1 /* "Bag-of-pages" garbage collector for the GNU compiler.
2 Copyright (C) 1999 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
35 This garbage-collecting allocator allocates objects on one of a set
36 of pages. Each page can allocate objects of a single size only;
37 available sizes are powers of two starting at four bytes. The size
38 of an allocation request is rounded up to the next power of two
39 (`order'), and satisfied from the appropriate page.
41 Each page is recorded in a page-entry, which also maintains an
42 in-use bitmap of object positions on the page. This allows the
43 allocation state of a particular object to be flipped without
44 touching the page itself.
46 Each page-entry also has a context depth, which is used to track
47 pushing and popping of allocation contexts. Only objects allocated
48 in the current (highest-numbered) context may be collected.
50 Page entries are arranged in an array of singly-linked lists. The
51 array is indexed by the allocation size, in bits, of the pages on
52 it; i.e. all pages on a list allocate objects of the same size.
53 Pages are ordered on the list such that all non-full pages precede
54 all full pages, with non-full pages arranged in order of decreasing
57 Empty pages (of all orders) are kept on a single page cache list,
58 and are considered first when new pages are required; they are
59 deallocated at the start of the next collection if they haven't
60 been recycled by then. */
63 /* Define GGC_POISON to poison memory marked unused by the collector. */
66 /* Define GGC_ALWAYS_COLLECT to perform collection every time
67 ggc_collect is invoked. Otherwise, collection is performed only
68 when a significant amount of memory has been allocated since the
70 #undef GGC_ALWAYS_COLLECT
72 /* If ENABLE_CHECKING is defined, enable GGC_POISON and
73 GGC_ALWAYS_COLLECT automatically. */
74 #ifdef ENABLE_CHECKING
76 #define GGC_ALWAYS_COLLECT
79 /* Define GGC_DEBUG_LEVEL to print debugging information.
80 0: No debugging output.
81 1: GC statistics only.
82 2: Page-entry allocations/deallocations as well.
83 3: Object allocations as well.
84 4: Object marks as well. */
85 #define GGC_DEBUG_LEVEL (0)
87 #ifndef HOST_BITS_PER_PTR
88 #define HOST_BITS_PER_PTR HOST_BITS_PER_LONG
91 /* Timing information for collect execution goes into here. */
94 /* The "" allocated string. */
97 /* A two-level tree is used to look up the page-entry for a given
98 pointer. Two chunks of the pointer's bits are extracted to index
99 the first and second levels of the tree, as follows:
103 msb +----------------+----+------+------+ lsb
109 The bottommost HOST_PAGE_SIZE_BITS are ignored, since page-entry
110 pages are aligned on system page boundaries. The next most
111 significant PAGE_L2_BITS and PAGE_L1_BITS are the second and first
112 index values in the lookup table, respectively.
114 The topmost leftover bits, if any, are ignored. For 32-bit
115 architectures and the settings below, there are no leftover bits.
116 For architectures with wider pointers, the lookup tree points to a
117 list of pages, which must be scanned to find the correct one. */
119 #define PAGE_L1_BITS (8)
120 #define PAGE_L2_BITS (32 - PAGE_L1_BITS - G.lg_pagesize)
121 #define PAGE_L1_SIZE ((size_t) 1 << PAGE_L1_BITS)
122 #define PAGE_L2_SIZE ((size_t) 1 << PAGE_L2_BITS)
124 #define LOOKUP_L1(p) \
125 (((size_t) (p) >> (32 - PAGE_L1_BITS)) & ((1 << PAGE_L1_BITS) - 1))
127 #define LOOKUP_L2(p) \
128 (((size_t) (p) >> G.lg_pagesize) & ((1 << PAGE_L2_BITS) - 1))
131 /* A page_entry records the status of an allocation page. This
132 structure is dynamically sized to fit the bitmap in_use_p. */
133 typedef struct page_entry
135 /* The next page-entry with objects of the same size, or NULL if
136 this is the last page-entry. */
137 struct page_entry
*next
;
139 /* The number of bytes allocated. (This will always be a multiple
140 of the host system page size.) */
143 /* The address at which the memory is allocated. */
146 /* Saved in-use bit vector for pages that aren't in the topmost
147 context during collection. */
148 unsigned long *save_in_use_p
;
150 /* Context depth of this page. */
151 unsigned char context_depth
;
153 /* The lg of size of objects allocated from this page. */
156 /* The number of free objects remaining on this page. */
157 unsigned short num_free_objects
;
159 /* A likely candidate for the bit position of a free object for the
160 next allocation from this page. */
161 unsigned short next_bit_hint
;
163 /* Saved number of free objects for pages that aren't in the topmost
164 context during colleciton. */
165 unsigned short save_num_free_objects
;
167 /* A bit vector indicating whether or not objects are in use. The
168 Nth bit is one if the Nth object on this page is allocated. This
169 array is dynamically sized. */
170 unsigned long in_use_p
[1];
174 #if HOST_BITS_PER_PTR <= 32
176 /* On 32-bit hosts, we use a two level page table, as pictured above. */
177 typedef page_entry
**page_table
[PAGE_L1_SIZE
];
181 /* On 64-bit hosts, we use two level page tables plus a linked list
182 that disambiguates the top 32-bits. There will almost always be
183 exactly one entry in the list. */
184 typedef struct page_table_chain
186 struct page_table_chain
*next
;
188 page_entry
**table
[PAGE_L1_SIZE
];
193 /* The rest of the global variables. */
194 static struct globals
196 /* The Nth element in this array is a page with objects of size 2^N.
197 If there are any pages with free objects, they will be at the
198 head of the list. NULL if there are no page-entries for this
200 page_entry
*pages
[HOST_BITS_PER_PTR
];
202 /* The Nth element in this array is the last page with objects of
203 size 2^N. NULL if there are no page-entries for this object
205 page_entry
*page_tails
[HOST_BITS_PER_PTR
];
207 /* Lookup table for associating allocation pages with object addresses. */
210 /* The system's page size. */
214 /* Bytes currently allocated. */
217 /* Bytes currently allocated at the end of the last collection. */
218 size_t allocated_last_gc
;
220 /* The current depth in the context stack. */
221 unsigned char context_depth
;
223 /* A file descriptor open to /dev/zero for reading. */
224 #ifndef MAP_ANONYMOUS
228 /* A cache of free system pages. */
229 page_entry
*free_pages
;
231 /* The file descriptor for debugging output. */
236 /* Compute DIVIDEND / DIVISOR, rounded up. */
237 #define DIV_ROUND_UP(Dividend, Divisor) \
238 ((Dividend + Divisor - 1) / Divisor)
240 /* The number of objects per allocation page, for objects of size
242 #define OBJECTS_PER_PAGE(Order) \
243 ((Order) >= G.lg_pagesize ? 1 : G.pagesize / ((size_t)1 << (Order)))
245 /* The size in bytes required to maintain a bitmap for the objects
247 #define BITMAP_SIZE(Num_objects) \
248 (DIV_ROUND_UP ((Num_objects), HOST_BITS_PER_LONG) * sizeof(long))
250 /* Skip garbage collection if the current allocation is not at least
251 this factor times the allocation at the end of the last collection.
252 In other words, total allocation must expand by (this factor minus
253 one) before collection is performed. */
254 #define GGC_MIN_EXPAND_FOR_GC (1.3)
256 /* Bound `allocated_last_gc' to 4MB, to prevent the memory expansion
257 test from triggering too often when the heap is small. */
258 #define GGC_MIN_LAST_ALLOCATED (4 * 1024 * 1024)
261 static page_entry
*lookup_page_table_entry
PROTO ((void *));
262 static void set_page_table_entry
PROTO ((void *, page_entry
*));
263 static char *alloc_anon
PROTO ((char *, size_t));
264 static struct page_entry
* alloc_page
PROTO ((unsigned));
265 static void free_page
PROTO ((struct page_entry
*));
266 static void release_pages
PROTO ((void));
267 static void *alloc_obj
PROTO ((size_t, int));
268 static int mark_obj
PROTO ((void *));
269 static void clear_marks
PROTO ((void));
270 static void sweep_pages
PROTO ((void));
273 static void poison
PROTO ((void *, size_t));
274 static void poison_pages
PROTO ((void));
277 void debug_print_page_list
PROTO ((int));
279 /* Traverse the page table and find the entry for a page.
280 Die (probably) if the object wasn't allocated via GC. */
282 static inline page_entry
*
283 lookup_page_table_entry(p
)
289 #if HOST_BITS_PER_PTR <= 32
292 page_table table
= G
.lookup
;
293 size_t high_bits
= (size_t) p
& ~ (size_t) 0xffffffff;
294 while (table
->high_bits
!= high_bits
)
296 base
= &table
->table
[0];
299 /* Extract the level 1 and 2 indicies. */
307 /* Set the page table entry for a page. */
309 set_page_table_entry(p
, entry
)
316 #if HOST_BITS_PER_PTR <= 32
320 size_t high_bits
= (size_t) p
& ~ (size_t) 0xffffffff;
321 for (table
= G
.lookup
; table
; table
= table
->next
)
322 if (table
->high_bits
== high_bits
)
325 /* Not found -- allocate a new table. */
326 table
= (page_table
) xcalloc (1, sizeof(*table
));
327 table
->next
= G
.lookup
;
328 table
->high_bits
= high_bits
;
331 base
= &table
->table
[0];
334 /* Extract the level 1 and 2 indicies. */
338 if (base
[L1
] == NULL
)
339 base
[L1
] = (page_entry
**) xcalloc (PAGE_L2_SIZE
, sizeof (page_entry
*));
341 base
[L1
][L2
] = entry
;
345 /* Prints the page-entry for object size ORDER, for debugging. */
347 debug_print_page_list (order
)
351 printf ("Head=%p, Tail=%p:\n", G
.pages
[order
], G
.page_tails
[order
]);
355 printf ("%p(%1d|%3d) -> ", p
, p
->context_depth
, p
->num_free_objects
);
363 /* `Poisons' the region of memory starting at START and extending for
370 memset (start
, 0xa5, len
);
374 /* Allocate SIZE bytes of anonymous memory, preferably near PREF,
377 alloc_anon (pref
, size
)
384 page
= (char *) mmap (pref
, size
, PROT_READ
| PROT_WRITE
,
385 MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
387 page
= (char *) mmap (pref
, size
, PROT_READ
| PROT_WRITE
,
388 MAP_PRIVATE
, G
.dev_zero_fd
, 0);
390 if (page
== (char *) MAP_FAILED
)
392 fputs ("Virtual memory exhausted!\n", stderr
);
399 /* Allocate a new page for allocating objects of size 2^ORDER,
400 and return an entry for it. The entry is not added to the
401 appropriate page_table list. */
402 static inline struct page_entry
*
406 struct page_entry
*entry
, *p
, **pp
;
410 size_t page_entry_size
;
413 num_objects
= OBJECTS_PER_PAGE (order
);
414 bitmap_size
= BITMAP_SIZE (num_objects
+ 1);
415 page_entry_size
= sizeof (page_entry
) - sizeof (long) + bitmap_size
;
416 entry_size
= num_objects
* (1 << order
);
421 /* Check the list of free pages for one we can use. */
422 for (pp
= &G
.free_pages
, p
= *pp
; p
; pp
= &p
->next
, p
= *pp
)
423 if (p
->bytes
== entry_size
)
428 /* Recycle the allocated memory from this page ... */
431 /* ... and, if possible, the page entry itself. */
432 if (p
->order
== order
)
435 memset (entry
, 0, page_entry_size
);
442 /* Actually allocate the memory, using mmap. */
443 page
= alloc_anon (NULL
, entry_size
);
447 entry
= (struct page_entry
*) xcalloc (1, page_entry_size
);
449 entry
->bytes
= entry_size
;
451 entry
->context_depth
= G
.context_depth
;
452 entry
->order
= order
;
453 entry
->num_free_objects
= num_objects
;
454 entry
->next_bit_hint
= 1;
456 /* Set the one-past-the-end in-use bit. This acts as a sentry as we
457 increment the hint. */
458 entry
->in_use_p
[num_objects
/ HOST_BITS_PER_LONG
]
459 = (unsigned long) 1 << (num_objects
% HOST_BITS_PER_LONG
);
461 set_page_table_entry (page
, entry
);
463 if (GGC_DEBUG_LEVEL
>= 2)
464 fprintf (G
.debug_file
,
465 "Allocating page at %p, object size=%d, data %p-%p\n", entry
,
466 1 << order
, page
, page
+ entry_size
- 1);
472 /* Free a page when it's no longer needed. */
477 if (GGC_DEBUG_LEVEL
>= 2)
478 fprintf (G
.debug_file
,
479 "Deallocating page at %p, data %p-%p\n", entry
,
480 entry
->page
, entry
->page
+ entry
->bytes
- 1);
482 set_page_table_entry (entry
->page
, NULL
);
484 entry
->next
= G
.free_pages
;
485 G
.free_pages
= entry
;
489 /* Release the page cache to the system. */
493 page_entry
*p
, *next
;
510 /* Gather up adjacent pages so they are unmapped together. */
511 if (p
->page
== start
+ len
)
528 /* This table provides a fast way to determine ceil(log_2(size)) for
529 allocation requests. The minimum allocation size is four bytes. */
530 static unsigned char const size_lookup
[257] =
532 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4,
533 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
534 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
535 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
536 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
537 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
538 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
539 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
540 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
541 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
542 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
543 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
544 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
545 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
546 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
547 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
551 /* Allocate a chunk of memory of SIZE bytes. If ZERO is non-zero, the
552 memory is zeroed; otherwise, its contents are undefined. */
554 alloc_obj (size
, zero
)
558 unsigned order
, word
, bit
, object_offset
;
559 struct page_entry
*entry
;
563 order
= size_lookup
[size
];
567 while (size
> ((size_t) 1 << order
))
571 /* If there are non-full pages for this size allocation, they are at
572 the head of the list. */
573 entry
= G
.pages
[order
];
575 /* If there is no page for this object size, or all pages in this
576 context are full, allocate a new page. */
578 || entry
->num_free_objects
== 0
579 || entry
->context_depth
!= G
.context_depth
)
581 struct page_entry
*new_entry
;
582 new_entry
= alloc_page (order
);
584 /* If this is the only entry, it's also the tail. */
586 G
.page_tails
[order
] = new_entry
;
588 /* Put new pages at the head of the page list. */
589 new_entry
->next
= entry
;
591 G
.pages
[order
] = new_entry
;
593 /* For a new page, we know the word and bit positions (in the
594 in_use bitmap) of the first available object -- they're zero. */
595 new_entry
->next_bit_hint
= 1;
602 /* First try to use the hint left from the previous allocation
603 to locate a clear bit in the in-use bitmap. We've made sure
604 that the one-past-the-end bit is always set, so if the hint
605 has run over, this test will fail. */
606 unsigned hint
= entry
->next_bit_hint
;
607 word
= hint
/ HOST_BITS_PER_LONG
;
608 bit
= hint
% HOST_BITS_PER_LONG
;
610 /* If the hint didn't work, scan the bitmap from the beginning. */
611 if ((entry
->in_use_p
[word
] >> bit
) & 1)
614 while (~entry
->in_use_p
[word
] == 0)
616 while ((entry
->in_use_p
[word
] >> bit
) & 1)
618 hint
= word
* HOST_BITS_PER_LONG
+ bit
;
621 /* Next time, try the next bit. */
622 entry
->next_bit_hint
= hint
+ 1;
624 object_offset
= hint
<< order
;
627 /* Set the in-use bit. */
628 entry
->in_use_p
[word
] |= ((unsigned long) 1 << bit
);
630 /* Keep a running total of the number of free objects. If this page
631 fills up, we may have to move it to the end of the list if the
632 next page isn't full. If the next page is full, all subsequent
633 pages are full, so there's no need to move it. */
634 if (--entry
->num_free_objects
== 0
635 && entry
->next
!= NULL
636 && entry
->next
->num_free_objects
> 0)
638 G
.pages
[order
] = entry
->next
;
640 G
.page_tails
[order
]->next
= entry
;
641 G
.page_tails
[order
] = entry
;
644 /* Calculate the object's address. */
645 result
= entry
->page
+ object_offset
;
648 /* `Poison' the entire allocated object before zeroing the requested area,
649 so that bytes beyond the end, if any, will not necessarily be zero. */
650 poison (result
, 1 << order
);
653 memset (result
, 0, size
);
655 /* Keep track of how many bytes are being allocated. This
656 information is used in deciding when to collect. */
657 G
.allocated
+= (size_t) 1 << order
;
659 if (GGC_DEBUG_LEVEL
>= 3)
660 fprintf (G
.debug_file
,
661 "Allocating object, requested size=%d, actual=%d at %p on %p\n",
662 (int) size
, 1 << order
, result
, entry
);
668 /* If P is not marked, marks it and returns 0. Otherwise returns 1.
669 P must have been allocated by the GC allocator; it mustn't point to
670 static objects, stack variables, or memory allocated with malloc. */
679 /* Look up the page on which the object is alloced. If the object
680 wasn't allocated by the collector, we'll probably die. */
681 entry
= lookup_page_table_entry(p
);
682 #ifdef ENABLE_CHECKING
687 /* Calculate the index of the object on the page; this is its bit
688 position in the in_use_p bitmap. */
689 bit
= (((char *) p
) - entry
->page
) >> entry
->order
;
690 word
= bit
/ HOST_BITS_PER_LONG
;
691 mask
= (unsigned long) 1 << (bit
% HOST_BITS_PER_LONG
);
693 /* If the bit was previously set, skip it. */
694 if (entry
->in_use_p
[word
] & mask
)
697 /* Otherwise set it, and decrement the free object count. */
698 entry
->in_use_p
[word
] |= mask
;
699 entry
->num_free_objects
-= 1;
701 G
.allocated
+= (size_t) 1 << entry
->order
;
703 if (GGC_DEBUG_LEVEL
>= 4)
704 fprintf (G
.debug_file
, "Marking %p\n", p
);
710 /* Initialize the ggc-mmap allocator. */
714 G
.pagesize
= getpagesize();
715 G
.lg_pagesize
= exact_log2 (G
.pagesize
);
717 #ifndef MAP_ANONYMOUS
718 G
.dev_zero_fd
= open ("/dev/zero", O_RDONLY
);
719 if (G
.dev_zero_fd
== -1)
724 G
.debug_file
= fopen ("ggc-mmap.debug", "w");
726 G
.debug_file
= stdout
;
729 G
.allocated_last_gc
= GGC_MIN_LAST_ALLOCATED
;
731 empty_string
= ggc_alloc_string ("", 0);
732 ggc_add_string_root (&empty_string
, 1);
742 if (G
.context_depth
== 0)
750 unsigned order
, depth
;
752 depth
= --G
.context_depth
;
754 /* Any remaining pages in the popped context are lowered to the new
755 current context; i.e. objects allocated in the popped context and
756 left over are imported into the previous context. */
757 for (order
= 2; order
< HOST_BITS_PER_PTR
; order
++)
759 size_t num_objects
= OBJECTS_PER_PAGE (order
);
760 size_t bitmap_size
= BITMAP_SIZE (num_objects
);
764 for (p
= G
.pages
[order
]; p
!= NULL
; p
= p
->next
)
766 if (p
->context_depth
> depth
)
768 p
->context_depth
= depth
;
771 /* If this page is now in the topmost context, and we'd
772 saved its allocation state, restore it. */
773 else if (p
->context_depth
== depth
&& p
->save_in_use_p
)
775 memcpy (p
->in_use_p
, p
->save_in_use_p
, bitmap_size
);
776 free (p
->save_in_use_p
);
777 p
->save_in_use_p
= 0;
778 p
->num_free_objects
= p
->save_num_free_objects
;
786 ggc_alloc_rtx (nslots
)
789 return (struct rtx_def
*)
790 alloc_obj (sizeof (struct rtx_def
) + (nslots
- 1) * sizeof (rtunion
), 1);
795 ggc_alloc_rtvec (nelt
)
798 return (struct rtvec_def
*)
799 alloc_obj (sizeof (struct rtvec_def
) + (nelt
- 1) * sizeof (rtx
), 1);
804 ggc_alloc_tree (length
)
807 return (union tree_node
*) alloc_obj (length
, 1);
812 ggc_alloc_string (contents
, length
)
813 const char *contents
;
820 if (contents
== NULL
)
822 length
= strlen (contents
);
825 string
= (char *) alloc_obj (length
+ 1, 0);
826 if (contents
!= NULL
)
827 memcpy (string
, contents
, length
);
838 return alloc_obj (size
, 0);
847 for (order
= 2; order
< HOST_BITS_PER_PTR
; order
++)
849 size_t num_objects
= OBJECTS_PER_PAGE (order
);
850 size_t bitmap_size
= BITMAP_SIZE (num_objects
);
853 for (p
= G
.pages
[order
]; p
!= NULL
; p
= p
->next
)
855 #ifdef ENABLE_CHECKING
856 /* The data should be page-aligned. */
857 if ((size_t) p
->page
& (G
.pagesize
- 1))
861 /* Pages that aren't in the topmost context are not collected;
862 nevertheless, we need their in-use bit vectors to store GC
863 marks. So, back them up first. */
864 if (p
->context_depth
< G
.context_depth
865 && ! p
->save_in_use_p
)
867 p
->save_in_use_p
= xmalloc (bitmap_size
);
868 memcpy (p
->save_in_use_p
, p
->in_use_p
, bitmap_size
);
869 p
->save_num_free_objects
= p
->num_free_objects
;
872 /* Reset reset the number of free objects and clear the
873 in-use bits. These will be adjusted by mark_obj. */
874 p
->num_free_objects
= num_objects
;
875 memset (p
->in_use_p
, 0, bitmap_size
);
877 /* Make sure the one-past-the-end bit is always set. */
878 p
->in_use_p
[num_objects
/ HOST_BITS_PER_LONG
]
879 = ((unsigned long) 1 << (num_objects
% HOST_BITS_PER_LONG
));
889 for (order
= 2; order
< HOST_BITS_PER_PTR
; order
++)
891 /* The last page-entry to consider, regardless of entries
892 placed at the end of the list. */
893 page_entry
* const last
= G
.page_tails
[order
];
895 size_t num_objects
= OBJECTS_PER_PAGE (order
);
896 page_entry
*p
, *previous
;
906 page_entry
*next
= p
->next
;
908 /* Loop until all entries have been examined. */
911 /* Only objects on pages in the topmost context should get
913 if (p
->context_depth
< G
.context_depth
)
916 /* Remove the page if it's empty. */
917 else if (p
->num_free_objects
== num_objects
)
920 G
.pages
[order
] = next
;
922 previous
->next
= next
;
924 /* Are we removing the last element? */
925 if (p
== G
.page_tails
[order
])
926 G
.page_tails
[order
] = previous
;
931 /* If the page is full, move it to the end. */
932 else if (p
->num_free_objects
== 0)
934 /* Don't move it if it's already at the end. */
935 if (p
!= G
.page_tails
[order
])
937 /* Move p to the end of the list. */
939 G
.page_tails
[order
]->next
= p
;
941 /* Update the tail pointer... */
942 G
.page_tails
[order
] = p
;
944 /* ... and the head pointer, if necessary. */
946 G
.pages
[order
] = next
;
948 previous
->next
= next
;
953 /* If we've fallen through to here, it's a page in the
954 topmost context that is neither full nor empty. Such a
955 page must precede pages at lesser context depth in the
956 list, so move it to the head. */
957 else if (p
!= G
.pages
[order
])
959 previous
->next
= p
->next
;
960 p
->next
= G
.pages
[order
];
962 /* Are we moving the last element? */
963 if (G
.page_tails
[order
] == p
)
964 G
.page_tails
[order
] = previous
;
981 for (order
= 2; order
< HOST_BITS_PER_PTR
; order
++)
983 size_t num_objects
= OBJECTS_PER_PAGE (order
);
984 size_t size
= (size_t) 1 << order
;
987 for (p
= G
.pages
[order
]; p
!= NULL
; p
= p
->next
)
990 for (i
= 0; i
< num_objects
; i
++)
993 word
= i
/ HOST_BITS_PER_LONG
;
994 bit
= i
% HOST_BITS_PER_LONG
;
995 if (((p
->in_use_p
[word
] >> bit
) & 1) == 0)
996 poison (p
->page
+ i
* size
, size
);
1008 /* Avoid frequent unnecessary work by skipping collection if the
1009 total allocations haven't expanded much since the last
1011 #ifndef GGC_ALWAYS_COLLECT
1012 if (G
.allocated
< GGC_MIN_EXPAND_FOR_GC
* G
.allocated_last_gc
)
1016 time
= get_run_time ();
1018 fprintf (stderr
, " {GC %luk -> ", (unsigned long)G
.allocated
/ 1024);
1020 /* Zero the total allocated bytes. We'll reaccumulate this while
1024 /* Release the pages we freed the last time we collected, but didn't
1025 reuse in the interim. */
1036 G
.allocated_last_gc
= G
.allocated
;
1037 if (G
.allocated_last_gc
< GGC_MIN_LAST_ALLOCATED
)
1038 G
.allocated_last_gc
= GGC_MIN_LAST_ALLOCATED
;
1040 time
= get_run_time () - time
;
1043 time
= (time
+ 500) / 1000;
1045 fprintf (stderr
, "%luk in %d.%03d}",
1046 (unsigned long) G
.allocated
/ 1024, time
/ 1000, time
% 1000);
1051 ggc_set_mark_rtx (r
)
1054 return mark_obj (r
);
1058 ggc_set_mark_rtvec (v
)
1061 return mark_obj (v
);
1065 ggc_set_mark_tree (t
)
1068 return mark_obj (t
);