2016-01-29 Vladimir Makarov <vmakarov@redhat.com>
[official-gcc.git] / gcc / ira.c
blob249e2fffae7213570ba529263c3b65d9bffb6ef5
1 /* Integrated Register Allocator (IRA) entry point.
2 Copyright (C) 2006-2016 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* The integrated register allocator (IRA) is a
22 regional register allocator performing graph coloring on a top-down
23 traversal of nested regions. Graph coloring in a region is based
24 on Chaitin-Briggs algorithm. It is called integrated because
25 register coalescing, register live range splitting, and choosing a
26 better hard register are done on-the-fly during coloring. Register
27 coalescing and choosing a cheaper hard register is done by hard
28 register preferencing during hard register assigning. The live
29 range splitting is a byproduct of the regional register allocation.
31 Major IRA notions are:
33 o *Region* is a part of CFG where graph coloring based on
34 Chaitin-Briggs algorithm is done. IRA can work on any set of
35 nested CFG regions forming a tree. Currently the regions are
36 the entire function for the root region and natural loops for
37 the other regions. Therefore data structure representing a
38 region is called loop_tree_node.
40 o *Allocno class* is a register class used for allocation of
41 given allocno. It means that only hard register of given
42 register class can be assigned to given allocno. In reality,
43 even smaller subset of (*profitable*) hard registers can be
44 assigned. In rare cases, the subset can be even smaller
45 because our modification of Chaitin-Briggs algorithm requires
46 that sets of hard registers can be assigned to allocnos forms a
47 forest, i.e. the sets can be ordered in a way where any
48 previous set is not intersected with given set or is a superset
49 of given set.
51 o *Pressure class* is a register class belonging to a set of
52 register classes containing all of the hard-registers available
53 for register allocation. The set of all pressure classes for a
54 target is defined in the corresponding machine-description file
55 according some criteria. Register pressure is calculated only
56 for pressure classes and it affects some IRA decisions as
57 forming allocation regions.
59 o *Allocno* represents the live range of a pseudo-register in a
60 region. Besides the obvious attributes like the corresponding
61 pseudo-register number, allocno class, conflicting allocnos and
62 conflicting hard-registers, there are a few allocno attributes
63 which are important for understanding the allocation algorithm:
65 - *Live ranges*. This is a list of ranges of *program points*
66 where the allocno lives. Program points represent places
67 where a pseudo can be born or become dead (there are
68 approximately two times more program points than the insns)
69 and they are represented by integers starting with 0. The
70 live ranges are used to find conflicts between allocnos.
71 They also play very important role for the transformation of
72 the IRA internal representation of several regions into a one
73 region representation. The later is used during the reload
74 pass work because each allocno represents all of the
75 corresponding pseudo-registers.
77 - *Hard-register costs*. This is a vector of size equal to the
78 number of available hard-registers of the allocno class. The
79 cost of a callee-clobbered hard-register for an allocno is
80 increased by the cost of save/restore code around the calls
81 through the given allocno's life. If the allocno is a move
82 instruction operand and another operand is a hard-register of
83 the allocno class, the cost of the hard-register is decreased
84 by the move cost.
86 When an allocno is assigned, the hard-register with minimal
87 full cost is used. Initially, a hard-register's full cost is
88 the corresponding value from the hard-register's cost vector.
89 If the allocno is connected by a *copy* (see below) to
90 another allocno which has just received a hard-register, the
91 cost of the hard-register is decreased. Before choosing a
92 hard-register for an allocno, the allocno's current costs of
93 the hard-registers are modified by the conflict hard-register
94 costs of all of the conflicting allocnos which are not
95 assigned yet.
97 - *Conflict hard-register costs*. This is a vector of the same
98 size as the hard-register costs vector. To permit an
99 unassigned allocno to get a better hard-register, IRA uses
100 this vector to calculate the final full cost of the
101 available hard-registers. Conflict hard-register costs of an
102 unassigned allocno are also changed with a change of the
103 hard-register cost of the allocno when a copy involving the
104 allocno is processed as described above. This is done to
105 show other unassigned allocnos that a given allocno prefers
106 some hard-registers in order to remove the move instruction
107 corresponding to the copy.
109 o *Cap*. If a pseudo-register does not live in a region but
110 lives in a nested region, IRA creates a special allocno called
111 a cap in the outer region. A region cap is also created for a
112 subregion cap.
114 o *Copy*. Allocnos can be connected by copies. Copies are used
115 to modify hard-register costs for allocnos during coloring.
116 Such modifications reflects a preference to use the same
117 hard-register for the allocnos connected by copies. Usually
118 copies are created for move insns (in this case it results in
119 register coalescing). But IRA also creates copies for operands
120 of an insn which should be assigned to the same hard-register
121 due to constraints in the machine description (it usually
122 results in removing a move generated in reload to satisfy
123 the constraints) and copies referring to the allocno which is
124 the output operand of an instruction and the allocno which is
125 an input operand dying in the instruction (creation of such
126 copies results in less register shuffling). IRA *does not*
127 create copies between the same register allocnos from different
128 regions because we use another technique for propagating
129 hard-register preference on the borders of regions.
131 Allocnos (including caps) for the upper region in the region tree
132 *accumulate* information important for coloring from allocnos with
133 the same pseudo-register from nested regions. This includes
134 hard-register and memory costs, conflicts with hard-registers,
135 allocno conflicts, allocno copies and more. *Thus, attributes for
136 allocnos in a region have the same values as if the region had no
137 subregions*. It means that attributes for allocnos in the
138 outermost region corresponding to the function have the same values
139 as though the allocation used only one region which is the entire
140 function. It also means that we can look at IRA work as if the
141 first IRA did allocation for all function then it improved the
142 allocation for loops then their subloops and so on.
144 IRA major passes are:
146 o Building IRA internal representation which consists of the
147 following subpasses:
149 * First, IRA builds regions and creates allocnos (file
150 ira-build.c) and initializes most of their attributes.
152 * Then IRA finds an allocno class for each allocno and
153 calculates its initial (non-accumulated) cost of memory and
154 each hard-register of its allocno class (file ira-cost.c).
156 * IRA creates live ranges of each allocno, calculates register
157 pressure for each pressure class in each region, sets up
158 conflict hard registers for each allocno and info about calls
159 the allocno lives through (file ira-lives.c).
161 * IRA removes low register pressure loops from the regions
162 mostly to speed IRA up (file ira-build.c).
164 * IRA propagates accumulated allocno info from lower region
165 allocnos to corresponding upper region allocnos (file
166 ira-build.c).
168 * IRA creates all caps (file ira-build.c).
170 * Having live-ranges of allocnos and their classes, IRA creates
171 conflicting allocnos for each allocno. Conflicting allocnos
172 are stored as a bit vector or array of pointers to the
173 conflicting allocnos whatever is more profitable (file
174 ira-conflicts.c). At this point IRA creates allocno copies.
176 o Coloring. Now IRA has all necessary info to start graph coloring
177 process. It is done in each region on top-down traverse of the
178 region tree (file ira-color.c). There are following subpasses:
180 * Finding profitable hard registers of corresponding allocno
181 class for each allocno. For example, only callee-saved hard
182 registers are frequently profitable for allocnos living
183 through colors. If the profitable hard register set of
184 allocno does not form a tree based on subset relation, we use
185 some approximation to form the tree. This approximation is
186 used to figure out trivial colorability of allocnos. The
187 approximation is a pretty rare case.
189 * Putting allocnos onto the coloring stack. IRA uses Briggs
190 optimistic coloring which is a major improvement over
191 Chaitin's coloring. Therefore IRA does not spill allocnos at
192 this point. There is some freedom in the order of putting
193 allocnos on the stack which can affect the final result of
194 the allocation. IRA uses some heuristics to improve the
195 order. The major one is to form *threads* from colorable
196 allocnos and push them on the stack by threads. Thread is a
197 set of non-conflicting colorable allocnos connected by
198 copies. The thread contains allocnos from the colorable
199 bucket or colorable allocnos already pushed onto the coloring
200 stack. Pushing thread allocnos one after another onto the
201 stack increases chances of removing copies when the allocnos
202 get the same hard reg.
204 We also use a modification of Chaitin-Briggs algorithm which
205 works for intersected register classes of allocnos. To
206 figure out trivial colorability of allocnos, the mentioned
207 above tree of hard register sets is used. To get an idea how
208 the algorithm works in i386 example, let us consider an
209 allocno to which any general hard register can be assigned.
210 If the allocno conflicts with eight allocnos to which only
211 EAX register can be assigned, given allocno is still
212 trivially colorable because all conflicting allocnos might be
213 assigned only to EAX and all other general hard registers are
214 still free.
216 To get an idea of the used trivial colorability criterion, it
217 is also useful to read article "Graph-Coloring Register
218 Allocation for Irregular Architectures" by Michael D. Smith
219 and Glen Holloway. Major difference between the article
220 approach and approach used in IRA is that Smith's approach
221 takes register classes only from machine description and IRA
222 calculate register classes from intermediate code too
223 (e.g. an explicit usage of hard registers in RTL code for
224 parameter passing can result in creation of additional
225 register classes which contain or exclude the hard
226 registers). That makes IRA approach useful for improving
227 coloring even for architectures with regular register files
228 and in fact some benchmarking shows the improvement for
229 regular class architectures is even bigger than for irregular
230 ones. Another difference is that Smith's approach chooses
231 intersection of classes of all insn operands in which a given
232 pseudo occurs. IRA can use bigger classes if it is still
233 more profitable than memory usage.
235 * Popping the allocnos from the stack and assigning them hard
236 registers. If IRA can not assign a hard register to an
237 allocno and the allocno is coalesced, IRA undoes the
238 coalescing and puts the uncoalesced allocnos onto the stack in
239 the hope that some such allocnos will get a hard register
240 separately. If IRA fails to assign hard register or memory
241 is more profitable for it, IRA spills the allocno. IRA
242 assigns the allocno the hard-register with minimal full
243 allocation cost which reflects the cost of usage of the
244 hard-register for the allocno and cost of usage of the
245 hard-register for allocnos conflicting with given allocno.
247 * Chaitin-Briggs coloring assigns as many pseudos as possible
248 to hard registers. After coloring we try to improve
249 allocation with cost point of view. We improve the
250 allocation by spilling some allocnos and assigning the freed
251 hard registers to other allocnos if it decreases the overall
252 allocation cost.
254 * After allocno assigning in the region, IRA modifies the hard
255 register and memory costs for the corresponding allocnos in
256 the subregions to reflect the cost of possible loads, stores,
257 or moves on the border of the region and its subregions.
258 When default regional allocation algorithm is used
259 (-fira-algorithm=mixed), IRA just propagates the assignment
260 for allocnos if the register pressure in the region for the
261 corresponding pressure class is less than number of available
262 hard registers for given pressure class.
264 o Spill/restore code moving. When IRA performs an allocation
265 by traversing regions in top-down order, it does not know what
266 happens below in the region tree. Therefore, sometimes IRA
267 misses opportunities to perform a better allocation. A simple
268 optimization tries to improve allocation in a region having
269 subregions and containing in another region. If the
270 corresponding allocnos in the subregion are spilled, it spills
271 the region allocno if it is profitable. The optimization
272 implements a simple iterative algorithm performing profitable
273 transformations while they are still possible. It is fast in
274 practice, so there is no real need for a better time complexity
275 algorithm.
277 o Code change. After coloring, two allocnos representing the
278 same pseudo-register outside and inside a region respectively
279 may be assigned to different locations (hard-registers or
280 memory). In this case IRA creates and uses a new
281 pseudo-register inside the region and adds code to move allocno
282 values on the region's borders. This is done during top-down
283 traversal of the regions (file ira-emit.c). In some
284 complicated cases IRA can create a new allocno to move allocno
285 values (e.g. when a swap of values stored in two hard-registers
286 is needed). At this stage, the new allocno is marked as
287 spilled. IRA still creates the pseudo-register and the moves
288 on the region borders even when both allocnos were assigned to
289 the same hard-register. If the reload pass spills a
290 pseudo-register for some reason, the effect will be smaller
291 because another allocno will still be in the hard-register. In
292 most cases, this is better then spilling both allocnos. If
293 reload does not change the allocation for the two
294 pseudo-registers, the trivial move will be removed by
295 post-reload optimizations. IRA does not generate moves for
296 allocnos assigned to the same hard register when the default
297 regional allocation algorithm is used and the register pressure
298 in the region for the corresponding pressure class is less than
299 number of available hard registers for given pressure class.
300 IRA also does some optimizations to remove redundant stores and
301 to reduce code duplication on the region borders.
303 o Flattening internal representation. After changing code, IRA
304 transforms its internal representation for several regions into
305 one region representation (file ira-build.c). This process is
306 called IR flattening. Such process is more complicated than IR
307 rebuilding would be, but is much faster.
309 o After IR flattening, IRA tries to assign hard registers to all
310 spilled allocnos. This is implemented by a simple and fast
311 priority coloring algorithm (see function
312 ira_reassign_conflict_allocnos::ira-color.c). Here new allocnos
313 created during the code change pass can be assigned to hard
314 registers.
316 o At the end IRA calls the reload pass. The reload pass
317 communicates with IRA through several functions in file
318 ira-color.c to improve its decisions in
320 * sharing stack slots for the spilled pseudos based on IRA info
321 about pseudo-register conflicts.
323 * reassigning hard-registers to all spilled pseudos at the end
324 of each reload iteration.
326 * choosing a better hard-register to spill based on IRA info
327 about pseudo-register live ranges and the register pressure
328 in places where the pseudo-register lives.
330 IRA uses a lot of data representing the target processors. These
331 data are initialized in file ira.c.
333 If function has no loops (or the loops are ignored when
334 -fira-algorithm=CB is used), we have classic Chaitin-Briggs
335 coloring (only instead of separate pass of coalescing, we use hard
336 register preferencing). In such case, IRA works much faster
337 because many things are not made (like IR flattening, the
338 spill/restore optimization, and the code change).
340 Literature is worth to read for better understanding the code:
342 o Preston Briggs, Keith D. Cooper, Linda Torczon. Improvements to
343 Graph Coloring Register Allocation.
345 o David Callahan, Brian Koblenz. Register allocation via
346 hierarchical graph coloring.
348 o Keith Cooper, Anshuman Dasgupta, Jason Eckhardt. Revisiting Graph
349 Coloring Register Allocation: A Study of the Chaitin-Briggs and
350 Callahan-Koblenz Algorithms.
352 o Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. Global
353 Register Allocation Based on Graph Fusion.
355 o Michael D. Smith and Glenn Holloway. Graph-Coloring Register
356 Allocation for Irregular Architectures
358 o Vladimir Makarov. The Integrated Register Allocator for GCC.
360 o Vladimir Makarov. The top-down register allocator for irregular
361 register file architectures.
366 #include "config.h"
367 #include "system.h"
368 #include "coretypes.h"
369 #include "backend.h"
370 #include "target.h"
371 #include "rtl.h"
372 #include "tree.h"
373 #include "df.h"
374 #include "tm_p.h"
375 #include "insn-config.h"
376 #include "regs.h"
377 #include "ira.h"
378 #include "ira-int.h"
379 #include "diagnostic-core.h"
380 #include "cfgrtl.h"
381 #include "cfgbuild.h"
382 #include "cfgcleanup.h"
383 #include "expr.h"
384 #include "tree-pass.h"
385 #include "output.h"
386 #include "reload.h"
387 #include "cfgloop.h"
388 #include "lra.h"
389 #include "dce.h"
390 #include "dbgcnt.h"
391 #include "rtl-iter.h"
392 #include "shrink-wrap.h"
393 #include "print-rtl.h"
395 struct target_ira default_target_ira;
396 struct target_ira_int default_target_ira_int;
397 #if SWITCHABLE_TARGET
398 struct target_ira *this_target_ira = &default_target_ira;
399 struct target_ira_int *this_target_ira_int = &default_target_ira_int;
400 #endif
402 /* A modified value of flag `-fira-verbose' used internally. */
403 int internal_flag_ira_verbose;
405 /* Dump file of the allocator if it is not NULL. */
406 FILE *ira_dump_file;
408 /* The number of elements in the following array. */
409 int ira_spilled_reg_stack_slots_num;
411 /* The following array contains info about spilled pseudo-registers
412 stack slots used in current function so far. */
413 struct ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
415 /* Correspondingly overall cost of the allocation, overall cost before
416 reload, cost of the allocnos assigned to hard-registers, cost of
417 the allocnos assigned to memory, cost of loads, stores and register
418 move insns generated for pseudo-register live range splitting (see
419 ira-emit.c). */
420 int64_t ira_overall_cost, overall_cost_before;
421 int64_t ira_reg_cost, ira_mem_cost;
422 int64_t ira_load_cost, ira_store_cost, ira_shuffle_cost;
423 int ira_move_loops_num, ira_additional_jumps_num;
425 /* All registers that can be eliminated. */
427 HARD_REG_SET eliminable_regset;
429 /* Value of max_reg_num () before IRA work start. This value helps
430 us to recognize a situation when new pseudos were created during
431 IRA work. */
432 static int max_regno_before_ira;
434 /* Temporary hard reg set used for a different calculation. */
435 static HARD_REG_SET temp_hard_regset;
437 #define last_mode_for_init_move_cost \
438 (this_target_ira_int->x_last_mode_for_init_move_cost)
441 /* The function sets up the map IRA_REG_MODE_HARD_REGSET. */
442 static void
443 setup_reg_mode_hard_regset (void)
445 int i, m, hard_regno;
447 for (m = 0; m < NUM_MACHINE_MODES; m++)
448 for (hard_regno = 0; hard_regno < FIRST_PSEUDO_REGISTER; hard_regno++)
450 CLEAR_HARD_REG_SET (ira_reg_mode_hard_regset[hard_regno][m]);
451 for (i = hard_regno_nregs[hard_regno][m] - 1; i >= 0; i--)
452 if (hard_regno + i < FIRST_PSEUDO_REGISTER)
453 SET_HARD_REG_BIT (ira_reg_mode_hard_regset[hard_regno][m],
454 hard_regno + i);
459 #define no_unit_alloc_regs \
460 (this_target_ira_int->x_no_unit_alloc_regs)
462 /* The function sets up the three arrays declared above. */
463 static void
464 setup_class_hard_regs (void)
466 int cl, i, hard_regno, n;
467 HARD_REG_SET processed_hard_reg_set;
469 ira_assert (SHRT_MAX >= FIRST_PSEUDO_REGISTER);
470 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
472 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
473 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
474 CLEAR_HARD_REG_SET (processed_hard_reg_set);
475 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
477 ira_non_ordered_class_hard_regs[cl][i] = -1;
478 ira_class_hard_reg_index[cl][i] = -1;
480 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
482 #ifdef REG_ALLOC_ORDER
483 hard_regno = reg_alloc_order[i];
484 #else
485 hard_regno = i;
486 #endif
487 if (TEST_HARD_REG_BIT (processed_hard_reg_set, hard_regno))
488 continue;
489 SET_HARD_REG_BIT (processed_hard_reg_set, hard_regno);
490 if (! TEST_HARD_REG_BIT (temp_hard_regset, hard_regno))
491 ira_class_hard_reg_index[cl][hard_regno] = -1;
492 else
494 ira_class_hard_reg_index[cl][hard_regno] = n;
495 ira_class_hard_regs[cl][n++] = hard_regno;
498 ira_class_hard_regs_num[cl] = n;
499 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
500 if (TEST_HARD_REG_BIT (temp_hard_regset, i))
501 ira_non_ordered_class_hard_regs[cl][n++] = i;
502 ira_assert (ira_class_hard_regs_num[cl] == n);
506 /* Set up global variables defining info about hard registers for the
507 allocation. These depend on USE_HARD_FRAME_P whose TRUE value means
508 that we can use the hard frame pointer for the allocation. */
509 static void
510 setup_alloc_regs (bool use_hard_frame_p)
512 #ifdef ADJUST_REG_ALLOC_ORDER
513 ADJUST_REG_ALLOC_ORDER;
514 #endif
515 COPY_HARD_REG_SET (no_unit_alloc_regs, fixed_reg_set);
516 if (! use_hard_frame_p)
517 SET_HARD_REG_BIT (no_unit_alloc_regs, HARD_FRAME_POINTER_REGNUM);
518 setup_class_hard_regs ();
523 #define alloc_reg_class_subclasses \
524 (this_target_ira_int->x_alloc_reg_class_subclasses)
526 /* Initialize the table of subclasses of each reg class. */
527 static void
528 setup_reg_subclasses (void)
530 int i, j;
531 HARD_REG_SET temp_hard_regset2;
533 for (i = 0; i < N_REG_CLASSES; i++)
534 for (j = 0; j < N_REG_CLASSES; j++)
535 alloc_reg_class_subclasses[i][j] = LIM_REG_CLASSES;
537 for (i = 0; i < N_REG_CLASSES; i++)
539 if (i == (int) NO_REGS)
540 continue;
542 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
543 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
544 if (hard_reg_set_empty_p (temp_hard_regset))
545 continue;
546 for (j = 0; j < N_REG_CLASSES; j++)
547 if (i != j)
549 enum reg_class *p;
551 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[j]);
552 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
553 if (! hard_reg_set_subset_p (temp_hard_regset,
554 temp_hard_regset2))
555 continue;
556 p = &alloc_reg_class_subclasses[j][0];
557 while (*p != LIM_REG_CLASSES) p++;
558 *p = (enum reg_class) i;
565 /* Set up IRA_MEMORY_MOVE_COST and IRA_MAX_MEMORY_MOVE_COST. */
566 static void
567 setup_class_subset_and_memory_move_costs (void)
569 int cl, cl2, mode, cost;
570 HARD_REG_SET temp_hard_regset2;
572 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
573 ira_memory_move_cost[mode][NO_REGS][0]
574 = ira_memory_move_cost[mode][NO_REGS][1] = SHRT_MAX;
575 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
577 if (cl != (int) NO_REGS)
578 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
580 ira_max_memory_move_cost[mode][cl][0]
581 = ira_memory_move_cost[mode][cl][0]
582 = memory_move_cost ((machine_mode) mode,
583 (reg_class_t) cl, false);
584 ira_max_memory_move_cost[mode][cl][1]
585 = ira_memory_move_cost[mode][cl][1]
586 = memory_move_cost ((machine_mode) mode,
587 (reg_class_t) cl, true);
588 /* Costs for NO_REGS are used in cost calculation on the
589 1st pass when the preferred register classes are not
590 known yet. In this case we take the best scenario. */
591 if (ira_memory_move_cost[mode][NO_REGS][0]
592 > ira_memory_move_cost[mode][cl][0])
593 ira_max_memory_move_cost[mode][NO_REGS][0]
594 = ira_memory_move_cost[mode][NO_REGS][0]
595 = ira_memory_move_cost[mode][cl][0];
596 if (ira_memory_move_cost[mode][NO_REGS][1]
597 > ira_memory_move_cost[mode][cl][1])
598 ira_max_memory_move_cost[mode][NO_REGS][1]
599 = ira_memory_move_cost[mode][NO_REGS][1]
600 = ira_memory_move_cost[mode][cl][1];
603 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
604 for (cl2 = (int) N_REG_CLASSES - 1; cl2 >= 0; cl2--)
606 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
607 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
608 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
609 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
610 ira_class_subset_p[cl][cl2]
611 = hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2);
612 if (! hard_reg_set_empty_p (temp_hard_regset2)
613 && hard_reg_set_subset_p (reg_class_contents[cl2],
614 reg_class_contents[cl]))
615 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
617 cost = ira_memory_move_cost[mode][cl2][0];
618 if (cost > ira_max_memory_move_cost[mode][cl][0])
619 ira_max_memory_move_cost[mode][cl][0] = cost;
620 cost = ira_memory_move_cost[mode][cl2][1];
621 if (cost > ira_max_memory_move_cost[mode][cl][1])
622 ira_max_memory_move_cost[mode][cl][1] = cost;
625 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
626 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
628 ira_memory_move_cost[mode][cl][0]
629 = ira_max_memory_move_cost[mode][cl][0];
630 ira_memory_move_cost[mode][cl][1]
631 = ira_max_memory_move_cost[mode][cl][1];
633 setup_reg_subclasses ();
638 /* Define the following macro if allocation through malloc if
639 preferable. */
640 #define IRA_NO_OBSTACK
642 #ifndef IRA_NO_OBSTACK
643 /* Obstack used for storing all dynamic data (except bitmaps) of the
644 IRA. */
645 static struct obstack ira_obstack;
646 #endif
648 /* Obstack used for storing all bitmaps of the IRA. */
649 static struct bitmap_obstack ira_bitmap_obstack;
651 /* Allocate memory of size LEN for IRA data. */
652 void *
653 ira_allocate (size_t len)
655 void *res;
657 #ifndef IRA_NO_OBSTACK
658 res = obstack_alloc (&ira_obstack, len);
659 #else
660 res = xmalloc (len);
661 #endif
662 return res;
665 /* Free memory ADDR allocated for IRA data. */
666 void
667 ira_free (void *addr ATTRIBUTE_UNUSED)
669 #ifndef IRA_NO_OBSTACK
670 /* do nothing */
671 #else
672 free (addr);
673 #endif
677 /* Allocate and returns bitmap for IRA. */
678 bitmap
679 ira_allocate_bitmap (void)
681 return BITMAP_ALLOC (&ira_bitmap_obstack);
684 /* Free bitmap B allocated for IRA. */
685 void
686 ira_free_bitmap (bitmap b ATTRIBUTE_UNUSED)
688 /* do nothing */
693 /* Output information about allocation of all allocnos (except for
694 caps) into file F. */
695 void
696 ira_print_disposition (FILE *f)
698 int i, n, max_regno;
699 ira_allocno_t a;
700 basic_block bb;
702 fprintf (f, "Disposition:");
703 max_regno = max_reg_num ();
704 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
705 for (a = ira_regno_allocno_map[i];
706 a != NULL;
707 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
709 if (n % 4 == 0)
710 fprintf (f, "\n");
711 n++;
712 fprintf (f, " %4d:r%-4d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
713 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
714 fprintf (f, "b%-3d", bb->index);
715 else
716 fprintf (f, "l%-3d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
717 if (ALLOCNO_HARD_REGNO (a) >= 0)
718 fprintf (f, " %3d", ALLOCNO_HARD_REGNO (a));
719 else
720 fprintf (f, " mem");
722 fprintf (f, "\n");
725 /* Outputs information about allocation of all allocnos into
726 stderr. */
727 void
728 ira_debug_disposition (void)
730 ira_print_disposition (stderr);
735 /* Set up ira_stack_reg_pressure_class which is the biggest pressure
736 register class containing stack registers or NO_REGS if there are
737 no stack registers. To find this class, we iterate through all
738 register pressure classes and choose the first register pressure
739 class containing all the stack registers and having the biggest
740 size. */
741 static void
742 setup_stack_reg_pressure_class (void)
744 ira_stack_reg_pressure_class = NO_REGS;
745 #ifdef STACK_REGS
747 int i, best, size;
748 enum reg_class cl;
749 HARD_REG_SET temp_hard_regset2;
751 CLEAR_HARD_REG_SET (temp_hard_regset);
752 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
753 SET_HARD_REG_BIT (temp_hard_regset, i);
754 best = 0;
755 for (i = 0; i < ira_pressure_classes_num; i++)
757 cl = ira_pressure_classes[i];
758 COPY_HARD_REG_SET (temp_hard_regset2, temp_hard_regset);
759 AND_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
760 size = hard_reg_set_size (temp_hard_regset2);
761 if (best < size)
763 best = size;
764 ira_stack_reg_pressure_class = cl;
768 #endif
771 /* Find pressure classes which are register classes for which we
772 calculate register pressure in IRA, register pressure sensitive
773 insn scheduling, and register pressure sensitive loop invariant
774 motion.
776 To make register pressure calculation easy, we always use
777 non-intersected register pressure classes. A move of hard
778 registers from one register pressure class is not more expensive
779 than load and store of the hard registers. Most likely an allocno
780 class will be a subset of a register pressure class and in many
781 cases a register pressure class. That makes usage of register
782 pressure classes a good approximation to find a high register
783 pressure. */
784 static void
785 setup_pressure_classes (void)
787 int cost, i, n, curr;
788 int cl, cl2;
789 enum reg_class pressure_classes[N_REG_CLASSES];
790 int m;
791 HARD_REG_SET temp_hard_regset2;
792 bool insert_p;
794 n = 0;
795 for (cl = 0; cl < N_REG_CLASSES; cl++)
797 if (ira_class_hard_regs_num[cl] == 0)
798 continue;
799 if (ira_class_hard_regs_num[cl] != 1
800 /* A register class without subclasses may contain a few
801 hard registers and movement between them is costly
802 (e.g. SPARC FPCC registers). We still should consider it
803 as a candidate for a pressure class. */
804 && alloc_reg_class_subclasses[cl][0] < cl)
806 /* Check that the moves between any hard registers of the
807 current class are not more expensive for a legal mode
808 than load/store of the hard registers of the current
809 class. Such class is a potential candidate to be a
810 register pressure class. */
811 for (m = 0; m < NUM_MACHINE_MODES; m++)
813 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
814 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
815 AND_COMPL_HARD_REG_SET (temp_hard_regset,
816 ira_prohibited_class_mode_regs[cl][m]);
817 if (hard_reg_set_empty_p (temp_hard_regset))
818 continue;
819 ira_init_register_move_cost_if_necessary ((machine_mode) m);
820 cost = ira_register_move_cost[m][cl][cl];
821 if (cost <= ira_max_memory_move_cost[m][cl][1]
822 || cost <= ira_max_memory_move_cost[m][cl][0])
823 break;
825 if (m >= NUM_MACHINE_MODES)
826 continue;
828 curr = 0;
829 insert_p = true;
830 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
831 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
832 /* Remove so far added pressure classes which are subset of the
833 current candidate class. Prefer GENERAL_REGS as a pressure
834 register class to another class containing the same
835 allocatable hard registers. We do this because machine
836 dependent cost hooks might give wrong costs for the latter
837 class but always give the right cost for the former class
838 (GENERAL_REGS). */
839 for (i = 0; i < n; i++)
841 cl2 = pressure_classes[i];
842 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
843 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
844 if (hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2)
845 && (! hard_reg_set_equal_p (temp_hard_regset, temp_hard_regset2)
846 || cl2 == (int) GENERAL_REGS))
848 pressure_classes[curr++] = (enum reg_class) cl2;
849 insert_p = false;
850 continue;
852 if (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset)
853 && (! hard_reg_set_equal_p (temp_hard_regset2, temp_hard_regset)
854 || cl == (int) GENERAL_REGS))
855 continue;
856 if (hard_reg_set_equal_p (temp_hard_regset2, temp_hard_regset))
857 insert_p = false;
858 pressure_classes[curr++] = (enum reg_class) cl2;
860 /* If the current candidate is a subset of a so far added
861 pressure class, don't add it to the list of the pressure
862 classes. */
863 if (insert_p)
864 pressure_classes[curr++] = (enum reg_class) cl;
865 n = curr;
867 #ifdef ENABLE_IRA_CHECKING
869 HARD_REG_SET ignore_hard_regs;
871 /* Check pressure classes correctness: here we check that hard
872 registers from all register pressure classes contains all hard
873 registers available for the allocation. */
874 CLEAR_HARD_REG_SET (temp_hard_regset);
875 CLEAR_HARD_REG_SET (temp_hard_regset2);
876 COPY_HARD_REG_SET (ignore_hard_regs, no_unit_alloc_regs);
877 for (cl = 0; cl < LIM_REG_CLASSES; cl++)
879 /* For some targets (like MIPS with MD_REGS), there are some
880 classes with hard registers available for allocation but
881 not able to hold value of any mode. */
882 for (m = 0; m < NUM_MACHINE_MODES; m++)
883 if (contains_reg_of_mode[cl][m])
884 break;
885 if (m >= NUM_MACHINE_MODES)
887 IOR_HARD_REG_SET (ignore_hard_regs, reg_class_contents[cl]);
888 continue;
890 for (i = 0; i < n; i++)
891 if ((int) pressure_classes[i] == cl)
892 break;
893 IOR_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
894 if (i < n)
895 IOR_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
897 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
898 /* Some targets (like SPARC with ICC reg) have allocatable regs
899 for which no reg class is defined. */
900 if (REGNO_REG_CLASS (i) == NO_REGS)
901 SET_HARD_REG_BIT (ignore_hard_regs, i);
902 AND_COMPL_HARD_REG_SET (temp_hard_regset, ignore_hard_regs);
903 AND_COMPL_HARD_REG_SET (temp_hard_regset2, ignore_hard_regs);
904 ira_assert (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset));
906 #endif
907 ira_pressure_classes_num = 0;
908 for (i = 0; i < n; i++)
910 cl = (int) pressure_classes[i];
911 ira_reg_pressure_class_p[cl] = true;
912 ira_pressure_classes[ira_pressure_classes_num++] = (enum reg_class) cl;
914 setup_stack_reg_pressure_class ();
917 /* Set up IRA_UNIFORM_CLASS_P. Uniform class is a register class
918 whose register move cost between any registers of the class is the
919 same as for all its subclasses. We use the data to speed up the
920 2nd pass of calculations of allocno costs. */
921 static void
922 setup_uniform_class_p (void)
924 int i, cl, cl2, m;
926 for (cl = 0; cl < N_REG_CLASSES; cl++)
928 ira_uniform_class_p[cl] = false;
929 if (ira_class_hard_regs_num[cl] == 0)
930 continue;
931 /* We can not use alloc_reg_class_subclasses here because move
932 cost hooks does not take into account that some registers are
933 unavailable for the subtarget. E.g. for i686, INT_SSE_REGS
934 is element of alloc_reg_class_subclasses for GENERAL_REGS
935 because SSE regs are unavailable. */
936 for (i = 0; (cl2 = reg_class_subclasses[cl][i]) != LIM_REG_CLASSES; i++)
938 if (ira_class_hard_regs_num[cl2] == 0)
939 continue;
940 for (m = 0; m < NUM_MACHINE_MODES; m++)
941 if (contains_reg_of_mode[cl][m] && contains_reg_of_mode[cl2][m])
943 ira_init_register_move_cost_if_necessary ((machine_mode) m);
944 if (ira_register_move_cost[m][cl][cl]
945 != ira_register_move_cost[m][cl2][cl2])
946 break;
948 if (m < NUM_MACHINE_MODES)
949 break;
951 if (cl2 == LIM_REG_CLASSES)
952 ira_uniform_class_p[cl] = true;
956 /* Set up IRA_ALLOCNO_CLASSES, IRA_ALLOCNO_CLASSES_NUM,
957 IRA_IMPORTANT_CLASSES, and IRA_IMPORTANT_CLASSES_NUM.
959 Target may have many subtargets and not all target hard registers can
960 be used for allocation, e.g. x86 port in 32-bit mode can not use
961 hard registers introduced in x86-64 like r8-r15). Some classes
962 might have the same allocatable hard registers, e.g. INDEX_REGS
963 and GENERAL_REGS in x86 port in 32-bit mode. To decrease different
964 calculations efforts we introduce allocno classes which contain
965 unique non-empty sets of allocatable hard-registers.
967 Pseudo class cost calculation in ira-costs.c is very expensive.
968 Therefore we are trying to decrease number of classes involved in
969 such calculation. Register classes used in the cost calculation
970 are called important classes. They are allocno classes and other
971 non-empty classes whose allocatable hard register sets are inside
972 of an allocno class hard register set. From the first sight, it
973 looks like that they are just allocno classes. It is not true. In
974 example of x86-port in 32-bit mode, allocno classes will contain
975 GENERAL_REGS but not LEGACY_REGS (because allocatable hard
976 registers are the same for the both classes). The important
977 classes will contain GENERAL_REGS and LEGACY_REGS. It is done
978 because a machine description insn constraint may refers for
979 LEGACY_REGS and code in ira-costs.c is mostly base on investigation
980 of the insn constraints. */
981 static void
982 setup_allocno_and_important_classes (void)
984 int i, j, n, cl;
985 bool set_p;
986 HARD_REG_SET temp_hard_regset2;
987 static enum reg_class classes[LIM_REG_CLASSES + 1];
989 n = 0;
990 /* Collect classes which contain unique sets of allocatable hard
991 registers. Prefer GENERAL_REGS to other classes containing the
992 same set of hard registers. */
993 for (i = 0; i < LIM_REG_CLASSES; i++)
995 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
996 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
997 for (j = 0; j < n; j++)
999 cl = classes[j];
1000 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
1001 AND_COMPL_HARD_REG_SET (temp_hard_regset2,
1002 no_unit_alloc_regs);
1003 if (hard_reg_set_equal_p (temp_hard_regset,
1004 temp_hard_regset2))
1005 break;
1007 if (j >= n)
1008 classes[n++] = (enum reg_class) i;
1009 else if (i == GENERAL_REGS)
1010 /* Prefer general regs. For i386 example, it means that
1011 we prefer GENERAL_REGS over INDEX_REGS or LEGACY_REGS
1012 (all of them consists of the same available hard
1013 registers). */
1014 classes[j] = (enum reg_class) i;
1016 classes[n] = LIM_REG_CLASSES;
1018 /* Set up classes which can be used for allocnos as classes
1019 containing non-empty unique sets of allocatable hard
1020 registers. */
1021 ira_allocno_classes_num = 0;
1022 for (i = 0; (cl = classes[i]) != LIM_REG_CLASSES; i++)
1023 if (ira_class_hard_regs_num[cl] > 0)
1024 ira_allocno_classes[ira_allocno_classes_num++] = (enum reg_class) cl;
1025 ira_important_classes_num = 0;
1026 /* Add non-allocno classes containing to non-empty set of
1027 allocatable hard regs. */
1028 for (cl = 0; cl < N_REG_CLASSES; cl++)
1029 if (ira_class_hard_regs_num[cl] > 0)
1031 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1032 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1033 set_p = false;
1034 for (j = 0; j < ira_allocno_classes_num; j++)
1036 COPY_HARD_REG_SET (temp_hard_regset2,
1037 reg_class_contents[ira_allocno_classes[j]]);
1038 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
1039 if ((enum reg_class) cl == ira_allocno_classes[j])
1040 break;
1041 else if (hard_reg_set_subset_p (temp_hard_regset,
1042 temp_hard_regset2))
1043 set_p = true;
1045 if (set_p && j >= ira_allocno_classes_num)
1046 ira_important_classes[ira_important_classes_num++]
1047 = (enum reg_class) cl;
1049 /* Now add allocno classes to the important classes. */
1050 for (j = 0; j < ira_allocno_classes_num; j++)
1051 ira_important_classes[ira_important_classes_num++]
1052 = ira_allocno_classes[j];
1053 for (cl = 0; cl < N_REG_CLASSES; cl++)
1055 ira_reg_allocno_class_p[cl] = false;
1056 ira_reg_pressure_class_p[cl] = false;
1058 for (j = 0; j < ira_allocno_classes_num; j++)
1059 ira_reg_allocno_class_p[ira_allocno_classes[j]] = true;
1060 setup_pressure_classes ();
1061 setup_uniform_class_p ();
1064 /* Setup translation in CLASS_TRANSLATE of all classes into a class
1065 given by array CLASSES of length CLASSES_NUM. The function is used
1066 make translation any reg class to an allocno class or to an
1067 pressure class. This translation is necessary for some
1068 calculations when we can use only allocno or pressure classes and
1069 such translation represents an approximate representation of all
1070 classes.
1072 The translation in case when allocatable hard register set of a
1073 given class is subset of allocatable hard register set of a class
1074 in CLASSES is pretty simple. We use smallest classes from CLASSES
1075 containing a given class. If allocatable hard register set of a
1076 given class is not a subset of any corresponding set of a class
1077 from CLASSES, we use the cheapest (with load/store point of view)
1078 class from CLASSES whose set intersects with given class set. */
1079 static void
1080 setup_class_translate_array (enum reg_class *class_translate,
1081 int classes_num, enum reg_class *classes)
1083 int cl, mode;
1084 enum reg_class aclass, best_class, *cl_ptr;
1085 int i, cost, min_cost, best_cost;
1087 for (cl = 0; cl < N_REG_CLASSES; cl++)
1088 class_translate[cl] = NO_REGS;
1090 for (i = 0; i < classes_num; i++)
1092 aclass = classes[i];
1093 for (cl_ptr = &alloc_reg_class_subclasses[aclass][0];
1094 (cl = *cl_ptr) != LIM_REG_CLASSES;
1095 cl_ptr++)
1096 if (class_translate[cl] == NO_REGS)
1097 class_translate[cl] = aclass;
1098 class_translate[aclass] = aclass;
1100 /* For classes which are not fully covered by one of given classes
1101 (in other words covered by more one given class), use the
1102 cheapest class. */
1103 for (cl = 0; cl < N_REG_CLASSES; cl++)
1105 if (cl == NO_REGS || class_translate[cl] != NO_REGS)
1106 continue;
1107 best_class = NO_REGS;
1108 best_cost = INT_MAX;
1109 for (i = 0; i < classes_num; i++)
1111 aclass = classes[i];
1112 COPY_HARD_REG_SET (temp_hard_regset,
1113 reg_class_contents[aclass]);
1114 AND_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1115 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1116 if (! hard_reg_set_empty_p (temp_hard_regset))
1118 min_cost = INT_MAX;
1119 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1121 cost = (ira_memory_move_cost[mode][aclass][0]
1122 + ira_memory_move_cost[mode][aclass][1]);
1123 if (min_cost > cost)
1124 min_cost = cost;
1126 if (best_class == NO_REGS || best_cost > min_cost)
1128 best_class = aclass;
1129 best_cost = min_cost;
1133 class_translate[cl] = best_class;
1137 /* Set up array IRA_ALLOCNO_CLASS_TRANSLATE and
1138 IRA_PRESSURE_CLASS_TRANSLATE. */
1139 static void
1140 setup_class_translate (void)
1142 setup_class_translate_array (ira_allocno_class_translate,
1143 ira_allocno_classes_num, ira_allocno_classes);
1144 setup_class_translate_array (ira_pressure_class_translate,
1145 ira_pressure_classes_num, ira_pressure_classes);
1148 /* Order numbers of allocno classes in original target allocno class
1149 array, -1 for non-allocno classes. */
1150 static int allocno_class_order[N_REG_CLASSES];
1152 /* The function used to sort the important classes. */
1153 static int
1154 comp_reg_classes_func (const void *v1p, const void *v2p)
1156 enum reg_class cl1 = *(const enum reg_class *) v1p;
1157 enum reg_class cl2 = *(const enum reg_class *) v2p;
1158 enum reg_class tcl1, tcl2;
1159 int diff;
1161 tcl1 = ira_allocno_class_translate[cl1];
1162 tcl2 = ira_allocno_class_translate[cl2];
1163 if (tcl1 != NO_REGS && tcl2 != NO_REGS
1164 && (diff = allocno_class_order[tcl1] - allocno_class_order[tcl2]) != 0)
1165 return diff;
1166 return (int) cl1 - (int) cl2;
1169 /* For correct work of function setup_reg_class_relation we need to
1170 reorder important classes according to the order of their allocno
1171 classes. It places important classes containing the same
1172 allocatable hard register set adjacent to each other and allocno
1173 class with the allocatable hard register set right after the other
1174 important classes with the same set.
1176 In example from comments of function
1177 setup_allocno_and_important_classes, it places LEGACY_REGS and
1178 GENERAL_REGS close to each other and GENERAL_REGS is after
1179 LEGACY_REGS. */
1180 static void
1181 reorder_important_classes (void)
1183 int i;
1185 for (i = 0; i < N_REG_CLASSES; i++)
1186 allocno_class_order[i] = -1;
1187 for (i = 0; i < ira_allocno_classes_num; i++)
1188 allocno_class_order[ira_allocno_classes[i]] = i;
1189 qsort (ira_important_classes, ira_important_classes_num,
1190 sizeof (enum reg_class), comp_reg_classes_func);
1191 for (i = 0; i < ira_important_classes_num; i++)
1192 ira_important_class_nums[ira_important_classes[i]] = i;
1195 /* Set up IRA_REG_CLASS_SUBUNION, IRA_REG_CLASS_SUPERUNION,
1196 IRA_REG_CLASS_SUPER_CLASSES, IRA_REG_CLASSES_INTERSECT, and
1197 IRA_REG_CLASSES_INTERSECT_P. For the meaning of the relations,
1198 please see corresponding comments in ira-int.h. */
1199 static void
1200 setup_reg_class_relations (void)
1202 int i, cl1, cl2, cl3;
1203 HARD_REG_SET intersection_set, union_set, temp_set2;
1204 bool important_class_p[N_REG_CLASSES];
1206 memset (important_class_p, 0, sizeof (important_class_p));
1207 for (i = 0; i < ira_important_classes_num; i++)
1208 important_class_p[ira_important_classes[i]] = true;
1209 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1211 ira_reg_class_super_classes[cl1][0] = LIM_REG_CLASSES;
1212 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1214 ira_reg_classes_intersect_p[cl1][cl2] = false;
1215 ira_reg_class_intersect[cl1][cl2] = NO_REGS;
1216 ira_reg_class_subset[cl1][cl2] = NO_REGS;
1217 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl1]);
1218 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1219 COPY_HARD_REG_SET (temp_set2, reg_class_contents[cl2]);
1220 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1221 if (hard_reg_set_empty_p (temp_hard_regset)
1222 && hard_reg_set_empty_p (temp_set2))
1224 /* The both classes have no allocatable hard registers
1225 -- take all class hard registers into account and use
1226 reg_class_subunion and reg_class_superunion. */
1227 for (i = 0;; i++)
1229 cl3 = reg_class_subclasses[cl1][i];
1230 if (cl3 == LIM_REG_CLASSES)
1231 break;
1232 if (reg_class_subset_p (ira_reg_class_intersect[cl1][cl2],
1233 (enum reg_class) cl3))
1234 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1236 ira_reg_class_subunion[cl1][cl2] = reg_class_subunion[cl1][cl2];
1237 ira_reg_class_superunion[cl1][cl2] = reg_class_superunion[cl1][cl2];
1238 continue;
1240 ira_reg_classes_intersect_p[cl1][cl2]
1241 = hard_reg_set_intersect_p (temp_hard_regset, temp_set2);
1242 if (important_class_p[cl1] && important_class_p[cl2]
1243 && hard_reg_set_subset_p (temp_hard_regset, temp_set2))
1245 /* CL1 and CL2 are important classes and CL1 allocatable
1246 hard register set is inside of CL2 allocatable hard
1247 registers -- make CL1 a superset of CL2. */
1248 enum reg_class *p;
1250 p = &ira_reg_class_super_classes[cl1][0];
1251 while (*p != LIM_REG_CLASSES)
1252 p++;
1253 *p++ = (enum reg_class) cl2;
1254 *p = LIM_REG_CLASSES;
1256 ira_reg_class_subunion[cl1][cl2] = NO_REGS;
1257 ira_reg_class_superunion[cl1][cl2] = NO_REGS;
1258 COPY_HARD_REG_SET (intersection_set, reg_class_contents[cl1]);
1259 AND_HARD_REG_SET (intersection_set, reg_class_contents[cl2]);
1260 AND_COMPL_HARD_REG_SET (intersection_set, no_unit_alloc_regs);
1261 COPY_HARD_REG_SET (union_set, reg_class_contents[cl1]);
1262 IOR_HARD_REG_SET (union_set, reg_class_contents[cl2]);
1263 AND_COMPL_HARD_REG_SET (union_set, no_unit_alloc_regs);
1264 for (cl3 = 0; cl3 < N_REG_CLASSES; cl3++)
1266 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl3]);
1267 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1268 if (hard_reg_set_subset_p (temp_hard_regset, intersection_set))
1270 /* CL3 allocatable hard register set is inside of
1271 intersection of allocatable hard register sets
1272 of CL1 and CL2. */
1273 if (important_class_p[cl3])
1275 COPY_HARD_REG_SET
1276 (temp_set2,
1277 reg_class_contents
1278 [(int) ira_reg_class_intersect[cl1][cl2]]);
1279 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1280 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1281 /* If the allocatable hard register sets are
1282 the same, prefer GENERAL_REGS or the
1283 smallest class for debugging
1284 purposes. */
1285 || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
1286 && (cl3 == GENERAL_REGS
1287 || ((ira_reg_class_intersect[cl1][cl2]
1288 != GENERAL_REGS)
1289 && hard_reg_set_subset_p
1290 (reg_class_contents[cl3],
1291 reg_class_contents
1292 [(int)
1293 ira_reg_class_intersect[cl1][cl2]])))))
1294 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1296 COPY_HARD_REG_SET
1297 (temp_set2,
1298 reg_class_contents[(int) ira_reg_class_subset[cl1][cl2]]);
1299 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1300 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1301 /* Ignore unavailable hard registers and prefer
1302 smallest class for debugging purposes. */
1303 || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
1304 && hard_reg_set_subset_p
1305 (reg_class_contents[cl3],
1306 reg_class_contents
1307 [(int) ira_reg_class_subset[cl1][cl2]])))
1308 ira_reg_class_subset[cl1][cl2] = (enum reg_class) cl3;
1310 if (important_class_p[cl3]
1311 && hard_reg_set_subset_p (temp_hard_regset, union_set))
1313 /* CL3 allocatable hard register set is inside of
1314 union of allocatable hard register sets of CL1
1315 and CL2. */
1316 COPY_HARD_REG_SET
1317 (temp_set2,
1318 reg_class_contents[(int) ira_reg_class_subunion[cl1][cl2]]);
1319 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1320 if (ira_reg_class_subunion[cl1][cl2] == NO_REGS
1321 || (hard_reg_set_subset_p (temp_set2, temp_hard_regset)
1323 && (! hard_reg_set_equal_p (temp_set2,
1324 temp_hard_regset)
1325 || cl3 == GENERAL_REGS
1326 /* If the allocatable hard register sets are the
1327 same, prefer GENERAL_REGS or the smallest
1328 class for debugging purposes. */
1329 || (ira_reg_class_subunion[cl1][cl2] != GENERAL_REGS
1330 && hard_reg_set_subset_p
1331 (reg_class_contents[cl3],
1332 reg_class_contents
1333 [(int) ira_reg_class_subunion[cl1][cl2]])))))
1334 ira_reg_class_subunion[cl1][cl2] = (enum reg_class) cl3;
1336 if (hard_reg_set_subset_p (union_set, temp_hard_regset))
1338 /* CL3 allocatable hard register set contains union
1339 of allocatable hard register sets of CL1 and
1340 CL2. */
1341 COPY_HARD_REG_SET
1342 (temp_set2,
1343 reg_class_contents[(int) ira_reg_class_superunion[cl1][cl2]]);
1344 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1345 if (ira_reg_class_superunion[cl1][cl2] == NO_REGS
1346 || (hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1348 && (! hard_reg_set_equal_p (temp_set2,
1349 temp_hard_regset)
1350 || cl3 == GENERAL_REGS
1351 /* If the allocatable hard register sets are the
1352 same, prefer GENERAL_REGS or the smallest
1353 class for debugging purposes. */
1354 || (ira_reg_class_superunion[cl1][cl2] != GENERAL_REGS
1355 && hard_reg_set_subset_p
1356 (reg_class_contents[cl3],
1357 reg_class_contents
1358 [(int) ira_reg_class_superunion[cl1][cl2]])))))
1359 ira_reg_class_superunion[cl1][cl2] = (enum reg_class) cl3;
1366 /* Output all uniform and important classes into file F. */
1367 static void
1368 print_uniform_and_important_classes (FILE *f)
1370 int i, cl;
1372 fprintf (f, "Uniform classes:\n");
1373 for (cl = 0; cl < N_REG_CLASSES; cl++)
1374 if (ira_uniform_class_p[cl])
1375 fprintf (f, " %s", reg_class_names[cl]);
1376 fprintf (f, "\nImportant classes:\n");
1377 for (i = 0; i < ira_important_classes_num; i++)
1378 fprintf (f, " %s", reg_class_names[ira_important_classes[i]]);
1379 fprintf (f, "\n");
1382 /* Output all possible allocno or pressure classes and their
1383 translation map into file F. */
1384 static void
1385 print_translated_classes (FILE *f, bool pressure_p)
1387 int classes_num = (pressure_p
1388 ? ira_pressure_classes_num : ira_allocno_classes_num);
1389 enum reg_class *classes = (pressure_p
1390 ? ira_pressure_classes : ira_allocno_classes);
1391 enum reg_class *class_translate = (pressure_p
1392 ? ira_pressure_class_translate
1393 : ira_allocno_class_translate);
1394 int i;
1396 fprintf (f, "%s classes:\n", pressure_p ? "Pressure" : "Allocno");
1397 for (i = 0; i < classes_num; i++)
1398 fprintf (f, " %s", reg_class_names[classes[i]]);
1399 fprintf (f, "\nClass translation:\n");
1400 for (i = 0; i < N_REG_CLASSES; i++)
1401 fprintf (f, " %s -> %s\n", reg_class_names[i],
1402 reg_class_names[class_translate[i]]);
1405 /* Output all possible allocno and translation classes and the
1406 translation maps into stderr. */
1407 void
1408 ira_debug_allocno_classes (void)
1410 print_uniform_and_important_classes (stderr);
1411 print_translated_classes (stderr, false);
1412 print_translated_classes (stderr, true);
1415 /* Set up different arrays concerning class subsets, allocno and
1416 important classes. */
1417 static void
1418 find_reg_classes (void)
1420 setup_allocno_and_important_classes ();
1421 setup_class_translate ();
1422 reorder_important_classes ();
1423 setup_reg_class_relations ();
1428 /* Set up the array above. */
1429 static void
1430 setup_hard_regno_aclass (void)
1432 int i;
1434 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1436 #if 1
1437 ira_hard_regno_allocno_class[i]
1438 = (TEST_HARD_REG_BIT (no_unit_alloc_regs, i)
1439 ? NO_REGS
1440 : ira_allocno_class_translate[REGNO_REG_CLASS (i)]);
1441 #else
1442 int j;
1443 enum reg_class cl;
1444 ira_hard_regno_allocno_class[i] = NO_REGS;
1445 for (j = 0; j < ira_allocno_classes_num; j++)
1447 cl = ira_allocno_classes[j];
1448 if (ira_class_hard_reg_index[cl][i] >= 0)
1450 ira_hard_regno_allocno_class[i] = cl;
1451 break;
1454 #endif
1460 /* Form IRA_REG_CLASS_MAX_NREGS and IRA_REG_CLASS_MIN_NREGS maps. */
1461 static void
1462 setup_reg_class_nregs (void)
1464 int i, cl, cl2, m;
1466 for (m = 0; m < MAX_MACHINE_MODE; m++)
1468 for (cl = 0; cl < N_REG_CLASSES; cl++)
1469 ira_reg_class_max_nregs[cl][m]
1470 = ira_reg_class_min_nregs[cl][m]
1471 = targetm.class_max_nregs ((reg_class_t) cl, (machine_mode) m);
1472 for (cl = 0; cl < N_REG_CLASSES; cl++)
1473 for (i = 0;
1474 (cl2 = alloc_reg_class_subclasses[cl][i]) != LIM_REG_CLASSES;
1475 i++)
1476 if (ira_reg_class_min_nregs[cl2][m]
1477 < ira_reg_class_min_nregs[cl][m])
1478 ira_reg_class_min_nregs[cl][m] = ira_reg_class_min_nregs[cl2][m];
1484 /* Set up IRA_PROHIBITED_CLASS_MODE_REGS and IRA_CLASS_SINGLETON.
1485 This function is called once IRA_CLASS_HARD_REGS has been initialized. */
1486 static void
1487 setup_prohibited_class_mode_regs (void)
1489 int j, k, hard_regno, cl, last_hard_regno, count;
1491 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1493 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1494 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1495 for (j = 0; j < NUM_MACHINE_MODES; j++)
1497 count = 0;
1498 last_hard_regno = -1;
1499 CLEAR_HARD_REG_SET (ira_prohibited_class_mode_regs[cl][j]);
1500 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1502 hard_regno = ira_class_hard_regs[cl][k];
1503 if (! HARD_REGNO_MODE_OK (hard_regno, (machine_mode) j))
1504 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1505 hard_regno);
1506 else if (in_hard_reg_set_p (temp_hard_regset,
1507 (machine_mode) j, hard_regno))
1509 last_hard_regno = hard_regno;
1510 count++;
1513 ira_class_singleton[cl][j] = (count == 1 ? last_hard_regno : -1);
1518 /* Clarify IRA_PROHIBITED_CLASS_MODE_REGS by excluding hard registers
1519 spanning from one register pressure class to another one. It is
1520 called after defining the pressure classes. */
1521 static void
1522 clarify_prohibited_class_mode_regs (void)
1524 int j, k, hard_regno, cl, pclass, nregs;
1526 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1527 for (j = 0; j < NUM_MACHINE_MODES; j++)
1529 CLEAR_HARD_REG_SET (ira_useful_class_mode_regs[cl][j]);
1530 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1532 hard_regno = ira_class_hard_regs[cl][k];
1533 if (TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j], hard_regno))
1534 continue;
1535 nregs = hard_regno_nregs[hard_regno][j];
1536 if (hard_regno + nregs > FIRST_PSEUDO_REGISTER)
1538 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1539 hard_regno);
1540 continue;
1542 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
1543 for (nregs-- ;nregs >= 0; nregs--)
1544 if (((enum reg_class) pclass
1545 != ira_pressure_class_translate[REGNO_REG_CLASS
1546 (hard_regno + nregs)]))
1548 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1549 hard_regno);
1550 break;
1552 if (!TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1553 hard_regno))
1554 add_to_hard_reg_set (&ira_useful_class_mode_regs[cl][j],
1555 (machine_mode) j, hard_regno);
1560 /* Allocate and initialize IRA_REGISTER_MOVE_COST, IRA_MAY_MOVE_IN_COST
1561 and IRA_MAY_MOVE_OUT_COST for MODE. */
1562 void
1563 ira_init_register_move_cost (machine_mode mode)
1565 static unsigned short last_move_cost[N_REG_CLASSES][N_REG_CLASSES];
1566 bool all_match = true;
1567 unsigned int cl1, cl2;
1569 ira_assert (ira_register_move_cost[mode] == NULL
1570 && ira_may_move_in_cost[mode] == NULL
1571 && ira_may_move_out_cost[mode] == NULL);
1572 ira_assert (have_regs_of_mode[mode]);
1573 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1574 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1576 int cost;
1577 if (!contains_reg_of_mode[cl1][mode]
1578 || !contains_reg_of_mode[cl2][mode])
1580 if ((ira_reg_class_max_nregs[cl1][mode]
1581 > ira_class_hard_regs_num[cl1])
1582 || (ira_reg_class_max_nregs[cl2][mode]
1583 > ira_class_hard_regs_num[cl2]))
1584 cost = 65535;
1585 else
1586 cost = (ira_memory_move_cost[mode][cl1][0]
1587 + ira_memory_move_cost[mode][cl2][1]) * 2;
1589 else
1591 cost = register_move_cost (mode, (enum reg_class) cl1,
1592 (enum reg_class) cl2);
1593 ira_assert (cost < 65535);
1595 all_match &= (last_move_cost[cl1][cl2] == cost);
1596 last_move_cost[cl1][cl2] = cost;
1598 if (all_match && last_mode_for_init_move_cost != -1)
1600 ira_register_move_cost[mode]
1601 = ira_register_move_cost[last_mode_for_init_move_cost];
1602 ira_may_move_in_cost[mode]
1603 = ira_may_move_in_cost[last_mode_for_init_move_cost];
1604 ira_may_move_out_cost[mode]
1605 = ira_may_move_out_cost[last_mode_for_init_move_cost];
1606 return;
1608 last_mode_for_init_move_cost = mode;
1609 ira_register_move_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1610 ira_may_move_in_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1611 ira_may_move_out_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1612 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1613 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1615 int cost;
1616 enum reg_class *p1, *p2;
1618 if (last_move_cost[cl1][cl2] == 65535)
1620 ira_register_move_cost[mode][cl1][cl2] = 65535;
1621 ira_may_move_in_cost[mode][cl1][cl2] = 65535;
1622 ira_may_move_out_cost[mode][cl1][cl2] = 65535;
1624 else
1626 cost = last_move_cost[cl1][cl2];
1628 for (p2 = &reg_class_subclasses[cl2][0];
1629 *p2 != LIM_REG_CLASSES; p2++)
1630 if (ira_class_hard_regs_num[*p2] > 0
1631 && (ira_reg_class_max_nregs[*p2][mode]
1632 <= ira_class_hard_regs_num[*p2]))
1633 cost = MAX (cost, ira_register_move_cost[mode][cl1][*p2]);
1635 for (p1 = &reg_class_subclasses[cl1][0];
1636 *p1 != LIM_REG_CLASSES; p1++)
1637 if (ira_class_hard_regs_num[*p1] > 0
1638 && (ira_reg_class_max_nregs[*p1][mode]
1639 <= ira_class_hard_regs_num[*p1]))
1640 cost = MAX (cost, ira_register_move_cost[mode][*p1][cl2]);
1642 ira_assert (cost <= 65535);
1643 ira_register_move_cost[mode][cl1][cl2] = cost;
1645 if (ira_class_subset_p[cl1][cl2])
1646 ira_may_move_in_cost[mode][cl1][cl2] = 0;
1647 else
1648 ira_may_move_in_cost[mode][cl1][cl2] = cost;
1650 if (ira_class_subset_p[cl2][cl1])
1651 ira_may_move_out_cost[mode][cl1][cl2] = 0;
1652 else
1653 ira_may_move_out_cost[mode][cl1][cl2] = cost;
1660 /* This is called once during compiler work. It sets up
1661 different arrays whose values don't depend on the compiled
1662 function. */
1663 void
1664 ira_init_once (void)
1666 ira_init_costs_once ();
1667 lra_init_once ();
1670 /* Free ira_max_register_move_cost, ira_may_move_in_cost and
1671 ira_may_move_out_cost for each mode. */
1672 void
1673 target_ira_int::free_register_move_costs (void)
1675 int mode, i;
1677 /* Reset move_cost and friends, making sure we only free shared
1678 table entries once. */
1679 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1680 if (x_ira_register_move_cost[mode])
1682 for (i = 0;
1683 i < mode && (x_ira_register_move_cost[i]
1684 != x_ira_register_move_cost[mode]);
1685 i++)
1687 if (i == mode)
1689 free (x_ira_register_move_cost[mode]);
1690 free (x_ira_may_move_in_cost[mode]);
1691 free (x_ira_may_move_out_cost[mode]);
1694 memset (x_ira_register_move_cost, 0, sizeof x_ira_register_move_cost);
1695 memset (x_ira_may_move_in_cost, 0, sizeof x_ira_may_move_in_cost);
1696 memset (x_ira_may_move_out_cost, 0, sizeof x_ira_may_move_out_cost);
1697 last_mode_for_init_move_cost = -1;
1700 target_ira_int::~target_ira_int ()
1702 free_ira_costs ();
1703 free_register_move_costs ();
1706 /* This is called every time when register related information is
1707 changed. */
1708 void
1709 ira_init (void)
1711 this_target_ira_int->free_register_move_costs ();
1712 setup_reg_mode_hard_regset ();
1713 setup_alloc_regs (flag_omit_frame_pointer != 0);
1714 setup_class_subset_and_memory_move_costs ();
1715 setup_reg_class_nregs ();
1716 setup_prohibited_class_mode_regs ();
1717 find_reg_classes ();
1718 clarify_prohibited_class_mode_regs ();
1719 setup_hard_regno_aclass ();
1720 ira_init_costs ();
1724 #define ira_prohibited_mode_move_regs_initialized_p \
1725 (this_target_ira_int->x_ira_prohibited_mode_move_regs_initialized_p)
1727 /* Set up IRA_PROHIBITED_MODE_MOVE_REGS. */
1728 static void
1729 setup_prohibited_mode_move_regs (void)
1731 int i, j;
1732 rtx test_reg1, test_reg2, move_pat;
1733 rtx_insn *move_insn;
1735 if (ira_prohibited_mode_move_regs_initialized_p)
1736 return;
1737 ira_prohibited_mode_move_regs_initialized_p = true;
1738 test_reg1 = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
1739 test_reg2 = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 2);
1740 move_pat = gen_rtx_SET (test_reg1, test_reg2);
1741 move_insn = gen_rtx_INSN (VOIDmode, 0, 0, 0, move_pat, 0, -1, 0);
1742 for (i = 0; i < NUM_MACHINE_MODES; i++)
1744 SET_HARD_REG_SET (ira_prohibited_mode_move_regs[i]);
1745 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1747 if (! HARD_REGNO_MODE_OK (j, (machine_mode) i))
1748 continue;
1749 set_mode_and_regno (test_reg1, (machine_mode) i, j);
1750 set_mode_and_regno (test_reg2, (machine_mode) i, j);
1751 INSN_CODE (move_insn) = -1;
1752 recog_memoized (move_insn);
1753 if (INSN_CODE (move_insn) < 0)
1754 continue;
1755 extract_insn (move_insn);
1756 /* We don't know whether the move will be in code that is optimized
1757 for size or speed, so consider all enabled alternatives. */
1758 if (! constrain_operands (1, get_enabled_alternatives (move_insn)))
1759 continue;
1760 CLEAR_HARD_REG_BIT (ira_prohibited_mode_move_regs[i], j);
1767 /* Setup possible alternatives in ALTS for INSN. */
1768 void
1769 ira_setup_alts (rtx_insn *insn, HARD_REG_SET &alts)
1771 /* MAP nalt * nop -> start of constraints for given operand and
1772 alternative. */
1773 static vec<const char *> insn_constraints;
1774 int nop, nalt;
1775 bool curr_swapped;
1776 const char *p;
1777 int commutative = -1;
1779 extract_insn (insn);
1780 alternative_mask preferred = get_preferred_alternatives (insn);
1781 CLEAR_HARD_REG_SET (alts);
1782 insn_constraints.release ();
1783 insn_constraints.safe_grow_cleared (recog_data.n_operands
1784 * recog_data.n_alternatives + 1);
1785 /* Check that the hard reg set is enough for holding all
1786 alternatives. It is hard to imagine the situation when the
1787 assertion is wrong. */
1788 ira_assert (recog_data.n_alternatives
1789 <= (int) MAX (sizeof (HARD_REG_ELT_TYPE) * CHAR_BIT,
1790 FIRST_PSEUDO_REGISTER));
1791 for (curr_swapped = false;; curr_swapped = true)
1793 /* Calculate some data common for all alternatives to speed up the
1794 function. */
1795 for (nop = 0; nop < recog_data.n_operands; nop++)
1797 for (nalt = 0, p = recog_data.constraints[nop];
1798 nalt < recog_data.n_alternatives;
1799 nalt++)
1801 insn_constraints[nop * recog_data.n_alternatives + nalt] = p;
1802 while (*p && *p != ',')
1804 /* We only support one commutative marker, the first
1805 one. We already set commutative above. */
1806 if (*p == '%' && commutative < 0)
1807 commutative = nop;
1808 p++;
1810 if (*p)
1811 p++;
1814 for (nalt = 0; nalt < recog_data.n_alternatives; nalt++)
1816 if (!TEST_BIT (preferred, nalt)
1817 || TEST_HARD_REG_BIT (alts, nalt))
1818 continue;
1820 for (nop = 0; nop < recog_data.n_operands; nop++)
1822 int c, len;
1824 rtx op = recog_data.operand[nop];
1825 p = insn_constraints[nop * recog_data.n_alternatives + nalt];
1826 if (*p == 0 || *p == ',')
1827 continue;
1830 switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
1832 case '#':
1833 case ',':
1834 c = '\0';
1835 case '\0':
1836 len = 0;
1837 break;
1839 case '%':
1840 /* The commutative modifier is handled above. */
1841 break;
1843 case '0': case '1': case '2': case '3': case '4':
1844 case '5': case '6': case '7': case '8': case '9':
1845 goto op_success;
1846 break;
1848 case 'g':
1849 goto op_success;
1850 break;
1852 default:
1854 enum constraint_num cn = lookup_constraint (p);
1855 switch (get_constraint_type (cn))
1857 case CT_REGISTER:
1858 if (reg_class_for_constraint (cn) != NO_REGS)
1859 goto op_success;
1860 break;
1862 case CT_CONST_INT:
1863 if (CONST_INT_P (op)
1864 && (insn_const_int_ok_for_constraint
1865 (INTVAL (op), cn)))
1866 goto op_success;
1867 break;
1869 case CT_ADDRESS:
1870 case CT_MEMORY:
1871 case CT_SPECIAL_MEMORY:
1872 goto op_success;
1874 case CT_FIXED_FORM:
1875 if (constraint_satisfied_p (op, cn))
1876 goto op_success;
1877 break;
1879 break;
1882 while (p += len, c);
1883 break;
1884 op_success:
1887 if (nop >= recog_data.n_operands)
1888 SET_HARD_REG_BIT (alts, nalt);
1890 if (commutative < 0)
1891 break;
1892 if (curr_swapped)
1893 break;
1894 std::swap (recog_data.operand[commutative],
1895 recog_data.operand[commutative + 1]);
1899 /* Return the number of the output non-early clobber operand which
1900 should be the same in any case as operand with number OP_NUM (or
1901 negative value if there is no such operand). The function takes
1902 only really possible alternatives into consideration. */
1904 ira_get_dup_out_num (int op_num, HARD_REG_SET &alts)
1906 int curr_alt, c, original, dup;
1907 bool ignore_p, use_commut_op_p;
1908 const char *str;
1910 if (op_num < 0 || recog_data.n_alternatives == 0)
1911 return -1;
1912 /* We should find duplications only for input operands. */
1913 if (recog_data.operand_type[op_num] != OP_IN)
1914 return -1;
1915 str = recog_data.constraints[op_num];
1916 use_commut_op_p = false;
1917 for (;;)
1919 rtx op = recog_data.operand[op_num];
1921 for (curr_alt = 0, ignore_p = !TEST_HARD_REG_BIT (alts, curr_alt),
1922 original = -1;;)
1924 c = *str;
1925 if (c == '\0')
1926 break;
1927 if (c == '#')
1928 ignore_p = true;
1929 else if (c == ',')
1931 curr_alt++;
1932 ignore_p = !TEST_HARD_REG_BIT (alts, curr_alt);
1934 else if (! ignore_p)
1935 switch (c)
1937 case 'g':
1938 goto fail;
1939 default:
1941 enum constraint_num cn = lookup_constraint (str);
1942 enum reg_class cl = reg_class_for_constraint (cn);
1943 if (cl != NO_REGS
1944 && !targetm.class_likely_spilled_p (cl))
1945 goto fail;
1946 if (constraint_satisfied_p (op, cn))
1947 goto fail;
1948 break;
1951 case '0': case '1': case '2': case '3': case '4':
1952 case '5': case '6': case '7': case '8': case '9':
1953 if (original != -1 && original != c)
1954 goto fail;
1955 original = c;
1956 break;
1958 str += CONSTRAINT_LEN (c, str);
1960 if (original == -1)
1961 goto fail;
1962 dup = -1;
1963 for (ignore_p = false, str = recog_data.constraints[original - '0'];
1964 *str != 0;
1965 str++)
1966 if (ignore_p)
1968 if (*str == ',')
1969 ignore_p = false;
1971 else if (*str == '#')
1972 ignore_p = true;
1973 else if (! ignore_p)
1975 if (*str == '=')
1976 dup = original - '0';
1977 /* It is better ignore an alternative with early clobber. */
1978 else if (*str == '&')
1979 goto fail;
1981 if (dup >= 0)
1982 return dup;
1983 fail:
1984 if (use_commut_op_p)
1985 break;
1986 use_commut_op_p = true;
1987 if (recog_data.constraints[op_num][0] == '%')
1988 str = recog_data.constraints[op_num + 1];
1989 else if (op_num > 0 && recog_data.constraints[op_num - 1][0] == '%')
1990 str = recog_data.constraints[op_num - 1];
1991 else
1992 break;
1994 return -1;
1999 /* Search forward to see if the source register of a copy insn dies
2000 before either it or the destination register is modified, but don't
2001 scan past the end of the basic block. If so, we can replace the
2002 source with the destination and let the source die in the copy
2003 insn.
2005 This will reduce the number of registers live in that range and may
2006 enable the destination and the source coalescing, thus often saving
2007 one register in addition to a register-register copy. */
2009 static void
2010 decrease_live_ranges_number (void)
2012 basic_block bb;
2013 rtx_insn *insn;
2014 rtx set, src, dest, dest_death, note;
2015 rtx_insn *p, *q;
2016 int sregno, dregno;
2018 if (! flag_expensive_optimizations)
2019 return;
2021 if (ira_dump_file)
2022 fprintf (ira_dump_file, "Starting decreasing number of live ranges...\n");
2024 FOR_EACH_BB_FN (bb, cfun)
2025 FOR_BB_INSNS (bb, insn)
2027 set = single_set (insn);
2028 if (! set)
2029 continue;
2030 src = SET_SRC (set);
2031 dest = SET_DEST (set);
2032 if (! REG_P (src) || ! REG_P (dest)
2033 || find_reg_note (insn, REG_DEAD, src))
2034 continue;
2035 sregno = REGNO (src);
2036 dregno = REGNO (dest);
2038 /* We don't want to mess with hard regs if register classes
2039 are small. */
2040 if (sregno == dregno
2041 || (targetm.small_register_classes_for_mode_p (GET_MODE (src))
2042 && (sregno < FIRST_PSEUDO_REGISTER
2043 || dregno < FIRST_PSEUDO_REGISTER))
2044 /* We don't see all updates to SP if they are in an
2045 auto-inc memory reference, so we must disallow this
2046 optimization on them. */
2047 || sregno == STACK_POINTER_REGNUM
2048 || dregno == STACK_POINTER_REGNUM)
2049 continue;
2051 dest_death = NULL_RTX;
2053 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
2055 if (! INSN_P (p))
2056 continue;
2057 if (BLOCK_FOR_INSN (p) != bb)
2058 break;
2060 if (reg_set_p (src, p) || reg_set_p (dest, p)
2061 /* If SRC is an asm-declared register, it must not be
2062 replaced in any asm. Unfortunately, the REG_EXPR
2063 tree for the asm variable may be absent in the SRC
2064 rtx, so we can't check the actual register
2065 declaration easily (the asm operand will have it,
2066 though). To avoid complicating the test for a rare
2067 case, we just don't perform register replacement
2068 for a hard reg mentioned in an asm. */
2069 || (sregno < FIRST_PSEUDO_REGISTER
2070 && asm_noperands (PATTERN (p)) >= 0
2071 && reg_overlap_mentioned_p (src, PATTERN (p)))
2072 /* Don't change hard registers used by a call. */
2073 || (CALL_P (p) && sregno < FIRST_PSEUDO_REGISTER
2074 && find_reg_fusage (p, USE, src))
2075 /* Don't change a USE of a register. */
2076 || (GET_CODE (PATTERN (p)) == USE
2077 && reg_overlap_mentioned_p (src, XEXP (PATTERN (p), 0))))
2078 break;
2080 /* See if all of SRC dies in P. This test is slightly
2081 more conservative than it needs to be. */
2082 if ((note = find_regno_note (p, REG_DEAD, sregno))
2083 && GET_MODE (XEXP (note, 0)) == GET_MODE (src))
2085 int failed = 0;
2087 /* We can do the optimization. Scan forward from INSN
2088 again, replacing regs as we go. Set FAILED if a
2089 replacement can't be done. In that case, we can't
2090 move the death note for SRC. This should be
2091 rare. */
2093 /* Set to stop at next insn. */
2094 for (q = next_real_insn (insn);
2095 q != next_real_insn (p);
2096 q = next_real_insn (q))
2098 if (reg_overlap_mentioned_p (src, PATTERN (q)))
2100 /* If SRC is a hard register, we might miss
2101 some overlapping registers with
2102 validate_replace_rtx, so we would have to
2103 undo it. We can't if DEST is present in
2104 the insn, so fail in that combination of
2105 cases. */
2106 if (sregno < FIRST_PSEUDO_REGISTER
2107 && reg_mentioned_p (dest, PATTERN (q)))
2108 failed = 1;
2110 /* Attempt to replace all uses. */
2111 else if (!validate_replace_rtx (src, dest, q))
2112 failed = 1;
2114 /* If this succeeded, but some part of the
2115 register is still present, undo the
2116 replacement. */
2117 else if (sregno < FIRST_PSEUDO_REGISTER
2118 && reg_overlap_mentioned_p (src, PATTERN (q)))
2120 validate_replace_rtx (dest, src, q);
2121 failed = 1;
2125 /* If DEST dies here, remove the death note and
2126 save it for later. Make sure ALL of DEST dies
2127 here; again, this is overly conservative. */
2128 if (! dest_death
2129 && (dest_death = find_regno_note (q, REG_DEAD, dregno)))
2131 if (GET_MODE (XEXP (dest_death, 0)) == GET_MODE (dest))
2132 remove_note (q, dest_death);
2133 else
2135 failed = 1;
2136 dest_death = 0;
2141 if (! failed)
2143 /* Move death note of SRC from P to INSN. */
2144 remove_note (p, note);
2145 XEXP (note, 1) = REG_NOTES (insn);
2146 REG_NOTES (insn) = note;
2149 /* DEST is also dead if INSN has a REG_UNUSED note for
2150 DEST. */
2151 if (! dest_death
2152 && (dest_death
2153 = find_regno_note (insn, REG_UNUSED, dregno)))
2155 PUT_REG_NOTE_KIND (dest_death, REG_DEAD);
2156 remove_note (insn, dest_death);
2159 /* Put death note of DEST on P if we saw it die. */
2160 if (dest_death)
2162 XEXP (dest_death, 1) = REG_NOTES (p);
2163 REG_NOTES (p) = dest_death;
2165 break;
2168 /* If SRC is a hard register which is set or killed in
2169 some other way, we can't do this optimization. */
2170 else if (sregno < FIRST_PSEUDO_REGISTER && dead_or_set_p (p, src))
2171 break;
2178 /* Return nonzero if REGNO is a particularly bad choice for reloading X. */
2179 static bool
2180 ira_bad_reload_regno_1 (int regno, rtx x)
2182 int x_regno, n, i;
2183 ira_allocno_t a;
2184 enum reg_class pref;
2186 /* We only deal with pseudo regs. */
2187 if (! x || GET_CODE (x) != REG)
2188 return false;
2190 x_regno = REGNO (x);
2191 if (x_regno < FIRST_PSEUDO_REGISTER)
2192 return false;
2194 /* If the pseudo prefers REGNO explicitly, then do not consider
2195 REGNO a bad spill choice. */
2196 pref = reg_preferred_class (x_regno);
2197 if (reg_class_size[pref] == 1)
2198 return !TEST_HARD_REG_BIT (reg_class_contents[pref], regno);
2200 /* If the pseudo conflicts with REGNO, then we consider REGNO a
2201 poor choice for a reload regno. */
2202 a = ira_regno_allocno_map[x_regno];
2203 n = ALLOCNO_NUM_OBJECTS (a);
2204 for (i = 0; i < n; i++)
2206 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2207 if (TEST_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno))
2208 return true;
2210 return false;
2213 /* Return nonzero if REGNO is a particularly bad choice for reloading
2214 IN or OUT. */
2215 bool
2216 ira_bad_reload_regno (int regno, rtx in, rtx out)
2218 return (ira_bad_reload_regno_1 (regno, in)
2219 || ira_bad_reload_regno_1 (regno, out));
2222 /* Add register clobbers from asm statements. */
2223 static void
2224 compute_regs_asm_clobbered (void)
2226 basic_block bb;
2228 FOR_EACH_BB_FN (bb, cfun)
2230 rtx_insn *insn;
2231 FOR_BB_INSNS_REVERSE (bb, insn)
2233 df_ref def;
2235 if (NONDEBUG_INSN_P (insn) && extract_asm_operands (PATTERN (insn)))
2236 FOR_EACH_INSN_DEF (def, insn)
2238 unsigned int dregno = DF_REF_REGNO (def);
2239 if (HARD_REGISTER_NUM_P (dregno))
2240 add_to_hard_reg_set (&crtl->asm_clobbers,
2241 GET_MODE (DF_REF_REAL_REG (def)),
2242 dregno);
2249 /* Set up ELIMINABLE_REGSET, IRA_NO_ALLOC_REGS, and
2250 REGS_EVER_LIVE. */
2251 void
2252 ira_setup_eliminable_regset (void)
2254 #ifdef ELIMINABLE_REGS
2255 int i;
2256 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
2257 #endif
2258 /* FIXME: If EXIT_IGNORE_STACK is set, we will not save and restore
2259 sp for alloca. So we can't eliminate the frame pointer in that
2260 case. At some point, we should improve this by emitting the
2261 sp-adjusting insns for this case. */
2262 frame_pointer_needed
2263 = (! flag_omit_frame_pointer
2264 || (cfun->calls_alloca && EXIT_IGNORE_STACK)
2265 /* We need the frame pointer to catch stack overflow exceptions if
2266 the stack pointer is moving (as for the alloca case just above). */
2267 || (STACK_CHECK_MOVING_SP
2268 && flag_stack_check
2269 && flag_exceptions
2270 && cfun->can_throw_non_call_exceptions)
2271 || crtl->accesses_prior_frames
2272 || (SUPPORTS_STACK_ALIGNMENT && crtl->stack_realign_needed)
2273 /* We need a frame pointer for all Cilk Plus functions that use
2274 Cilk keywords. */
2275 || (flag_cilkplus && cfun->is_cilk_function)
2276 || targetm.frame_pointer_required ());
2278 /* The chance that FRAME_POINTER_NEEDED is changed from inspecting
2279 RTL is very small. So if we use frame pointer for RA and RTL
2280 actually prevents this, we will spill pseudos assigned to the
2281 frame pointer in LRA. */
2283 if (frame_pointer_needed)
2284 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
2286 COPY_HARD_REG_SET (ira_no_alloc_regs, no_unit_alloc_regs);
2287 CLEAR_HARD_REG_SET (eliminable_regset);
2289 compute_regs_asm_clobbered ();
2291 /* Build the regset of all eliminable registers and show we can't
2292 use those that we already know won't be eliminated. */
2293 #ifdef ELIMINABLE_REGS
2294 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
2296 bool cannot_elim
2297 = (! targetm.can_eliminate (eliminables[i].from, eliminables[i].to)
2298 || (eliminables[i].to == STACK_POINTER_REGNUM && frame_pointer_needed));
2300 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, eliminables[i].from))
2302 SET_HARD_REG_BIT (eliminable_regset, eliminables[i].from);
2304 if (cannot_elim)
2305 SET_HARD_REG_BIT (ira_no_alloc_regs, eliminables[i].from);
2307 else if (cannot_elim)
2308 error ("%s cannot be used in asm here",
2309 reg_names[eliminables[i].from]);
2310 else
2311 df_set_regs_ever_live (eliminables[i].from, true);
2313 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
2315 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
2317 SET_HARD_REG_BIT (eliminable_regset, HARD_FRAME_POINTER_REGNUM);
2318 if (frame_pointer_needed)
2319 SET_HARD_REG_BIT (ira_no_alloc_regs, HARD_FRAME_POINTER_REGNUM);
2321 else if (frame_pointer_needed)
2322 error ("%s cannot be used in asm here",
2323 reg_names[HARD_FRAME_POINTER_REGNUM]);
2324 else
2325 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
2328 #else
2329 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
2331 SET_HARD_REG_BIT (eliminable_regset, FRAME_POINTER_REGNUM);
2332 if (frame_pointer_needed)
2333 SET_HARD_REG_BIT (ira_no_alloc_regs, FRAME_POINTER_REGNUM);
2335 else if (frame_pointer_needed)
2336 error ("%s cannot be used in asm here", reg_names[FRAME_POINTER_REGNUM]);
2337 else
2338 df_set_regs_ever_live (FRAME_POINTER_REGNUM, true);
2339 #endif
2344 /* Vector of substitutions of register numbers,
2345 used to map pseudo regs into hardware regs.
2346 This is set up as a result of register allocation.
2347 Element N is the hard reg assigned to pseudo reg N,
2348 or is -1 if no hard reg was assigned.
2349 If N is a hard reg number, element N is N. */
2350 short *reg_renumber;
2352 /* Set up REG_RENUMBER and CALLER_SAVE_NEEDED (used by reload) from
2353 the allocation found by IRA. */
2354 static void
2355 setup_reg_renumber (void)
2357 int regno, hard_regno;
2358 ira_allocno_t a;
2359 ira_allocno_iterator ai;
2361 caller_save_needed = 0;
2362 FOR_EACH_ALLOCNO (a, ai)
2364 if (ira_use_lra_p && ALLOCNO_CAP_MEMBER (a) != NULL)
2365 continue;
2366 /* There are no caps at this point. */
2367 ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
2368 if (! ALLOCNO_ASSIGNED_P (a))
2369 /* It can happen if A is not referenced but partially anticipated
2370 somewhere in a region. */
2371 ALLOCNO_ASSIGNED_P (a) = true;
2372 ira_free_allocno_updated_costs (a);
2373 hard_regno = ALLOCNO_HARD_REGNO (a);
2374 regno = ALLOCNO_REGNO (a);
2375 reg_renumber[regno] = (hard_regno < 0 ? -1 : hard_regno);
2376 if (hard_regno >= 0)
2378 int i, nwords;
2379 enum reg_class pclass;
2380 ira_object_t obj;
2382 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
2383 nwords = ALLOCNO_NUM_OBJECTS (a);
2384 for (i = 0; i < nwords; i++)
2386 obj = ALLOCNO_OBJECT (a, i);
2387 IOR_COMPL_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
2388 reg_class_contents[pclass]);
2390 if (ALLOCNO_CALLS_CROSSED_NUM (a) != 0
2391 && ira_hard_reg_set_intersection_p (hard_regno, ALLOCNO_MODE (a),
2392 call_used_reg_set))
2394 ira_assert (!optimize || flag_caller_saves
2395 || (ALLOCNO_CALLS_CROSSED_NUM (a)
2396 == ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a))
2397 || regno >= ira_reg_equiv_len
2398 || ira_equiv_no_lvalue_p (regno));
2399 caller_save_needed = 1;
2405 /* Set up allocno assignment flags for further allocation
2406 improvements. */
2407 static void
2408 setup_allocno_assignment_flags (void)
2410 int hard_regno;
2411 ira_allocno_t a;
2412 ira_allocno_iterator ai;
2414 FOR_EACH_ALLOCNO (a, ai)
2416 if (! ALLOCNO_ASSIGNED_P (a))
2417 /* It can happen if A is not referenced but partially anticipated
2418 somewhere in a region. */
2419 ira_free_allocno_updated_costs (a);
2420 hard_regno = ALLOCNO_HARD_REGNO (a);
2421 /* Don't assign hard registers to allocnos which are destination
2422 of removed store at the end of loop. It has no sense to keep
2423 the same value in different hard registers. It is also
2424 impossible to assign hard registers correctly to such
2425 allocnos because the cost info and info about intersected
2426 calls are incorrect for them. */
2427 ALLOCNO_ASSIGNED_P (a) = (hard_regno >= 0
2428 || ALLOCNO_EMIT_DATA (a)->mem_optimized_dest_p
2429 || (ALLOCNO_MEMORY_COST (a)
2430 - ALLOCNO_CLASS_COST (a)) < 0);
2431 ira_assert
2432 (hard_regno < 0
2433 || ira_hard_reg_in_set_p (hard_regno, ALLOCNO_MODE (a),
2434 reg_class_contents[ALLOCNO_CLASS (a)]));
2438 /* Evaluate overall allocation cost and the costs for using hard
2439 registers and memory for allocnos. */
2440 static void
2441 calculate_allocation_cost (void)
2443 int hard_regno, cost;
2444 ira_allocno_t a;
2445 ira_allocno_iterator ai;
2447 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
2448 FOR_EACH_ALLOCNO (a, ai)
2450 hard_regno = ALLOCNO_HARD_REGNO (a);
2451 ira_assert (hard_regno < 0
2452 || (ira_hard_reg_in_set_p
2453 (hard_regno, ALLOCNO_MODE (a),
2454 reg_class_contents[ALLOCNO_CLASS (a)])));
2455 if (hard_regno < 0)
2457 cost = ALLOCNO_MEMORY_COST (a);
2458 ira_mem_cost += cost;
2460 else if (ALLOCNO_HARD_REG_COSTS (a) != NULL)
2462 cost = (ALLOCNO_HARD_REG_COSTS (a)
2463 [ira_class_hard_reg_index
2464 [ALLOCNO_CLASS (a)][hard_regno]]);
2465 ira_reg_cost += cost;
2467 else
2469 cost = ALLOCNO_CLASS_COST (a);
2470 ira_reg_cost += cost;
2472 ira_overall_cost += cost;
2475 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
2477 fprintf (ira_dump_file,
2478 "+++Costs: overall %" PRId64
2479 ", reg %" PRId64
2480 ", mem %" PRId64
2481 ", ld %" PRId64
2482 ", st %" PRId64
2483 ", move %" PRId64,
2484 ira_overall_cost, ira_reg_cost, ira_mem_cost,
2485 ira_load_cost, ira_store_cost, ira_shuffle_cost);
2486 fprintf (ira_dump_file, "\n+++ move loops %d, new jumps %d\n",
2487 ira_move_loops_num, ira_additional_jumps_num);
2492 #ifdef ENABLE_IRA_CHECKING
2493 /* Check the correctness of the allocation. We do need this because
2494 of complicated code to transform more one region internal
2495 representation into one region representation. */
2496 static void
2497 check_allocation (void)
2499 ira_allocno_t a;
2500 int hard_regno, nregs, conflict_nregs;
2501 ira_allocno_iterator ai;
2503 FOR_EACH_ALLOCNO (a, ai)
2505 int n = ALLOCNO_NUM_OBJECTS (a);
2506 int i;
2508 if (ALLOCNO_CAP_MEMBER (a) != NULL
2509 || (hard_regno = ALLOCNO_HARD_REGNO (a)) < 0)
2510 continue;
2511 nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (a)];
2512 if (nregs == 1)
2513 /* We allocated a single hard register. */
2514 n = 1;
2515 else if (n > 1)
2516 /* We allocated multiple hard registers, and we will test
2517 conflicts in a granularity of single hard regs. */
2518 nregs = 1;
2520 for (i = 0; i < n; i++)
2522 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2523 ira_object_t conflict_obj;
2524 ira_object_conflict_iterator oci;
2525 int this_regno = hard_regno;
2526 if (n > 1)
2528 if (REG_WORDS_BIG_ENDIAN)
2529 this_regno += n - i - 1;
2530 else
2531 this_regno += i;
2533 FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
2535 ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
2536 int conflict_hard_regno = ALLOCNO_HARD_REGNO (conflict_a);
2537 if (conflict_hard_regno < 0)
2538 continue;
2540 conflict_nregs
2541 = (hard_regno_nregs
2542 [conflict_hard_regno][ALLOCNO_MODE (conflict_a)]);
2544 if (ALLOCNO_NUM_OBJECTS (conflict_a) > 1
2545 && conflict_nregs == ALLOCNO_NUM_OBJECTS (conflict_a))
2547 if (REG_WORDS_BIG_ENDIAN)
2548 conflict_hard_regno += (ALLOCNO_NUM_OBJECTS (conflict_a)
2549 - OBJECT_SUBWORD (conflict_obj) - 1);
2550 else
2551 conflict_hard_regno += OBJECT_SUBWORD (conflict_obj);
2552 conflict_nregs = 1;
2555 if ((conflict_hard_regno <= this_regno
2556 && this_regno < conflict_hard_regno + conflict_nregs)
2557 || (this_regno <= conflict_hard_regno
2558 && conflict_hard_regno < this_regno + nregs))
2560 fprintf (stderr, "bad allocation for %d and %d\n",
2561 ALLOCNO_REGNO (a), ALLOCNO_REGNO (conflict_a));
2562 gcc_unreachable ();
2568 #endif
2570 /* Allocate REG_EQUIV_INIT. Set up it from IRA_REG_EQUIV which should
2571 be already calculated. */
2572 static void
2573 setup_reg_equiv_init (void)
2575 int i;
2576 int max_regno = max_reg_num ();
2578 for (i = 0; i < max_regno; i++)
2579 reg_equiv_init (i) = ira_reg_equiv[i].init_insns;
2582 /* Update equiv regno from movement of FROM_REGNO to TO_REGNO. INSNS
2583 are insns which were generated for such movement. It is assumed
2584 that FROM_REGNO and TO_REGNO always have the same value at the
2585 point of any move containing such registers. This function is used
2586 to update equiv info for register shuffles on the region borders
2587 and for caller save/restore insns. */
2588 void
2589 ira_update_equiv_info_by_shuffle_insn (int to_regno, int from_regno, rtx_insn *insns)
2591 rtx_insn *insn;
2592 rtx x, note;
2594 if (! ira_reg_equiv[from_regno].defined_p
2595 && (! ira_reg_equiv[to_regno].defined_p
2596 || ((x = ira_reg_equiv[to_regno].memory) != NULL_RTX
2597 && ! MEM_READONLY_P (x))))
2598 return;
2599 insn = insns;
2600 if (NEXT_INSN (insn) != NULL_RTX)
2602 if (! ira_reg_equiv[to_regno].defined_p)
2604 ira_assert (ira_reg_equiv[to_regno].init_insns == NULL_RTX);
2605 return;
2607 ira_reg_equiv[to_regno].defined_p = false;
2608 ira_reg_equiv[to_regno].memory
2609 = ira_reg_equiv[to_regno].constant
2610 = ira_reg_equiv[to_regno].invariant
2611 = ira_reg_equiv[to_regno].init_insns = NULL;
2612 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2613 fprintf (ira_dump_file,
2614 " Invalidating equiv info for reg %d\n", to_regno);
2615 return;
2617 /* It is possible that FROM_REGNO still has no equivalence because
2618 in shuffles to_regno<-from_regno and from_regno<-to_regno the 2nd
2619 insn was not processed yet. */
2620 if (ira_reg_equiv[from_regno].defined_p)
2622 ira_reg_equiv[to_regno].defined_p = true;
2623 if ((x = ira_reg_equiv[from_regno].memory) != NULL_RTX)
2625 ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX
2626 && ira_reg_equiv[from_regno].constant == NULL_RTX);
2627 ira_assert (ira_reg_equiv[to_regno].memory == NULL_RTX
2628 || rtx_equal_p (ira_reg_equiv[to_regno].memory, x));
2629 ira_reg_equiv[to_regno].memory = x;
2630 if (! MEM_READONLY_P (x))
2631 /* We don't add the insn to insn init list because memory
2632 equivalence is just to say what memory is better to use
2633 when the pseudo is spilled. */
2634 return;
2636 else if ((x = ira_reg_equiv[from_regno].constant) != NULL_RTX)
2638 ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX);
2639 ira_assert (ira_reg_equiv[to_regno].constant == NULL_RTX
2640 || rtx_equal_p (ira_reg_equiv[to_regno].constant, x));
2641 ira_reg_equiv[to_regno].constant = x;
2643 else
2645 x = ira_reg_equiv[from_regno].invariant;
2646 ira_assert (x != NULL_RTX);
2647 ira_assert (ira_reg_equiv[to_regno].invariant == NULL_RTX
2648 || rtx_equal_p (ira_reg_equiv[to_regno].invariant, x));
2649 ira_reg_equiv[to_regno].invariant = x;
2651 if (find_reg_note (insn, REG_EQUIV, x) == NULL_RTX)
2653 note = set_unique_reg_note (insn, REG_EQUIV, x);
2654 gcc_assert (note != NULL_RTX);
2655 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2657 fprintf (ira_dump_file,
2658 " Adding equiv note to insn %u for reg %d ",
2659 INSN_UID (insn), to_regno);
2660 dump_value_slim (ira_dump_file, x, 1);
2661 fprintf (ira_dump_file, "\n");
2665 ira_reg_equiv[to_regno].init_insns
2666 = gen_rtx_INSN_LIST (VOIDmode, insn,
2667 ira_reg_equiv[to_regno].init_insns);
2668 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2669 fprintf (ira_dump_file,
2670 " Adding equiv init move insn %u to reg %d\n",
2671 INSN_UID (insn), to_regno);
2674 /* Fix values of array REG_EQUIV_INIT after live range splitting done
2675 by IRA. */
2676 static void
2677 fix_reg_equiv_init (void)
2679 int max_regno = max_reg_num ();
2680 int i, new_regno, max;
2681 rtx set;
2682 rtx_insn_list *x, *next, *prev;
2683 rtx_insn *insn;
2685 if (max_regno_before_ira < max_regno)
2687 max = vec_safe_length (reg_equivs);
2688 grow_reg_equivs ();
2689 for (i = FIRST_PSEUDO_REGISTER; i < max; i++)
2690 for (prev = NULL, x = reg_equiv_init (i);
2691 x != NULL_RTX;
2692 x = next)
2694 next = x->next ();
2695 insn = x->insn ();
2696 set = single_set (insn);
2697 ira_assert (set != NULL_RTX
2698 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))));
2699 if (REG_P (SET_DEST (set))
2700 && ((int) REGNO (SET_DEST (set)) == i
2701 || (int) ORIGINAL_REGNO (SET_DEST (set)) == i))
2702 new_regno = REGNO (SET_DEST (set));
2703 else if (REG_P (SET_SRC (set))
2704 && ((int) REGNO (SET_SRC (set)) == i
2705 || (int) ORIGINAL_REGNO (SET_SRC (set)) == i))
2706 new_regno = REGNO (SET_SRC (set));
2707 else
2708 gcc_unreachable ();
2709 if (new_regno == i)
2710 prev = x;
2711 else
2713 /* Remove the wrong list element. */
2714 if (prev == NULL_RTX)
2715 reg_equiv_init (i) = next;
2716 else
2717 XEXP (prev, 1) = next;
2718 XEXP (x, 1) = reg_equiv_init (new_regno);
2719 reg_equiv_init (new_regno) = x;
2725 #ifdef ENABLE_IRA_CHECKING
2726 /* Print redundant memory-memory copies. */
2727 static void
2728 print_redundant_copies (void)
2730 int hard_regno;
2731 ira_allocno_t a;
2732 ira_copy_t cp, next_cp;
2733 ira_allocno_iterator ai;
2735 FOR_EACH_ALLOCNO (a, ai)
2737 if (ALLOCNO_CAP_MEMBER (a) != NULL)
2738 /* It is a cap. */
2739 continue;
2740 hard_regno = ALLOCNO_HARD_REGNO (a);
2741 if (hard_regno >= 0)
2742 continue;
2743 for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
2744 if (cp->first == a)
2745 next_cp = cp->next_first_allocno_copy;
2746 else
2748 next_cp = cp->next_second_allocno_copy;
2749 if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL
2750 && cp->insn != NULL_RTX
2751 && ALLOCNO_HARD_REGNO (cp->first) == hard_regno)
2752 fprintf (ira_dump_file,
2753 " Redundant move from %d(freq %d):%d\n",
2754 INSN_UID (cp->insn), cp->freq, hard_regno);
2758 #endif
2760 /* Setup preferred and alternative classes for new pseudo-registers
2761 created by IRA starting with START. */
2762 static void
2763 setup_preferred_alternate_classes_for_new_pseudos (int start)
2765 int i, old_regno;
2766 int max_regno = max_reg_num ();
2768 for (i = start; i < max_regno; i++)
2770 old_regno = ORIGINAL_REGNO (regno_reg_rtx[i]);
2771 ira_assert (i != old_regno);
2772 setup_reg_classes (i, reg_preferred_class (old_regno),
2773 reg_alternate_class (old_regno),
2774 reg_allocno_class (old_regno));
2775 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
2776 fprintf (ira_dump_file,
2777 " New r%d: setting preferred %s, alternative %s\n",
2778 i, reg_class_names[reg_preferred_class (old_regno)],
2779 reg_class_names[reg_alternate_class (old_regno)]);
2784 /* The number of entries allocated in reg_info. */
2785 static int allocated_reg_info_size;
2787 /* Regional allocation can create new pseudo-registers. This function
2788 expands some arrays for pseudo-registers. */
2789 static void
2790 expand_reg_info (void)
2792 int i;
2793 int size = max_reg_num ();
2795 resize_reg_info ();
2796 for (i = allocated_reg_info_size; i < size; i++)
2797 setup_reg_classes (i, GENERAL_REGS, ALL_REGS, GENERAL_REGS);
2798 setup_preferred_alternate_classes_for_new_pseudos (allocated_reg_info_size);
2799 allocated_reg_info_size = size;
2802 /* Return TRUE if there is too high register pressure in the function.
2803 It is used to decide when stack slot sharing is worth to do. */
2804 static bool
2805 too_high_register_pressure_p (void)
2807 int i;
2808 enum reg_class pclass;
2810 for (i = 0; i < ira_pressure_classes_num; i++)
2812 pclass = ira_pressure_classes[i];
2813 if (ira_loop_tree_root->reg_pressure[pclass] > 10000)
2814 return true;
2816 return false;
2821 /* Indicate that hard register number FROM was eliminated and replaced with
2822 an offset from hard register number TO. The status of hard registers live
2823 at the start of a basic block is updated by replacing a use of FROM with
2824 a use of TO. */
2826 void
2827 mark_elimination (int from, int to)
2829 basic_block bb;
2830 bitmap r;
2832 FOR_EACH_BB_FN (bb, cfun)
2834 r = DF_LR_IN (bb);
2835 if (bitmap_bit_p (r, from))
2837 bitmap_clear_bit (r, from);
2838 bitmap_set_bit (r, to);
2840 if (! df_live)
2841 continue;
2842 r = DF_LIVE_IN (bb);
2843 if (bitmap_bit_p (r, from))
2845 bitmap_clear_bit (r, from);
2846 bitmap_set_bit (r, to);
2853 /* The length of the following array. */
2854 int ira_reg_equiv_len;
2856 /* Info about equiv. info for each register. */
2857 struct ira_reg_equiv_s *ira_reg_equiv;
2859 /* Expand ira_reg_equiv if necessary. */
2860 void
2861 ira_expand_reg_equiv (void)
2863 int old = ira_reg_equiv_len;
2865 if (ira_reg_equiv_len > max_reg_num ())
2866 return;
2867 ira_reg_equiv_len = max_reg_num () * 3 / 2 + 1;
2868 ira_reg_equiv
2869 = (struct ira_reg_equiv_s *) xrealloc (ira_reg_equiv,
2870 ira_reg_equiv_len
2871 * sizeof (struct ira_reg_equiv_s));
2872 gcc_assert (old < ira_reg_equiv_len);
2873 memset (ira_reg_equiv + old, 0,
2874 sizeof (struct ira_reg_equiv_s) * (ira_reg_equiv_len - old));
2877 static void
2878 init_reg_equiv (void)
2880 ira_reg_equiv_len = 0;
2881 ira_reg_equiv = NULL;
2882 ira_expand_reg_equiv ();
2885 static void
2886 finish_reg_equiv (void)
2888 free (ira_reg_equiv);
2893 struct equivalence
2895 /* Set when a REG_EQUIV note is found or created. Use to
2896 keep track of what memory accesses might be created later,
2897 e.g. by reload. */
2898 rtx replacement;
2899 rtx *src_p;
2901 /* The list of each instruction which initializes this register.
2903 NULL indicates we know nothing about this register's equivalence
2904 properties.
2906 An INSN_LIST with a NULL insn indicates this pseudo is already
2907 known to not have a valid equivalence. */
2908 rtx_insn_list *init_insns;
2910 /* Loop depth is used to recognize equivalences which appear
2911 to be present within the same loop (or in an inner loop). */
2912 short loop_depth;
2913 /* Nonzero if this had a preexisting REG_EQUIV note. */
2914 unsigned char is_arg_equivalence : 1;
2915 /* Set when an attempt should be made to replace a register
2916 with the associated src_p entry. */
2917 unsigned char replace : 1;
2918 /* Set if this register has no known equivalence. */
2919 unsigned char no_equiv : 1;
2922 /* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
2923 structure for that register. */
2924 static struct equivalence *reg_equiv;
2926 /* Used for communication between the following two functions: contains
2927 a MEM that we wish to ensure remains unchanged. */
2928 static rtx equiv_mem;
2930 /* Set nonzero if EQUIV_MEM is modified. */
2931 static int equiv_mem_modified;
2933 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
2934 Called via note_stores. */
2935 static void
2936 validate_equiv_mem_from_store (rtx dest, const_rtx set ATTRIBUTE_UNUSED,
2937 void *data ATTRIBUTE_UNUSED)
2939 if ((REG_P (dest)
2940 && reg_overlap_mentioned_p (dest, equiv_mem))
2941 || (MEM_P (dest)
2942 && anti_dependence (equiv_mem, dest)))
2943 equiv_mem_modified = 1;
2946 /* Verify that no store between START and the death of REG invalidates
2947 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
2948 by storing into an overlapping memory location, or with a non-const
2949 CALL_INSN.
2951 Return 1 if MEMREF remains valid. */
2952 static int
2953 validate_equiv_mem (rtx_insn *start, rtx reg, rtx memref)
2955 rtx_insn *insn;
2956 rtx note;
2958 equiv_mem = memref;
2959 equiv_mem_modified = 0;
2961 /* If the memory reference has side effects or is volatile, it isn't a
2962 valid equivalence. */
2963 if (side_effects_p (memref))
2964 return 0;
2966 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
2968 if (! INSN_P (insn))
2969 continue;
2971 if (find_reg_note (insn, REG_DEAD, reg))
2972 return 1;
2974 /* This used to ignore readonly memory and const/pure calls. The problem
2975 is the equivalent form may reference a pseudo which gets assigned a
2976 call clobbered hard reg. When we later replace REG with its
2977 equivalent form, the value in the call-clobbered reg has been
2978 changed and all hell breaks loose. */
2979 if (CALL_P (insn))
2980 return 0;
2982 note_stores (PATTERN (insn), validate_equiv_mem_from_store, NULL);
2984 /* If a register mentioned in MEMREF is modified via an
2985 auto-increment, we lose the equivalence. Do the same if one
2986 dies; although we could extend the life, it doesn't seem worth
2987 the trouble. */
2989 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2990 if ((REG_NOTE_KIND (note) == REG_INC
2991 || REG_NOTE_KIND (note) == REG_DEAD)
2992 && REG_P (XEXP (note, 0))
2993 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
2994 return 0;
2997 return 0;
3000 /* Returns zero if X is known to be invariant. */
3001 static int
3002 equiv_init_varies_p (rtx x)
3004 RTX_CODE code = GET_CODE (x);
3005 int i;
3006 const char *fmt;
3008 switch (code)
3010 case MEM:
3011 return !MEM_READONLY_P (x) || equiv_init_varies_p (XEXP (x, 0));
3013 case CONST:
3014 CASE_CONST_ANY:
3015 case SYMBOL_REF:
3016 case LABEL_REF:
3017 return 0;
3019 case REG:
3020 return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
3022 case ASM_OPERANDS:
3023 if (MEM_VOLATILE_P (x))
3024 return 1;
3026 /* Fall through. */
3028 default:
3029 break;
3032 fmt = GET_RTX_FORMAT (code);
3033 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3034 if (fmt[i] == 'e')
3036 if (equiv_init_varies_p (XEXP (x, i)))
3037 return 1;
3039 else if (fmt[i] == 'E')
3041 int j;
3042 for (j = 0; j < XVECLEN (x, i); j++)
3043 if (equiv_init_varies_p (XVECEXP (x, i, j)))
3044 return 1;
3047 return 0;
3050 /* Returns nonzero if X (used to initialize register REGNO) is movable.
3051 X is only movable if the registers it uses have equivalent initializations
3052 which appear to be within the same loop (or in an inner loop) and movable
3053 or if they are not candidates for local_alloc and don't vary. */
3054 static int
3055 equiv_init_movable_p (rtx x, int regno)
3057 int i, j;
3058 const char *fmt;
3059 enum rtx_code code = GET_CODE (x);
3061 switch (code)
3063 case SET:
3064 return equiv_init_movable_p (SET_SRC (x), regno);
3066 case CC0:
3067 case CLOBBER:
3068 return 0;
3070 case PRE_INC:
3071 case PRE_DEC:
3072 case POST_INC:
3073 case POST_DEC:
3074 case PRE_MODIFY:
3075 case POST_MODIFY:
3076 return 0;
3078 case REG:
3079 return ((reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
3080 && reg_equiv[REGNO (x)].replace)
3081 || (REG_BASIC_BLOCK (REGNO (x)) < NUM_FIXED_BLOCKS
3082 && ! rtx_varies_p (x, 0)));
3084 case UNSPEC_VOLATILE:
3085 return 0;
3087 case ASM_OPERANDS:
3088 if (MEM_VOLATILE_P (x))
3089 return 0;
3091 /* Fall through. */
3093 default:
3094 break;
3097 fmt = GET_RTX_FORMAT (code);
3098 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3099 switch (fmt[i])
3101 case 'e':
3102 if (! equiv_init_movable_p (XEXP (x, i), regno))
3103 return 0;
3104 break;
3105 case 'E':
3106 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3107 if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
3108 return 0;
3109 break;
3112 return 1;
3115 /* TRUE if X uses any registers for which reg_equiv[REGNO].replace is
3116 true. */
3117 static int
3118 contains_replace_regs (rtx x)
3120 int i, j;
3121 const char *fmt;
3122 enum rtx_code code = GET_CODE (x);
3124 switch (code)
3126 case CONST:
3127 case LABEL_REF:
3128 case SYMBOL_REF:
3129 CASE_CONST_ANY:
3130 case PC:
3131 case CC0:
3132 case HIGH:
3133 return 0;
3135 case REG:
3136 return reg_equiv[REGNO (x)].replace;
3138 default:
3139 break;
3142 fmt = GET_RTX_FORMAT (code);
3143 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3144 switch (fmt[i])
3146 case 'e':
3147 if (contains_replace_regs (XEXP (x, i)))
3148 return 1;
3149 break;
3150 case 'E':
3151 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3152 if (contains_replace_regs (XVECEXP (x, i, j)))
3153 return 1;
3154 break;
3157 return 0;
3160 /* TRUE if X references a memory location that would be affected by a store
3161 to MEMREF. */
3162 static int
3163 memref_referenced_p (rtx memref, rtx x)
3165 int i, j;
3166 const char *fmt;
3167 enum rtx_code code = GET_CODE (x);
3169 switch (code)
3171 case CONST:
3172 case LABEL_REF:
3173 case SYMBOL_REF:
3174 CASE_CONST_ANY:
3175 case PC:
3176 case CC0:
3177 case HIGH:
3178 case LO_SUM:
3179 return 0;
3181 case REG:
3182 return (reg_equiv[REGNO (x)].replacement
3183 && memref_referenced_p (memref,
3184 reg_equiv[REGNO (x)].replacement));
3186 case MEM:
3187 if (true_dependence (memref, VOIDmode, x))
3188 return 1;
3189 break;
3191 case SET:
3192 /* If we are setting a MEM, it doesn't count (its address does), but any
3193 other SET_DEST that has a MEM in it is referencing the MEM. */
3194 if (MEM_P (SET_DEST (x)))
3196 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
3197 return 1;
3199 else if (memref_referenced_p (memref, SET_DEST (x)))
3200 return 1;
3202 return memref_referenced_p (memref, SET_SRC (x));
3204 default:
3205 break;
3208 fmt = GET_RTX_FORMAT (code);
3209 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3210 switch (fmt[i])
3212 case 'e':
3213 if (memref_referenced_p (memref, XEXP (x, i)))
3214 return 1;
3215 break;
3216 case 'E':
3217 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3218 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
3219 return 1;
3220 break;
3223 return 0;
3226 /* TRUE if some insn in the range (START, END] references a memory location
3227 that would be affected by a store to MEMREF. */
3228 static int
3229 memref_used_between_p (rtx memref, rtx_insn *start, rtx_insn *end)
3231 rtx_insn *insn;
3233 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
3234 insn = NEXT_INSN (insn))
3236 if (!NONDEBUG_INSN_P (insn))
3237 continue;
3239 if (memref_referenced_p (memref, PATTERN (insn)))
3240 return 1;
3242 /* Nonconst functions may access memory. */
3243 if (CALL_P (insn) && (! RTL_CONST_CALL_P (insn)))
3244 return 1;
3247 return 0;
3250 /* Mark REG as having no known equivalence.
3251 Some instructions might have been processed before and furnished
3252 with REG_EQUIV notes for this register; these notes will have to be
3253 removed.
3254 STORE is the piece of RTL that does the non-constant / conflicting
3255 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
3256 but needs to be there because this function is called from note_stores. */
3257 static void
3258 no_equiv (rtx reg, const_rtx store ATTRIBUTE_UNUSED,
3259 void *data ATTRIBUTE_UNUSED)
3261 int regno;
3262 rtx_insn_list *list;
3264 if (!REG_P (reg))
3265 return;
3266 regno = REGNO (reg);
3267 reg_equiv[regno].no_equiv = 1;
3268 list = reg_equiv[regno].init_insns;
3269 if (list && list->insn () == NULL)
3270 return;
3271 reg_equiv[regno].init_insns = gen_rtx_INSN_LIST (VOIDmode, NULL_RTX, NULL);
3272 reg_equiv[regno].replacement = NULL_RTX;
3273 /* This doesn't matter for equivalences made for argument registers, we
3274 should keep their initialization insns. */
3275 if (reg_equiv[regno].is_arg_equivalence)
3276 return;
3277 ira_reg_equiv[regno].defined_p = false;
3278 ira_reg_equiv[regno].init_insns = NULL;
3279 for (; list; list = list->next ())
3281 rtx_insn *insn = list->insn ();
3282 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
3286 /* Check whether the SUBREG is a paradoxical subreg and set the result
3287 in PDX_SUBREGS. */
3289 static void
3290 set_paradoxical_subreg (rtx_insn *insn, bool *pdx_subregs)
3292 subrtx_iterator::array_type array;
3293 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
3295 const_rtx subreg = *iter;
3296 if (GET_CODE (subreg) == SUBREG)
3298 const_rtx reg = SUBREG_REG (subreg);
3299 if (REG_P (reg) && paradoxical_subreg_p (subreg))
3300 pdx_subregs[REGNO (reg)] = true;
3305 /* In DEBUG_INSN location adjust REGs from CLEARED_REGS bitmap to the
3306 equivalent replacement. */
3308 static rtx
3309 adjust_cleared_regs (rtx loc, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
3311 if (REG_P (loc))
3313 bitmap cleared_regs = (bitmap) data;
3314 if (bitmap_bit_p (cleared_regs, REGNO (loc)))
3315 return simplify_replace_fn_rtx (copy_rtx (*reg_equiv[REGNO (loc)].src_p),
3316 NULL_RTX, adjust_cleared_regs, data);
3318 return NULL_RTX;
3321 /* Nonzero if we recorded an equivalence for a LABEL_REF. */
3322 static int recorded_label_ref;
3324 /* Find registers that are equivalent to a single value throughout the
3325 compilation (either because they can be referenced in memory or are
3326 set once from a single constant). Lower their priority for a
3327 register.
3329 If such a register is only referenced once, try substituting its
3330 value into the using insn. If it succeeds, we can eliminate the
3331 register completely.
3333 Initialize init_insns in ira_reg_equiv array.
3335 Return non-zero if jump label rebuilding should be done. */
3336 static int
3337 update_equiv_regs (void)
3339 rtx_insn *insn;
3340 basic_block bb;
3341 int loop_depth;
3342 bitmap cleared_regs;
3343 bool *pdx_subregs;
3345 /* We need to keep track of whether or not we recorded a LABEL_REF so
3346 that we know if the jump optimizer needs to be rerun. */
3347 recorded_label_ref = 0;
3349 /* Use pdx_subregs to show whether a reg is used in a paradoxical
3350 subreg. */
3351 pdx_subregs = XCNEWVEC (bool, max_regno);
3353 reg_equiv = XCNEWVEC (struct equivalence, max_regno);
3354 grow_reg_equivs ();
3356 init_alias_analysis ();
3358 /* Scan insns and set pdx_subregs[regno] if the reg is used in a
3359 paradoxical subreg. Don't set such reg equivalent to a mem,
3360 because lra will not substitute such equiv memory in order to
3361 prevent access beyond allocated memory for paradoxical memory subreg. */
3362 FOR_EACH_BB_FN (bb, cfun)
3363 FOR_BB_INSNS (bb, insn)
3364 if (NONDEBUG_INSN_P (insn))
3365 set_paradoxical_subreg (insn, pdx_subregs);
3367 /* Scan the insns and find which registers have equivalences. Do this
3368 in a separate scan of the insns because (due to -fcse-follow-jumps)
3369 a register can be set below its use. */
3370 FOR_EACH_BB_FN (bb, cfun)
3372 loop_depth = bb_loop_depth (bb);
3374 for (insn = BB_HEAD (bb);
3375 insn != NEXT_INSN (BB_END (bb));
3376 insn = NEXT_INSN (insn))
3378 rtx note;
3379 rtx set;
3380 rtx dest, src;
3381 int regno;
3383 if (! INSN_P (insn))
3384 continue;
3386 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3387 if (REG_NOTE_KIND (note) == REG_INC)
3388 no_equiv (XEXP (note, 0), note, NULL);
3390 set = single_set (insn);
3392 /* If this insn contains more (or less) than a single SET,
3393 only mark all destinations as having no known equivalence. */
3394 if (set == NULL_RTX)
3396 note_stores (PATTERN (insn), no_equiv, NULL);
3397 continue;
3399 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
3401 int i;
3403 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
3405 rtx part = XVECEXP (PATTERN (insn), 0, i);
3406 if (part != set)
3407 note_stores (part, no_equiv, NULL);
3411 dest = SET_DEST (set);
3412 src = SET_SRC (set);
3414 /* See if this is setting up the equivalence between an argument
3415 register and its stack slot. */
3416 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3417 if (note)
3419 gcc_assert (REG_P (dest));
3420 regno = REGNO (dest);
3422 /* Note that we don't want to clear init_insns in
3423 ira_reg_equiv even if there are multiple sets of this
3424 register. */
3425 reg_equiv[regno].is_arg_equivalence = 1;
3427 /* The insn result can have equivalence memory although
3428 the equivalence is not set up by the insn. We add
3429 this insn to init insns as it is a flag for now that
3430 regno has an equivalence. We will remove the insn
3431 from init insn list later. */
3432 if (rtx_equal_p (src, XEXP (note, 0)) || MEM_P (XEXP (note, 0)))
3433 ira_reg_equiv[regno].init_insns
3434 = gen_rtx_INSN_LIST (VOIDmode, insn,
3435 ira_reg_equiv[regno].init_insns);
3437 /* Continue normally in case this is a candidate for
3438 replacements. */
3441 if (!optimize)
3442 continue;
3444 /* We only handle the case of a pseudo register being set
3445 once, or always to the same value. */
3446 /* ??? The mn10200 port breaks if we add equivalences for
3447 values that need an ADDRESS_REGS register and set them equivalent
3448 to a MEM of a pseudo. The actual problem is in the over-conservative
3449 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
3450 calculate_needs, but we traditionally work around this problem
3451 here by rejecting equivalences when the destination is in a register
3452 that's likely spilled. This is fragile, of course, since the
3453 preferred class of a pseudo depends on all instructions that set
3454 or use it. */
3456 if (!REG_P (dest)
3457 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
3458 || (reg_equiv[regno].init_insns
3459 && reg_equiv[regno].init_insns->insn () == NULL)
3460 || (targetm.class_likely_spilled_p (reg_preferred_class (regno))
3461 && MEM_P (src) && ! reg_equiv[regno].is_arg_equivalence))
3463 /* This might be setting a SUBREG of a pseudo, a pseudo that is
3464 also set somewhere else to a constant. */
3465 note_stores (set, no_equiv, NULL);
3466 continue;
3469 /* Don't set reg (if pdx_subregs[regno] == true) equivalent to a mem. */
3470 if (MEM_P (src) && pdx_subregs[regno])
3472 note_stores (set, no_equiv, NULL);
3473 continue;
3476 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3478 /* cse sometimes generates function invariants, but doesn't put a
3479 REG_EQUAL note on the insn. Since this note would be redundant,
3480 there's no point creating it earlier than here. */
3481 if (! note && ! rtx_varies_p (src, 0))
3482 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
3484 /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
3485 since it represents a function call. */
3486 if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
3487 note = NULL_RTX;
3489 if (DF_REG_DEF_COUNT (regno) != 1)
3491 bool equal_p = true;
3492 rtx_insn_list *list;
3494 /* If we have already processed this pseudo and determined it
3495 can not have an equivalence, then honor that decision. */
3496 if (reg_equiv[regno].no_equiv)
3497 continue;
3499 if (! note
3500 || rtx_varies_p (XEXP (note, 0), 0)
3501 || (reg_equiv[regno].replacement
3502 && ! rtx_equal_p (XEXP (note, 0),
3503 reg_equiv[regno].replacement)))
3505 no_equiv (dest, set, NULL);
3506 continue;
3509 list = reg_equiv[regno].init_insns;
3510 for (; list; list = list->next ())
3512 rtx note_tmp;
3513 rtx_insn *insn_tmp;
3515 insn_tmp = list->insn ();
3516 note_tmp = find_reg_note (insn_tmp, REG_EQUAL, NULL_RTX);
3517 gcc_assert (note_tmp);
3518 if (! rtx_equal_p (XEXP (note, 0), XEXP (note_tmp, 0)))
3520 equal_p = false;
3521 break;
3525 if (! equal_p)
3527 no_equiv (dest, set, NULL);
3528 continue;
3532 /* Record this insn as initializing this register. */
3533 reg_equiv[regno].init_insns
3534 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
3536 /* If this register is known to be equal to a constant, record that
3537 it is always equivalent to the constant. */
3538 if (DF_REG_DEF_COUNT (regno) == 1
3539 && note && ! rtx_varies_p (XEXP (note, 0), 0))
3541 rtx note_value = XEXP (note, 0);
3542 remove_note (insn, note);
3543 set_unique_reg_note (insn, REG_EQUIV, note_value);
3546 /* If this insn introduces a "constant" register, decrease the priority
3547 of that register. Record this insn if the register is only used once
3548 more and the equivalence value is the same as our source.
3550 The latter condition is checked for two reasons: First, it is an
3551 indication that it may be more efficient to actually emit the insn
3552 as written (if no registers are available, reload will substitute
3553 the equivalence). Secondly, it avoids problems with any registers
3554 dying in this insn whose death notes would be missed.
3556 If we don't have a REG_EQUIV note, see if this insn is loading
3557 a register used only in one basic block from a MEM. If so, and the
3558 MEM remains unchanged for the life of the register, add a REG_EQUIV
3559 note. */
3560 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3562 if (note == NULL_RTX && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3563 && MEM_P (SET_SRC (set))
3564 && validate_equiv_mem (insn, dest, SET_SRC (set)))
3565 note = set_unique_reg_note (insn, REG_EQUIV, copy_rtx (SET_SRC (set)));
3567 if (note)
3569 int regno = REGNO (dest);
3570 rtx x = XEXP (note, 0);
3572 /* If we haven't done so, record for reload that this is an
3573 equivalencing insn. */
3574 if (!reg_equiv[regno].is_arg_equivalence)
3575 ira_reg_equiv[regno].init_insns
3576 = gen_rtx_INSN_LIST (VOIDmode, insn,
3577 ira_reg_equiv[regno].init_insns);
3579 /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
3580 We might end up substituting the LABEL_REF for uses of the
3581 pseudo here or later. That kind of transformation may turn an
3582 indirect jump into a direct jump, in which case we must rerun the
3583 jump optimizer to ensure that the JUMP_LABEL fields are valid. */
3584 if (GET_CODE (x) == LABEL_REF
3585 || (GET_CODE (x) == CONST
3586 && GET_CODE (XEXP (x, 0)) == PLUS
3587 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF)))
3588 recorded_label_ref = 1;
3590 reg_equiv[regno].replacement = x;
3591 reg_equiv[regno].src_p = &SET_SRC (set);
3592 reg_equiv[regno].loop_depth = (short) loop_depth;
3594 /* Don't mess with things live during setjmp. */
3595 if (REG_LIVE_LENGTH (regno) >= 0 && optimize)
3597 /* Note that the statement below does not affect the priority
3598 in local-alloc! */
3599 REG_LIVE_LENGTH (regno) *= 2;
3601 /* If the register is referenced exactly twice, meaning it is
3602 set once and used once, indicate that the reference may be
3603 replaced by the equivalence we computed above. Do this
3604 even if the register is only used in one block so that
3605 dependencies can be handled where the last register is
3606 used in a different block (i.e. HIGH / LO_SUM sequences)
3607 and to reduce the number of registers alive across
3608 calls. */
3610 if (REG_N_REFS (regno) == 2
3611 && (rtx_equal_p (x, src)
3612 || ! equiv_init_varies_p (src))
3613 && NONJUMP_INSN_P (insn)
3614 && equiv_init_movable_p (PATTERN (insn), regno))
3615 reg_equiv[regno].replace = 1;
3621 if (!optimize)
3622 goto out;
3624 /* A second pass, to gather additional equivalences with memory. This needs
3625 to be done after we know which registers we are going to replace. */
3627 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3629 rtx set, src, dest;
3630 unsigned regno;
3632 if (! INSN_P (insn))
3633 continue;
3635 set = single_set (insn);
3636 if (! set)
3637 continue;
3639 dest = SET_DEST (set);
3640 src = SET_SRC (set);
3642 /* If this sets a MEM to the contents of a REG that is only used
3643 in a single basic block, see if the register is always equivalent
3644 to that memory location and if moving the store from INSN to the
3645 insn that set REG is safe. If so, put a REG_EQUIV note on the
3646 initializing insn.
3648 Don't add a REG_EQUIV note if the insn already has one. The existing
3649 REG_EQUIV is likely more useful than the one we are adding.
3651 If one of the regs in the address has reg_equiv[REGNO].replace set,
3652 then we can't add this REG_EQUIV note. The reg_equiv[REGNO].replace
3653 optimization may move the set of this register immediately before
3654 insn, which puts it after reg_equiv[REGNO].init_insns, and hence
3655 the mention in the REG_EQUIV note would be to an uninitialized
3656 pseudo. */
3658 if (MEM_P (dest) && REG_P (src)
3659 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
3660 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3661 && DF_REG_DEF_COUNT (regno) == 1
3662 && reg_equiv[regno].init_insns != NULL
3663 && reg_equiv[regno].init_insns->insn () != NULL
3664 && ! find_reg_note (XEXP (reg_equiv[regno].init_insns, 0),
3665 REG_EQUIV, NULL_RTX)
3666 && ! contains_replace_regs (XEXP (dest, 0))
3667 && ! pdx_subregs[regno])
3669 rtx_insn *init_insn =
3670 as_a <rtx_insn *> (XEXP (reg_equiv[regno].init_insns, 0));
3671 if (validate_equiv_mem (init_insn, src, dest)
3672 && ! memref_used_between_p (dest, init_insn, insn)
3673 /* Attaching a REG_EQUIV note will fail if INIT_INSN has
3674 multiple sets. */
3675 && set_unique_reg_note (init_insn, REG_EQUIV, copy_rtx (dest)))
3677 /* This insn makes the equivalence, not the one initializing
3678 the register. */
3679 ira_reg_equiv[regno].init_insns
3680 = gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
3681 df_notes_rescan (init_insn);
3686 cleared_regs = BITMAP_ALLOC (NULL);
3687 /* Now scan all regs killed in an insn to see if any of them are
3688 registers only used that once. If so, see if we can replace the
3689 reference with the equivalent form. If we can, delete the
3690 initializing reference and this register will go away. If we
3691 can't replace the reference, and the initializing reference is
3692 within the same loop (or in an inner loop), then move the register
3693 initialization just before the use, so that they are in the same
3694 basic block. */
3695 FOR_EACH_BB_REVERSE_FN (bb, cfun)
3697 loop_depth = bb_loop_depth (bb);
3698 for (insn = BB_END (bb);
3699 insn != PREV_INSN (BB_HEAD (bb));
3700 insn = PREV_INSN (insn))
3702 rtx link;
3704 if (! INSN_P (insn))
3705 continue;
3707 /* Don't substitute into a non-local goto, this confuses CFG. */
3708 if (JUMP_P (insn)
3709 && find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
3710 continue;
3712 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
3714 if (REG_NOTE_KIND (link) == REG_DEAD
3715 /* Make sure this insn still refers to the register. */
3716 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
3718 int regno = REGNO (XEXP (link, 0));
3719 rtx equiv_insn;
3721 if (! reg_equiv[regno].replace
3722 || reg_equiv[regno].loop_depth < (short) loop_depth
3723 /* There is no sense to move insns if live range
3724 shrinkage or register pressure-sensitive
3725 scheduling were done because it will not
3726 improve allocation but worsen insn schedule
3727 with a big probability. */
3728 || flag_live_range_shrinkage
3729 || (flag_sched_pressure && flag_schedule_insns))
3730 continue;
3732 /* reg_equiv[REGNO].replace gets set only when
3733 REG_N_REFS[REGNO] is 2, i.e. the register is set
3734 once and used once. (If it were only set, but
3735 not used, flow would have deleted the setting
3736 insns.) Hence there can only be one insn in
3737 reg_equiv[REGNO].init_insns. */
3738 gcc_assert (reg_equiv[regno].init_insns
3739 && !XEXP (reg_equiv[regno].init_insns, 1));
3740 equiv_insn = XEXP (reg_equiv[regno].init_insns, 0);
3742 /* We may not move instructions that can throw, since
3743 that changes basic block boundaries and we are not
3744 prepared to adjust the CFG to match. */
3745 if (can_throw_internal (equiv_insn))
3746 continue;
3748 if (asm_noperands (PATTERN (equiv_insn)) < 0
3749 && validate_replace_rtx (regno_reg_rtx[regno],
3750 *(reg_equiv[regno].src_p), insn))
3752 rtx equiv_link;
3753 rtx last_link;
3754 rtx note;
3756 /* Find the last note. */
3757 for (last_link = link; XEXP (last_link, 1);
3758 last_link = XEXP (last_link, 1))
3761 /* Append the REG_DEAD notes from equiv_insn. */
3762 equiv_link = REG_NOTES (equiv_insn);
3763 while (equiv_link)
3765 note = equiv_link;
3766 equiv_link = XEXP (equiv_link, 1);
3767 if (REG_NOTE_KIND (note) == REG_DEAD)
3769 remove_note (equiv_insn, note);
3770 XEXP (last_link, 1) = note;
3771 XEXP (note, 1) = NULL_RTX;
3772 last_link = note;
3776 remove_death (regno, insn);
3777 SET_REG_N_REFS (regno, 0);
3778 REG_FREQ (regno) = 0;
3779 delete_insn (equiv_insn);
3781 reg_equiv[regno].init_insns
3782 = reg_equiv[regno].init_insns->next ();
3784 ira_reg_equiv[regno].init_insns = NULL;
3785 bitmap_set_bit (cleared_regs, regno);
3787 /* Move the initialization of the register to just before
3788 INSN. Update the flow information. */
3789 else if (prev_nondebug_insn (insn) != equiv_insn)
3791 rtx_insn *new_insn;
3793 new_insn = emit_insn_before (PATTERN (equiv_insn), insn);
3794 REG_NOTES (new_insn) = REG_NOTES (equiv_insn);
3795 REG_NOTES (equiv_insn) = 0;
3796 /* Rescan it to process the notes. */
3797 df_insn_rescan (new_insn);
3799 /* Make sure this insn is recognized before
3800 reload begins, otherwise
3801 eliminate_regs_in_insn will die. */
3802 INSN_CODE (new_insn) = INSN_CODE (equiv_insn);
3804 delete_insn (equiv_insn);
3806 XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
3808 REG_BASIC_BLOCK (regno) = bb->index;
3809 REG_N_CALLS_CROSSED (regno) = 0;
3810 REG_FREQ_CALLS_CROSSED (regno) = 0;
3811 REG_N_THROWING_CALLS_CROSSED (regno) = 0;
3812 REG_LIVE_LENGTH (regno) = 2;
3814 if (insn == BB_HEAD (bb))
3815 BB_HEAD (bb) = PREV_INSN (insn);
3817 ira_reg_equiv[regno].init_insns
3818 = gen_rtx_INSN_LIST (VOIDmode, new_insn, NULL_RTX);
3819 bitmap_set_bit (cleared_regs, regno);
3826 if (!bitmap_empty_p (cleared_regs))
3828 FOR_EACH_BB_FN (bb, cfun)
3830 bitmap_and_compl_into (DF_LR_IN (bb), cleared_regs);
3831 bitmap_and_compl_into (DF_LR_OUT (bb), cleared_regs);
3832 if (! df_live)
3833 continue;
3834 bitmap_and_compl_into (DF_LIVE_IN (bb), cleared_regs);
3835 bitmap_and_compl_into (DF_LIVE_OUT (bb), cleared_regs);
3838 /* Last pass - adjust debug insns referencing cleared regs. */
3839 if (MAY_HAVE_DEBUG_INSNS)
3840 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3841 if (DEBUG_INSN_P (insn))
3843 rtx old_loc = INSN_VAR_LOCATION_LOC (insn);
3844 INSN_VAR_LOCATION_LOC (insn)
3845 = simplify_replace_fn_rtx (old_loc, NULL_RTX,
3846 adjust_cleared_regs,
3847 (void *) cleared_regs);
3848 if (old_loc != INSN_VAR_LOCATION_LOC (insn))
3849 df_insn_rescan (insn);
3853 BITMAP_FREE (cleared_regs);
3855 out:
3856 /* Clean up. */
3858 end_alias_analysis ();
3859 free (reg_equiv);
3860 free (pdx_subregs);
3861 return recorded_label_ref;
3866 /* Set up fields memory, constant, and invariant from init_insns in
3867 the structures of array ira_reg_equiv. */
3868 static void
3869 setup_reg_equiv (void)
3871 int i;
3872 rtx_insn_list *elem, *prev_elem, *next_elem;
3873 rtx_insn *insn;
3874 rtx set, x;
3876 for (i = FIRST_PSEUDO_REGISTER; i < ira_reg_equiv_len; i++)
3877 for (prev_elem = NULL, elem = ira_reg_equiv[i].init_insns;
3878 elem;
3879 prev_elem = elem, elem = next_elem)
3881 next_elem = elem->next ();
3882 insn = elem->insn ();
3883 set = single_set (insn);
3885 /* Init insns can set up equivalence when the reg is a destination or
3886 a source (in this case the destination is memory). */
3887 if (set != 0 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))))
3889 if ((x = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != NULL)
3891 x = XEXP (x, 0);
3892 if (REG_P (SET_DEST (set))
3893 && REGNO (SET_DEST (set)) == (unsigned int) i
3894 && ! rtx_equal_p (SET_SRC (set), x) && MEM_P (x))
3896 /* This insn reporting the equivalence but
3897 actually not setting it. Remove it from the
3898 list. */
3899 if (prev_elem == NULL)
3900 ira_reg_equiv[i].init_insns = next_elem;
3901 else
3902 XEXP (prev_elem, 1) = next_elem;
3903 elem = prev_elem;
3906 else if (REG_P (SET_DEST (set))
3907 && REGNO (SET_DEST (set)) == (unsigned int) i)
3908 x = SET_SRC (set);
3909 else
3911 gcc_assert (REG_P (SET_SRC (set))
3912 && REGNO (SET_SRC (set)) == (unsigned int) i);
3913 x = SET_DEST (set);
3915 if (! function_invariant_p (x)
3916 || ! flag_pic
3917 /* A function invariant is often CONSTANT_P but may
3918 include a register. We promise to only pass
3919 CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P. */
3920 || (CONSTANT_P (x) && LEGITIMATE_PIC_OPERAND_P (x)))
3922 /* It can happen that a REG_EQUIV note contains a MEM
3923 that is not a legitimate memory operand. As later
3924 stages of reload assume that all addresses found in
3925 the lra_regno_equiv_* arrays were originally
3926 legitimate, we ignore such REG_EQUIV notes. */
3927 if (memory_operand (x, VOIDmode))
3929 ira_reg_equiv[i].defined_p = true;
3930 ira_reg_equiv[i].memory = x;
3931 continue;
3933 else if (function_invariant_p (x))
3935 machine_mode mode;
3937 mode = GET_MODE (SET_DEST (set));
3938 if (GET_CODE (x) == PLUS
3939 || x == frame_pointer_rtx || x == arg_pointer_rtx)
3940 /* This is PLUS of frame pointer and a constant,
3941 or fp, or argp. */
3942 ira_reg_equiv[i].invariant = x;
3943 else if (targetm.legitimate_constant_p (mode, x))
3944 ira_reg_equiv[i].constant = x;
3945 else
3947 ira_reg_equiv[i].memory = force_const_mem (mode, x);
3948 if (ira_reg_equiv[i].memory == NULL_RTX)
3950 ira_reg_equiv[i].defined_p = false;
3951 ira_reg_equiv[i].init_insns = NULL;
3952 break;
3955 ira_reg_equiv[i].defined_p = true;
3956 continue;
3960 ira_reg_equiv[i].defined_p = false;
3961 ira_reg_equiv[i].init_insns = NULL;
3962 break;
3968 /* Print chain C to FILE. */
3969 static void
3970 print_insn_chain (FILE *file, struct insn_chain *c)
3972 fprintf (file, "insn=%d, ", INSN_UID (c->insn));
3973 bitmap_print (file, &c->live_throughout, "live_throughout: ", ", ");
3974 bitmap_print (file, &c->dead_or_set, "dead_or_set: ", "\n");
3978 /* Print all reload_insn_chains to FILE. */
3979 static void
3980 print_insn_chains (FILE *file)
3982 struct insn_chain *c;
3983 for (c = reload_insn_chain; c ; c = c->next)
3984 print_insn_chain (file, c);
3987 /* Return true if pseudo REGNO should be added to set live_throughout
3988 or dead_or_set of the insn chains for reload consideration. */
3989 static bool
3990 pseudo_for_reload_consideration_p (int regno)
3992 /* Consider spilled pseudos too for IRA because they still have a
3993 chance to get hard-registers in the reload when IRA is used. */
3994 return (reg_renumber[regno] >= 0 || ira_conflicts_p);
3997 /* Init LIVE_SUBREGS[ALLOCNUM] and LIVE_SUBREGS_USED[ALLOCNUM] using
3998 REG to the number of nregs, and INIT_VALUE to get the
3999 initialization. ALLOCNUM need not be the regno of REG. */
4000 static void
4001 init_live_subregs (bool init_value, sbitmap *live_subregs,
4002 bitmap live_subregs_used, int allocnum, rtx reg)
4004 unsigned int regno = REGNO (SUBREG_REG (reg));
4005 int size = GET_MODE_SIZE (GET_MODE (regno_reg_rtx[regno]));
4007 gcc_assert (size > 0);
4009 /* Been there, done that. */
4010 if (bitmap_bit_p (live_subregs_used, allocnum))
4011 return;
4013 /* Create a new one. */
4014 if (live_subregs[allocnum] == NULL)
4015 live_subregs[allocnum] = sbitmap_alloc (size);
4017 /* If the entire reg was live before blasting into subregs, we need
4018 to init all of the subregs to ones else init to 0. */
4019 if (init_value)
4020 bitmap_ones (live_subregs[allocnum]);
4021 else
4022 bitmap_clear (live_subregs[allocnum]);
4024 bitmap_set_bit (live_subregs_used, allocnum);
4027 /* Walk the insns of the current function and build reload_insn_chain,
4028 and record register life information. */
4029 static void
4030 build_insn_chain (void)
4032 unsigned int i;
4033 struct insn_chain **p = &reload_insn_chain;
4034 basic_block bb;
4035 struct insn_chain *c = NULL;
4036 struct insn_chain *next = NULL;
4037 bitmap live_relevant_regs = BITMAP_ALLOC (NULL);
4038 bitmap elim_regset = BITMAP_ALLOC (NULL);
4039 /* live_subregs is a vector used to keep accurate information about
4040 which hardregs are live in multiword pseudos. live_subregs and
4041 live_subregs_used are indexed by pseudo number. The live_subreg
4042 entry for a particular pseudo is only used if the corresponding
4043 element is non zero in live_subregs_used. The sbitmap size of
4044 live_subreg[allocno] is number of bytes that the pseudo can
4045 occupy. */
4046 sbitmap *live_subregs = XCNEWVEC (sbitmap, max_regno);
4047 bitmap live_subregs_used = BITMAP_ALLOC (NULL);
4049 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4050 if (TEST_HARD_REG_BIT (eliminable_regset, i))
4051 bitmap_set_bit (elim_regset, i);
4052 FOR_EACH_BB_REVERSE_FN (bb, cfun)
4054 bitmap_iterator bi;
4055 rtx_insn *insn;
4057 CLEAR_REG_SET (live_relevant_regs);
4058 bitmap_clear (live_subregs_used);
4060 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb), 0, i, bi)
4062 if (i >= FIRST_PSEUDO_REGISTER)
4063 break;
4064 bitmap_set_bit (live_relevant_regs, i);
4067 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb),
4068 FIRST_PSEUDO_REGISTER, i, bi)
4070 if (pseudo_for_reload_consideration_p (i))
4071 bitmap_set_bit (live_relevant_regs, i);
4074 FOR_BB_INSNS_REVERSE (bb, insn)
4076 if (!NOTE_P (insn) && !BARRIER_P (insn))
4078 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4079 df_ref def, use;
4081 c = new_insn_chain ();
4082 c->next = next;
4083 next = c;
4084 *p = c;
4085 p = &c->prev;
4087 c->insn = insn;
4088 c->block = bb->index;
4090 if (NONDEBUG_INSN_P (insn))
4091 FOR_EACH_INSN_INFO_DEF (def, insn_info)
4093 unsigned int regno = DF_REF_REGNO (def);
4095 /* Ignore may clobbers because these are generated
4096 from calls. However, every other kind of def is
4097 added to dead_or_set. */
4098 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
4100 if (regno < FIRST_PSEUDO_REGISTER)
4102 if (!fixed_regs[regno])
4103 bitmap_set_bit (&c->dead_or_set, regno);
4105 else if (pseudo_for_reload_consideration_p (regno))
4106 bitmap_set_bit (&c->dead_or_set, regno);
4109 if ((regno < FIRST_PSEUDO_REGISTER
4110 || reg_renumber[regno] >= 0
4111 || ira_conflicts_p)
4112 && (!DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)))
4114 rtx reg = DF_REF_REG (def);
4116 /* We can model subregs, but not if they are
4117 wrapped in ZERO_EXTRACTS. */
4118 if (GET_CODE (reg) == SUBREG
4119 && !DF_REF_FLAGS_IS_SET (def, DF_REF_ZERO_EXTRACT))
4121 unsigned int start = SUBREG_BYTE (reg);
4122 unsigned int last = start
4123 + GET_MODE_SIZE (GET_MODE (reg));
4125 init_live_subregs
4126 (bitmap_bit_p (live_relevant_regs, regno),
4127 live_subregs, live_subregs_used, regno, reg);
4129 if (!DF_REF_FLAGS_IS_SET
4130 (def, DF_REF_STRICT_LOW_PART))
4132 /* Expand the range to cover entire words.
4133 Bytes added here are "don't care". */
4134 start
4135 = start / UNITS_PER_WORD * UNITS_PER_WORD;
4136 last = ((last + UNITS_PER_WORD - 1)
4137 / UNITS_PER_WORD * UNITS_PER_WORD);
4140 /* Ignore the paradoxical bits. */
4141 if (last > SBITMAP_SIZE (live_subregs[regno]))
4142 last = SBITMAP_SIZE (live_subregs[regno]);
4144 while (start < last)
4146 bitmap_clear_bit (live_subregs[regno], start);
4147 start++;
4150 if (bitmap_empty_p (live_subregs[regno]))
4152 bitmap_clear_bit (live_subregs_used, regno);
4153 bitmap_clear_bit (live_relevant_regs, regno);
4155 else
4156 /* Set live_relevant_regs here because
4157 that bit has to be true to get us to
4158 look at the live_subregs fields. */
4159 bitmap_set_bit (live_relevant_regs, regno);
4161 else
4163 /* DF_REF_PARTIAL is generated for
4164 subregs, STRICT_LOW_PART, and
4165 ZERO_EXTRACT. We handle the subreg
4166 case above so here we have to keep from
4167 modeling the def as a killing def. */
4168 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL))
4170 bitmap_clear_bit (live_subregs_used, regno);
4171 bitmap_clear_bit (live_relevant_regs, regno);
4177 bitmap_and_compl_into (live_relevant_regs, elim_regset);
4178 bitmap_copy (&c->live_throughout, live_relevant_regs);
4180 if (NONDEBUG_INSN_P (insn))
4181 FOR_EACH_INSN_INFO_USE (use, insn_info)
4183 unsigned int regno = DF_REF_REGNO (use);
4184 rtx reg = DF_REF_REG (use);
4186 /* DF_REF_READ_WRITE on a use means that this use
4187 is fabricated from a def that is a partial set
4188 to a multiword reg. Here, we only model the
4189 subreg case that is not wrapped in ZERO_EXTRACT
4190 precisely so we do not need to look at the
4191 fabricated use. */
4192 if (DF_REF_FLAGS_IS_SET (use, DF_REF_READ_WRITE)
4193 && !DF_REF_FLAGS_IS_SET (use, DF_REF_ZERO_EXTRACT)
4194 && DF_REF_FLAGS_IS_SET (use, DF_REF_SUBREG))
4195 continue;
4197 /* Add the last use of each var to dead_or_set. */
4198 if (!bitmap_bit_p (live_relevant_regs, regno))
4200 if (regno < FIRST_PSEUDO_REGISTER)
4202 if (!fixed_regs[regno])
4203 bitmap_set_bit (&c->dead_or_set, regno);
4205 else if (pseudo_for_reload_consideration_p (regno))
4206 bitmap_set_bit (&c->dead_or_set, regno);
4209 if (regno < FIRST_PSEUDO_REGISTER
4210 || pseudo_for_reload_consideration_p (regno))
4212 if (GET_CODE (reg) == SUBREG
4213 && !DF_REF_FLAGS_IS_SET (use,
4214 DF_REF_SIGN_EXTRACT
4215 | DF_REF_ZERO_EXTRACT))
4217 unsigned int start = SUBREG_BYTE (reg);
4218 unsigned int last = start
4219 + GET_MODE_SIZE (GET_MODE (reg));
4221 init_live_subregs
4222 (bitmap_bit_p (live_relevant_regs, regno),
4223 live_subregs, live_subregs_used, regno, reg);
4225 /* Ignore the paradoxical bits. */
4226 if (last > SBITMAP_SIZE (live_subregs[regno]))
4227 last = SBITMAP_SIZE (live_subregs[regno]);
4229 while (start < last)
4231 bitmap_set_bit (live_subregs[regno], start);
4232 start++;
4235 else
4236 /* Resetting the live_subregs_used is
4237 effectively saying do not use the subregs
4238 because we are reading the whole
4239 pseudo. */
4240 bitmap_clear_bit (live_subregs_used, regno);
4241 bitmap_set_bit (live_relevant_regs, regno);
4247 /* FIXME!! The following code is a disaster. Reload needs to see the
4248 labels and jump tables that are just hanging out in between
4249 the basic blocks. See pr33676. */
4250 insn = BB_HEAD (bb);
4252 /* Skip over the barriers and cruft. */
4253 while (insn && (BARRIER_P (insn) || NOTE_P (insn)
4254 || BLOCK_FOR_INSN (insn) == bb))
4255 insn = PREV_INSN (insn);
4257 /* While we add anything except barriers and notes, the focus is
4258 to get the labels and jump tables into the
4259 reload_insn_chain. */
4260 while (insn)
4262 if (!NOTE_P (insn) && !BARRIER_P (insn))
4264 if (BLOCK_FOR_INSN (insn))
4265 break;
4267 c = new_insn_chain ();
4268 c->next = next;
4269 next = c;
4270 *p = c;
4271 p = &c->prev;
4273 /* The block makes no sense here, but it is what the old
4274 code did. */
4275 c->block = bb->index;
4276 c->insn = insn;
4277 bitmap_copy (&c->live_throughout, live_relevant_regs);
4279 insn = PREV_INSN (insn);
4283 reload_insn_chain = c;
4284 *p = NULL;
4286 for (i = 0; i < (unsigned int) max_regno; i++)
4287 if (live_subregs[i] != NULL)
4288 sbitmap_free (live_subregs[i]);
4289 free (live_subregs);
4290 BITMAP_FREE (live_subregs_used);
4291 BITMAP_FREE (live_relevant_regs);
4292 BITMAP_FREE (elim_regset);
4294 if (dump_file)
4295 print_insn_chains (dump_file);
4298 /* Examine the rtx found in *LOC, which is read or written to as determined
4299 by TYPE. Return false if we find a reason why an insn containing this
4300 rtx should not be moved (such as accesses to non-constant memory), true
4301 otherwise. */
4302 static bool
4303 rtx_moveable_p (rtx *loc, enum op_type type)
4305 const char *fmt;
4306 rtx x = *loc;
4307 enum rtx_code code = GET_CODE (x);
4308 int i, j;
4310 code = GET_CODE (x);
4311 switch (code)
4313 case CONST:
4314 CASE_CONST_ANY:
4315 case SYMBOL_REF:
4316 case LABEL_REF:
4317 return true;
4319 case PC:
4320 return type == OP_IN;
4322 case CC0:
4323 return false;
4325 case REG:
4326 if (x == frame_pointer_rtx)
4327 return true;
4328 if (HARD_REGISTER_P (x))
4329 return false;
4331 return true;
4333 case MEM:
4334 if (type == OP_IN && MEM_READONLY_P (x))
4335 return rtx_moveable_p (&XEXP (x, 0), OP_IN);
4336 return false;
4338 case SET:
4339 return (rtx_moveable_p (&SET_SRC (x), OP_IN)
4340 && rtx_moveable_p (&SET_DEST (x), OP_OUT));
4342 case STRICT_LOW_PART:
4343 return rtx_moveable_p (&XEXP (x, 0), OP_OUT);
4345 case ZERO_EXTRACT:
4346 case SIGN_EXTRACT:
4347 return (rtx_moveable_p (&XEXP (x, 0), type)
4348 && rtx_moveable_p (&XEXP (x, 1), OP_IN)
4349 && rtx_moveable_p (&XEXP (x, 2), OP_IN));
4351 case CLOBBER:
4352 return rtx_moveable_p (&SET_DEST (x), OP_OUT);
4354 case UNSPEC_VOLATILE:
4355 /* It is a bad idea to consider insns with such rtl
4356 as moveable ones. The insn scheduler also considers them as barrier
4357 for a reason. */
4358 return false;
4360 default:
4361 break;
4364 fmt = GET_RTX_FORMAT (code);
4365 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4367 if (fmt[i] == 'e')
4369 if (!rtx_moveable_p (&XEXP (x, i), type))
4370 return false;
4372 else if (fmt[i] == 'E')
4373 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4375 if (!rtx_moveable_p (&XVECEXP (x, i, j), type))
4376 return false;
4379 return true;
4382 /* A wrapper around dominated_by_p, which uses the information in UID_LUID
4383 to give dominance relationships between two insns I1 and I2. */
4384 static bool
4385 insn_dominated_by_p (rtx i1, rtx i2, int *uid_luid)
4387 basic_block bb1 = BLOCK_FOR_INSN (i1);
4388 basic_block bb2 = BLOCK_FOR_INSN (i2);
4390 if (bb1 == bb2)
4391 return uid_luid[INSN_UID (i2)] < uid_luid[INSN_UID (i1)];
4392 return dominated_by_p (CDI_DOMINATORS, bb1, bb2);
4395 /* Record the range of register numbers added by find_moveable_pseudos. */
4396 int first_moveable_pseudo, last_moveable_pseudo;
4398 /* These two vectors hold data for every register added by
4399 find_movable_pseudos, with index 0 holding data for the
4400 first_moveable_pseudo. */
4401 /* The original home register. */
4402 static vec<rtx> pseudo_replaced_reg;
4404 /* Look for instances where we have an instruction that is known to increase
4405 register pressure, and whose result is not used immediately. If it is
4406 possible to move the instruction downwards to just before its first use,
4407 split its lifetime into two ranges. We create a new pseudo to compute the
4408 value, and emit a move instruction just before the first use. If, after
4409 register allocation, the new pseudo remains unallocated, the function
4410 move_unallocated_pseudos then deletes the move instruction and places
4411 the computation just before the first use.
4413 Such a move is safe and profitable if all the input registers remain live
4414 and unchanged between the original computation and its first use. In such
4415 a situation, the computation is known to increase register pressure, and
4416 moving it is known to at least not worsen it.
4418 We restrict moves to only those cases where a register remains unallocated,
4419 in order to avoid interfering too much with the instruction schedule. As
4420 an exception, we may move insns which only modify their input register
4421 (typically induction variables), as this increases the freedom for our
4422 intended transformation, and does not limit the second instruction
4423 scheduler pass. */
4425 static void
4426 find_moveable_pseudos (void)
4428 unsigned i;
4429 int max_regs = max_reg_num ();
4430 int max_uid = get_max_uid ();
4431 basic_block bb;
4432 int *uid_luid = XNEWVEC (int, max_uid);
4433 rtx_insn **closest_uses = XNEWVEC (rtx_insn *, max_regs);
4434 /* A set of registers which are live but not modified throughout a block. */
4435 bitmap_head *bb_transp_live = XNEWVEC (bitmap_head,
4436 last_basic_block_for_fn (cfun));
4437 /* A set of registers which only exist in a given basic block. */
4438 bitmap_head *bb_local = XNEWVEC (bitmap_head,
4439 last_basic_block_for_fn (cfun));
4440 /* A set of registers which are set once, in an instruction that can be
4441 moved freely downwards, but are otherwise transparent to a block. */
4442 bitmap_head *bb_moveable_reg_sets = XNEWVEC (bitmap_head,
4443 last_basic_block_for_fn (cfun));
4444 bitmap_head live, used, set, interesting, unusable_as_input;
4445 bitmap_iterator bi;
4446 bitmap_initialize (&interesting, 0);
4448 first_moveable_pseudo = max_regs;
4449 pseudo_replaced_reg.release ();
4450 pseudo_replaced_reg.safe_grow_cleared (max_regs);
4452 df_analyze ();
4453 calculate_dominance_info (CDI_DOMINATORS);
4455 i = 0;
4456 bitmap_initialize (&live, 0);
4457 bitmap_initialize (&used, 0);
4458 bitmap_initialize (&set, 0);
4459 bitmap_initialize (&unusable_as_input, 0);
4460 FOR_EACH_BB_FN (bb, cfun)
4462 rtx_insn *insn;
4463 bitmap transp = bb_transp_live + bb->index;
4464 bitmap moveable = bb_moveable_reg_sets + bb->index;
4465 bitmap local = bb_local + bb->index;
4467 bitmap_initialize (local, 0);
4468 bitmap_initialize (transp, 0);
4469 bitmap_initialize (moveable, 0);
4470 bitmap_copy (&live, df_get_live_out (bb));
4471 bitmap_and_into (&live, df_get_live_in (bb));
4472 bitmap_copy (transp, &live);
4473 bitmap_clear (moveable);
4474 bitmap_clear (&live);
4475 bitmap_clear (&used);
4476 bitmap_clear (&set);
4477 FOR_BB_INSNS (bb, insn)
4478 if (NONDEBUG_INSN_P (insn))
4480 df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4481 df_ref def, use;
4483 uid_luid[INSN_UID (insn)] = i++;
4485 def = df_single_def (insn_info);
4486 use = df_single_use (insn_info);
4487 if (use
4488 && def
4489 && DF_REF_REGNO (use) == DF_REF_REGNO (def)
4490 && !bitmap_bit_p (&set, DF_REF_REGNO (use))
4491 && rtx_moveable_p (&PATTERN (insn), OP_IN))
4493 unsigned regno = DF_REF_REGNO (use);
4494 bitmap_set_bit (moveable, regno);
4495 bitmap_set_bit (&set, regno);
4496 bitmap_set_bit (&used, regno);
4497 bitmap_clear_bit (transp, regno);
4498 continue;
4500 FOR_EACH_INSN_INFO_USE (use, insn_info)
4502 unsigned regno = DF_REF_REGNO (use);
4503 bitmap_set_bit (&used, regno);
4504 if (bitmap_clear_bit (moveable, regno))
4505 bitmap_clear_bit (transp, regno);
4508 FOR_EACH_INSN_INFO_DEF (def, insn_info)
4510 unsigned regno = DF_REF_REGNO (def);
4511 bitmap_set_bit (&set, regno);
4512 bitmap_clear_bit (transp, regno);
4513 bitmap_clear_bit (moveable, regno);
4518 bitmap_clear (&live);
4519 bitmap_clear (&used);
4520 bitmap_clear (&set);
4522 FOR_EACH_BB_FN (bb, cfun)
4524 bitmap local = bb_local + bb->index;
4525 rtx_insn *insn;
4527 FOR_BB_INSNS (bb, insn)
4528 if (NONDEBUG_INSN_P (insn))
4530 df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4531 rtx_insn *def_insn;
4532 rtx closest_use, note;
4533 df_ref def, use;
4534 unsigned regno;
4535 bool all_dominated, all_local;
4536 machine_mode mode;
4538 def = df_single_def (insn_info);
4539 /* There must be exactly one def in this insn. */
4540 if (!def || !single_set (insn))
4541 continue;
4542 /* This must be the only definition of the reg. We also limit
4543 which modes we deal with so that we can assume we can generate
4544 move instructions. */
4545 regno = DF_REF_REGNO (def);
4546 mode = GET_MODE (DF_REF_REG (def));
4547 if (DF_REG_DEF_COUNT (regno) != 1
4548 || !DF_REF_INSN_INFO (def)
4549 || HARD_REGISTER_NUM_P (regno)
4550 || DF_REG_EQ_USE_COUNT (regno) > 0
4551 || (!INTEGRAL_MODE_P (mode) && !FLOAT_MODE_P (mode)))
4552 continue;
4553 def_insn = DF_REF_INSN (def);
4555 for (note = REG_NOTES (def_insn); note; note = XEXP (note, 1))
4556 if (REG_NOTE_KIND (note) == REG_EQUIV && MEM_P (XEXP (note, 0)))
4557 break;
4559 if (note)
4561 if (dump_file)
4562 fprintf (dump_file, "Ignoring reg %d, has equiv memory\n",
4563 regno);
4564 bitmap_set_bit (&unusable_as_input, regno);
4565 continue;
4568 use = DF_REG_USE_CHAIN (regno);
4569 all_dominated = true;
4570 all_local = true;
4571 closest_use = NULL_RTX;
4572 for (; use; use = DF_REF_NEXT_REG (use))
4574 rtx_insn *insn;
4575 if (!DF_REF_INSN_INFO (use))
4577 all_dominated = false;
4578 all_local = false;
4579 break;
4581 insn = DF_REF_INSN (use);
4582 if (DEBUG_INSN_P (insn))
4583 continue;
4584 if (BLOCK_FOR_INSN (insn) != BLOCK_FOR_INSN (def_insn))
4585 all_local = false;
4586 if (!insn_dominated_by_p (insn, def_insn, uid_luid))
4587 all_dominated = false;
4588 if (closest_use != insn && closest_use != const0_rtx)
4590 if (closest_use == NULL_RTX)
4591 closest_use = insn;
4592 else if (insn_dominated_by_p (closest_use, insn, uid_luid))
4593 closest_use = insn;
4594 else if (!insn_dominated_by_p (insn, closest_use, uid_luid))
4595 closest_use = const0_rtx;
4598 if (!all_dominated)
4600 if (dump_file)
4601 fprintf (dump_file, "Reg %d not all uses dominated by set\n",
4602 regno);
4603 continue;
4605 if (all_local)
4606 bitmap_set_bit (local, regno);
4607 if (closest_use == const0_rtx || closest_use == NULL
4608 || next_nonnote_nondebug_insn (def_insn) == closest_use)
4610 if (dump_file)
4611 fprintf (dump_file, "Reg %d uninteresting%s\n", regno,
4612 closest_use == const0_rtx || closest_use == NULL
4613 ? " (no unique first use)" : "");
4614 continue;
4616 if (HAVE_cc0 && reg_referenced_p (cc0_rtx, PATTERN (closest_use)))
4618 if (dump_file)
4619 fprintf (dump_file, "Reg %d: closest user uses cc0\n",
4620 regno);
4621 continue;
4624 bitmap_set_bit (&interesting, regno);
4625 /* If we get here, we know closest_use is a non-NULL insn
4626 (as opposed to const_0_rtx). */
4627 closest_uses[regno] = as_a <rtx_insn *> (closest_use);
4629 if (dump_file && (all_local || all_dominated))
4631 fprintf (dump_file, "Reg %u:", regno);
4632 if (all_local)
4633 fprintf (dump_file, " local to bb %d", bb->index);
4634 if (all_dominated)
4635 fprintf (dump_file, " def dominates all uses");
4636 if (closest_use != const0_rtx)
4637 fprintf (dump_file, " has unique first use");
4638 fputs ("\n", dump_file);
4643 EXECUTE_IF_SET_IN_BITMAP (&interesting, 0, i, bi)
4645 df_ref def = DF_REG_DEF_CHAIN (i);
4646 rtx_insn *def_insn = DF_REF_INSN (def);
4647 basic_block def_block = BLOCK_FOR_INSN (def_insn);
4648 bitmap def_bb_local = bb_local + def_block->index;
4649 bitmap def_bb_moveable = bb_moveable_reg_sets + def_block->index;
4650 bitmap def_bb_transp = bb_transp_live + def_block->index;
4651 bool local_to_bb_p = bitmap_bit_p (def_bb_local, i);
4652 rtx_insn *use_insn = closest_uses[i];
4653 df_ref use;
4654 bool all_ok = true;
4655 bool all_transp = true;
4657 if (!REG_P (DF_REF_REG (def)))
4658 continue;
4660 if (!local_to_bb_p)
4662 if (dump_file)
4663 fprintf (dump_file, "Reg %u not local to one basic block\n",
4665 continue;
4667 if (reg_equiv_init (i) != NULL_RTX)
4669 if (dump_file)
4670 fprintf (dump_file, "Ignoring reg %u with equiv init insn\n",
4672 continue;
4674 if (!rtx_moveable_p (&PATTERN (def_insn), OP_IN))
4676 if (dump_file)
4677 fprintf (dump_file, "Found def insn %d for %d to be not moveable\n",
4678 INSN_UID (def_insn), i);
4679 continue;
4681 if (dump_file)
4682 fprintf (dump_file, "Examining insn %d, def for %d\n",
4683 INSN_UID (def_insn), i);
4684 FOR_EACH_INSN_USE (use, def_insn)
4686 unsigned regno = DF_REF_REGNO (use);
4687 if (bitmap_bit_p (&unusable_as_input, regno))
4689 all_ok = false;
4690 if (dump_file)
4691 fprintf (dump_file, " found unusable input reg %u.\n", regno);
4692 break;
4694 if (!bitmap_bit_p (def_bb_transp, regno))
4696 if (bitmap_bit_p (def_bb_moveable, regno)
4697 && !control_flow_insn_p (use_insn)
4698 && (!HAVE_cc0 || !sets_cc0_p (use_insn)))
4700 if (modified_between_p (DF_REF_REG (use), def_insn, use_insn))
4702 rtx_insn *x = NEXT_INSN (def_insn);
4703 while (!modified_in_p (DF_REF_REG (use), x))
4705 gcc_assert (x != use_insn);
4706 x = NEXT_INSN (x);
4708 if (dump_file)
4709 fprintf (dump_file, " input reg %u modified but insn %d moveable\n",
4710 regno, INSN_UID (x));
4711 emit_insn_after (PATTERN (x), use_insn);
4712 set_insn_deleted (x);
4714 else
4716 if (dump_file)
4717 fprintf (dump_file, " input reg %u modified between def and use\n",
4718 regno);
4719 all_transp = false;
4722 else
4723 all_transp = false;
4726 if (!all_ok)
4727 continue;
4728 if (!dbg_cnt (ira_move))
4729 break;
4730 if (dump_file)
4731 fprintf (dump_file, " all ok%s\n", all_transp ? " and transp" : "");
4733 if (all_transp)
4735 rtx def_reg = DF_REF_REG (def);
4736 rtx newreg = ira_create_new_reg (def_reg);
4737 if (validate_change (def_insn, DF_REF_REAL_LOC (def), newreg, 0))
4739 unsigned nregno = REGNO (newreg);
4740 emit_insn_before (gen_move_insn (def_reg, newreg), use_insn);
4741 nregno -= max_regs;
4742 pseudo_replaced_reg[nregno] = def_reg;
4747 FOR_EACH_BB_FN (bb, cfun)
4749 bitmap_clear (bb_local + bb->index);
4750 bitmap_clear (bb_transp_live + bb->index);
4751 bitmap_clear (bb_moveable_reg_sets + bb->index);
4753 bitmap_clear (&interesting);
4754 bitmap_clear (&unusable_as_input);
4755 free (uid_luid);
4756 free (closest_uses);
4757 free (bb_local);
4758 free (bb_transp_live);
4759 free (bb_moveable_reg_sets);
4761 last_moveable_pseudo = max_reg_num ();
4763 fix_reg_equiv_init ();
4764 expand_reg_info ();
4765 regstat_free_n_sets_and_refs ();
4766 regstat_free_ri ();
4767 regstat_init_n_sets_and_refs ();
4768 regstat_compute_ri ();
4769 free_dominance_info (CDI_DOMINATORS);
4772 /* If SET pattern SET is an assignment from a hard register to a pseudo which
4773 is live at CALL_DOM (if non-NULL, otherwise this check is omitted), return
4774 the destination. Otherwise return NULL. */
4776 static rtx
4777 interesting_dest_for_shprep_1 (rtx set, basic_block call_dom)
4779 rtx src = SET_SRC (set);
4780 rtx dest = SET_DEST (set);
4781 if (!REG_P (src) || !HARD_REGISTER_P (src)
4782 || !REG_P (dest) || HARD_REGISTER_P (dest)
4783 || (call_dom && !bitmap_bit_p (df_get_live_in (call_dom), REGNO (dest))))
4784 return NULL;
4785 return dest;
4788 /* If insn is interesting for parameter range-splitting shrink-wrapping
4789 preparation, i.e. it is a single set from a hard register to a pseudo, which
4790 is live at CALL_DOM (if non-NULL, otherwise this check is omitted), or a
4791 parallel statement with only one such statement, return the destination.
4792 Otherwise return NULL. */
4794 static rtx
4795 interesting_dest_for_shprep (rtx_insn *insn, basic_block call_dom)
4797 if (!INSN_P (insn))
4798 return NULL;
4799 rtx pat = PATTERN (insn);
4800 if (GET_CODE (pat) == SET)
4801 return interesting_dest_for_shprep_1 (pat, call_dom);
4803 if (GET_CODE (pat) != PARALLEL)
4804 return NULL;
4805 rtx ret = NULL;
4806 for (int i = 0; i < XVECLEN (pat, 0); i++)
4808 rtx sub = XVECEXP (pat, 0, i);
4809 if (GET_CODE (sub) == USE || GET_CODE (sub) == CLOBBER)
4810 continue;
4811 if (GET_CODE (sub) != SET
4812 || side_effects_p (sub))
4813 return NULL;
4814 rtx dest = interesting_dest_for_shprep_1 (sub, call_dom);
4815 if (dest && ret)
4816 return NULL;
4817 if (dest)
4818 ret = dest;
4820 return ret;
4823 /* Split live ranges of pseudos that are loaded from hard registers in the
4824 first BB in a BB that dominates all non-sibling call if such a BB can be
4825 found and is not in a loop. Return true if the function has made any
4826 changes. */
4828 static bool
4829 split_live_ranges_for_shrink_wrap (void)
4831 basic_block bb, call_dom = NULL;
4832 basic_block first = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
4833 rtx_insn *insn, *last_interesting_insn = NULL;
4834 bitmap_head need_new, reachable;
4835 vec<basic_block> queue;
4837 if (!SHRINK_WRAPPING_ENABLED)
4838 return false;
4840 bitmap_initialize (&need_new, 0);
4841 bitmap_initialize (&reachable, 0);
4842 queue.create (n_basic_blocks_for_fn (cfun));
4844 FOR_EACH_BB_FN (bb, cfun)
4845 FOR_BB_INSNS (bb, insn)
4846 if (CALL_P (insn) && !SIBLING_CALL_P (insn))
4848 if (bb == first)
4850 bitmap_clear (&need_new);
4851 bitmap_clear (&reachable);
4852 queue.release ();
4853 return false;
4856 bitmap_set_bit (&need_new, bb->index);
4857 bitmap_set_bit (&reachable, bb->index);
4858 queue.quick_push (bb);
4859 break;
4862 if (queue.is_empty ())
4864 bitmap_clear (&need_new);
4865 bitmap_clear (&reachable);
4866 queue.release ();
4867 return false;
4870 while (!queue.is_empty ())
4872 edge e;
4873 edge_iterator ei;
4875 bb = queue.pop ();
4876 FOR_EACH_EDGE (e, ei, bb->succs)
4877 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
4878 && bitmap_set_bit (&reachable, e->dest->index))
4879 queue.quick_push (e->dest);
4881 queue.release ();
4883 FOR_BB_INSNS (first, insn)
4885 rtx dest = interesting_dest_for_shprep (insn, NULL);
4886 if (!dest)
4887 continue;
4889 if (DF_REG_DEF_COUNT (REGNO (dest)) > 1)
4891 bitmap_clear (&need_new);
4892 bitmap_clear (&reachable);
4893 return false;
4896 for (df_ref use = DF_REG_USE_CHAIN (REGNO(dest));
4897 use;
4898 use = DF_REF_NEXT_REG (use))
4900 int ubbi = DF_REF_BB (use)->index;
4901 if (bitmap_bit_p (&reachable, ubbi))
4902 bitmap_set_bit (&need_new, ubbi);
4904 last_interesting_insn = insn;
4907 bitmap_clear (&reachable);
4908 if (!last_interesting_insn)
4910 bitmap_clear (&need_new);
4911 return false;
4914 call_dom = nearest_common_dominator_for_set (CDI_DOMINATORS, &need_new);
4915 bitmap_clear (&need_new);
4916 if (call_dom == first)
4917 return false;
4919 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
4920 while (bb_loop_depth (call_dom) > 0)
4921 call_dom = get_immediate_dominator (CDI_DOMINATORS, call_dom);
4922 loop_optimizer_finalize ();
4924 if (call_dom == first)
4925 return false;
4927 calculate_dominance_info (CDI_POST_DOMINATORS);
4928 if (dominated_by_p (CDI_POST_DOMINATORS, first, call_dom))
4930 free_dominance_info (CDI_POST_DOMINATORS);
4931 return false;
4933 free_dominance_info (CDI_POST_DOMINATORS);
4935 if (dump_file)
4936 fprintf (dump_file, "Will split live ranges of parameters at BB %i\n",
4937 call_dom->index);
4939 bool ret = false;
4940 FOR_BB_INSNS (first, insn)
4942 rtx dest = interesting_dest_for_shprep (insn, call_dom);
4943 if (!dest || dest == pic_offset_table_rtx)
4944 continue;
4946 rtx newreg = NULL_RTX;
4947 df_ref use, next;
4948 for (use = DF_REG_USE_CHAIN (REGNO (dest)); use; use = next)
4950 rtx_insn *uin = DF_REF_INSN (use);
4951 next = DF_REF_NEXT_REG (use);
4953 basic_block ubb = BLOCK_FOR_INSN (uin);
4954 if (ubb == call_dom
4955 || dominated_by_p (CDI_DOMINATORS, ubb, call_dom))
4957 if (!newreg)
4958 newreg = ira_create_new_reg (dest);
4959 validate_change (uin, DF_REF_REAL_LOC (use), newreg, true);
4963 if (newreg)
4965 rtx_insn *new_move = gen_move_insn (newreg, dest);
4966 emit_insn_after (new_move, bb_note (call_dom));
4967 if (dump_file)
4969 fprintf (dump_file, "Split live-range of register ");
4970 print_rtl_single (dump_file, dest);
4972 ret = true;
4975 if (insn == last_interesting_insn)
4976 break;
4978 apply_change_group ();
4979 return ret;
4982 /* Perform the second half of the transformation started in
4983 find_moveable_pseudos. We look for instances where the newly introduced
4984 pseudo remains unallocated, and remove it by moving the definition to
4985 just before its use, replacing the move instruction generated by
4986 find_moveable_pseudos. */
4987 static void
4988 move_unallocated_pseudos (void)
4990 int i;
4991 for (i = first_moveable_pseudo; i < last_moveable_pseudo; i++)
4992 if (reg_renumber[i] < 0)
4994 int idx = i - first_moveable_pseudo;
4995 rtx other_reg = pseudo_replaced_reg[idx];
4996 rtx_insn *def_insn = DF_REF_INSN (DF_REG_DEF_CHAIN (i));
4997 /* The use must follow all definitions of OTHER_REG, so we can
4998 insert the new definition immediately after any of them. */
4999 df_ref other_def = DF_REG_DEF_CHAIN (REGNO (other_reg));
5000 rtx_insn *move_insn = DF_REF_INSN (other_def);
5001 rtx_insn *newinsn = emit_insn_after (PATTERN (def_insn), move_insn);
5002 rtx set;
5003 int success;
5005 if (dump_file)
5006 fprintf (dump_file, "moving def of %d (insn %d now) ",
5007 REGNO (other_reg), INSN_UID (def_insn));
5009 delete_insn (move_insn);
5010 while ((other_def = DF_REG_DEF_CHAIN (REGNO (other_reg))))
5011 delete_insn (DF_REF_INSN (other_def));
5012 delete_insn (def_insn);
5014 set = single_set (newinsn);
5015 success = validate_change (newinsn, &SET_DEST (set), other_reg, 0);
5016 gcc_assert (success);
5017 if (dump_file)
5018 fprintf (dump_file, " %d) rather than keep unallocated replacement %d\n",
5019 INSN_UID (newinsn), i);
5020 SET_REG_N_REFS (i, 0);
5024 /* If the backend knows where to allocate pseudos for hard
5025 register initial values, register these allocations now. */
5026 static void
5027 allocate_initial_values (void)
5029 if (targetm.allocate_initial_value)
5031 rtx hreg, preg, x;
5032 int i, regno;
5034 for (i = 0; HARD_REGISTER_NUM_P (i); i++)
5036 if (! initial_value_entry (i, &hreg, &preg))
5037 break;
5039 x = targetm.allocate_initial_value (hreg);
5040 regno = REGNO (preg);
5041 if (x && REG_N_SETS (regno) <= 1)
5043 if (MEM_P (x))
5044 reg_equiv_memory_loc (regno) = x;
5045 else
5047 basic_block bb;
5048 int new_regno;
5050 gcc_assert (REG_P (x));
5051 new_regno = REGNO (x);
5052 reg_renumber[regno] = new_regno;
5053 /* Poke the regno right into regno_reg_rtx so that even
5054 fixed regs are accepted. */
5055 SET_REGNO (preg, new_regno);
5056 /* Update global register liveness information. */
5057 FOR_EACH_BB_FN (bb, cfun)
5059 if (REGNO_REG_SET_P (df_get_live_in (bb), regno))
5060 SET_REGNO_REG_SET (df_get_live_in (bb), new_regno);
5061 if (REGNO_REG_SET_P (df_get_live_out (bb), regno))
5062 SET_REGNO_REG_SET (df_get_live_out (bb), new_regno);
5068 gcc_checking_assert (! initial_value_entry (FIRST_PSEUDO_REGISTER,
5069 &hreg, &preg));
5074 /* True when we use LRA instead of reload pass for the current
5075 function. */
5076 bool ira_use_lra_p;
5078 /* True if we have allocno conflicts. It is false for non-optimized
5079 mode or when the conflict table is too big. */
5080 bool ira_conflicts_p;
5082 /* Saved between IRA and reload. */
5083 static int saved_flag_ira_share_spill_slots;
5085 /* This is the main entry of IRA. */
5086 static void
5087 ira (FILE *f)
5089 bool loops_p;
5090 int ira_max_point_before_emit;
5091 int rebuild_p;
5092 bool saved_flag_caller_saves = flag_caller_saves;
5093 enum ira_region saved_flag_ira_region = flag_ira_region;
5095 /* Perform target specific PIC register initialization. */
5096 targetm.init_pic_reg ();
5098 ira_conflicts_p = optimize > 0;
5100 ira_use_lra_p = targetm.lra_p ();
5101 /* If there are too many pseudos and/or basic blocks (e.g. 10K
5102 pseudos and 10K blocks or 100K pseudos and 1K blocks), we will
5103 use simplified and faster algorithms in LRA. */
5104 lra_simple_p
5105 = (ira_use_lra_p
5106 && max_reg_num () >= (1 << 26) / last_basic_block_for_fn (cfun));
5107 if (lra_simple_p)
5109 /* It permits to skip live range splitting in LRA. */
5110 flag_caller_saves = false;
5111 /* There is no sense to do regional allocation when we use
5112 simplified LRA. */
5113 flag_ira_region = IRA_REGION_ONE;
5114 ira_conflicts_p = false;
5117 #ifndef IRA_NO_OBSTACK
5118 gcc_obstack_init (&ira_obstack);
5119 #endif
5120 bitmap_obstack_initialize (&ira_bitmap_obstack);
5122 /* LRA uses its own infrastructure to handle caller save registers. */
5123 if (flag_caller_saves && !ira_use_lra_p)
5124 init_caller_save ();
5126 if (flag_ira_verbose < 10)
5128 internal_flag_ira_verbose = flag_ira_verbose;
5129 ira_dump_file = f;
5131 else
5133 internal_flag_ira_verbose = flag_ira_verbose - 10;
5134 ira_dump_file = stderr;
5137 setup_prohibited_mode_move_regs ();
5138 decrease_live_ranges_number ();
5139 df_note_add_problem ();
5141 /* DF_LIVE can't be used in the register allocator, too many other
5142 parts of the compiler depend on using the "classic" liveness
5143 interpretation of the DF_LR problem. See PR38711.
5144 Remove the problem, so that we don't spend time updating it in
5145 any of the df_analyze() calls during IRA/LRA. */
5146 if (optimize > 1)
5147 df_remove_problem (df_live);
5148 gcc_checking_assert (df_live == NULL);
5150 if (flag_checking)
5151 df->changeable_flags |= DF_VERIFY_SCHEDULED;
5153 df_analyze ();
5155 init_reg_equiv ();
5156 if (ira_conflicts_p)
5158 calculate_dominance_info (CDI_DOMINATORS);
5160 if (split_live_ranges_for_shrink_wrap ())
5161 df_analyze ();
5163 free_dominance_info (CDI_DOMINATORS);
5166 df_clear_flags (DF_NO_INSN_RESCAN);
5168 regstat_init_n_sets_and_refs ();
5169 regstat_compute_ri ();
5171 /* If we are not optimizing, then this is the only place before
5172 register allocation where dataflow is done. And that is needed
5173 to generate these warnings. */
5174 if (warn_clobbered)
5175 generate_setjmp_warnings ();
5177 /* Determine if the current function is a leaf before running IRA
5178 since this can impact optimizations done by the prologue and
5179 epilogue thus changing register elimination offsets. */
5180 crtl->is_leaf = leaf_function_p ();
5182 if (resize_reg_info () && flag_ira_loop_pressure)
5183 ira_set_pseudo_classes (true, ira_dump_file);
5185 rebuild_p = update_equiv_regs ();
5186 setup_reg_equiv ();
5187 setup_reg_equiv_init ();
5189 bool update_regstat = false;
5191 if (optimize && rebuild_p)
5193 timevar_push (TV_JUMP);
5194 rebuild_jump_labels (get_insns ());
5195 if (purge_all_dead_edges ())
5197 delete_unreachable_blocks ();
5198 update_regstat = true;
5200 timevar_pop (TV_JUMP);
5203 allocated_reg_info_size = max_reg_num ();
5205 if (delete_trivially_dead_insns (get_insns (), max_reg_num ()))
5207 df_analyze ();
5208 update_regstat = true;
5211 /* It is not worth to do such improvement when we use a simple
5212 allocation because of -O0 usage or because the function is too
5213 big. */
5214 if (ira_conflicts_p)
5215 find_moveable_pseudos ();
5217 max_regno_before_ira = max_reg_num ();
5218 ira_setup_eliminable_regset ();
5220 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
5221 ira_load_cost = ira_store_cost = ira_shuffle_cost = 0;
5222 ira_move_loops_num = ira_additional_jumps_num = 0;
5224 ira_assert (current_loops == NULL);
5225 if (flag_ira_region == IRA_REGION_ALL || flag_ira_region == IRA_REGION_MIXED)
5226 loop_optimizer_init (AVOID_CFG_MODIFICATIONS | LOOPS_HAVE_RECORDED_EXITS);
5228 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5229 fprintf (ira_dump_file, "Building IRA IR\n");
5230 loops_p = ira_build ();
5232 ira_assert (ira_conflicts_p || !loops_p);
5234 saved_flag_ira_share_spill_slots = flag_ira_share_spill_slots;
5235 if (too_high_register_pressure_p () || cfun->calls_setjmp)
5236 /* It is just wasting compiler's time to pack spilled pseudos into
5237 stack slots in this case -- prohibit it. We also do this if
5238 there is setjmp call because a variable not modified between
5239 setjmp and longjmp the compiler is required to preserve its
5240 value and sharing slots does not guarantee it. */
5241 flag_ira_share_spill_slots = FALSE;
5243 ira_color ();
5245 ira_max_point_before_emit = ira_max_point;
5247 ira_initiate_emit_data ();
5249 ira_emit (loops_p);
5251 max_regno = max_reg_num ();
5252 if (ira_conflicts_p)
5254 if (! loops_p)
5256 if (! ira_use_lra_p)
5257 ira_initiate_assign ();
5259 else
5261 expand_reg_info ();
5263 if (ira_use_lra_p)
5265 ira_allocno_t a;
5266 ira_allocno_iterator ai;
5268 FOR_EACH_ALLOCNO (a, ai)
5270 int old_regno = ALLOCNO_REGNO (a);
5271 int new_regno = REGNO (ALLOCNO_EMIT_DATA (a)->reg);
5273 ALLOCNO_REGNO (a) = new_regno;
5275 if (old_regno != new_regno)
5276 setup_reg_classes (new_regno, reg_preferred_class (old_regno),
5277 reg_alternate_class (old_regno),
5278 reg_allocno_class (old_regno));
5282 else
5284 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5285 fprintf (ira_dump_file, "Flattening IR\n");
5286 ira_flattening (max_regno_before_ira, ira_max_point_before_emit);
5288 /* New insns were generated: add notes and recalculate live
5289 info. */
5290 df_analyze ();
5292 /* ??? Rebuild the loop tree, but why? Does the loop tree
5293 change if new insns were generated? Can that be handled
5294 by updating the loop tree incrementally? */
5295 loop_optimizer_finalize ();
5296 free_dominance_info (CDI_DOMINATORS);
5297 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
5298 | LOOPS_HAVE_RECORDED_EXITS);
5300 if (! ira_use_lra_p)
5302 setup_allocno_assignment_flags ();
5303 ira_initiate_assign ();
5304 ira_reassign_conflict_allocnos (max_regno);
5309 ira_finish_emit_data ();
5311 setup_reg_renumber ();
5313 calculate_allocation_cost ();
5315 #ifdef ENABLE_IRA_CHECKING
5316 if (ira_conflicts_p)
5317 check_allocation ();
5318 #endif
5320 if (update_regstat || max_regno != max_regno_before_ira)
5322 regstat_free_n_sets_and_refs ();
5323 regstat_free_ri ();
5324 regstat_init_n_sets_and_refs ();
5325 regstat_compute_ri ();
5328 overall_cost_before = ira_overall_cost;
5329 if (! ira_conflicts_p)
5330 grow_reg_equivs ();
5331 else
5333 fix_reg_equiv_init ();
5335 #ifdef ENABLE_IRA_CHECKING
5336 print_redundant_copies ();
5337 #endif
5338 if (! ira_use_lra_p)
5340 ira_spilled_reg_stack_slots_num = 0;
5341 ira_spilled_reg_stack_slots
5342 = ((struct ira_spilled_reg_stack_slot *)
5343 ira_allocate (max_regno
5344 * sizeof (struct ira_spilled_reg_stack_slot)));
5345 memset (ira_spilled_reg_stack_slots, 0,
5346 max_regno * sizeof (struct ira_spilled_reg_stack_slot));
5349 allocate_initial_values ();
5351 /* See comment for find_moveable_pseudos call. */
5352 if (ira_conflicts_p)
5353 move_unallocated_pseudos ();
5355 /* Restore original values. */
5356 if (lra_simple_p)
5358 flag_caller_saves = saved_flag_caller_saves;
5359 flag_ira_region = saved_flag_ira_region;
5363 static void
5364 do_reload (void)
5366 basic_block bb;
5367 bool need_dce;
5368 unsigned pic_offset_table_regno = INVALID_REGNUM;
5370 if (flag_ira_verbose < 10)
5371 ira_dump_file = dump_file;
5373 /* If pic_offset_table_rtx is a pseudo register, then keep it so
5374 after reload to avoid possible wrong usages of hard reg assigned
5375 to it. */
5376 if (pic_offset_table_rtx
5377 && REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER)
5378 pic_offset_table_regno = REGNO (pic_offset_table_rtx);
5380 timevar_push (TV_RELOAD);
5381 if (ira_use_lra_p)
5383 if (current_loops != NULL)
5385 loop_optimizer_finalize ();
5386 free_dominance_info (CDI_DOMINATORS);
5388 FOR_ALL_BB_FN (bb, cfun)
5389 bb->loop_father = NULL;
5390 current_loops = NULL;
5392 ira_destroy ();
5394 lra (ira_dump_file);
5395 /* ???!!! Move it before lra () when we use ira_reg_equiv in
5396 LRA. */
5397 vec_free (reg_equivs);
5398 reg_equivs = NULL;
5399 need_dce = false;
5401 else
5403 df_set_flags (DF_NO_INSN_RESCAN);
5404 build_insn_chain ();
5406 need_dce = reload (get_insns (), ira_conflicts_p);
5410 timevar_pop (TV_RELOAD);
5412 timevar_push (TV_IRA);
5414 if (ira_conflicts_p && ! ira_use_lra_p)
5416 ira_free (ira_spilled_reg_stack_slots);
5417 ira_finish_assign ();
5420 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL
5421 && overall_cost_before != ira_overall_cost)
5422 fprintf (ira_dump_file, "+++Overall after reload %" PRId64 "\n",
5423 ira_overall_cost);
5425 flag_ira_share_spill_slots = saved_flag_ira_share_spill_slots;
5427 if (! ira_use_lra_p)
5429 ira_destroy ();
5430 if (current_loops != NULL)
5432 loop_optimizer_finalize ();
5433 free_dominance_info (CDI_DOMINATORS);
5435 FOR_ALL_BB_FN (bb, cfun)
5436 bb->loop_father = NULL;
5437 current_loops = NULL;
5439 regstat_free_ri ();
5440 regstat_free_n_sets_and_refs ();
5443 if (optimize)
5444 cleanup_cfg (CLEANUP_EXPENSIVE);
5446 finish_reg_equiv ();
5448 bitmap_obstack_release (&ira_bitmap_obstack);
5449 #ifndef IRA_NO_OBSTACK
5450 obstack_free (&ira_obstack, NULL);
5451 #endif
5453 /* The code after the reload has changed so much that at this point
5454 we might as well just rescan everything. Note that
5455 df_rescan_all_insns is not going to help here because it does not
5456 touch the artificial uses and defs. */
5457 df_finish_pass (true);
5458 df_scan_alloc (NULL);
5459 df_scan_blocks ();
5461 if (optimize > 1)
5463 df_live_add_problem ();
5464 df_live_set_all_dirty ();
5467 if (optimize)
5468 df_analyze ();
5470 if (need_dce && optimize)
5471 run_fast_dce ();
5473 /* Diagnose uses of the hard frame pointer when it is used as a global
5474 register. Often we can get away with letting the user appropriate
5475 the frame pointer, but we should let them know when code generation
5476 makes that impossible. */
5477 if (global_regs[HARD_FRAME_POINTER_REGNUM] && frame_pointer_needed)
5479 tree decl = global_regs_decl[HARD_FRAME_POINTER_REGNUM];
5480 error_at (DECL_SOURCE_LOCATION (current_function_decl),
5481 "frame pointer required, but reserved");
5482 inform (DECL_SOURCE_LOCATION (decl), "for %qD", decl);
5485 if (pic_offset_table_regno != INVALID_REGNUM)
5486 pic_offset_table_rtx = gen_rtx_REG (Pmode, pic_offset_table_regno);
5488 timevar_pop (TV_IRA);
5491 /* Run the integrated register allocator. */
5493 namespace {
5495 const pass_data pass_data_ira =
5497 RTL_PASS, /* type */
5498 "ira", /* name */
5499 OPTGROUP_NONE, /* optinfo_flags */
5500 TV_IRA, /* tv_id */
5501 0, /* properties_required */
5502 0, /* properties_provided */
5503 0, /* properties_destroyed */
5504 0, /* todo_flags_start */
5505 TODO_do_not_ggc_collect, /* todo_flags_finish */
5508 class pass_ira : public rtl_opt_pass
5510 public:
5511 pass_ira (gcc::context *ctxt)
5512 : rtl_opt_pass (pass_data_ira, ctxt)
5515 /* opt_pass methods: */
5516 virtual bool gate (function *)
5518 return !targetm.no_register_allocation;
5520 virtual unsigned int execute (function *)
5522 ira (dump_file);
5523 return 0;
5526 }; // class pass_ira
5528 } // anon namespace
5530 rtl_opt_pass *
5531 make_pass_ira (gcc::context *ctxt)
5533 return new pass_ira (ctxt);
5536 namespace {
5538 const pass_data pass_data_reload =
5540 RTL_PASS, /* type */
5541 "reload", /* name */
5542 OPTGROUP_NONE, /* optinfo_flags */
5543 TV_RELOAD, /* tv_id */
5544 0, /* properties_required */
5545 0, /* properties_provided */
5546 0, /* properties_destroyed */
5547 0, /* todo_flags_start */
5548 0, /* todo_flags_finish */
5551 class pass_reload : public rtl_opt_pass
5553 public:
5554 pass_reload (gcc::context *ctxt)
5555 : rtl_opt_pass (pass_data_reload, ctxt)
5558 /* opt_pass methods: */
5559 virtual bool gate (function *)
5561 return !targetm.no_register_allocation;
5563 virtual unsigned int execute (function *)
5565 do_reload ();
5566 return 0;
5569 }; // class pass_reload
5571 } // anon namespace
5573 rtl_opt_pass *
5574 make_pass_reload (gcc::context *ctxt)
5576 return new pass_reload (ctxt);