1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2006, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
20 -- Boston, MA 02110-1301, USA. --
22 -- GNAT was originally developed by the GNAT team at New York University. --
23 -- Extensive contributions were provided by Ada Core Technologies Inc. --
25 ------------------------------------------------------------------------------
27 with Atree
; use Atree
;
28 with Checks
; use Checks
;
29 with Debug
; use Debug
;
30 with Einfo
; use Einfo
;
31 with Elists
; use Elists
;
32 with Errout
; use Errout
;
33 with Eval_Fat
; use Eval_Fat
;
34 with Exp_Util
; use Exp_Util
;
36 with Nmake
; use Nmake
;
37 with Nlists
; use Nlists
;
40 with Sem_Cat
; use Sem_Cat
;
41 with Sem_Ch6
; use Sem_Ch6
;
42 with Sem_Ch8
; use Sem_Ch8
;
43 with Sem_Res
; use Sem_Res
;
44 with Sem_Util
; use Sem_Util
;
45 with Sem_Type
; use Sem_Type
;
46 with Sem_Warn
; use Sem_Warn
;
47 with Sinfo
; use Sinfo
;
48 with Snames
; use Snames
;
49 with Stand
; use Stand
;
50 with Stringt
; use Stringt
;
51 with Tbuild
; use Tbuild
;
53 package body Sem_Eval
is
55 -----------------------------------------
56 -- Handling of Compile Time Evaluation --
57 -----------------------------------------
59 -- The compile time evaluation of expressions is distributed over several
60 -- Eval_xxx procedures. These procedures are called immediatedly after
61 -- a subexpression is resolved and is therefore accomplished in a bottom
62 -- up fashion. The flags are synthesized using the following approach.
64 -- Is_Static_Expression is determined by following the detailed rules
65 -- in RM 4.9(4-14). This involves testing the Is_Static_Expression
66 -- flag of the operands in many cases.
68 -- Raises_Constraint_Error is set if any of the operands have the flag
69 -- set or if an attempt to compute the value of the current expression
70 -- results in detection of a runtime constraint error.
72 -- As described in the spec, the requirement is that Is_Static_Expression
73 -- be accurately set, and in addition for nodes for which this flag is set,
74 -- Raises_Constraint_Error must also be set. Furthermore a node which has
75 -- Is_Static_Expression set, and Raises_Constraint_Error clear, then the
76 -- requirement is that the expression value must be precomputed, and the
77 -- node is either a literal, or the name of a constant entity whose value
78 -- is a static expression.
80 -- The general approach is as follows. First compute Is_Static_Expression.
81 -- If the node is not static, then the flag is left off in the node and
82 -- we are all done. Otherwise for a static node, we test if any of the
83 -- operands will raise constraint error, and if so, propagate the flag
84 -- Raises_Constraint_Error to the result node and we are done (since the
85 -- error was already posted at a lower level).
87 -- For the case of a static node whose operands do not raise constraint
88 -- error, we attempt to evaluate the node. If this evaluation succeeds,
89 -- then the node is replaced by the result of this computation. If the
90 -- evaluation raises constraint error, then we rewrite the node with
91 -- Apply_Compile_Time_Constraint_Error to raise the exception and also
92 -- to post appropriate error messages.
98 type Bits
is array (Nat
range <>) of Boolean;
99 -- Used to convert unsigned (modular) values for folding logical ops
101 -- The following definitions are used to maintain a cache of nodes that
102 -- have compile time known values. The cache is maintained only for
103 -- discrete types (the most common case), and is populated by calls to
104 -- Compile_Time_Known_Value and Expr_Value, but only used by Expr_Value
105 -- since it is possible for the status to change (in particular it is
106 -- possible for a node to get replaced by a constraint error node).
108 CV_Bits
: constant := 5;
109 -- Number of low order bits of Node_Id value used to reference entries
110 -- in the cache table.
112 CV_Cache_Size
: constant Nat
:= 2 ** CV_Bits
;
113 -- Size of cache for compile time values
115 subtype CV_Range
is Nat
range 0 .. CV_Cache_Size
;
117 type CV_Entry
is record
122 type CV_Cache_Array
is array (CV_Range
) of CV_Entry
;
124 CV_Cache
: CV_Cache_Array
:= (others => (Node_High_Bound
, Uint_0
));
125 -- This is the actual cache, with entries consisting of node/value pairs,
126 -- and the impossible value Node_High_Bound used for unset entries.
128 -----------------------
129 -- Local Subprograms --
130 -----------------------
132 function From_Bits
(B
: Bits
; T
: Entity_Id
) return Uint
;
133 -- Converts a bit string of length B'Length to a Uint value to be used
134 -- for a target of type T, which is a modular type. This procedure
135 -- includes the necessary reduction by the modulus in the case of a
136 -- non-binary modulus (for a binary modulus, the bit string is the
137 -- right length any way so all is well).
139 function Get_String_Val
(N
: Node_Id
) return Node_Id
;
140 -- Given a tree node for a folded string or character value, returns
141 -- the corresponding string literal or character literal (one of the
142 -- two must be available, or the operand would not have been marked
143 -- as foldable in the earlier analysis of the operation).
145 function OK_Bits
(N
: Node_Id
; Bits
: Uint
) return Boolean;
146 -- Bits represents the number of bits in an integer value to be computed
147 -- (but the value has not been computed yet). If this value in Bits is
148 -- reasonable, a result of True is returned, with the implication that
149 -- the caller should go ahead and complete the calculation. If the value
150 -- in Bits is unreasonably large, then an error is posted on node N, and
151 -- False is returned (and the caller skips the proposed calculation).
153 procedure Out_Of_Range
(N
: Node_Id
);
154 -- This procedure is called if it is determined that node N, which
155 -- appears in a non-static context, is a compile time known value
156 -- which is outside its range, i.e. the range of Etype. This is used
157 -- in contexts where this is an illegality if N is static, and should
158 -- generate a warning otherwise.
160 procedure Rewrite_In_Raise_CE
(N
: Node_Id
; Exp
: Node_Id
);
161 -- N and Exp are nodes representing an expression, Exp is known
162 -- to raise CE. N is rewritten in term of Exp in the optimal way.
164 function String_Type_Len
(Stype
: Entity_Id
) return Uint
;
165 -- Given a string type, determines the length of the index type, or,
166 -- if this index type is non-static, the length of the base type of
167 -- this index type. Note that if the string type is itself static,
168 -- then the index type is static, so the second case applies only
169 -- if the string type passed is non-static.
171 function Test
(Cond
: Boolean) return Uint
;
172 pragma Inline
(Test
);
173 -- This function simply returns the appropriate Boolean'Pos value
174 -- corresponding to the value of Cond as a universal integer. It is
175 -- used for producing the result of the static evaluation of the
178 procedure Test_Expression_Is_Foldable
183 -- Tests to see if expression N whose single operand is Op1 is foldable,
184 -- i.e. the operand value is known at compile time. If the operation is
185 -- foldable, then Fold is True on return, and Stat indicates whether
186 -- the result is static (i.e. both operands were static). Note that it
187 -- is quite possible for Fold to be True, and Stat to be False, since
188 -- there are cases in which we know the value of an operand even though
189 -- it is not technically static (e.g. the static lower bound of a range
190 -- whose upper bound is non-static).
192 -- If Stat is set False on return, then Expression_Is_Foldable makes a
193 -- call to Check_Non_Static_Context on the operand. If Fold is False on
194 -- return, then all processing is complete, and the caller should
195 -- return, since there is nothing else to do.
197 procedure Test_Expression_Is_Foldable
203 -- Same processing, except applies to an expression N with two operands
206 procedure To_Bits
(U
: Uint
; B
: out Bits
);
207 -- Converts a Uint value to a bit string of length B'Length
209 ------------------------------
210 -- Check_Non_Static_Context --
211 ------------------------------
213 procedure Check_Non_Static_Context
(N
: Node_Id
) is
214 T
: constant Entity_Id
:= Etype
(N
);
215 Checks_On
: constant Boolean :=
216 not Index_Checks_Suppressed
(T
)
217 and not Range_Checks_Suppressed
(T
);
220 -- Ignore cases of non-scalar types or error types
222 if T
= Any_Type
or else not Is_Scalar_Type
(T
) then
226 -- At this stage we have a scalar type. If we have an expression
227 -- that raises CE, then we already issued a warning or error msg
228 -- so there is nothing more to be done in this routine.
230 if Raises_Constraint_Error
(N
) then
234 -- Now we have a scalar type which is not marked as raising a
235 -- constraint error exception. The main purpose of this routine
236 -- is to deal with static expressions appearing in a non-static
237 -- context. That means that if we do not have a static expression
238 -- then there is not much to do. The one case that we deal with
239 -- here is that if we have a floating-point value that is out of
240 -- range, then we post a warning that an infinity will result.
242 if not Is_Static_Expression
(N
) then
243 if Is_Floating_Point_Type
(T
)
244 and then Is_Out_Of_Range
(N
, Base_Type
(T
))
247 ("?float value out of range, infinity will be generated", N
);
253 -- Here we have the case of outer level static expression of
254 -- scalar type, where the processing of this procedure is needed.
256 -- For real types, this is where we convert the value to a machine
257 -- number (see RM 4.9(38)). Also see ACVC test C490001. We should
258 -- only need to do this if the parent is a constant declaration,
259 -- since in other cases, gigi should do the necessary conversion
260 -- correctly, but experimentation shows that this is not the case
261 -- on all machines, in particular if we do not convert all literals
262 -- to machine values in non-static contexts, then ACVC test C490001
263 -- fails on Sparc/Solaris and SGI/Irix.
265 if Nkind
(N
) = N_Real_Literal
266 and then not Is_Machine_Number
(N
)
267 and then not Is_Generic_Type
(Etype
(N
))
268 and then Etype
(N
) /= Universal_Real
270 -- Check that value is in bounds before converting to machine
271 -- number, so as not to lose case where value overflows in the
272 -- least significant bit or less. See B490001.
274 if Is_Out_Of_Range
(N
, Base_Type
(T
)) then
279 -- Note: we have to copy the node, to avoid problems with conformance
280 -- of very similar numbers (see ACVC tests B4A010C and B63103A).
282 Rewrite
(N
, New_Copy
(N
));
284 if not Is_Floating_Point_Type
(T
) then
286 (N
, Corresponding_Integer_Value
(N
) * Small_Value
(T
));
288 elsif not UR_Is_Zero
(Realval
(N
)) then
290 -- Note: even though RM 4.9(38) specifies biased rounding,
291 -- this has been modified by AI-100 in order to prevent
292 -- confusing differences in rounding between static and
293 -- non-static expressions. AI-100 specifies that the effect
294 -- of such rounding is implementation dependent, and in GNAT
295 -- we round to nearest even to match the run-time behavior.
298 (N
, Machine
(Base_Type
(T
), Realval
(N
), Round_Even
, N
));
301 Set_Is_Machine_Number
(N
);
304 -- Check for out of range universal integer. This is a non-static
305 -- context, so the integer value must be in range of the runtime
306 -- representation of universal integers.
308 -- We do this only within an expression, because that is the only
309 -- case in which non-static universal integer values can occur, and
310 -- furthermore, Check_Non_Static_Context is currently (incorrectly???)
311 -- called in contexts like the expression of a number declaration where
312 -- we certainly want to allow out of range values.
314 if Etype
(N
) = Universal_Integer
315 and then Nkind
(N
) = N_Integer_Literal
316 and then Nkind
(Parent
(N
)) in N_Subexpr
318 (Intval
(N
) < Expr_Value
(Type_Low_Bound
(Universal_Integer
))
320 Intval
(N
) > Expr_Value
(Type_High_Bound
(Universal_Integer
)))
322 Apply_Compile_Time_Constraint_Error
323 (N
, "non-static universal integer value out of range?",
324 CE_Range_Check_Failed
);
326 -- Check out of range of base type
328 elsif Is_Out_Of_Range
(N
, Base_Type
(T
)) then
331 -- Give warning if outside subtype (where one or both of the
332 -- bounds of the subtype is static). This warning is omitted
333 -- if the expression appears in a range that could be null
334 -- (warnings are handled elsewhere for this case).
336 elsif T
/= Base_Type
(T
)
337 and then Nkind
(Parent
(N
)) /= N_Range
339 if Is_In_Range
(N
, T
) then
342 elsif Is_Out_Of_Range
(N
, T
) then
343 Apply_Compile_Time_Constraint_Error
344 (N
, "value not in range of}?", CE_Range_Check_Failed
);
347 Enable_Range_Check
(N
);
350 Set_Do_Range_Check
(N
, False);
353 end Check_Non_Static_Context
;
355 ---------------------------------
356 -- Check_String_Literal_Length --
357 ---------------------------------
359 procedure Check_String_Literal_Length
(N
: Node_Id
; Ttype
: Entity_Id
) is
361 if not Raises_Constraint_Error
(N
)
362 and then Is_Constrained
(Ttype
)
365 UI_From_Int
(String_Length
(Strval
(N
))) /= String_Type_Len
(Ttype
)
367 Apply_Compile_Time_Constraint_Error
368 (N
, "string length wrong for}?",
369 CE_Length_Check_Failed
,
374 end Check_String_Literal_Length
;
376 --------------------------
377 -- Compile_Time_Compare --
378 --------------------------
380 function Compile_Time_Compare
382 Rec
: Boolean := False) return Compare_Result
384 Ltyp
: constant Entity_Id
:= Etype
(L
);
385 Rtyp
: constant Entity_Id
:= Etype
(R
);
387 procedure Compare_Decompose
391 -- This procedure decomposes the node N into an expression node
392 -- and a signed offset, so that the value of N is equal to the
393 -- value of R plus the value V (which may be negative). If no
394 -- such decomposition is possible, then on return R is a copy
395 -- of N, and V is set to zero.
397 function Compare_Fixup
(N
: Node_Id
) return Node_Id
;
398 -- This function deals with replacing 'Last and 'First references
399 -- with their corresponding type bounds, which we then can compare.
400 -- The argument is the original node, the result is the identity,
401 -- unless we have a 'Last/'First reference in which case the value
402 -- returned is the appropriate type bound.
404 function Is_Same_Value
(L
, R
: Node_Id
) return Boolean;
405 -- Returns True iff L and R represent expressions that definitely
406 -- have identical (but not necessarily compile time known) values
407 -- Indeed the caller is expected to have already dealt with the
408 -- cases of compile time known values, so these are not tested here.
410 -----------------------
411 -- Compare_Decompose --
412 -----------------------
414 procedure Compare_Decompose
420 if Nkind
(N
) = N_Op_Add
421 and then Nkind
(Right_Opnd
(N
)) = N_Integer_Literal
424 V
:= Intval
(Right_Opnd
(N
));
427 elsif Nkind
(N
) = N_Op_Subtract
428 and then Nkind
(Right_Opnd
(N
)) = N_Integer_Literal
431 V
:= UI_Negate
(Intval
(Right_Opnd
(N
)));
434 elsif Nkind
(N
) = N_Attribute_Reference
then
436 if Attribute_Name
(N
) = Name_Succ
then
437 R
:= First
(Expressions
(N
));
441 elsif Attribute_Name
(N
) = Name_Pred
then
442 R
:= First
(Expressions
(N
));
450 end Compare_Decompose
;
456 function Compare_Fixup
(N
: Node_Id
) return Node_Id
is
462 if Nkind
(N
) = N_Attribute_Reference
463 and then (Attribute_Name
(N
) = Name_First
465 Attribute_Name
(N
) = Name_Last
)
467 Xtyp
:= Etype
(Prefix
(N
));
469 -- If we have no type, then just abandon the attempt to do
470 -- a fixup, this is probably the result of some other error.
476 -- Dereference an access type
478 if Is_Access_Type
(Xtyp
) then
479 Xtyp
:= Designated_Type
(Xtyp
);
482 -- If we don't have an array type at this stage, something
483 -- is peculiar, e.g. another error, and we abandon the attempt
486 if not Is_Array_Type
(Xtyp
) then
490 -- Ignore unconstrained array, since bounds are not meaningful
492 if not Is_Constrained
(Xtyp
) then
496 if Ekind
(Xtyp
) = E_String_Literal_Subtype
then
497 if Attribute_Name
(N
) = Name_First
then
498 return String_Literal_Low_Bound
(Xtyp
);
500 else -- Attribute_Name (N) = Name_Last
501 return Make_Integer_Literal
(Sloc
(N
),
502 Intval
=> Intval
(String_Literal_Low_Bound
(Xtyp
))
503 + String_Literal_Length
(Xtyp
));
507 -- Find correct index type
509 Indx
:= First_Index
(Xtyp
);
511 if Present
(Expressions
(N
)) then
512 Subs
:= UI_To_Int
(Expr_Value
(First
(Expressions
(N
))));
514 for J
in 2 .. Subs
loop
515 Indx
:= Next_Index
(Indx
);
519 Xtyp
:= Etype
(Indx
);
521 if Attribute_Name
(N
) = Name_First
then
522 return Type_Low_Bound
(Xtyp
);
524 else -- Attribute_Name (N) = Name_Last
525 return Type_High_Bound
(Xtyp
);
536 function Is_Same_Value
(L
, R
: Node_Id
) return Boolean is
537 Lf
: constant Node_Id
:= Compare_Fixup
(L
);
538 Rf
: constant Node_Id
:= Compare_Fixup
(R
);
540 function Is_Same_Subscript
(L
, R
: List_Id
) return Boolean;
541 -- L, R are the Expressions values from two attribute nodes
542 -- for First or Last attributes. Either may be set to No_List
543 -- if no expressions are present (indicating subscript 1).
544 -- The result is True if both expressions represent the same
545 -- subscript (note that one case is where one subscript is
546 -- missing and the other is explicitly set to 1).
548 -----------------------
549 -- Is_Same_Subscript --
550 -----------------------
552 function Is_Same_Subscript
(L
, R
: List_Id
) return Boolean is
558 return Expr_Value
(First
(R
)) = Uint_1
;
563 return Expr_Value
(First
(L
)) = Uint_1
;
565 return Expr_Value
(First
(L
)) = Expr_Value
(First
(R
));
568 end Is_Same_Subscript
;
570 -- Start of processing for Is_Same_Value
573 -- Values are the same if they are the same identifier and the
574 -- identifier refers to a constant object (E_Constant). This
575 -- does not however apply to Float types, since we may have two
576 -- NaN values and they should never compare equal.
578 if Nkind
(Lf
) = N_Identifier
and then Nkind
(Rf
) = N_Identifier
579 and then Entity
(Lf
) = Entity
(Rf
)
580 and then not Is_Floating_Point_Type
(Etype
(L
))
581 and then (Ekind
(Entity
(Lf
)) = E_Constant
or else
582 Ekind
(Entity
(Lf
)) = E_In_Parameter
or else
583 Ekind
(Entity
(Lf
)) = E_Loop_Parameter
)
587 -- Or if they are compile time known and identical
589 elsif Compile_Time_Known_Value
(Lf
)
591 Compile_Time_Known_Value
(Rf
)
592 and then Expr_Value
(Lf
) = Expr_Value
(Rf
)
596 -- Or if they are both 'First or 'Last values applying to the
597 -- same entity (first and last don't change even if value does)
599 elsif Nkind
(Lf
) = N_Attribute_Reference
601 Nkind
(Rf
) = N_Attribute_Reference
602 and then Attribute_Name
(Lf
) = Attribute_Name
(Rf
)
603 and then (Attribute_Name
(Lf
) = Name_First
605 Attribute_Name
(Lf
) = Name_Last
)
606 and then Is_Entity_Name
(Prefix
(Lf
))
607 and then Is_Entity_Name
(Prefix
(Rf
))
608 and then Entity
(Prefix
(Lf
)) = Entity
(Prefix
(Rf
))
609 and then Is_Same_Subscript
(Expressions
(Lf
), Expressions
(Rf
))
613 -- All other cases, we can't tell
620 -- Start of processing for Compile_Time_Compare
623 -- If either operand could raise constraint error, then we cannot
624 -- know the result at compile time (since CE may be raised!)
626 if not (Cannot_Raise_Constraint_Error
(L
)
628 Cannot_Raise_Constraint_Error
(R
))
633 -- Identical operands are most certainly equal
638 -- If expressions have no types, then do not attempt to determine
639 -- if they are the same, since something funny is going on. One
640 -- case in which this happens is during generic template analysis,
641 -- when bounds are not fully analyzed.
643 elsif No
(Ltyp
) or else No
(Rtyp
) then
646 -- We only attempt compile time analysis for scalar values, and
647 -- not for packed arrays represented as modular types, where the
648 -- semantics of comparison is quite different.
650 elsif not Is_Scalar_Type
(Ltyp
)
651 or else Is_Packed_Array_Type
(Ltyp
)
655 -- Case where comparison involves two compile time known values
657 elsif Compile_Time_Known_Value
(L
)
658 and then Compile_Time_Known_Value
(R
)
660 -- For the floating-point case, we have to be a little careful, since
661 -- at compile time we are dealing with universal exact values, but at
662 -- runtime, these will be in non-exact target form. That's why the
663 -- returned results are LE and GE below instead of LT and GT.
665 if Is_Floating_Point_Type
(Ltyp
)
667 Is_Floating_Point_Type
(Rtyp
)
670 Lo
: constant Ureal
:= Expr_Value_R
(L
);
671 Hi
: constant Ureal
:= Expr_Value_R
(R
);
683 -- For the integer case we know exactly (note that this includes the
684 -- fixed-point case, where we know the run time integer values now)
688 Lo
: constant Uint
:= Expr_Value
(L
);
689 Hi
: constant Uint
:= Expr_Value
(R
);
702 -- Cases where at least one operand is not known at compile time
705 -- Remaining checks apply only for non-generic discrete types
707 if not Is_Discrete_Type
(Ltyp
)
708 or else not Is_Discrete_Type
(Rtyp
)
709 or else Is_Generic_Type
(Ltyp
)
710 or else Is_Generic_Type
(Rtyp
)
715 -- Here is where we check for comparisons against maximum bounds of
716 -- types, where we know that no value can be outside the bounds of
717 -- the subtype. Note that this routine is allowed to assume that all
718 -- expressions are within their subtype bounds. Callers wishing to
719 -- deal with possibly invalid values must in any case take special
720 -- steps (e.g. conversions to larger types) to avoid this kind of
721 -- optimization, which is always considered to be valid. We do not
722 -- attempt this optimization with generic types, since the type
723 -- bounds may not be meaningful in this case.
725 -- We are in danger of an infinite recursion here. It does not seem
726 -- useful to go more than one level deep, so the parameter Rec is
727 -- used to protect ourselves against this infinite recursion.
731 -- See if we can get a decisive check against one operand and
732 -- a bound of the other operand (four possible tests here).
734 case Compile_Time_Compare
(L
, Type_Low_Bound
(Rtyp
), True) is
735 when LT
=> return LT
;
736 when LE
=> return LE
;
737 when EQ
=> return LE
;
741 case Compile_Time_Compare
(L
, Type_High_Bound
(Rtyp
), True) is
742 when GT
=> return GT
;
743 when GE
=> return GE
;
744 when EQ
=> return GE
;
748 case Compile_Time_Compare
(Type_Low_Bound
(Ltyp
), R
, True) is
749 when GT
=> return GT
;
750 when GE
=> return GE
;
751 when EQ
=> return GE
;
755 case Compile_Time_Compare
(Type_High_Bound
(Ltyp
), R
, True) is
756 when LT
=> return LT
;
757 when LE
=> return LE
;
758 when EQ
=> return LE
;
763 -- Next attempt is to decompose the expressions to extract
764 -- a constant offset resulting from the use of any of the forms:
771 -- Then we see if the two expressions are the same value, and if so
772 -- the result is obtained by comparing the offsets.
781 Compare_Decompose
(L
, Lnode
, Loffs
);
782 Compare_Decompose
(R
, Rnode
, Roffs
);
784 if Is_Same_Value
(Lnode
, Rnode
) then
785 if Loffs
= Roffs
then
788 elsif Loffs
< Roffs
then
797 -- Next attempt is to see if we have an entity compared with a
798 -- compile time known value, where there is a current value
799 -- conditional for the entity which can tell us the result.
803 -- Entity variable (left operand)
806 -- Value (right operand)
809 -- If False, we have reversed the operands
812 -- Comparison operator kind from Get_Current_Value_Condition call
815 -- Value from Get_Current_Value_Condition call
820 Result
: Compare_Result
;
821 -- Known result before inversion
824 if Is_Entity_Name
(L
)
825 and then Compile_Time_Known_Value
(R
)
828 Val
:= Expr_Value
(R
);
831 elsif Is_Entity_Name
(R
)
832 and then Compile_Time_Known_Value
(L
)
835 Val
:= Expr_Value
(L
);
838 -- That was the last chance at finding a compile time result
844 Get_Current_Value_Condition
(Var
, Op
, Opn
);
846 -- That was the last chance, so if we got nothing return
852 Opv
:= Expr_Value
(Opn
);
854 -- We got a comparison, so we might have something interesting
856 -- Convert LE to LT and GE to GT, just so we have fewer cases
861 elsif Op
= N_Op_Ge
then
866 -- Deal with equality case
877 -- Deal with inequality case
879 elsif Op
= N_Op_Ne
then
886 -- Deal with greater than case
888 elsif Op
= N_Op_Gt
then
891 elsif Opv
= Val
- 1 then
897 -- Deal with less than case
899 else pragma Assert
(Op
= N_Op_Lt
);
902 elsif Opv
= Val
+ 1 then
909 -- Deal with inverting result
913 when GT
=> return LT
;
914 when GE
=> return LE
;
915 when LT
=> return GT
;
916 when LE
=> return GE
;
917 when others => return Result
;
924 end Compile_Time_Compare
;
926 -------------------------------
927 -- Compile_Time_Known_Bounds --
928 -------------------------------
930 function Compile_Time_Known_Bounds
(T
: Entity_Id
) return Boolean is
935 if not Is_Array_Type
(T
) then
939 Indx
:= First_Index
(T
);
940 while Present
(Indx
) loop
941 Typ
:= Underlying_Type
(Etype
(Indx
));
942 if not Compile_Time_Known_Value
(Type_Low_Bound
(Typ
)) then
944 elsif not Compile_Time_Known_Value
(Type_High_Bound
(Typ
)) then
952 end Compile_Time_Known_Bounds
;
954 ------------------------------
955 -- Compile_Time_Known_Value --
956 ------------------------------
958 function Compile_Time_Known_Value
(Op
: Node_Id
) return Boolean is
959 K
: constant Node_Kind
:= Nkind
(Op
);
960 CV_Ent
: CV_Entry
renames CV_Cache
(Nat
(Op
) mod CV_Cache_Size
);
963 -- Never known at compile time if bad type or raises constraint error
964 -- or empty (latter case occurs only as a result of a previous error)
968 or else Etype
(Op
) = Any_Type
969 or else Raises_Constraint_Error
(Op
)
974 -- If this is not a static expression and we are in configurable run
975 -- time mode, then we consider it not known at compile time. This
976 -- avoids anomalies where whether something is permitted with a given
977 -- configurable run-time library depends on how good the compiler is
978 -- at optimizing and knowing that things are constant when they
981 if Configurable_Run_Time_Mode
and then not Is_Static_Expression
(Op
) then
985 -- If we have an entity name, then see if it is the name of a constant
986 -- and if so, test the corresponding constant value, or the name of
987 -- an enumeration literal, which is always a constant.
989 if Present
(Etype
(Op
)) and then Is_Entity_Name
(Op
) then
991 E
: constant Entity_Id
:= Entity
(Op
);
995 -- Never known at compile time if it is a packed array value.
996 -- We might want to try to evaluate these at compile time one
997 -- day, but we do not make that attempt now.
999 if Is_Packed_Array_Type
(Etype
(Op
)) then
1003 if Ekind
(E
) = E_Enumeration_Literal
then
1006 elsif Ekind
(E
) = E_Constant
then
1007 V
:= Constant_Value
(E
);
1008 return Present
(V
) and then Compile_Time_Known_Value
(V
);
1012 -- We have a value, see if it is compile time known
1015 -- Integer literals are worth storing in the cache
1017 if K
= N_Integer_Literal
then
1019 CV_Ent
.V
:= Intval
(Op
);
1022 -- Other literals and NULL are known at compile time
1025 K
= N_Character_Literal
1029 K
= N_String_Literal
1035 -- Any reference to Null_Parameter is known at compile time. No
1036 -- other attribute references (that have not already been folded)
1037 -- are known at compile time.
1039 elsif K
= N_Attribute_Reference
then
1040 return Attribute_Name
(Op
) = Name_Null_Parameter
;
1044 -- If we fall through, not known at compile time
1048 -- If we get an exception while trying to do this test, then some error
1049 -- has occurred, and we simply say that the value is not known after all
1054 end Compile_Time_Known_Value
;
1056 --------------------------------------
1057 -- Compile_Time_Known_Value_Or_Aggr --
1058 --------------------------------------
1060 function Compile_Time_Known_Value_Or_Aggr
(Op
: Node_Id
) return Boolean is
1062 -- If we have an entity name, then see if it is the name of a constant
1063 -- and if so, test the corresponding constant value, or the name of
1064 -- an enumeration literal, which is always a constant.
1066 if Is_Entity_Name
(Op
) then
1068 E
: constant Entity_Id
:= Entity
(Op
);
1072 if Ekind
(E
) = E_Enumeration_Literal
then
1075 elsif Ekind
(E
) /= E_Constant
then
1079 V
:= Constant_Value
(E
);
1081 and then Compile_Time_Known_Value_Or_Aggr
(V
);
1085 -- We have a value, see if it is compile time known
1088 if Compile_Time_Known_Value
(Op
) then
1091 elsif Nkind
(Op
) = N_Aggregate
then
1093 if Present
(Expressions
(Op
)) then
1098 Expr
:= First
(Expressions
(Op
));
1099 while Present
(Expr
) loop
1100 if not Compile_Time_Known_Value_Or_Aggr
(Expr
) then
1109 if Present
(Component_Associations
(Op
)) then
1114 Cass
:= First
(Component_Associations
(Op
));
1115 while Present
(Cass
) loop
1117 Compile_Time_Known_Value_Or_Aggr
(Expression
(Cass
))
1129 -- All other types of values are not known at compile time
1136 end Compile_Time_Known_Value_Or_Aggr
;
1142 -- This is only called for actuals of functions that are not predefined
1143 -- operators (which have already been rewritten as operators at this
1144 -- stage), so the call can never be folded, and all that needs doing for
1145 -- the actual is to do the check for a non-static context.
1147 procedure Eval_Actual
(N
: Node_Id
) is
1149 Check_Non_Static_Context
(N
);
1152 --------------------
1153 -- Eval_Allocator --
1154 --------------------
1156 -- Allocators are never static, so all we have to do is to do the
1157 -- check for a non-static context if an expression is present.
1159 procedure Eval_Allocator
(N
: Node_Id
) is
1160 Expr
: constant Node_Id
:= Expression
(N
);
1163 if Nkind
(Expr
) = N_Qualified_Expression
then
1164 Check_Non_Static_Context
(Expression
(Expr
));
1168 ------------------------
1169 -- Eval_Arithmetic_Op --
1170 ------------------------
1172 -- Arithmetic operations are static functions, so the result is static
1173 -- if both operands are static (RM 4.9(7), 4.9(20)).
1175 procedure Eval_Arithmetic_Op
(N
: Node_Id
) is
1176 Left
: constant Node_Id
:= Left_Opnd
(N
);
1177 Right
: constant Node_Id
:= Right_Opnd
(N
);
1178 Ltype
: constant Entity_Id
:= Etype
(Left
);
1179 Rtype
: constant Entity_Id
:= Etype
(Right
);
1184 -- If not foldable we are done
1186 Test_Expression_Is_Foldable
(N
, Left
, Right
, Stat
, Fold
);
1192 -- Fold for cases where both operands are of integer type
1194 if Is_Integer_Type
(Ltype
) and then Is_Integer_Type
(Rtype
) then
1196 Left_Int
: constant Uint
:= Expr_Value
(Left
);
1197 Right_Int
: constant Uint
:= Expr_Value
(Right
);
1204 Result
:= Left_Int
+ Right_Int
;
1206 when N_Op_Subtract
=>
1207 Result
:= Left_Int
- Right_Int
;
1209 when N_Op_Multiply
=>
1212 (Num_Bits
(Left_Int
) + Num_Bits
(Right_Int
)))
1214 Result
:= Left_Int
* Right_Int
;
1221 -- The exception Constraint_Error is raised by integer
1222 -- division, rem and mod if the right operand is zero.
1224 if Right_Int
= 0 then
1225 Apply_Compile_Time_Constraint_Error
1226 (N
, "division by zero",
1232 Result
:= Left_Int
/ Right_Int
;
1237 -- The exception Constraint_Error is raised by integer
1238 -- division, rem and mod if the right operand is zero.
1240 if Right_Int
= 0 then
1241 Apply_Compile_Time_Constraint_Error
1242 (N
, "mod with zero divisor",
1247 Result
:= Left_Int
mod Right_Int
;
1252 -- The exception Constraint_Error is raised by integer
1253 -- division, rem and mod if the right operand is zero.
1255 if Right_Int
= 0 then
1256 Apply_Compile_Time_Constraint_Error
1257 (N
, "rem with zero divisor",
1263 Result
:= Left_Int
rem Right_Int
;
1267 raise Program_Error
;
1270 -- Adjust the result by the modulus if the type is a modular type
1272 if Is_Modular_Integer_Type
(Ltype
) then
1273 Result
:= Result
mod Modulus
(Ltype
);
1275 -- For a signed integer type, check non-static overflow
1277 elsif (not Stat
) and then Is_Signed_Integer_Type
(Ltype
) then
1279 BT
: constant Entity_Id
:= Base_Type
(Ltype
);
1280 Lo
: constant Uint
:= Expr_Value
(Type_Low_Bound
(BT
));
1281 Hi
: constant Uint
:= Expr_Value
(Type_High_Bound
(BT
));
1283 if Result
< Lo
or else Result
> Hi
then
1284 Apply_Compile_Time_Constraint_Error
1285 (N
, "value not in range of }?",
1286 CE_Overflow_Check_Failed
,
1293 -- If we get here we can fold the result
1295 Fold_Uint
(N
, Result
, Stat
);
1298 -- Cases where at least one operand is a real. We handle the cases
1299 -- of both reals, or mixed/real integer cases (the latter happen
1300 -- only for divide and multiply, and the result is always real).
1302 elsif Is_Real_Type
(Ltype
) or else Is_Real_Type
(Rtype
) then
1309 if Is_Real_Type
(Ltype
) then
1310 Left_Real
:= Expr_Value_R
(Left
);
1312 Left_Real
:= UR_From_Uint
(Expr_Value
(Left
));
1315 if Is_Real_Type
(Rtype
) then
1316 Right_Real
:= Expr_Value_R
(Right
);
1318 Right_Real
:= UR_From_Uint
(Expr_Value
(Right
));
1321 if Nkind
(N
) = N_Op_Add
then
1322 Result
:= Left_Real
+ Right_Real
;
1324 elsif Nkind
(N
) = N_Op_Subtract
then
1325 Result
:= Left_Real
- Right_Real
;
1327 elsif Nkind
(N
) = N_Op_Multiply
then
1328 Result
:= Left_Real
* Right_Real
;
1330 else pragma Assert
(Nkind
(N
) = N_Op_Divide
);
1331 if UR_Is_Zero
(Right_Real
) then
1332 Apply_Compile_Time_Constraint_Error
1333 (N
, "division by zero", CE_Divide_By_Zero
);
1337 Result
:= Left_Real
/ Right_Real
;
1340 Fold_Ureal
(N
, Result
, Stat
);
1343 end Eval_Arithmetic_Op
;
1345 ----------------------------
1346 -- Eval_Character_Literal --
1347 ----------------------------
1349 -- Nothing to be done!
1351 procedure Eval_Character_Literal
(N
: Node_Id
) is
1352 pragma Warnings
(Off
, N
);
1355 end Eval_Character_Literal
;
1361 -- Static function calls are either calls to predefined operators
1362 -- with static arguments, or calls to functions that rename a literal.
1363 -- Only the latter case is handled here, predefined operators are
1364 -- constant-folded elsewhere.
1366 -- If the function is itself inherited (see 7423-001) the literal of
1367 -- the parent type must be explicitly converted to the return type
1370 procedure Eval_Call
(N
: Node_Id
) is
1371 Loc
: constant Source_Ptr
:= Sloc
(N
);
1372 Typ
: constant Entity_Id
:= Etype
(N
);
1376 if Nkind
(N
) = N_Function_Call
1377 and then No
(Parameter_Associations
(N
))
1378 and then Is_Entity_Name
(Name
(N
))
1379 and then Present
(Alias
(Entity
(Name
(N
))))
1380 and then Is_Enumeration_Type
(Base_Type
(Typ
))
1382 Lit
:= Alias
(Entity
(Name
(N
)));
1383 while Present
(Alias
(Lit
)) loop
1387 if Ekind
(Lit
) = E_Enumeration_Literal
then
1388 if Base_Type
(Etype
(Lit
)) /= Base_Type
(Typ
) then
1390 (N
, Convert_To
(Typ
, New_Occurrence_Of
(Lit
, Loc
)));
1392 Rewrite
(N
, New_Occurrence_Of
(Lit
, Loc
));
1400 ------------------------
1401 -- Eval_Concatenation --
1402 ------------------------
1404 -- Concatenation is a static function, so the result is static if
1405 -- both operands are static (RM 4.9(7), 4.9(21)).
1407 procedure Eval_Concatenation
(N
: Node_Id
) is
1408 Left
: constant Node_Id
:= Left_Opnd
(N
);
1409 Right
: constant Node_Id
:= Right_Opnd
(N
);
1410 C_Typ
: constant Entity_Id
:= Root_Type
(Component_Type
(Etype
(N
)));
1415 -- Concatenation is never static in Ada 83, so if Ada 83
1416 -- check operand non-static context
1418 if Ada_Version
= Ada_83
1419 and then Comes_From_Source
(N
)
1421 Check_Non_Static_Context
(Left
);
1422 Check_Non_Static_Context
(Right
);
1426 -- If not foldable we are done. In principle concatenation that yields
1427 -- any string type is static (i.e. an array type of character types).
1428 -- However, character types can include enumeration literals, and
1429 -- concatenation in that case cannot be described by a literal, so we
1430 -- only consider the operation static if the result is an array of
1431 -- (a descendant of) a predefined character type.
1433 Test_Expression_Is_Foldable
(N
, Left
, Right
, Stat
, Fold
);
1435 if (C_Typ
= Standard_Character
1436 or else C_Typ
= Standard_Wide_Character
1437 or else C_Typ
= Standard_Wide_Wide_Character
)
1442 Set_Is_Static_Expression
(N
, False);
1446 -- Compile time string concatenation
1448 -- ??? Note that operands that are aggregates can be marked as
1449 -- static, so we should attempt at a later stage to fold
1450 -- concatenations with such aggregates.
1453 Left_Str
: constant Node_Id
:= Get_String_Val
(Left
);
1455 Right_Str
: constant Node_Id
:= Get_String_Val
(Right
);
1458 -- Establish new string literal, and store left operand. We make
1459 -- sure to use the special Start_String that takes an operand if
1460 -- the left operand is a string literal. Since this is optimized
1461 -- in the case where that is the most recently created string
1462 -- literal, we ensure efficient time/space behavior for the
1463 -- case of a concatenation of a series of string literals.
1465 if Nkind
(Left_Str
) = N_String_Literal
then
1466 Left_Len
:= String_Length
(Strval
(Left_Str
));
1467 Start_String
(Strval
(Left_Str
));
1470 Store_String_Char
(UI_To_CC
(Char_Literal_Value
(Left_Str
)));
1474 -- Now append the characters of the right operand
1476 if Nkind
(Right_Str
) = N_String_Literal
then
1478 S
: constant String_Id
:= Strval
(Right_Str
);
1481 for J
in 1 .. String_Length
(S
) loop
1482 Store_String_Char
(Get_String_Char
(S
, J
));
1486 Store_String_Char
(UI_To_CC
(Char_Literal_Value
(Right_Str
)));
1489 Set_Is_Static_Expression
(N
, Stat
);
1493 -- If left operand is the empty string, the result is the
1494 -- right operand, including its bounds if anomalous.
1497 and then Is_Array_Type
(Etype
(Right
))
1498 and then Etype
(Right
) /= Any_String
1500 Set_Etype
(N
, Etype
(Right
));
1503 Fold_Str
(N
, End_String
, True);
1506 end Eval_Concatenation
;
1508 ---------------------------------
1509 -- Eval_Conditional_Expression --
1510 ---------------------------------
1512 -- This GNAT internal construct can never be statically folded, so the
1513 -- only required processing is to do the check for non-static context
1514 -- for the two expression operands.
1516 procedure Eval_Conditional_Expression
(N
: Node_Id
) is
1517 Condition
: constant Node_Id
:= First
(Expressions
(N
));
1518 Then_Expr
: constant Node_Id
:= Next
(Condition
);
1519 Else_Expr
: constant Node_Id
:= Next
(Then_Expr
);
1522 Check_Non_Static_Context
(Then_Expr
);
1523 Check_Non_Static_Context
(Else_Expr
);
1524 end Eval_Conditional_Expression
;
1526 ----------------------
1527 -- Eval_Entity_Name --
1528 ----------------------
1530 -- This procedure is used for identifiers and expanded names other than
1531 -- named numbers (see Eval_Named_Integer, Eval_Named_Real. These are
1532 -- static if they denote a static constant (RM 4.9(6)) or if the name
1533 -- denotes an enumeration literal (RM 4.9(22)).
1535 procedure Eval_Entity_Name
(N
: Node_Id
) is
1536 Def_Id
: constant Entity_Id
:= Entity
(N
);
1540 -- Enumeration literals are always considered to be constants
1541 -- and cannot raise constraint error (RM 4.9(22)).
1543 if Ekind
(Def_Id
) = E_Enumeration_Literal
then
1544 Set_Is_Static_Expression
(N
);
1547 -- A name is static if it denotes a static constant (RM 4.9(5)), and
1548 -- we also copy Raise_Constraint_Error. Notice that even if non-static,
1549 -- it does not violate 10.2.1(8) here, since this is not a variable.
1551 elsif Ekind
(Def_Id
) = E_Constant
then
1553 -- Deferred constants must always be treated as nonstatic
1554 -- outside the scope of their full view.
1556 if Present
(Full_View
(Def_Id
))
1557 and then not In_Open_Scopes
(Scope
(Def_Id
))
1561 Val
:= Constant_Value
(Def_Id
);
1564 if Present
(Val
) then
1565 Set_Is_Static_Expression
1566 (N
, Is_Static_Expression
(Val
)
1567 and then Is_Static_Subtype
(Etype
(Def_Id
)));
1568 Set_Raises_Constraint_Error
(N
, Raises_Constraint_Error
(Val
));
1570 if not Is_Static_Expression
(N
)
1571 and then not Is_Generic_Type
(Etype
(N
))
1573 Validate_Static_Object_Name
(N
);
1580 -- Fall through if the name is not static
1582 Validate_Static_Object_Name
(N
);
1583 end Eval_Entity_Name
;
1585 ----------------------------
1586 -- Eval_Indexed_Component --
1587 ----------------------------
1589 -- Indexed components are never static, so we need to perform the check
1590 -- for non-static context on the index values. Then, we check if the
1591 -- value can be obtained at compile time, even though it is non-static.
1593 procedure Eval_Indexed_Component
(N
: Node_Id
) is
1597 -- Check for non-static context on index values
1599 Expr
:= First
(Expressions
(N
));
1600 while Present
(Expr
) loop
1601 Check_Non_Static_Context
(Expr
);
1605 -- If the indexed component appears in an object renaming declaration
1606 -- then we do not want to try to evaluate it, since in this case we
1607 -- need the identity of the array element.
1609 if Nkind
(Parent
(N
)) = N_Object_Renaming_Declaration
then
1612 -- Similarly if the indexed component appears as the prefix of an
1613 -- attribute we don't want to evaluate it, because at least for
1614 -- some cases of attributes we need the identify (e.g. Access, Size)
1616 elsif Nkind
(Parent
(N
)) = N_Attribute_Reference
then
1620 -- Note: there are other cases, such as the left side of an assignment,
1621 -- or an OUT parameter for a call, where the replacement results in the
1622 -- illegal use of a constant, But these cases are illegal in the first
1623 -- place, so the replacement, though silly, is harmless.
1625 -- Now see if this is a constant array reference
1627 if List_Length
(Expressions
(N
)) = 1
1628 and then Is_Entity_Name
(Prefix
(N
))
1629 and then Ekind
(Entity
(Prefix
(N
))) = E_Constant
1630 and then Present
(Constant_Value
(Entity
(Prefix
(N
))))
1633 Loc
: constant Source_Ptr
:= Sloc
(N
);
1634 Arr
: constant Node_Id
:= Constant_Value
(Entity
(Prefix
(N
)));
1635 Sub
: constant Node_Id
:= First
(Expressions
(N
));
1641 -- Linear one's origin subscript value for array reference
1644 -- Lower bound of the first array index
1647 -- Value from constant array
1650 Atyp
:= Etype
(Arr
);
1652 if Is_Access_Type
(Atyp
) then
1653 Atyp
:= Designated_Type
(Atyp
);
1656 -- If we have an array type (we should have but perhaps there
1657 -- are error cases where this is not the case), then see if we
1658 -- can do a constant evaluation of the array reference.
1660 if Is_Array_Type
(Atyp
) then
1661 if Ekind
(Atyp
) = E_String_Literal_Subtype
then
1662 Lbd
:= String_Literal_Low_Bound
(Atyp
);
1664 Lbd
:= Type_Low_Bound
(Etype
(First_Index
(Atyp
)));
1667 if Compile_Time_Known_Value
(Sub
)
1668 and then Nkind
(Arr
) = N_Aggregate
1669 and then Compile_Time_Known_Value
(Lbd
)
1670 and then Is_Discrete_Type
(Component_Type
(Atyp
))
1672 Lin
:= UI_To_Int
(Expr_Value
(Sub
) - Expr_Value
(Lbd
)) + 1;
1674 if List_Length
(Expressions
(Arr
)) >= Lin
then
1675 Elm
:= Pick
(Expressions
(Arr
), Lin
);
1677 -- If the resulting expression is compile time known,
1678 -- then we can rewrite the indexed component with this
1679 -- value, being sure to mark the result as non-static.
1680 -- We also reset the Sloc, in case this generates an
1681 -- error later on (e.g. 136'Access).
1683 if Compile_Time_Known_Value
(Elm
) then
1684 Rewrite
(N
, Duplicate_Subexpr_No_Checks
(Elm
));
1685 Set_Is_Static_Expression
(N
, False);
1693 end Eval_Indexed_Component
;
1695 --------------------------
1696 -- Eval_Integer_Literal --
1697 --------------------------
1699 -- Numeric literals are static (RM 4.9(1)), and have already been marked
1700 -- as static by the analyzer. The reason we did it that early is to allow
1701 -- the possibility of turning off the Is_Static_Expression flag after
1702 -- analysis, but before resolution, when integer literals are generated
1703 -- in the expander that do not correspond to static expressions.
1705 procedure Eval_Integer_Literal
(N
: Node_Id
) is
1706 T
: constant Entity_Id
:= Etype
(N
);
1708 function In_Any_Integer_Context
return Boolean;
1709 -- If the literal is resolved with a specific type in a context
1710 -- where the expected type is Any_Integer, there are no range checks
1711 -- on the literal. By the time the literal is evaluated, it carries
1712 -- the type imposed by the enclosing expression, and we must recover
1713 -- the context to determine that Any_Integer is meant.
1715 ----------------------------
1716 -- To_Any_Integer_Context --
1717 ----------------------------
1719 function In_Any_Integer_Context
return Boolean is
1720 Par
: constant Node_Id
:= Parent
(N
);
1721 K
: constant Node_Kind
:= Nkind
(Par
);
1724 -- Any_Integer also appears in digits specifications for real types,
1725 -- but those have bounds smaller that those of any integer base
1726 -- type, so we can safely ignore these cases.
1728 return K
= N_Number_Declaration
1729 or else K
= N_Attribute_Reference
1730 or else K
= N_Attribute_Definition_Clause
1731 or else K
= N_Modular_Type_Definition
1732 or else K
= N_Signed_Integer_Type_Definition
;
1733 end In_Any_Integer_Context
;
1735 -- Start of processing for Eval_Integer_Literal
1739 -- If the literal appears in a non-expression context, then it is
1740 -- certainly appearing in a non-static context, so check it. This
1741 -- is actually a redundant check, since Check_Non_Static_Context
1742 -- would check it, but it seems worth while avoiding the call.
1744 if Nkind
(Parent
(N
)) not in N_Subexpr
1745 and then not In_Any_Integer_Context
1747 Check_Non_Static_Context
(N
);
1750 -- Modular integer literals must be in their base range
1752 if Is_Modular_Integer_Type
(T
)
1753 and then Is_Out_Of_Range
(N
, Base_Type
(T
))
1757 end Eval_Integer_Literal
;
1759 ---------------------
1760 -- Eval_Logical_Op --
1761 ---------------------
1763 -- Logical operations are static functions, so the result is potentially
1764 -- static if both operands are potentially static (RM 4.9(7), 4.9(20)).
1766 procedure Eval_Logical_Op
(N
: Node_Id
) is
1767 Left
: constant Node_Id
:= Left_Opnd
(N
);
1768 Right
: constant Node_Id
:= Right_Opnd
(N
);
1773 -- If not foldable we are done
1775 Test_Expression_Is_Foldable
(N
, Left
, Right
, Stat
, Fold
);
1781 -- Compile time evaluation of logical operation
1784 Left_Int
: constant Uint
:= Expr_Value
(Left
);
1785 Right_Int
: constant Uint
:= Expr_Value
(Right
);
1788 if Is_Modular_Integer_Type
(Etype
(N
)) then
1790 Left_Bits
: Bits
(0 .. UI_To_Int
(Esize
(Etype
(N
))) - 1);
1791 Right_Bits
: Bits
(0 .. UI_To_Int
(Esize
(Etype
(N
))) - 1);
1794 To_Bits
(Left_Int
, Left_Bits
);
1795 To_Bits
(Right_Int
, Right_Bits
);
1797 -- Note: should really be able to use array ops instead of
1798 -- these loops, but they weren't working at the time ???
1800 if Nkind
(N
) = N_Op_And
then
1801 for J
in Left_Bits
'Range loop
1802 Left_Bits
(J
) := Left_Bits
(J
) and Right_Bits
(J
);
1805 elsif Nkind
(N
) = N_Op_Or
then
1806 for J
in Left_Bits
'Range loop
1807 Left_Bits
(J
) := Left_Bits
(J
) or Right_Bits
(J
);
1811 pragma Assert
(Nkind
(N
) = N_Op_Xor
);
1813 for J
in Left_Bits
'Range loop
1814 Left_Bits
(J
) := Left_Bits
(J
) xor Right_Bits
(J
);
1818 Fold_Uint
(N
, From_Bits
(Left_Bits
, Etype
(N
)), Stat
);
1822 pragma Assert
(Is_Boolean_Type
(Etype
(N
)));
1824 if Nkind
(N
) = N_Op_And
then
1826 Test
(Is_True
(Left_Int
) and then Is_True
(Right_Int
)), Stat
);
1828 elsif Nkind
(N
) = N_Op_Or
then
1830 Test
(Is_True
(Left_Int
) or else Is_True
(Right_Int
)), Stat
);
1833 pragma Assert
(Nkind
(N
) = N_Op_Xor
);
1835 Test
(Is_True
(Left_Int
) xor Is_True
(Right_Int
)), Stat
);
1839 end Eval_Logical_Op
;
1841 ------------------------
1842 -- Eval_Membership_Op --
1843 ------------------------
1845 -- A membership test is potentially static if the expression is static,
1846 -- and the range is a potentially static range, or is a subtype mark
1847 -- denoting a static subtype (RM 4.9(12)).
1849 procedure Eval_Membership_Op
(N
: Node_Id
) is
1850 Left
: constant Node_Id
:= Left_Opnd
(N
);
1851 Right
: constant Node_Id
:= Right_Opnd
(N
);
1860 -- Ignore if error in either operand, except to make sure that
1861 -- Any_Type is properly propagated to avoid junk cascaded errors.
1863 if Etype
(Left
) = Any_Type
1864 or else Etype
(Right
) = Any_Type
1866 Set_Etype
(N
, Any_Type
);
1870 -- Case of right operand is a subtype name
1872 if Is_Entity_Name
(Right
) then
1873 Def_Id
:= Entity
(Right
);
1875 if (Is_Scalar_Type
(Def_Id
) or else Is_String_Type
(Def_Id
))
1876 and then Is_OK_Static_Subtype
(Def_Id
)
1878 Test_Expression_Is_Foldable
(N
, Left
, Stat
, Fold
);
1880 if not Fold
or else not Stat
then
1884 Check_Non_Static_Context
(Left
);
1888 -- For string membership tests we will check the length
1891 if not Is_String_Type
(Def_Id
) then
1892 Lo
:= Type_Low_Bound
(Def_Id
);
1893 Hi
:= Type_High_Bound
(Def_Id
);
1900 -- Case of right operand is a range
1903 if Is_Static_Range
(Right
) then
1904 Test_Expression_Is_Foldable
(N
, Left
, Stat
, Fold
);
1906 if not Fold
or else not Stat
then
1909 -- If one bound of range raises CE, then don't try to fold
1911 elsif not Is_OK_Static_Range
(Right
) then
1912 Check_Non_Static_Context
(Left
);
1917 Check_Non_Static_Context
(Left
);
1921 -- Here we know range is an OK static range
1923 Lo
:= Low_Bound
(Right
);
1924 Hi
:= High_Bound
(Right
);
1927 -- For strings we check that the length of the string expression is
1928 -- compatible with the string subtype if the subtype is constrained,
1929 -- or if unconstrained then the test is always true.
1931 if Is_String_Type
(Etype
(Right
)) then
1932 if not Is_Constrained
(Etype
(Right
)) then
1937 Typlen
: constant Uint
:= String_Type_Len
(Etype
(Right
));
1938 Strlen
: constant Uint
:=
1939 UI_From_Int
(String_Length
(Strval
(Get_String_Val
(Left
))));
1941 Result
:= (Typlen
= Strlen
);
1945 -- Fold the membership test. We know we have a static range and Lo
1946 -- and Hi are set to the expressions for the end points of this range.
1948 elsif Is_Real_Type
(Etype
(Right
)) then
1950 Leftval
: constant Ureal
:= Expr_Value_R
(Left
);
1953 Result
:= Expr_Value_R
(Lo
) <= Leftval
1954 and then Leftval
<= Expr_Value_R
(Hi
);
1959 Leftval
: constant Uint
:= Expr_Value
(Left
);
1962 Result
:= Expr_Value
(Lo
) <= Leftval
1963 and then Leftval
<= Expr_Value
(Hi
);
1967 if Nkind
(N
) = N_Not_In
then
1968 Result
:= not Result
;
1971 Fold_Uint
(N
, Test
(Result
), True);
1972 Warn_On_Known_Condition
(N
);
1973 end Eval_Membership_Op
;
1975 ------------------------
1976 -- Eval_Named_Integer --
1977 ------------------------
1979 procedure Eval_Named_Integer
(N
: Node_Id
) is
1982 Expr_Value
(Expression
(Declaration_Node
(Entity
(N
)))), True);
1983 end Eval_Named_Integer
;
1985 ---------------------
1986 -- Eval_Named_Real --
1987 ---------------------
1989 procedure Eval_Named_Real
(N
: Node_Id
) is
1992 Expr_Value_R
(Expression
(Declaration_Node
(Entity
(N
)))), True);
1993 end Eval_Named_Real
;
1999 -- Exponentiation is a static functions, so the result is potentially
2000 -- static if both operands are potentially static (RM 4.9(7), 4.9(20)).
2002 procedure Eval_Op_Expon
(N
: Node_Id
) is
2003 Left
: constant Node_Id
:= Left_Opnd
(N
);
2004 Right
: constant Node_Id
:= Right_Opnd
(N
);
2009 -- If not foldable we are done
2011 Test_Expression_Is_Foldable
(N
, Left
, Right
, Stat
, Fold
);
2017 -- Fold exponentiation operation
2020 Right_Int
: constant Uint
:= Expr_Value
(Right
);
2025 if Is_Integer_Type
(Etype
(Left
)) then
2027 Left_Int
: constant Uint
:= Expr_Value
(Left
);
2031 -- Exponentiation of an integer raises the exception
2032 -- Constraint_Error for a negative exponent (RM 4.5.6)
2034 if Right_Int
< 0 then
2035 Apply_Compile_Time_Constraint_Error
2036 (N
, "integer exponent negative",
2037 CE_Range_Check_Failed
,
2042 if OK_Bits
(N
, Num_Bits
(Left_Int
) * Right_Int
) then
2043 Result
:= Left_Int
** Right_Int
;
2048 if Is_Modular_Integer_Type
(Etype
(N
)) then
2049 Result
:= Result
mod Modulus
(Etype
(N
));
2052 Fold_Uint
(N
, Result
, Stat
);
2060 Left_Real
: constant Ureal
:= Expr_Value_R
(Left
);
2063 -- Cannot have a zero base with a negative exponent
2065 if UR_Is_Zero
(Left_Real
) then
2067 if Right_Int
< 0 then
2068 Apply_Compile_Time_Constraint_Error
2069 (N
, "zero ** negative integer",
2070 CE_Range_Check_Failed
,
2074 Fold_Ureal
(N
, Ureal_0
, Stat
);
2078 Fold_Ureal
(N
, Left_Real
** Right_Int
, Stat
);
2089 -- The not operation is a static functions, so the result is potentially
2090 -- static if the operand is potentially static (RM 4.9(7), 4.9(20)).
2092 procedure Eval_Op_Not
(N
: Node_Id
) is
2093 Right
: constant Node_Id
:= Right_Opnd
(N
);
2098 -- If not foldable we are done
2100 Test_Expression_Is_Foldable
(N
, Right
, Stat
, Fold
);
2106 -- Fold not operation
2109 Rint
: constant Uint
:= Expr_Value
(Right
);
2110 Typ
: constant Entity_Id
:= Etype
(N
);
2113 -- Negation is equivalent to subtracting from the modulus minus
2114 -- one. For a binary modulus this is equivalent to the ones-
2115 -- component of the original value. For non-binary modulus this
2116 -- is an arbitrary but consistent definition.
2118 if Is_Modular_Integer_Type
(Typ
) then
2119 Fold_Uint
(N
, Modulus
(Typ
) - 1 - Rint
, Stat
);
2122 pragma Assert
(Is_Boolean_Type
(Typ
));
2123 Fold_Uint
(N
, Test
(not Is_True
(Rint
)), Stat
);
2126 Set_Is_Static_Expression
(N
, Stat
);
2130 -------------------------------
2131 -- Eval_Qualified_Expression --
2132 -------------------------------
2134 -- A qualified expression is potentially static if its subtype mark denotes
2135 -- a static subtype and its expression is potentially static (RM 4.9 (11)).
2137 procedure Eval_Qualified_Expression
(N
: Node_Id
) is
2138 Operand
: constant Node_Id
:= Expression
(N
);
2139 Target_Type
: constant Entity_Id
:= Entity
(Subtype_Mark
(N
));
2146 -- Can only fold if target is string or scalar and subtype is static
2147 -- Also, do not fold if our parent is an allocator (this is because
2148 -- the qualified expression is really part of the syntactic structure
2149 -- of an allocator, and we do not want to end up with something that
2150 -- corresponds to "new 1" where the 1 is the result of folding a
2151 -- qualified expression).
2153 if not Is_Static_Subtype
(Target_Type
)
2154 or else Nkind
(Parent
(N
)) = N_Allocator
2156 Check_Non_Static_Context
(Operand
);
2158 -- If operand is known to raise constraint_error, set the
2159 -- flag on the expression so it does not get optimized away.
2161 if Nkind
(Operand
) = N_Raise_Constraint_Error
then
2162 Set_Raises_Constraint_Error
(N
);
2168 -- If not foldable we are done
2170 Test_Expression_Is_Foldable
(N
, Operand
, Stat
, Fold
);
2175 -- Don't try fold if target type has constraint error bounds
2177 elsif not Is_OK_Static_Subtype
(Target_Type
) then
2178 Set_Raises_Constraint_Error
(N
);
2182 -- Here we will fold, save Print_In_Hex indication
2184 Hex
:= Nkind
(Operand
) = N_Integer_Literal
2185 and then Print_In_Hex
(Operand
);
2187 -- Fold the result of qualification
2189 if Is_Discrete_Type
(Target_Type
) then
2190 Fold_Uint
(N
, Expr_Value
(Operand
), Stat
);
2192 -- Preserve Print_In_Hex indication
2194 if Hex
and then Nkind
(N
) = N_Integer_Literal
then
2195 Set_Print_In_Hex
(N
);
2198 elsif Is_Real_Type
(Target_Type
) then
2199 Fold_Ureal
(N
, Expr_Value_R
(Operand
), Stat
);
2202 Fold_Str
(N
, Strval
(Get_String_Val
(Operand
)), Stat
);
2205 Set_Is_Static_Expression
(N
, False);
2207 Check_String_Literal_Length
(N
, Target_Type
);
2213 -- The expression may be foldable but not static
2215 Set_Is_Static_Expression
(N
, Stat
);
2217 if Is_Out_Of_Range
(N
, Etype
(N
)) then
2220 end Eval_Qualified_Expression
;
2222 -----------------------
2223 -- Eval_Real_Literal --
2224 -----------------------
2226 -- Numeric literals are static (RM 4.9(1)), and have already been marked
2227 -- as static by the analyzer. The reason we did it that early is to allow
2228 -- the possibility of turning off the Is_Static_Expression flag after
2229 -- analysis, but before resolution, when integer literals are generated
2230 -- in the expander that do not correspond to static expressions.
2232 procedure Eval_Real_Literal
(N
: Node_Id
) is
2234 -- If the literal appears in a non-expression context, then it is
2235 -- certainly appearing in a non-static context, so check it.
2237 if Nkind
(Parent
(N
)) not in N_Subexpr
then
2238 Check_Non_Static_Context
(N
);
2241 end Eval_Real_Literal
;
2243 ------------------------
2244 -- Eval_Relational_Op --
2245 ------------------------
2247 -- Relational operations are static functions, so the result is static
2248 -- if both operands are static (RM 4.9(7), 4.9(20)).
2250 procedure Eval_Relational_Op
(N
: Node_Id
) is
2251 Left
: constant Node_Id
:= Left_Opnd
(N
);
2252 Right
: constant Node_Id
:= Right_Opnd
(N
);
2253 Typ
: constant Entity_Id
:= Etype
(Left
);
2259 -- One special case to deal with first. If we can tell that
2260 -- the result will be false because the lengths of one or
2261 -- more index subtypes are compile time known and different,
2262 -- then we can replace the entire result by False. We only
2263 -- do this for one dimensional arrays, because the case of
2264 -- multi-dimensional arrays is rare and too much trouble!
2266 if Is_Array_Type
(Typ
)
2267 and then Number_Dimensions
(Typ
) = 1
2268 and then (Nkind
(N
) = N_Op_Eq
2269 or else Nkind
(N
) = N_Op_Ne
)
2271 if Raises_Constraint_Error
(Left
)
2272 or else Raises_Constraint_Error
(Right
)
2278 procedure Get_Static_Length
(Op
: Node_Id
; Len
: out Uint
);
2279 -- If Op is an expression for a constrained array with a
2280 -- known at compile time length, then Len is set to this
2281 -- (non-negative length). Otherwise Len is set to minus 1.
2283 -----------------------
2284 -- Get_Static_Length --
2285 -----------------------
2287 procedure Get_Static_Length
(Op
: Node_Id
; Len
: out Uint
) is
2291 if Nkind
(Op
) = N_String_Literal
then
2292 Len
:= UI_From_Int
(String_Length
(Strval
(Op
)));
2294 elsif not Is_Constrained
(Etype
(Op
)) then
2295 Len
:= Uint_Minus_1
;
2298 T
:= Etype
(First_Index
(Etype
(Op
)));
2300 if Is_Discrete_Type
(T
)
2302 Compile_Time_Known_Value
(Type_Low_Bound
(T
))
2304 Compile_Time_Known_Value
(Type_High_Bound
(T
))
2306 Len
:= UI_Max
(Uint_0
,
2307 Expr_Value
(Type_High_Bound
(T
)) -
2308 Expr_Value
(Type_Low_Bound
(T
)) + 1);
2310 Len
:= Uint_Minus_1
;
2313 end Get_Static_Length
;
2319 Get_Static_Length
(Left
, Len_L
);
2320 Get_Static_Length
(Right
, Len_R
);
2322 if Len_L
/= Uint_Minus_1
2323 and then Len_R
/= Uint_Minus_1
2324 and then Len_L
/= Len_R
2326 Fold_Uint
(N
, Test
(Nkind
(N
) = N_Op_Ne
), False);
2327 Warn_On_Known_Condition
(N
);
2332 -- Another special case: comparisons of access types, where one or both
2333 -- operands are known to be null, so the result can be determined.
2335 elsif Is_Access_Type
(Typ
) then
2336 if Known_Null
(Left
) then
2337 if Known_Null
(Right
) then
2338 Fold_Uint
(N
, Test
(Nkind
(N
) = N_Op_Eq
), False);
2339 Warn_On_Known_Condition
(N
);
2342 elsif Known_Non_Null
(Right
) then
2343 Fold_Uint
(N
, Test
(Nkind
(N
) = N_Op_Ne
), False);
2344 Warn_On_Known_Condition
(N
);
2348 elsif Known_Non_Null
(Left
) then
2349 if Known_Null
(Right
) then
2350 Fold_Uint
(N
, Test
(Nkind
(N
) = N_Op_Ne
), False);
2351 Warn_On_Known_Condition
(N
);
2357 -- Can only fold if type is scalar (don't fold string ops)
2359 if not Is_Scalar_Type
(Typ
) then
2360 Check_Non_Static_Context
(Left
);
2361 Check_Non_Static_Context
(Right
);
2365 -- If not foldable we are done
2367 Test_Expression_Is_Foldable
(N
, Left
, Right
, Stat
, Fold
);
2373 -- Integer and Enumeration (discrete) type cases
2375 if Is_Discrete_Type
(Typ
) then
2377 Left_Int
: constant Uint
:= Expr_Value
(Left
);
2378 Right_Int
: constant Uint
:= Expr_Value
(Right
);
2382 when N_Op_Eq
=> Result
:= Left_Int
= Right_Int
;
2383 when N_Op_Ne
=> Result
:= Left_Int
/= Right_Int
;
2384 when N_Op_Lt
=> Result
:= Left_Int
< Right_Int
;
2385 when N_Op_Le
=> Result
:= Left_Int
<= Right_Int
;
2386 when N_Op_Gt
=> Result
:= Left_Int
> Right_Int
;
2387 when N_Op_Ge
=> Result
:= Left_Int
>= Right_Int
;
2390 raise Program_Error
;
2393 Fold_Uint
(N
, Test
(Result
), Stat
);
2399 pragma Assert
(Is_Real_Type
(Typ
));
2402 Left_Real
: constant Ureal
:= Expr_Value_R
(Left
);
2403 Right_Real
: constant Ureal
:= Expr_Value_R
(Right
);
2407 when N_Op_Eq
=> Result
:= (Left_Real
= Right_Real
);
2408 when N_Op_Ne
=> Result
:= (Left_Real
/= Right_Real
);
2409 when N_Op_Lt
=> Result
:= (Left_Real
< Right_Real
);
2410 when N_Op_Le
=> Result
:= (Left_Real
<= Right_Real
);
2411 when N_Op_Gt
=> Result
:= (Left_Real
> Right_Real
);
2412 when N_Op_Ge
=> Result
:= (Left_Real
>= Right_Real
);
2415 raise Program_Error
;
2418 Fold_Uint
(N
, Test
(Result
), Stat
);
2422 Warn_On_Known_Condition
(N
);
2423 end Eval_Relational_Op
;
2429 -- Shift operations are intrinsic operations that can never be static,
2430 -- so the only processing required is to perform the required check for
2431 -- a non static context for the two operands.
2433 -- Actually we could do some compile time evaluation here some time ???
2435 procedure Eval_Shift
(N
: Node_Id
) is
2437 Check_Non_Static_Context
(Left_Opnd
(N
));
2438 Check_Non_Static_Context
(Right_Opnd
(N
));
2441 ------------------------
2442 -- Eval_Short_Circuit --
2443 ------------------------
2445 -- A short circuit operation is potentially static if both operands
2446 -- are potentially static (RM 4.9 (13))
2448 procedure Eval_Short_Circuit
(N
: Node_Id
) is
2449 Kind
: constant Node_Kind
:= Nkind
(N
);
2450 Left
: constant Node_Id
:= Left_Opnd
(N
);
2451 Right
: constant Node_Id
:= Right_Opnd
(N
);
2453 Rstat
: constant Boolean :=
2454 Is_Static_Expression
(Left
)
2455 and then Is_Static_Expression
(Right
);
2458 -- Short circuit operations are never static in Ada 83
2460 if Ada_Version
= Ada_83
2461 and then Comes_From_Source
(N
)
2463 Check_Non_Static_Context
(Left
);
2464 Check_Non_Static_Context
(Right
);
2468 -- Now look at the operands, we can't quite use the normal call to
2469 -- Test_Expression_Is_Foldable here because short circuit operations
2470 -- are a special case, they can still be foldable, even if the right
2471 -- operand raises constraint error.
2473 -- If either operand is Any_Type, just propagate to result and
2474 -- do not try to fold, this prevents cascaded errors.
2476 if Etype
(Left
) = Any_Type
or else Etype
(Right
) = Any_Type
then
2477 Set_Etype
(N
, Any_Type
);
2480 -- If left operand raises constraint error, then replace node N with
2481 -- the raise constraint error node, and we are obviously not foldable.
2482 -- Is_Static_Expression is set from the two operands in the normal way,
2483 -- and we check the right operand if it is in a non-static context.
2485 elsif Raises_Constraint_Error
(Left
) then
2487 Check_Non_Static_Context
(Right
);
2490 Rewrite_In_Raise_CE
(N
, Left
);
2491 Set_Is_Static_Expression
(N
, Rstat
);
2494 -- If the result is not static, then we won't in any case fold
2496 elsif not Rstat
then
2497 Check_Non_Static_Context
(Left
);
2498 Check_Non_Static_Context
(Right
);
2502 -- Here the result is static, note that, unlike the normal processing
2503 -- in Test_Expression_Is_Foldable, we did *not* check above to see if
2504 -- the right operand raises constraint error, that's because it is not
2505 -- significant if the left operand is decisive.
2507 Set_Is_Static_Expression
(N
);
2509 -- It does not matter if the right operand raises constraint error if
2510 -- it will not be evaluated. So deal specially with the cases where
2511 -- the right operand is not evaluated. Note that we will fold these
2512 -- cases even if the right operand is non-static, which is fine, but
2513 -- of course in these cases the result is not potentially static.
2515 Left_Int
:= Expr_Value
(Left
);
2517 if (Kind
= N_And_Then
and then Is_False
(Left_Int
))
2518 or else (Kind
= N_Or_Else
and Is_True
(Left_Int
))
2520 Fold_Uint
(N
, Left_Int
, Rstat
);
2524 -- If first operand not decisive, then it does matter if the right
2525 -- operand raises constraint error, since it will be evaluated, so
2526 -- we simply replace the node with the right operand. Note that this
2527 -- properly propagates Is_Static_Expression and Raises_Constraint_Error
2528 -- (both are set to True in Right).
2530 if Raises_Constraint_Error
(Right
) then
2531 Rewrite_In_Raise_CE
(N
, Right
);
2532 Check_Non_Static_Context
(Left
);
2536 -- Otherwise the result depends on the right operand
2538 Fold_Uint
(N
, Expr_Value
(Right
), Rstat
);
2540 end Eval_Short_Circuit
;
2546 -- Slices can never be static, so the only processing required is to
2547 -- check for non-static context if an explicit range is given.
2549 procedure Eval_Slice
(N
: Node_Id
) is
2550 Drange
: constant Node_Id
:= Discrete_Range
(N
);
2552 if Nkind
(Drange
) = N_Range
then
2553 Check_Non_Static_Context
(Low_Bound
(Drange
));
2554 Check_Non_Static_Context
(High_Bound
(Drange
));
2558 -------------------------
2559 -- Eval_String_Literal --
2560 -------------------------
2562 procedure Eval_String_Literal
(N
: Node_Id
) is
2563 Typ
: constant Entity_Id
:= Etype
(N
);
2564 Bas
: constant Entity_Id
:= Base_Type
(Typ
);
2570 -- Nothing to do if error type (handles cases like default expressions
2571 -- or generics where we have not yet fully resolved the type)
2573 if Bas
= Any_Type
or else Bas
= Any_String
then
2577 -- String literals are static if the subtype is static (RM 4.9(2)), so
2578 -- reset the static expression flag (it was set unconditionally in
2579 -- Analyze_String_Literal) if the subtype is non-static. We tell if
2580 -- the subtype is static by looking at the lower bound.
2582 if Ekind
(Typ
) = E_String_Literal_Subtype
then
2583 if not Is_OK_Static_Expression
(String_Literal_Low_Bound
(Typ
)) then
2584 Set_Is_Static_Expression
(N
, False);
2588 -- Here if Etype of string literal is normal Etype (not yet possible,
2589 -- but may be possible in future!)
2591 elsif not Is_OK_Static_Expression
2592 (Type_Low_Bound
(Etype
(First_Index
(Typ
))))
2594 Set_Is_Static_Expression
(N
, False);
2598 -- If original node was a type conversion, then result if non-static
2600 if Nkind
(Original_Node
(N
)) = N_Type_Conversion
then
2601 Set_Is_Static_Expression
(N
, False);
2605 -- Test for illegal Ada 95 cases. A string literal is illegal in
2606 -- Ada 95 if its bounds are outside the index base type and this
2607 -- index type is static. This can happen in only two ways. Either
2608 -- the string literal is too long, or it is null, and the lower
2609 -- bound is type'First. In either case it is the upper bound that
2610 -- is out of range of the index type.
2612 if Ada_Version
>= Ada_95
then
2613 if Root_Type
(Bas
) = Standard_String
2615 Root_Type
(Bas
) = Standard_Wide_String
2617 Xtp
:= Standard_Positive
;
2619 Xtp
:= Etype
(First_Index
(Bas
));
2622 if Ekind
(Typ
) = E_String_Literal_Subtype
then
2623 Lo
:= String_Literal_Low_Bound
(Typ
);
2625 Lo
:= Type_Low_Bound
(Etype
(First_Index
(Typ
)));
2628 Len
:= String_Length
(Strval
(N
));
2630 if UI_From_Int
(Len
) > String_Type_Len
(Bas
) then
2631 Apply_Compile_Time_Constraint_Error
2632 (N
, "string literal too long for}", CE_Length_Check_Failed
,
2634 Typ
=> First_Subtype
(Bas
));
2637 and then not Is_Generic_Type
(Xtp
)
2639 Expr_Value
(Lo
) = Expr_Value
(Type_Low_Bound
(Base_Type
(Xtp
)))
2641 Apply_Compile_Time_Constraint_Error
2642 (N
, "null string literal not allowed for}",
2643 CE_Length_Check_Failed
,
2645 Typ
=> First_Subtype
(Bas
));
2648 end Eval_String_Literal
;
2650 --------------------------
2651 -- Eval_Type_Conversion --
2652 --------------------------
2654 -- A type conversion is potentially static if its subtype mark is for a
2655 -- static scalar subtype, and its operand expression is potentially static
2658 procedure Eval_Type_Conversion
(N
: Node_Id
) is
2659 Operand
: constant Node_Id
:= Expression
(N
);
2660 Source_Type
: constant Entity_Id
:= Etype
(Operand
);
2661 Target_Type
: constant Entity_Id
:= Etype
(N
);
2666 function To_Be_Treated_As_Integer
(T
: Entity_Id
) return Boolean;
2667 -- Returns true if type T is an integer type, or if it is a
2668 -- fixed-point type to be treated as an integer (i.e. the flag
2669 -- Conversion_OK is set on the conversion node).
2671 function To_Be_Treated_As_Real
(T
: Entity_Id
) return Boolean;
2672 -- Returns true if type T is a floating-point type, or if it is a
2673 -- fixed-point type that is not to be treated as an integer (i.e. the
2674 -- flag Conversion_OK is not set on the conversion node).
2676 ------------------------------
2677 -- To_Be_Treated_As_Integer --
2678 ------------------------------
2680 function To_Be_Treated_As_Integer
(T
: Entity_Id
) return Boolean is
2684 or else (Is_Fixed_Point_Type
(T
) and then Conversion_OK
(N
));
2685 end To_Be_Treated_As_Integer
;
2687 ---------------------------
2688 -- To_Be_Treated_As_Real --
2689 ---------------------------
2691 function To_Be_Treated_As_Real
(T
: Entity_Id
) return Boolean is
2694 Is_Floating_Point_Type
(T
)
2695 or else (Is_Fixed_Point_Type
(T
) and then not Conversion_OK
(N
));
2696 end To_Be_Treated_As_Real
;
2698 -- Start of processing for Eval_Type_Conversion
2701 -- Cannot fold if target type is non-static or if semantic error
2703 if not Is_Static_Subtype
(Target_Type
) then
2704 Check_Non_Static_Context
(Operand
);
2707 elsif Error_Posted
(N
) then
2711 -- If not foldable we are done
2713 Test_Expression_Is_Foldable
(N
, Operand
, Stat
, Fold
);
2718 -- Don't try fold if target type has constraint error bounds
2720 elsif not Is_OK_Static_Subtype
(Target_Type
) then
2721 Set_Raises_Constraint_Error
(N
);
2725 -- Remaining processing depends on operand types. Note that in the
2726 -- following type test, fixed-point counts as real unless the flag
2727 -- Conversion_OK is set, in which case it counts as integer.
2729 -- Fold conversion, case of string type. The result is not static
2731 if Is_String_Type
(Target_Type
) then
2732 Fold_Str
(N
, Strval
(Get_String_Val
(Operand
)), False);
2736 -- Fold conversion, case of integer target type
2738 elsif To_Be_Treated_As_Integer
(Target_Type
) then
2743 -- Integer to integer conversion
2745 if To_Be_Treated_As_Integer
(Source_Type
) then
2746 Result
:= Expr_Value
(Operand
);
2748 -- Real to integer conversion
2751 Result
:= UR_To_Uint
(Expr_Value_R
(Operand
));
2754 -- If fixed-point type (Conversion_OK must be set), then the
2755 -- result is logically an integer, but we must replace the
2756 -- conversion with the corresponding real literal, since the
2757 -- type from a semantic point of view is still fixed-point.
2759 if Is_Fixed_Point_Type
(Target_Type
) then
2761 (N
, UR_From_Uint
(Result
) * Small_Value
(Target_Type
), Stat
);
2763 -- Otherwise result is integer literal
2766 Fold_Uint
(N
, Result
, Stat
);
2770 -- Fold conversion, case of real target type
2772 elsif To_Be_Treated_As_Real
(Target_Type
) then
2777 if To_Be_Treated_As_Real
(Source_Type
) then
2778 Result
:= Expr_Value_R
(Operand
);
2780 Result
:= UR_From_Uint
(Expr_Value
(Operand
));
2783 Fold_Ureal
(N
, Result
, Stat
);
2786 -- Enumeration types
2789 Fold_Uint
(N
, Expr_Value
(Operand
), Stat
);
2792 if Is_Out_Of_Range
(N
, Etype
(N
)) then
2796 end Eval_Type_Conversion
;
2802 -- Predefined unary operators are static functions (RM 4.9(20)) and thus
2803 -- are potentially static if the operand is potentially static (RM 4.9(7))
2805 procedure Eval_Unary_Op
(N
: Node_Id
) is
2806 Right
: constant Node_Id
:= Right_Opnd
(N
);
2811 -- If not foldable we are done
2813 Test_Expression_Is_Foldable
(N
, Right
, Stat
, Fold
);
2819 -- Fold for integer case
2821 if Is_Integer_Type
(Etype
(N
)) then
2823 Rint
: constant Uint
:= Expr_Value
(Right
);
2827 -- In the case of modular unary plus and abs there is no need
2828 -- to adjust the result of the operation since if the original
2829 -- operand was in bounds the result will be in the bounds of the
2830 -- modular type. However, in the case of modular unary minus the
2831 -- result may go out of the bounds of the modular type and needs
2834 if Nkind
(N
) = N_Op_Plus
then
2837 elsif Nkind
(N
) = N_Op_Minus
then
2838 if Is_Modular_Integer_Type
(Etype
(N
)) then
2839 Result
:= (-Rint
) mod Modulus
(Etype
(N
));
2845 pragma Assert
(Nkind
(N
) = N_Op_Abs
);
2849 Fold_Uint
(N
, Result
, Stat
);
2852 -- Fold for real case
2854 elsif Is_Real_Type
(Etype
(N
)) then
2856 Rreal
: constant Ureal
:= Expr_Value_R
(Right
);
2860 if Nkind
(N
) = N_Op_Plus
then
2863 elsif Nkind
(N
) = N_Op_Minus
then
2864 Result
:= UR_Negate
(Rreal
);
2867 pragma Assert
(Nkind
(N
) = N_Op_Abs
);
2868 Result
:= abs Rreal
;
2871 Fold_Ureal
(N
, Result
, Stat
);
2876 -------------------------------
2877 -- Eval_Unchecked_Conversion --
2878 -------------------------------
2880 -- Unchecked conversions can never be static, so the only required
2881 -- processing is to check for a non-static context for the operand.
2883 procedure Eval_Unchecked_Conversion
(N
: Node_Id
) is
2885 Check_Non_Static_Context
(Expression
(N
));
2886 end Eval_Unchecked_Conversion
;
2888 --------------------
2889 -- Expr_Rep_Value --
2890 --------------------
2892 function Expr_Rep_Value
(N
: Node_Id
) return Uint
is
2893 Kind
: constant Node_Kind
:= Nkind
(N
);
2897 if Is_Entity_Name
(N
) then
2900 -- An enumeration literal that was either in the source or
2901 -- created as a result of static evaluation.
2903 if Ekind
(Ent
) = E_Enumeration_Literal
then
2904 return Enumeration_Rep
(Ent
);
2906 -- A user defined static constant
2909 pragma Assert
(Ekind
(Ent
) = E_Constant
);
2910 return Expr_Rep_Value
(Constant_Value
(Ent
));
2913 -- An integer literal that was either in the source or created
2914 -- as a result of static evaluation.
2916 elsif Kind
= N_Integer_Literal
then
2919 -- A real literal for a fixed-point type. This must be the fixed-point
2920 -- case, either the literal is of a fixed-point type, or it is a bound
2921 -- of a fixed-point type, with type universal real. In either case we
2922 -- obtain the desired value from Corresponding_Integer_Value.
2924 elsif Kind
= N_Real_Literal
then
2925 pragma Assert
(Is_Fixed_Point_Type
(Underlying_Type
(Etype
(N
))));
2926 return Corresponding_Integer_Value
(N
);
2928 -- Peculiar VMS case, if we have xxx'Null_Parameter, return zero
2930 elsif Kind
= N_Attribute_Reference
2931 and then Attribute_Name
(N
) = Name_Null_Parameter
2935 -- Otherwise must be character literal
2938 pragma Assert
(Kind
= N_Character_Literal
);
2941 -- Since Character literals of type Standard.Character don't
2942 -- have any defining character literals built for them, they
2943 -- do not have their Entity set, so just use their Char
2944 -- code. Otherwise for user-defined character literals use
2945 -- their Pos value as usual which is the same as the Rep value.
2948 return Char_Literal_Value
(N
);
2950 return Enumeration_Rep
(Ent
);
2959 function Expr_Value
(N
: Node_Id
) return Uint
is
2960 Kind
: constant Node_Kind
:= Nkind
(N
);
2961 CV_Ent
: CV_Entry
renames CV_Cache
(Nat
(N
) mod CV_Cache_Size
);
2966 -- If already in cache, then we know it's compile time known and
2967 -- we can return the value that was previously stored in the cache
2968 -- since compile time known values cannot change :-)
2970 if CV_Ent
.N
= N
then
2974 -- Otherwise proceed to test value
2976 if Is_Entity_Name
(N
) then
2979 -- An enumeration literal that was either in the source or
2980 -- created as a result of static evaluation.
2982 if Ekind
(Ent
) = E_Enumeration_Literal
then
2983 Val
:= Enumeration_Pos
(Ent
);
2985 -- A user defined static constant
2988 pragma Assert
(Ekind
(Ent
) = E_Constant
);
2989 Val
:= Expr_Value
(Constant_Value
(Ent
));
2992 -- An integer literal that was either in the source or created
2993 -- as a result of static evaluation.
2995 elsif Kind
= N_Integer_Literal
then
2998 -- A real literal for a fixed-point type. This must be the fixed-point
2999 -- case, either the literal is of a fixed-point type, or it is a bound
3000 -- of a fixed-point type, with type universal real. In either case we
3001 -- obtain the desired value from Corresponding_Integer_Value.
3003 elsif Kind
= N_Real_Literal
then
3005 pragma Assert
(Is_Fixed_Point_Type
(Underlying_Type
(Etype
(N
))));
3006 Val
:= Corresponding_Integer_Value
(N
);
3008 -- Peculiar VMS case, if we have xxx'Null_Parameter, return zero
3010 elsif Kind
= N_Attribute_Reference
3011 and then Attribute_Name
(N
) = Name_Null_Parameter
3015 -- Otherwise must be character literal
3018 pragma Assert
(Kind
= N_Character_Literal
);
3021 -- Since Character literals of type Standard.Character don't
3022 -- have any defining character literals built for them, they
3023 -- do not have their Entity set, so just use their Char
3024 -- code. Otherwise for user-defined character literals use
3025 -- their Pos value as usual.
3028 Val
:= Char_Literal_Value
(N
);
3030 Val
:= Enumeration_Pos
(Ent
);
3034 -- Come here with Val set to value to be returned, set cache
3045 function Expr_Value_E
(N
: Node_Id
) return Entity_Id
is
3046 Ent
: constant Entity_Id
:= Entity
(N
);
3049 if Ekind
(Ent
) = E_Enumeration_Literal
then
3052 pragma Assert
(Ekind
(Ent
) = E_Constant
);
3053 return Expr_Value_E
(Constant_Value
(Ent
));
3061 function Expr_Value_R
(N
: Node_Id
) return Ureal
is
3062 Kind
: constant Node_Kind
:= Nkind
(N
);
3067 if Kind
= N_Real_Literal
then
3070 elsif Kind
= N_Identifier
or else Kind
= N_Expanded_Name
then
3072 pragma Assert
(Ekind
(Ent
) = E_Constant
);
3073 return Expr_Value_R
(Constant_Value
(Ent
));
3075 elsif Kind
= N_Integer_Literal
then
3076 return UR_From_Uint
(Expr_Value
(N
));
3078 -- Strange case of VAX literals, which are at this stage transformed
3079 -- into Vax_Type!x_To_y(IEEE_Literal). See Expand_N_Real_Literal in
3080 -- Exp_Vfpt for further details.
3082 elsif Vax_Float
(Etype
(N
))
3083 and then Nkind
(N
) = N_Unchecked_Type_Conversion
3085 Expr
:= Expression
(N
);
3087 if Nkind
(Expr
) = N_Function_Call
3088 and then Present
(Parameter_Associations
(Expr
))
3090 Expr
:= First
(Parameter_Associations
(Expr
));
3092 if Nkind
(Expr
) = N_Real_Literal
then
3093 return Realval
(Expr
);
3097 -- Peculiar VMS case, if we have xxx'Null_Parameter, return 0.0
3099 elsif Kind
= N_Attribute_Reference
3100 and then Attribute_Name
(N
) = Name_Null_Parameter
3105 -- If we fall through, we have a node that cannot be interepreted
3106 -- as a compile time constant. That is definitely an error.
3108 raise Program_Error
;
3115 function Expr_Value_S
(N
: Node_Id
) return Node_Id
is
3117 if Nkind
(N
) = N_String_Literal
then
3120 pragma Assert
(Ekind
(Entity
(N
)) = E_Constant
);
3121 return Expr_Value_S
(Constant_Value
(Entity
(N
)));
3125 --------------------------
3126 -- Flag_Non_Static_Expr --
3127 --------------------------
3129 procedure Flag_Non_Static_Expr
(Msg
: String; Expr
: Node_Id
) is
3131 if Error_Posted
(Expr
) and then not All_Errors_Mode
then
3134 Error_Msg_F
(Msg
, Expr
);
3135 Why_Not_Static
(Expr
);
3137 end Flag_Non_Static_Expr
;
3143 procedure Fold_Str
(N
: Node_Id
; Val
: String_Id
; Static
: Boolean) is
3144 Loc
: constant Source_Ptr
:= Sloc
(N
);
3145 Typ
: constant Entity_Id
:= Etype
(N
);
3148 Rewrite
(N
, Make_String_Literal
(Loc
, Strval
=> Val
));
3150 -- We now have the literal with the right value, both the actual type
3151 -- and the expected type of this literal are taken from the expression
3152 -- that was evaluated.
3155 Set_Is_Static_Expression
(N
, Static
);
3164 procedure Fold_Uint
(N
: Node_Id
; Val
: Uint
; Static
: Boolean) is
3165 Loc
: constant Source_Ptr
:= Sloc
(N
);
3166 Typ
: Entity_Id
:= Etype
(N
);
3170 -- If we are folding a named number, retain the entity in the
3171 -- literal, for ASIS use.
3173 if Is_Entity_Name
(N
)
3174 and then Ekind
(Entity
(N
)) = E_Named_Integer
3181 if Is_Private_Type
(Typ
) then
3182 Typ
:= Full_View
(Typ
);
3185 -- For a result of type integer, subsitute an N_Integer_Literal node
3186 -- for the result of the compile time evaluation of the expression.
3188 if Is_Integer_Type
(Typ
) then
3189 Rewrite
(N
, Make_Integer_Literal
(Loc
, Val
));
3190 Set_Original_Entity
(N
, Ent
);
3192 -- Otherwise we have an enumeration type, and we substitute either
3193 -- an N_Identifier or N_Character_Literal to represent the enumeration
3194 -- literal corresponding to the given value, which must always be in
3195 -- range, because appropriate tests have already been made for this.
3197 else pragma Assert
(Is_Enumeration_Type
(Typ
));
3198 Rewrite
(N
, Get_Enum_Lit_From_Pos
(Etype
(N
), Val
, Loc
));
3201 -- We now have the literal with the right value, both the actual type
3202 -- and the expected type of this literal are taken from the expression
3203 -- that was evaluated.
3206 Set_Is_Static_Expression
(N
, Static
);
3215 procedure Fold_Ureal
(N
: Node_Id
; Val
: Ureal
; Static
: Boolean) is
3216 Loc
: constant Source_Ptr
:= Sloc
(N
);
3217 Typ
: constant Entity_Id
:= Etype
(N
);
3221 -- If we are folding a named number, retain the entity in the
3222 -- literal, for ASIS use.
3224 if Is_Entity_Name
(N
)
3225 and then Ekind
(Entity
(N
)) = E_Named_Real
3232 Rewrite
(N
, Make_Real_Literal
(Loc
, Realval
=> Val
));
3233 Set_Original_Entity
(N
, Ent
);
3235 -- Both the actual and expected type comes from the original expression
3238 Set_Is_Static_Expression
(N
, Static
);
3247 function From_Bits
(B
: Bits
; T
: Entity_Id
) return Uint
is
3251 for J
in 0 .. B
'Last loop
3257 if Non_Binary_Modulus
(T
) then
3258 V
:= V
mod Modulus
(T
);
3264 --------------------
3265 -- Get_String_Val --
3266 --------------------
3268 function Get_String_Val
(N
: Node_Id
) return Node_Id
is
3270 if Nkind
(N
) = N_String_Literal
then
3273 elsif Nkind
(N
) = N_Character_Literal
then
3277 pragma Assert
(Is_Entity_Name
(N
));
3278 return Get_String_Val
(Constant_Value
(Entity
(N
)));
3286 procedure Initialize
is
3288 CV_Cache
:= (others => (Node_High_Bound
, Uint_0
));
3291 --------------------
3292 -- In_Subrange_Of --
3293 --------------------
3295 function In_Subrange_Of
3298 Fixed_Int
: Boolean := False) return Boolean
3307 if T1
= T2
or else Is_Subtype_Of
(T1
, T2
) then
3310 -- Never in range if both types are not scalar. Don't know if this can
3311 -- actually happen, but just in case.
3313 elsif not Is_Scalar_Type
(T1
) or else not Is_Scalar_Type
(T1
) then
3317 L1
:= Type_Low_Bound
(T1
);
3318 H1
:= Type_High_Bound
(T1
);
3320 L2
:= Type_Low_Bound
(T2
);
3321 H2
:= Type_High_Bound
(T2
);
3323 -- Check bounds to see if comparison possible at compile time
3325 if Compile_Time_Compare
(L1
, L2
) in Compare_GE
3327 Compile_Time_Compare
(H1
, H2
) in Compare_LE
3332 -- If bounds not comparable at compile time, then the bounds of T2
3333 -- must be compile time known or we cannot answer the query.
3335 if not Compile_Time_Known_Value
(L2
)
3336 or else not Compile_Time_Known_Value
(H2
)
3341 -- If the bounds of T1 are know at compile time then use these
3342 -- ones, otherwise use the bounds of the base type (which are of
3343 -- course always static).
3345 if not Compile_Time_Known_Value
(L1
) then
3346 L1
:= Type_Low_Bound
(Base_Type
(T1
));
3349 if not Compile_Time_Known_Value
(H1
) then
3350 H1
:= Type_High_Bound
(Base_Type
(T1
));
3353 -- Fixed point types should be considered as such only if
3354 -- flag Fixed_Int is set to False.
3356 if Is_Floating_Point_Type
(T1
) or else Is_Floating_Point_Type
(T2
)
3357 or else (Is_Fixed_Point_Type
(T1
) and then not Fixed_Int
)
3358 or else (Is_Fixed_Point_Type
(T2
) and then not Fixed_Int
)
3361 Expr_Value_R
(L2
) <= Expr_Value_R
(L1
)
3363 Expr_Value_R
(H2
) >= Expr_Value_R
(H1
);
3367 Expr_Value
(L2
) <= Expr_Value
(L1
)
3369 Expr_Value
(H2
) >= Expr_Value
(H1
);
3374 -- If any exception occurs, it means that we have some bug in the compiler
3375 -- possibly triggered by a previous error, or by some unforseen peculiar
3376 -- occurrence. However, this is only an optimization attempt, so there is
3377 -- really no point in crashing the compiler. Instead we just decide, too
3378 -- bad, we can't figure out the answer in this case after all.
3383 -- Debug flag K disables this behavior (useful for debugging)
3385 if Debug_Flag_K
then
3396 function Is_In_Range
3399 Fixed_Int
: Boolean := False;
3400 Int_Real
: Boolean := False) return Boolean
3406 -- Universal types have no range limits, so always in range
3408 if Typ
= Universal_Integer
or else Typ
= Universal_Real
then
3411 -- Never in range if not scalar type. Don't know if this can
3412 -- actually happen, but our spec allows it, so we must check!
3414 elsif not Is_Scalar_Type
(Typ
) then
3417 -- Never in range unless we have a compile time known value
3419 elsif not Compile_Time_Known_Value
(N
) then
3424 Lo
: constant Node_Id
:= Type_Low_Bound
(Typ
);
3425 Hi
: constant Node_Id
:= Type_High_Bound
(Typ
);
3426 LB_Known
: constant Boolean := Compile_Time_Known_Value
(Lo
);
3427 UB_Known
: constant Boolean := Compile_Time_Known_Value
(Hi
);
3430 -- Fixed point types should be considered as such only in
3431 -- flag Fixed_Int is set to False.
3433 if Is_Floating_Point_Type
(Typ
)
3434 or else (Is_Fixed_Point_Type
(Typ
) and then not Fixed_Int
)
3437 Valr
:= Expr_Value_R
(N
);
3439 if LB_Known
and then Valr
>= Expr_Value_R
(Lo
)
3440 and then UB_Known
and then Valr
<= Expr_Value_R
(Hi
)
3448 Val
:= Expr_Value
(N
);
3450 if LB_Known
and then Val
>= Expr_Value
(Lo
)
3451 and then UB_Known
and then Val
<= Expr_Value
(Hi
)
3466 function Is_Null_Range
(Lo
: Node_Id
; Hi
: Node_Id
) return Boolean is
3467 Typ
: constant Entity_Id
:= Etype
(Lo
);
3470 if not Compile_Time_Known_Value
(Lo
)
3471 or else not Compile_Time_Known_Value
(Hi
)
3476 if Is_Discrete_Type
(Typ
) then
3477 return Expr_Value
(Lo
) > Expr_Value
(Hi
);
3480 pragma Assert
(Is_Real_Type
(Typ
));
3481 return Expr_Value_R
(Lo
) > Expr_Value_R
(Hi
);
3485 -----------------------------
3486 -- Is_OK_Static_Expression --
3487 -----------------------------
3489 function Is_OK_Static_Expression
(N
: Node_Id
) return Boolean is
3491 return Is_Static_Expression
(N
)
3492 and then not Raises_Constraint_Error
(N
);
3493 end Is_OK_Static_Expression
;
3495 ------------------------
3496 -- Is_OK_Static_Range --
3497 ------------------------
3499 -- A static range is a range whose bounds are static expressions, or a
3500 -- Range_Attribute_Reference equivalent to such a range (RM 4.9(26)).
3501 -- We have already converted range attribute references, so we get the
3502 -- "or" part of this rule without needing a special test.
3504 function Is_OK_Static_Range
(N
: Node_Id
) return Boolean is
3506 return Is_OK_Static_Expression
(Low_Bound
(N
))
3507 and then Is_OK_Static_Expression
(High_Bound
(N
));
3508 end Is_OK_Static_Range
;
3510 --------------------------
3511 -- Is_OK_Static_Subtype --
3512 --------------------------
3514 -- Determines if Typ is a static subtype as defined in (RM 4.9(26))
3515 -- where neither bound raises constraint error when evaluated.
3517 function Is_OK_Static_Subtype
(Typ
: Entity_Id
) return Boolean is
3518 Base_T
: constant Entity_Id
:= Base_Type
(Typ
);
3519 Anc_Subt
: Entity_Id
;
3522 -- First a quick check on the non static subtype flag. As described
3523 -- in further detail in Einfo, this flag is not decisive in all cases,
3524 -- but if it is set, then the subtype is definitely non-static.
3526 if Is_Non_Static_Subtype
(Typ
) then
3530 Anc_Subt
:= Ancestor_Subtype
(Typ
);
3532 if Anc_Subt
= Empty
then
3536 if Is_Generic_Type
(Root_Type
(Base_T
))
3537 or else Is_Generic_Actual_Type
(Base_T
)
3543 elsif Is_String_Type
(Typ
) then
3545 Ekind
(Typ
) = E_String_Literal_Subtype
3547 (Is_OK_Static_Subtype
(Component_Type
(Typ
))
3548 and then Is_OK_Static_Subtype
(Etype
(First_Index
(Typ
))));
3552 elsif Is_Scalar_Type
(Typ
) then
3553 if Base_T
= Typ
then
3557 -- Scalar_Range (Typ) might be an N_Subtype_Indication, so
3558 -- use Get_Type_Low,High_Bound.
3560 return Is_OK_Static_Subtype
(Anc_Subt
)
3561 and then Is_OK_Static_Expression
(Type_Low_Bound
(Typ
))
3562 and then Is_OK_Static_Expression
(Type_High_Bound
(Typ
));
3565 -- Types other than string and scalar types are never static
3570 end Is_OK_Static_Subtype
;
3572 ---------------------
3573 -- Is_Out_Of_Range --
3574 ---------------------
3576 function Is_Out_Of_Range
3579 Fixed_Int
: Boolean := False;
3580 Int_Real
: Boolean := False) return Boolean
3586 -- Universal types have no range limits, so always in range
3588 if Typ
= Universal_Integer
or else Typ
= Universal_Real
then
3591 -- Never out of range if not scalar type. Don't know if this can
3592 -- actually happen, but our spec allows it, so we must check!
3594 elsif not Is_Scalar_Type
(Typ
) then
3597 -- Never out of range if this is a generic type, since the bounds
3598 -- of generic types are junk. Note that if we only checked for
3599 -- static expressions (instead of compile time known values) below,
3600 -- we would not need this check, because values of a generic type
3601 -- can never be static, but they can be known at compile time.
3603 elsif Is_Generic_Type
(Typ
) then
3606 -- Never out of range unless we have a compile time known value
3608 elsif not Compile_Time_Known_Value
(N
) then
3613 Lo
: constant Node_Id
:= Type_Low_Bound
(Typ
);
3614 Hi
: constant Node_Id
:= Type_High_Bound
(Typ
);
3615 LB_Known
: constant Boolean := Compile_Time_Known_Value
(Lo
);
3616 UB_Known
: constant Boolean := Compile_Time_Known_Value
(Hi
);
3619 -- Real types (note that fixed-point types are not treated
3620 -- as being of a real type if the flag Fixed_Int is set,
3621 -- since in that case they are regarded as integer types).
3623 if Is_Floating_Point_Type
(Typ
)
3624 or else (Is_Fixed_Point_Type
(Typ
) and then not Fixed_Int
)
3627 Valr
:= Expr_Value_R
(N
);
3629 if LB_Known
and then Valr
< Expr_Value_R
(Lo
) then
3632 elsif UB_Known
and then Expr_Value_R
(Hi
) < Valr
then
3640 Val
:= Expr_Value
(N
);
3642 if LB_Known
and then Val
< Expr_Value
(Lo
) then
3645 elsif UB_Known
and then Expr_Value
(Hi
) < Val
then
3654 end Is_Out_Of_Range
;
3656 ---------------------
3657 -- Is_Static_Range --
3658 ---------------------
3660 -- A static range is a range whose bounds are static expressions, or a
3661 -- Range_Attribute_Reference equivalent to such a range (RM 4.9(26)).
3662 -- We have already converted range attribute references, so we get the
3663 -- "or" part of this rule without needing a special test.
3665 function Is_Static_Range
(N
: Node_Id
) return Boolean is
3667 return Is_Static_Expression
(Low_Bound
(N
))
3668 and then Is_Static_Expression
(High_Bound
(N
));
3669 end Is_Static_Range
;
3671 -----------------------
3672 -- Is_Static_Subtype --
3673 -----------------------
3675 -- Determines if Typ is a static subtype as defined in (RM 4.9(26))
3677 function Is_Static_Subtype
(Typ
: Entity_Id
) return Boolean is
3678 Base_T
: constant Entity_Id
:= Base_Type
(Typ
);
3679 Anc_Subt
: Entity_Id
;
3682 -- First a quick check on the non static subtype flag. As described
3683 -- in further detail in Einfo, this flag is not decisive in all cases,
3684 -- but if it is set, then the subtype is definitely non-static.
3686 if Is_Non_Static_Subtype
(Typ
) then
3690 Anc_Subt
:= Ancestor_Subtype
(Typ
);
3692 if Anc_Subt
= Empty
then
3696 if Is_Generic_Type
(Root_Type
(Base_T
))
3697 or else Is_Generic_Actual_Type
(Base_T
)
3703 elsif Is_String_Type
(Typ
) then
3705 Ekind
(Typ
) = E_String_Literal_Subtype
3707 (Is_Static_Subtype
(Component_Type
(Typ
))
3708 and then Is_Static_Subtype
(Etype
(First_Index
(Typ
))));
3712 elsif Is_Scalar_Type
(Typ
) then
3713 if Base_T
= Typ
then
3717 return Is_Static_Subtype
(Anc_Subt
)
3718 and then Is_Static_Expression
(Type_Low_Bound
(Typ
))
3719 and then Is_Static_Expression
(Type_High_Bound
(Typ
));
3722 -- Types other than string and scalar types are never static
3727 end Is_Static_Subtype
;
3729 --------------------
3730 -- Not_Null_Range --
3731 --------------------
3733 function Not_Null_Range
(Lo
: Node_Id
; Hi
: Node_Id
) return Boolean is
3734 Typ
: constant Entity_Id
:= Etype
(Lo
);
3737 if not Compile_Time_Known_Value
(Lo
)
3738 or else not Compile_Time_Known_Value
(Hi
)
3743 if Is_Discrete_Type
(Typ
) then
3744 return Expr_Value
(Lo
) <= Expr_Value
(Hi
);
3747 pragma Assert
(Is_Real_Type
(Typ
));
3749 return Expr_Value_R
(Lo
) <= Expr_Value_R
(Hi
);
3757 function OK_Bits
(N
: Node_Id
; Bits
: Uint
) return Boolean is
3759 -- We allow a maximum of 500,000 bits which seems a reasonable limit
3761 if Bits
< 500_000
then
3765 Error_Msg_N
("static value too large, capacity exceeded", N
);
3774 procedure Out_Of_Range
(N
: Node_Id
) is
3776 -- If we have the static expression case, then this is an illegality
3777 -- in Ada 95 mode, except that in an instance, we never generate an
3778 -- error (if the error is legitimate, it was already diagnosed in
3779 -- the template). The expression to compute the length of a packed
3780 -- array is attached to the array type itself, and deserves a separate
3783 if Is_Static_Expression
(N
)
3784 and then not In_Instance
3785 and then not In_Inlined_Body
3786 and then Ada_Version
>= Ada_95
3788 if Nkind
(Parent
(N
)) = N_Defining_Identifier
3789 and then Is_Array_Type
(Parent
(N
))
3790 and then Present
(Packed_Array_Type
(Parent
(N
)))
3791 and then Present
(First_Rep_Item
(Parent
(N
)))
3794 ("length of packed array must not exceed Integer''Last",
3795 First_Rep_Item
(Parent
(N
)));
3796 Rewrite
(N
, Make_Integer_Literal
(Sloc
(N
), Uint_1
));
3799 Apply_Compile_Time_Constraint_Error
3800 (N
, "value not in range of}", CE_Range_Check_Failed
);
3803 -- Here we generate a warning for the Ada 83 case, or when we are
3804 -- in an instance, or when we have a non-static expression case.
3807 Apply_Compile_Time_Constraint_Error
3808 (N
, "value not in range of}?", CE_Range_Check_Failed
);
3812 -------------------------
3813 -- Rewrite_In_Raise_CE --
3814 -------------------------
3816 procedure Rewrite_In_Raise_CE
(N
: Node_Id
; Exp
: Node_Id
) is
3817 Typ
: constant Entity_Id
:= Etype
(N
);
3820 -- If we want to raise CE in the condition of a raise_CE node
3821 -- we may as well get rid of the condition
3823 if Present
(Parent
(N
))
3824 and then Nkind
(Parent
(N
)) = N_Raise_Constraint_Error
3826 Set_Condition
(Parent
(N
), Empty
);
3828 -- If the expression raising CE is a N_Raise_CE node, we can use
3829 -- that one. We just preserve the type of the context
3831 elsif Nkind
(Exp
) = N_Raise_Constraint_Error
then
3835 -- We have to build an explicit raise_ce node
3839 Make_Raise_Constraint_Error
(Sloc
(Exp
),
3840 Reason
=> CE_Range_Check_Failed
));
3841 Set_Raises_Constraint_Error
(N
);
3844 end Rewrite_In_Raise_CE
;
3846 ---------------------
3847 -- String_Type_Len --
3848 ---------------------
3850 function String_Type_Len
(Stype
: Entity_Id
) return Uint
is
3851 NT
: constant Entity_Id
:= Etype
(First_Index
(Stype
));
3855 if Is_OK_Static_Subtype
(NT
) then
3858 T
:= Base_Type
(NT
);
3861 return Expr_Value
(Type_High_Bound
(T
)) -
3862 Expr_Value
(Type_Low_Bound
(T
)) + 1;
3863 end String_Type_Len
;
3865 ------------------------------------
3866 -- Subtypes_Statically_Compatible --
3867 ------------------------------------
3869 function Subtypes_Statically_Compatible
3871 T2
: Entity_Id
) return Boolean
3874 if Is_Scalar_Type
(T1
) then
3876 -- Definitely compatible if we match
3878 if Subtypes_Statically_Match
(T1
, T2
) then
3881 -- If either subtype is nonstatic then they're not compatible
3883 elsif not Is_Static_Subtype
(T1
)
3884 or else not Is_Static_Subtype
(T2
)
3888 -- If either type has constraint error bounds, then consider that
3889 -- they match to avoid junk cascaded errors here.
3891 elsif not Is_OK_Static_Subtype
(T1
)
3892 or else not Is_OK_Static_Subtype
(T2
)
3896 -- Base types must match, but we don't check that (should
3897 -- we???) but we do at least check that both types are
3898 -- real, or both types are not real.
3900 elsif Is_Real_Type
(T1
) /= Is_Real_Type
(T2
) then
3903 -- Here we check the bounds
3907 LB1
: constant Node_Id
:= Type_Low_Bound
(T1
);
3908 HB1
: constant Node_Id
:= Type_High_Bound
(T1
);
3909 LB2
: constant Node_Id
:= Type_Low_Bound
(T2
);
3910 HB2
: constant Node_Id
:= Type_High_Bound
(T2
);
3913 if Is_Real_Type
(T1
) then
3915 (Expr_Value_R
(LB1
) > Expr_Value_R
(HB1
))
3917 (Expr_Value_R
(LB2
) <= Expr_Value_R
(LB1
)
3919 Expr_Value_R
(HB1
) <= Expr_Value_R
(HB2
));
3923 (Expr_Value
(LB1
) > Expr_Value
(HB1
))
3925 (Expr_Value
(LB2
) <= Expr_Value
(LB1
)
3927 Expr_Value
(HB1
) <= Expr_Value
(HB2
));
3932 elsif Is_Access_Type
(T1
) then
3933 return not Is_Constrained
(T2
)
3934 or else Subtypes_Statically_Match
3935 (Designated_Type
(T1
), Designated_Type
(T2
));
3938 return (Is_Composite_Type
(T1
) and then not Is_Constrained
(T2
))
3939 or else Subtypes_Statically_Match
(T1
, T2
);
3941 end Subtypes_Statically_Compatible
;
3943 -------------------------------
3944 -- Subtypes_Statically_Match --
3945 -------------------------------
3947 -- Subtypes statically match if they have statically matching constraints
3948 -- (RM 4.9.1(2)). Constraints statically match if there are none, or if
3949 -- they are the same identical constraint, or if they are static and the
3950 -- values match (RM 4.9.1(1)).
3952 function Subtypes_Statically_Match
(T1
, T2
: Entity_Id
) return Boolean is
3954 -- A type always statically matches itself
3961 elsif Is_Scalar_Type
(T1
) then
3963 -- Base types must be the same
3965 if Base_Type
(T1
) /= Base_Type
(T2
) then
3969 -- A constrained numeric subtype never matches an unconstrained
3970 -- subtype, i.e. both types must be constrained or unconstrained.
3972 -- To understand the requirement for this test, see RM 4.9.1(1).
3973 -- As is made clear in RM 3.5.4(11), type Integer, for example
3974 -- is a constrained subtype with constraint bounds matching the
3975 -- bounds of its corresponding uncontrained base type. In this
3976 -- situation, Integer and Integer'Base do not statically match,
3977 -- even though they have the same bounds.
3979 -- We only apply this test to types in Standard and types that
3980 -- appear in user programs. That way, we do not have to be
3981 -- too careful about setting Is_Constrained right for itypes.
3983 if Is_Numeric_Type
(T1
)
3984 and then (Is_Constrained
(T1
) /= Is_Constrained
(T2
))
3985 and then (Scope
(T1
) = Standard_Standard
3986 or else Comes_From_Source
(T1
))
3987 and then (Scope
(T2
) = Standard_Standard
3988 or else Comes_From_Source
(T2
))
3992 -- A generic scalar type does not statically match its base
3993 -- type (AI-311). In this case we make sure that the formals,
3994 -- which are first subtypes of their bases, are constrained.
3996 elsif Is_Generic_Type
(T1
)
3997 and then Is_Generic_Type
(T2
)
3998 and then (Is_Constrained
(T1
) /= Is_Constrained
(T2
))
4003 -- If there was an error in either range, then just assume
4004 -- the types statically match to avoid further junk errors
4006 if Error_Posted
(Scalar_Range
(T1
))
4008 Error_Posted
(Scalar_Range
(T2
))
4013 -- Otherwise both types have bound that can be compared
4016 LB1
: constant Node_Id
:= Type_Low_Bound
(T1
);
4017 HB1
: constant Node_Id
:= Type_High_Bound
(T1
);
4018 LB2
: constant Node_Id
:= Type_Low_Bound
(T2
);
4019 HB2
: constant Node_Id
:= Type_High_Bound
(T2
);
4022 -- If the bounds are the same tree node, then match
4024 if LB1
= LB2
and then HB1
= HB2
then
4027 -- Otherwise bounds must be static and identical value
4030 if not Is_Static_Subtype
(T1
)
4031 or else not Is_Static_Subtype
(T2
)
4035 -- If either type has constraint error bounds, then say
4036 -- that they match to avoid junk cascaded errors here.
4038 elsif not Is_OK_Static_Subtype
(T1
)
4039 or else not Is_OK_Static_Subtype
(T2
)
4043 elsif Is_Real_Type
(T1
) then
4045 (Expr_Value_R
(LB1
) = Expr_Value_R
(LB2
))
4047 (Expr_Value_R
(HB1
) = Expr_Value_R
(HB2
));
4051 Expr_Value
(LB1
) = Expr_Value
(LB2
)
4053 Expr_Value
(HB1
) = Expr_Value
(HB2
);
4058 -- Type with discriminants
4060 elsif Has_Discriminants
(T1
) or else Has_Discriminants
(T2
) then
4062 -- Because of view exchanges in multiple instantiations, conformance
4063 -- checking might try to match a partial view of a type with no
4064 -- discriminants with a full view that has defaulted discriminants.
4065 -- In such a case, use the discriminant constraint of the full view,
4066 -- which must exist because we know that the two subtypes have the
4069 if Has_Discriminants
(T1
) /= Has_Discriminants
(T2
) then
4071 if Is_Private_Type
(T2
)
4072 and then Present
(Full_View
(T2
))
4073 and then Has_Discriminants
(Full_View
(T2
))
4075 return Subtypes_Statically_Match
(T1
, Full_View
(T2
));
4077 elsif Is_Private_Type
(T1
)
4078 and then Present
(Full_View
(T1
))
4079 and then Has_Discriminants
(Full_View
(T1
))
4081 return Subtypes_Statically_Match
(Full_View
(T1
), T2
);
4092 DL1
: constant Elist_Id
:= Discriminant_Constraint
(T1
);
4093 DL2
: constant Elist_Id
:= Discriminant_Constraint
(T2
);
4095 DA1
: Elmt_Id
:= First_Elmt
(DL1
);
4096 DA2
: Elmt_Id
:= First_Elmt
(DL2
);
4102 elsif Is_Constrained
(T1
) /= Is_Constrained
(T2
) then
4106 while Present
(DA1
) loop
4108 Expr1
: constant Node_Id
:= Node
(DA1
);
4109 Expr2
: constant Node_Id
:= Node
(DA2
);
4112 if not Is_Static_Expression
(Expr1
)
4113 or else not Is_Static_Expression
(Expr2
)
4117 -- If either expression raised a constraint error,
4118 -- consider the expressions as matching, since this
4119 -- helps to prevent cascading errors.
4121 elsif Raises_Constraint_Error
(Expr1
)
4122 or else Raises_Constraint_Error
(Expr2
)
4126 elsif Expr_Value
(Expr1
) /= Expr_Value
(Expr2
) then
4138 -- A definite type does not match an indefinite or classwide type
4139 -- However, a generic type with unknown discriminants may be
4140 -- instantiated with a type with no discriminants, and conformance
4141 -- checking on an inherited operation may compare the actual with
4142 -- the subtype that renames it in the instance.
4145 Has_Unknown_Discriminants
(T1
) /= Has_Unknown_Discriminants
(T2
)
4148 Is_Generic_Actual_Type
(T1
) or else Is_Generic_Actual_Type
(T2
);
4152 elsif Is_Array_Type
(T1
) then
4154 -- If either subtype is unconstrained then both must be,
4155 -- and if both are unconstrained then no further checking
4158 if not Is_Constrained
(T1
) or else not Is_Constrained
(T2
) then
4159 return not (Is_Constrained
(T1
) or else Is_Constrained
(T2
));
4162 -- Both subtypes are constrained, so check that the index
4163 -- subtypes statically match.
4166 Index1
: Node_Id
:= First_Index
(T1
);
4167 Index2
: Node_Id
:= First_Index
(T2
);
4170 while Present
(Index1
) loop
4172 Subtypes_Statically_Match
(Etype
(Index1
), Etype
(Index2
))
4177 Next_Index
(Index1
);
4178 Next_Index
(Index2
);
4184 elsif Is_Access_Type
(T1
) then
4185 if Can_Never_Be_Null
(T1
) /= Can_Never_Be_Null
(T2
) then
4188 elsif Ekind
(T1
) = E_Access_Subprogram_Type
4189 or else Ekind
(T1
) = E_Anonymous_Access_Subprogram_Type
4193 (Designated_Type
(T1
),
4194 Designated_Type
(T2
));
4197 Subtypes_Statically_Match
4198 (Designated_Type
(T1
),
4199 Designated_Type
(T2
))
4200 and then Is_Access_Constant
(T1
) = Is_Access_Constant
(T2
);
4203 -- All other types definitely match
4208 end Subtypes_Statically_Match
;
4214 function Test
(Cond
: Boolean) return Uint
is
4223 ---------------------------------
4224 -- Test_Expression_Is_Foldable --
4225 ---------------------------------
4229 procedure Test_Expression_Is_Foldable
4239 if Debug_Flag_Dot_F
and then In_Extended_Main_Source_Unit
(N
) then
4243 -- If operand is Any_Type, just propagate to result and do not
4244 -- try to fold, this prevents cascaded errors.
4246 if Etype
(Op1
) = Any_Type
then
4247 Set_Etype
(N
, Any_Type
);
4250 -- If operand raises constraint error, then replace node N with the
4251 -- raise constraint error node, and we are obviously not foldable.
4252 -- Note that this replacement inherits the Is_Static_Expression flag
4253 -- from the operand.
4255 elsif Raises_Constraint_Error
(Op1
) then
4256 Rewrite_In_Raise_CE
(N
, Op1
);
4259 -- If the operand is not static, then the result is not static, and
4260 -- all we have to do is to check the operand since it is now known
4261 -- to appear in a non-static context.
4263 elsif not Is_Static_Expression
(Op1
) then
4264 Check_Non_Static_Context
(Op1
);
4265 Fold
:= Compile_Time_Known_Value
(Op1
);
4268 -- An expression of a formal modular type is not foldable because
4269 -- the modulus is unknown.
4271 elsif Is_Modular_Integer_Type
(Etype
(Op1
))
4272 and then Is_Generic_Type
(Etype
(Op1
))
4274 Check_Non_Static_Context
(Op1
);
4277 -- Here we have the case of an operand whose type is OK, which is
4278 -- static, and which does not raise constraint error, we can fold.
4281 Set_Is_Static_Expression
(N
);
4285 end Test_Expression_Is_Foldable
;
4289 procedure Test_Expression_Is_Foldable
4296 Rstat
: constant Boolean := Is_Static_Expression
(Op1
)
4297 and then Is_Static_Expression
(Op2
);
4303 if Debug_Flag_Dot_F
and then In_Extended_Main_Source_Unit
(N
) then
4307 -- If either operand is Any_Type, just propagate to result and
4308 -- do not try to fold, this prevents cascaded errors.
4310 if Etype
(Op1
) = Any_Type
or else Etype
(Op2
) = Any_Type
then
4311 Set_Etype
(N
, Any_Type
);
4314 -- If left operand raises constraint error, then replace node N with
4315 -- the raise constraint error node, and we are obviously not foldable.
4316 -- Is_Static_Expression is set from the two operands in the normal way,
4317 -- and we check the right operand if it is in a non-static context.
4319 elsif Raises_Constraint_Error
(Op1
) then
4321 Check_Non_Static_Context
(Op2
);
4324 Rewrite_In_Raise_CE
(N
, Op1
);
4325 Set_Is_Static_Expression
(N
, Rstat
);
4328 -- Similar processing for the case of the right operand. Note that
4329 -- we don't use this routine for the short-circuit case, so we do
4330 -- not have to worry about that special case here.
4332 elsif Raises_Constraint_Error
(Op2
) then
4334 Check_Non_Static_Context
(Op1
);
4337 Rewrite_In_Raise_CE
(N
, Op2
);
4338 Set_Is_Static_Expression
(N
, Rstat
);
4341 -- Exclude expressions of a generic modular type, as above
4343 elsif Is_Modular_Integer_Type
(Etype
(Op1
))
4344 and then Is_Generic_Type
(Etype
(Op1
))
4346 Check_Non_Static_Context
(Op1
);
4349 -- If result is not static, then check non-static contexts on operands
4350 -- since one of them may be static and the other one may not be static
4352 elsif not Rstat
then
4353 Check_Non_Static_Context
(Op1
);
4354 Check_Non_Static_Context
(Op2
);
4355 Fold
:= Compile_Time_Known_Value
(Op1
)
4356 and then Compile_Time_Known_Value
(Op2
);
4359 -- Else result is static and foldable. Both operands are static,
4360 -- and neither raises constraint error, so we can definitely fold.
4363 Set_Is_Static_Expression
(N
);
4368 end Test_Expression_Is_Foldable
;
4374 procedure To_Bits
(U
: Uint
; B
: out Bits
) is
4376 for J
in 0 .. B
'Last loop
4377 B
(J
) := (U
/ (2 ** J
)) mod 2 /= 0;
4381 --------------------
4382 -- Why_Not_Static --
4383 --------------------
4385 procedure Why_Not_Static
(Expr
: Node_Id
) is
4386 N
: constant Node_Id
:= Original_Node
(Expr
);
4390 procedure Why_Not_Static_List
(L
: List_Id
);
4391 -- A version that can be called on a list of expressions. Finds
4392 -- all non-static violations in any element of the list.
4394 -------------------------
4395 -- Why_Not_Static_List --
4396 -------------------------
4398 procedure Why_Not_Static_List
(L
: List_Id
) is
4402 if Is_Non_Empty_List
(L
) then
4404 while Present
(N
) loop
4409 end Why_Not_Static_List
;
4411 -- Start of processing for Why_Not_Static
4414 -- If in ACATS mode (debug flag 2), then suppress all these
4415 -- messages, this avoids massive updates to the ACATS base line.
4417 if Debug_Flag_2
then
4421 -- Ignore call on error or empty node
4423 if No
(Expr
) or else Nkind
(Expr
) = N_Error
then
4427 -- Preprocessing for sub expressions
4429 if Nkind
(Expr
) in N_Subexpr
then
4431 -- Nothing to do if expression is static
4433 if Is_OK_Static_Expression
(Expr
) then
4437 -- Test for constraint error raised
4439 if Raises_Constraint_Error
(Expr
) then
4441 ("expression raises exception, cannot be static " &
4442 "('R'M 4.9(34))!", N
);
4446 -- If no type, then something is pretty wrong, so ignore
4448 Typ
:= Etype
(Expr
);
4454 -- Type must be scalar or string type
4456 if not Is_Scalar_Type
(Typ
)
4457 and then not Is_String_Type
(Typ
)
4460 ("static expression must have scalar or string type " &
4461 "('R'M 4.9(2))!", N
);
4466 -- If we got through those checks, test particular node kind
4469 when N_Expanded_Name | N_Identifier | N_Operator_Symbol
=>
4472 if Is_Named_Number
(E
) then
4475 elsif Ekind
(E
) = E_Constant
then
4476 if not Is_Static_Expression
(Constant_Value
(E
)) then
4478 ("& is not a static constant ('R'M 4.9(5))!", N
, E
);
4483 ("& is not static constant or named number " &
4484 "('R'M 4.9(5))!", N
, E
);
4487 when N_Binary_Op | N_And_Then | N_Or_Else | N_Membership_Test
=>
4488 if Nkind
(N
) in N_Op_Shift
then
4490 ("shift functions are never static ('R'M 4.9(6,18))!", N
);
4493 Why_Not_Static
(Left_Opnd
(N
));
4494 Why_Not_Static
(Right_Opnd
(N
));
4498 Why_Not_Static
(Right_Opnd
(N
));
4500 when N_Attribute_Reference
=>
4501 Why_Not_Static_List
(Expressions
(N
));
4503 E
:= Etype
(Prefix
(N
));
4505 if E
= Standard_Void_Type
then
4509 -- Special case non-scalar'Size since this is a common error
4511 if Attribute_Name
(N
) = Name_Size
then
4513 ("size attribute is only static for scalar type " &
4514 "('R'M 4.9(7,8))", N
);
4518 elsif Is_Array_Type
(E
) then
4519 if Attribute_Name
(N
) /= Name_First
4521 Attribute_Name
(N
) /= Name_Last
4523 Attribute_Name
(N
) /= Name_Length
4526 ("static array attribute must be Length, First, or Last " &
4527 "('R'M 4.9(8))!", N
);
4529 -- Since we know the expression is not-static (we already
4530 -- tested for this, must mean array is not static).
4534 ("prefix is non-static array ('R'M 4.9(8))!", Prefix
(N
));
4539 -- Special case generic types, since again this is a common
4540 -- source of confusion.
4542 elsif Is_Generic_Actual_Type
(E
)
4547 ("attribute of generic type is never static " &
4548 "('R'M 4.9(7,8))!", N
);
4550 elsif Is_Static_Subtype
(E
) then
4553 elsif Is_Scalar_Type
(E
) then
4555 ("prefix type for attribute is not static scalar subtype " &
4556 "('R'M 4.9(7))!", N
);
4560 ("static attribute must apply to array/scalar type " &
4561 "('R'M 4.9(7,8))!", N
);
4564 when N_String_Literal
=>
4566 ("subtype of string literal is non-static ('R'M 4.9(4))!", N
);
4568 when N_Explicit_Dereference
=>
4570 ("explicit dereference is never static ('R'M 4.9)!", N
);
4572 when N_Function_Call
=>
4573 Why_Not_Static_List
(Parameter_Associations
(N
));
4574 Error_Msg_N
("non-static function call ('R'M 4.9(6,18))!", N
);
4576 when N_Parameter_Association
=>
4577 Why_Not_Static
(Explicit_Actual_Parameter
(N
));
4579 when N_Indexed_Component
=>
4581 ("indexed component is never static ('R'M 4.9)!", N
);
4583 when N_Procedure_Call_Statement
=>
4585 ("procedure call is never static ('R'M 4.9)!", N
);
4587 when N_Qualified_Expression
=>
4588 Why_Not_Static
(Expression
(N
));
4590 when N_Aggregate | N_Extension_Aggregate
=>
4592 ("an aggregate is never static ('R'M 4.9)!", N
);
4595 Why_Not_Static
(Low_Bound
(N
));
4596 Why_Not_Static
(High_Bound
(N
));
4598 when N_Range_Constraint
=>
4599 Why_Not_Static
(Range_Expression
(N
));
4601 when N_Subtype_Indication
=>
4602 Why_Not_Static
(Constraint
(N
));
4604 when N_Selected_Component
=>
4606 ("selected component is never static ('R'M 4.9)!", N
);
4610 ("slice is never static ('R'M 4.9)!", N
);
4612 when N_Type_Conversion
=>
4613 Why_Not_Static
(Expression
(N
));
4615 if not Is_Scalar_Type
(Etype
(Prefix
(N
)))
4616 or else not Is_Static_Subtype
(Etype
(Prefix
(N
)))
4619 ("static conversion requires static scalar subtype result " &
4620 "('R'M 4.9(9))!", N
);
4623 when N_Unchecked_Type_Conversion
=>
4625 ("unchecked type conversion is never static ('R'M 4.9)!", N
);