* pretty-print.c (pp_base_maybe_space): New function.
[official-gcc.git] / gcc / var-tracking.c
blob5da2376836654e91de896a13a4b4aa6df0ff2c2b
1 /* Variable tracking routines for the GNU compiler.
2 Copyright (C) 2002, 2003, 2004 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
19 02111-1307, USA. */
21 /* This file contains the variable tracking pass. It computes where
22 variables are located (which registers or where in memory) at each position
23 in instruction stream and emits notes describing the locations.
24 Debug information (DWARF2 location lists) is finally generated from
25 these notes.
26 With this debug information, it is possible to show variables
27 even when debugging optimized code.
29 How does the variable tracking pass work?
31 First, it scans RTL code for uses, stores and clobbers (register/memory
32 references in instructions), for call insns and for stack adjustments
33 separately for each basic block and saves them to an array of micro
34 operations.
35 The micro operations of one instruction are ordered so that
36 pre-modifying stack adjustment < use < use with no var < call insn <
37 < set < clobber < post-modifying stack adjustment
39 Then, a forward dataflow analysis is performed to find out how locations
40 of variables change through code and to propagate the variable locations
41 along control flow graph.
42 The IN set for basic block BB is computed as a union of OUT sets of BB's
43 predecessors, the OUT set for BB is copied from the IN set for BB and
44 is changed according to micro operations in BB.
46 The IN and OUT sets for basic blocks consist of a current stack adjustment
47 (used for adjusting offset of variables addressed using stack pointer),
48 the table of structures describing the locations of parts of a variable
49 and for each physical register a linked list for each physical register.
50 The linked list is a list of variable parts stored in the register,
51 i.e. it is a list of triplets (reg, decl, offset) where decl is
52 REG_EXPR (reg) and offset is REG_OFFSET (reg). The linked list is used for
53 effective deleting appropriate variable parts when we set or clobber the
54 register.
56 There may be more than one variable part in a register. The linked lists
57 should be pretty short so it is a good data structure here.
58 For example in the following code, register allocator may assign same
59 register to variables A and B, and both of them are stored in the same
60 register in CODE:
62 if (cond)
63 set A;
64 else
65 set B;
66 CODE;
67 if (cond)
68 use A;
69 else
70 use B;
72 Finally, the NOTE_INSN_VAR_LOCATION notes describing the variable locations
73 are emitted to appropriate positions in RTL code. Each such a note describes
74 the location of one variable at the point in instruction stream where the
75 note is. There is no need to emit a note for each variable before each
76 instruction, we only emit these notes where the location of variable changes
77 (this means that we also emit notes for changes between the OUT set of the
78 previous block and the IN set of the current block).
80 The notes consist of two parts:
81 1. the declaration (from REG_EXPR or MEM_EXPR)
82 2. the location of a variable - it is either a simple register/memory
83 reference (for simple variables, for example int),
84 or a parallel of register/memory references (for a large variables
85 which consist of several parts, for example long long).
89 #include "config.h"
90 #include "system.h"
91 #include "coretypes.h"
92 #include "tm.h"
93 #include "rtl.h"
94 #include "tree.h"
95 #include "hard-reg-set.h"
96 #include "basic-block.h"
97 #include "flags.h"
98 #include "output.h"
99 #include "insn-config.h"
100 #include "reload.h"
101 #include "sbitmap.h"
102 #include "alloc-pool.h"
103 #include "fibheap.h"
104 #include "hashtab.h"
106 /* Type of micro operation. */
107 enum micro_operation_type
109 MO_USE, /* Use location (REG or MEM). */
110 MO_USE_NO_VAR,/* Use location which is not associated with a variable
111 or the variable is not trackable. */
112 MO_SET, /* Set location. */
113 MO_CLOBBER, /* Clobber location. */
114 MO_CALL, /* Call insn. */
115 MO_ADJUST /* Adjust stack pointer. */
118 /* Where shall the note be emitted? BEFORE or AFTER the instruction. */
119 enum emit_note_where
121 EMIT_NOTE_BEFORE_INSN,
122 EMIT_NOTE_AFTER_INSN
125 /* Structure holding information about micro operation. */
126 typedef struct micro_operation_def
128 /* Type of micro operation. */
129 enum micro_operation_type type;
131 union {
132 /* Location. */
133 rtx loc;
135 /* Stack adjustment. */
136 HOST_WIDE_INT adjust;
137 } u;
139 /* The instruction which the micro operation is in. */
140 rtx insn;
141 } micro_operation;
143 /* Structure for passing some other parameters to function
144 emit_note_insn_var_location. */
145 typedef struct emit_note_data_def
147 /* The instruction which the note will be emitted before/after. */
148 rtx insn;
150 /* Where the note will be emitted (before/after insn)? */
151 enum emit_note_where where;
152 } emit_note_data;
154 /* Description of location of a part of a variable. The content of a physical
155 register is described by a chain of these structures.
156 The chains are pretty short (usually 1 or 2 elements) and thus
157 chain is the best data structure. */
158 typedef struct attrs_def
160 /* Pointer to next member of the list. */
161 struct attrs_def *next;
163 /* The rtx of register. */
164 rtx loc;
166 /* The declaration corresponding to LOC. */
167 tree decl;
169 /* Offset from start of DECL. */
170 HOST_WIDE_INT offset;
171 } *attrs;
173 /* Structure holding the IN or OUT set for a basic block. */
174 typedef struct dataflow_set_def
176 /* Adjustment of stack offset. */
177 HOST_WIDE_INT stack_adjust;
179 /* Attributes for registers (lists of attrs). */
180 attrs regs[FIRST_PSEUDO_REGISTER];
182 /* Variable locations. */
183 htab_t vars;
184 } dataflow_set;
186 /* The structure (one for each basic block) containing the information
187 needed for variable tracking. */
188 typedef struct variable_tracking_info_def
190 /* Number of micro operations stored in the MOS array. */
191 int n_mos;
193 /* The array of micro operations. */
194 micro_operation *mos;
196 /* The IN and OUT set for dataflow analysis. */
197 dataflow_set in;
198 dataflow_set out;
200 /* Has the block been visited in DFS? */
201 bool visited;
202 } *variable_tracking_info;
204 /* Structure for chaining the locations. */
205 typedef struct location_chain_def
207 /* Next element in the chain. */
208 struct location_chain_def *next;
210 /* The location (REG or MEM). */
211 rtx loc;
212 } *location_chain;
214 /* Structure describing one part of variable. */
215 typedef struct variable_part_def
217 /* Chain of locations of the part. */
218 location_chain loc_chain;
220 /* Location which was last emitted to location list. */
221 rtx cur_loc;
223 /* The offset in the variable. */
224 HOST_WIDE_INT offset;
225 } variable_part;
227 /* Maximum number of location parts. */
228 #define MAX_VAR_PARTS 16
230 /* Structure describing where the variable is located. */
231 typedef struct variable_def
233 /* The declaration of the variable. */
234 tree decl;
236 /* Reference count. */
237 int refcount;
239 /* Number of variable parts. */
240 int n_var_parts;
242 /* The variable parts. */
243 variable_part var_part[MAX_VAR_PARTS];
244 } *variable;
246 /* Hash function for DECL for VARIABLE_HTAB. */
247 #define VARIABLE_HASH_VAL(decl) ((size_t) (decl))
249 /* Pointer to the BB's information specific to variable tracking pass. */
250 #define VTI(BB) ((variable_tracking_info) (BB)->aux)
252 /* Alloc pool for struct attrs_def. */
253 static alloc_pool attrs_pool;
255 /* Alloc pool for struct variable_def. */
256 static alloc_pool var_pool;
258 /* Alloc pool for struct location_chain_def. */
259 static alloc_pool loc_chain_pool;
261 /* Changed variables, notes will be emitted for them. */
262 static htab_t changed_variables;
264 /* Shall notes be emitted? */
265 static bool emit_notes;
267 /* Fake variable for stack pointer. */
268 GTY(()) tree frame_base_decl;
270 /* Local function prototypes. */
271 static void stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
272 HOST_WIDE_INT *);
273 static void insn_stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
274 HOST_WIDE_INT *);
275 static void bb_stack_adjust_offset (basic_block);
276 static HOST_WIDE_INT prologue_stack_adjust (void);
277 static bool vt_stack_adjustments (void);
278 static rtx adjust_stack_reference (rtx, HOST_WIDE_INT);
279 static hashval_t variable_htab_hash (const void *);
280 static int variable_htab_eq (const void *, const void *);
281 static void variable_htab_free (void *);
283 static void init_attrs_list_set (attrs *);
284 static void attrs_list_clear (attrs *);
285 static attrs attrs_list_member (attrs, tree, HOST_WIDE_INT);
286 static void attrs_list_insert (attrs *, tree, HOST_WIDE_INT, rtx);
287 static void attrs_list_copy (attrs *, attrs);
288 static void attrs_list_union (attrs *, attrs);
290 static void vars_clear (htab_t);
291 static variable unshare_variable (dataflow_set *set, variable var);
292 static int vars_copy_1 (void **, void *);
293 static void vars_copy (htab_t, htab_t);
294 static void var_reg_delete_and_set (dataflow_set *, rtx);
295 static void var_reg_delete (dataflow_set *, rtx);
296 static void var_regno_delete (dataflow_set *, int);
297 static void var_mem_delete_and_set (dataflow_set *, rtx);
298 static void var_mem_delete (dataflow_set *, rtx);
300 static void dataflow_set_init (dataflow_set *, int);
301 static void dataflow_set_clear (dataflow_set *);
302 static void dataflow_set_copy (dataflow_set *, dataflow_set *);
303 static int variable_union_info_cmp_pos (const void *, const void *);
304 static int variable_union (void **, void *);
305 static void dataflow_set_union (dataflow_set *, dataflow_set *);
306 static bool variable_part_different_p (variable_part *, variable_part *);
307 static bool variable_different_p (variable, variable);
308 static int dataflow_set_different_1 (void **, void *);
309 static int dataflow_set_different_2 (void **, void *);
310 static bool dataflow_set_different (dataflow_set *, dataflow_set *);
311 static void dataflow_set_destroy (dataflow_set *);
313 static bool contains_symbol_ref (rtx);
314 static bool track_expr_p (tree);
315 static int count_uses (rtx *, void *);
316 static void count_uses_1 (rtx *, void *);
317 static void count_stores (rtx, rtx, void *);
318 static int add_uses (rtx *, void *);
319 static void add_uses_1 (rtx *, void *);
320 static void add_stores (rtx, rtx, void *);
321 static bool compute_bb_dataflow (basic_block);
322 static void vt_find_locations (void);
324 static void dump_attrs_list (attrs);
325 static int dump_variable (void **, void *);
326 static void dump_vars (htab_t);
327 static void dump_dataflow_set (dataflow_set *);
328 static void dump_dataflow_sets (void);
330 static void variable_was_changed (variable, htab_t);
331 static void set_frame_base_location (dataflow_set *, rtx);
332 static void set_variable_part (dataflow_set *, rtx, tree, HOST_WIDE_INT);
333 static void delete_variable_part (dataflow_set *, rtx, tree, HOST_WIDE_INT);
334 static int emit_note_insn_var_location (void **, void *);
335 static void emit_notes_for_changes (rtx, enum emit_note_where);
336 static int emit_notes_for_differences_1 (void **, void *);
337 static int emit_notes_for_differences_2 (void **, void *);
338 static void emit_notes_for_differences (rtx, dataflow_set *, dataflow_set *);
339 static void emit_notes_in_bb (basic_block);
340 static void vt_emit_notes (void);
342 static bool vt_get_decl_and_offset (rtx, tree *, HOST_WIDE_INT *);
343 static void vt_add_function_parameters (void);
344 static void vt_initialize (void);
345 static void vt_finalize (void);
347 /* Given a SET, calculate the amount of stack adjustment it contains
348 PRE- and POST-modifying stack pointer.
349 This function is similar to stack_adjust_offset. */
351 static void
352 stack_adjust_offset_pre_post (rtx pattern, HOST_WIDE_INT *pre,
353 HOST_WIDE_INT *post)
355 rtx src = SET_SRC (pattern);
356 rtx dest = SET_DEST (pattern);
357 enum rtx_code code;
359 if (dest == stack_pointer_rtx)
361 /* (set (reg sp) (plus (reg sp) (const_int))) */
362 code = GET_CODE (src);
363 if (! (code == PLUS || code == MINUS)
364 || XEXP (src, 0) != stack_pointer_rtx
365 || GET_CODE (XEXP (src, 1)) != CONST_INT)
366 return;
368 if (code == MINUS)
369 *post += INTVAL (XEXP (src, 1));
370 else
371 *post -= INTVAL (XEXP (src, 1));
373 else if (GET_CODE (dest) == MEM)
375 /* (set (mem (pre_dec (reg sp))) (foo)) */
376 src = XEXP (dest, 0);
377 code = GET_CODE (src);
379 switch (code)
381 case PRE_MODIFY:
382 case POST_MODIFY:
383 if (XEXP (src, 0) == stack_pointer_rtx)
385 rtx val = XEXP (XEXP (src, 1), 1);
386 /* We handle only adjustments by constant amount. */
387 if (GET_CODE (XEXP (src, 1)) != PLUS ||
388 GET_CODE (val) != CONST_INT)
389 abort ();
390 if (code == PRE_MODIFY)
391 *pre -= INTVAL (val);
392 else
393 *post -= INTVAL (val);
394 break;
396 return;
398 case PRE_DEC:
399 if (XEXP (src, 0) == stack_pointer_rtx)
401 *pre += GET_MODE_SIZE (GET_MODE (dest));
402 break;
404 return;
406 case POST_DEC:
407 if (XEXP (src, 0) == stack_pointer_rtx)
409 *post += GET_MODE_SIZE (GET_MODE (dest));
410 break;
412 return;
414 case PRE_INC:
415 if (XEXP (src, 0) == stack_pointer_rtx)
417 *pre -= GET_MODE_SIZE (GET_MODE (dest));
418 break;
420 return;
422 case POST_INC:
423 if (XEXP (src, 0) == stack_pointer_rtx)
425 *post -= GET_MODE_SIZE (GET_MODE (dest));
426 break;
428 return;
430 default:
431 return;
436 /* Given an INSN, calculate the amount of stack adjustment it contains
437 PRE- and POST-modifying stack pointer. */
439 static void
440 insn_stack_adjust_offset_pre_post (rtx insn, HOST_WIDE_INT *pre,
441 HOST_WIDE_INT *post)
443 *pre = 0;
444 *post = 0;
446 if (GET_CODE (PATTERN (insn)) == SET)
447 stack_adjust_offset_pre_post (PATTERN (insn), pre, post);
448 else if (GET_CODE (PATTERN (insn)) == PARALLEL
449 || GET_CODE (PATTERN (insn)) == SEQUENCE)
451 int i;
453 /* There may be stack adjustments inside compound insns. Search
454 for them. */
455 for ( i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
456 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
457 stack_adjust_offset_pre_post (XVECEXP (PATTERN (insn), 0, i),
458 pre, post);
462 /* Compute stack adjustment in basic block BB. */
464 static void
465 bb_stack_adjust_offset (basic_block bb)
467 HOST_WIDE_INT offset;
468 int i;
470 offset = VTI (bb)->in.stack_adjust;
471 for (i = 0; i < VTI (bb)->n_mos; i++)
473 if (VTI (bb)->mos[i].type == MO_ADJUST)
474 offset += VTI (bb)->mos[i].u.adjust;
475 else if (VTI (bb)->mos[i].type != MO_CALL)
477 if (GET_CODE (VTI (bb)->mos[i].u.loc) == MEM)
479 VTI (bb)->mos[i].u.loc
480 = adjust_stack_reference (VTI (bb)->mos[i].u.loc, -offset);
484 VTI (bb)->out.stack_adjust = offset;
487 /* Compute stack adjustment caused by function prolog. */
489 static HOST_WIDE_INT
490 prologue_stack_adjust (void)
492 HOST_WIDE_INT offset = 0;
493 basic_block bb = ENTRY_BLOCK_PTR->next_bb;
494 rtx insn;
495 rtx end;
497 if (!BB_END (bb))
498 return 0;
500 end = NEXT_INSN (BB_END (bb));
501 for (insn = BB_HEAD (bb); insn != end; insn = NEXT_INSN (insn))
503 if (GET_CODE (insn) == NOTE
504 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
505 break;
507 if (INSN_P (insn))
509 HOST_WIDE_INT tmp;
511 insn_stack_adjust_offset_pre_post (insn, &tmp, &tmp);
512 offset += tmp;
516 return offset;
519 /* Compute stack adjustments for all blocks by traversing DFS tree.
520 Return true when the adjustments on all incoming edges are consistent.
521 Heavily borrowed from flow_depth_first_order_compute. */
523 static bool
524 vt_stack_adjustments (void)
526 edge *stack;
527 int sp;
529 /* Initialize entry block. */
530 VTI (ENTRY_BLOCK_PTR)->visited = true;
531 VTI (ENTRY_BLOCK_PTR)->out.stack_adjust = 0;
533 /* Allocate stack for back-tracking up CFG. */
534 stack = xmalloc ((n_basic_blocks + 1) * sizeof (edge));
535 sp = 0;
537 /* Push the first edge on to the stack. */
538 stack[sp++] = ENTRY_BLOCK_PTR->succ;
540 while (sp)
542 edge e;
543 basic_block src;
544 basic_block dest;
546 /* Look at the edge on the top of the stack. */
547 e = stack[sp - 1];
548 src = e->src;
549 dest = e->dest;
551 /* Check if the edge destination has been visited yet. */
552 if (!VTI (dest)->visited)
554 VTI (dest)->visited = true;
555 VTI (dest)->in.stack_adjust = VTI (src)->out.stack_adjust;
556 bb_stack_adjust_offset (dest);
558 if (dest->succ)
559 /* Since the DEST node has been visited for the first
560 time, check its successors. */
561 stack[sp++] = dest->succ;
563 else
565 /* Check whether the adjustments on the edges are the same. */
566 if (VTI (dest)->in.stack_adjust != VTI (src)->out.stack_adjust)
568 free (stack);
569 return false;
572 if (e->succ_next)
573 /* Go to the next edge. */
574 stack[sp - 1] = e->succ_next;
575 else
576 /* Return to previous level if there are no more edges. */
577 sp--;
581 free (stack);
582 return true;
585 /* Adjust stack reference MEM by ADJUSTMENT bytes and return the new rtx. */
587 static rtx
588 adjust_stack_reference (rtx mem, HOST_WIDE_INT adjustment)
590 rtx adjusted_mem;
591 rtx tmp;
593 adjusted_mem = copy_rtx (mem);
594 XEXP (adjusted_mem, 0) = replace_rtx (XEXP (adjusted_mem, 0),
595 stack_pointer_rtx,
596 gen_rtx_PLUS (Pmode, stack_pointer_rtx,
597 GEN_INT (adjustment)));
598 tmp = simplify_rtx (XEXP (adjusted_mem, 0));
599 if (tmp)
600 XEXP (adjusted_mem, 0) = tmp;
602 return adjusted_mem;
605 /* The hash function for variable_htab, computes the hash value
606 from the declaration of variable X. */
608 static hashval_t
609 variable_htab_hash (const void *x)
611 const variable v = (const variable) x;
613 return (VARIABLE_HASH_VAL (v->decl));
616 /* Compare the declaration of variable X with declaration Y. */
618 static int
619 variable_htab_eq (const void *x, const void *y)
621 const variable v = (const variable) x;
622 const tree decl = (const tree) y;
624 return (VARIABLE_HASH_VAL (v->decl) == VARIABLE_HASH_VAL (decl));
627 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
629 static void
630 variable_htab_free (void *elem)
632 int i;
633 variable var = (variable) elem;
634 location_chain node, next;
636 #ifdef ENABLE_CHECKING
637 if (var->refcount <= 0)
638 abort ();
639 #endif
641 var->refcount--;
642 if (var->refcount > 0)
643 return;
645 for (i = 0; i < var->n_var_parts; i++)
647 for (node = var->var_part[i].loc_chain; node; node = next)
649 next = node->next;
650 pool_free (loc_chain_pool, node);
652 var->var_part[i].loc_chain = NULL;
654 pool_free (var_pool, var);
657 /* Initialize the set (array) SET of attrs to empty lists. */
659 static void
660 init_attrs_list_set (attrs *set)
662 int i;
664 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
665 set[i] = NULL;
668 /* Make the list *LISTP empty. */
670 static void
671 attrs_list_clear (attrs *listp)
673 attrs list, next;
675 for (list = *listp; list; list = next)
677 next = list->next;
678 pool_free (attrs_pool, list);
680 *listp = NULL;
683 /* Return true if the pair of DECL and OFFSET is the member of the LIST. */
685 static attrs
686 attrs_list_member (attrs list, tree decl, HOST_WIDE_INT offset)
688 for (; list; list = list->next)
689 if (list->decl == decl && list->offset == offset)
690 return list;
691 return NULL;
694 /* Insert the triplet DECL, OFFSET, LOC to the list *LISTP. */
696 static void
697 attrs_list_insert (attrs *listp, tree decl, HOST_WIDE_INT offset, rtx loc)
699 attrs list;
701 list = pool_alloc (attrs_pool);
702 list->loc = loc;
703 list->decl = decl;
704 list->offset = offset;
705 list->next = *listp;
706 *listp = list;
709 /* Copy all nodes from SRC and create a list *DSTP of the copies. */
711 static void
712 attrs_list_copy (attrs *dstp, attrs src)
714 attrs n;
716 attrs_list_clear (dstp);
717 for (; src; src = src->next)
719 n = pool_alloc (attrs_pool);
720 n->loc = src->loc;
721 n->decl = src->decl;
722 n->offset = src->offset;
723 n->next = *dstp;
724 *dstp = n;
728 /* Add all nodes from SRC which are not in *DSTP to *DSTP. */
730 static void
731 attrs_list_union (attrs *dstp, attrs src)
733 for (; src; src = src->next)
735 if (!attrs_list_member (*dstp, src->decl, src->offset))
736 attrs_list_insert (dstp, src->decl, src->offset, src->loc);
740 /* Delete all variables from hash table VARS. */
742 static void
743 vars_clear (htab_t vars)
745 htab_empty (vars);
748 /* Return a copy of a variable VAR and insert it to dataflow set SET. */
750 static variable
751 unshare_variable (dataflow_set *set, variable var)
753 void **slot;
754 variable new_var;
755 int i;
757 new_var = pool_alloc (var_pool);
758 new_var->decl = var->decl;
759 new_var->refcount = 1;
760 var->refcount--;
761 new_var->n_var_parts = var->n_var_parts;
763 for (i = 0; i < var->n_var_parts; i++)
765 location_chain node;
766 location_chain *nextp;
768 new_var->var_part[i].offset = var->var_part[i].offset;
769 nextp = &new_var->var_part[i].loc_chain;
770 for (node = var->var_part[i].loc_chain; node; node = node->next)
772 location_chain new_lc;
774 new_lc = pool_alloc (loc_chain_pool);
775 new_lc->next = NULL;
776 new_lc->loc = node->loc;
778 *nextp = new_lc;
779 nextp = &new_lc->next;
782 /* We are at the basic block boundary when copying variable description
783 so set the CUR_LOC to be the first element of the chain. */
784 if (new_var->var_part[i].loc_chain)
785 new_var->var_part[i].cur_loc = new_var->var_part[i].loc_chain->loc;
786 else
787 new_var->var_part[i].cur_loc = NULL;
790 slot = htab_find_slot_with_hash (set->vars, new_var->decl,
791 VARIABLE_HASH_VAL (new_var->decl),
792 INSERT);
793 *slot = new_var;
794 return new_var;
797 /* Add a variable from *SLOT to hash table DATA and increase its reference
798 count. */
800 static int
801 vars_copy_1 (void **slot, void *data)
803 htab_t dst = (htab_t) data;
804 variable src, *dstp;
806 src = *(variable *) slot;
807 src->refcount++;
809 dstp = (variable *) htab_find_slot_with_hash (dst, src->decl,
810 VARIABLE_HASH_VAL (src->decl),
811 INSERT);
812 *dstp = src;
814 /* Continue traversing the hash table. */
815 return 1;
818 /* Copy all variables from hash table SRC to hash table DST. */
820 static void
821 vars_copy (htab_t dst, htab_t src)
823 vars_clear (dst);
824 htab_traverse (src, vars_copy_1, dst);
827 /* Delete current content of register LOC in dataflow set SET
828 and set the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). */
830 static void
831 var_reg_delete_and_set (dataflow_set *set, rtx loc)
833 tree decl = REG_EXPR (loc);
834 HOST_WIDE_INT offset = REG_OFFSET (loc);
835 attrs node, next;
836 attrs *nextp;
838 nextp = &set->regs[REGNO (loc)];
839 for (node = *nextp; node; node = next)
841 next = node->next;
842 if (node->decl != decl || node->offset != offset)
844 delete_variable_part (set, node->loc, node->decl, node->offset);
845 pool_free (attrs_pool, node);
846 *nextp = next;
848 else
850 node->loc = loc;
851 nextp = &node->next;
854 if (set->regs[REGNO (loc)] == NULL)
855 attrs_list_insert (&set->regs[REGNO (loc)], decl, offset, loc);
856 set_variable_part (set, loc, decl, offset);
859 /* Delete current content of register LOC in dataflow set SET. */
861 static void
862 var_reg_delete (dataflow_set *set, rtx loc)
864 attrs *reg = &set->regs[REGNO (loc)];
865 attrs node, next;
867 for (node = *reg; node; node = next)
869 next = node->next;
870 delete_variable_part (set, node->loc, node->decl, node->offset);
871 pool_free (attrs_pool, node);
873 *reg = NULL;
876 /* Delete content of register with number REGNO in dataflow set SET. */
878 static void
879 var_regno_delete (dataflow_set *set, int regno)
881 attrs *reg = &set->regs[regno];
882 attrs node, next;
884 for (node = *reg; node; node = next)
886 next = node->next;
887 delete_variable_part (set, node->loc, node->decl, node->offset);
888 pool_free (attrs_pool, node);
890 *reg = NULL;
893 /* Delete and set the location part of variable MEM_EXPR (LOC)
894 in dataflow set SET to LOC.
895 Adjust the address first if it is stack pointer based. */
897 static void
898 var_mem_delete_and_set (dataflow_set *set, rtx loc)
900 tree decl = MEM_EXPR (loc);
901 HOST_WIDE_INT offset = MEM_OFFSET (loc) ? INTVAL (MEM_OFFSET (loc)) : 0;
903 set_variable_part (set, loc, decl, offset);
906 /* Delete the location part LOC from dataflow set SET.
907 Adjust the address first if it is stack pointer based. */
909 static void
910 var_mem_delete (dataflow_set *set, rtx loc)
912 tree decl = MEM_EXPR (loc);
913 HOST_WIDE_INT offset = MEM_OFFSET (loc) ? INTVAL (MEM_OFFSET (loc)) : 0;
915 delete_variable_part (set, loc, decl, offset);
918 /* Initialize dataflow set SET to be empty.
919 VARS_SIZE is the initial size of hash table VARS. */
921 static void
922 dataflow_set_init (dataflow_set *set, int vars_size)
924 init_attrs_list_set (set->regs);
925 set->vars = htab_create (vars_size, variable_htab_hash, variable_htab_eq,
926 variable_htab_free);
927 set->stack_adjust = 0;
930 /* Delete the contents of dataflow set SET. */
932 static void
933 dataflow_set_clear (dataflow_set *set)
935 int i;
937 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
938 attrs_list_clear (&set->regs[i]);
940 vars_clear (set->vars);
943 /* Copy the contents of dataflow set SRC to DST. */
945 static void
946 dataflow_set_copy (dataflow_set *dst, dataflow_set *src)
948 int i;
950 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
951 attrs_list_copy (&dst->regs[i], src->regs[i]);
953 vars_copy (dst->vars, src->vars);
954 dst->stack_adjust = src->stack_adjust;
957 /* Information for merging lists of locations for a given offset of variable.
959 struct variable_union_info
961 /* Node of the location chain. */
962 location_chain lc;
964 /* The sum of positions in the input chains. */
965 int pos;
967 /* The position in the chains of SRC and DST dataflow sets. */
968 int pos_src;
969 int pos_dst;
972 /* Compare function for qsort, order the structures by POS element. */
974 static int
975 variable_union_info_cmp_pos (const void *n1, const void *n2)
977 const struct variable_union_info *i1 = n1;
978 const struct variable_union_info *i2 = n2;
980 if (i1->pos != i2->pos)
981 return i1->pos - i2->pos;
983 return (i1->pos_dst - i2->pos_dst);
986 /* Compute union of location parts of variable *SLOT and the same variable
987 from hash table DATA. Compute "sorted" union of the location chains
988 for common offsets, i.e. the locations of a variable part are sorted by
989 a priority where the priority is the sum of the positions in the 2 chains
990 (if a location is only in one list the position in the second list is
991 defined to be larger than the length of the chains).
992 When we are updating the location parts the newest location is in the
993 beginning of the chain, so when we do the described "sorted" union
994 we keep the newest locations in the beginning. */
996 static int
997 variable_union (void **slot, void *data)
999 variable src, dst, *dstp;
1000 dataflow_set *set = (dataflow_set *) data;
1001 int i, j, k;
1003 src = *(variable *) slot;
1004 dstp = (variable *) htab_find_slot_with_hash (set->vars, src->decl,
1005 VARIABLE_HASH_VAL (src->decl),
1006 INSERT);
1007 if (!*dstp)
1009 src->refcount++;
1011 /* If CUR_LOC of some variable part is not the first element of
1012 the location chain we are going to change it so we have to make
1013 a copy of the variable. */
1014 for (k = 0; k < src->n_var_parts; k++)
1016 if (src->var_part[k].loc_chain)
1018 #ifdef ENABLE_CHECKING
1019 if (src->var_part[k].cur_loc == NULL)
1020 abort ();
1021 #endif
1022 if (src->var_part[k].cur_loc != src->var_part[k].loc_chain->loc)
1023 break;
1025 #ifdef ENABLE_CHECKING
1026 else
1028 if (src->var_part[k].cur_loc != NULL)
1029 abort ();
1031 #endif
1033 if (k < src->n_var_parts)
1034 unshare_variable (set, src);
1035 else
1036 *dstp = src;
1038 /* Continue traversing the hash table. */
1039 return 1;
1041 else
1042 dst = *dstp;
1044 #ifdef ENABLE_CHECKING
1045 if (src->n_var_parts == 0)
1046 abort ();
1047 #endif
1049 /* Count the number of location parts, result is K. */
1050 for (i = 0, j = 0, k = 0;
1051 i < src->n_var_parts && j < dst->n_var_parts; k++)
1053 if (src->var_part[i].offset == dst->var_part[j].offset)
1055 i++;
1056 j++;
1058 else if (src->var_part[i].offset < dst->var_part[j].offset)
1059 i++;
1060 else
1061 j++;
1063 k += src->n_var_parts - i;
1064 k += dst->n_var_parts - j;
1065 #ifdef ENABLE_CHECKING
1066 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
1067 thus there are at most MAX_VAR_PARTS different offsets. */
1068 if (k > MAX_VAR_PARTS)
1069 abort ();
1070 #endif
1072 if (dst->refcount > 1 && dst->n_var_parts != k)
1073 dst = unshare_variable (set, dst);
1075 i = src->n_var_parts - 1;
1076 j = dst->n_var_parts - 1;
1077 dst->n_var_parts = k;
1079 for (k--; k >= 0; k--)
1081 location_chain node, node2;
1083 if (i >= 0 && j >= 0
1084 && src->var_part[i].offset == dst->var_part[j].offset)
1086 /* Compute the "sorted" union of the chains, i.e. the locations which
1087 are in both chains go first, they are sorted by the sum of
1088 positions in the chains. */
1089 int dst_l, src_l;
1090 int ii, jj, n;
1091 struct variable_union_info *vui;
1093 /* If DST is shared compare the location chains.
1094 If they are different we will modify the chain in DST with
1095 high probability so make a copy of DST. */
1096 if (dst->refcount > 1)
1098 for (node = src->var_part[i].loc_chain,
1099 node2 = dst->var_part[j].loc_chain; node && node2;
1100 node = node->next, node2 = node2->next)
1102 if (!((GET_CODE (node2->loc) == REG
1103 && GET_CODE (node->loc) == REG
1104 && REGNO (node2->loc) == REGNO (node->loc))
1105 || rtx_equal_p (node2->loc, node->loc)))
1106 break;
1108 if (node || node2)
1109 dst = unshare_variable (set, dst);
1112 src_l = 0;
1113 for (node = src->var_part[i].loc_chain; node; node = node->next)
1114 src_l++;
1115 dst_l = 0;
1116 for (node = dst->var_part[j].loc_chain; node; node = node->next)
1117 dst_l++;
1118 vui = xcalloc (src_l + dst_l, sizeof (struct variable_union_info));
1120 /* Fill in the locations from DST. */
1121 for (node = dst->var_part[j].loc_chain, jj = 0; node;
1122 node = node->next, jj++)
1124 vui[jj].lc = node;
1125 vui[jj].pos_dst = jj;
1127 /* Value larger than a sum of 2 valid positions. */
1128 vui[jj].pos_src = src_l + dst_l;
1131 /* Fill in the locations from SRC. */
1132 n = dst_l;
1133 for (node = src->var_part[i].loc_chain, ii = 0; node;
1134 node = node->next, ii++)
1136 /* Find location from NODE. */
1137 for (jj = 0; jj < dst_l; jj++)
1139 if ((GET_CODE (vui[jj].lc->loc) == REG
1140 && GET_CODE (node->loc) == REG
1141 && REGNO (vui[jj].lc->loc) == REGNO (node->loc))
1142 || rtx_equal_p (vui[jj].lc->loc, node->loc))
1144 vui[jj].pos_src = ii;
1145 break;
1148 if (jj >= dst_l) /* The location has not been found. */
1150 location_chain new_node;
1152 /* Copy the location from SRC. */
1153 new_node = pool_alloc (loc_chain_pool);
1154 new_node->loc = node->loc;
1155 vui[n].lc = new_node;
1156 vui[n].pos_src = ii;
1157 vui[n].pos_dst = src_l + dst_l;
1158 n++;
1162 for (ii = 0; ii < src_l + dst_l; ii++)
1163 vui[ii].pos = vui[ii].pos_src + vui[ii].pos_dst;
1165 qsort (vui, n, sizeof (struct variable_union_info),
1166 variable_union_info_cmp_pos);
1168 /* Reconnect the nodes in sorted order. */
1169 for (ii = 1; ii < n; ii++)
1170 vui[ii - 1].lc->next = vui[ii].lc;
1171 vui[n - 1].lc->next = NULL;
1173 dst->var_part[k].loc_chain = vui[0].lc;
1174 dst->var_part[k].offset = dst->var_part[j].offset;
1176 free (vui);
1177 i--;
1178 j--;
1180 else if ((i >= 0 && j >= 0
1181 && src->var_part[i].offset < dst->var_part[j].offset)
1182 || i < 0)
1184 dst->var_part[k] = dst->var_part[j];
1185 j--;
1187 else if ((i >= 0 && j >= 0
1188 && src->var_part[i].offset > dst->var_part[j].offset)
1189 || j < 0)
1191 location_chain *nextp;
1193 /* Copy the chain from SRC. */
1194 nextp = &dst->var_part[k].loc_chain;
1195 for (node = src->var_part[i].loc_chain; node; node = node->next)
1197 location_chain new_lc;
1199 new_lc = pool_alloc (loc_chain_pool);
1200 new_lc->next = NULL;
1201 new_lc->loc = node->loc;
1203 *nextp = new_lc;
1204 nextp = &new_lc->next;
1207 dst->var_part[k].offset = src->var_part[i].offset;
1208 i--;
1211 /* We are at the basic block boundary when computing union
1212 so set the CUR_LOC to be the first element of the chain. */
1213 if (dst->var_part[k].loc_chain)
1214 dst->var_part[k].cur_loc = dst->var_part[k].loc_chain->loc;
1215 else
1216 dst->var_part[k].cur_loc = NULL;
1219 /* Continue traversing the hash table. */
1220 return 1;
1223 /* Compute union of dataflow sets SRC and DST and store it to DST. */
1225 static void
1226 dataflow_set_union (dataflow_set *dst, dataflow_set *src)
1228 int i;
1230 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1231 attrs_list_union (&dst->regs[i], src->regs[i]);
1233 htab_traverse (src->vars, variable_union, dst);
1236 /* Flag whether two dataflow sets being compared contain different data. */
1237 static bool
1238 dataflow_set_different_value;
1240 static bool
1241 variable_part_different_p (variable_part *vp1, variable_part *vp2)
1243 location_chain lc1, lc2;
1245 for (lc1 = vp1->loc_chain; lc1; lc1 = lc1->next)
1247 for (lc2 = vp2->loc_chain; lc2; lc2 = lc2->next)
1249 if (GET_CODE (lc1->loc) == REG && GET_CODE (lc2->loc) == REG)
1251 if (REGNO (lc1->loc) == REGNO (lc2->loc))
1252 break;
1254 if (rtx_equal_p (lc1->loc, lc2->loc))
1255 break;
1257 if (!lc2)
1258 return true;
1260 return false;
1263 /* Return true if variables VAR1 and VAR2 are different (only the first
1264 location in the list of locations is checked for each offset,
1265 i.e. when true is returned a note should be emitted). */
1267 static bool
1268 variable_different_p (variable var1, variable var2)
1270 int i;
1272 if (var1 == var2)
1273 return false;
1275 if (var1->n_var_parts != var2->n_var_parts)
1276 return true;
1278 for (i = 0; i < var1->n_var_parts; i++)
1280 if (var1->var_part[i].offset != var2->var_part[i].offset)
1281 return true;
1282 if (variable_part_different_p (&var1->var_part[i], &var2->var_part[i]))
1283 return true;
1284 if (variable_part_different_p (&var2->var_part[i], &var1->var_part[i]))
1285 return true;
1287 return false;
1290 /* Compare variable *SLOT with the same variable in hash table DATA
1291 and set DATAFLOW_SET_DIFFERENT_VALUE if they are different. */
1293 static int
1294 dataflow_set_different_1 (void **slot, void *data)
1296 htab_t htab = (htab_t) data;
1297 variable var1, var2;
1299 var1 = *(variable *) slot;
1300 var2 = (variable) htab_find_with_hash (htab, var1->decl,
1301 VARIABLE_HASH_VAL (var1->decl));
1302 if (!var2)
1304 dataflow_set_different_value = true;
1306 /* Stop traversing the hash table. */
1307 return 0;
1310 if (variable_different_p (var1, var2))
1312 dataflow_set_different_value = true;
1314 /* Stop traversing the hash table. */
1315 return 0;
1318 /* Continue traversing the hash table. */
1319 return 1;
1322 /* Compare variable *SLOT with the same variable in hash table DATA
1323 and set DATAFLOW_SET_DIFFERENT_VALUE if they are different. */
1325 static int
1326 dataflow_set_different_2 (void **slot, void *data)
1328 htab_t htab = (htab_t) data;
1329 variable var1, var2;
1331 var1 = *(variable *) slot;
1332 var2 = (variable) htab_find_with_hash (htab, var1->decl,
1333 VARIABLE_HASH_VAL (var1->decl));
1334 if (!var2)
1336 dataflow_set_different_value = true;
1338 /* Stop traversing the hash table. */
1339 return 0;
1342 #ifdef ENABLE_CHECKING
1343 /* If both variables are defined they have been already checked for
1344 equivalence. */
1345 if (variable_different_p (var1, var2))
1346 abort ();
1347 #endif
1349 /* Continue traversing the hash table. */
1350 return 1;
1353 /* Return true if dataflow sets OLD_SET and NEW_SET differ. */
1355 static bool
1356 dataflow_set_different (dataflow_set *old_set, dataflow_set *new_set)
1358 dataflow_set_different_value = false;
1360 htab_traverse (old_set->vars, dataflow_set_different_1, new_set->vars);
1361 if (!dataflow_set_different_value)
1363 /* We have compared the variables which are in both hash tables
1364 so now only check whether there are some variables in NEW_SET->VARS
1365 which are not in OLD_SET->VARS. */
1366 htab_traverse (new_set->vars, dataflow_set_different_2, old_set->vars);
1368 return dataflow_set_different_value;
1371 /* Free the contents of dataflow set SET. */
1373 static void
1374 dataflow_set_destroy (dataflow_set *set)
1376 int i;
1378 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1379 attrs_list_clear (&set->regs[i]);
1381 htab_delete (set->vars);
1382 set->vars = NULL;
1385 /* Return true if RTL X contains a SYMBOL_REF. */
1387 static bool
1388 contains_symbol_ref (rtx x)
1390 const char *fmt;
1391 RTX_CODE code;
1392 int i;
1394 if (!x)
1395 return false;
1397 code = GET_CODE (x);
1398 if (code == SYMBOL_REF)
1399 return true;
1401 fmt = GET_RTX_FORMAT (code);
1402 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1404 if (fmt[i] == 'e')
1406 if (contains_symbol_ref (XEXP (x, i)))
1407 return true;
1409 else if (fmt[i] == 'E')
1411 int j;
1412 for (j = 0; j < XVECLEN (x, i); j++)
1413 if (contains_symbol_ref (XVECEXP (x, i, j)))
1414 return true;
1418 return false;
1421 /* Shall EXPR be tracked? */
1423 static bool
1424 track_expr_p (tree expr)
1426 rtx decl_rtl;
1428 /* If EXPR is not a parameter or a variable do not track it. */
1429 if (TREE_CODE (expr) != VAR_DECL && TREE_CODE (expr) != PARM_DECL)
1430 return 0;
1432 /* It also must have a name... */
1433 if (!DECL_NAME (expr))
1434 return 0;
1436 /* ... and a RTL assigned to it. */
1437 decl_rtl = DECL_RTL_IF_SET (expr);
1438 if (!decl_rtl)
1439 return 0;
1441 /* Do not track EXPR if it should be ignored for debugging purposes. */
1442 if (DECL_IGNORED_P (expr))
1443 return 0;
1445 /* Do not track global variables until we are able to emit correct location
1446 list for them. */
1447 if (TREE_STATIC (expr))
1448 return 0;
1450 /* When the EXPR is a DECL for alias of some variable (see example)
1451 the TREE_STATIC flag is not used. Disable tracking all DECLs whose
1452 DECL_RTL contains SYMBOL_REF.
1454 Example:
1455 extern char **_dl_argv_internal __attribute__ ((alias ("_dl_argv")));
1456 char **_dl_argv;
1458 if (GET_CODE (decl_rtl) == MEM
1459 && contains_symbol_ref (XEXP (decl_rtl, 0)))
1460 return 0;
1462 /* If RTX is a memory it should not be very large (because it would be
1463 an array or struct). */
1464 if (GET_CODE (decl_rtl) == MEM)
1466 /* Do not track structures and arrays. */
1467 if (GET_MODE (decl_rtl) == BLKmode)
1468 return 0;
1469 if (MEM_SIZE (decl_rtl)
1470 && INTVAL (MEM_SIZE (decl_rtl)) > MAX_VAR_PARTS)
1471 return 0;
1474 return 1;
1477 /* Count uses (register and memory references) LOC which will be tracked.
1478 INSN is instruction which the LOC is part of. */
1480 static int
1481 count_uses (rtx *loc, void *insn)
1483 basic_block bb = BLOCK_FOR_INSN ((rtx) insn);
1485 if (GET_CODE (*loc) == REG)
1487 #ifdef ENABLE_CHECKING
1488 if (REGNO (*loc) >= FIRST_PSEUDO_REGISTER)
1489 abort ();
1490 #endif
1491 VTI (bb)->n_mos++;
1493 else if (GET_CODE (*loc) == MEM
1494 && MEM_EXPR (*loc)
1495 && track_expr_p (MEM_EXPR (*loc)))
1497 VTI (bb)->n_mos++;
1500 return 0;
1503 /* Helper function for finding all uses of REG/MEM in X in insn INSN. */
1505 static void
1506 count_uses_1 (rtx *x, void *insn)
1508 for_each_rtx (x, count_uses, insn);
1511 /* Count stores (register and memory references) LOC which will be tracked.
1512 INSN is instruction which the LOC is part of. */
1514 static void
1515 count_stores (rtx loc, rtx expr ATTRIBUTE_UNUSED, void *insn)
1517 count_uses (&loc, insn);
1520 /* Add uses (register and memory references) LOC which will be tracked
1521 to VTI (bb)->mos. INSN is instruction which the LOC is part of. */
1523 static int
1524 add_uses (rtx *loc, void *insn)
1526 if (GET_CODE (*loc) == REG)
1528 basic_block bb = BLOCK_FOR_INSN ((rtx) insn);
1529 micro_operation *mo = VTI (bb)->mos + VTI (bb)->n_mos++;
1531 mo->type = ((REG_EXPR (*loc) && track_expr_p (REG_EXPR (*loc)))
1532 ? MO_USE : MO_USE_NO_VAR);
1533 mo->u.loc = *loc;
1534 mo->insn = (rtx) insn;
1536 else if (GET_CODE (*loc) == MEM
1537 && MEM_EXPR (*loc)
1538 && track_expr_p (MEM_EXPR (*loc)))
1540 basic_block bb = BLOCK_FOR_INSN ((rtx) insn);
1541 micro_operation *mo = VTI (bb)->mos + VTI (bb)->n_mos++;
1543 mo->type = MO_USE;
1544 mo->u.loc = *loc;
1545 mo->insn = (rtx) insn;
1548 return 0;
1551 /* Helper function for finding all uses of REG/MEM in X in insn INSN. */
1553 static void
1554 add_uses_1 (rtx *x, void *insn)
1556 for_each_rtx (x, add_uses, insn);
1559 /* Add stores (register and memory references) LOC which will be tracked
1560 to VTI (bb)->mos. EXPR is the RTL expression containing the store.
1561 INSN is instruction which the LOC is part of. */
1563 static void
1564 add_stores (rtx loc, rtx expr, void *insn)
1566 if (GET_CODE (loc) == REG)
1568 basic_block bb = BLOCK_FOR_INSN ((rtx) insn);
1569 micro_operation *mo = VTI (bb)->mos + VTI (bb)->n_mos++;
1571 mo->type = ((GET_CODE (expr) != CLOBBER && REG_EXPR (loc)
1572 && track_expr_p (REG_EXPR (loc)))
1573 ? MO_SET : MO_CLOBBER);
1574 mo->u.loc = loc;
1575 mo->insn = (rtx) insn;
1577 else if (GET_CODE (loc) == MEM
1578 && MEM_EXPR (loc)
1579 && track_expr_p (MEM_EXPR (loc)))
1581 basic_block bb = BLOCK_FOR_INSN ((rtx) insn);
1582 micro_operation *mo = VTI (bb)->mos + VTI (bb)->n_mos++;
1584 mo->type = GET_CODE (expr) == CLOBBER ? MO_CLOBBER : MO_SET;
1585 mo->u.loc = loc;
1586 mo->insn = (rtx) insn;
1590 /* Compute the changes of variable locations in the basic block BB. */
1592 static bool
1593 compute_bb_dataflow (basic_block bb)
1595 int i, n, r;
1596 bool changed;
1597 dataflow_set old_out;
1598 dataflow_set *in = &VTI (bb)->in;
1599 dataflow_set *out = &VTI (bb)->out;
1601 dataflow_set_init (&old_out, htab_elements (VTI (bb)->out.vars) + 3);
1602 dataflow_set_copy (&old_out, out);
1603 dataflow_set_copy (out, in);
1605 n = VTI (bb)->n_mos;
1606 for (i = 0; i < n; i++)
1608 switch (VTI (bb)->mos[i].type)
1610 case MO_CALL:
1611 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1612 if (TEST_HARD_REG_BIT (call_used_reg_set, r))
1613 var_regno_delete (out, r);
1614 break;
1616 case MO_USE:
1617 case MO_SET:
1619 rtx loc = VTI (bb)->mos[i].u.loc;
1621 if (GET_CODE (loc) == REG)
1622 var_reg_delete_and_set (out, loc);
1623 else if (GET_CODE (loc) == MEM)
1624 var_mem_delete_and_set (out, loc);
1626 break;
1628 case MO_USE_NO_VAR:
1629 case MO_CLOBBER:
1631 rtx loc = VTI (bb)->mos[i].u.loc;
1633 if (GET_CODE (loc) == REG)
1634 var_reg_delete (out, loc);
1635 else if (GET_CODE (loc) == MEM)
1636 var_mem_delete (out, loc);
1638 break;
1640 case MO_ADJUST:
1642 rtx base;
1644 out->stack_adjust += VTI (bb)->mos[i].u.adjust;
1645 base = gen_rtx_MEM (Pmode,
1646 gen_rtx_PLUS (Pmode, stack_pointer_rtx,
1647 GEN_INT (out->stack_adjust)));
1648 set_frame_base_location (out, base);
1650 break;
1654 changed = dataflow_set_different (&old_out, out);
1655 dataflow_set_destroy (&old_out);
1656 return changed;
1659 /* Find the locations of variables in the whole function. */
1661 static void
1662 vt_find_locations (void)
1664 fibheap_t worklist, pending, fibheap_swap;
1665 sbitmap visited, in_worklist, in_pending, sbitmap_swap;
1666 basic_block bb;
1667 edge e;
1668 int *bb_order;
1669 int *rc_order;
1670 int i;
1672 /* Compute reverse completion order of depth first search of the CFG
1673 so that the data-flow runs faster. */
1674 rc_order = (int *) xmalloc (n_basic_blocks * sizeof (int));
1675 bb_order = (int *) xmalloc (last_basic_block * sizeof (int));
1676 flow_depth_first_order_compute (NULL, rc_order);
1677 for (i = 0; i < n_basic_blocks; i++)
1678 bb_order[rc_order[i]] = i;
1679 free (rc_order);
1681 worklist = fibheap_new ();
1682 pending = fibheap_new ();
1683 visited = sbitmap_alloc (last_basic_block);
1684 in_worklist = sbitmap_alloc (last_basic_block);
1685 in_pending = sbitmap_alloc (last_basic_block);
1686 sbitmap_zero (in_worklist);
1687 sbitmap_zero (in_pending);
1689 FOR_EACH_BB (bb)
1691 fibheap_insert (pending, bb_order[bb->index], bb);
1692 SET_BIT (in_pending, bb->index);
1695 while (!fibheap_empty (pending))
1697 fibheap_swap = pending;
1698 pending = worklist;
1699 worklist = fibheap_swap;
1700 sbitmap_swap = in_pending;
1701 in_pending = in_worklist;
1702 in_worklist = sbitmap_swap;
1704 sbitmap_zero (visited);
1706 while (!fibheap_empty (worklist))
1708 bb = fibheap_extract_min (worklist);
1709 RESET_BIT (in_worklist, bb->index);
1710 if (!TEST_BIT (visited, bb->index))
1712 bool changed;
1714 SET_BIT (visited, bb->index);
1716 /* Calculate the IN set as union of predecessor OUT sets. */
1717 dataflow_set_clear (&VTI (bb)->in);
1718 for (e = bb->pred; e; e = e->pred_next)
1720 dataflow_set_union (&VTI (bb)->in, &VTI (e->src)->out);
1723 changed = compute_bb_dataflow (bb);
1724 if (changed)
1726 for (e = bb->succ; e; e = e->succ_next)
1728 if (e->dest == EXIT_BLOCK_PTR)
1729 continue;
1731 if (e->dest == bb)
1732 continue;
1734 if (TEST_BIT (visited, e->dest->index))
1736 if (!TEST_BIT (in_pending, e->dest->index))
1738 /* Send E->DEST to next round. */
1739 SET_BIT (in_pending, e->dest->index);
1740 fibheap_insert (pending,
1741 bb_order[e->dest->index],
1742 e->dest);
1745 else if (!TEST_BIT (in_worklist, e->dest->index))
1747 /* Add E->DEST to current round. */
1748 SET_BIT (in_worklist, e->dest->index);
1749 fibheap_insert (worklist, bb_order[e->dest->index],
1750 e->dest);
1758 free (bb_order);
1759 fibheap_delete (worklist);
1760 fibheap_delete (pending);
1761 sbitmap_free (visited);
1762 sbitmap_free (in_worklist);
1763 sbitmap_free (in_pending);
1766 /* Print the content of the LIST to dump file. */
1768 static void
1769 dump_attrs_list (attrs list)
1771 for (; list; list = list->next)
1773 print_mem_expr (dump_file, list->decl);
1774 fprintf (dump_file, "+");
1775 fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC, list->offset);
1777 fprintf (dump_file, "\n");
1780 /* Print the information about variable *SLOT to dump file. */
1782 static int
1783 dump_variable (void **slot, void *data ATTRIBUTE_UNUSED)
1785 variable var = *(variable *) slot;
1786 int i;
1787 location_chain node;
1789 fprintf (dump_file, " name: %s\n",
1790 IDENTIFIER_POINTER (DECL_NAME (var->decl)));
1791 for (i = 0; i < var->n_var_parts; i++)
1793 fprintf (dump_file, " offset %ld\n",
1794 (long) var->var_part[i].offset);
1795 for (node = var->var_part[i].loc_chain; node; node = node->next)
1797 fprintf (dump_file, " ");
1798 print_rtl_single (dump_file, node->loc);
1802 /* Continue traversing the hash table. */
1803 return 1;
1806 /* Print the information about variables from hash table VARS to dump file. */
1808 static void
1809 dump_vars (htab_t vars)
1811 if (htab_elements (vars) > 0)
1813 fprintf (dump_file, "Variables:\n");
1814 htab_traverse (vars, dump_variable, NULL);
1818 /* Print the dataflow set SET to dump file. */
1820 static void
1821 dump_dataflow_set (dataflow_set *set)
1823 int i;
1825 fprintf (dump_file, "Stack adjustment: ");
1826 fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC, set->stack_adjust);
1827 fprintf (dump_file, "\n");
1828 for (i = 1; i < FIRST_PSEUDO_REGISTER; i++)
1830 if (set->regs[i])
1832 fprintf (dump_file, "Reg %d:", i);
1833 dump_attrs_list (set->regs[i]);
1836 dump_vars (set->vars);
1837 fprintf (dump_file, "\n");
1840 /* Print the IN and OUT sets for each basic block to dump file. */
1842 static void
1843 dump_dataflow_sets (void)
1845 basic_block bb;
1847 FOR_EACH_BB (bb)
1849 fprintf (dump_file, "\nBasic block %d:\n", bb->index);
1850 fprintf (dump_file, "IN:\n");
1851 dump_dataflow_set (&VTI (bb)->in);
1852 fprintf (dump_file, "OUT:\n");
1853 dump_dataflow_set (&VTI (bb)->out);
1857 /* Add variable VAR to the hash table of changed variables and
1858 if it has no locations delete it from hash table HTAB. */
1860 static void
1861 variable_was_changed (variable var, htab_t htab)
1863 hashval_t hash = VARIABLE_HASH_VAL (var->decl);
1865 if (emit_notes)
1867 variable *slot;
1869 slot = (variable *) htab_find_slot_with_hash (changed_variables,
1870 var->decl, hash, INSERT);
1872 if (htab && var->n_var_parts == 0)
1874 variable empty_var;
1875 void **old;
1877 empty_var = pool_alloc (var_pool);
1878 empty_var->decl = var->decl;
1879 empty_var->refcount = 1;
1880 empty_var->n_var_parts = 0;
1881 *slot = empty_var;
1883 old = htab_find_slot_with_hash (htab, var->decl, hash,
1884 NO_INSERT);
1885 if (old)
1886 htab_clear_slot (htab, old);
1888 else
1890 *slot = var;
1893 else
1895 #ifdef ENABLE_CHECKING
1896 if (!htab)
1897 abort ();
1898 #endif
1899 if (var->n_var_parts == 0)
1901 void **slot = htab_find_slot_with_hash (htab, var->decl, hash,
1902 NO_INSERT);
1903 if (slot)
1904 htab_clear_slot (htab, slot);
1909 /* Set the location of frame_base_decl to LOC in dataflow set SET. This
1910 function expects that
1911 frame_base_decl has already one location for offset 0 in the variable table.
1914 static void
1915 set_frame_base_location (dataflow_set *set, rtx loc)
1917 variable var;
1919 var = htab_find_with_hash (set->vars, frame_base_decl,
1920 VARIABLE_HASH_VAL (frame_base_decl));
1921 #ifdef ENABLE_CHECKING
1922 if (!var)
1923 abort ();
1924 if (var->n_var_parts != 1)
1925 abort ();
1926 if (var->var_part[0].offset != 0)
1927 abort ();
1928 if (!var->var_part[0].loc_chain)
1929 abort ();
1930 #endif
1932 /* If frame_base_decl is shared unshare it first. */
1933 if (var->refcount > 1)
1934 var = unshare_variable (set, var);
1936 var->var_part[0].loc_chain->loc = loc;
1937 var->var_part[0].cur_loc = loc;
1938 variable_was_changed (var, set->vars);
1941 /* Set the part of variable's location in the dataflow set SET. The variable
1942 part is specified by variable's declaration DECL and offset OFFSET and the
1943 part's location by LOC. */
1945 static void
1946 set_variable_part (dataflow_set *set, rtx loc, tree decl, HOST_WIDE_INT offset)
1948 int pos, low, high;
1949 location_chain node, next;
1950 location_chain *nextp;
1951 variable var;
1952 void **slot;
1954 slot = htab_find_slot_with_hash (set->vars, decl,
1955 VARIABLE_HASH_VAL (decl), INSERT);
1956 if (!*slot)
1958 /* Create new variable information. */
1959 var = pool_alloc (var_pool);
1960 var->decl = decl;
1961 var->refcount = 1;
1962 var->n_var_parts = 1;
1963 var->var_part[0].offset = offset;
1964 var->var_part[0].loc_chain = NULL;
1965 var->var_part[0].cur_loc = NULL;
1966 *slot = var;
1967 pos = 0;
1969 else
1971 var = (variable) *slot;
1973 /* Find the location part. */
1974 low = 0;
1975 high = var->n_var_parts;
1976 while (low != high)
1978 pos = (low + high) / 2;
1979 if (var->var_part[pos].offset < offset)
1980 low = pos + 1;
1981 else
1982 high = pos;
1984 pos = low;
1986 if (pos < var->n_var_parts && var->var_part[pos].offset == offset)
1988 node = var->var_part[pos].loc_chain;
1990 if (node
1991 && ((GET_CODE (node->loc) == REG && GET_CODE (loc) == REG
1992 && REGNO (node->loc) == REGNO (loc))
1993 || rtx_equal_p (node->loc, loc)))
1995 /* LOC is in the beginning of the chain so we have nothing
1996 to do. */
1997 return;
1999 else
2001 /* We have to make a copy of a shared variable. */
2002 if (var->refcount > 1)
2003 var = unshare_variable (set, var);
2006 else
2008 /* We have not found the location part, new one will be created. */
2010 /* We have to make a copy of the shared variable. */
2011 if (var->refcount > 1)
2012 var = unshare_variable (set, var);
2014 #ifdef ENABLE_CHECKING
2015 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
2016 thus there are at most MAX_VAR_PARTS different offsets. */
2017 if (var->n_var_parts >= MAX_VAR_PARTS)
2018 abort ();
2019 #endif
2021 /* We have to move the elements of array starting at index low to the
2022 next position. */
2023 for (high = var->n_var_parts; high > low; high--)
2024 var->var_part[high] = var->var_part[high - 1];
2026 var->n_var_parts++;
2027 var->var_part[pos].offset = offset;
2028 var->var_part[pos].loc_chain = NULL;
2029 var->var_part[pos].cur_loc = NULL;
2033 /* Delete the location from the list. */
2034 nextp = &var->var_part[pos].loc_chain;
2035 for (node = var->var_part[pos].loc_chain; node; node = next)
2037 next = node->next;
2038 if ((GET_CODE (node->loc) == REG && GET_CODE (loc) == REG
2039 && REGNO (node->loc) == REGNO (loc))
2040 || rtx_equal_p (node->loc, loc))
2042 pool_free (loc_chain_pool, node);
2043 *nextp = next;
2044 break;
2046 else
2047 nextp = &node->next;
2050 /* Add the location to the beginning. */
2051 node = pool_alloc (loc_chain_pool);
2052 node->loc = loc;
2053 node->next = var->var_part[pos].loc_chain;
2054 var->var_part[pos].loc_chain = node;
2056 /* If no location was emitted do so. */
2057 if (var->var_part[pos].cur_loc == NULL)
2059 var->var_part[pos].cur_loc = loc;
2060 variable_was_changed (var, set->vars);
2064 /* Delete the part of variable's location from dataflow set SET. The variable
2065 part is specified by variable's declaration DECL and offset OFFSET and the
2066 part's location by LOC. */
2068 static void
2069 delete_variable_part (dataflow_set *set, rtx loc, tree decl,
2070 HOST_WIDE_INT offset)
2072 int pos, low, high;
2073 void **slot;
2075 slot = htab_find_slot_with_hash (set->vars, decl, VARIABLE_HASH_VAL (decl),
2076 NO_INSERT);
2077 if (slot)
2079 variable var = (variable) *slot;
2081 /* Find the location part. */
2082 low = 0;
2083 high = var->n_var_parts;
2084 while (low != high)
2086 pos = (low + high) / 2;
2087 if (var->var_part[pos].offset < offset)
2088 low = pos + 1;
2089 else
2090 high = pos;
2092 pos = low;
2094 if (pos < var->n_var_parts && var->var_part[pos].offset == offset)
2096 location_chain node, next;
2097 location_chain *nextp;
2098 bool changed;
2100 if (var->refcount > 1)
2102 /* If the variable contains the location part we have to
2103 make a copy of the variable. */
2104 for (node = var->var_part[pos].loc_chain; node;
2105 node = node->next)
2107 if ((GET_CODE (node->loc) == REG && GET_CODE (loc) == REG
2108 && REGNO (node->loc) == REGNO (loc))
2109 || rtx_equal_p (node->loc, loc))
2111 var = unshare_variable (set, var);
2112 break;
2117 /* Delete the location part. */
2118 nextp = &var->var_part[pos].loc_chain;
2119 for (node = *nextp; node; node = next)
2121 next = node->next;
2122 if ((GET_CODE (node->loc) == REG && GET_CODE (loc) == REG
2123 && REGNO (node->loc) == REGNO (loc))
2124 || rtx_equal_p (node->loc, loc))
2126 pool_free (loc_chain_pool, node);
2127 *nextp = next;
2128 break;
2130 else
2131 nextp = &node->next;
2134 /* If we have deleted the location which was last emitted
2135 we have to emit new location so add the variable to set
2136 of changed variables. */
2137 if (var->var_part[pos].cur_loc
2138 && ((GET_CODE (loc) == REG
2139 && GET_CODE (var->var_part[pos].cur_loc) == REG
2140 && REGNO (loc) == REGNO (var->var_part[pos].cur_loc))
2141 || rtx_equal_p (loc, var->var_part[pos].cur_loc)))
2143 changed = true;
2144 if (var->var_part[pos].loc_chain)
2145 var->var_part[pos].cur_loc = var->var_part[pos].loc_chain->loc;
2147 else
2148 changed = false;
2150 if (var->var_part[pos].loc_chain == NULL)
2152 var->n_var_parts--;
2153 while (pos < var->n_var_parts)
2155 var->var_part[pos] = var->var_part[pos + 1];
2156 pos++;
2159 if (changed)
2160 variable_was_changed (var, set->vars);
2165 /* Emit the NOTE_INSN_VAR_LOCATION for variable *VARP. DATA contains
2166 additional parameters: WHERE specifies whether the note shall be emitted
2167 before of after instruction INSN. */
2169 static int
2170 emit_note_insn_var_location (void **varp, void *data)
2172 variable var = *(variable *) varp;
2173 rtx insn = ((emit_note_data *)data)->insn;
2174 enum emit_note_where where = ((emit_note_data *)data)->where;
2175 rtx note;
2176 int i;
2177 bool complete;
2178 HOST_WIDE_INT last_limit;
2179 tree type_size_unit;
2181 #ifdef ENABLE_CHECKING
2182 if (!var->decl)
2183 abort ();
2184 #endif
2186 complete = true;
2187 last_limit = 0;
2188 for (i = 0; i < var->n_var_parts; i++)
2190 if (last_limit < var->var_part[i].offset)
2192 complete = false;
2193 break;
2195 last_limit
2196 = (var->var_part[i].offset
2197 + GET_MODE_SIZE (GET_MODE (var->var_part[i].loc_chain->loc)));
2199 type_size_unit = TYPE_SIZE_UNIT (TREE_TYPE (var->decl));
2200 if ((unsigned HOST_WIDE_INT) last_limit < TREE_INT_CST_LOW (type_size_unit))
2201 complete = false;
2203 if (where == EMIT_NOTE_AFTER_INSN)
2204 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
2205 else
2206 note = emit_note_before (NOTE_INSN_VAR_LOCATION, insn);
2208 if (!complete)
2210 NOTE_VAR_LOCATION (note) = gen_rtx_VAR_LOCATION (VOIDmode, var->decl,
2211 NULL_RTX);
2213 else if (var->n_var_parts == 1)
2215 rtx expr_list
2216 = gen_rtx_EXPR_LIST (VOIDmode,
2217 var->var_part[0].loc_chain->loc,
2218 GEN_INT (var->var_part[0].offset));
2220 NOTE_VAR_LOCATION (note) = gen_rtx_VAR_LOCATION (VOIDmode, var->decl,
2221 expr_list);
2223 else if (var->n_var_parts)
2225 rtx argp[MAX_VAR_PARTS];
2226 rtx parallel;
2228 for (i = 0; i < var->n_var_parts; i++)
2229 argp[i] = gen_rtx_EXPR_LIST (VOIDmode, var->var_part[i].loc_chain->loc,
2230 GEN_INT (var->var_part[i].offset));
2231 parallel = gen_rtx_PARALLEL (VOIDmode,
2232 gen_rtvec_v (var->n_var_parts, argp));
2233 NOTE_VAR_LOCATION (note) = gen_rtx_VAR_LOCATION (VOIDmode, var->decl,
2234 parallel);
2237 htab_clear_slot (changed_variables, varp);
2239 /* When there are no location parts the variable has been already
2240 removed from hash table and a new empty variable was created.
2241 Free the empty variable. */
2242 if (var->n_var_parts == 0)
2244 pool_free (var_pool, var);
2247 /* Continue traversing the hash table. */
2248 return 1;
2251 /* Emit NOTE_INSN_VAR_LOCATION note for each variable from a chain
2252 CHANGED_VARIABLES and delete this chain. WHERE specifies whether the notes
2253 shall be emitted before of after instruction INSN. */
2255 static void
2256 emit_notes_for_changes (rtx insn, enum emit_note_where where)
2258 emit_note_data data;
2260 data.insn = insn;
2261 data.where = where;
2262 htab_traverse (changed_variables, emit_note_insn_var_location, &data);
2265 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it differs from the
2266 same variable in hash table DATA or is not there at all. */
2268 static int
2269 emit_notes_for_differences_1 (void **slot, void *data)
2271 htab_t new_vars = (htab_t) data;
2272 variable old_var, new_var;
2274 old_var = *(variable *) slot;
2275 new_var = (variable) htab_find_with_hash (new_vars, old_var->decl,
2276 VARIABLE_HASH_VAL (old_var->decl));
2278 if (!new_var)
2280 /* Variable has disappeared. */
2281 variable empty_var;
2283 empty_var = pool_alloc (var_pool);
2284 empty_var->decl = old_var->decl;
2285 empty_var->refcount = 1;
2286 empty_var->n_var_parts = 0;
2287 variable_was_changed (empty_var, NULL);
2289 else if (variable_different_p (old_var, new_var))
2291 variable_was_changed (new_var, NULL);
2294 /* Continue traversing the hash table. */
2295 return 1;
2298 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it is not in hash
2299 table DATA. */
2301 static int
2302 emit_notes_for_differences_2 (void **slot, void *data)
2304 htab_t old_vars = (htab_t) data;
2305 variable old_var, new_var;
2307 new_var = *(variable *) slot;
2308 old_var = (variable) htab_find_with_hash (old_vars, new_var->decl,
2309 VARIABLE_HASH_VAL (new_var->decl));
2310 if (!old_var)
2312 /* Variable has appeared. */
2313 variable_was_changed (new_var, NULL);
2316 /* Continue traversing the hash table. */
2317 return 1;
2320 /* Emit notes before INSN for differences between dataflow sets OLD_SET and
2321 NEW_SET. */
2323 static void
2324 emit_notes_for_differences (rtx insn, dataflow_set *old_set,
2325 dataflow_set *new_set)
2327 htab_traverse (old_set->vars, emit_notes_for_differences_1, new_set->vars);
2328 htab_traverse (new_set->vars, emit_notes_for_differences_2, old_set->vars);
2329 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN);
2332 /* Emit the notes for changes of location parts in the basic block BB. */
2334 static void
2335 emit_notes_in_bb (basic_block bb)
2337 int i;
2338 dataflow_set set;
2340 dataflow_set_init (&set, htab_elements (VTI (bb)->in.vars) + 3);
2341 dataflow_set_copy (&set, &VTI (bb)->in);
2343 for (i = 0; i < VTI (bb)->n_mos; i++)
2345 rtx insn = VTI (bb)->mos[i].insn;
2347 switch (VTI (bb)->mos[i].type)
2349 case MO_CALL:
2351 int r;
2353 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
2354 if (TEST_HARD_REG_BIT (call_used_reg_set, r))
2356 var_regno_delete (&set, r);
2358 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN);
2360 break;
2362 case MO_USE:
2363 case MO_SET:
2365 rtx loc = VTI (bb)->mos[i].u.loc;
2367 if (GET_CODE (loc) == REG)
2368 var_reg_delete_and_set (&set, loc);
2369 else
2370 var_mem_delete_and_set (&set, loc);
2372 if (VTI (bb)->mos[i].type == MO_USE)
2373 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN);
2374 else
2375 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN);
2377 break;
2379 case MO_USE_NO_VAR:
2380 case MO_CLOBBER:
2382 rtx loc = VTI (bb)->mos[i].u.loc;
2384 if (GET_CODE (loc) == REG)
2385 var_reg_delete (&set, loc);
2386 else
2387 var_mem_delete (&set, loc);
2389 if (VTI (bb)->mos[i].type == MO_USE_NO_VAR)
2390 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN);
2391 else
2392 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN);
2394 break;
2396 case MO_ADJUST:
2398 rtx base;
2400 set.stack_adjust += VTI (bb)->mos[i].u.adjust;
2401 base = gen_rtx_MEM (Pmode,
2402 gen_rtx_PLUS (Pmode, stack_pointer_rtx,
2403 GEN_INT (set.stack_adjust)));
2404 set_frame_base_location (&set, base);
2405 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN);
2407 break;
2410 dataflow_set_destroy (&set);
2413 /* Emit notes for the whole function. */
2415 static void
2416 vt_emit_notes (void)
2418 basic_block bb;
2419 dataflow_set *last_out;
2420 dataflow_set empty;
2422 #ifdef ENABLE_CHECKING
2423 if (htab_elements (changed_variables))
2424 abort ();
2425 #endif
2427 /* Enable emitting notes by functions (mainly by set_variable_part and
2428 delete_variable_part). */
2429 emit_notes = true;
2431 dataflow_set_init (&empty, 7);
2432 last_out = &empty;
2434 FOR_EACH_BB (bb)
2436 /* Emit the notes for changes of variable locations between two
2437 subsequent basic blocks. */
2438 emit_notes_for_differences (BB_HEAD (bb), last_out, &VTI (bb)->in);
2440 /* Emit the notes for the changes in the basic block itself. */
2441 emit_notes_in_bb (bb);
2443 last_out = &VTI (bb)->out;
2445 dataflow_set_destroy (&empty);
2446 emit_notes = false;
2449 /* If there is a declaration and offset associated with register/memory RTL
2450 assign declaration to *DECLP and offset to *OFFSETP, and return true. */
2452 static bool
2453 vt_get_decl_and_offset (rtx rtl, tree *declp, HOST_WIDE_INT *offsetp)
2455 if (GET_CODE (rtl) == REG)
2457 if (REG_ATTRS (rtl))
2459 *declp = REG_EXPR (rtl);
2460 *offsetp = REG_OFFSET (rtl);
2461 return true;
2464 else if (GET_CODE (rtl) == MEM)
2466 if (MEM_ATTRS (rtl))
2468 *declp = MEM_EXPR (rtl);
2469 *offsetp = MEM_OFFSET (rtl) ? INTVAL (MEM_OFFSET (rtl)) : 0;
2470 return true;
2473 return false;
2476 /* Insert function parameters to IN and OUT sets of ENTRY_BLOCK. */
2478 static void
2479 vt_add_function_parameters (void)
2481 tree parm;
2482 HOST_WIDE_INT stack_adjust = 0;
2484 if (!frame_pointer_needed)
2485 stack_adjust = prologue_stack_adjust ();
2487 for (parm = DECL_ARGUMENTS (current_function_decl);
2488 parm; parm = TREE_CHAIN (parm))
2490 rtx decl_rtl = DECL_RTL_IF_SET (parm);
2491 rtx incoming = DECL_INCOMING_RTL (parm);
2492 tree decl;
2493 HOST_WIDE_INT offset;
2494 dataflow_set *out;
2496 if (TREE_CODE (parm) != PARM_DECL)
2497 continue;
2499 if (!DECL_NAME (parm))
2500 continue;
2502 if (!decl_rtl || !incoming)
2503 continue;
2505 if (GET_MODE (decl_rtl) == BLKmode || GET_MODE (incoming) == BLKmode)
2506 continue;
2508 if (!vt_get_decl_and_offset (incoming, &decl, &offset))
2509 if (!vt_get_decl_and_offset (decl_rtl, &decl, &offset))
2510 continue;
2512 if (!decl)
2513 continue;
2515 #ifdef ENABLE_CHECKING
2516 if (parm != decl)
2517 abort ();
2518 #endif
2520 incoming = eliminate_regs (incoming, 0, NULL_RTX);
2521 if (!frame_pointer_needed && GET_CODE (incoming) == MEM)
2522 incoming = adjust_stack_reference (incoming, -stack_adjust);
2523 out = &VTI (ENTRY_BLOCK_PTR)->out;
2525 if (GET_CODE (incoming) == REG)
2527 #ifdef ENABLE_CHECKING
2528 if (REGNO (incoming) >= FIRST_PSEUDO_REGISTER)
2529 abort ();
2530 #endif
2531 attrs_list_insert (&out->regs[REGNO (incoming)],
2532 parm, offset, incoming);
2533 set_variable_part (out, incoming, parm, offset);
2535 else if (GET_CODE (incoming) == MEM)
2537 set_variable_part (out, incoming, parm, offset);
2542 /* Allocate and initialize the data structures for variable tracking
2543 and parse the RTL to get the micro operations. */
2545 static void
2546 vt_initialize (void)
2548 basic_block bb;
2550 alloc_aux_for_blocks (sizeof (struct variable_tracking_info_def));
2552 FOR_EACH_BB (bb)
2554 rtx insn;
2555 HOST_WIDE_INT pre, post;
2557 /* Count the number of micro operations. */
2558 VTI (bb)->n_mos = 0;
2559 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
2560 insn = NEXT_INSN (insn))
2562 if (INSN_P (insn))
2564 if (!frame_pointer_needed)
2566 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
2567 if (pre)
2568 VTI (bb)->n_mos++;
2569 if (post)
2570 VTI (bb)->n_mos++;
2572 note_uses (&PATTERN (insn), count_uses_1, insn);
2573 note_stores (PATTERN (insn), count_stores, insn);
2574 if (GET_CODE (insn) == CALL_INSN)
2575 VTI (bb)->n_mos++;
2579 /* Add the micro-operations to the array. */
2580 VTI (bb)->mos = xmalloc (VTI (bb)->n_mos
2581 * sizeof (struct micro_operation_def));
2582 VTI (bb)->n_mos = 0;
2583 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
2584 insn = NEXT_INSN (insn))
2586 if (INSN_P (insn))
2588 int n1, n2;
2590 if (!frame_pointer_needed)
2592 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
2593 if (pre)
2595 micro_operation *mo = VTI (bb)->mos + VTI (bb)->n_mos++;
2597 mo->type = MO_ADJUST;
2598 mo->u.adjust = pre;
2599 mo->insn = insn;
2603 n1 = VTI (bb)->n_mos;
2604 note_uses (&PATTERN (insn), add_uses_1, insn);
2605 n2 = VTI (bb)->n_mos - 1;
2607 /* Order the MO_USEs to be before MO_USE_NO_VARs. */
2608 while (n1 < n2)
2610 while (n1 < n2 && VTI (bb)->mos[n1].type == MO_USE)
2611 n1++;
2612 while (n1 < n2 && VTI (bb)->mos[n2].type == MO_USE_NO_VAR)
2613 n2--;
2614 if (n1 < n2)
2616 micro_operation sw;
2618 sw = VTI (bb)->mos[n1];
2619 VTI (bb)->mos[n1] = VTI (bb)->mos[n2];
2620 VTI (bb)->mos[n2] = sw;
2624 if (GET_CODE (insn) == CALL_INSN)
2626 micro_operation *mo = VTI (bb)->mos + VTI (bb)->n_mos++;
2628 mo->type = MO_CALL;
2629 mo->insn = insn;
2632 n1 = VTI (bb)->n_mos;
2633 note_stores (PATTERN (insn), add_stores, insn);
2634 n2 = VTI (bb)->n_mos - 1;
2636 /* Order the MO_SETs to be before MO_CLOBBERs. */
2637 while (n1 < n2)
2639 while (n1 < n2 && VTI (bb)->mos[n1].type == MO_SET)
2640 n1++;
2641 while (n1 < n2 && VTI (bb)->mos[n2].type == MO_CLOBBER)
2642 n2--;
2643 if (n1 < n2)
2645 micro_operation sw;
2647 sw = VTI (bb)->mos[n1];
2648 VTI (bb)->mos[n1] = VTI (bb)->mos[n2];
2649 VTI (bb)->mos[n2] = sw;
2653 if (!frame_pointer_needed && post)
2655 micro_operation *mo = VTI (bb)->mos + VTI (bb)->n_mos++;
2657 mo->type = MO_ADJUST;
2658 mo->u.adjust = post;
2659 mo->insn = insn;
2665 /* Init the IN and OUT sets. */
2666 FOR_ALL_BB (bb)
2668 VTI (bb)->visited = false;
2669 dataflow_set_init (&VTI (bb)->in, 7);
2670 dataflow_set_init (&VTI (bb)->out, 7);
2673 attrs_pool = create_alloc_pool ("attrs_def pool",
2674 sizeof (struct attrs_def), 1024);
2675 var_pool = create_alloc_pool ("variable_def pool",
2676 sizeof (struct variable_def), 64);
2677 loc_chain_pool = create_alloc_pool ("location_chain_def pool",
2678 sizeof (struct location_chain_def),
2679 1024);
2680 changed_variables = htab_create (10, variable_htab_hash, variable_htab_eq,
2681 NULL);
2682 vt_add_function_parameters ();
2684 if (!frame_pointer_needed)
2686 rtx base;
2688 /* Create fake variable for tracking stack pointer changes. */
2689 frame_base_decl = make_node (VAR_DECL);
2690 DECL_NAME (frame_base_decl) = get_identifier ("___frame_base_decl");
2691 TREE_TYPE (frame_base_decl) = char_type_node;
2692 DECL_ARTIFICIAL (frame_base_decl) = 1;
2694 /* Set its initial "location". */
2695 base = gen_rtx_MEM (Pmode, stack_pointer_rtx);
2696 set_variable_part (&VTI (ENTRY_BLOCK_PTR)->out, base, frame_base_decl, 0);
2698 else
2700 frame_base_decl = NULL;
2704 /* Free the data structures needed for variable tracking. */
2706 static void
2707 vt_finalize (void)
2709 basic_block bb;
2711 FOR_EACH_BB (bb)
2713 free (VTI (bb)->mos);
2716 FOR_ALL_BB (bb)
2718 dataflow_set_destroy (&VTI (bb)->in);
2719 dataflow_set_destroy (&VTI (bb)->out);
2721 free_aux_for_blocks ();
2722 free_alloc_pool (attrs_pool);
2723 free_alloc_pool (var_pool);
2724 free_alloc_pool (loc_chain_pool);
2725 htab_delete (changed_variables);
2728 /* The entry point to variable tracking pass. */
2730 void
2731 variable_tracking_main (void)
2733 if (n_basic_blocks > 500 && n_edges / n_basic_blocks >= 20)
2734 return;
2736 mark_dfs_back_edges ();
2737 vt_initialize ();
2738 if (!frame_pointer_needed)
2740 if (!vt_stack_adjustments ())
2742 vt_finalize ();
2743 return;
2747 vt_find_locations ();
2748 vt_emit_notes ();
2750 if (dump_file)
2752 dump_dataflow_sets ();
2753 dump_flow_info (dump_file);
2756 vt_finalize ();