Add hppa*-*-hpux* to targets which do not support split DWARF
[official-gcc.git] / gcc / config / s390 / s390.h
blob0e6666a8802fa3fcc7e4cf6b45d54b317c1ba2c8
1 /* Definitions of target machine for GNU compiler, for IBM S/390
2 Copyright (C) 1999-2024 Free Software Foundation, Inc.
3 Contributed by Hartmut Penner (hpenner@de.ibm.com) and
4 Ulrich Weigand (uweigand@de.ibm.com).
5 Andreas Krebbel (Andreas.Krebbel@de.ibm.com)
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 #ifndef _S390_H
24 #define _S390_H
26 /* Optional architectural facilities supported by the processor. */
28 enum processor_flags
30 PF_IEEE_FLOAT = 1,
31 PF_ZARCH = 2,
32 PF_LONG_DISPLACEMENT = 4,
33 PF_EXTIMM = 8,
34 PF_DFP = 16,
35 PF_Z10 = 32,
36 PF_Z196 = 64,
37 PF_ZEC12 = 128,
38 PF_TX = 256,
39 PF_Z13 = 512,
40 PF_VX = 1024,
41 PF_Z14 = 2048,
42 PF_VXE = 4096,
43 PF_VXE2 = 8192,
44 PF_Z15 = 16384,
45 PF_NNPA = 32768,
46 PF_Z16 = 65536
49 /* This is necessary to avoid a warning about comparing different enum
50 types. */
51 #define s390_tune_attr ((enum attr_cpu)(s390_tune > PROCESSOR_3931_Z16 ? PROCESSOR_3931_Z16 : s390_tune ))
53 /* These flags indicate that the generated code should run on a cpu
54 providing the respective hardware facility regardless of the
55 current cpu mode (ESA or z/Architecture). */
57 #define TARGET_CPU_IEEE_FLOAT \
58 (s390_arch_flags & PF_IEEE_FLOAT)
59 #define TARGET_CPU_IEEE_FLOAT_P(opts) \
60 (opts->x_s390_arch_flags & PF_IEEE_FLOAT)
61 #define TARGET_CPU_LONG_DISPLACEMENT \
62 (s390_arch_flags & PF_LONG_DISPLACEMENT)
63 #define TARGET_CPU_LONG_DISPLACEMENT_P(opts) \
64 (opts->x_s390_arch_flags & PF_LONG_DISPLACEMENT)
65 #define TARGET_CPU_EXTIMM \
66 (s390_arch_flags & PF_EXTIMM)
67 #define TARGET_CPU_EXTIMM_P(opts) \
68 (opts->x_s390_arch_flags & PF_EXTIMM)
69 #define TARGET_CPU_DFP \
70 (s390_arch_flags & PF_DFP)
71 #define TARGET_CPU_DFP_P(opts) \
72 (opts->x_s390_arch_flags & PF_DFP)
73 #define TARGET_CPU_Z10 \
74 (s390_arch_flags & PF_Z10)
75 #define TARGET_CPU_Z10_P(opts) \
76 (opts->x_s390_arch_flags & PF_Z10)
77 #define TARGET_CPU_Z196 \
78 (s390_arch_flags & PF_Z196)
79 #define TARGET_CPU_Z196_P(opts) \
80 (opts->x_s390_arch_flags & PF_Z196)
81 #define TARGET_CPU_ZEC12 \
82 (s390_arch_flags & PF_ZEC12)
83 #define TARGET_CPU_ZEC12_P(opts) \
84 (opts->x_s390_arch_flags & PF_ZEC12)
85 #define TARGET_CPU_HTM \
86 (s390_arch_flags & PF_TX)
87 #define TARGET_CPU_HTM_P(opts) \
88 (opts->x_s390_arch_flags & PF_TX)
89 #define TARGET_CPU_Z13 \
90 (s390_arch_flags & PF_Z13)
91 #define TARGET_CPU_Z13_P(opts) \
92 (opts->x_s390_arch_flags & PF_Z13)
93 #define TARGET_CPU_VX \
94 (s390_arch_flags & PF_VX)
95 #define TARGET_CPU_VX_P(opts) \
96 (opts->x_s390_arch_flags & PF_VX)
97 #define TARGET_CPU_Z14 \
98 (s390_arch_flags & PF_Z14)
99 #define TARGET_CPU_Z14_P(opts) \
100 (opts->x_s390_arch_flags & PF_Z14)
101 #define TARGET_CPU_VXE \
102 (s390_arch_flags & PF_VXE)
103 #define TARGET_CPU_VXE_P(opts) \
104 (opts->x_s390_arch_flags & PF_VXE)
105 #define TARGET_CPU_Z15 \
106 (s390_arch_flags & PF_Z15)
107 #define TARGET_CPU_Z15_P(opts) \
108 (opts->x_s390_arch_flags & PF_Z15)
109 #define TARGET_CPU_VXE2 \
110 (s390_arch_flags & PF_VXE2)
111 #define TARGET_CPU_VXE2_P(opts) \
112 (opts->x_s390_arch_flags & PF_VXE2)
113 #define TARGET_CPU_Z16 \
114 (s390_arch_flags & PF_Z16)
115 #define TARGET_CPU_Z16_P(opts) \
116 (opts->x_s390_arch_flags & PF_Z16)
117 #define TARGET_CPU_NNPA \
118 (s390_arch_flags & PF_NNPA)
119 #define TARGET_CPU_NNPA_P(opts) \
120 (opts->x_s390_arch_flags & PF_NNPA)
122 #define TARGET_HARD_FLOAT_P(opts) (!TARGET_SOFT_FLOAT_P(opts))
124 /* These flags indicate that the generated code should run on a cpu
125 providing the respective hardware facility when run in
126 z/Architecture mode. */
128 #define TARGET_LONG_DISPLACEMENT \
129 (TARGET_ZARCH && TARGET_CPU_LONG_DISPLACEMENT)
130 #define TARGET_LONG_DISPLACEMENT_P(opts) \
131 (TARGET_ZARCH_P (opts->x_target_flags) \
132 && TARGET_CPU_LONG_DISPLACEMENT_P (opts))
133 #define TARGET_EXTIMM \
134 (TARGET_ZARCH && TARGET_CPU_EXTIMM)
135 #define TARGET_EXTIMM_P(opts) \
136 (TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_EXTIMM_P (opts))
137 #define TARGET_DFP \
138 (TARGET_ZARCH && TARGET_CPU_DFP && TARGET_HARD_FLOAT)
139 #define TARGET_DFP_P(opts) \
140 (TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_DFP_P (opts) \
141 && TARGET_HARD_FLOAT_P (opts->x_target_flags))
142 #define TARGET_Z10 \
143 (TARGET_ZARCH && TARGET_CPU_Z10)
144 #define TARGET_Z10_P(opts) \
145 (TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_Z10_P (opts))
146 #define TARGET_Z196 \
147 (TARGET_ZARCH && TARGET_CPU_Z196)
148 #define TARGET_Z196_P(opts) \
149 (TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_Z196_P (opts))
150 #define TARGET_ZEC12 \
151 (TARGET_ZARCH && TARGET_CPU_ZEC12)
152 #define TARGET_ZEC12_P(opts) \
153 (TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_ZEC12_P (opts))
154 #define TARGET_HTM (TARGET_OPT_HTM)
155 #define TARGET_HTM_P(opts) (TARGET_OPT_HTM_P (opts->x_target_flags))
156 #define TARGET_Z13 \
157 (TARGET_ZARCH && TARGET_CPU_Z13)
158 #define TARGET_Z13_P(opts) \
159 (TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_Z13_P (opts))
160 #define TARGET_VX \
161 (TARGET_ZARCH && TARGET_CPU_VX && TARGET_OPT_VX && TARGET_HARD_FLOAT)
162 #define TARGET_VX_P(opts) \
163 (TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_VX_P (opts) \
164 && TARGET_OPT_VX_P (opts->x_target_flags) \
165 && TARGET_HARD_FLOAT_P (opts->x_target_flags))
166 #define TARGET_Z14 (TARGET_ZARCH && TARGET_CPU_Z14)
167 #define TARGET_Z14_P(opts) \
168 (TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_Z14_P (opts))
169 #define TARGET_VXE \
170 (TARGET_VX && TARGET_CPU_VXE)
171 #define TARGET_VXE_P(opts) \
172 (TARGET_VX_P (opts) && TARGET_CPU_VXE_P (opts))
173 #define TARGET_Z15 (TARGET_ZARCH && TARGET_CPU_Z15)
174 #define TARGET_Z15_P(opts) \
175 (TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_Z15_P (opts))
176 #define TARGET_VXE2 \
177 (TARGET_VX && TARGET_CPU_VXE2)
178 #define TARGET_VXE2_P(opts) \
179 (TARGET_VX_P (opts) && TARGET_CPU_VXE2_P (opts))
180 #define TARGET_Z16 (TARGET_ZARCH && TARGET_CPU_Z16)
181 #define TARGET_Z16_P(opts) \
182 (TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_Z16_P (opts))
183 #define TARGET_NNPA \
184 (TARGET_ZARCH && TARGET_CPU_NNPA)
185 #define TARGET_NNPA_P(opts) \
186 (TARGET_ZARCH_P (opts) && TARGET_CPU_NNPA_P (opts))
188 #if defined(HAVE_AS_VECTOR_LOADSTORE_ALIGNMENT_HINTS_ON_Z13)
189 #define TARGET_VECTOR_LOADSTORE_ALIGNMENT_HINTS TARGET_Z13
190 #elif defined(HAVE_AS_VECTOR_LOADSTORE_ALIGNMENT_HINTS)
191 #define TARGET_VECTOR_LOADSTORE_ALIGNMENT_HINTS TARGET_Z14
192 #else
193 #define TARGET_VECTOR_LOADSTORE_ALIGNMENT_HINTS 0
194 #endif
196 /* Evaluate to true if it is ok to emit a non-signaling vector
197 comparison. */
198 #define TARGET_NONSIGNALING_VECTOR_COMPARE_OK \
199 (TARGET_VX && !TARGET_VXE && (flag_finite_math_only || !flag_trapping_math))
201 #ifdef HAVE_AS_MACHINE_MACHINEMODE
202 #define S390_USE_TARGET_ATTRIBUTE 1
203 #else
204 #define S390_USE_TARGET_ATTRIBUTE 0
205 #endif
207 #ifdef HAVE_AS_ARCHITECTURE_MODIFIERS
208 #define S390_USE_ARCHITECTURE_MODIFIERS 1
209 #else
210 #define S390_USE_ARCHITECTURE_MODIFIERS 0
211 #endif
213 #if S390_USE_TARGET_ATTRIBUTE
214 /* For switching between functions with different target attributes. */
215 #define SWITCHABLE_TARGET 1
216 #endif
218 #define TARGET_SUPPORTS_WIDE_INT 1
220 /* Use the ABI introduced with IBM z13:
221 - pass vector arguments <= 16 bytes in VRs
222 - align *all* vector types to 8 bytes */
223 #define TARGET_VX_ABI TARGET_VX
225 #define TARGET_AVOID_CMP_AND_BRANCH (s390_tune == PROCESSOR_2817_Z196)
227 /* Issue a write prefetch for the +4 cache line. */
228 #define TARGET_SETMEM_PREFETCH_DISTANCE 1024
230 /* Expand to a C expressions evaluating to true if a setmem to VAL of
231 length LEN should be emitted using prefetch instructions. */
232 #define TARGET_SETMEM_PFD(VAL,LEN) \
233 (TARGET_Z10 \
234 && (s390_tune < PROCESSOR_2964_Z13 || (VAL) != const0_rtx) \
235 && (!CONST_INT_P (LEN) || INTVAL ((LEN)) > TARGET_SETMEM_PREFETCH_DISTANCE))
237 /* Run-time target specification. */
239 /* Defaults for option flags defined only on some subtargets. */
240 #ifndef TARGET_TPF_PROFILING
241 #define TARGET_TPF_PROFILING 0
242 #endif
244 /* This will be overridden by OS headers. */
245 #define TARGET_TPF 0
247 /* Target CPU builtins. */
248 #define TARGET_CPU_CPP_BUILTINS() s390_cpu_cpp_builtins (pfile)
250 #ifdef DEFAULT_TARGET_64BIT
251 #define TARGET_DEFAULT (MASK_64BIT | MASK_ZARCH | MASK_HARD_DFP \
252 | MASK_OPT_HTM | MASK_OPT_VX)
253 #else
254 #define TARGET_DEFAULT 0
255 #endif
257 /* Support for configure-time defaults.
258 The order here is important so that -march doesn't squash the
259 tune values. */
260 #define OPTION_DEFAULT_SPECS \
261 { "mode", "%{!mesa:%{!mzarch:-m%(VALUE)}}" }, \
262 { "tune", "%{!mtune=*:%{!march=*:-mtune=%(VALUE)}}" }, \
263 { "arch", "%{!march=*:-march=%(VALUE)}" }
265 #ifdef __s390__
266 extern const char *s390_host_detect_local_cpu (int argc, const char **argv);
267 # define EXTRA_SPEC_FUNCTIONS \
268 { "local_cpu_detect", s390_host_detect_local_cpu },
270 #define MARCH_MTUNE_NATIVE_SPECS \
271 "%{mtune=native:%<mtune=native %:local_cpu_detect(tune)} " \
272 "%{march=native:%<march=native" \
273 " %:local_cpu_detect(arch %{mesa|mzarch:mesa_mzarch})}"
274 #else
275 # define MARCH_MTUNE_NATIVE_SPECS ""
276 #endif
278 #ifdef DEFAULT_TARGET_64BIT
279 #define S390_TARGET_BITS_STRING "64"
280 #else
281 #define S390_TARGET_BITS_STRING "31"
282 #endif
284 /* Defaulting rules. */
285 #define DRIVER_SELF_SPECS \
286 MARCH_MTUNE_NATIVE_SPECS, \
287 "%{!m31:%{!m64:-m" S390_TARGET_BITS_STRING "}}", \
288 "%{!mesa:%{!mzarch:%{m31:-mesa}%{m64:-mzarch}}}", \
289 "%{!march=*:-march=z900}"
291 /* Constants needed to control the TEST DATA CLASS (TDC) instruction. */
292 #define S390_TDC_POSITIVE_ZERO (1 << 11)
293 #define S390_TDC_NEGATIVE_ZERO (1 << 10)
294 #define S390_TDC_POSITIVE_NORMALIZED_BFP_NUMBER (1 << 9)
295 #define S390_TDC_NEGATIVE_NORMALIZED_BFP_NUMBER (1 << 8)
296 #define S390_TDC_POSITIVE_DENORMALIZED_BFP_NUMBER (1 << 7)
297 #define S390_TDC_NEGATIVE_DENORMALIZED_BFP_NUMBER (1 << 6)
298 #define S390_TDC_POSITIVE_INFINITY (1 << 5)
299 #define S390_TDC_NEGATIVE_INFINITY (1 << 4)
300 #define S390_TDC_POSITIVE_QUIET_NAN (1 << 3)
301 #define S390_TDC_NEGATIVE_QUIET_NAN (1 << 2)
302 #define S390_TDC_POSITIVE_SIGNALING_NAN (1 << 1)
303 #define S390_TDC_NEGATIVE_SIGNALING_NAN (1 << 0)
305 /* The following values are different for DFP. */
306 #define S390_TDC_POSITIVE_DENORMALIZED_DFP_NUMBER (1 << 9)
307 #define S390_TDC_NEGATIVE_DENORMALIZED_DFP_NUMBER (1 << 8)
308 #define S390_TDC_POSITIVE_NORMALIZED_DFP_NUMBER (1 << 7)
309 #define S390_TDC_NEGATIVE_NORMALIZED_DFP_NUMBER (1 << 6)
311 /* For signbit, the BFP-DFP-difference makes no difference. */
312 #define S390_TDC_SIGNBIT_SET (S390_TDC_NEGATIVE_ZERO \
313 | S390_TDC_NEGATIVE_NORMALIZED_BFP_NUMBER \
314 | S390_TDC_NEGATIVE_DENORMALIZED_BFP_NUMBER\
315 | S390_TDC_NEGATIVE_INFINITY \
316 | S390_TDC_NEGATIVE_QUIET_NAN \
317 | S390_TDC_NEGATIVE_SIGNALING_NAN )
319 #define S390_TDC_INFINITY (S390_TDC_POSITIVE_INFINITY \
320 | S390_TDC_NEGATIVE_INFINITY )
322 /* Target machine storage layout. */
324 /* Everything is big-endian. */
325 #define BITS_BIG_ENDIAN 1
326 #define BYTES_BIG_ENDIAN 1
327 #define WORDS_BIG_ENDIAN 1
329 #define STACK_SIZE_MODE (Pmode)
331 /* Make the stack pointer to be moved downwards while issuing stack probes with
332 -fstack-check. We need this to prevent memory below the stack pointer from
333 being accessed. */
334 #define STACK_CHECK_MOVING_SP 1
336 #ifndef IN_LIBGCC2
338 /* Width of a word, in units (bytes). */
339 #define UNITS_PER_WORD (TARGET_ZARCH ? 8 : 4)
341 /* Width of a pointer. To be used instead of UNITS_PER_WORD in
342 ABI-relevant contexts. This always matches
343 GET_MODE_SIZE (Pmode). */
344 #define UNITS_PER_LONG (TARGET_64BIT ? 8 : 4)
345 #define MIN_UNITS_PER_WORD 4
346 #define MAX_BITS_PER_WORD 64
347 #else
349 /* In libgcc, UNITS_PER_WORD has ABI-relevant effects, e.g. whether
350 the library should export TImode functions or not. Thus, we have
351 to redefine UNITS_PER_WORD depending on __s390x__ for libgcc. */
352 #ifdef __s390x__
353 #define UNITS_PER_WORD 8
354 #else
355 #define UNITS_PER_WORD 4
356 #endif
357 #endif
359 /* Width of a pointer, in bits. */
360 #define POINTER_SIZE (TARGET_64BIT ? 64 : 32)
362 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
363 #define PARM_BOUNDARY (TARGET_64BIT ? 64 : 32)
365 /* Boundary (in *bits*) on which stack pointer should be aligned. */
366 #define STACK_BOUNDARY 64
368 /* Allocation boundary (in *bits*) for the code of a function. */
369 #define FUNCTION_BOUNDARY 64
371 /* There is no point aligning anything to a rounder boundary than this. */
372 #define BIGGEST_ALIGNMENT 64
374 /* Alignment of field after `int : 0' in a structure. */
375 #define EMPTY_FIELD_BOUNDARY 32
377 /* Alignment on even addresses for LARL instruction. */
378 #define DATA_ABI_ALIGNMENT(TYPE, ALIGN) (ALIGN) < 16 ? 16 : (ALIGN)
380 /* Alignment is not required by the hardware. */
381 #define STRICT_ALIGNMENT 0
383 /* Mode of stack savearea.
384 FUNCTION is VOIDmode because calling convention maintains SP.
385 BLOCK needs Pmode for SP.
386 NONLOCAL needs twice Pmode to maintain both backchain and SP. */
387 #define STACK_SAVEAREA_MODE(LEVEL) \
388 ((LEVEL) == SAVE_FUNCTION ? VOIDmode \
389 : (LEVEL) == SAVE_NONLOCAL ? (TARGET_64BIT ? OImode : TImode) : Pmode)
392 /* Type layout. */
394 /* Sizes in bits of the source language data types. */
395 #define SHORT_TYPE_SIZE 16
396 #define INT_TYPE_SIZE 32
397 #define LONG_TYPE_SIZE (TARGET_64BIT ? 64 : 32)
398 #define LONG_LONG_TYPE_SIZE 64
399 #define FLOAT_TYPE_SIZE 32
400 #define DOUBLE_TYPE_SIZE 64
401 #define LONG_DOUBLE_TYPE_SIZE (TARGET_LONG_DOUBLE_128 ? 128 : 64)
403 /* Work around target_flags dependency in ada/targtyps.cc. */
404 #define WIDEST_HARDWARE_FP_SIZE 64
406 /* We use "unsigned char" as default. */
407 #define DEFAULT_SIGNED_CHAR 0
410 /* Register usage. */
412 /* We have 16 general purpose registers (registers 0-15),
413 and 16 floating point registers (registers 16-31).
414 (On non-IEEE machines, we have only 4 fp registers.)
416 Amongst the general purpose registers, some are used
417 for specific purposes:
418 GPR 11: Hard frame pointer (if needed)
419 GPR 12: Global offset table pointer (if needed)
420 GPR 13: Literal pool base register
421 GPR 14: Return address register
422 GPR 15: Stack pointer
424 Registers 32-35 are 'fake' hard registers that do not
425 correspond to actual hardware:
426 Reg 32: Argument pointer
427 Reg 33: Condition code
428 Reg 34: Frame pointer
429 Reg 35: Return address pointer
431 Registers 36 and 37 are mapped to access registers
432 0 and 1, used to implement thread-local storage.
434 Reg 38-53: Vector registers v16-v31 */
436 #define FIRST_PSEUDO_REGISTER 54
438 /* Standard register usage. */
439 #define GENERAL_REGNO_P(N) ((int)(N) >= 0 && (N) < 16)
440 #define ADDR_REGNO_P(N) ((N) >= 1 && (N) < 16)
441 #define FP_REGNO_P(N) ((N) >= 16 && (N) < 32)
442 #define CC_REGNO_P(N) ((N) == 33)
443 #define FRAME_REGNO_P(N) ((N) == 32 || (N) == 34 || (N) == 35)
444 #define ACCESS_REGNO_P(N) ((N) == 36 || (N) == 37)
445 #define VECTOR_NOFP_REGNO_P(N) ((N) >= 38 && (N) <= 53)
446 #define VECTOR_REGNO_P(N) (FP_REGNO_P (N) || VECTOR_NOFP_REGNO_P (N))
448 #define GENERAL_REG_P(X) (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
449 #define ADDR_REG_P(X) (REG_P (X) && ADDR_REGNO_P (REGNO (X)))
450 #define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
451 #define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
452 #define FRAME_REG_P(X) (REG_P (X) && FRAME_REGNO_P (REGNO (X)))
453 #define ACCESS_REG_P(X) (REG_P (X) && ACCESS_REGNO_P (REGNO (X)))
454 #define VECTOR_NOFP_REG_P(X) (REG_P (X) && VECTOR_NOFP_REGNO_P (REGNO (X)))
455 #define VECTOR_REG_P(X) (REG_P (X) && VECTOR_REGNO_P (REGNO (X)))
457 /* Set up fixed registers and calling convention:
459 GPRs 0-5 are always call-clobbered,
460 GPRs 6-15 are always call-saved.
461 GPR 12 is fixed if used as GOT pointer.
462 GPR 13 is always fixed (as literal pool pointer).
463 GPR 14 is always fixed on S/390 machines (as return address).
464 GPR 15 is always fixed (as stack pointer).
465 The 'fake' hard registers are call-clobbered and fixed.
466 The access registers are call-saved and fixed.
468 On 31-bit, FPRs 18-19 are call-clobbered;
469 on 64-bit, FPRs 24-31 are call-clobbered.
470 The remaining FPRs are call-saved.
472 All non-FP vector registers are call-clobbered v16-v31. */
474 #define FIXED_REGISTERS \
475 { 0, 0, 0, 0, \
476 0, 0, 0, 0, \
477 0, 0, 0, 0, \
478 0, 1, 1, 1, \
479 0, 0, 0, 0, \
480 0, 0, 0, 0, \
481 0, 0, 0, 0, \
482 0, 0, 0, 0, \
483 1, 1, 1, 1, \
484 1, 1, \
485 0, 0, 0, 0, \
486 0, 0, 0, 0, \
487 0, 0, 0, 0, \
488 0, 0, 0, 0 }
490 #define CALL_REALLY_USED_REGISTERS \
491 { 1, 1, 1, 1, /* r0 - r15 */ \
492 1, 1, 0, 0, \
493 0, 0, 0, 0, \
494 0, 0, 0, 0, \
495 1, 1, 1, 1, /* f0 (16) - f15 (31) */ \
496 1, 1, 1, 1, \
497 1, 1, 1, 1, \
498 1, 1, 1, 1, \
499 1, 1, 1, 1, /* arg, cc, fp, ret addr */ \
500 0, 0, /* a0 (36), a1 (37) */ \
501 1, 1, 1, 1, /* v16 (38) - v23 (45) */ \
502 1, 1, 1, 1, \
503 1, 1, 1, 1, /* v24 (46) - v31 (53) */ \
504 1, 1, 1, 1 }
506 /* Preferred register allocation order. */
507 #define REG_ALLOC_ORDER \
508 { 1, 2, 3, 4, 5, 0, 12, 11, 10, 9, 8, 7, 6, 14, 13, \
509 16, 17, 18, 19, 20, 21, 22, 23, \
510 24, 25, 26, 27, 28, 29, 30, 31, \
511 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, \
512 15, 32, 33, 34, 35, 36, 37 }
515 #define HARD_REGNO_RENAME_OK(FROM, TO) \
516 s390_hard_regno_rename_ok ((FROM), (TO))
518 /* Maximum number of registers to represent a value of mode MODE
519 in a register of class CLASS. */
520 #define CLASS_MAX_NREGS(CLASS, MODE) \
521 s390_class_max_nregs ((CLASS), (MODE))
523 /* We can reverse a CC mode safely if we know whether it comes from a
524 floating point compare or not. With the vector modes it is encoded
525 as part of the mode.
526 FIXME: It might make sense to do this for other cc modes as well. */
527 #define REVERSIBLE_CC_MODE(MODE) \
528 ((MODE) == CCVIALLmode || (MODE) == CCVIANYmode \
529 || (MODE) == CCVFALLmode || (MODE) == CCVFANYmode)
531 /* Given a condition code and a mode, return the inverse condition. */
532 #define REVERSE_CONDITION(CODE, MODE) s390_reverse_condition (MODE, CODE)
535 /* Register classes. */
537 /* We use the following register classes:
538 GENERAL_REGS All general purpose registers
539 ADDR_REGS All general purpose registers except %r0
540 (These registers can be used in address generation)
541 FP_REGS All floating point registers
542 CC_REGS The condition code register
543 ACCESS_REGS The access registers
545 GENERAL_FP_REGS Union of GENERAL_REGS and FP_REGS
546 ADDR_FP_REGS Union of ADDR_REGS and FP_REGS
547 GENERAL_CC_REGS Union of GENERAL_REGS and CC_REGS
548 ADDR_CC_REGS Union of ADDR_REGS and CC_REGS
550 NO_REGS No registers
551 ALL_REGS All registers
553 Note that the 'fake' frame pointer and argument pointer registers
554 are included amongst the address registers here. */
556 enum reg_class
558 NO_REGS, CC_REGS, ADDR_REGS, GENERAL_REGS, ACCESS_REGS,
559 ADDR_CC_REGS, GENERAL_CC_REGS,
560 FP_REGS, ADDR_FP_REGS, GENERAL_FP_REGS,
561 VEC_REGS, ADDR_VEC_REGS, GENERAL_VEC_REGS,
562 ALL_REGS, LIM_REG_CLASSES
564 #define N_REG_CLASSES (int) LIM_REG_CLASSES
566 #define REG_CLASS_NAMES \
567 { "NO_REGS", "CC_REGS", "ADDR_REGS", "GENERAL_REGS", "ACCESS_REGS", \
568 "ADDR_CC_REGS", "GENERAL_CC_REGS", \
569 "FP_REGS", "ADDR_FP_REGS", "GENERAL_FP_REGS", \
570 "VEC_REGS", "ADDR_VEC_REGS", "GENERAL_VEC_REGS", \
571 "ALL_REGS" }
573 /* Class -> register mapping. */
574 #define REG_CLASS_CONTENTS \
576 { 0x00000000, 0x00000000 }, /* NO_REGS */ \
577 { 0x00000000, 0x00000002 }, /* CC_REGS */ \
578 { 0x0000fffe, 0x0000000d }, /* ADDR_REGS */ \
579 { 0x0000ffff, 0x0000000d }, /* GENERAL_REGS */ \
580 { 0x00000000, 0x00000030 }, /* ACCESS_REGS */ \
581 { 0x0000fffe, 0x0000000f }, /* ADDR_CC_REGS */ \
582 { 0x0000ffff, 0x0000000f }, /* GENERAL_CC_REGS */ \
583 { 0xffff0000, 0x00000000 }, /* FP_REGS */ \
584 { 0xfffffffe, 0x0000000d }, /* ADDR_FP_REGS */ \
585 { 0xffffffff, 0x0000000d }, /* GENERAL_FP_REGS */ \
586 { 0xffff0000, 0x003fffc0 }, /* VEC_REGS */ \
587 { 0xfffffffe, 0x003fffcd }, /* ADDR_VEC_REGS */ \
588 { 0xffffffff, 0x003fffcd }, /* GENERAL_VEC_REGS */ \
589 { 0xffffffff, 0x003fffff }, /* ALL_REGS */ \
592 /* In some case register allocation order is not enough for IRA to
593 generate a good code. The following macro (if defined) increases
594 cost of REGNO for a pseudo approximately by pseudo usage frequency
595 multiplied by the macro value.
597 We avoid usage of BASE_REGNUM by nonzero macro value because the
598 reload can decide not to use the hard register because some
599 constant was forced to be in memory. */
600 #define IRA_HARD_REGNO_ADD_COST_MULTIPLIER(regno) \
601 ((regno) != BASE_REGNUM ? 0.0 : 0.5)
603 /* Register -> class mapping. */
604 extern const enum reg_class regclass_map[FIRST_PSEUDO_REGISTER];
605 #define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
607 /* ADDR_REGS can be used as base or index register. */
608 #define INDEX_REG_CLASS ADDR_REGS
609 #define BASE_REG_CLASS ADDR_REGS
611 /* Check whether REGNO is a hard register of the suitable class
612 or a pseudo register currently allocated to one such. */
613 #define REGNO_OK_FOR_INDEX_P(REGNO) \
614 (((REGNO) < FIRST_PSEUDO_REGISTER \
615 && REGNO_REG_CLASS ((REGNO)) == ADDR_REGS) \
616 || ADDR_REGNO_P (reg_renumber[REGNO]))
617 #define REGNO_OK_FOR_BASE_P(REGNO) REGNO_OK_FOR_INDEX_P (REGNO)
620 /* Stack layout and calling conventions. */
622 /* Our stack grows from higher to lower addresses. However, local variables
623 are accessed by positive offsets, and function arguments are stored at
624 increasing addresses. */
625 #define STACK_GROWS_DOWNWARD 1
626 #define FRAME_GROWS_DOWNWARD 1
627 /* #undef ARGS_GROW_DOWNWARD */
629 /* The basic stack layout looks like this: the stack pointer points
630 to the register save area for called functions. Above that area
631 is the location to place outgoing arguments. Above those follow
632 dynamic allocations (alloca), and finally the local variables. */
634 /* Offset from stack-pointer to first location of outgoing args. */
635 #define STACK_POINTER_OFFSET (TARGET_64BIT ? 160 : 96)
637 /* Offset from the stack pointer register to an item dynamically
638 allocated on the stack, e.g., by `alloca'. */
639 #define STACK_DYNAMIC_OFFSET(FUNDECL) \
640 (STACK_POINTER_OFFSET + crtl->outgoing_args_size)
642 /* Offset of first parameter from the argument pointer register value.
643 We have a fake argument pointer register that points directly to
644 the argument area. */
645 #define FIRST_PARM_OFFSET(FNDECL) 0
647 /* Defining this macro makes __builtin_frame_address(0) and
648 __builtin_return_address(0) work with -fomit-frame-pointer. */
649 #define INITIAL_FRAME_ADDRESS_RTX \
650 (plus_constant (Pmode, arg_pointer_rtx, -STACK_POINTER_OFFSET))
652 /* The return address of the current frame is retrieved
653 from the initial value of register RETURN_REGNUM.
654 For frames farther back, we use the stack slot where
655 the corresponding RETURN_REGNUM register was saved. */
656 #define DYNAMIC_CHAIN_ADDRESS(FRAME) \
657 (TARGET_PACKED_STACK ? \
658 plus_constant (Pmode, (FRAME), \
659 STACK_POINTER_OFFSET - UNITS_PER_LONG) : (FRAME))
661 /* For -mpacked-stack this adds 160 - 8 (96 - 4) to the output of
662 builtin_frame_address. Otherwise arg pointer -
663 STACK_POINTER_OFFSET would be returned for
664 __builtin_frame_address(0) what might result in an address pointing
665 somewhere into the middle of the local variables since the packed
666 stack layout generally does not need all the bytes in the register
667 save area. */
668 #define FRAME_ADDR_RTX(FRAME) \
669 DYNAMIC_CHAIN_ADDRESS ((FRAME))
671 #define RETURN_ADDR_RTX(COUNT, FRAME) \
672 s390_return_addr_rtx ((COUNT), DYNAMIC_CHAIN_ADDRESS ((FRAME)))
674 /* In 31-bit mode, we need to mask off the high bit of return addresses. */
675 #define MASK_RETURN_ADDR (TARGET_64BIT ? constm1_rtx : GEN_INT (0x7fffffff))
678 /* Exception handling. */
680 /* Describe calling conventions for DWARF-2 exception handling. */
681 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, RETURN_REGNUM)
682 #define INCOMING_FRAME_SP_OFFSET STACK_POINTER_OFFSET
683 #define DWARF_FRAME_RETURN_COLUMN 14
685 /* Describe how we implement __builtin_eh_return. */
686 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 6 : INVALID_REGNUM)
687 #define EH_RETURN_HANDLER_RTX gen_rtx_MEM (Pmode, return_address_pointer_rtx)
689 /* Select a format to encode pointers in exception handling data. */
690 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
691 (flag_pic \
692 ? ((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4 \
693 : DW_EH_PE_absptr)
695 /* Register save slot alignment. */
696 #define DWARF_CIE_DATA_ALIGNMENT (-UNITS_PER_LONG)
698 /* Let the assembler generate debug line info. */
699 #define DWARF2_ASM_LINE_DEBUG_INFO 1
701 /* Define the dwarf register mapping.
702 v16-v31 -> 68-83
703 rX -> X otherwise */
704 #define DEBUGGER_REGNO(regno) \
705 (((regno) >= 38 && (regno) <= 53) ? (regno) + 30 : (regno))
707 /* Frame registers. */
709 #define STACK_POINTER_REGNUM 15
710 #define FRAME_POINTER_REGNUM 34
711 #define HARD_FRAME_POINTER_REGNUM 11
712 #define ARG_POINTER_REGNUM 32
713 #define RETURN_ADDRESS_POINTER_REGNUM 35
715 /* The static chain must be call-clobbered, but not used for
716 function argument passing. As register 1 is clobbered by
717 the trampoline code, we only have one option. */
718 #define STATIC_CHAIN_REGNUM 0
720 /* Number of hardware registers that go into the DWARF-2 unwind info.
721 To avoid ABI incompatibility, this number must not change even as
722 'fake' hard registers are added or removed. */
723 #define DWARF_FRAME_REGISTERS 34
726 /* Frame pointer and argument pointer elimination. */
728 #define ELIMINABLE_REGS \
729 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
730 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \
731 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
732 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \
733 { RETURN_ADDRESS_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
734 { RETURN_ADDRESS_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \
735 { BASE_REGNUM, BASE_REGNUM }}
737 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
738 (OFFSET) = s390_initial_elimination_offset ((FROM), (TO))
741 /* Stack arguments. */
743 /* We need current_function_outgoing_args to be valid. */
744 #define ACCUMULATE_OUTGOING_ARGS 1
747 /* Register arguments. */
749 typedef struct s390_arg_structure
751 int gprs; /* gpr so far */
752 int fprs; /* fpr so far */
753 int vrs; /* vr so far */
755 CUMULATIVE_ARGS;
757 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, NN, N_NAMED_ARGS) \
758 ((CUM).gprs=0, (CUM).fprs=0, (CUM).vrs=0)
760 #define FIRST_VEC_ARG_REGNO 46
761 #define LAST_VEC_ARG_REGNO 53
763 /* Arguments can be placed in general registers 2 to 6, or in floating
764 point registers 0 and 2 for 31 bit and fprs 0, 2, 4 and 6 for 64
765 bit. */
766 #define FUNCTION_ARG_REGNO_P(N) \
767 (((N) >=2 && (N) < 7) || (N) == 16 || (N) == 17 \
768 || (TARGET_64BIT && ((N) == 18 || (N) == 19)) \
769 || (TARGET_VX && ((N) >= FIRST_VEC_ARG_REGNO && (N) <= LAST_VEC_ARG_REGNO)))
772 /* Only gpr 2, fpr 0, and v24 are ever used as return registers. */
773 #define FUNCTION_VALUE_REGNO_P(N) \
774 ((N) == 2 || (N) == 16 \
775 || (TARGET_VX && (N) == FIRST_VEC_ARG_REGNO))
778 /* Function entry and exit. */
780 /* When returning from a function, the stack pointer does not matter. */
781 #define EXIT_IGNORE_STACK 1
784 /* Profiling. */
786 #define FUNCTION_PROFILER(FILE, LABELNO) \
787 s390_function_profiler ((FILE), ((LABELNO)))
789 #define PROFILE_BEFORE_PROLOGUE 1
791 #define NO_PROFILE_COUNTERS 1
794 /* Trampolines for nested functions. */
796 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 32 : 16)
797 #define TRAMPOLINE_ALIGNMENT BITS_PER_WORD
799 /* Addressing modes, and classification of registers for them. */
801 /* Recognize any constant value that is a valid address. */
802 #define CONSTANT_ADDRESS_P(X) 0
804 /* Maximum number of registers that can appear in a valid memory address. */
805 #define MAX_REGS_PER_ADDRESS 2
807 /* This definition replaces the formerly used 'm' constraint with a
808 different constraint letter in order to avoid changing semantics of
809 the 'm' constraint when accepting new address formats in
810 TARGET_LEGITIMATE_ADDRESS_P. The constraint letter defined here
811 must not be used in insn definitions or inline assemblies. */
812 #define TARGET_MEM_CONSTRAINT 'e'
814 /* Try a machine-dependent way of reloading an illegitimate address
815 operand. If we find one, push the reload and jump to WIN. This
816 macro is used in only one place: `find_reloads_address' in reload.cc. */
817 #define LEGITIMIZE_RELOAD_ADDRESS(AD, MODE, OPNUM, TYPE, IND, WIN) \
818 do { \
819 rtx new_rtx = legitimize_reload_address ((AD), (MODE), \
820 (OPNUM), (int)(TYPE)); \
821 if (new_rtx) \
823 (AD) = new_rtx; \
824 goto WIN; \
826 } while (0)
828 /* Helper macro for s390.cc and s390.md to check for symbolic constants. */
829 #define SYMBOLIC_CONST(X) \
830 (GET_CODE (X) == SYMBOL_REF \
831 || GET_CODE (X) == LABEL_REF \
832 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
834 #define TLS_SYMBOLIC_CONST(X) \
835 ((GET_CODE (X) == SYMBOL_REF && tls_symbolic_operand (X)) \
836 || (GET_CODE (X) == CONST && tls_symbolic_reference_mentioned_p (X)))
839 /* Condition codes. */
841 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
842 return the mode to be used for the comparison. */
843 #define SELECT_CC_MODE(OP, X, Y) s390_select_ccmode ((OP), (X), (Y))
845 /* Relative costs of operations. */
847 /* A C expression for the cost of a branch instruction. A value of 1
848 is the default; other values are interpreted relative to that. */
849 #define BRANCH_COST(speed_p, predictable_p) s390_branch_cost
851 /* Nonzero if access to memory by bytes is slow and undesirable. */
852 #define SLOW_BYTE_ACCESS 1
854 /* An integer expression for the size in bits of the largest integer machine
855 mode that should actually be used. We allow pairs of registers. */
856 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
858 /* The maximum number of bytes that a single instruction can move quickly
859 between memory and registers or between two memory locations. */
860 #define MOVE_MAX (TARGET_ZARCH ? 16 : 8)
861 #define MOVE_MAX_PIECES (TARGET_ZARCH ? 8 : 4)
862 #define MAX_MOVE_MAX 16
864 /* Don't perform CSE on function addresses. */
865 #define NO_FUNCTION_CSE 1
867 /* This value is used in tree-sra to decide whether it might benefical
868 to split a struct move into several word-size moves. For S/390
869 only small values make sense here since struct moves are relatively
870 cheap thanks to mvc so the small default value chosen for archs
871 with memmove patterns should be ok. But this value is multiplied
872 in tree-sra with UNITS_PER_WORD to make a decision so we adjust it
873 here to compensate for that factor since mvc costs exactly the same
874 on 31 and 64 bit. */
875 #define MOVE_RATIO(speed) (TARGET_64BIT? 2 : 4)
878 /* Sections. */
880 /* Output before read-only data. */
881 #define TEXT_SECTION_ASM_OP ".text"
883 /* Output before writable (initialized) data. */
884 #define DATA_SECTION_ASM_OP ".data"
886 /* Output before writable (uninitialized) data. */
887 #define BSS_SECTION_ASM_OP ".bss"
889 /* S/390 constant pool breaks the devices in crtstuff.c to control section
890 in where code resides. We have to write it as asm code. */
891 #ifndef __s390x__
892 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
893 asm (SECTION_OP "\n\
894 bras\t%r2,1f\n\
895 0: .long\t" USER_LABEL_PREFIX #FUNC " - 0b\n\
896 1: l\t%r3,0(%r2)\n\
897 bas\t%r14,0(%r3,%r2)\n\
898 .previous");
899 #endif
902 /* Position independent code. */
904 #define PIC_OFFSET_TABLE_REGNUM (flag_pic ? 12 : INVALID_REGNUM)
906 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
908 #ifndef TARGET_DEFAULT_PIC_DATA_IS_TEXT_RELATIVE
909 #define TARGET_DEFAULT_PIC_DATA_IS_TEXT_RELATIVE 1
910 #endif
913 /* Assembler file format. */
915 /* Character to start a comment. */
916 #define ASM_COMMENT_START "#"
918 /* Declare an uninitialized external linkage data object. */
919 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
920 asm_output_aligned_bss ((FILE), (DECL), (NAME), (SIZE), (ALIGN))
922 /* Globalizing directive for a label. */
923 #define GLOBAL_ASM_OP ".globl "
925 /* Advance the location counter to a multiple of 2**LOG bytes. */
926 #define ASM_OUTPUT_ALIGN(FILE, LOG) \
927 if ((LOG)) fprintf ((FILE), "\t.align\t%d\n", 1 << (LOG))
929 /* Advance the location counter by SIZE bytes. */
930 #define ASM_OUTPUT_SKIP(FILE, SIZE) \
931 fprintf ((FILE), "\t.set\t.,.+" HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
933 /* The LOCAL_LABEL_PREFIX variable is used by dbxelf.h. */
934 #define LOCAL_LABEL_PREFIX "."
936 #define LABEL_ALIGN(LABEL) \
937 s390_label_align ((LABEL))
939 /* How to refer to registers in assembler output. This sequence is
940 indexed by compiler's hard-register-number (see above). */
941 #define REGISTER_NAMES \
942 { "%r0", "%r1", "%r2", "%r3", "%r4", "%r5", "%r6", "%r7", \
943 "%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15", \
944 "%f0", "%f2", "%f4", "%f6", "%f1", "%f3", "%f5", "%f7", \
945 "%f8", "%f10", "%f12", "%f14", "%f9", "%f11", "%f13", "%f15", \
946 "%ap", "%cc", "%fp", "%rp", "%a0", "%a1", \
947 "%v16", "%v18", "%v20", "%v22", "%v17", "%v19", "%v21", "%v23", \
948 "%v24", "%v26", "%v28", "%v30", "%v25", "%v27", "%v29", "%v31" \
951 #define ADDITIONAL_REGISTER_NAMES \
952 { { "v0", 16 }, { "v2", 17 }, { "v4", 18 }, { "v6", 19 }, \
953 { "v1", 20 }, { "v3", 21 }, { "v5", 22 }, { "v7", 23 }, \
954 { "v8", 24 }, { "v10", 25 }, { "v12", 26 }, { "v14", 27 }, \
955 { "v9", 28 }, { "v11", 29 }, { "v13", 30 }, { "v15", 31 } };
957 /* Print operand X (an rtx) in assembler syntax to file FILE. */
958 #define PRINT_OPERAND(FILE, X, CODE) print_operand ((FILE), (X), (CODE))
959 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address ((FILE), (ADDR))
961 /* Output an element of a case-vector that is absolute. */
962 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
963 do { \
964 char buf[32]; \
965 fputs (integer_asm_op (UNITS_PER_LONG, TRUE), (FILE)); \
966 ASM_GENERATE_INTERNAL_LABEL (buf, "L", (VALUE)); \
967 assemble_name ((FILE), buf); \
968 fputc ('\n', (FILE)); \
969 } while (0)
971 /* Output an element of a case-vector that is relative. */
972 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
973 do { \
974 char buf[32]; \
975 fputs (integer_asm_op (UNITS_PER_LONG, TRUE), (FILE)); \
976 ASM_GENERATE_INTERNAL_LABEL (buf, "L", (VALUE)); \
977 assemble_name ((FILE), buf); \
978 fputc ('-', (FILE)); \
979 ASM_GENERATE_INTERNAL_LABEL (buf, "L", (REL)); \
980 assemble_name ((FILE), buf); \
981 fputc ('\n', (FILE)); \
982 } while (0)
984 /* Mark the return register as used by the epilogue so that we can
985 use it in unadorned (return) and (simple_return) instructions. */
986 #define EPILOGUE_USES(REGNO) ((REGNO) == RETURN_REGNUM)
988 #undef ASM_OUTPUT_FUNCTION_LABEL
989 #define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \
990 s390_asm_output_function_label ((FILE), (NAME), (DECL))
992 #if S390_USE_TARGET_ATTRIBUTE
993 /* Hook to output .machine and .machinemode at start of function. */
994 #undef ASM_OUTPUT_FUNCTION_PREFIX
995 #define ASM_OUTPUT_FUNCTION_PREFIX s390_asm_output_function_prefix
997 /* Hook to output .machine and .machinemode at end of function. */
998 #undef ASM_DECLARE_FUNCTION_SIZE
999 #define ASM_DECLARE_FUNCTION_SIZE s390_asm_declare_function_size
1000 #endif
1002 /* Miscellaneous parameters. */
1004 /* Specify the machine mode that this machine uses for the index in the
1005 tablejump instruction. */
1006 #define CASE_VECTOR_MODE (TARGET_64BIT ? DImode : SImode)
1008 /* Specify the machine mode that pointers have.
1009 After generation of rtl, the compiler makes no further distinction
1010 between pointers and any other objects of this machine mode. */
1011 #define Pmode (TARGET_64BIT ? DImode : SImode)
1013 /* This is -1 for "pointer mode" extend. See ptr_extend in s390.md. */
1014 #define POINTERS_EXTEND_UNSIGNED -1
1016 /* A function address in a call instruction is a byte address (for
1017 indexing purposes) so give the MEM rtx a byte's mode. */
1018 #define FUNCTION_MODE QImode
1020 /* Specify the value which is used when clz operand is zero. */
1021 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 64, 1)
1023 /* Machine-specific symbol_ref flags. */
1024 #define SYMBOL_FLAG_ALIGN_SHIFT SYMBOL_FLAG_MACH_DEP_SHIFT
1025 #define SYMBOL_FLAG_ALIGN_MASK \
1026 ((SYMBOL_FLAG_MACH_DEP << 0) | (SYMBOL_FLAG_MACH_DEP << 1))
1028 #define SYMBOL_FLAG_SET_ALIGN(X, A) \
1029 (SYMBOL_REF_FLAGS (X) = (SYMBOL_REF_FLAGS (X) & ~SYMBOL_FLAG_ALIGN_MASK) \
1030 | (A << SYMBOL_FLAG_ALIGN_SHIFT))
1032 #define SYMBOL_FLAG_GET_ALIGN(X) \
1033 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_ALIGN_MASK) >> SYMBOL_FLAG_ALIGN_SHIFT)
1035 /* Helpers to access symbol_ref flags. They are used in
1036 check_symref_alignment() and larl_operand to detect if the
1037 available alignment matches the required one. We do not use
1038 a positive check like _ALIGN2 because in that case we would have
1039 to annotate every symbol_ref. However, we only want to touch
1040 the symbol_refs that can be misaligned and assume that the others
1041 are correctly aligned. Hence, if a symbol_ref does not have
1042 a _NOTALIGN flag it is supposed to be correctly aligned. */
1043 #define SYMBOL_FLAG_SET_NOTALIGN2(X) SYMBOL_FLAG_SET_ALIGN((X), 1)
1044 #define SYMBOL_FLAG_SET_NOTALIGN4(X) SYMBOL_FLAG_SET_ALIGN((X), 2)
1045 #define SYMBOL_FLAG_SET_NOTALIGN8(X) SYMBOL_FLAG_SET_ALIGN((X), 3)
1047 #define SYMBOL_FLAG_NOTALIGN2_P(X) (SYMBOL_FLAG_GET_ALIGN(X) == 1)
1048 #define SYMBOL_FLAG_NOTALIGN4_P(X) (SYMBOL_FLAG_GET_ALIGN(X) == 2 \
1049 || SYMBOL_FLAG_GET_ALIGN(X) == 1)
1050 #define SYMBOL_FLAG_NOTALIGN8_P(X) (SYMBOL_FLAG_GET_ALIGN(X) == 3 \
1051 || SYMBOL_FLAG_GET_ALIGN(X) == 2 \
1052 || SYMBOL_FLAG_GET_ALIGN(X) == 1)
1054 /* Check whether integer displacement is in range for a short displacement. */
1055 #define SHORT_DISP_IN_RANGE(d) ((d) >= 0 && (d) <= 4095)
1057 /* Check whether integer displacement is in range. */
1058 #define DISP_IN_RANGE(d) \
1059 (TARGET_LONG_DISPLACEMENT \
1060 ? ((d) >= -524288 && (d) <= 524287) \
1061 : SHORT_DISP_IN_RANGE(d))
1063 /* Reads can reuse write prefetches, used by tree-ssa-prefetch-loops.c. */
1064 #define READ_CAN_USE_WRITE_PREFETCH 1
1066 extern const int processor_flags_table[];
1068 struct s390_processor
1070 /* The preferred name to be used in user visible output. */
1071 const char *const name;
1072 /* CPU name as it should be passed to Binutils via .machine */
1073 const char *const binutils_name;
1074 const enum processor_type processor;
1075 const struct processor_costs *cost;
1076 int arch_level;
1079 extern const struct s390_processor processor_table[];
1081 /* The truth element value for vector comparisons. Our instructions
1082 always generate -1 in that case. */
1083 #define VECTOR_STORE_FLAG_VALUE(MODE) CONSTM1_RTX (GET_MODE_INNER (MODE))
1085 /* Target pragma. */
1087 /* resolve_overloaded_builtin cannot be defined the normal way since
1088 it is defined in code which technically belongs to the
1089 front-end. */
1090 #define REGISTER_TARGET_PRAGMAS() \
1091 do { \
1092 s390_register_target_pragmas (); \
1093 } while (0)
1095 #ifndef USED_FOR_TARGET
1096 /* The following structure is embedded in the machine
1097 specific part of struct function. */
1099 struct GTY (()) s390_frame_layout
1101 /* Offset within stack frame. */
1102 HOST_WIDE_INT gprs_offset;
1103 HOST_WIDE_INT f0_offset;
1104 HOST_WIDE_INT f4_offset;
1105 HOST_WIDE_INT f8_offset;
1106 HOST_WIDE_INT backchain_offset;
1108 /* Number of first and last gpr where slots in the register
1109 save area are reserved for. */
1110 int first_save_gpr_slot;
1111 int last_save_gpr_slot;
1113 /* Location (FP register number) where GPRs (r0-r15) should
1114 be saved to.
1115 0 - does not need to be saved at all
1116 -1 - stack slot */
1117 #define SAVE_SLOT_NONE 0
1118 #define SAVE_SLOT_STACK -1
1119 signed char gpr_save_slots[16];
1121 /* Number of first and last gpr to be saved, restored. */
1122 int first_save_gpr;
1123 int first_restore_gpr;
1124 int last_save_gpr;
1125 int last_restore_gpr;
1127 /* Bits standing for floating point registers. Set, if the
1128 respective register has to be saved. Starting with reg 16 (f0)
1129 at the rightmost bit.
1130 Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1131 fpr 15 13 11 9 14 12 10 8 7 5 3 1 6 4 2 0
1132 reg 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 */
1133 unsigned int fpr_bitmap;
1135 /* Number of floating point registers f8-f15 which must be saved. */
1136 int high_fprs;
1138 /* Set if return address needs to be saved.
1139 This flag is set by s390_return_addr_rtx if it could not use
1140 the initial value of r14 and therefore depends on r14 saved
1141 to the stack. */
1142 bool save_return_addr_p;
1144 /* Size of stack frame. */
1145 HOST_WIDE_INT frame_size;
1149 /* Define the structure for the machine field in struct function. */
1151 struct GTY(()) machine_function
1153 struct s390_frame_layout frame_layout;
1155 /* Literal pool base register. */
1156 rtx base_reg;
1158 bool has_landing_pad_p;
1160 /* True if the current function may contain a tbegin clobbering
1161 FPRs. */
1162 bool tbegin_p;
1164 /* For -fsplit-stack support: A stack local which holds a pointer to
1165 the stack arguments for a function with a variable number of
1166 arguments. This is set at the start of the function and is used
1167 to initialize the overflow_arg_area field of the va_list
1168 structure. */
1169 rtx split_stack_varargs_pointer;
1171 enum indirect_branch indirect_branch_jump;
1172 enum indirect_branch indirect_branch_call;
1174 enum indirect_branch function_return_mem;
1175 enum indirect_branch function_return_reg;
1177 #endif
1179 #define TARGET_INDIRECT_BRANCH_NOBP_RET_OPTION \
1180 (cfun->machine->function_return_reg != indirect_branch_keep \
1181 || cfun->machine->function_return_mem != indirect_branch_keep)
1183 #define TARGET_INDIRECT_BRANCH_NOBP_RET \
1184 ((cfun->machine->function_return_reg != indirect_branch_keep \
1185 && !s390_return_addr_from_memory ()) \
1186 || (cfun->machine->function_return_mem != indirect_branch_keep \
1187 && s390_return_addr_from_memory ()))
1189 #define TARGET_INDIRECT_BRANCH_NOBP_JUMP \
1190 (cfun->machine->indirect_branch_jump != indirect_branch_keep)
1192 #define TARGET_INDIRECT_BRANCH_NOBP_JUMP_THUNK \
1193 (cfun->machine->indirect_branch_jump == indirect_branch_thunk \
1194 || cfun->machine->indirect_branch_jump == indirect_branch_thunk_extern)
1196 #define TARGET_INDIRECT_BRANCH_NOBP_JUMP_INLINE_THUNK \
1197 (cfun->machine->indirect_branch_jump == indirect_branch_thunk_inline)
1199 #define TARGET_INDIRECT_BRANCH_NOBP_CALL \
1200 (cfun->machine->indirect_branch_call != indirect_branch_keep)
1202 #ifndef TARGET_DEFAULT_INDIRECT_BRANCH_TABLE
1203 #define TARGET_DEFAULT_INDIRECT_BRANCH_TABLE 0
1204 #endif
1206 #define TARGET_INDIRECT_BRANCH_THUNK_NAME_EXRL "__s390_indirect_jump_r%d"
1207 #define TARGET_INDIRECT_BRANCH_THUNK_NAME_EX "__s390_indirect_jump_r%duse_r%d"
1209 #define TARGET_INDIRECT_BRANCH_TABLE s390_indirect_branch_table
1211 #ifdef GENERATOR_FILE
1212 /* gencondmd.cc is built before insn-flags.h. Use an arbitrary opaque value
1213 that cannot be optimized away by gen_insn. */
1214 #define HAVE_TF(icode) TARGET_HARD_FLOAT
1215 #else
1216 #define HAVE_TF(icode) (HAVE_##icode##_fpr || HAVE_##icode##_vr)
1217 #endif
1219 /* Dispatcher for movtf. */
1220 #define EXPAND_MOVTF(icode) \
1221 do \
1223 if (TARGET_VXE) \
1224 emit_insn (gen_##icode##_vr (operands[0], operands[1])); \
1225 else \
1226 emit_insn (gen_##icode##_fpr (operands[0], operands[1])); \
1227 DONE; \
1229 while (false)
1231 /* Like EXPAND_MOVTF, but also legitimizes operands. */
1232 #define EXPAND_TF(icode, nops) \
1233 do \
1235 const size_t __nops = (nops); \
1236 expand_operand ops[__nops]; \
1237 create_output_operand (&ops[0], operands[0], GET_MODE (operands[0])); \
1238 for (size_t i = 1; i < __nops; i++) \
1239 create_input_operand (&ops[i], operands[i], GET_MODE (operands[i])); \
1240 if (TARGET_VXE) \
1241 expand_insn (CODE_FOR_##icode##_vr, __nops, ops); \
1242 else \
1243 expand_insn (CODE_FOR_##icode##_fpr, __nops, ops); \
1244 DONE; \
1246 while (false)
1248 #endif /* S390_H */