runtime: use correct field name for PPC32 GLIBC registers
[official-gcc.git] / libgo / runtime / go-signal.c
blob528d9b6d9fe239e1519ac6138b10fc62e388d8f7
1 /* go-signal.c -- signal handling for Go.
3 Copyright 2009 The Go Authors. All rights reserved.
4 Use of this source code is governed by a BSD-style
5 license that can be found in the LICENSE file. */
7 #include <signal.h>
8 #include <stdlib.h>
9 #include <unistd.h>
10 #include <sys/time.h>
11 #include <ucontext.h>
13 #include "runtime.h"
15 #ifndef SA_RESTART
16 #define SA_RESTART 0
17 #endif
19 #ifdef USING_SPLIT_STACK
21 extern void __splitstack_getcontext(void *context[10]);
23 extern void __splitstack_setcontext(void *context[10]);
25 extern void *__splitstack_find_context(void *context[10], size_t *,
26 void **, void **, void **);
28 #endif
30 // The rest of the signal handler, written in Go.
32 extern void sigtrampgo(uint32, siginfo_t *, void *)
33 __asm__(GOSYM_PREFIX "runtime.sigtrampgo");
35 // The Go signal handler, written in C. This should be running on the
36 // alternate signal stack. This is responsible for setting up the
37 // split stack context so that stack guard checks will work as
38 // expected.
40 void sigtramp(int, siginfo_t *, void *)
41 __attribute__ ((no_split_stack));
43 void sigtramp(int, siginfo_t *, void *)
44 __asm__ (GOSYM_PREFIX "runtime.sigtramp");
46 #ifndef USING_SPLIT_STACK
48 // When not using split stacks, there are no stack checks, and there
49 // is nothing special for this function to do.
51 void
52 sigtramp(int sig, siginfo_t *info, void *context)
54 sigtrampgo(sig, info, context);
57 #else // USING_SPLIT_STACK
59 void
60 sigtramp(int sig, siginfo_t *info, void *context)
62 G *gp;
63 void *stack_context[10];
64 void *stack;
65 void *find_stack;
66 size_t stack_size;
67 void *next_segment;
68 void *next_sp;
69 void *initial_sp;
70 uintptr sp;
71 stack_t st;
72 uintptr stsp;
74 gp = runtime_g();
76 if (gp == nil) {
77 // Let the Go code handle this case.
78 // It should only call nosplit functions in this case.
79 sigtrampgo(sig, info, context);
80 return;
83 // If this signal is one for which we will panic, we are not
84 // on the alternate signal stack. It's OK to call split-stack
85 // functions here.
86 if (sig == SIGBUS || sig == SIGFPE || sig == SIGSEGV) {
87 sigtrampgo(sig, info, context);
88 return;
91 // We are running on the alternate signal stack.
93 __splitstack_getcontext(&stack_context[0]);
95 find_stack =
96 __splitstack_find_context((void*)(&gp->m->gsignal->stackcontext[0]),
97 &stack_size, &next_segment,
98 &next_sp, &initial_sp);
99 stack = find_stack;
100 if (stack == NULL) {
101 stack = gp->m->gsignalstack;
102 stack_size = gp->m->gsignalstacksize;
105 // If some non-Go code called sigaltstack, adjust.
106 sp = (uintptr)(&stack_size);
107 if (sp < (uintptr)(stack) || sp >= (uintptr)(stack) + stack_size) {
108 sigaltstack(nil, &st);
109 if ((st.ss_flags & SS_DISABLE) != 0) {
110 runtime_printf("signal %d received on thread with no signal stack\n", (int32)(sig));
111 runtime_throw("non-Go code disabled sigaltstack");
114 stsp = (uintptr)(st.ss_sp);
115 if (sp < stsp || sp >= stsp + st.ss_size) {
116 runtime_printf("signal %d received but handler not on signal stack\n", (int32)(sig));
117 runtime_throw("non-Go code set up signal handler without SA_ONSTACK flag");
120 // Unfortunately __splitstack_find_context will return NULL
121 // when it is called on a context that has never been used.
122 // There isn't much we can do but assume all is well.
123 if (find_stack != NULL) {
124 // Here the gc runtime adjusts the gsignal
125 // stack guard to match the values returned by
126 // sigaltstack. Unfortunately we have no way
127 // to do that.
128 runtime_printf("signal %d received on unknown signal stack\n", (int32)(sig));
129 runtime_throw("non-Go code changed signal stack");
133 // Set the split stack context so that the stack guards are
134 // checked correctly.
136 __splitstack_setcontext((void*)(&gp->m->gsignal->stackcontext[0]));
138 sigtrampgo(sig, info, context);
140 // We are going to return back to the signal trampoline and
141 // then to whatever we were doing before we got the signal.
142 // Restore the split stack context so that stack guards are
143 // checked correctly.
145 __splitstack_setcontext(&stack_context[0]);
148 #endif // USING_SPLIT_STACK
150 // C function to return the address of the sigtramp function.
151 uintptr getSigtramp(void) __asm__ (GOSYM_PREFIX "runtime.getSigtramp");
153 uintptr
154 getSigtramp()
156 return (uintptr)(void*)sigtramp;
159 // C code to manage the sigaction sa_sigaction field, which is
160 // typically a union and so hard for mksysinfo.sh to handle.
162 uintptr getSigactionHandler(struct sigaction*)
163 __attribute__ ((no_split_stack));
165 uintptr getSigactionHandler(struct sigaction*)
166 __asm__ (GOSYM_PREFIX "runtime.getSigactionHandler");
168 uintptr
169 getSigactionHandler(struct sigaction* sa)
171 return (uintptr)(sa->sa_sigaction);
174 void setSigactionHandler(struct sigaction*, uintptr)
175 __attribute__ ((no_split_stack));
177 void setSigactionHandler(struct sigaction*, uintptr)
178 __asm__ (GOSYM_PREFIX "runtime.setSigactionHandler");
180 void
181 setSigactionHandler(struct sigaction* sa, uintptr handler)
183 sa->sa_sigaction = (void*)(handler);
186 // C code to fetch values from the siginfo_t and ucontext_t pointers
187 // passed to a signal handler.
189 uintptr getSiginfoCode(siginfo_t *)
190 __attribute__ ((no_split_stack));
192 uintptr getSiginfoCode(siginfo_t *)
193 __asm__ (GOSYM_PREFIX "runtime.getSiginfoCode");
195 uintptr
196 getSiginfoCode(siginfo_t *info)
198 return (uintptr)(info->si_code);
201 struct getSiginfoRet {
202 uintptr sigaddr;
203 uintptr sigpc;
206 struct getSiginfoRet getSiginfo(siginfo_t *, void *)
207 __asm__(GOSYM_PREFIX "runtime.getSiginfo");
209 struct getSiginfoRet
210 getSiginfo(siginfo_t *info, void *context __attribute__((unused)))
212 struct getSiginfoRet ret;
213 Location loc[1];
214 int32 n;
216 if (info == nil) {
217 ret.sigaddr = 0;
218 } else {
219 ret.sigaddr = (uintptr)(info->si_addr);
221 ret.sigpc = 0;
223 // There doesn't seem to be a portable way to get the PC.
224 // Use unportable code to pull it from context, and if that fails
225 // try a stack backtrace across the signal handler.
227 #if defined(__x86_64__) && defined(__linux__)
228 ret.sigpc = ((ucontext_t*)(context))->uc_mcontext.gregs[REG_RIP];
229 #elif defined(__i386__) && defined(__linux__)
230 ret.sigpc = ((ucontext_t*)(context))->uc_mcontext.gregs[REG_EIP];
231 #elif defined(__alpha__) && defined(__linux__)
232 ret.sigpc = ((ucontext_t*)(context))->uc_mcontext.sc_pc;
233 #elif defined(__PPC64__) && defined(__linux__)
234 ret.sigpc = ((ucontext_t*)(context))->uc_mcontext.gp_regs[32];
235 #elif defined(__PPC__) && defined(__linux__)
236 # if defined(__GLIBC__)
237 ret.sigpc = ((ucontext_t*)(context))->uc_mcontext.uc_regs->gregs[32];
238 # else
239 ret.sigpc = ((ucontext_t*)(context))->uc_mcontext.gregs[32];
240 # endif
241 #elif defined(__PPC__) && defined(_AIX)
242 ret.sigpc = ((ucontext_t*)(context))->uc_mcontext.jmp_context.iar;
243 #elif defined(__aarch64__) && defined(__linux__)
244 ret.sigpc = ((ucontext_t*)(context))->uc_mcontext.pc;
245 #elif defined(__NetBSD__)
246 ret.sigpc = _UC_MACHINE_PC(((ucontext_t*)(context)));
247 #endif
249 if (ret.sigpc == 0) {
250 // Skip getSiginfo/sighandler/sigtrampgo/sigtramp/handler.
251 n = runtime_callers(5, &loc[0], 1, false);
252 if (n > 0) {
253 ret.sigpc = loc[0].pc;
257 return ret;
260 // Dump registers when crashing in a signal.
261 // There is no portable way to write this,
262 // so we just have some CPU/OS specific implementations.
264 void dumpregs(siginfo_t *, void *)
265 __asm__(GOSYM_PREFIX "runtime.dumpregs");
267 void
268 dumpregs(siginfo_t *info __attribute__((unused)), void *context __attribute__((unused)))
270 #if defined(__x86_64__) && defined(__linux__)
272 mcontext_t *m = &((ucontext_t*)(context))->uc_mcontext;
274 runtime_printf("rax %X\n", m->gregs[REG_RAX]);
275 runtime_printf("rbx %X\n", m->gregs[REG_RBX]);
276 runtime_printf("rcx %X\n", m->gregs[REG_RCX]);
277 runtime_printf("rdx %X\n", m->gregs[REG_RDX]);
278 runtime_printf("rdi %X\n", m->gregs[REG_RDI]);
279 runtime_printf("rsi %X\n", m->gregs[REG_RSI]);
280 runtime_printf("rbp %X\n", m->gregs[REG_RBP]);
281 runtime_printf("rsp %X\n", m->gregs[REG_RSP]);
282 runtime_printf("r8 %X\n", m->gregs[REG_R8]);
283 runtime_printf("r9 %X\n", m->gregs[REG_R9]);
284 runtime_printf("r10 %X\n", m->gregs[REG_R10]);
285 runtime_printf("r11 %X\n", m->gregs[REG_R11]);
286 runtime_printf("r12 %X\n", m->gregs[REG_R12]);
287 runtime_printf("r13 %X\n", m->gregs[REG_R13]);
288 runtime_printf("r14 %X\n", m->gregs[REG_R14]);
289 runtime_printf("r15 %X\n", m->gregs[REG_R15]);
290 runtime_printf("rip %X\n", m->gregs[REG_RIP]);
291 runtime_printf("rflags %X\n", m->gregs[REG_EFL]);
292 runtime_printf("cs %X\n", m->gregs[REG_CSGSFS] & 0xffff);
293 runtime_printf("fs %X\n", (m->gregs[REG_CSGSFS] >> 16) & 0xffff);
294 runtime_printf("gs %X\n", (m->gregs[REG_CSGSFS] >> 32) & 0xffff);
296 #elif defined(__i386__) && defined(__linux__)
298 mcontext_t *m = &((ucontext_t*)(context))->uc_mcontext;
300 runtime_printf("eax %x\n", m->gregs[REG_EAX]);
301 runtime_printf("ebx %x\n", m->gregs[REG_EBX]);
302 runtime_printf("ecx %x\n", m->gregs[REG_ECX]);
303 runtime_printf("edx %x\n", m->gregs[REG_EDX]);
304 runtime_printf("edi %x\n", m->gregs[REG_EDI]);
305 runtime_printf("esi %x\n", m->gregs[REG_ESI]);
306 runtime_printf("ebp %x\n", m->gregs[REG_EBP]);
307 runtime_printf("esp %x\n", m->gregs[REG_ESP]);
308 runtime_printf("eip %x\n", m->gregs[REG_EIP]);
309 runtime_printf("eflags %x\n", m->gregs[REG_EFL]);
310 runtime_printf("cs %x\n", m->gregs[REG_CS]);
311 runtime_printf("fs %x\n", m->gregs[REG_FS]);
312 runtime_printf("gs %x\n", m->gregs[REG_GS]);
314 #elif defined(__alpha__) && defined(__linux__)
316 mcontext_t *m = &((ucontext_t*)(context))->uc_mcontext;
318 runtime_printf("v0 %X\n", m->sc_regs[0]);
319 runtime_printf("t0 %X\n", m->sc_regs[1]);
320 runtime_printf("t1 %X\n", m->sc_regs[2]);
321 runtime_printf("t2 %X\n", m->sc_regs[3]);
322 runtime_printf("t3 %X\n", m->sc_regs[4]);
323 runtime_printf("t4 %X\n", m->sc_regs[5]);
324 runtime_printf("t5 %X\n", m->sc_regs[6]);
325 runtime_printf("t6 %X\n", m->sc_regs[7]);
326 runtime_printf("t7 %X\n", m->sc_regs[8]);
327 runtime_printf("s0 %X\n", m->sc_regs[9]);
328 runtime_printf("s1 %X\n", m->sc_regs[10]);
329 runtime_printf("s2 %X\n", m->sc_regs[11]);
330 runtime_printf("s3 %X\n", m->sc_regs[12]);
331 runtime_printf("s4 %X\n", m->sc_regs[13]);
332 runtime_printf("s5 %X\n", m->sc_regs[14]);
333 runtime_printf("fp %X\n", m->sc_regs[15]);
334 runtime_printf("a0 %X\n", m->sc_regs[16]);
335 runtime_printf("a1 %X\n", m->sc_regs[17]);
336 runtime_printf("a2 %X\n", m->sc_regs[18]);
337 runtime_printf("a3 %X\n", m->sc_regs[19]);
338 runtime_printf("a4 %X\n", m->sc_regs[20]);
339 runtime_printf("a5 %X\n", m->sc_regs[21]);
340 runtime_printf("t8 %X\n", m->sc_regs[22]);
341 runtime_printf("t9 %X\n", m->sc_regs[23]);
342 runtime_printf("t10 %X\n", m->sc_regs[24]);
343 runtime_printf("t11 %X\n", m->sc_regs[25]);
344 runtime_printf("ra %X\n", m->sc_regs[26]);
345 runtime_printf("t12 %X\n", m->sc_regs[27]);
346 runtime_printf("at %X\n", m->sc_regs[28]);
347 runtime_printf("gp %X\n", m->sc_regs[29]);
348 runtime_printf("sp %X\n", m->sc_regs[30]);
349 runtime_printf("pc %X\n", m->sc_pc);
351 #elif defined(__PPC__) && defined(__linux__)
353 int i;
355 # if defined(__PPC64__)
356 mcontext_t *m = &((ucontext_t*)(context))->uc_mcontext;
358 for (i = 0; i < 32; i++)
359 runtime_printf("r%d %X\n", i, m->gp_regs[i]);
360 runtime_printf("pc %X\n", m->gp_regs[32]);
361 runtime_printf("msr %X\n", m->gp_regs[33]);
362 runtime_printf("cr %X\n", m->gp_regs[38]);
363 runtime_printf("lr %X\n", m->gp_regs[36]);
364 runtime_printf("ctr %X\n", m->gp_regs[35]);
365 runtime_printf("xer %X\n", m->gp_regs[37]);
366 # else
367 # if defined(__GLIBC__)
368 mcontext_t *m = ((ucontext_t*)(context))->uc_mcontext.uc_regs;
369 # else
370 mcontext_t *m = &((ucontext_t*)(context))->uc_mcontext;
371 # endif
373 for (i = 0; i < 32; i++)
374 runtime_printf("r%d %x\n", i, m->gregs[i]);
375 runtime_printf("pc %x\n", m->gregs[32]);
376 runtime_printf("msr %x\n", m->gregs[33]);
377 runtime_printf("cr %x\n", m->gregs[38]);
378 runtime_printf("lr %x\n", m->gregs[36]);
379 runtime_printf("ctr %x\n", m->gregs[35]);
380 runtime_printf("xer %x\n", m->gregs[37]);
381 # endif
383 #elif defined(__PPC__) && defined(_AIX)
385 mcontext_t *m = &((ucontext_t*)(context))->uc_mcontext;
386 int i;
388 for (i = 0; i < 32; i++)
389 runtime_printf("r%d %p\n", i, m->jmp_context.gpr[i]);
390 runtime_printf("pc %p\n", m->jmp_context.iar);
391 runtime_printf("msr %p\n", m->jmp_context.msr);
392 runtime_printf("cr %x\n", m->jmp_context.cr);
393 runtime_printf("lr %p\n", m->jmp_context.lr);
394 runtime_printf("ctr %p\n", m->jmp_context.ctr);
395 runtime_printf("xer %x\n", m->jmp_context.xer);
397 #elif defined(__aarch64__) && defined(__linux__)
399 mcontext_t *m = &((ucontext_t*)(context))->uc_mcontext;
400 int i;
402 for (i = 0; i < 31; i++)
403 runtime_printf("x%d %X\n", i, m->regs[i]);
404 runtime_printf("sp %X\n", m->sp);
405 runtime_printf("pc %X\n", m->pc);
406 runtime_printf("pstate %X\n", m->pstate);
408 #endif