3 * Relative error logarithm
4 * Natural logarithm of 1+x, 128-bit long double precision
10 * long double x, y, log1pq();
18 * Returns the base e (2.718...) logarithm of 1+x.
20 * The argument 1+x is separated into its exponent and fractional
21 * parts. If the exponent is between -1 and +1, the logarithm
22 * of the fraction is approximated by
24 * log(1+x) = x - 0.5 x^2 + x^3 P(x)/Q(x).
26 * Otherwise, setting z = 2(w-1)/(w+1),
28 * log(w) = z + z^3 P(z)/Q(z).
35 * arithmetic domain # trials peak rms
36 * IEEE -1, 8 100000 1.9e-34 4.3e-35
39 /* Copyright 2001 by Stephen L. Moshier
41 This library is free software; you can redistribute it and/or
42 modify it under the terms of the GNU Lesser General Public
43 License as published by the Free Software Foundation; either
44 version 2.1 of the License, or (at your option) any later version.
46 This library is distributed in the hope that it will be useful,
47 but WITHOUT ANY WARRANTY; without even the implied warranty of
48 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
49 Lesser General Public License for more details.
51 You should have received a copy of the GNU Lesser General Public
52 License along with this library; if not, see
53 <http://www.gnu.org/licenses/>. */
55 #include "quadmath-imp.h"
57 /* Coefficients for log(1+x) = x - x^2 / 2 + x^3 P(x)/Q(x)
58 * 1/sqrt(2) <= 1+x < sqrt(2)
59 * Theoretical peak relative error = 5.3e-37,
60 * relative peak error spread = 2.3e-14
62 static const __float128
63 P12
= 1.538612243596254322971797716843006400388E-6Q
,
64 P11
= 4.998469661968096229986658302195402690910E-1Q
,
65 P10
= 2.321125933898420063925789532045674660756E1Q
,
66 P9
= 4.114517881637811823002128927449878962058E2Q
,
67 P8
= 3.824952356185897735160588078446136783779E3Q
,
68 P7
= 2.128857716871515081352991964243375186031E4Q
,
69 P6
= 7.594356839258970405033155585486712125861E4Q
,
70 P5
= 1.797628303815655343403735250238293741397E5Q
,
71 P4
= 2.854829159639697837788887080758954924001E5Q
,
72 P3
= 3.007007295140399532324943111654767187848E5Q
,
73 P2
= 2.014652742082537582487669938141683759923E5Q
,
74 P1
= 7.771154681358524243729929227226708890930E4Q
,
75 P0
= 1.313572404063446165910279910527789794488E4Q
,
76 /* Q12 = 1.000000000000000000000000000000000000000E0L, */
77 Q11
= 4.839208193348159620282142911143429644326E1Q
,
78 Q10
= 9.104928120962988414618126155557301584078E2Q
,
79 Q9
= 9.147150349299596453976674231612674085381E3Q
,
80 Q8
= 5.605842085972455027590989944010492125825E4Q
,
81 Q7
= 2.248234257620569139969141618556349415120E5Q
,
82 Q6
= 6.132189329546557743179177159925690841200E5Q
,
83 Q5
= 1.158019977462989115839826904108208787040E6Q
,
84 Q4
= 1.514882452993549494932585972882995548426E6Q
,
85 Q3
= 1.347518538384329112529391120390701166528E6Q
,
86 Q2
= 7.777690340007566932935753241556479363645E5Q
,
87 Q1
= 2.626900195321832660448791748036714883242E5Q
,
88 Q0
= 3.940717212190338497730839731583397586124E4Q
;
90 /* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2),
91 * where z = 2(x-1)/(x+1)
92 * 1/sqrt(2) <= x < sqrt(2)
93 * Theoretical peak relative error = 1.1e-35,
94 * relative peak error spread 1.1e-9
96 static const __float128
97 R5
= -8.828896441624934385266096344596648080902E-1Q
,
98 R4
= 8.057002716646055371965756206836056074715E1Q
,
99 R3
= -2.024301798136027039250415126250455056397E3Q
,
100 R2
= 2.048819892795278657810231591630928516206E4Q
,
101 R1
= -8.977257995689735303686582344659576526998E4Q
,
102 R0
= 1.418134209872192732479751274970992665513E5Q
,
103 /* S6 = 1.000000000000000000000000000000000000000E0L, */
104 S5
= -1.186359407982897997337150403816839480438E2Q
,
105 S4
= 3.998526750980007367835804959888064681098E3Q
,
106 S3
= -5.748542087379434595104154610899551484314E4Q
,
107 S2
= 4.001557694070773974936904547424676279307E5Q
,
108 S1
= -1.332535117259762928288745111081235577029E6Q
,
109 S0
= 1.701761051846631278975701529965589676574E6Q
;
112 static const __float128 C1
= 6.93145751953125E-1Q
;
113 static const __float128 C2
= 1.428606820309417232121458176568075500134E-6Q
;
115 static const __float128 sqrth
= 0.7071067811865475244008443621048490392848Q
;
116 /* ln (2^16384 * (1 - 2^-113)) */
117 static const __float128 zero
= 0;
120 log1pq (__float128 xm1
)
122 __float128 x
, y
, z
, r
, s
;
127 /* Test for NaN or infinity input. */
130 if ((hx
& 0x7fffffff) >= 0x7fff0000)
131 return xm1
+ fabsq (xm1
);
133 /* log1p(+- 0) = +- 0. */
134 if (((hx
& 0x7fffffff) == 0)
135 && (u
.words32
.w1
| u
.words32
.w2
| u
.words32
.w3
) == 0)
138 if ((hx
& 0x7fffffff) < 0x3f8e0000)
140 math_check_force_underflow (xm1
);
150 /* log1p(-1) = -inf */
154 return (-1 / zero
); /* log1p(-1) = -inf */
156 return (zero
/ (x
- x
));
159 /* Separate mantissa from exponent. */
161 /* Use frexp used so that denormal numbers will be handled properly. */
164 /* Logarithm using log(x) = z + z^3 P(z^2)/Q(z^2),
165 where z = 2(x-1)/x+1). */
166 if ((e
> 2) || (e
< -2))
169 { /* 2( 2x-1 )/( 2x+1 ) */
175 { /* 2 (x-1)/(x+1) */
203 /* Logarithm using log(1+x) = x - .5x^2 + x^3 P(x)/Q(x). */
209 x
= 2 * x
- 1; /* 2x - 1 */
221 r
= (((((((((((P12
* x