1 /* Control flow graph manipulation code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
22 /* This file contains low level functions to manipulate the CFG and
23 analyze it. All other modules should not transform the datastructure
24 directly and use abstraction instead. The file is supposed to be
25 ordered bottom-up and should not contain any code dependent on a
26 particular intermediate language (RTL or trees).
28 Available functionality:
29 - Initialization/deallocation
30 init_flow, clear_edges
31 - Low level basic block manipulation
32 alloc_block, expunge_block
34 make_edge, make_single_succ_edge, cached_make_edge, remove_edge
35 - Low level edge redirection (without updating instruction chain)
36 redirect_edge_succ, redirect_edge_succ_nodup, redirect_edge_pred
37 - Dumping and debugging
38 dump_flow_info, debug_flow_info, dump_edge_info
39 - Allocation of AUX fields for basic blocks
40 alloc_aux_for_blocks, free_aux_for_blocks, alloc_aux_for_block
48 #include "hard-reg-set.h"
49 #include "basic-block.h"
59 /* The obstack on which the flow graph components are allocated. */
61 struct obstack flow_obstack
;
62 static char *flow_firstobj
;
64 /* Number of basic blocks in the current function. */
68 /* First free basic block number. */
72 /* Number of edges in the current function. */
76 /* First edge in the deleted edges chain. */
78 edge first_deleted_edge
;
79 static basic_block first_deleted_block
;
81 /* The basic block array. */
83 varray_type basic_block_info
;
85 /* The special entry and exit blocks. */
87 struct basic_block_def entry_exit_blocks
[2]
95 NULL
, /* cond_local_set */
96 NULL
, /* global_live_at_start */
97 NULL
, /* global_live_at_end */
99 ENTRY_BLOCK
, /* index */
101 EXIT_BLOCK_PTR
, /* next_bb */
103 NULL
, /* loop_father */
111 NULL
, /* head_tree */
115 NULL
, /* local_set */
116 NULL
, /* cond_local_set */
117 NULL
, /* global_live_at_start */
118 NULL
, /* global_live_at_end */
120 EXIT_BLOCK
, /* index */
121 ENTRY_BLOCK_PTR
, /* prev_bb */
124 NULL
, /* loop_father */
131 void debug_flow_info
PARAMS ((void));
132 static void free_edge
PARAMS ((edge
));
134 /* Called once at initialization time. */
139 static int initialized
;
141 first_deleted_edge
= 0;
142 first_deleted_block
= 0;
147 gcc_obstack_init (&flow_obstack
);
148 flow_firstobj
= (char *) obstack_alloc (&flow_obstack
, 0);
153 obstack_free (&flow_obstack
, flow_firstobj
);
154 flow_firstobj
= (char *) obstack_alloc (&flow_obstack
, 0);
158 /* Helper function for remove_edge and clear_edges. Frees edge structure
159 without actually unlinking it from the pred/succ lists. */
166 memset (e
, 0, sizeof *e
);
167 e
->succ_next
= first_deleted_edge
;
168 first_deleted_edge
= e
;
171 /* Free the memory associated with the edge structures. */
185 edge next
= e
->succ_next
;
195 e
= ENTRY_BLOCK_PTR
->succ
;
198 edge next
= e
->succ_next
;
204 EXIT_BLOCK_PTR
->pred
= NULL
;
205 ENTRY_BLOCK_PTR
->succ
= NULL
;
211 /* Allocate memory for basic_block. */
218 if (first_deleted_block
)
220 bb
= first_deleted_block
;
221 first_deleted_block
= (basic_block
) bb
->succ
;
226 bb
= (basic_block
) obstack_alloc (&flow_obstack
, sizeof *bb
);
227 memset (bb
, 0, sizeof *bb
);
232 /* Link block B to chain after AFTER. */
234 link_block (b
, after
)
235 basic_block b
, after
;
237 b
->next_bb
= after
->next_bb
;
240 b
->next_bb
->prev_bb
= b
;
243 /* Unlink block B from chain. */
248 b
->next_bb
->prev_bb
= b
->prev_bb
;
249 b
->prev_bb
->next_bb
= b
->next_bb
;
252 /* Sequentially order blocks and compact the arrays. */
262 BASIC_BLOCK (i
) = bb
;
267 if (i
!= n_basic_blocks
)
270 last_basic_block
= n_basic_blocks
;
274 /* Remove block B from the basic block array. */
281 BASIC_BLOCK (b
->index
) = NULL
;
284 /* Invalidate data to make bughunting easier. */
285 memset (b
, 0, sizeof *b
);
287 b
->succ
= (edge
) first_deleted_block
;
288 first_deleted_block
= (basic_block
) b
;
291 /* Create an edge connecting SRC and DST with FLAGS optionally using
292 edge cache CACHE. Return the new edge, NULL if already exist. */
295 cached_make_edge (edge_cache
, src
, dst
, flags
)
297 basic_block src
, dst
;
303 /* Don't bother with edge cache for ENTRY or EXIT, if there aren't that
304 many edges to them, or we didn't allocate memory for it. */
305 use_edge_cache
= (edge_cache
306 && src
!= ENTRY_BLOCK_PTR
&& dst
!= EXIT_BLOCK_PTR
);
308 /* Make sure we don't add duplicate edges. */
309 switch (use_edge_cache
)
312 /* Quick test for non-existence of the edge. */
313 if (! TEST_BIT (edge_cache
[src
->index
], dst
->index
))
316 /* The edge exists; early exit if no work to do. */
322 for (e
= src
->succ
; e
; e
= e
->succ_next
)
331 if (first_deleted_edge
)
333 e
= first_deleted_edge
;
334 first_deleted_edge
= e
->succ_next
;
338 e
= (edge
) obstack_alloc (&flow_obstack
, sizeof *e
);
339 memset (e
, 0, sizeof *e
);
343 e
->succ_next
= src
->succ
;
344 e
->pred_next
= dst
->pred
;
353 SET_BIT (edge_cache
[src
->index
], dst
->index
);
358 /* Create an edge connecting SRC and DEST with flags FLAGS. Return newly
359 created edge or NULL if already exist. */
362 make_edge (src
, dest
, flags
)
363 basic_block src
, dest
;
366 return cached_make_edge (NULL
, src
, dest
, flags
);
369 /* Create an edge connecting SRC to DEST and set probability by knowing
370 that it is the single edge leaving SRC. */
373 make_single_succ_edge (src
, dest
, flags
)
374 basic_block src
, dest
;
377 edge e
= make_edge (src
, dest
, flags
);
379 e
->probability
= REG_BR_PROB_BASE
;
380 e
->count
= src
->count
;
384 /* This function will remove an edge from the flow graph. */
390 edge last_pred
= NULL
;
391 edge last_succ
= NULL
;
393 basic_block src
, dest
;
397 for (tmp
= src
->succ
; tmp
&& tmp
!= e
; tmp
= tmp
->succ_next
)
403 last_succ
->succ_next
= e
->succ_next
;
405 src
->succ
= e
->succ_next
;
407 for (tmp
= dest
->pred
; tmp
&& tmp
!= e
; tmp
= tmp
->pred_next
)
413 last_pred
->pred_next
= e
->pred_next
;
415 dest
->pred
= e
->pred_next
;
420 /* Redirect an edge's successor from one block to another. */
423 redirect_edge_succ (e
, new_succ
)
425 basic_block new_succ
;
429 /* Disconnect the edge from the old successor block. */
430 for (pe
= &e
->dest
->pred
; *pe
!= e
; pe
= &(*pe
)->pred_next
)
432 *pe
= (*pe
)->pred_next
;
434 /* Reconnect the edge to the new successor block. */
435 e
->pred_next
= new_succ
->pred
;
440 /* Like previous but avoid possible duplicate edge. */
443 redirect_edge_succ_nodup (e
, new_succ
)
445 basic_block new_succ
;
449 /* Check whether the edge is already present. */
450 for (s
= e
->src
->succ
; s
; s
= s
->succ_next
)
451 if (s
->dest
== new_succ
&& s
!= e
)
456 s
->flags
|= e
->flags
;
457 s
->probability
+= e
->probability
;
458 if (s
->probability
> REG_BR_PROB_BASE
)
459 s
->probability
= REG_BR_PROB_BASE
;
460 s
->count
+= e
->count
;
465 redirect_edge_succ (e
, new_succ
);
470 /* Redirect an edge's predecessor from one block to another. */
473 redirect_edge_pred (e
, new_pred
)
475 basic_block new_pred
;
479 /* Disconnect the edge from the old predecessor block. */
480 for (pe
= &e
->src
->succ
; *pe
!= e
; pe
= &(*pe
)->succ_next
)
483 *pe
= (*pe
)->succ_next
;
485 /* Reconnect the edge to the new predecessor block. */
486 e
->succ_next
= new_pred
->succ
;
496 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
, NULL
, next_bb
)
501 dump_flow_info (file
)
506 static const char * const reg_class_names
[] = REG_CLASS_NAMES
;
508 fprintf (file
, "%d registers.\n", max_regno
);
509 for (i
= FIRST_PSEUDO_REGISTER
; i
< max_regno
; i
++)
512 enum reg_class
class, altclass
;
514 fprintf (file
, "\nRegister %d used %d times across %d insns",
515 i
, REG_N_REFS (i
), REG_LIVE_LENGTH (i
));
516 if (REG_BASIC_BLOCK (i
) >= 0)
517 fprintf (file
, " in block %d", REG_BASIC_BLOCK (i
));
519 fprintf (file
, "; set %d time%s", REG_N_SETS (i
),
520 (REG_N_SETS (i
) == 1) ? "" : "s");
521 if (regno_reg_rtx
[i
] != NULL
&& REG_USERVAR_P (regno_reg_rtx
[i
]))
522 fprintf (file
, "; user var");
523 if (REG_N_DEATHS (i
) != 1)
524 fprintf (file
, "; dies in %d places", REG_N_DEATHS (i
));
525 if (REG_N_CALLS_CROSSED (i
) == 1)
526 fprintf (file
, "; crosses 1 call");
527 else if (REG_N_CALLS_CROSSED (i
))
528 fprintf (file
, "; crosses %d calls", REG_N_CALLS_CROSSED (i
));
529 if (regno_reg_rtx
[i
] != NULL
530 && PSEUDO_REGNO_BYTES (i
) != UNITS_PER_WORD
)
531 fprintf (file
, "; %d bytes", PSEUDO_REGNO_BYTES (i
));
533 class = reg_preferred_class (i
);
534 altclass
= reg_alternate_class (i
);
535 if (class != GENERAL_REGS
|| altclass
!= ALL_REGS
)
537 if (altclass
== ALL_REGS
|| class == ALL_REGS
)
538 fprintf (file
, "; pref %s", reg_class_names
[(int) class]);
539 else if (altclass
== NO_REGS
)
540 fprintf (file
, "; %s or none", reg_class_names
[(int) class]);
542 fprintf (file
, "; pref %s, else %s",
543 reg_class_names
[(int) class],
544 reg_class_names
[(int) altclass
]);
547 if (regno_reg_rtx
[i
] != NULL
&& REG_POINTER (regno_reg_rtx
[i
]))
548 fprintf (file
, "; pointer");
549 fprintf (file
, ".\n");
552 fprintf (file
, "\n%d basic blocks, %d edges.\n", n_basic_blocks
, n_edges
);
559 fprintf (file
, "\nBasic block %d: first insn %d, last %d, ",
560 bb
->index
, INSN_UID (bb
->head
), INSN_UID (bb
->end
));
561 fprintf (file
, "prev %d, next %d, ",
562 bb
->prev_bb
->index
, bb
->next_bb
->index
);
563 fprintf (file
, "loop_depth %d, count ", bb
->loop_depth
);
564 fprintf (file
, HOST_WIDEST_INT_PRINT_DEC
, bb
->count
);
565 fprintf (file
, ", freq %i", bb
->frequency
);
566 if (maybe_hot_bb_p (bb
))
567 fprintf (file
, ", maybe hot");
568 if (probably_never_executed_bb_p (bb
))
569 fprintf (file
, ", probably never executed");
570 fprintf (file
, ".\n");
572 fprintf (file
, "Predecessors: ");
573 for (e
= bb
->pred
; e
; e
= e
->pred_next
)
574 dump_edge_info (file
, e
, 0);
576 fprintf (file
, "\nSuccessors: ");
577 for (e
= bb
->succ
; e
; e
= e
->succ_next
)
578 dump_edge_info (file
, e
, 1);
580 fprintf (file
, "\nRegisters live at start:");
581 dump_regset (bb
->global_live_at_start
, file
);
583 fprintf (file
, "\nRegisters live at end:");
584 dump_regset (bb
->global_live_at_end
, file
);
588 /* Check the consistency of profile information. We can't do that
589 in verify_flow_info, as the counts may get invalid for incompletely
590 solved graphs, later elliminating of conditionals or roundoff errors.
591 It is still practical to have them reported for debugging of simple
594 for (e
= bb
->succ
; e
; e
= e
->succ_next
)
595 sum
+= e
->probability
;
596 if (bb
->succ
&& abs (sum
- REG_BR_PROB_BASE
) > 100)
597 fprintf (file
, "Invalid sum of outgoing probabilities %.1f%%\n",
598 sum
* 100.0 / REG_BR_PROB_BASE
);
600 for (e
= bb
->pred
; e
; e
= e
->pred_next
)
601 sum
+= EDGE_FREQUENCY (e
);
602 if (abs (sum
- bb
->frequency
) > 100)
604 "Invalid sum of incomming frequencies %i, should be %i\n",
607 for (e
= bb
->pred
; e
; e
= e
->pred_next
)
609 if (lsum
- bb
->count
> 100 || lsum
- bb
->count
< -100)
610 fprintf (file
, "Invalid sum of incomming counts %i, should be %i\n",
611 (int)lsum
, (int)bb
->count
);
613 for (e
= bb
->succ
; e
; e
= e
->succ_next
)
615 if (bb
->succ
&& (lsum
- bb
->count
> 100 || lsum
- bb
->count
< -100))
616 fprintf (file
, "Invalid sum of incomming counts %i, should be %i\n",
617 (int)lsum
, (int)bb
->count
);
626 dump_flow_info (stderr
);
630 dump_edge_info (file
, e
, do_succ
)
635 basic_block side
= (do_succ
? e
->dest
: e
->src
);
637 if (side
== ENTRY_BLOCK_PTR
)
638 fputs (" ENTRY", file
);
639 else if (side
== EXIT_BLOCK_PTR
)
640 fputs (" EXIT", file
);
642 fprintf (file
, " %d", side
->index
);
645 fprintf (file
, " [%.1f%%] ", e
->probability
* 100.0 / REG_BR_PROB_BASE
);
649 fprintf (file
, " count:");
650 fprintf (file
, HOST_WIDEST_INT_PRINT_DEC
, e
->count
);
655 static const char * const bitnames
[]
656 = {"fallthru", "ab", "abcall", "eh", "fake", "dfs_back", "can_fallthru"};
658 int i
, flags
= e
->flags
;
661 for (i
= 0; flags
; i
++)
662 if (flags
& (1 << i
))
668 if (i
< (int) ARRAY_SIZE (bitnames
))
669 fputs (bitnames
[i
], file
);
671 fprintf (file
, "%d", i
);
679 /* Simple routines to easily allocate AUX fields of basic blocks. */
681 static struct obstack block_aux_obstack
;
682 static void *first_block_aux_obj
= 0;
683 static struct obstack edge_aux_obstack
;
684 static void *first_edge_aux_obj
= 0;
686 /* Allocate an memory block of SIZE as BB->aux. The obstack must
687 be first initialized by alloc_aux_for_blocks. */
690 alloc_aux_for_block (bb
, size
)
694 /* Verify that aux field is clear. */
695 if (bb
->aux
|| !first_block_aux_obj
)
697 bb
->aux
= obstack_alloc (&block_aux_obstack
, size
);
698 memset (bb
->aux
, 0, size
);
701 /* Initialize the block_aux_obstack and if SIZE is nonzero, call
702 alloc_aux_for_block for each basic block. */
705 alloc_aux_for_blocks (size
)
708 static int initialized
;
712 gcc_obstack_init (&block_aux_obstack
);
716 /* Check whether AUX data are still allocated. */
717 else if (first_block_aux_obj
)
719 first_block_aux_obj
= (char *) obstack_alloc (&block_aux_obstack
, 0);
724 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
, NULL
, next_bb
)
725 alloc_aux_for_block (bb
, size
);
729 /* Clear AUX pointers of all blocks. */
732 clear_aux_for_blocks ()
736 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
, NULL
, next_bb
)
740 /* Free data allocated in block_aux_obstack and clear AUX pointers
744 free_aux_for_blocks ()
746 if (!first_block_aux_obj
)
748 obstack_free (&block_aux_obstack
, first_block_aux_obj
);
749 first_block_aux_obj
= NULL
;
751 clear_aux_for_blocks ();
754 /* Allocate an memory edge of SIZE as BB->aux. The obstack must
755 be first initialized by alloc_aux_for_edges. */
758 alloc_aux_for_edge (e
, size
)
762 /* Verify that aux field is clear. */
763 if (e
->aux
|| !first_edge_aux_obj
)
765 e
->aux
= obstack_alloc (&edge_aux_obstack
, size
);
766 memset (e
->aux
, 0, size
);
769 /* Initialize the edge_aux_obstack and if SIZE is nonzero, call
770 alloc_aux_for_edge for each basic edge. */
773 alloc_aux_for_edges (size
)
776 static int initialized
;
780 gcc_obstack_init (&edge_aux_obstack
);
784 /* Check whether AUX data are still allocated. */
785 else if (first_edge_aux_obj
)
788 first_edge_aux_obj
= (char *) obstack_alloc (&edge_aux_obstack
, 0);
793 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
, EXIT_BLOCK_PTR
, next_bb
)
797 for (e
= bb
->succ
; e
; e
= e
->succ_next
)
798 alloc_aux_for_edge (e
, size
);
803 /* Clear AUX pointers of all edges. */
806 clear_aux_for_edges ()
811 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
, EXIT_BLOCK_PTR
, next_bb
)
813 for (e
= bb
->succ
; e
; e
= e
->succ_next
)
818 /* Free data allocated in edge_aux_obstack and clear AUX pointers
822 free_aux_for_edges ()
824 if (!first_edge_aux_obj
)
826 obstack_free (&edge_aux_obstack
, first_edge_aux_obj
);
827 first_edge_aux_obj
= NULL
;
829 clear_aux_for_edges ();