* config/h8300/h8300-protos.h: Update the prototype for
[official-gcc.git] / gcc / expr.c
blob7d0f12a864a43e87dc8bcfa0b6d2d582d446a8f1
1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 #include "config.h"
23 #include "system.h"
24 #include "machmode.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "obstack.h"
28 #include "flags.h"
29 #include "regs.h"
30 #include "hard-reg-set.h"
31 #include "except.h"
32 #include "function.h"
33 #include "insn-config.h"
34 #include "insn-attr.h"
35 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
36 #include "expr.h"
37 #include "optabs.h"
38 #include "libfuncs.h"
39 #include "recog.h"
40 #include "reload.h"
41 #include "output.h"
42 #include "typeclass.h"
43 #include "toplev.h"
44 #include "ggc.h"
45 #include "langhooks.h"
46 #include "intl.h"
47 #include "tm_p.h"
49 /* Decide whether a function's arguments should be processed
50 from first to last or from last to first.
52 They should if the stack and args grow in opposite directions, but
53 only if we have push insns. */
55 #ifdef PUSH_ROUNDING
57 #if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD)
58 #define PUSH_ARGS_REVERSED /* If it's last to first. */
59 #endif
61 #endif
63 #ifndef STACK_PUSH_CODE
64 #ifdef STACK_GROWS_DOWNWARD
65 #define STACK_PUSH_CODE PRE_DEC
66 #else
67 #define STACK_PUSH_CODE PRE_INC
68 #endif
69 #endif
71 /* Assume that case vectors are not pc-relative. */
72 #ifndef CASE_VECTOR_PC_RELATIVE
73 #define CASE_VECTOR_PC_RELATIVE 0
74 #endif
76 /* If this is nonzero, we do not bother generating VOLATILE
77 around volatile memory references, and we are willing to
78 output indirect addresses. If cse is to follow, we reject
79 indirect addresses so a useful potential cse is generated;
80 if it is used only once, instruction combination will produce
81 the same indirect address eventually. */
82 int cse_not_expected;
84 /* Chain of pending expressions for PLACEHOLDER_EXPR to replace. */
85 static tree placeholder_list = 0;
87 /* This structure is used by move_by_pieces to describe the move to
88 be performed. */
89 struct move_by_pieces
91 rtx to;
92 rtx to_addr;
93 int autinc_to;
94 int explicit_inc_to;
95 rtx from;
96 rtx from_addr;
97 int autinc_from;
98 int explicit_inc_from;
99 unsigned HOST_WIDE_INT len;
100 HOST_WIDE_INT offset;
101 int reverse;
104 /* This structure is used by store_by_pieces to describe the clear to
105 be performed. */
107 struct store_by_pieces
109 rtx to;
110 rtx to_addr;
111 int autinc_to;
112 int explicit_inc_to;
113 unsigned HOST_WIDE_INT len;
114 HOST_WIDE_INT offset;
115 rtx (*constfun) PARAMS ((PTR, HOST_WIDE_INT, enum machine_mode));
116 PTR constfundata;
117 int reverse;
120 extern struct obstack permanent_obstack;
122 static rtx enqueue_insn PARAMS ((rtx, rtx));
123 static unsigned HOST_WIDE_INT move_by_pieces_ninsns
124 PARAMS ((unsigned HOST_WIDE_INT,
125 unsigned int));
126 static void move_by_pieces_1 PARAMS ((rtx (*) (rtx, ...), enum machine_mode,
127 struct move_by_pieces *));
128 static rtx clear_by_pieces_1 PARAMS ((PTR, HOST_WIDE_INT,
129 enum machine_mode));
130 static void clear_by_pieces PARAMS ((rtx, unsigned HOST_WIDE_INT,
131 unsigned int));
132 static void store_by_pieces_1 PARAMS ((struct store_by_pieces *,
133 unsigned int));
134 static void store_by_pieces_2 PARAMS ((rtx (*) (rtx, ...),
135 enum machine_mode,
136 struct store_by_pieces *));
137 static rtx get_subtarget PARAMS ((rtx));
138 static int is_zeros_p PARAMS ((tree));
139 static int mostly_zeros_p PARAMS ((tree));
140 static void store_constructor_field PARAMS ((rtx, unsigned HOST_WIDE_INT,
141 HOST_WIDE_INT, enum machine_mode,
142 tree, tree, int, int));
143 static void store_constructor PARAMS ((tree, rtx, int, HOST_WIDE_INT));
144 static rtx store_field PARAMS ((rtx, HOST_WIDE_INT,
145 HOST_WIDE_INT, enum machine_mode,
146 tree, enum machine_mode, int, tree,
147 int));
148 static rtx var_rtx PARAMS ((tree));
149 static HOST_WIDE_INT highest_pow2_factor PARAMS ((tree));
150 static rtx expand_increment PARAMS ((tree, int, int));
151 static void do_jump_by_parts_greater PARAMS ((tree, int, rtx, rtx));
152 static void do_jump_by_parts_equality PARAMS ((tree, rtx, rtx));
153 static void do_compare_and_jump PARAMS ((tree, enum rtx_code, enum rtx_code,
154 rtx, rtx));
155 static rtx do_store_flag PARAMS ((tree, rtx, enum machine_mode, int));
156 #ifdef PUSH_ROUNDING
157 static void emit_single_push_insn PARAMS ((enum machine_mode, rtx, tree));
158 #endif
159 static void do_tablejump PARAMS ((rtx, enum machine_mode, rtx, rtx, rtx));
161 /* Record for each mode whether we can move a register directly to or
162 from an object of that mode in memory. If we can't, we won't try
163 to use that mode directly when accessing a field of that mode. */
165 static char direct_load[NUM_MACHINE_MODES];
166 static char direct_store[NUM_MACHINE_MODES];
168 /* If a memory-to-memory move would take MOVE_RATIO or more simple
169 move-instruction sequences, we will do a movstr or libcall instead. */
171 #ifndef MOVE_RATIO
172 #if defined (HAVE_movstrqi) || defined (HAVE_movstrhi) || defined (HAVE_movstrsi) || defined (HAVE_movstrdi) || defined (HAVE_movstrti)
173 #define MOVE_RATIO 2
174 #else
175 /* If we are optimizing for space (-Os), cut down the default move ratio. */
176 #define MOVE_RATIO (optimize_size ? 3 : 15)
177 #endif
178 #endif
180 /* This macro is used to determine whether move_by_pieces should be called
181 to perform a structure copy. */
182 #ifndef MOVE_BY_PIECES_P
183 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
184 (move_by_pieces_ninsns (SIZE, ALIGN) < (unsigned int) MOVE_RATIO)
185 #endif
187 /* This array records the insn_code of insns to perform block moves. */
188 enum insn_code movstr_optab[NUM_MACHINE_MODES];
190 /* This array records the insn_code of insns to perform block clears. */
191 enum insn_code clrstr_optab[NUM_MACHINE_MODES];
193 /* SLOW_UNALIGNED_ACCESS is non-zero if unaligned accesses are very slow. */
195 #ifndef SLOW_UNALIGNED_ACCESS
196 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
197 #endif
199 /* This is run once per compilation to set up which modes can be used
200 directly in memory and to initialize the block move optab. */
202 void
203 init_expr_once ()
205 rtx insn, pat;
206 enum machine_mode mode;
207 int num_clobbers;
208 rtx mem, mem1;
210 start_sequence ();
212 /* Try indexing by frame ptr and try by stack ptr.
213 It is known that on the Convex the stack ptr isn't a valid index.
214 With luck, one or the other is valid on any machine. */
215 mem = gen_rtx_MEM (VOIDmode, stack_pointer_rtx);
216 mem1 = gen_rtx_MEM (VOIDmode, frame_pointer_rtx);
218 insn = emit_insn (gen_rtx_SET (0, NULL_RTX, NULL_RTX));
219 pat = PATTERN (insn);
221 for (mode = VOIDmode; (int) mode < NUM_MACHINE_MODES;
222 mode = (enum machine_mode) ((int) mode + 1))
224 int regno;
225 rtx reg;
227 direct_load[(int) mode] = direct_store[(int) mode] = 0;
228 PUT_MODE (mem, mode);
229 PUT_MODE (mem1, mode);
231 /* See if there is some register that can be used in this mode and
232 directly loaded or stored from memory. */
234 if (mode != VOIDmode && mode != BLKmode)
235 for (regno = 0; regno < FIRST_PSEUDO_REGISTER
236 && (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0);
237 regno++)
239 if (! HARD_REGNO_MODE_OK (regno, mode))
240 continue;
242 reg = gen_rtx_REG (mode, regno);
244 SET_SRC (pat) = mem;
245 SET_DEST (pat) = reg;
246 if (recog (pat, insn, &num_clobbers) >= 0)
247 direct_load[(int) mode] = 1;
249 SET_SRC (pat) = mem1;
250 SET_DEST (pat) = reg;
251 if (recog (pat, insn, &num_clobbers) >= 0)
252 direct_load[(int) mode] = 1;
254 SET_SRC (pat) = reg;
255 SET_DEST (pat) = mem;
256 if (recog (pat, insn, &num_clobbers) >= 0)
257 direct_store[(int) mode] = 1;
259 SET_SRC (pat) = reg;
260 SET_DEST (pat) = mem1;
261 if (recog (pat, insn, &num_clobbers) >= 0)
262 direct_store[(int) mode] = 1;
266 end_sequence ();
269 /* This is run at the start of compiling a function. */
271 void
272 init_expr ()
274 cfun->expr = (struct expr_status *) xmalloc (sizeof (struct expr_status));
276 pending_chain = 0;
277 pending_stack_adjust = 0;
278 stack_pointer_delta = 0;
279 inhibit_defer_pop = 0;
280 saveregs_value = 0;
281 apply_args_value = 0;
282 forced_labels = 0;
285 void
286 mark_expr_status (p)
287 struct expr_status *p;
289 if (p == NULL)
290 return;
292 ggc_mark_rtx (p->x_saveregs_value);
293 ggc_mark_rtx (p->x_apply_args_value);
294 ggc_mark_rtx (p->x_forced_labels);
297 void
298 free_expr_status (f)
299 struct function *f;
301 free (f->expr);
302 f->expr = NULL;
305 /* Small sanity check that the queue is empty at the end of a function. */
307 void
308 finish_expr_for_function ()
310 if (pending_chain)
311 abort ();
314 /* Manage the queue of increment instructions to be output
315 for POSTINCREMENT_EXPR expressions, etc. */
317 /* Queue up to increment (or change) VAR later. BODY says how:
318 BODY should be the same thing you would pass to emit_insn
319 to increment right away. It will go to emit_insn later on.
321 The value is a QUEUED expression to be used in place of VAR
322 where you want to guarantee the pre-incrementation value of VAR. */
324 static rtx
325 enqueue_insn (var, body)
326 rtx var, body;
328 pending_chain = gen_rtx_QUEUED (GET_MODE (var), var, NULL_RTX, NULL_RTX,
329 body, pending_chain);
330 return pending_chain;
333 /* Use protect_from_queue to convert a QUEUED expression
334 into something that you can put immediately into an instruction.
335 If the queued incrementation has not happened yet,
336 protect_from_queue returns the variable itself.
337 If the incrementation has happened, protect_from_queue returns a temp
338 that contains a copy of the old value of the variable.
340 Any time an rtx which might possibly be a QUEUED is to be put
341 into an instruction, it must be passed through protect_from_queue first.
342 QUEUED expressions are not meaningful in instructions.
344 Do not pass a value through protect_from_queue and then hold
345 on to it for a while before putting it in an instruction!
346 If the queue is flushed in between, incorrect code will result. */
349 protect_from_queue (x, modify)
350 rtx x;
351 int modify;
353 RTX_CODE code = GET_CODE (x);
355 #if 0 /* A QUEUED can hang around after the queue is forced out. */
356 /* Shortcut for most common case. */
357 if (pending_chain == 0)
358 return x;
359 #endif
361 if (code != QUEUED)
363 /* A special hack for read access to (MEM (QUEUED ...)) to facilitate
364 use of autoincrement. Make a copy of the contents of the memory
365 location rather than a copy of the address, but not if the value is
366 of mode BLKmode. Don't modify X in place since it might be
367 shared. */
368 if (code == MEM && GET_MODE (x) != BLKmode
369 && GET_CODE (XEXP (x, 0)) == QUEUED && !modify)
371 rtx y = XEXP (x, 0);
372 rtx new = replace_equiv_address_nv (x, QUEUED_VAR (y));
374 if (QUEUED_INSN (y))
376 rtx temp = gen_reg_rtx (GET_MODE (x));
378 emit_insn_before (gen_move_insn (temp, new),
379 QUEUED_INSN (y));
380 return temp;
383 /* Copy the address into a pseudo, so that the returned value
384 remains correct across calls to emit_queue. */
385 return replace_equiv_address (new, copy_to_reg (XEXP (new, 0)));
388 /* Otherwise, recursively protect the subexpressions of all
389 the kinds of rtx's that can contain a QUEUED. */
390 if (code == MEM)
392 rtx tem = protect_from_queue (XEXP (x, 0), 0);
393 if (tem != XEXP (x, 0))
395 x = copy_rtx (x);
396 XEXP (x, 0) = tem;
399 else if (code == PLUS || code == MULT)
401 rtx new0 = protect_from_queue (XEXP (x, 0), 0);
402 rtx new1 = protect_from_queue (XEXP (x, 1), 0);
403 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
405 x = copy_rtx (x);
406 XEXP (x, 0) = new0;
407 XEXP (x, 1) = new1;
410 return x;
412 /* If the increment has not happened, use the variable itself. Copy it
413 into a new pseudo so that the value remains correct across calls to
414 emit_queue. */
415 if (QUEUED_INSN (x) == 0)
416 return copy_to_reg (QUEUED_VAR (x));
417 /* If the increment has happened and a pre-increment copy exists,
418 use that copy. */
419 if (QUEUED_COPY (x) != 0)
420 return QUEUED_COPY (x);
421 /* The increment has happened but we haven't set up a pre-increment copy.
422 Set one up now, and use it. */
423 QUEUED_COPY (x) = gen_reg_rtx (GET_MODE (QUEUED_VAR (x)));
424 emit_insn_before (gen_move_insn (QUEUED_COPY (x), QUEUED_VAR (x)),
425 QUEUED_INSN (x));
426 return QUEUED_COPY (x);
429 /* Return nonzero if X contains a QUEUED expression:
430 if it contains anything that will be altered by a queued increment.
431 We handle only combinations of MEM, PLUS, MINUS and MULT operators
432 since memory addresses generally contain only those. */
435 queued_subexp_p (x)
436 rtx x;
438 enum rtx_code code = GET_CODE (x);
439 switch (code)
441 case QUEUED:
442 return 1;
443 case MEM:
444 return queued_subexp_p (XEXP (x, 0));
445 case MULT:
446 case PLUS:
447 case MINUS:
448 return (queued_subexp_p (XEXP (x, 0))
449 || queued_subexp_p (XEXP (x, 1)));
450 default:
451 return 0;
455 /* Perform all the pending incrementations. */
457 void
458 emit_queue ()
460 rtx p;
461 while ((p = pending_chain))
463 rtx body = QUEUED_BODY (p);
465 if (GET_CODE (body) == SEQUENCE)
467 QUEUED_INSN (p) = XVECEXP (QUEUED_BODY (p), 0, 0);
468 emit_insn (QUEUED_BODY (p));
470 else
471 QUEUED_INSN (p) = emit_insn (QUEUED_BODY (p));
472 pending_chain = QUEUED_NEXT (p);
476 /* Copy data from FROM to TO, where the machine modes are not the same.
477 Both modes may be integer, or both may be floating.
478 UNSIGNEDP should be nonzero if FROM is an unsigned type.
479 This causes zero-extension instead of sign-extension. */
481 void
482 convert_move (to, from, unsignedp)
483 rtx to, from;
484 int unsignedp;
486 enum machine_mode to_mode = GET_MODE (to);
487 enum machine_mode from_mode = GET_MODE (from);
488 int to_real = GET_MODE_CLASS (to_mode) == MODE_FLOAT;
489 int from_real = GET_MODE_CLASS (from_mode) == MODE_FLOAT;
490 enum insn_code code;
491 rtx libcall;
493 /* rtx code for making an equivalent value. */
494 enum rtx_code equiv_code = (unsignedp ? ZERO_EXTEND : SIGN_EXTEND);
496 to = protect_from_queue (to, 1);
497 from = protect_from_queue (from, 0);
499 if (to_real != from_real)
500 abort ();
502 /* If FROM is a SUBREG that indicates that we have already done at least
503 the required extension, strip it. We don't handle such SUBREGs as
504 TO here. */
506 if (GET_CODE (from) == SUBREG && SUBREG_PROMOTED_VAR_P (from)
507 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (from)))
508 >= GET_MODE_SIZE (to_mode))
509 && SUBREG_PROMOTED_UNSIGNED_P (from) == unsignedp)
510 from = gen_lowpart (to_mode, from), from_mode = to_mode;
512 if (GET_CODE (to) == SUBREG && SUBREG_PROMOTED_VAR_P (to))
513 abort ();
515 if (to_mode == from_mode
516 || (from_mode == VOIDmode && CONSTANT_P (from)))
518 emit_move_insn (to, from);
519 return;
522 if (VECTOR_MODE_P (to_mode) || VECTOR_MODE_P (from_mode))
524 if (GET_MODE_BITSIZE (from_mode) != GET_MODE_BITSIZE (to_mode))
525 abort ();
527 if (VECTOR_MODE_P (to_mode))
528 from = simplify_gen_subreg (to_mode, from, GET_MODE (from), 0);
529 else
530 to = simplify_gen_subreg (from_mode, to, GET_MODE (to), 0);
532 emit_move_insn (to, from);
533 return;
536 if (to_real != from_real)
537 abort ();
539 if (to_real)
541 rtx value, insns;
543 if (GET_MODE_BITSIZE (from_mode) < GET_MODE_BITSIZE (to_mode))
545 /* Try converting directly if the insn is supported. */
546 if ((code = can_extend_p (to_mode, from_mode, 0))
547 != CODE_FOR_nothing)
549 emit_unop_insn (code, to, from, UNKNOWN);
550 return;
554 #ifdef HAVE_trunchfqf2
555 if (HAVE_trunchfqf2 && from_mode == HFmode && to_mode == QFmode)
557 emit_unop_insn (CODE_FOR_trunchfqf2, to, from, UNKNOWN);
558 return;
560 #endif
561 #ifdef HAVE_trunctqfqf2
562 if (HAVE_trunctqfqf2 && from_mode == TQFmode && to_mode == QFmode)
564 emit_unop_insn (CODE_FOR_trunctqfqf2, to, from, UNKNOWN);
565 return;
567 #endif
568 #ifdef HAVE_truncsfqf2
569 if (HAVE_truncsfqf2 && from_mode == SFmode && to_mode == QFmode)
571 emit_unop_insn (CODE_FOR_truncsfqf2, to, from, UNKNOWN);
572 return;
574 #endif
575 #ifdef HAVE_truncdfqf2
576 if (HAVE_truncdfqf2 && from_mode == DFmode && to_mode == QFmode)
578 emit_unop_insn (CODE_FOR_truncdfqf2, to, from, UNKNOWN);
579 return;
581 #endif
582 #ifdef HAVE_truncxfqf2
583 if (HAVE_truncxfqf2 && from_mode == XFmode && to_mode == QFmode)
585 emit_unop_insn (CODE_FOR_truncxfqf2, to, from, UNKNOWN);
586 return;
588 #endif
589 #ifdef HAVE_trunctfqf2
590 if (HAVE_trunctfqf2 && from_mode == TFmode && to_mode == QFmode)
592 emit_unop_insn (CODE_FOR_trunctfqf2, to, from, UNKNOWN);
593 return;
595 #endif
597 #ifdef HAVE_trunctqfhf2
598 if (HAVE_trunctqfhf2 && from_mode == TQFmode && to_mode == HFmode)
600 emit_unop_insn (CODE_FOR_trunctqfhf2, to, from, UNKNOWN);
601 return;
603 #endif
604 #ifdef HAVE_truncsfhf2
605 if (HAVE_truncsfhf2 && from_mode == SFmode && to_mode == HFmode)
607 emit_unop_insn (CODE_FOR_truncsfhf2, to, from, UNKNOWN);
608 return;
610 #endif
611 #ifdef HAVE_truncdfhf2
612 if (HAVE_truncdfhf2 && from_mode == DFmode && to_mode == HFmode)
614 emit_unop_insn (CODE_FOR_truncdfhf2, to, from, UNKNOWN);
615 return;
617 #endif
618 #ifdef HAVE_truncxfhf2
619 if (HAVE_truncxfhf2 && from_mode == XFmode && to_mode == HFmode)
621 emit_unop_insn (CODE_FOR_truncxfhf2, to, from, UNKNOWN);
622 return;
624 #endif
625 #ifdef HAVE_trunctfhf2
626 if (HAVE_trunctfhf2 && from_mode == TFmode && to_mode == HFmode)
628 emit_unop_insn (CODE_FOR_trunctfhf2, to, from, UNKNOWN);
629 return;
631 #endif
633 #ifdef HAVE_truncsftqf2
634 if (HAVE_truncsftqf2 && from_mode == SFmode && to_mode == TQFmode)
636 emit_unop_insn (CODE_FOR_truncsftqf2, to, from, UNKNOWN);
637 return;
639 #endif
640 #ifdef HAVE_truncdftqf2
641 if (HAVE_truncdftqf2 && from_mode == DFmode && to_mode == TQFmode)
643 emit_unop_insn (CODE_FOR_truncdftqf2, to, from, UNKNOWN);
644 return;
646 #endif
647 #ifdef HAVE_truncxftqf2
648 if (HAVE_truncxftqf2 && from_mode == XFmode && to_mode == TQFmode)
650 emit_unop_insn (CODE_FOR_truncxftqf2, to, from, UNKNOWN);
651 return;
653 #endif
654 #ifdef HAVE_trunctftqf2
655 if (HAVE_trunctftqf2 && from_mode == TFmode && to_mode == TQFmode)
657 emit_unop_insn (CODE_FOR_trunctftqf2, to, from, UNKNOWN);
658 return;
660 #endif
662 #ifdef HAVE_truncdfsf2
663 if (HAVE_truncdfsf2 && from_mode == DFmode && to_mode == SFmode)
665 emit_unop_insn (CODE_FOR_truncdfsf2, to, from, UNKNOWN);
666 return;
668 #endif
669 #ifdef HAVE_truncxfsf2
670 if (HAVE_truncxfsf2 && from_mode == XFmode && to_mode == SFmode)
672 emit_unop_insn (CODE_FOR_truncxfsf2, to, from, UNKNOWN);
673 return;
675 #endif
676 #ifdef HAVE_trunctfsf2
677 if (HAVE_trunctfsf2 && from_mode == TFmode && to_mode == SFmode)
679 emit_unop_insn (CODE_FOR_trunctfsf2, to, from, UNKNOWN);
680 return;
682 #endif
683 #ifdef HAVE_truncxfdf2
684 if (HAVE_truncxfdf2 && from_mode == XFmode && to_mode == DFmode)
686 emit_unop_insn (CODE_FOR_truncxfdf2, to, from, UNKNOWN);
687 return;
689 #endif
690 #ifdef HAVE_trunctfdf2
691 if (HAVE_trunctfdf2 && from_mode == TFmode && to_mode == DFmode)
693 emit_unop_insn (CODE_FOR_trunctfdf2, to, from, UNKNOWN);
694 return;
696 #endif
698 libcall = (rtx) 0;
699 switch (from_mode)
701 case SFmode:
702 switch (to_mode)
704 case DFmode:
705 libcall = extendsfdf2_libfunc;
706 break;
708 case XFmode:
709 libcall = extendsfxf2_libfunc;
710 break;
712 case TFmode:
713 libcall = extendsftf2_libfunc;
714 break;
716 default:
717 break;
719 break;
721 case DFmode:
722 switch (to_mode)
724 case SFmode:
725 libcall = truncdfsf2_libfunc;
726 break;
728 case XFmode:
729 libcall = extenddfxf2_libfunc;
730 break;
732 case TFmode:
733 libcall = extenddftf2_libfunc;
734 break;
736 default:
737 break;
739 break;
741 case XFmode:
742 switch (to_mode)
744 case SFmode:
745 libcall = truncxfsf2_libfunc;
746 break;
748 case DFmode:
749 libcall = truncxfdf2_libfunc;
750 break;
752 default:
753 break;
755 break;
757 case TFmode:
758 switch (to_mode)
760 case SFmode:
761 libcall = trunctfsf2_libfunc;
762 break;
764 case DFmode:
765 libcall = trunctfdf2_libfunc;
766 break;
768 default:
769 break;
771 break;
773 default:
774 break;
777 if (libcall == (rtx) 0)
778 /* This conversion is not implemented yet. */
779 abort ();
781 start_sequence ();
782 value = emit_library_call_value (libcall, NULL_RTX, LCT_CONST, to_mode,
783 1, from, from_mode);
784 insns = get_insns ();
785 end_sequence ();
786 emit_libcall_block (insns, to, value, gen_rtx_FLOAT_TRUNCATE (to_mode,
787 from));
788 return;
791 /* Now both modes are integers. */
793 /* Handle expanding beyond a word. */
794 if (GET_MODE_BITSIZE (from_mode) < GET_MODE_BITSIZE (to_mode)
795 && GET_MODE_BITSIZE (to_mode) > BITS_PER_WORD)
797 rtx insns;
798 rtx lowpart;
799 rtx fill_value;
800 rtx lowfrom;
801 int i;
802 enum machine_mode lowpart_mode;
803 int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD);
805 /* Try converting directly if the insn is supported. */
806 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
807 != CODE_FOR_nothing)
809 /* If FROM is a SUBREG, put it into a register. Do this
810 so that we always generate the same set of insns for
811 better cse'ing; if an intermediate assignment occurred,
812 we won't be doing the operation directly on the SUBREG. */
813 if (optimize > 0 && GET_CODE (from) == SUBREG)
814 from = force_reg (from_mode, from);
815 emit_unop_insn (code, to, from, equiv_code);
816 return;
818 /* Next, try converting via full word. */
819 else if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD
820 && ((code = can_extend_p (to_mode, word_mode, unsignedp))
821 != CODE_FOR_nothing))
823 if (GET_CODE (to) == REG)
824 emit_insn (gen_rtx_CLOBBER (VOIDmode, to));
825 convert_move (gen_lowpart (word_mode, to), from, unsignedp);
826 emit_unop_insn (code, to,
827 gen_lowpart (word_mode, to), equiv_code);
828 return;
831 /* No special multiword conversion insn; do it by hand. */
832 start_sequence ();
834 /* Since we will turn this into a no conflict block, we must ensure
835 that the source does not overlap the target. */
837 if (reg_overlap_mentioned_p (to, from))
838 from = force_reg (from_mode, from);
840 /* Get a copy of FROM widened to a word, if necessary. */
841 if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD)
842 lowpart_mode = word_mode;
843 else
844 lowpart_mode = from_mode;
846 lowfrom = convert_to_mode (lowpart_mode, from, unsignedp);
848 lowpart = gen_lowpart (lowpart_mode, to);
849 emit_move_insn (lowpart, lowfrom);
851 /* Compute the value to put in each remaining word. */
852 if (unsignedp)
853 fill_value = const0_rtx;
854 else
856 #ifdef HAVE_slt
857 if (HAVE_slt
858 && insn_data[(int) CODE_FOR_slt].operand[0].mode == word_mode
859 && STORE_FLAG_VALUE == -1)
861 emit_cmp_insn (lowfrom, const0_rtx, NE, NULL_RTX,
862 lowpart_mode, 0);
863 fill_value = gen_reg_rtx (word_mode);
864 emit_insn (gen_slt (fill_value));
866 else
867 #endif
869 fill_value
870 = expand_shift (RSHIFT_EXPR, lowpart_mode, lowfrom,
871 size_int (GET_MODE_BITSIZE (lowpart_mode) - 1),
872 NULL_RTX, 0);
873 fill_value = convert_to_mode (word_mode, fill_value, 1);
877 /* Fill the remaining words. */
878 for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++)
880 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
881 rtx subword = operand_subword (to, index, 1, to_mode);
883 if (subword == 0)
884 abort ();
886 if (fill_value != subword)
887 emit_move_insn (subword, fill_value);
890 insns = get_insns ();
891 end_sequence ();
893 emit_no_conflict_block (insns, to, from, NULL_RTX,
894 gen_rtx_fmt_e (equiv_code, to_mode, copy_rtx (from)));
895 return;
898 /* Truncating multi-word to a word or less. */
899 if (GET_MODE_BITSIZE (from_mode) > BITS_PER_WORD
900 && GET_MODE_BITSIZE (to_mode) <= BITS_PER_WORD)
902 if (!((GET_CODE (from) == MEM
903 && ! MEM_VOLATILE_P (from)
904 && direct_load[(int) to_mode]
905 && ! mode_dependent_address_p (XEXP (from, 0)))
906 || GET_CODE (from) == REG
907 || GET_CODE (from) == SUBREG))
908 from = force_reg (from_mode, from);
909 convert_move (to, gen_lowpart (word_mode, from), 0);
910 return;
913 /* Handle pointer conversion. */ /* SPEE 900220. */
914 if (to_mode == PQImode)
916 if (from_mode != QImode)
917 from = convert_to_mode (QImode, from, unsignedp);
919 #ifdef HAVE_truncqipqi2
920 if (HAVE_truncqipqi2)
922 emit_unop_insn (CODE_FOR_truncqipqi2, to, from, UNKNOWN);
923 return;
925 #endif /* HAVE_truncqipqi2 */
926 abort ();
929 if (from_mode == PQImode)
931 if (to_mode != QImode)
933 from = convert_to_mode (QImode, from, unsignedp);
934 from_mode = QImode;
936 else
938 #ifdef HAVE_extendpqiqi2
939 if (HAVE_extendpqiqi2)
941 emit_unop_insn (CODE_FOR_extendpqiqi2, to, from, UNKNOWN);
942 return;
944 #endif /* HAVE_extendpqiqi2 */
945 abort ();
949 if (to_mode == PSImode)
951 if (from_mode != SImode)
952 from = convert_to_mode (SImode, from, unsignedp);
954 #ifdef HAVE_truncsipsi2
955 if (HAVE_truncsipsi2)
957 emit_unop_insn (CODE_FOR_truncsipsi2, to, from, UNKNOWN);
958 return;
960 #endif /* HAVE_truncsipsi2 */
961 abort ();
964 if (from_mode == PSImode)
966 if (to_mode != SImode)
968 from = convert_to_mode (SImode, from, unsignedp);
969 from_mode = SImode;
971 else
973 #ifdef HAVE_extendpsisi2
974 if (! unsignedp && HAVE_extendpsisi2)
976 emit_unop_insn (CODE_FOR_extendpsisi2, to, from, UNKNOWN);
977 return;
979 #endif /* HAVE_extendpsisi2 */
980 #ifdef HAVE_zero_extendpsisi2
981 if (unsignedp && HAVE_zero_extendpsisi2)
983 emit_unop_insn (CODE_FOR_zero_extendpsisi2, to, from, UNKNOWN);
984 return;
986 #endif /* HAVE_zero_extendpsisi2 */
987 abort ();
991 if (to_mode == PDImode)
993 if (from_mode != DImode)
994 from = convert_to_mode (DImode, from, unsignedp);
996 #ifdef HAVE_truncdipdi2
997 if (HAVE_truncdipdi2)
999 emit_unop_insn (CODE_FOR_truncdipdi2, to, from, UNKNOWN);
1000 return;
1002 #endif /* HAVE_truncdipdi2 */
1003 abort ();
1006 if (from_mode == PDImode)
1008 if (to_mode != DImode)
1010 from = convert_to_mode (DImode, from, unsignedp);
1011 from_mode = DImode;
1013 else
1015 #ifdef HAVE_extendpdidi2
1016 if (HAVE_extendpdidi2)
1018 emit_unop_insn (CODE_FOR_extendpdidi2, to, from, UNKNOWN);
1019 return;
1021 #endif /* HAVE_extendpdidi2 */
1022 abort ();
1026 /* Now follow all the conversions between integers
1027 no more than a word long. */
1029 /* For truncation, usually we can just refer to FROM in a narrower mode. */
1030 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode)
1031 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
1032 GET_MODE_BITSIZE (from_mode)))
1034 if (!((GET_CODE (from) == MEM
1035 && ! MEM_VOLATILE_P (from)
1036 && direct_load[(int) to_mode]
1037 && ! mode_dependent_address_p (XEXP (from, 0)))
1038 || GET_CODE (from) == REG
1039 || GET_CODE (from) == SUBREG))
1040 from = force_reg (from_mode, from);
1041 if (GET_CODE (from) == REG && REGNO (from) < FIRST_PSEUDO_REGISTER
1042 && ! HARD_REGNO_MODE_OK (REGNO (from), to_mode))
1043 from = copy_to_reg (from);
1044 emit_move_insn (to, gen_lowpart (to_mode, from));
1045 return;
1048 /* Handle extension. */
1049 if (GET_MODE_BITSIZE (to_mode) > GET_MODE_BITSIZE (from_mode))
1051 /* Convert directly if that works. */
1052 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
1053 != CODE_FOR_nothing)
1055 if (flag_force_mem)
1056 from = force_not_mem (from);
1058 emit_unop_insn (code, to, from, equiv_code);
1059 return;
1061 else
1063 enum machine_mode intermediate;
1064 rtx tmp;
1065 tree shift_amount;
1067 /* Search for a mode to convert via. */
1068 for (intermediate = from_mode; intermediate != VOIDmode;
1069 intermediate = GET_MODE_WIDER_MODE (intermediate))
1070 if (((can_extend_p (to_mode, intermediate, unsignedp)
1071 != CODE_FOR_nothing)
1072 || (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate)
1073 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
1074 GET_MODE_BITSIZE (intermediate))))
1075 && (can_extend_p (intermediate, from_mode, unsignedp)
1076 != CODE_FOR_nothing))
1078 convert_move (to, convert_to_mode (intermediate, from,
1079 unsignedp), unsignedp);
1080 return;
1083 /* No suitable intermediate mode.
1084 Generate what we need with shifts. */
1085 shift_amount = build_int_2 (GET_MODE_BITSIZE (to_mode)
1086 - GET_MODE_BITSIZE (from_mode), 0);
1087 from = gen_lowpart (to_mode, force_reg (from_mode, from));
1088 tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount,
1089 to, unsignedp);
1090 tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount,
1091 to, unsignedp);
1092 if (tmp != to)
1093 emit_move_insn (to, tmp);
1094 return;
1098 /* Support special truncate insns for certain modes. */
1100 if (from_mode == DImode && to_mode == SImode)
1102 #ifdef HAVE_truncdisi2
1103 if (HAVE_truncdisi2)
1105 emit_unop_insn (CODE_FOR_truncdisi2, to, from, UNKNOWN);
1106 return;
1108 #endif
1109 convert_move (to, force_reg (from_mode, from), unsignedp);
1110 return;
1113 if (from_mode == DImode && to_mode == HImode)
1115 #ifdef HAVE_truncdihi2
1116 if (HAVE_truncdihi2)
1118 emit_unop_insn (CODE_FOR_truncdihi2, to, from, UNKNOWN);
1119 return;
1121 #endif
1122 convert_move (to, force_reg (from_mode, from), unsignedp);
1123 return;
1126 if (from_mode == DImode && to_mode == QImode)
1128 #ifdef HAVE_truncdiqi2
1129 if (HAVE_truncdiqi2)
1131 emit_unop_insn (CODE_FOR_truncdiqi2, to, from, UNKNOWN);
1132 return;
1134 #endif
1135 convert_move (to, force_reg (from_mode, from), unsignedp);
1136 return;
1139 if (from_mode == SImode && to_mode == HImode)
1141 #ifdef HAVE_truncsihi2
1142 if (HAVE_truncsihi2)
1144 emit_unop_insn (CODE_FOR_truncsihi2, to, from, UNKNOWN);
1145 return;
1147 #endif
1148 convert_move (to, force_reg (from_mode, from), unsignedp);
1149 return;
1152 if (from_mode == SImode && to_mode == QImode)
1154 #ifdef HAVE_truncsiqi2
1155 if (HAVE_truncsiqi2)
1157 emit_unop_insn (CODE_FOR_truncsiqi2, to, from, UNKNOWN);
1158 return;
1160 #endif
1161 convert_move (to, force_reg (from_mode, from), unsignedp);
1162 return;
1165 if (from_mode == HImode && to_mode == QImode)
1167 #ifdef HAVE_trunchiqi2
1168 if (HAVE_trunchiqi2)
1170 emit_unop_insn (CODE_FOR_trunchiqi2, to, from, UNKNOWN);
1171 return;
1173 #endif
1174 convert_move (to, force_reg (from_mode, from), unsignedp);
1175 return;
1178 if (from_mode == TImode && to_mode == DImode)
1180 #ifdef HAVE_trunctidi2
1181 if (HAVE_trunctidi2)
1183 emit_unop_insn (CODE_FOR_trunctidi2, to, from, UNKNOWN);
1184 return;
1186 #endif
1187 convert_move (to, force_reg (from_mode, from), unsignedp);
1188 return;
1191 if (from_mode == TImode && to_mode == SImode)
1193 #ifdef HAVE_trunctisi2
1194 if (HAVE_trunctisi2)
1196 emit_unop_insn (CODE_FOR_trunctisi2, to, from, UNKNOWN);
1197 return;
1199 #endif
1200 convert_move (to, force_reg (from_mode, from), unsignedp);
1201 return;
1204 if (from_mode == TImode && to_mode == HImode)
1206 #ifdef HAVE_trunctihi2
1207 if (HAVE_trunctihi2)
1209 emit_unop_insn (CODE_FOR_trunctihi2, to, from, UNKNOWN);
1210 return;
1212 #endif
1213 convert_move (to, force_reg (from_mode, from), unsignedp);
1214 return;
1217 if (from_mode == TImode && to_mode == QImode)
1219 #ifdef HAVE_trunctiqi2
1220 if (HAVE_trunctiqi2)
1222 emit_unop_insn (CODE_FOR_trunctiqi2, to, from, UNKNOWN);
1223 return;
1225 #endif
1226 convert_move (to, force_reg (from_mode, from), unsignedp);
1227 return;
1230 /* Handle truncation of volatile memrefs, and so on;
1231 the things that couldn't be truncated directly,
1232 and for which there was no special instruction. */
1233 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode))
1235 rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from));
1236 emit_move_insn (to, temp);
1237 return;
1240 /* Mode combination is not recognized. */
1241 abort ();
1244 /* Return an rtx for a value that would result
1245 from converting X to mode MODE.
1246 Both X and MODE may be floating, or both integer.
1247 UNSIGNEDP is nonzero if X is an unsigned value.
1248 This can be done by referring to a part of X in place
1249 or by copying to a new temporary with conversion.
1251 This function *must not* call protect_from_queue
1252 except when putting X into an insn (in which case convert_move does it). */
1255 convert_to_mode (mode, x, unsignedp)
1256 enum machine_mode mode;
1257 rtx x;
1258 int unsignedp;
1260 return convert_modes (mode, VOIDmode, x, unsignedp);
1263 /* Return an rtx for a value that would result
1264 from converting X from mode OLDMODE to mode MODE.
1265 Both modes may be floating, or both integer.
1266 UNSIGNEDP is nonzero if X is an unsigned value.
1268 This can be done by referring to a part of X in place
1269 or by copying to a new temporary with conversion.
1271 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode.
1273 This function *must not* call protect_from_queue
1274 except when putting X into an insn (in which case convert_move does it). */
1277 convert_modes (mode, oldmode, x, unsignedp)
1278 enum machine_mode mode, oldmode;
1279 rtx x;
1280 int unsignedp;
1282 rtx temp;
1284 /* If FROM is a SUBREG that indicates that we have already done at least
1285 the required extension, strip it. */
1287 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
1288 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) >= GET_MODE_SIZE (mode)
1289 && SUBREG_PROMOTED_UNSIGNED_P (x) == unsignedp)
1290 x = gen_lowpart (mode, x);
1292 if (GET_MODE (x) != VOIDmode)
1293 oldmode = GET_MODE (x);
1295 if (mode == oldmode)
1296 return x;
1298 /* There is one case that we must handle specially: If we are converting
1299 a CONST_INT into a mode whose size is twice HOST_BITS_PER_WIDE_INT and
1300 we are to interpret the constant as unsigned, gen_lowpart will do
1301 the wrong if the constant appears negative. What we want to do is
1302 make the high-order word of the constant zero, not all ones. */
1304 if (unsignedp && GET_MODE_CLASS (mode) == MODE_INT
1305 && GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT
1306 && GET_CODE (x) == CONST_INT && INTVAL (x) < 0)
1308 HOST_WIDE_INT val = INTVAL (x);
1310 if (oldmode != VOIDmode
1311 && HOST_BITS_PER_WIDE_INT > GET_MODE_BITSIZE (oldmode))
1313 int width = GET_MODE_BITSIZE (oldmode);
1315 /* We need to zero extend VAL. */
1316 val &= ((HOST_WIDE_INT) 1 << width) - 1;
1319 return immed_double_const (val, (HOST_WIDE_INT) 0, mode);
1322 /* We can do this with a gen_lowpart if both desired and current modes
1323 are integer, and this is either a constant integer, a register, or a
1324 non-volatile MEM. Except for the constant case where MODE is no
1325 wider than HOST_BITS_PER_WIDE_INT, we must be narrowing the operand. */
1327 if ((GET_CODE (x) == CONST_INT
1328 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
1329 || (GET_MODE_CLASS (mode) == MODE_INT
1330 && GET_MODE_CLASS (oldmode) == MODE_INT
1331 && (GET_CODE (x) == CONST_DOUBLE
1332 || (GET_MODE_SIZE (mode) <= GET_MODE_SIZE (oldmode)
1333 && ((GET_CODE (x) == MEM && ! MEM_VOLATILE_P (x)
1334 && direct_load[(int) mode])
1335 || (GET_CODE (x) == REG
1336 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
1337 GET_MODE_BITSIZE (GET_MODE (x)))))))))
1339 /* ?? If we don't know OLDMODE, we have to assume here that
1340 X does not need sign- or zero-extension. This may not be
1341 the case, but it's the best we can do. */
1342 if (GET_CODE (x) == CONST_INT && oldmode != VOIDmode
1343 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (oldmode))
1345 HOST_WIDE_INT val = INTVAL (x);
1346 int width = GET_MODE_BITSIZE (oldmode);
1348 /* We must sign or zero-extend in this case. Start by
1349 zero-extending, then sign extend if we need to. */
1350 val &= ((HOST_WIDE_INT) 1 << width) - 1;
1351 if (! unsignedp
1352 && (val & ((HOST_WIDE_INT) 1 << (width - 1))))
1353 val |= (HOST_WIDE_INT) (-1) << width;
1355 return GEN_INT (trunc_int_for_mode (val, mode));
1358 return gen_lowpart (mode, x);
1361 temp = gen_reg_rtx (mode);
1362 convert_move (temp, x, unsignedp);
1363 return temp;
1366 /* This macro is used to determine what the largest unit size that
1367 move_by_pieces can use is. */
1369 /* MOVE_MAX_PIECES is the number of bytes at a time which we can
1370 move efficiently, as opposed to MOVE_MAX which is the maximum
1371 number of bytes we can move with a single instruction. */
1373 #ifndef MOVE_MAX_PIECES
1374 #define MOVE_MAX_PIECES MOVE_MAX
1375 #endif
1377 /* Generate several move instructions to copy LEN bytes from block FROM to
1378 block TO. (These are MEM rtx's with BLKmode). The caller must pass FROM
1379 and TO through protect_from_queue before calling.
1381 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
1382 used to push FROM to the stack.
1384 ALIGN is maximum alignment we can assume. */
1386 void
1387 move_by_pieces (to, from, len, align)
1388 rtx to, from;
1389 unsigned HOST_WIDE_INT len;
1390 unsigned int align;
1392 struct move_by_pieces data;
1393 rtx to_addr, from_addr = XEXP (from, 0);
1394 unsigned int max_size = MOVE_MAX_PIECES + 1;
1395 enum machine_mode mode = VOIDmode, tmode;
1396 enum insn_code icode;
1398 data.offset = 0;
1399 data.from_addr = from_addr;
1400 if (to)
1402 to_addr = XEXP (to, 0);
1403 data.to = to;
1404 data.autinc_to
1405 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
1406 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
1407 data.reverse
1408 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
1410 else
1412 to_addr = NULL_RTX;
1413 data.to = NULL_RTX;
1414 data.autinc_to = 1;
1415 #ifdef STACK_GROWS_DOWNWARD
1416 data.reverse = 1;
1417 #else
1418 data.reverse = 0;
1419 #endif
1421 data.to_addr = to_addr;
1422 data.from = from;
1423 data.autinc_from
1424 = (GET_CODE (from_addr) == PRE_INC || GET_CODE (from_addr) == PRE_DEC
1425 || GET_CODE (from_addr) == POST_INC
1426 || GET_CODE (from_addr) == POST_DEC);
1428 data.explicit_inc_from = 0;
1429 data.explicit_inc_to = 0;
1430 if (data.reverse) data.offset = len;
1431 data.len = len;
1433 /* If copying requires more than two move insns,
1434 copy addresses to registers (to make displacements shorter)
1435 and use post-increment if available. */
1436 if (!(data.autinc_from && data.autinc_to)
1437 && move_by_pieces_ninsns (len, align) > 2)
1439 /* Find the mode of the largest move... */
1440 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1441 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
1442 if (GET_MODE_SIZE (tmode) < max_size)
1443 mode = tmode;
1445 if (USE_LOAD_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_from)
1447 data.from_addr = copy_addr_to_reg (plus_constant (from_addr, len));
1448 data.autinc_from = 1;
1449 data.explicit_inc_from = -1;
1451 if (USE_LOAD_POST_INCREMENT (mode) && ! data.autinc_from)
1453 data.from_addr = copy_addr_to_reg (from_addr);
1454 data.autinc_from = 1;
1455 data.explicit_inc_from = 1;
1457 if (!data.autinc_from && CONSTANT_P (from_addr))
1458 data.from_addr = copy_addr_to_reg (from_addr);
1459 if (USE_STORE_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_to)
1461 data.to_addr = copy_addr_to_reg (plus_constant (to_addr, len));
1462 data.autinc_to = 1;
1463 data.explicit_inc_to = -1;
1465 if (USE_STORE_POST_INCREMENT (mode) && ! data.reverse && ! data.autinc_to)
1467 data.to_addr = copy_addr_to_reg (to_addr);
1468 data.autinc_to = 1;
1469 data.explicit_inc_to = 1;
1471 if (!data.autinc_to && CONSTANT_P (to_addr))
1472 data.to_addr = copy_addr_to_reg (to_addr);
1475 if (! SLOW_UNALIGNED_ACCESS (word_mode, align)
1476 || align > MOVE_MAX * BITS_PER_UNIT || align >= BIGGEST_ALIGNMENT)
1477 align = MOVE_MAX * BITS_PER_UNIT;
1479 /* First move what we can in the largest integer mode, then go to
1480 successively smaller modes. */
1482 while (max_size > 1)
1484 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1485 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
1486 if (GET_MODE_SIZE (tmode) < max_size)
1487 mode = tmode;
1489 if (mode == VOIDmode)
1490 break;
1492 icode = mov_optab->handlers[(int) mode].insn_code;
1493 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
1494 move_by_pieces_1 (GEN_FCN (icode), mode, &data);
1496 max_size = GET_MODE_SIZE (mode);
1499 /* The code above should have handled everything. */
1500 if (data.len > 0)
1501 abort ();
1504 /* Return number of insns required to move L bytes by pieces.
1505 ALIGN (in bits) is maximum alignment we can assume. */
1507 static unsigned HOST_WIDE_INT
1508 move_by_pieces_ninsns (l, align)
1509 unsigned HOST_WIDE_INT l;
1510 unsigned int align;
1512 unsigned HOST_WIDE_INT n_insns = 0;
1513 unsigned HOST_WIDE_INT max_size = MOVE_MAX + 1;
1515 if (! SLOW_UNALIGNED_ACCESS (word_mode, align)
1516 || align > MOVE_MAX * BITS_PER_UNIT || align >= BIGGEST_ALIGNMENT)
1517 align = MOVE_MAX * BITS_PER_UNIT;
1519 while (max_size > 1)
1521 enum machine_mode mode = VOIDmode, tmode;
1522 enum insn_code icode;
1524 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1525 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
1526 if (GET_MODE_SIZE (tmode) < max_size)
1527 mode = tmode;
1529 if (mode == VOIDmode)
1530 break;
1532 icode = mov_optab->handlers[(int) mode].insn_code;
1533 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
1534 n_insns += l / GET_MODE_SIZE (mode), l %= GET_MODE_SIZE (mode);
1536 max_size = GET_MODE_SIZE (mode);
1539 if (l)
1540 abort ();
1541 return n_insns;
1544 /* Subroutine of move_by_pieces. Move as many bytes as appropriate
1545 with move instructions for mode MODE. GENFUN is the gen_... function
1546 to make a move insn for that mode. DATA has all the other info. */
1548 static void
1549 move_by_pieces_1 (genfun, mode, data)
1550 rtx (*genfun) PARAMS ((rtx, ...));
1551 enum machine_mode mode;
1552 struct move_by_pieces *data;
1554 unsigned int size = GET_MODE_SIZE (mode);
1555 rtx to1 = NULL_RTX, from1;
1557 while (data->len >= size)
1559 if (data->reverse)
1560 data->offset -= size;
1562 if (data->to)
1564 if (data->autinc_to)
1565 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
1566 data->offset);
1567 else
1568 to1 = adjust_address (data->to, mode, data->offset);
1571 if (data->autinc_from)
1572 from1 = adjust_automodify_address (data->from, mode, data->from_addr,
1573 data->offset);
1574 else
1575 from1 = adjust_address (data->from, mode, data->offset);
1577 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
1578 emit_insn (gen_add2_insn (data->to_addr,
1579 GEN_INT (-(HOST_WIDE_INT)size)));
1580 if (HAVE_PRE_DECREMENT && data->explicit_inc_from < 0)
1581 emit_insn (gen_add2_insn (data->from_addr,
1582 GEN_INT (-(HOST_WIDE_INT)size)));
1584 if (data->to)
1585 emit_insn ((*genfun) (to1, from1));
1586 else
1588 #ifdef PUSH_ROUNDING
1589 emit_single_push_insn (mode, from1, NULL);
1590 #else
1591 abort ();
1592 #endif
1595 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
1596 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
1597 if (HAVE_POST_INCREMENT && data->explicit_inc_from > 0)
1598 emit_insn (gen_add2_insn (data->from_addr, GEN_INT (size)));
1600 if (! data->reverse)
1601 data->offset += size;
1603 data->len -= size;
1607 /* Emit code to move a block Y to a block X.
1608 This may be done with string-move instructions,
1609 with multiple scalar move instructions, or with a library call.
1611 Both X and Y must be MEM rtx's (perhaps inside VOLATILE)
1612 with mode BLKmode.
1613 SIZE is an rtx that says how long they are.
1614 ALIGN is the maximum alignment we can assume they have.
1616 Return the address of the new block, if memcpy is called and returns it,
1617 0 otherwise. */
1620 emit_block_move (x, y, size)
1621 rtx x, y;
1622 rtx size;
1624 rtx retval = 0;
1625 #ifdef TARGET_MEM_FUNCTIONS
1626 static tree fn;
1627 tree call_expr, arg_list;
1628 #endif
1629 unsigned int align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
1631 if (GET_MODE (x) != BLKmode)
1632 abort ();
1634 if (GET_MODE (y) != BLKmode)
1635 abort ();
1637 x = protect_from_queue (x, 1);
1638 y = protect_from_queue (y, 0);
1639 size = protect_from_queue (size, 0);
1641 if (GET_CODE (x) != MEM)
1642 abort ();
1643 if (GET_CODE (y) != MEM)
1644 abort ();
1645 if (size == 0)
1646 abort ();
1648 if (GET_CODE (size) == CONST_INT && MOVE_BY_PIECES_P (INTVAL (size), align))
1649 move_by_pieces (x, y, INTVAL (size), align);
1650 else
1652 /* Try the most limited insn first, because there's no point
1653 including more than one in the machine description unless
1654 the more limited one has some advantage. */
1656 rtx opalign = GEN_INT (align / BITS_PER_UNIT);
1657 enum machine_mode mode;
1659 /* Since this is a move insn, we don't care about volatility. */
1660 volatile_ok = 1;
1662 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1663 mode = GET_MODE_WIDER_MODE (mode))
1665 enum insn_code code = movstr_optab[(int) mode];
1666 insn_operand_predicate_fn pred;
1668 if (code != CODE_FOR_nothing
1669 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1670 here because if SIZE is less than the mode mask, as it is
1671 returned by the macro, it will definitely be less than the
1672 actual mode mask. */
1673 && ((GET_CODE (size) == CONST_INT
1674 && ((unsigned HOST_WIDE_INT) INTVAL (size)
1675 <= (GET_MODE_MASK (mode) >> 1)))
1676 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
1677 && ((pred = insn_data[(int) code].operand[0].predicate) == 0
1678 || (*pred) (x, BLKmode))
1679 && ((pred = insn_data[(int) code].operand[1].predicate) == 0
1680 || (*pred) (y, BLKmode))
1681 && ((pred = insn_data[(int) code].operand[3].predicate) == 0
1682 || (*pred) (opalign, VOIDmode)))
1684 rtx op2;
1685 rtx last = get_last_insn ();
1686 rtx pat;
1688 op2 = convert_to_mode (mode, size, 1);
1689 pred = insn_data[(int) code].operand[2].predicate;
1690 if (pred != 0 && ! (*pred) (op2, mode))
1691 op2 = copy_to_mode_reg (mode, op2);
1693 pat = GEN_FCN ((int) code) (x, y, op2, opalign);
1694 if (pat)
1696 emit_insn (pat);
1697 volatile_ok = 0;
1698 return 0;
1700 else
1701 delete_insns_since (last);
1705 volatile_ok = 0;
1707 /* X, Y, or SIZE may have been passed through protect_from_queue.
1709 It is unsafe to save the value generated by protect_from_queue
1710 and reuse it later. Consider what happens if emit_queue is
1711 called before the return value from protect_from_queue is used.
1713 Expansion of the CALL_EXPR below will call emit_queue before
1714 we are finished emitting RTL for argument setup. So if we are
1715 not careful we could get the wrong value for an argument.
1717 To avoid this problem we go ahead and emit code to copy X, Y &
1718 SIZE into new pseudos. We can then place those new pseudos
1719 into an RTL_EXPR and use them later, even after a call to
1720 emit_queue.
1722 Note this is not strictly needed for library calls since they
1723 do not call emit_queue before loading their arguments. However,
1724 we may need to have library calls call emit_queue in the future
1725 since failing to do so could cause problems for targets which
1726 define SMALL_REGISTER_CLASSES and pass arguments in registers. */
1727 x = copy_to_mode_reg (Pmode, XEXP (x, 0));
1728 y = copy_to_mode_reg (Pmode, XEXP (y, 0));
1730 #ifdef TARGET_MEM_FUNCTIONS
1731 size = copy_to_mode_reg (TYPE_MODE (sizetype), size);
1732 #else
1733 size = convert_to_mode (TYPE_MODE (integer_type_node), size,
1734 TREE_UNSIGNED (integer_type_node));
1735 size = copy_to_mode_reg (TYPE_MODE (integer_type_node), size);
1736 #endif
1738 #ifdef TARGET_MEM_FUNCTIONS
1739 /* It is incorrect to use the libcall calling conventions to call
1740 memcpy in this context.
1742 This could be a user call to memcpy and the user may wish to
1743 examine the return value from memcpy.
1745 For targets where libcalls and normal calls have different conventions
1746 for returning pointers, we could end up generating incorrect code.
1748 So instead of using a libcall sequence we build up a suitable
1749 CALL_EXPR and expand the call in the normal fashion. */
1750 if (fn == NULL_TREE)
1752 tree fntype;
1754 /* This was copied from except.c, I don't know if all this is
1755 necessary in this context or not. */
1756 fn = get_identifier ("memcpy");
1757 fntype = build_pointer_type (void_type_node);
1758 fntype = build_function_type (fntype, NULL_TREE);
1759 fn = build_decl (FUNCTION_DECL, fn, fntype);
1760 ggc_add_tree_root (&fn, 1);
1761 DECL_EXTERNAL (fn) = 1;
1762 TREE_PUBLIC (fn) = 1;
1763 DECL_ARTIFICIAL (fn) = 1;
1764 TREE_NOTHROW (fn) = 1;
1765 make_decl_rtl (fn, NULL);
1766 assemble_external (fn);
1769 /* We need to make an argument list for the function call.
1771 memcpy has three arguments, the first two are void * addresses and
1772 the last is a size_t byte count for the copy. */
1773 arg_list
1774 = build_tree_list (NULL_TREE,
1775 make_tree (build_pointer_type (void_type_node), x));
1776 TREE_CHAIN (arg_list)
1777 = build_tree_list (NULL_TREE,
1778 make_tree (build_pointer_type (void_type_node), y));
1779 TREE_CHAIN (TREE_CHAIN (arg_list))
1780 = build_tree_list (NULL_TREE, make_tree (sizetype, size));
1781 TREE_CHAIN (TREE_CHAIN (TREE_CHAIN (arg_list))) = NULL_TREE;
1783 /* Now we have to build up the CALL_EXPR itself. */
1784 call_expr = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (fn)), fn);
1785 call_expr = build (CALL_EXPR, TREE_TYPE (TREE_TYPE (fn)),
1786 call_expr, arg_list, NULL_TREE);
1787 TREE_SIDE_EFFECTS (call_expr) = 1;
1789 retval = expand_expr (call_expr, NULL_RTX, VOIDmode, 0);
1790 #else
1791 emit_library_call (bcopy_libfunc, LCT_NORMAL,
1792 VOIDmode, 3, y, Pmode, x, Pmode,
1793 convert_to_mode (TYPE_MODE (integer_type_node), size,
1794 TREE_UNSIGNED (integer_type_node)),
1795 TYPE_MODE (integer_type_node));
1796 #endif
1798 /* If we are initializing a readonly value, show the above call
1799 clobbered it. Otherwise, a load from it may erroneously be hoisted
1800 from a loop. */
1801 if (RTX_UNCHANGING_P (x))
1802 emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
1805 return retval;
1808 /* Copy all or part of a value X into registers starting at REGNO.
1809 The number of registers to be filled is NREGS. */
1811 void
1812 move_block_to_reg (regno, x, nregs, mode)
1813 int regno;
1814 rtx x;
1815 int nregs;
1816 enum machine_mode mode;
1818 int i;
1819 #ifdef HAVE_load_multiple
1820 rtx pat;
1821 rtx last;
1822 #endif
1824 if (nregs == 0)
1825 return;
1827 if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
1828 x = validize_mem (force_const_mem (mode, x));
1830 /* See if the machine can do this with a load multiple insn. */
1831 #ifdef HAVE_load_multiple
1832 if (HAVE_load_multiple)
1834 last = get_last_insn ();
1835 pat = gen_load_multiple (gen_rtx_REG (word_mode, regno), x,
1836 GEN_INT (nregs));
1837 if (pat)
1839 emit_insn (pat);
1840 return;
1842 else
1843 delete_insns_since (last);
1845 #endif
1847 for (i = 0; i < nregs; i++)
1848 emit_move_insn (gen_rtx_REG (word_mode, regno + i),
1849 operand_subword_force (x, i, mode));
1852 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
1853 The number of registers to be filled is NREGS. SIZE indicates the number
1854 of bytes in the object X. */
1856 void
1857 move_block_from_reg (regno, x, nregs, size)
1858 int regno;
1859 rtx x;
1860 int nregs;
1861 int size;
1863 int i;
1864 #ifdef HAVE_store_multiple
1865 rtx pat;
1866 rtx last;
1867 #endif
1868 enum machine_mode mode;
1870 if (nregs == 0)
1871 return;
1873 /* If SIZE is that of a mode no bigger than a word, just use that
1874 mode's store operation. */
1875 if (size <= UNITS_PER_WORD
1876 && (mode = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0)) != BLKmode
1877 && !FUNCTION_ARG_REG_LITTLE_ENDIAN)
1879 emit_move_insn (adjust_address (x, mode, 0), gen_rtx_REG (mode, regno));
1880 return;
1883 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN machine must be aligned
1884 to the left before storing to memory. Note that the previous test
1885 doesn't handle all cases (e.g. SIZE == 3). */
1886 if (size < UNITS_PER_WORD
1887 && BYTES_BIG_ENDIAN
1888 && !FUNCTION_ARG_REG_LITTLE_ENDIAN)
1890 rtx tem = operand_subword (x, 0, 1, BLKmode);
1891 rtx shift;
1893 if (tem == 0)
1894 abort ();
1896 shift = expand_shift (LSHIFT_EXPR, word_mode,
1897 gen_rtx_REG (word_mode, regno),
1898 build_int_2 ((UNITS_PER_WORD - size)
1899 * BITS_PER_UNIT, 0), NULL_RTX, 0);
1900 emit_move_insn (tem, shift);
1901 return;
1904 /* See if the machine can do this with a store multiple insn. */
1905 #ifdef HAVE_store_multiple
1906 if (HAVE_store_multiple)
1908 last = get_last_insn ();
1909 pat = gen_store_multiple (x, gen_rtx_REG (word_mode, regno),
1910 GEN_INT (nregs));
1911 if (pat)
1913 emit_insn (pat);
1914 return;
1916 else
1917 delete_insns_since (last);
1919 #endif
1921 for (i = 0; i < nregs; i++)
1923 rtx tem = operand_subword (x, i, 1, BLKmode);
1925 if (tem == 0)
1926 abort ();
1928 emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i));
1932 /* Emit code to move a block SRC to a block DST, where DST is non-consecutive
1933 registers represented by a PARALLEL. SSIZE represents the total size of
1934 block SRC in bytes, or -1 if not known. */
1935 /* ??? If SSIZE % UNITS_PER_WORD != 0, we make the blatant assumption that
1936 the balance will be in what would be the low-order memory addresses, i.e.
1937 left justified for big endian, right justified for little endian. This
1938 happens to be true for the targets currently using this support. If this
1939 ever changes, a new target macro along the lines of FUNCTION_ARG_PADDING
1940 would be needed. */
1942 void
1943 emit_group_load (dst, orig_src, ssize)
1944 rtx dst, orig_src;
1945 int ssize;
1947 rtx *tmps, src;
1948 int start, i;
1950 if (GET_CODE (dst) != PARALLEL)
1951 abort ();
1953 /* Check for a NULL entry, used to indicate that the parameter goes
1954 both on the stack and in registers. */
1955 if (XEXP (XVECEXP (dst, 0, 0), 0))
1956 start = 0;
1957 else
1958 start = 1;
1960 tmps = (rtx *) alloca (sizeof (rtx) * XVECLEN (dst, 0));
1962 /* Process the pieces. */
1963 for (i = start; i < XVECLEN (dst, 0); i++)
1965 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0));
1966 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (dst, 0, i), 1));
1967 unsigned int bytelen = GET_MODE_SIZE (mode);
1968 int shift = 0;
1970 /* Handle trailing fragments that run over the size of the struct. */
1971 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
1973 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
1974 bytelen = ssize - bytepos;
1975 if (bytelen <= 0)
1976 abort ();
1979 /* If we won't be loading directly from memory, protect the real source
1980 from strange tricks we might play; but make sure that the source can
1981 be loaded directly into the destination. */
1982 src = orig_src;
1983 if (GET_CODE (orig_src) != MEM
1984 && (!CONSTANT_P (orig_src)
1985 || (GET_MODE (orig_src) != mode
1986 && GET_MODE (orig_src) != VOIDmode)))
1988 if (GET_MODE (orig_src) == VOIDmode)
1989 src = gen_reg_rtx (mode);
1990 else
1991 src = gen_reg_rtx (GET_MODE (orig_src));
1993 emit_move_insn (src, orig_src);
1996 /* Optimize the access just a bit. */
1997 if (GET_CODE (src) == MEM
1998 && MEM_ALIGN (src) >= GET_MODE_ALIGNMENT (mode)
1999 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
2000 && bytelen == GET_MODE_SIZE (mode))
2002 tmps[i] = gen_reg_rtx (mode);
2003 emit_move_insn (tmps[i], adjust_address (src, mode, bytepos));
2005 else if (GET_CODE (src) == CONCAT)
2007 if (bytepos == 0
2008 && bytelen == GET_MODE_SIZE (GET_MODE (XEXP (src, 0))))
2009 tmps[i] = XEXP (src, 0);
2010 else if (bytepos == (HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
2011 && bytelen == GET_MODE_SIZE (GET_MODE (XEXP (src, 1))))
2012 tmps[i] = XEXP (src, 1);
2013 else if (bytepos == 0)
2015 rtx mem = assign_stack_temp (GET_MODE (src),
2016 GET_MODE_SIZE (GET_MODE (src)), 0);
2017 emit_move_insn (mem, src);
2018 tmps[i] = adjust_address (mem, mode, 0);
2020 else
2021 abort ();
2023 else if (CONSTANT_P (src)
2024 || (GET_CODE (src) == REG && GET_MODE (src) == mode))
2025 tmps[i] = src;
2026 else
2027 tmps[i] = extract_bit_field (src, bytelen * BITS_PER_UNIT,
2028 bytepos * BITS_PER_UNIT, 1, NULL_RTX,
2029 mode, mode, ssize);
2031 if (BYTES_BIG_ENDIAN && shift)
2032 expand_binop (mode, ashl_optab, tmps[i], GEN_INT (shift),
2033 tmps[i], 0, OPTAB_WIDEN);
2036 emit_queue ();
2038 /* Copy the extracted pieces into the proper (probable) hard regs. */
2039 for (i = start; i < XVECLEN (dst, 0); i++)
2040 emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0), tmps[i]);
2043 /* Emit code to move a block SRC to a block DST, where SRC is non-consecutive
2044 registers represented by a PARALLEL. SSIZE represents the total size of
2045 block DST, or -1 if not known. */
2047 void
2048 emit_group_store (orig_dst, src, ssize)
2049 rtx orig_dst, src;
2050 int ssize;
2052 rtx *tmps, dst;
2053 int start, i;
2055 if (GET_CODE (src) != PARALLEL)
2056 abort ();
2058 /* Check for a NULL entry, used to indicate that the parameter goes
2059 both on the stack and in registers. */
2060 if (XEXP (XVECEXP (src, 0, 0), 0))
2061 start = 0;
2062 else
2063 start = 1;
2065 tmps = (rtx *) alloca (sizeof (rtx) * XVECLEN (src, 0));
2067 /* Copy the (probable) hard regs into pseudos. */
2068 for (i = start; i < XVECLEN (src, 0); i++)
2070 rtx reg = XEXP (XVECEXP (src, 0, i), 0);
2071 tmps[i] = gen_reg_rtx (GET_MODE (reg));
2072 emit_move_insn (tmps[i], reg);
2074 emit_queue ();
2076 /* If we won't be storing directly into memory, protect the real destination
2077 from strange tricks we might play. */
2078 dst = orig_dst;
2079 if (GET_CODE (dst) == PARALLEL)
2081 rtx temp;
2083 /* We can get a PARALLEL dst if there is a conditional expression in
2084 a return statement. In that case, the dst and src are the same,
2085 so no action is necessary. */
2086 if (rtx_equal_p (dst, src))
2087 return;
2089 /* It is unclear if we can ever reach here, but we may as well handle
2090 it. Allocate a temporary, and split this into a store/load to/from
2091 the temporary. */
2093 temp = assign_stack_temp (GET_MODE (dst), ssize, 0);
2094 emit_group_store (temp, src, ssize);
2095 emit_group_load (dst, temp, ssize);
2096 return;
2098 else if (GET_CODE (dst) != MEM)
2100 dst = gen_reg_rtx (GET_MODE (orig_dst));
2101 /* Make life a bit easier for combine. */
2102 emit_move_insn (dst, const0_rtx);
2105 /* Process the pieces. */
2106 for (i = start; i < XVECLEN (src, 0); i++)
2108 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (src, 0, i), 1));
2109 enum machine_mode mode = GET_MODE (tmps[i]);
2110 unsigned int bytelen = GET_MODE_SIZE (mode);
2112 /* Handle trailing fragments that run over the size of the struct. */
2113 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2115 if (BYTES_BIG_ENDIAN)
2117 int shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
2118 expand_binop (mode, ashr_optab, tmps[i], GEN_INT (shift),
2119 tmps[i], 0, OPTAB_WIDEN);
2121 bytelen = ssize - bytepos;
2124 /* Optimize the access just a bit. */
2125 if (GET_CODE (dst) == MEM
2126 && MEM_ALIGN (dst) >= GET_MODE_ALIGNMENT (mode)
2127 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
2128 && bytelen == GET_MODE_SIZE (mode))
2129 emit_move_insn (adjust_address (dst, mode, bytepos), tmps[i]);
2130 else
2131 store_bit_field (dst, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
2132 mode, tmps[i], ssize);
2135 emit_queue ();
2137 /* Copy from the pseudo into the (probable) hard reg. */
2138 if (GET_CODE (dst) == REG)
2139 emit_move_insn (orig_dst, dst);
2142 /* Generate code to copy a BLKmode object of TYPE out of a
2143 set of registers starting with SRCREG into TGTBLK. If TGTBLK
2144 is null, a stack temporary is created. TGTBLK is returned.
2146 The primary purpose of this routine is to handle functions
2147 that return BLKmode structures in registers. Some machines
2148 (the PA for example) want to return all small structures
2149 in registers regardless of the structure's alignment. */
2152 copy_blkmode_from_reg (tgtblk, srcreg, type)
2153 rtx tgtblk;
2154 rtx srcreg;
2155 tree type;
2157 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (type);
2158 rtx src = NULL, dst = NULL;
2159 unsigned HOST_WIDE_INT bitsize = MIN (TYPE_ALIGN (type), BITS_PER_WORD);
2160 unsigned HOST_WIDE_INT bitpos, xbitpos, big_endian_correction = 0;
2162 if (tgtblk == 0)
2164 tgtblk = assign_temp (build_qualified_type (type,
2165 (TYPE_QUALS (type)
2166 | TYPE_QUAL_CONST)),
2167 0, 1, 1);
2168 preserve_temp_slots (tgtblk);
2171 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2172 into a new pseudo which is a full word.
2174 If FUNCTION_ARG_REG_LITTLE_ENDIAN is set and convert_to_mode does a copy,
2175 the wrong part of the register gets copied so we fake a type conversion
2176 in place. */
2177 if (GET_MODE (srcreg) != BLKmode
2178 && GET_MODE_SIZE (GET_MODE (srcreg)) < UNITS_PER_WORD)
2180 if (FUNCTION_ARG_REG_LITTLE_ENDIAN)
2181 srcreg = simplify_gen_subreg (word_mode, srcreg, GET_MODE (srcreg), 0);
2182 else
2183 srcreg = convert_to_mode (word_mode, srcreg, TREE_UNSIGNED (type));
2186 /* Structures whose size is not a multiple of a word are aligned
2187 to the least significant byte (to the right). On a BYTES_BIG_ENDIAN
2188 machine, this means we must skip the empty high order bytes when
2189 calculating the bit offset. */
2190 if (BYTES_BIG_ENDIAN
2191 && !FUNCTION_ARG_REG_LITTLE_ENDIAN
2192 && bytes % UNITS_PER_WORD)
2193 big_endian_correction
2194 = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) * BITS_PER_UNIT));
2196 /* Copy the structure BITSIZE bites at a time.
2198 We could probably emit more efficient code for machines which do not use
2199 strict alignment, but it doesn't seem worth the effort at the current
2200 time. */
2201 for (bitpos = 0, xbitpos = big_endian_correction;
2202 bitpos < bytes * BITS_PER_UNIT;
2203 bitpos += bitsize, xbitpos += bitsize)
2205 /* We need a new source operand each time xbitpos is on a
2206 word boundary and when xbitpos == big_endian_correction
2207 (the first time through). */
2208 if (xbitpos % BITS_PER_WORD == 0
2209 || xbitpos == big_endian_correction)
2210 src = operand_subword_force (srcreg, xbitpos / BITS_PER_WORD,
2211 GET_MODE (srcreg));
2213 /* We need a new destination operand each time bitpos is on
2214 a word boundary. */
2215 if (bitpos % BITS_PER_WORD == 0)
2216 dst = operand_subword (tgtblk, bitpos / BITS_PER_WORD, 1, BLKmode);
2218 /* Use xbitpos for the source extraction (right justified) and
2219 xbitpos for the destination store (left justified). */
2220 store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, word_mode,
2221 extract_bit_field (src, bitsize,
2222 xbitpos % BITS_PER_WORD, 1,
2223 NULL_RTX, word_mode, word_mode,
2224 BITS_PER_WORD),
2225 BITS_PER_WORD);
2228 return tgtblk;
2231 /* Add a USE expression for REG to the (possibly empty) list pointed
2232 to by CALL_FUSAGE. REG must denote a hard register. */
2234 void
2235 use_reg (call_fusage, reg)
2236 rtx *call_fusage, reg;
2238 if (GET_CODE (reg) != REG
2239 || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
2240 abort ();
2242 *call_fusage
2243 = gen_rtx_EXPR_LIST (VOIDmode,
2244 gen_rtx_USE (VOIDmode, reg), *call_fusage);
2247 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2248 starting at REGNO. All of these registers must be hard registers. */
2250 void
2251 use_regs (call_fusage, regno, nregs)
2252 rtx *call_fusage;
2253 int regno;
2254 int nregs;
2256 int i;
2258 if (regno + nregs > FIRST_PSEUDO_REGISTER)
2259 abort ();
2261 for (i = 0; i < nregs; i++)
2262 use_reg (call_fusage, gen_rtx_REG (reg_raw_mode[regno + i], regno + i));
2265 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2266 PARALLEL REGS. This is for calls that pass values in multiple
2267 non-contiguous locations. The Irix 6 ABI has examples of this. */
2269 void
2270 use_group_regs (call_fusage, regs)
2271 rtx *call_fusage;
2272 rtx regs;
2274 int i;
2276 for (i = 0; i < XVECLEN (regs, 0); i++)
2278 rtx reg = XEXP (XVECEXP (regs, 0, i), 0);
2280 /* A NULL entry means the parameter goes both on the stack and in
2281 registers. This can also be a MEM for targets that pass values
2282 partially on the stack and partially in registers. */
2283 if (reg != 0 && GET_CODE (reg) == REG)
2284 use_reg (call_fusage, reg);
2290 can_store_by_pieces (len, constfun, constfundata, align)
2291 unsigned HOST_WIDE_INT len;
2292 rtx (*constfun) PARAMS ((PTR, HOST_WIDE_INT, enum machine_mode));
2293 PTR constfundata;
2294 unsigned int align;
2296 unsigned HOST_WIDE_INT max_size, l;
2297 HOST_WIDE_INT offset = 0;
2298 enum machine_mode mode, tmode;
2299 enum insn_code icode;
2300 int reverse;
2301 rtx cst;
2303 if (! MOVE_BY_PIECES_P (len, align))
2304 return 0;
2306 if (! SLOW_UNALIGNED_ACCESS (word_mode, align)
2307 || align > MOVE_MAX * BITS_PER_UNIT || align >= BIGGEST_ALIGNMENT)
2308 align = MOVE_MAX * BITS_PER_UNIT;
2310 /* We would first store what we can in the largest integer mode, then go to
2311 successively smaller modes. */
2313 for (reverse = 0;
2314 reverse <= (HAVE_PRE_DECREMENT || HAVE_POST_DECREMENT);
2315 reverse++)
2317 l = len;
2318 mode = VOIDmode;
2319 max_size = MOVE_MAX_PIECES + 1;
2320 while (max_size > 1)
2322 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2323 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2324 if (GET_MODE_SIZE (tmode) < max_size)
2325 mode = tmode;
2327 if (mode == VOIDmode)
2328 break;
2330 icode = mov_optab->handlers[(int) mode].insn_code;
2331 if (icode != CODE_FOR_nothing
2332 && align >= GET_MODE_ALIGNMENT (mode))
2334 unsigned int size = GET_MODE_SIZE (mode);
2336 while (l >= size)
2338 if (reverse)
2339 offset -= size;
2341 cst = (*constfun) (constfundata, offset, mode);
2342 if (!LEGITIMATE_CONSTANT_P (cst))
2343 return 0;
2345 if (!reverse)
2346 offset += size;
2348 l -= size;
2352 max_size = GET_MODE_SIZE (mode);
2355 /* The code above should have handled everything. */
2356 if (l != 0)
2357 abort ();
2360 return 1;
2363 /* Generate several move instructions to store LEN bytes generated by
2364 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
2365 pointer which will be passed as argument in every CONSTFUN call.
2366 ALIGN is maximum alignment we can assume. */
2368 void
2369 store_by_pieces (to, len, constfun, constfundata, align)
2370 rtx to;
2371 unsigned HOST_WIDE_INT len;
2372 rtx (*constfun) PARAMS ((PTR, HOST_WIDE_INT, enum machine_mode));
2373 PTR constfundata;
2374 unsigned int align;
2376 struct store_by_pieces data;
2378 if (! MOVE_BY_PIECES_P (len, align))
2379 abort ();
2380 to = protect_from_queue (to, 1);
2381 data.constfun = constfun;
2382 data.constfundata = constfundata;
2383 data.len = len;
2384 data.to = to;
2385 store_by_pieces_1 (&data, align);
2388 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
2389 rtx with BLKmode). The caller must pass TO through protect_from_queue
2390 before calling. ALIGN is maximum alignment we can assume. */
2392 static void
2393 clear_by_pieces (to, len, align)
2394 rtx to;
2395 unsigned HOST_WIDE_INT len;
2396 unsigned int align;
2398 struct store_by_pieces data;
2400 data.constfun = clear_by_pieces_1;
2401 data.constfundata = NULL;
2402 data.len = len;
2403 data.to = to;
2404 store_by_pieces_1 (&data, align);
2407 /* Callback routine for clear_by_pieces.
2408 Return const0_rtx unconditionally. */
2410 static rtx
2411 clear_by_pieces_1 (data, offset, mode)
2412 PTR data ATTRIBUTE_UNUSED;
2413 HOST_WIDE_INT offset ATTRIBUTE_UNUSED;
2414 enum machine_mode mode ATTRIBUTE_UNUSED;
2416 return const0_rtx;
2419 /* Subroutine of clear_by_pieces and store_by_pieces.
2420 Generate several move instructions to store LEN bytes of block TO. (A MEM
2421 rtx with BLKmode). The caller must pass TO through protect_from_queue
2422 before calling. ALIGN is maximum alignment we can assume. */
2424 static void
2425 store_by_pieces_1 (data, align)
2426 struct store_by_pieces *data;
2427 unsigned int align;
2429 rtx to_addr = XEXP (data->to, 0);
2430 unsigned HOST_WIDE_INT max_size = MOVE_MAX_PIECES + 1;
2431 enum machine_mode mode = VOIDmode, tmode;
2432 enum insn_code icode;
2434 data->offset = 0;
2435 data->to_addr = to_addr;
2436 data->autinc_to
2437 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
2438 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
2440 data->explicit_inc_to = 0;
2441 data->reverse
2442 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
2443 if (data->reverse)
2444 data->offset = data->len;
2446 /* If storing requires more than two move insns,
2447 copy addresses to registers (to make displacements shorter)
2448 and use post-increment if available. */
2449 if (!data->autinc_to
2450 && move_by_pieces_ninsns (data->len, align) > 2)
2452 /* Determine the main mode we'll be using. */
2453 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2454 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2455 if (GET_MODE_SIZE (tmode) < max_size)
2456 mode = tmode;
2458 if (USE_STORE_PRE_DECREMENT (mode) && data->reverse && ! data->autinc_to)
2460 data->to_addr = copy_addr_to_reg (plus_constant (to_addr, data->len));
2461 data->autinc_to = 1;
2462 data->explicit_inc_to = -1;
2465 if (USE_STORE_POST_INCREMENT (mode) && ! data->reverse
2466 && ! data->autinc_to)
2468 data->to_addr = copy_addr_to_reg (to_addr);
2469 data->autinc_to = 1;
2470 data->explicit_inc_to = 1;
2473 if ( !data->autinc_to && CONSTANT_P (to_addr))
2474 data->to_addr = copy_addr_to_reg (to_addr);
2477 if (! SLOW_UNALIGNED_ACCESS (word_mode, align)
2478 || align > MOVE_MAX * BITS_PER_UNIT || align >= BIGGEST_ALIGNMENT)
2479 align = MOVE_MAX * BITS_PER_UNIT;
2481 /* First store what we can in the largest integer mode, then go to
2482 successively smaller modes. */
2484 while (max_size > 1)
2486 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2487 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2488 if (GET_MODE_SIZE (tmode) < max_size)
2489 mode = tmode;
2491 if (mode == VOIDmode)
2492 break;
2494 icode = mov_optab->handlers[(int) mode].insn_code;
2495 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
2496 store_by_pieces_2 (GEN_FCN (icode), mode, data);
2498 max_size = GET_MODE_SIZE (mode);
2501 /* The code above should have handled everything. */
2502 if (data->len != 0)
2503 abort ();
2506 /* Subroutine of store_by_pieces_1. Store as many bytes as appropriate
2507 with move instructions for mode MODE. GENFUN is the gen_... function
2508 to make a move insn for that mode. DATA has all the other info. */
2510 static void
2511 store_by_pieces_2 (genfun, mode, data)
2512 rtx (*genfun) PARAMS ((rtx, ...));
2513 enum machine_mode mode;
2514 struct store_by_pieces *data;
2516 unsigned int size = GET_MODE_SIZE (mode);
2517 rtx to1, cst;
2519 while (data->len >= size)
2521 if (data->reverse)
2522 data->offset -= size;
2524 if (data->autinc_to)
2525 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
2526 data->offset);
2527 else
2528 to1 = adjust_address (data->to, mode, data->offset);
2530 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
2531 emit_insn (gen_add2_insn (data->to_addr,
2532 GEN_INT (-(HOST_WIDE_INT) size)));
2534 cst = (*data->constfun) (data->constfundata, data->offset, mode);
2535 emit_insn ((*genfun) (to1, cst));
2537 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
2538 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
2540 if (! data->reverse)
2541 data->offset += size;
2543 data->len -= size;
2547 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2548 its length in bytes. */
2551 clear_storage (object, size)
2552 rtx object;
2553 rtx size;
2555 #ifdef TARGET_MEM_FUNCTIONS
2556 static tree fn;
2557 tree call_expr, arg_list;
2558 #endif
2559 rtx retval = 0;
2560 unsigned int align = (GET_CODE (object) == MEM ? MEM_ALIGN (object)
2561 : GET_MODE_ALIGNMENT (GET_MODE (object)));
2563 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2564 just move a zero. Otherwise, do this a piece at a time. */
2565 if (GET_MODE (object) != BLKmode
2566 && GET_CODE (size) == CONST_INT
2567 && GET_MODE_SIZE (GET_MODE (object)) == (unsigned int) INTVAL (size))
2568 emit_move_insn (object, CONST0_RTX (GET_MODE (object)));
2569 else
2571 object = protect_from_queue (object, 1);
2572 size = protect_from_queue (size, 0);
2574 if (GET_CODE (size) == CONST_INT
2575 && MOVE_BY_PIECES_P (INTVAL (size), align))
2576 clear_by_pieces (object, INTVAL (size), align);
2577 else
2579 /* Try the most limited insn first, because there's no point
2580 including more than one in the machine description unless
2581 the more limited one has some advantage. */
2583 rtx opalign = GEN_INT (align / BITS_PER_UNIT);
2584 enum machine_mode mode;
2586 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
2587 mode = GET_MODE_WIDER_MODE (mode))
2589 enum insn_code code = clrstr_optab[(int) mode];
2590 insn_operand_predicate_fn pred;
2592 if (code != CODE_FOR_nothing
2593 /* We don't need MODE to be narrower than
2594 BITS_PER_HOST_WIDE_INT here because if SIZE is less than
2595 the mode mask, as it is returned by the macro, it will
2596 definitely be less than the actual mode mask. */
2597 && ((GET_CODE (size) == CONST_INT
2598 && ((unsigned HOST_WIDE_INT) INTVAL (size)
2599 <= (GET_MODE_MASK (mode) >> 1)))
2600 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
2601 && ((pred = insn_data[(int) code].operand[0].predicate) == 0
2602 || (*pred) (object, BLKmode))
2603 && ((pred = insn_data[(int) code].operand[2].predicate) == 0
2604 || (*pred) (opalign, VOIDmode)))
2606 rtx op1;
2607 rtx last = get_last_insn ();
2608 rtx pat;
2610 op1 = convert_to_mode (mode, size, 1);
2611 pred = insn_data[(int) code].operand[1].predicate;
2612 if (pred != 0 && ! (*pred) (op1, mode))
2613 op1 = copy_to_mode_reg (mode, op1);
2615 pat = GEN_FCN ((int) code) (object, op1, opalign);
2616 if (pat)
2618 emit_insn (pat);
2619 return 0;
2621 else
2622 delete_insns_since (last);
2626 /* OBJECT or SIZE may have been passed through protect_from_queue.
2628 It is unsafe to save the value generated by protect_from_queue
2629 and reuse it later. Consider what happens if emit_queue is
2630 called before the return value from protect_from_queue is used.
2632 Expansion of the CALL_EXPR below will call emit_queue before
2633 we are finished emitting RTL for argument setup. So if we are
2634 not careful we could get the wrong value for an argument.
2636 To avoid this problem we go ahead and emit code to copy OBJECT
2637 and SIZE into new pseudos. We can then place those new pseudos
2638 into an RTL_EXPR and use them later, even after a call to
2639 emit_queue.
2641 Note this is not strictly needed for library calls since they
2642 do not call emit_queue before loading their arguments. However,
2643 we may need to have library calls call emit_queue in the future
2644 since failing to do so could cause problems for targets which
2645 define SMALL_REGISTER_CLASSES and pass arguments in registers. */
2646 object = copy_to_mode_reg (Pmode, XEXP (object, 0));
2648 #ifdef TARGET_MEM_FUNCTIONS
2649 size = copy_to_mode_reg (TYPE_MODE (sizetype), size);
2650 #else
2651 size = convert_to_mode (TYPE_MODE (integer_type_node), size,
2652 TREE_UNSIGNED (integer_type_node));
2653 size = copy_to_mode_reg (TYPE_MODE (integer_type_node), size);
2654 #endif
2656 #ifdef TARGET_MEM_FUNCTIONS
2657 /* It is incorrect to use the libcall calling conventions to call
2658 memset in this context.
2660 This could be a user call to memset and the user may wish to
2661 examine the return value from memset.
2663 For targets where libcalls and normal calls have different
2664 conventions for returning pointers, we could end up generating
2665 incorrect code.
2667 So instead of using a libcall sequence we build up a suitable
2668 CALL_EXPR and expand the call in the normal fashion. */
2669 if (fn == NULL_TREE)
2671 tree fntype;
2673 /* This was copied from except.c, I don't know if all this is
2674 necessary in this context or not. */
2675 fn = get_identifier ("memset");
2676 fntype = build_pointer_type (void_type_node);
2677 fntype = build_function_type (fntype, NULL_TREE);
2678 fn = build_decl (FUNCTION_DECL, fn, fntype);
2679 ggc_add_tree_root (&fn, 1);
2680 DECL_EXTERNAL (fn) = 1;
2681 TREE_PUBLIC (fn) = 1;
2682 DECL_ARTIFICIAL (fn) = 1;
2683 TREE_NOTHROW (fn) = 1;
2684 make_decl_rtl (fn, NULL);
2685 assemble_external (fn);
2688 /* We need to make an argument list for the function call.
2690 memset has three arguments, the first is a void * addresses, the
2691 second an integer with the initialization value, the last is a
2692 size_t byte count for the copy. */
2693 arg_list
2694 = build_tree_list (NULL_TREE,
2695 make_tree (build_pointer_type (void_type_node),
2696 object));
2697 TREE_CHAIN (arg_list)
2698 = build_tree_list (NULL_TREE,
2699 make_tree (integer_type_node, const0_rtx));
2700 TREE_CHAIN (TREE_CHAIN (arg_list))
2701 = build_tree_list (NULL_TREE, make_tree (sizetype, size));
2702 TREE_CHAIN (TREE_CHAIN (TREE_CHAIN (arg_list))) = NULL_TREE;
2704 /* Now we have to build up the CALL_EXPR itself. */
2705 call_expr = build1 (ADDR_EXPR,
2706 build_pointer_type (TREE_TYPE (fn)), fn);
2707 call_expr = build (CALL_EXPR, TREE_TYPE (TREE_TYPE (fn)),
2708 call_expr, arg_list, NULL_TREE);
2709 TREE_SIDE_EFFECTS (call_expr) = 1;
2711 retval = expand_expr (call_expr, NULL_RTX, VOIDmode, 0);
2712 #else
2713 emit_library_call (bzero_libfunc, LCT_NORMAL,
2714 VOIDmode, 2, object, Pmode, size,
2715 TYPE_MODE (integer_type_node));
2716 #endif
2718 /* If we are initializing a readonly value, show the above call
2719 clobbered it. Otherwise, a load from it may erroneously be
2720 hoisted from a loop. */
2721 if (RTX_UNCHANGING_P (object))
2722 emit_insn (gen_rtx_CLOBBER (VOIDmode, object));
2726 return retval;
2729 /* Generate code to copy Y into X.
2730 Both Y and X must have the same mode, except that
2731 Y can be a constant with VOIDmode.
2732 This mode cannot be BLKmode; use emit_block_move for that.
2734 Return the last instruction emitted. */
2737 emit_move_insn (x, y)
2738 rtx x, y;
2740 enum machine_mode mode = GET_MODE (x);
2741 rtx y_cst = NULL_RTX;
2742 rtx last_insn;
2744 x = protect_from_queue (x, 1);
2745 y = protect_from_queue (y, 0);
2747 if (mode == BLKmode || (GET_MODE (y) != mode && GET_MODE (y) != VOIDmode))
2748 abort ();
2750 /* Never force constant_p_rtx to memory. */
2751 if (GET_CODE (y) == CONSTANT_P_RTX)
2753 else if (CONSTANT_P (y) && ! LEGITIMATE_CONSTANT_P (y))
2755 y_cst = y;
2756 y = force_const_mem (mode, y);
2759 /* If X or Y are memory references, verify that their addresses are valid
2760 for the machine. */
2761 if (GET_CODE (x) == MEM
2762 && ((! memory_address_p (GET_MODE (x), XEXP (x, 0))
2763 && ! push_operand (x, GET_MODE (x)))
2764 || (flag_force_addr
2765 && CONSTANT_ADDRESS_P (XEXP (x, 0)))))
2766 x = validize_mem (x);
2768 if (GET_CODE (y) == MEM
2769 && (! memory_address_p (GET_MODE (y), XEXP (y, 0))
2770 || (flag_force_addr
2771 && CONSTANT_ADDRESS_P (XEXP (y, 0)))))
2772 y = validize_mem (y);
2774 if (mode == BLKmode)
2775 abort ();
2777 last_insn = emit_move_insn_1 (x, y);
2779 if (y_cst && GET_CODE (x) == REG)
2780 set_unique_reg_note (last_insn, REG_EQUAL, y_cst);
2782 return last_insn;
2785 /* Low level part of emit_move_insn.
2786 Called just like emit_move_insn, but assumes X and Y
2787 are basically valid. */
2790 emit_move_insn_1 (x, y)
2791 rtx x, y;
2793 enum machine_mode mode = GET_MODE (x);
2794 enum machine_mode submode;
2795 enum mode_class class = GET_MODE_CLASS (mode);
2797 if ((unsigned int) mode >= (unsigned int) MAX_MACHINE_MODE)
2798 abort ();
2800 if (mov_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
2801 return
2802 emit_insn (GEN_FCN (mov_optab->handlers[(int) mode].insn_code) (x, y));
2804 /* Expand complex moves by moving real part and imag part, if possible. */
2805 else if ((class == MODE_COMPLEX_FLOAT || class == MODE_COMPLEX_INT)
2806 && BLKmode != (submode = mode_for_size ((GET_MODE_UNIT_SIZE (mode)
2807 * BITS_PER_UNIT),
2808 (class == MODE_COMPLEX_INT
2809 ? MODE_INT : MODE_FLOAT),
2811 && (mov_optab->handlers[(int) submode].insn_code
2812 != CODE_FOR_nothing))
2814 /* Don't split destination if it is a stack push. */
2815 int stack = push_operand (x, GET_MODE (x));
2817 #ifdef PUSH_ROUNDING
2818 /* In case we output to the stack, but the size is smaller machine can
2819 push exactly, we need to use move instructions. */
2820 if (stack
2821 && (PUSH_ROUNDING (GET_MODE_SIZE (submode))
2822 != GET_MODE_SIZE (submode)))
2824 rtx temp;
2825 HOST_WIDE_INT offset1, offset2;
2827 /* Do not use anti_adjust_stack, since we don't want to update
2828 stack_pointer_delta. */
2829 temp = expand_binop (Pmode,
2830 #ifdef STACK_GROWS_DOWNWARD
2831 sub_optab,
2832 #else
2833 add_optab,
2834 #endif
2835 stack_pointer_rtx,
2836 GEN_INT
2837 (PUSH_ROUNDING
2838 (GET_MODE_SIZE (GET_MODE (x)))),
2839 stack_pointer_rtx, 0, OPTAB_LIB_WIDEN);
2841 if (temp != stack_pointer_rtx)
2842 emit_move_insn (stack_pointer_rtx, temp);
2844 #ifdef STACK_GROWS_DOWNWARD
2845 offset1 = 0;
2846 offset2 = GET_MODE_SIZE (submode);
2847 #else
2848 offset1 = -PUSH_ROUNDING (GET_MODE_SIZE (GET_MODE (x)));
2849 offset2 = (-PUSH_ROUNDING (GET_MODE_SIZE (GET_MODE (x)))
2850 + GET_MODE_SIZE (submode));
2851 #endif
2853 emit_move_insn (change_address (x, submode,
2854 gen_rtx_PLUS (Pmode,
2855 stack_pointer_rtx,
2856 GEN_INT (offset1))),
2857 gen_realpart (submode, y));
2858 emit_move_insn (change_address (x, submode,
2859 gen_rtx_PLUS (Pmode,
2860 stack_pointer_rtx,
2861 GEN_INT (offset2))),
2862 gen_imagpart (submode, y));
2864 else
2865 #endif
2866 /* If this is a stack, push the highpart first, so it
2867 will be in the argument order.
2869 In that case, change_address is used only to convert
2870 the mode, not to change the address. */
2871 if (stack)
2873 /* Note that the real part always precedes the imag part in memory
2874 regardless of machine's endianness. */
2875 #ifdef STACK_GROWS_DOWNWARD
2876 emit_insn (GEN_FCN (mov_optab->handlers[(int) submode].insn_code)
2877 (gen_rtx_MEM (submode, XEXP (x, 0)),
2878 gen_imagpart (submode, y)));
2879 emit_insn (GEN_FCN (mov_optab->handlers[(int) submode].insn_code)
2880 (gen_rtx_MEM (submode, XEXP (x, 0)),
2881 gen_realpart (submode, y)));
2882 #else
2883 emit_insn (GEN_FCN (mov_optab->handlers[(int) submode].insn_code)
2884 (gen_rtx_MEM (submode, XEXP (x, 0)),
2885 gen_realpart (submode, y)));
2886 emit_insn (GEN_FCN (mov_optab->handlers[(int) submode].insn_code)
2887 (gen_rtx_MEM (submode, XEXP (x, 0)),
2888 gen_imagpart (submode, y)));
2889 #endif
2891 else
2893 rtx realpart_x, realpart_y;
2894 rtx imagpart_x, imagpart_y;
2896 /* If this is a complex value with each part being smaller than a
2897 word, the usual calling sequence will likely pack the pieces into
2898 a single register. Unfortunately, SUBREG of hard registers only
2899 deals in terms of words, so we have a problem converting input
2900 arguments to the CONCAT of two registers that is used elsewhere
2901 for complex values. If this is before reload, we can copy it into
2902 memory and reload. FIXME, we should see about using extract and
2903 insert on integer registers, but complex short and complex char
2904 variables should be rarely used. */
2905 if (GET_MODE_BITSIZE (mode) < 2 * BITS_PER_WORD
2906 && (reload_in_progress | reload_completed) == 0)
2908 int packed_dest_p
2909 = (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER);
2910 int packed_src_p
2911 = (REG_P (y) && REGNO (y) < FIRST_PSEUDO_REGISTER);
2913 if (packed_dest_p || packed_src_p)
2915 enum mode_class reg_class = ((class == MODE_COMPLEX_FLOAT)
2916 ? MODE_FLOAT : MODE_INT);
2918 enum machine_mode reg_mode
2919 = mode_for_size (GET_MODE_BITSIZE (mode), reg_class, 1);
2921 if (reg_mode != BLKmode)
2923 rtx mem = assign_stack_temp (reg_mode,
2924 GET_MODE_SIZE (mode), 0);
2925 rtx cmem = adjust_address (mem, mode, 0);
2927 cfun->cannot_inline
2928 = N_("function using short complex types cannot be inline");
2930 if (packed_dest_p)
2932 rtx sreg = gen_rtx_SUBREG (reg_mode, x, 0);
2934 emit_move_insn_1 (cmem, y);
2935 return emit_move_insn_1 (sreg, mem);
2937 else
2939 rtx sreg = gen_rtx_SUBREG (reg_mode, y, 0);
2941 emit_move_insn_1 (mem, sreg);
2942 return emit_move_insn_1 (x, cmem);
2948 realpart_x = gen_realpart (submode, x);
2949 realpart_y = gen_realpart (submode, y);
2950 imagpart_x = gen_imagpart (submode, x);
2951 imagpart_y = gen_imagpart (submode, y);
2953 /* Show the output dies here. This is necessary for SUBREGs
2954 of pseudos since we cannot track their lifetimes correctly;
2955 hard regs shouldn't appear here except as return values.
2956 We never want to emit such a clobber after reload. */
2957 if (x != y
2958 && ! (reload_in_progress || reload_completed)
2959 && (GET_CODE (realpart_x) == SUBREG
2960 || GET_CODE (imagpart_x) == SUBREG))
2961 emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
2963 emit_insn (GEN_FCN (mov_optab->handlers[(int) submode].insn_code)
2964 (realpart_x, realpart_y));
2965 emit_insn (GEN_FCN (mov_optab->handlers[(int) submode].insn_code)
2966 (imagpart_x, imagpart_y));
2969 return get_last_insn ();
2972 /* This will handle any multi-word mode that lacks a move_insn pattern.
2973 However, you will get better code if you define such patterns,
2974 even if they must turn into multiple assembler instructions. */
2975 else if (GET_MODE_SIZE (mode) > UNITS_PER_WORD)
2977 rtx last_insn = 0;
2978 rtx seq, inner;
2979 int need_clobber;
2980 int i;
2982 #ifdef PUSH_ROUNDING
2984 /* If X is a push on the stack, do the push now and replace
2985 X with a reference to the stack pointer. */
2986 if (push_operand (x, GET_MODE (x)))
2988 rtx temp;
2989 enum rtx_code code;
2991 /* Do not use anti_adjust_stack, since we don't want to update
2992 stack_pointer_delta. */
2993 temp = expand_binop (Pmode,
2994 #ifdef STACK_GROWS_DOWNWARD
2995 sub_optab,
2996 #else
2997 add_optab,
2998 #endif
2999 stack_pointer_rtx,
3000 GEN_INT
3001 (PUSH_ROUNDING
3002 (GET_MODE_SIZE (GET_MODE (x)))),
3003 stack_pointer_rtx, 0, OPTAB_LIB_WIDEN);
3005 if (temp != stack_pointer_rtx)
3006 emit_move_insn (stack_pointer_rtx, temp);
3008 code = GET_CODE (XEXP (x, 0));
3010 /* Just hope that small offsets off SP are OK. */
3011 if (code == POST_INC)
3012 temp = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
3013 GEN_INT (-((HOST_WIDE_INT)
3014 GET_MODE_SIZE (GET_MODE (x)))));
3015 else if (code == POST_DEC)
3016 temp = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
3017 GEN_INT (GET_MODE_SIZE (GET_MODE (x))));
3018 else
3019 temp = stack_pointer_rtx;
3021 x = change_address (x, VOIDmode, temp);
3023 #endif
3025 /* If we are in reload, see if either operand is a MEM whose address
3026 is scheduled for replacement. */
3027 if (reload_in_progress && GET_CODE (x) == MEM
3028 && (inner = find_replacement (&XEXP (x, 0))) != XEXP (x, 0))
3029 x = replace_equiv_address_nv (x, inner);
3030 if (reload_in_progress && GET_CODE (y) == MEM
3031 && (inner = find_replacement (&XEXP (y, 0))) != XEXP (y, 0))
3032 y = replace_equiv_address_nv (y, inner);
3034 start_sequence ();
3036 need_clobber = 0;
3037 for (i = 0;
3038 i < (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
3039 i++)
3041 rtx xpart = operand_subword (x, i, 1, mode);
3042 rtx ypart = operand_subword (y, i, 1, mode);
3044 /* If we can't get a part of Y, put Y into memory if it is a
3045 constant. Otherwise, force it into a register. If we still
3046 can't get a part of Y, abort. */
3047 if (ypart == 0 && CONSTANT_P (y))
3049 y = force_const_mem (mode, y);
3050 ypart = operand_subword (y, i, 1, mode);
3052 else if (ypart == 0)
3053 ypart = operand_subword_force (y, i, mode);
3055 if (xpart == 0 || ypart == 0)
3056 abort ();
3058 need_clobber |= (GET_CODE (xpart) == SUBREG);
3060 last_insn = emit_move_insn (xpart, ypart);
3063 seq = gen_sequence ();
3064 end_sequence ();
3066 /* Show the output dies here. This is necessary for SUBREGs
3067 of pseudos since we cannot track their lifetimes correctly;
3068 hard regs shouldn't appear here except as return values.
3069 We never want to emit such a clobber after reload. */
3070 if (x != y
3071 && ! (reload_in_progress || reload_completed)
3072 && need_clobber != 0)
3073 emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
3075 emit_insn (seq);
3077 return last_insn;
3079 else
3080 abort ();
3083 /* Pushing data onto the stack. */
3085 /* Push a block of length SIZE (perhaps variable)
3086 and return an rtx to address the beginning of the block.
3087 Note that it is not possible for the value returned to be a QUEUED.
3088 The value may be virtual_outgoing_args_rtx.
3090 EXTRA is the number of bytes of padding to push in addition to SIZE.
3091 BELOW nonzero means this padding comes at low addresses;
3092 otherwise, the padding comes at high addresses. */
3095 push_block (size, extra, below)
3096 rtx size;
3097 int extra, below;
3099 rtx temp;
3101 size = convert_modes (Pmode, ptr_mode, size, 1);
3102 if (CONSTANT_P (size))
3103 anti_adjust_stack (plus_constant (size, extra));
3104 else if (GET_CODE (size) == REG && extra == 0)
3105 anti_adjust_stack (size);
3106 else
3108 temp = copy_to_mode_reg (Pmode, size);
3109 if (extra != 0)
3110 temp = expand_binop (Pmode, add_optab, temp, GEN_INT (extra),
3111 temp, 0, OPTAB_LIB_WIDEN);
3112 anti_adjust_stack (temp);
3115 #ifndef STACK_GROWS_DOWNWARD
3116 if (0)
3117 #else
3118 if (1)
3119 #endif
3121 temp = virtual_outgoing_args_rtx;
3122 if (extra != 0 && below)
3123 temp = plus_constant (temp, extra);
3125 else
3127 if (GET_CODE (size) == CONST_INT)
3128 temp = plus_constant (virtual_outgoing_args_rtx,
3129 -INTVAL (size) - (below ? 0 : extra));
3130 else if (extra != 0 && !below)
3131 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3132 negate_rtx (Pmode, plus_constant (size, extra)));
3133 else
3134 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3135 negate_rtx (Pmode, size));
3138 return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT), temp);
3141 #ifdef PUSH_ROUNDING
3143 /* Emit single push insn. */
3145 static void
3146 emit_single_push_insn (mode, x, type)
3147 rtx x;
3148 enum machine_mode mode;
3149 tree type;
3151 rtx dest_addr;
3152 unsigned rounded_size = PUSH_ROUNDING (GET_MODE_SIZE (mode));
3153 rtx dest;
3154 enum insn_code icode;
3155 insn_operand_predicate_fn pred;
3157 stack_pointer_delta += PUSH_ROUNDING (GET_MODE_SIZE (mode));
3158 /* If there is push pattern, use it. Otherwise try old way of throwing
3159 MEM representing push operation to move expander. */
3160 icode = push_optab->handlers[(int) mode].insn_code;
3161 if (icode != CODE_FOR_nothing)
3163 if (((pred = insn_data[(int) icode].operand[0].predicate)
3164 && !((*pred) (x, mode))))
3165 x = force_reg (mode, x);
3166 emit_insn (GEN_FCN (icode) (x));
3167 return;
3169 if (GET_MODE_SIZE (mode) == rounded_size)
3170 dest_addr = gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx);
3171 else
3173 #ifdef STACK_GROWS_DOWNWARD
3174 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
3175 GEN_INT (-(HOST_WIDE_INT) rounded_size));
3176 #else
3177 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
3178 GEN_INT (rounded_size));
3179 #endif
3180 dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr);
3183 dest = gen_rtx_MEM (mode, dest_addr);
3185 if (type != 0)
3187 set_mem_attributes (dest, type, 1);
3189 if (flag_optimize_sibling_calls)
3190 /* Function incoming arguments may overlap with sibling call
3191 outgoing arguments and we cannot allow reordering of reads
3192 from function arguments with stores to outgoing arguments
3193 of sibling calls. */
3194 set_mem_alias_set (dest, 0);
3196 emit_move_insn (dest, x);
3198 #endif
3200 /* Generate code to push X onto the stack, assuming it has mode MODE and
3201 type TYPE.
3202 MODE is redundant except when X is a CONST_INT (since they don't
3203 carry mode info).
3204 SIZE is an rtx for the size of data to be copied (in bytes),
3205 needed only if X is BLKmode.
3207 ALIGN (in bits) is maximum alignment we can assume.
3209 If PARTIAL and REG are both nonzero, then copy that many of the first
3210 words of X into registers starting with REG, and push the rest of X.
3211 The amount of space pushed is decreased by PARTIAL words,
3212 rounded *down* to a multiple of PARM_BOUNDARY.
3213 REG must be a hard register in this case.
3214 If REG is zero but PARTIAL is not, take any all others actions for an
3215 argument partially in registers, but do not actually load any
3216 registers.
3218 EXTRA is the amount in bytes of extra space to leave next to this arg.
3219 This is ignored if an argument block has already been allocated.
3221 On a machine that lacks real push insns, ARGS_ADDR is the address of
3222 the bottom of the argument block for this call. We use indexing off there
3223 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
3224 argument block has not been preallocated.
3226 ARGS_SO_FAR is the size of args previously pushed for this call.
3228 REG_PARM_STACK_SPACE is nonzero if functions require stack space
3229 for arguments passed in registers. If nonzero, it will be the number
3230 of bytes required. */
3232 void
3233 emit_push_insn (x, mode, type, size, align, partial, reg, extra,
3234 args_addr, args_so_far, reg_parm_stack_space,
3235 alignment_pad)
3236 rtx x;
3237 enum machine_mode mode;
3238 tree type;
3239 rtx size;
3240 unsigned int align;
3241 int partial;
3242 rtx reg;
3243 int extra;
3244 rtx args_addr;
3245 rtx args_so_far;
3246 int reg_parm_stack_space;
3247 rtx alignment_pad;
3249 rtx xinner;
3250 enum direction stack_direction
3251 #ifdef STACK_GROWS_DOWNWARD
3252 = downward;
3253 #else
3254 = upward;
3255 #endif
3257 /* Decide where to pad the argument: `downward' for below,
3258 `upward' for above, or `none' for don't pad it.
3259 Default is below for small data on big-endian machines; else above. */
3260 enum direction where_pad = FUNCTION_ARG_PADDING (mode, type);
3262 /* Invert direction if stack is post-decrement.
3263 FIXME: why? */
3264 if (STACK_PUSH_CODE == POST_DEC)
3265 if (where_pad != none)
3266 where_pad = (where_pad == downward ? upward : downward);
3268 xinner = x = protect_from_queue (x, 0);
3270 if (mode == BLKmode)
3272 /* Copy a block into the stack, entirely or partially. */
3274 rtx temp;
3275 int used = partial * UNITS_PER_WORD;
3276 int offset = used % (PARM_BOUNDARY / BITS_PER_UNIT);
3277 int skip;
3279 if (size == 0)
3280 abort ();
3282 used -= offset;
3284 /* USED is now the # of bytes we need not copy to the stack
3285 because registers will take care of them. */
3287 if (partial != 0)
3288 xinner = adjust_address (xinner, BLKmode, used);
3290 /* If the partial register-part of the arg counts in its stack size,
3291 skip the part of stack space corresponding to the registers.
3292 Otherwise, start copying to the beginning of the stack space,
3293 by setting SKIP to 0. */
3294 skip = (reg_parm_stack_space == 0) ? 0 : used;
3296 #ifdef PUSH_ROUNDING
3297 /* Do it with several push insns if that doesn't take lots of insns
3298 and if there is no difficulty with push insns that skip bytes
3299 on the stack for alignment purposes. */
3300 if (args_addr == 0
3301 && PUSH_ARGS
3302 && GET_CODE (size) == CONST_INT
3303 && skip == 0
3304 && (MOVE_BY_PIECES_P ((unsigned) INTVAL (size) - used, align))
3305 /* Here we avoid the case of a structure whose weak alignment
3306 forces many pushes of a small amount of data,
3307 and such small pushes do rounding that causes trouble. */
3308 && ((! SLOW_UNALIGNED_ACCESS (word_mode, align))
3309 || align >= BIGGEST_ALIGNMENT
3310 || (PUSH_ROUNDING (align / BITS_PER_UNIT)
3311 == (align / BITS_PER_UNIT)))
3312 && PUSH_ROUNDING (INTVAL (size)) == INTVAL (size))
3314 /* Push padding now if padding above and stack grows down,
3315 or if padding below and stack grows up.
3316 But if space already allocated, this has already been done. */
3317 if (extra && args_addr == 0
3318 && where_pad != none && where_pad != stack_direction)
3319 anti_adjust_stack (GEN_INT (extra));
3321 move_by_pieces (NULL, xinner, INTVAL (size) - used, align);
3323 else
3324 #endif /* PUSH_ROUNDING */
3326 rtx target;
3328 /* Otherwise make space on the stack and copy the data
3329 to the address of that space. */
3331 /* Deduct words put into registers from the size we must copy. */
3332 if (partial != 0)
3334 if (GET_CODE (size) == CONST_INT)
3335 size = GEN_INT (INTVAL (size) - used);
3336 else
3337 size = expand_binop (GET_MODE (size), sub_optab, size,
3338 GEN_INT (used), NULL_RTX, 0,
3339 OPTAB_LIB_WIDEN);
3342 /* Get the address of the stack space.
3343 In this case, we do not deal with EXTRA separately.
3344 A single stack adjust will do. */
3345 if (! args_addr)
3347 temp = push_block (size, extra, where_pad == downward);
3348 extra = 0;
3350 else if (GET_CODE (args_so_far) == CONST_INT)
3351 temp = memory_address (BLKmode,
3352 plus_constant (args_addr,
3353 skip + INTVAL (args_so_far)));
3354 else
3355 temp = memory_address (BLKmode,
3356 plus_constant (gen_rtx_PLUS (Pmode,
3357 args_addr,
3358 args_so_far),
3359 skip));
3360 target = gen_rtx_MEM (BLKmode, temp);
3362 if (type != 0)
3364 set_mem_attributes (target, type, 1);
3365 /* Function incoming arguments may overlap with sibling call
3366 outgoing arguments and we cannot allow reordering of reads
3367 from function arguments with stores to outgoing arguments
3368 of sibling calls. */
3369 set_mem_alias_set (target, 0);
3371 else
3372 set_mem_align (target, align);
3374 /* TEMP is the address of the block. Copy the data there. */
3375 if (GET_CODE (size) == CONST_INT
3376 && MOVE_BY_PIECES_P ((unsigned) INTVAL (size), align))
3378 move_by_pieces (target, xinner, INTVAL (size), align);
3379 goto ret;
3381 else
3383 rtx opalign = GEN_INT (align / BITS_PER_UNIT);
3384 enum machine_mode mode;
3386 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
3387 mode != VOIDmode;
3388 mode = GET_MODE_WIDER_MODE (mode))
3390 enum insn_code code = movstr_optab[(int) mode];
3391 insn_operand_predicate_fn pred;
3393 if (code != CODE_FOR_nothing
3394 && ((GET_CODE (size) == CONST_INT
3395 && ((unsigned HOST_WIDE_INT) INTVAL (size)
3396 <= (GET_MODE_MASK (mode) >> 1)))
3397 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
3398 && (!(pred = insn_data[(int) code].operand[0].predicate)
3399 || ((*pred) (target, BLKmode)))
3400 && (!(pred = insn_data[(int) code].operand[1].predicate)
3401 || ((*pred) (xinner, BLKmode)))
3402 && (!(pred = insn_data[(int) code].operand[3].predicate)
3403 || ((*pred) (opalign, VOIDmode))))
3405 rtx op2 = convert_to_mode (mode, size, 1);
3406 rtx last = get_last_insn ();
3407 rtx pat;
3409 pred = insn_data[(int) code].operand[2].predicate;
3410 if (pred != 0 && ! (*pred) (op2, mode))
3411 op2 = copy_to_mode_reg (mode, op2);
3413 pat = GEN_FCN ((int) code) (target, xinner,
3414 op2, opalign);
3415 if (pat)
3417 emit_insn (pat);
3418 goto ret;
3420 else
3421 delete_insns_since (last);
3426 if (!ACCUMULATE_OUTGOING_ARGS)
3428 /* If the source is referenced relative to the stack pointer,
3429 copy it to another register to stabilize it. We do not need
3430 to do this if we know that we won't be changing sp. */
3432 if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp)
3433 || reg_mentioned_p (virtual_outgoing_args_rtx, temp))
3434 temp = copy_to_reg (temp);
3437 /* Make inhibit_defer_pop nonzero around the library call
3438 to force it to pop the bcopy-arguments right away. */
3439 NO_DEFER_POP;
3440 #ifdef TARGET_MEM_FUNCTIONS
3441 emit_library_call (memcpy_libfunc, LCT_NORMAL,
3442 VOIDmode, 3, temp, Pmode, XEXP (xinner, 0), Pmode,
3443 convert_to_mode (TYPE_MODE (sizetype),
3444 size, TREE_UNSIGNED (sizetype)),
3445 TYPE_MODE (sizetype));
3446 #else
3447 emit_library_call (bcopy_libfunc, LCT_NORMAL,
3448 VOIDmode, 3, XEXP (xinner, 0), Pmode, temp, Pmode,
3449 convert_to_mode (TYPE_MODE (integer_type_node),
3450 size,
3451 TREE_UNSIGNED (integer_type_node)),
3452 TYPE_MODE (integer_type_node));
3453 #endif
3454 OK_DEFER_POP;
3457 else if (partial > 0)
3459 /* Scalar partly in registers. */
3461 int size = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
3462 int i;
3463 int not_stack;
3464 /* # words of start of argument
3465 that we must make space for but need not store. */
3466 int offset = partial % (PARM_BOUNDARY / BITS_PER_WORD);
3467 int args_offset = INTVAL (args_so_far);
3468 int skip;
3470 /* Push padding now if padding above and stack grows down,
3471 or if padding below and stack grows up.
3472 But if space already allocated, this has already been done. */
3473 if (extra && args_addr == 0
3474 && where_pad != none && where_pad != stack_direction)
3475 anti_adjust_stack (GEN_INT (extra));
3477 /* If we make space by pushing it, we might as well push
3478 the real data. Otherwise, we can leave OFFSET nonzero
3479 and leave the space uninitialized. */
3480 if (args_addr == 0)
3481 offset = 0;
3483 /* Now NOT_STACK gets the number of words that we don't need to
3484 allocate on the stack. */
3485 not_stack = partial - offset;
3487 /* If the partial register-part of the arg counts in its stack size,
3488 skip the part of stack space corresponding to the registers.
3489 Otherwise, start copying to the beginning of the stack space,
3490 by setting SKIP to 0. */
3491 skip = (reg_parm_stack_space == 0) ? 0 : not_stack;
3493 if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
3494 x = validize_mem (force_const_mem (mode, x));
3496 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
3497 SUBREGs of such registers are not allowed. */
3498 if ((GET_CODE (x) == REG && REGNO (x) < FIRST_PSEUDO_REGISTER
3499 && GET_MODE_CLASS (GET_MODE (x)) != MODE_INT))
3500 x = copy_to_reg (x);
3502 /* Loop over all the words allocated on the stack for this arg. */
3503 /* We can do it by words, because any scalar bigger than a word
3504 has a size a multiple of a word. */
3505 #ifndef PUSH_ARGS_REVERSED
3506 for (i = not_stack; i < size; i++)
3507 #else
3508 for (i = size - 1; i >= not_stack; i--)
3509 #endif
3510 if (i >= not_stack + offset)
3511 emit_push_insn (operand_subword_force (x, i, mode),
3512 word_mode, NULL_TREE, NULL_RTX, align, 0, NULL_RTX,
3513 0, args_addr,
3514 GEN_INT (args_offset + ((i - not_stack + skip)
3515 * UNITS_PER_WORD)),
3516 reg_parm_stack_space, alignment_pad);
3518 else
3520 rtx addr;
3521 rtx target = NULL_RTX;
3522 rtx dest;
3524 /* Push padding now if padding above and stack grows down,
3525 or if padding below and stack grows up.
3526 But if space already allocated, this has already been done. */
3527 if (extra && args_addr == 0
3528 && where_pad != none && where_pad != stack_direction)
3529 anti_adjust_stack (GEN_INT (extra));
3531 #ifdef PUSH_ROUNDING
3532 if (args_addr == 0 && PUSH_ARGS)
3533 emit_single_push_insn (mode, x, type);
3534 else
3535 #endif
3537 if (GET_CODE (args_so_far) == CONST_INT)
3538 addr
3539 = memory_address (mode,
3540 plus_constant (args_addr,
3541 INTVAL (args_so_far)));
3542 else
3543 addr = memory_address (mode, gen_rtx_PLUS (Pmode, args_addr,
3544 args_so_far));
3545 target = addr;
3546 dest = gen_rtx_MEM (mode, addr);
3547 if (type != 0)
3549 set_mem_attributes (dest, type, 1);
3550 /* Function incoming arguments may overlap with sibling call
3551 outgoing arguments and we cannot allow reordering of reads
3552 from function arguments with stores to outgoing arguments
3553 of sibling calls. */
3554 set_mem_alias_set (dest, 0);
3557 emit_move_insn (dest, x);
3562 ret:
3563 /* If part should go in registers, copy that part
3564 into the appropriate registers. Do this now, at the end,
3565 since mem-to-mem copies above may do function calls. */
3566 if (partial > 0 && reg != 0)
3568 /* Handle calls that pass values in multiple non-contiguous locations.
3569 The Irix 6 ABI has examples of this. */
3570 if (GET_CODE (reg) == PARALLEL)
3571 emit_group_load (reg, x, -1); /* ??? size? */
3572 else
3573 move_block_to_reg (REGNO (reg), x, partial, mode);
3576 if (extra && args_addr == 0 && where_pad == stack_direction)
3577 anti_adjust_stack (GEN_INT (extra));
3579 if (alignment_pad && args_addr == 0)
3580 anti_adjust_stack (alignment_pad);
3583 /* Return X if X can be used as a subtarget in a sequence of arithmetic
3584 operations. */
3586 static rtx
3587 get_subtarget (x)
3588 rtx x;
3590 return ((x == 0
3591 /* Only registers can be subtargets. */
3592 || GET_CODE (x) != REG
3593 /* If the register is readonly, it can't be set more than once. */
3594 || RTX_UNCHANGING_P (x)
3595 /* Don't use hard regs to avoid extending their life. */
3596 || REGNO (x) < FIRST_PSEUDO_REGISTER
3597 /* Avoid subtargets inside loops,
3598 since they hide some invariant expressions. */
3599 || preserve_subexpressions_p ())
3600 ? 0 : x);
3603 /* Expand an assignment that stores the value of FROM into TO.
3604 If WANT_VALUE is nonzero, return an rtx for the value of TO.
3605 (This may contain a QUEUED rtx;
3606 if the value is constant, this rtx is a constant.)
3607 Otherwise, the returned value is NULL_RTX.
3609 SUGGEST_REG is no longer actually used.
3610 It used to mean, copy the value through a register
3611 and return that register, if that is possible.
3612 We now use WANT_VALUE to decide whether to do this. */
3615 expand_assignment (to, from, want_value, suggest_reg)
3616 tree to, from;
3617 int want_value;
3618 int suggest_reg ATTRIBUTE_UNUSED;
3620 rtx to_rtx = 0;
3621 rtx result;
3623 /* Don't crash if the lhs of the assignment was erroneous. */
3625 if (TREE_CODE (to) == ERROR_MARK)
3627 result = expand_expr (from, NULL_RTX, VOIDmode, 0);
3628 return want_value ? result : NULL_RTX;
3631 /* Assignment of a structure component needs special treatment
3632 if the structure component's rtx is not simply a MEM.
3633 Assignment of an array element at a constant index, and assignment of
3634 an array element in an unaligned packed structure field, has the same
3635 problem. */
3637 if (TREE_CODE (to) == COMPONENT_REF || TREE_CODE (to) == BIT_FIELD_REF
3638 || TREE_CODE (to) == ARRAY_REF || TREE_CODE (to) == ARRAY_RANGE_REF)
3640 enum machine_mode mode1;
3641 HOST_WIDE_INT bitsize, bitpos;
3642 rtx orig_to_rtx;
3643 tree offset;
3644 int unsignedp;
3645 int volatilep = 0;
3646 tree tem;
3648 push_temp_slots ();
3649 tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1,
3650 &unsignedp, &volatilep);
3652 /* If we are going to use store_bit_field and extract_bit_field,
3653 make sure to_rtx will be safe for multiple use. */
3655 if (mode1 == VOIDmode && want_value)
3656 tem = stabilize_reference (tem);
3658 orig_to_rtx = to_rtx = expand_expr (tem, NULL_RTX, VOIDmode, 0);
3660 if (offset != 0)
3662 rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, EXPAND_SUM);
3664 if (GET_CODE (to_rtx) != MEM)
3665 abort ();
3667 if (GET_MODE (offset_rtx) != ptr_mode)
3668 offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
3670 #ifdef POINTERS_EXTEND_UNSIGNED
3671 if (GET_MODE (offset_rtx) != Pmode)
3672 offset_rtx = convert_memory_address (Pmode, offset_rtx);
3673 #endif
3675 /* A constant address in TO_RTX can have VOIDmode, we must not try
3676 to call force_reg for that case. Avoid that case. */
3677 if (GET_CODE (to_rtx) == MEM
3678 && GET_MODE (to_rtx) == BLKmode
3679 && GET_MODE (XEXP (to_rtx, 0)) != VOIDmode
3680 && bitsize > 0
3681 && (bitpos % bitsize) == 0
3682 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
3683 && MEM_ALIGN (to_rtx) == GET_MODE_ALIGNMENT (mode1))
3685 to_rtx = adjust_address (to_rtx, mode1, bitpos / BITS_PER_UNIT);
3686 bitpos = 0;
3689 to_rtx = offset_address (to_rtx, offset_rtx,
3690 highest_pow2_factor (offset));
3693 if (GET_CODE (to_rtx) == MEM)
3695 tree old_expr = MEM_EXPR (to_rtx);
3697 /* If the field is at offset zero, we could have been given the
3698 DECL_RTX of the parent struct. Don't munge it. */
3699 to_rtx = shallow_copy_rtx (to_rtx);
3701 set_mem_attributes (to_rtx, to, 0);
3703 /* If we changed MEM_EXPR, that means we're now referencing
3704 the COMPONENT_REF, which means that MEM_OFFSET must be
3705 relative to that field. But we've not yet reflected BITPOS
3706 in TO_RTX. This will be done in store_field. Adjust for
3707 that by biasing MEM_OFFSET by -bitpos. */
3708 if (MEM_EXPR (to_rtx) != old_expr && MEM_OFFSET (to_rtx)
3709 && (bitpos / BITS_PER_UNIT) != 0)
3710 set_mem_offset (to_rtx, GEN_INT (INTVAL (MEM_OFFSET (to_rtx))
3711 - (bitpos / BITS_PER_UNIT)));
3714 /* Deal with volatile and readonly fields. The former is only done
3715 for MEM. Also set MEM_KEEP_ALIAS_SET_P if needed. */
3716 if (volatilep && GET_CODE (to_rtx) == MEM)
3718 if (to_rtx == orig_to_rtx)
3719 to_rtx = copy_rtx (to_rtx);
3720 MEM_VOLATILE_P (to_rtx) = 1;
3723 if (TREE_CODE (to) == COMPONENT_REF
3724 && TREE_READONLY (TREE_OPERAND (to, 1)))
3726 if (to_rtx == orig_to_rtx)
3727 to_rtx = copy_rtx (to_rtx);
3728 RTX_UNCHANGING_P (to_rtx) = 1;
3731 if (GET_CODE (to_rtx) == MEM && ! can_address_p (to))
3733 if (to_rtx == orig_to_rtx)
3734 to_rtx = copy_rtx (to_rtx);
3735 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
3738 result = store_field (to_rtx, bitsize, bitpos, mode1, from,
3739 (want_value
3740 /* Spurious cast for HPUX compiler. */
3741 ? ((enum machine_mode)
3742 TYPE_MODE (TREE_TYPE (to)))
3743 : VOIDmode),
3744 unsignedp, TREE_TYPE (tem), get_alias_set (to));
3746 preserve_temp_slots (result);
3747 free_temp_slots ();
3748 pop_temp_slots ();
3750 /* If the value is meaningful, convert RESULT to the proper mode.
3751 Otherwise, return nothing. */
3752 return (want_value ? convert_modes (TYPE_MODE (TREE_TYPE (to)),
3753 TYPE_MODE (TREE_TYPE (from)),
3754 result,
3755 TREE_UNSIGNED (TREE_TYPE (to)))
3756 : NULL_RTX);
3759 /* If the rhs is a function call and its value is not an aggregate,
3760 call the function before we start to compute the lhs.
3761 This is needed for correct code for cases such as
3762 val = setjmp (buf) on machines where reference to val
3763 requires loading up part of an address in a separate insn.
3765 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
3766 since it might be a promoted variable where the zero- or sign- extension
3767 needs to be done. Handling this in the normal way is safe because no
3768 computation is done before the call. */
3769 if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from)
3770 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST
3771 && ! ((TREE_CODE (to) == VAR_DECL || TREE_CODE (to) == PARM_DECL)
3772 && GET_CODE (DECL_RTL (to)) == REG))
3774 rtx value;
3776 push_temp_slots ();
3777 value = expand_expr (from, NULL_RTX, VOIDmode, 0);
3778 if (to_rtx == 0)
3779 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
3781 /* Handle calls that return values in multiple non-contiguous locations.
3782 The Irix 6 ABI has examples of this. */
3783 if (GET_CODE (to_rtx) == PARALLEL)
3784 emit_group_load (to_rtx, value, int_size_in_bytes (TREE_TYPE (from)));
3785 else if (GET_MODE (to_rtx) == BLKmode)
3786 emit_block_move (to_rtx, value, expr_size (from));
3787 else
3789 #ifdef POINTERS_EXTEND_UNSIGNED
3790 if (POINTER_TYPE_P (TREE_TYPE (to))
3791 && GET_MODE (to_rtx) != GET_MODE (value))
3792 value = convert_memory_address (GET_MODE (to_rtx), value);
3793 #endif
3794 emit_move_insn (to_rtx, value);
3796 preserve_temp_slots (to_rtx);
3797 free_temp_slots ();
3798 pop_temp_slots ();
3799 return want_value ? to_rtx : NULL_RTX;
3802 /* Ordinary treatment. Expand TO to get a REG or MEM rtx.
3803 Don't re-expand if it was expanded already (in COMPONENT_REF case). */
3805 if (to_rtx == 0)
3806 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
3808 /* Don't move directly into a return register. */
3809 if (TREE_CODE (to) == RESULT_DECL
3810 && (GET_CODE (to_rtx) == REG || GET_CODE (to_rtx) == PARALLEL))
3812 rtx temp;
3814 push_temp_slots ();
3815 temp = expand_expr (from, 0, GET_MODE (to_rtx), 0);
3817 if (GET_CODE (to_rtx) == PARALLEL)
3818 emit_group_load (to_rtx, temp, int_size_in_bytes (TREE_TYPE (from)));
3819 else
3820 emit_move_insn (to_rtx, temp);
3822 preserve_temp_slots (to_rtx);
3823 free_temp_slots ();
3824 pop_temp_slots ();
3825 return want_value ? to_rtx : NULL_RTX;
3828 /* In case we are returning the contents of an object which overlaps
3829 the place the value is being stored, use a safe function when copying
3830 a value through a pointer into a structure value return block. */
3831 if (TREE_CODE (to) == RESULT_DECL && TREE_CODE (from) == INDIRECT_REF
3832 && current_function_returns_struct
3833 && !current_function_returns_pcc_struct)
3835 rtx from_rtx, size;
3837 push_temp_slots ();
3838 size = expr_size (from);
3839 from_rtx = expand_expr (from, NULL_RTX, VOIDmode, 0);
3841 #ifdef TARGET_MEM_FUNCTIONS
3842 emit_library_call (memmove_libfunc, LCT_NORMAL,
3843 VOIDmode, 3, XEXP (to_rtx, 0), Pmode,
3844 XEXP (from_rtx, 0), Pmode,
3845 convert_to_mode (TYPE_MODE (sizetype),
3846 size, TREE_UNSIGNED (sizetype)),
3847 TYPE_MODE (sizetype));
3848 #else
3849 emit_library_call (bcopy_libfunc, LCT_NORMAL,
3850 VOIDmode, 3, XEXP (from_rtx, 0), Pmode,
3851 XEXP (to_rtx, 0), Pmode,
3852 convert_to_mode (TYPE_MODE (integer_type_node),
3853 size, TREE_UNSIGNED (integer_type_node)),
3854 TYPE_MODE (integer_type_node));
3855 #endif
3857 preserve_temp_slots (to_rtx);
3858 free_temp_slots ();
3859 pop_temp_slots ();
3860 return want_value ? to_rtx : NULL_RTX;
3863 /* Compute FROM and store the value in the rtx we got. */
3865 push_temp_slots ();
3866 result = store_expr (from, to_rtx, want_value);
3867 preserve_temp_slots (result);
3868 free_temp_slots ();
3869 pop_temp_slots ();
3870 return want_value ? result : NULL_RTX;
3873 /* Generate code for computing expression EXP,
3874 and storing the value into TARGET.
3875 TARGET may contain a QUEUED rtx.
3877 If WANT_VALUE is nonzero, return a copy of the value
3878 not in TARGET, so that we can be sure to use the proper
3879 value in a containing expression even if TARGET has something
3880 else stored in it. If possible, we copy the value through a pseudo
3881 and return that pseudo. Or, if the value is constant, we try to
3882 return the constant. In some cases, we return a pseudo
3883 copied *from* TARGET.
3885 If the mode is BLKmode then we may return TARGET itself.
3886 It turns out that in BLKmode it doesn't cause a problem.
3887 because C has no operators that could combine two different
3888 assignments into the same BLKmode object with different values
3889 with no sequence point. Will other languages need this to
3890 be more thorough?
3892 If WANT_VALUE is 0, we return NULL, to make sure
3893 to catch quickly any cases where the caller uses the value
3894 and fails to set WANT_VALUE. */
3897 store_expr (exp, target, want_value)
3898 tree exp;
3899 rtx target;
3900 int want_value;
3902 rtx temp;
3903 int dont_return_target = 0;
3904 int dont_store_target = 0;
3906 if (TREE_CODE (exp) == COMPOUND_EXPR)
3908 /* Perform first part of compound expression, then assign from second
3909 part. */
3910 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode, 0);
3911 emit_queue ();
3912 return store_expr (TREE_OPERAND (exp, 1), target, want_value);
3914 else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode)
3916 /* For conditional expression, get safe form of the target. Then
3917 test the condition, doing the appropriate assignment on either
3918 side. This avoids the creation of unnecessary temporaries.
3919 For non-BLKmode, it is more efficient not to do this. */
3921 rtx lab1 = gen_label_rtx (), lab2 = gen_label_rtx ();
3923 emit_queue ();
3924 target = protect_from_queue (target, 1);
3926 do_pending_stack_adjust ();
3927 NO_DEFER_POP;
3928 jumpifnot (TREE_OPERAND (exp, 0), lab1);
3929 start_cleanup_deferral ();
3930 store_expr (TREE_OPERAND (exp, 1), target, 0);
3931 end_cleanup_deferral ();
3932 emit_queue ();
3933 emit_jump_insn (gen_jump (lab2));
3934 emit_barrier ();
3935 emit_label (lab1);
3936 start_cleanup_deferral ();
3937 store_expr (TREE_OPERAND (exp, 2), target, 0);
3938 end_cleanup_deferral ();
3939 emit_queue ();
3940 emit_label (lab2);
3941 OK_DEFER_POP;
3943 return want_value ? target : NULL_RTX;
3945 else if (queued_subexp_p (target))
3946 /* If target contains a postincrement, let's not risk
3947 using it as the place to generate the rhs. */
3949 if (GET_MODE (target) != BLKmode && GET_MODE (target) != VOIDmode)
3951 /* Expand EXP into a new pseudo. */
3952 temp = gen_reg_rtx (GET_MODE (target));
3953 temp = expand_expr (exp, temp, GET_MODE (target), 0);
3955 else
3956 temp = expand_expr (exp, NULL_RTX, GET_MODE (target), 0);
3958 /* If target is volatile, ANSI requires accessing the value
3959 *from* the target, if it is accessed. So make that happen.
3960 In no case return the target itself. */
3961 if (! MEM_VOLATILE_P (target) && want_value)
3962 dont_return_target = 1;
3964 else if (want_value && GET_CODE (target) == MEM && ! MEM_VOLATILE_P (target)
3965 && GET_MODE (target) != BLKmode)
3966 /* If target is in memory and caller wants value in a register instead,
3967 arrange that. Pass TARGET as target for expand_expr so that,
3968 if EXP is another assignment, WANT_VALUE will be nonzero for it.
3969 We know expand_expr will not use the target in that case.
3970 Don't do this if TARGET is volatile because we are supposed
3971 to write it and then read it. */
3973 temp = expand_expr (exp, target, GET_MODE (target), 0);
3974 if (GET_MODE (temp) != BLKmode && GET_MODE (temp) != VOIDmode)
3976 /* If TEMP is already in the desired TARGET, only copy it from
3977 memory and don't store it there again. */
3978 if (temp == target
3979 || (rtx_equal_p (temp, target)
3980 && ! side_effects_p (temp) && ! side_effects_p (target)))
3981 dont_store_target = 1;
3982 temp = copy_to_reg (temp);
3984 dont_return_target = 1;
3986 else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
3987 /* If this is an scalar in a register that is stored in a wider mode
3988 than the declared mode, compute the result into its declared mode
3989 and then convert to the wider mode. Our value is the computed
3990 expression. */
3992 rtx inner_target = 0;
3994 /* If we don't want a value, we can do the conversion inside EXP,
3995 which will often result in some optimizations. Do the conversion
3996 in two steps: first change the signedness, if needed, then
3997 the extend. But don't do this if the type of EXP is a subtype
3998 of something else since then the conversion might involve
3999 more than just converting modes. */
4000 if (! want_value && INTEGRAL_TYPE_P (TREE_TYPE (exp))
4001 && TREE_TYPE (TREE_TYPE (exp)) == 0)
4003 if (TREE_UNSIGNED (TREE_TYPE (exp))
4004 != SUBREG_PROMOTED_UNSIGNED_P (target))
4006 = convert
4007 (signed_or_unsigned_type (SUBREG_PROMOTED_UNSIGNED_P (target),
4008 TREE_TYPE (exp)),
4009 exp);
4011 exp = convert (type_for_mode (GET_MODE (SUBREG_REG (target)),
4012 SUBREG_PROMOTED_UNSIGNED_P (target)),
4013 exp);
4015 inner_target = SUBREG_REG (target);
4018 temp = expand_expr (exp, inner_target, VOIDmode, 0);
4020 /* If TEMP is a volatile MEM and we want a result value, make
4021 the access now so it gets done only once. Likewise if
4022 it contains TARGET. */
4023 if (GET_CODE (temp) == MEM && want_value
4024 && (MEM_VOLATILE_P (temp)
4025 || reg_mentioned_p (SUBREG_REG (target), XEXP (temp, 0))))
4026 temp = copy_to_reg (temp);
4028 /* If TEMP is a VOIDmode constant, use convert_modes to make
4029 sure that we properly convert it. */
4030 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
4032 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
4033 temp, SUBREG_PROMOTED_UNSIGNED_P (target));
4034 temp = convert_modes (GET_MODE (SUBREG_REG (target)),
4035 GET_MODE (target), temp,
4036 SUBREG_PROMOTED_UNSIGNED_P (target));
4039 convert_move (SUBREG_REG (target), temp,
4040 SUBREG_PROMOTED_UNSIGNED_P (target));
4042 /* If we promoted a constant, change the mode back down to match
4043 target. Otherwise, the caller might get confused by a result whose
4044 mode is larger than expected. */
4046 if (want_value && GET_MODE (temp) != GET_MODE (target))
4048 if (GET_MODE (temp) != VOIDmode)
4050 temp = gen_lowpart_SUBREG (GET_MODE (target), temp);
4051 SUBREG_PROMOTED_VAR_P (temp) = 1;
4052 SUBREG_PROMOTED_UNSIGNED_P (temp)
4053 = SUBREG_PROMOTED_UNSIGNED_P (target);
4055 else
4056 temp = convert_modes (GET_MODE (target),
4057 GET_MODE (SUBREG_REG (target)),
4058 temp, SUBREG_PROMOTED_UNSIGNED_P (target));
4061 return want_value ? temp : NULL_RTX;
4063 else
4065 temp = expand_expr (exp, target, GET_MODE (target), 0);
4066 /* Return TARGET if it's a specified hardware register.
4067 If TARGET is a volatile mem ref, either return TARGET
4068 or return a reg copied *from* TARGET; ANSI requires this.
4070 Otherwise, if TEMP is not TARGET, return TEMP
4071 if it is constant (for efficiency),
4072 or if we really want the correct value. */
4073 if (!(target && GET_CODE (target) == REG
4074 && REGNO (target) < FIRST_PSEUDO_REGISTER)
4075 && !(GET_CODE (target) == MEM && MEM_VOLATILE_P (target))
4076 && ! rtx_equal_p (temp, target)
4077 && (CONSTANT_P (temp) || want_value))
4078 dont_return_target = 1;
4081 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
4082 the same as that of TARGET, adjust the constant. This is needed, for
4083 example, in case it is a CONST_DOUBLE and we want only a word-sized
4084 value. */
4085 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode
4086 && TREE_CODE (exp) != ERROR_MARK
4087 && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
4088 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
4089 temp, TREE_UNSIGNED (TREE_TYPE (exp)));
4091 /* If value was not generated in the target, store it there.
4092 Convert the value to TARGET's type first if necessary.
4093 If TEMP and TARGET compare equal according to rtx_equal_p, but
4094 one or both of them are volatile memory refs, we have to distinguish
4095 two cases:
4096 - expand_expr has used TARGET. In this case, we must not generate
4097 another copy. This can be detected by TARGET being equal according
4098 to == .
4099 - expand_expr has not used TARGET - that means that the source just
4100 happens to have the same RTX form. Since temp will have been created
4101 by expand_expr, it will compare unequal according to == .
4102 We must generate a copy in this case, to reach the correct number
4103 of volatile memory references. */
4105 if ((! rtx_equal_p (temp, target)
4106 || (temp != target && (side_effects_p (temp)
4107 || side_effects_p (target))))
4108 && TREE_CODE (exp) != ERROR_MARK
4109 && ! dont_store_target)
4111 target = protect_from_queue (target, 1);
4112 if (GET_MODE (temp) != GET_MODE (target)
4113 && GET_MODE (temp) != VOIDmode)
4115 int unsignedp = TREE_UNSIGNED (TREE_TYPE (exp));
4116 if (dont_return_target)
4118 /* In this case, we will return TEMP,
4119 so make sure it has the proper mode.
4120 But don't forget to store the value into TARGET. */
4121 temp = convert_to_mode (GET_MODE (target), temp, unsignedp);
4122 emit_move_insn (target, temp);
4124 else
4125 convert_move (target, temp, unsignedp);
4128 else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST)
4130 /* Handle copying a string constant into an array. The string
4131 constant may be shorter than the array. So copy just the string's
4132 actual length, and clear the rest. First get the size of the data
4133 type of the string, which is actually the size of the target. */
4134 rtx size = expr_size (exp);
4136 if (GET_CODE (size) == CONST_INT
4137 && INTVAL (size) < TREE_STRING_LENGTH (exp))
4138 emit_block_move (target, temp, size);
4139 else
4141 /* Compute the size of the data to copy from the string. */
4142 tree copy_size
4143 = size_binop (MIN_EXPR,
4144 make_tree (sizetype, size),
4145 size_int (TREE_STRING_LENGTH (exp)));
4146 rtx copy_size_rtx = expand_expr (copy_size, NULL_RTX,
4147 VOIDmode, 0);
4148 rtx label = 0;
4150 /* Copy that much. */
4151 copy_size_rtx = convert_to_mode (ptr_mode, copy_size_rtx, 0);
4152 emit_block_move (target, temp, copy_size_rtx);
4154 /* Figure out how much is left in TARGET that we have to clear.
4155 Do all calculations in ptr_mode. */
4156 if (GET_CODE (copy_size_rtx) == CONST_INT)
4158 size = plus_constant (size, -INTVAL (copy_size_rtx));
4159 target = adjust_address (target, BLKmode,
4160 INTVAL (copy_size_rtx));
4162 else
4164 size = expand_binop (ptr_mode, sub_optab, size,
4165 copy_size_rtx, NULL_RTX, 0,
4166 OPTAB_LIB_WIDEN);
4168 #ifdef POINTERS_EXTEND_UNSIGNED
4169 if (GET_MODE (copy_size_rtx) != Pmode)
4170 copy_size_rtx = convert_memory_address (Pmode,
4171 copy_size_rtx);
4172 #endif
4174 target = offset_address (target, copy_size_rtx,
4175 highest_pow2_factor (copy_size));
4176 label = gen_label_rtx ();
4177 emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX,
4178 GET_MODE (size), 0, label);
4181 if (size != const0_rtx)
4182 clear_storage (target, size);
4184 if (label)
4185 emit_label (label);
4188 /* Handle calls that return values in multiple non-contiguous locations.
4189 The Irix 6 ABI has examples of this. */
4190 else if (GET_CODE (target) == PARALLEL)
4191 emit_group_load (target, temp, int_size_in_bytes (TREE_TYPE (exp)));
4192 else if (GET_MODE (temp) == BLKmode)
4193 emit_block_move (target, temp, expr_size (exp));
4194 else
4195 emit_move_insn (target, temp);
4198 /* If we don't want a value, return NULL_RTX. */
4199 if (! want_value)
4200 return NULL_RTX;
4202 /* If we are supposed to return TEMP, do so as long as it isn't a MEM.
4203 ??? The latter test doesn't seem to make sense. */
4204 else if (dont_return_target && GET_CODE (temp) != MEM)
4205 return temp;
4207 /* Return TARGET itself if it is a hard register. */
4208 else if (want_value && GET_MODE (target) != BLKmode
4209 && ! (GET_CODE (target) == REG
4210 && REGNO (target) < FIRST_PSEUDO_REGISTER))
4211 return copy_to_reg (target);
4213 else
4214 return target;
4217 /* Return 1 if EXP just contains zeros. */
4219 static int
4220 is_zeros_p (exp)
4221 tree exp;
4223 tree elt;
4225 switch (TREE_CODE (exp))
4227 case CONVERT_EXPR:
4228 case NOP_EXPR:
4229 case NON_LVALUE_EXPR:
4230 case VIEW_CONVERT_EXPR:
4231 return is_zeros_p (TREE_OPERAND (exp, 0));
4233 case INTEGER_CST:
4234 return integer_zerop (exp);
4236 case COMPLEX_CST:
4237 return
4238 is_zeros_p (TREE_REALPART (exp)) && is_zeros_p (TREE_IMAGPART (exp));
4240 case REAL_CST:
4241 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (exp), dconst0);
4243 case VECTOR_CST:
4244 for (elt = TREE_VECTOR_CST_ELTS (exp); elt;
4245 elt = TREE_CHAIN (elt))
4246 if (!is_zeros_p (TREE_VALUE (elt)))
4247 return 0;
4249 return 1;
4251 case CONSTRUCTOR:
4252 if (TREE_TYPE (exp) && TREE_CODE (TREE_TYPE (exp)) == SET_TYPE)
4253 return CONSTRUCTOR_ELTS (exp) == NULL_TREE;
4254 for (elt = CONSTRUCTOR_ELTS (exp); elt; elt = TREE_CHAIN (elt))
4255 if (! is_zeros_p (TREE_VALUE (elt)))
4256 return 0;
4258 return 1;
4260 default:
4261 return 0;
4265 /* Return 1 if EXP contains mostly (3/4) zeros. */
4267 static int
4268 mostly_zeros_p (exp)
4269 tree exp;
4271 if (TREE_CODE (exp) == CONSTRUCTOR)
4273 int elts = 0, zeros = 0;
4274 tree elt = CONSTRUCTOR_ELTS (exp);
4275 if (TREE_TYPE (exp) && TREE_CODE (TREE_TYPE (exp)) == SET_TYPE)
4277 /* If there are no ranges of true bits, it is all zero. */
4278 return elt == NULL_TREE;
4280 for (; elt; elt = TREE_CHAIN (elt))
4282 /* We do not handle the case where the index is a RANGE_EXPR,
4283 so the statistic will be somewhat inaccurate.
4284 We do make a more accurate count in store_constructor itself,
4285 so since this function is only used for nested array elements,
4286 this should be close enough. */
4287 if (mostly_zeros_p (TREE_VALUE (elt)))
4288 zeros++;
4289 elts++;
4292 return 4 * zeros >= 3 * elts;
4295 return is_zeros_p (exp);
4298 /* Helper function for store_constructor.
4299 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
4300 TYPE is the type of the CONSTRUCTOR, not the element type.
4301 CLEARED is as for store_constructor.
4302 ALIAS_SET is the alias set to use for any stores.
4304 This provides a recursive shortcut back to store_constructor when it isn't
4305 necessary to go through store_field. This is so that we can pass through
4306 the cleared field to let store_constructor know that we may not have to
4307 clear a substructure if the outer structure has already been cleared. */
4309 static void
4310 store_constructor_field (target, bitsize, bitpos, mode, exp, type, cleared,
4311 alias_set)
4312 rtx target;
4313 unsigned HOST_WIDE_INT bitsize;
4314 HOST_WIDE_INT bitpos;
4315 enum machine_mode mode;
4316 tree exp, type;
4317 int cleared;
4318 int alias_set;
4320 if (TREE_CODE (exp) == CONSTRUCTOR
4321 && bitpos % BITS_PER_UNIT == 0
4322 /* If we have a non-zero bitpos for a register target, then we just
4323 let store_field do the bitfield handling. This is unlikely to
4324 generate unnecessary clear instructions anyways. */
4325 && (bitpos == 0 || GET_CODE (target) == MEM))
4327 if (GET_CODE (target) == MEM)
4328 target
4329 = adjust_address (target,
4330 GET_MODE (target) == BLKmode
4331 || 0 != (bitpos
4332 % GET_MODE_ALIGNMENT (GET_MODE (target)))
4333 ? BLKmode : VOIDmode, bitpos / BITS_PER_UNIT);
4336 /* Update the alias set, if required. */
4337 if (GET_CODE (target) == MEM && ! MEM_KEEP_ALIAS_SET_P (target)
4338 && MEM_ALIAS_SET (target) != 0)
4340 target = copy_rtx (target);
4341 set_mem_alias_set (target, alias_set);
4344 store_constructor (exp, target, cleared, bitsize / BITS_PER_UNIT);
4346 else
4347 store_field (target, bitsize, bitpos, mode, exp, VOIDmode, 0, type,
4348 alias_set);
4351 /* Store the value of constructor EXP into the rtx TARGET.
4352 TARGET is either a REG or a MEM; we know it cannot conflict, since
4353 safe_from_p has been called.
4354 CLEARED is true if TARGET is known to have been zero'd.
4355 SIZE is the number of bytes of TARGET we are allowed to modify: this
4356 may not be the same as the size of EXP if we are assigning to a field
4357 which has been packed to exclude padding bits. */
4359 static void
4360 store_constructor (exp, target, cleared, size)
4361 tree exp;
4362 rtx target;
4363 int cleared;
4364 HOST_WIDE_INT size;
4366 tree type = TREE_TYPE (exp);
4367 #ifdef WORD_REGISTER_OPERATIONS
4368 HOST_WIDE_INT exp_size = int_size_in_bytes (type);
4369 #endif
4371 if (TREE_CODE (type) == RECORD_TYPE || TREE_CODE (type) == UNION_TYPE
4372 || TREE_CODE (type) == QUAL_UNION_TYPE)
4374 tree elt;
4376 /* We either clear the aggregate or indicate the value is dead. */
4377 if ((TREE_CODE (type) == UNION_TYPE
4378 || TREE_CODE (type) == QUAL_UNION_TYPE)
4379 && ! cleared
4380 && ! CONSTRUCTOR_ELTS (exp))
4381 /* If the constructor is empty, clear the union. */
4383 clear_storage (target, expr_size (exp));
4384 cleared = 1;
4387 /* If we are building a static constructor into a register,
4388 set the initial value as zero so we can fold the value into
4389 a constant. But if more than one register is involved,
4390 this probably loses. */
4391 else if (! cleared && GET_CODE (target) == REG && TREE_STATIC (exp)
4392 && GET_MODE_SIZE (GET_MODE (target)) <= UNITS_PER_WORD)
4394 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
4395 cleared = 1;
4398 /* If the constructor has fewer fields than the structure
4399 or if we are initializing the structure to mostly zeros,
4400 clear the whole structure first. Don't do this if TARGET is a
4401 register whose mode size isn't equal to SIZE since clear_storage
4402 can't handle this case. */
4403 else if (! cleared && size > 0
4404 && ((list_length (CONSTRUCTOR_ELTS (exp))
4405 != fields_length (type))
4406 || mostly_zeros_p (exp))
4407 && (GET_CODE (target) != REG
4408 || ((HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (target))
4409 == size)))
4411 clear_storage (target, GEN_INT (size));
4412 cleared = 1;
4415 if (! cleared)
4416 emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
4418 /* Store each element of the constructor into
4419 the corresponding field of TARGET. */
4421 for (elt = CONSTRUCTOR_ELTS (exp); elt; elt = TREE_CHAIN (elt))
4423 tree field = TREE_PURPOSE (elt);
4424 tree value = TREE_VALUE (elt);
4425 enum machine_mode mode;
4426 HOST_WIDE_INT bitsize;
4427 HOST_WIDE_INT bitpos = 0;
4428 int unsignedp;
4429 tree offset;
4430 rtx to_rtx = target;
4432 /* Just ignore missing fields.
4433 We cleared the whole structure, above,
4434 if any fields are missing. */
4435 if (field == 0)
4436 continue;
4438 if (cleared && is_zeros_p (value))
4439 continue;
4441 if (host_integerp (DECL_SIZE (field), 1))
4442 bitsize = tree_low_cst (DECL_SIZE (field), 1);
4443 else
4444 bitsize = -1;
4446 unsignedp = TREE_UNSIGNED (field);
4447 mode = DECL_MODE (field);
4448 if (DECL_BIT_FIELD (field))
4449 mode = VOIDmode;
4451 offset = DECL_FIELD_OFFSET (field);
4452 if (host_integerp (offset, 0)
4453 && host_integerp (bit_position (field), 0))
4455 bitpos = int_bit_position (field);
4456 offset = 0;
4458 else
4459 bitpos = tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 0);
4461 if (offset)
4463 rtx offset_rtx;
4465 if (contains_placeholder_p (offset))
4466 offset = build (WITH_RECORD_EXPR, sizetype,
4467 offset, make_tree (TREE_TYPE (exp), target));
4469 offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, 0);
4470 if (GET_CODE (to_rtx) != MEM)
4471 abort ();
4473 if (GET_MODE (offset_rtx) != ptr_mode)
4474 offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
4476 #ifdef POINTERS_EXTEND_UNSIGNED
4477 if (GET_MODE (offset_rtx) != Pmode)
4478 offset_rtx = convert_memory_address (Pmode, offset_rtx);
4479 #endif
4481 to_rtx = offset_address (to_rtx, offset_rtx,
4482 highest_pow2_factor (offset));
4485 if (TREE_READONLY (field))
4487 if (GET_CODE (to_rtx) == MEM)
4488 to_rtx = copy_rtx (to_rtx);
4490 RTX_UNCHANGING_P (to_rtx) = 1;
4493 #ifdef WORD_REGISTER_OPERATIONS
4494 /* If this initializes a field that is smaller than a word, at the
4495 start of a word, try to widen it to a full word.
4496 This special case allows us to output C++ member function
4497 initializations in a form that the optimizers can understand. */
4498 if (GET_CODE (target) == REG
4499 && bitsize < BITS_PER_WORD
4500 && bitpos % BITS_PER_WORD == 0
4501 && GET_MODE_CLASS (mode) == MODE_INT
4502 && TREE_CODE (value) == INTEGER_CST
4503 && exp_size >= 0
4504 && bitpos + BITS_PER_WORD <= exp_size * BITS_PER_UNIT)
4506 tree type = TREE_TYPE (value);
4508 if (TYPE_PRECISION (type) < BITS_PER_WORD)
4510 type = type_for_size (BITS_PER_WORD, TREE_UNSIGNED (type));
4511 value = convert (type, value);
4514 if (BYTES_BIG_ENDIAN)
4515 value
4516 = fold (build (LSHIFT_EXPR, type, value,
4517 build_int_2 (BITS_PER_WORD - bitsize, 0)));
4518 bitsize = BITS_PER_WORD;
4519 mode = word_mode;
4521 #endif
4523 if (GET_CODE (to_rtx) == MEM && !MEM_KEEP_ALIAS_SET_P (to_rtx)
4524 && DECL_NONADDRESSABLE_P (field))
4526 to_rtx = copy_rtx (to_rtx);
4527 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
4530 store_constructor_field (to_rtx, bitsize, bitpos, mode,
4531 value, type, cleared,
4532 get_alias_set (TREE_TYPE (field)));
4535 else if (TREE_CODE (type) == ARRAY_TYPE
4536 || TREE_CODE (type) == VECTOR_TYPE)
4538 tree elt;
4539 int i;
4540 int need_to_clear;
4541 tree domain = TYPE_DOMAIN (type);
4542 tree elttype = TREE_TYPE (type);
4543 int const_bounds_p;
4544 HOST_WIDE_INT minelt = 0;
4545 HOST_WIDE_INT maxelt = 0;
4547 /* Vectors are like arrays, but the domain is stored via an array
4548 type indirectly. */
4549 if (TREE_CODE (type) == VECTOR_TYPE)
4551 /* Note that although TYPE_DEBUG_REPRESENTATION_TYPE uses
4552 the same field as TYPE_DOMAIN, we are not guaranteed that
4553 it always will. */
4554 domain = TYPE_DEBUG_REPRESENTATION_TYPE (type);
4555 domain = TYPE_DOMAIN (TREE_TYPE (TYPE_FIELDS (domain)));
4558 const_bounds_p = (TYPE_MIN_VALUE (domain)
4559 && TYPE_MAX_VALUE (domain)
4560 && host_integerp (TYPE_MIN_VALUE (domain), 0)
4561 && host_integerp (TYPE_MAX_VALUE (domain), 0));
4563 /* If we have constant bounds for the range of the type, get them. */
4564 if (const_bounds_p)
4566 minelt = tree_low_cst (TYPE_MIN_VALUE (domain), 0);
4567 maxelt = tree_low_cst (TYPE_MAX_VALUE (domain), 0);
4570 /* If the constructor has fewer elements than the array,
4571 clear the whole array first. Similarly if this is
4572 static constructor of a non-BLKmode object. */
4573 if (cleared || (GET_CODE (target) == REG && TREE_STATIC (exp)))
4574 need_to_clear = 1;
4575 else
4577 HOST_WIDE_INT count = 0, zero_count = 0;
4578 need_to_clear = ! const_bounds_p;
4580 /* This loop is a more accurate version of the loop in
4581 mostly_zeros_p (it handles RANGE_EXPR in an index).
4582 It is also needed to check for missing elements. */
4583 for (elt = CONSTRUCTOR_ELTS (exp);
4584 elt != NULL_TREE && ! need_to_clear;
4585 elt = TREE_CHAIN (elt))
4587 tree index = TREE_PURPOSE (elt);
4588 HOST_WIDE_INT this_node_count;
4590 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
4592 tree lo_index = TREE_OPERAND (index, 0);
4593 tree hi_index = TREE_OPERAND (index, 1);
4595 if (! host_integerp (lo_index, 1)
4596 || ! host_integerp (hi_index, 1))
4598 need_to_clear = 1;
4599 break;
4602 this_node_count = (tree_low_cst (hi_index, 1)
4603 - tree_low_cst (lo_index, 1) + 1);
4605 else
4606 this_node_count = 1;
4608 count += this_node_count;
4609 if (mostly_zeros_p (TREE_VALUE (elt)))
4610 zero_count += this_node_count;
4613 /* Clear the entire array first if there are any missing elements,
4614 or if the incidence of zero elements is >= 75%. */
4615 if (! need_to_clear
4616 && (count < maxelt - minelt + 1 || 4 * zero_count >= 3 * count))
4617 need_to_clear = 1;
4620 if (need_to_clear && size > 0)
4622 if (! cleared)
4624 if (REG_P (target))
4625 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
4626 else
4627 clear_storage (target, GEN_INT (size));
4629 cleared = 1;
4631 else if (REG_P (target))
4632 /* Inform later passes that the old value is dead. */
4633 emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
4635 /* Store each element of the constructor into
4636 the corresponding element of TARGET, determined
4637 by counting the elements. */
4638 for (elt = CONSTRUCTOR_ELTS (exp), i = 0;
4639 elt;
4640 elt = TREE_CHAIN (elt), i++)
4642 enum machine_mode mode;
4643 HOST_WIDE_INT bitsize;
4644 HOST_WIDE_INT bitpos;
4645 int unsignedp;
4646 tree value = TREE_VALUE (elt);
4647 tree index = TREE_PURPOSE (elt);
4648 rtx xtarget = target;
4650 if (cleared && is_zeros_p (value))
4651 continue;
4653 unsignedp = TREE_UNSIGNED (elttype);
4654 mode = TYPE_MODE (elttype);
4655 if (mode == BLKmode)
4656 bitsize = (host_integerp (TYPE_SIZE (elttype), 1)
4657 ? tree_low_cst (TYPE_SIZE (elttype), 1)
4658 : -1);
4659 else
4660 bitsize = GET_MODE_BITSIZE (mode);
4662 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
4664 tree lo_index = TREE_OPERAND (index, 0);
4665 tree hi_index = TREE_OPERAND (index, 1);
4666 rtx index_r, pos_rtx, hi_r, loop_top, loop_end;
4667 struct nesting *loop;
4668 HOST_WIDE_INT lo, hi, count;
4669 tree position;
4671 /* If the range is constant and "small", unroll the loop. */
4672 if (const_bounds_p
4673 && host_integerp (lo_index, 0)
4674 && host_integerp (hi_index, 0)
4675 && (lo = tree_low_cst (lo_index, 0),
4676 hi = tree_low_cst (hi_index, 0),
4677 count = hi - lo + 1,
4678 (GET_CODE (target) != MEM
4679 || count <= 2
4680 || (host_integerp (TYPE_SIZE (elttype), 1)
4681 && (tree_low_cst (TYPE_SIZE (elttype), 1) * count
4682 <= 40 * 8)))))
4684 lo -= minelt; hi -= minelt;
4685 for (; lo <= hi; lo++)
4687 bitpos = lo * tree_low_cst (TYPE_SIZE (elttype), 0);
4689 if (GET_CODE (target) == MEM
4690 && !MEM_KEEP_ALIAS_SET_P (target)
4691 && TREE_CODE (type) == ARRAY_TYPE
4692 && TYPE_NONALIASED_COMPONENT (type))
4694 target = copy_rtx (target);
4695 MEM_KEEP_ALIAS_SET_P (target) = 1;
4698 store_constructor_field
4699 (target, bitsize, bitpos, mode, value, type, cleared,
4700 get_alias_set (elttype));
4703 else
4705 hi_r = expand_expr (hi_index, NULL_RTX, VOIDmode, 0);
4706 loop_top = gen_label_rtx ();
4707 loop_end = gen_label_rtx ();
4709 unsignedp = TREE_UNSIGNED (domain);
4711 index = build_decl (VAR_DECL, NULL_TREE, domain);
4713 index_r
4714 = gen_reg_rtx (promote_mode (domain, DECL_MODE (index),
4715 &unsignedp, 0));
4716 SET_DECL_RTL (index, index_r);
4717 if (TREE_CODE (value) == SAVE_EXPR
4718 && SAVE_EXPR_RTL (value) == 0)
4720 /* Make sure value gets expanded once before the
4721 loop. */
4722 expand_expr (value, const0_rtx, VOIDmode, 0);
4723 emit_queue ();
4725 store_expr (lo_index, index_r, 0);
4726 loop = expand_start_loop (0);
4728 /* Assign value to element index. */
4729 position
4730 = convert (ssizetype,
4731 fold (build (MINUS_EXPR, TREE_TYPE (index),
4732 index, TYPE_MIN_VALUE (domain))));
4733 position = size_binop (MULT_EXPR, position,
4734 convert (ssizetype,
4735 TYPE_SIZE_UNIT (elttype)));
4737 pos_rtx = expand_expr (position, 0, VOIDmode, 0);
4738 xtarget = offset_address (target, pos_rtx,
4739 highest_pow2_factor (position));
4740 xtarget = adjust_address (xtarget, mode, 0);
4741 if (TREE_CODE (value) == CONSTRUCTOR)
4742 store_constructor (value, xtarget, cleared,
4743 bitsize / BITS_PER_UNIT);
4744 else
4745 store_expr (value, xtarget, 0);
4747 expand_exit_loop_if_false (loop,
4748 build (LT_EXPR, integer_type_node,
4749 index, hi_index));
4751 expand_increment (build (PREINCREMENT_EXPR,
4752 TREE_TYPE (index),
4753 index, integer_one_node), 0, 0);
4754 expand_end_loop ();
4755 emit_label (loop_end);
4758 else if ((index != 0 && ! host_integerp (index, 0))
4759 || ! host_integerp (TYPE_SIZE (elttype), 1))
4761 tree position;
4763 if (index == 0)
4764 index = ssize_int (1);
4766 if (minelt)
4767 index = convert (ssizetype,
4768 fold (build (MINUS_EXPR, index,
4769 TYPE_MIN_VALUE (domain))));
4771 position = size_binop (MULT_EXPR, index,
4772 convert (ssizetype,
4773 TYPE_SIZE_UNIT (elttype)));
4774 xtarget = offset_address (target,
4775 expand_expr (position, 0, VOIDmode, 0),
4776 highest_pow2_factor (position));
4777 xtarget = adjust_address (xtarget, mode, 0);
4778 store_expr (value, xtarget, 0);
4780 else
4782 if (index != 0)
4783 bitpos = ((tree_low_cst (index, 0) - minelt)
4784 * tree_low_cst (TYPE_SIZE (elttype), 1));
4785 else
4786 bitpos = (i * tree_low_cst (TYPE_SIZE (elttype), 1));
4788 if (GET_CODE (target) == MEM && !MEM_KEEP_ALIAS_SET_P (target)
4789 && TREE_CODE (type) == ARRAY_TYPE
4790 && TYPE_NONALIASED_COMPONENT (type))
4792 target = copy_rtx (target);
4793 MEM_KEEP_ALIAS_SET_P (target) = 1;
4796 store_constructor_field (target, bitsize, bitpos, mode, value,
4797 type, cleared, get_alias_set (elttype));
4803 /* Set constructor assignments. */
4804 else if (TREE_CODE (type) == SET_TYPE)
4806 tree elt = CONSTRUCTOR_ELTS (exp);
4807 unsigned HOST_WIDE_INT nbytes = int_size_in_bytes (type), nbits;
4808 tree domain = TYPE_DOMAIN (type);
4809 tree domain_min, domain_max, bitlength;
4811 /* The default implementation strategy is to extract the constant
4812 parts of the constructor, use that to initialize the target,
4813 and then "or" in whatever non-constant ranges we need in addition.
4815 If a large set is all zero or all ones, it is
4816 probably better to set it using memset (if available) or bzero.
4817 Also, if a large set has just a single range, it may also be
4818 better to first clear all the first clear the set (using
4819 bzero/memset), and set the bits we want. */
4821 /* Check for all zeros. */
4822 if (elt == NULL_TREE && size > 0)
4824 if (!cleared)
4825 clear_storage (target, GEN_INT (size));
4826 return;
4829 domain_min = convert (sizetype, TYPE_MIN_VALUE (domain));
4830 domain_max = convert (sizetype, TYPE_MAX_VALUE (domain));
4831 bitlength = size_binop (PLUS_EXPR,
4832 size_diffop (domain_max, domain_min),
4833 ssize_int (1));
4835 nbits = tree_low_cst (bitlength, 1);
4837 /* For "small" sets, or "medium-sized" (up to 32 bytes) sets that
4838 are "complicated" (more than one range), initialize (the
4839 constant parts) by copying from a constant. */
4840 if (GET_MODE (target) != BLKmode || nbits <= 2 * BITS_PER_WORD
4841 || (nbytes <= 32 && TREE_CHAIN (elt) != NULL_TREE))
4843 unsigned int set_word_size = TYPE_ALIGN (TREE_TYPE (exp));
4844 enum machine_mode mode = mode_for_size (set_word_size, MODE_INT, 1);
4845 char *bit_buffer = (char *) alloca (nbits);
4846 HOST_WIDE_INT word = 0;
4847 unsigned int bit_pos = 0;
4848 unsigned int ibit = 0;
4849 unsigned int offset = 0; /* In bytes from beginning of set. */
4851 elt = get_set_constructor_bits (exp, bit_buffer, nbits);
4852 for (;;)
4854 if (bit_buffer[ibit])
4856 if (BYTES_BIG_ENDIAN)
4857 word |= (1 << (set_word_size - 1 - bit_pos));
4858 else
4859 word |= 1 << bit_pos;
4862 bit_pos++; ibit++;
4863 if (bit_pos >= set_word_size || ibit == nbits)
4865 if (word != 0 || ! cleared)
4867 rtx datum = GEN_INT (word);
4868 rtx to_rtx;
4870 /* The assumption here is that it is safe to use
4871 XEXP if the set is multi-word, but not if
4872 it's single-word. */
4873 if (GET_CODE (target) == MEM)
4874 to_rtx = adjust_address (target, mode, offset);
4875 else if (offset == 0)
4876 to_rtx = target;
4877 else
4878 abort ();
4879 emit_move_insn (to_rtx, datum);
4882 if (ibit == nbits)
4883 break;
4884 word = 0;
4885 bit_pos = 0;
4886 offset += set_word_size / BITS_PER_UNIT;
4890 else if (!cleared)
4891 /* Don't bother clearing storage if the set is all ones. */
4892 if (TREE_CHAIN (elt) != NULL_TREE
4893 || (TREE_PURPOSE (elt) == NULL_TREE
4894 ? nbits != 1
4895 : ( ! host_integerp (TREE_VALUE (elt), 0)
4896 || ! host_integerp (TREE_PURPOSE (elt), 0)
4897 || (tree_low_cst (TREE_VALUE (elt), 0)
4898 - tree_low_cst (TREE_PURPOSE (elt), 0) + 1
4899 != (HOST_WIDE_INT) nbits))))
4900 clear_storage (target, expr_size (exp));
4902 for (; elt != NULL_TREE; elt = TREE_CHAIN (elt))
4904 /* Start of range of element or NULL. */
4905 tree startbit = TREE_PURPOSE (elt);
4906 /* End of range of element, or element value. */
4907 tree endbit = TREE_VALUE (elt);
4908 #ifdef TARGET_MEM_FUNCTIONS
4909 HOST_WIDE_INT startb, endb;
4910 #endif
4911 rtx bitlength_rtx, startbit_rtx, endbit_rtx, targetx;
4913 bitlength_rtx = expand_expr (bitlength,
4914 NULL_RTX, MEM, EXPAND_CONST_ADDRESS);
4916 /* Handle non-range tuple element like [ expr ]. */
4917 if (startbit == NULL_TREE)
4919 startbit = save_expr (endbit);
4920 endbit = startbit;
4923 startbit = convert (sizetype, startbit);
4924 endbit = convert (sizetype, endbit);
4925 if (! integer_zerop (domain_min))
4927 startbit = size_binop (MINUS_EXPR, startbit, domain_min);
4928 endbit = size_binop (MINUS_EXPR, endbit, domain_min);
4930 startbit_rtx = expand_expr (startbit, NULL_RTX, MEM,
4931 EXPAND_CONST_ADDRESS);
4932 endbit_rtx = expand_expr (endbit, NULL_RTX, MEM,
4933 EXPAND_CONST_ADDRESS);
4935 if (REG_P (target))
4937 targetx
4938 = assign_temp
4939 ((build_qualified_type (type_for_mode (GET_MODE (target), 0),
4940 TYPE_QUAL_CONST)),
4941 0, 1, 1);
4942 emit_move_insn (targetx, target);
4945 else if (GET_CODE (target) == MEM)
4946 targetx = target;
4947 else
4948 abort ();
4950 #ifdef TARGET_MEM_FUNCTIONS
4951 /* Optimization: If startbit and endbit are
4952 constants divisible by BITS_PER_UNIT,
4953 call memset instead. */
4954 if (TREE_CODE (startbit) == INTEGER_CST
4955 && TREE_CODE (endbit) == INTEGER_CST
4956 && (startb = TREE_INT_CST_LOW (startbit)) % BITS_PER_UNIT == 0
4957 && (endb = TREE_INT_CST_LOW (endbit) + 1) % BITS_PER_UNIT == 0)
4959 emit_library_call (memset_libfunc, LCT_NORMAL,
4960 VOIDmode, 3,
4961 plus_constant (XEXP (targetx, 0),
4962 startb / BITS_PER_UNIT),
4963 Pmode,
4964 constm1_rtx, TYPE_MODE (integer_type_node),
4965 GEN_INT ((endb - startb) / BITS_PER_UNIT),
4966 TYPE_MODE (sizetype));
4968 else
4969 #endif
4970 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "__setbits"),
4971 LCT_NORMAL, VOIDmode, 4, XEXP (targetx, 0),
4972 Pmode, bitlength_rtx, TYPE_MODE (sizetype),
4973 startbit_rtx, TYPE_MODE (sizetype),
4974 endbit_rtx, TYPE_MODE (sizetype));
4976 if (REG_P (target))
4977 emit_move_insn (target, targetx);
4981 else
4982 abort ();
4985 /* Store the value of EXP (an expression tree)
4986 into a subfield of TARGET which has mode MODE and occupies
4987 BITSIZE bits, starting BITPOS bits from the start of TARGET.
4988 If MODE is VOIDmode, it means that we are storing into a bit-field.
4990 If VALUE_MODE is VOIDmode, return nothing in particular.
4991 UNSIGNEDP is not used in this case.
4993 Otherwise, return an rtx for the value stored. This rtx
4994 has mode VALUE_MODE if that is convenient to do.
4995 In this case, UNSIGNEDP must be nonzero if the value is an unsigned type.
4997 TYPE is the type of the underlying object,
4999 ALIAS_SET is the alias set for the destination. This value will
5000 (in general) be different from that for TARGET, since TARGET is a
5001 reference to the containing structure. */
5003 static rtx
5004 store_field (target, bitsize, bitpos, mode, exp, value_mode, unsignedp, type,
5005 alias_set)
5006 rtx target;
5007 HOST_WIDE_INT bitsize;
5008 HOST_WIDE_INT bitpos;
5009 enum machine_mode mode;
5010 tree exp;
5011 enum machine_mode value_mode;
5012 int unsignedp;
5013 tree type;
5014 int alias_set;
5016 HOST_WIDE_INT width_mask = 0;
5018 if (TREE_CODE (exp) == ERROR_MARK)
5019 return const0_rtx;
5021 /* If we have nothing to store, do nothing unless the expression has
5022 side-effects. */
5023 if (bitsize == 0)
5024 return expand_expr (exp, const0_rtx, VOIDmode, 0);
5025 else if (bitsize >=0 && bitsize < HOST_BITS_PER_WIDE_INT)
5026 width_mask = ((HOST_WIDE_INT) 1 << bitsize) - 1;
5028 /* If we are storing into an unaligned field of an aligned union that is
5029 in a register, we may have the mode of TARGET being an integer mode but
5030 MODE == BLKmode. In that case, get an aligned object whose size and
5031 alignment are the same as TARGET and store TARGET into it (we can avoid
5032 the store if the field being stored is the entire width of TARGET). Then
5033 call ourselves recursively to store the field into a BLKmode version of
5034 that object. Finally, load from the object into TARGET. This is not
5035 very efficient in general, but should only be slightly more expensive
5036 than the otherwise-required unaligned accesses. Perhaps this can be
5037 cleaned up later. */
5039 if (mode == BLKmode
5040 && (GET_CODE (target) == REG || GET_CODE (target) == SUBREG))
5042 rtx object
5043 = assign_temp
5044 (build_qualified_type (type, TYPE_QUALS (type) | TYPE_QUAL_CONST),
5045 0, 1, 1);
5046 rtx blk_object = adjust_address (object, BLKmode, 0);
5048 if (bitsize != (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (target)))
5049 emit_move_insn (object, target);
5051 store_field (blk_object, bitsize, bitpos, mode, exp, VOIDmode, 0, type,
5052 alias_set);
5054 emit_move_insn (target, object);
5056 /* We want to return the BLKmode version of the data. */
5057 return blk_object;
5060 if (GET_CODE (target) == CONCAT)
5062 /* We're storing into a struct containing a single __complex. */
5064 if (bitpos != 0)
5065 abort ();
5066 return store_expr (exp, target, 0);
5069 /* If the structure is in a register or if the component
5070 is a bit field, we cannot use addressing to access it.
5071 Use bit-field techniques or SUBREG to store in it. */
5073 if (mode == VOIDmode
5074 || (mode != BLKmode && ! direct_store[(int) mode]
5075 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
5076 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
5077 || GET_CODE (target) == REG
5078 || GET_CODE (target) == SUBREG
5079 /* If the field isn't aligned enough to store as an ordinary memref,
5080 store it as a bit field. */
5081 || (mode != BLKmode && SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (target))
5082 && (MEM_ALIGN (target) < GET_MODE_ALIGNMENT (mode)
5083 || bitpos % GET_MODE_ALIGNMENT (mode)))
5084 /* If the RHS and field are a constant size and the size of the
5085 RHS isn't the same size as the bitfield, we must use bitfield
5086 operations. */
5087 || (bitsize >= 0
5088 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
5089 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) != 0))
5091 rtx temp = expand_expr (exp, NULL_RTX, VOIDmode, 0);
5093 /* If BITSIZE is narrower than the size of the type of EXP
5094 we will be narrowing TEMP. Normally, what's wanted are the
5095 low-order bits. However, if EXP's type is a record and this is
5096 big-endian machine, we want the upper BITSIZE bits. */
5097 if (BYTES_BIG_ENDIAN && GET_MODE_CLASS (GET_MODE (temp)) == MODE_INT
5098 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (temp))
5099 && TREE_CODE (TREE_TYPE (exp)) == RECORD_TYPE)
5100 temp = expand_shift (RSHIFT_EXPR, GET_MODE (temp), temp,
5101 size_int (GET_MODE_BITSIZE (GET_MODE (temp))
5102 - bitsize),
5103 temp, 1);
5105 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to
5106 MODE. */
5107 if (mode != VOIDmode && mode != BLKmode
5108 && mode != TYPE_MODE (TREE_TYPE (exp)))
5109 temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1);
5111 /* If the modes of TARGET and TEMP are both BLKmode, both
5112 must be in memory and BITPOS must be aligned on a byte
5113 boundary. If so, we simply do a block copy. */
5114 if (GET_MODE (target) == BLKmode && GET_MODE (temp) == BLKmode)
5116 if (GET_CODE (target) != MEM || GET_CODE (temp) != MEM
5117 || bitpos % BITS_PER_UNIT != 0)
5118 abort ();
5120 target = adjust_address (target, VOIDmode, bitpos / BITS_PER_UNIT);
5121 emit_block_move (target, temp,
5122 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
5123 / BITS_PER_UNIT));
5125 return value_mode == VOIDmode ? const0_rtx : target;
5128 /* Store the value in the bitfield. */
5129 store_bit_field (target, bitsize, bitpos, mode, temp,
5130 int_size_in_bytes (type));
5132 if (value_mode != VOIDmode)
5134 /* The caller wants an rtx for the value.
5135 If possible, avoid refetching from the bitfield itself. */
5136 if (width_mask != 0
5137 && ! (GET_CODE (target) == MEM && MEM_VOLATILE_P (target)))
5139 tree count;
5140 enum machine_mode tmode;
5142 tmode = GET_MODE (temp);
5143 if (tmode == VOIDmode)
5144 tmode = value_mode;
5146 if (unsignedp)
5147 return expand_and (tmode, temp,
5148 GEN_INT (trunc_int_for_mode (width_mask,
5149 tmode)),
5150 NULL_RTX);
5152 count = build_int_2 (GET_MODE_BITSIZE (tmode) - bitsize, 0);
5153 temp = expand_shift (LSHIFT_EXPR, tmode, temp, count, 0, 0);
5154 return expand_shift (RSHIFT_EXPR, tmode, temp, count, 0, 0);
5157 return extract_bit_field (target, bitsize, bitpos, unsignedp,
5158 NULL_RTX, value_mode, VOIDmode,
5159 int_size_in_bytes (type));
5161 return const0_rtx;
5163 else
5165 rtx addr = XEXP (target, 0);
5166 rtx to_rtx = target;
5168 /* If a value is wanted, it must be the lhs;
5169 so make the address stable for multiple use. */
5171 if (value_mode != VOIDmode && GET_CODE (addr) != REG
5172 && ! CONSTANT_ADDRESS_P (addr)
5173 /* A frame-pointer reference is already stable. */
5174 && ! (GET_CODE (addr) == PLUS
5175 && GET_CODE (XEXP (addr, 1)) == CONST_INT
5176 && (XEXP (addr, 0) == virtual_incoming_args_rtx
5177 || XEXP (addr, 0) == virtual_stack_vars_rtx)))
5178 to_rtx = replace_equiv_address (to_rtx, copy_to_reg (addr));
5180 /* Now build a reference to just the desired component. */
5182 to_rtx = adjust_address (target, mode, bitpos / BITS_PER_UNIT);
5184 if (to_rtx == target)
5185 to_rtx = copy_rtx (to_rtx);
5187 MEM_SET_IN_STRUCT_P (to_rtx, 1);
5188 if (!MEM_KEEP_ALIAS_SET_P (to_rtx) && MEM_ALIAS_SET (to_rtx) != 0)
5189 set_mem_alias_set (to_rtx, alias_set);
5191 return store_expr (exp, to_rtx, value_mode != VOIDmode);
5195 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
5196 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
5197 codes and find the ultimate containing object, which we return.
5199 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
5200 bit position, and *PUNSIGNEDP to the signedness of the field.
5201 If the position of the field is variable, we store a tree
5202 giving the variable offset (in units) in *POFFSET.
5203 This offset is in addition to the bit position.
5204 If the position is not variable, we store 0 in *POFFSET.
5206 If any of the extraction expressions is volatile,
5207 we store 1 in *PVOLATILEP. Otherwise we don't change that.
5209 If the field is a bit-field, *PMODE is set to VOIDmode. Otherwise, it
5210 is a mode that can be used to access the field. In that case, *PBITSIZE
5211 is redundant.
5213 If the field describes a variable-sized object, *PMODE is set to
5214 VOIDmode and *PBITSIZE is set to -1. An access cannot be made in
5215 this case, but the address of the object can be found. */
5217 tree
5218 get_inner_reference (exp, pbitsize, pbitpos, poffset, pmode,
5219 punsignedp, pvolatilep)
5220 tree exp;
5221 HOST_WIDE_INT *pbitsize;
5222 HOST_WIDE_INT *pbitpos;
5223 tree *poffset;
5224 enum machine_mode *pmode;
5225 int *punsignedp;
5226 int *pvolatilep;
5228 tree size_tree = 0;
5229 enum machine_mode mode = VOIDmode;
5230 tree offset = size_zero_node;
5231 tree bit_offset = bitsize_zero_node;
5232 tree placeholder_ptr = 0;
5233 tree tem;
5235 /* First get the mode, signedness, and size. We do this from just the
5236 outermost expression. */
5237 if (TREE_CODE (exp) == COMPONENT_REF)
5239 size_tree = DECL_SIZE (TREE_OPERAND (exp, 1));
5240 if (! DECL_BIT_FIELD (TREE_OPERAND (exp, 1)))
5241 mode = DECL_MODE (TREE_OPERAND (exp, 1));
5243 *punsignedp = TREE_UNSIGNED (TREE_OPERAND (exp, 1));
5245 else if (TREE_CODE (exp) == BIT_FIELD_REF)
5247 size_tree = TREE_OPERAND (exp, 1);
5248 *punsignedp = TREE_UNSIGNED (exp);
5250 else
5252 mode = TYPE_MODE (TREE_TYPE (exp));
5253 *punsignedp = TREE_UNSIGNED (TREE_TYPE (exp));
5255 if (mode == BLKmode)
5256 size_tree = TYPE_SIZE (TREE_TYPE (exp));
5257 else
5258 *pbitsize = GET_MODE_BITSIZE (mode);
5261 if (size_tree != 0)
5263 if (! host_integerp (size_tree, 1))
5264 mode = BLKmode, *pbitsize = -1;
5265 else
5266 *pbitsize = tree_low_cst (size_tree, 1);
5269 /* Compute cumulative bit-offset for nested component-refs and array-refs,
5270 and find the ultimate containing object. */
5271 while (1)
5273 if (TREE_CODE (exp) == BIT_FIELD_REF)
5274 bit_offset = size_binop (PLUS_EXPR, bit_offset, TREE_OPERAND (exp, 2));
5275 else if (TREE_CODE (exp) == COMPONENT_REF)
5277 tree field = TREE_OPERAND (exp, 1);
5278 tree this_offset = DECL_FIELD_OFFSET (field);
5280 /* If this field hasn't been filled in yet, don't go
5281 past it. This should only happen when folding expressions
5282 made during type construction. */
5283 if (this_offset == 0)
5284 break;
5285 else if (! TREE_CONSTANT (this_offset)
5286 && contains_placeholder_p (this_offset))
5287 this_offset = build (WITH_RECORD_EXPR, sizetype, this_offset, exp);
5289 offset = size_binop (PLUS_EXPR, offset, this_offset);
5290 bit_offset = size_binop (PLUS_EXPR, bit_offset,
5291 DECL_FIELD_BIT_OFFSET (field));
5293 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
5296 else if (TREE_CODE (exp) == ARRAY_REF
5297 || TREE_CODE (exp) == ARRAY_RANGE_REF)
5299 tree index = TREE_OPERAND (exp, 1);
5300 tree array = TREE_OPERAND (exp, 0);
5301 tree domain = TYPE_DOMAIN (TREE_TYPE (array));
5302 tree low_bound = (domain ? TYPE_MIN_VALUE (domain) : 0);
5303 tree unit_size = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (array)));
5305 /* We assume all arrays have sizes that are a multiple of a byte.
5306 First subtract the lower bound, if any, in the type of the
5307 index, then convert to sizetype and multiply by the size of the
5308 array element. */
5309 if (low_bound != 0 && ! integer_zerop (low_bound))
5310 index = fold (build (MINUS_EXPR, TREE_TYPE (index),
5311 index, low_bound));
5313 /* If the index has a self-referential type, pass it to a
5314 WITH_RECORD_EXPR; if the component size is, pass our
5315 component to one. */
5316 if (! TREE_CONSTANT (index)
5317 && contains_placeholder_p (index))
5318 index = build (WITH_RECORD_EXPR, TREE_TYPE (index), index, exp);
5319 if (! TREE_CONSTANT (unit_size)
5320 && contains_placeholder_p (unit_size))
5321 unit_size = build (WITH_RECORD_EXPR, sizetype, unit_size, array);
5323 offset = size_binop (PLUS_EXPR, offset,
5324 size_binop (MULT_EXPR,
5325 convert (sizetype, index),
5326 unit_size));
5329 else if (TREE_CODE (exp) == PLACEHOLDER_EXPR)
5331 tree new = find_placeholder (exp, &placeholder_ptr);
5333 /* If we couldn't find the replacement, return the PLACEHOLDER_EXPR.
5334 We might have been called from tree optimization where we
5335 haven't set up an object yet. */
5336 if (new == 0)
5337 break;
5338 else
5339 exp = new;
5341 continue;
5343 else if (TREE_CODE (exp) != NON_LVALUE_EXPR
5344 && TREE_CODE (exp) != VIEW_CONVERT_EXPR
5345 && ! ((TREE_CODE (exp) == NOP_EXPR
5346 || TREE_CODE (exp) == CONVERT_EXPR)
5347 && (TYPE_MODE (TREE_TYPE (exp))
5348 == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))))))
5349 break;
5351 /* If any reference in the chain is volatile, the effect is volatile. */
5352 if (TREE_THIS_VOLATILE (exp))
5353 *pvolatilep = 1;
5355 exp = TREE_OPERAND (exp, 0);
5358 /* If OFFSET is constant, see if we can return the whole thing as a
5359 constant bit position. Otherwise, split it up. */
5360 if (host_integerp (offset, 0)
5361 && 0 != (tem = size_binop (MULT_EXPR, convert (bitsizetype, offset),
5362 bitsize_unit_node))
5363 && 0 != (tem = size_binop (PLUS_EXPR, tem, bit_offset))
5364 && host_integerp (tem, 0))
5365 *pbitpos = tree_low_cst (tem, 0), *poffset = 0;
5366 else
5367 *pbitpos = tree_low_cst (bit_offset, 0), *poffset = offset;
5369 *pmode = mode;
5370 return exp;
5373 /* Return 1 if T is an expression that get_inner_reference handles. */
5376 handled_component_p (t)
5377 tree t;
5379 switch (TREE_CODE (t))
5381 case BIT_FIELD_REF:
5382 case COMPONENT_REF:
5383 case ARRAY_REF:
5384 case ARRAY_RANGE_REF:
5385 case NON_LVALUE_EXPR:
5386 case VIEW_CONVERT_EXPR:
5387 return 1;
5389 case NOP_EXPR:
5390 case CONVERT_EXPR:
5391 return (TYPE_MODE (TREE_TYPE (t))
5392 == TYPE_MODE (TREE_TYPE (TREE_OPERAND (t, 0))));
5394 default:
5395 return 0;
5399 /* Given an rtx VALUE that may contain additions and multiplications, return
5400 an equivalent value that just refers to a register, memory, or constant.
5401 This is done by generating instructions to perform the arithmetic and
5402 returning a pseudo-register containing the value.
5404 The returned value may be a REG, SUBREG, MEM or constant. */
5407 force_operand (value, target)
5408 rtx value, target;
5410 optab binoptab = 0;
5411 /* Use a temporary to force order of execution of calls to
5412 `force_operand'. */
5413 rtx tmp;
5414 rtx op2;
5415 /* Use subtarget as the target for operand 0 of a binary operation. */
5416 rtx subtarget = get_subtarget (target);
5418 /* Check for a PIC address load. */
5419 if ((GET_CODE (value) == PLUS || GET_CODE (value) == MINUS)
5420 && XEXP (value, 0) == pic_offset_table_rtx
5421 && (GET_CODE (XEXP (value, 1)) == SYMBOL_REF
5422 || GET_CODE (XEXP (value, 1)) == LABEL_REF
5423 || GET_CODE (XEXP (value, 1)) == CONST))
5425 if (!subtarget)
5426 subtarget = gen_reg_rtx (GET_MODE (value));
5427 emit_move_insn (subtarget, value);
5428 return subtarget;
5431 if (GET_CODE (value) == PLUS)
5432 binoptab = add_optab;
5433 else if (GET_CODE (value) == MINUS)
5434 binoptab = sub_optab;
5435 else if (GET_CODE (value) == MULT)
5437 op2 = XEXP (value, 1);
5438 if (!CONSTANT_P (op2)
5439 && !(GET_CODE (op2) == REG && op2 != subtarget))
5440 subtarget = 0;
5441 tmp = force_operand (XEXP (value, 0), subtarget);
5442 return expand_mult (GET_MODE (value), tmp,
5443 force_operand (op2, NULL_RTX),
5444 target, 1);
5447 if (binoptab)
5449 op2 = XEXP (value, 1);
5450 if (!CONSTANT_P (op2)
5451 && !(GET_CODE (op2) == REG && op2 != subtarget))
5452 subtarget = 0;
5453 if (binoptab == sub_optab && GET_CODE (op2) == CONST_INT)
5455 binoptab = add_optab;
5456 op2 = negate_rtx (GET_MODE (value), op2);
5459 /* Check for an addition with OP2 a constant integer and our first
5460 operand a PLUS of a virtual register and something else. In that
5461 case, we want to emit the sum of the virtual register and the
5462 constant first and then add the other value. This allows virtual
5463 register instantiation to simply modify the constant rather than
5464 creating another one around this addition. */
5465 if (binoptab == add_optab && GET_CODE (op2) == CONST_INT
5466 && GET_CODE (XEXP (value, 0)) == PLUS
5467 && GET_CODE (XEXP (XEXP (value, 0), 0)) == REG
5468 && REGNO (XEXP (XEXP (value, 0), 0)) >= FIRST_VIRTUAL_REGISTER
5469 && REGNO (XEXP (XEXP (value, 0), 0)) <= LAST_VIRTUAL_REGISTER)
5471 rtx temp = expand_binop (GET_MODE (value), binoptab,
5472 XEXP (XEXP (value, 0), 0), op2,
5473 subtarget, 0, OPTAB_LIB_WIDEN);
5474 return expand_binop (GET_MODE (value), binoptab, temp,
5475 force_operand (XEXP (XEXP (value, 0), 1), 0),
5476 target, 0, OPTAB_LIB_WIDEN);
5479 tmp = force_operand (XEXP (value, 0), subtarget);
5480 return expand_binop (GET_MODE (value), binoptab, tmp,
5481 force_operand (op2, NULL_RTX),
5482 target, 0, OPTAB_LIB_WIDEN);
5483 /* We give UNSIGNEDP = 0 to expand_binop
5484 because the only operations we are expanding here are signed ones. */
5487 #ifdef INSN_SCHEDULING
5488 /* On machines that have insn scheduling, we want all memory reference to be
5489 explicit, so we need to deal with such paradoxical SUBREGs. */
5490 if (GET_CODE (value) == SUBREG && GET_CODE (SUBREG_REG (value)) == MEM
5491 && (GET_MODE_SIZE (GET_MODE (value))
5492 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (value)))))
5493 value
5494 = simplify_gen_subreg (GET_MODE (value),
5495 force_reg (GET_MODE (SUBREG_REG (value)),
5496 force_operand (SUBREG_REG (value),
5497 NULL_RTX)),
5498 GET_MODE (SUBREG_REG (value)),
5499 SUBREG_BYTE (value));
5500 #endif
5502 return value;
5505 /* Subroutine of expand_expr: return nonzero iff there is no way that
5506 EXP can reference X, which is being modified. TOP_P is nonzero if this
5507 call is going to be used to determine whether we need a temporary
5508 for EXP, as opposed to a recursive call to this function.
5510 It is always safe for this routine to return zero since it merely
5511 searches for optimization opportunities. */
5514 safe_from_p (x, exp, top_p)
5515 rtx x;
5516 tree exp;
5517 int top_p;
5519 rtx exp_rtl = 0;
5520 int i, nops;
5521 static tree save_expr_list;
5523 if (x == 0
5524 /* If EXP has varying size, we MUST use a target since we currently
5525 have no way of allocating temporaries of variable size
5526 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
5527 So we assume here that something at a higher level has prevented a
5528 clash. This is somewhat bogus, but the best we can do. Only
5529 do this when X is BLKmode and when we are at the top level. */
5530 || (top_p && TREE_TYPE (exp) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp))
5531 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
5532 && (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE
5533 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE
5534 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)))
5535 != INTEGER_CST)
5536 && GET_MODE (x) == BLKmode)
5537 /* If X is in the outgoing argument area, it is always safe. */
5538 || (GET_CODE (x) == MEM
5539 && (XEXP (x, 0) == virtual_outgoing_args_rtx
5540 || (GET_CODE (XEXP (x, 0)) == PLUS
5541 && XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx))))
5542 return 1;
5544 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
5545 find the underlying pseudo. */
5546 if (GET_CODE (x) == SUBREG)
5548 x = SUBREG_REG (x);
5549 if (GET_CODE (x) == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
5550 return 0;
5553 /* A SAVE_EXPR might appear many times in the expression passed to the
5554 top-level safe_from_p call, and if it has a complex subexpression,
5555 examining it multiple times could result in a combinatorial explosion.
5556 E.g. on an Alpha running at least 200MHz, a Fortran test case compiled
5557 with optimization took about 28 minutes to compile -- even though it was
5558 only a few lines long. So we mark each SAVE_EXPR we see with TREE_PRIVATE
5559 and turn that off when we are done. We keep a list of the SAVE_EXPRs
5560 we have processed. Note that the only test of top_p was above. */
5562 if (top_p)
5564 int rtn;
5565 tree t;
5567 save_expr_list = 0;
5569 rtn = safe_from_p (x, exp, 0);
5571 for (t = save_expr_list; t != 0; t = TREE_CHAIN (t))
5572 TREE_PRIVATE (TREE_PURPOSE (t)) = 0;
5574 return rtn;
5577 /* Now look at our tree code and possibly recurse. */
5578 switch (TREE_CODE_CLASS (TREE_CODE (exp)))
5580 case 'd':
5581 exp_rtl = DECL_RTL_SET_P (exp) ? DECL_RTL (exp) : NULL_RTX;
5582 break;
5584 case 'c':
5585 return 1;
5587 case 'x':
5588 if (TREE_CODE (exp) == TREE_LIST)
5589 return ((TREE_VALUE (exp) == 0
5590 || safe_from_p (x, TREE_VALUE (exp), 0))
5591 && (TREE_CHAIN (exp) == 0
5592 || safe_from_p (x, TREE_CHAIN (exp), 0)));
5593 else if (TREE_CODE (exp) == ERROR_MARK)
5594 return 1; /* An already-visited SAVE_EXPR? */
5595 else
5596 return 0;
5598 case '1':
5599 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
5601 case '2':
5602 case '<':
5603 return (safe_from_p (x, TREE_OPERAND (exp, 0), 0)
5604 && safe_from_p (x, TREE_OPERAND (exp, 1), 0));
5606 case 'e':
5607 case 'r':
5608 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
5609 the expression. If it is set, we conflict iff we are that rtx or
5610 both are in memory. Otherwise, we check all operands of the
5611 expression recursively. */
5613 switch (TREE_CODE (exp))
5615 case ADDR_EXPR:
5616 /* If the operand is static or we are static, we can't conflict.
5617 Likewise if we don't conflict with the operand at all. */
5618 if (staticp (TREE_OPERAND (exp, 0))
5619 || TREE_STATIC (exp)
5620 || safe_from_p (x, TREE_OPERAND (exp, 0), 0))
5621 return 1;
5623 /* Otherwise, the only way this can conflict is if we are taking
5624 the address of a DECL a that address if part of X, which is
5625 very rare. */
5626 exp = TREE_OPERAND (exp, 0);
5627 if (DECL_P (exp))
5629 if (!DECL_RTL_SET_P (exp)
5630 || GET_CODE (DECL_RTL (exp)) != MEM)
5631 return 0;
5632 else
5633 exp_rtl = XEXP (DECL_RTL (exp), 0);
5635 break;
5637 case INDIRECT_REF:
5638 if (GET_CODE (x) == MEM
5639 && alias_sets_conflict_p (MEM_ALIAS_SET (x),
5640 get_alias_set (exp)))
5641 return 0;
5642 break;
5644 case CALL_EXPR:
5645 /* Assume that the call will clobber all hard registers and
5646 all of memory. */
5647 if ((GET_CODE (x) == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
5648 || GET_CODE (x) == MEM)
5649 return 0;
5650 break;
5652 case RTL_EXPR:
5653 /* If a sequence exists, we would have to scan every instruction
5654 in the sequence to see if it was safe. This is probably not
5655 worthwhile. */
5656 if (RTL_EXPR_SEQUENCE (exp))
5657 return 0;
5659 exp_rtl = RTL_EXPR_RTL (exp);
5660 break;
5662 case WITH_CLEANUP_EXPR:
5663 exp_rtl = WITH_CLEANUP_EXPR_RTL (exp);
5664 break;
5666 case CLEANUP_POINT_EXPR:
5667 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
5669 case SAVE_EXPR:
5670 exp_rtl = SAVE_EXPR_RTL (exp);
5671 if (exp_rtl)
5672 break;
5674 /* If we've already scanned this, don't do it again. Otherwise,
5675 show we've scanned it and record for clearing the flag if we're
5676 going on. */
5677 if (TREE_PRIVATE (exp))
5678 return 1;
5680 TREE_PRIVATE (exp) = 1;
5681 if (! safe_from_p (x, TREE_OPERAND (exp, 0), 0))
5683 TREE_PRIVATE (exp) = 0;
5684 return 0;
5687 save_expr_list = tree_cons (exp, NULL_TREE, save_expr_list);
5688 return 1;
5690 case BIND_EXPR:
5691 /* The only operand we look at is operand 1. The rest aren't
5692 part of the expression. */
5693 return safe_from_p (x, TREE_OPERAND (exp, 1), 0);
5695 case METHOD_CALL_EXPR:
5696 /* This takes an rtx argument, but shouldn't appear here. */
5697 abort ();
5699 default:
5700 break;
5703 /* If we have an rtx, we do not need to scan our operands. */
5704 if (exp_rtl)
5705 break;
5707 nops = first_rtl_op (TREE_CODE (exp));
5708 for (i = 0; i < nops; i++)
5709 if (TREE_OPERAND (exp, i) != 0
5710 && ! safe_from_p (x, TREE_OPERAND (exp, i), 0))
5711 return 0;
5713 /* If this is a language-specific tree code, it may require
5714 special handling. */
5715 if ((unsigned int) TREE_CODE (exp)
5716 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE
5717 && !(*lang_hooks.safe_from_p) (x, exp))
5718 return 0;
5721 /* If we have an rtl, find any enclosed object. Then see if we conflict
5722 with it. */
5723 if (exp_rtl)
5725 if (GET_CODE (exp_rtl) == SUBREG)
5727 exp_rtl = SUBREG_REG (exp_rtl);
5728 if (GET_CODE (exp_rtl) == REG
5729 && REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER)
5730 return 0;
5733 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
5734 are memory and they conflict. */
5735 return ! (rtx_equal_p (x, exp_rtl)
5736 || (GET_CODE (x) == MEM && GET_CODE (exp_rtl) == MEM
5737 && true_dependence (exp_rtl, VOIDmode, x,
5738 rtx_addr_varies_p)));
5741 /* If we reach here, it is safe. */
5742 return 1;
5745 /* Subroutine of expand_expr: return rtx if EXP is a
5746 variable or parameter; else return 0. */
5748 static rtx
5749 var_rtx (exp)
5750 tree exp;
5752 STRIP_NOPS (exp);
5753 switch (TREE_CODE (exp))
5755 case PARM_DECL:
5756 case VAR_DECL:
5757 return DECL_RTL (exp);
5758 default:
5759 return 0;
5763 #ifdef MAX_INTEGER_COMPUTATION_MODE
5765 void
5766 check_max_integer_computation_mode (exp)
5767 tree exp;
5769 enum tree_code code;
5770 enum machine_mode mode;
5772 /* Strip any NOPs that don't change the mode. */
5773 STRIP_NOPS (exp);
5774 code = TREE_CODE (exp);
5776 /* We must allow conversions of constants to MAX_INTEGER_COMPUTATION_MODE. */
5777 if (code == NOP_EXPR
5778 && TREE_CODE (TREE_OPERAND (exp, 0)) == INTEGER_CST)
5779 return;
5781 /* First check the type of the overall operation. We need only look at
5782 unary, binary and relational operations. */
5783 if (TREE_CODE_CLASS (code) == '1'
5784 || TREE_CODE_CLASS (code) == '2'
5785 || TREE_CODE_CLASS (code) == '<')
5787 mode = TYPE_MODE (TREE_TYPE (exp));
5788 if (GET_MODE_CLASS (mode) == MODE_INT
5789 && mode > MAX_INTEGER_COMPUTATION_MODE)
5790 internal_error ("unsupported wide integer operation");
5793 /* Check operand of a unary op. */
5794 if (TREE_CODE_CLASS (code) == '1')
5796 mode = TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)));
5797 if (GET_MODE_CLASS (mode) == MODE_INT
5798 && mode > MAX_INTEGER_COMPUTATION_MODE)
5799 internal_error ("unsupported wide integer operation");
5802 /* Check operands of a binary/comparison op. */
5803 if (TREE_CODE_CLASS (code) == '2' || TREE_CODE_CLASS (code) == '<')
5805 mode = TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)));
5806 if (GET_MODE_CLASS (mode) == MODE_INT
5807 && mode > MAX_INTEGER_COMPUTATION_MODE)
5808 internal_error ("unsupported wide integer operation");
5810 mode = TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 1)));
5811 if (GET_MODE_CLASS (mode) == MODE_INT
5812 && mode > MAX_INTEGER_COMPUTATION_MODE)
5813 internal_error ("unsupported wide integer operation");
5816 #endif
5818 /* Return the highest power of two that EXP is known to be a multiple of.
5819 This is used in updating alignment of MEMs in array references. */
5821 static HOST_WIDE_INT
5822 highest_pow2_factor (exp)
5823 tree exp;
5825 HOST_WIDE_INT c0, c1;
5827 switch (TREE_CODE (exp))
5829 case INTEGER_CST:
5830 /* If the integer is expressable in a HOST_WIDE_INT, we can find the
5831 lowest bit that's a one. If the result is zero, return
5832 BIGGEST_ALIGNMENT. We need to handle this case since we can find it
5833 in a COND_EXPR, a MIN_EXPR, or a MAX_EXPR. If the constant overlows,
5834 we have an erroneous program, so return BIGGEST_ALIGNMENT to avoid any
5835 later ICE. */
5836 if (TREE_CONSTANT_OVERFLOW (exp)
5837 || integer_zerop (exp))
5838 return BIGGEST_ALIGNMENT;
5839 else if (host_integerp (exp, 0))
5841 c0 = tree_low_cst (exp, 0);
5842 c0 = c0 < 0 ? - c0 : c0;
5843 return c0 & -c0;
5845 break;
5847 case PLUS_EXPR: case MINUS_EXPR: case MIN_EXPR: case MAX_EXPR:
5848 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
5849 c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
5850 return MIN (c0, c1);
5852 case MULT_EXPR:
5853 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
5854 c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
5855 return c0 * c1;
5857 case ROUND_DIV_EXPR: case TRUNC_DIV_EXPR: case FLOOR_DIV_EXPR:
5858 case CEIL_DIV_EXPR:
5859 if (integer_pow2p (TREE_OPERAND (exp, 1))
5860 && host_integerp (TREE_OPERAND (exp, 1), 1))
5862 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
5863 c1 = tree_low_cst (TREE_OPERAND (exp, 1), 1);
5864 return MAX (1, c0 / c1);
5866 break;
5868 case NON_LVALUE_EXPR: case NOP_EXPR: case CONVERT_EXPR:
5869 case SAVE_EXPR: case WITH_RECORD_EXPR:
5870 return highest_pow2_factor (TREE_OPERAND (exp, 0));
5872 case COMPOUND_EXPR:
5873 return highest_pow2_factor (TREE_OPERAND (exp, 1));
5875 case COND_EXPR:
5876 c0 = highest_pow2_factor (TREE_OPERAND (exp, 1));
5877 c1 = highest_pow2_factor (TREE_OPERAND (exp, 2));
5878 return MIN (c0, c1);
5880 default:
5881 break;
5884 return 1;
5887 /* Return an object on the placeholder list that matches EXP, a
5888 PLACEHOLDER_EXPR. An object "matches" if it is of the type of the
5889 PLACEHOLDER_EXPR or a pointer type to it. For further information, see
5890 tree.def. If no such object is found, return 0. If PLIST is nonzero, it
5891 is a location which initially points to a starting location in the
5892 placeholder list (zero means start of the list) and where a pointer into
5893 the placeholder list at which the object is found is placed. */
5895 tree
5896 find_placeholder (exp, plist)
5897 tree exp;
5898 tree *plist;
5900 tree type = TREE_TYPE (exp);
5901 tree placeholder_expr;
5903 for (placeholder_expr
5904 = plist && *plist ? TREE_CHAIN (*plist) : placeholder_list;
5905 placeholder_expr != 0;
5906 placeholder_expr = TREE_CHAIN (placeholder_expr))
5908 tree need_type = TYPE_MAIN_VARIANT (type);
5909 tree elt;
5911 /* Find the outermost reference that is of the type we want. If none,
5912 see if any object has a type that is a pointer to the type we
5913 want. */
5914 for (elt = TREE_PURPOSE (placeholder_expr); elt != 0;
5915 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
5916 || TREE_CODE (elt) == COND_EXPR)
5917 ? TREE_OPERAND (elt, 1)
5918 : (TREE_CODE_CLASS (TREE_CODE (elt)) == 'r'
5919 || TREE_CODE_CLASS (TREE_CODE (elt)) == '1'
5920 || TREE_CODE_CLASS (TREE_CODE (elt)) == '2'
5921 || TREE_CODE_CLASS (TREE_CODE (elt)) == 'e')
5922 ? TREE_OPERAND (elt, 0) : 0))
5923 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
5925 if (plist)
5926 *plist = placeholder_expr;
5927 return elt;
5930 for (elt = TREE_PURPOSE (placeholder_expr); elt != 0;
5932 = ((TREE_CODE (elt) == COMPOUND_EXPR
5933 || TREE_CODE (elt) == COND_EXPR)
5934 ? TREE_OPERAND (elt, 1)
5935 : (TREE_CODE_CLASS (TREE_CODE (elt)) == 'r'
5936 || TREE_CODE_CLASS (TREE_CODE (elt)) == '1'
5937 || TREE_CODE_CLASS (TREE_CODE (elt)) == '2'
5938 || TREE_CODE_CLASS (TREE_CODE (elt)) == 'e')
5939 ? TREE_OPERAND (elt, 0) : 0))
5940 if (POINTER_TYPE_P (TREE_TYPE (elt))
5941 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
5942 == need_type))
5944 if (plist)
5945 *plist = placeholder_expr;
5946 return build1 (INDIRECT_REF, need_type, elt);
5950 return 0;
5953 /* expand_expr: generate code for computing expression EXP.
5954 An rtx for the computed value is returned. The value is never null.
5955 In the case of a void EXP, const0_rtx is returned.
5957 The value may be stored in TARGET if TARGET is nonzero.
5958 TARGET is just a suggestion; callers must assume that
5959 the rtx returned may not be the same as TARGET.
5961 If TARGET is CONST0_RTX, it means that the value will be ignored.
5963 If TMODE is not VOIDmode, it suggests generating the
5964 result in mode TMODE. But this is done only when convenient.
5965 Otherwise, TMODE is ignored and the value generated in its natural mode.
5966 TMODE is just a suggestion; callers must assume that
5967 the rtx returned may not have mode TMODE.
5969 Note that TARGET may have neither TMODE nor MODE. In that case, it
5970 probably will not be used.
5972 If MODIFIER is EXPAND_SUM then when EXP is an addition
5973 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
5974 or a nest of (PLUS ...) and (MINUS ...) where the terms are
5975 products as above, or REG or MEM, or constant.
5976 Ordinarily in such cases we would output mul or add instructions
5977 and then return a pseudo reg containing the sum.
5979 EXPAND_INITIALIZER is much like EXPAND_SUM except that
5980 it also marks a label as absolutely required (it can't be dead).
5981 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
5982 This is used for outputting expressions used in initializers.
5984 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
5985 with a constant address even if that address is not normally legitimate.
5986 EXPAND_INITIALIZER and EXPAND_SUM also have this effect. */
5989 expand_expr (exp, target, tmode, modifier)
5990 tree exp;
5991 rtx target;
5992 enum machine_mode tmode;
5993 enum expand_modifier modifier;
5995 rtx op0, op1, temp;
5996 tree type = TREE_TYPE (exp);
5997 int unsignedp = TREE_UNSIGNED (type);
5998 enum machine_mode mode;
5999 enum tree_code code = TREE_CODE (exp);
6000 optab this_optab;
6001 rtx subtarget, original_target;
6002 int ignore;
6003 tree context;
6005 /* Handle ERROR_MARK before anybody tries to access its type. */
6006 if (TREE_CODE (exp) == ERROR_MARK || TREE_CODE (type) == ERROR_MARK)
6008 op0 = CONST0_RTX (tmode);
6009 if (op0 != 0)
6010 return op0;
6011 return const0_rtx;
6014 mode = TYPE_MODE (type);
6015 /* Use subtarget as the target for operand 0 of a binary operation. */
6016 subtarget = get_subtarget (target);
6017 original_target = target;
6018 ignore = (target == const0_rtx
6019 || ((code == NON_LVALUE_EXPR || code == NOP_EXPR
6020 || code == CONVERT_EXPR || code == REFERENCE_EXPR
6021 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
6022 && TREE_CODE (type) == VOID_TYPE));
6024 /* If we are going to ignore this result, we need only do something
6025 if there is a side-effect somewhere in the expression. If there
6026 is, short-circuit the most common cases here. Note that we must
6027 not call expand_expr with anything but const0_rtx in case this
6028 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
6030 if (ignore)
6032 if (! TREE_SIDE_EFFECTS (exp))
6033 return const0_rtx;
6035 /* Ensure we reference a volatile object even if value is ignored, but
6036 don't do this if all we are doing is taking its address. */
6037 if (TREE_THIS_VOLATILE (exp)
6038 && TREE_CODE (exp) != FUNCTION_DECL
6039 && mode != VOIDmode && mode != BLKmode
6040 && modifier != EXPAND_CONST_ADDRESS)
6042 temp = expand_expr (exp, NULL_RTX, VOIDmode, modifier);
6043 if (GET_CODE (temp) == MEM)
6044 temp = copy_to_reg (temp);
6045 return const0_rtx;
6048 if (TREE_CODE_CLASS (code) == '1' || code == COMPONENT_REF
6049 || code == INDIRECT_REF || code == BUFFER_REF)
6050 return expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
6051 modifier);
6053 else if (TREE_CODE_CLASS (code) == '2' || TREE_CODE_CLASS (code) == '<'
6054 || code == ARRAY_REF || code == ARRAY_RANGE_REF)
6056 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode, modifier);
6057 expand_expr (TREE_OPERAND (exp, 1), const0_rtx, VOIDmode, modifier);
6058 return const0_rtx;
6060 else if ((code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR)
6061 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (exp, 1)))
6062 /* If the second operand has no side effects, just evaluate
6063 the first. */
6064 return expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
6065 modifier);
6066 else if (code == BIT_FIELD_REF)
6068 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode, modifier);
6069 expand_expr (TREE_OPERAND (exp, 1), const0_rtx, VOIDmode, modifier);
6070 expand_expr (TREE_OPERAND (exp, 2), const0_rtx, VOIDmode, modifier);
6071 return const0_rtx;
6074 target = 0;
6077 #ifdef MAX_INTEGER_COMPUTATION_MODE
6078 /* Only check stuff here if the mode we want is different from the mode
6079 of the expression; if it's the same, check_max_integer_computiation_mode
6080 will handle it. Do we really need to check this stuff at all? */
6082 if (target
6083 && GET_MODE (target) != mode
6084 && TREE_CODE (exp) != INTEGER_CST
6085 && TREE_CODE (exp) != PARM_DECL
6086 && TREE_CODE (exp) != ARRAY_REF
6087 && TREE_CODE (exp) != ARRAY_RANGE_REF
6088 && TREE_CODE (exp) != COMPONENT_REF
6089 && TREE_CODE (exp) != BIT_FIELD_REF
6090 && TREE_CODE (exp) != INDIRECT_REF
6091 && TREE_CODE (exp) != CALL_EXPR
6092 && TREE_CODE (exp) != VAR_DECL
6093 && TREE_CODE (exp) != RTL_EXPR)
6095 enum machine_mode mode = GET_MODE (target);
6097 if (GET_MODE_CLASS (mode) == MODE_INT
6098 && mode > MAX_INTEGER_COMPUTATION_MODE)
6099 internal_error ("unsupported wide integer operation");
6102 if (tmode != mode
6103 && TREE_CODE (exp) != INTEGER_CST
6104 && TREE_CODE (exp) != PARM_DECL
6105 && TREE_CODE (exp) != ARRAY_REF
6106 && TREE_CODE (exp) != ARRAY_RANGE_REF
6107 && TREE_CODE (exp) != COMPONENT_REF
6108 && TREE_CODE (exp) != BIT_FIELD_REF
6109 && TREE_CODE (exp) != INDIRECT_REF
6110 && TREE_CODE (exp) != VAR_DECL
6111 && TREE_CODE (exp) != CALL_EXPR
6112 && TREE_CODE (exp) != RTL_EXPR
6113 && GET_MODE_CLASS (tmode) == MODE_INT
6114 && tmode > MAX_INTEGER_COMPUTATION_MODE)
6115 internal_error ("unsupported wide integer operation");
6117 check_max_integer_computation_mode (exp);
6118 #endif
6120 /* If will do cse, generate all results into pseudo registers
6121 since 1) that allows cse to find more things
6122 and 2) otherwise cse could produce an insn the machine
6123 cannot support. And exception is a CONSTRUCTOR into a multi-word
6124 MEM: that's much more likely to be most efficient into the MEM. */
6126 if (! cse_not_expected && mode != BLKmode && target
6127 && (GET_CODE (target) != REG || REGNO (target) < FIRST_PSEUDO_REGISTER)
6128 && ! (code == CONSTRUCTOR && GET_MODE_SIZE (mode) > UNITS_PER_WORD))
6129 target = subtarget;
6131 switch (code)
6133 case LABEL_DECL:
6135 tree function = decl_function_context (exp);
6136 /* Handle using a label in a containing function. */
6137 if (function != current_function_decl
6138 && function != inline_function_decl && function != 0)
6140 struct function *p = find_function_data (function);
6141 p->expr->x_forced_labels
6142 = gen_rtx_EXPR_LIST (VOIDmode, label_rtx (exp),
6143 p->expr->x_forced_labels);
6145 else
6147 if (modifier == EXPAND_INITIALIZER)
6148 forced_labels = gen_rtx_EXPR_LIST (VOIDmode,
6149 label_rtx (exp),
6150 forced_labels);
6153 temp = gen_rtx_MEM (FUNCTION_MODE,
6154 gen_rtx_LABEL_REF (Pmode, label_rtx (exp)));
6155 if (function != current_function_decl
6156 && function != inline_function_decl && function != 0)
6157 LABEL_REF_NONLOCAL_P (XEXP (temp, 0)) = 1;
6158 return temp;
6161 case PARM_DECL:
6162 if (DECL_RTL (exp) == 0)
6164 error_with_decl (exp, "prior parameter's size depends on `%s'");
6165 return CONST0_RTX (mode);
6168 /* ... fall through ... */
6170 case VAR_DECL:
6171 /* If a static var's type was incomplete when the decl was written,
6172 but the type is complete now, lay out the decl now. */
6173 if (DECL_SIZE (exp) == 0 && COMPLETE_TYPE_P (TREE_TYPE (exp))
6174 && (TREE_STATIC (exp) || DECL_EXTERNAL (exp)))
6176 rtx value = DECL_RTL_IF_SET (exp);
6178 layout_decl (exp, 0);
6180 /* If the RTL was already set, update its mode and memory
6181 attributes. */
6182 if (value != 0)
6184 PUT_MODE (value, DECL_MODE (exp));
6185 SET_DECL_RTL (exp, 0);
6186 set_mem_attributes (value, exp, 1);
6187 SET_DECL_RTL (exp, value);
6191 /* ... fall through ... */
6193 case FUNCTION_DECL:
6194 case RESULT_DECL:
6195 if (DECL_RTL (exp) == 0)
6196 abort ();
6198 /* Ensure variable marked as used even if it doesn't go through
6199 a parser. If it hasn't be used yet, write out an external
6200 definition. */
6201 if (! TREE_USED (exp))
6203 assemble_external (exp);
6204 TREE_USED (exp) = 1;
6207 /* Show we haven't gotten RTL for this yet. */
6208 temp = 0;
6210 /* Handle variables inherited from containing functions. */
6211 context = decl_function_context (exp);
6213 /* We treat inline_function_decl as an alias for the current function
6214 because that is the inline function whose vars, types, etc.
6215 are being merged into the current function.
6216 See expand_inline_function. */
6218 if (context != 0 && context != current_function_decl
6219 && context != inline_function_decl
6220 /* If var is static, we don't need a static chain to access it. */
6221 && ! (GET_CODE (DECL_RTL (exp)) == MEM
6222 && CONSTANT_P (XEXP (DECL_RTL (exp), 0))))
6224 rtx addr;
6226 /* Mark as non-local and addressable. */
6227 DECL_NONLOCAL (exp) = 1;
6228 if (DECL_NO_STATIC_CHAIN (current_function_decl))
6229 abort ();
6230 mark_addressable (exp);
6231 if (GET_CODE (DECL_RTL (exp)) != MEM)
6232 abort ();
6233 addr = XEXP (DECL_RTL (exp), 0);
6234 if (GET_CODE (addr) == MEM)
6235 addr
6236 = replace_equiv_address (addr,
6237 fix_lexical_addr (XEXP (addr, 0), exp));
6238 else
6239 addr = fix_lexical_addr (addr, exp);
6241 temp = replace_equiv_address (DECL_RTL (exp), addr);
6244 /* This is the case of an array whose size is to be determined
6245 from its initializer, while the initializer is still being parsed.
6246 See expand_decl. */
6248 else if (GET_CODE (DECL_RTL (exp)) == MEM
6249 && GET_CODE (XEXP (DECL_RTL (exp), 0)) == REG)
6250 temp = validize_mem (DECL_RTL (exp));
6252 /* If DECL_RTL is memory, we are in the normal case and either
6253 the address is not valid or it is not a register and -fforce-addr
6254 is specified, get the address into a register. */
6256 else if (GET_CODE (DECL_RTL (exp)) == MEM
6257 && modifier != EXPAND_CONST_ADDRESS
6258 && modifier != EXPAND_SUM
6259 && modifier != EXPAND_INITIALIZER
6260 && (! memory_address_p (DECL_MODE (exp),
6261 XEXP (DECL_RTL (exp), 0))
6262 || (flag_force_addr
6263 && GET_CODE (XEXP (DECL_RTL (exp), 0)) != REG)))
6264 temp = replace_equiv_address (DECL_RTL (exp),
6265 copy_rtx (XEXP (DECL_RTL (exp), 0)));
6267 /* If we got something, return it. But first, set the alignment
6268 if the address is a register. */
6269 if (temp != 0)
6271 if (GET_CODE (temp) == MEM && GET_CODE (XEXP (temp, 0)) == REG)
6272 mark_reg_pointer (XEXP (temp, 0), DECL_ALIGN (exp));
6274 return temp;
6277 /* If the mode of DECL_RTL does not match that of the decl, it
6278 must be a promoted value. We return a SUBREG of the wanted mode,
6279 but mark it so that we know that it was already extended. */
6281 if (GET_CODE (DECL_RTL (exp)) == REG
6282 && GET_MODE (DECL_RTL (exp)) != DECL_MODE (exp))
6284 /* Get the signedness used for this variable. Ensure we get the
6285 same mode we got when the variable was declared. */
6286 if (GET_MODE (DECL_RTL (exp))
6287 != promote_mode (type, DECL_MODE (exp), &unsignedp, 0))
6288 abort ();
6290 temp = gen_lowpart_SUBREG (mode, DECL_RTL (exp));
6291 SUBREG_PROMOTED_VAR_P (temp) = 1;
6292 SUBREG_PROMOTED_UNSIGNED_P (temp) = unsignedp;
6293 return temp;
6296 return DECL_RTL (exp);
6298 case INTEGER_CST:
6299 return immed_double_const (TREE_INT_CST_LOW (exp),
6300 TREE_INT_CST_HIGH (exp), mode);
6302 case CONST_DECL:
6303 return expand_expr (DECL_INITIAL (exp), target, VOIDmode, 0);
6305 case REAL_CST:
6306 /* If optimized, generate immediate CONST_DOUBLE
6307 which will be turned into memory by reload if necessary.
6309 We used to force a register so that loop.c could see it. But
6310 this does not allow gen_* patterns to perform optimizations with
6311 the constants. It also produces two insns in cases like "x = 1.0;".
6312 On most machines, floating-point constants are not permitted in
6313 many insns, so we'd end up copying it to a register in any case.
6315 Now, we do the copying in expand_binop, if appropriate. */
6316 return immed_real_const (exp);
6318 case COMPLEX_CST:
6319 case STRING_CST:
6320 if (! TREE_CST_RTL (exp))
6321 output_constant_def (exp, 1);
6323 /* TREE_CST_RTL probably contains a constant address.
6324 On RISC machines where a constant address isn't valid,
6325 make some insns to get that address into a register. */
6326 if (GET_CODE (TREE_CST_RTL (exp)) == MEM
6327 && modifier != EXPAND_CONST_ADDRESS
6328 && modifier != EXPAND_INITIALIZER
6329 && modifier != EXPAND_SUM
6330 && (! memory_address_p (mode, XEXP (TREE_CST_RTL (exp), 0))
6331 || (flag_force_addr
6332 && GET_CODE (XEXP (TREE_CST_RTL (exp), 0)) != REG)))
6333 return replace_equiv_address (TREE_CST_RTL (exp),
6334 copy_rtx (XEXP (TREE_CST_RTL (exp), 0)));
6335 return TREE_CST_RTL (exp);
6337 case EXPR_WITH_FILE_LOCATION:
6339 rtx to_return;
6340 const char *saved_input_filename = input_filename;
6341 int saved_lineno = lineno;
6342 input_filename = EXPR_WFL_FILENAME (exp);
6343 lineno = EXPR_WFL_LINENO (exp);
6344 if (EXPR_WFL_EMIT_LINE_NOTE (exp))
6345 emit_line_note (input_filename, lineno);
6346 /* Possibly avoid switching back and forth here. */
6347 to_return = expand_expr (EXPR_WFL_NODE (exp), target, tmode, modifier);
6348 input_filename = saved_input_filename;
6349 lineno = saved_lineno;
6350 return to_return;
6353 case SAVE_EXPR:
6354 context = decl_function_context (exp);
6356 /* If this SAVE_EXPR was at global context, assume we are an
6357 initialization function and move it into our context. */
6358 if (context == 0)
6359 SAVE_EXPR_CONTEXT (exp) = current_function_decl;
6361 /* We treat inline_function_decl as an alias for the current function
6362 because that is the inline function whose vars, types, etc.
6363 are being merged into the current function.
6364 See expand_inline_function. */
6365 if (context == current_function_decl || context == inline_function_decl)
6366 context = 0;
6368 /* If this is non-local, handle it. */
6369 if (context)
6371 /* The following call just exists to abort if the context is
6372 not of a containing function. */
6373 find_function_data (context);
6375 temp = SAVE_EXPR_RTL (exp);
6376 if (temp && GET_CODE (temp) == REG)
6378 put_var_into_stack (exp);
6379 temp = SAVE_EXPR_RTL (exp);
6381 if (temp == 0 || GET_CODE (temp) != MEM)
6382 abort ();
6383 return
6384 replace_equiv_address (temp,
6385 fix_lexical_addr (XEXP (temp, 0), exp));
6387 if (SAVE_EXPR_RTL (exp) == 0)
6389 if (mode == VOIDmode)
6390 temp = const0_rtx;
6391 else
6392 temp = assign_temp (build_qualified_type (type,
6393 (TYPE_QUALS (type)
6394 | TYPE_QUAL_CONST)),
6395 3, 0, 0);
6397 SAVE_EXPR_RTL (exp) = temp;
6398 if (!optimize && GET_CODE (temp) == REG)
6399 save_expr_regs = gen_rtx_EXPR_LIST (VOIDmode, temp,
6400 save_expr_regs);
6402 /* If the mode of TEMP does not match that of the expression, it
6403 must be a promoted value. We pass store_expr a SUBREG of the
6404 wanted mode but mark it so that we know that it was already
6405 extended. Note that `unsignedp' was modified above in
6406 this case. */
6408 if (GET_CODE (temp) == REG && GET_MODE (temp) != mode)
6410 temp = gen_lowpart_SUBREG (mode, SAVE_EXPR_RTL (exp));
6411 SUBREG_PROMOTED_VAR_P (temp) = 1;
6412 SUBREG_PROMOTED_UNSIGNED_P (temp) = unsignedp;
6415 if (temp == const0_rtx)
6416 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode, 0);
6417 else
6418 store_expr (TREE_OPERAND (exp, 0), temp, 0);
6420 TREE_USED (exp) = 1;
6423 /* If the mode of SAVE_EXPR_RTL does not match that of the expression, it
6424 must be a promoted value. We return a SUBREG of the wanted mode,
6425 but mark it so that we know that it was already extended. */
6427 if (GET_CODE (SAVE_EXPR_RTL (exp)) == REG
6428 && GET_MODE (SAVE_EXPR_RTL (exp)) != mode)
6430 /* Compute the signedness and make the proper SUBREG. */
6431 promote_mode (type, mode, &unsignedp, 0);
6432 temp = gen_lowpart_SUBREG (mode, SAVE_EXPR_RTL (exp));
6433 SUBREG_PROMOTED_VAR_P (temp) = 1;
6434 SUBREG_PROMOTED_UNSIGNED_P (temp) = unsignedp;
6435 return temp;
6438 return SAVE_EXPR_RTL (exp);
6440 case UNSAVE_EXPR:
6442 rtx temp;
6443 temp = expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier);
6444 TREE_OPERAND (exp, 0) = unsave_expr_now (TREE_OPERAND (exp, 0));
6445 return temp;
6448 case PLACEHOLDER_EXPR:
6450 tree old_list = placeholder_list;
6451 tree placeholder_expr = 0;
6453 exp = find_placeholder (exp, &placeholder_expr);
6454 if (exp == 0)
6455 abort ();
6457 placeholder_list = TREE_CHAIN (placeholder_expr);
6458 temp = expand_expr (exp, original_target, tmode, modifier);
6459 placeholder_list = old_list;
6460 return temp;
6463 /* We can't find the object or there was a missing WITH_RECORD_EXPR. */
6464 abort ();
6466 case WITH_RECORD_EXPR:
6467 /* Put the object on the placeholder list, expand our first operand,
6468 and pop the list. */
6469 placeholder_list = tree_cons (TREE_OPERAND (exp, 1), NULL_TREE,
6470 placeholder_list);
6471 target = expand_expr (TREE_OPERAND (exp, 0), original_target, tmode,
6472 modifier);
6473 placeholder_list = TREE_CHAIN (placeholder_list);
6474 return target;
6476 case GOTO_EXPR:
6477 if (TREE_CODE (TREE_OPERAND (exp, 0)) == LABEL_DECL)
6478 expand_goto (TREE_OPERAND (exp, 0));
6479 else
6480 expand_computed_goto (TREE_OPERAND (exp, 0));
6481 return const0_rtx;
6483 case EXIT_EXPR:
6484 expand_exit_loop_if_false (NULL,
6485 invert_truthvalue (TREE_OPERAND (exp, 0)));
6486 return const0_rtx;
6488 case LABELED_BLOCK_EXPR:
6489 if (LABELED_BLOCK_BODY (exp))
6490 expand_expr_stmt_value (LABELED_BLOCK_BODY (exp), 0, 1);
6491 /* Should perhaps use expand_label, but this is simpler and safer. */
6492 do_pending_stack_adjust ();
6493 emit_label (label_rtx (LABELED_BLOCK_LABEL (exp)));
6494 return const0_rtx;
6496 case EXIT_BLOCK_EXPR:
6497 if (EXIT_BLOCK_RETURN (exp))
6498 sorry ("returned value in block_exit_expr");
6499 expand_goto (LABELED_BLOCK_LABEL (EXIT_BLOCK_LABELED_BLOCK (exp)));
6500 return const0_rtx;
6502 case LOOP_EXPR:
6503 push_temp_slots ();
6504 expand_start_loop (1);
6505 expand_expr_stmt_value (TREE_OPERAND (exp, 0), 0, 1);
6506 expand_end_loop ();
6507 pop_temp_slots ();
6509 return const0_rtx;
6511 case BIND_EXPR:
6513 tree vars = TREE_OPERAND (exp, 0);
6514 int vars_need_expansion = 0;
6516 /* Need to open a binding contour here because
6517 if there are any cleanups they must be contained here. */
6518 expand_start_bindings (2);
6520 /* Mark the corresponding BLOCK for output in its proper place. */
6521 if (TREE_OPERAND (exp, 2) != 0
6522 && ! TREE_USED (TREE_OPERAND (exp, 2)))
6523 insert_block (TREE_OPERAND (exp, 2));
6525 /* If VARS have not yet been expanded, expand them now. */
6526 while (vars)
6528 if (!DECL_RTL_SET_P (vars))
6530 vars_need_expansion = 1;
6531 expand_decl (vars);
6533 expand_decl_init (vars);
6534 vars = TREE_CHAIN (vars);
6537 temp = expand_expr (TREE_OPERAND (exp, 1), target, tmode, modifier);
6539 expand_end_bindings (TREE_OPERAND (exp, 0), 0, 0);
6541 return temp;
6544 case RTL_EXPR:
6545 if (RTL_EXPR_SEQUENCE (exp))
6547 if (RTL_EXPR_SEQUENCE (exp) == const0_rtx)
6548 abort ();
6549 emit_insns (RTL_EXPR_SEQUENCE (exp));
6550 RTL_EXPR_SEQUENCE (exp) = const0_rtx;
6552 preserve_rtl_expr_result (RTL_EXPR_RTL (exp));
6553 free_temps_for_rtl_expr (exp);
6554 return RTL_EXPR_RTL (exp);
6556 case CONSTRUCTOR:
6557 /* If we don't need the result, just ensure we evaluate any
6558 subexpressions. */
6559 if (ignore)
6561 tree elt;
6563 for (elt = CONSTRUCTOR_ELTS (exp); elt; elt = TREE_CHAIN (elt))
6564 expand_expr (TREE_VALUE (elt), const0_rtx, VOIDmode, 0);
6566 return const0_rtx;
6569 /* All elts simple constants => refer to a constant in memory. But
6570 if this is a non-BLKmode mode, let it store a field at a time
6571 since that should make a CONST_INT or CONST_DOUBLE when we
6572 fold. Likewise, if we have a target we can use, it is best to
6573 store directly into the target unless the type is large enough
6574 that memcpy will be used. If we are making an initializer and
6575 all operands are constant, put it in memory as well. */
6576 else if ((TREE_STATIC (exp)
6577 && ((mode == BLKmode
6578 && ! (target != 0 && safe_from_p (target, exp, 1)))
6579 || TREE_ADDRESSABLE (exp)
6580 || (host_integerp (TYPE_SIZE_UNIT (type), 1)
6581 && (! MOVE_BY_PIECES_P
6582 (tree_low_cst (TYPE_SIZE_UNIT (type), 1),
6583 TYPE_ALIGN (type)))
6584 && ! mostly_zeros_p (exp))))
6585 || (modifier == EXPAND_INITIALIZER && TREE_CONSTANT (exp)))
6587 rtx constructor = output_constant_def (exp, 1);
6589 if (modifier != EXPAND_CONST_ADDRESS
6590 && modifier != EXPAND_INITIALIZER
6591 && modifier != EXPAND_SUM)
6592 constructor = validize_mem (constructor);
6594 return constructor;
6596 else
6598 /* Handle calls that pass values in multiple non-contiguous
6599 locations. The Irix 6 ABI has examples of this. */
6600 if (target == 0 || ! safe_from_p (target, exp, 1)
6601 || GET_CODE (target) == PARALLEL)
6602 target
6603 = assign_temp (build_qualified_type (type,
6604 (TYPE_QUALS (type)
6605 | (TREE_READONLY (exp)
6606 * TYPE_QUAL_CONST))),
6607 0, TREE_ADDRESSABLE (exp), 1);
6609 store_constructor (exp, target, 0,
6610 int_size_in_bytes (TREE_TYPE (exp)));
6611 return target;
6614 case INDIRECT_REF:
6616 tree exp1 = TREE_OPERAND (exp, 0);
6617 tree index;
6618 tree string = string_constant (exp1, &index);
6620 /* Try to optimize reads from const strings. */
6621 if (string
6622 && TREE_CODE (string) == STRING_CST
6623 && TREE_CODE (index) == INTEGER_CST
6624 && compare_tree_int (index, TREE_STRING_LENGTH (string)) < 0
6625 && GET_MODE_CLASS (mode) == MODE_INT
6626 && GET_MODE_SIZE (mode) == 1
6627 && modifier != EXPAND_WRITE)
6628 return
6629 GEN_INT (TREE_STRING_POINTER (string)[TREE_INT_CST_LOW (index)]);
6631 op0 = expand_expr (exp1, NULL_RTX, VOIDmode, EXPAND_SUM);
6632 op0 = memory_address (mode, op0);
6633 temp = gen_rtx_MEM (mode, op0);
6634 set_mem_attributes (temp, exp, 0);
6636 /* If we are writing to this object and its type is a record with
6637 readonly fields, we must mark it as readonly so it will
6638 conflict with readonly references to those fields. */
6639 if (modifier == EXPAND_WRITE && readonly_fields_p (type))
6640 RTX_UNCHANGING_P (temp) = 1;
6642 return temp;
6645 case ARRAY_REF:
6646 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) != ARRAY_TYPE)
6647 abort ();
6650 tree array = TREE_OPERAND (exp, 0);
6651 tree domain = TYPE_DOMAIN (TREE_TYPE (array));
6652 tree low_bound = domain ? TYPE_MIN_VALUE (domain) : integer_zero_node;
6653 tree index = convert (sizetype, TREE_OPERAND (exp, 1));
6654 HOST_WIDE_INT i;
6656 /* Optimize the special-case of a zero lower bound.
6658 We convert the low_bound to sizetype to avoid some problems
6659 with constant folding. (E.g. suppose the lower bound is 1,
6660 and its mode is QI. Without the conversion, (ARRAY
6661 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
6662 +INDEX), which becomes (ARRAY+255+INDEX). Oops!) */
6664 if (! integer_zerop (low_bound))
6665 index = size_diffop (index, convert (sizetype, low_bound));
6667 /* Fold an expression like: "foo"[2].
6668 This is not done in fold so it won't happen inside &.
6669 Don't fold if this is for wide characters since it's too
6670 difficult to do correctly and this is a very rare case. */
6672 if (modifier != EXPAND_CONST_ADDRESS && modifier != EXPAND_INITIALIZER
6673 && TREE_CODE (array) == STRING_CST
6674 && TREE_CODE (index) == INTEGER_CST
6675 && compare_tree_int (index, TREE_STRING_LENGTH (array)) < 0
6676 && GET_MODE_CLASS (mode) == MODE_INT
6677 && GET_MODE_SIZE (mode) == 1)
6678 return
6679 GEN_INT (TREE_STRING_POINTER (array)[TREE_INT_CST_LOW (index)]);
6681 /* If this is a constant index into a constant array,
6682 just get the value from the array. Handle both the cases when
6683 we have an explicit constructor and when our operand is a variable
6684 that was declared const. */
6686 if (modifier != EXPAND_CONST_ADDRESS && modifier != EXPAND_INITIALIZER
6687 && TREE_CODE (array) == CONSTRUCTOR && ! TREE_SIDE_EFFECTS (array)
6688 && TREE_CODE (index) == INTEGER_CST
6689 && 0 > compare_tree_int (index,
6690 list_length (CONSTRUCTOR_ELTS
6691 (TREE_OPERAND (exp, 0)))))
6693 tree elem;
6695 for (elem = CONSTRUCTOR_ELTS (TREE_OPERAND (exp, 0)),
6696 i = TREE_INT_CST_LOW (index);
6697 elem != 0 && i != 0; i--, elem = TREE_CHAIN (elem))
6700 if (elem)
6701 return expand_expr (fold (TREE_VALUE (elem)), target, tmode,
6702 modifier);
6705 else if (optimize >= 1
6706 && modifier != EXPAND_CONST_ADDRESS
6707 && modifier != EXPAND_INITIALIZER
6708 && TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
6709 && TREE_CODE (array) == VAR_DECL && DECL_INITIAL (array)
6710 && TREE_CODE (DECL_INITIAL (array)) != ERROR_MARK)
6712 if (TREE_CODE (index) == INTEGER_CST)
6714 tree init = DECL_INITIAL (array);
6716 if (TREE_CODE (init) == CONSTRUCTOR)
6718 tree elem;
6720 for (elem = CONSTRUCTOR_ELTS (init);
6721 (elem
6722 && !tree_int_cst_equal (TREE_PURPOSE (elem), index));
6723 elem = TREE_CHAIN (elem))
6726 if (elem && !TREE_SIDE_EFFECTS (TREE_VALUE (elem)))
6727 return expand_expr (fold (TREE_VALUE (elem)), target,
6728 tmode, modifier);
6730 else if (TREE_CODE (init) == STRING_CST
6731 && 0 > compare_tree_int (index,
6732 TREE_STRING_LENGTH (init)))
6734 tree type = TREE_TYPE (TREE_TYPE (init));
6735 enum machine_mode mode = TYPE_MODE (type);
6737 if (GET_MODE_CLASS (mode) == MODE_INT
6738 && GET_MODE_SIZE (mode) == 1)
6739 return (GEN_INT
6740 (TREE_STRING_POINTER
6741 (init)[TREE_INT_CST_LOW (index)]));
6746 /* Fall through. */
6748 case COMPONENT_REF:
6749 case BIT_FIELD_REF:
6750 case ARRAY_RANGE_REF:
6751 /* If the operand is a CONSTRUCTOR, we can just extract the
6752 appropriate field if it is present. Don't do this if we have
6753 already written the data since we want to refer to that copy
6754 and varasm.c assumes that's what we'll do. */
6755 if (code == COMPONENT_REF
6756 && TREE_CODE (TREE_OPERAND (exp, 0)) == CONSTRUCTOR
6757 && TREE_CST_RTL (TREE_OPERAND (exp, 0)) == 0)
6759 tree elt;
6761 for (elt = CONSTRUCTOR_ELTS (TREE_OPERAND (exp, 0)); elt;
6762 elt = TREE_CHAIN (elt))
6763 if (TREE_PURPOSE (elt) == TREE_OPERAND (exp, 1)
6764 /* We can normally use the value of the field in the
6765 CONSTRUCTOR. However, if this is a bitfield in
6766 an integral mode that we can fit in a HOST_WIDE_INT,
6767 we must mask only the number of bits in the bitfield,
6768 since this is done implicitly by the constructor. If
6769 the bitfield does not meet either of those conditions,
6770 we can't do this optimization. */
6771 && (! DECL_BIT_FIELD (TREE_PURPOSE (elt))
6772 || ((GET_MODE_CLASS (DECL_MODE (TREE_PURPOSE (elt)))
6773 == MODE_INT)
6774 && (GET_MODE_BITSIZE (DECL_MODE (TREE_PURPOSE (elt)))
6775 <= HOST_BITS_PER_WIDE_INT))))
6777 op0 = expand_expr (TREE_VALUE (elt), target, tmode, modifier);
6778 if (DECL_BIT_FIELD (TREE_PURPOSE (elt)))
6780 HOST_WIDE_INT bitsize
6781 = TREE_INT_CST_LOW (DECL_SIZE (TREE_PURPOSE (elt)));
6782 enum machine_mode imode
6783 = TYPE_MODE (TREE_TYPE (TREE_PURPOSE (elt)));
6785 if (TREE_UNSIGNED (TREE_TYPE (TREE_PURPOSE (elt))))
6787 op1 = GEN_INT (((HOST_WIDE_INT) 1 << bitsize) - 1);
6788 op0 = expand_and (imode, op0, op1, target);
6790 else
6792 tree count
6793 = build_int_2 (GET_MODE_BITSIZE (imode) - bitsize,
6796 op0 = expand_shift (LSHIFT_EXPR, imode, op0, count,
6797 target, 0);
6798 op0 = expand_shift (RSHIFT_EXPR, imode, op0, count,
6799 target, 0);
6803 return op0;
6808 enum machine_mode mode1;
6809 HOST_WIDE_INT bitsize, bitpos;
6810 tree offset;
6811 int volatilep = 0;
6812 tree tem = get_inner_reference (exp, &bitsize, &bitpos, &offset,
6813 &mode1, &unsignedp, &volatilep);
6814 rtx orig_op0;
6816 /* If we got back the original object, something is wrong. Perhaps
6817 we are evaluating an expression too early. In any event, don't
6818 infinitely recurse. */
6819 if (tem == exp)
6820 abort ();
6822 /* If TEM's type is a union of variable size, pass TARGET to the inner
6823 computation, since it will need a temporary and TARGET is known
6824 to have to do. This occurs in unchecked conversion in Ada. */
6826 orig_op0 = op0
6827 = expand_expr (tem,
6828 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
6829 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
6830 != INTEGER_CST)
6831 ? target : NULL_RTX),
6832 VOIDmode,
6833 (modifier == EXPAND_INITIALIZER
6834 || modifier == EXPAND_CONST_ADDRESS)
6835 ? modifier : EXPAND_NORMAL);
6837 /* If this is a constant, put it into a register if it is a
6838 legitimate constant and OFFSET is 0 and memory if it isn't. */
6839 if (CONSTANT_P (op0))
6841 enum machine_mode mode = TYPE_MODE (TREE_TYPE (tem));
6842 if (mode != BLKmode && LEGITIMATE_CONSTANT_P (op0)
6843 && offset == 0)
6844 op0 = force_reg (mode, op0);
6845 else
6846 op0 = validize_mem (force_const_mem (mode, op0));
6849 if (offset != 0)
6851 rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, EXPAND_SUM);
6853 /* If this object is in a register, put it into memory.
6854 This case can't occur in C, but can in Ada if we have
6855 unchecked conversion of an expression from a scalar type to
6856 an array or record type. */
6857 if (GET_CODE (op0) == REG || GET_CODE (op0) == SUBREG
6858 || GET_CODE (op0) == CONCAT || GET_CODE (op0) == ADDRESSOF)
6860 /* If the operand is a SAVE_EXPR, we can deal with this by
6861 forcing the SAVE_EXPR into memory. */
6862 if (TREE_CODE (TREE_OPERAND (exp, 0)) == SAVE_EXPR)
6864 put_var_into_stack (TREE_OPERAND (exp, 0));
6865 op0 = SAVE_EXPR_RTL (TREE_OPERAND (exp, 0));
6867 else
6869 tree nt
6870 = build_qualified_type (TREE_TYPE (tem),
6871 (TYPE_QUALS (TREE_TYPE (tem))
6872 | TYPE_QUAL_CONST));
6873 rtx memloc = assign_temp (nt, 1, 1, 1);
6875 emit_move_insn (memloc, op0);
6876 op0 = memloc;
6880 if (GET_CODE (op0) != MEM)
6881 abort ();
6883 if (GET_MODE (offset_rtx) != ptr_mode)
6884 offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
6886 #ifdef POINTERS_EXTEND_UNSIGNED
6887 if (GET_MODE (offset_rtx) != Pmode)
6888 offset_rtx = convert_memory_address (Pmode, offset_rtx);
6889 #endif
6891 /* A constant address in OP0 can have VOIDmode, we must not try
6892 to call force_reg for that case. Avoid that case. */
6893 if (GET_CODE (op0) == MEM
6894 && GET_MODE (op0) == BLKmode
6895 && GET_MODE (XEXP (op0, 0)) != VOIDmode
6896 && bitsize != 0
6897 && (bitpos % bitsize) == 0
6898 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
6899 && MEM_ALIGN (op0) == GET_MODE_ALIGNMENT (mode1))
6901 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
6902 bitpos = 0;
6905 op0 = offset_address (op0, offset_rtx,
6906 highest_pow2_factor (offset));
6909 /* Don't forget about volatility even if this is a bitfield. */
6910 if (GET_CODE (op0) == MEM && volatilep && ! MEM_VOLATILE_P (op0))
6912 if (op0 == orig_op0)
6913 op0 = copy_rtx (op0);
6915 MEM_VOLATILE_P (op0) = 1;
6918 /* In cases where an aligned union has an unaligned object
6919 as a field, we might be extracting a BLKmode value from
6920 an integer-mode (e.g., SImode) object. Handle this case
6921 by doing the extract into an object as wide as the field
6922 (which we know to be the width of a basic mode), then
6923 storing into memory, and changing the mode to BLKmode. */
6924 if (mode1 == VOIDmode
6925 || GET_CODE (op0) == REG || GET_CODE (op0) == SUBREG
6926 || (mode1 != BLKmode && ! direct_load[(int) mode1]
6927 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
6928 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT
6929 && modifier != EXPAND_CONST_ADDRESS
6930 && modifier != EXPAND_INITIALIZER)
6931 /* If the field isn't aligned enough to fetch as a memref,
6932 fetch it as a bit field. */
6933 || (mode1 != BLKmode
6934 && SLOW_UNALIGNED_ACCESS (mode1, MEM_ALIGN (op0))
6935 && ((TYPE_ALIGN (TREE_TYPE (tem))
6936 < GET_MODE_ALIGNMENT (mode))
6937 || (bitpos % GET_MODE_ALIGNMENT (mode) != 0)))
6938 /* If the type and the field are a constant size and the
6939 size of the type isn't the same size as the bitfield,
6940 we must use bitfield operations. */
6941 || (bitsize >= 0
6942 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (exp)))
6943 == INTEGER_CST)
6944 && 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)),
6945 bitsize)))
6947 enum machine_mode ext_mode = mode;
6949 if (ext_mode == BLKmode
6950 && ! (target != 0 && GET_CODE (op0) == MEM
6951 && GET_CODE (target) == MEM
6952 && bitpos % BITS_PER_UNIT == 0))
6953 ext_mode = mode_for_size (bitsize, MODE_INT, 1);
6955 if (ext_mode == BLKmode)
6957 /* In this case, BITPOS must start at a byte boundary and
6958 TARGET, if specified, must be a MEM. */
6959 if (GET_CODE (op0) != MEM
6960 || (target != 0 && GET_CODE (target) != MEM)
6961 || bitpos % BITS_PER_UNIT != 0)
6962 abort ();
6964 op0 = adjust_address (op0, VOIDmode, bitpos / BITS_PER_UNIT);
6965 if (target == 0)
6966 target = assign_temp (type, 0, 1, 1);
6968 emit_block_move (target, op0,
6969 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
6970 / BITS_PER_UNIT));
6972 return target;
6975 op0 = validize_mem (op0);
6977 if (GET_CODE (op0) == MEM && GET_CODE (XEXP (op0, 0)) == REG)
6978 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
6980 op0 = extract_bit_field (op0, bitsize, bitpos,
6981 unsignedp, target, ext_mode, ext_mode,
6982 int_size_in_bytes (TREE_TYPE (tem)));
6984 /* If the result is a record type and BITSIZE is narrower than
6985 the mode of OP0, an integral mode, and this is a big endian
6986 machine, we must put the field into the high-order bits. */
6987 if (TREE_CODE (type) == RECORD_TYPE && BYTES_BIG_ENDIAN
6988 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
6989 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (op0)))
6990 op0 = expand_shift (LSHIFT_EXPR, GET_MODE (op0), op0,
6991 size_int (GET_MODE_BITSIZE (GET_MODE (op0))
6992 - bitsize),
6993 op0, 1);
6995 if (mode == BLKmode)
6997 rtx new = assign_temp (build_qualified_type
6998 (type_for_mode (ext_mode, 0),
6999 TYPE_QUAL_CONST), 0, 1, 1);
7001 emit_move_insn (new, op0);
7002 op0 = copy_rtx (new);
7003 PUT_MODE (op0, BLKmode);
7004 set_mem_attributes (op0, exp, 1);
7007 return op0;
7010 /* If the result is BLKmode, use that to access the object
7011 now as well. */
7012 if (mode == BLKmode)
7013 mode1 = BLKmode;
7015 /* Get a reference to just this component. */
7016 if (modifier == EXPAND_CONST_ADDRESS
7017 || modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
7018 op0 = adjust_address_nv (op0, mode1, bitpos / BITS_PER_UNIT);
7019 else
7020 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
7022 if (op0 == orig_op0)
7023 op0 = copy_rtx (op0);
7025 set_mem_attributes (op0, exp, 0);
7026 if (GET_CODE (XEXP (op0, 0)) == REG)
7027 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
7029 MEM_VOLATILE_P (op0) |= volatilep;
7030 if (mode == mode1 || mode1 == BLKmode || mode1 == tmode
7031 || modifier == EXPAND_CONST_ADDRESS
7032 || modifier == EXPAND_INITIALIZER)
7033 return op0;
7034 else if (target == 0)
7035 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
7037 convert_move (target, op0, unsignedp);
7038 return target;
7041 case VTABLE_REF:
7043 rtx insn, before = get_last_insn (), vtbl_ref;
7045 /* Evaluate the interior expression. */
7046 subtarget = expand_expr (TREE_OPERAND (exp, 0), target,
7047 tmode, modifier);
7049 /* Get or create an instruction off which to hang a note. */
7050 if (REG_P (subtarget))
7052 target = subtarget;
7053 insn = get_last_insn ();
7054 if (insn == before)
7055 abort ();
7056 if (! INSN_P (insn))
7057 insn = prev_nonnote_insn (insn);
7059 else
7061 target = gen_reg_rtx (GET_MODE (subtarget));
7062 insn = emit_move_insn (target, subtarget);
7065 /* Collect the data for the note. */
7066 vtbl_ref = XEXP (DECL_RTL (TREE_OPERAND (exp, 1)), 0);
7067 vtbl_ref = plus_constant (vtbl_ref,
7068 tree_low_cst (TREE_OPERAND (exp, 2), 0));
7069 /* Discard the initial CONST that was added. */
7070 vtbl_ref = XEXP (vtbl_ref, 0);
7072 REG_NOTES (insn)
7073 = gen_rtx_EXPR_LIST (REG_VTABLE_REF, vtbl_ref, REG_NOTES (insn));
7075 return target;
7078 /* Intended for a reference to a buffer of a file-object in Pascal.
7079 But it's not certain that a special tree code will really be
7080 necessary for these. INDIRECT_REF might work for them. */
7081 case BUFFER_REF:
7082 abort ();
7084 case IN_EXPR:
7086 /* Pascal set IN expression.
7088 Algorithm:
7089 rlo = set_low - (set_low%bits_per_word);
7090 the_word = set [ (index - rlo)/bits_per_word ];
7091 bit_index = index % bits_per_word;
7092 bitmask = 1 << bit_index;
7093 return !!(the_word & bitmask); */
7095 tree set = TREE_OPERAND (exp, 0);
7096 tree index = TREE_OPERAND (exp, 1);
7097 int iunsignedp = TREE_UNSIGNED (TREE_TYPE (index));
7098 tree set_type = TREE_TYPE (set);
7099 tree set_low_bound = TYPE_MIN_VALUE (TYPE_DOMAIN (set_type));
7100 tree set_high_bound = TYPE_MAX_VALUE (TYPE_DOMAIN (set_type));
7101 rtx index_val = expand_expr (index, 0, VOIDmode, 0);
7102 rtx lo_r = expand_expr (set_low_bound, 0, VOIDmode, 0);
7103 rtx hi_r = expand_expr (set_high_bound, 0, VOIDmode, 0);
7104 rtx setval = expand_expr (set, 0, VOIDmode, 0);
7105 rtx setaddr = XEXP (setval, 0);
7106 enum machine_mode index_mode = TYPE_MODE (TREE_TYPE (index));
7107 rtx rlow;
7108 rtx diff, quo, rem, addr, bit, result;
7110 /* If domain is empty, answer is no. Likewise if index is constant
7111 and out of bounds. */
7112 if (((TREE_CODE (set_high_bound) == INTEGER_CST
7113 && TREE_CODE (set_low_bound) == INTEGER_CST
7114 && tree_int_cst_lt (set_high_bound, set_low_bound))
7115 || (TREE_CODE (index) == INTEGER_CST
7116 && TREE_CODE (set_low_bound) == INTEGER_CST
7117 && tree_int_cst_lt (index, set_low_bound))
7118 || (TREE_CODE (set_high_bound) == INTEGER_CST
7119 && TREE_CODE (index) == INTEGER_CST
7120 && tree_int_cst_lt (set_high_bound, index))))
7121 return const0_rtx;
7123 if (target == 0)
7124 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
7126 /* If we get here, we have to generate the code for both cases
7127 (in range and out of range). */
7129 op0 = gen_label_rtx ();
7130 op1 = gen_label_rtx ();
7132 if (! (GET_CODE (index_val) == CONST_INT
7133 && GET_CODE (lo_r) == CONST_INT))
7134 emit_cmp_and_jump_insns (index_val, lo_r, LT, NULL_RTX,
7135 GET_MODE (index_val), iunsignedp, op1);
7137 if (! (GET_CODE (index_val) == CONST_INT
7138 && GET_CODE (hi_r) == CONST_INT))
7139 emit_cmp_and_jump_insns (index_val, hi_r, GT, NULL_RTX,
7140 GET_MODE (index_val), iunsignedp, op1);
7142 /* Calculate the element number of bit zero in the first word
7143 of the set. */
7144 if (GET_CODE (lo_r) == CONST_INT)
7145 rlow = GEN_INT (INTVAL (lo_r)
7146 & ~((HOST_WIDE_INT) 1 << BITS_PER_UNIT));
7147 else
7148 rlow = expand_binop (index_mode, and_optab, lo_r,
7149 GEN_INT (~((HOST_WIDE_INT) 1 << BITS_PER_UNIT)),
7150 NULL_RTX, iunsignedp, OPTAB_LIB_WIDEN);
7152 diff = expand_binop (index_mode, sub_optab, index_val, rlow,
7153 NULL_RTX, iunsignedp, OPTAB_LIB_WIDEN);
7155 quo = expand_divmod (0, TRUNC_DIV_EXPR, index_mode, diff,
7156 GEN_INT (BITS_PER_UNIT), NULL_RTX, iunsignedp);
7157 rem = expand_divmod (1, TRUNC_MOD_EXPR, index_mode, index_val,
7158 GEN_INT (BITS_PER_UNIT), NULL_RTX, iunsignedp);
7160 addr = memory_address (byte_mode,
7161 expand_binop (index_mode, add_optab, diff,
7162 setaddr, NULL_RTX, iunsignedp,
7163 OPTAB_LIB_WIDEN));
7165 /* Extract the bit we want to examine. */
7166 bit = expand_shift (RSHIFT_EXPR, byte_mode,
7167 gen_rtx_MEM (byte_mode, addr),
7168 make_tree (TREE_TYPE (index), rem),
7169 NULL_RTX, 1);
7170 result = expand_binop (byte_mode, and_optab, bit, const1_rtx,
7171 GET_MODE (target) == byte_mode ? target : 0,
7172 1, OPTAB_LIB_WIDEN);
7174 if (result != target)
7175 convert_move (target, result, 1);
7177 /* Output the code to handle the out-of-range case. */
7178 emit_jump (op0);
7179 emit_label (op1);
7180 emit_move_insn (target, const0_rtx);
7181 emit_label (op0);
7182 return target;
7185 case WITH_CLEANUP_EXPR:
7186 if (WITH_CLEANUP_EXPR_RTL (exp) == 0)
7188 WITH_CLEANUP_EXPR_RTL (exp)
7189 = expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier);
7190 expand_decl_cleanup (NULL_TREE, TREE_OPERAND (exp, 1));
7192 /* That's it for this cleanup. */
7193 TREE_OPERAND (exp, 1) = 0;
7195 return WITH_CLEANUP_EXPR_RTL (exp);
7197 case CLEANUP_POINT_EXPR:
7199 /* Start a new binding layer that will keep track of all cleanup
7200 actions to be performed. */
7201 expand_start_bindings (2);
7203 target_temp_slot_level = temp_slot_level;
7205 op0 = expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier);
7206 /* If we're going to use this value, load it up now. */
7207 if (! ignore)
7208 op0 = force_not_mem (op0);
7209 preserve_temp_slots (op0);
7210 expand_end_bindings (NULL_TREE, 0, 0);
7212 return op0;
7214 case CALL_EXPR:
7215 /* Check for a built-in function. */
7216 if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
7217 && (TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
7218 == FUNCTION_DECL)
7219 && DECL_BUILT_IN (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
7221 if (DECL_BUILT_IN_CLASS (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
7222 == BUILT_IN_FRONTEND)
7223 return (*lang_expand_expr) (exp, original_target, tmode, modifier);
7224 else
7225 return expand_builtin (exp, target, subtarget, tmode, ignore);
7228 return expand_call (exp, target, ignore);
7230 case NON_LVALUE_EXPR:
7231 case NOP_EXPR:
7232 case CONVERT_EXPR:
7233 case REFERENCE_EXPR:
7234 if (TREE_OPERAND (exp, 0) == error_mark_node)
7235 return const0_rtx;
7237 if (TREE_CODE (type) == UNION_TYPE)
7239 tree valtype = TREE_TYPE (TREE_OPERAND (exp, 0));
7241 /* If both input and output are BLKmode, this conversion isn't doing
7242 anything except possibly changing memory attribute. */
7243 if (mode == BLKmode && TYPE_MODE (valtype) == BLKmode)
7245 rtx result = expand_expr (TREE_OPERAND (exp, 0), target, tmode,
7246 modifier);
7248 result = copy_rtx (result);
7249 set_mem_attributes (result, exp, 0);
7250 return result;
7253 if (target == 0)
7254 target = assign_temp (type, 0, 1, 1);
7256 if (GET_CODE (target) == MEM)
7257 /* Store data into beginning of memory target. */
7258 store_expr (TREE_OPERAND (exp, 0),
7259 adjust_address (target, TYPE_MODE (valtype), 0), 0);
7261 else if (GET_CODE (target) == REG)
7262 /* Store this field into a union of the proper type. */
7263 store_field (target,
7264 MIN ((int_size_in_bytes (TREE_TYPE
7265 (TREE_OPERAND (exp, 0)))
7266 * BITS_PER_UNIT),
7267 (HOST_WIDE_INT) GET_MODE_BITSIZE (mode)),
7268 0, TYPE_MODE (valtype), TREE_OPERAND (exp, 0),
7269 VOIDmode, 0, type, 0);
7270 else
7271 abort ();
7273 /* Return the entire union. */
7274 return target;
7277 if (mode == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))))
7279 op0 = expand_expr (TREE_OPERAND (exp, 0), target, VOIDmode,
7280 modifier);
7282 /* If the signedness of the conversion differs and OP0 is
7283 a promoted SUBREG, clear that indication since we now
7284 have to do the proper extension. */
7285 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))) != unsignedp
7286 && GET_CODE (op0) == SUBREG)
7287 SUBREG_PROMOTED_VAR_P (op0) = 0;
7289 return op0;
7292 op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, mode, modifier);
7293 if (GET_MODE (op0) == mode)
7294 return op0;
7296 /* If OP0 is a constant, just convert it into the proper mode. */
7297 if (CONSTANT_P (op0))
7299 tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
7300 enum machine_mode inner_mode = TYPE_MODE (inner_type);
7302 if (modifier == EXPAND_INITIALIZER)
7303 return simplify_gen_subreg (mode, op0, inner_mode,
7304 subreg_lowpart_offset (mode,
7305 inner_mode));
7306 else
7307 return convert_modes (mode, inner_mode, op0,
7308 TREE_UNSIGNED (inner_type));
7311 if (modifier == EXPAND_INITIALIZER)
7312 return gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND, mode, op0);
7314 if (target == 0)
7315 return
7316 convert_to_mode (mode, op0,
7317 TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
7318 else
7319 convert_move (target, op0,
7320 TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
7321 return target;
7323 case VIEW_CONVERT_EXPR:
7324 op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, mode, modifier);
7326 /* If the input and output modes are both the same, we are done.
7327 Otherwise, if neither mode is BLKmode and both are within a word, we
7328 can use gen_lowpart. If neither is true, make sure the operand is
7329 in memory and convert the MEM to the new mode. */
7330 if (TYPE_MODE (type) == GET_MODE (op0))
7332 else if (TYPE_MODE (type) != BLKmode && GET_MODE (op0) != BLKmode
7333 && GET_MODE_SIZE (TYPE_MODE (type)) <= UNITS_PER_WORD
7334 && GET_MODE_SIZE (GET_MODE (op0)) <= UNITS_PER_WORD)
7335 op0 = gen_lowpart (TYPE_MODE (type), op0);
7336 else if (GET_CODE (op0) != MEM)
7338 /* If the operand is not a MEM, force it into memory. Since we
7339 are going to be be changing the mode of the MEM, don't call
7340 force_const_mem for constants because we don't allow pool
7341 constants to change mode. */
7342 tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
7344 if (TREE_ADDRESSABLE (exp))
7345 abort ();
7347 if (target == 0 || GET_MODE (target) != TYPE_MODE (inner_type))
7348 target
7349 = assign_stack_temp_for_type
7350 (TYPE_MODE (inner_type),
7351 GET_MODE_SIZE (TYPE_MODE (inner_type)), 0, inner_type);
7353 emit_move_insn (target, op0);
7354 op0 = target;
7357 /* At this point, OP0 is in the correct mode. If the output type is such
7358 that the operand is known to be aligned, indicate that it is.
7359 Otherwise, we need only be concerned about alignment for non-BLKmode
7360 results. */
7361 if (GET_CODE (op0) == MEM)
7363 op0 = copy_rtx (op0);
7365 if (TYPE_ALIGN_OK (type))
7366 set_mem_align (op0, MAX (MEM_ALIGN (op0), TYPE_ALIGN (type)));
7367 else if (TYPE_MODE (type) != BLKmode && STRICT_ALIGNMENT
7368 && MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
7370 tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
7371 HOST_WIDE_INT temp_size
7372 = MAX (int_size_in_bytes (inner_type),
7373 (HOST_WIDE_INT) GET_MODE_SIZE (TYPE_MODE (type)));
7374 rtx new = assign_stack_temp_for_type (TYPE_MODE (type),
7375 temp_size, 0, type);
7376 rtx new_with_op0_mode = adjust_address (new, GET_MODE (op0), 0);
7378 if (TREE_ADDRESSABLE (exp))
7379 abort ();
7381 if (GET_MODE (op0) == BLKmode)
7382 emit_block_move (new_with_op0_mode, op0,
7383 GEN_INT (GET_MODE_SIZE (TYPE_MODE (type))));
7384 else
7385 emit_move_insn (new_with_op0_mode, op0);
7387 op0 = new;
7390 op0 = adjust_address (op0, TYPE_MODE (type), 0);
7393 return op0;
7395 case PLUS_EXPR:
7396 /* We come here from MINUS_EXPR when the second operand is a
7397 constant. */
7398 plus_expr:
7399 this_optab = ! unsignedp && flag_trapv
7400 && (GET_MODE_CLASS (mode) == MODE_INT)
7401 ? addv_optab : add_optab;
7403 /* If we are adding a constant, an RTL_EXPR that is sp, fp, or ap, and
7404 something else, make sure we add the register to the constant and
7405 then to the other thing. This case can occur during strength
7406 reduction and doing it this way will produce better code if the
7407 frame pointer or argument pointer is eliminated.
7409 fold-const.c will ensure that the constant is always in the inner
7410 PLUS_EXPR, so the only case we need to do anything about is if
7411 sp, ap, or fp is our second argument, in which case we must swap
7412 the innermost first argument and our second argument. */
7414 if (TREE_CODE (TREE_OPERAND (exp, 0)) == PLUS_EXPR
7415 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 1)) == INTEGER_CST
7416 && TREE_CODE (TREE_OPERAND (exp, 1)) == RTL_EXPR
7417 && (RTL_EXPR_RTL (TREE_OPERAND (exp, 1)) == frame_pointer_rtx
7418 || RTL_EXPR_RTL (TREE_OPERAND (exp, 1)) == stack_pointer_rtx
7419 || RTL_EXPR_RTL (TREE_OPERAND (exp, 1)) == arg_pointer_rtx))
7421 tree t = TREE_OPERAND (exp, 1);
7423 TREE_OPERAND (exp, 1) = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
7424 TREE_OPERAND (TREE_OPERAND (exp, 0), 0) = t;
7427 /* If the result is to be ptr_mode and we are adding an integer to
7428 something, we might be forming a constant. So try to use
7429 plus_constant. If it produces a sum and we can't accept it,
7430 use force_operand. This allows P = &ARR[const] to generate
7431 efficient code on machines where a SYMBOL_REF is not a valid
7432 address.
7434 If this is an EXPAND_SUM call, always return the sum. */
7435 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER
7436 || (mode == ptr_mode && (unsignedp || ! flag_trapv)))
7438 if (TREE_CODE (TREE_OPERAND (exp, 0)) == INTEGER_CST
7439 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7440 && TREE_CONSTANT (TREE_OPERAND (exp, 1)))
7442 rtx constant_part;
7444 op1 = expand_expr (TREE_OPERAND (exp, 1), subtarget, VOIDmode,
7445 EXPAND_SUM);
7446 /* Use immed_double_const to ensure that the constant is
7447 truncated according to the mode of OP1, then sign extended
7448 to a HOST_WIDE_INT. Using the constant directly can result
7449 in non-canonical RTL in a 64x32 cross compile. */
7450 constant_part
7451 = immed_double_const (TREE_INT_CST_LOW (TREE_OPERAND (exp, 0)),
7452 (HOST_WIDE_INT) 0,
7453 TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 1))));
7454 op1 = plus_constant (op1, INTVAL (constant_part));
7455 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7456 op1 = force_operand (op1, target);
7457 return op1;
7460 else if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST
7461 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_INT
7462 && TREE_CONSTANT (TREE_OPERAND (exp, 0)))
7464 rtx constant_part;
7466 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode,
7467 EXPAND_SUM);
7468 if (! CONSTANT_P (op0))
7470 op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX,
7471 VOIDmode, modifier);
7472 /* Don't go to both_summands if modifier
7473 says it's not right to return a PLUS. */
7474 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7475 goto binop2;
7476 goto both_summands;
7478 /* Use immed_double_const to ensure that the constant is
7479 truncated according to the mode of OP1, then sign extended
7480 to a HOST_WIDE_INT. Using the constant directly can result
7481 in non-canonical RTL in a 64x32 cross compile. */
7482 constant_part
7483 = immed_double_const (TREE_INT_CST_LOW (TREE_OPERAND (exp, 1)),
7484 (HOST_WIDE_INT) 0,
7485 TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))));
7486 op0 = plus_constant (op0, INTVAL (constant_part));
7487 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7488 op0 = force_operand (op0, target);
7489 return op0;
7493 /* No sense saving up arithmetic to be done
7494 if it's all in the wrong mode to form part of an address.
7495 And force_operand won't know whether to sign-extend or
7496 zero-extend. */
7497 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7498 || mode != ptr_mode)
7499 goto binop;
7501 if (! safe_from_p (subtarget, TREE_OPERAND (exp, 1), 1))
7502 subtarget = 0;
7504 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, modifier);
7505 op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX, VOIDmode, modifier);
7507 both_summands:
7508 /* Make sure any term that's a sum with a constant comes last. */
7509 if (GET_CODE (op0) == PLUS
7510 && CONSTANT_P (XEXP (op0, 1)))
7512 temp = op0;
7513 op0 = op1;
7514 op1 = temp;
7516 /* If adding to a sum including a constant,
7517 associate it to put the constant outside. */
7518 if (GET_CODE (op1) == PLUS
7519 && CONSTANT_P (XEXP (op1, 1)))
7521 rtx constant_term = const0_rtx;
7523 temp = simplify_binary_operation (PLUS, mode, XEXP (op1, 0), op0);
7524 if (temp != 0)
7525 op0 = temp;
7526 /* Ensure that MULT comes first if there is one. */
7527 else if (GET_CODE (op0) == MULT)
7528 op0 = gen_rtx_PLUS (mode, op0, XEXP (op1, 0));
7529 else
7530 op0 = gen_rtx_PLUS (mode, XEXP (op1, 0), op0);
7532 /* Let's also eliminate constants from op0 if possible. */
7533 op0 = eliminate_constant_term (op0, &constant_term);
7535 /* CONSTANT_TERM and XEXP (op1, 1) are known to be constant, so
7536 their sum should be a constant. Form it into OP1, since the
7537 result we want will then be OP0 + OP1. */
7539 temp = simplify_binary_operation (PLUS, mode, constant_term,
7540 XEXP (op1, 1));
7541 if (temp != 0)
7542 op1 = temp;
7543 else
7544 op1 = gen_rtx_PLUS (mode, constant_term, XEXP (op1, 1));
7547 /* Put a constant term last and put a multiplication first. */
7548 if (CONSTANT_P (op0) || GET_CODE (op1) == MULT)
7549 temp = op1, op1 = op0, op0 = temp;
7551 temp = simplify_binary_operation (PLUS, mode, op0, op1);
7552 return temp ? temp : gen_rtx_PLUS (mode, op0, op1);
7554 case MINUS_EXPR:
7555 /* For initializers, we are allowed to return a MINUS of two
7556 symbolic constants. Here we handle all cases when both operands
7557 are constant. */
7558 /* Handle difference of two symbolic constants,
7559 for the sake of an initializer. */
7560 if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
7561 && really_constant_p (TREE_OPERAND (exp, 0))
7562 && really_constant_p (TREE_OPERAND (exp, 1)))
7564 rtx op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, VOIDmode,
7565 modifier);
7566 rtx op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX, VOIDmode,
7567 modifier);
7569 /* If the last operand is a CONST_INT, use plus_constant of
7570 the negated constant. Else make the MINUS. */
7571 if (GET_CODE (op1) == CONST_INT)
7572 return plus_constant (op0, - INTVAL (op1));
7573 else
7574 return gen_rtx_MINUS (mode, op0, op1);
7576 /* Convert A - const to A + (-const). */
7577 if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST)
7579 tree negated = fold (build1 (NEGATE_EXPR, type,
7580 TREE_OPERAND (exp, 1)));
7582 if (TREE_UNSIGNED (type) || TREE_OVERFLOW (negated))
7583 /* If we can't negate the constant in TYPE, leave it alone and
7584 expand_binop will negate it for us. We used to try to do it
7585 here in the signed version of TYPE, but that doesn't work
7586 on POINTER_TYPEs. */;
7587 else
7589 exp = build (PLUS_EXPR, type, TREE_OPERAND (exp, 0), negated);
7590 goto plus_expr;
7593 this_optab = ! unsignedp && flag_trapv
7594 && (GET_MODE_CLASS(mode) == MODE_INT)
7595 ? subv_optab : sub_optab;
7596 goto binop;
7598 case MULT_EXPR:
7599 /* If first operand is constant, swap them.
7600 Thus the following special case checks need only
7601 check the second operand. */
7602 if (TREE_CODE (TREE_OPERAND (exp, 0)) == INTEGER_CST)
7604 tree t1 = TREE_OPERAND (exp, 0);
7605 TREE_OPERAND (exp, 0) = TREE_OPERAND (exp, 1);
7606 TREE_OPERAND (exp, 1) = t1;
7609 /* Attempt to return something suitable for generating an
7610 indexed address, for machines that support that. */
7612 if (modifier == EXPAND_SUM && mode == ptr_mode
7613 && host_integerp (TREE_OPERAND (exp, 1), 0))
7615 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode,
7616 EXPAND_SUM);
7618 /* If we knew for certain that this is arithmetic for an array
7619 reference, and we knew the bounds of the array, then we could
7620 apply the distributive law across (PLUS X C) for constant C.
7621 Without such knowledge, we risk overflowing the computation
7622 when both X and C are large, but X+C isn't. */
7623 /* ??? Could perhaps special-case EXP being unsigned and C being
7624 positive. In that case we are certain that X+C is no smaller
7625 than X and so the transformed expression will overflow iff the
7626 original would have. */
7628 if (GET_CODE (op0) != REG)
7629 op0 = force_operand (op0, NULL_RTX);
7630 if (GET_CODE (op0) != REG)
7631 op0 = copy_to_mode_reg (mode, op0);
7633 return
7634 gen_rtx_MULT (mode, op0,
7635 GEN_INT (tree_low_cst (TREE_OPERAND (exp, 1), 0)));
7638 if (! safe_from_p (subtarget, TREE_OPERAND (exp, 1), 1))
7639 subtarget = 0;
7641 /* Check for multiplying things that have been extended
7642 from a narrower type. If this machine supports multiplying
7643 in that narrower type with a result in the desired type,
7644 do it that way, and avoid the explicit type-conversion. */
7645 if (TREE_CODE (TREE_OPERAND (exp, 0)) == NOP_EXPR
7646 && TREE_CODE (type) == INTEGER_TYPE
7647 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
7648 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))))
7649 && ((TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST
7650 && int_fits_type_p (TREE_OPERAND (exp, 1),
7651 TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
7652 /* Don't use a widening multiply if a shift will do. */
7653 && ((GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 1))))
7654 > HOST_BITS_PER_WIDE_INT)
7655 || exact_log2 (TREE_INT_CST_LOW (TREE_OPERAND (exp, 1))) < 0))
7657 (TREE_CODE (TREE_OPERAND (exp, 1)) == NOP_EXPR
7658 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 1), 0)))
7660 TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))))
7661 /* If both operands are extended, they must either both
7662 be zero-extended or both be sign-extended. */
7663 && (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 1), 0)))
7665 TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))))))
7667 enum machine_mode innermode
7668 = TYPE_MODE (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)));
7669 optab other_optab = (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
7670 ? smul_widen_optab : umul_widen_optab);
7671 this_optab = (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
7672 ? umul_widen_optab : smul_widen_optab);
7673 if (mode == GET_MODE_WIDER_MODE (innermode))
7675 if (this_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
7677 op0 = expand_expr (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
7678 NULL_RTX, VOIDmode, 0);
7679 if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST)
7680 op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX,
7681 VOIDmode, 0);
7682 else
7683 op1 = expand_expr (TREE_OPERAND (TREE_OPERAND (exp, 1), 0),
7684 NULL_RTX, VOIDmode, 0);
7685 goto binop2;
7687 else if (other_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing
7688 && innermode == word_mode)
7690 rtx htem;
7691 op0 = expand_expr (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
7692 NULL_RTX, VOIDmode, 0);
7693 if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST)
7694 op1 = convert_modes (innermode, mode,
7695 expand_expr (TREE_OPERAND (exp, 1),
7696 NULL_RTX, VOIDmode, 0),
7697 unsignedp);
7698 else
7699 op1 = expand_expr (TREE_OPERAND (TREE_OPERAND (exp, 1), 0),
7700 NULL_RTX, VOIDmode, 0);
7701 temp = expand_binop (mode, other_optab, op0, op1, target,
7702 unsignedp, OPTAB_LIB_WIDEN);
7703 htem = expand_mult_highpart_adjust (innermode,
7704 gen_highpart (innermode, temp),
7705 op0, op1,
7706 gen_highpart (innermode, temp),
7707 unsignedp);
7708 emit_move_insn (gen_highpart (innermode, temp), htem);
7709 return temp;
7713 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
7714 op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX, VOIDmode, 0);
7715 return expand_mult (mode, op0, op1, target, unsignedp);
7717 case TRUNC_DIV_EXPR:
7718 case FLOOR_DIV_EXPR:
7719 case CEIL_DIV_EXPR:
7720 case ROUND_DIV_EXPR:
7721 case EXACT_DIV_EXPR:
7722 if (! safe_from_p (subtarget, TREE_OPERAND (exp, 1), 1))
7723 subtarget = 0;
7724 /* Possible optimization: compute the dividend with EXPAND_SUM
7725 then if the divisor is constant can optimize the case
7726 where some terms of the dividend have coeffs divisible by it. */
7727 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
7728 op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX, VOIDmode, 0);
7729 return expand_divmod (0, code, mode, op0, op1, target, unsignedp);
7731 case RDIV_EXPR:
7732 /* Emit a/b as a*(1/b). Later we may manage CSE the reciprocal saving
7733 expensive divide. If not, combine will rebuild the original
7734 computation. */
7735 if (flag_unsafe_math_optimizations && optimize && !optimize_size
7736 && !real_onep (TREE_OPERAND (exp, 0)))
7737 return expand_expr (build (MULT_EXPR, type, TREE_OPERAND (exp, 0),
7738 build (RDIV_EXPR, type,
7739 build_real (type, dconst1),
7740 TREE_OPERAND (exp, 1))),
7741 target, tmode, unsignedp);
7742 this_optab = sdiv_optab;
7743 goto binop;
7745 case TRUNC_MOD_EXPR:
7746 case FLOOR_MOD_EXPR:
7747 case CEIL_MOD_EXPR:
7748 case ROUND_MOD_EXPR:
7749 if (! safe_from_p (subtarget, TREE_OPERAND (exp, 1), 1))
7750 subtarget = 0;
7751 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
7752 op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX, VOIDmode, 0);
7753 return expand_divmod (1, code, mode, op0, op1, target, unsignedp);
7755 case FIX_ROUND_EXPR:
7756 case FIX_FLOOR_EXPR:
7757 case FIX_CEIL_EXPR:
7758 abort (); /* Not used for C. */
7760 case FIX_TRUNC_EXPR:
7761 op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, VOIDmode, 0);
7762 if (target == 0)
7763 target = gen_reg_rtx (mode);
7764 expand_fix (target, op0, unsignedp);
7765 return target;
7767 case FLOAT_EXPR:
7768 op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, VOIDmode, 0);
7769 if (target == 0)
7770 target = gen_reg_rtx (mode);
7771 /* expand_float can't figure out what to do if FROM has VOIDmode.
7772 So give it the correct mode. With -O, cse will optimize this. */
7773 if (GET_MODE (op0) == VOIDmode)
7774 op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))),
7775 op0);
7776 expand_float (target, op0,
7777 TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
7778 return target;
7780 case NEGATE_EXPR:
7781 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
7782 temp = expand_unop (mode,
7783 ! unsignedp && flag_trapv
7784 && (GET_MODE_CLASS(mode) == MODE_INT)
7785 ? negv_optab : neg_optab, op0, target, 0);
7786 if (temp == 0)
7787 abort ();
7788 return temp;
7790 case ABS_EXPR:
7791 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
7793 /* Handle complex values specially. */
7794 if (GET_MODE_CLASS (mode) == MODE_COMPLEX_INT
7795 || GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
7796 return expand_complex_abs (mode, op0, target, unsignedp);
7798 /* Unsigned abs is simply the operand. Testing here means we don't
7799 risk generating incorrect code below. */
7800 if (TREE_UNSIGNED (type))
7801 return op0;
7803 return expand_abs (mode, op0, target, unsignedp,
7804 safe_from_p (target, TREE_OPERAND (exp, 0), 1));
7806 case MAX_EXPR:
7807 case MIN_EXPR:
7808 target = original_target;
7809 if (target == 0 || ! safe_from_p (target, TREE_OPERAND (exp, 1), 1)
7810 || (GET_CODE (target) == MEM && MEM_VOLATILE_P (target))
7811 || GET_MODE (target) != mode
7812 || (GET_CODE (target) == REG
7813 && REGNO (target) < FIRST_PSEUDO_REGISTER))
7814 target = gen_reg_rtx (mode);
7815 op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX, VOIDmode, 0);
7816 op0 = expand_expr (TREE_OPERAND (exp, 0), target, VOIDmode, 0);
7818 /* First try to do it with a special MIN or MAX instruction.
7819 If that does not win, use a conditional jump to select the proper
7820 value. */
7821 this_optab = (TREE_UNSIGNED (type)
7822 ? (code == MIN_EXPR ? umin_optab : umax_optab)
7823 : (code == MIN_EXPR ? smin_optab : smax_optab));
7825 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
7826 OPTAB_WIDEN);
7827 if (temp != 0)
7828 return temp;
7830 /* At this point, a MEM target is no longer useful; we will get better
7831 code without it. */
7833 if (GET_CODE (target) == MEM)
7834 target = gen_reg_rtx (mode);
7836 if (target != op0)
7837 emit_move_insn (target, op0);
7839 op0 = gen_label_rtx ();
7841 /* If this mode is an integer too wide to compare properly,
7842 compare word by word. Rely on cse to optimize constant cases. */
7843 if (GET_MODE_CLASS (mode) == MODE_INT
7844 && ! can_compare_p (GE, mode, ccp_jump))
7846 if (code == MAX_EXPR)
7847 do_jump_by_parts_greater_rtx (mode, TREE_UNSIGNED (type),
7848 target, op1, NULL_RTX, op0);
7849 else
7850 do_jump_by_parts_greater_rtx (mode, TREE_UNSIGNED (type),
7851 op1, target, NULL_RTX, op0);
7853 else
7855 int unsignedp = TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 1)));
7856 do_compare_rtx_and_jump (target, op1, code == MAX_EXPR ? GE : LE,
7857 unsignedp, mode, NULL_RTX, NULL_RTX,
7858 op0);
7860 emit_move_insn (target, op1);
7861 emit_label (op0);
7862 return target;
7864 case BIT_NOT_EXPR:
7865 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
7866 temp = expand_unop (mode, one_cmpl_optab, op0, target, 1);
7867 if (temp == 0)
7868 abort ();
7869 return temp;
7871 case FFS_EXPR:
7872 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
7873 temp = expand_unop (mode, ffs_optab, op0, target, 1);
7874 if (temp == 0)
7875 abort ();
7876 return temp;
7878 /* ??? Can optimize bitwise operations with one arg constant.
7879 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
7880 and (a bitwise1 b) bitwise2 b (etc)
7881 but that is probably not worth while. */
7883 /* BIT_AND_EXPR is for bitwise anding. TRUTH_AND_EXPR is for anding two
7884 boolean values when we want in all cases to compute both of them. In
7885 general it is fastest to do TRUTH_AND_EXPR by computing both operands
7886 as actual zero-or-1 values and then bitwise anding. In cases where
7887 there cannot be any side effects, better code would be made by
7888 treating TRUTH_AND_EXPR like TRUTH_ANDIF_EXPR; but the question is
7889 how to recognize those cases. */
7891 case TRUTH_AND_EXPR:
7892 case BIT_AND_EXPR:
7893 this_optab = and_optab;
7894 goto binop;
7896 case TRUTH_OR_EXPR:
7897 case BIT_IOR_EXPR:
7898 this_optab = ior_optab;
7899 goto binop;
7901 case TRUTH_XOR_EXPR:
7902 case BIT_XOR_EXPR:
7903 this_optab = xor_optab;
7904 goto binop;
7906 case LSHIFT_EXPR:
7907 case RSHIFT_EXPR:
7908 case LROTATE_EXPR:
7909 case RROTATE_EXPR:
7910 if (! safe_from_p (subtarget, TREE_OPERAND (exp, 1), 1))
7911 subtarget = 0;
7912 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
7913 return expand_shift (code, mode, op0, TREE_OPERAND (exp, 1), target,
7914 unsignedp);
7916 /* Could determine the answer when only additive constants differ. Also,
7917 the addition of one can be handled by changing the condition. */
7918 case LT_EXPR:
7919 case LE_EXPR:
7920 case GT_EXPR:
7921 case GE_EXPR:
7922 case EQ_EXPR:
7923 case NE_EXPR:
7924 case UNORDERED_EXPR:
7925 case ORDERED_EXPR:
7926 case UNLT_EXPR:
7927 case UNLE_EXPR:
7928 case UNGT_EXPR:
7929 case UNGE_EXPR:
7930 case UNEQ_EXPR:
7931 temp = do_store_flag (exp, target, tmode != VOIDmode ? tmode : mode, 0);
7932 if (temp != 0)
7933 return temp;
7935 /* For foo != 0, load foo, and if it is nonzero load 1 instead. */
7936 if (code == NE_EXPR && integer_zerop (TREE_OPERAND (exp, 1))
7937 && original_target
7938 && GET_CODE (original_target) == REG
7939 && (GET_MODE (original_target)
7940 == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)))))
7942 temp = expand_expr (TREE_OPERAND (exp, 0), original_target,
7943 VOIDmode, 0);
7945 if (temp != original_target)
7946 temp = copy_to_reg (temp);
7948 op1 = gen_label_rtx ();
7949 emit_cmp_and_jump_insns (temp, const0_rtx, EQ, NULL_RTX,
7950 GET_MODE (temp), unsignedp, op1);
7951 emit_move_insn (temp, const1_rtx);
7952 emit_label (op1);
7953 return temp;
7956 /* If no set-flag instruction, must generate a conditional
7957 store into a temporary variable. Drop through
7958 and handle this like && and ||. */
7960 case TRUTH_ANDIF_EXPR:
7961 case TRUTH_ORIF_EXPR:
7962 if (! ignore
7963 && (target == 0 || ! safe_from_p (target, exp, 1)
7964 /* Make sure we don't have a hard reg (such as function's return
7965 value) live across basic blocks, if not optimizing. */
7966 || (!optimize && GET_CODE (target) == REG
7967 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
7968 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
7970 if (target)
7971 emit_clr_insn (target);
7973 op1 = gen_label_rtx ();
7974 jumpifnot (exp, op1);
7976 if (target)
7977 emit_0_to_1_insn (target);
7979 emit_label (op1);
7980 return ignore ? const0_rtx : target;
7982 case TRUTH_NOT_EXPR:
7983 op0 = expand_expr (TREE_OPERAND (exp, 0), target, VOIDmode, 0);
7984 /* The parser is careful to generate TRUTH_NOT_EXPR
7985 only with operands that are always zero or one. */
7986 temp = expand_binop (mode, xor_optab, op0, const1_rtx,
7987 target, 1, OPTAB_LIB_WIDEN);
7988 if (temp == 0)
7989 abort ();
7990 return temp;
7992 case COMPOUND_EXPR:
7993 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode, 0);
7994 emit_queue ();
7995 return expand_expr (TREE_OPERAND (exp, 1),
7996 (ignore ? const0_rtx : target),
7997 VOIDmode, 0);
7999 case COND_EXPR:
8000 /* If we would have a "singleton" (see below) were it not for a
8001 conversion in each arm, bring that conversion back out. */
8002 if (TREE_CODE (TREE_OPERAND (exp, 1)) == NOP_EXPR
8003 && TREE_CODE (TREE_OPERAND (exp, 2)) == NOP_EXPR
8004 && (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 1), 0))
8005 == TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 2), 0))))
8007 tree iftrue = TREE_OPERAND (TREE_OPERAND (exp, 1), 0);
8008 tree iffalse = TREE_OPERAND (TREE_OPERAND (exp, 2), 0);
8010 if ((TREE_CODE_CLASS (TREE_CODE (iftrue)) == '2'
8011 && operand_equal_p (iffalse, TREE_OPERAND (iftrue, 0), 0))
8012 || (TREE_CODE_CLASS (TREE_CODE (iffalse)) == '2'
8013 && operand_equal_p (iftrue, TREE_OPERAND (iffalse, 0), 0))
8014 || (TREE_CODE_CLASS (TREE_CODE (iftrue)) == '1'
8015 && operand_equal_p (iffalse, TREE_OPERAND (iftrue, 0), 0))
8016 || (TREE_CODE_CLASS (TREE_CODE (iffalse)) == '1'
8017 && operand_equal_p (iftrue, TREE_OPERAND (iffalse, 0), 0)))
8018 return expand_expr (build1 (NOP_EXPR, type,
8019 build (COND_EXPR, TREE_TYPE (iftrue),
8020 TREE_OPERAND (exp, 0),
8021 iftrue, iffalse)),
8022 target, tmode, modifier);
8026 /* Note that COND_EXPRs whose type is a structure or union
8027 are required to be constructed to contain assignments of
8028 a temporary variable, so that we can evaluate them here
8029 for side effect only. If type is void, we must do likewise. */
8031 /* If an arm of the branch requires a cleanup,
8032 only that cleanup is performed. */
8034 tree singleton = 0;
8035 tree binary_op = 0, unary_op = 0;
8037 /* If this is (A ? 1 : 0) and A is a condition, just evaluate it and
8038 convert it to our mode, if necessary. */
8039 if (integer_onep (TREE_OPERAND (exp, 1))
8040 && integer_zerop (TREE_OPERAND (exp, 2))
8041 && TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, 0))) == '<')
8043 if (ignore)
8045 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
8046 modifier);
8047 return const0_rtx;
8050 op0 = expand_expr (TREE_OPERAND (exp, 0), target, mode, modifier);
8051 if (GET_MODE (op0) == mode)
8052 return op0;
8054 if (target == 0)
8055 target = gen_reg_rtx (mode);
8056 convert_move (target, op0, unsignedp);
8057 return target;
8060 /* Check for X ? A + B : A. If we have this, we can copy A to the
8061 output and conditionally add B. Similarly for unary operations.
8062 Don't do this if X has side-effects because those side effects
8063 might affect A or B and the "?" operation is a sequence point in
8064 ANSI. (operand_equal_p tests for side effects.) */
8066 if (TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, 1))) == '2'
8067 && operand_equal_p (TREE_OPERAND (exp, 2),
8068 TREE_OPERAND (TREE_OPERAND (exp, 1), 0), 0))
8069 singleton = TREE_OPERAND (exp, 2), binary_op = TREE_OPERAND (exp, 1);
8070 else if (TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, 2))) == '2'
8071 && operand_equal_p (TREE_OPERAND (exp, 1),
8072 TREE_OPERAND (TREE_OPERAND (exp, 2), 0), 0))
8073 singleton = TREE_OPERAND (exp, 1), binary_op = TREE_OPERAND (exp, 2);
8074 else if (TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, 1))) == '1'
8075 && operand_equal_p (TREE_OPERAND (exp, 2),
8076 TREE_OPERAND (TREE_OPERAND (exp, 1), 0), 0))
8077 singleton = TREE_OPERAND (exp, 2), unary_op = TREE_OPERAND (exp, 1);
8078 else if (TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, 2))) == '1'
8079 && operand_equal_p (TREE_OPERAND (exp, 1),
8080 TREE_OPERAND (TREE_OPERAND (exp, 2), 0), 0))
8081 singleton = TREE_OPERAND (exp, 1), unary_op = TREE_OPERAND (exp, 2);
8083 /* If we are not to produce a result, we have no target. Otherwise,
8084 if a target was specified use it; it will not be used as an
8085 intermediate target unless it is safe. If no target, use a
8086 temporary. */
8088 if (ignore)
8089 temp = 0;
8090 else if (original_target
8091 && (safe_from_p (original_target, TREE_OPERAND (exp, 0), 1)
8092 || (singleton && GET_CODE (original_target) == REG
8093 && REGNO (original_target) >= FIRST_PSEUDO_REGISTER
8094 && original_target == var_rtx (singleton)))
8095 && GET_MODE (original_target) == mode
8096 #ifdef HAVE_conditional_move
8097 && (! can_conditionally_move_p (mode)
8098 || GET_CODE (original_target) == REG
8099 || TREE_ADDRESSABLE (type))
8100 #endif
8101 && (GET_CODE (original_target) != MEM
8102 || TREE_ADDRESSABLE (type)))
8103 temp = original_target;
8104 else if (TREE_ADDRESSABLE (type))
8105 abort ();
8106 else
8107 temp = assign_temp (type, 0, 0, 1);
8109 /* If we had X ? A + C : A, with C a constant power of 2, and we can
8110 do the test of X as a store-flag operation, do this as
8111 A + ((X != 0) << log C). Similarly for other simple binary
8112 operators. Only do for C == 1 if BRANCH_COST is low. */
8113 if (temp && singleton && binary_op
8114 && (TREE_CODE (binary_op) == PLUS_EXPR
8115 || TREE_CODE (binary_op) == MINUS_EXPR
8116 || TREE_CODE (binary_op) == BIT_IOR_EXPR
8117 || TREE_CODE (binary_op) == BIT_XOR_EXPR)
8118 && (BRANCH_COST >= 3 ? integer_pow2p (TREE_OPERAND (binary_op, 1))
8119 : integer_onep (TREE_OPERAND (binary_op, 1)))
8120 && TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, 0))) == '<')
8122 rtx result;
8123 optab boptab = (TREE_CODE (binary_op) == PLUS_EXPR
8124 ? (TYPE_TRAP_SIGNED (TREE_TYPE (binary_op))
8125 ? addv_optab : add_optab)
8126 : TREE_CODE (binary_op) == MINUS_EXPR
8127 ? (TYPE_TRAP_SIGNED (TREE_TYPE (binary_op))
8128 ? subv_optab : sub_optab)
8129 : TREE_CODE (binary_op) == BIT_IOR_EXPR ? ior_optab
8130 : xor_optab);
8132 /* If we had X ? A : A + 1, do this as A + (X == 0).
8134 We have to invert the truth value here and then put it
8135 back later if do_store_flag fails. We cannot simply copy
8136 TREE_OPERAND (exp, 0) to another variable and modify that
8137 because invert_truthvalue can modify the tree pointed to
8138 by its argument. */
8139 if (singleton == TREE_OPERAND (exp, 1))
8140 TREE_OPERAND (exp, 0)
8141 = invert_truthvalue (TREE_OPERAND (exp, 0));
8143 result = do_store_flag (TREE_OPERAND (exp, 0),
8144 (safe_from_p (temp, singleton, 1)
8145 ? temp : NULL_RTX),
8146 mode, BRANCH_COST <= 1);
8148 if (result != 0 && ! integer_onep (TREE_OPERAND (binary_op, 1)))
8149 result = expand_shift (LSHIFT_EXPR, mode, result,
8150 build_int_2 (tree_log2
8151 (TREE_OPERAND
8152 (binary_op, 1)),
8154 (safe_from_p (temp, singleton, 1)
8155 ? temp : NULL_RTX), 0);
8157 if (result)
8159 op1 = expand_expr (singleton, NULL_RTX, VOIDmode, 0);
8160 return expand_binop (mode, boptab, op1, result, temp,
8161 unsignedp, OPTAB_LIB_WIDEN);
8163 else if (singleton == TREE_OPERAND (exp, 1))
8164 TREE_OPERAND (exp, 0)
8165 = invert_truthvalue (TREE_OPERAND (exp, 0));
8168 do_pending_stack_adjust ();
8169 NO_DEFER_POP;
8170 op0 = gen_label_rtx ();
8172 if (singleton && ! TREE_SIDE_EFFECTS (TREE_OPERAND (exp, 0)))
8174 if (temp != 0)
8176 /* If the target conflicts with the other operand of the
8177 binary op, we can't use it. Also, we can't use the target
8178 if it is a hard register, because evaluating the condition
8179 might clobber it. */
8180 if ((binary_op
8181 && ! safe_from_p (temp, TREE_OPERAND (binary_op, 1), 1))
8182 || (GET_CODE (temp) == REG
8183 && REGNO (temp) < FIRST_PSEUDO_REGISTER))
8184 temp = gen_reg_rtx (mode);
8185 store_expr (singleton, temp, 0);
8187 else
8188 expand_expr (singleton,
8189 ignore ? const0_rtx : NULL_RTX, VOIDmode, 0);
8190 if (singleton == TREE_OPERAND (exp, 1))
8191 jumpif (TREE_OPERAND (exp, 0), op0);
8192 else
8193 jumpifnot (TREE_OPERAND (exp, 0), op0);
8195 start_cleanup_deferral ();
8196 if (binary_op && temp == 0)
8197 /* Just touch the other operand. */
8198 expand_expr (TREE_OPERAND (binary_op, 1),
8199 ignore ? const0_rtx : NULL_RTX, VOIDmode, 0);
8200 else if (binary_op)
8201 store_expr (build (TREE_CODE (binary_op), type,
8202 make_tree (type, temp),
8203 TREE_OPERAND (binary_op, 1)),
8204 temp, 0);
8205 else
8206 store_expr (build1 (TREE_CODE (unary_op), type,
8207 make_tree (type, temp)),
8208 temp, 0);
8209 op1 = op0;
8211 /* Check for A op 0 ? A : FOO and A op 0 ? FOO : A where OP is any
8212 comparison operator. If we have one of these cases, set the
8213 output to A, branch on A (cse will merge these two references),
8214 then set the output to FOO. */
8215 else if (temp
8216 && TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, 0))) == '<'
8217 && integer_zerop (TREE_OPERAND (TREE_OPERAND (exp, 0), 1))
8218 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
8219 TREE_OPERAND (exp, 1), 0)
8220 && (! TREE_SIDE_EFFECTS (TREE_OPERAND (exp, 0))
8221 || TREE_CODE (TREE_OPERAND (exp, 1)) == SAVE_EXPR)
8222 && safe_from_p (temp, TREE_OPERAND (exp, 2), 1))
8224 if (GET_CODE (temp) == REG
8225 && REGNO (temp) < FIRST_PSEUDO_REGISTER)
8226 temp = gen_reg_rtx (mode);
8227 store_expr (TREE_OPERAND (exp, 1), temp, 0);
8228 jumpif (TREE_OPERAND (exp, 0), op0);
8230 start_cleanup_deferral ();
8231 store_expr (TREE_OPERAND (exp, 2), temp, 0);
8232 op1 = op0;
8234 else if (temp
8235 && TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, 0))) == '<'
8236 && integer_zerop (TREE_OPERAND (TREE_OPERAND (exp, 0), 1))
8237 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
8238 TREE_OPERAND (exp, 2), 0)
8239 && (! TREE_SIDE_EFFECTS (TREE_OPERAND (exp, 0))
8240 || TREE_CODE (TREE_OPERAND (exp, 2)) == SAVE_EXPR)
8241 && safe_from_p (temp, TREE_OPERAND (exp, 1), 1))
8243 if (GET_CODE (temp) == REG
8244 && REGNO (temp) < FIRST_PSEUDO_REGISTER)
8245 temp = gen_reg_rtx (mode);
8246 store_expr (TREE_OPERAND (exp, 2), temp, 0);
8247 jumpifnot (TREE_OPERAND (exp, 0), op0);
8249 start_cleanup_deferral ();
8250 store_expr (TREE_OPERAND (exp, 1), temp, 0);
8251 op1 = op0;
8253 else
8255 op1 = gen_label_rtx ();
8256 jumpifnot (TREE_OPERAND (exp, 0), op0);
8258 start_cleanup_deferral ();
8260 /* One branch of the cond can be void, if it never returns. For
8261 example A ? throw : E */
8262 if (temp != 0
8263 && TREE_TYPE (TREE_OPERAND (exp, 1)) != void_type_node)
8264 store_expr (TREE_OPERAND (exp, 1), temp, 0);
8265 else
8266 expand_expr (TREE_OPERAND (exp, 1),
8267 ignore ? const0_rtx : NULL_RTX, VOIDmode, 0);
8268 end_cleanup_deferral ();
8269 emit_queue ();
8270 emit_jump_insn (gen_jump (op1));
8271 emit_barrier ();
8272 emit_label (op0);
8273 start_cleanup_deferral ();
8274 if (temp != 0
8275 && TREE_TYPE (TREE_OPERAND (exp, 2)) != void_type_node)
8276 store_expr (TREE_OPERAND (exp, 2), temp, 0);
8277 else
8278 expand_expr (TREE_OPERAND (exp, 2),
8279 ignore ? const0_rtx : NULL_RTX, VOIDmode, 0);
8282 end_cleanup_deferral ();
8284 emit_queue ();
8285 emit_label (op1);
8286 OK_DEFER_POP;
8288 return temp;
8291 case TARGET_EXPR:
8293 /* Something needs to be initialized, but we didn't know
8294 where that thing was when building the tree. For example,
8295 it could be the return value of a function, or a parameter
8296 to a function which lays down in the stack, or a temporary
8297 variable which must be passed by reference.
8299 We guarantee that the expression will either be constructed
8300 or copied into our original target. */
8302 tree slot = TREE_OPERAND (exp, 0);
8303 tree cleanups = NULL_TREE;
8304 tree exp1;
8306 if (TREE_CODE (slot) != VAR_DECL)
8307 abort ();
8309 if (! ignore)
8310 target = original_target;
8312 /* Set this here so that if we get a target that refers to a
8313 register variable that's already been used, put_reg_into_stack
8314 knows that it should fix up those uses. */
8315 TREE_USED (slot) = 1;
8317 if (target == 0)
8319 if (DECL_RTL_SET_P (slot))
8321 target = DECL_RTL (slot);
8322 /* If we have already expanded the slot, so don't do
8323 it again. (mrs) */
8324 if (TREE_OPERAND (exp, 1) == NULL_TREE)
8325 return target;
8327 else
8329 target = assign_temp (type, 2, 0, 1);
8330 /* All temp slots at this level must not conflict. */
8331 preserve_temp_slots (target);
8332 SET_DECL_RTL (slot, target);
8333 if (TREE_ADDRESSABLE (slot))
8334 put_var_into_stack (slot);
8336 /* Since SLOT is not known to the called function
8337 to belong to its stack frame, we must build an explicit
8338 cleanup. This case occurs when we must build up a reference
8339 to pass the reference as an argument. In this case,
8340 it is very likely that such a reference need not be
8341 built here. */
8343 if (TREE_OPERAND (exp, 2) == 0)
8344 TREE_OPERAND (exp, 2) = maybe_build_cleanup (slot);
8345 cleanups = TREE_OPERAND (exp, 2);
8348 else
8350 /* This case does occur, when expanding a parameter which
8351 needs to be constructed on the stack. The target
8352 is the actual stack address that we want to initialize.
8353 The function we call will perform the cleanup in this case. */
8355 /* If we have already assigned it space, use that space,
8356 not target that we were passed in, as our target
8357 parameter is only a hint. */
8358 if (DECL_RTL_SET_P (slot))
8360 target = DECL_RTL (slot);
8361 /* If we have already expanded the slot, so don't do
8362 it again. (mrs) */
8363 if (TREE_OPERAND (exp, 1) == NULL_TREE)
8364 return target;
8366 else
8368 SET_DECL_RTL (slot, target);
8369 /* If we must have an addressable slot, then make sure that
8370 the RTL that we just stored in slot is OK. */
8371 if (TREE_ADDRESSABLE (slot))
8372 put_var_into_stack (slot);
8376 exp1 = TREE_OPERAND (exp, 3) = TREE_OPERAND (exp, 1);
8377 /* Mark it as expanded. */
8378 TREE_OPERAND (exp, 1) = NULL_TREE;
8380 store_expr (exp1, target, 0);
8382 expand_decl_cleanup (NULL_TREE, cleanups);
8384 return target;
8387 case INIT_EXPR:
8389 tree lhs = TREE_OPERAND (exp, 0);
8390 tree rhs = TREE_OPERAND (exp, 1);
8392 temp = expand_assignment (lhs, rhs, ! ignore, original_target != 0);
8393 return temp;
8396 case MODIFY_EXPR:
8398 /* If lhs is complex, expand calls in rhs before computing it.
8399 That's so we don't compute a pointer and save it over a
8400 call. If lhs is simple, compute it first so we can give it
8401 as a target if the rhs is just a call. This avoids an
8402 extra temp and copy and that prevents a partial-subsumption
8403 which makes bad code. Actually we could treat
8404 component_ref's of vars like vars. */
8406 tree lhs = TREE_OPERAND (exp, 0);
8407 tree rhs = TREE_OPERAND (exp, 1);
8409 temp = 0;
8411 /* Check for |= or &= of a bitfield of size one into another bitfield
8412 of size 1. In this case, (unless we need the result of the
8413 assignment) we can do this more efficiently with a
8414 test followed by an assignment, if necessary.
8416 ??? At this point, we can't get a BIT_FIELD_REF here. But if
8417 things change so we do, this code should be enhanced to
8418 support it. */
8419 if (ignore
8420 && TREE_CODE (lhs) == COMPONENT_REF
8421 && (TREE_CODE (rhs) == BIT_IOR_EXPR
8422 || TREE_CODE (rhs) == BIT_AND_EXPR)
8423 && TREE_OPERAND (rhs, 0) == lhs
8424 && TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF
8425 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs, 1)))
8426 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1))))
8428 rtx label = gen_label_rtx ();
8430 do_jump (TREE_OPERAND (rhs, 1),
8431 TREE_CODE (rhs) == BIT_IOR_EXPR ? label : 0,
8432 TREE_CODE (rhs) == BIT_AND_EXPR ? label : 0);
8433 expand_assignment (lhs, convert (TREE_TYPE (rhs),
8434 (TREE_CODE (rhs) == BIT_IOR_EXPR
8435 ? integer_one_node
8436 : integer_zero_node)),
8437 0, 0);
8438 do_pending_stack_adjust ();
8439 emit_label (label);
8440 return const0_rtx;
8443 temp = expand_assignment (lhs, rhs, ! ignore, original_target != 0);
8445 return temp;
8448 case RETURN_EXPR:
8449 if (!TREE_OPERAND (exp, 0))
8450 expand_null_return ();
8451 else
8452 expand_return (TREE_OPERAND (exp, 0));
8453 return const0_rtx;
8455 case PREINCREMENT_EXPR:
8456 case PREDECREMENT_EXPR:
8457 return expand_increment (exp, 0, ignore);
8459 case POSTINCREMENT_EXPR:
8460 case POSTDECREMENT_EXPR:
8461 /* Faster to treat as pre-increment if result is not used. */
8462 return expand_increment (exp, ! ignore, ignore);
8464 case ADDR_EXPR:
8465 /* Are we taking the address of a nested function? */
8466 if (TREE_CODE (TREE_OPERAND (exp, 0)) == FUNCTION_DECL
8467 && decl_function_context (TREE_OPERAND (exp, 0)) != 0
8468 && ! DECL_NO_STATIC_CHAIN (TREE_OPERAND (exp, 0))
8469 && ! TREE_STATIC (exp))
8471 op0 = trampoline_address (TREE_OPERAND (exp, 0));
8472 op0 = force_operand (op0, target);
8474 /* If we are taking the address of something erroneous, just
8475 return a zero. */
8476 else if (TREE_CODE (TREE_OPERAND (exp, 0)) == ERROR_MARK)
8477 return const0_rtx;
8478 /* If we are taking the address of a constant and are at the
8479 top level, we have to use output_constant_def since we can't
8480 call force_const_mem at top level. */
8481 else if (cfun == 0
8482 && (TREE_CODE (TREE_OPERAND (exp, 0)) == CONSTRUCTOR
8483 || (TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, 0)))
8484 == 'c')))
8485 op0 = XEXP (output_constant_def (TREE_OPERAND (exp, 0), 0), 0);
8486 else
8488 /* We make sure to pass const0_rtx down if we came in with
8489 ignore set, to avoid doing the cleanups twice for something. */
8490 op0 = expand_expr (TREE_OPERAND (exp, 0),
8491 ignore ? const0_rtx : NULL_RTX, VOIDmode,
8492 (modifier == EXPAND_INITIALIZER
8493 ? modifier : EXPAND_CONST_ADDRESS));
8495 /* If we are going to ignore the result, OP0 will have been set
8496 to const0_rtx, so just return it. Don't get confused and
8497 think we are taking the address of the constant. */
8498 if (ignore)
8499 return op0;
8501 /* Pass 1 for MODIFY, so that protect_from_queue doesn't get
8502 clever and returns a REG when given a MEM. */
8503 op0 = protect_from_queue (op0, 1);
8505 /* We would like the object in memory. If it is a constant, we can
8506 have it be statically allocated into memory. For a non-constant,
8507 we need to allocate some memory and store the value into it. */
8509 if (CONSTANT_P (op0))
8510 op0 = force_const_mem (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))),
8511 op0);
8512 else if (GET_CODE (op0) == REG || GET_CODE (op0) == SUBREG
8513 || GET_CODE (op0) == CONCAT || GET_CODE (op0) == ADDRESSOF
8514 || GET_CODE (op0) == PARALLEL)
8516 /* If the operand is a SAVE_EXPR, we can deal with this by
8517 forcing the SAVE_EXPR into memory. */
8518 if (TREE_CODE (TREE_OPERAND (exp, 0)) == SAVE_EXPR)
8520 put_var_into_stack (TREE_OPERAND (exp, 0));
8521 op0 = SAVE_EXPR_RTL (TREE_OPERAND (exp, 0));
8523 else
8525 /* If this object is in a register, it can't be BLKmode. */
8526 tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
8527 rtx memloc = assign_temp (inner_type, 1, 1, 1);
8529 if (GET_CODE (op0) == PARALLEL)
8530 /* Handle calls that pass values in multiple
8531 non-contiguous locations. The Irix 6 ABI has examples
8532 of this. */
8533 emit_group_store (memloc, op0,
8534 int_size_in_bytes (inner_type));
8535 else
8536 emit_move_insn (memloc, op0);
8538 op0 = memloc;
8542 if (GET_CODE (op0) != MEM)
8543 abort ();
8545 mark_temp_addr_taken (op0);
8546 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
8548 op0 = XEXP (op0, 0);
8549 #ifdef POINTERS_EXTEND_UNSIGNED
8550 if (GET_MODE (op0) == Pmode && GET_MODE (op0) != mode
8551 && mode == ptr_mode)
8552 op0 = convert_memory_address (ptr_mode, op0);
8553 #endif
8554 return op0;
8557 /* If OP0 is not aligned as least as much as the type requires, we
8558 need to make a temporary, copy OP0 to it, and take the address of
8559 the temporary. We want to use the alignment of the type, not of
8560 the operand. Note that this is incorrect for FUNCTION_TYPE, but
8561 the test for BLKmode means that can't happen. The test for
8562 BLKmode is because we never make mis-aligned MEMs with
8563 non-BLKmode.
8565 We don't need to do this at all if the machine doesn't have
8566 strict alignment. */
8567 if (STRICT_ALIGNMENT && GET_MODE (op0) == BLKmode
8568 && (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0)))
8569 > MEM_ALIGN (op0))
8570 && MEM_ALIGN (op0) < BIGGEST_ALIGNMENT)
8572 tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
8573 rtx new
8574 = assign_stack_temp_for_type
8575 (TYPE_MODE (inner_type),
8576 MEM_SIZE (op0) ? INTVAL (MEM_SIZE (op0))
8577 : int_size_in_bytes (inner_type),
8578 1, build_qualified_type (inner_type,
8579 (TYPE_QUALS (inner_type)
8580 | TYPE_QUAL_CONST)));
8582 if (TYPE_ALIGN_OK (inner_type))
8583 abort ();
8585 emit_block_move (new, op0, expr_size (TREE_OPERAND (exp, 0)));
8586 op0 = new;
8589 op0 = force_operand (XEXP (op0, 0), target);
8592 if (flag_force_addr
8593 && GET_CODE (op0) != REG
8594 && modifier != EXPAND_CONST_ADDRESS
8595 && modifier != EXPAND_INITIALIZER
8596 && modifier != EXPAND_SUM)
8597 op0 = force_reg (Pmode, op0);
8599 if (GET_CODE (op0) == REG
8600 && ! REG_USERVAR_P (op0))
8601 mark_reg_pointer (op0, TYPE_ALIGN (TREE_TYPE (type)));
8603 #ifdef POINTERS_EXTEND_UNSIGNED
8604 if (GET_MODE (op0) == Pmode && GET_MODE (op0) != mode
8605 && mode == ptr_mode)
8606 op0 = convert_memory_address (ptr_mode, op0);
8607 #endif
8609 return op0;
8611 case ENTRY_VALUE_EXPR:
8612 abort ();
8614 /* COMPLEX type for Extended Pascal & Fortran */
8615 case COMPLEX_EXPR:
8617 enum machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
8618 rtx insns;
8620 /* Get the rtx code of the operands. */
8621 op0 = expand_expr (TREE_OPERAND (exp, 0), 0, VOIDmode, 0);
8622 op1 = expand_expr (TREE_OPERAND (exp, 1), 0, VOIDmode, 0);
8624 if (! target)
8625 target = gen_reg_rtx (TYPE_MODE (TREE_TYPE (exp)));
8627 start_sequence ();
8629 /* Move the real (op0) and imaginary (op1) parts to their location. */
8630 emit_move_insn (gen_realpart (mode, target), op0);
8631 emit_move_insn (gen_imagpart (mode, target), op1);
8633 insns = get_insns ();
8634 end_sequence ();
8636 /* Complex construction should appear as a single unit. */
8637 /* If TARGET is a CONCAT, we got insns like RD = RS, ID = IS,
8638 each with a separate pseudo as destination.
8639 It's not correct for flow to treat them as a unit. */
8640 if (GET_CODE (target) != CONCAT)
8641 emit_no_conflict_block (insns, target, op0, op1, NULL_RTX);
8642 else
8643 emit_insns (insns);
8645 return target;
8648 case REALPART_EXPR:
8649 op0 = expand_expr (TREE_OPERAND (exp, 0), 0, VOIDmode, 0);
8650 return gen_realpart (mode, op0);
8652 case IMAGPART_EXPR:
8653 op0 = expand_expr (TREE_OPERAND (exp, 0), 0, VOIDmode, 0);
8654 return gen_imagpart (mode, op0);
8656 case CONJ_EXPR:
8658 enum machine_mode partmode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
8659 rtx imag_t;
8660 rtx insns;
8662 op0 = expand_expr (TREE_OPERAND (exp, 0), 0, VOIDmode, 0);
8664 if (! target)
8665 target = gen_reg_rtx (mode);
8667 start_sequence ();
8669 /* Store the realpart and the negated imagpart to target. */
8670 emit_move_insn (gen_realpart (partmode, target),
8671 gen_realpart (partmode, op0));
8673 imag_t = gen_imagpart (partmode, target);
8674 temp = expand_unop (partmode,
8675 ! unsignedp && flag_trapv
8676 && (GET_MODE_CLASS(partmode) == MODE_INT)
8677 ? negv_optab : neg_optab,
8678 gen_imagpart (partmode, op0), imag_t, 0);
8679 if (temp != imag_t)
8680 emit_move_insn (imag_t, temp);
8682 insns = get_insns ();
8683 end_sequence ();
8685 /* Conjugate should appear as a single unit
8686 If TARGET is a CONCAT, we got insns like RD = RS, ID = - IS,
8687 each with a separate pseudo as destination.
8688 It's not correct for flow to treat them as a unit. */
8689 if (GET_CODE (target) != CONCAT)
8690 emit_no_conflict_block (insns, target, op0, NULL_RTX, NULL_RTX);
8691 else
8692 emit_insns (insns);
8694 return target;
8697 case TRY_CATCH_EXPR:
8699 tree handler = TREE_OPERAND (exp, 1);
8701 expand_eh_region_start ();
8703 op0 = expand_expr (TREE_OPERAND (exp, 0), 0, VOIDmode, 0);
8705 expand_eh_region_end_cleanup (handler);
8707 return op0;
8710 case TRY_FINALLY_EXPR:
8712 tree try_block = TREE_OPERAND (exp, 0);
8713 tree finally_block = TREE_OPERAND (exp, 1);
8714 rtx finally_label = gen_label_rtx ();
8715 rtx done_label = gen_label_rtx ();
8716 rtx return_link = gen_reg_rtx (Pmode);
8717 tree cleanup = build (GOTO_SUBROUTINE_EXPR, void_type_node,
8718 (tree) finally_label, (tree) return_link);
8719 TREE_SIDE_EFFECTS (cleanup) = 1;
8721 /* Start a new binding layer that will keep track of all cleanup
8722 actions to be performed. */
8723 expand_start_bindings (2);
8725 target_temp_slot_level = temp_slot_level;
8727 expand_decl_cleanup (NULL_TREE, cleanup);
8728 op0 = expand_expr (try_block, target, tmode, modifier);
8730 preserve_temp_slots (op0);
8731 expand_end_bindings (NULL_TREE, 0, 0);
8732 emit_jump (done_label);
8733 emit_label (finally_label);
8734 expand_expr (finally_block, const0_rtx, VOIDmode, 0);
8735 emit_indirect_jump (return_link);
8736 emit_label (done_label);
8737 return op0;
8740 case GOTO_SUBROUTINE_EXPR:
8742 rtx subr = (rtx) TREE_OPERAND (exp, 0);
8743 rtx return_link = *(rtx *) &TREE_OPERAND (exp, 1);
8744 rtx return_address = gen_label_rtx ();
8745 emit_move_insn (return_link,
8746 gen_rtx_LABEL_REF (Pmode, return_address));
8747 emit_jump (subr);
8748 emit_label (return_address);
8749 return const0_rtx;
8752 case VA_ARG_EXPR:
8753 return expand_builtin_va_arg (TREE_OPERAND (exp, 0), type);
8755 case EXC_PTR_EXPR:
8756 return get_exception_pointer (cfun);
8758 case FDESC_EXPR:
8759 /* Function descriptors are not valid except for as
8760 initialization constants, and should not be expanded. */
8761 abort ();
8763 default:
8764 return (*lang_expand_expr) (exp, original_target, tmode, modifier);
8767 /* Here to do an ordinary binary operator, generating an instruction
8768 from the optab already placed in `this_optab'. */
8769 binop:
8770 if (! safe_from_p (subtarget, TREE_OPERAND (exp, 1), 1))
8771 subtarget = 0;
8772 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
8773 op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX, VOIDmode, 0);
8774 binop2:
8775 temp = expand_binop (mode, this_optab, op0, op1, target,
8776 unsignedp, OPTAB_LIB_WIDEN);
8777 if (temp == 0)
8778 abort ();
8779 return temp;
8782 /* Return the tree node if a ARG corresponds to a string constant or zero
8783 if it doesn't. If we return non-zero, set *PTR_OFFSET to the offset
8784 in bytes within the string that ARG is accessing. The type of the
8785 offset will be `sizetype'. */
8787 tree
8788 string_constant (arg, ptr_offset)
8789 tree arg;
8790 tree *ptr_offset;
8792 STRIP_NOPS (arg);
8794 if (TREE_CODE (arg) == ADDR_EXPR
8795 && TREE_CODE (TREE_OPERAND (arg, 0)) == STRING_CST)
8797 *ptr_offset = size_zero_node;
8798 return TREE_OPERAND (arg, 0);
8800 else if (TREE_CODE (arg) == PLUS_EXPR)
8802 tree arg0 = TREE_OPERAND (arg, 0);
8803 tree arg1 = TREE_OPERAND (arg, 1);
8805 STRIP_NOPS (arg0);
8806 STRIP_NOPS (arg1);
8808 if (TREE_CODE (arg0) == ADDR_EXPR
8809 && TREE_CODE (TREE_OPERAND (arg0, 0)) == STRING_CST)
8811 *ptr_offset = convert (sizetype, arg1);
8812 return TREE_OPERAND (arg0, 0);
8814 else if (TREE_CODE (arg1) == ADDR_EXPR
8815 && TREE_CODE (TREE_OPERAND (arg1, 0)) == STRING_CST)
8817 *ptr_offset = convert (sizetype, arg0);
8818 return TREE_OPERAND (arg1, 0);
8822 return 0;
8825 /* Expand code for a post- or pre- increment or decrement
8826 and return the RTX for the result.
8827 POST is 1 for postinc/decrements and 0 for preinc/decrements. */
8829 static rtx
8830 expand_increment (exp, post, ignore)
8831 tree exp;
8832 int post, ignore;
8834 rtx op0, op1;
8835 rtx temp, value;
8836 tree incremented = TREE_OPERAND (exp, 0);
8837 optab this_optab = add_optab;
8838 int icode;
8839 enum machine_mode mode = TYPE_MODE (TREE_TYPE (exp));
8840 int op0_is_copy = 0;
8841 int single_insn = 0;
8842 /* 1 means we can't store into OP0 directly,
8843 because it is a subreg narrower than a word,
8844 and we don't dare clobber the rest of the word. */
8845 int bad_subreg = 0;
8847 /* Stabilize any component ref that might need to be
8848 evaluated more than once below. */
8849 if (!post
8850 || TREE_CODE (incremented) == BIT_FIELD_REF
8851 || (TREE_CODE (incremented) == COMPONENT_REF
8852 && (TREE_CODE (TREE_OPERAND (incremented, 0)) != INDIRECT_REF
8853 || DECL_BIT_FIELD (TREE_OPERAND (incremented, 1)))))
8854 incremented = stabilize_reference (incremented);
8855 /* Nested *INCREMENT_EXPRs can happen in C++. We must force innermost
8856 ones into save exprs so that they don't accidentally get evaluated
8857 more than once by the code below. */
8858 if (TREE_CODE (incremented) == PREINCREMENT_EXPR
8859 || TREE_CODE (incremented) == PREDECREMENT_EXPR)
8860 incremented = save_expr (incremented);
8862 /* Compute the operands as RTX.
8863 Note whether OP0 is the actual lvalue or a copy of it:
8864 I believe it is a copy iff it is a register or subreg
8865 and insns were generated in computing it. */
8867 temp = get_last_insn ();
8868 op0 = expand_expr (incremented, NULL_RTX, VOIDmode, 0);
8870 /* If OP0 is a SUBREG made for a promoted variable, we cannot increment
8871 in place but instead must do sign- or zero-extension during assignment,
8872 so we copy it into a new register and let the code below use it as
8873 a copy.
8875 Note that we can safely modify this SUBREG since it is know not to be
8876 shared (it was made by the expand_expr call above). */
8878 if (GET_CODE (op0) == SUBREG && SUBREG_PROMOTED_VAR_P (op0))
8880 if (post)
8881 SUBREG_REG (op0) = copy_to_reg (SUBREG_REG (op0));
8882 else
8883 bad_subreg = 1;
8885 else if (GET_CODE (op0) == SUBREG
8886 && GET_MODE_BITSIZE (GET_MODE (op0)) < BITS_PER_WORD)
8888 /* We cannot increment this SUBREG in place. If we are
8889 post-incrementing, get a copy of the old value. Otherwise,
8890 just mark that we cannot increment in place. */
8891 if (post)
8892 op0 = copy_to_reg (op0);
8893 else
8894 bad_subreg = 1;
8897 op0_is_copy = ((GET_CODE (op0) == SUBREG || GET_CODE (op0) == REG)
8898 && temp != get_last_insn ());
8899 op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX, VOIDmode, 0);
8901 /* Decide whether incrementing or decrementing. */
8902 if (TREE_CODE (exp) == POSTDECREMENT_EXPR
8903 || TREE_CODE (exp) == PREDECREMENT_EXPR)
8904 this_optab = sub_optab;
8906 /* Convert decrement by a constant into a negative increment. */
8907 if (this_optab == sub_optab
8908 && GET_CODE (op1) == CONST_INT)
8910 op1 = GEN_INT (-INTVAL (op1));
8911 this_optab = add_optab;
8914 if (TYPE_TRAP_SIGNED (TREE_TYPE (exp)))
8915 this_optab = this_optab == add_optab ? addv_optab : subv_optab;
8917 /* For a preincrement, see if we can do this with a single instruction. */
8918 if (!post)
8920 icode = (int) this_optab->handlers[(int) mode].insn_code;
8921 if (icode != (int) CODE_FOR_nothing
8922 /* Make sure that OP0 is valid for operands 0 and 1
8923 of the insn we want to queue. */
8924 && (*insn_data[icode].operand[0].predicate) (op0, mode)
8925 && (*insn_data[icode].operand[1].predicate) (op0, mode)
8926 && (*insn_data[icode].operand[2].predicate) (op1, mode))
8927 single_insn = 1;
8930 /* If OP0 is not the actual lvalue, but rather a copy in a register,
8931 then we cannot just increment OP0. We must therefore contrive to
8932 increment the original value. Then, for postincrement, we can return
8933 OP0 since it is a copy of the old value. For preincrement, expand here
8934 unless we can do it with a single insn.
8936 Likewise if storing directly into OP0 would clobber high bits
8937 we need to preserve (bad_subreg). */
8938 if (op0_is_copy || (!post && !single_insn) || bad_subreg)
8940 /* This is the easiest way to increment the value wherever it is.
8941 Problems with multiple evaluation of INCREMENTED are prevented
8942 because either (1) it is a component_ref or preincrement,
8943 in which case it was stabilized above, or (2) it is an array_ref
8944 with constant index in an array in a register, which is
8945 safe to reevaluate. */
8946 tree newexp = build (((TREE_CODE (exp) == POSTDECREMENT_EXPR
8947 || TREE_CODE (exp) == PREDECREMENT_EXPR)
8948 ? MINUS_EXPR : PLUS_EXPR),
8949 TREE_TYPE (exp),
8950 incremented,
8951 TREE_OPERAND (exp, 1));
8953 while (TREE_CODE (incremented) == NOP_EXPR
8954 || TREE_CODE (incremented) == CONVERT_EXPR)
8956 newexp = convert (TREE_TYPE (incremented), newexp);
8957 incremented = TREE_OPERAND (incremented, 0);
8960 temp = expand_assignment (incremented, newexp, ! post && ! ignore , 0);
8961 return post ? op0 : temp;
8964 if (post)
8966 /* We have a true reference to the value in OP0.
8967 If there is an insn to add or subtract in this mode, queue it.
8968 Queueing the increment insn avoids the register shuffling
8969 that often results if we must increment now and first save
8970 the old value for subsequent use. */
8972 #if 0 /* Turned off to avoid making extra insn for indexed memref. */
8973 op0 = stabilize (op0);
8974 #endif
8976 icode = (int) this_optab->handlers[(int) mode].insn_code;
8977 if (icode != (int) CODE_FOR_nothing
8978 /* Make sure that OP0 is valid for operands 0 and 1
8979 of the insn we want to queue. */
8980 && (*insn_data[icode].operand[0].predicate) (op0, mode)
8981 && (*insn_data[icode].operand[1].predicate) (op0, mode))
8983 if (! (*insn_data[icode].operand[2].predicate) (op1, mode))
8984 op1 = force_reg (mode, op1);
8986 return enqueue_insn (op0, GEN_FCN (icode) (op0, op0, op1));
8988 if (icode != (int) CODE_FOR_nothing && GET_CODE (op0) == MEM)
8990 rtx addr = (general_operand (XEXP (op0, 0), mode)
8991 ? force_reg (Pmode, XEXP (op0, 0))
8992 : copy_to_reg (XEXP (op0, 0)));
8993 rtx temp, result;
8995 op0 = replace_equiv_address (op0, addr);
8996 temp = force_reg (GET_MODE (op0), op0);
8997 if (! (*insn_data[icode].operand[2].predicate) (op1, mode))
8998 op1 = force_reg (mode, op1);
9000 /* The increment queue is LIFO, thus we have to `queue'
9001 the instructions in reverse order. */
9002 enqueue_insn (op0, gen_move_insn (op0, temp));
9003 result = enqueue_insn (temp, GEN_FCN (icode) (temp, temp, op1));
9004 return result;
9008 /* Preincrement, or we can't increment with one simple insn. */
9009 if (post)
9010 /* Save a copy of the value before inc or dec, to return it later. */
9011 temp = value = copy_to_reg (op0);
9012 else
9013 /* Arrange to return the incremented value. */
9014 /* Copy the rtx because expand_binop will protect from the queue,
9015 and the results of that would be invalid for us to return
9016 if our caller does emit_queue before using our result. */
9017 temp = copy_rtx (value = op0);
9019 /* Increment however we can. */
9020 op1 = expand_binop (mode, this_optab, value, op1, op0,
9021 TREE_UNSIGNED (TREE_TYPE (exp)), OPTAB_LIB_WIDEN);
9023 /* Make sure the value is stored into OP0. */
9024 if (op1 != op0)
9025 emit_move_insn (op0, op1);
9027 return temp;
9030 /* At the start of a function, record that we have no previously-pushed
9031 arguments waiting to be popped. */
9033 void
9034 init_pending_stack_adjust ()
9036 pending_stack_adjust = 0;
9039 /* When exiting from function, if safe, clear out any pending stack adjust
9040 so the adjustment won't get done.
9042 Note, if the current function calls alloca, then it must have a
9043 frame pointer regardless of the value of flag_omit_frame_pointer. */
9045 void
9046 clear_pending_stack_adjust ()
9048 #ifdef EXIT_IGNORE_STACK
9049 if (optimize > 0
9050 && (! flag_omit_frame_pointer || current_function_calls_alloca)
9051 && EXIT_IGNORE_STACK
9052 && ! (DECL_INLINE (current_function_decl) && ! flag_no_inline)
9053 && ! flag_inline_functions)
9055 stack_pointer_delta -= pending_stack_adjust,
9056 pending_stack_adjust = 0;
9058 #endif
9061 /* Pop any previously-pushed arguments that have not been popped yet. */
9063 void
9064 do_pending_stack_adjust ()
9066 if (inhibit_defer_pop == 0)
9068 if (pending_stack_adjust != 0)
9069 adjust_stack (GEN_INT (pending_stack_adjust));
9070 pending_stack_adjust = 0;
9074 /* Expand conditional expressions. */
9076 /* Generate code to evaluate EXP and jump to LABEL if the value is zero.
9077 LABEL is an rtx of code CODE_LABEL, in this function and all the
9078 functions here. */
9080 void
9081 jumpifnot (exp, label)
9082 tree exp;
9083 rtx label;
9085 do_jump (exp, label, NULL_RTX);
9088 /* Generate code to evaluate EXP and jump to LABEL if the value is nonzero. */
9090 void
9091 jumpif (exp, label)
9092 tree exp;
9093 rtx label;
9095 do_jump (exp, NULL_RTX, label);
9098 /* Generate code to evaluate EXP and jump to IF_FALSE_LABEL if
9099 the result is zero, or IF_TRUE_LABEL if the result is one.
9100 Either of IF_FALSE_LABEL and IF_TRUE_LABEL may be zero,
9101 meaning fall through in that case.
9103 do_jump always does any pending stack adjust except when it does not
9104 actually perform a jump. An example where there is no jump
9105 is when EXP is `(foo (), 0)' and IF_FALSE_LABEL is null.
9107 This function is responsible for optimizing cases such as
9108 &&, || and comparison operators in EXP. */
9110 void
9111 do_jump (exp, if_false_label, if_true_label)
9112 tree exp;
9113 rtx if_false_label, if_true_label;
9115 enum tree_code code = TREE_CODE (exp);
9116 /* Some cases need to create a label to jump to
9117 in order to properly fall through.
9118 These cases set DROP_THROUGH_LABEL nonzero. */
9119 rtx drop_through_label = 0;
9120 rtx temp;
9121 int i;
9122 tree type;
9123 enum machine_mode mode;
9125 #ifdef MAX_INTEGER_COMPUTATION_MODE
9126 check_max_integer_computation_mode (exp);
9127 #endif
9129 emit_queue ();
9131 switch (code)
9133 case ERROR_MARK:
9134 break;
9136 case INTEGER_CST:
9137 temp = integer_zerop (exp) ? if_false_label : if_true_label;
9138 if (temp)
9139 emit_jump (temp);
9140 break;
9142 #if 0
9143 /* This is not true with #pragma weak */
9144 case ADDR_EXPR:
9145 /* The address of something can never be zero. */
9146 if (if_true_label)
9147 emit_jump (if_true_label);
9148 break;
9149 #endif
9151 case NOP_EXPR:
9152 if (TREE_CODE (TREE_OPERAND (exp, 0)) == COMPONENT_REF
9153 || TREE_CODE (TREE_OPERAND (exp, 0)) == BIT_FIELD_REF
9154 || TREE_CODE (TREE_OPERAND (exp, 0)) == ARRAY_REF
9155 || TREE_CODE (TREE_OPERAND (exp, 0)) == ARRAY_RANGE_REF)
9156 goto normal;
9157 case CONVERT_EXPR:
9158 /* If we are narrowing the operand, we have to do the compare in the
9159 narrower mode. */
9160 if ((TYPE_PRECISION (TREE_TYPE (exp))
9161 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0)))))
9162 goto normal;
9163 case NON_LVALUE_EXPR:
9164 case REFERENCE_EXPR:
9165 case ABS_EXPR:
9166 case NEGATE_EXPR:
9167 case LROTATE_EXPR:
9168 case RROTATE_EXPR:
9169 /* These cannot change zero->non-zero or vice versa. */
9170 do_jump (TREE_OPERAND (exp, 0), if_false_label, if_true_label);
9171 break;
9173 case WITH_RECORD_EXPR:
9174 /* Put the object on the placeholder list, recurse through our first
9175 operand, and pop the list. */
9176 placeholder_list = tree_cons (TREE_OPERAND (exp, 1), NULL_TREE,
9177 placeholder_list);
9178 do_jump (TREE_OPERAND (exp, 0), if_false_label, if_true_label);
9179 placeholder_list = TREE_CHAIN (placeholder_list);
9180 break;
9182 #if 0
9183 /* This is never less insns than evaluating the PLUS_EXPR followed by
9184 a test and can be longer if the test is eliminated. */
9185 case PLUS_EXPR:
9186 /* Reduce to minus. */
9187 exp = build (MINUS_EXPR, TREE_TYPE (exp),
9188 TREE_OPERAND (exp, 0),
9189 fold (build1 (NEGATE_EXPR, TREE_TYPE (TREE_OPERAND (exp, 1)),
9190 TREE_OPERAND (exp, 1))));
9191 /* Process as MINUS. */
9192 #endif
9194 case MINUS_EXPR:
9195 /* Non-zero iff operands of minus differ. */
9196 do_compare_and_jump (build (NE_EXPR, TREE_TYPE (exp),
9197 TREE_OPERAND (exp, 0),
9198 TREE_OPERAND (exp, 1)),
9199 NE, NE, if_false_label, if_true_label);
9200 break;
9202 case BIT_AND_EXPR:
9203 /* If we are AND'ing with a small constant, do this comparison in the
9204 smallest type that fits. If the machine doesn't have comparisons
9205 that small, it will be converted back to the wider comparison.
9206 This helps if we are testing the sign bit of a narrower object.
9207 combine can't do this for us because it can't know whether a
9208 ZERO_EXTRACT or a compare in a smaller mode exists, but we do. */
9210 if (! SLOW_BYTE_ACCESS
9211 && TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST
9212 && TYPE_PRECISION (TREE_TYPE (exp)) <= HOST_BITS_PER_WIDE_INT
9213 && (i = tree_floor_log2 (TREE_OPERAND (exp, 1))) >= 0
9214 && (mode = mode_for_size (i + 1, MODE_INT, 0)) != BLKmode
9215 && (type = type_for_mode (mode, 1)) != 0
9216 && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (exp))
9217 && (cmp_optab->handlers[(int) TYPE_MODE (type)].insn_code
9218 != CODE_FOR_nothing))
9220 do_jump (convert (type, exp), if_false_label, if_true_label);
9221 break;
9223 goto normal;
9225 case TRUTH_NOT_EXPR:
9226 do_jump (TREE_OPERAND (exp, 0), if_true_label, if_false_label);
9227 break;
9229 case TRUTH_ANDIF_EXPR:
9230 if (if_false_label == 0)
9231 if_false_label = drop_through_label = gen_label_rtx ();
9232 do_jump (TREE_OPERAND (exp, 0), if_false_label, NULL_RTX);
9233 start_cleanup_deferral ();
9234 do_jump (TREE_OPERAND (exp, 1), if_false_label, if_true_label);
9235 end_cleanup_deferral ();
9236 break;
9238 case TRUTH_ORIF_EXPR:
9239 if (if_true_label == 0)
9240 if_true_label = drop_through_label = gen_label_rtx ();
9241 do_jump (TREE_OPERAND (exp, 0), NULL_RTX, if_true_label);
9242 start_cleanup_deferral ();
9243 do_jump (TREE_OPERAND (exp, 1), if_false_label, if_true_label);
9244 end_cleanup_deferral ();
9245 break;
9247 case COMPOUND_EXPR:
9248 push_temp_slots ();
9249 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode, 0);
9250 preserve_temp_slots (NULL_RTX);
9251 free_temp_slots ();
9252 pop_temp_slots ();
9253 emit_queue ();
9254 do_pending_stack_adjust ();
9255 do_jump (TREE_OPERAND (exp, 1), if_false_label, if_true_label);
9256 break;
9258 case COMPONENT_REF:
9259 case BIT_FIELD_REF:
9260 case ARRAY_REF:
9261 case ARRAY_RANGE_REF:
9263 HOST_WIDE_INT bitsize, bitpos;
9264 int unsignedp;
9265 enum machine_mode mode;
9266 tree type;
9267 tree offset;
9268 int volatilep = 0;
9270 /* Get description of this reference. We don't actually care
9271 about the underlying object here. */
9272 get_inner_reference (exp, &bitsize, &bitpos, &offset, &mode,
9273 &unsignedp, &volatilep);
9275 type = type_for_size (bitsize, unsignedp);
9276 if (! SLOW_BYTE_ACCESS
9277 && type != 0 && bitsize >= 0
9278 && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (exp))
9279 && (cmp_optab->handlers[(int) TYPE_MODE (type)].insn_code
9280 != CODE_FOR_nothing))
9282 do_jump (convert (type, exp), if_false_label, if_true_label);
9283 break;
9285 goto normal;
9288 case COND_EXPR:
9289 /* Do (a ? 1 : 0) and (a ? 0 : 1) as special cases. */
9290 if (integer_onep (TREE_OPERAND (exp, 1))
9291 && integer_zerop (TREE_OPERAND (exp, 2)))
9292 do_jump (TREE_OPERAND (exp, 0), if_false_label, if_true_label);
9294 else if (integer_zerop (TREE_OPERAND (exp, 1))
9295 && integer_onep (TREE_OPERAND (exp, 2)))
9296 do_jump (TREE_OPERAND (exp, 0), if_true_label, if_false_label);
9298 else
9300 rtx label1 = gen_label_rtx ();
9301 drop_through_label = gen_label_rtx ();
9303 do_jump (TREE_OPERAND (exp, 0), label1, NULL_RTX);
9305 start_cleanup_deferral ();
9306 /* Now the THEN-expression. */
9307 do_jump (TREE_OPERAND (exp, 1),
9308 if_false_label ? if_false_label : drop_through_label,
9309 if_true_label ? if_true_label : drop_through_label);
9310 /* In case the do_jump just above never jumps. */
9311 do_pending_stack_adjust ();
9312 emit_label (label1);
9314 /* Now the ELSE-expression. */
9315 do_jump (TREE_OPERAND (exp, 2),
9316 if_false_label ? if_false_label : drop_through_label,
9317 if_true_label ? if_true_label : drop_through_label);
9318 end_cleanup_deferral ();
9320 break;
9322 case EQ_EXPR:
9324 tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
9326 if (GET_MODE_CLASS (TYPE_MODE (inner_type)) == MODE_COMPLEX_FLOAT
9327 || GET_MODE_CLASS (TYPE_MODE (inner_type)) == MODE_COMPLEX_INT)
9329 tree exp0 = save_expr (TREE_OPERAND (exp, 0));
9330 tree exp1 = save_expr (TREE_OPERAND (exp, 1));
9331 do_jump
9332 (fold
9333 (build (TRUTH_ANDIF_EXPR, TREE_TYPE (exp),
9334 fold (build (EQ_EXPR, TREE_TYPE (exp),
9335 fold (build1 (REALPART_EXPR,
9336 TREE_TYPE (inner_type),
9337 exp0)),
9338 fold (build1 (REALPART_EXPR,
9339 TREE_TYPE (inner_type),
9340 exp1)))),
9341 fold (build (EQ_EXPR, TREE_TYPE (exp),
9342 fold (build1 (IMAGPART_EXPR,
9343 TREE_TYPE (inner_type),
9344 exp0)),
9345 fold (build1 (IMAGPART_EXPR,
9346 TREE_TYPE (inner_type),
9347 exp1)))))),
9348 if_false_label, if_true_label);
9351 else if (integer_zerop (TREE_OPERAND (exp, 1)))
9352 do_jump (TREE_OPERAND (exp, 0), if_true_label, if_false_label);
9354 else if (GET_MODE_CLASS (TYPE_MODE (inner_type)) == MODE_INT
9355 && !can_compare_p (EQ, TYPE_MODE (inner_type), ccp_jump))
9356 do_jump_by_parts_equality (exp, if_false_label, if_true_label);
9357 else
9358 do_compare_and_jump (exp, EQ, EQ, if_false_label, if_true_label);
9359 break;
9362 case NE_EXPR:
9364 tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
9366 if (GET_MODE_CLASS (TYPE_MODE (inner_type)) == MODE_COMPLEX_FLOAT
9367 || GET_MODE_CLASS (TYPE_MODE (inner_type)) == MODE_COMPLEX_INT)
9369 tree exp0 = save_expr (TREE_OPERAND (exp, 0));
9370 tree exp1 = save_expr (TREE_OPERAND (exp, 1));
9371 do_jump
9372 (fold
9373 (build (TRUTH_ORIF_EXPR, TREE_TYPE (exp),
9374 fold (build (NE_EXPR, TREE_TYPE (exp),
9375 fold (build1 (REALPART_EXPR,
9376 TREE_TYPE (inner_type),
9377 exp0)),
9378 fold (build1 (REALPART_EXPR,
9379 TREE_TYPE (inner_type),
9380 exp1)))),
9381 fold (build (NE_EXPR, TREE_TYPE (exp),
9382 fold (build1 (IMAGPART_EXPR,
9383 TREE_TYPE (inner_type),
9384 exp0)),
9385 fold (build1 (IMAGPART_EXPR,
9386 TREE_TYPE (inner_type),
9387 exp1)))))),
9388 if_false_label, if_true_label);
9391 else if (integer_zerop (TREE_OPERAND (exp, 1)))
9392 do_jump (TREE_OPERAND (exp, 0), if_false_label, if_true_label);
9394 else if (GET_MODE_CLASS (TYPE_MODE (inner_type)) == MODE_INT
9395 && !can_compare_p (NE, TYPE_MODE (inner_type), ccp_jump))
9396 do_jump_by_parts_equality (exp, if_true_label, if_false_label);
9397 else
9398 do_compare_and_jump (exp, NE, NE, if_false_label, if_true_label);
9399 break;
9402 case LT_EXPR:
9403 mode = TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)));
9404 if (GET_MODE_CLASS (mode) == MODE_INT
9405 && ! can_compare_p (LT, mode, ccp_jump))
9406 do_jump_by_parts_greater (exp, 1, if_false_label, if_true_label);
9407 else
9408 do_compare_and_jump (exp, LT, LTU, if_false_label, if_true_label);
9409 break;
9411 case LE_EXPR:
9412 mode = TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)));
9413 if (GET_MODE_CLASS (mode) == MODE_INT
9414 && ! can_compare_p (LE, mode, ccp_jump))
9415 do_jump_by_parts_greater (exp, 0, if_true_label, if_false_label);
9416 else
9417 do_compare_and_jump (exp, LE, LEU, if_false_label, if_true_label);
9418 break;
9420 case GT_EXPR:
9421 mode = TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)));
9422 if (GET_MODE_CLASS (mode) == MODE_INT
9423 && ! can_compare_p (GT, mode, ccp_jump))
9424 do_jump_by_parts_greater (exp, 0, if_false_label, if_true_label);
9425 else
9426 do_compare_and_jump (exp, GT, GTU, if_false_label, if_true_label);
9427 break;
9429 case GE_EXPR:
9430 mode = TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)));
9431 if (GET_MODE_CLASS (mode) == MODE_INT
9432 && ! can_compare_p (GE, mode, ccp_jump))
9433 do_jump_by_parts_greater (exp, 1, if_true_label, if_false_label);
9434 else
9435 do_compare_and_jump (exp, GE, GEU, if_false_label, if_true_label);
9436 break;
9438 case UNORDERED_EXPR:
9439 case ORDERED_EXPR:
9441 enum rtx_code cmp, rcmp;
9442 int do_rev;
9444 if (code == UNORDERED_EXPR)
9445 cmp = UNORDERED, rcmp = ORDERED;
9446 else
9447 cmp = ORDERED, rcmp = UNORDERED;
9448 mode = TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)));
9450 do_rev = 0;
9451 if (! can_compare_p (cmp, mode, ccp_jump)
9452 && (can_compare_p (rcmp, mode, ccp_jump)
9453 /* If the target doesn't provide either UNORDERED or ORDERED
9454 comparisons, canonicalize on UNORDERED for the library. */
9455 || rcmp == UNORDERED))
9456 do_rev = 1;
9458 if (! do_rev)
9459 do_compare_and_jump (exp, cmp, cmp, if_false_label, if_true_label);
9460 else
9461 do_compare_and_jump (exp, rcmp, rcmp, if_true_label, if_false_label);
9463 break;
9466 enum rtx_code rcode1;
9467 enum tree_code tcode2;
9469 case UNLT_EXPR:
9470 rcode1 = UNLT;
9471 tcode2 = LT_EXPR;
9472 goto unordered_bcc;
9473 case UNLE_EXPR:
9474 rcode1 = UNLE;
9475 tcode2 = LE_EXPR;
9476 goto unordered_bcc;
9477 case UNGT_EXPR:
9478 rcode1 = UNGT;
9479 tcode2 = GT_EXPR;
9480 goto unordered_bcc;
9481 case UNGE_EXPR:
9482 rcode1 = UNGE;
9483 tcode2 = GE_EXPR;
9484 goto unordered_bcc;
9485 case UNEQ_EXPR:
9486 rcode1 = UNEQ;
9487 tcode2 = EQ_EXPR;
9488 goto unordered_bcc;
9490 unordered_bcc:
9491 mode = TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)));
9492 if (can_compare_p (rcode1, mode, ccp_jump))
9493 do_compare_and_jump (exp, rcode1, rcode1, if_false_label,
9494 if_true_label);
9495 else
9497 tree op0 = save_expr (TREE_OPERAND (exp, 0));
9498 tree op1 = save_expr (TREE_OPERAND (exp, 1));
9499 tree cmp0, cmp1;
9501 /* If the target doesn't support combined unordered
9502 compares, decompose into UNORDERED + comparison. */
9503 cmp0 = fold (build (UNORDERED_EXPR, TREE_TYPE (exp), op0, op1));
9504 cmp1 = fold (build (tcode2, TREE_TYPE (exp), op0, op1));
9505 exp = build (TRUTH_ORIF_EXPR, TREE_TYPE (exp), cmp0, cmp1);
9506 do_jump (exp, if_false_label, if_true_label);
9509 break;
9511 /* Special case:
9512 __builtin_expect (<test>, 0) and
9513 __builtin_expect (<test>, 1)
9515 We need to do this here, so that <test> is not converted to a SCC
9516 operation on machines that use condition code registers and COMPARE
9517 like the PowerPC, and then the jump is done based on whether the SCC
9518 operation produced a 1 or 0. */
9519 case CALL_EXPR:
9520 /* Check for a built-in function. */
9521 if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR)
9523 tree fndecl = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
9524 tree arglist = TREE_OPERAND (exp, 1);
9526 if (TREE_CODE (fndecl) == FUNCTION_DECL
9527 && DECL_BUILT_IN (fndecl)
9528 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_EXPECT
9529 && arglist != NULL_TREE
9530 && TREE_CHAIN (arglist) != NULL_TREE)
9532 rtx seq = expand_builtin_expect_jump (exp, if_false_label,
9533 if_true_label);
9535 if (seq != NULL_RTX)
9537 emit_insn (seq);
9538 return;
9542 /* fall through and generate the normal code. */
9544 default:
9545 normal:
9546 temp = expand_expr (exp, NULL_RTX, VOIDmode, 0);
9547 #if 0
9548 /* This is not needed any more and causes poor code since it causes
9549 comparisons and tests from non-SI objects to have different code
9550 sequences. */
9551 /* Copy to register to avoid generating bad insns by cse
9552 from (set (mem ...) (arithop)) (set (cc0) (mem ...)). */
9553 if (!cse_not_expected && GET_CODE (temp) == MEM)
9554 temp = copy_to_reg (temp);
9555 #endif
9556 do_pending_stack_adjust ();
9557 /* Do any postincrements in the expression that was tested. */
9558 emit_queue ();
9560 if (GET_CODE (temp) == CONST_INT
9561 || (GET_CODE (temp) == CONST_DOUBLE && GET_MODE (temp) == VOIDmode)
9562 || GET_CODE (temp) == LABEL_REF)
9564 rtx target = temp == const0_rtx ? if_false_label : if_true_label;
9565 if (target)
9566 emit_jump (target);
9568 else if (GET_MODE_CLASS (GET_MODE (temp)) == MODE_INT
9569 && ! can_compare_p (NE, GET_MODE (temp), ccp_jump))
9570 /* Note swapping the labels gives us not-equal. */
9571 do_jump_by_parts_equality_rtx (temp, if_true_label, if_false_label);
9572 else if (GET_MODE (temp) != VOIDmode)
9573 do_compare_rtx_and_jump (temp, CONST0_RTX (GET_MODE (temp)),
9574 NE, TREE_UNSIGNED (TREE_TYPE (exp)),
9575 GET_MODE (temp), NULL_RTX,
9576 if_false_label, if_true_label);
9577 else
9578 abort ();
9581 if (drop_through_label)
9583 /* If do_jump produces code that might be jumped around,
9584 do any stack adjusts from that code, before the place
9585 where control merges in. */
9586 do_pending_stack_adjust ();
9587 emit_label (drop_through_label);
9591 /* Given a comparison expression EXP for values too wide to be compared
9592 with one insn, test the comparison and jump to the appropriate label.
9593 The code of EXP is ignored; we always test GT if SWAP is 0,
9594 and LT if SWAP is 1. */
9596 static void
9597 do_jump_by_parts_greater (exp, swap, if_false_label, if_true_label)
9598 tree exp;
9599 int swap;
9600 rtx if_false_label, if_true_label;
9602 rtx op0 = expand_expr (TREE_OPERAND (exp, swap), NULL_RTX, VOIDmode, 0);
9603 rtx op1 = expand_expr (TREE_OPERAND (exp, !swap), NULL_RTX, VOIDmode, 0);
9604 enum machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)));
9605 int unsignedp = TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0)));
9607 do_jump_by_parts_greater_rtx (mode, unsignedp, op0, op1, if_false_label, if_true_label);
9610 /* Compare OP0 with OP1, word at a time, in mode MODE.
9611 UNSIGNEDP says to do unsigned comparison.
9612 Jump to IF_TRUE_LABEL if OP0 is greater, IF_FALSE_LABEL otherwise. */
9614 void
9615 do_jump_by_parts_greater_rtx (mode, unsignedp, op0, op1, if_false_label, if_true_label)
9616 enum machine_mode mode;
9617 int unsignedp;
9618 rtx op0, op1;
9619 rtx if_false_label, if_true_label;
9621 int nwords = (GET_MODE_SIZE (mode) / UNITS_PER_WORD);
9622 rtx drop_through_label = 0;
9623 int i;
9625 if (! if_true_label || ! if_false_label)
9626 drop_through_label = gen_label_rtx ();
9627 if (! if_true_label)
9628 if_true_label = drop_through_label;
9629 if (! if_false_label)
9630 if_false_label = drop_through_label;
9632 /* Compare a word at a time, high order first. */
9633 for (i = 0; i < nwords; i++)
9635 rtx op0_word, op1_word;
9637 if (WORDS_BIG_ENDIAN)
9639 op0_word = operand_subword_force (op0, i, mode);
9640 op1_word = operand_subword_force (op1, i, mode);
9642 else
9644 op0_word = operand_subword_force (op0, nwords - 1 - i, mode);
9645 op1_word = operand_subword_force (op1, nwords - 1 - i, mode);
9648 /* All but high-order word must be compared as unsigned. */
9649 do_compare_rtx_and_jump (op0_word, op1_word, GT,
9650 (unsignedp || i > 0), word_mode, NULL_RTX,
9651 NULL_RTX, if_true_label);
9653 /* Consider lower words only if these are equal. */
9654 do_compare_rtx_and_jump (op0_word, op1_word, NE, unsignedp, word_mode,
9655 NULL_RTX, NULL_RTX, if_false_label);
9658 if (if_false_label)
9659 emit_jump (if_false_label);
9660 if (drop_through_label)
9661 emit_label (drop_through_label);
9664 /* Given an EQ_EXPR expression EXP for values too wide to be compared
9665 with one insn, test the comparison and jump to the appropriate label. */
9667 static void
9668 do_jump_by_parts_equality (exp, if_false_label, if_true_label)
9669 tree exp;
9670 rtx if_false_label, if_true_label;
9672 rtx op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, VOIDmode, 0);
9673 rtx op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX, VOIDmode, 0);
9674 enum machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)));
9675 int nwords = (GET_MODE_SIZE (mode) / UNITS_PER_WORD);
9676 int i;
9677 rtx drop_through_label = 0;
9679 if (! if_false_label)
9680 drop_through_label = if_false_label = gen_label_rtx ();
9682 for (i = 0; i < nwords; i++)
9683 do_compare_rtx_and_jump (operand_subword_force (op0, i, mode),
9684 operand_subword_force (op1, i, mode),
9685 EQ, TREE_UNSIGNED (TREE_TYPE (exp)),
9686 word_mode, NULL_RTX, if_false_label, NULL_RTX);
9688 if (if_true_label)
9689 emit_jump (if_true_label);
9690 if (drop_through_label)
9691 emit_label (drop_through_label);
9694 /* Jump according to whether OP0 is 0.
9695 We assume that OP0 has an integer mode that is too wide
9696 for the available compare insns. */
9698 void
9699 do_jump_by_parts_equality_rtx (op0, if_false_label, if_true_label)
9700 rtx op0;
9701 rtx if_false_label, if_true_label;
9703 int nwords = GET_MODE_SIZE (GET_MODE (op0)) / UNITS_PER_WORD;
9704 rtx part;
9705 int i;
9706 rtx drop_through_label = 0;
9708 /* The fastest way of doing this comparison on almost any machine is to
9709 "or" all the words and compare the result. If all have to be loaded
9710 from memory and this is a very wide item, it's possible this may
9711 be slower, but that's highly unlikely. */
9713 part = gen_reg_rtx (word_mode);
9714 emit_move_insn (part, operand_subword_force (op0, 0, GET_MODE (op0)));
9715 for (i = 1; i < nwords && part != 0; i++)
9716 part = expand_binop (word_mode, ior_optab, part,
9717 operand_subword_force (op0, i, GET_MODE (op0)),
9718 part, 1, OPTAB_WIDEN);
9720 if (part != 0)
9722 do_compare_rtx_and_jump (part, const0_rtx, EQ, 1, word_mode,
9723 NULL_RTX, if_false_label, if_true_label);
9725 return;
9728 /* If we couldn't do the "or" simply, do this with a series of compares. */
9729 if (! if_false_label)
9730 drop_through_label = if_false_label = gen_label_rtx ();
9732 for (i = 0; i < nwords; i++)
9733 do_compare_rtx_and_jump (operand_subword_force (op0, i, GET_MODE (op0)),
9734 const0_rtx, EQ, 1, word_mode, NULL_RTX,
9735 if_false_label, NULL_RTX);
9737 if (if_true_label)
9738 emit_jump (if_true_label);
9740 if (drop_through_label)
9741 emit_label (drop_through_label);
9744 /* Generate code for a comparison of OP0 and OP1 with rtx code CODE.
9745 (including code to compute the values to be compared)
9746 and set (CC0) according to the result.
9747 The decision as to signed or unsigned comparison must be made by the caller.
9749 We force a stack adjustment unless there are currently
9750 things pushed on the stack that aren't yet used.
9752 If MODE is BLKmode, SIZE is an RTX giving the size of the objects being
9753 compared. */
9756 compare_from_rtx (op0, op1, code, unsignedp, mode, size)
9757 rtx op0, op1;
9758 enum rtx_code code;
9759 int unsignedp;
9760 enum machine_mode mode;
9761 rtx size;
9763 rtx tem;
9765 /* If one operand is constant, make it the second one. Only do this
9766 if the other operand is not constant as well. */
9768 if (swap_commutative_operands_p (op0, op1))
9770 tem = op0;
9771 op0 = op1;
9772 op1 = tem;
9773 code = swap_condition (code);
9776 if (flag_force_mem)
9778 op0 = force_not_mem (op0);
9779 op1 = force_not_mem (op1);
9782 do_pending_stack_adjust ();
9784 if (GET_CODE (op0) == CONST_INT && GET_CODE (op1) == CONST_INT
9785 && (tem = simplify_relational_operation (code, mode, op0, op1)) != 0)
9786 return tem;
9788 #if 0
9789 /* There's no need to do this now that combine.c can eliminate lots of
9790 sign extensions. This can be less efficient in certain cases on other
9791 machines. */
9793 /* If this is a signed equality comparison, we can do it as an
9794 unsigned comparison since zero-extension is cheaper than sign
9795 extension and comparisons with zero are done as unsigned. This is
9796 the case even on machines that can do fast sign extension, since
9797 zero-extension is easier to combine with other operations than
9798 sign-extension is. If we are comparing against a constant, we must
9799 convert it to what it would look like unsigned. */
9800 if ((code == EQ || code == NE) && ! unsignedp
9801 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
9803 if (GET_CODE (op1) == CONST_INT
9804 && (INTVAL (op1) & GET_MODE_MASK (GET_MODE (op0))) != INTVAL (op1))
9805 op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (GET_MODE (op0)));
9806 unsignedp = 1;
9808 #endif
9810 emit_cmp_insn (op0, op1, code, size, mode, unsignedp);
9812 return gen_rtx_fmt_ee (code, VOIDmode, cc0_rtx, const0_rtx);
9815 /* Like do_compare_and_jump but expects the values to compare as two rtx's.
9816 The decision as to signed or unsigned comparison must be made by the caller.
9818 If MODE is BLKmode, SIZE is an RTX giving the size of the objects being
9819 compared. */
9821 void
9822 do_compare_rtx_and_jump (op0, op1, code, unsignedp, mode, size,
9823 if_false_label, if_true_label)
9824 rtx op0, op1;
9825 enum rtx_code code;
9826 int unsignedp;
9827 enum machine_mode mode;
9828 rtx size;
9829 rtx if_false_label, if_true_label;
9831 rtx tem;
9832 int dummy_true_label = 0;
9834 /* Reverse the comparison if that is safe and we want to jump if it is
9835 false. */
9836 if (! if_true_label && ! FLOAT_MODE_P (mode))
9838 if_true_label = if_false_label;
9839 if_false_label = 0;
9840 code = reverse_condition (code);
9843 /* If one operand is constant, make it the second one. Only do this
9844 if the other operand is not constant as well. */
9846 if (swap_commutative_operands_p (op0, op1))
9848 tem = op0;
9849 op0 = op1;
9850 op1 = tem;
9851 code = swap_condition (code);
9854 if (flag_force_mem)
9856 op0 = force_not_mem (op0);
9857 op1 = force_not_mem (op1);
9860 do_pending_stack_adjust ();
9862 if (GET_CODE (op0) == CONST_INT && GET_CODE (op1) == CONST_INT
9863 && (tem = simplify_relational_operation (code, mode, op0, op1)) != 0)
9865 if (tem == const_true_rtx)
9867 if (if_true_label)
9868 emit_jump (if_true_label);
9870 else
9872 if (if_false_label)
9873 emit_jump (if_false_label);
9875 return;
9878 #if 0
9879 /* There's no need to do this now that combine.c can eliminate lots of
9880 sign extensions. This can be less efficient in certain cases on other
9881 machines. */
9883 /* If this is a signed equality comparison, we can do it as an
9884 unsigned comparison since zero-extension is cheaper than sign
9885 extension and comparisons with zero are done as unsigned. This is
9886 the case even on machines that can do fast sign extension, since
9887 zero-extension is easier to combine with other operations than
9888 sign-extension is. If we are comparing against a constant, we must
9889 convert it to what it would look like unsigned. */
9890 if ((code == EQ || code == NE) && ! unsignedp
9891 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
9893 if (GET_CODE (op1) == CONST_INT
9894 && (INTVAL (op1) & GET_MODE_MASK (GET_MODE (op0))) != INTVAL (op1))
9895 op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (GET_MODE (op0)));
9896 unsignedp = 1;
9898 #endif
9900 if (! if_true_label)
9902 dummy_true_label = 1;
9903 if_true_label = gen_label_rtx ();
9906 emit_cmp_and_jump_insns (op0, op1, code, size, mode, unsignedp,
9907 if_true_label);
9909 if (if_false_label)
9910 emit_jump (if_false_label);
9911 if (dummy_true_label)
9912 emit_label (if_true_label);
9915 /* Generate code for a comparison expression EXP (including code to compute
9916 the values to be compared) and a conditional jump to IF_FALSE_LABEL and/or
9917 IF_TRUE_LABEL. One of the labels can be NULL_RTX, in which case the
9918 generated code will drop through.
9919 SIGNED_CODE should be the rtx operation for this comparison for
9920 signed data; UNSIGNED_CODE, likewise for use if data is unsigned.
9922 We force a stack adjustment unless there are currently
9923 things pushed on the stack that aren't yet used. */
9925 static void
9926 do_compare_and_jump (exp, signed_code, unsigned_code, if_false_label,
9927 if_true_label)
9928 tree exp;
9929 enum rtx_code signed_code, unsigned_code;
9930 rtx if_false_label, if_true_label;
9932 rtx op0, op1;
9933 tree type;
9934 enum machine_mode mode;
9935 int unsignedp;
9936 enum rtx_code code;
9938 /* Don't crash if the comparison was erroneous. */
9939 op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, VOIDmode, 0);
9940 if (TREE_CODE (TREE_OPERAND (exp, 0)) == ERROR_MARK)
9941 return;
9943 op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX, VOIDmode, 0);
9944 if (TREE_CODE (TREE_OPERAND (exp, 1)) == ERROR_MARK)
9945 return;
9947 type = TREE_TYPE (TREE_OPERAND (exp, 0));
9948 mode = TYPE_MODE (type);
9949 if (TREE_CODE (TREE_OPERAND (exp, 0)) == INTEGER_CST
9950 && (TREE_CODE (TREE_OPERAND (exp, 1)) != INTEGER_CST
9951 || (GET_MODE_BITSIZE (mode)
9952 > GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp,
9953 1)))))))
9955 /* op0 might have been replaced by promoted constant, in which
9956 case the type of second argument should be used. */
9957 type = TREE_TYPE (TREE_OPERAND (exp, 1));
9958 mode = TYPE_MODE (type);
9960 unsignedp = TREE_UNSIGNED (type);
9961 code = unsignedp ? unsigned_code : signed_code;
9963 #ifdef HAVE_canonicalize_funcptr_for_compare
9964 /* If function pointers need to be "canonicalized" before they can
9965 be reliably compared, then canonicalize them. */
9966 if (HAVE_canonicalize_funcptr_for_compare
9967 && TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == POINTER_TYPE
9968 && (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))))
9969 == FUNCTION_TYPE))
9971 rtx new_op0 = gen_reg_rtx (mode);
9973 emit_insn (gen_canonicalize_funcptr_for_compare (new_op0, op0));
9974 op0 = new_op0;
9977 if (HAVE_canonicalize_funcptr_for_compare
9978 && TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 1))) == POINTER_TYPE
9979 && (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 1))))
9980 == FUNCTION_TYPE))
9982 rtx new_op1 = gen_reg_rtx (mode);
9984 emit_insn (gen_canonicalize_funcptr_for_compare (new_op1, op1));
9985 op1 = new_op1;
9987 #endif
9989 /* Do any postincrements in the expression that was tested. */
9990 emit_queue ();
9992 do_compare_rtx_and_jump (op0, op1, code, unsignedp, mode,
9993 ((mode == BLKmode)
9994 ? expr_size (TREE_OPERAND (exp, 0)) : NULL_RTX),
9995 if_false_label, if_true_label);
9998 /* Generate code to calculate EXP using a store-flag instruction
9999 and return an rtx for the result. EXP is either a comparison
10000 or a TRUTH_NOT_EXPR whose operand is a comparison.
10002 If TARGET is nonzero, store the result there if convenient.
10004 If ONLY_CHEAP is non-zero, only do this if it is likely to be very
10005 cheap.
10007 Return zero if there is no suitable set-flag instruction
10008 available on this machine.
10010 Once expand_expr has been called on the arguments of the comparison,
10011 we are committed to doing the store flag, since it is not safe to
10012 re-evaluate the expression. We emit the store-flag insn by calling
10013 emit_store_flag, but only expand the arguments if we have a reason
10014 to believe that emit_store_flag will be successful. If we think that
10015 it will, but it isn't, we have to simulate the store-flag with a
10016 set/jump/set sequence. */
10018 static rtx
10019 do_store_flag (exp, target, mode, only_cheap)
10020 tree exp;
10021 rtx target;
10022 enum machine_mode mode;
10023 int only_cheap;
10025 enum rtx_code code;
10026 tree arg0, arg1, type;
10027 tree tem;
10028 enum machine_mode operand_mode;
10029 int invert = 0;
10030 int unsignedp;
10031 rtx op0, op1;
10032 enum insn_code icode;
10033 rtx subtarget = target;
10034 rtx result, label;
10036 /* If this is a TRUTH_NOT_EXPR, set a flag indicating we must invert the
10037 result at the end. We can't simply invert the test since it would
10038 have already been inverted if it were valid. This case occurs for
10039 some floating-point comparisons. */
10041 if (TREE_CODE (exp) == TRUTH_NOT_EXPR)
10042 invert = 1, exp = TREE_OPERAND (exp, 0);
10044 arg0 = TREE_OPERAND (exp, 0);
10045 arg1 = TREE_OPERAND (exp, 1);
10047 /* Don't crash if the comparison was erroneous. */
10048 if (arg0 == error_mark_node || arg1 == error_mark_node)
10049 return const0_rtx;
10051 type = TREE_TYPE (arg0);
10052 operand_mode = TYPE_MODE (type);
10053 unsignedp = TREE_UNSIGNED (type);
10055 /* We won't bother with BLKmode store-flag operations because it would mean
10056 passing a lot of information to emit_store_flag. */
10057 if (operand_mode == BLKmode)
10058 return 0;
10060 /* We won't bother with store-flag operations involving function pointers
10061 when function pointers must be canonicalized before comparisons. */
10062 #ifdef HAVE_canonicalize_funcptr_for_compare
10063 if (HAVE_canonicalize_funcptr_for_compare
10064 && ((TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == POINTER_TYPE
10065 && (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))))
10066 == FUNCTION_TYPE))
10067 || (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 1))) == POINTER_TYPE
10068 && (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 1))))
10069 == FUNCTION_TYPE))))
10070 return 0;
10071 #endif
10073 STRIP_NOPS (arg0);
10074 STRIP_NOPS (arg1);
10076 /* Get the rtx comparison code to use. We know that EXP is a comparison
10077 operation of some type. Some comparisons against 1 and -1 can be
10078 converted to comparisons with zero. Do so here so that the tests
10079 below will be aware that we have a comparison with zero. These
10080 tests will not catch constants in the first operand, but constants
10081 are rarely passed as the first operand. */
10083 switch (TREE_CODE (exp))
10085 case EQ_EXPR:
10086 code = EQ;
10087 break;
10088 case NE_EXPR:
10089 code = NE;
10090 break;
10091 case LT_EXPR:
10092 if (integer_onep (arg1))
10093 arg1 = integer_zero_node, code = unsignedp ? LEU : LE;
10094 else
10095 code = unsignedp ? LTU : LT;
10096 break;
10097 case LE_EXPR:
10098 if (! unsignedp && integer_all_onesp (arg1))
10099 arg1 = integer_zero_node, code = LT;
10100 else
10101 code = unsignedp ? LEU : LE;
10102 break;
10103 case GT_EXPR:
10104 if (! unsignedp && integer_all_onesp (arg1))
10105 arg1 = integer_zero_node, code = GE;
10106 else
10107 code = unsignedp ? GTU : GT;
10108 break;
10109 case GE_EXPR:
10110 if (integer_onep (arg1))
10111 arg1 = integer_zero_node, code = unsignedp ? GTU : GT;
10112 else
10113 code = unsignedp ? GEU : GE;
10114 break;
10116 case UNORDERED_EXPR:
10117 code = UNORDERED;
10118 break;
10119 case ORDERED_EXPR:
10120 code = ORDERED;
10121 break;
10122 case UNLT_EXPR:
10123 code = UNLT;
10124 break;
10125 case UNLE_EXPR:
10126 code = UNLE;
10127 break;
10128 case UNGT_EXPR:
10129 code = UNGT;
10130 break;
10131 case UNGE_EXPR:
10132 code = UNGE;
10133 break;
10134 case UNEQ_EXPR:
10135 code = UNEQ;
10136 break;
10138 default:
10139 abort ();
10142 /* Put a constant second. */
10143 if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST)
10145 tem = arg0; arg0 = arg1; arg1 = tem;
10146 code = swap_condition (code);
10149 /* If this is an equality or inequality test of a single bit, we can
10150 do this by shifting the bit being tested to the low-order bit and
10151 masking the result with the constant 1. If the condition was EQ,
10152 we xor it with 1. This does not require an scc insn and is faster
10153 than an scc insn even if we have it. */
10155 if ((code == NE || code == EQ)
10156 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
10157 && integer_pow2p (TREE_OPERAND (arg0, 1)))
10159 tree inner = TREE_OPERAND (arg0, 0);
10160 int bitnum = tree_log2 (TREE_OPERAND (arg0, 1));
10161 int ops_unsignedp;
10163 /* If INNER is a right shift of a constant and it plus BITNUM does
10164 not overflow, adjust BITNUM and INNER. */
10166 if (TREE_CODE (inner) == RSHIFT_EXPR
10167 && TREE_CODE (TREE_OPERAND (inner, 1)) == INTEGER_CST
10168 && TREE_INT_CST_HIGH (TREE_OPERAND (inner, 1)) == 0
10169 && bitnum < TYPE_PRECISION (type)
10170 && 0 > compare_tree_int (TREE_OPERAND (inner, 1),
10171 bitnum - TYPE_PRECISION (type)))
10173 bitnum += TREE_INT_CST_LOW (TREE_OPERAND (inner, 1));
10174 inner = TREE_OPERAND (inner, 0);
10177 /* If we are going to be able to omit the AND below, we must do our
10178 operations as unsigned. If we must use the AND, we have a choice.
10179 Normally unsigned is faster, but for some machines signed is. */
10180 ops_unsignedp = (bitnum == TYPE_PRECISION (type) - 1 ? 1
10181 #ifdef LOAD_EXTEND_OP
10182 : (LOAD_EXTEND_OP (operand_mode) == SIGN_EXTEND ? 0 : 1)
10183 #else
10185 #endif
10188 if (! get_subtarget (subtarget)
10189 || GET_MODE (subtarget) != operand_mode
10190 || ! safe_from_p (subtarget, inner, 1))
10191 subtarget = 0;
10193 op0 = expand_expr (inner, subtarget, VOIDmode, 0);
10195 if (bitnum != 0)
10196 op0 = expand_shift (RSHIFT_EXPR, operand_mode, op0,
10197 size_int (bitnum), subtarget, ops_unsignedp);
10199 if (GET_MODE (op0) != mode)
10200 op0 = convert_to_mode (mode, op0, ops_unsignedp);
10202 if ((code == EQ && ! invert) || (code == NE && invert))
10203 op0 = expand_binop (mode, xor_optab, op0, const1_rtx, subtarget,
10204 ops_unsignedp, OPTAB_LIB_WIDEN);
10206 /* Put the AND last so it can combine with more things. */
10207 if (bitnum != TYPE_PRECISION (type) - 1)
10208 op0 = expand_and (mode, op0, const1_rtx, subtarget);
10210 return op0;
10213 /* Now see if we are likely to be able to do this. Return if not. */
10214 if (! can_compare_p (code, operand_mode, ccp_store_flag))
10215 return 0;
10217 icode = setcc_gen_code[(int) code];
10218 if (icode == CODE_FOR_nothing
10219 || (only_cheap && insn_data[(int) icode].operand[0].mode != mode))
10221 /* We can only do this if it is one of the special cases that
10222 can be handled without an scc insn. */
10223 if ((code == LT && integer_zerop (arg1))
10224 || (! only_cheap && code == GE && integer_zerop (arg1)))
10226 else if (BRANCH_COST >= 0
10227 && ! only_cheap && (code == NE || code == EQ)
10228 && TREE_CODE (type) != REAL_TYPE
10229 && ((abs_optab->handlers[(int) operand_mode].insn_code
10230 != CODE_FOR_nothing)
10231 || (ffs_optab->handlers[(int) operand_mode].insn_code
10232 != CODE_FOR_nothing)))
10234 else
10235 return 0;
10238 if (! get_subtarget (target)
10239 || GET_MODE (subtarget) != operand_mode
10240 || ! safe_from_p (subtarget, arg1, 1))
10241 subtarget = 0;
10243 op0 = expand_expr (arg0, subtarget, VOIDmode, 0);
10244 op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0);
10246 if (target == 0)
10247 target = gen_reg_rtx (mode);
10249 /* Pass copies of OP0 and OP1 in case they contain a QUEUED. This is safe
10250 because, if the emit_store_flag does anything it will succeed and
10251 OP0 and OP1 will not be used subsequently. */
10253 result = emit_store_flag (target, code,
10254 queued_subexp_p (op0) ? copy_rtx (op0) : op0,
10255 queued_subexp_p (op1) ? copy_rtx (op1) : op1,
10256 operand_mode, unsignedp, 1);
10258 if (result)
10260 if (invert)
10261 result = expand_binop (mode, xor_optab, result, const1_rtx,
10262 result, 0, OPTAB_LIB_WIDEN);
10263 return result;
10266 /* If this failed, we have to do this with set/compare/jump/set code. */
10267 if (GET_CODE (target) != REG
10268 || reg_mentioned_p (target, op0) || reg_mentioned_p (target, op1))
10269 target = gen_reg_rtx (GET_MODE (target));
10271 emit_move_insn (target, invert ? const0_rtx : const1_rtx);
10272 result = compare_from_rtx (op0, op1, code, unsignedp,
10273 operand_mode, NULL_RTX);
10274 if (GET_CODE (result) == CONST_INT)
10275 return (((result == const0_rtx && ! invert)
10276 || (result != const0_rtx && invert))
10277 ? const0_rtx : const1_rtx);
10279 /* The code of RESULT may not match CODE if compare_from_rtx
10280 decided to swap its operands and reverse the original code.
10282 We know that compare_from_rtx returns either a CONST_INT or
10283 a new comparison code, so it is safe to just extract the
10284 code from RESULT. */
10285 code = GET_CODE (result);
10287 label = gen_label_rtx ();
10288 if (bcc_gen_fctn[(int) code] == 0)
10289 abort ();
10291 emit_jump_insn ((*bcc_gen_fctn[(int) code]) (label));
10292 emit_move_insn (target, invert ? const1_rtx : const0_rtx);
10293 emit_label (label);
10295 return target;
10299 /* Stubs in case we haven't got a casesi insn. */
10300 #ifndef HAVE_casesi
10301 # define HAVE_casesi 0
10302 # define gen_casesi(a, b, c, d, e) (0)
10303 # define CODE_FOR_casesi CODE_FOR_nothing
10304 #endif
10306 /* If the machine does not have a case insn that compares the bounds,
10307 this means extra overhead for dispatch tables, which raises the
10308 threshold for using them. */
10309 #ifndef CASE_VALUES_THRESHOLD
10310 #define CASE_VALUES_THRESHOLD (HAVE_casesi ? 4 : 5)
10311 #endif /* CASE_VALUES_THRESHOLD */
10313 unsigned int
10314 case_values_threshold ()
10316 return CASE_VALUES_THRESHOLD;
10319 /* Attempt to generate a casesi instruction. Returns 1 if successful,
10320 0 otherwise (i.e. if there is no casesi instruction). */
10322 try_casesi (index_type, index_expr, minval, range,
10323 table_label, default_label)
10324 tree index_type, index_expr, minval, range;
10325 rtx table_label ATTRIBUTE_UNUSED;
10326 rtx default_label;
10328 enum machine_mode index_mode = SImode;
10329 int index_bits = GET_MODE_BITSIZE (index_mode);
10330 rtx op1, op2, index;
10331 enum machine_mode op_mode;
10333 if (! HAVE_casesi)
10334 return 0;
10336 /* Convert the index to SImode. */
10337 if (GET_MODE_BITSIZE (TYPE_MODE (index_type)) > GET_MODE_BITSIZE (index_mode))
10339 enum machine_mode omode = TYPE_MODE (index_type);
10340 rtx rangertx = expand_expr (range, NULL_RTX, VOIDmode, 0);
10342 /* We must handle the endpoints in the original mode. */
10343 index_expr = build (MINUS_EXPR, index_type,
10344 index_expr, minval);
10345 minval = integer_zero_node;
10346 index = expand_expr (index_expr, NULL_RTX, VOIDmode, 0);
10347 emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX,
10348 omode, 1, default_label);
10349 /* Now we can safely truncate. */
10350 index = convert_to_mode (index_mode, index, 0);
10352 else
10354 if (TYPE_MODE (index_type) != index_mode)
10356 index_expr = convert (type_for_size (index_bits, 0),
10357 index_expr);
10358 index_type = TREE_TYPE (index_expr);
10361 index = expand_expr (index_expr, NULL_RTX, VOIDmode, 0);
10363 emit_queue ();
10364 index = protect_from_queue (index, 0);
10365 do_pending_stack_adjust ();
10367 op_mode = insn_data[(int) CODE_FOR_casesi].operand[0].mode;
10368 if (! (*insn_data[(int) CODE_FOR_casesi].operand[0].predicate)
10369 (index, op_mode))
10370 index = copy_to_mode_reg (op_mode, index);
10372 op1 = expand_expr (minval, NULL_RTX, VOIDmode, 0);
10374 op_mode = insn_data[(int) CODE_FOR_casesi].operand[1].mode;
10375 op1 = convert_modes (op_mode, TYPE_MODE (TREE_TYPE (minval)),
10376 op1, TREE_UNSIGNED (TREE_TYPE (minval)));
10377 if (! (*insn_data[(int) CODE_FOR_casesi].operand[1].predicate)
10378 (op1, op_mode))
10379 op1 = copy_to_mode_reg (op_mode, op1);
10381 op2 = expand_expr (range, NULL_RTX, VOIDmode, 0);
10383 op_mode = insn_data[(int) CODE_FOR_casesi].operand[2].mode;
10384 op2 = convert_modes (op_mode, TYPE_MODE (TREE_TYPE (range)),
10385 op2, TREE_UNSIGNED (TREE_TYPE (range)));
10386 if (! (*insn_data[(int) CODE_FOR_casesi].operand[2].predicate)
10387 (op2, op_mode))
10388 op2 = copy_to_mode_reg (op_mode, op2);
10390 emit_jump_insn (gen_casesi (index, op1, op2,
10391 table_label, default_label));
10392 return 1;
10395 /* Attempt to generate a tablejump instruction; same concept. */
10396 #ifndef HAVE_tablejump
10397 #define HAVE_tablejump 0
10398 #define gen_tablejump(x, y) (0)
10399 #endif
10401 /* Subroutine of the next function.
10403 INDEX is the value being switched on, with the lowest value
10404 in the table already subtracted.
10405 MODE is its expected mode (needed if INDEX is constant).
10406 RANGE is the length of the jump table.
10407 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
10409 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
10410 index value is out of range. */
10412 static void
10413 do_tablejump (index, mode, range, table_label, default_label)
10414 rtx index, range, table_label, default_label;
10415 enum machine_mode mode;
10417 rtx temp, vector;
10419 /* Do an unsigned comparison (in the proper mode) between the index
10420 expression and the value which represents the length of the range.
10421 Since we just finished subtracting the lower bound of the range
10422 from the index expression, this comparison allows us to simultaneously
10423 check that the original index expression value is both greater than
10424 or equal to the minimum value of the range and less than or equal to
10425 the maximum value of the range. */
10427 emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1,
10428 default_label);
10430 /* If index is in range, it must fit in Pmode.
10431 Convert to Pmode so we can index with it. */
10432 if (mode != Pmode)
10433 index = convert_to_mode (Pmode, index, 1);
10435 /* Don't let a MEM slip thru, because then INDEX that comes
10436 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
10437 and break_out_memory_refs will go to work on it and mess it up. */
10438 #ifdef PIC_CASE_VECTOR_ADDRESS
10439 if (flag_pic && GET_CODE (index) != REG)
10440 index = copy_to_mode_reg (Pmode, index);
10441 #endif
10443 /* If flag_force_addr were to affect this address
10444 it could interfere with the tricky assumptions made
10445 about addresses that contain label-refs,
10446 which may be valid only very near the tablejump itself. */
10447 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
10448 GET_MODE_SIZE, because this indicates how large insns are. The other
10449 uses should all be Pmode, because they are addresses. This code
10450 could fail if addresses and insns are not the same size. */
10451 index = gen_rtx_PLUS (Pmode,
10452 gen_rtx_MULT (Pmode, index,
10453 GEN_INT (GET_MODE_SIZE (CASE_VECTOR_MODE))),
10454 gen_rtx_LABEL_REF (Pmode, table_label));
10455 #ifdef PIC_CASE_VECTOR_ADDRESS
10456 if (flag_pic)
10457 index = PIC_CASE_VECTOR_ADDRESS (index);
10458 else
10459 #endif
10460 index = memory_address_noforce (CASE_VECTOR_MODE, index);
10461 temp = gen_reg_rtx (CASE_VECTOR_MODE);
10462 vector = gen_rtx_MEM (CASE_VECTOR_MODE, index);
10463 RTX_UNCHANGING_P (vector) = 1;
10464 convert_move (temp, vector, 0);
10466 emit_jump_insn (gen_tablejump (temp, table_label));
10468 /* If we are generating PIC code or if the table is PC-relative, the
10469 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
10470 if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic)
10471 emit_barrier ();
10475 try_tablejump (index_type, index_expr, minval, range,
10476 table_label, default_label)
10477 tree index_type, index_expr, minval, range;
10478 rtx table_label, default_label;
10480 rtx index;
10482 if (! HAVE_tablejump)
10483 return 0;
10485 index_expr = fold (build (MINUS_EXPR, index_type,
10486 convert (index_type, index_expr),
10487 convert (index_type, minval)));
10488 index = expand_expr (index_expr, NULL_RTX, VOIDmode, 0);
10489 emit_queue ();
10490 index = protect_from_queue (index, 0);
10491 do_pending_stack_adjust ();
10493 do_tablejump (index, TYPE_MODE (index_type),
10494 convert_modes (TYPE_MODE (index_type),
10495 TYPE_MODE (TREE_TYPE (range)),
10496 expand_expr (range, NULL_RTX,
10497 VOIDmode, 0),
10498 TREE_UNSIGNED (TREE_TYPE (range))),
10499 table_label, default_label);
10500 return 1;