223 to annul INSN. If this routine determines that annulling is needed,
1224 it may set that value nonzero.
1226 PNEW_THREAD points to a location that is to receive the place at which
1227 execution should continue. */
1230 steal_delay_list_from_target (rtx insn
, rtx condition
, rtx seq
,
1231 rtx delay_list
, struct resources
*sets
,
1232 struct resources
*needed
,
1233 struct resources
*other_needed
,
1234 int slots_to_fill
, int *pslots_filled
,
1235 int *pannul_p
, rtx
*pnew_thread
)
1238 int slots_remaining
= slots_to_fill
- *pslots_filled
;
1239 int total_slots_filled
= *pslots_filled
;
1240 rtx new_delay_list
= 0;
1241 int must_annul
= *pannul_p
;
1244 struct resources cc_set
;
1246 /* We can't do anything if there are more delay slots in SEQ than we
1247 can handle, or if we don't know that it will be a taken branch.
1248 We know that it will be a taken branch if it is either an unconditional
1249 branch or a conditional branch with a stricter branch condition.
1251 Also, exit if the branch has more than one set, since then it is computing
1252 other results that can't be ignored, e.g. the HPPA mov&branch instruction.
1253 ??? It may be possible to move other sets into INSN in addition to
1254 moving the instructions in the delay slots.
1256 We can not steal the delay list if one of the instructions in the
1257 current delay_list modifies the condition codes and the jump in the
1258 sequence is a conditional jump. We can not do this because we can
1259 not change the direction of the jump because the condition codes
1260 will effect the direction of the jump in the sequence. */
1262 CLEAR_RESOURCE (&cc_set
);
1263 for (temp
= delay_list
; temp
; temp
= XEXP (temp
, 1))
1265 rtx trial
= XEXP (temp
, 0);
1267 mark_set_resources (trial
, &cc_set
, 0, MARK_SRC_DEST_CALL
);
1268 if (insn_references_resource_p (XVECEXP (seq
, 0, 0), &cc_set
, 0))
1272 if (XVECLEN (seq
, 0) - 1 > slots_remaining
1273 || ! condition_dominates_p (condition
, XVECEXP (seq
, 0, 0))
1274 || ! single_set (XVECEXP (seq
, 0, 0)))
1277 #ifdef MD_CAN_REDIRECT_BRANCH
1278 /* On some targets, branches with delay slots can have a limited
1279 displacement. Give the back end a chance to tell us we can't do
1281 if (! MD_CAN_REDIRECT_BRANCH (insn
, XVECEXP (seq
, 0, 0)))
1285 for (i
= 1; i
< XVECLEN (seq
, 0); i
++)
1287 rtx trial
= XVECEXP (seq
, 0, i
);
1290 if (insn_references_resource_p (trial
, sets
, 0)
1291 || insn_sets_resource_p (trial
, needed
, 0)
1292 || insn_sets_resource_p (trial
, sets
, 0)
1294 /* If TRIAL sets CC0, we can't copy it, so we can't steal this
1296 || find_reg_note (trial
, REG_CC_USER
, NULL_RTX
)
1298 /* If TRIAL is from the fallthrough code of an annulled branch insn
1299 in SEQ, we cannot use it. */
1300 || (INSN_ANNULLED_BRANCH_P (XVECEXP (seq
, 0, 0))
1301 && ! INSN_FROM_TARGET_P (trial
)))
1304 /* If this insn was already done (usually in a previous delay slot),
1305 pretend we put it in our delay slot. */
1306 if (redundant_insn (trial
, insn
, new_delay_list
))
1309 /* We will end up re-vectoring this branch, so compute flags
1310 based on jumping to the new label. */
1311 flags
= get_jump_flags (insn
, JUMP_LABEL (XVECEXP (seq
, 0, 0)));
1314 && ((condition
== const_true_rtx
1315 || (! insn_sets_resource_p (trial
, other_needed
, 0)
1316 && ! may_trap_p (PATTERN (trial
)))))
1317 ? eligible_for_delay (insn
, total_slots_filled
, trial
, flags
)
1318 : (must_annul
|| (delay_list
== NULL
&& new_delay_list
== NULL
))
1320 check_annul_list_true_false (0, delay_list
)
1321 && check_annul_list_true_false (0, new_delay_list
)
1322 && eligible_for_annul_false (insn
, total_slots_filled
,
1327 temp
= copy_rtx (trial
);
1328 INSN_FROM_TARGET_P (temp
) = 1;
1329 new_delay_list
= add_to_delay_list (temp
, new_delay_list
);
1330 total_slots_filled
++;
1332 if (--slots_remaining
== 0)
1339 /* Show the place to which we will be branching. */
1340 *pnew_thread
= next_active_insn (JUMP_LABEL (XVECEXP (seq
, 0, 0)));
1342 /* Add any new insns to the delay list and update the count of the
1343 number of slots filled. */
1344 *pslots_filled
= total_slots_filled
;
1348 if (delay_list
== 0)
1349 return new_delay_list
;
1351 for (temp
= new_delay_list
; temp
; temp
= XEXP (temp
, 1))
1352 delay_list
= add_to_delay_list (XEXP (temp
, 0), delay_list
);
1357 /* Similar to steal_delay_list_from_target except that SEQ is on the
1358 fallthrough path of INSN. Here we only do something if the delay insn
1359 of SEQ is an unconditional branch. In that case we steal its delay slot
1360 for INSN since unconditional branches are much easier to fill. */
1363 steal_delay_list_from_fallthrough (rtx insn
, rtx condition
, rtx seq
,
1364 rtx delay_list
, struct resources
*sets
,
1365 struct resources
*needed
,
1366 struct resources
*other_needed
,
1367 int slots_to_fill
, int *pslots_filled
,
1372 int must_annul
= *pannul_p
;
1375 flags
= get_jump_flags (insn
, JUMP_LABEL (insn
));
1377 /* We can't do anything if SEQ's delay insn isn't an
1378 unconditional branch. */
1380 if (! simplejump_p (XVECEXP (seq
, 0, 0))
1381 && GET_CODE (PATTERN (XVECEXP (seq
, 0, 0))) != RETURN
)
1384 for (i
= 1; i
< XVECLEN (seq
, 0); i
++)
1386 rtx trial
= XVECEXP (seq
, 0, i
);
1388 /* If TRIAL sets CC0, stealing it will move it too far from the use
1390 if (insn_references_resource_p (trial
, sets
, 0)
1391 || insn_sets_resource_p (trial
, needed
, 0)
1392 || insn_sets_resource_p (trial
, sets
, 0)
1394 || sets_cc0_p (PATTERN (trial
))
1400 /* If this insn was already done, we don't need it. */
1401 if (redundant_insn (trial
, insn
, delay_list
))
1403 delete_from_delay_slot (trial
);
1408 && ((condition
== const_true_rtx
1409 || (! insn_sets_resource_p (trial
, other_needed
, 0)
1410 && ! may_trap_p (PATTERN (trial
)))))
1411 ? eligible_for_delay (insn
, *pslots_filled
, trial
, flags
)
1412 : (must_annul
|| delay_list
== NULL
) && (must_annul
= 1,
1413 check_annul_list_true_false (1, delay_list
)
1414 && eligible_for_annul_true (insn
, *pslots_filled
, trial
, flags
)))
1418 delete_from_delay_slot (trial
);
1419 delay_list
= add_to_delay_list (trial
, delay_list
);
1421 if (++(*pslots_filled
) == slots_to_fill
)
1433 /* Try merging insns starting at THREAD which match exactly the insns in
1436 If all insns were matched and the insn was previously annulling, the
1437 annul bit will be cleared.
1439 For each insn that is merged, if the branch is or will be non-annulling,
1440 we delete the merged insn. */
1443 try_merge_delay_insns (rtx insn
, rtx thread
)
1445 rtx trial
, next_trial
;
1446 rtx delay_insn
= XVECEXP (PATTERN (insn
), 0, 0);
1447 int annul_p
= INSN_ANNULLED_BRANCH_P (delay_insn
);
1448 int slot_number
= 1;
1449 int num_slots
= XVECLEN (PATTERN (insn
), 0);
1450 rtx next_to_match
= XVECEXP (PATTERN (insn
), 0, slot_number
);
1451 struct resources set
, needed
;
1452 rtx merged_insns
= 0;
1456 flags
= get_jump_flags (delay_insn
, JUMP_LABEL (delay_insn
));
1458 CLEAR_RESOURCE (&needed
);
1459 CLEAR_RESOURCE (&set
);
1461 /* If this is not an annulling branch, take into account anything needed in
1462 INSN's delay slot. This prevents two increments from being incorrectly
1463 folded into one. If we are annulling, this would be the correct
1464 thing to do. (The alternative, looking at things set in NEXT_TO_MATCH
1465 will essentially disable this optimization. This method is somewhat of
1466 a kludge, but I don't see a better way.) */
1468 for (i
= 1 ; i
< num_slots
; i
++)
1469 if (XVECEXP (PATTERN (insn
), 0, i
))
1470 mark_referenced_resources (XVECEXP (PATTERN (insn
), 0, i
), &needed
, 1);
1472 for (trial
= thread
; !stop_search_p (trial
, 1); trial
= next_trial
)
1474 rtx pat
= PATTERN (trial
);
1475 rtx oldtrial
= trial
;
1477 next_trial
= next_nonnote_insn (trial
);
1479 /* TRIAL must be a CALL_INSN or INSN. Skip USE and CLOBBER. */
1480 if (GET_CODE (trial
) == INSN
1481 && (GET_CODE (pat
) == USE
|| GET_CODE (pat
) == CLOBBER
))
1484 if (GET_CODE (next_to_match
) == GET_CODE (trial
)
1486 /* We can't share an insn that sets cc0. */
1487 && ! sets_cc0_p (pat
)
1489 && ! insn_references_resource_p (trial
, &set
, 1)
1490 && ! insn_sets_resource_p (trial
, &set
, 1)
1491 && ! insn_sets_resource_p (trial
, &needed
, 1)
1492 && (trial
= try_split (pat
, trial
, 0)) != 0
1493 /* Update next_trial, in case try_split succeeded. */
1494 && (next_trial
= next_nonnote_insn (trial
))
1495 /* Likewise THREAD. */
1496 && (thread
= oldtrial
== thread
? trial
: thread
)
1497 && rtx_equal_p (PATTERN (next_to_match
), PATTERN (trial
))
1498 /* Have to test this condition if annul condition is different
1499 from (and less restrictive than) non-annulling one. */
1500 && eligible_for_delay (delay_insn
, slot_number
- 1, trial
, flags
))
1505 update_block (trial
, thread
);
1506 if (trial
== thread
)
1507 thread
= next_active_insn (thread
);
1509 delete_related_insns (trial
);
1510 INSN_FROM_TARGET_P (next_to_match
) = 0;
1513 merged_insns
= gen_rtx_INSN_LIST (VOIDmode
, trial
, merged_insns
);
1515 if (++slot_number
== num_slots
)
1518 next_to_match
= XVECEXP (PATTERN (insn
), 0, slot_number
);
1521 mark_set_resources (trial
, &set
, 0, MARK_SRC_DEST_CALL
);
1522 mark_referenced_resources (trial
, &needed
, 1);
1525 /* See if we stopped on a filled insn. If we did, try to see if its
1526 delay slots match. */
1527 if (slot_number
!= num_slots
1528 && trial
&& GET_CODE (trial
) == INSN
1529 && GET_CODE (PATTERN (trial
)) == SEQUENCE
1530 && ! INSN_ANNULLED_BRANCH_P (XVECEXP (PATTERN (trial
), 0, 0)))
1532 rtx pat
= PATTERN (trial
);
1533 rtx filled_insn
= XVECEXP (pat
, 0, 0);
1535 /* Account for resources set/needed by the filled insn. */
1536 mark_set_resources (filled_insn
, &set
, 0, MARK_SRC_DEST_CALL
);
1537 mark_referenced_resources (filled_insn
, &needed
, 1);
1539 for (i
= 1; i
< XVECLEN (pat
, 0); i
++)
1541 rtx dtrial
= XVECEXP (pat
, 0, i
);
1543 if (! insn_references_resource_p (dtrial
, &set
, 1)
1544 && ! insn_sets_resource_p (dtrial
, &set
, 1)
1545 && ! insn_sets_resource_p (dtrial
, &needed
, 1)
1547 && ! sets_cc0_p (PATTERN (dtrial
))
1549 && rtx_equal_p (PATTERN (next_to_match
), PATTERN (dtrial
))
1550 && eligible_for_delay (delay_insn
, slot_number
- 1, dtrial
, flags
))
1556 update_block (dtrial
, thread
);
1557 new = delete_from_delay_slot (dtrial
);
1558 if (INSN_DELETED_P (thread
))
1560 INSN_FROM_TARGET_P (next_to_match
) = 0;
1563 merged_insns
= gen_rtx_INSN_LIST (SImode
, dtrial
,
1566 if (++slot_number
== num_slots
)
1569 next_to_match
= XVECEXP (PATTERN (insn
), 0, slot_number
);
1573 /* Keep track of the set/referenced resources for the delay
1574 slots of any trial insns we encounter. */
1575 mark_set_resources (dtrial
, &set
, 0, MARK_SRC_DEST_CALL
);
1576 mark_referenced_resources (dtrial
, &needed
, 1);
1581 /* If all insns in the delay slot have been matched and we were previously
1582 annulling the branch, we need not any more. In that case delete all the
1583 merged insns. Also clear the INSN_FROM_TARGET_P bit of each insn in
1584 the delay list so that we know that it isn't only being used at the
1586 if (slot_number
== num_slots
&& annul_p
)
1588 for (; merged_insns
; merged_insns
= XEXP (merged_insns
, 1))
1590 if (GET_MODE (merged_insns
) == SImode
)
1594 update_block (XEXP (merged_insns
, 0), thread
);
1595 new = delete_from_delay_slot (XEXP (merged_insns
, 0));
1596 if (INSN_DELETED_P (thread
))
1601 update_block (XEXP (merged_insns
, 0), thread
);
1602 delete_related_insns (XEXP (merged_insns
, 0));
1606 INSN_ANNULLED_BRANCH_P (delay_insn
) = 0;
1608 for (i
= 0; i
< XVECLEN (PATTERN (insn
), 0); i
++)
1609 INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn
), 0, i
)) = 0;
1613 /* See if INSN is redundant with an insn in front of TARGET. Often this
1614 is called when INSN is a candidate for a delay slot of TARGET.
1615 DELAY_LIST are insns that will be placed in delay slots of TARGET in front
1616 of INSN. Often INSN will be redundant with an insn in a delay slot of
1617 some previous insn. This happens when we have a series of branches to the
1618 same label; in that case the first insn at the target might want to go
1619 into each of the delay slots.
1621 If we are not careful, this routine can take up a significant fraction
1622 of the total compilation time (4%), but only wins rarely. Hence we
1623 speed this routine up by making two passes. The first pass goes back
1624 until it hits a label and sees if it find an insn with an identical
1625 pattern. Only in this (relatively rare) event does it check for
1628 We do not split insns we encounter. This could cause us not to find a
1629 redundant insn, but the cost of splitting seems greater than the possible
1630 gain in rare cases. */
1633 redundant_insn (rtx insn
, rtx target
, rtx delay_list
)
1635 rtx target_main
= target
;
1636 rtx ipat
= PATTERN (insn
);
1638 struct resources needed
, set
;
1640 unsigned insns_to_search
;
1642 /* If INSN has any REG_UNUSED notes, it can't match anything since we
1643 are allowed to not actually assign to such a register. */
1644 if (find_reg_note (insn
, REG_UNUSED
, NULL_RTX
) != 0)
1647 /* Scan backwards looking for a match. */
1648 for (trial
= PREV_INSN (target
),
1649 insns_to_search
= MAX_DELAY_SLOT_INSN_SEARCH
;
1650 trial
&& insns_to_search
> 0;
1651 trial
= PREV_INSN (trial
), --insns_to_search
)
1653 if (GET_CODE (trial
) == CODE_LABEL
)
1656 if (! INSN_P (trial
))
1659 pat
= PATTERN (trial
);
1660 if (GET_CODE (pat
) == USE
|| GET_CODE (pat
) == CLOBBER
)
1663 if (GET_CODE (pat
) == SEQUENCE
)
1665 /* Stop for a CALL and its delay slots because it is difficult to
1666 track its resource needs correctly. */
1667 if (GET_CODE (XVECEXP (pat
, 0, 0)) == CALL_INSN
)
1670 /* Stop for an INSN or JUMP_INSN with delayed effects and its delay
1671 slots because it is difficult to track its resource needs
1674 #ifdef INSN_SETS_ARE_DELAYED
1675 if (INSN_SETS_ARE_DELAYED (XVECEXP (pat
, 0, 0)))
1679 #ifdef INSN_REFERENCES_ARE_DELAYED
1680 if (INSN_REFERENCES_ARE_DELAYED (XVECEXP (pat
, 0, 0)))
1684 /* See if any of the insns in the delay slot match, updating
1685 resource requirements as we go. */
1686 for (i
= XVECLEN (pat
, 0) - 1; i
> 0; i
--)
1687 if (GET_CODE (XVECEXP (pat
, 0, i
)) == GET_CODE (insn
)
1688 && rtx_equal_p (PATTERN (XVECEXP (pat
, 0, i
)), ipat
)
1689 && ! find_reg_note (XVECEXP (pat
, 0, i
), REG_UNUSED
, NULL_RTX
))
1692 /* If found a match, exit this loop early. */
1697 else if (GET_CODE (trial
) == GET_CODE (insn
) && rtx_equal_p (pat
, ipat
)
1698 && ! find_reg_note (trial
, REG_UNUSED
, NULL_RTX
))
1702 /* If we didn't find an insn that matches, return 0. */
1706 /* See what resources this insn sets and needs. If they overlap, or
1707 if this insn references CC0, it can't be redundant. */
1709 CLEAR_RESOURCE (&needed
);
1710 CLEAR_RESOURCE (&set
);
1711 mark_set_resources (insn
, &set
, 0, MARK_SRC_DEST_CALL
);
1712 mark_referenced_resources (insn
, &needed
, 1);
1714 /* If TARGET is a SEQUENCE, get the main insn. */
1715 if (GET_CODE (target
) == INSN
&& GET_CODE (PATTERN (target
)) == SEQUENCE
)
1716 target_main
= XVECEXP (PATTERN (target
), 0, 0);
1718 if (resource_conflicts_p (&needed
, &set
)
1720 || reg_mentioned_p (cc0_rtx
, ipat
)
1722 /* The insn requiring the delay may not set anything needed or set by
1724 || insn_sets_resource_p (target_main
, &needed
, 1)
1725 || insn_sets_resource_p (target_main
, &set
, 1))
1728 /* Insns we pass may not set either NEEDED or SET, so merge them for
1730 needed
.memory
|= set
.memory
;
1731 needed
.unch_memory
|= set
.unch_memory
;
1732 IOR_HARD_REG_SET (needed
.regs
, set
.regs
);
1734 /* This insn isn't redundant if it conflicts with an insn that either is
1735 or will be in a delay slot of TARGET. */
1739 if (insn_sets_resource_p (XEXP (delay_list
, 0), &needed
, 1))
1741 delay_list
= XEXP (delay_list
, 1);
1744 if (GET_CODE (target
) == INSN
&& GET_CODE (PATTERN (target
)) == SEQUENCE
)
1745 for (i
= 1; i
< XVECLEN (PATTERN (target
), 0); i
++)
1746 if (insn_sets_resource_p (XVECEXP (PATTERN (target
), 0, i
), &needed
, 1))
1749 /* Scan backwards until we reach a label or an insn that uses something
1750 INSN sets or sets something insn uses or sets. */
1752 for (trial
= PREV_INSN (target
),
1753 insns_to_search
= MAX_DELAY_SLOT_INSN_SEARCH
;
1754 trial
&& GET_CODE (trial
) != CODE_LABEL
&& insns_to_search
> 0;
1755 trial
= PREV_INSN (trial
), --insns_to_search
)
1757 if (GET_CODE (trial
) != INSN
&& GET_CODE (trial
) != CALL_INSN
1758 && GET_CODE (trial
) != JUMP_INSN
)
1761 pat
= PATTERN (trial
);
1762 if (GET_CODE (pat
) == USE
|| GET_CODE (pat
) == CLOBBER
)
1765 if (GET_CODE (pat
) == SEQUENCE
)
1767 /* If this is a CALL_INSN and its delay slots, it is hard to track
1768 the resource needs properly, so give up. */
1769 if (GET_CODE (XVECEXP (pat
, 0, 0)) == CALL_INSN
)
1772 /* If this is an INSN or JUMP_INSN with delayed effects, it
1773 is hard to track the resource needs properly, so give up. */
1775 #ifdef INSN_SETS_ARE_DELAYED
1776 if (INSN_SETS_ARE_DELAYED (XVECEXP (pat
, 0, 0)))
1780 #ifdef INSN_REFERENCES_ARE_DELAYED
1781 if (INSN_REFERENCES_ARE_DELAYED (XVECEXP (pat
, 0, 0)))
1785 /* See if any of the insns in the delay slot match, updating
1786 resource requirements as we go. */
1787 for (i
= XVECLEN (pat
, 0) - 1; i
> 0; i
--)
1789 rtx candidate
= XVECEXP (pat
, 0, i
);
1791 /* If an insn will be annulled if the branch is false, it isn't
1792 considered as a possible duplicate insn. */
1793 if (rtx_equal_p (PATTERN (candidate
), ipat
)
1794 && ! (INSN_ANNULLED_BRANCH_P (XVECEXP (pat
, 0, 0))
1795 && INSN_FROM_TARGET_P (candidate
)))
1797 /* Show that this insn will be used in the sequel. */
1798 INSN_FROM_TARGET_P (candidate
) = 0;
1802 /* Unless this is an annulled insn from the target of a branch,
1803 we must stop if it sets anything needed or set by INSN. */
1804 if ((! INSN_ANNULLED_BRANCH_P (XVECEXP (pat
, 0, 0))
1805 || ! INSN_FROM_TARGET_P (candidate
))
1806 && insn_sets_resource_p (candidate
, &needed
, 1))
1810 /* If the insn requiring the delay slot conflicts with INSN, we
1812 if (insn_sets_resource_p (XVECEXP (pat
, 0, 0), &needed
, 1))
1817 /* See if TRIAL is the same as INSN. */
1818 pat
= PATTERN (trial
);
1819 if (rtx_equal_p (pat
, ipat
))
1822 /* Can't go any further if TRIAL conflicts with INSN. */
1823 if (insn_sets_resource_p (trial
, &needed
, 1))
1831 /* Return 1 if THREAD can only be executed in one way. If LABEL is nonzero,
1832 it is the target of the branch insn being scanned. If ALLOW_FALLTHROUGH
1833 is nonzero, we are allowed to fall into this thread; otherwise, we are
1836 If LABEL is used more than one or we pass a label other than LABEL before
1837 finding an active insn, we do not own this thread. */
1840 own_thread_p (rtx thread
, rtx label
, int allow_fallthrough
)
1845 /* We don't own the function end. */
1849 /* Get the first active insn, or THREAD, if it is an active insn. */
1850 active_insn
= next_active_insn (PREV_INSN (thread
));
1852 for (insn
= thread
; insn
!= active_insn
; insn
= NEXT_INSN (insn
))
1853 if (GET_CODE (insn
) == CODE_LABEL
1854 && (insn
!= label
|| LABEL_NUSES (insn
) != 1))
1857 if (allow_fallthrough
)
1860 /* Ensure that we reach a BARRIER before any insn or label. */
1861 for (insn
= prev_nonnote_insn (thread
);
1862 insn
== 0 || GET_CODE (insn
) != BARRIER
;
1863 insn
= prev_nonnote_insn (insn
))
1865 || GET_CODE (insn
) == CODE_LABEL
1866 || (GET_CODE (insn
) == INSN
1867 && GET_CODE (PATTERN (insn
)) != USE
1868 && GET_CODE (PATTERN (insn
)) != CLOBBER
))
1874 /* Called when INSN is being moved from a location near the target of a jump.
1875 We leave a marker of the form (use (INSN)) immediately in front
1876 of WHERE for mark_target_live_regs. These markers will be deleted when
1879 We used to try to update the live status of registers if WHERE is at
1880 the start of a basic block, but that can't work since we may remove a
1881 BARRIER in relax_delay_slots. */
1884 update_block (rtx insn
, rtx where
)
1886 /* Ignore if this was in a delay slot and it came from the target of
1888 if (INSN_FROM_TARGET_P (insn
))
1891 emit_insn_before (gen_rtx_USE (VOIDmode
, insn
), where
);
1893 /* INSN might be making a value live in a block where it didn't use to
1894 be. So recompute liveness information for this block. */
1896 incr_ticks_for_insn (insn
);
1899 /* Similar to REDIRECT_JUMP except that we update the BB_TICKS entry for
1900 the basic block containing the jump. */
1903 reorg_redirect_jump (rtx jump
, rtx nlabel
)
1905 incr_ticks_for_insn (jump
);
1906 return redirect_jump (jump
, nlabel
, 1);
1909 /* Called when INSN is being moved forward into a delay slot of DELAYED_INSN.
1910 We check every instruction between INSN and DELAYED_INSN for REG_DEAD notes
1911 that reference values used in INSN. If we find one, then we move the
1912 REG_DEAD note to INSN.
1914 This is needed to handle the case where an later insn (after INSN) has a
1915 REG_DEAD note for a register used by INSN, and this later insn subsequently
1916 gets moved before a CODE_LABEL because it is a redundant insn. In this
1917 case, mark_target_live_regs may be confused into thinking the register
1918 is dead because it sees a REG_DEAD note immediately before a CODE_LABEL. */
1921 update_reg_dead_notes (rtx insn
, rtx delayed_insn
)
1925 for (p
= next_nonnote_insn (insn
); p
!= delayed_insn
;
1926 p
= next_nonnote_insn (p
))
1927 for (link
= REG_NOTES (p
); link
; link
= next
)
1929 next
= XEXP (link
, 1);
1931 if (REG_NOTE_KIND (link
) != REG_DEAD
1932 || GET_CODE (XEXP (link
, 0)) != REG
)
1935 if (reg_referenced_p (XEXP (link
, 0), PATTERN (insn
)))
1937 /* Move the REG_DEAD note from P to INSN. */
1938 remove_note (p
, link
);
1939 XEXP (link
, 1) = REG_NOTES (insn
);
1940 REG_NOTES (insn
) = link
;
1945 /* Called when an insn redundant with start_insn is deleted. If there
1946 is a REG_DEAD note for the target of start_insn between start_insn
1947 and stop_insn, then the REG_DEAD note needs to be deleted since the
1948 value no longer dies there.
1950 If the REG_DEAD note isn't deleted, then mark_target_live_regs may be
1951 confused into thinking the register is dead. */
1954 fix_reg_dead_note (rtx start_insn
, rtx stop_insn
)
1958 for (p
= next_nonnote_insn (start_insn
); p
!= stop_insn
;
1959 p
= next_nonnote_insn (p
))
1960 for (link
= REG_NOTES (p
); link
; link
= next
)
1962 next
= XEXP (link
, 1);
1964 if (REG_NOTE_KIND (link
) != REG_DEAD
1965 || GET_CODE (XEXP (link
, 0)) != REG
)
1968 if (reg_set_p (XEXP (link
, 0), PATTERN (start_insn
)))
1970 remove_note (p
, link
);
1976 /* Delete any REG_UNUSED notes that exist on INSN but not on REDUNDANT_INSN.
1978 This handles the case of udivmodXi4 instructions which optimize their
1979 output depending on whether any REG_UNUSED notes are present.
1980 we must make sure that INSN calculates as many results as REDUNDANT_INSN
1984 update_reg_unused_notes (rtx insn
, rtx redundant_insn
)
1988 for (link
= REG_NOTES (insn
); link
; link
= next
)
1990 next
= XEXP (link
, 1);
1992 if (REG_NOTE_KIND (link
) != REG_UNUSED
1993 || GET_CODE (XEXP (link
, 0)) != REG
)
1996 if (! find_regno_note (redundant_insn
, REG_UNUSED
,
1997 REGNO (XEXP (link
, 0))))
1998 remove_note (insn
, link
);
2002 /* Scan a function looking for insns that need a delay slot and find insns to
2003 put into the delay slot.
2005 NON_JUMPS_P is nonzero if we are to only try to fill non-jump insns (such
2006 as calls). We do these first since we don't want jump insns (that are
2007 easier to fill) to get the only insns that could be used for non-jump insns.
2008 When it is zero, only try to fill JUMP_INSNs.
2010 When slots are filled in this manner, the insns (including the
2011 delay_insn) are put together in a SEQUENCE rtx. In this fashion,
2012 it is possible to tell whether a delay slot has really been filled
2013 or not. `final' knows how to deal with this, by communicating
2014 through FINAL_SEQUENCE. */
2017 fill_simple_delay_slots (int non_jumps_p
)
2019 rtx insn
, pat
, trial
, next_trial
;
2021 int num_unfilled_slots
= unfilled_slots_next
- unfilled_slots_base
;
2022 struct resources needed
, set
;
2023 int slots_to_fill
, slots_filled
;
2026 for (i
= 0; i
< num_unfilled_slots
; i
++)
2029 /* Get the next insn to fill. If it has already had any slots assigned,
2030 we can't do anything with it. Maybe we'll improve this later. */
2032 insn
= unfilled_slots_base
[i
];
2034 || INSN_DELETED_P (insn
)
2035 || (GET_CODE (insn
) == INSN
2036 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
2037 || (GET_CODE (insn
) == JUMP_INSN
&& non_jumps_p
)
2038 || (GET_CODE (insn
) != JUMP_INSN
&& ! non_jumps_p
))
2041 /* It may have been that this insn used to need delay slots, but
2042 now doesn't; ignore in that case. This can happen, for example,
2043 on the HP PA RISC, where the number of delay slots depends on
2044 what insns are nearby. */
2045 slots_to_fill
= num_delay_slots (insn
);
2047 /* Some machine description have defined instructions to have
2048 delay slots only in certain circumstances which may depend on
2049 nearby insns (which change due to reorg's actions).
2051 For example, the PA port normally has delay slots for unconditional
2054 However, the PA port claims such jumps do not have a delay slot
2055 if they are immediate successors of certain CALL_INSNs. This
2056 allows the port to favor filling the delay slot of the call with
2057 the unconditional jump. */
2058 if (slots_to_fill
== 0)
2061 /* This insn needs, or can use, some delay slots. SLOTS_TO_FILL
2062 says how many. After initialization, first try optimizing
2065 nop add %o7,.-L1,%o7
2069 If this case applies, the delay slot of the call is filled with
2070 the unconditional jump. This is done first to avoid having the
2071 delay slot of the call filled in the backward scan. Also, since
2072 the unconditional jump is likely to also have a delay slot, that
2073 insn must exist when it is subsequently scanned.
2075 This is tried on each insn with delay slots as some machines
2076 have insns which perform calls, but are not represented as
2082 if (GET_CODE (insn
) == JUMP_INSN
)
2083 flags
= get_jump_flags (insn
, JUMP_LABEL (insn
));
2085 flags
= get_jump_flags (insn
, NULL_RTX
);
2087 if ((trial
= next_active_insn (insn
))
2088 && GET_CODE (trial
) == JUMP_INSN
2089 && simplejump_p (trial
)
2090 && eligible_for_delay (insn
, slots_filled
, trial
, flags
)
2091 && no_labels_between_p (insn
, trial
)
2092 && ! can_throw_internal (trial
))
2096 delay_list
= add_to_delay_list (trial
, delay_list
);
2098 /* TRIAL may have had its delay slot filled, then unfilled. When
2099 the delay slot is unfilled, TRIAL is placed back on the unfilled
2100 slots obstack. Unfortunately, it is placed on the end of the
2101 obstack, not in its original location. Therefore, we must search
2102 from entry i + 1 to the end of the unfilled slots obstack to
2103 try and find TRIAL. */
2104 tmp
= &unfilled_slots_base
[i
+ 1];
2105 while (*tmp
!= trial
&& tmp
!= unfilled_slots_next
)
2108 /* Remove the unconditional jump from consideration for delay slot
2109 filling and unthread it. */
2113 rtx next
= NEXT_INSN (trial
);
2114 rtx prev
= PREV_INSN (trial
);
2116 NEXT_INSN (prev
) = next
;
2118 PREV_INSN (next
) = prev
;
2122 /* Now, scan backwards from the insn to search for a potential
2123 delay-slot candidate. Stop searching when a label or jump is hit.
2125 For each candidate, if it is to go into the delay slot (moved
2126 forward in execution sequence), it must not need or set any resources
2127 that were set by later insns and must not set any resources that
2128 are needed for those insns.
2130 The delay slot insn itself sets resources unless it is a call
2131 (in which case the called routine, not the insn itself, is doing
2134 if (slots_filled
< slots_to_fill
)
2136 CLEAR_RESOURCE (&needed
);
2137 CLEAR_RESOURCE (&set
);
2138 mark_set_resources (insn
, &set
, 0, MARK_SRC_DEST
);
2139 mark_referenced_resources (insn
, &needed
, 0);
2141 for (trial
= prev_nonnote_insn (insn
); ! stop_search_p (trial
, 1);
2144 next_trial
= prev_nonnote_insn (trial
);
2146 /* This must be an INSN or CALL_INSN. */
2147 pat
= PATTERN (trial
);
2149 /* USE and CLOBBER at this level was just for flow; ignore it. */
2150 if (GET_CODE (pat
) == USE
|| GET_CODE (pat
) == CLOBBER
)
2153 /* Check for resource conflict first, to avoid unnecessary
2155 if (! insn_references_resource_p (trial
, &set
, 1)
2156 && ! insn_sets_resource_p (trial
, &set
, 1)
2157 && ! insn_sets_resource_p (trial
, &needed
, 1)
2159 /* Can't separate set of cc0 from its use. */
2160 && ! (reg_mentioned_p (cc0_rtx
, pat
) && ! sets_cc0_p (pat
))
2162 && ! can_throw_internal (trial
))
2164 trial
= try_split (pat
, trial
, 1);
2165 next_trial
= prev_nonnote_insn (trial
);
2166 if (eligible_for_delay (insn
, slots_filled
, trial
, flags
))
2168 /* In this case, we are searching backward, so if we
2169 find insns to put on the delay list, we want
2170 to put them at the head, rather than the
2171 tail, of the list. */
2173 update_reg_dead_notes (trial
, insn
);
2174 delay_list
= gen_rtx_INSN_LIST (VOIDmode
,
2176 update_block (trial
, trial
);
2177 delete_related_insns (trial
);
2178 if (slots_to_fill
== ++slots_filled
)
2184 mark_set_resources (trial
, &set
, 0, MARK_SRC_DEST_CALL
);
2185 mark_referenced_resources (trial
, &needed
, 1);
2189 /* If all needed slots haven't been filled, we come here. */
2191 /* Try to optimize case of jumping around a single insn. */
2192 #if defined(ANNUL_IFFALSE_SLOTS) || defined(ANNUL_IFTRUE_SLOTS)
2193 if (slots_filled
!= slots_to_fill
2195 && GET_CODE (insn
) == JUMP_INSN
2196 && (condjump_p (insn
) || condjump_in_parallel_p (insn
)))
2198 delay_list
= optimize_skip (insn
);
2204 /* Try to get insns from beyond the insn needing the delay slot.
2205 These insns can neither set or reference resources set in insns being
2206 skipped, cannot set resources in the insn being skipped, and, if this
2207 is a CALL_INSN (or a CALL_INSN is passed), cannot trap (because the
2208 call might not return).
2210 There used to be code which continued past the target label if
2211 we saw all uses of the target label. This code did not work,
2212 because it failed to account for some instructions which were
2213 both annulled and marked as from the target. This can happen as a
2214 result of optimize_skip. Since this code was redundant with
2215 fill_eager_delay_slots anyways, it was just deleted. */
2217 if (slots_filled
!= slots_to_fill
2218 /* If this instruction could throw an exception which is
2219 caught in the same function, then it's not safe to fill
2220 the delay slot with an instruction from beyond this
2221 point. For example, consider:
2232 Even though `i' is a local variable, we must be sure not
2233 to put `i = 3' in the delay slot if `f' might throw an
2236 Presumably, we should also check to see if we could get
2237 back to this function via `setjmp'. */
2238 && ! can_throw_internal (insn
)
2239 && (GET_CODE (insn
) != JUMP_INSN
2240 || ((condjump_p (insn
) || condjump_in_parallel_p (insn
))
2241 && ! simplejump_p (insn
)
2242 && JUMP_LABEL (insn
) != 0)))
2244 /* Invariant: If insn is a JUMP_INSN, the insn's jump
2245 label. Otherwise, zero. */
2247 int maybe_never
= 0;
2248 rtx pat
, trial_delay
;
2250 CLEAR_RESOURCE (&needed
);
2251 CLEAR_RESOURCE (&set
);
2253 if (GET_CODE (insn
) == CALL_INSN
)
2255 mark_set_resources (insn
, &set
, 0, MARK_SRC_DEST_CALL
);
2256 mark_referenced_resources (insn
, &needed
, 1);
2261 mark_set_resources (insn
, &set
, 0, MARK_SRC_DEST_CALL
);
2262 mark_referenced_resources (insn
, &needed
, 1);
2263 if (GET_CODE (insn
) == JUMP_INSN
)
2264 target
= JUMP_LABEL (insn
);
2268 for (trial
= next_nonnote_insn (insn
); trial
; trial
= next_trial
)
2270 next_trial
= next_nonnote_insn (trial
);
2272 if (GET_CODE (trial
) == CODE_LABEL
2273 || GET_CODE (trial
) == BARRIER
)
2276 /* We must have an INSN, JUMP_INSN, or CALL_INSN. */
2277 pat
= PATTERN (trial
);
2279 /* Stand-alone USE and CLOBBER are just for flow. */
2280 if (GET_CODE (pat
) == USE
|| GET_CODE (pat
) == CLOBBER
)
2283 /* If this already has filled delay slots, get the insn needing
2285 if (GET_CODE (pat
) == SEQUENCE
)
2286 trial_delay
= XVECEXP (pat
, 0, 0);
2288 trial_delay
= trial
;
2290 /* Stop our search when seeing an unconditional jump. */
2291 if (GET_CODE (trial_delay
) == JUMP_INSN
)
2294 /* See if we have a resource problem before we try to
2296 if (GET_CODE (pat
) != SEQUENCE
2297 && ! insn_references_resource_p (trial
, &set
, 1)
2298 && ! insn_sets_resource_p (trial
, &set
, 1)
2299 && ! insn_sets_resource_p (trial
, &needed
, 1)
2301 && ! (reg_mentioned_p (cc0_rtx
, pat
) && ! sets_cc0_p (pat
))
2303 && ! (maybe_never
&& may_trap_p (pat
))
2304 && (trial
= try_split (pat
, trial
, 0))
2305 && eligible_for_delay (insn
, slots_filled
, trial
, flags
)
2306 && ! can_throw_internal(trial
))
2308 next_trial
= next_nonnote_insn (trial
);
2309 delay_list
= add_to_delay_list (trial
, delay_list
);
2312 if (reg_mentioned_p (cc0_rtx
, pat
))
2313 link_cc0_insns (trial
);
2316 delete_related_insns (trial
);
2317 if (slots_to_fill
== ++slots_filled
)
2322 mark_set_resources (trial
, &set
, 0, MARK_SRC_DEST_CALL
);
2323 mark_referenced_resources (trial
, &needed
, 1);
2325 /* Ensure we don't put insns between the setting of cc and the
2326 comparison by moving a setting of cc into an earlier delay
2327 slot since these insns could clobber the condition code. */
2330 /* If this is a call or jump, we might not get here. */
2331 if (GET_CODE (trial_delay
) == CALL_INSN
2332 || GET_CODE (trial_delay
) == JUMP_INSN
)
2336 /* If there are slots left to fill and our search was stopped by an
2337 unconditional branch, try the insn at the branch target. We can
2338 redirect the branch if it works.
2340 Don't do this if the insn at the branch target is a branch. */
2341 if (slots_to_fill
!= slots_filled
2343 && GET_CODE (trial
) == JUMP_INSN
2344 && simplejump_p (trial
)
2345 && (target
== 0 || JUMP_LABEL (trial
) == target
)
2346 && (next_trial
= next_active_insn (JUMP_LABEL (trial
))) != 0
2347 && ! (GET_CODE (next_trial
) == INSN
2348 && GET_CODE (PATTERN (next_trial
)) == SEQUENCE
)
2349 && GET_CODE (next_trial
) != JUMP_INSN
2350 && ! insn_references_resource_p (next_trial
, &set
, 1)
2351 && ! insn_sets_resource_p (next_trial
, &set
, 1)
2352 && ! insn_sets_resource_p (next_trial
, &needed
, 1)
2354 && ! reg_mentioned_p (cc0_rtx
, PATTERN (next_trial
))
2356 && ! (maybe_never
&& may_trap_p (PATTERN (next_trial
)))
2357 && (next_trial
= try_split (PATTERN (next_trial
), next_trial
, 0))
2358 && eligible_for_delay (insn
, slots_filled
, next_trial
, flags
)
2359 && ! can_throw_internal (trial
))
2361 rtx new_label
= next_active_insn (next_trial
);
2364 new_label
= get_label_before (new_label
);
2366 new_label
= find_end_label ();
2369 = add_to_delay_list (copy_rtx (next_trial
), delay_list
);
2371 reorg_redirect_jump (trial
, new_label
);
2373 /* If we merged because we both jumped to the same place,
2374 redirect the original insn also. */
2376 reorg_redirect_jump (insn
, new_label
);
2380 /* If this is an unconditional jump, then try to get insns from the
2381 target of the jump. */
2382 if (GET_CODE (insn
) == JUMP_INSN
2383 && simplejump_p (insn
)
2384 && slots_filled
!= slots_to_fill
)
2386 = fill_slots_from_thread (insn
, const_true_rtx
,
2387 next_active_insn (JUMP_LABEL (insn
)),
2389 own_thread_p (JUMP_LABEL (insn
),
2390 JUMP_LABEL (insn
), 0),
2391 slots_to_fill
, &slots_filled
,
2395 unfilled_slots_base
[i
]
2396 = emit_delay_sequence (insn
, delay_list
, slots_filled
);
2398 if (slots_to_fill
== slots_filled
)
2399 unfilled_slots_base
[i
] = 0;
2401 note_delay_statistics (slots_filled
, 0);
2404 #ifdef DELAY_SLOTS_FOR_EPILOGUE
2405 /* See if the epilogue needs any delay slots. Try to fill them if so.
2406 The only thing we can do is scan backwards from the end of the
2407 function. If we did this in a previous pass, it is incorrect to do it
2409 if (current_function_epilogue_delay_list
)
2412 slots_to_fill
= DELAY_SLOTS_FOR_EPILOGUE
;
2413 if (slots_to_fill
== 0)
2417 CLEAR_RESOURCE (&set
);
2419 /* The frame pointer and stack pointer are needed at the beginning of
2420 the epilogue, so instructions setting them can not be put in the
2421 epilogue delay slot. However, everything else needed at function
2422 end is safe, so we don't want to use end_of_function_needs here. */
2423 CLEAR_RESOURCE (&needed
);
2424 if (frame_pointer_needed
)
2426 SET_HARD_REG_BIT (needed
.regs
, FRAME_POINTER_REGNUM
);
2427 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2428 SET_HARD_REG_BIT (needed
.regs
, HARD_FRAME_POINTER_REGNUM
);
2430 #ifdef EXIT_IGNORE_STACK
2431 if (! EXIT_IGNORE_STACK
2432 || current_function_sp_is_unchanging
)
2434 SET_HARD_REG_BIT (needed
.regs
, STACK_POINTER_REGNUM
);
2437 SET_HARD_REG_BIT (needed
.regs
, STACK_POINTER_REGNUM
);
2439 #ifdef EPILOGUE_USES
2440 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
2442 if (EPILOGUE_USES (i
))
2443 SET_HARD_REG_BIT (needed
.regs
, i
);
2447 for (trial
= get_last_insn (); ! stop_search_p (trial
, 1);
2448 trial
= PREV_INSN (trial
))
2450 if (GET_CODE (trial
) == NOTE
)
2452 pat
= PATTERN (trial
);
2453 if (GET_CODE (pat
) == USE
|| GET_CODE (pat
) == CLOBBER
)
2456 if (! insn_references_resource_p (trial
, &set
, 1)
2457 && ! insn_sets_resource_p (trial
, &needed
, 1)
2458 && ! insn_sets_resource_p (trial
, &set
, 1)
2460 /* Don't want to mess with cc0 here. */
2461 && ! reg_mentioned_p (cc0_rtx
, pat
)
2463 && ! can_throw_internal (trial
))
2465 trial
= try_split (pat
, trial
, 1);
2466 if (ELIGIBLE_FOR_EPILOGUE_DELAY (trial
, slots_filled
))
2468 /* Here as well we are searching backward, so put the
2469 insns we find on the head of the list. */
2471 current_function_epilogue_delay_list
2472 = gen_rtx_INSN_LIST (VOIDmode
, trial
,
2473 current_function_epilogue_delay_list
);
2474 mark_end_of_function_resources (trial
, 1);
2475 update_block (trial
, trial
);
2476 delete_related_insns (trial
);
2478 /* Clear deleted bit so final.c will output the insn. */
2479 INSN_DELETED_P (trial
) = 0;
2481 if (slots_to_fill
== ++slots_filled
)
2487 mark_set_resources (trial
, &set
, 0, MARK_SRC_DEST_CALL
);
2488 mark_referenced_resources (trial
, &needed
, 1);
2491 note_delay_statistics (slots_filled
, 0);
2495 /* Try to find insns to place in delay slots.
2497 INSN is the jump needing SLOTS_TO_FILL delay slots. It tests CONDITION
2498 or is an unconditional branch if CONDITION is const_true_rtx.
2499 *PSLOTS_FILLED is updated with the number of slots that we have filled.
2501 THREAD is a flow-of-control, either the insns to be executed if the
2502 branch is true or if the branch is false, THREAD_IF_TRUE says which.
2504 OPPOSITE_THREAD is the thread in the opposite direction. It is used
2505 to see if any potential delay slot insns set things needed there.
2507 LIKELY is nonzero if it is extremely likely that the branch will be
2508 taken and THREAD_IF_TRUE is set. This is used for the branch at the
2509 end of a loop back up to the top.
2511 OWN_THREAD and OWN_OPPOSITE_THREAD are true if we are the only user of the
2512 thread. I.e., it is the fallthrough code of our jump or the target of the
2513 jump when we are the only jump going there.
2515 If OWN_THREAD is false, it must be the "true" thread of a jump. In that
2516 case, we can only take insns from the head of the thread for our delay
2517 slot. We then adjust the jump to point after the insns we have taken. */
2520 fill_slots_from_thread (rtx insn
, rtx condition
, rtx thread
,
2521 rtx opposite_thread
, int likely
, int thread_if_true
,
2522 int own_thread
, int slots_to_fill
,
2523 int *pslots_filled
, rtx delay_list
)
2526 struct resources opposite_needed
, set
, needed
;
2532 /* Validate our arguments. */
2533 if ((condition
== const_true_rtx
&& ! thread_if_true
)
2534 || (! own_thread
&& ! thread_if_true
))
2537 flags
= get_jump_flags (insn
, JUMP_LABEL (insn
));
2539 /* If our thread is the end of subroutine, we can't get any delay
2544 /* If this is an unconditional branch, nothing is needed at the
2545 opposite thread. Otherwise, compute what is needed there. */
2546 if (condition
== const_true_rtx
)
2547 CLEAR_RESOURCE (&opposite_needed
);
2549 mark_target_live_regs (get_insns (), opposite_thread
, &opposite_needed
);
2551 /* If the insn at THREAD can be split, do it here to avoid having to
2552 update THREAD and NEW_THREAD if it is done in the loop below. Also
2553 initialize NEW_THREAD. */
2555 new_thread
= thread
= try_split (PATTERN (thread
), thread
, 0);
2557 /* Scan insns at THREAD. We are looking for an insn that can be removed
2558 from THREAD (it neither sets nor references resources that were set
2559 ahead of it and it doesn't set anything needs by the insns ahead of
2560 it) and that either can be placed in an annulling insn or aren't
2561 needed at OPPOSITE_THREAD. */
2563 CLEAR_RESOURCE (&needed
);
2564 CLEAR_RESOURCE (&set
);
2566 /* If we do not own this thread, we must stop as soon as we find
2567 something that we can't put in a delay slot, since all we can do
2568 is branch into THREAD at a later point. Therefore, labels stop
2569 the search if this is not the `true' thread. */
2571 for (trial
= thread
;
2572 ! stop_search_p (trial
, ! thread_if_true
) && (! lose
|| own_thread
);
2573 trial
= next_nonnote_insn (trial
))
2577 /* If we have passed a label, we no longer own this thread. */
2578 if (GET_CODE (trial
) == CODE_LABEL
)
2584 pat
= PATTERN (trial
);
2585 if (GET_CODE (pat
) == USE
|| GET_CODE (pat
) == CLOBBER
)
2588 /* If TRIAL conflicts with the insns ahead of it, we lose. Also,
2589 don't separate or copy insns that set and use CC0. */
2590 if (! insn_references_resource_p (trial
, &set
, 1)
2591 && ! insn_sets_resource_p (trial
, &set
, 1)
2592 && ! insn_sets_resource_p (trial
, &needed
, 1)
2594 && ! (reg_mentioned_p (cc0_rtx
, pat
)
2595 && (! own_thread
|| ! sets_cc0_p (pat
)))
2597 && ! can_throw_internal (trial
))
2601 /* If TRIAL is redundant with some insn before INSN, we don't
2602 actually need to add it to the delay list; we can merely pretend
2604 if ((prior_insn
= redundant_insn (trial
, insn
, delay_list
)))
2606 fix_reg_dead_note (prior_insn
, insn
);
2609 update_block (trial
, thread
);
2610 if (trial
== thread
)
2612 thread
= next_active_insn (thread
);
2613 if (new_thread
== trial
)
2614 new_thread
= thread
;
2617 delete_related_insns (trial
);
2621 update_reg_unused_notes (prior_insn
, trial
);
2622 new_thread
= next_active_insn (trial
);
2628 /* There are two ways we can win: If TRIAL doesn't set anything
2629 needed at the opposite thread and can't trap, or if it can
2630 go into an annulled delay slot. */
2632 && (condition
== const_true_rtx
2633 || (! insn_sets_resource_p (trial
, &opposite_needed
, 1)
2634 && ! may_trap_p (pat
))))
2637 trial
= try_split (pat
, trial
, 0);
2638 if (new_thread
== old_trial
)
2640 if (thread
== old_trial
)
2642 pat
= PATTERN (trial
);
2643 if (eligible_for_delay (insn
, *pslots_filled
, trial
, flags
))
2647 #ifdef ANNUL_IFTRUE_SLOTS
2650 #ifdef ANNUL_IFFALSE_SLOTS
2656 trial
= try_split (pat
, trial
, 0);
2657 if (new_thread
== old_trial
)
2659 if (thread
== old_trial
)
2661 pat
= PATTERN (trial
);
2662 if ((must_annul
|| delay_list
== NULL
) && (thread_if_true
2663 ? check_annul_list_true_false (0, delay_list
)
2664 && eligible_for_annul_false (insn
, *pslots_filled
, trial
, flags
)
2665 : check_annul_list_true_false (1, delay_list
)
2666 && eligible_for_annul_true (insn
, *pslots_filled
, trial
, flags
)))
2674 if (reg_mentioned_p (cc0_rtx
, pat
))
2675 link_cc0_insns (trial
);
2678 /* If we own this thread, delete the insn. If this is the
2679 destination of a branch, show that a basic block status
2680 may have been updated. In any case, mark the new
2681 starting point of this thread. */
2686 update_block (trial
, thread
);
2687 if (trial
== thread
)
2689 thread
= next_active_insn (thread
);
2690 if (new_thread
== trial
)
2691 new_thread
= thread
;
2694 /* We are moving this insn, not deleting it. We must
2695 temporarily increment the use count on any referenced
2696 label lest it be deleted by delete_related_insns. */
2697 note
= find_reg_note (trial
, REG_LABEL
, 0);
2698 /* REG_LABEL could be NOTE_INSN_DELETED_LABEL too. */
2699 if (note
&& GET_CODE (XEXP (note
, 0)) == CODE_LABEL
)
2700 LABEL_NUSES (XEXP (note
, 0))++;
2702 delete_related_insns (trial
);
2704 if (note
&& GET_CODE (XEXP (note
, 0)) == CODE_LABEL
)
2705 LABEL_NUSES (XEXP (note
, 0))--;
2708 new_thread
= next_active_insn (trial
);
2710 temp
= own_thread
? trial
: copy_rtx (trial
);
2712 INSN_FROM_TARGET_P (temp
) = 1;
2714 delay_list
= add_to_delay_list (temp
, delay_list
);
2716 if (slots_to_fill
== ++(*pslots_filled
))
2718 /* Even though we have filled all the slots, we
2719 may be branching to a location that has a
2720 redundant insn. Skip any if so. */
2721 while (new_thread
&& ! own_thread
2722 && ! insn_sets_resource_p (new_thread
, &set
, 1)
2723 && ! insn_sets_resource_p (new_thread
, &needed
, 1)
2724 && ! insn_references_resource_p (new_thread
,
2727 = redundant_insn (new_thread
, insn
,
2730 /* We know we do not own the thread, so no need
2731 to call update_block and delete_insn. */
2732 fix_reg_dead_note (prior_insn
, insn
);
2733 update_reg_unused_notes (prior_insn
, new_thread
);
2734 new_thread
= next_active_insn (new_thread
);
2744 /* This insn can't go into a delay slot. */
2746 mark_set_resources (trial
, &set
, 0, MARK_SRC_DEST_CALL
);
2747 mark_referenced_resources (trial
, &needed
, 1);
2749 /* Ensure we don't put insns between the setting of cc and the comparison
2750 by moving a setting of cc into an earlier delay slot since these insns
2751 could clobber the condition code. */
2754 /* If this insn is a register-register copy and the next insn has
2755 a use of our destination, change it to use our source. That way,
2756 it will become a candidate for our delay slot the next time
2757 through this loop. This case occurs commonly in loops that
2760 We could check for more complex cases than those tested below,
2761 but it doesn't seem worth it. It might also be a good idea to try
2762 to swap the two insns. That might do better.
2764 We can't do this if the next insn modifies our destination, because
2765 that would make the replacement into the insn invalid. We also can't
2766 do this if it modifies our source, because it might be an earlyclobber
2767 operand. This latter test also prevents updating the contents of
2768 a PRE_INC. We also can't do this if there's overlap of source and
2769 destination. Overlap may happen for larger-than-register-size modes. */
2771 if (GET_CODE (trial
) == INSN
&& GET_CODE (pat
) == SET
2772 && GET_CODE (SET_SRC (pat
)) == REG
2773 && GET_CODE (SET_DEST (pat
)) == REG
2774 && !reg_overlap_mentioned_p (SET_DEST (pat
), SET_SRC (pat
)))
2776 rtx next
= next_nonnote_insn (trial
);
2778 if (next
&& GET_CODE (next
) == INSN
2779 && GET_CODE (PATTERN (next
)) != USE
2780 && ! reg_set_p (SET_DEST (pat
), next
)
2781 && ! reg_set_p (SET_SRC (pat
), next
)
2782 && reg_referenced_p (SET_DEST (pat
), PATTERN (next
))
2783 && ! modified_in_p (SET_DEST (pat
), next
))
2784 validate_replace_rtx (SET_DEST (pat
), SET_SRC (pat
), next
);
2788 /* If we stopped on a branch insn that has delay slots, see if we can
2789 steal some of the insns in those slots. */
2790 if (trial
&& GET_CODE (trial
) == INSN
2791 && GET_CODE (PATTERN (trial
)) == SEQUENCE
2792 && GET_CODE (XVECEXP (PATTERN (trial
), 0, 0)) == JUMP_INSN
)
2794 /* If this is the `true' thread, we will want to follow the jump,
2795 so we can only do this if we have taken everything up to here. */
2796 if (thread_if_true
&& trial
== new_thread
)
2799 = steal_delay_list_from_target (insn
, condition
, PATTERN (trial
),
2800 delay_list
, &set
, &needed
,
2801 &opposite_needed
, slots_to_fill
,
2802 pslots_filled
, &must_annul
,
2804 /* If we owned the thread and are told that it branched
2805 elsewhere, make sure we own the thread at the new location. */
2806 if (own_thread
&& trial
!= new_thread
)
2807 own_thread
= own_thread_p (new_thread
, new_thread
, 0);
2809 else if (! thread_if_true
)
2811 = steal_delay_list_from_fallthrough (insn
, condition
,
2813 delay_list
, &set
, &needed
,
2814 &opposite_needed
, slots_to_fill
,
2815 pslots_filled
, &must_annul
);
2818 /* If we haven't found anything for this delay slot and it is very
2819 likely that the branch will be taken, see if the insn at our target
2820 increments or decrements a register with an increment that does not
2821 depend on the destination register. If so, try to place the opposite
2822 arithmetic insn after the jump insn and put the arithmetic insn in the
2823 delay slot. If we can't do this, return. */
2824 if (delay_list
== 0 && likely
&& new_thread
2825 && GET_CODE (new_thread
) == INSN
2826 && GET_CODE (PATTERN (new_thread
)) != ASM_INPUT
2827 && asm_noperands (PATTERN (new_thread
)) < 0)
2829 rtx pat
= PATTERN (new_thread
);
2834 pat
= PATTERN (trial
);
2836 if (GET_CODE (trial
) != INSN
2837 || GET_CODE (pat
) != SET
2838 || ! eligible_for_delay (insn
, 0, trial
, flags
)
2839 || can_throw_internal (trial
))
2842 dest
= SET_DEST (pat
), src
= SET_SRC (pat
);
2843 if ((GET_CODE (src
) == PLUS
|| GET_CODE (src
) == MINUS
)
2844 && rtx_equal_p (XEXP (src
, 0), dest
)
2845 && ! reg_overlap_mentioned_p (dest
, XEXP (src
, 1))
2846 && ! side_effects_p (pat
))
2848 rtx other
= XEXP (src
, 1);
2852 /* If this is a constant adjustment, use the same code with
2853 the negated constant. Otherwise, reverse the sense of the
2855 if (GET_CODE (other
) == CONST_INT
)
2856 new_arith
= gen_rtx_fmt_ee (GET_CODE (src
), GET_MODE (src
), dest
,
2857 negate_rtx (GET_MODE (src
), other
));
2859 new_arith
= gen_rtx_fmt_ee (GET_CODE (src
) == PLUS
? MINUS
: PLUS
,
2860 GET_MODE (src
), dest
, other
);
2862 ninsn
= emit_insn_after (gen_rtx_SET (VOIDmode
, dest
, new_arith
),
2865 if (recog_memoized (ninsn
) < 0
2866 || (extract_insn (ninsn
), ! constrain_operands (1)))
2868 delete_related_insns (ninsn
);
2874 update_block (trial
, thread
);
2875 if (trial
== thread
)
2877 thread
= next_active_insn (thread
);
2878 if (new_thread
== trial
)
2879 new_thread
= thread
;
2881 delete_related_insns (trial
);
2884 new_thread
= next_active_insn (trial
);
2886 ninsn
= own_thread
? trial
: copy_rtx (trial
);
2888 INSN_FROM_TARGET_P (ninsn
) = 1;
2890 delay_list
= add_to_delay_list (ninsn
, NULL_RTX
);
2895 if (delay_list
&& must_annul
)
2896 INSN_ANNULLED_BRANCH_P (insn
) = 1;
2898 /* If we are to branch into the middle of this thread, find an appropriate
2899 label or make a new one if none, and redirect INSN to it. If we hit the
2900 end of the function, use the end-of-function label. */
2901 if (new_thread
!= thread
)
2905 if (! thread_if_true
)
2908 if (new_thread
&& GET_CODE (new_thread
) == JUMP_INSN
2909 && (simplejump_p (new_thread
)
2910 || GET_CODE (PATTERN (new_thread
)) == RETURN
)
2911 && redirect_with_delay_list_safe_p (insn
,
2912 JUMP_LABEL (new_thread
),
2914 new_thread
= follow_jumps (JUMP_LABEL (new_thread
));
2916 if (new_thread
== 0)
2917 label
= find_end_label ();
2918 else if (GET_CODE (new_thread
) == CODE_LABEL
)
2921 label
= get_label_before (new_thread
);
2923 reorg_redirect_jump (insn
, label
);
2929 /* Make another attempt to find insns to place in delay slots.
2931 We previously looked for insns located in front of the delay insn
2932 and, for non-jump delay insns, located behind the delay insn.
2934 Here only try to schedule jump insns and try to move insns from either
2935 the target or the following insns into the delay slot. If annulling is
2936 supported, we will be likely to do this. Otherwise, we can do this only
2940 fill_eager_delay_slots (void)
2944 int num_unfilled_slots
= unfilled_slots_next
- unfilled_slots_base
;
2946 for (i
= 0; i
< num_unfilled_slots
; i
++)
2949 rtx target_label
, insn_at_target
, fallthrough_insn
;
2952 int own_fallthrough
;
2953 int prediction
, slots_to_fill
, slots_filled
;
2955 insn
= unfilled_slots_base
[i
];
2957 || INSN_DELETED_P (insn
)
2958 || GET_CODE (insn
) != JUMP_INSN
2959 || ! (condjump_p (insn
) || condjump_in_parallel_p (insn
)))
2962 slots_to_fill
= num_delay_slots (insn
);
2963 /* Some machine description have defined instructions to have
2964 delay slots only in certain circumstances which may depend on
2965 nearby insns (which change due to reorg's actions).
2967 For example, the PA port normally has delay slots for unconditional
2970 However, the PA port claims such jumps do not have a delay slot
2971 if they are immediate successors of certain CALL_INSNs. This
2972 allows the port to favor filling the delay slot of the call with
2973 the unconditional jump. */
2974 if (slots_to_fill
== 0)
2978 target_label
= JUMP_LABEL (insn
);
2979 condition
= get_branch_condition (insn
, target_label
);
2984 /* Get the next active fallthrough and target insns and see if we own
2985 them. Then see whether the branch is likely true. We don't need
2986 to do a lot of this for unconditional branches. */
2988 insn_at_target
= next_active_insn (target_label
);
2989 own_target
= own_thread_p (target_label
, target_label
, 0);
2991 if (condition
== const_true_rtx
)
2993 own_fallthrough
= 0;
2994 fallthrough_insn
= 0;
2999 fallthrough_insn
= next_active_insn (insn
);
3000 own_fallthrough
= own_thread_p (NEXT_INSN (insn
), NULL_RTX
, 1);
3001 prediction
= mostly_true_jump (insn
, condition
);
3004 /* If this insn is expected to branch, first try to get insns from our
3005 target, then our fallthrough insns. If it is not expected to branch,
3006 try the other order. */
3011 = fill_slots_from_thread (insn
, condition
, insn_at_target
,
3012 fallthrough_insn
, prediction
== 2, 1,
3014 slots_to_fill
, &slots_filled
, delay_list
);
3016 if (delay_list
== 0 && own_fallthrough
)
3018 /* Even though we didn't find anything for delay slots,
3019 we might have found a redundant insn which we deleted
3020 from the thread that was filled. So we have to recompute
3021 the next insn at the target. */
3022 target_label
= JUMP_LABEL (insn
);
3023 insn_at_target
= next_active_insn (target_label
);
3026 = fill_slots_from_thread (insn
, condition
, fallthrough_insn
,
3027 insn_at_target
, 0, 0,
3029 slots_to_fill
, &slots_filled
,
3035 if (own_fallthrough
)
3037 = fill_slots_from_thread (insn
, condition
, fallthrough_insn
,
3038 insn_at_target
, 0, 0,
3040 slots_to_fill
, &slots_filled
,
3043 if (delay_list
== 0)
3045 = fill_slots_from_thread (insn
, condition
, insn_at_target
,
3046 next_active_insn (insn
), 0, 1,
3048 slots_to_fill
, &slots_filled
,
3053 unfilled_slots_base
[i
]
3054 = emit_delay_sequence (insn
, delay_list
, slots_filled
);
3056 if (slots_to_fill
== slots_filled
)
3057 unfilled_slots_base
[i
] = 0;
3059 note_delay_statistics (slots_filled
, 1);
3063 /* Once we have tried two ways to fill a delay slot, make a pass over the
3064 code to try to improve the results and to do such things as more jump
3068 relax_delay_slots (rtx first
)
3070 rtx insn
, next
, pat
;
3071 rtx trial
, delay_insn
, target_label
;
3073 /* Look at every JUMP_INSN and see if we can improve it. */
3074 for (insn
= first
; insn
; insn
= next
)
3078 next
= next_active_insn (insn
);
3080 /* If this is a jump insn, see if it now jumps to a jump, jumps to
3081 the next insn, or jumps to a label that is not the last of a
3082 group of consecutive labels. */
3083 if (GET_CODE (insn
) == JUMP_INSN
3084 && (condjump_p (insn
) || condjump_in_parallel_p (insn
))
3085 && (target_label
= JUMP_LABEL (insn
)) != 0)
3087 target_label
= follow_jumps (target_label
);
3088 target_label
= prev_label (next_active_insn (target_label
));
3090 if (target_label
== 0)
3091 target_label
= find_end_label ();
3093 if (next_active_insn (target_label
) == next
3094 && ! condjump_in_parallel_p (insn
))
3100 if (target_label
!= JUMP_LABEL (insn
))
3101 reorg_redirect_jump (insn
, target_label
);
3103 /* See if this jump branches around an unconditional jump.
3104 If so, invert this jump and point it to the target of the
3106 if (next
&& GET_CODE (next
) == JUMP_INSN
3107 && (simplejump_p (next
) || GET_CODE (PATTERN (next
)) == RETURN
)
3108 && next_active_insn (target_label
) == next_active_insn (next
)
3109 && no_labels_between_p (insn
, next
))
3111 rtx label
= JUMP_LABEL (next
);
3113 /* Be careful how we do this to avoid deleting code or
3114 labels that are momentarily dead. See similar optimization
3117 We also need to ensure we properly handle the case when
3118 invert_jump fails. */
3120 ++LABEL_NUSES (target_label
);
3122 ++LABEL_NUSES (label
);
3124 if (invert_jump (insn
, label
, 1))
3126 delete_related_insns (next
);
3131 --LABEL_NUSES (label
);
3133 if (--LABEL_NUSES (target_label
) == 0)
3134 delete_related_insns (target_label
);
3140 /* If this is an unconditional jump and the previous insn is a
3141 conditional jump, try reversing the condition of the previous
3142 insn and swapping our targets. The next pass might be able to
3145 Don't do this if we expect the conditional branch to be true, because
3146 we would then be making the more common case longer. */
3148 if (GET_CODE (insn
) == JUMP_INSN
3149 && (simplejump_p (insn
) || GET_CODE (PATTERN (insn
)) == RETURN
)
3150 && (other
= prev_active_insn (insn
)) != 0
3151 && (condjump_p (other
) || condjump_in_parallel_p (other
))
3152 && no_labels_between_p (other
, insn
)
3153 && 0 > mostly_true_jump (other
,
3154 get_branch_condition (other
,
3155 JUMP_LABEL (other
))))
3157 rtx other_target
= JUMP_LABEL (other
);
3158 target_label
= JUMP_LABEL (insn
);
3160 if (invert_jump (other
, target_label
, 0))
3161 reorg_redirect_jump (insn
, other_target
);
3164 /* Now look only at cases where we have filled a delay slot. */
3165 if (GET_CODE (insn
) != INSN
3166 || GET_CODE (PATTERN (insn
)) != SEQUENCE
)
3169 pat
= PATTERN (insn
);
3170 delay_insn
= XVECEXP (pat
, 0, 0);
3172 /* See if the first insn in the delay slot is redundant with some
3173 previous insn. Remove it from the delay slot if so; then set up
3174 to reprocess this insn. */
3175 if (redundant_insn (XVECEXP (pat
, 0, 1), delay_insn
, 0))
3177 delete_from_delay_slot (XVECEXP (pat
, 0, 1));
3178 next
= prev_active_insn (next
);
3182 /* See if we have a RETURN insn with a filled delay slot followed
3183 by a RETURN insn with an unfilled a delay slot. If so, we can delete
3184 the first RETURN (but not it's delay insn). This gives the same
3185 effect in fewer instructions.
3187 Only do so if optimizing for size since this results in slower, but
3190 && GET_CODE (PATTERN (delay_insn
)) == RETURN
3192 && GET_CODE (next
) == JUMP_INSN
3193 && GET_CODE (PATTERN (next
)) == RETURN
)
3198 /* Delete the RETURN and just execute the delay list insns.
3200 We do this by deleting the INSN containing the SEQUENCE, then
3201 re-emitting the insns separately, and then deleting the RETURN.
3202 This allows the count of the jump target to be properly
3205 /* Clear the from target bit, since these insns are no longer
3207 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
3208 INSN_FROM_TARGET_P (XVECEXP (pat
, 0, i
)) = 0;
3210 trial
= PREV_INSN (insn
);
3211 delete_related_insns (insn
);
3212 if (GET_CODE (pat
) != SEQUENCE
)
3215 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
3217 rtx this_insn
= XVECEXP (pat
, 0, i
);
3218 add_insn_after (this_insn
, after
);
3221 delete_scheduled_jump (delay_insn
);
3225 /* Now look only at the cases where we have a filled JUMP_INSN. */
3226 if (GET_CODE (XVECEXP (PATTERN (insn
), 0, 0)) != JUMP_INSN
3227 || ! (condjump_p (XVECEXP (PATTERN (insn
), 0, 0))
3228 || condjump_in_parallel_p (XVECEXP (PATTERN (insn
), 0, 0))))
3231 target_label
= JUMP_LABEL (delay_insn
);
3235 /* If this jump goes to another unconditional jump, thread it, but
3236 don't convert a jump into a RETURN here. */
3237 trial
= follow_jumps (target_label
);
3238 /* We use next_real_insn instead of next_active_insn, so that
3239 the special USE insns emitted by reorg won't be ignored.
3240 If they are ignored, then they will get deleted if target_label
3241 is now unreachable, and that would cause mark_target_live_regs
3243 trial
= prev_label (next_real_insn (trial
));
3244 if (trial
== 0 && target_label
!= 0)
3245 trial
= find_end_label ();
3247 if (trial
!= target_label
3248 && redirect_with_delay_slots_safe_p (delay_insn
, trial
, insn
))
3250 reorg_redirect_jump (delay_insn
, trial
);
3251 target_label
= trial
;
3254 /* If the first insn at TARGET_LABEL is redundant with a previous
3255 insn, redirect the jump to the following insn process again. */
3256 trial
= next_active_insn (target_label
);
3257 if (trial
&& GET_CODE (PATTERN (trial
)) != SEQUENCE
3258 && redundant_insn (trial
, insn
, 0)
3259 && ! can_throw_internal (trial
))
3263 /* Figure out where to emit the special USE insn so we don't
3264 later incorrectly compute register live/death info. */
3265 tmp
= next_active_insn (trial
);
3267 tmp
= find_end_label ();
3269 /* Insert the special USE insn and update dataflow info. */
3270 update_block (trial
, tmp
);
3272 /* Now emit a label before the special USE insn, and
3273 redirect our jump to the new label. */
3274 target_label
= get_label_before (PREV_INSN (tmp
));
3275 reorg_redirect_jump (delay_insn
, target_label
);
3280 /* Similarly, if it is an unconditional jump with one insn in its
3281 delay list and that insn is redundant, thread the jump. */
3282 if (trial
&& GET_CODE (PATTERN (trial
)) == SEQUENCE
3283 && XVECLEN (PATTERN (trial
), 0) == 2
3284 && GET_CODE (XVECEXP (PATTERN (trial
), 0, 0)) == JUMP_INSN
3285 && (simplejump_p (XVECEXP (PATTERN (trial
), 0, 0))
3286 || GET_CODE (PATTERN (XVECEXP (PATTERN (trial
), 0, 0))) == RETURN
)
3287 && redundant_insn (XVECEXP (PATTERN (trial
), 0, 1), insn
, 0))
3289 target_label
= JUMP_LABEL (XVECEXP (PATTERN (trial
), 0, 0));
3290 if (target_label
== 0)
3291 target_label
= find_end_label ();
3293 if (redirect_with_delay_slots_safe_p (delay_insn
, target_label
,
3296 reorg_redirect_jump (delay_insn
, target_label
);
3303 if (! INSN_ANNULLED_BRANCH_P (delay_insn
)
3304 && prev_active_insn (target_label
) == insn
3305 && ! condjump_in_parallel_p (delay_insn
)
3307 /* If the last insn in the delay slot sets CC0 for some insn,
3308 various code assumes that it is in a delay slot. We could
3309 put it back where it belonged and delete the register notes,
3310 but it doesn't seem worthwhile in this uncommon case. */
3311 && ! find_reg_note (XVECEXP (pat
, 0, XVECLEN (pat
, 0) - 1),
3312 REG_CC_USER
, NULL_RTX
)
3319 /* All this insn does is execute its delay list and jump to the
3320 following insn. So delete the jump and just execute the delay
3323 We do this by deleting the INSN containing the SEQUENCE, then
3324 re-emitting the insns separately, and then deleting the jump.
3325 This allows the count of the jump target to be properly
3328 /* Clear the from target bit, since these insns are no longer
3330 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
3331 INSN_FROM_TARGET_P (XVECEXP (pat
, 0, i
)) = 0;
3333 trial
= PREV_INSN (insn
);
3334 delete_related_insns (insn
);
3335 if (GET_CODE (pat
) != SEQUENCE
)
3338 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
3340 rtx this_insn
= XVECEXP (pat
, 0, i
);
3341 add_insn_after (this_insn
, after
);
3344 delete_scheduled_jump (delay_insn
);
3348 /* See if this is an unconditional jump around a single insn which is
3349 identical to the one in its delay slot. In this case, we can just
3350 delete the branch and the insn in its delay slot. */
3351 if (next
&& GET_CODE (next
) == INSN
3352 && prev_label (next_active_insn (next
)) == target_label
3353 && simplejump_p (insn
)
3354 && XVECLEN (pat
, 0) == 2
3355 && rtx_equal_p (PATTERN (next
), PATTERN (XVECEXP (pat
, 0, 1))))
3357 delete_related_insns (insn
);
3361 /* See if this jump (with its delay slots) branches around another
3362 jump (without delay slots). If so, invert this jump and point
3363 it to the target of the second jump. We cannot do this for
3364 annulled jumps, though. Again, don't convert a jump to a RETURN
3366 if (! INSN_ANNULLED_BRANCH_P (delay_insn
)
3367 && next
&& GET_CODE (next
) == JUMP_INSN
3368 && (simplejump_p (next
) || GET_CODE (PATTERN (next
)) == RETURN
)
3369 && next_active_insn (target_label
) == next_active_insn (next
)
3370 && no_labels_between_p (insn
, next
))
3372 rtx label
= JUMP_LABEL (next
);
3373 rtx old_label
= JUMP_LABEL (delay_insn
);
3376 label
= find_end_label ();
3378 /* find_end_label can generate a new label. Check this first. */
3379 if (no_labels_between_p (insn
, next
)
3380 && redirect_with_delay_slots_safe_p (delay_insn
, label
, insn
))
3382 /* Be careful how we do this to avoid deleting code or labels
3383 that are momentarily dead. See similar optimization in
3386 ++LABEL_NUSES (old_label
);
3388 if (invert_jump (delay_insn
, label
, 1))
3392 /* Must update the INSN_FROM_TARGET_P bits now that
3393 the branch is reversed, so that mark_target_live_regs
3394 will handle the delay slot insn correctly. */
3395 for (i
= 1; i
< XVECLEN (PATTERN (insn
), 0); i
++)
3397 rtx slot
= XVECEXP (PATTERN (insn
), 0, i
);
3398 INSN_FROM_TARGET_P (slot
) = ! INSN_FROM_TARGET_P (slot
);
3401 delete_related_insns (next
);
3405 if (old_label
&& --LABEL_NUSES (old_label
) == 0)
3406 delete_related_insns (old_label
);
3411 /* If we own the thread opposite the way this insn branches, see if we
3412 can merge its delay slots with following insns. */
3413 if (INSN_FROM_TARGET_P (XVECEXP (pat
, 0, 1))
3414 && own_thread_p (NEXT_INSN (insn
), 0, 1))
3415 try_merge_delay_insns (insn
, next
);
3416 else if (! INSN_FROM_TARGET_P (XVECEXP (pat
, 0, 1))
3417 && own_thread_p (target_label
, target_label
, 0))
3418 try_merge_delay_insns (insn
, next_active_insn (target_label
));
3420 /* If we get here, we haven't deleted INSN. But we may have deleted
3421 NEXT, so recompute it. */
3422 next
= next_active_insn (insn
);
3428 /* Look for filled jumps to the end of function label. We can try to convert
3429 them into RETURN insns if the insns in the delay slot are valid for the
3433 make_return_insns (rtx first
)
3435 rtx insn
, jump_insn
, pat
;
3436 rtx real_return_label
= end_of_function_label
;
3439 #ifdef DELAY_SLOTS_FOR_EPILOGUE
3440 /* If a previous pass filled delay slots in the epilogue, things get a
3441 bit more complicated, as those filler insns would generally (without
3442 data flow analysis) have to be executed after any existing branch
3443 delay slot filler insns. It is also unknown whether such a
3444 transformation would actually be profitable. Note that the existing
3445 code only cares for branches with (some) filled delay slots. */
3446 if (current_function_epilogue_delay_list
!= NULL
)
3450 /* See if there is a RETURN insn in the function other than the one we
3451 made for END_OF_FUNCTION_LABEL. If so, set up anything we can't change
3452 into a RETURN to jump to it. */
3453 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
3454 if (GET_CODE (insn
) == JUMP_INSN
&& GET_CODE (PATTERN (insn
)) == RETURN
)
3456 real_return_label
= get_label_before (insn
);
3460 /* Show an extra usage of REAL_RETURN_LABEL so it won't go away if it
3461 was equal to END_OF_FUNCTION_LABEL. */
3462 LABEL_NUSES (real_return_label
)++;
3464 /* Clear the list of insns to fill so we can use it. */
3465 obstack_free (&unfilled_slots_obstack
, unfilled_firstobj
);
3467 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
3471 /* Only look at filled JUMP_INSNs that go to the end of function
3473 if (GET_CODE (insn
) != INSN
3474 || GET_CODE (PATTERN (insn
)) != SEQUENCE
3475 || GET_CODE (XVECEXP (PATTERN (insn
), 0, 0)) != JUMP_INSN
3476 || JUMP_LABEL (XVECEXP (PATTERN (insn
), 0, 0)) != end_of_function_label
)
3479 pat
= PATTERN (insn
);
3480 jump_insn
= XVECEXP (pat
, 0, 0);
3482 /* If we can't make the jump into a RETURN, try to redirect it to the best
3483 RETURN and go on to the next insn. */
3484 if (! reorg_redirect_jump (jump_insn
, NULL_RTX
))
3486 /* Make sure redirecting the jump will not invalidate the delay
3488 if (redirect_with_delay_slots_safe_p (jump_insn
,
3491 reorg_redirect_jump (jump_insn
, real_return_label
);
3495 /* See if this RETURN can accept the insns current in its delay slot.
3496 It can if it has more or an equal number of slots and the contents
3497 of each is valid. */
3499 flags
= get_jump_flags (jump_insn
, JUMP_LABEL (jump_insn
));
3500 slots
= num_delay_slots (jump_insn
);
3501 if (slots
>= XVECLEN (pat
, 0) - 1)
3503 for (i
= 1; i
< XVECLEN (pat
, 0); i
++)
3505 #ifdef ANNUL_IFFALSE_SLOTS
3506 (INSN_ANNULLED_BRANCH_P (jump_insn
)
3507 && INSN_FROM_TARGET_P (XVECEXP (pat
, 0, i
)))
3508 ? eligible_for_annul_false (jump_insn
, i
- 1,
3509 XVECEXP (pat
, 0, i
), flags
) :
3511 #ifdef ANNUL_IFTRUE_SLOTS
3512 (INSN_ANNULLED_BRANCH_P (jump_insn
)
3513 && ! INSN_FROM_TARGET_P (XVECEXP (pat
, 0, i
)))
3514 ? eligible_for_annul_true (jump_insn
, i
- 1,
3515 XVECEXP (pat
, 0, i
), flags
) :
3517 eligible_for_delay (jump_insn
, i
- 1,
3518 XVECEXP (pat
, 0, i
), flags
)))
3524 if (i
== XVECLEN (pat
, 0))
3527 /* We have to do something with this insn. If it is an unconditional
3528 RETURN, delete the SEQUENCE and output the individual insns,
3529 followed by the RETURN. Then set things up so we try to find
3530 insns for its delay slots, if it needs some. */
3531 if (GET_CODE (PATTERN (jump_insn
)) == RETURN
)
3533 rtx prev
= PREV_INSN (insn
);
3535 delete_related_insns (insn
);
3536 for (i
= 1; i
< XVECLEN (pat
, 0); i
++)
3537 prev
= emit_insn_after (PATTERN (XVECEXP (pat
, 0, i
)), prev
);
3539 insn
= emit_jump_insn_after (PATTERN (jump_insn
), prev
);
3540 emit_barrier_after (insn
);
3543 obstack_ptr_grow (&unfilled_slots_obstack
, insn
);
3546 /* It is probably more efficient to keep this with its current
3547 delay slot as a branch to a RETURN. */
3548 reorg_redirect_jump (jump_insn
, real_return_label
);
3551 /* Now delete REAL_RETURN_LABEL if we never used it. Then try to fill any
3552 new delay slots we have created. */
3553 if (--LABEL_NUSES (real_return_label
) == 0)
3554 delete_related_insns (real_return_label
);
3556 fill_simple_delay_slots (1);
3557 fill_simple_delay_slots (0);
3561 /* Try to find insns to place in delay slots. */
3564 dbr_schedule (rtx first
, FILE *file
)
3566 rtx insn
, next
, epilogue_insn
= 0;
3569 int old_flag_no_peephole
= flag_no_peephole
;
3571 /* Execute `final' once in prescan mode to delete any insns that won't be
3572 used. Don't let final try to do any peephole optimization--it will
3573 ruin dataflow information for this pass. */
3575 flag_no_peephole
= 1;
3576 final (first
, 0, NO_DEBUG
, 1, 1);
3577 flag_no_peephole
= old_flag_no_peephole
;
3580 /* If the current function has no insns other than the prologue and
3581 epilogue, then do not try to fill any delay slots. */
3582 if (n_basic_blocks
== 0)
3585 /* Find the highest INSN_UID and allocate and initialize our map from
3586 INSN_UID's to position in code. */
3587 for (max_uid
= 0, insn
= first
; insn
; insn
= NEXT_INSN (insn
))
3589 if (INSN_UID (insn
) > max_uid
)
3590 max_uid
= INSN_UID (insn
);
3591 if (GET_CODE (insn
) == NOTE
3592 && NOTE_LINE_NUMBER (insn
) == NOTE_INSN_EPILOGUE_BEG
)
3593 epilogue_insn
= insn
;
3596 uid_to_ruid
= xmalloc ((max_uid
+ 1) * sizeof (int));
3597 for (i
= 0, insn
= first
; insn
; i
++, insn
= NEXT_INSN (insn
))
3598 uid_to_ruid
[INSN_UID (insn
)] = i
;
3600 /* Initialize the list of insns that need filling. */
3601 if (unfilled_firstobj
== 0)
3603 gcc_obstack_init (&unfilled_slots_obstack
);
3604 unfilled_firstobj
= obstack_alloc (&unfilled_slots_obstack
, 0);
3607 for (insn
= next_active_insn (first
); insn
; insn
= next_active_insn (insn
))
3611 INSN_ANNULLED_BRANCH_P (insn
) = 0;
3612 INSN_FROM_TARGET_P (insn
) = 0;
3614 /* Skip vector tables. We can't get attributes for them. */
3615 if (GET_CODE (insn
) == JUMP_INSN
3616 && (GET_CODE (PATTERN (insn
)) == ADDR_VEC
3617 || GET_CODE (PATTERN (insn
)) == ADDR_DIFF_VEC
))
3620 if (num_delay_slots (insn
) > 0)
3621 obstack_ptr_grow (&unfilled_slots_obstack
, insn
);
3623 /* Ensure all jumps go to the last of a set of consecutive labels. */
3624 if (GET_CODE (insn
) == JUMP_INSN
3625 && (condjump_p (insn
) || condjump_in_parallel_p (insn
))
3626 && JUMP_LABEL (insn
) != 0
3627 && ((target
= prev_label (next_active_insn (JUMP_LABEL (insn
))))
3628 != JUMP_LABEL (insn
)))
3629 redirect_jump (insn
, target
, 1);
3632 init_resource_info (epilogue_insn
);
3634 /* Show we haven't computed an end-of-function label yet. */
3635 end_of_function_label
= 0;
3637 /* Initialize the statistics for this function. */
3638 memset (num_insns_needing_delays
, 0, sizeof num_insns_needing_delays
);
3639 memset (num_filled_delays
, 0, sizeof num_filled_delays
);
3641 /* Now do the delay slot filling. Try everything twice in case earlier
3642 changes make more slots fillable. */
3644 for (reorg_pass_number
= 0;
3645 reorg_pass_number
< MAX_REORG_PASSES
;
3646 reorg_pass_number
++)
3648 fill_simple_delay_slots (1);
3649 fill_simple_delay_slots (0);
3650 fill_eager_delay_slots ();
3651 relax_delay_slots (first
);
3654 /* Delete any USE insns made by update_block; subsequent passes don't need
3655 them or know how to deal with them. */
3656 for (insn
= first
; insn
; insn
= next
)
3658 next
= NEXT_INSN (insn
);
3660 if (GET_CODE (insn
) == INSN
&& GET_CODE (PATTERN (insn
)) == USE
3661 && INSN_P (XEXP (PATTERN (insn
), 0)))
3662 next
= delete_related_insns (insn
);
3665 /* If we made an end of function label, indicate that it is now
3666 safe to delete it by undoing our prior adjustment to LABEL_NUSES.
3667 If it is now unused, delete it. */
3668 if (end_of_function_label
&& --LABEL_NUSES (end_of_function_label
) == 0)
3669 delete_related_insns (end_of_function_label
);
3672 if (HAVE_return
&& end_of_function_label
!= 0)
3673 make_return_insns (first
);
3676 obstack_free (&unfilled_slots_obstack
, unfilled_firstobj
);
3678 /* It is not clear why the line below is needed, but it does seem to be. */
3679 unfilled_firstobj
= obstack_alloc (&unfilled_slots_obstack
, 0);
3683 int i
, j
, need_comma
;
3684 int total_delay_slots
[MAX_DELAY_HISTOGRAM
+ 1];
3685 int total_annul_slots
[MAX_DELAY_HISTOGRAM
+ 1];
3687 for (reorg_pass_number
= 0;
3688 reorg_pass_number
< MAX_REORG_PASSES
;
3689 reorg_pass_number
++)
3691 fprintf (file
, ";; Reorg pass #%d:\n", reorg_pass_number
+ 1);
3692 for (i
= 0; i
< NUM_REORG_FUNCTIONS
; i
++)
3695 fprintf (file
, ";; Reorg function #%d\n", i
);
3697 fprintf (file
, ";; %d insns needing delay slots\n;; ",
3698 num_insns_needing_delays
[i
][reorg_pass_number
]);
3700 for (j
= 0; j
< MAX_DELAY_HISTOGRAM
+ 1; j
++)
3701 if (num_filled_delays
[i
][j
][reorg_pass_number
])
3704 fprintf (file
, ", ");
3706 fprintf (file
, "%d got %d delays",
3707 num_filled_delays
[i
][j
][reorg_pass_number
], j
);
3709 fprintf (file
, "\n");
3712 memset (total_delay_slots
, 0, sizeof total_delay_slots
);
3713 memset (total_annul_slots
, 0, sizeof total_annul_slots
);
3714 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
3716 if (! INSN_DELETED_P (insn
)
3717 && GET_CODE (insn
) == INSN
3718 && GET_CODE (PATTERN (insn
)) != USE
3719 && GET_CODE (PATTERN (insn
)) != CLOBBER
)
3721 if (GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3723 j
= XVECLEN (PATTERN (insn
), 0) - 1;
3724 if (j
> MAX_DELAY_HISTOGRAM
)
3725 j
= MAX_DELAY_HISTOGRAM
;
3726 if (INSN_ANNULLED_BRANCH_P (XVECEXP (PATTERN (insn
), 0, 0)))
3727 total_annul_slots
[j
]++;
3729 total_delay_slots
[j
]++;
3731 else if (num_delay_slots (insn
) > 0)
3732 total_delay_slots
[0]++;
3735 fprintf (file
, ";; Reorg totals: ");
3737 for (j
= 0; j
< MAX_DELAY_HISTOGRAM
+ 1; j
++)
3739 if (total_delay_slots
[j
])
3742 fprintf (file
, ", ");
3744 fprintf (file
, "%d got %d delays", total_delay_slots
[j
], j
);
3747 fprintf (file
, "\n");
3748 #if defined (ANNUL_IFTRUE_SLOTS) || defined (ANNUL_IFFALSE_SLOTS)
3749 fprintf (file
, ";; Reorg annuls: ");
3751 for (j
= 0; j
< MAX_DELAY_HISTOGRAM
+ 1; j
++)
3753 if (total_annul_slots
[j
])
3756 fprintf (file
, ", ");
3758 fprintf (file
, "%d got %d delays", total_annul_slots
[j
], j
);
3761 fprintf (file
, "\n");
3763 fprintf (file
, "\n");
3766 /* For all JUMP insns, fill in branch prediction notes, so that during
3767 assembler output a target can set branch prediction bits in the code.
3768 We have to do this now, as up until this point the destinations of
3769 JUMPS can be moved around and changed, but past right here that cannot
3771 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
3775 if (GET_CODE (insn
) == INSN
)
3777 rtx pat
= PATTERN (insn
);
3779 if (GET_CODE (pat
) == SEQUENCE
)
3780 insn
= XVECEXP (pat
, 0, 0);
3782 if (GET_CODE (insn
) != JUMP_INSN
)
3785 pred_flags
= get_jump_flags (insn
, JUMP_LABEL (insn
));
3786 REG_NOTES (insn
) = gen_rtx_EXPR_LIST (REG_BR_PRED
,
3787 GEN_INT (pred_flags
),
3790 free_resource_info ();
3792 #ifdef DELAY_SLOTS_FOR_EPILOGUE
3793 /* SPARC assembler, for instance, emit warning when debug info is output
3794 into the delay slot. */
3798 for (link
= current_function_epilogue_delay_list
;
3800 link
= XEXP (link
, 1))
3801 INSN_LOCATOR (XEXP (link
, 0)) = 0;
3805 #endif /* DELAY_SLOTS */