* pretty-print.c (pp_base_maybe_space): New function.
[official-gcc.git] / gcc / stor-layout.c
blobab5345cf0d1b9f9e48ea0c28d1fe8dd54f64bd45
1 /* C-compiler utilities for types and variables storage layout
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1996, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "tree.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "flags.h"
31 #include "function.h"
32 #include "expr.h"
33 #include "toplev.h"
34 #include "ggc.h"
35 #include "target.h"
36 #include "langhooks.h"
38 /* Set to one when set_sizetype has been called. */
39 static int sizetype_set;
41 /* List of types created before set_sizetype has been called. We do not
42 make this a GGC root since we want these nodes to be reclaimed. */
43 static tree early_type_list;
45 /* Data type for the expressions representing sizes of data types.
46 It is the first integer type laid out. */
47 tree sizetype_tab[(int) TYPE_KIND_LAST];
49 /* If nonzero, this is an upper limit on alignment of structure fields.
50 The value is measured in bits. */
51 unsigned int maximum_field_alignment;
53 /* If nonzero, the alignment of a bitstring or (power-)set value, in bits.
54 May be overridden by front-ends. */
55 unsigned int set_alignment = 0;
57 /* Nonzero if all REFERENCE_TYPEs are internal and hence should be
58 allocated in Pmode, not ptr_mode. Set only by internal_reference_types
59 called only by a front end. */
60 static int reference_types_internal = 0;
62 static void finalize_record_size (record_layout_info);
63 static void finalize_type_size (tree);
64 static void place_union_field (record_layout_info, tree);
65 #if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
66 static int excess_unit_span (HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT,
67 HOST_WIDE_INT, tree);
68 #endif
69 static unsigned int update_alignment_for_field (record_layout_info, tree,
70 unsigned int);
71 extern void debug_rli (record_layout_info);
73 /* SAVE_EXPRs for sizes of types and decls, waiting to be expanded. */
75 static GTY(()) tree pending_sizes;
77 /* Nonzero means cannot safely call expand_expr now,
78 so put variable sizes onto `pending_sizes' instead. */
80 int immediate_size_expand;
82 /* Show that REFERENCE_TYPES are internal and should be Pmode. Called only
83 by front end. */
85 void
86 internal_reference_types (void)
88 reference_types_internal = 1;
91 /* Get a list of all the objects put on the pending sizes list. */
93 tree
94 get_pending_sizes (void)
96 tree chain = pending_sizes;
97 tree t;
99 /* Put each SAVE_EXPR into the current function. */
100 for (t = chain; t; t = TREE_CHAIN (t))
101 SAVE_EXPR_CONTEXT (TREE_VALUE (t)) = current_function_decl;
103 pending_sizes = 0;
104 return chain;
107 /* Add EXPR to the pending sizes list. */
109 void
110 put_pending_size (tree expr)
112 /* Strip any simple arithmetic from EXPR to see if it has an underlying
113 SAVE_EXPR. */
114 expr = skip_simple_arithmetic (expr);
116 if (TREE_CODE (expr) == SAVE_EXPR)
117 pending_sizes = tree_cons (NULL_TREE, expr, pending_sizes);
120 /* Put a chain of objects into the pending sizes list, which must be
121 empty. */
123 void
124 put_pending_sizes (tree chain)
126 if (pending_sizes)
127 abort ();
129 pending_sizes = chain;
132 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
133 to serve as the actual size-expression for a type or decl. */
135 tree
136 variable_size (tree size)
138 tree save;
140 /* If the language-processor is to take responsibility for variable-sized
141 items (e.g., languages which have elaboration procedures like Ada),
142 just return SIZE unchanged. Likewise for self-referential sizes and
143 constant sizes. */
144 if (TREE_CONSTANT (size)
145 || lang_hooks.decls.global_bindings_p () < 0
146 || CONTAINS_PLACEHOLDER_P (size))
147 return size;
149 if (TREE_CODE (size) == MINUS_EXPR && integer_onep (TREE_OPERAND (size, 1)))
150 /* If this is the upper bound of a C array, leave the minus 1 outside
151 the SAVE_EXPR so it can be folded away. */
152 TREE_OPERAND (size, 0) = save = save_expr (TREE_OPERAND (size, 0));
153 else
154 size = save = save_expr (size);
156 /* If an array with a variable number of elements is declared, and
157 the elements require destruction, we will emit a cleanup for the
158 array. That cleanup is run both on normal exit from the block
159 and in the exception-handler for the block. Normally, when code
160 is used in both ordinary code and in an exception handler it is
161 `unsaved', i.e., all SAVE_EXPRs are recalculated. However, we do
162 not wish to do that here; the array-size is the same in both
163 places. */
164 if (TREE_CODE (save) == SAVE_EXPR)
165 SAVE_EXPR_PERSISTENT_P (save) = 1;
167 if (lang_hooks.decls.global_bindings_p ())
169 if (TREE_CONSTANT (size))
170 error ("type size can't be explicitly evaluated");
171 else
172 error ("variable-size type declared outside of any function");
174 return size_one_node;
177 if (immediate_size_expand)
178 expand_expr (save, const0_rtx, VOIDmode, 0);
179 else if (cfun != 0 && cfun->x_dont_save_pending_sizes_p)
180 /* The front-end doesn't want us to keep a list of the expressions
181 that determine sizes for variable size objects. */
183 else
184 put_pending_size (save);
186 return size;
189 #ifndef MAX_FIXED_MODE_SIZE
190 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (DImode)
191 #endif
193 /* Return the machine mode to use for a nonscalar of SIZE bits. The
194 mode must be in class CLASS, and have exactly that many value bits;
195 it may have padding as well. If LIMIT is nonzero, modes of wider
196 than MAX_FIXED_MODE_SIZE will not be used. */
198 enum machine_mode
199 mode_for_size (unsigned int size, enum mode_class class, int limit)
201 enum machine_mode mode;
203 if (limit && size > MAX_FIXED_MODE_SIZE)
204 return BLKmode;
206 /* Get the first mode which has this size, in the specified class. */
207 for (mode = GET_CLASS_NARROWEST_MODE (class); mode != VOIDmode;
208 mode = GET_MODE_WIDER_MODE (mode))
209 if (GET_MODE_PRECISION (mode) == size)
210 return mode;
212 return BLKmode;
215 /* Similar, except passed a tree node. */
217 enum machine_mode
218 mode_for_size_tree (tree size, enum mode_class class, int limit)
220 if (TREE_CODE (size) != INTEGER_CST
221 || TREE_OVERFLOW (size)
222 /* What we really want to say here is that the size can fit in a
223 host integer, but we know there's no way we'd find a mode for
224 this many bits, so there's no point in doing the precise test. */
225 || compare_tree_int (size, 1000) > 0)
226 return BLKmode;
227 else
228 return mode_for_size (tree_low_cst (size, 1), class, limit);
231 /* Similar, but never return BLKmode; return the narrowest mode that
232 contains at least the requested number of value bits. */
234 enum machine_mode
235 smallest_mode_for_size (unsigned int size, enum mode_class class)
237 enum machine_mode mode;
239 /* Get the first mode which has at least this size, in the
240 specified class. */
241 for (mode = GET_CLASS_NARROWEST_MODE (class); mode != VOIDmode;
242 mode = GET_MODE_WIDER_MODE (mode))
243 if (GET_MODE_PRECISION (mode) >= size)
244 return mode;
246 abort ();
249 /* Find an integer mode of the exact same size, or BLKmode on failure. */
251 enum machine_mode
252 int_mode_for_mode (enum machine_mode mode)
254 switch (GET_MODE_CLASS (mode))
256 case MODE_INT:
257 case MODE_PARTIAL_INT:
258 break;
260 case MODE_COMPLEX_INT:
261 case MODE_COMPLEX_FLOAT:
262 case MODE_FLOAT:
263 case MODE_VECTOR_INT:
264 case MODE_VECTOR_FLOAT:
265 mode = mode_for_size (GET_MODE_BITSIZE (mode), MODE_INT, 0);
266 break;
268 case MODE_RANDOM:
269 if (mode == BLKmode)
270 break;
272 /* ... fall through ... */
274 case MODE_CC:
275 default:
276 abort ();
279 return mode;
282 /* Return the alignment of MODE. This will be bounded by 1 and
283 BIGGEST_ALIGNMENT. */
285 unsigned int
286 get_mode_alignment (enum machine_mode mode)
288 return MIN (BIGGEST_ALIGNMENT, MAX (1, mode_base_align[mode]*BITS_PER_UNIT));
291 /* Return the value of VALUE, rounded up to a multiple of DIVISOR.
292 This can only be applied to objects of a sizetype. */
294 tree
295 round_up (tree value, int divisor)
297 tree arg = size_int_type (divisor, TREE_TYPE (value));
299 return size_binop (MULT_EXPR, size_binop (CEIL_DIV_EXPR, value, arg), arg);
302 /* Likewise, but round down. */
304 tree
305 round_down (tree value, int divisor)
307 tree arg = size_int_type (divisor, TREE_TYPE (value));
309 return size_binop (MULT_EXPR, size_binop (FLOOR_DIV_EXPR, value, arg), arg);
312 /* Subroutine of layout_decl: Force alignment required for the data type.
313 But if the decl itself wants greater alignment, don't override that. */
315 static inline void
316 do_type_align (tree type, tree decl)
318 if (TYPE_ALIGN (type) > DECL_ALIGN (decl))
320 DECL_ALIGN (decl) = TYPE_ALIGN (type);
321 if (TREE_CODE (decl) == FIELD_DECL)
322 DECL_USER_ALIGN (decl) = TYPE_USER_ALIGN (type);
326 /* Set the size, mode and alignment of a ..._DECL node.
327 TYPE_DECL does need this for C++.
328 Note that LABEL_DECL and CONST_DECL nodes do not need this,
329 and FUNCTION_DECL nodes have them set up in a special (and simple) way.
330 Don't call layout_decl for them.
332 KNOWN_ALIGN is the amount of alignment we can assume this
333 decl has with no special effort. It is relevant only for FIELD_DECLs
334 and depends on the previous fields.
335 All that matters about KNOWN_ALIGN is which powers of 2 divide it.
336 If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
337 the record will be aligned to suit. */
339 void
340 layout_decl (tree decl, unsigned int known_align)
342 tree type = TREE_TYPE (decl);
343 enum tree_code code = TREE_CODE (decl);
344 rtx rtl = NULL_RTX;
346 if (code == CONST_DECL)
347 return;
348 else if (code != VAR_DECL && code != PARM_DECL && code != RESULT_DECL
349 && code != TYPE_DECL && code != FIELD_DECL)
350 abort ();
352 rtl = DECL_RTL_IF_SET (decl);
354 if (type == error_mark_node)
355 type = void_type_node;
357 /* Usually the size and mode come from the data type without change,
358 however, the front-end may set the explicit width of the field, so its
359 size may not be the same as the size of its type. This happens with
360 bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
361 also happens with other fields. For example, the C++ front-end creates
362 zero-sized fields corresponding to empty base classes, and depends on
363 layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
364 size in bytes from the size in bits. If we have already set the mode,
365 don't set it again since we can be called twice for FIELD_DECLs. */
367 TREE_UNSIGNED (decl) = TREE_UNSIGNED (type);
368 if (DECL_MODE (decl) == VOIDmode)
369 DECL_MODE (decl) = TYPE_MODE (type);
371 if (DECL_SIZE (decl) == 0)
373 DECL_SIZE (decl) = TYPE_SIZE (type);
374 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
376 else if (DECL_SIZE_UNIT (decl) == 0)
377 DECL_SIZE_UNIT (decl)
378 = convert (sizetype, size_binop (CEIL_DIV_EXPR, DECL_SIZE (decl),
379 bitsize_unit_node));
381 if (code != FIELD_DECL)
382 /* For non-fields, update the alignment from the type. */
383 do_type_align (type, decl);
384 else
385 /* For fields, it's a bit more complicated... */
387 bool old_user_align = DECL_USER_ALIGN (decl);
389 if (DECL_BIT_FIELD (decl))
391 DECL_BIT_FIELD_TYPE (decl) = type;
393 /* A zero-length bit-field affects the alignment of the next
394 field. */
395 if (integer_zerop (DECL_SIZE (decl))
396 && ! DECL_PACKED (decl)
397 && ! targetm.ms_bitfield_layout_p (DECL_FIELD_CONTEXT (decl)))
399 #ifdef PCC_BITFIELD_TYPE_MATTERS
400 if (PCC_BITFIELD_TYPE_MATTERS)
401 do_type_align (type, decl);
402 else
403 #endif
405 #ifdef EMPTY_FIELD_BOUNDARY
406 if (EMPTY_FIELD_BOUNDARY > DECL_ALIGN (decl))
408 DECL_ALIGN (decl) = EMPTY_FIELD_BOUNDARY;
409 DECL_USER_ALIGN (decl) = 0;
411 #endif
415 /* See if we can use an ordinary integer mode for a bit-field.
416 Conditions are: a fixed size that is correct for another mode
417 and occupying a complete byte or bytes on proper boundary. */
418 if (TYPE_SIZE (type) != 0
419 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
420 && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT)
422 enum machine_mode xmode
423 = mode_for_size_tree (DECL_SIZE (decl), MODE_INT, 1);
425 if (xmode != BLKmode
426 && (known_align == 0
427 || known_align >= GET_MODE_ALIGNMENT (xmode)))
429 DECL_ALIGN (decl) = MAX (GET_MODE_ALIGNMENT (xmode),
430 DECL_ALIGN (decl));
431 DECL_MODE (decl) = xmode;
432 DECL_BIT_FIELD (decl) = 0;
436 /* Turn off DECL_BIT_FIELD if we won't need it set. */
437 if (TYPE_MODE (type) == BLKmode && DECL_MODE (decl) == BLKmode
438 && known_align >= TYPE_ALIGN (type)
439 && DECL_ALIGN (decl) >= TYPE_ALIGN (type))
440 DECL_BIT_FIELD (decl) = 0;
442 else if (DECL_PACKED (decl) && DECL_USER_ALIGN (decl))
443 /* Don't touch DECL_ALIGN. For other packed fields, go ahead and
444 round up; we'll reduce it again below. We want packing to
445 supersede USER_ALIGN inherited from the type, but defer to
446 alignment explicitly specified on the field decl. */;
447 else
448 do_type_align (type, decl);
450 /* If the field is of variable size, we can't misalign it since we
451 have no way to make a temporary to align the result. But this
452 isn't an issue if the decl is not addressable. Likewise if it
453 is of unknown size.
455 Note that do_type_align may set DECL_USER_ALIGN, so we need to
456 check old_user_align instead. */
457 if (DECL_PACKED (decl)
458 && !old_user_align
459 && (DECL_NONADDRESSABLE_P (decl)
460 || DECL_SIZE_UNIT (decl) == 0
461 || TREE_CODE (DECL_SIZE_UNIT (decl)) == INTEGER_CST))
462 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), BITS_PER_UNIT);
464 /* Should this be controlled by DECL_USER_ALIGN, too? */
465 if (maximum_field_alignment != 0)
466 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), maximum_field_alignment);
467 if (! DECL_USER_ALIGN (decl))
469 /* Some targets (i.e. i386, VMS) limit struct field alignment
470 to a lower boundary than alignment of variables unless
471 it was overridden by attribute aligned. */
472 #ifdef BIGGEST_FIELD_ALIGNMENT
473 DECL_ALIGN (decl)
474 = MIN (DECL_ALIGN (decl), (unsigned) BIGGEST_FIELD_ALIGNMENT);
475 #endif
476 #ifdef ADJUST_FIELD_ALIGN
477 DECL_ALIGN (decl) = ADJUST_FIELD_ALIGN (decl, DECL_ALIGN (decl));
478 #endif
482 /* Evaluate nonconstant size only once, either now or as soon as safe. */
483 if (DECL_SIZE (decl) != 0 && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
484 DECL_SIZE (decl) = variable_size (DECL_SIZE (decl));
485 if (DECL_SIZE_UNIT (decl) != 0
486 && TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST)
487 DECL_SIZE_UNIT (decl) = variable_size (DECL_SIZE_UNIT (decl));
489 /* If requested, warn about definitions of large data objects. */
490 if (warn_larger_than
491 && (code == VAR_DECL || code == PARM_DECL)
492 && ! DECL_EXTERNAL (decl))
494 tree size = DECL_SIZE_UNIT (decl);
496 if (size != 0 && TREE_CODE (size) == INTEGER_CST
497 && compare_tree_int (size, larger_than_size) > 0)
499 int size_as_int = TREE_INT_CST_LOW (size);
501 if (compare_tree_int (size, size_as_int) == 0)
502 warning ("%Jsize of '%D' is %d bytes", decl, decl, size_as_int);
503 else
504 warning ("%Jsize of '%D' is larger than %d bytes",
505 decl, decl, larger_than_size);
509 /* If the RTL was already set, update its mode and mem attributes. */
510 if (rtl)
512 PUT_MODE (rtl, DECL_MODE (decl));
513 SET_DECL_RTL (decl, 0);
514 set_mem_attributes (rtl, decl, 1);
515 SET_DECL_RTL (decl, rtl);
519 /* Hook for a front-end function that can modify the record layout as needed
520 immediately before it is finalized. */
522 void (*lang_adjust_rli) (record_layout_info) = 0;
524 void
525 set_lang_adjust_rli (void (*f) (record_layout_info))
527 lang_adjust_rli = f;
530 /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
531 QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
532 is to be passed to all other layout functions for this record. It is the
533 responsibility of the caller to call `free' for the storage returned.
534 Note that garbage collection is not permitted until we finish laying
535 out the record. */
537 record_layout_info
538 start_record_layout (tree t)
540 record_layout_info rli = xmalloc (sizeof (struct record_layout_info_s));
542 rli->t = t;
544 /* If the type has a minimum specified alignment (via an attribute
545 declaration, for example) use it -- otherwise, start with a
546 one-byte alignment. */
547 rli->record_align = MAX (BITS_PER_UNIT, TYPE_ALIGN (t));
548 rli->unpacked_align = rli->record_align;
549 rli->offset_align = MAX (rli->record_align, BIGGEST_ALIGNMENT);
551 #ifdef STRUCTURE_SIZE_BOUNDARY
552 /* Packed structures don't need to have minimum size. */
553 if (! TYPE_PACKED (t))
554 rli->record_align = MAX (rli->record_align, (unsigned) STRUCTURE_SIZE_BOUNDARY);
555 #endif
557 rli->offset = size_zero_node;
558 rli->bitpos = bitsize_zero_node;
559 rli->prev_field = 0;
560 rli->pending_statics = 0;
561 rli->packed_maybe_necessary = 0;
563 return rli;
566 /* These four routines perform computations that convert between
567 the offset/bitpos forms and byte and bit offsets. */
569 tree
570 bit_from_pos (tree offset, tree bitpos)
572 return size_binop (PLUS_EXPR, bitpos,
573 size_binop (MULT_EXPR, convert (bitsizetype, offset),
574 bitsize_unit_node));
577 tree
578 byte_from_pos (tree offset, tree bitpos)
580 return size_binop (PLUS_EXPR, offset,
581 convert (sizetype,
582 size_binop (TRUNC_DIV_EXPR, bitpos,
583 bitsize_unit_node)));
586 void
587 pos_from_bit (tree *poffset, tree *pbitpos, unsigned int off_align,
588 tree pos)
590 *poffset = size_binop (MULT_EXPR,
591 convert (sizetype,
592 size_binop (FLOOR_DIV_EXPR, pos,
593 bitsize_int (off_align))),
594 size_int (off_align / BITS_PER_UNIT));
595 *pbitpos = size_binop (FLOOR_MOD_EXPR, pos, bitsize_int (off_align));
598 /* Given a pointer to bit and byte offsets and an offset alignment,
599 normalize the offsets so they are within the alignment. */
601 void
602 normalize_offset (tree *poffset, tree *pbitpos, unsigned int off_align)
604 /* If the bit position is now larger than it should be, adjust it
605 downwards. */
606 if (compare_tree_int (*pbitpos, off_align) >= 0)
608 tree extra_aligns = size_binop (FLOOR_DIV_EXPR, *pbitpos,
609 bitsize_int (off_align));
611 *poffset
612 = size_binop (PLUS_EXPR, *poffset,
613 size_binop (MULT_EXPR, convert (sizetype, extra_aligns),
614 size_int (off_align / BITS_PER_UNIT)));
616 *pbitpos
617 = size_binop (FLOOR_MOD_EXPR, *pbitpos, bitsize_int (off_align));
621 /* Print debugging information about the information in RLI. */
623 void
624 debug_rli (record_layout_info rli)
626 print_node_brief (stderr, "type", rli->t, 0);
627 print_node_brief (stderr, "\noffset", rli->offset, 0);
628 print_node_brief (stderr, " bitpos", rli->bitpos, 0);
630 fprintf (stderr, "\naligns: rec = %u, unpack = %u, off = %u\n",
631 rli->record_align, rli->unpacked_align,
632 rli->offset_align);
633 if (rli->packed_maybe_necessary)
634 fprintf (stderr, "packed may be necessary\n");
636 if (rli->pending_statics)
638 fprintf (stderr, "pending statics:\n");
639 debug_tree (rli->pending_statics);
643 /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
644 BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
646 void
647 normalize_rli (record_layout_info rli)
649 normalize_offset (&rli->offset, &rli->bitpos, rli->offset_align);
652 /* Returns the size in bytes allocated so far. */
654 tree
655 rli_size_unit_so_far (record_layout_info rli)
657 return byte_from_pos (rli->offset, rli->bitpos);
660 /* Returns the size in bits allocated so far. */
662 tree
663 rli_size_so_far (record_layout_info rli)
665 return bit_from_pos (rli->offset, rli->bitpos);
668 /* FIELD is about to be added to RLI->T. The alignment (in bits) of
669 the next available location is given by KNOWN_ALIGN. Update the
670 variable alignment fields in RLI, and return the alignment to give
671 the FIELD. */
673 static unsigned int
674 update_alignment_for_field (record_layout_info rli, tree field,
675 unsigned int known_align)
677 /* The alignment required for FIELD. */
678 unsigned int desired_align;
679 /* The type of this field. */
680 tree type = TREE_TYPE (field);
681 /* True if the field was explicitly aligned by the user. */
682 bool user_align;
683 bool is_bitfield;
685 /* Lay out the field so we know what alignment it needs. */
686 layout_decl (field, known_align);
687 desired_align = DECL_ALIGN (field);
688 user_align = DECL_USER_ALIGN (field);
690 is_bitfield = (type != error_mark_node
691 && DECL_BIT_FIELD_TYPE (field)
692 && ! integer_zerop (TYPE_SIZE (type)));
694 /* Record must have at least as much alignment as any field.
695 Otherwise, the alignment of the field within the record is
696 meaningless. */
697 if (is_bitfield && targetm.ms_bitfield_layout_p (rli->t))
699 /* Here, the alignment of the underlying type of a bitfield can
700 affect the alignment of a record; even a zero-sized field
701 can do this. The alignment should be to the alignment of
702 the type, except that for zero-size bitfields this only
703 applies if there was an immediately prior, nonzero-size
704 bitfield. (That's the way it is, experimentally.) */
705 if (! integer_zerop (DECL_SIZE (field))
706 ? ! DECL_PACKED (field)
707 : (rli->prev_field
708 && DECL_BIT_FIELD_TYPE (rli->prev_field)
709 && ! integer_zerop (DECL_SIZE (rli->prev_field))))
711 unsigned int type_align = TYPE_ALIGN (type);
712 type_align = MAX (type_align, desired_align);
713 if (maximum_field_alignment != 0)
714 type_align = MIN (type_align, maximum_field_alignment);
715 rli->record_align = MAX (rli->record_align, type_align);
716 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
719 #ifdef PCC_BITFIELD_TYPE_MATTERS
720 else if (is_bitfield && PCC_BITFIELD_TYPE_MATTERS)
722 /* Named bit-fields cause the entire structure to have the
723 alignment implied by their type. */
724 if (DECL_NAME (field) != 0)
726 unsigned int type_align = TYPE_ALIGN (type);
728 #ifdef ADJUST_FIELD_ALIGN
729 if (! TYPE_USER_ALIGN (type))
730 type_align = ADJUST_FIELD_ALIGN (field, type_align);
731 #endif
733 if (maximum_field_alignment != 0)
734 type_align = MIN (type_align, maximum_field_alignment);
735 else if (DECL_PACKED (field))
736 type_align = MIN (type_align, BITS_PER_UNIT);
738 /* The alignment of the record is increased to the maximum
739 of the current alignment, the alignment indicated on the
740 field (i.e., the alignment specified by an __aligned__
741 attribute), and the alignment indicated by the type of
742 the field. */
743 rli->record_align = MAX (rli->record_align, desired_align);
744 rli->record_align = MAX (rli->record_align, type_align);
746 if (warn_packed)
747 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
748 user_align |= TYPE_USER_ALIGN (type);
751 #endif
752 else
754 rli->record_align = MAX (rli->record_align, desired_align);
755 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
758 TYPE_USER_ALIGN (rli->t) |= user_align;
760 return desired_align;
763 /* Called from place_field to handle unions. */
765 static void
766 place_union_field (record_layout_info rli, tree field)
768 update_alignment_for_field (rli, field, /*known_align=*/0);
770 DECL_FIELD_OFFSET (field) = size_zero_node;
771 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
772 SET_DECL_OFFSET_ALIGN (field, BIGGEST_ALIGNMENT);
774 /* We assume the union's size will be a multiple of a byte so we don't
775 bother with BITPOS. */
776 if (TREE_CODE (rli->t) == UNION_TYPE)
777 rli->offset = size_binop (MAX_EXPR, rli->offset, DECL_SIZE_UNIT (field));
778 else if (TREE_CODE (rli->t) == QUAL_UNION_TYPE)
779 rli->offset = fold (build (COND_EXPR, sizetype,
780 DECL_QUALIFIER (field),
781 DECL_SIZE_UNIT (field), rli->offset));
784 #if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
785 /* A bitfield of SIZE with a required access alignment of ALIGN is allocated
786 at BYTE_OFFSET / BIT_OFFSET. Return nonzero if the field would span more
787 units of alignment than the underlying TYPE. */
788 static int
789 excess_unit_span (HOST_WIDE_INT byte_offset, HOST_WIDE_INT bit_offset,
790 HOST_WIDE_INT size, HOST_WIDE_INT align, tree type)
792 /* Note that the calculation of OFFSET might overflow; we calculate it so
793 that we still get the right result as long as ALIGN is a power of two. */
794 unsigned HOST_WIDE_INT offset = byte_offset * BITS_PER_UNIT + bit_offset;
796 offset = offset % align;
797 return ((offset + size + align - 1) / align
798 > ((unsigned HOST_WIDE_INT) tree_low_cst (TYPE_SIZE (type), 1)
799 / align));
801 #endif
803 /* RLI contains information about the layout of a RECORD_TYPE. FIELD
804 is a FIELD_DECL to be added after those fields already present in
805 T. (FIELD is not actually added to the TYPE_FIELDS list here;
806 callers that desire that behavior must manually perform that step.) */
808 void
809 place_field (record_layout_info rli, tree field)
811 /* The alignment required for FIELD. */
812 unsigned int desired_align;
813 /* The alignment FIELD would have if we just dropped it into the
814 record as it presently stands. */
815 unsigned int known_align;
816 unsigned int actual_align;
817 /* The type of this field. */
818 tree type = TREE_TYPE (field);
820 if (TREE_CODE (field) == ERROR_MARK || TREE_CODE (type) == ERROR_MARK)
821 return;
823 /* If FIELD is static, then treat it like a separate variable, not
824 really like a structure field. If it is a FUNCTION_DECL, it's a
825 method. In both cases, all we do is lay out the decl, and we do
826 it *after* the record is laid out. */
827 if (TREE_CODE (field) == VAR_DECL)
829 rli->pending_statics = tree_cons (NULL_TREE, field,
830 rli->pending_statics);
831 return;
834 /* Enumerators and enum types which are local to this class need not
835 be laid out. Likewise for initialized constant fields. */
836 else if (TREE_CODE (field) != FIELD_DECL)
837 return;
839 /* Unions are laid out very differently than records, so split
840 that code off to another function. */
841 else if (TREE_CODE (rli->t) != RECORD_TYPE)
843 place_union_field (rli, field);
844 return;
847 /* Work out the known alignment so far. Note that A & (-A) is the
848 value of the least-significant bit in A that is one. */
849 if (! integer_zerop (rli->bitpos))
850 known_align = (tree_low_cst (rli->bitpos, 1)
851 & - tree_low_cst (rli->bitpos, 1));
852 else if (integer_zerop (rli->offset))
853 known_align = BIGGEST_ALIGNMENT;
854 else if (host_integerp (rli->offset, 1))
855 known_align = (BITS_PER_UNIT
856 * (tree_low_cst (rli->offset, 1)
857 & - tree_low_cst (rli->offset, 1)));
858 else
859 known_align = rli->offset_align;
861 desired_align = update_alignment_for_field (rli, field, known_align);
863 if (warn_packed && DECL_PACKED (field))
865 if (known_align >= TYPE_ALIGN (type))
867 if (TYPE_ALIGN (type) > desired_align)
869 if (STRICT_ALIGNMENT)
870 warning ("%Jpacked attribute causes inefficient alignment "
871 "for '%D'", field, field);
872 else
873 warning ("%Jpacked attribute is unnecessary for '%D'",
874 field, field);
877 else
878 rli->packed_maybe_necessary = 1;
881 /* Does this field automatically have alignment it needs by virtue
882 of the fields that precede it and the record's own alignment? */
883 if (known_align < desired_align)
885 /* No, we need to skip space before this field.
886 Bump the cumulative size to multiple of field alignment. */
888 if (warn_padded)
889 warning ("%Jpadding struct to align '%D'", field, field);
891 /* If the alignment is still within offset_align, just align
892 the bit position. */
893 if (desired_align < rli->offset_align)
894 rli->bitpos = round_up (rli->bitpos, desired_align);
895 else
897 /* First adjust OFFSET by the partial bits, then align. */
898 rli->offset
899 = size_binop (PLUS_EXPR, rli->offset,
900 convert (sizetype,
901 size_binop (CEIL_DIV_EXPR, rli->bitpos,
902 bitsize_unit_node)));
903 rli->bitpos = bitsize_zero_node;
905 rli->offset = round_up (rli->offset, desired_align / BITS_PER_UNIT);
908 if (! TREE_CONSTANT (rli->offset))
909 rli->offset_align = desired_align;
913 /* Handle compatibility with PCC. Note that if the record has any
914 variable-sized fields, we need not worry about compatibility. */
915 #ifdef PCC_BITFIELD_TYPE_MATTERS
916 if (PCC_BITFIELD_TYPE_MATTERS
917 && ! targetm.ms_bitfield_layout_p (rli->t)
918 && TREE_CODE (field) == FIELD_DECL
919 && type != error_mark_node
920 && DECL_BIT_FIELD (field)
921 && ! DECL_PACKED (field)
922 && maximum_field_alignment == 0
923 && ! integer_zerop (DECL_SIZE (field))
924 && host_integerp (DECL_SIZE (field), 1)
925 && host_integerp (rli->offset, 1)
926 && host_integerp (TYPE_SIZE (type), 1))
928 unsigned int type_align = TYPE_ALIGN (type);
929 tree dsize = DECL_SIZE (field);
930 HOST_WIDE_INT field_size = tree_low_cst (dsize, 1);
931 HOST_WIDE_INT offset = tree_low_cst (rli->offset, 0);
932 HOST_WIDE_INT bit_offset = tree_low_cst (rli->bitpos, 0);
934 #ifdef ADJUST_FIELD_ALIGN
935 if (! TYPE_USER_ALIGN (type))
936 type_align = ADJUST_FIELD_ALIGN (field, type_align);
937 #endif
939 /* A bit field may not span more units of alignment of its type
940 than its type itself. Advance to next boundary if necessary. */
941 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
942 rli->bitpos = round_up (rli->bitpos, type_align);
944 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
946 #endif
948 #ifdef BITFIELD_NBYTES_LIMITED
949 if (BITFIELD_NBYTES_LIMITED
950 && ! targetm.ms_bitfield_layout_p (rli->t)
951 && TREE_CODE (field) == FIELD_DECL
952 && type != error_mark_node
953 && DECL_BIT_FIELD_TYPE (field)
954 && ! DECL_PACKED (field)
955 && ! integer_zerop (DECL_SIZE (field))
956 && host_integerp (DECL_SIZE (field), 1)
957 && host_integerp (rli->offset, 1)
958 && host_integerp (TYPE_SIZE (type), 1))
960 unsigned int type_align = TYPE_ALIGN (type);
961 tree dsize = DECL_SIZE (field);
962 HOST_WIDE_INT field_size = tree_low_cst (dsize, 1);
963 HOST_WIDE_INT offset = tree_low_cst (rli->offset, 0);
964 HOST_WIDE_INT bit_offset = tree_low_cst (rli->bitpos, 0);
966 #ifdef ADJUST_FIELD_ALIGN
967 if (! TYPE_USER_ALIGN (type))
968 type_align = ADJUST_FIELD_ALIGN (field, type_align);
969 #endif
971 if (maximum_field_alignment != 0)
972 type_align = MIN (type_align, maximum_field_alignment);
973 /* ??? This test is opposite the test in the containing if
974 statement, so this code is unreachable currently. */
975 else if (DECL_PACKED (field))
976 type_align = MIN (type_align, BITS_PER_UNIT);
978 /* A bit field may not span the unit of alignment of its type.
979 Advance to next boundary if necessary. */
980 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
981 rli->bitpos = round_up (rli->bitpos, type_align);
983 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
985 #endif
987 /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
988 A subtlety:
989 When a bit field is inserted into a packed record, the whole
990 size of the underlying type is used by one or more same-size
991 adjacent bitfields. (That is, if its long:3, 32 bits is
992 used in the record, and any additional adjacent long bitfields are
993 packed into the same chunk of 32 bits. However, if the size
994 changes, a new field of that size is allocated.) In an unpacked
995 record, this is the same as using alignment, but not equivalent
996 when packing.
998 Note: for compatibility, we use the type size, not the type alignment
999 to determine alignment, since that matches the documentation */
1001 if (targetm.ms_bitfield_layout_p (rli->t)
1002 && ((DECL_BIT_FIELD_TYPE (field) && ! DECL_PACKED (field))
1003 || (rli->prev_field && ! DECL_PACKED (rli->prev_field))))
1005 /* At this point, either the prior or current are bitfields,
1006 (possibly both), and we're dealing with MS packing. */
1007 tree prev_saved = rli->prev_field;
1009 /* Is the prior field a bitfield? If so, handle "runs" of same
1010 type size fields. */
1011 if (rli->prev_field /* necessarily a bitfield if it exists. */)
1013 /* If both are bitfields, nonzero, and the same size, this is
1014 the middle of a run. Zero declared size fields are special
1015 and handled as "end of run". (Note: it's nonzero declared
1016 size, but equal type sizes!) (Since we know that both
1017 the current and previous fields are bitfields by the
1018 time we check it, DECL_SIZE must be present for both.) */
1019 if (DECL_BIT_FIELD_TYPE (field)
1020 && !integer_zerop (DECL_SIZE (field))
1021 && !integer_zerop (DECL_SIZE (rli->prev_field))
1022 && host_integerp (DECL_SIZE (rli->prev_field), 0)
1023 && host_integerp (TYPE_SIZE (type), 0)
1024 && simple_cst_equal (TYPE_SIZE (type),
1025 TYPE_SIZE (TREE_TYPE (rli->prev_field))))
1027 /* We're in the middle of a run of equal type size fields; make
1028 sure we realign if we run out of bits. (Not decl size,
1029 type size!) */
1030 HOST_WIDE_INT bitsize = tree_low_cst (DECL_SIZE (field), 0);
1032 if (rli->remaining_in_alignment < bitsize)
1034 /* out of bits; bump up to next 'word'. */
1035 rli->offset = DECL_FIELD_OFFSET (rli->prev_field);
1036 rli->bitpos
1037 = size_binop (PLUS_EXPR, TYPE_SIZE (type),
1038 DECL_FIELD_BIT_OFFSET (rli->prev_field));
1039 rli->prev_field = field;
1040 rli->remaining_in_alignment
1041 = tree_low_cst (TYPE_SIZE (type), 0);
1044 rli->remaining_in_alignment -= bitsize;
1046 else
1048 /* End of a run: if leaving a run of bitfields of the same type
1049 size, we have to "use up" the rest of the bits of the type
1050 size.
1052 Compute the new position as the sum of the size for the prior
1053 type and where we first started working on that type.
1054 Note: since the beginning of the field was aligned then
1055 of course the end will be too. No round needed. */
1057 if (!integer_zerop (DECL_SIZE (rli->prev_field)))
1059 tree type_size = TYPE_SIZE (TREE_TYPE (rli->prev_field));
1061 rli->bitpos
1062 = size_binop (PLUS_EXPR, type_size,
1063 DECL_FIELD_BIT_OFFSET (rli->prev_field));
1065 else
1066 /* We "use up" size zero fields; the code below should behave
1067 as if the prior field was not a bitfield. */
1068 prev_saved = NULL;
1070 /* Cause a new bitfield to be captured, either this time (if
1071 currently a bitfield) or next time we see one. */
1072 if (!DECL_BIT_FIELD_TYPE(field)
1073 || integer_zerop (DECL_SIZE (field)))
1074 rli->prev_field = NULL;
1077 rli->offset_align = tree_low_cst (TYPE_SIZE (type), 0);
1078 normalize_rli (rli);
1081 /* If we're starting a new run of same size type bitfields
1082 (or a run of non-bitfields), set up the "first of the run"
1083 fields.
1085 That is, if the current field is not a bitfield, or if there
1086 was a prior bitfield the type sizes differ, or if there wasn't
1087 a prior bitfield the size of the current field is nonzero.
1089 Note: we must be sure to test ONLY the type size if there was
1090 a prior bitfield and ONLY for the current field being zero if
1091 there wasn't. */
1093 if (!DECL_BIT_FIELD_TYPE (field)
1094 || ( prev_saved != NULL
1095 ? !simple_cst_equal (TYPE_SIZE (type),
1096 TYPE_SIZE (TREE_TYPE (prev_saved)))
1097 : !integer_zerop (DECL_SIZE (field)) ))
1099 /* Never smaller than a byte for compatibility. */
1100 unsigned int type_align = BITS_PER_UNIT;
1102 /* (When not a bitfield), we could be seeing a flex array (with
1103 no DECL_SIZE). Since we won't be using remaining_in_alignment
1104 until we see a bitfield (and come by here again) we just skip
1105 calculating it. */
1106 if (DECL_SIZE (field) != NULL
1107 && host_integerp (TYPE_SIZE (TREE_TYPE (field)), 0)
1108 && host_integerp (DECL_SIZE (field), 0))
1109 rli->remaining_in_alignment
1110 = tree_low_cst (TYPE_SIZE (TREE_TYPE(field)), 0)
1111 - tree_low_cst (DECL_SIZE (field), 0);
1113 /* Now align (conventionally) for the new type. */
1114 if (!DECL_PACKED(field))
1115 type_align = MAX(TYPE_ALIGN (type), type_align);
1117 if (prev_saved
1118 && DECL_BIT_FIELD_TYPE (prev_saved)
1119 /* If the previous bit-field is zero-sized, we've already
1120 accounted for its alignment needs (or ignored it, if
1121 appropriate) while placing it. */
1122 && ! integer_zerop (DECL_SIZE (prev_saved)))
1123 type_align = MAX (type_align,
1124 TYPE_ALIGN (TREE_TYPE (prev_saved)));
1126 if (maximum_field_alignment != 0)
1127 type_align = MIN (type_align, maximum_field_alignment);
1129 rli->bitpos = round_up (rli->bitpos, type_align);
1131 /* If we really aligned, don't allow subsequent bitfields
1132 to undo that. */
1133 rli->prev_field = NULL;
1137 /* Offset so far becomes the position of this field after normalizing. */
1138 normalize_rli (rli);
1139 DECL_FIELD_OFFSET (field) = rli->offset;
1140 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1141 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1143 /* If this field ended up more aligned than we thought it would be (we
1144 approximate this by seeing if its position changed), lay out the field
1145 again; perhaps we can use an integral mode for it now. */
1146 if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field)))
1147 actual_align = (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
1148 & - tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1));
1149 else if (integer_zerop (DECL_FIELD_OFFSET (field)))
1150 actual_align = BIGGEST_ALIGNMENT;
1151 else if (host_integerp (DECL_FIELD_OFFSET (field), 1))
1152 actual_align = (BITS_PER_UNIT
1153 * (tree_low_cst (DECL_FIELD_OFFSET (field), 1)
1154 & - tree_low_cst (DECL_FIELD_OFFSET (field), 1)));
1155 else
1156 actual_align = DECL_OFFSET_ALIGN (field);
1158 if (known_align != actual_align)
1159 layout_decl (field, actual_align);
1161 /* Only the MS bitfields use this. */
1162 if (rli->prev_field == NULL && DECL_BIT_FIELD_TYPE(field))
1163 rli->prev_field = field;
1165 /* Now add size of this field to the size of the record. If the size is
1166 not constant, treat the field as being a multiple of bytes and just
1167 adjust the offset, resetting the bit position. Otherwise, apportion the
1168 size amongst the bit position and offset. First handle the case of an
1169 unspecified size, which can happen when we have an invalid nested struct
1170 definition, such as struct j { struct j { int i; } }. The error message
1171 is printed in finish_struct. */
1172 if (DECL_SIZE (field) == 0)
1173 /* Do nothing. */;
1174 else if (TREE_CODE (DECL_SIZE_UNIT (field)) != INTEGER_CST
1175 || TREE_CONSTANT_OVERFLOW (DECL_SIZE_UNIT (field)))
1177 rli->offset
1178 = size_binop (PLUS_EXPR, rli->offset,
1179 convert (sizetype,
1180 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1181 bitsize_unit_node)));
1182 rli->offset
1183 = size_binop (PLUS_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1184 rli->bitpos = bitsize_zero_node;
1185 rli->offset_align = MIN (rli->offset_align, desired_align);
1187 else
1189 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1190 normalize_rli (rli);
1194 /* Assuming that all the fields have been laid out, this function uses
1195 RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1196 indicated by RLI. */
1198 static void
1199 finalize_record_size (record_layout_info rli)
1201 tree unpadded_size, unpadded_size_unit;
1203 /* Now we want just byte and bit offsets, so set the offset alignment
1204 to be a byte and then normalize. */
1205 rli->offset_align = BITS_PER_UNIT;
1206 normalize_rli (rli);
1208 /* Determine the desired alignment. */
1209 #ifdef ROUND_TYPE_ALIGN
1210 TYPE_ALIGN (rli->t) = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t),
1211 rli->record_align);
1212 #else
1213 TYPE_ALIGN (rli->t) = MAX (TYPE_ALIGN (rli->t), rli->record_align);
1214 #endif
1216 /* Compute the size so far. Be sure to allow for extra bits in the
1217 size in bytes. We have guaranteed above that it will be no more
1218 than a single byte. */
1219 unpadded_size = rli_size_so_far (rli);
1220 unpadded_size_unit = rli_size_unit_so_far (rli);
1221 if (! integer_zerop (rli->bitpos))
1222 unpadded_size_unit
1223 = size_binop (PLUS_EXPR, unpadded_size_unit, size_one_node);
1225 /* Round the size up to be a multiple of the required alignment. */
1226 TYPE_SIZE (rli->t) = round_up (unpadded_size, TYPE_ALIGN (rli->t));
1227 TYPE_SIZE_UNIT (rli->t) = round_up (unpadded_size_unit,
1228 TYPE_ALIGN (rli->t) / BITS_PER_UNIT);
1230 if (warn_padded && TREE_CONSTANT (unpadded_size)
1231 && simple_cst_equal (unpadded_size, TYPE_SIZE (rli->t)) == 0)
1232 warning ("padding struct size to alignment boundary");
1234 if (warn_packed && TREE_CODE (rli->t) == RECORD_TYPE
1235 && TYPE_PACKED (rli->t) && ! rli->packed_maybe_necessary
1236 && TREE_CONSTANT (unpadded_size))
1238 tree unpacked_size;
1240 #ifdef ROUND_TYPE_ALIGN
1241 rli->unpacked_align
1242 = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t), rli->unpacked_align);
1243 #else
1244 rli->unpacked_align = MAX (TYPE_ALIGN (rli->t), rli->unpacked_align);
1245 #endif
1247 unpacked_size = round_up (TYPE_SIZE (rli->t), rli->unpacked_align);
1248 if (simple_cst_equal (unpacked_size, TYPE_SIZE (rli->t)))
1250 TYPE_PACKED (rli->t) = 0;
1252 if (TYPE_NAME (rli->t))
1254 const char *name;
1256 if (TREE_CODE (TYPE_NAME (rli->t)) == IDENTIFIER_NODE)
1257 name = IDENTIFIER_POINTER (TYPE_NAME (rli->t));
1258 else
1259 name = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (rli->t)));
1261 if (STRICT_ALIGNMENT)
1262 warning ("packed attribute causes inefficient alignment for `%s'", name);
1263 else
1264 warning ("packed attribute is unnecessary for `%s'", name);
1266 else
1268 if (STRICT_ALIGNMENT)
1269 warning ("packed attribute causes inefficient alignment");
1270 else
1271 warning ("packed attribute is unnecessary");
1277 /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
1279 void
1280 compute_record_mode (tree type)
1282 tree field;
1283 enum machine_mode mode = VOIDmode;
1285 /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1286 However, if possible, we use a mode that fits in a register
1287 instead, in order to allow for better optimization down the
1288 line. */
1289 TYPE_MODE (type) = BLKmode;
1291 if (! host_integerp (TYPE_SIZE (type), 1))
1292 return;
1294 /* A record which has any BLKmode members must itself be
1295 BLKmode; it can't go in a register. Unless the member is
1296 BLKmode only because it isn't aligned. */
1297 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1299 if (TREE_CODE (field) != FIELD_DECL)
1300 continue;
1302 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK
1303 || (TYPE_MODE (TREE_TYPE (field)) == BLKmode
1304 && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field))
1305 && !(TYPE_SIZE (TREE_TYPE (field)) != 0
1306 && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))))
1307 || ! host_integerp (bit_position (field), 1)
1308 || DECL_SIZE (field) == 0
1309 || ! host_integerp (DECL_SIZE (field), 1))
1310 return;
1312 /* If this field is the whole struct, remember its mode so
1313 that, say, we can put a double in a class into a DF
1314 register instead of forcing it to live in the stack. */
1315 if (simple_cst_equal (TYPE_SIZE (type), DECL_SIZE (field)))
1316 mode = DECL_MODE (field);
1318 #ifdef MEMBER_TYPE_FORCES_BLK
1319 /* With some targets, eg. c4x, it is sub-optimal
1320 to access an aligned BLKmode structure as a scalar. */
1322 if (MEMBER_TYPE_FORCES_BLK (field, mode))
1323 return;
1324 #endif /* MEMBER_TYPE_FORCES_BLK */
1327 /* If we only have one real field; use its mode. This only applies to
1328 RECORD_TYPE. This does not apply to unions. */
1329 if (TREE_CODE (type) == RECORD_TYPE && mode != VOIDmode)
1330 TYPE_MODE (type) = mode;
1331 else
1332 TYPE_MODE (type) = mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1);
1334 /* If structure's known alignment is less than what the scalar
1335 mode would need, and it matters, then stick with BLKmode. */
1336 if (TYPE_MODE (type) != BLKmode
1337 && STRICT_ALIGNMENT
1338 && ! (TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
1339 || TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (TYPE_MODE (type))))
1341 /* If this is the only reason this type is BLKmode, then
1342 don't force containing types to be BLKmode. */
1343 TYPE_NO_FORCE_BLK (type) = 1;
1344 TYPE_MODE (type) = BLKmode;
1348 /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1349 out. */
1351 static void
1352 finalize_type_size (tree type)
1354 /* Normally, use the alignment corresponding to the mode chosen.
1355 However, where strict alignment is not required, avoid
1356 over-aligning structures, since most compilers do not do this
1357 alignment. */
1359 if (TYPE_MODE (type) != BLKmode && TYPE_MODE (type) != VOIDmode
1360 && (STRICT_ALIGNMENT
1361 || (TREE_CODE (type) != RECORD_TYPE && TREE_CODE (type) != UNION_TYPE
1362 && TREE_CODE (type) != QUAL_UNION_TYPE
1363 && TREE_CODE (type) != ARRAY_TYPE)))
1365 TYPE_ALIGN (type) = GET_MODE_ALIGNMENT (TYPE_MODE (type));
1366 TYPE_USER_ALIGN (type) = 0;
1369 /* Do machine-dependent extra alignment. */
1370 #ifdef ROUND_TYPE_ALIGN
1371 TYPE_ALIGN (type)
1372 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (type), BITS_PER_UNIT);
1373 #endif
1375 /* If we failed to find a simple way to calculate the unit size
1376 of the type, find it by division. */
1377 if (TYPE_SIZE_UNIT (type) == 0 && TYPE_SIZE (type) != 0)
1378 /* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
1379 result will fit in sizetype. We will get more efficient code using
1380 sizetype, so we force a conversion. */
1381 TYPE_SIZE_UNIT (type)
1382 = convert (sizetype,
1383 size_binop (FLOOR_DIV_EXPR, TYPE_SIZE (type),
1384 bitsize_unit_node));
1386 if (TYPE_SIZE (type) != 0)
1388 TYPE_SIZE (type) = round_up (TYPE_SIZE (type), TYPE_ALIGN (type));
1389 TYPE_SIZE_UNIT (type)
1390 = round_up (TYPE_SIZE_UNIT (type), TYPE_ALIGN (type) / BITS_PER_UNIT);
1393 /* Evaluate nonconstant sizes only once, either now or as soon as safe. */
1394 if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1395 TYPE_SIZE (type) = variable_size (TYPE_SIZE (type));
1396 if (TYPE_SIZE_UNIT (type) != 0
1397 && TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)
1398 TYPE_SIZE_UNIT (type) = variable_size (TYPE_SIZE_UNIT (type));
1400 /* Also layout any other variants of the type. */
1401 if (TYPE_NEXT_VARIANT (type)
1402 || type != TYPE_MAIN_VARIANT (type))
1404 tree variant;
1405 /* Record layout info of this variant. */
1406 tree size = TYPE_SIZE (type);
1407 tree size_unit = TYPE_SIZE_UNIT (type);
1408 unsigned int align = TYPE_ALIGN (type);
1409 unsigned int user_align = TYPE_USER_ALIGN (type);
1410 enum machine_mode mode = TYPE_MODE (type);
1412 /* Copy it into all variants. */
1413 for (variant = TYPE_MAIN_VARIANT (type);
1414 variant != 0;
1415 variant = TYPE_NEXT_VARIANT (variant))
1417 TYPE_SIZE (variant) = size;
1418 TYPE_SIZE_UNIT (variant) = size_unit;
1419 TYPE_ALIGN (variant) = align;
1420 TYPE_USER_ALIGN (variant) = user_align;
1421 TYPE_MODE (variant) = mode;
1426 /* Do all of the work required to layout the type indicated by RLI,
1427 once the fields have been laid out. This function will call `free'
1428 for RLI, unless FREE_P is false. Passing a value other than false
1429 for FREE_P is bad practice; this option only exists to support the
1430 G++ 3.2 ABI. */
1432 void
1433 finish_record_layout (record_layout_info rli, int free_p)
1435 /* Compute the final size. */
1436 finalize_record_size (rli);
1438 /* Compute the TYPE_MODE for the record. */
1439 compute_record_mode (rli->t);
1441 /* Perform any last tweaks to the TYPE_SIZE, etc. */
1442 finalize_type_size (rli->t);
1444 /* Lay out any static members. This is done now because their type
1445 may use the record's type. */
1446 while (rli->pending_statics)
1448 layout_decl (TREE_VALUE (rli->pending_statics), 0);
1449 rli->pending_statics = TREE_CHAIN (rli->pending_statics);
1452 /* Clean up. */
1453 if (free_p)
1454 free (rli);
1458 /* Finish processing a builtin RECORD_TYPE type TYPE. It's name is
1459 NAME, its fields are chained in reverse on FIELDS.
1461 If ALIGN_TYPE is non-null, it is given the same alignment as
1462 ALIGN_TYPE. */
1464 void
1465 finish_builtin_struct (tree type, const char *name, tree fields,
1466 tree align_type)
1468 tree tail, next;
1470 for (tail = NULL_TREE; fields; tail = fields, fields = next)
1472 DECL_FIELD_CONTEXT (fields) = type;
1473 next = TREE_CHAIN (fields);
1474 TREE_CHAIN (fields) = tail;
1476 TYPE_FIELDS (type) = tail;
1478 if (align_type)
1480 TYPE_ALIGN (type) = TYPE_ALIGN (align_type);
1481 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (align_type);
1484 layout_type (type);
1485 #if 0 /* not yet, should get fixed properly later */
1486 TYPE_NAME (type) = make_type_decl (get_identifier (name), type);
1487 #else
1488 TYPE_NAME (type) = build_decl (TYPE_DECL, get_identifier (name), type);
1489 #endif
1490 TYPE_STUB_DECL (type) = TYPE_NAME (type);
1491 layout_decl (TYPE_NAME (type), 0);
1494 /* Calculate the mode, size, and alignment for TYPE.
1495 For an array type, calculate the element separation as well.
1496 Record TYPE on the chain of permanent or temporary types
1497 so that dbxout will find out about it.
1499 TYPE_SIZE of a type is nonzero if the type has been laid out already.
1500 layout_type does nothing on such a type.
1502 If the type is incomplete, its TYPE_SIZE remains zero. */
1504 void
1505 layout_type (tree type)
1507 if (type == 0)
1508 abort ();
1510 /* Do nothing if type has been laid out before. */
1511 if (TYPE_SIZE (type))
1512 return;
1514 switch (TREE_CODE (type))
1516 case LANG_TYPE:
1517 /* This kind of type is the responsibility
1518 of the language-specific code. */
1519 abort ();
1521 case BOOLEAN_TYPE: /* Used for Java, Pascal, and Chill. */
1522 if (TYPE_PRECISION (type) == 0)
1523 TYPE_PRECISION (type) = 1; /* default to one byte/boolean. */
1525 /* ... fall through ... */
1527 case INTEGER_TYPE:
1528 case ENUMERAL_TYPE:
1529 case CHAR_TYPE:
1530 if (TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST
1531 && tree_int_cst_sgn (TYPE_MIN_VALUE (type)) >= 0)
1532 TREE_UNSIGNED (type) = 1;
1534 TYPE_MODE (type) = smallest_mode_for_size (TYPE_PRECISION (type),
1535 MODE_INT);
1536 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
1537 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
1538 break;
1540 case REAL_TYPE:
1541 TYPE_MODE (type) = mode_for_size (TYPE_PRECISION (type), MODE_FLOAT, 0);
1542 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
1543 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
1544 break;
1546 case COMPLEX_TYPE:
1547 TREE_UNSIGNED (type) = TREE_UNSIGNED (TREE_TYPE (type));
1548 TYPE_MODE (type)
1549 = mode_for_size (2 * TYPE_PRECISION (TREE_TYPE (type)),
1550 (TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE
1551 ? MODE_COMPLEX_INT : MODE_COMPLEX_FLOAT),
1553 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
1554 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
1555 break;
1557 case VECTOR_TYPE:
1559 tree subtype;
1561 subtype = TREE_TYPE (type);
1562 TREE_UNSIGNED (type) = TREE_UNSIGNED (subtype);
1563 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
1564 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
1566 break;
1568 case VOID_TYPE:
1569 /* This is an incomplete type and so doesn't have a size. */
1570 TYPE_ALIGN (type) = 1;
1571 TYPE_USER_ALIGN (type) = 0;
1572 TYPE_MODE (type) = VOIDmode;
1573 break;
1575 case OFFSET_TYPE:
1576 TYPE_SIZE (type) = bitsize_int (POINTER_SIZE);
1577 TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE / BITS_PER_UNIT);
1578 /* A pointer might be MODE_PARTIAL_INT,
1579 but ptrdiff_t must be integral. */
1580 TYPE_MODE (type) = mode_for_size (POINTER_SIZE, MODE_INT, 0);
1581 break;
1583 case FUNCTION_TYPE:
1584 case METHOD_TYPE:
1585 /* It's hard to see what the mode and size of a function ought to
1586 be, but we do know the alignment is FUNCTION_BOUNDARY, so
1587 make it consistent with that. */
1588 TYPE_MODE (type) = mode_for_size (FUNCTION_BOUNDARY, MODE_INT, 0);
1589 TYPE_SIZE (type) = bitsize_int (FUNCTION_BOUNDARY);
1590 TYPE_SIZE_UNIT (type) = size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
1591 break;
1593 case POINTER_TYPE:
1594 case REFERENCE_TYPE:
1597 enum machine_mode mode = ((TREE_CODE (type) == REFERENCE_TYPE
1598 && reference_types_internal)
1599 ? Pmode : TYPE_MODE (type));
1601 int nbits = GET_MODE_BITSIZE (mode);
1603 TYPE_SIZE (type) = bitsize_int (nbits);
1604 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
1605 TREE_UNSIGNED (type) = 1;
1606 TYPE_PRECISION (type) = nbits;
1608 break;
1610 case ARRAY_TYPE:
1612 tree index = TYPE_DOMAIN (type);
1613 tree element = TREE_TYPE (type);
1615 build_pointer_type (element);
1617 /* We need to know both bounds in order to compute the size. */
1618 if (index && TYPE_MAX_VALUE (index) && TYPE_MIN_VALUE (index)
1619 && TYPE_SIZE (element))
1621 tree ub = TYPE_MAX_VALUE (index);
1622 tree lb = TYPE_MIN_VALUE (index);
1623 tree length;
1624 tree element_size;
1626 /* The initial subtraction should happen in the original type so
1627 that (possible) negative values are handled appropriately. */
1628 length = size_binop (PLUS_EXPR, size_one_node,
1629 convert (sizetype,
1630 fold (build (MINUS_EXPR,
1631 TREE_TYPE (lb),
1632 ub, lb))));
1634 /* Special handling for arrays of bits (for Chill). */
1635 element_size = TYPE_SIZE (element);
1636 if (TYPE_PACKED (type) && INTEGRAL_TYPE_P (element)
1637 && (integer_zerop (TYPE_MAX_VALUE (element))
1638 || integer_onep (TYPE_MAX_VALUE (element)))
1639 && host_integerp (TYPE_MIN_VALUE (element), 1))
1641 HOST_WIDE_INT maxvalue
1642 = tree_low_cst (TYPE_MAX_VALUE (element), 1);
1643 HOST_WIDE_INT minvalue
1644 = tree_low_cst (TYPE_MIN_VALUE (element), 1);
1646 if (maxvalue - minvalue == 1
1647 && (maxvalue == 1 || maxvalue == 0))
1648 element_size = integer_one_node;
1651 /* If neither bound is a constant and sizetype is signed, make
1652 sure the size is never negative. We should really do this
1653 if *either* bound is non-constant, but this is the best
1654 compromise between C and Ada. */
1655 if (! TREE_UNSIGNED (sizetype)
1656 && TREE_CODE (TYPE_MIN_VALUE (index)) != INTEGER_CST
1657 && TREE_CODE (TYPE_MAX_VALUE (index)) != INTEGER_CST)
1658 length = size_binop (MAX_EXPR, length, size_zero_node);
1660 TYPE_SIZE (type) = size_binop (MULT_EXPR, element_size,
1661 convert (bitsizetype, length));
1663 /* If we know the size of the element, calculate the total
1664 size directly, rather than do some division thing below.
1665 This optimization helps Fortran assumed-size arrays
1666 (where the size of the array is determined at runtime)
1667 substantially.
1668 Note that we can't do this in the case where the size of
1669 the elements is one bit since TYPE_SIZE_UNIT cannot be
1670 set correctly in that case. */
1671 if (TYPE_SIZE_UNIT (element) != 0 && ! integer_onep (element_size))
1672 TYPE_SIZE_UNIT (type)
1673 = size_binop (MULT_EXPR, TYPE_SIZE_UNIT (element), length);
1676 /* Now round the alignment and size,
1677 using machine-dependent criteria if any. */
1679 #ifdef ROUND_TYPE_ALIGN
1680 TYPE_ALIGN (type)
1681 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (element), BITS_PER_UNIT);
1682 #else
1683 TYPE_ALIGN (type) = MAX (TYPE_ALIGN (element), BITS_PER_UNIT);
1684 #endif
1685 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (element);
1686 TYPE_MODE (type) = BLKmode;
1687 if (TYPE_SIZE (type) != 0
1688 #ifdef MEMBER_TYPE_FORCES_BLK
1689 && ! MEMBER_TYPE_FORCES_BLK (type, VOIDmode)
1690 #endif
1691 /* BLKmode elements force BLKmode aggregate;
1692 else extract/store fields may lose. */
1693 && (TYPE_MODE (TREE_TYPE (type)) != BLKmode
1694 || TYPE_NO_FORCE_BLK (TREE_TYPE (type))))
1696 /* One-element arrays get the component type's mode. */
1697 if (simple_cst_equal (TYPE_SIZE (type),
1698 TYPE_SIZE (TREE_TYPE (type))))
1699 TYPE_MODE (type) = TYPE_MODE (TREE_TYPE (type));
1700 else
1701 TYPE_MODE (type)
1702 = mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1);
1704 if (TYPE_MODE (type) != BLKmode
1705 && STRICT_ALIGNMENT && TYPE_ALIGN (type) < BIGGEST_ALIGNMENT
1706 && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (TYPE_MODE (type))
1707 && TYPE_MODE (type) != BLKmode)
1709 TYPE_NO_FORCE_BLK (type) = 1;
1710 TYPE_MODE (type) = BLKmode;
1713 break;
1716 case RECORD_TYPE:
1717 case UNION_TYPE:
1718 case QUAL_UNION_TYPE:
1720 tree field;
1721 record_layout_info rli;
1723 /* Initialize the layout information. */
1724 rli = start_record_layout (type);
1726 /* If this is a QUAL_UNION_TYPE, we want to process the fields
1727 in the reverse order in building the COND_EXPR that denotes
1728 its size. We reverse them again later. */
1729 if (TREE_CODE (type) == QUAL_UNION_TYPE)
1730 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
1732 /* Place all the fields. */
1733 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1734 place_field (rli, field);
1736 if (TREE_CODE (type) == QUAL_UNION_TYPE)
1737 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
1739 if (lang_adjust_rli)
1740 (*lang_adjust_rli) (rli);
1742 /* Finish laying out the record. */
1743 finish_record_layout (rli, /*free_p=*/true);
1745 break;
1747 case SET_TYPE: /* Used by Chill and Pascal. */
1748 if (TREE_CODE (TYPE_MAX_VALUE (TYPE_DOMAIN (type))) != INTEGER_CST
1749 || TREE_CODE (TYPE_MIN_VALUE (TYPE_DOMAIN (type))) != INTEGER_CST)
1750 abort ();
1751 else
1753 #ifndef SET_WORD_SIZE
1754 #define SET_WORD_SIZE BITS_PER_WORD
1755 #endif
1756 unsigned int alignment
1757 = set_alignment ? set_alignment : SET_WORD_SIZE;
1758 HOST_WIDE_INT size_in_bits
1759 = (tree_low_cst (TYPE_MAX_VALUE (TYPE_DOMAIN (type)), 0)
1760 - tree_low_cst (TYPE_MIN_VALUE (TYPE_DOMAIN (type)), 0) + 1);
1761 HOST_WIDE_INT rounded_size
1762 = ((size_in_bits + alignment - 1) / alignment) * alignment;
1764 if (rounded_size > (int) alignment)
1765 TYPE_MODE (type) = BLKmode;
1766 else
1767 TYPE_MODE (type) = mode_for_size (alignment, MODE_INT, 1);
1769 TYPE_SIZE (type) = bitsize_int (rounded_size);
1770 TYPE_SIZE_UNIT (type) = size_int (rounded_size / BITS_PER_UNIT);
1771 TYPE_ALIGN (type) = alignment;
1772 TYPE_USER_ALIGN (type) = 0;
1773 TYPE_PRECISION (type) = size_in_bits;
1775 break;
1777 case FILE_TYPE:
1778 /* The size may vary in different languages, so the language front end
1779 should fill in the size. */
1780 TYPE_ALIGN (type) = BIGGEST_ALIGNMENT;
1781 TYPE_USER_ALIGN (type) = 0;
1782 TYPE_MODE (type) = BLKmode;
1783 break;
1785 default:
1786 abort ();
1789 /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
1790 records and unions, finish_record_layout already called this
1791 function. */
1792 if (TREE_CODE (type) != RECORD_TYPE
1793 && TREE_CODE (type) != UNION_TYPE
1794 && TREE_CODE (type) != QUAL_UNION_TYPE)
1795 finalize_type_size (type);
1797 /* If this type is created before sizetype has been permanently set,
1798 record it so set_sizetype can fix it up. */
1799 if (! sizetype_set)
1800 early_type_list = tree_cons (NULL_TREE, type, early_type_list);
1802 /* If an alias set has been set for this aggregate when it was incomplete,
1803 force it into alias set 0.
1804 This is too conservative, but we cannot call record_component_aliases
1805 here because some frontends still change the aggregates after
1806 layout_type. */
1807 if (AGGREGATE_TYPE_P (type) && TYPE_ALIAS_SET_KNOWN_P (type))
1808 TYPE_ALIAS_SET (type) = 0;
1811 /* Create and return a type for signed integers of PRECISION bits. */
1813 tree
1814 make_signed_type (int precision)
1816 tree type = make_node (INTEGER_TYPE);
1818 TYPE_PRECISION (type) = precision;
1820 fixup_signed_type (type);
1821 return type;
1824 /* Create and return a type for unsigned integers of PRECISION bits. */
1826 tree
1827 make_unsigned_type (int precision)
1829 tree type = make_node (INTEGER_TYPE);
1831 TYPE_PRECISION (type) = precision;
1833 fixup_unsigned_type (type);
1834 return type;
1837 /* Initialize sizetype and bitsizetype to a reasonable and temporary
1838 value to enable integer types to be created. */
1840 void
1841 initialize_sizetypes (void)
1843 tree t = make_node (INTEGER_TYPE);
1845 /* Set this so we do something reasonable for the build_int_2 calls
1846 below. */
1847 integer_type_node = t;
1849 TYPE_MODE (t) = SImode;
1850 TYPE_ALIGN (t) = GET_MODE_ALIGNMENT (SImode);
1851 TYPE_USER_ALIGN (t) = 0;
1852 TYPE_SIZE (t) = build_int_2 (GET_MODE_BITSIZE (SImode), 0);
1853 TYPE_SIZE_UNIT (t) = build_int_2 (GET_MODE_SIZE (SImode), 0);
1854 TREE_UNSIGNED (t) = 1;
1855 TYPE_PRECISION (t) = GET_MODE_BITSIZE (SImode);
1856 TYPE_MIN_VALUE (t) = build_int_2 (0, 0);
1857 TYPE_IS_SIZETYPE (t) = 1;
1859 /* 1000 avoids problems with possible overflow and is certainly
1860 larger than any size value we'd want to be storing. */
1861 TYPE_MAX_VALUE (t) = build_int_2 (1000, 0);
1863 /* These two must be different nodes because of the caching done in
1864 size_int_wide. */
1865 sizetype = t;
1866 bitsizetype = copy_node (t);
1867 integer_type_node = 0;
1870 /* Set sizetype to TYPE, and initialize *sizetype accordingly.
1871 Also update the type of any standard type's sizes made so far. */
1873 void
1874 set_sizetype (tree type)
1876 int oprecision = TYPE_PRECISION (type);
1877 /* The *bitsizetype types use a precision that avoids overflows when
1878 calculating signed sizes / offsets in bits. However, when
1879 cross-compiling from a 32 bit to a 64 bit host, we are limited to 64 bit
1880 precision. */
1881 int precision = MIN (oprecision + BITS_PER_UNIT_LOG + 1,
1882 2 * HOST_BITS_PER_WIDE_INT);
1883 unsigned int i;
1884 tree t;
1886 if (sizetype_set)
1887 abort ();
1889 /* Make copies of nodes since we'll be setting TYPE_IS_SIZETYPE. */
1890 sizetype = copy_node (type);
1891 TYPE_ORIG_SIZE_TYPE (sizetype) = type;
1892 TYPE_IS_SIZETYPE (sizetype) = 1;
1893 bitsizetype = make_node (INTEGER_TYPE);
1894 TYPE_NAME (bitsizetype) = TYPE_NAME (type);
1895 TYPE_PRECISION (bitsizetype) = precision;
1896 TYPE_IS_SIZETYPE (bitsizetype) = 1;
1898 if (TREE_UNSIGNED (type))
1899 fixup_unsigned_type (bitsizetype);
1900 else
1901 fixup_signed_type (bitsizetype);
1903 layout_type (bitsizetype);
1905 if (TREE_UNSIGNED (type))
1907 usizetype = sizetype;
1908 ubitsizetype = bitsizetype;
1909 ssizetype = copy_node (make_signed_type (oprecision));
1910 sbitsizetype = copy_node (make_signed_type (precision));
1912 else
1914 ssizetype = sizetype;
1915 sbitsizetype = bitsizetype;
1916 usizetype = copy_node (make_unsigned_type (oprecision));
1917 ubitsizetype = copy_node (make_unsigned_type (precision));
1920 TYPE_NAME (bitsizetype) = get_identifier ("bit_size_type");
1922 /* Show is a sizetype, is a main type, and has no pointers to it. */
1923 for (i = 0; i < ARRAY_SIZE (sizetype_tab); i++)
1925 TYPE_IS_SIZETYPE (sizetype_tab[i]) = 1;
1926 TYPE_MAIN_VARIANT (sizetype_tab[i]) = sizetype_tab[i];
1927 TYPE_NEXT_VARIANT (sizetype_tab[i]) = 0;
1928 TYPE_POINTER_TO (sizetype_tab[i]) = 0;
1929 TYPE_REFERENCE_TO (sizetype_tab[i]) = 0;
1932 /* Go down each of the types we already made and set the proper type
1933 for the sizes in them. */
1934 for (t = early_type_list; t != 0; t = TREE_CHAIN (t))
1936 if (TREE_CODE (TREE_VALUE (t)) != INTEGER_TYPE
1937 && TREE_CODE (TREE_VALUE (t)) != BOOLEAN_TYPE)
1938 abort ();
1940 TREE_TYPE (TYPE_SIZE (TREE_VALUE (t))) = bitsizetype;
1941 TREE_TYPE (TYPE_SIZE_UNIT (TREE_VALUE (t))) = sizetype;
1944 early_type_list = 0;
1945 sizetype_set = 1;
1948 /* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE,
1949 BOOLEAN_TYPE, or CHAR_TYPE. Set TYPE_MIN_VALUE and TYPE_MAX_VALUE
1950 for TYPE, based on the PRECISION and whether or not the TYPE
1951 IS_UNSIGNED. PRECISION need not correspond to a width supported
1952 natively by the hardware; for example, on a machine with 8-bit,
1953 16-bit, and 32-bit register modes, PRECISION might be 7, 23, or
1954 61. */
1956 void
1957 set_min_and_max_values_for_integral_type (tree type,
1958 int precision,
1959 bool is_unsigned)
1961 tree min_value;
1962 tree max_value;
1964 if (is_unsigned)
1966 min_value = build_int_2 (0, 0);
1967 max_value
1968 = build_int_2 (precision - HOST_BITS_PER_WIDE_INT >= 0
1969 ? -1 : ((HOST_WIDE_INT) 1 << precision) - 1,
1970 precision - HOST_BITS_PER_WIDE_INT > 0
1971 ? ((unsigned HOST_WIDE_INT) ~0
1972 >> (HOST_BITS_PER_WIDE_INT
1973 - (precision - HOST_BITS_PER_WIDE_INT)))
1974 : 0);
1976 else
1978 min_value
1979 = build_int_2 ((precision - HOST_BITS_PER_WIDE_INT > 0
1980 ? 0 : (HOST_WIDE_INT) (-1) << (precision - 1)),
1981 (((HOST_WIDE_INT) (-1)
1982 << (precision - HOST_BITS_PER_WIDE_INT - 1 > 0
1983 ? precision - HOST_BITS_PER_WIDE_INT - 1
1984 : 0))));
1985 max_value
1986 = build_int_2 ((precision - HOST_BITS_PER_WIDE_INT > 0
1987 ? -1 : ((HOST_WIDE_INT) 1 << (precision - 1)) - 1),
1988 (precision - HOST_BITS_PER_WIDE_INT - 1 > 0
1989 ? (((HOST_WIDE_INT) 1
1990 << (precision - HOST_BITS_PER_WIDE_INT - 1))) - 1
1991 : 0));
1994 TREE_TYPE (min_value) = type;
1995 TREE_TYPE (max_value) = type;
1996 TYPE_MIN_VALUE (type) = min_value;
1997 TYPE_MAX_VALUE (type) = max_value;
2000 /* Set the extreme values of TYPE based on its precision in bits,
2001 then lay it out. Used when make_signed_type won't do
2002 because the tree code is not INTEGER_TYPE.
2003 E.g. for Pascal, when the -fsigned-char option is given. */
2005 void
2006 fixup_signed_type (tree type)
2008 int precision = TYPE_PRECISION (type);
2010 /* We can not represent properly constants greater then
2011 2 * HOST_BITS_PER_WIDE_INT, still we need the types
2012 as they are used by i386 vector extensions and friends. */
2013 if (precision > HOST_BITS_PER_WIDE_INT * 2)
2014 precision = HOST_BITS_PER_WIDE_INT * 2;
2016 set_min_and_max_values_for_integral_type (type, precision,
2017 /*is_unsigned=*/false);
2019 /* Lay out the type: set its alignment, size, etc. */
2020 layout_type (type);
2023 /* Set the extreme values of TYPE based on its precision in bits,
2024 then lay it out. This is used both in `make_unsigned_type'
2025 and for enumeral types. */
2027 void
2028 fixup_unsigned_type (tree type)
2030 int precision = TYPE_PRECISION (type);
2032 /* We can not represent properly constants greater then
2033 2 * HOST_BITS_PER_WIDE_INT, still we need the types
2034 as they are used by i386 vector extensions and friends. */
2035 if (precision > HOST_BITS_PER_WIDE_INT * 2)
2036 precision = HOST_BITS_PER_WIDE_INT * 2;
2038 set_min_and_max_values_for_integral_type (type, precision,
2039 /*is_unsigned=*/true);
2041 /* Lay out the type: set its alignment, size, etc. */
2042 layout_type (type);
2045 /* Find the best machine mode to use when referencing a bit field of length
2046 BITSIZE bits starting at BITPOS.
2048 The underlying object is known to be aligned to a boundary of ALIGN bits.
2049 If LARGEST_MODE is not VOIDmode, it means that we should not use a mode
2050 larger than LARGEST_MODE (usually SImode).
2052 If no mode meets all these conditions, we return VOIDmode. Otherwise, if
2053 VOLATILEP is true or SLOW_BYTE_ACCESS is false, we return the smallest
2054 mode meeting these conditions.
2056 Otherwise (VOLATILEP is false and SLOW_BYTE_ACCESS is true), we return
2057 the largest mode (but a mode no wider than UNITS_PER_WORD) that meets
2058 all the conditions. */
2060 enum machine_mode
2061 get_best_mode (int bitsize, int bitpos, unsigned int align,
2062 enum machine_mode largest_mode, int volatilep)
2064 enum machine_mode mode;
2065 unsigned int unit = 0;
2067 /* Find the narrowest integer mode that contains the bit field. */
2068 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
2069 mode = GET_MODE_WIDER_MODE (mode))
2071 unit = GET_MODE_BITSIZE (mode);
2072 if ((bitpos % unit) + bitsize <= unit)
2073 break;
2076 if (mode == VOIDmode
2077 /* It is tempting to omit the following line
2078 if STRICT_ALIGNMENT is true.
2079 But that is incorrect, since if the bitfield uses part of 3 bytes
2080 and we use a 4-byte mode, we could get a spurious segv
2081 if the extra 4th byte is past the end of memory.
2082 (Though at least one Unix compiler ignores this problem:
2083 that on the Sequent 386 machine. */
2084 || MIN (unit, BIGGEST_ALIGNMENT) > align
2085 || (largest_mode != VOIDmode && unit > GET_MODE_BITSIZE (largest_mode)))
2086 return VOIDmode;
2088 if (SLOW_BYTE_ACCESS && ! volatilep)
2090 enum machine_mode wide_mode = VOIDmode, tmode;
2092 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT); tmode != VOIDmode;
2093 tmode = GET_MODE_WIDER_MODE (tmode))
2095 unit = GET_MODE_BITSIZE (tmode);
2096 if (bitpos / unit == (bitpos + bitsize - 1) / unit
2097 && unit <= BITS_PER_WORD
2098 && unit <= MIN (align, BIGGEST_ALIGNMENT)
2099 && (largest_mode == VOIDmode
2100 || unit <= GET_MODE_BITSIZE (largest_mode)))
2101 wide_mode = tmode;
2104 if (wide_mode != VOIDmode)
2105 return wide_mode;
2108 return mode;
2111 /* Gets minimal and maximal values for MODE (signed or unsigned depending on
2112 SIGN). */
2114 void
2115 get_mode_bounds (enum machine_mode mode, int sign, rtx *mmin, rtx *mmax)
2117 int size = GET_MODE_BITSIZE (mode);
2119 if (size > HOST_BITS_PER_WIDE_INT)
2120 abort ();
2122 if (sign)
2124 *mmin = GEN_INT (-((unsigned HOST_WIDE_INT) 1 << (size - 1)));
2125 *mmax = GEN_INT (((unsigned HOST_WIDE_INT) 1 << (size - 1)) - 1);
2127 else
2129 *mmin = const0_rtx;
2130 *mmax = GEN_INT (((unsigned HOST_WIDE_INT) 1 << (size - 1) << 1) - 1);
2134 #include "gt-stor-layout.h"