1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987-2018 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
31 #include "profile-count.h"
35 #include "diagnostic-core.h"
36 #include "stor-layout.h"
41 #include "common/common-target.h"
45 static rtx
break_out_memory_refs (rtx
);
46 static void anti_adjust_stack_and_probe_stack_clash (rtx
);
49 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
52 trunc_int_for_mode (HOST_WIDE_INT c
, machine_mode mode
)
54 /* Not scalar_int_mode because we also allow pointer bound modes. */
55 scalar_mode smode
= as_a
<scalar_mode
> (mode
);
56 int width
= GET_MODE_PRECISION (smode
);
58 /* You want to truncate to a _what_? */
59 gcc_assert (SCALAR_INT_MODE_P (mode
));
61 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
63 return c
& 1 ? STORE_FLAG_VALUE
: 0;
65 /* Sign-extend for the requested mode. */
67 if (width
< HOST_BITS_PER_WIDE_INT
)
69 HOST_WIDE_INT sign
= 1;
79 /* Likewise for polynomial values, using the sign-extended representation
80 for each individual coefficient. */
83 trunc_int_for_mode (poly_int64 x
, machine_mode mode
)
85 for (unsigned int i
= 0; i
< NUM_POLY_INT_COEFFS
; ++i
)
86 x
.coeffs
[i
] = trunc_int_for_mode (x
.coeffs
[i
], mode
);
90 /* Return an rtx for the sum of X and the integer C, given that X has
91 mode MODE. INPLACE is true if X can be modified inplace or false
92 if it must be treated as immutable. */
95 plus_constant (machine_mode mode
, rtx x
, poly_int64 c
, bool inplace
)
100 int all_constant
= 0;
102 gcc_assert (GET_MODE (x
) == VOIDmode
|| GET_MODE (x
) == mode
);
114 CASE_CONST_SCALAR_INT
:
115 return immed_wide_int_const (wi::add (rtx_mode_t (x
, mode
), c
), mode
);
117 /* If this is a reference to the constant pool, try replacing it with
118 a reference to a new constant. If the resulting address isn't
119 valid, don't return it because we have no way to validize it. */
120 if (GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
121 && CONSTANT_POOL_ADDRESS_P (XEXP (x
, 0)))
123 rtx cst
= get_pool_constant (XEXP (x
, 0));
125 if (GET_CODE (cst
) == CONST_VECTOR
126 && GET_MODE_INNER (GET_MODE (cst
)) == mode
)
128 cst
= gen_lowpart (mode
, cst
);
131 if (GET_MODE (cst
) == VOIDmode
|| GET_MODE (cst
) == mode
)
133 tem
= plus_constant (mode
, cst
, c
);
134 tem
= force_const_mem (GET_MODE (x
), tem
);
135 /* Targets may disallow some constants in the constant pool, thus
136 force_const_mem may return NULL_RTX. */
137 if (tem
&& memory_address_p (GET_MODE (tem
), XEXP (tem
, 0)))
144 /* If adding to something entirely constant, set a flag
145 so that we can add a CONST around the result. */
146 if (inplace
&& shared_const_p (x
))
158 /* The interesting case is adding the integer to a sum. Look
159 for constant term in the sum and combine with C. For an
160 integer constant term or a constant term that is not an
161 explicit integer, we combine or group them together anyway.
163 We may not immediately return from the recursive call here, lest
164 all_constant gets lost. */
166 if (CONSTANT_P (XEXP (x
, 1)))
168 rtx term
= plus_constant (mode
, XEXP (x
, 1), c
, inplace
);
169 if (term
== const0_rtx
)
174 x
= gen_rtx_PLUS (mode
, XEXP (x
, 0), term
);
177 else if (rtx
*const_loc
= find_constant_term_loc (&y
))
181 /* We need to be careful since X may be shared and we can't
182 modify it in place. */
184 const_loc
= find_constant_term_loc (&x
);
186 *const_loc
= plus_constant (mode
, *const_loc
, c
, true);
192 if (CONST_POLY_INT_P (x
))
193 return immed_wide_int_const (const_poly_int_value (x
) + c
, mode
);
198 x
= gen_rtx_PLUS (mode
, x
, gen_int_mode (c
, mode
));
200 if (GET_CODE (x
) == SYMBOL_REF
|| GET_CODE (x
) == LABEL_REF
)
202 else if (all_constant
)
203 return gen_rtx_CONST (mode
, x
);
208 /* If X is a sum, return a new sum like X but lacking any constant terms.
209 Add all the removed constant terms into *CONSTPTR.
210 X itself is not altered. The result != X if and only if
211 it is not isomorphic to X. */
214 eliminate_constant_term (rtx x
, rtx
*constptr
)
219 if (GET_CODE (x
) != PLUS
)
222 /* First handle constants appearing at this level explicitly. */
223 if (CONST_INT_P (XEXP (x
, 1))
224 && (tem
= simplify_binary_operation (PLUS
, GET_MODE (x
), *constptr
,
226 && CONST_INT_P (tem
))
229 return eliminate_constant_term (XEXP (x
, 0), constptr
);
233 x0
= eliminate_constant_term (XEXP (x
, 0), &tem
);
234 x1
= eliminate_constant_term (XEXP (x
, 1), &tem
);
235 if ((x1
!= XEXP (x
, 1) || x0
!= XEXP (x
, 0))
236 && (tem
= simplify_binary_operation (PLUS
, GET_MODE (x
),
237 *constptr
, tem
)) != 0
238 && CONST_INT_P (tem
))
241 return gen_rtx_PLUS (GET_MODE (x
), x0
, x1
);
248 /* Return a copy of X in which all memory references
249 and all constants that involve symbol refs
250 have been replaced with new temporary registers.
251 Also emit code to load the memory locations and constants
252 into those registers.
254 If X contains no such constants or memory references,
255 X itself (not a copy) is returned.
257 If a constant is found in the address that is not a legitimate constant
258 in an insn, it is left alone in the hope that it might be valid in the
261 X may contain no arithmetic except addition, subtraction and multiplication.
262 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
265 break_out_memory_refs (rtx x
)
268 || (CONSTANT_P (x
) && CONSTANT_ADDRESS_P (x
)
269 && GET_MODE (x
) != VOIDmode
))
270 x
= force_reg (GET_MODE (x
), x
);
271 else if (GET_CODE (x
) == PLUS
|| GET_CODE (x
) == MINUS
272 || GET_CODE (x
) == MULT
)
274 rtx op0
= break_out_memory_refs (XEXP (x
, 0));
275 rtx op1
= break_out_memory_refs (XEXP (x
, 1));
277 if (op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1))
278 x
= simplify_gen_binary (GET_CODE (x
), GET_MODE (x
), op0
, op1
);
284 /* Given X, a memory address in address space AS' pointer mode, convert it to
285 an address in the address space's address mode, or vice versa (TO_MODE says
286 which way). We take advantage of the fact that pointers are not allowed to
287 overflow by commuting arithmetic operations over conversions so that address
288 arithmetic insns can be used. IN_CONST is true if this conversion is inside
289 a CONST. NO_EMIT is true if no insns should be emitted, and instead
290 it should return NULL if it can't be simplified without emitting insns. */
293 convert_memory_address_addr_space_1 (scalar_int_mode to_mode ATTRIBUTE_UNUSED
,
294 rtx x
, addr_space_t as ATTRIBUTE_UNUSED
,
295 bool in_const ATTRIBUTE_UNUSED
,
296 bool no_emit ATTRIBUTE_UNUSED
)
298 #ifndef POINTERS_EXTEND_UNSIGNED
299 gcc_assert (GET_MODE (x
) == to_mode
|| GET_MODE (x
) == VOIDmode
);
301 #else /* defined(POINTERS_EXTEND_UNSIGNED) */
302 scalar_int_mode pointer_mode
, address_mode
, from_mode
;
306 /* If X already has the right mode, just return it. */
307 if (GET_MODE (x
) == to_mode
)
310 pointer_mode
= targetm
.addr_space
.pointer_mode (as
);
311 address_mode
= targetm
.addr_space
.address_mode (as
);
312 from_mode
= to_mode
== pointer_mode
? address_mode
: pointer_mode
;
314 /* Here we handle some special cases. If none of them apply, fall through
315 to the default case. */
316 switch (GET_CODE (x
))
318 CASE_CONST_SCALAR_INT
:
319 if (GET_MODE_SIZE (to_mode
) < GET_MODE_SIZE (from_mode
))
321 else if (POINTERS_EXTEND_UNSIGNED
< 0)
323 else if (POINTERS_EXTEND_UNSIGNED
> 0)
327 temp
= simplify_unary_operation (code
, to_mode
, x
, from_mode
);
333 if ((SUBREG_PROMOTED_VAR_P (x
) || REG_POINTER (SUBREG_REG (x
)))
334 && GET_MODE (SUBREG_REG (x
)) == to_mode
)
335 return SUBREG_REG (x
);
339 temp
= gen_rtx_LABEL_REF (to_mode
, label_ref_label (x
));
340 LABEL_REF_NONLOCAL_P (temp
) = LABEL_REF_NONLOCAL_P (x
);
344 temp
= shallow_copy_rtx (x
);
345 PUT_MODE (temp
, to_mode
);
349 temp
= convert_memory_address_addr_space_1 (to_mode
, XEXP (x
, 0), as
,
351 return temp
? gen_rtx_CONST (to_mode
, temp
) : temp
;
355 /* For addition we can safely permute the conversion and addition
356 operation if one operand is a constant and converting the constant
357 does not change it or if one operand is a constant and we are
358 using a ptr_extend instruction (POINTERS_EXTEND_UNSIGNED < 0).
359 We can always safely permute them if we are making the address
360 narrower. Inside a CONST RTL, this is safe for both pointers
361 zero or sign extended as pointers cannot wrap. */
362 if (GET_MODE_SIZE (to_mode
) < GET_MODE_SIZE (from_mode
)
363 || (GET_CODE (x
) == PLUS
364 && CONST_INT_P (XEXP (x
, 1))
365 && ((in_const
&& POINTERS_EXTEND_UNSIGNED
!= 0)
366 || XEXP (x
, 1) == convert_memory_address_addr_space_1
367 (to_mode
, XEXP (x
, 1), as
, in_const
,
369 || POINTERS_EXTEND_UNSIGNED
< 0)))
371 temp
= convert_memory_address_addr_space_1 (to_mode
, XEXP (x
, 0),
372 as
, in_const
, no_emit
);
373 return (temp
? gen_rtx_fmt_ee (GET_CODE (x
), to_mode
,
386 return convert_modes (to_mode
, from_mode
,
387 x
, POINTERS_EXTEND_UNSIGNED
);
388 #endif /* defined(POINTERS_EXTEND_UNSIGNED) */
391 /* Given X, a memory address in address space AS' pointer mode, convert it to
392 an address in the address space's address mode, or vice versa (TO_MODE says
393 which way). We take advantage of the fact that pointers are not allowed to
394 overflow by commuting arithmetic operations over conversions so that address
395 arithmetic insns can be used. */
398 convert_memory_address_addr_space (scalar_int_mode to_mode
, rtx x
,
401 return convert_memory_address_addr_space_1 (to_mode
, x
, as
, false, false);
405 /* Return something equivalent to X but valid as a memory address for something
406 of mode MODE in the named address space AS. When X is not itself valid,
407 this works by copying X or subexpressions of it into registers. */
410 memory_address_addr_space (machine_mode mode
, rtx x
, addr_space_t as
)
413 scalar_int_mode address_mode
= targetm
.addr_space
.address_mode (as
);
415 x
= convert_memory_address_addr_space (address_mode
, x
, as
);
417 /* By passing constant addresses through registers
418 we get a chance to cse them. */
419 if (! cse_not_expected
&& CONSTANT_P (x
) && CONSTANT_ADDRESS_P (x
))
420 x
= force_reg (address_mode
, x
);
422 /* We get better cse by rejecting indirect addressing at this stage.
423 Let the combiner create indirect addresses where appropriate.
424 For now, generate the code so that the subexpressions useful to share
425 are visible. But not if cse won't be done! */
428 if (! cse_not_expected
&& !REG_P (x
))
429 x
= break_out_memory_refs (x
);
431 /* At this point, any valid address is accepted. */
432 if (memory_address_addr_space_p (mode
, x
, as
))
435 /* If it was valid before but breaking out memory refs invalidated it,
436 use it the old way. */
437 if (memory_address_addr_space_p (mode
, oldx
, as
))
443 /* Perform machine-dependent transformations on X
444 in certain cases. This is not necessary since the code
445 below can handle all possible cases, but machine-dependent
446 transformations can make better code. */
449 x
= targetm
.addr_space
.legitimize_address (x
, oldx
, mode
, as
);
450 if (orig_x
!= x
&& memory_address_addr_space_p (mode
, x
, as
))
454 /* PLUS and MULT can appear in special ways
455 as the result of attempts to make an address usable for indexing.
456 Usually they are dealt with by calling force_operand, below.
457 But a sum containing constant terms is special
458 if removing them makes the sum a valid address:
459 then we generate that address in a register
460 and index off of it. We do this because it often makes
461 shorter code, and because the addresses thus generated
462 in registers often become common subexpressions. */
463 if (GET_CODE (x
) == PLUS
)
465 rtx constant_term
= const0_rtx
;
466 rtx y
= eliminate_constant_term (x
, &constant_term
);
467 if (constant_term
== const0_rtx
468 || ! memory_address_addr_space_p (mode
, y
, as
))
469 x
= force_operand (x
, NULL_RTX
);
472 y
= gen_rtx_PLUS (GET_MODE (x
), copy_to_reg (y
), constant_term
);
473 if (! memory_address_addr_space_p (mode
, y
, as
))
474 x
= force_operand (x
, NULL_RTX
);
480 else if (GET_CODE (x
) == MULT
|| GET_CODE (x
) == MINUS
)
481 x
= force_operand (x
, NULL_RTX
);
483 /* If we have a register that's an invalid address,
484 it must be a hard reg of the wrong class. Copy it to a pseudo. */
488 /* Last resort: copy the value to a register, since
489 the register is a valid address. */
491 x
= force_reg (address_mode
, x
);
496 gcc_assert (memory_address_addr_space_p (mode
, x
, as
));
497 /* If we didn't change the address, we are done. Otherwise, mark
498 a reg as a pointer if we have REG or REG + CONST_INT. */
502 mark_reg_pointer (x
, BITS_PER_UNIT
);
503 else if (GET_CODE (x
) == PLUS
504 && REG_P (XEXP (x
, 0))
505 && CONST_INT_P (XEXP (x
, 1)))
506 mark_reg_pointer (XEXP (x
, 0), BITS_PER_UNIT
);
508 /* OLDX may have been the address on a temporary. Update the address
509 to indicate that X is now used. */
510 update_temp_slot_address (oldx
, x
);
515 /* Convert a mem ref into one with a valid memory address.
516 Pass through anything else unchanged. */
519 validize_mem (rtx ref
)
523 ref
= use_anchored_address (ref
);
524 if (memory_address_addr_space_p (GET_MODE (ref
), XEXP (ref
, 0),
525 MEM_ADDR_SPACE (ref
)))
528 /* Don't alter REF itself, since that is probably a stack slot. */
529 return replace_equiv_address (ref
, XEXP (ref
, 0));
532 /* If X is a memory reference to a member of an object block, try rewriting
533 it to use an anchor instead. Return the new memory reference on success
534 and the old one on failure. */
537 use_anchored_address (rtx x
)
540 HOST_WIDE_INT offset
;
543 if (!flag_section_anchors
)
549 /* Split the address into a base and offset. */
552 if (GET_CODE (base
) == CONST
553 && GET_CODE (XEXP (base
, 0)) == PLUS
554 && CONST_INT_P (XEXP (XEXP (base
, 0), 1)))
556 offset
+= INTVAL (XEXP (XEXP (base
, 0), 1));
557 base
= XEXP (XEXP (base
, 0), 0);
560 /* Check whether BASE is suitable for anchors. */
561 if (GET_CODE (base
) != SYMBOL_REF
562 || !SYMBOL_REF_HAS_BLOCK_INFO_P (base
)
563 || SYMBOL_REF_ANCHOR_P (base
)
564 || SYMBOL_REF_BLOCK (base
) == NULL
565 || !targetm
.use_anchors_for_symbol_p (base
))
568 /* Decide where BASE is going to be. */
569 place_block_symbol (base
);
571 /* Get the anchor we need to use. */
572 offset
+= SYMBOL_REF_BLOCK_OFFSET (base
);
573 base
= get_section_anchor (SYMBOL_REF_BLOCK (base
), offset
,
574 SYMBOL_REF_TLS_MODEL (base
));
576 /* Work out the offset from the anchor. */
577 offset
-= SYMBOL_REF_BLOCK_OFFSET (base
);
579 /* If we're going to run a CSE pass, force the anchor into a register.
580 We will then be able to reuse registers for several accesses, if the
581 target costs say that that's worthwhile. */
582 mode
= GET_MODE (base
);
583 if (!cse_not_expected
)
584 base
= force_reg (mode
, base
);
586 return replace_equiv_address (x
, plus_constant (mode
, base
, offset
));
589 /* Copy the value or contents of X to a new temp reg and return that reg. */
594 rtx temp
= gen_reg_rtx (GET_MODE (x
));
596 /* If not an operand, must be an address with PLUS and MULT so
597 do the computation. */
598 if (! general_operand (x
, VOIDmode
))
599 x
= force_operand (x
, temp
);
602 emit_move_insn (temp
, x
);
607 /* Like copy_to_reg but always give the new register mode Pmode
608 in case X is a constant. */
611 copy_addr_to_reg (rtx x
)
613 return copy_to_mode_reg (Pmode
, x
);
616 /* Like copy_to_reg but always give the new register mode MODE
617 in case X is a constant. */
620 copy_to_mode_reg (machine_mode mode
, rtx x
)
622 rtx temp
= gen_reg_rtx (mode
);
624 /* If not an operand, must be an address with PLUS and MULT so
625 do the computation. */
626 if (! general_operand (x
, VOIDmode
))
627 x
= force_operand (x
, temp
);
629 gcc_assert (GET_MODE (x
) == mode
|| GET_MODE (x
) == VOIDmode
);
631 emit_move_insn (temp
, x
);
635 /* Load X into a register if it is not already one.
636 Use mode MODE for the register.
637 X should be valid for mode MODE, but it may be a constant which
638 is valid for all integer modes; that's why caller must specify MODE.
640 The caller must not alter the value in the register we return,
641 since we mark it as a "constant" register. */
644 force_reg (machine_mode mode
, rtx x
)
652 if (general_operand (x
, mode
))
654 temp
= gen_reg_rtx (mode
);
655 insn
= emit_move_insn (temp
, x
);
659 temp
= force_operand (x
, NULL_RTX
);
661 insn
= get_last_insn ();
664 rtx temp2
= gen_reg_rtx (mode
);
665 insn
= emit_move_insn (temp2
, temp
);
670 /* Let optimizers know that TEMP's value never changes
671 and that X can be substituted for it. Don't get confused
672 if INSN set something else (such as a SUBREG of TEMP). */
674 && (set
= single_set (insn
)) != 0
675 && SET_DEST (set
) == temp
676 && ! rtx_equal_p (x
, SET_SRC (set
)))
677 set_unique_reg_note (insn
, REG_EQUAL
, x
);
679 /* Let optimizers know that TEMP is a pointer, and if so, the
680 known alignment of that pointer. */
683 if (GET_CODE (x
) == SYMBOL_REF
)
685 align
= BITS_PER_UNIT
;
686 if (SYMBOL_REF_DECL (x
) && DECL_P (SYMBOL_REF_DECL (x
)))
687 align
= DECL_ALIGN (SYMBOL_REF_DECL (x
));
689 else if (GET_CODE (x
) == LABEL_REF
)
690 align
= BITS_PER_UNIT
;
691 else if (GET_CODE (x
) == CONST
692 && GET_CODE (XEXP (x
, 0)) == PLUS
693 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == SYMBOL_REF
694 && CONST_INT_P (XEXP (XEXP (x
, 0), 1)))
696 rtx s
= XEXP (XEXP (x
, 0), 0);
697 rtx c
= XEXP (XEXP (x
, 0), 1);
701 if (SYMBOL_REF_DECL (s
) && DECL_P (SYMBOL_REF_DECL (s
)))
702 sa
= DECL_ALIGN (SYMBOL_REF_DECL (s
));
708 ca
= ctz_hwi (INTVAL (c
)) * BITS_PER_UNIT
;
709 align
= MIN (sa
, ca
);
713 if (align
|| (MEM_P (x
) && MEM_POINTER (x
)))
714 mark_reg_pointer (temp
, align
);
720 /* If X is a memory ref, copy its contents to a new temp reg and return
721 that reg. Otherwise, return X. */
724 force_not_mem (rtx x
)
728 if (!MEM_P (x
) || GET_MODE (x
) == BLKmode
)
731 temp
= gen_reg_rtx (GET_MODE (x
));
734 REG_POINTER (temp
) = 1;
736 emit_move_insn (temp
, x
);
740 /* Copy X to TARGET (if it's nonzero and a reg)
741 or to a new temp reg and return that reg.
742 MODE is the mode to use for X in case it is a constant. */
745 copy_to_suggested_reg (rtx x
, rtx target
, machine_mode mode
)
749 if (target
&& REG_P (target
))
752 temp
= gen_reg_rtx (mode
);
754 emit_move_insn (temp
, x
);
758 /* Return the mode to use to pass or return a scalar of TYPE and MODE.
759 PUNSIGNEDP points to the signedness of the type and may be adjusted
760 to show what signedness to use on extension operations.
762 FOR_RETURN is nonzero if the caller is promoting the return value
763 of FNDECL, else it is for promoting args. */
766 promote_function_mode (const_tree type
, machine_mode mode
, int *punsignedp
,
767 const_tree funtype
, int for_return
)
769 /* Called without a type node for a libcall. */
770 if (type
== NULL_TREE
)
772 if (INTEGRAL_MODE_P (mode
))
773 return targetm
.calls
.promote_function_mode (NULL_TREE
, mode
,
780 switch (TREE_CODE (type
))
782 case INTEGER_TYPE
: case ENUMERAL_TYPE
: case BOOLEAN_TYPE
:
783 case REAL_TYPE
: case OFFSET_TYPE
: case FIXED_POINT_TYPE
:
784 case POINTER_TYPE
: case REFERENCE_TYPE
:
785 return targetm
.calls
.promote_function_mode (type
, mode
, punsignedp
, funtype
,
792 /* Return the mode to use to store a scalar of TYPE and MODE.
793 PUNSIGNEDP points to the signedness of the type and may be adjusted
794 to show what signedness to use on extension operations. */
797 promote_mode (const_tree type ATTRIBUTE_UNUSED
, machine_mode mode
,
798 int *punsignedp ATTRIBUTE_UNUSED
)
806 /* For libcalls this is invoked without TYPE from the backends
807 TARGET_PROMOTE_FUNCTION_MODE hooks. Don't do anything in that
809 if (type
== NULL_TREE
)
812 /* FIXME: this is the same logic that was there until GCC 4.4, but we
813 probably want to test POINTERS_EXTEND_UNSIGNED even if PROMOTE_MODE
814 is not defined. The affected targets are M32C, S390, SPARC. */
816 code
= TREE_CODE (type
);
817 unsignedp
= *punsignedp
;
821 case INTEGER_TYPE
: case ENUMERAL_TYPE
: case BOOLEAN_TYPE
:
822 case REAL_TYPE
: case OFFSET_TYPE
: case FIXED_POINT_TYPE
:
823 /* Values of these types always have scalar mode. */
824 smode
= as_a
<scalar_mode
> (mode
);
825 PROMOTE_MODE (smode
, unsignedp
, type
);
826 *punsignedp
= unsignedp
;
829 #ifdef POINTERS_EXTEND_UNSIGNED
832 *punsignedp
= POINTERS_EXTEND_UNSIGNED
;
833 return targetm
.addr_space
.address_mode
834 (TYPE_ADDR_SPACE (TREE_TYPE (type
)));
846 /* Use one of promote_mode or promote_function_mode to find the promoted
847 mode of DECL. If PUNSIGNEDP is not NULL, store there the unsignedness
848 of DECL after promotion. */
851 promote_decl_mode (const_tree decl
, int *punsignedp
)
853 tree type
= TREE_TYPE (decl
);
854 int unsignedp
= TYPE_UNSIGNED (type
);
855 machine_mode mode
= DECL_MODE (decl
);
858 if (TREE_CODE (decl
) == RESULT_DECL
&& !DECL_BY_REFERENCE (decl
))
859 pmode
= promote_function_mode (type
, mode
, &unsignedp
,
860 TREE_TYPE (current_function_decl
), 1);
861 else if (TREE_CODE (decl
) == RESULT_DECL
|| TREE_CODE (decl
) == PARM_DECL
)
862 pmode
= promote_function_mode (type
, mode
, &unsignedp
,
863 TREE_TYPE (current_function_decl
), 2);
865 pmode
= promote_mode (type
, mode
, &unsignedp
);
868 *punsignedp
= unsignedp
;
872 /* Return the promoted mode for name. If it is a named SSA_NAME, it
873 is the same as promote_decl_mode. Otherwise, it is the promoted
874 mode of a temp decl of same type as the SSA_NAME, if we had created
878 promote_ssa_mode (const_tree name
, int *punsignedp
)
880 gcc_assert (TREE_CODE (name
) == SSA_NAME
);
882 /* Partitions holding parms and results must be promoted as expected
884 if (SSA_NAME_VAR (name
)
885 && (TREE_CODE (SSA_NAME_VAR (name
)) == PARM_DECL
886 || TREE_CODE (SSA_NAME_VAR (name
)) == RESULT_DECL
))
888 machine_mode mode
= promote_decl_mode (SSA_NAME_VAR (name
), punsignedp
);
893 tree type
= TREE_TYPE (name
);
894 int unsignedp
= TYPE_UNSIGNED (type
);
895 machine_mode mode
= TYPE_MODE (type
);
897 /* Bypass TYPE_MODE when it maps vector modes to BLKmode. */
900 gcc_assert (VECTOR_TYPE_P (type
));
901 mode
= type
->type_common
.mode
;
904 machine_mode pmode
= promote_mode (type
, mode
, &unsignedp
);
906 *punsignedp
= unsignedp
;
913 /* Controls the behavior of {anti_,}adjust_stack. */
914 static bool suppress_reg_args_size
;
916 /* A helper for adjust_stack and anti_adjust_stack. */
919 adjust_stack_1 (rtx adjust
, bool anti_p
)
924 /* Hereafter anti_p means subtract_p. */
925 if (!STACK_GROWS_DOWNWARD
)
928 temp
= expand_binop (Pmode
,
929 anti_p
? sub_optab
: add_optab
,
930 stack_pointer_rtx
, adjust
, stack_pointer_rtx
, 0,
933 if (temp
!= stack_pointer_rtx
)
934 insn
= emit_move_insn (stack_pointer_rtx
, temp
);
937 insn
= get_last_insn ();
938 temp
= single_set (insn
);
939 gcc_assert (temp
!= NULL
&& SET_DEST (temp
) == stack_pointer_rtx
);
942 if (!suppress_reg_args_size
)
943 add_args_size_note (insn
, stack_pointer_delta
);
946 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
947 This pops when ADJUST is positive. ADJUST need not be constant. */
950 adjust_stack (rtx adjust
)
952 if (adjust
== const0_rtx
)
955 /* We expect all variable sized adjustments to be multiple of
956 PREFERRED_STACK_BOUNDARY. */
957 poly_int64 const_adjust
;
958 if (poly_int_rtx_p (adjust
, &const_adjust
))
959 stack_pointer_delta
-= const_adjust
;
961 adjust_stack_1 (adjust
, false);
964 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
965 This pushes when ADJUST is positive. ADJUST need not be constant. */
968 anti_adjust_stack (rtx adjust
)
970 if (adjust
== const0_rtx
)
973 /* We expect all variable sized adjustments to be multiple of
974 PREFERRED_STACK_BOUNDARY. */
975 poly_int64 const_adjust
;
976 if (poly_int_rtx_p (adjust
, &const_adjust
))
977 stack_pointer_delta
+= const_adjust
;
979 adjust_stack_1 (adjust
, true);
982 /* Round the size of a block to be pushed up to the boundary required
983 by this machine. SIZE is the desired size, which need not be constant. */
986 round_push (rtx size
)
988 rtx align_rtx
, alignm1_rtx
;
990 if (!SUPPORTS_STACK_ALIGNMENT
991 || crtl
->preferred_stack_boundary
== MAX_SUPPORTED_STACK_ALIGNMENT
)
993 int align
= crtl
->preferred_stack_boundary
/ BITS_PER_UNIT
;
998 if (CONST_INT_P (size
))
1000 HOST_WIDE_INT new_size
= (INTVAL (size
) + align
- 1) / align
* align
;
1002 if (INTVAL (size
) != new_size
)
1003 size
= GEN_INT (new_size
);
1007 align_rtx
= GEN_INT (align
);
1008 alignm1_rtx
= GEN_INT (align
- 1);
1012 /* If crtl->preferred_stack_boundary might still grow, use
1013 virtual_preferred_stack_boundary_rtx instead. This will be
1014 substituted by the right value in vregs pass and optimized
1016 align_rtx
= virtual_preferred_stack_boundary_rtx
;
1017 alignm1_rtx
= force_operand (plus_constant (Pmode
, align_rtx
, -1),
1021 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1022 but we know it can't. So add ourselves and then do
1024 size
= expand_binop (Pmode
, add_optab
, size
, alignm1_rtx
,
1025 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1026 size
= expand_divmod (0, TRUNC_DIV_EXPR
, Pmode
, size
, align_rtx
,
1028 size
= expand_mult (Pmode
, size
, align_rtx
, NULL_RTX
, 1);
1033 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
1034 to a previously-created save area. If no save area has been allocated,
1035 this function will allocate one. If a save area is specified, it
1036 must be of the proper mode. */
1039 emit_stack_save (enum save_level save_level
, rtx
*psave
)
1042 /* The default is that we use a move insn and save in a Pmode object. */
1043 rtx_insn
*(*fcn
) (rtx
, rtx
) = gen_move_insn
;
1044 machine_mode mode
= STACK_SAVEAREA_MODE (save_level
);
1046 /* See if this machine has anything special to do for this kind of save. */
1050 if (targetm
.have_save_stack_block ())
1051 fcn
= targetm
.gen_save_stack_block
;
1054 if (targetm
.have_save_stack_function ())
1055 fcn
= targetm
.gen_save_stack_function
;
1058 if (targetm
.have_save_stack_nonlocal ())
1059 fcn
= targetm
.gen_save_stack_nonlocal
;
1065 /* If there is no save area and we have to allocate one, do so. Otherwise
1066 verify the save area is the proper mode. */
1070 if (mode
!= VOIDmode
)
1072 if (save_level
== SAVE_NONLOCAL
)
1073 *psave
= sa
= assign_stack_local (mode
, GET_MODE_SIZE (mode
), 0);
1075 *psave
= sa
= gen_reg_rtx (mode
);
1079 do_pending_stack_adjust ();
1081 sa
= validize_mem (sa
);
1082 emit_insn (fcn (sa
, stack_pointer_rtx
));
1085 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
1086 area made by emit_stack_save. If it is zero, we have nothing to do. */
1089 emit_stack_restore (enum save_level save_level
, rtx sa
)
1091 /* The default is that we use a move insn. */
1092 rtx_insn
*(*fcn
) (rtx
, rtx
) = gen_move_insn
;
1094 /* If stack_realign_drap, the x86 backend emits a prologue that aligns both
1095 STACK_POINTER and HARD_FRAME_POINTER.
1096 If stack_realign_fp, the x86 backend emits a prologue that aligns only
1097 STACK_POINTER. This renders the HARD_FRAME_POINTER unusable for accessing
1098 aligned variables, which is reflected in ix86_can_eliminate.
1099 We normally still have the realigned STACK_POINTER that we can use.
1100 But if there is a stack restore still present at reload, it can trigger
1101 mark_not_eliminable for the STACK_POINTER, leaving no way to eliminate
1102 FRAME_POINTER into a hard reg.
1103 To prevent this situation, we force need_drap if we emit a stack
1105 if (SUPPORTS_STACK_ALIGNMENT
)
1106 crtl
->need_drap
= true;
1108 /* See if this machine has anything special to do for this kind of save. */
1112 if (targetm
.have_restore_stack_block ())
1113 fcn
= targetm
.gen_restore_stack_block
;
1116 if (targetm
.have_restore_stack_function ())
1117 fcn
= targetm
.gen_restore_stack_function
;
1120 if (targetm
.have_restore_stack_nonlocal ())
1121 fcn
= targetm
.gen_restore_stack_nonlocal
;
1129 sa
= validize_mem (sa
);
1130 /* These clobbers prevent the scheduler from moving
1131 references to variable arrays below the code
1132 that deletes (pops) the arrays. */
1133 emit_clobber (gen_rtx_MEM (BLKmode
, gen_rtx_SCRATCH (VOIDmode
)));
1134 emit_clobber (gen_rtx_MEM (BLKmode
, stack_pointer_rtx
));
1137 discard_pending_stack_adjust ();
1139 emit_insn (fcn (stack_pointer_rtx
, sa
));
1142 /* Invoke emit_stack_save on the nonlocal_goto_save_area for the current
1143 function. This should be called whenever we allocate or deallocate
1144 dynamic stack space. */
1147 update_nonlocal_goto_save_area (void)
1152 /* The nonlocal_goto_save_area object is an array of N pointers. The
1153 first one is used for the frame pointer save; the rest are sized by
1154 STACK_SAVEAREA_MODE. Create a reference to array index 1, the first
1155 of the stack save area slots. */
1156 t_save
= build4 (ARRAY_REF
,
1157 TREE_TYPE (TREE_TYPE (cfun
->nonlocal_goto_save_area
)),
1158 cfun
->nonlocal_goto_save_area
,
1159 integer_one_node
, NULL_TREE
, NULL_TREE
);
1160 r_save
= expand_expr (t_save
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
1162 emit_stack_save (SAVE_NONLOCAL
, &r_save
);
1165 /* Record a new stack level for the current function. This should be called
1166 whenever we allocate or deallocate dynamic stack space. */
1169 record_new_stack_level (void)
1171 /* Record the new stack level for nonlocal gotos. */
1172 if (cfun
->nonlocal_goto_save_area
)
1173 update_nonlocal_goto_save_area ();
1175 /* Record the new stack level for SJLJ exceptions. */
1176 if (targetm_common
.except_unwind_info (&global_options
) == UI_SJLJ
)
1177 update_sjlj_context ();
1180 /* Return an rtx doing runtime alignment to REQUIRED_ALIGN on TARGET. */
1183 align_dynamic_address (rtx target
, unsigned required_align
)
1185 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1186 but we know it can't. So add ourselves and then do
1188 target
= expand_binop (Pmode
, add_optab
, target
,
1189 gen_int_mode (required_align
/ BITS_PER_UNIT
- 1,
1191 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1192 target
= expand_divmod (0, TRUNC_DIV_EXPR
, Pmode
, target
,
1193 gen_int_mode (required_align
/ BITS_PER_UNIT
,
1196 target
= expand_mult (Pmode
, target
,
1197 gen_int_mode (required_align
/ BITS_PER_UNIT
,
1204 /* Return an rtx through *PSIZE, representing the size of an area of memory to
1205 be dynamically pushed on the stack.
1207 *PSIZE is an rtx representing the size of the area.
1209 SIZE_ALIGN is the alignment (in bits) that we know SIZE has. This
1210 parameter may be zero. If so, a proper value will be extracted
1211 from SIZE if it is constant, otherwise BITS_PER_UNIT will be assumed.
1213 REQUIRED_ALIGN is the alignment (in bits) required for the region
1216 If PSTACK_USAGE_SIZE is not NULL it points to a value that is increased for
1217 the additional size returned. */
1219 get_dynamic_stack_size (rtx
*psize
, unsigned size_align
,
1220 unsigned required_align
,
1221 HOST_WIDE_INT
*pstack_usage_size
)
1225 /* Ensure the size is in the proper mode. */
1226 if (GET_MODE (size
) != VOIDmode
&& GET_MODE (size
) != Pmode
)
1227 size
= convert_to_mode (Pmode
, size
, 1);
1229 if (CONST_INT_P (size
))
1231 unsigned HOST_WIDE_INT lsb
;
1233 lsb
= INTVAL (size
);
1236 /* Watch out for overflow truncating to "unsigned". */
1237 if (lsb
> UINT_MAX
/ BITS_PER_UNIT
)
1238 size_align
= 1u << (HOST_BITS_PER_INT
- 1);
1240 size_align
= (unsigned)lsb
* BITS_PER_UNIT
;
1242 else if (size_align
< BITS_PER_UNIT
)
1243 size_align
= BITS_PER_UNIT
;
1245 /* We can't attempt to minimize alignment necessary, because we don't
1246 know the final value of preferred_stack_boundary yet while executing
1248 if (crtl
->preferred_stack_boundary
< PREFERRED_STACK_BOUNDARY
)
1249 crtl
->preferred_stack_boundary
= PREFERRED_STACK_BOUNDARY
;
1251 /* We will need to ensure that the address we return is aligned to
1252 REQUIRED_ALIGN. At this point in the compilation, we don't always
1253 know the final value of the STACK_DYNAMIC_OFFSET used in function.c
1254 (it might depend on the size of the outgoing parameter lists, for
1255 example), so we must preventively align the value. We leave space
1256 in SIZE for the hole that might result from the alignment operation. */
1258 unsigned known_align
= REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM
);
1259 if (known_align
== 0)
1260 known_align
= BITS_PER_UNIT
;
1261 if (required_align
> known_align
)
1263 unsigned extra
= (required_align
- known_align
) / BITS_PER_UNIT
;
1264 size
= plus_constant (Pmode
, size
, extra
);
1265 size
= force_operand (size
, NULL_RTX
);
1266 if (size_align
> known_align
)
1267 size_align
= known_align
;
1269 if (flag_stack_usage_info
&& pstack_usage_size
)
1270 *pstack_usage_size
+= extra
;
1273 /* Round the size to a multiple of the required stack alignment.
1274 Since the stack is presumed to be rounded before this allocation,
1275 this will maintain the required alignment.
1277 If the stack grows downward, we could save an insn by subtracting
1278 SIZE from the stack pointer and then aligning the stack pointer.
1279 The problem with this is that the stack pointer may be unaligned
1280 between the execution of the subtraction and alignment insns and
1281 some machines do not allow this. Even on those that do, some
1282 signal handlers malfunction if a signal should occur between those
1283 insns. Since this is an extremely rare event, we have no reliable
1284 way of knowing which systems have this problem. So we avoid even
1285 momentarily mis-aligning the stack. */
1286 if (size_align
% MAX_SUPPORTED_STACK_ALIGNMENT
!= 0)
1288 size
= round_push (size
);
1290 if (flag_stack_usage_info
&& pstack_usage_size
)
1292 int align
= crtl
->preferred_stack_boundary
/ BITS_PER_UNIT
;
1293 *pstack_usage_size
=
1294 (*pstack_usage_size
+ align
- 1) / align
* align
;
1301 /* Return the number of bytes to "protect" on the stack for -fstack-check.
1303 "protect" in the context of -fstack-check means how many bytes we
1304 should always ensure are available on the stack. More importantly
1305 this is how many bytes are skipped when probing the stack.
1307 On some targets we want to reuse the -fstack-check prologue support
1308 to give a degree of protection against stack clashing style attacks.
1310 In that scenario we do not want to skip bytes before probing as that
1311 would render the stack clash protections useless.
1313 So we never use STACK_CHECK_PROTECT directly. Instead we indirect though
1314 this helper which allows us to provide different values for
1315 -fstack-check and -fstack-clash-protection. */
1317 get_stack_check_protect (void)
1319 if (flag_stack_clash_protection
)
1321 return STACK_CHECK_PROTECT
;
1324 /* Return an rtx representing the address of an area of memory dynamically
1325 pushed on the stack.
1327 Any required stack pointer alignment is preserved.
1329 SIZE is an rtx representing the size of the area.
1331 SIZE_ALIGN is the alignment (in bits) that we know SIZE has. This
1332 parameter may be zero. If so, a proper value will be extracted
1333 from SIZE if it is constant, otherwise BITS_PER_UNIT will be assumed.
1335 REQUIRED_ALIGN is the alignment (in bits) required for the region
1338 MAX_SIZE is an upper bound for SIZE, if SIZE is not constant, or -1 if
1339 no such upper bound is known.
1341 If CANNOT_ACCUMULATE is set to TRUE, the caller guarantees that the
1342 stack space allocated by the generated code cannot be added with itself
1343 in the course of the execution of the function. It is always safe to
1344 pass FALSE here and the following criterion is sufficient in order to
1345 pass TRUE: every path in the CFG that starts at the allocation point and
1346 loops to it executes the associated deallocation code. */
1349 allocate_dynamic_stack_space (rtx size
, unsigned size_align
,
1350 unsigned required_align
,
1351 HOST_WIDE_INT max_size
,
1352 bool cannot_accumulate
)
1354 HOST_WIDE_INT stack_usage_size
= -1;
1355 rtx_code_label
*final_label
;
1356 rtx final_target
, target
;
1358 /* If we're asking for zero bytes, it doesn't matter what we point
1359 to since we can't dereference it. But return a reasonable
1361 if (size
== const0_rtx
)
1362 return virtual_stack_dynamic_rtx
;
1364 /* Otherwise, show we're calling alloca or equivalent. */
1365 cfun
->calls_alloca
= 1;
1367 /* If stack usage info is requested, look into the size we are passed.
1368 We need to do so this early to avoid the obfuscation that may be
1369 introduced later by the various alignment operations. */
1370 if (flag_stack_usage_info
)
1372 if (CONST_INT_P (size
))
1373 stack_usage_size
= INTVAL (size
);
1374 else if (REG_P (size
))
1376 /* Look into the last emitted insn and see if we can deduce
1377 something for the register. */
1380 insn
= get_last_insn ();
1381 if ((set
= single_set (insn
)) && rtx_equal_p (SET_DEST (set
), size
))
1383 if (CONST_INT_P (SET_SRC (set
)))
1384 stack_usage_size
= INTVAL (SET_SRC (set
));
1385 else if ((note
= find_reg_equal_equiv_note (insn
))
1386 && CONST_INT_P (XEXP (note
, 0)))
1387 stack_usage_size
= INTVAL (XEXP (note
, 0));
1391 /* If the size is not constant, try the maximum size. */
1392 if (stack_usage_size
< 0)
1393 stack_usage_size
= max_size
;
1395 /* If the size is still not constant, we can't say anything. */
1396 if (stack_usage_size
< 0)
1398 current_function_has_unbounded_dynamic_stack_size
= 1;
1399 stack_usage_size
= 0;
1403 get_dynamic_stack_size (&size
, size_align
, required_align
, &stack_usage_size
);
1405 target
= gen_reg_rtx (Pmode
);
1407 /* The size is supposed to be fully adjusted at this point so record it
1408 if stack usage info is requested. */
1409 if (flag_stack_usage_info
)
1411 current_function_dynamic_stack_size
+= stack_usage_size
;
1413 /* ??? This is gross but the only safe stance in the absence
1414 of stack usage oriented flow analysis. */
1415 if (!cannot_accumulate
)
1416 current_function_has_unbounded_dynamic_stack_size
= 1;
1419 do_pending_stack_adjust ();
1422 final_target
= NULL_RTX
;
1424 /* If we are splitting the stack, we need to ask the backend whether
1425 there is enough room on the current stack. If there isn't, or if
1426 the backend doesn't know how to tell is, then we need to call a
1427 function to allocate memory in some other way. This memory will
1428 be released when we release the current stack segment. The
1429 effect is that stack allocation becomes less efficient, but at
1430 least it doesn't cause a stack overflow. */
1431 if (flag_split_stack
)
1433 rtx_code_label
*available_label
;
1434 rtx ask
, space
, func
;
1436 available_label
= NULL
;
1438 if (targetm
.have_split_stack_space_check ())
1440 available_label
= gen_label_rtx ();
1442 /* This instruction will branch to AVAILABLE_LABEL if there
1443 are SIZE bytes available on the stack. */
1444 emit_insn (targetm
.gen_split_stack_space_check
1445 (size
, available_label
));
1448 /* The __morestack_allocate_stack_space function will allocate
1449 memory using malloc. If the alignment of the memory returned
1450 by malloc does not meet REQUIRED_ALIGN, we increase SIZE to
1451 make sure we allocate enough space. */
1452 if (MALLOC_ABI_ALIGNMENT
>= required_align
)
1455 ask
= expand_binop (Pmode
, add_optab
, size
,
1456 gen_int_mode (required_align
/ BITS_PER_UNIT
- 1,
1458 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1460 func
= init_one_libfunc ("__morestack_allocate_stack_space");
1462 space
= emit_library_call_value (func
, target
, LCT_NORMAL
, Pmode
,
1465 if (available_label
== NULL_RTX
)
1468 final_target
= gen_reg_rtx (Pmode
);
1470 emit_move_insn (final_target
, space
);
1472 final_label
= gen_label_rtx ();
1473 emit_jump (final_label
);
1475 emit_label (available_label
);
1478 /* We ought to be called always on the toplevel and stack ought to be aligned
1480 gcc_assert (multiple_p (stack_pointer_delta
,
1481 PREFERRED_STACK_BOUNDARY
/ BITS_PER_UNIT
));
1483 /* If needed, check that we have the required amount of stack. Take into
1484 account what has already been checked. */
1485 if (STACK_CHECK_MOVING_SP
)
1487 else if (flag_stack_check
== GENERIC_STACK_CHECK
)
1488 probe_stack_range (STACK_OLD_CHECK_PROTECT
+ STACK_CHECK_MAX_FRAME_SIZE
,
1490 else if (flag_stack_check
== STATIC_BUILTIN_STACK_CHECK
)
1491 probe_stack_range (get_stack_check_protect (), size
);
1493 /* Don't let anti_adjust_stack emit notes. */
1494 suppress_reg_args_size
= true;
1496 /* Perform the required allocation from the stack. Some systems do
1497 this differently than simply incrementing/decrementing from the
1498 stack pointer, such as acquiring the space by calling malloc(). */
1499 if (targetm
.have_allocate_stack ())
1501 struct expand_operand ops
[2];
1502 /* We don't have to check against the predicate for operand 0 since
1503 TARGET is known to be a pseudo of the proper mode, which must
1504 be valid for the operand. */
1505 create_fixed_operand (&ops
[0], target
);
1506 create_convert_operand_to (&ops
[1], size
, STACK_SIZE_MODE
, true);
1507 expand_insn (targetm
.code_for_allocate_stack
, 2, ops
);
1511 poly_int64 saved_stack_pointer_delta
;
1513 if (!STACK_GROWS_DOWNWARD
)
1514 emit_move_insn (target
, virtual_stack_dynamic_rtx
);
1516 /* Check stack bounds if necessary. */
1517 if (crtl
->limit_stack
)
1520 rtx_code_label
*space_available
= gen_label_rtx ();
1521 if (STACK_GROWS_DOWNWARD
)
1522 available
= expand_binop (Pmode
, sub_optab
,
1523 stack_pointer_rtx
, stack_limit_rtx
,
1524 NULL_RTX
, 1, OPTAB_WIDEN
);
1526 available
= expand_binop (Pmode
, sub_optab
,
1527 stack_limit_rtx
, stack_pointer_rtx
,
1528 NULL_RTX
, 1, OPTAB_WIDEN
);
1530 emit_cmp_and_jump_insns (available
, size
, GEU
, NULL_RTX
, Pmode
, 1,
1532 if (targetm
.have_trap ())
1533 emit_insn (targetm
.gen_trap ());
1535 error ("stack limits not supported on this target");
1537 emit_label (space_available
);
1540 saved_stack_pointer_delta
= stack_pointer_delta
;
1542 if (flag_stack_check
&& STACK_CHECK_MOVING_SP
)
1543 anti_adjust_stack_and_probe (size
, false);
1544 else if (flag_stack_clash_protection
)
1545 anti_adjust_stack_and_probe_stack_clash (size
);
1547 anti_adjust_stack (size
);
1549 /* Even if size is constant, don't modify stack_pointer_delta.
1550 The constant size alloca should preserve
1551 crtl->preferred_stack_boundary alignment. */
1552 stack_pointer_delta
= saved_stack_pointer_delta
;
1554 if (STACK_GROWS_DOWNWARD
)
1555 emit_move_insn (target
, virtual_stack_dynamic_rtx
);
1558 suppress_reg_args_size
= false;
1560 /* Finish up the split stack handling. */
1561 if (final_label
!= NULL_RTX
)
1563 gcc_assert (flag_split_stack
);
1564 emit_move_insn (final_target
, target
);
1565 emit_label (final_label
);
1566 target
= final_target
;
1569 target
= align_dynamic_address (target
, required_align
);
1571 /* Now that we've committed to a return value, mark its alignment. */
1572 mark_reg_pointer (target
, required_align
);
1574 /* Record the new stack level. */
1575 record_new_stack_level ();
1580 /* Return an rtx representing the address of an area of memory already
1581 statically pushed onto the stack in the virtual stack vars area. (It is
1582 assumed that the area is allocated in the function prologue.)
1584 Any required stack pointer alignment is preserved.
1586 OFFSET is the offset of the area into the virtual stack vars area.
1588 REQUIRED_ALIGN is the alignment (in bits) required for the region
1592 get_dynamic_stack_base (poly_int64 offset
, unsigned required_align
)
1596 if (crtl
->preferred_stack_boundary
< PREFERRED_STACK_BOUNDARY
)
1597 crtl
->preferred_stack_boundary
= PREFERRED_STACK_BOUNDARY
;
1599 target
= gen_reg_rtx (Pmode
);
1600 emit_move_insn (target
, virtual_stack_vars_rtx
);
1601 target
= expand_binop (Pmode
, add_optab
, target
,
1602 gen_int_mode (offset
, Pmode
),
1603 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1604 target
= align_dynamic_address (target
, required_align
);
1606 /* Now that we've committed to a return value, mark its alignment. */
1607 mark_reg_pointer (target
, required_align
);
1612 /* A front end may want to override GCC's stack checking by providing a
1613 run-time routine to call to check the stack, so provide a mechanism for
1614 calling that routine. */
1616 static GTY(()) rtx stack_check_libfunc
;
1619 set_stack_check_libfunc (const char *libfunc_name
)
1621 gcc_assert (stack_check_libfunc
== NULL_RTX
);
1622 stack_check_libfunc
= gen_rtx_SYMBOL_REF (Pmode
, libfunc_name
);
1625 /* Emit one stack probe at ADDRESS, an address within the stack. */
1628 emit_stack_probe (rtx address
)
1630 if (targetm
.have_probe_stack_address ())
1632 struct expand_operand ops
[1];
1633 insn_code icode
= targetm
.code_for_probe_stack_address
;
1634 create_address_operand (ops
, address
);
1635 maybe_legitimize_operands (icode
, 0, 1, ops
);
1636 expand_insn (icode
, 1, ops
);
1640 rtx memref
= gen_rtx_MEM (word_mode
, address
);
1642 MEM_VOLATILE_P (memref
) = 1;
1643 memref
= validize_mem (memref
);
1645 /* See if we have an insn to probe the stack. */
1646 if (targetm
.have_probe_stack ())
1647 emit_insn (targetm
.gen_probe_stack (memref
));
1649 emit_move_insn (memref
, const0_rtx
);
1653 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1654 FIRST is a constant and size is a Pmode RTX. These are offsets from
1655 the current stack pointer. STACK_GROWS_DOWNWARD says whether to add
1656 or subtract them from the stack pointer. */
1658 #define PROBE_INTERVAL (1 << STACK_CHECK_PROBE_INTERVAL_EXP)
1660 #if STACK_GROWS_DOWNWARD
1661 #define STACK_GROW_OP MINUS
1662 #define STACK_GROW_OPTAB sub_optab
1663 #define STACK_GROW_OFF(off) -(off)
1665 #define STACK_GROW_OP PLUS
1666 #define STACK_GROW_OPTAB add_optab
1667 #define STACK_GROW_OFF(off) (off)
1671 probe_stack_range (HOST_WIDE_INT first
, rtx size
)
1673 /* First ensure SIZE is Pmode. */
1674 if (GET_MODE (size
) != VOIDmode
&& GET_MODE (size
) != Pmode
)
1675 size
= convert_to_mode (Pmode
, size
, 1);
1677 /* Next see if we have a function to check the stack. */
1678 if (stack_check_libfunc
)
1680 rtx addr
= memory_address (Pmode
,
1681 gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1683 plus_constant (Pmode
,
1685 emit_library_call (stack_check_libfunc
, LCT_THROW
, VOIDmode
,
1689 /* Next see if we have an insn to check the stack. */
1690 else if (targetm
.have_check_stack ())
1692 struct expand_operand ops
[1];
1693 rtx addr
= memory_address (Pmode
,
1694 gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1696 plus_constant (Pmode
,
1699 create_input_operand (&ops
[0], addr
, Pmode
);
1700 success
= maybe_expand_insn (targetm
.code_for_check_stack
, 1, ops
);
1701 gcc_assert (success
);
1704 /* Otherwise we have to generate explicit probes. If we have a constant
1705 small number of them to generate, that's the easy case. */
1706 else if (CONST_INT_P (size
) && INTVAL (size
) < 7 * PROBE_INTERVAL
)
1708 HOST_WIDE_INT isize
= INTVAL (size
), i
;
1711 /* Probe at FIRST + N * PROBE_INTERVAL for values of N from 1 until
1712 it exceeds SIZE. If only one probe is needed, this will not
1713 generate any code. Then probe at FIRST + SIZE. */
1714 for (i
= PROBE_INTERVAL
; i
< isize
; i
+= PROBE_INTERVAL
)
1716 addr
= memory_address (Pmode
,
1717 plus_constant (Pmode
, stack_pointer_rtx
,
1718 STACK_GROW_OFF (first
+ i
)));
1719 emit_stack_probe (addr
);
1722 addr
= memory_address (Pmode
,
1723 plus_constant (Pmode
, stack_pointer_rtx
,
1724 STACK_GROW_OFF (first
+ isize
)));
1725 emit_stack_probe (addr
);
1728 /* In the variable case, do the same as above, but in a loop. Note that we
1729 must be extra careful with variables wrapping around because we might be
1730 at the very top (or the very bottom) of the address space and we have to
1731 be able to handle this case properly; in particular, we use an equality
1732 test for the loop condition. */
1735 rtx rounded_size
, rounded_size_op
, test_addr
, last_addr
, temp
;
1736 rtx_code_label
*loop_lab
= gen_label_rtx ();
1737 rtx_code_label
*end_lab
= gen_label_rtx ();
1739 /* Step 1: round SIZE to the previous multiple of the interval. */
1741 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
1743 = simplify_gen_binary (AND
, Pmode
, size
,
1744 gen_int_mode (-PROBE_INTERVAL
, Pmode
));
1745 rounded_size_op
= force_operand (rounded_size
, NULL_RTX
);
1748 /* Step 2: compute initial and final value of the loop counter. */
1750 /* TEST_ADDR = SP + FIRST. */
1751 test_addr
= force_operand (gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1753 gen_int_mode (first
, Pmode
)),
1756 /* LAST_ADDR = SP + FIRST + ROUNDED_SIZE. */
1757 last_addr
= force_operand (gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1759 rounded_size_op
), NULL_RTX
);
1764 while (TEST_ADDR != LAST_ADDR)
1766 TEST_ADDR = TEST_ADDR + PROBE_INTERVAL
1770 probes at FIRST + N * PROBE_INTERVAL for values of N from 1
1771 until it is equal to ROUNDED_SIZE. */
1773 emit_label (loop_lab
);
1775 /* Jump to END_LAB if TEST_ADDR == LAST_ADDR. */
1776 emit_cmp_and_jump_insns (test_addr
, last_addr
, EQ
, NULL_RTX
, Pmode
, 1,
1779 /* TEST_ADDR = TEST_ADDR + PROBE_INTERVAL. */
1780 temp
= expand_binop (Pmode
, STACK_GROW_OPTAB
, test_addr
,
1781 gen_int_mode (PROBE_INTERVAL
, Pmode
), test_addr
,
1784 gcc_assert (temp
== test_addr
);
1786 /* Probe at TEST_ADDR. */
1787 emit_stack_probe (test_addr
);
1789 emit_jump (loop_lab
);
1791 emit_label (end_lab
);
1794 /* Step 4: probe at FIRST + SIZE if we cannot assert at compile-time
1795 that SIZE is equal to ROUNDED_SIZE. */
1797 /* TEMP = SIZE - ROUNDED_SIZE. */
1798 temp
= simplify_gen_binary (MINUS
, Pmode
, size
, rounded_size
);
1799 if (temp
!= const0_rtx
)
1803 if (CONST_INT_P (temp
))
1805 /* Use [base + disp} addressing mode if supported. */
1806 HOST_WIDE_INT offset
= INTVAL (temp
);
1807 addr
= memory_address (Pmode
,
1808 plus_constant (Pmode
, last_addr
,
1809 STACK_GROW_OFF (offset
)));
1813 /* Manual CSE if the difference is not known at compile-time. */
1814 temp
= gen_rtx_MINUS (Pmode
, size
, rounded_size_op
);
1815 addr
= memory_address (Pmode
,
1816 gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1820 emit_stack_probe (addr
);
1824 /* Make sure nothing is scheduled before we are done. */
1825 emit_insn (gen_blockage ());
1828 /* Compute parameters for stack clash probing a dynamic stack
1829 allocation of SIZE bytes.
1831 We compute ROUNDED_SIZE, LAST_ADDR, RESIDUAL and PROBE_INTERVAL.
1833 Additionally we conditionally dump the type of probing that will
1834 be needed given the values computed. */
1837 compute_stack_clash_protection_loop_data (rtx
*rounded_size
, rtx
*last_addr
,
1839 HOST_WIDE_INT
*probe_interval
,
1842 /* Round SIZE down to STACK_CLASH_PROTECTION_PROBE_INTERVAL */
1844 = 1 << PARAM_VALUE (PARAM_STACK_CLASH_PROTECTION_PROBE_INTERVAL
);
1845 *rounded_size
= simplify_gen_binary (AND
, Pmode
, size
,
1846 GEN_INT (-*probe_interval
));
1848 /* Compute the value of the stack pointer for the last iteration.
1849 It's just SP + ROUNDED_SIZE. */
1850 rtx rounded_size_op
= force_operand (*rounded_size
, NULL_RTX
);
1851 *last_addr
= force_operand (gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1856 /* Compute any residuals not allocated by the loop above. Residuals
1857 are just the ROUNDED_SIZE - SIZE. */
1858 *residual
= simplify_gen_binary (MINUS
, Pmode
, size
, *rounded_size
);
1860 /* Dump key information to make writing tests easy. */
1863 if (*rounded_size
== CONST0_RTX (Pmode
))
1865 "Stack clash skipped dynamic allocation and probing loop.\n");
1866 else if (CONST_INT_P (*rounded_size
)
1867 && INTVAL (*rounded_size
) <= 4 * *probe_interval
)
1869 "Stack clash dynamic allocation and probing inline.\n");
1870 else if (CONST_INT_P (*rounded_size
))
1872 "Stack clash dynamic allocation and probing in "
1876 "Stack clash dynamic allocation and probing in loop.\n");
1878 if (*residual
!= CONST0_RTX (Pmode
))
1880 "Stack clash dynamic allocation and probing residuals.\n");
1883 "Stack clash skipped dynamic allocation and "
1884 "probing residuals.\n");
1888 /* Emit the start of an allocate/probe loop for stack
1891 LOOP_LAB and END_LAB are returned for use when we emit the
1894 LAST addr is the value for SP which stops the loop. */
1896 emit_stack_clash_protection_probe_loop_start (rtx
*loop_lab
,
1901 /* Essentially we want to emit any setup code, the top of loop
1902 label and the comparison at the top of the loop. */
1903 *loop_lab
= gen_label_rtx ();
1904 *end_lab
= gen_label_rtx ();
1906 emit_label (*loop_lab
);
1908 emit_cmp_and_jump_insns (stack_pointer_rtx
, last_addr
, EQ
, NULL_RTX
,
1909 Pmode
, 1, *end_lab
);
1912 /* Emit the end of a stack clash probing loop.
1914 This consists of just the jump back to LOOP_LAB and
1915 emitting END_LOOP after the loop. */
1918 emit_stack_clash_protection_probe_loop_end (rtx loop_lab
, rtx end_loop
,
1919 rtx last_addr
, bool rotated
)
1922 emit_cmp_and_jump_insns (stack_pointer_rtx
, last_addr
, NE
, NULL_RTX
,
1923 Pmode
, 1, loop_lab
);
1925 emit_jump (loop_lab
);
1927 emit_label (end_loop
);
1931 /* Adjust the stack pointer by minus SIZE (an rtx for a number of bytes)
1932 while probing it. This pushes when SIZE is positive. SIZE need not
1935 This is subtly different than anti_adjust_stack_and_probe to try and
1936 prevent stack-clash attacks
1938 1. It must assume no knowledge of the probing state, any allocation
1941 Consider the case of a 1 byte alloca in a loop. If the sum of the
1942 allocations is large, then this could be used to jump the guard if
1943 probes were not emitted.
1945 2. It never skips probes, whereas anti_adjust_stack_and_probe will
1946 skip probes on the first couple PROBE_INTERVALs on the assumption
1947 they're done elsewhere.
1949 3. It only allocates and probes SIZE bytes, it does not need to
1950 allocate/probe beyond that because this probing style does not
1951 guarantee signal handling capability if the guard is hit. */
1954 anti_adjust_stack_and_probe_stack_clash (rtx size
)
1956 /* First ensure SIZE is Pmode. */
1957 if (GET_MODE (size
) != VOIDmode
&& GET_MODE (size
) != Pmode
)
1958 size
= convert_to_mode (Pmode
, size
, 1);
1960 /* We can get here with a constant size on some targets. */
1961 rtx rounded_size
, last_addr
, residual
;
1962 HOST_WIDE_INT probe_interval
, probe_range
;
1963 bool target_probe_range_p
= false;
1964 compute_stack_clash_protection_loop_data (&rounded_size
, &last_addr
,
1965 &residual
, &probe_interval
, size
);
1967 /* Get the back-end specific probe ranges. */
1968 probe_range
= targetm
.stack_clash_protection_alloca_probe_range ();
1969 target_probe_range_p
= probe_range
!= 0;
1970 gcc_assert (probe_range
>= 0);
1972 /* If no back-end specific range defined, default to the top of the newly
1974 if (probe_range
== 0)
1975 probe_range
= probe_interval
- GET_MODE_SIZE (word_mode
);
1977 if (rounded_size
!= CONST0_RTX (Pmode
))
1979 if (CONST_INT_P (rounded_size
)
1980 && INTVAL (rounded_size
) <= 4 * probe_interval
)
1982 for (HOST_WIDE_INT i
= 0;
1983 i
< INTVAL (rounded_size
);
1984 i
+= probe_interval
)
1986 anti_adjust_stack (GEN_INT (probe_interval
));
1987 /* The prologue does not probe residuals. Thus the offset
1988 here to probe just beyond what the prologue had already
1990 emit_stack_probe (plus_constant (Pmode
, stack_pointer_rtx
,
1993 emit_insn (gen_blockage ());
1998 rtx loop_lab
, end_loop
;
1999 bool rotate_loop
= CONST_INT_P (rounded_size
);
2000 emit_stack_clash_protection_probe_loop_start (&loop_lab
, &end_loop
,
2001 last_addr
, rotate_loop
);
2003 anti_adjust_stack (GEN_INT (probe_interval
));
2005 /* The prologue does not probe residuals. Thus the offset here
2006 to probe just beyond what the prologue had already
2008 emit_stack_probe (plus_constant (Pmode
, stack_pointer_rtx
,
2011 emit_stack_clash_protection_probe_loop_end (loop_lab
, end_loop
,
2012 last_addr
, rotate_loop
);
2013 emit_insn (gen_blockage ());
2017 if (residual
!= CONST0_RTX (Pmode
))
2019 rtx label
= NULL_RTX
;
2020 /* RESIDUAL could be zero at runtime and in that case *sp could
2021 hold live data. Furthermore, we do not want to probe into the
2024 If TARGET_PROBE_RANGE_P then the target has promised it's safe to
2025 probe at offset 0. In which case we no longer have to check for
2026 RESIDUAL == 0. However we still need to probe at the right offset
2027 when RESIDUAL > PROBE_RANGE, in which case we probe at PROBE_RANGE.
2029 If !TARGET_PROBE_RANGE_P then go ahead and just guard the probe at *sp
2030 on RESIDUAL != 0 at runtime if RESIDUAL is not a compile time constant.
2032 anti_adjust_stack (residual
);
2034 if (!CONST_INT_P (residual
))
2036 label
= gen_label_rtx ();
2037 rtx_code op
= target_probe_range_p
? LT
: EQ
;
2038 rtx probe_cmp_value
= target_probe_range_p
2039 ? gen_rtx_CONST_INT (GET_MODE (residual
), probe_range
)
2040 : CONST0_RTX (GET_MODE (residual
));
2042 if (target_probe_range_p
)
2043 emit_stack_probe (stack_pointer_rtx
);
2045 emit_cmp_and_jump_insns (residual
, probe_cmp_value
,
2046 op
, NULL_RTX
, Pmode
, 1, label
);
2051 /* If RESIDUAL isn't a constant and TARGET_PROBE_RANGE_P then we probe up
2052 by the ABI defined safe value. */
2053 if (!CONST_INT_P (residual
) && target_probe_range_p
)
2054 x
= GEN_INT (probe_range
);
2055 /* If RESIDUAL is a constant but smaller than the ABI defined safe value,
2056 we still want to probe up, but the safest amount if a word. */
2057 else if (target_probe_range_p
)
2059 if (INTVAL (residual
) <= probe_range
)
2060 x
= GEN_INT (GET_MODE_SIZE (word_mode
));
2062 x
= GEN_INT (probe_range
);
2065 /* If nothing else, probe at the top of the new allocation. */
2066 x
= plus_constant (Pmode
, residual
, -GET_MODE_SIZE (word_mode
));
2068 emit_stack_probe (gen_rtx_PLUS (Pmode
, stack_pointer_rtx
, x
));
2070 emit_insn (gen_blockage ());
2071 if (!CONST_INT_P (residual
))
2077 /* Adjust the stack pointer by minus SIZE (an rtx for a number of bytes)
2078 while probing it. This pushes when SIZE is positive. SIZE need not
2079 be constant. If ADJUST_BACK is true, adjust back the stack pointer
2080 by plus SIZE at the end. */
2083 anti_adjust_stack_and_probe (rtx size
, bool adjust_back
)
2085 /* We skip the probe for the first interval + a small dope of 4 words and
2086 probe that many bytes past the specified size to maintain a protection
2087 area at the botton of the stack. */
2088 const int dope
= 4 * UNITS_PER_WORD
;
2090 /* First ensure SIZE is Pmode. */
2091 if (GET_MODE (size
) != VOIDmode
&& GET_MODE (size
) != Pmode
)
2092 size
= convert_to_mode (Pmode
, size
, 1);
2094 /* If we have a constant small number of probes to generate, that's the
2096 if (CONST_INT_P (size
) && INTVAL (size
) < 7 * PROBE_INTERVAL
)
2098 HOST_WIDE_INT isize
= INTVAL (size
), i
;
2099 bool first_probe
= true;
2101 /* Adjust SP and probe at PROBE_INTERVAL + N * PROBE_INTERVAL for
2102 values of N from 1 until it exceeds SIZE. If only one probe is
2103 needed, this will not generate any code. Then adjust and probe
2104 to PROBE_INTERVAL + SIZE. */
2105 for (i
= PROBE_INTERVAL
; i
< isize
; i
+= PROBE_INTERVAL
)
2109 anti_adjust_stack (GEN_INT (2 * PROBE_INTERVAL
+ dope
));
2110 first_probe
= false;
2113 anti_adjust_stack (GEN_INT (PROBE_INTERVAL
));
2114 emit_stack_probe (stack_pointer_rtx
);
2118 anti_adjust_stack (plus_constant (Pmode
, size
, PROBE_INTERVAL
+ dope
));
2120 anti_adjust_stack (plus_constant (Pmode
, size
, PROBE_INTERVAL
- i
));
2121 emit_stack_probe (stack_pointer_rtx
);
2124 /* In the variable case, do the same as above, but in a loop. Note that we
2125 must be extra careful with variables wrapping around because we might be
2126 at the very top (or the very bottom) of the address space and we have to
2127 be able to handle this case properly; in particular, we use an equality
2128 test for the loop condition. */
2131 rtx rounded_size
, rounded_size_op
, last_addr
, temp
;
2132 rtx_code_label
*loop_lab
= gen_label_rtx ();
2133 rtx_code_label
*end_lab
= gen_label_rtx ();
2136 /* Step 1: round SIZE to the previous multiple of the interval. */
2138 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
2140 = simplify_gen_binary (AND
, Pmode
, size
,
2141 gen_int_mode (-PROBE_INTERVAL
, Pmode
));
2142 rounded_size_op
= force_operand (rounded_size
, NULL_RTX
);
2145 /* Step 2: compute initial and final value of the loop counter. */
2147 /* SP = SP_0 + PROBE_INTERVAL. */
2148 anti_adjust_stack (GEN_INT (PROBE_INTERVAL
+ dope
));
2150 /* LAST_ADDR = SP_0 + PROBE_INTERVAL + ROUNDED_SIZE. */
2151 last_addr
= force_operand (gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
2153 rounded_size_op
), NULL_RTX
);
2158 while (SP != LAST_ADDR)
2160 SP = SP + PROBE_INTERVAL
2164 adjusts SP and probes at PROBE_INTERVAL + N * PROBE_INTERVAL for
2165 values of N from 1 until it is equal to ROUNDED_SIZE. */
2167 emit_label (loop_lab
);
2169 /* Jump to END_LAB if SP == LAST_ADDR. */
2170 emit_cmp_and_jump_insns (stack_pointer_rtx
, last_addr
, EQ
, NULL_RTX
,
2173 /* SP = SP + PROBE_INTERVAL and probe at SP. */
2174 anti_adjust_stack (GEN_INT (PROBE_INTERVAL
));
2175 emit_stack_probe (stack_pointer_rtx
);
2177 emit_jump (loop_lab
);
2179 emit_label (end_lab
);
2182 /* Step 4: adjust SP and probe at PROBE_INTERVAL + SIZE if we cannot
2183 assert at compile-time that SIZE is equal to ROUNDED_SIZE. */
2185 /* TEMP = SIZE - ROUNDED_SIZE. */
2186 temp
= simplify_gen_binary (MINUS
, Pmode
, size
, rounded_size
);
2187 if (temp
!= const0_rtx
)
2189 /* Manual CSE if the difference is not known at compile-time. */
2190 if (GET_CODE (temp
) != CONST_INT
)
2191 temp
= gen_rtx_MINUS (Pmode
, size
, rounded_size_op
);
2192 anti_adjust_stack (temp
);
2193 emit_stack_probe (stack_pointer_rtx
);
2197 /* Adjust back and account for the additional first interval. */
2199 adjust_stack (plus_constant (Pmode
, size
, PROBE_INTERVAL
+ dope
));
2201 adjust_stack (GEN_INT (PROBE_INTERVAL
+ dope
));
2204 /* Return an rtx representing the register or memory location
2205 in which a scalar value of data type VALTYPE
2206 was returned by a function call to function FUNC.
2207 FUNC is a FUNCTION_DECL, FNTYPE a FUNCTION_TYPE node if the precise
2208 function is known, otherwise 0.
2209 OUTGOING is 1 if on a machine with register windows this function
2210 should return the register in which the function will put its result
2214 hard_function_value (const_tree valtype
, const_tree func
, const_tree fntype
,
2215 int outgoing ATTRIBUTE_UNUSED
)
2219 val
= targetm
.calls
.function_value (valtype
, func
? func
: fntype
, outgoing
);
2222 && GET_MODE (val
) == BLKmode
)
2224 unsigned HOST_WIDE_INT bytes
= arg_int_size_in_bytes (valtype
);
2225 opt_scalar_int_mode tmpmode
;
2227 /* int_size_in_bytes can return -1. We don't need a check here
2228 since the value of bytes will then be large enough that no
2229 mode will match anyway. */
2231 FOR_EACH_MODE_IN_CLASS (tmpmode
, MODE_INT
)
2233 /* Have we found a large enough mode? */
2234 if (GET_MODE_SIZE (tmpmode
.require ()) >= bytes
)
2238 PUT_MODE (val
, tmpmode
.require ());
2243 /* Return an rtx representing the register or memory location
2244 in which a scalar value of mode MODE was returned by a library call. */
2247 hard_libcall_value (machine_mode mode
, rtx fun
)
2249 return targetm
.calls
.libcall_value (mode
, fun
);
2252 /* Look up the tree code for a given rtx code
2253 to provide the arithmetic operation for real_arithmetic.
2254 The function returns an int because the caller may not know
2255 what `enum tree_code' means. */
2258 rtx_to_tree_code (enum rtx_code code
)
2260 enum tree_code tcode
;
2283 tcode
= LAST_AND_UNUSED_TREE_CODE
;
2286 return ((int) tcode
);
2289 #include "gt-explow.h"