* lib/target-supports.exp
[official-gcc.git] / gcc / testsuite / lib / target-supports.exp
blob7304f5275ee5bf92050e698bcaadb890e1bb5c6a
1 # Copyright (C) 1999-2014 Free Software Foundation, Inc.
3 # This program is free software; you can redistribute it and/or modify
4 # it under the terms of the GNU General Public License as published by
5 # the Free Software Foundation; either version 3 of the License, or
6 # (at your option) any later version.
8 # This program is distributed in the hope that it will be useful,
9 # but WITHOUT ANY WARRANTY; without even the implied warranty of
10 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 # GNU General Public License for more details.
13 # You should have received a copy of the GNU General Public License
14 # along with GCC; see the file COPYING3. If not see
15 # <http://www.gnu.org/licenses/>.
17 # Please email any bugs, comments, and/or additions to this file to:
18 # gcc-patches@gcc.gnu.org
20 # This file defines procs for determining features supported by the target.
22 # Try to compile the code given by CONTENTS into an output file of
23 # type TYPE, where TYPE is as for target_compile. Return a list
24 # whose first element contains the compiler messages and whose
25 # second element is the name of the output file.
27 # BASENAME is a prefix to use for source and output files.
28 # If ARGS is not empty, its first element is a string that
29 # should be added to the command line.
31 # Assume by default that CONTENTS is C code.
32 # Otherwise, code should contain:
33 # "// C++" for c++,
34 # "! Fortran" for Fortran code,
35 # "/* ObjC", for ObjC
36 # "// ObjC++" for ObjC++
37 # and "// Go" for Go
38 # If the tool is ObjC/ObjC++ then we overide the extension to .m/.mm to
39 # allow for ObjC/ObjC++ specific flags.
40 proc check_compile {basename type contents args} {
41 global tool
42 verbose "check_compile tool: $tool for $basename"
44 if { [llength $args] > 0 } {
45 set options [list "additional_flags=[lindex $args 0]"]
46 } else {
47 set options ""
49 switch -glob -- $contents {
50 "*! Fortran*" { set src ${basename}[pid].f90 }
51 "*// C++*" { set src ${basename}[pid].cc }
52 "*// ObjC++*" { set src ${basename}[pid].mm }
53 "*/* ObjC*" { set src ${basename}[pid].m }
54 "*// Go*" { set src ${basename}[pid].go }
55 default {
56 switch -- $tool {
57 "objc" { set src ${basename}[pid].m }
58 "obj-c++" { set src ${basename}[pid].mm }
59 default { set src ${basename}[pid].c }
64 set compile_type $type
65 switch -glob $type {
66 assembly { set output ${basename}[pid].s }
67 object { set output ${basename}[pid].o }
68 executable { set output ${basename}[pid].exe }
69 "rtl-*" {
70 set output ${basename}[pid].s
71 lappend options "additional_flags=-fdump-$type"
72 set compile_type assembly
75 set f [open $src "w"]
76 puts $f $contents
77 close $f
78 set lines [${tool}_target_compile $src $output $compile_type "$options"]
79 file delete $src
81 set scan_output $output
82 # Don't try folding this into the switch above; calling "glob" before the
83 # file is created won't work.
84 if [regexp "rtl-(.*)" $type dummy rtl_type] {
85 set scan_output "[glob $src.\[0-9\]\[0-9\]\[0-9\]r.$rtl_type]"
86 file delete $output
89 return [list $lines $scan_output]
92 proc current_target_name { } {
93 global target_info
94 if [info exists target_info(target,name)] {
95 set answer $target_info(target,name)
96 } else {
97 set answer ""
99 return $answer
102 # Implement an effective-target check for property PROP by invoking
103 # the Tcl command ARGS and seeing if it returns true.
105 proc check_cached_effective_target { prop args } {
106 global et_cache
108 set target [current_target_name]
109 if {![info exists et_cache($prop,target)]
110 || $et_cache($prop,target) != $target} {
111 verbose "check_cached_effective_target $prop: checking $target" 2
112 set et_cache($prop,target) $target
113 set et_cache($prop,value) [uplevel eval $args]
115 set value $et_cache($prop,value)
116 verbose "check_cached_effective_target $prop: returning $value for $target" 2
117 return $value
120 # Like check_compile, but delete the output file and return true if the
121 # compiler printed no messages.
122 proc check_no_compiler_messages_nocache {args} {
123 set result [eval check_compile $args]
124 set lines [lindex $result 0]
125 set output [lindex $result 1]
126 remote_file build delete $output
127 return [string match "" $lines]
130 # Like check_no_compiler_messages_nocache, but cache the result.
131 # PROP is the property we're checking, and doubles as a prefix for
132 # temporary filenames.
133 proc check_no_compiler_messages {prop args} {
134 return [check_cached_effective_target $prop {
135 eval [list check_no_compiler_messages_nocache $prop] $args
139 # Like check_compile, but return true if the compiler printed no
140 # messages and if the contents of the output file satisfy PATTERN.
141 # If PATTERN has the form "!REGEXP", the contents satisfy it if they
142 # don't match regular expression REGEXP, otherwise they satisfy it
143 # if they do match regular expression PATTERN. (PATTERN can start
144 # with something like "[!]" if the regular expression needs to match
145 # "!" as the first character.)
147 # Delete the output file before returning. The other arguments are
148 # as for check_compile.
149 proc check_no_messages_and_pattern_nocache {basename pattern args} {
150 global tool
152 set result [eval [list check_compile $basename] $args]
153 set lines [lindex $result 0]
154 set output [lindex $result 1]
156 set ok 0
157 if { [string match "" $lines] } {
158 set chan [open "$output"]
159 set invert [regexp {^!(.*)} $pattern dummy pattern]
160 set ok [expr { [regexp $pattern [read $chan]] != $invert }]
161 close $chan
164 remote_file build delete $output
165 return $ok
168 # Like check_no_messages_and_pattern_nocache, but cache the result.
169 # PROP is the property we're checking, and doubles as a prefix for
170 # temporary filenames.
171 proc check_no_messages_and_pattern {prop pattern args} {
172 return [check_cached_effective_target $prop {
173 eval [list check_no_messages_and_pattern_nocache $prop $pattern] $args
177 # Try to compile and run an executable from code CONTENTS. Return true
178 # if the compiler reports no messages and if execution "passes" in the
179 # usual DejaGNU sense. The arguments are as for check_compile, with
180 # TYPE implicitly being "executable".
181 proc check_runtime_nocache {basename contents args} {
182 global tool
184 set result [eval [list check_compile $basename executable $contents] $args]
185 set lines [lindex $result 0]
186 set output [lindex $result 1]
188 set ok 0
189 if { [string match "" $lines] } {
190 # No error messages, everything is OK.
191 set result [remote_load target "./$output" "" ""]
192 set status [lindex $result 0]
193 verbose "check_runtime_nocache $basename: status is <$status>" 2
194 if { $status == "pass" } {
195 set ok 1
198 remote_file build delete $output
199 return $ok
202 # Like check_runtime_nocache, but cache the result. PROP is the
203 # property we're checking, and doubles as a prefix for temporary
204 # filenames.
205 proc check_runtime {prop args} {
206 global tool
208 return [check_cached_effective_target $prop {
209 eval [list check_runtime_nocache $prop] $args
213 ###############################
214 # proc check_weak_available { }
215 ###############################
217 # weak symbols are only supported in some configs/object formats
218 # this proc returns 1 if they're supported, 0 if they're not, or -1 if unsure
220 proc check_weak_available { } {
221 global target_cpu
223 # All mips targets should support it
225 if { [ string first "mips" $target_cpu ] >= 0 } {
226 return 1
229 # All AIX targets should support it
231 if { [istarget *-*-aix*] } {
232 return 1
235 # All solaris2 targets should support it
237 if { [istarget *-*-solaris2*] } {
238 return 1
241 # Windows targets Cygwin and MingW32 support it
243 if { [istarget *-*-cygwin*] || [istarget *-*-mingw*] } {
244 return 1
247 # HP-UX 10.X doesn't support it
249 if { [istarget hppa*-*-hpux10*] } {
250 return 0
253 # ELF and ECOFF support it. a.out does with gas/gld but may also with
254 # other linkers, so we should try it
256 set objformat [gcc_target_object_format]
258 switch $objformat {
259 elf { return 1 }
260 ecoff { return 1 }
261 a.out { return 1 }
262 mach-o { return 1 }
263 som { return 1 }
264 unknown { return -1 }
265 default { return 0 }
269 ###############################
270 # proc check_weak_override_available { }
271 ###############################
273 # Like check_weak_available, but return 0 if weak symbol definitions
274 # cannot be overridden.
276 proc check_weak_override_available { } {
277 if { [istarget *-*-mingw*] } {
278 return 0
280 return [check_weak_available]
283 ###############################
284 # proc check_visibility_available { what_kind }
285 ###############################
287 # The visibility attribute is only support in some object formats
288 # This proc returns 1 if it is supported, 0 if not.
289 # The argument is the kind of visibility, default/protected/hidden/internal.
291 proc check_visibility_available { what_kind } {
292 if [string match "" $what_kind] { set what_kind "hidden" }
294 return [check_no_compiler_messages visibility_available_$what_kind object "
295 void f() __attribute__((visibility(\"$what_kind\")));
296 void f() {}
300 ###############################
301 # proc check_alias_available { }
302 ###############################
304 # Determine if the target toolchain supports the alias attribute.
306 # Returns 2 if the target supports aliases. Returns 1 if the target
307 # only supports weak aliased. Returns 0 if the target does not
308 # support aliases at all. Returns -1 if support for aliases could not
309 # be determined.
311 proc check_alias_available { } {
312 global alias_available_saved
313 global tool
315 if [info exists alias_available_saved] {
316 verbose "check_alias_available returning saved $alias_available_saved" 2
317 } else {
318 set src alias[pid].c
319 set obj alias[pid].o
320 verbose "check_alias_available compiling testfile $src" 2
321 set f [open $src "w"]
322 # Compile a small test program. The definition of "g" is
323 # necessary to keep the Solaris assembler from complaining
324 # about the program.
325 puts $f "#ifdef __cplusplus\nextern \"C\"\n#endif\n"
326 puts $f "void g() {} void f() __attribute__((alias(\"g\")));"
327 close $f
328 set lines [${tool}_target_compile $src $obj object ""]
329 file delete $src
330 remote_file build delete $obj
332 if [string match "" $lines] then {
333 # No error messages, everything is OK.
334 set alias_available_saved 2
335 } else {
336 if [regexp "alias definitions not supported" $lines] {
337 verbose "check_alias_available target does not support aliases" 2
339 set objformat [gcc_target_object_format]
341 if { $objformat == "elf" } {
342 verbose "check_alias_available but target uses ELF format, so it ought to" 2
343 set alias_available_saved -1
344 } else {
345 set alias_available_saved 0
347 } else {
348 if [regexp "only weak aliases are supported" $lines] {
349 verbose "check_alias_available target supports only weak aliases" 2
350 set alias_available_saved 1
351 } else {
352 set alias_available_saved -1
357 verbose "check_alias_available returning $alias_available_saved" 2
360 return $alias_available_saved
363 # Returns 1 if the target toolchain supports strong aliases, 0 otherwise.
365 proc check_effective_target_alias { } {
366 if { [check_alias_available] < 2 } {
367 return 0
368 } else {
369 return 1
373 # Returns 1 if the target toolchain supports ifunc, 0 otherwise.
375 proc check_ifunc_available { } {
376 return [check_no_compiler_messages ifunc_available object {
377 #ifdef __cplusplus
378 extern "C"
379 #endif
380 void g() {}
381 void f() __attribute__((ifunc("g")));
385 # Returns true if --gc-sections is supported on the target.
387 proc check_gc_sections_available { } {
388 global gc_sections_available_saved
389 global tool
391 if {![info exists gc_sections_available_saved]} {
392 # Some targets don't support gc-sections despite whatever's
393 # advertised by ld's options.
394 if { [istarget alpha*-*-*]
395 || [istarget ia64-*-*] } {
396 set gc_sections_available_saved 0
397 return 0
400 # elf2flt uses -q (--emit-relocs), which is incompatible with
401 # --gc-sections.
402 if { [board_info target exists ldflags]
403 && [regexp " -elf2flt\[ =\]" " [board_info target ldflags] "] } {
404 set gc_sections_available_saved 0
405 return 0
408 # VxWorks kernel modules are relocatable objects linked with -r,
409 # while RTP executables are linked with -q (--emit-relocs).
410 # Both of these options are incompatible with --gc-sections.
411 if { [istarget *-*-vxworks*] } {
412 set gc_sections_available_saved 0
413 return 0
416 # Check if the ld used by gcc supports --gc-sections.
417 set gcc_spec [${tool}_target_compile "-dumpspecs" "" "none" ""]
418 regsub ".*\n\\*linker:\[ \t\]*\n(\[^ \t\n\]*).*" "$gcc_spec" {\1} linker
419 set gcc_ld [lindex [${tool}_target_compile "-print-prog-name=$linker" "" "none" ""] 0]
420 set ld_output [remote_exec host "$gcc_ld" "--help"]
421 if { [ string first "--gc-sections" $ld_output ] >= 0 } {
422 set gc_sections_available_saved 1
423 } else {
424 set gc_sections_available_saved 0
427 return $gc_sections_available_saved
430 # Return 1 if according to target_info struct and explicit target list
431 # target is supposed to support trampolines.
433 proc check_effective_target_trampolines { } {
434 if [target_info exists no_trampolines] {
435 return 0
437 if { [istarget avr-*-*]
438 || [istarget msp430-*-*]
439 || [istarget hppa2.0w-hp-hpux11.23]
440 || [istarget hppa64-hp-hpux11.23] } {
441 return 0;
443 return 1
446 # Return 1 if according to target_info struct and explicit target list
447 # target is supposed to keep null pointer checks. This could be due to
448 # use of option fno-delete-null-pointer-checks or hardwired in target.
450 proc check_effective_target_keeps_null_pointer_checks { } {
451 if [target_info exists keeps_null_pointer_checks] {
452 return 1
454 if { [istarget avr-*-*] } {
455 return 1;
457 return 0
460 # Return true if profiling is supported on the target.
462 proc check_profiling_available { test_what } {
463 global profiling_available_saved
465 verbose "Profiling argument is <$test_what>" 1
467 # These conditions depend on the argument so examine them before
468 # looking at the cache variable.
470 # Tree profiling requires TLS runtime support.
471 if { $test_what == "-fprofile-generate" } {
472 if { ![check_effective_target_tls_runtime] } {
473 return 0
477 # Support for -p on solaris2 relies on mcrt1.o which comes with the
478 # vendor compiler. We cannot reliably predict the directory where the
479 # vendor compiler (and thus mcrt1.o) is installed so we can't
480 # necessarily find mcrt1.o even if we have it.
481 if { [istarget *-*-solaris2*] && $test_what == "-p" } {
482 return 0
485 # We don't yet support profiling for MIPS16.
486 if { [istarget mips*-*-*]
487 && ![check_effective_target_nomips16]
488 && ($test_what == "-p" || $test_what == "-pg") } {
489 return 0
492 # MinGW does not support -p.
493 if { [istarget *-*-mingw*] && $test_what == "-p" } {
494 return 0
497 # cygwin does not support -p.
498 if { [istarget *-*-cygwin*] && $test_what == "-p" } {
499 return 0
502 # uClibc does not have gcrt1.o.
503 if { [check_effective_target_uclibc]
504 && ($test_what == "-p" || $test_what == "-pg") } {
505 return 0
508 # Now examine the cache variable.
509 if {![info exists profiling_available_saved]} {
510 # Some targets don't have any implementation of __bb_init_func or are
511 # missing other needed machinery.
512 if { [istarget aarch64*-*-elf]
513 || [istarget am3*-*-linux*]
514 || [istarget arm*-*-eabi*]
515 || [istarget arm*-*-elf]
516 || [istarget arm*-*-symbianelf*]
517 || [istarget avr-*-*]
518 || [istarget bfin-*-*]
519 || [istarget cris-*-*]
520 || [istarget crisv32-*-*]
521 || [istarget fido-*-elf]
522 || [istarget h8300-*-*]
523 || [istarget lm32-*-*]
524 || [istarget m32c-*-elf]
525 || [istarget m68k-*-elf]
526 || [istarget m68k-*-uclinux*]
527 || [istarget mep-*-elf]
528 || [istarget mips*-*-elf*]
529 || [istarget mmix-*-*]
530 || [istarget mn10300-*-elf*]
531 || [istarget moxie-*-elf*]
532 || [istarget msp430-*-*]
533 || [istarget nds32*-*-elf]
534 || [istarget nios2-*-elf]
535 || [istarget picochip-*-*]
536 || [istarget powerpc-*-eabi*]
537 || [istarget powerpc-*-elf]
538 || [istarget rx-*-*]
539 || [istarget tic6x-*-elf]
540 || [istarget xstormy16-*]
541 || [istarget xtensa*-*-elf]
542 || [istarget *-*-rtems*]
543 || [istarget *-*-vxworks*] } {
544 set profiling_available_saved 0
545 } else {
546 set profiling_available_saved 1
550 return $profiling_available_saved
553 # Check to see if a target is "freestanding". This is as per the definition
554 # in Section 4 of C99 standard. Effectively, it is a target which supports no
555 # extra headers or libraries other than what is considered essential.
556 proc check_effective_target_freestanding { } {
557 if { [istarget picochip-*-*] } then {
558 return 1
559 } else {
560 return 0
564 # Return 1 if target has packed layout of structure members by
565 # default, 0 otherwise. Note that this is slightly different than
566 # whether the target has "natural alignment": both attributes may be
567 # false.
569 proc check_effective_target_default_packed { } {
570 return [check_no_compiler_messages default_packed assembly {
571 struct x { char a; long b; } c;
572 int s[sizeof (c) == sizeof (char) + sizeof (long) ? 1 : -1];
576 # Return 1 if target has PCC_BITFIELD_TYPE_MATTERS defined. See
577 # documentation, where the test also comes from.
579 proc check_effective_target_pcc_bitfield_type_matters { } {
580 # PCC_BITFIELD_TYPE_MATTERS isn't just about unnamed or empty
581 # bitfields, but let's stick to the example code from the docs.
582 return [check_no_compiler_messages pcc_bitfield_type_matters assembly {
583 struct foo1 { char x; char :0; char y; };
584 struct foo2 { char x; int :0; char y; };
585 int s[sizeof (struct foo1) != sizeof (struct foo2) ? 1 : -1];
589 # Add to FLAGS all the target-specific flags needed to use thread-local storage.
591 proc add_options_for_tls { flags } {
592 # On Solaris 9, __tls_get_addr/___tls_get_addr only lives in
593 # libthread, so always pass -pthread for native TLS. Same for AIX.
594 # Need to duplicate native TLS check from
595 # check_effective_target_tls_native to avoid recursion.
596 if { ([istarget powerpc-ibm-aix*]) &&
597 [check_no_messages_and_pattern tls_native "!emutls" assembly {
598 __thread int i;
599 int f (void) { return i; }
600 void g (int j) { i = j; }
601 }] } {
602 return "$flags -pthread"
604 return $flags
607 # Return 1 if thread local storage (TLS) is supported, 0 otherwise.
609 proc check_effective_target_tls {} {
610 return [check_no_compiler_messages tls assembly {
611 __thread int i;
612 int f (void) { return i; }
613 void g (int j) { i = j; }
617 # Return 1 if *native* thread local storage (TLS) is supported, 0 otherwise.
619 proc check_effective_target_tls_native {} {
620 # VxWorks uses emulated TLS machinery, but with non-standard helper
621 # functions, so we fail to automatically detect it.
622 if { [istarget *-*-vxworks*] } {
623 return 0
626 return [check_no_messages_and_pattern tls_native "!emutls" assembly {
627 __thread int i;
628 int f (void) { return i; }
629 void g (int j) { i = j; }
633 # Return 1 if *emulated* thread local storage (TLS) is supported, 0 otherwise.
635 proc check_effective_target_tls_emulated {} {
636 # VxWorks uses emulated TLS machinery, but with non-standard helper
637 # functions, so we fail to automatically detect it.
638 if { [istarget *-*-vxworks*] } {
639 return 1
642 return [check_no_messages_and_pattern tls_emulated "emutls" assembly {
643 __thread int i;
644 int f (void) { return i; }
645 void g (int j) { i = j; }
649 # Return 1 if TLS executables can run correctly, 0 otherwise.
651 proc check_effective_target_tls_runtime {} {
652 # MSP430 runtime does not have TLS support, but just
653 # running the test below is insufficient to show this.
654 if { [istarget msp430-*-*] } {
655 return 0
657 return [check_runtime tls_runtime {
658 __thread int thr = 0;
659 int main (void) { return thr; }
660 } [add_options_for_tls ""]]
663 # Return 1 if atomic compare-and-swap is supported on 'int'
665 proc check_effective_target_cas_char {} {
666 return [check_no_compiler_messages cas_char assembly {
667 #ifndef __GCC_HAVE_SYNC_COMPARE_AND_SWAP_1
668 #error unsupported
669 #endif
670 } ""]
673 proc check_effective_target_cas_int {} {
674 return [check_no_compiler_messages cas_int assembly {
675 #if __INT_MAX__ == 0x7fff && __GCC_HAVE_SYNC_COMPARE_AND_SWAP_2
676 /* ok */
677 #elif __INT_MAX__ == 0x7fffffff && __GCC_HAVE_SYNC_COMPARE_AND_SWAP_4
678 /* ok */
679 #else
680 #error unsupported
681 #endif
682 } ""]
685 # Return 1 if -ffunction-sections is supported, 0 otherwise.
687 proc check_effective_target_function_sections {} {
688 # Darwin has its own scheme and silently accepts -ffunction-sections.
689 if { [istarget *-*-darwin*] } {
690 return 0
693 return [check_no_compiler_messages functionsections assembly {
694 void foo (void) { }
695 } "-ffunction-sections"]
698 # Return 1 if instruction scheduling is available, 0 otherwise.
700 proc check_effective_target_scheduling {} {
701 return [check_no_compiler_messages scheduling object {
702 void foo (void) { }
703 } "-fschedule-insns"]
706 # Return 1 if trapping arithmetic is available, 0 otherwise.
708 proc check_effective_target_trapping {} {
709 return [check_no_compiler_messages scheduling object {
710 add (int a, int b) { return a + b; }
711 } "-ftrapv"]
714 # Return 1 if compilation with -fgraphite is error-free for trivial
715 # code, 0 otherwise.
717 proc check_effective_target_fgraphite {} {
718 return [check_no_compiler_messages fgraphite object {
719 void foo (void) { }
720 } "-O1 -fgraphite"]
723 # Return 1 if compilation with -fopenmp is error-free for trivial
724 # code, 0 otherwise.
726 proc check_effective_target_fopenmp {} {
727 return [check_no_compiler_messages fopenmp object {
728 void foo (void) { }
729 } "-fopenmp"]
732 # Return 1 if compilation with -fgnu-tm is error-free for trivial
733 # code, 0 otherwise.
735 proc check_effective_target_fgnu_tm {} {
736 return [check_no_compiler_messages fgnu_tm object {
737 void foo (void) { }
738 } "-fgnu-tm"]
741 # Return 1 if the target supports mmap, 0 otherwise.
743 proc check_effective_target_mmap {} {
744 return [check_function_available "mmap"]
747 # Return 1 if the target supports dlopen, 0 otherwise.
748 proc check_effective_target_dlopen {} {
749 return [check_no_compiler_messages dlopen executable {
750 #include <dlfcn.h>
751 int main(void) { dlopen ("dummy.so", RTLD_NOW); }
752 } [add_options_for_dlopen ""]]
755 proc add_options_for_dlopen { flags } {
756 return "$flags -ldl"
759 # Return 1 if the target supports clone, 0 otherwise.
760 proc check_effective_target_clone {} {
761 return [check_function_available "clone"]
764 # Return 1 if the target supports setrlimit, 0 otherwise.
765 proc check_effective_target_setrlimit {} {
766 # Darwin has non-posix compliant RLIMIT_AS
767 if { [istarget *-*-darwin*] } {
768 return 0
770 return [check_function_available "setrlimit"]
773 # Return 1 if the target supports swapcontext, 0 otherwise.
774 proc check_effective_target_swapcontext {} {
775 return [check_no_compiler_messages swapcontext executable {
776 #include <ucontext.h>
777 int main (void)
779 ucontext_t orig_context,child_context;
780 if (swapcontext(&child_context, &orig_context) < 0) { }
785 # Return 1 if compilation with -pthread is error-free for trivial
786 # code, 0 otherwise.
788 proc check_effective_target_pthread {} {
789 return [check_no_compiler_messages pthread object {
790 void foo (void) { }
791 } "-pthread"]
794 # Return 1 if compilation with -mpe-aligned-commons is error-free
795 # for trivial code, 0 otherwise.
797 proc check_effective_target_pe_aligned_commons {} {
798 if { [istarget *-*-cygwin*] || [istarget *-*-mingw*] } {
799 return [check_no_compiler_messages pe_aligned_commons object {
800 int foo;
801 } "-mpe-aligned-commons"]
803 return 0
806 # Return 1 if the target supports -static
807 proc check_effective_target_static {} {
808 return [check_no_compiler_messages static executable {
809 int main (void) { return 0; }
810 } "-static"]
813 # Return 1 if the target supports -fstack-protector
814 proc check_effective_target_fstack_protector {} {
815 return [check_runtime fstack_protector {
816 int main (void) { return 0; }
817 } "-fstack-protector"]
820 # Return 1 if compilation with -freorder-blocks-and-partition is error-free
821 # for trivial code, 0 otherwise.
823 proc check_effective_target_freorder {} {
824 return [check_no_compiler_messages freorder object {
825 void foo (void) { }
826 } "-freorder-blocks-and-partition"]
829 # Return 1 if -fpic and -fPIC are supported, as in no warnings or errors
830 # emitted, 0 otherwise. Whether a shared library can actually be built is
831 # out of scope for this test.
833 proc check_effective_target_fpic { } {
834 # Note that M68K has a multilib that supports -fpic but not
835 # -fPIC, so we need to check both. We test with a program that
836 # requires GOT references.
837 foreach arg {fpic fPIC} {
838 if [check_no_compiler_messages $arg object {
839 extern int foo (void); extern int bar;
840 int baz (void) { return foo () + bar; }
841 } "-$arg"] {
842 return 1
845 return 0
848 # Return 1 if -pie, -fpie and -fPIE are supported, 0 otherwise.
850 proc check_effective_target_pie { } {
851 if { [istarget *-*-darwin\[912\]*]
852 || [istarget *-*-linux*]
853 || [istarget *-*-gnu*] } {
854 return 1;
856 return 0
859 # Return true if the target supports -mpaired-single (as used on MIPS).
861 proc check_effective_target_mpaired_single { } {
862 return [check_no_compiler_messages mpaired_single object {
863 void foo (void) { }
864 } "-mpaired-single"]
867 # Return true if the target has access to FPU instructions.
869 proc check_effective_target_hard_float { } {
870 if { [istarget mips*-*-*] } {
871 return [check_no_compiler_messages hard_float assembly {
872 #if (defined __mips_soft_float || defined __mips16)
873 #error FOO
874 #endif
878 # This proc is actually checking the availabilty of FPU
879 # support for doubles, so on the RX we must fail if the
880 # 64-bit double multilib has been selected.
881 if { [istarget rx-*-*] } {
882 return 0
883 # return [check_no_compiler_messages hard_float assembly {
884 #if defined __RX_64_BIT_DOUBLES__
885 #error FOO
886 #endif
887 # }]
890 # The generic test equates hard_float with "no call for adding doubles".
891 return [check_no_messages_and_pattern hard_float "!\\(call" rtl-expand {
892 double a (double b, double c) { return b + c; }
896 # Return true if the target is a 64-bit MIPS target.
898 proc check_effective_target_mips64 { } {
899 return [check_no_compiler_messages mips64 assembly {
900 #ifndef __mips64
901 #error FOO
902 #endif
906 # Return true if the target is a MIPS target that does not produce
907 # MIPS16 code.
909 proc check_effective_target_nomips16 { } {
910 return [check_no_compiler_messages nomips16 object {
911 #ifndef __mips
912 #error FOO
913 #else
914 /* A cheap way of testing for -mflip-mips16. */
915 void foo (void) { asm ("addiu $20,$20,1"); }
916 void bar (void) { asm ("addiu $20,$20,1"); }
917 #endif
921 # Add the options needed for MIPS16 function attributes. At the moment,
922 # we don't support MIPS16 PIC.
924 proc add_options_for_mips16_attribute { flags } {
925 return "$flags -mno-abicalls -fno-pic -DMIPS16=__attribute__((mips16))"
928 # Return true if we can force a mode that allows MIPS16 code generation.
929 # We don't support MIPS16 PIC, and only support MIPS16 -mhard-float
930 # for o32 and o64.
932 proc check_effective_target_mips16_attribute { } {
933 return [check_no_compiler_messages mips16_attribute assembly {
934 #ifdef PIC
935 #error FOO
936 #endif
937 #if defined __mips_hard_float \
938 && (!defined _ABIO32 || _MIPS_SIM != _ABIO32) \
939 && (!defined _ABIO64 || _MIPS_SIM != _ABIO64)
940 #error FOO
941 #endif
942 } [add_options_for_mips16_attribute ""]]
945 # Return 1 if the target supports long double larger than double when
946 # using the new ABI, 0 otherwise.
948 proc check_effective_target_mips_newabi_large_long_double { } {
949 return [check_no_compiler_messages mips_newabi_large_long_double object {
950 int dummy[sizeof(long double) > sizeof(double) ? 1 : -1];
951 } "-mabi=64"]
954 # Return true if the target is a MIPS target that has access
955 # to the LL and SC instructions.
957 proc check_effective_target_mips_llsc { } {
958 if { ![istarget mips*-*-*] } {
959 return 0
961 # Assume that these instructions are always implemented for
962 # non-elf* targets, via emulation if necessary.
963 if { ![istarget *-*-elf*] } {
964 return 1
966 # Otherwise assume LL/SC support for everything but MIPS I.
967 return [check_no_compiler_messages mips_llsc assembly {
968 #if __mips == 1
969 #error FOO
970 #endif
974 # Return true if the target is a MIPS target that uses in-place relocations.
976 proc check_effective_target_mips_rel { } {
977 if { ![istarget mips*-*-*] } {
978 return 0
980 return [check_no_compiler_messages mips_rel object {
981 #if (defined _ABIN32 && _MIPS_SIM == _ABIN32) \
982 || (defined _ABI64 && _MIPS_SIM == _ABI64)
983 #error FOO
984 #endif
988 # Return true if the target is a MIPS target that uses the EABI.
990 proc check_effective_target_mips_eabi { } {
991 if { ![istarget mips*-*-*] } {
992 return 0
994 return [check_no_compiler_messages mips_eabi object {
995 #ifndef __mips_eabi
996 #error FOO
997 #endif
1001 # Return 1 if the current multilib does not generate PIC by default.
1003 proc check_effective_target_nonpic { } {
1004 return [check_no_compiler_messages nonpic assembly {
1005 #if __PIC__
1006 #error FOO
1007 #endif
1011 # Return 1 if the target does not use a status wrapper.
1013 proc check_effective_target_unwrapped { } {
1014 if { [target_info needs_status_wrapper] != "" \
1015 && [target_info needs_status_wrapper] != "0" } {
1016 return 0
1018 return 1
1021 # Return true if iconv is supported on the target. In particular IBM1047.
1023 proc check_iconv_available { test_what } {
1024 global libiconv
1026 # If the tool configuration file has not set libiconv, try "-liconv"
1027 if { ![info exists libiconv] } {
1028 set libiconv "-liconv"
1030 set test_what [lindex $test_what 1]
1031 return [check_runtime_nocache $test_what [subst {
1032 #include <iconv.h>
1033 int main (void)
1035 iconv_t cd;
1037 cd = iconv_open ("$test_what", "UTF-8");
1038 if (cd == (iconv_t) -1)
1039 return 1;
1040 return 0;
1042 }] $libiconv]
1045 # Return true if Cilk Library is supported on the target.
1046 proc check_libcilkrts_available { } {
1047 return [ check_no_compiler_messages_nocache libcilkrts_available executable {
1048 #ifdef __cplusplus
1049 extern "C"
1050 #endif
1051 int __cilkrts_set_param (const char *, const char *);
1052 int main (void) {
1053 int x = __cilkrts_set_param ("nworkers", "0");
1054 return x;
1056 } "-fcilkplus -lcilkrts" ]
1059 # Return 1 if an ASCII locale is supported on this host, 0 otherwise.
1061 proc check_ascii_locale_available { } {
1062 return 1
1065 # Return true if named sections are supported on this target.
1067 proc check_named_sections_available { } {
1068 return [check_no_compiler_messages named_sections assembly {
1069 int __attribute__ ((section("whatever"))) foo;
1073 # Return true if the "naked" function attribute is supported on this target.
1075 proc check_effective_target_naked_functions { } {
1076 return [check_no_compiler_messages naked_functions assembly {
1077 void f() __attribute__((naked));
1081 # Return 1 if the target supports Fortran real kinds larger than real(8),
1082 # 0 otherwise.
1084 # When the target name changes, replace the cached result.
1086 proc check_effective_target_fortran_large_real { } {
1087 return [check_no_compiler_messages fortran_large_real executable {
1088 ! Fortran
1089 integer,parameter :: k = selected_real_kind (precision (0.0_8) + 1)
1090 real(kind=k) :: x
1091 x = cos (x)
1096 # Return 1 if the target supports Fortran real kind real(16),
1097 # 0 otherwise. Contrary to check_effective_target_fortran_large_real
1098 # this checks for Real(16) only; the other returned real(10) if
1099 # both real(10) and real(16) are available.
1101 # When the target name changes, replace the cached result.
1103 proc check_effective_target_fortran_real_16 { } {
1104 return [check_no_compiler_messages fortran_real_16 executable {
1105 ! Fortran
1106 real(kind=16) :: x
1107 x = cos (x)
1113 # Return 1 if the target supports SQRT for the largest floating-point
1114 # type. (Some targets lack the libm support for this FP type.)
1115 # On most targets, this check effectively checks either whether sqrtl is
1116 # available or on __float128 systems whether libquadmath is installed,
1117 # which provides sqrtq.
1119 # When the target name changes, replace the cached result.
1121 proc check_effective_target_fortran_largest_fp_has_sqrt { } {
1122 return [check_no_compiler_messages fortran_largest_fp_has_sqrt executable {
1123 ! Fortran
1124 use iso_fortran_env, only: real_kinds
1125 integer,parameter:: maxFP = real_kinds(ubound(real_kinds,dim=1))
1126 real(kind=maxFP), volatile :: x
1127 x = 2.0_maxFP
1128 x = sqrt (x)
1134 # Return 1 if the target supports Fortran integer kinds larger than
1135 # integer(8), 0 otherwise.
1137 # When the target name changes, replace the cached result.
1139 proc check_effective_target_fortran_large_int { } {
1140 return [check_no_compiler_messages fortran_large_int executable {
1141 ! Fortran
1142 integer,parameter :: k = selected_int_kind (range (0_8) + 1)
1143 integer(kind=k) :: i
1148 # Return 1 if the target supports Fortran integer(16), 0 otherwise.
1150 # When the target name changes, replace the cached result.
1152 proc check_effective_target_fortran_integer_16 { } {
1153 return [check_no_compiler_messages fortran_integer_16 executable {
1154 ! Fortran
1155 integer(16) :: i
1160 # Return 1 if we can statically link libgfortran, 0 otherwise.
1162 # When the target name changes, replace the cached result.
1164 proc check_effective_target_static_libgfortran { } {
1165 return [check_no_compiler_messages static_libgfortran executable {
1166 ! Fortran
1167 print *, 'test'
1169 } "-static"]
1172 # Return 1 if cilk-plus is supported by the target, 0 otherwise.
1174 proc check_effective_target_cilkplus { } {
1175 # Skip cilk-plus tests on int16 and size16 targets for now.
1176 # The cilk-plus tests are not generic enough to cover these
1177 # cases and would throw hundreds of FAILs.
1178 if { [check_effective_target_int16]
1179 || ![check_effective_target_size32plus] } {
1180 return 0;
1183 # Skip AVR, its RAM is too small and too many tests would fail.
1184 if { [istarget avr-*-*] } {
1185 return 0;
1187 return 1
1190 proc check_linker_plugin_available { } {
1191 return [check_no_compiler_messages_nocache linker_plugin executable {
1192 int main() { return 0; }
1193 } "-flto -fuse-linker-plugin"]
1196 # Return 1 if the target supports executing 750CL paired-single instructions, 0
1197 # otherwise. Cache the result.
1199 proc check_750cl_hw_available { } {
1200 return [check_cached_effective_target 750cl_hw_available {
1201 # If this is not the right target then we can skip the test.
1202 if { ![istarget powerpc-*paired*] } {
1203 expr 0
1204 } else {
1205 check_runtime_nocache 750cl_hw_available {
1206 int main()
1208 #ifdef __MACH__
1209 asm volatile ("ps_mul v0,v0,v0");
1210 #else
1211 asm volatile ("ps_mul 0,0,0");
1212 #endif
1213 return 0;
1215 } "-mpaired"
1220 # Return 1 if the target OS supports running SSE executables, 0
1221 # otherwise. Cache the result.
1223 proc check_sse_os_support_available { } {
1224 return [check_cached_effective_target sse_os_support_available {
1225 # If this is not the right target then we can skip the test.
1226 if { !([istarget x86_64-*-*] || [istarget i?86-*-*]) } {
1227 expr 0
1228 } elseif { [istarget i?86-*-solaris2*] } {
1229 # The Solaris 2 kernel doesn't save and restore SSE registers
1230 # before Solaris 9 4/04. Before that, executables die with SIGILL.
1231 check_runtime_nocache sse_os_support_available {
1232 int main ()
1234 asm volatile ("movaps %xmm0,%xmm0");
1235 return 0;
1237 } "-msse"
1238 } else {
1239 expr 1
1244 # Return 1 if the target OS supports running AVX executables, 0
1245 # otherwise. Cache the result.
1247 proc check_avx_os_support_available { } {
1248 return [check_cached_effective_target avx_os_support_available {
1249 # If this is not the right target then we can skip the test.
1250 if { !([istarget x86_64-*-*] || [istarget i?86-*-*]) } {
1251 expr 0
1252 } else {
1253 # Check that OS has AVX and SSE saving enabled.
1254 check_runtime_nocache avx_os_support_available {
1255 int main ()
1257 unsigned int eax, edx;
1259 asm ("xgetbv" : "=a" (eax), "=d" (edx) : "c" (0));
1260 return (eax & 6) != 6;
1262 } ""
1267 # Return 1 if the target supports executing SSE instructions, 0
1268 # otherwise. Cache the result.
1270 proc check_sse_hw_available { } {
1271 return [check_cached_effective_target sse_hw_available {
1272 # If this is not the right target then we can skip the test.
1273 if { !([istarget x86_64-*-*] || [istarget i?86-*-*]) } {
1274 expr 0
1275 } else {
1276 check_runtime_nocache sse_hw_available {
1277 #include "cpuid.h"
1278 int main ()
1280 unsigned int eax, ebx, ecx, edx;
1281 if (__get_cpuid (1, &eax, &ebx, &ecx, &edx))
1282 return !(edx & bit_SSE);
1283 return 1;
1285 } ""
1290 # Return 1 if the target supports executing SSE2 instructions, 0
1291 # otherwise. Cache the result.
1293 proc check_sse2_hw_available { } {
1294 return [check_cached_effective_target sse2_hw_available {
1295 # If this is not the right target then we can skip the test.
1296 if { !([istarget x86_64-*-*] || [istarget i?86-*-*]) } {
1297 expr 0
1298 } else {
1299 check_runtime_nocache sse2_hw_available {
1300 #include "cpuid.h"
1301 int main ()
1303 unsigned int eax, ebx, ecx, edx;
1304 if (__get_cpuid (1, &eax, &ebx, &ecx, &edx))
1305 return !(edx & bit_SSE2);
1306 return 1;
1308 } ""
1313 # Return 1 if the target supports executing AVX instructions, 0
1314 # otherwise. Cache the result.
1316 proc check_avx_hw_available { } {
1317 return [check_cached_effective_target avx_hw_available {
1318 # If this is not the right target then we can skip the test.
1319 if { !([istarget x86_64-*-*] || [istarget i?86-*-*]) } {
1320 expr 0
1321 } else {
1322 check_runtime_nocache avx_hw_available {
1323 #include "cpuid.h"
1324 int main ()
1326 unsigned int eax, ebx, ecx, edx;
1327 if (__get_cpuid (1, &eax, &ebx, &ecx, &edx))
1328 return ((ecx & (bit_AVX | bit_OSXSAVE))
1329 != (bit_AVX | bit_OSXSAVE));
1330 return 1;
1332 } ""
1337 # Return 1 if the target supports running SSE executables, 0 otherwise.
1339 proc check_effective_target_sse_runtime { } {
1340 if { [check_effective_target_sse]
1341 && [check_sse_hw_available]
1342 && [check_sse_os_support_available] } {
1343 return 1
1345 return 0
1348 # Return 1 if the target supports running SSE2 executables, 0 otherwise.
1350 proc check_effective_target_sse2_runtime { } {
1351 if { [check_effective_target_sse2]
1352 && [check_sse2_hw_available]
1353 && [check_sse_os_support_available] } {
1354 return 1
1356 return 0
1359 # Return 1 if the target supports running AVX executables, 0 otherwise.
1361 proc check_effective_target_avx_runtime { } {
1362 if { [check_effective_target_avx]
1363 && [check_avx_hw_available]
1364 && [check_avx_os_support_available] } {
1365 return 1
1367 return 0
1370 # Return 1 if the target supports executing power8 vector instructions, 0
1371 # otherwise. Cache the result.
1373 proc check_p8vector_hw_available { } {
1374 return [check_cached_effective_target p8vector_hw_available {
1375 # Some simulators are known to not support VSX/power8 instructions.
1376 # For now, disable on Darwin
1377 if { [istarget powerpc-*-eabi] || [istarget powerpc*-*-eabispe] || [istarget *-*-darwin*]} {
1378 expr 0
1379 } else {
1380 set options "-mpower8-vector"
1381 check_runtime_nocache p8vector_hw_available {
1382 int main()
1384 #ifdef __MACH__
1385 asm volatile ("xxlorc vs0,vs0,vs0");
1386 #else
1387 asm volatile ("xxlorc 0,0,0");
1388 #endif
1389 return 0;
1391 } $options
1396 # Return 1 if the target supports executing VSX instructions, 0
1397 # otherwise. Cache the result.
1399 proc check_vsx_hw_available { } {
1400 return [check_cached_effective_target vsx_hw_available {
1401 # Some simulators are known to not support VSX instructions.
1402 # For now, disable on Darwin
1403 if { [istarget powerpc-*-eabi] || [istarget powerpc*-*-eabispe] || [istarget *-*-darwin*]} {
1404 expr 0
1405 } else {
1406 set options "-mvsx"
1407 check_runtime_nocache vsx_hw_available {
1408 int main()
1410 #ifdef __MACH__
1411 asm volatile ("xxlor vs0,vs0,vs0");
1412 #else
1413 asm volatile ("xxlor 0,0,0");
1414 #endif
1415 return 0;
1417 } $options
1422 # Return 1 if the target supports executing AltiVec instructions, 0
1423 # otherwise. Cache the result.
1425 proc check_vmx_hw_available { } {
1426 return [check_cached_effective_target vmx_hw_available {
1427 # Some simulators are known to not support VMX instructions.
1428 if { [istarget powerpc-*-eabi] || [istarget powerpc*-*-eabispe] } {
1429 expr 0
1430 } else {
1431 # Most targets don't require special flags for this test case, but
1432 # Darwin does. Just to be sure, make sure VSX is not enabled for
1433 # the altivec tests.
1434 if { [istarget *-*-darwin*]
1435 || [istarget *-*-aix*] } {
1436 set options "-maltivec -mno-vsx"
1437 } else {
1438 set options "-mno-vsx"
1440 check_runtime_nocache vmx_hw_available {
1441 int main()
1443 #ifdef __MACH__
1444 asm volatile ("vor v0,v0,v0");
1445 #else
1446 asm volatile ("vor 0,0,0");
1447 #endif
1448 return 0;
1450 } $options
1455 proc check_ppc_recip_hw_available { } {
1456 return [check_cached_effective_target ppc_recip_hw_available {
1457 # Some simulators may not support FRE/FRES/FRSQRTE/FRSQRTES
1458 # For now, disable on Darwin
1459 if { [istarget powerpc-*-eabi] || [istarget powerpc*-*-eabispe] || [istarget *-*-darwin*]} {
1460 expr 0
1461 } else {
1462 set options "-mpowerpc-gfxopt -mpowerpc-gpopt -mpopcntb"
1463 check_runtime_nocache ppc_recip_hw_available {
1464 volatile double d_recip, d_rsqrt, d_four = 4.0;
1465 volatile float f_recip, f_rsqrt, f_four = 4.0f;
1466 int main()
1468 asm volatile ("fres %0,%1" : "=f" (f_recip) : "f" (f_four));
1469 asm volatile ("fre %0,%1" : "=d" (d_recip) : "d" (d_four));
1470 asm volatile ("frsqrtes %0,%1" : "=f" (f_rsqrt) : "f" (f_four));
1471 asm volatile ("frsqrte %0,%1" : "=f" (d_rsqrt) : "d" (d_four));
1472 return 0;
1474 } $options
1479 # Return 1 if the target supports executing AltiVec and Cell PPU
1480 # instructions, 0 otherwise. Cache the result.
1482 proc check_effective_target_cell_hw { } {
1483 return [check_cached_effective_target cell_hw_available {
1484 # Some simulators are known to not support VMX and PPU instructions.
1485 if { [istarget powerpc-*-eabi*] } {
1486 expr 0
1487 } else {
1488 # Most targets don't require special flags for this test
1489 # case, but Darwin and AIX do.
1490 if { [istarget *-*-darwin*]
1491 || [istarget *-*-aix*] } {
1492 set options "-maltivec -mcpu=cell"
1493 } else {
1494 set options "-mcpu=cell"
1496 check_runtime_nocache cell_hw_available {
1497 int main()
1499 #ifdef __MACH__
1500 asm volatile ("vor v0,v0,v0");
1501 asm volatile ("lvlx v0,r0,r0");
1502 #else
1503 asm volatile ("vor 0,0,0");
1504 asm volatile ("lvlx 0,0,0");
1505 #endif
1506 return 0;
1508 } $options
1513 # Return 1 if the target supports executing 64-bit instructions, 0
1514 # otherwise. Cache the result.
1516 proc check_effective_target_powerpc64 { } {
1517 global powerpc64_available_saved
1518 global tool
1520 if [info exists powerpc64_available_saved] {
1521 verbose "check_effective_target_powerpc64 returning saved $powerpc64_available_saved" 2
1522 } else {
1523 set powerpc64_available_saved 0
1525 # Some simulators are known to not support powerpc64 instructions.
1526 if { [istarget powerpc-*-eabi*] || [istarget powerpc-ibm-aix*] } {
1527 verbose "check_effective_target_powerpc64 returning 0" 2
1528 return $powerpc64_available_saved
1531 # Set up, compile, and execute a test program containing a 64-bit
1532 # instruction. Include the current process ID in the file
1533 # names to prevent conflicts with invocations for multiple
1534 # testsuites.
1535 set src ppc[pid].c
1536 set exe ppc[pid].x
1538 set f [open $src "w"]
1539 puts $f "int main() {"
1540 puts $f "#ifdef __MACH__"
1541 puts $f " asm volatile (\"extsw r0,r0\");"
1542 puts $f "#else"
1543 puts $f " asm volatile (\"extsw 0,0\");"
1544 puts $f "#endif"
1545 puts $f " return 0; }"
1546 close $f
1548 set opts "additional_flags=-mcpu=G5"
1550 verbose "check_effective_target_powerpc64 compiling testfile $src" 2
1551 set lines [${tool}_target_compile $src $exe executable "$opts"]
1552 file delete $src
1554 if [string match "" $lines] then {
1555 # No error message, compilation succeeded.
1556 set result [${tool}_load "./$exe" "" ""]
1557 set status [lindex $result 0]
1558 remote_file build delete $exe
1559 verbose "check_effective_target_powerpc64 testfile status is <$status>" 2
1561 if { $status == "pass" } then {
1562 set powerpc64_available_saved 1
1564 } else {
1565 verbose "check_effective_target_powerpc64 testfile compilation failed" 2
1569 return $powerpc64_available_saved
1572 # GCC 3.4.0 for powerpc64-*-linux* included an ABI fix for passing
1573 # complex float arguments. This affects gfortran tests that call cabsf
1574 # in libm built by an earlier compiler. Return 1 if libm uses the same
1575 # argument passing as the compiler under test, 0 otherwise.
1577 # When the target name changes, replace the cached result.
1579 proc check_effective_target_broken_cplxf_arg { } {
1580 return [check_cached_effective_target broken_cplxf_arg {
1581 # Skip the work for targets known not to be affected.
1582 if { ![istarget powerpc64-*-linux*] } {
1583 expr 0
1584 } elseif { ![is-effective-target lp64] } {
1585 expr 0
1586 } else {
1587 check_runtime_nocache broken_cplxf_arg {
1588 #include <complex.h>
1589 extern void abort (void);
1590 float fabsf (float);
1591 float cabsf (_Complex float);
1592 int main ()
1594 _Complex float cf;
1595 float f;
1596 cf = 3 + 4.0fi;
1597 f = cabsf (cf);
1598 if (fabsf (f - 5.0) > 0.0001)
1599 abort ();
1600 return 0;
1602 } "-lm"
1607 # Return 1 is this is a TI C6X target supporting C67X instructions
1608 proc check_effective_target_ti_c67x { } {
1609 return [check_no_compiler_messages ti_c67x assembly {
1610 #if !defined(_TMS320C6700)
1611 #error FOO
1612 #endif
1616 # Return 1 is this is a TI C6X target supporting C64X+ instructions
1617 proc check_effective_target_ti_c64xp { } {
1618 return [check_no_compiler_messages ti_c64xp assembly {
1619 #if !defined(_TMS320C6400_PLUS)
1620 #error FOO
1621 #endif
1626 proc check_alpha_max_hw_available { } {
1627 return [check_runtime alpha_max_hw_available {
1628 int main() { return __builtin_alpha_amask(1<<8) != 0; }
1632 # Returns true iff the FUNCTION is available on the target system.
1633 # (This is essentially a Tcl implementation of Autoconf's
1634 # AC_CHECK_FUNC.)
1636 proc check_function_available { function } {
1637 return [check_no_compiler_messages ${function}_available \
1638 executable [subst {
1639 #ifdef __cplusplus
1640 extern "C"
1641 #endif
1642 char $function ();
1643 int main () { $function (); }
1644 }] "-fno-builtin" ]
1647 # Returns true iff "fork" is available on the target system.
1649 proc check_fork_available {} {
1650 return [check_function_available "fork"]
1653 # Returns true iff "mkfifo" is available on the target system.
1655 proc check_mkfifo_available {} {
1656 if { [istarget *-*-cygwin*] } {
1657 # Cygwin has mkfifo, but support is incomplete.
1658 return 0
1661 return [check_function_available "mkfifo"]
1664 # Returns true iff "__cxa_atexit" is used on the target system.
1666 proc check_cxa_atexit_available { } {
1667 return [check_cached_effective_target cxa_atexit_available {
1668 if { [istarget hppa*-*-hpux10*] } {
1669 # HP-UX 10 doesn't have __cxa_atexit but subsequent test passes.
1670 expr 0
1671 } elseif { [istarget *-*-vxworks] } {
1672 # vxworks doesn't have __cxa_atexit but subsequent test passes.
1673 expr 0
1674 } else {
1675 check_runtime_nocache cxa_atexit_available {
1676 // C++
1677 #include <stdlib.h>
1678 static unsigned int count;
1679 struct X
1681 X() { count = 1; }
1682 ~X()
1684 if (count != 3)
1685 exit(1);
1686 count = 4;
1689 void f()
1691 static X x;
1693 struct Y
1695 Y() { f(); count = 2; }
1696 ~Y()
1698 if (count != 2)
1699 exit(1);
1700 count = 3;
1703 Y y;
1704 int main() { return 0; }
1710 proc check_effective_target_objc2 { } {
1711 return [check_no_compiler_messages objc2 object {
1712 #ifdef __OBJC2__
1713 int dummy[1];
1714 #else
1715 #error
1716 #endif
1720 proc check_effective_target_next_runtime { } {
1721 return [check_no_compiler_messages objc2 object {
1722 #ifdef __NEXT_RUNTIME__
1723 int dummy[1];
1724 #else
1725 #error
1726 #endif
1730 # Return 1 if we're generating 32-bit code using default options, 0
1731 # otherwise.
1733 proc check_effective_target_ilp32 { } {
1734 return [check_no_compiler_messages ilp32 object {
1735 int dummy[sizeof (int) == 4
1736 && sizeof (void *) == 4
1737 && sizeof (long) == 4 ? 1 : -1];
1741 # Return 1 if we're generating ia32 code using default options, 0
1742 # otherwise.
1744 proc check_effective_target_ia32 { } {
1745 return [check_no_compiler_messages ia32 object {
1746 int dummy[sizeof (int) == 4
1747 && sizeof (void *) == 4
1748 && sizeof (long) == 4 ? 1 : -1] = { __i386__ };
1752 # Return 1 if we're generating x32 code using default options, 0
1753 # otherwise.
1755 proc check_effective_target_x32 { } {
1756 return [check_no_compiler_messages x32 object {
1757 int dummy[sizeof (int) == 4
1758 && sizeof (void *) == 4
1759 && sizeof (long) == 4 ? 1 : -1] = { __x86_64__ };
1763 # Return 1 if we're generating 32-bit integers using default
1764 # options, 0 otherwise.
1766 proc check_effective_target_int32 { } {
1767 return [check_no_compiler_messages int32 object {
1768 int dummy[sizeof (int) == 4 ? 1 : -1];
1772 # Return 1 if we're generating 32-bit or larger integers using default
1773 # options, 0 otherwise.
1775 proc check_effective_target_int32plus { } {
1776 return [check_no_compiler_messages int32plus object {
1777 int dummy[sizeof (int) >= 4 ? 1 : -1];
1781 # Return 1 if we're generating 32-bit or larger pointers using default
1782 # options, 0 otherwise.
1784 proc check_effective_target_ptr32plus { } {
1785 # The msp430 has 16-bit or 20-bit pointers. The 20-bit pointer is stored
1786 # in a 32-bit slot when in memory, so sizeof(void *) returns 4, but it
1787 # cannot really hold a 32-bit address, so we always return false here.
1788 if { [istarget msp430-*-*] } {
1789 return 0
1792 return [check_no_compiler_messages ptr32plus object {
1793 int dummy[sizeof (void *) >= 4 ? 1 : -1];
1797 # Return 1 if we support 32-bit or larger array and structure sizes
1798 # using default options, 0 otherwise.
1800 proc check_effective_target_size32plus { } {
1801 return [check_no_compiler_messages size32plus object {
1802 char dummy[65537];
1806 # Returns 1 if we're generating 16-bit or smaller integers with the
1807 # default options, 0 otherwise.
1809 proc check_effective_target_int16 { } {
1810 return [check_no_compiler_messages int16 object {
1811 int dummy[sizeof (int) < 4 ? 1 : -1];
1815 # Return 1 if we're generating 64-bit code using default options, 0
1816 # otherwise.
1818 proc check_effective_target_lp64 { } {
1819 return [check_no_compiler_messages lp64 object {
1820 int dummy[sizeof (int) == 4
1821 && sizeof (void *) == 8
1822 && sizeof (long) == 8 ? 1 : -1];
1826 # Return 1 if we're generating 64-bit code using default llp64 options,
1827 # 0 otherwise.
1829 proc check_effective_target_llp64 { } {
1830 return [check_no_compiler_messages llp64 object {
1831 int dummy[sizeof (int) == 4
1832 && sizeof (void *) == 8
1833 && sizeof (long long) == 8
1834 && sizeof (long) == 4 ? 1 : -1];
1838 # Return 1 if long and int have different sizes,
1839 # 0 otherwise.
1841 proc check_effective_target_long_neq_int { } {
1842 return [check_no_compiler_messages long_ne_int object {
1843 int dummy[sizeof (int) != sizeof (long) ? 1 : -1];
1847 # Return 1 if the target supports long double larger than double,
1848 # 0 otherwise.
1850 proc check_effective_target_large_long_double { } {
1851 return [check_no_compiler_messages large_long_double object {
1852 int dummy[sizeof(long double) > sizeof(double) ? 1 : -1];
1856 # Return 1 if the target supports double larger than float,
1857 # 0 otherwise.
1859 proc check_effective_target_large_double { } {
1860 return [check_no_compiler_messages large_double object {
1861 int dummy[sizeof(double) > sizeof(float) ? 1 : -1];
1865 # Return 1 if the target supports double of 64 bits,
1866 # 0 otherwise.
1868 proc check_effective_target_double64 { } {
1869 return [check_no_compiler_messages double64 object {
1870 int dummy[sizeof(double) == 8 ? 1 : -1];
1874 # Return 1 if the target supports double of at least 64 bits,
1875 # 0 otherwise.
1877 proc check_effective_target_double64plus { } {
1878 return [check_no_compiler_messages double64plus object {
1879 int dummy[sizeof(double) >= 8 ? 1 : -1];
1883 # Return 1 if the target supports 'w' suffix on floating constant
1884 # 0 otherwise.
1886 proc check_effective_target_has_w_floating_suffix { } {
1887 set opts ""
1888 if [check_effective_target_c++] {
1889 append opts "-std=gnu++03"
1891 return [check_no_compiler_messages w_fp_suffix object {
1892 float dummy = 1.0w;
1893 } "$opts"]
1896 # Return 1 if the target supports 'q' suffix on floating constant
1897 # 0 otherwise.
1899 proc check_effective_target_has_q_floating_suffix { } {
1900 set opts ""
1901 if [check_effective_target_c++] {
1902 append opts "-std=gnu++03"
1904 return [check_no_compiler_messages q_fp_suffix object {
1905 float dummy = 1.0q;
1906 } "$opts"]
1908 # Return 1 if the target supports compiling fixed-point,
1909 # 0 otherwise.
1911 proc check_effective_target_fixed_point { } {
1912 return [check_no_compiler_messages fixed_point object {
1913 _Sat _Fract x; _Sat _Accum y;
1917 # Return 1 if the target supports compiling decimal floating point,
1918 # 0 otherwise.
1920 proc check_effective_target_dfp_nocache { } {
1921 verbose "check_effective_target_dfp_nocache: compiling source" 2
1922 set ret [check_no_compiler_messages_nocache dfp object {
1923 float x __attribute__((mode(DD)));
1925 verbose "check_effective_target_dfp_nocache: returning $ret" 2
1926 return $ret
1929 proc check_effective_target_dfprt_nocache { } {
1930 return [check_runtime_nocache dfprt {
1931 typedef float d64 __attribute__((mode(DD)));
1932 d64 x = 1.2df, y = 2.3dd, z;
1933 int main () { z = x + y; return 0; }
1937 # Return 1 if the target supports compiling Decimal Floating Point,
1938 # 0 otherwise.
1940 # This won't change for different subtargets so cache the result.
1942 proc check_effective_target_dfp { } {
1943 return [check_cached_effective_target dfp {
1944 check_effective_target_dfp_nocache
1948 # Return 1 if the target supports linking and executing Decimal Floating
1949 # Point, 0 otherwise.
1951 # This won't change for different subtargets so cache the result.
1953 proc check_effective_target_dfprt { } {
1954 return [check_cached_effective_target dfprt {
1955 check_effective_target_dfprt_nocache
1959 # Return 1 if the target supports executing DFP hardware instructions,
1960 # 0 otherwise. Cache the result.
1962 proc check_dfp_hw_available { } {
1963 return [check_cached_effective_target dfp_hw_available {
1964 # For now, disable on Darwin
1965 if { [istarget powerpc-*-eabi] || [istarget powerpc*-*-eabispe] || [istarget *-*-darwin*]} {
1966 expr 0
1967 } else {
1968 check_runtime_nocache dfp_hw_available {
1969 volatile _Decimal64 r;
1970 volatile _Decimal64 a = 4.0DD;
1971 volatile _Decimal64 b = 2.0DD;
1972 int main()
1974 asm volatile ("dadd %0,%1,%2" : "=d" (r) : "d" (a), "d" (b));
1975 asm volatile ("dsub %0,%1,%2" : "=d" (r) : "d" (a), "d" (b));
1976 asm volatile ("dmul %0,%1,%2" : "=d" (r) : "d" (a), "d" (b));
1977 asm volatile ("ddiv %0,%1,%2" : "=d" (r) : "d" (a), "d" (b));
1978 return 0;
1980 } "-mcpu=power6 -mhard-float"
1985 # Return 1 if the target supports compiling and assembling UCN, 0 otherwise.
1987 proc check_effective_target_ucn_nocache { } {
1988 # -std=c99 is only valid for C
1989 if [check_effective_target_c] {
1990 set ucnopts "-std=c99"
1992 append ucnopts " -fextended-identifiers"
1993 verbose "check_effective_target_ucn_nocache: compiling source" 2
1994 set ret [check_no_compiler_messages_nocache ucn object {
1995 int \u00C0;
1996 } $ucnopts]
1997 verbose "check_effective_target_ucn_nocache: returning $ret" 2
1998 return $ret
2001 # Return 1 if the target supports compiling and assembling UCN, 0 otherwise.
2003 # This won't change for different subtargets, so cache the result.
2005 proc check_effective_target_ucn { } {
2006 return [check_cached_effective_target ucn {
2007 check_effective_target_ucn_nocache
2011 # Return 1 if the target needs a command line argument to enable a SIMD
2012 # instruction set.
2014 proc check_effective_target_vect_cmdline_needed { } {
2015 global et_vect_cmdline_needed_saved
2016 global et_vect_cmdline_needed_target_name
2018 if { ![info exists et_vect_cmdline_needed_target_name] } {
2019 set et_vect_cmdline_needed_target_name ""
2022 # If the target has changed since we set the cached value, clear it.
2023 set current_target [current_target_name]
2024 if { $current_target != $et_vect_cmdline_needed_target_name } {
2025 verbose "check_effective_target_vect_cmdline_needed: `$et_vect_cmdline_needed_target_name' `$current_target'" 2
2026 set et_vect_cmdline_needed_target_name $current_target
2027 if { [info exists et_vect_cmdline_needed_saved] } {
2028 verbose "check_effective_target_vect_cmdline_needed: removing cached result" 2
2029 unset et_vect_cmdline_needed_saved
2033 if [info exists et_vect_cmdline_needed_saved] {
2034 verbose "check_effective_target_vect_cmdline_needed: using cached result" 2
2035 } else {
2036 set et_vect_cmdline_needed_saved 1
2037 if { [istarget alpha*-*-*]
2038 || [istarget ia64-*-*]
2039 || (([istarget x86_64-*-*] || [istarget i?86-*-*])
2040 && ([check_effective_target_x32]
2041 || [check_effective_target_lp64]))
2042 || ([istarget powerpc*-*-*]
2043 && ([check_effective_target_powerpc_spe]
2044 || [check_effective_target_powerpc_altivec]))
2045 || ([istarget sparc*-*-*] && [check_effective_target_sparc_vis])
2046 || [istarget spu-*-*]
2047 || ([istarget arm*-*-*] && [check_effective_target_arm_neon])
2048 || [istarget aarch64*-*-*] } {
2049 set et_vect_cmdline_needed_saved 0
2053 verbose "check_effective_target_vect_cmdline_needed: returning $et_vect_cmdline_needed_saved" 2
2054 return $et_vect_cmdline_needed_saved
2057 # Return 1 if the target supports hardware vectors of int, 0 otherwise.
2059 # This won't change for different subtargets so cache the result.
2061 proc check_effective_target_vect_int { } {
2062 global et_vect_int_saved
2064 if [info exists et_vect_int_saved] {
2065 verbose "check_effective_target_vect_int: using cached result" 2
2066 } else {
2067 set et_vect_int_saved 0
2068 if { [istarget i?86-*-*]
2069 || ([istarget powerpc*-*-*]
2070 && ![istarget powerpc-*-linux*paired*])
2071 || [istarget spu-*-*]
2072 || [istarget x86_64-*-*]
2073 || [istarget sparc*-*-*]
2074 || [istarget alpha*-*-*]
2075 || [istarget ia64-*-*]
2076 || [istarget aarch64*-*-*]
2077 || [check_effective_target_arm32]
2078 || ([istarget mips*-*-*]
2079 && [check_effective_target_mips_loongson]) } {
2080 set et_vect_int_saved 1
2084 verbose "check_effective_target_vect_int: returning $et_vect_int_saved" 2
2085 return $et_vect_int_saved
2088 # Return 1 if the target supports signed int->float conversion
2091 proc check_effective_target_vect_intfloat_cvt { } {
2092 global et_vect_intfloat_cvt_saved
2094 if [info exists et_vect_intfloat_cvt_saved] {
2095 verbose "check_effective_target_vect_intfloat_cvt: using cached result" 2
2096 } else {
2097 set et_vect_intfloat_cvt_saved 0
2098 if { [istarget i?86-*-*]
2099 || ([istarget powerpc*-*-*]
2100 && ![istarget powerpc-*-linux*paired*])
2101 || [istarget x86_64-*-*]
2102 || ([istarget arm*-*-*]
2103 && [check_effective_target_arm_neon_ok])} {
2104 set et_vect_intfloat_cvt_saved 1
2108 verbose "check_effective_target_vect_intfloat_cvt: returning $et_vect_intfloat_cvt_saved" 2
2109 return $et_vect_intfloat_cvt_saved
2112 #Return 1 if we're supporting __int128 for target, 0 otherwise.
2114 proc check_effective_target_int128 { } {
2115 return [check_no_compiler_messages int128 object {
2116 int dummy[
2117 #ifndef __SIZEOF_INT128__
2119 #else
2121 #endif
2126 # Return 1 if the target supports unsigned int->float conversion
2129 proc check_effective_target_vect_uintfloat_cvt { } {
2130 global et_vect_uintfloat_cvt_saved
2132 if [info exists et_vect_uintfloat_cvt_saved] {
2133 verbose "check_effective_target_vect_uintfloat_cvt: using cached result" 2
2134 } else {
2135 set et_vect_uintfloat_cvt_saved 0
2136 if { [istarget i?86-*-*]
2137 || ([istarget powerpc*-*-*]
2138 && ![istarget powerpc-*-linux*paired*])
2139 || [istarget x86_64-*-*]
2140 || [istarget aarch64*-*-*]
2141 || ([istarget arm*-*-*]
2142 && [check_effective_target_arm_neon_ok])} {
2143 set et_vect_uintfloat_cvt_saved 1
2147 verbose "check_effective_target_vect_uintfloat_cvt: returning $et_vect_uintfloat_cvt_saved" 2
2148 return $et_vect_uintfloat_cvt_saved
2152 # Return 1 if the target supports signed float->int conversion
2155 proc check_effective_target_vect_floatint_cvt { } {
2156 global et_vect_floatint_cvt_saved
2158 if [info exists et_vect_floatint_cvt_saved] {
2159 verbose "check_effective_target_vect_floatint_cvt: using cached result" 2
2160 } else {
2161 set et_vect_floatint_cvt_saved 0
2162 if { [istarget i?86-*-*]
2163 || ([istarget powerpc*-*-*]
2164 && ![istarget powerpc-*-linux*paired*])
2165 || [istarget x86_64-*-*]
2166 || ([istarget arm*-*-*]
2167 && [check_effective_target_arm_neon_ok])} {
2168 set et_vect_floatint_cvt_saved 1
2172 verbose "check_effective_target_vect_floatint_cvt: returning $et_vect_floatint_cvt_saved" 2
2173 return $et_vect_floatint_cvt_saved
2176 # Return 1 if the target supports unsigned float->int conversion
2179 proc check_effective_target_vect_floatuint_cvt { } {
2180 global et_vect_floatuint_cvt_saved
2182 if [info exists et_vect_floatuint_cvt_saved] {
2183 verbose "check_effective_target_vect_floatuint_cvt: using cached result" 2
2184 } else {
2185 set et_vect_floatuint_cvt_saved 0
2186 if { ([istarget powerpc*-*-*]
2187 && ![istarget powerpc-*-linux*paired*])
2188 || ([istarget arm*-*-*]
2189 && [check_effective_target_arm_neon_ok])} {
2190 set et_vect_floatuint_cvt_saved 1
2194 verbose "check_effective_target_vect_floatuint_cvt: returning $et_vect_floatuint_cvt_saved" 2
2195 return $et_vect_floatuint_cvt_saved
2198 # Return 1 if the target supports #pragma omp declare simd, 0 otherwise.
2200 # This won't change for different subtargets so cache the result.
2202 proc check_effective_target_vect_simd_clones { } {
2203 global et_vect_simd_clones_saved
2205 if [info exists et_vect_simd_clones_saved] {
2206 verbose "check_effective_target_vect_simd_clones: using cached result" 2
2207 } else {
2208 set et_vect_simd_clones_saved 0
2209 if { [istarget i?86-*-*] || [istarget x86_64-*-*] } {
2210 # On i?86/x86_64 #pragma omp declare simd builds a sse2, avx and
2211 # avx2 clone. Only the right clone for the specified arch will be
2212 # chosen, but still we need to at least be able to assemble
2213 # avx2.
2214 if { [check_effective_target_avx2] } {
2215 set et_vect_simd_clones_saved 1
2220 verbose "check_effective_target_vect_simd_clones: returning $et_vect_simd_clones_saved" 2
2221 return $et_vect_simd_clones_saved
2224 # Return 1 if this is a AArch64 target supporting big endian
2225 proc check_effective_target_aarch64_big_endian { } {
2226 return [check_no_compiler_messages aarch64_big_endian assembly {
2227 #if !defined(__aarch64__) || !defined(__AARCH64EB__)
2228 #error FOO
2229 #endif
2233 # Return 1 if this is a AArch64 target supporting little endian
2234 proc check_effective_target_aarch64_little_endian { } {
2235 return [check_no_compiler_messages aarch64_little_endian assembly {
2236 #if !defined(__aarch64__) || defined(__AARCH64EB__)
2237 #error FOO
2238 #endif
2242 # Return 1 is this is an arm target using 32-bit instructions
2243 proc check_effective_target_arm32 { } {
2244 return [check_no_compiler_messages arm32 assembly {
2245 #if !defined(__arm__) || (defined(__thumb__) && !defined(__thumb2__))
2246 #error FOO
2247 #endif
2251 # Return 1 is this is an arm target not using Thumb
2252 proc check_effective_target_arm_nothumb { } {
2253 return [check_no_compiler_messages arm_nothumb assembly {
2254 #if (defined(__thumb__) || defined(__thumb2__))
2255 #error FOO
2256 #endif
2260 # Return 1 if this is a little-endian ARM target
2261 proc check_effective_target_arm_little_endian { } {
2262 return [check_no_compiler_messages arm_little_endian assembly {
2263 #if !defined(__arm__) || !defined(__ARMEL__)
2264 #error FOO
2265 #endif
2269 # Return 1 if this is an ARM target that only supports aligned vector accesses
2270 proc check_effective_target_arm_vect_no_misalign { } {
2271 return [check_no_compiler_messages arm_vect_no_misalign assembly {
2272 #if !defined(__arm__) \
2273 || (defined(__ARMEL__) \
2274 && (!defined(__thumb__) || defined(__thumb2__)))
2275 #error FOO
2276 #endif
2281 # Return 1 if this is an ARM target supporting -mfpu=vfp
2282 # -mfloat-abi=softfp. Some multilibs may be incompatible with these
2283 # options.
2285 proc check_effective_target_arm_vfp_ok { } {
2286 if { [check_effective_target_arm32] } {
2287 return [check_no_compiler_messages arm_vfp_ok object {
2288 int dummy;
2289 } "-mfpu=vfp -mfloat-abi=softfp"]
2290 } else {
2291 return 0
2295 # Return 1 if this is an ARM target supporting -mfpu=vfp3
2296 # -mfloat-abi=softfp.
2298 proc check_effective_target_arm_vfp3_ok { } {
2299 if { [check_effective_target_arm32] } {
2300 return [check_no_compiler_messages arm_vfp3_ok object {
2301 int dummy;
2302 } "-mfpu=vfp3 -mfloat-abi=softfp"]
2303 } else {
2304 return 0
2308 # Return 1 if this is an ARM target supporting -mfpu=fp-armv8
2309 # -mfloat-abi=softfp.
2310 proc check_effective_target_arm_v8_vfp_ok {} {
2311 if { [check_effective_target_arm32] } {
2312 return [check_no_compiler_messages arm_v8_vfp_ok object {
2313 int foo (void)
2315 __asm__ volatile ("vrinta.f32.f32 s0, s0");
2316 return 0;
2318 } "-mfpu=fp-armv8 -mfloat-abi=softfp"]
2319 } else {
2320 return 0
2324 # Return 1 if this is an ARM target supporting -mfpu=vfp
2325 # -mfloat-abi=hard. Some multilibs may be incompatible with these
2326 # options.
2328 proc check_effective_target_arm_hard_vfp_ok { } {
2329 if { [check_effective_target_arm32]
2330 && ! [check-flags [list "" { *-*-* } { "-mfloat-abi=*" } { "-mfloat-abi=hard" }]] } {
2331 return [check_no_compiler_messages arm_hard_vfp_ok executable {
2332 int main() { return 0;}
2333 } "-mfpu=vfp -mfloat-abi=hard"]
2334 } else {
2335 return 0
2339 # Return 1 if this is an ARM target that supports DSP multiply with
2340 # current multilib flags.
2342 proc check_effective_target_arm_dsp { } {
2343 return [check_no_compiler_messages arm_dsp assembly {
2344 #ifndef __ARM_FEATURE_DSP
2345 #error not DSP
2346 #endif
2347 int i;
2351 # Return 1 if this is an ARM target that supports unaligned word/halfword
2352 # load/store instructions.
2354 proc check_effective_target_arm_unaligned { } {
2355 return [check_no_compiler_messages arm_unaligned assembly {
2356 #ifndef __ARM_FEATURE_UNALIGNED
2357 #error no unaligned support
2358 #endif
2359 int i;
2363 # Return 1 if this is an ARM target supporting -mfpu=crypto-neon-fp-armv8
2364 # -mfloat-abi=softfp or equivalent options. Some multilibs may be
2365 # incompatible with these options. Also set et_arm_crypto_flags to the
2366 # best options to add.
2368 proc check_effective_target_arm_crypto_ok_nocache { } {
2369 global et_arm_crypto_flags
2370 set et_arm_crypto_flags ""
2371 if { [check_effective_target_arm32] } {
2372 foreach flags {"" "-mfloat-abi=softfp" "-mfpu=crypto-neon-fp-armv8" "-mfpu=crypto-neon-fp-armv8 -mfloat-abi=softfp"} {
2373 if { [check_no_compiler_messages_nocache arm_crypto_ok object {
2374 #include "arm_neon.h"
2375 uint8x16_t
2376 foo (uint8x16_t a, uint8x16_t b)
2378 return vaeseq_u8 (a, b);
2380 } "$flags"] } {
2381 set et_arm_crypto_flags $flags
2382 return 1
2387 return 0
2390 # Return 1 if this is an ARM target supporting -mfpu=crypto-neon-fp-armv8
2392 proc check_effective_target_arm_crypto_ok { } {
2393 return [check_cached_effective_target arm_crypto_ok \
2394 check_effective_target_arm_crypto_ok_nocache]
2397 # Add options for crypto extensions.
2398 proc add_options_for_arm_crypto { flags } {
2399 if { ! [check_effective_target_arm_crypto_ok] } {
2400 return "$flags"
2402 global et_arm_crypto_flags
2403 return "$flags $et_arm_crypto_flags"
2406 # Add the options needed for NEON. We need either -mfloat-abi=softfp
2407 # or -mfloat-abi=hard, but if one is already specified by the
2408 # multilib, use it. Similarly, if a -mfpu option already enables
2409 # NEON, do not add -mfpu=neon.
2411 proc add_options_for_arm_neon { flags } {
2412 if { ! [check_effective_target_arm_neon_ok] } {
2413 return "$flags"
2415 global et_arm_neon_flags
2416 return "$flags $et_arm_neon_flags"
2419 proc add_options_for_arm_v8_vfp { flags } {
2420 if { ! [check_effective_target_arm_v8_vfp_ok] } {
2421 return "$flags"
2423 return "$flags -mfpu=fp-armv8 -mfloat-abi=softfp"
2426 proc add_options_for_arm_v8_neon { flags } {
2427 if { ! [check_effective_target_arm_v8_neon_ok] } {
2428 return "$flags"
2430 global et_arm_v8_neon_flags
2431 return "$flags $et_arm_v8_neon_flags -march=armv8-a"
2434 proc add_options_for_arm_crc { flags } {
2435 if { ! [check_effective_target_arm_crc_ok] } {
2436 return "$flags"
2438 global et_arm_crc_flags
2439 return "$flags $et_arm_crc_flags"
2442 # Add the options needed for NEON. We need either -mfloat-abi=softfp
2443 # or -mfloat-abi=hard, but if one is already specified by the
2444 # multilib, use it. Similarly, if a -mfpu option already enables
2445 # NEON, do not add -mfpu=neon.
2447 proc add_options_for_arm_neonv2 { flags } {
2448 if { ! [check_effective_target_arm_neonv2_ok] } {
2449 return "$flags"
2451 global et_arm_neonv2_flags
2452 return "$flags $et_arm_neonv2_flags"
2455 # Add the options needed for vfp3.
2456 proc add_options_for_arm_vfp3 { flags } {
2457 if { ! [check_effective_target_arm_vfp3_ok] } {
2458 return "$flags"
2460 return "$flags -mfpu=vfp3 -mfloat-abi=softfp"
2463 # Return 1 if this is an ARM target supporting -mfpu=neon
2464 # -mfloat-abi=softfp or equivalent options. Some multilibs may be
2465 # incompatible with these options. Also set et_arm_neon_flags to the
2466 # best options to add.
2468 proc check_effective_target_arm_neon_ok_nocache { } {
2469 global et_arm_neon_flags
2470 set et_arm_neon_flags ""
2471 if { [check_effective_target_arm32] } {
2472 foreach flags {"" "-mfloat-abi=softfp" "-mfpu=neon" "-mfpu=neon -mfloat-abi=softfp"} {
2473 if { [check_no_compiler_messages_nocache arm_neon_ok object {
2474 #include "arm_neon.h"
2475 int dummy;
2476 } "$flags"] } {
2477 set et_arm_neon_flags $flags
2478 return 1
2483 return 0
2486 proc check_effective_target_arm_neon_ok { } {
2487 return [check_cached_effective_target arm_neon_ok \
2488 check_effective_target_arm_neon_ok_nocache]
2491 proc check_effective_target_arm_crc_ok_nocache { } {
2492 global et_arm_crc_flags
2493 set et_arm_crc_flags "-march=armv8-a+crc"
2494 return [check_no_compiler_messages_nocache arm_crc_ok object {
2495 #if !defined (__ARM_FEATURE_CRC32)
2496 #error FOO
2497 #endif
2498 } "$et_arm_crc_flags"]
2501 proc check_effective_target_arm_crc_ok { } {
2502 return [check_cached_effective_target arm_crc_ok \
2503 check_effective_target_arm_crc_ok_nocache]
2506 # Return 1 if this is an ARM target supporting -mfpu=neon-fp16
2507 # -mfloat-abi=softfp or equivalent options. Some multilibs may be
2508 # incompatible with these options. Also set et_arm_neon_flags to the
2509 # best options to add.
2511 proc check_effective_target_arm_neon_fp16_ok_nocache { } {
2512 global et_arm_neon_fp16_flags
2513 set et_arm_neon_fp16_flags ""
2514 if { [check_effective_target_arm32] } {
2515 foreach flags {"" "-mfloat-abi=softfp" "-mfpu=neon-fp16"
2516 "-mfpu=neon-fp16 -mfloat-abi=softfp"} {
2517 if { [check_no_compiler_messages_nocache arm_neon_fp_16_ok object {
2518 #include "arm_neon.h"
2519 float16x4_t
2520 foo (float32x4_t arg)
2522 return vcvt_f16_f32 (arg);
2524 } "$flags"] } {
2525 set et_arm_neon_fp16_flags $flags
2526 return 1
2531 return 0
2534 proc check_effective_target_arm_neon_fp16_ok { } {
2535 return [check_cached_effective_target arm_neon_fp16_ok \
2536 check_effective_target_arm_neon_fp16_ok_nocache]
2539 proc add_options_for_arm_neon_fp16 { flags } {
2540 if { ! [check_effective_target_arm_neon_fp16_ok] } {
2541 return "$flags"
2543 global et_arm_neon_fp16_flags
2544 return "$flags $et_arm_neon_fp16_flags"
2547 # Return 1 if this is an ARM target supporting -mfpu=neon-fp-armv8
2548 # -mfloat-abi=softfp or equivalent options. Some multilibs may be
2549 # incompatible with these options. Also set et_arm_v8_neon_flags to the
2550 # best options to add.
2552 proc check_effective_target_arm_v8_neon_ok_nocache { } {
2553 global et_arm_v8_neon_flags
2554 set et_arm_v8_neon_flags ""
2555 if { [check_effective_target_arm32] } {
2556 foreach flags {"" "-mfloat-abi=softfp" "-mfpu=neon-fp-armv8" "-mfpu=neon-fp-armv8 -mfloat-abi=softfp"} {
2557 if { [check_no_compiler_messages_nocache arm_v8_neon_ok object {
2558 #include "arm_neon.h"
2559 void
2560 foo ()
2562 __asm__ volatile ("vrintn.f32 q0, q0");
2564 } "$flags"] } {
2565 set et_arm_v8_neon_flags $flags
2566 return 1
2571 return 0
2574 proc check_effective_target_arm_v8_neon_ok { } {
2575 return [check_cached_effective_target arm_v8_neon_ok \
2576 check_effective_target_arm_v8_neon_ok_nocache]
2579 # Return 1 if this is an ARM target supporting -mfpu=neon-vfpv4
2580 # -mfloat-abi=softfp or equivalent options. Some multilibs may be
2581 # incompatible with these options. Also set et_arm_neonv2_flags to the
2582 # best options to add.
2584 proc check_effective_target_arm_neonv2_ok_nocache { } {
2585 global et_arm_neonv2_flags
2586 set et_arm_neonv2_flags ""
2587 if { [check_effective_target_arm32] } {
2588 foreach flags {"" "-mfloat-abi=softfp" "-mfpu=neon-vfpv4" "-mfpu=neon-vfpv4 -mfloat-abi=softfp"} {
2589 if { [check_no_compiler_messages_nocache arm_neonv2_ok object {
2590 #include "arm_neon.h"
2591 float32x2_t
2592 foo (float32x2_t a, float32x2_t b, float32x2_t c)
2594 return vfma_f32 (a, b, c);
2596 } "$flags"] } {
2597 set et_arm_neonv2_flags $flags
2598 return 1
2603 return 0
2606 proc check_effective_target_arm_neonv2_ok { } {
2607 return [check_cached_effective_target arm_neonv2_ok \
2608 check_effective_target_arm_neonv2_ok_nocache]
2611 # Add the options needed for NEON. We need either -mfloat-abi=softfp
2612 # or -mfloat-abi=hard, but if one is already specified by the
2613 # multilib, use it.
2615 proc add_options_for_arm_fp16 { flags } {
2616 if { ! [check_effective_target_arm_fp16_ok] } {
2617 return "$flags"
2619 global et_arm_fp16_flags
2620 return "$flags $et_arm_fp16_flags"
2623 # Return 1 if this is an ARM target that can support a VFP fp16 variant.
2624 # Skip multilibs that are incompatible with these options and set
2625 # et_arm_fp16_flags to the best options to add.
2627 proc check_effective_target_arm_fp16_ok_nocache { } {
2628 global et_arm_fp16_flags
2629 set et_arm_fp16_flags ""
2630 if { ! [check_effective_target_arm32] } {
2631 return 0;
2633 if [check-flags [list "" { *-*-* } { "-mfpu=*" } { "-mfpu=*fp16*" "-mfpu=*fpv[4-9]*" "-mfpu=*fpv[1-9][0-9]*" } ]] {
2634 # Multilib flags would override -mfpu.
2635 return 0
2637 if [check-flags [list "" { *-*-* } { "-mfloat-abi=soft" } { "" } ]] {
2638 # Must generate floating-point instructions.
2639 return 0
2641 if [check_effective_target_arm_hf_eabi] {
2642 # Use existing float-abi and force an fpu which supports fp16
2643 set et_arm_fp16_flags "-mfpu=vfpv4"
2644 return 1;
2646 if [check-flags [list "" { *-*-* } { "-mfpu=*" } { "" } ]] {
2647 # The existing -mfpu value is OK; use it, but add softfp.
2648 set et_arm_fp16_flags "-mfloat-abi=softfp"
2649 return 1;
2651 # Add -mfpu for a VFP fp16 variant since there is no preprocessor
2652 # macro to check for this support.
2653 set flags "-mfpu=vfpv4 -mfloat-abi=softfp"
2654 if { [check_no_compiler_messages_nocache arm_fp16_ok assembly {
2655 int dummy;
2656 } "$flags"] } {
2657 set et_arm_fp16_flags "$flags"
2658 return 1
2661 return 0
2664 proc check_effective_target_arm_fp16_ok { } {
2665 return [check_cached_effective_target arm_fp16_ok \
2666 check_effective_target_arm_fp16_ok_nocache]
2669 # Creates a series of routines that return 1 if the given architecture
2670 # can be selected and a routine to give the flags to select that architecture
2671 # Note: Extra flags may be added to disable options from newer compilers
2672 # (Thumb in particular - but others may be added in the future)
2673 # Usage: /* { dg-require-effective-target arm_arch_v5_ok } */
2674 # /* { dg-add-options arm_arch_v5 } */
2675 # /* { dg-require-effective-target arm_arch_v5_multilib } */
2676 foreach { armfunc armflag armdef } { v4 "-march=armv4 -marm" __ARM_ARCH_4__
2677 v4t "-march=armv4t" __ARM_ARCH_4T__
2678 v5 "-march=armv5 -marm" __ARM_ARCH_5__
2679 v5t "-march=armv5t" __ARM_ARCH_5T__
2680 v5te "-march=armv5te" __ARM_ARCH_5TE__
2681 v6 "-march=armv6" __ARM_ARCH_6__
2682 v6k "-march=armv6k" __ARM_ARCH_6K__
2683 v6t2 "-march=armv6t2" __ARM_ARCH_6T2__
2684 v6z "-march=armv6z" __ARM_ARCH_6Z__
2685 v6m "-march=armv6-m -mthumb" __ARM_ARCH_6M__
2686 v7a "-march=armv7-a" __ARM_ARCH_7A__
2687 v7ve "-march=armv7ve" __ARM_ARCH_7A__
2688 v7r "-march=armv7-r" __ARM_ARCH_7R__
2689 v7m "-march=armv7-m -mthumb" __ARM_ARCH_7M__
2690 v7em "-march=armv7e-m -mthumb" __ARM_ARCH_7EM__
2691 v8a "-march=armv8-a" __ARM_ARCH_8A__ } {
2692 eval [string map [list FUNC $armfunc FLAG $armflag DEF $armdef ] {
2693 proc check_effective_target_arm_arch_FUNC_ok { } {
2694 if { [ string match "*-marm*" "FLAG" ] &&
2695 ![check_effective_target_arm_arm_ok] } {
2696 return 0
2698 return [check_no_compiler_messages arm_arch_FUNC_ok assembly {
2699 #if !defined (DEF)
2700 #error FOO
2701 #endif
2702 } "FLAG" ]
2705 proc add_options_for_arm_arch_FUNC { flags } {
2706 return "$flags FLAG"
2709 proc check_effective_target_arm_arch_FUNC_multilib { } {
2710 return [check_runtime arm_arch_FUNC_multilib {
2712 main (void)
2714 return 0;
2716 } [add_options_for_arm_arch_FUNC ""]]
2721 # Return 1 if this is an ARM target where -marm causes ARM to be
2722 # used (not Thumb)
2724 proc check_effective_target_arm_arm_ok { } {
2725 return [check_no_compiler_messages arm_arm_ok assembly {
2726 #if !defined (__arm__) || defined (__thumb__) || defined (__thumb2__)
2727 #error FOO
2728 #endif
2729 } "-marm"]
2733 # Return 1 is this is an ARM target where -mthumb causes Thumb-1 to be
2734 # used.
2736 proc check_effective_target_arm_thumb1_ok { } {
2737 return [check_no_compiler_messages arm_thumb1_ok assembly {
2738 #if !defined(__arm__) || !defined(__thumb__) || defined(__thumb2__)
2739 #error FOO
2740 #endif
2741 } "-mthumb"]
2744 # Return 1 is this is an ARM target where -mthumb causes Thumb-2 to be
2745 # used.
2747 proc check_effective_target_arm_thumb2_ok { } {
2748 return [check_no_compiler_messages arm_thumb2_ok assembly {
2749 #if !defined(__thumb2__)
2750 #error FOO
2751 #endif
2752 } "-mthumb"]
2755 # Return 1 if this is an ARM target where Thumb-1 is used without options
2756 # added by the test.
2758 proc check_effective_target_arm_thumb1 { } {
2759 return [check_no_compiler_messages arm_thumb1 assembly {
2760 #if !defined(__arm__) || !defined(__thumb__) || defined(__thumb2__)
2761 #error not thumb1
2762 #endif
2763 int i;
2764 } ""]
2767 # Return 1 if this is an ARM target where Thumb-2 is used without options
2768 # added by the test.
2770 proc check_effective_target_arm_thumb2 { } {
2771 return [check_no_compiler_messages arm_thumb2 assembly {
2772 #if !defined(__thumb2__)
2773 #error FOO
2774 #endif
2775 int i;
2776 } ""]
2779 # Return 1 if this is an ARM target where conditional execution is available.
2781 proc check_effective_target_arm_cond_exec { } {
2782 return [check_no_compiler_messages arm_cond_exec assembly {
2783 #if defined(__arm__) && defined(__thumb__) && !defined(__thumb2__)
2784 #error FOO
2785 #endif
2786 int i;
2787 } ""]
2790 # Return 1 if this is an ARM cortex-M profile cpu
2792 proc check_effective_target_arm_cortex_m { } {
2793 return [check_no_compiler_messages arm_cortex_m assembly {
2794 #if !defined(__ARM_ARCH_7M__) \
2795 && !defined (__ARM_ARCH_7EM__) \
2796 && !defined (__ARM_ARCH_6M__)
2797 #error FOO
2798 #endif
2799 int i;
2800 } "-mthumb"]
2803 # Return 1 if the target supports executing NEON instructions, 0
2804 # otherwise. Cache the result.
2806 proc check_effective_target_arm_neon_hw { } {
2807 return [check_runtime arm_neon_hw_available {
2809 main (void)
2811 long long a = 0, b = 1;
2812 asm ("vorr %P0, %P1, %P2"
2813 : "=w" (a)
2814 : "0" (a), "w" (b));
2815 return (a != 1);
2817 } [add_options_for_arm_neon ""]]
2820 proc check_effective_target_arm_neonv2_hw { } {
2821 return [check_runtime arm_neon_hwv2_available {
2822 #include "arm_neon.h"
2824 main (void)
2826 float32x2_t a, b, c;
2827 asm ("vfma.f32 %P0, %P1, %P2"
2828 : "=w" (a)
2829 : "w" (b), "w" (c));
2830 return 0;
2832 } [add_options_for_arm_neonv2 ""]]
2835 # Return 1 if the target supports executing ARMv8 NEON instructions, 0
2836 # otherwise.
2838 proc check_effective_target_arm_v8_neon_hw { } {
2839 return [check_runtime arm_v8_neon_hw_available {
2840 #include "arm_neon.h"
2842 main (void)
2844 float32x2_t a;
2845 asm ("vrinta.f32 %P0, %P1"
2846 : "=w" (a)
2847 : "0" (a));
2848 return 0;
2850 } [add_options_for_arm_v8_neon ""]]
2853 # Return 1 if this is a ARM target with NEON enabled.
2855 proc check_effective_target_arm_neon { } {
2856 if { [check_effective_target_arm32] } {
2857 return [check_no_compiler_messages arm_neon object {
2858 #ifndef __ARM_NEON__
2859 #error not NEON
2860 #else
2861 int dummy;
2862 #endif
2864 } else {
2865 return 0
2869 proc check_effective_target_arm_neonv2 { } {
2870 if { [check_effective_target_arm32] } {
2871 return [check_no_compiler_messages arm_neon object {
2872 #ifndef __ARM_NEON__
2873 #error not NEON
2874 #else
2875 #ifndef __ARM_FEATURE_FMA
2876 #error not NEONv2
2877 #else
2878 int dummy;
2879 #endif
2880 #endif
2882 } else {
2883 return 0
2887 # Return 1 if this a Loongson-2E or -2F target using an ABI that supports
2888 # the Loongson vector modes.
2890 proc check_effective_target_mips_loongson { } {
2891 return [check_no_compiler_messages loongson assembly {
2892 #if !defined(__mips_loongson_vector_rev)
2893 #error FOO
2894 #endif
2898 # Return 1 if this is an ARM target that adheres to the ABI for the ARM
2899 # Architecture.
2901 proc check_effective_target_arm_eabi { } {
2902 return [check_no_compiler_messages arm_eabi object {
2903 #ifndef __ARM_EABI__
2904 #error not EABI
2905 #else
2906 int dummy;
2907 #endif
2911 # Return 1 if this is an ARM target that adheres to the hard-float variant of
2912 # the ABI for the ARM Architecture (e.g. -mfloat-abi=hard).
2914 proc check_effective_target_arm_hf_eabi { } {
2915 return [check_no_compiler_messages arm_hf_eabi object {
2916 #if !defined(__ARM_EABI__) || !defined(__ARM_PCS_VFP)
2917 #error not hard-float EABI
2918 #else
2919 int dummy;
2920 #endif
2924 # Return 1 if this is an ARM target supporting -mcpu=iwmmxt.
2925 # Some multilibs may be incompatible with this option.
2927 proc check_effective_target_arm_iwmmxt_ok { } {
2928 if { [check_effective_target_arm32] } {
2929 return [check_no_compiler_messages arm_iwmmxt_ok object {
2930 int dummy;
2931 } "-mcpu=iwmmxt"]
2932 } else {
2933 return 0
2937 # Return true if LDRD/STRD instructions are prefered over LDM/STM instructions
2938 # for an ARM target.
2939 proc check_effective_target_arm_prefer_ldrd_strd { } {
2940 if { ![check_effective_target_arm32] } {
2941 return 0;
2944 return [check_no_messages_and_pattern arm_prefer_ldrd_strd "strd\tr" assembly {
2945 void foo (int *p) { p[0] = 1; p[1] = 0;}
2946 } "-O2 -mthumb" ]
2949 # Return 1 if this is a PowerPC target supporting -meabi.
2951 proc check_effective_target_powerpc_eabi_ok { } {
2952 if { [istarget powerpc*-*-*] } {
2953 return [check_no_compiler_messages powerpc_eabi_ok object {
2954 int dummy;
2955 } "-meabi"]
2956 } else {
2957 return 0
2961 # Return 1 if this is a PowerPC target with floating-point registers.
2963 proc check_effective_target_powerpc_fprs { } {
2964 if { [istarget powerpc*-*-*]
2965 || [istarget rs6000-*-*] } {
2966 return [check_no_compiler_messages powerpc_fprs object {
2967 #ifdef __NO_FPRS__
2968 #error no FPRs
2969 #else
2970 int dummy;
2971 #endif
2973 } else {
2974 return 0
2978 # Return 1 if this is a PowerPC target with hardware double-precision
2979 # floating point.
2981 proc check_effective_target_powerpc_hard_double { } {
2982 if { [istarget powerpc*-*-*]
2983 || [istarget rs6000-*-*] } {
2984 return [check_no_compiler_messages powerpc_hard_double object {
2985 #ifdef _SOFT_DOUBLE
2986 #error soft double
2987 #else
2988 int dummy;
2989 #endif
2991 } else {
2992 return 0
2996 # Return 1 if this is a PowerPC target supporting -maltivec.
2998 proc check_effective_target_powerpc_altivec_ok { } {
2999 if { ([istarget powerpc*-*-*]
3000 && ![istarget powerpc-*-linux*paired*])
3001 || [istarget rs6000-*-*] } {
3002 # AltiVec is not supported on AIX before 5.3.
3003 if { [istarget powerpc*-*-aix4*]
3004 || [istarget powerpc*-*-aix5.1*]
3005 || [istarget powerpc*-*-aix5.2*] } {
3006 return 0
3008 return [check_no_compiler_messages powerpc_altivec_ok object {
3009 int dummy;
3010 } "-maltivec"]
3011 } else {
3012 return 0
3016 # Return 1 if this is a PowerPC target supporting -mpower8-vector
3018 proc check_effective_target_powerpc_p8vector_ok { } {
3019 if { ([istarget powerpc*-*-*]
3020 && ![istarget powerpc-*-linux*paired*])
3021 || [istarget rs6000-*-*] } {
3022 # AltiVec is not supported on AIX before 5.3.
3023 if { [istarget powerpc*-*-aix4*]
3024 || [istarget powerpc*-*-aix5.1*]
3025 || [istarget powerpc*-*-aix5.2*] } {
3026 return 0
3028 return [check_no_compiler_messages powerpc_p8vector_ok object {
3029 int main (void) {
3030 #ifdef __MACH__
3031 asm volatile ("xxlorc vs0,vs0,vs0");
3032 #else
3033 asm volatile ("xxlorc 0,0,0");
3034 #endif
3035 return 0;
3037 } "-mpower8-vector"]
3038 } else {
3039 return 0
3043 # Return 1 if this is a PowerPC target supporting -mvsx
3045 proc check_effective_target_powerpc_vsx_ok { } {
3046 if { ([istarget powerpc*-*-*]
3047 && ![istarget powerpc-*-linux*paired*])
3048 || [istarget rs6000-*-*] } {
3049 # VSX is not supported on AIX before 7.1.
3050 if { [istarget powerpc*-*-aix4*]
3051 || [istarget powerpc*-*-aix5*]
3052 || [istarget powerpc*-*-aix6*] } {
3053 return 0
3055 return [check_no_compiler_messages powerpc_vsx_ok object {
3056 int main (void) {
3057 #ifdef __MACH__
3058 asm volatile ("xxlor vs0,vs0,vs0");
3059 #else
3060 asm volatile ("xxlor 0,0,0");
3061 #endif
3062 return 0;
3064 } "-mvsx"]
3065 } else {
3066 return 0
3070 # Return 1 if this is a PowerPC target supporting -mhtm
3072 proc check_effective_target_powerpc_htm_ok { } {
3073 if { ([istarget powerpc*-*-*]
3074 && ![istarget powerpc-*-linux*paired*])
3075 || [istarget rs6000-*-*] } {
3076 # HTM is not supported on AIX yet.
3077 if { [istarget powerpc*-*-aix*] } {
3078 return 0
3080 return [check_no_compiler_messages powerpc_htm_ok object {
3081 int main (void) {
3082 asm volatile ("tbegin. 0");
3083 return 0;
3085 } "-mhtm"]
3086 } else {
3087 return 0
3091 # Return 1 if this is a PowerPC target supporting -mcpu=cell.
3093 proc check_effective_target_powerpc_ppu_ok { } {
3094 if [check_effective_target_powerpc_altivec_ok] {
3095 return [check_no_compiler_messages cell_asm_available object {
3096 int main (void) {
3097 #ifdef __MACH__
3098 asm volatile ("lvlx v0,v0,v0");
3099 #else
3100 asm volatile ("lvlx 0,0,0");
3101 #endif
3102 return 0;
3105 } else {
3106 return 0
3110 # Return 1 if this is a PowerPC target that supports SPU.
3112 proc check_effective_target_powerpc_spu { } {
3113 if { [istarget powerpc*-*-linux*] } {
3114 return [check_effective_target_powerpc_altivec_ok]
3115 } else {
3116 return 0
3120 # Return 1 if this is a PowerPC SPE target. The check includes options
3121 # specified by dg-options for this test, so don't cache the result.
3123 proc check_effective_target_powerpc_spe_nocache { } {
3124 if { [istarget powerpc*-*-*] } {
3125 return [check_no_compiler_messages_nocache powerpc_spe object {
3126 #ifndef __SPE__
3127 #error not SPE
3128 #else
3129 int dummy;
3130 #endif
3131 } [current_compiler_flags]]
3132 } else {
3133 return 0
3137 # Return 1 if this is a PowerPC target with SPE enabled.
3139 proc check_effective_target_powerpc_spe { } {
3140 if { [istarget powerpc*-*-*] } {
3141 return [check_no_compiler_messages powerpc_spe object {
3142 #ifndef __SPE__
3143 #error not SPE
3144 #else
3145 int dummy;
3146 #endif
3148 } else {
3149 return 0
3153 # Return 1 if this is a PowerPC target with Altivec enabled.
3155 proc check_effective_target_powerpc_altivec { } {
3156 if { [istarget powerpc*-*-*] } {
3157 return [check_no_compiler_messages powerpc_altivec object {
3158 #ifndef __ALTIVEC__
3159 #error not Altivec
3160 #else
3161 int dummy;
3162 #endif
3164 } else {
3165 return 0
3169 # Return 1 if this is a PowerPC 405 target. The check includes options
3170 # specified by dg-options for this test, so don't cache the result.
3172 proc check_effective_target_powerpc_405_nocache { } {
3173 if { [istarget powerpc*-*-*] || [istarget rs6000-*-*] } {
3174 return [check_no_compiler_messages_nocache powerpc_405 object {
3175 #ifdef __PPC405__
3176 int dummy;
3177 #else
3178 #error not a PPC405
3179 #endif
3180 } [current_compiler_flags]]
3181 } else {
3182 return 0
3186 # Return 1 if this is a PowerPC target using the ELFv2 ABI.
3188 proc check_effective_target_powerpc_elfv2 { } {
3189 if { [istarget powerpc*-*-*] } {
3190 return [check_no_compiler_messages powerpc_elfv2 object {
3191 #if _CALL_ELF != 2
3192 #error not ELF v2 ABI
3193 #else
3194 int dummy;
3195 #endif
3197 } else {
3198 return 0
3202 # Return 1 if this is a SPU target with a toolchain that
3203 # supports automatic overlay generation.
3205 proc check_effective_target_spu_auto_overlay { } {
3206 if { [istarget spu*-*-elf*] } {
3207 return [check_no_compiler_messages spu_auto_overlay executable {
3208 int main (void) { }
3209 } "-Wl,--auto-overlay" ]
3210 } else {
3211 return 0
3215 # The VxWorks SPARC simulator accepts only EM_SPARC executables and
3216 # chokes on EM_SPARC32PLUS or EM_SPARCV9 executables. Return 1 if the
3217 # test environment appears to run executables on such a simulator.
3219 proc check_effective_target_ultrasparc_hw { } {
3220 return [check_runtime ultrasparc_hw {
3221 int main() { return 0; }
3222 } "-mcpu=ultrasparc"]
3225 # Return 1 if the test environment supports executing UltraSPARC VIS2
3226 # instructions. We check this by attempting: "bmask %g0, %g0, %g0"
3228 proc check_effective_target_ultrasparc_vis2_hw { } {
3229 return [check_runtime ultrasparc_vis2_hw {
3230 int main() { __asm__(".word 0x81b00320"); return 0; }
3231 } "-mcpu=ultrasparc3"]
3234 # Return 1 if the test environment supports executing UltraSPARC VIS3
3235 # instructions. We check this by attempting: "addxc %g0, %g0, %g0"
3237 proc check_effective_target_ultrasparc_vis3_hw { } {
3238 return [check_runtime ultrasparc_vis3_hw {
3239 int main() { __asm__(".word 0x81b00220"); return 0; }
3240 } "-mcpu=niagara3"]
3243 # Return 1 if this is a SPARC-V9 target.
3245 proc check_effective_target_sparc_v9 { } {
3246 if { [istarget sparc*-*-*] } {
3247 return [check_no_compiler_messages sparc_v9 object {
3248 int main (void) {
3249 asm volatile ("return %i7+8");
3250 return 0;
3253 } else {
3254 return 0
3258 # Return 1 if this is a SPARC target with VIS enabled.
3260 proc check_effective_target_sparc_vis { } {
3261 if { [istarget sparc*-*-*] } {
3262 return [check_no_compiler_messages sparc_vis object {
3263 #ifndef __VIS__
3264 #error not VIS
3265 #else
3266 int dummy;
3267 #endif
3269 } else {
3270 return 0
3274 # Return 1 if the target supports hardware vector shift operation.
3276 proc check_effective_target_vect_shift { } {
3277 global et_vect_shift_saved
3279 if [info exists et_vect_shift_saved] {
3280 verbose "check_effective_target_vect_shift: using cached result" 2
3281 } else {
3282 set et_vect_shift_saved 0
3283 if { ([istarget powerpc*-*-*]
3284 && ![istarget powerpc-*-linux*paired*])
3285 || [istarget ia64-*-*]
3286 || [istarget i?86-*-*]
3287 || [istarget x86_64-*-*]
3288 || [istarget aarch64*-*-*]
3289 || [check_effective_target_arm32]
3290 || ([istarget mips*-*-*]
3291 && [check_effective_target_mips_loongson]) } {
3292 set et_vect_shift_saved 1
3296 verbose "check_effective_target_vect_shift: returning $et_vect_shift_saved" 2
3297 return $et_vect_shift_saved
3300 # Return 1 if the target supports vector bswap operations.
3302 proc check_effective_target_vect_bswap { } {
3303 global et_vect_bswap_saved
3305 if [info exists et_vect_bswap_saved] {
3306 verbose "check_effective_target_vect_bswap: using cached result" 2
3307 } else {
3308 set et_vect_bswap_saved 0
3309 if { [istarget aarch64*-*-*] } {
3310 set et_vect_bswap_saved 1
3314 verbose "check_effective_target_vect_bswap: returning $et_vect_bswap_saved" 2
3315 return $et_vect_bswap_saved
3318 # Return 1 if the target supports hardware vector shift operation for char.
3320 proc check_effective_target_vect_shift_char { } {
3321 global et_vect_shift_char_saved
3323 if [info exists et_vect_shift_char_saved] {
3324 verbose "check_effective_target_vect_shift_char: using cached result" 2
3325 } else {
3326 set et_vect_shift_char_saved 0
3327 if { ([istarget powerpc*-*-*]
3328 && ![istarget powerpc-*-linux*paired*])
3329 || [check_effective_target_arm32] } {
3330 set et_vect_shift_char_saved 1
3334 verbose "check_effective_target_vect_shift_char: returning $et_vect_shift_char_saved" 2
3335 return $et_vect_shift_char_saved
3338 # Return 1 if the target supports hardware vectors of long, 0 otherwise.
3340 # This can change for different subtargets so do not cache the result.
3342 proc check_effective_target_vect_long { } {
3343 if { [istarget i?86-*-*]
3344 || (([istarget powerpc*-*-*]
3345 && ![istarget powerpc-*-linux*paired*])
3346 && [check_effective_target_ilp32])
3347 || [istarget x86_64-*-*]
3348 || [check_effective_target_arm32]
3349 || ([istarget sparc*-*-*] && [check_effective_target_ilp32]) } {
3350 set answer 1
3351 } else {
3352 set answer 0
3355 verbose "check_effective_target_vect_long: returning $answer" 2
3356 return $answer
3359 # Return 1 if the target supports hardware vectors of float, 0 otherwise.
3361 # This won't change for different subtargets so cache the result.
3363 proc check_effective_target_vect_float { } {
3364 global et_vect_float_saved
3366 if [info exists et_vect_float_saved] {
3367 verbose "check_effective_target_vect_float: using cached result" 2
3368 } else {
3369 set et_vect_float_saved 0
3370 if { [istarget i?86-*-*]
3371 || [istarget powerpc*-*-*]
3372 || [istarget spu-*-*]
3373 || [istarget mips-sde-elf]
3374 || [istarget mipsisa64*-*-*]
3375 || [istarget x86_64-*-*]
3376 || [istarget ia64-*-*]
3377 || [istarget aarch64*-*-*]
3378 || [check_effective_target_arm32] } {
3379 set et_vect_float_saved 1
3383 verbose "check_effective_target_vect_float: returning $et_vect_float_saved" 2
3384 return $et_vect_float_saved
3387 # Return 1 if the target supports hardware vectors of double, 0 otherwise.
3389 # This won't change for different subtargets so cache the result.
3391 proc check_effective_target_vect_double { } {
3392 global et_vect_double_saved
3394 if [info exists et_vect_double_saved] {
3395 verbose "check_effective_target_vect_double: using cached result" 2
3396 } else {
3397 set et_vect_double_saved 0
3398 if { [istarget i?86-*-*]
3399 || [istarget aarch64*-*-*]
3400 || [istarget x86_64-*-*] } {
3401 if { [check_no_compiler_messages vect_double assembly {
3402 #ifdef __tune_atom__
3403 # error No double vectorizer support.
3404 #endif
3405 }] } {
3406 set et_vect_double_saved 1
3407 } else {
3408 set et_vect_double_saved 0
3410 } elseif { [istarget spu-*-*] } {
3411 set et_vect_double_saved 1
3415 verbose "check_effective_target_vect_double: returning $et_vect_double_saved" 2
3416 return $et_vect_double_saved
3419 # Return 1 if the target supports hardware vectors of long long, 0 otherwise.
3421 # This won't change for different subtargets so cache the result.
3423 proc check_effective_target_vect_long_long { } {
3424 global et_vect_long_long_saved
3426 if [info exists et_vect_long_long_saved] {
3427 verbose "check_effective_target_vect_long_long: using cached result" 2
3428 } else {
3429 set et_vect_long_long_saved 0
3430 if { [istarget i?86-*-*]
3431 || [istarget x86_64-*-*] } {
3432 set et_vect_long_long_saved 1
3436 verbose "check_effective_target_vect_long_long: returning $et_vect_long_long_saved" 2
3437 return $et_vect_long_long_saved
3441 # Return 1 if the target plus current options does not support a vector
3442 # max instruction on "int", 0 otherwise.
3444 # This won't change for different subtargets so cache the result.
3446 proc check_effective_target_vect_no_int_max { } {
3447 global et_vect_no_int_max_saved
3449 if [info exists et_vect_no_int_max_saved] {
3450 verbose "check_effective_target_vect_no_int_max: using cached result" 2
3451 } else {
3452 set et_vect_no_int_max_saved 0
3453 if { [istarget sparc*-*-*]
3454 || [istarget spu-*-*]
3455 || [istarget alpha*-*-*]
3456 || ([istarget mips*-*-*]
3457 && [check_effective_target_mips_loongson]) } {
3458 set et_vect_no_int_max_saved 1
3461 verbose "check_effective_target_vect_no_int_max: returning $et_vect_no_int_max_saved" 2
3462 return $et_vect_no_int_max_saved
3465 # Return 1 if the target plus current options does not support a vector
3466 # add instruction on "int", 0 otherwise.
3468 # This won't change for different subtargets so cache the result.
3470 proc check_effective_target_vect_no_int_add { } {
3471 global et_vect_no_int_add_saved
3473 if [info exists et_vect_no_int_add_saved] {
3474 verbose "check_effective_target_vect_no_int_add: using cached result" 2
3475 } else {
3476 set et_vect_no_int_add_saved 0
3477 # Alpha only supports vector add on V8QI and V4HI.
3478 if { [istarget alpha*-*-*] } {
3479 set et_vect_no_int_add_saved 1
3482 verbose "check_effective_target_vect_no_int_add: returning $et_vect_no_int_add_saved" 2
3483 return $et_vect_no_int_add_saved
3486 # Return 1 if the target plus current options does not support vector
3487 # bitwise instructions, 0 otherwise.
3489 # This won't change for different subtargets so cache the result.
3491 proc check_effective_target_vect_no_bitwise { } {
3492 global et_vect_no_bitwise_saved
3494 if [info exists et_vect_no_bitwise_saved] {
3495 verbose "check_effective_target_vect_no_bitwise: using cached result" 2
3496 } else {
3497 set et_vect_no_bitwise_saved 0
3499 verbose "check_effective_target_vect_no_bitwise: returning $et_vect_no_bitwise_saved" 2
3500 return $et_vect_no_bitwise_saved
3503 # Return 1 if the target plus current options supports vector permutation,
3504 # 0 otherwise.
3506 # This won't change for different subtargets so cache the result.
3508 proc check_effective_target_vect_perm { } {
3509 global et_vect_perm
3511 if [info exists et_vect_perm_saved] {
3512 verbose "check_effective_target_vect_perm: using cached result" 2
3513 } else {
3514 set et_vect_perm_saved 0
3515 if { [is-effective-target arm_neon_ok]
3516 || [istarget aarch64*-*-*]
3517 || [istarget powerpc*-*-*]
3518 || [istarget spu-*-*]
3519 || [istarget i?86-*-*]
3520 || [istarget x86_64-*-*]
3521 || ([istarget mips*-*-*]
3522 && [check_effective_target_mpaired_single]) } {
3523 set et_vect_perm_saved 1
3526 verbose "check_effective_target_vect_perm: returning $et_vect_perm_saved" 2
3527 return $et_vect_perm_saved
3530 # Return 1 if the target plus current options supports vector permutation
3531 # on byte-sized elements, 0 otherwise.
3533 # This won't change for different subtargets so cache the result.
3535 proc check_effective_target_vect_perm_byte { } {
3536 global et_vect_perm_byte
3538 if [info exists et_vect_perm_byte_saved] {
3539 verbose "check_effective_target_vect_perm_byte: using cached result" 2
3540 } else {
3541 set et_vect_perm_byte_saved 0
3542 if { ([is-effective-target arm_neon_ok]
3543 && [is-effective-target arm_little_endian])
3544 || ([istarget aarch64*-*-*]
3545 && [is-effective-target aarch64_little_endian])
3546 || [istarget powerpc*-*-*]
3547 || [istarget spu-*-*] } {
3548 set et_vect_perm_byte_saved 1
3551 verbose "check_effective_target_vect_perm_byte: returning $et_vect_perm_byte_saved" 2
3552 return $et_vect_perm_byte_saved
3555 # Return 1 if the target plus current options supports vector permutation
3556 # on short-sized elements, 0 otherwise.
3558 # This won't change for different subtargets so cache the result.
3560 proc check_effective_target_vect_perm_short { } {
3561 global et_vect_perm_short
3563 if [info exists et_vect_perm_short_saved] {
3564 verbose "check_effective_target_vect_perm_short: using cached result" 2
3565 } else {
3566 set et_vect_perm_short_saved 0
3567 if { ([is-effective-target arm_neon_ok]
3568 && [is-effective-target arm_little_endian])
3569 || ([istarget aarch64*-*-*]
3570 && [is-effective-target aarch64_little_endian])
3571 || [istarget powerpc*-*-*]
3572 || [istarget spu-*-*] } {
3573 set et_vect_perm_short_saved 1
3576 verbose "check_effective_target_vect_perm_short: returning $et_vect_perm_short_saved" 2
3577 return $et_vect_perm_short_saved
3580 # Return 1 if the target plus current options supports a vector
3581 # widening summation of *short* args into *int* result, 0 otherwise.
3583 # This won't change for different subtargets so cache the result.
3585 proc check_effective_target_vect_widen_sum_hi_to_si_pattern { } {
3586 global et_vect_widen_sum_hi_to_si_pattern
3588 if [info exists et_vect_widen_sum_hi_to_si_pattern_saved] {
3589 verbose "check_effective_target_vect_widen_sum_hi_to_si_pattern: using cached result" 2
3590 } else {
3591 set et_vect_widen_sum_hi_to_si_pattern_saved 0
3592 if { [istarget powerpc*-*-*]
3593 || [istarget ia64-*-*] } {
3594 set et_vect_widen_sum_hi_to_si_pattern_saved 1
3597 verbose "check_effective_target_vect_widen_sum_hi_to_si_pattern: returning $et_vect_widen_sum_hi_to_si_pattern_saved" 2
3598 return $et_vect_widen_sum_hi_to_si_pattern_saved
3601 # Return 1 if the target plus current options supports a vector
3602 # widening summation of *short* args into *int* result, 0 otherwise.
3603 # A target can also support this widening summation if it can support
3604 # promotion (unpacking) from shorts to ints.
3606 # This won't change for different subtargets so cache the result.
3608 proc check_effective_target_vect_widen_sum_hi_to_si { } {
3609 global et_vect_widen_sum_hi_to_si
3611 if [info exists et_vect_widen_sum_hi_to_si_saved] {
3612 verbose "check_effective_target_vect_widen_sum_hi_to_si: using cached result" 2
3613 } else {
3614 set et_vect_widen_sum_hi_to_si_saved [check_effective_target_vect_unpack]
3615 if { [istarget powerpc*-*-*]
3616 || [istarget ia64-*-*] } {
3617 set et_vect_widen_sum_hi_to_si_saved 1
3620 verbose "check_effective_target_vect_widen_sum_hi_to_si: returning $et_vect_widen_sum_hi_to_si_saved" 2
3621 return $et_vect_widen_sum_hi_to_si_saved
3624 # Return 1 if the target plus current options supports a vector
3625 # widening summation of *char* args into *short* result, 0 otherwise.
3626 # A target can also support this widening summation if it can support
3627 # promotion (unpacking) from chars to shorts.
3629 # This won't change for different subtargets so cache the result.
3631 proc check_effective_target_vect_widen_sum_qi_to_hi { } {
3632 global et_vect_widen_sum_qi_to_hi
3634 if [info exists et_vect_widen_sum_qi_to_hi_saved] {
3635 verbose "check_effective_target_vect_widen_sum_qi_to_hi: using cached result" 2
3636 } else {
3637 set et_vect_widen_sum_qi_to_hi_saved 0
3638 if { [check_effective_target_vect_unpack]
3639 || [check_effective_target_arm_neon_ok]
3640 || [istarget ia64-*-*] } {
3641 set et_vect_widen_sum_qi_to_hi_saved 1
3644 verbose "check_effective_target_vect_widen_sum_qi_to_hi: returning $et_vect_widen_sum_qi_to_hi_saved" 2
3645 return $et_vect_widen_sum_qi_to_hi_saved
3648 # Return 1 if the target plus current options supports a vector
3649 # widening summation of *char* args into *int* result, 0 otherwise.
3651 # This won't change for different subtargets so cache the result.
3653 proc check_effective_target_vect_widen_sum_qi_to_si { } {
3654 global et_vect_widen_sum_qi_to_si
3656 if [info exists et_vect_widen_sum_qi_to_si_saved] {
3657 verbose "check_effective_target_vect_widen_sum_qi_to_si: using cached result" 2
3658 } else {
3659 set et_vect_widen_sum_qi_to_si_saved 0
3660 if { [istarget powerpc*-*-*] } {
3661 set et_vect_widen_sum_qi_to_si_saved 1
3664 verbose "check_effective_target_vect_widen_sum_qi_to_si: returning $et_vect_widen_sum_qi_to_si_saved" 2
3665 return $et_vect_widen_sum_qi_to_si_saved
3668 # Return 1 if the target plus current options supports a vector
3669 # widening multiplication of *char* args into *short* result, 0 otherwise.
3670 # A target can also support this widening multplication if it can support
3671 # promotion (unpacking) from chars to shorts, and vect_short_mult (non-widening
3672 # multiplication of shorts).
3674 # This won't change for different subtargets so cache the result.
3677 proc check_effective_target_vect_widen_mult_qi_to_hi { } {
3678 global et_vect_widen_mult_qi_to_hi
3680 if [info exists et_vect_widen_mult_qi_to_hi_saved] {
3681 verbose "check_effective_target_vect_widen_mult_qi_to_hi: using cached result" 2
3682 } else {
3683 if { [check_effective_target_vect_unpack]
3684 && [check_effective_target_vect_short_mult] } {
3685 set et_vect_widen_mult_qi_to_hi_saved 1
3686 } else {
3687 set et_vect_widen_mult_qi_to_hi_saved 0
3689 if { [istarget powerpc*-*-*]
3690 || [istarget aarch64*-*-*]
3691 || ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok]) } {
3692 set et_vect_widen_mult_qi_to_hi_saved 1
3695 verbose "check_effective_target_vect_widen_mult_qi_to_hi: returning $et_vect_widen_mult_qi_to_hi_saved" 2
3696 return $et_vect_widen_mult_qi_to_hi_saved
3699 # Return 1 if the target plus current options supports a vector
3700 # widening multiplication of *short* args into *int* result, 0 otherwise.
3701 # A target can also support this widening multplication if it can support
3702 # promotion (unpacking) from shorts to ints, and vect_int_mult (non-widening
3703 # multiplication of ints).
3705 # This won't change for different subtargets so cache the result.
3708 proc check_effective_target_vect_widen_mult_hi_to_si { } {
3709 global et_vect_widen_mult_hi_to_si
3711 if [info exists et_vect_widen_mult_hi_to_si_saved] {
3712 verbose "check_effective_target_vect_widen_mult_hi_to_si: using cached result" 2
3713 } else {
3714 if { [check_effective_target_vect_unpack]
3715 && [check_effective_target_vect_int_mult] } {
3716 set et_vect_widen_mult_hi_to_si_saved 1
3717 } else {
3718 set et_vect_widen_mult_hi_to_si_saved 0
3720 if { [istarget powerpc*-*-*]
3721 || [istarget spu-*-*]
3722 || [istarget ia64-*-*]
3723 || [istarget aarch64*-*-*]
3724 || [istarget i?86-*-*]
3725 || [istarget x86_64-*-*]
3726 || ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok]) } {
3727 set et_vect_widen_mult_hi_to_si_saved 1
3730 verbose "check_effective_target_vect_widen_mult_hi_to_si: returning $et_vect_widen_mult_hi_to_si_saved" 2
3731 return $et_vect_widen_mult_hi_to_si_saved
3734 # Return 1 if the target plus current options supports a vector
3735 # widening multiplication of *char* args into *short* result, 0 otherwise.
3737 # This won't change for different subtargets so cache the result.
3739 proc check_effective_target_vect_widen_mult_qi_to_hi_pattern { } {
3740 global et_vect_widen_mult_qi_to_hi_pattern
3742 if [info exists et_vect_widen_mult_qi_to_hi_pattern_saved] {
3743 verbose "check_effective_target_vect_widen_mult_qi_to_hi_pattern: using cached result" 2
3744 } else {
3745 set et_vect_widen_mult_qi_to_hi_pattern_saved 0
3746 if { [istarget powerpc*-*-*]
3747 || ([istarget arm*-*-*]
3748 && [check_effective_target_arm_neon_ok]
3749 && [check_effective_target_arm_little_endian]) } {
3750 set et_vect_widen_mult_qi_to_hi_pattern_saved 1
3753 verbose "check_effective_target_vect_widen_mult_qi_to_hi_pattern: returning $et_vect_widen_mult_qi_to_hi_pattern_saved" 2
3754 return $et_vect_widen_mult_qi_to_hi_pattern_saved
3757 # Return 1 if the target plus current options supports a vector
3758 # widening multiplication of *short* args into *int* result, 0 otherwise.
3760 # This won't change for different subtargets so cache the result.
3762 proc check_effective_target_vect_widen_mult_hi_to_si_pattern { } {
3763 global et_vect_widen_mult_hi_to_si_pattern
3765 if [info exists et_vect_widen_mult_hi_to_si_pattern_saved] {
3766 verbose "check_effective_target_vect_widen_mult_hi_to_si_pattern: using cached result" 2
3767 } else {
3768 set et_vect_widen_mult_hi_to_si_pattern_saved 0
3769 if { [istarget powerpc*-*-*]
3770 || [istarget spu-*-*]
3771 || [istarget ia64-*-*]
3772 || [istarget i?86-*-*]
3773 || [istarget x86_64-*-*]
3774 || ([istarget arm*-*-*]
3775 && [check_effective_target_arm_neon_ok]
3776 && [check_effective_target_arm_little_endian]) } {
3777 set et_vect_widen_mult_hi_to_si_pattern_saved 1
3780 verbose "check_effective_target_vect_widen_mult_hi_to_si_pattern: returning $et_vect_widen_mult_hi_to_si_pattern_saved" 2
3781 return $et_vect_widen_mult_hi_to_si_pattern_saved
3784 # Return 1 if the target plus current options supports a vector
3785 # widening multiplication of *int* args into *long* result, 0 otherwise.
3787 # This won't change for different subtargets so cache the result.
3789 proc check_effective_target_vect_widen_mult_si_to_di_pattern { } {
3790 global et_vect_widen_mult_si_to_di_pattern
3792 if [info exists et_vect_widen_mult_si_to_di_pattern_saved] {
3793 verbose "check_effective_target_vect_widen_mult_si_to_di_pattern: using cached result" 2
3794 } else {
3795 set et_vect_widen_mult_si_to_di_pattern_saved 0
3796 if {[istarget ia64-*-*]
3797 || [istarget i?86-*-*]
3798 || [istarget x86_64-*-*] } {
3799 set et_vect_widen_mult_si_to_di_pattern_saved 1
3802 verbose "check_effective_target_vect_widen_mult_si_to_di_pattern: returning $et_vect_widen_mult_si_to_di_pattern_saved" 2
3803 return $et_vect_widen_mult_si_to_di_pattern_saved
3806 # Return 1 if the target plus current options supports a vector
3807 # widening shift, 0 otherwise.
3809 # This won't change for different subtargets so cache the result.
3811 proc check_effective_target_vect_widen_shift { } {
3812 global et_vect_widen_shift_saved
3814 if [info exists et_vect_shift_saved] {
3815 verbose "check_effective_target_vect_widen_shift: using cached result" 2
3816 } else {
3817 set et_vect_widen_shift_saved 0
3818 if { ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok]) } {
3819 set et_vect_widen_shift_saved 1
3822 verbose "check_effective_target_vect_widen_shift: returning $et_vect_widen_shift_saved" 2
3823 return $et_vect_widen_shift_saved
3826 # Return 1 if the target plus current options supports a vector
3827 # dot-product of signed chars, 0 otherwise.
3829 # This won't change for different subtargets so cache the result.
3831 proc check_effective_target_vect_sdot_qi { } {
3832 global et_vect_sdot_qi
3834 if [info exists et_vect_sdot_qi_saved] {
3835 verbose "check_effective_target_vect_sdot_qi: using cached result" 2
3836 } else {
3837 set et_vect_sdot_qi_saved 0
3838 if { [istarget ia64-*-*] } {
3839 set et_vect_udot_qi_saved 1
3842 verbose "check_effective_target_vect_sdot_qi: returning $et_vect_sdot_qi_saved" 2
3843 return $et_vect_sdot_qi_saved
3846 # Return 1 if the target plus current options supports a vector
3847 # dot-product of unsigned chars, 0 otherwise.
3849 # This won't change for different subtargets so cache the result.
3851 proc check_effective_target_vect_udot_qi { } {
3852 global et_vect_udot_qi
3854 if [info exists et_vect_udot_qi_saved] {
3855 verbose "check_effective_target_vect_udot_qi: using cached result" 2
3856 } else {
3857 set et_vect_udot_qi_saved 0
3858 if { [istarget powerpc*-*-*]
3859 || [istarget ia64-*-*] } {
3860 set et_vect_udot_qi_saved 1
3863 verbose "check_effective_target_vect_udot_qi: returning $et_vect_udot_qi_saved" 2
3864 return $et_vect_udot_qi_saved
3867 # Return 1 if the target plus current options supports a vector
3868 # dot-product of signed shorts, 0 otherwise.
3870 # This won't change for different subtargets so cache the result.
3872 proc check_effective_target_vect_sdot_hi { } {
3873 global et_vect_sdot_hi
3875 if [info exists et_vect_sdot_hi_saved] {
3876 verbose "check_effective_target_vect_sdot_hi: using cached result" 2
3877 } else {
3878 set et_vect_sdot_hi_saved 0
3879 if { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*])
3880 || [istarget ia64-*-*]
3881 || [istarget i?86-*-*]
3882 || [istarget x86_64-*-*] } {
3883 set et_vect_sdot_hi_saved 1
3886 verbose "check_effective_target_vect_sdot_hi: returning $et_vect_sdot_hi_saved" 2
3887 return $et_vect_sdot_hi_saved
3890 # Return 1 if the target plus current options supports a vector
3891 # dot-product of unsigned shorts, 0 otherwise.
3893 # This won't change for different subtargets so cache the result.
3895 proc check_effective_target_vect_udot_hi { } {
3896 global et_vect_udot_hi
3898 if [info exists et_vect_udot_hi_saved] {
3899 verbose "check_effective_target_vect_udot_hi: using cached result" 2
3900 } else {
3901 set et_vect_udot_hi_saved 0
3902 if { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*]) } {
3903 set et_vect_udot_hi_saved 1
3906 verbose "check_effective_target_vect_udot_hi: returning $et_vect_udot_hi_saved" 2
3907 return $et_vect_udot_hi_saved
3911 # Return 1 if the target plus current options supports a vector
3912 # demotion (packing) of shorts (to chars) and ints (to shorts)
3913 # using modulo arithmetic, 0 otherwise.
3915 # This won't change for different subtargets so cache the result.
3917 proc check_effective_target_vect_pack_trunc { } {
3918 global et_vect_pack_trunc
3920 if [info exists et_vect_pack_trunc_saved] {
3921 verbose "check_effective_target_vect_pack_trunc: using cached result" 2
3922 } else {
3923 set et_vect_pack_trunc_saved 0
3924 if { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*])
3925 || [istarget i?86-*-*]
3926 || [istarget x86_64-*-*]
3927 || [istarget aarch64*-*-*]
3928 || [istarget spu-*-*]
3929 || ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok]
3930 && [check_effective_target_arm_little_endian]) } {
3931 set et_vect_pack_trunc_saved 1
3934 verbose "check_effective_target_vect_pack_trunc: returning $et_vect_pack_trunc_saved" 2
3935 return $et_vect_pack_trunc_saved
3938 # Return 1 if the target plus current options supports a vector
3939 # promotion (unpacking) of chars (to shorts) and shorts (to ints), 0 otherwise.
3941 # This won't change for different subtargets so cache the result.
3943 proc check_effective_target_vect_unpack { } {
3944 global et_vect_unpack
3946 if [info exists et_vect_unpack_saved] {
3947 verbose "check_effective_target_vect_unpack: using cached result" 2
3948 } else {
3949 set et_vect_unpack_saved 0
3950 if { ([istarget powerpc*-*-*] && ![istarget powerpc-*paired*])
3951 || [istarget i?86-*-*]
3952 || [istarget x86_64-*-*]
3953 || [istarget spu-*-*]
3954 || [istarget ia64-*-*]
3955 || [istarget aarch64*-*-*]
3956 || ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok]
3957 && [check_effective_target_arm_little_endian]) } {
3958 set et_vect_unpack_saved 1
3961 verbose "check_effective_target_vect_unpack: returning $et_vect_unpack_saved" 2
3962 return $et_vect_unpack_saved
3965 # Return 1 if the target plus current options does not guarantee
3966 # that its STACK_BOUNDARY is >= the reguired vector alignment.
3968 # This won't change for different subtargets so cache the result.
3970 proc check_effective_target_unaligned_stack { } {
3971 global et_unaligned_stack_saved
3973 if [info exists et_unaligned_stack_saved] {
3974 verbose "check_effective_target_unaligned_stack: using cached result" 2
3975 } else {
3976 set et_unaligned_stack_saved 0
3978 verbose "check_effective_target_unaligned_stack: returning $et_unaligned_stack_saved" 2
3979 return $et_unaligned_stack_saved
3982 # Return 1 if the target plus current options does not support a vector
3983 # alignment mechanism, 0 otherwise.
3985 # This won't change for different subtargets so cache the result.
3987 proc check_effective_target_vect_no_align { } {
3988 global et_vect_no_align_saved
3990 if [info exists et_vect_no_align_saved] {
3991 verbose "check_effective_target_vect_no_align: using cached result" 2
3992 } else {
3993 set et_vect_no_align_saved 0
3994 if { [istarget mipsisa64*-*-*]
3995 || [istarget mips-sde-elf]
3996 || [istarget sparc*-*-*]
3997 || [istarget ia64-*-*]
3998 || [check_effective_target_arm_vect_no_misalign]
3999 || ([istarget mips*-*-*]
4000 && [check_effective_target_mips_loongson]) } {
4001 set et_vect_no_align_saved 1
4004 verbose "check_effective_target_vect_no_align: returning $et_vect_no_align_saved" 2
4005 return $et_vect_no_align_saved
4008 # Return 1 if the target supports a vector misalign access, 0 otherwise.
4010 # This won't change for different subtargets so cache the result.
4012 proc check_effective_target_vect_hw_misalign { } {
4013 global et_vect_hw_misalign_saved
4015 if [info exists et_vect_hw_misalign_saved] {
4016 verbose "check_effective_target_vect_hw_misalign: using cached result" 2
4017 } else {
4018 set et_vect_hw_misalign_saved 0
4019 if { ([istarget x86_64-*-*]
4020 || [istarget aarch64*-*-*]
4021 || [istarget i?86-*-*]) } {
4022 set et_vect_hw_misalign_saved 1
4025 verbose "check_effective_target_vect_hw_misalign: returning $et_vect_hw_misalign_saved" 2
4026 return $et_vect_hw_misalign_saved
4030 # Return 1 if arrays are aligned to the vector alignment
4031 # boundary, 0 otherwise.
4033 # This won't change for different subtargets so cache the result.
4035 proc check_effective_target_vect_aligned_arrays { } {
4036 global et_vect_aligned_arrays
4038 if [info exists et_vect_aligned_arrays_saved] {
4039 verbose "check_effective_target_vect_aligned_arrays: using cached result" 2
4040 } else {
4041 set et_vect_aligned_arrays_saved 0
4042 if { ([istarget x86_64-*-*] || [istarget i?86-*-*]) } {
4043 if { ([is-effective-target lp64]
4044 && ( ![check_avx_available]
4045 || [check_prefer_avx128])) } {
4046 set et_vect_aligned_arrays_saved 1
4049 if [istarget spu-*-*] {
4050 set et_vect_aligned_arrays_saved 1
4053 verbose "check_effective_target_vect_aligned_arrays: returning $et_vect_aligned_arrays_saved" 2
4054 return $et_vect_aligned_arrays_saved
4057 # Return 1 if types of size 32 bit or less are naturally aligned
4058 # (aligned to their type-size), 0 otherwise.
4060 # This won't change for different subtargets so cache the result.
4062 proc check_effective_target_natural_alignment_32 { } {
4063 global et_natural_alignment_32
4065 if [info exists et_natural_alignment_32_saved] {
4066 verbose "check_effective_target_natural_alignment_32: using cached result" 2
4067 } else {
4068 # FIXME: 32bit powerpc: guaranteed only if MASK_ALIGN_NATURAL/POWER.
4069 set et_natural_alignment_32_saved 1
4070 if { ([istarget *-*-darwin*] && [is-effective-target lp64]) } {
4071 set et_natural_alignment_32_saved 0
4074 verbose "check_effective_target_natural_alignment_32: returning $et_natural_alignment_32_saved" 2
4075 return $et_natural_alignment_32_saved
4078 # Return 1 if types of size 64 bit or less are naturally aligned (aligned to their
4079 # type-size), 0 otherwise.
4081 # This won't change for different subtargets so cache the result.
4083 proc check_effective_target_natural_alignment_64 { } {
4084 global et_natural_alignment_64
4086 if [info exists et_natural_alignment_64_saved] {
4087 verbose "check_effective_target_natural_alignment_64: using cached result" 2
4088 } else {
4089 set et_natural_alignment_64_saved 0
4090 if { ([is-effective-target lp64] && ![istarget *-*-darwin*])
4091 || [istarget spu-*-*] } {
4092 set et_natural_alignment_64_saved 1
4095 verbose "check_effective_target_natural_alignment_64: returning $et_natural_alignment_64_saved" 2
4096 return $et_natural_alignment_64_saved
4099 # Return 1 if all vector types are naturally aligned (aligned to their
4100 # type-size), 0 otherwise.
4102 # This won't change for different subtargets so cache the result.
4104 proc check_effective_target_vect_natural_alignment { } {
4105 global et_vect_natural_alignment
4107 if [info exists et_vect_natural_alignment_saved] {
4108 verbose "check_effective_target_vect_natural_alignment: using cached result" 2
4109 } else {
4110 set et_vect_natural_alignment_saved 1
4111 if { [check_effective_target_arm_eabi] } {
4112 set et_vect_natural_alignment_saved 0
4115 verbose "check_effective_target_vect_natural_alignment: returning $et_vect_natural_alignment_saved" 2
4116 return $et_vect_natural_alignment_saved
4119 # Return 1 if vector alignment (for types of size 32 bit or less) is reachable, 0 otherwise.
4121 # This won't change for different subtargets so cache the result.
4123 proc check_effective_target_vector_alignment_reachable { } {
4124 global et_vector_alignment_reachable
4126 if [info exists et_vector_alignment_reachable_saved] {
4127 verbose "check_effective_target_vector_alignment_reachable: using cached result" 2
4128 } else {
4129 if { [check_effective_target_vect_aligned_arrays]
4130 || [check_effective_target_natural_alignment_32] } {
4131 set et_vector_alignment_reachable_saved 1
4132 } else {
4133 set et_vector_alignment_reachable_saved 0
4136 verbose "check_effective_target_vector_alignment_reachable: returning $et_vector_alignment_reachable_saved" 2
4137 return $et_vector_alignment_reachable_saved
4140 # Return 1 if vector alignment for 64 bit is reachable, 0 otherwise.
4142 # This won't change for different subtargets so cache the result.
4144 proc check_effective_target_vector_alignment_reachable_for_64bit { } {
4145 global et_vector_alignment_reachable_for_64bit
4147 if [info exists et_vector_alignment_reachable_for_64bit_saved] {
4148 verbose "check_effective_target_vector_alignment_reachable_for_64bit: using cached result" 2
4149 } else {
4150 if { [check_effective_target_vect_aligned_arrays]
4151 || [check_effective_target_natural_alignment_64] } {
4152 set et_vector_alignment_reachable_for_64bit_saved 1
4153 } else {
4154 set et_vector_alignment_reachable_for_64bit_saved 0
4157 verbose "check_effective_target_vector_alignment_reachable_for_64bit: returning $et_vector_alignment_reachable_for_64bit_saved" 2
4158 return $et_vector_alignment_reachable_for_64bit_saved
4161 # Return 1 if the target only requires element alignment for vector accesses
4163 proc check_effective_target_vect_element_align { } {
4164 global et_vect_element_align
4166 if [info exists et_vect_element_align] {
4167 verbose "check_effective_target_vect_element_align: using cached result" 2
4168 } else {
4169 set et_vect_element_align 0
4170 if { ([istarget arm*-*-*]
4171 && ![check_effective_target_arm_vect_no_misalign])
4172 || [check_effective_target_vect_hw_misalign] } {
4173 set et_vect_element_align 1
4177 verbose "check_effective_target_vect_element_align: returning $et_vect_element_align" 2
4178 return $et_vect_element_align
4181 # Return 1 if the target supports vector conditional operations, 0 otherwise.
4183 proc check_effective_target_vect_condition { } {
4184 global et_vect_cond_saved
4186 if [info exists et_vect_cond_saved] {
4187 verbose "check_effective_target_vect_cond: using cached result" 2
4188 } else {
4189 set et_vect_cond_saved 0
4190 if { [istarget aarch64*-*-*]
4191 || [istarget powerpc*-*-*]
4192 || [istarget ia64-*-*]
4193 || [istarget i?86-*-*]
4194 || [istarget spu-*-*]
4195 || [istarget x86_64-*-*]
4196 || ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok]) } {
4197 set et_vect_cond_saved 1
4201 verbose "check_effective_target_vect_cond: returning $et_vect_cond_saved" 2
4202 return $et_vect_cond_saved
4205 # Return 1 if the target supports vector conditional operations where
4206 # the comparison has different type from the lhs, 0 otherwise.
4208 proc check_effective_target_vect_cond_mixed { } {
4209 global et_vect_cond_mixed_saved
4211 if [info exists et_vect_cond_mixed_saved] {
4212 verbose "check_effective_target_vect_cond_mixed: using cached result" 2
4213 } else {
4214 set et_vect_cond_mixed_saved 0
4215 if { [istarget i?86-*-*]
4216 || [istarget x86_64-*-*]
4217 || [istarget powerpc*-*-*] } {
4218 set et_vect_cond_mixed_saved 1
4222 verbose "check_effective_target_vect_cond_mixed: returning $et_vect_cond_mixed_saved" 2
4223 return $et_vect_cond_mixed_saved
4226 # Return 1 if the target supports vector char multiplication, 0 otherwise.
4228 proc check_effective_target_vect_char_mult { } {
4229 global et_vect_char_mult_saved
4231 if [info exists et_vect_char_mult_saved] {
4232 verbose "check_effective_target_vect_char_mult: using cached result" 2
4233 } else {
4234 set et_vect_char_mult_saved 0
4235 if { [istarget aarch64*-*-*]
4236 || [istarget ia64-*-*]
4237 || [istarget i?86-*-*]
4238 || [istarget x86_64-*-*]
4239 || [check_effective_target_arm32] } {
4240 set et_vect_char_mult_saved 1
4244 verbose "check_effective_target_vect_char_mult: returning $et_vect_char_mult_saved" 2
4245 return $et_vect_char_mult_saved
4248 # Return 1 if the target supports vector short multiplication, 0 otherwise.
4250 proc check_effective_target_vect_short_mult { } {
4251 global et_vect_short_mult_saved
4253 if [info exists et_vect_short_mult_saved] {
4254 verbose "check_effective_target_vect_short_mult: using cached result" 2
4255 } else {
4256 set et_vect_short_mult_saved 0
4257 if { [istarget ia64-*-*]
4258 || [istarget spu-*-*]
4259 || [istarget i?86-*-*]
4260 || [istarget x86_64-*-*]
4261 || [istarget powerpc*-*-*]
4262 || [istarget aarch64*-*-*]
4263 || [check_effective_target_arm32]
4264 || ([istarget mips*-*-*]
4265 && [check_effective_target_mips_loongson]) } {
4266 set et_vect_short_mult_saved 1
4270 verbose "check_effective_target_vect_short_mult: returning $et_vect_short_mult_saved" 2
4271 return $et_vect_short_mult_saved
4274 # Return 1 if the target supports vector int multiplication, 0 otherwise.
4276 proc check_effective_target_vect_int_mult { } {
4277 global et_vect_int_mult_saved
4279 if [info exists et_vect_int_mult_saved] {
4280 verbose "check_effective_target_vect_int_mult: using cached result" 2
4281 } else {
4282 set et_vect_int_mult_saved 0
4283 if { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*])
4284 || [istarget spu-*-*]
4285 || [istarget i?86-*-*]
4286 || [istarget x86_64-*-*]
4287 || [istarget ia64-*-*]
4288 || [istarget aarch64*-*-*]
4289 || [check_effective_target_arm32] } {
4290 set et_vect_int_mult_saved 1
4294 verbose "check_effective_target_vect_int_mult: returning $et_vect_int_mult_saved" 2
4295 return $et_vect_int_mult_saved
4298 # Return 1 if the target supports vector even/odd elements extraction, 0 otherwise.
4300 proc check_effective_target_vect_extract_even_odd { } {
4301 global et_vect_extract_even_odd_saved
4303 if [info exists et_vect_extract_even_odd_saved] {
4304 verbose "check_effective_target_vect_extract_even_odd: using cached result" 2
4305 } else {
4306 set et_vect_extract_even_odd_saved 0
4307 if { [istarget aarch64*-*-*]
4308 || [istarget powerpc*-*-*]
4309 || [is-effective-target arm_neon_ok]
4310 || [istarget i?86-*-*]
4311 || [istarget x86_64-*-*]
4312 || [istarget ia64-*-*]
4313 || [istarget spu-*-*]
4314 || ([istarget mips*-*-*]
4315 && [check_effective_target_mpaired_single]) } {
4316 set et_vect_extract_even_odd_saved 1
4320 verbose "check_effective_target_vect_extract_even_odd: returning $et_vect_extract_even_odd_saved" 2
4321 return $et_vect_extract_even_odd_saved
4324 # Return 1 if the target supports vector interleaving, 0 otherwise.
4326 proc check_effective_target_vect_interleave { } {
4327 global et_vect_interleave_saved
4329 if [info exists et_vect_interleave_saved] {
4330 verbose "check_effective_target_vect_interleave: using cached result" 2
4331 } else {
4332 set et_vect_interleave_saved 0
4333 if { [istarget aarch64*-*-*]
4334 || [istarget powerpc*-*-*]
4335 || [is-effective-target arm_neon_ok]
4336 || [istarget i?86-*-*]
4337 || [istarget x86_64-*-*]
4338 || [istarget ia64-*-*]
4339 || [istarget spu-*-*]
4340 || ([istarget mips*-*-*]
4341 && [check_effective_target_mpaired_single]) } {
4342 set et_vect_interleave_saved 1
4346 verbose "check_effective_target_vect_interleave: returning $et_vect_interleave_saved" 2
4347 return $et_vect_interleave_saved
4350 foreach N {2 3 4 8} {
4351 eval [string map [list N $N] {
4352 # Return 1 if the target supports 2-vector interleaving
4353 proc check_effective_target_vect_stridedN { } {
4354 global et_vect_stridedN_saved
4356 if [info exists et_vect_stridedN_saved] {
4357 verbose "check_effective_target_vect_stridedN: using cached result" 2
4358 } else {
4359 set et_vect_stridedN_saved 0
4360 if { (N & -N) == N
4361 && [check_effective_target_vect_interleave]
4362 && [check_effective_target_vect_extract_even_odd] } {
4363 set et_vect_stridedN_saved 1
4365 if { ([istarget arm*-*-*]
4366 || [istarget aarch64*-*-*]) && N >= 2 && N <= 4 } {
4367 set et_vect_stridedN_saved 1
4371 verbose "check_effective_target_vect_stridedN: returning $et_vect_stridedN_saved" 2
4372 return $et_vect_stridedN_saved
4377 # Return 1 if the target supports multiple vector sizes
4379 proc check_effective_target_vect_multiple_sizes { } {
4380 global et_vect_multiple_sizes_saved
4382 set et_vect_multiple_sizes_saved 0
4383 if { ([istarget aarch64*-*-*]
4384 || ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok])) } {
4385 set et_vect_multiple_sizes_saved 1
4387 if { ([istarget x86_64-*-*] || [istarget i?86-*-*]) } {
4388 if { ([check_avx_available] && ![check_prefer_avx128]) } {
4389 set et_vect_multiple_sizes_saved 1
4393 verbose "check_effective_target_vect_multiple_sizes: returning $et_vect_multiple_sizes_saved" 2
4394 return $et_vect_multiple_sizes_saved
4397 # Return 1 if the target supports vectors of 64 bits.
4399 proc check_effective_target_vect64 { } {
4400 global et_vect64_saved
4402 if [info exists et_vect64_saved] {
4403 verbose "check_effective_target_vect64: using cached result" 2
4404 } else {
4405 set et_vect64_saved 0
4406 if { ([istarget arm*-*-*]
4407 && [check_effective_target_arm_neon_ok]
4408 && [check_effective_target_arm_little_endian]) } {
4409 set et_vect64_saved 1
4413 verbose "check_effective_target_vect64: returning $et_vect64_saved" 2
4414 return $et_vect64_saved
4417 # Return 1 if the target supports vector copysignf calls.
4419 proc check_effective_target_vect_call_copysignf { } {
4420 global et_vect_call_copysignf_saved
4422 if [info exists et_vect_call_copysignf_saved] {
4423 verbose "check_effective_target_vect_call_copysignf: using cached result" 2
4424 } else {
4425 set et_vect_call_copysignf_saved 0
4426 if { [istarget i?86-*-*]
4427 || [istarget x86_64-*-*]
4428 || [istarget powerpc*-*-*] } {
4429 set et_vect_call_copysignf_saved 1
4433 verbose "check_effective_target_vect_call_copysignf: returning $et_vect_call_copysignf_saved" 2
4434 return $et_vect_call_copysignf_saved
4437 # Return 1 if the target supports vector sqrtf calls.
4439 proc check_effective_target_vect_call_sqrtf { } {
4440 global et_vect_call_sqrtf_saved
4442 if [info exists et_vect_call_sqrtf_saved] {
4443 verbose "check_effective_target_vect_call_sqrtf: using cached result" 2
4444 } else {
4445 set et_vect_call_sqrtf_saved 0
4446 if { [istarget aarch64*-*-*]
4447 || [istarget i?86-*-*]
4448 || [istarget x86_64-*-*]
4449 || ([istarget powerpc*-*-*] && [check_vsx_hw_available]) } {
4450 set et_vect_call_sqrtf_saved 1
4454 verbose "check_effective_target_vect_call_sqrtf: returning $et_vect_call_sqrtf_saved" 2
4455 return $et_vect_call_sqrtf_saved
4458 # Return 1 if the target supports vector lrint calls.
4460 proc check_effective_target_vect_call_lrint { } {
4461 set et_vect_call_lrint 0
4462 if { ([istarget i?86-*-*] || [istarget x86_64-*-*]) && [check_effective_target_ilp32] } {
4463 set et_vect_call_lrint 1
4466 verbose "check_effective_target_vect_call_lrint: returning $et_vect_call_lrint" 2
4467 return $et_vect_call_lrint
4470 # Return 1 if the target supports vector btrunc calls.
4472 proc check_effective_target_vect_call_btrunc { } {
4473 global et_vect_call_btrunc_saved
4475 if [info exists et_vect_call_btrunc_saved] {
4476 verbose "check_effective_target_vect_call_btrunc: using cached result" 2
4477 } else {
4478 set et_vect_call_btrunc_saved 0
4479 if { [istarget aarch64*-*-*] } {
4480 set et_vect_call_btrunc_saved 1
4484 verbose "check_effective_target_vect_call_btrunc: returning $et_vect_call_btrunc_saved" 2
4485 return $et_vect_call_btrunc_saved
4488 # Return 1 if the target supports vector btruncf calls.
4490 proc check_effective_target_vect_call_btruncf { } {
4491 global et_vect_call_btruncf_saved
4493 if [info exists et_vect_call_btruncf_saved] {
4494 verbose "check_effective_target_vect_call_btruncf: using cached result" 2
4495 } else {
4496 set et_vect_call_btruncf_saved 0
4497 if { [istarget aarch64*-*-*] } {
4498 set et_vect_call_btruncf_saved 1
4502 verbose "check_effective_target_vect_call_btruncf: returning $et_vect_call_btruncf_saved" 2
4503 return $et_vect_call_btruncf_saved
4506 # Return 1 if the target supports vector ceil calls.
4508 proc check_effective_target_vect_call_ceil { } {
4509 global et_vect_call_ceil_saved
4511 if [info exists et_vect_call_ceil_saved] {
4512 verbose "check_effective_target_vect_call_ceil: using cached result" 2
4513 } else {
4514 set et_vect_call_ceil_saved 0
4515 if { [istarget aarch64*-*-*] } {
4516 set et_vect_call_ceil_saved 1
4520 verbose "check_effective_target_vect_call_ceil: returning $et_vect_call_ceil_saved" 2
4521 return $et_vect_call_ceil_saved
4524 # Return 1 if the target supports vector ceilf calls.
4526 proc check_effective_target_vect_call_ceilf { } {
4527 global et_vect_call_ceilf_saved
4529 if [info exists et_vect_call_ceilf_saved] {
4530 verbose "check_effective_target_vect_call_ceilf: using cached result" 2
4531 } else {
4532 set et_vect_call_ceilf_saved 0
4533 if { [istarget aarch64*-*-*] } {
4534 set et_vect_call_ceilf_saved 1
4538 verbose "check_effective_target_vect_call_ceilf: returning $et_vect_call_ceilf_saved" 2
4539 return $et_vect_call_ceilf_saved
4542 # Return 1 if the target supports vector floor calls.
4544 proc check_effective_target_vect_call_floor { } {
4545 global et_vect_call_floor_saved
4547 if [info exists et_vect_call_floor_saved] {
4548 verbose "check_effective_target_vect_call_floor: using cached result" 2
4549 } else {
4550 set et_vect_call_floor_saved 0
4551 if { [istarget aarch64*-*-*] } {
4552 set et_vect_call_floor_saved 1
4556 verbose "check_effective_target_vect_call_floor: returning $et_vect_call_floor_saved" 2
4557 return $et_vect_call_floor_saved
4560 # Return 1 if the target supports vector floorf calls.
4562 proc check_effective_target_vect_call_floorf { } {
4563 global et_vect_call_floorf_saved
4565 if [info exists et_vect_call_floorf_saved] {
4566 verbose "check_effective_target_vect_call_floorf: using cached result" 2
4567 } else {
4568 set et_vect_call_floorf_saved 0
4569 if { [istarget aarch64*-*-*] } {
4570 set et_vect_call_floorf_saved 1
4574 verbose "check_effective_target_vect_call_floorf: returning $et_vect_call_floorf_saved" 2
4575 return $et_vect_call_floorf_saved
4578 # Return 1 if the target supports vector lceil calls.
4580 proc check_effective_target_vect_call_lceil { } {
4581 global et_vect_call_lceil_saved
4583 if [info exists et_vect_call_lceil_saved] {
4584 verbose "check_effective_target_vect_call_lceil: using cached result" 2
4585 } else {
4586 set et_vect_call_lceil_saved 0
4587 if { [istarget aarch64*-*-*] } {
4588 set et_vect_call_lceil_saved 1
4592 verbose "check_effective_target_vect_call_lceil: returning $et_vect_call_lceil_saved" 2
4593 return $et_vect_call_lceil_saved
4596 # Return 1 if the target supports vector lfloor calls.
4598 proc check_effective_target_vect_call_lfloor { } {
4599 global et_vect_call_lfloor_saved
4601 if [info exists et_vect_call_lfloor_saved] {
4602 verbose "check_effective_target_vect_call_lfloor: using cached result" 2
4603 } else {
4604 set et_vect_call_lfloor_saved 0
4605 if { [istarget aarch64*-*-*] } {
4606 set et_vect_call_lfloor_saved 1
4610 verbose "check_effective_target_vect_call_lfloor: returning $et_vect_call_lfloor_saved" 2
4611 return $et_vect_call_lfloor_saved
4614 # Return 1 if the target supports vector nearbyint calls.
4616 proc check_effective_target_vect_call_nearbyint { } {
4617 global et_vect_call_nearbyint_saved
4619 if [info exists et_vect_call_nearbyint_saved] {
4620 verbose "check_effective_target_vect_call_nearbyint: using cached result" 2
4621 } else {
4622 set et_vect_call_nearbyint_saved 0
4623 if { [istarget aarch64*-*-*] } {
4624 set et_vect_call_nearbyint_saved 1
4628 verbose "check_effective_target_vect_call_nearbyint: returning $et_vect_call_nearbyint_saved" 2
4629 return $et_vect_call_nearbyint_saved
4632 # Return 1 if the target supports vector nearbyintf calls.
4634 proc check_effective_target_vect_call_nearbyintf { } {
4635 global et_vect_call_nearbyintf_saved
4637 if [info exists et_vect_call_nearbyintf_saved] {
4638 verbose "check_effective_target_vect_call_nearbyintf: using cached result" 2
4639 } else {
4640 set et_vect_call_nearbyintf_saved 0
4641 if { [istarget aarch64*-*-*] } {
4642 set et_vect_call_nearbyintf_saved 1
4646 verbose "check_effective_target_vect_call_nearbyintf: returning $et_vect_call_nearbyintf_saved" 2
4647 return $et_vect_call_nearbyintf_saved
4650 # Return 1 if the target supports vector round calls.
4652 proc check_effective_target_vect_call_round { } {
4653 global et_vect_call_round_saved
4655 if [info exists et_vect_call_round_saved] {
4656 verbose "check_effective_target_vect_call_round: using cached result" 2
4657 } else {
4658 set et_vect_call_round_saved 0
4659 if { [istarget aarch64*-*-*] } {
4660 set et_vect_call_round_saved 1
4664 verbose "check_effective_target_vect_call_round: returning $et_vect_call_round_saved" 2
4665 return $et_vect_call_round_saved
4668 # Return 1 if the target supports vector roundf calls.
4670 proc check_effective_target_vect_call_roundf { } {
4671 global et_vect_call_roundf_saved
4673 if [info exists et_vect_call_roundf_saved] {
4674 verbose "check_effective_target_vect_call_roundf: using cached result" 2
4675 } else {
4676 set et_vect_call_roundf_saved 0
4677 if { [istarget aarch64*-*-*] } {
4678 set et_vect_call_roundf_saved 1
4682 verbose "check_effective_target_vect_call_roundf: returning $et_vect_call_roundf_saved" 2
4683 return $et_vect_call_roundf_saved
4686 # Return 1 if the target supports section-anchors
4688 proc check_effective_target_section_anchors { } {
4689 global et_section_anchors_saved
4691 if [info exists et_section_anchors_saved] {
4692 verbose "check_effective_target_section_anchors: using cached result" 2
4693 } else {
4694 set et_section_anchors_saved 0
4695 if { [istarget powerpc*-*-*]
4696 || [istarget arm*-*-*] } {
4697 set et_section_anchors_saved 1
4701 verbose "check_effective_target_section_anchors: returning $et_section_anchors_saved" 2
4702 return $et_section_anchors_saved
4705 # Return 1 if the target supports atomic operations on "int_128" values.
4707 proc check_effective_target_sync_int_128 { } {
4708 if { ([istarget x86_64-*-*] || [istarget i?86-*-*])
4709 && ![is-effective-target ia32] } {
4710 return 1
4711 } else {
4712 return 0
4716 # Return 1 if the target supports atomic operations on "int_128" values
4717 # and can execute them.
4719 proc check_effective_target_sync_int_128_runtime { } {
4720 if { ([istarget x86_64-*-*] || [istarget i?86-*-*])
4721 && ![is-effective-target ia32] } {
4722 return [check_cached_effective_target sync_int_128_available {
4723 check_runtime_nocache sync_int_128_available {
4724 #include "cpuid.h"
4725 int main ()
4727 unsigned int eax, ebx, ecx, edx;
4728 if (__get_cpuid (1, &eax, &ebx, &ecx, &edx))
4729 return !(ecx & bit_CMPXCHG16B);
4730 return 1;
4732 } ""
4734 } else {
4735 return 0
4739 # Return 1 if the target supports atomic operations on "long long".
4741 # Note: 32bit x86 targets require -march=pentium in dg-options.
4743 proc check_effective_target_sync_long_long { } {
4744 if { [istarget x86_64-*-*]
4745 || [istarget i?86-*-*])
4746 || [istarget aarch64*-*-*]
4747 || [istarget arm*-*-*]
4748 || [istarget alpha*-*-*]
4749 || ([istarget sparc*-*-*] && [check_effective_target_lp64]) } {
4750 return 1
4751 } else {
4752 return 0
4756 # Return 1 if the target supports atomic operations on "long long"
4757 # and can execute them.
4759 # Note: 32bit x86 targets require -march=pentium in dg-options.
4761 proc check_effective_target_sync_long_long_runtime { } {
4762 if { [istarget x86_64-*-*]
4763 || [istarget i?86-*-*] } {
4764 return [check_cached_effective_target sync_long_long_available {
4765 check_runtime_nocache sync_long_long_available {
4766 #include "cpuid.h"
4767 int main ()
4769 unsigned int eax, ebx, ecx, edx;
4770 if (__get_cpuid (1, &eax, &ebx, &ecx, &edx))
4771 return !(edx & bit_CMPXCHG8B);
4772 return 1;
4774 } ""
4776 } elseif { [istarget aarch64*-*-*] } {
4777 return 1
4778 } elseif { [istarget arm*-*-linux-*] } {
4779 return [check_runtime sync_longlong_runtime {
4780 #include <stdlib.h>
4781 int main ()
4783 long long l1;
4785 if (sizeof (long long) != 8)
4786 exit (1);
4788 /* Just check for native; checking for kernel fallback is tricky. */
4789 asm volatile ("ldrexd r0,r1, [%0]" : : "r" (&l1) : "r0", "r1");
4791 exit (0);
4793 } "" ]
4794 } elseif { [istarget alpha*-*-*] } {
4795 return 1
4796 } elseif { ([istarget sparc*-*-*]
4797 && [check_effective_target_lp64]
4798 && [check_effective_target_ultrasparc_hw]) } {
4799 return 1
4800 } elseif { [istarget powerpc*-*-*] && [check_effective_target_lp64] } {
4801 return 1
4802 } else {
4803 return 0
4807 # Return 1 if the target supports atomic operations on "int" and "long".
4809 proc check_effective_target_sync_int_long { } {
4810 global et_sync_int_long_saved
4812 if [info exists et_sync_int_long_saved] {
4813 verbose "check_effective_target_sync_int_long: using cached result" 2
4814 } else {
4815 set et_sync_int_long_saved 0
4816 # This is intentionally powerpc but not rs6000, rs6000 doesn't have the
4817 # load-reserved/store-conditional instructions.
4818 if { [istarget ia64-*-*]
4819 || [istarget i?86-*-*]
4820 || [istarget x86_64-*-*]
4821 || [istarget aarch64*-*-*]
4822 || [istarget alpha*-*-*]
4823 || [istarget arm*-*-linux-*]
4824 || [istarget bfin*-*linux*]
4825 || [istarget hppa*-*linux*]
4826 || [istarget s390*-*-*]
4827 || [istarget powerpc*-*-*]
4828 || [istarget crisv32-*-*] || [istarget cris-*-*]
4829 || ([istarget sparc*-*-*] && [check_effective_target_sparc_v9])
4830 || [check_effective_target_mips_llsc] } {
4831 set et_sync_int_long_saved 1
4835 verbose "check_effective_target_sync_int_long: returning $et_sync_int_long_saved" 2
4836 return $et_sync_int_long_saved
4839 # Return 1 if the target supports atomic operations on "char" and "short".
4841 proc check_effective_target_sync_char_short { } {
4842 global et_sync_char_short_saved
4844 if [info exists et_sync_char_short_saved] {
4845 verbose "check_effective_target_sync_char_short: using cached result" 2
4846 } else {
4847 set et_sync_char_short_saved 0
4848 # This is intentionally powerpc but not rs6000, rs6000 doesn't have the
4849 # load-reserved/store-conditional instructions.
4850 if { [istarget aarch64*-*-*]
4851 || [istarget ia64-*-*]
4852 || [istarget i?86-*-*]
4853 || [istarget x86_64-*-*]
4854 || [istarget alpha*-*-*]
4855 || [istarget arm*-*-linux-*]
4856 || [istarget hppa*-*linux*]
4857 || [istarget s390*-*-*]
4858 || [istarget powerpc*-*-*]
4859 || [istarget crisv32-*-*] || [istarget cris-*-*]
4860 || ([istarget sparc*-*-*] && [check_effective_target_sparc_v9])
4861 || [check_effective_target_mips_llsc] } {
4862 set et_sync_char_short_saved 1
4866 verbose "check_effective_target_sync_char_short: returning $et_sync_char_short_saved" 2
4867 return $et_sync_char_short_saved
4870 # Return 1 if the target uses a ColdFire FPU.
4872 proc check_effective_target_coldfire_fpu { } {
4873 return [check_no_compiler_messages coldfire_fpu assembly {
4874 #ifndef __mcffpu__
4875 #error FOO
4876 #endif
4880 # Return true if this is a uClibc target.
4882 proc check_effective_target_uclibc {} {
4883 return [check_no_compiler_messages uclibc object {
4884 #include <features.h>
4885 #if !defined (__UCLIBC__)
4886 #error FOO
4887 #endif
4891 # Return true if this is a uclibc target and if the uclibc feature
4892 # described by __$feature__ is not present.
4894 proc check_missing_uclibc_feature {feature} {
4895 return [check_no_compiler_messages $feature object "
4896 #include <features.h>
4897 #if !defined (__UCLIBC) || defined (__${feature}__)
4898 #error FOO
4899 #endif
4903 # Return true if this is a Newlib target.
4905 proc check_effective_target_newlib {} {
4906 return [check_no_compiler_messages newlib object {
4907 #include <newlib.h>
4911 # Return true if this is NOT a Bionic target.
4913 proc check_effective_target_non_bionic {} {
4914 return [check_no_compiler_messages non_bionic object {
4915 #include <ctype.h>
4916 #if defined (__BIONIC__)
4917 #error FOO
4918 #endif
4922 # Return 1 if
4923 # (a) an error of a few ULP is expected in string to floating-point
4924 # conversion functions; and
4925 # (b) overflow is not always detected correctly by those functions.
4927 proc check_effective_target_lax_strtofp {} {
4928 # By default, assume that all uClibc targets suffer from this.
4929 return [check_effective_target_uclibc]
4932 # Return 1 if this is a target for which wcsftime is a dummy
4933 # function that always returns 0.
4935 proc check_effective_target_dummy_wcsftime {} {
4936 # By default, assume that all uClibc targets suffer from this.
4937 return [check_effective_target_uclibc]
4940 # Return 1 if constructors with initialization priority arguments are
4941 # supposed on this target.
4943 proc check_effective_target_init_priority {} {
4944 return [check_no_compiler_messages init_priority assembly "
4945 void f() __attribute__((constructor (1000)));
4946 void f() \{\}
4950 # Return 1 if the target matches the effective target 'arg', 0 otherwise.
4951 # This can be used with any check_* proc that takes no argument and
4952 # returns only 1 or 0. It could be used with check_* procs that take
4953 # arguments with keywords that pass particular arguments.
4955 proc is-effective-target { arg } {
4956 set selected 0
4957 if { [info procs check_effective_target_${arg}] != [list] } {
4958 set selected [check_effective_target_${arg}]
4959 } else {
4960 switch $arg {
4961 "vmx_hw" { set selected [check_vmx_hw_available] }
4962 "vsx_hw" { set selected [check_vsx_hw_available] }
4963 "p8vector_hw" { set selected [check_p8vector_hw_available] }
4964 "ppc_recip_hw" { set selected [check_ppc_recip_hw_available] }
4965 "dfp_hw" { set selected [check_dfp_hw_available] }
4966 "named_sections" { set selected [check_named_sections_available] }
4967 "gc_sections" { set selected [check_gc_sections_available] }
4968 "cxa_atexit" { set selected [check_cxa_atexit_available] }
4969 default { error "unknown effective target keyword `$arg'" }
4972 verbose "is-effective-target: $arg $selected" 2
4973 return $selected
4976 # Return 1 if the argument is an effective-target keyword, 0 otherwise.
4978 proc is-effective-target-keyword { arg } {
4979 if { [info procs check_effective_target_${arg}] != [list] } {
4980 return 1
4981 } else {
4982 # These have different names for their check_* procs.
4983 switch $arg {
4984 "vmx_hw" { return 1 }
4985 "vsx_hw" { return 1 }
4986 "p8vector_hw" { return 1 }
4987 "ppc_recip_hw" { return 1 }
4988 "dfp_hw" { return 1 }
4989 "named_sections" { return 1 }
4990 "gc_sections" { return 1 }
4991 "cxa_atexit" { return 1 }
4992 default { return 0 }
4997 # Return 1 if target default to short enums
4999 proc check_effective_target_short_enums { } {
5000 return [check_no_compiler_messages short_enums assembly {
5001 enum foo { bar };
5002 int s[sizeof (enum foo) == 1 ? 1 : -1];
5006 # Return 1 if target supports merging string constants at link time.
5008 proc check_effective_target_string_merging { } {
5009 return [check_no_messages_and_pattern string_merging \
5010 "rodata\\.str" assembly {
5011 const char *var = "String";
5012 } {-O2}]
5015 # Return 1 if target has the basic signed and unsigned types in
5016 # <stdint.h>, 0 otherwise. This will be obsolete when GCC ensures a
5017 # working <stdint.h> for all targets.
5019 proc check_effective_target_stdint_types { } {
5020 return [check_no_compiler_messages stdint_types assembly {
5021 #include <stdint.h>
5022 int8_t a; int16_t b; int32_t c; int64_t d;
5023 uint8_t e; uint16_t f; uint32_t g; uint64_t h;
5027 # Return 1 if target has the basic signed and unsigned types in
5028 # <inttypes.h>, 0 otherwise. This is for tests that GCC's notions of
5029 # these types agree with those in the header, as some systems have
5030 # only <inttypes.h>.
5032 proc check_effective_target_inttypes_types { } {
5033 return [check_no_compiler_messages inttypes_types assembly {
5034 #include <inttypes.h>
5035 int8_t a; int16_t b; int32_t c; int64_t d;
5036 uint8_t e; uint16_t f; uint32_t g; uint64_t h;
5040 # Return 1 if programs are intended to be run on a simulator
5041 # (i.e. slowly) rather than hardware (i.e. fast).
5043 proc check_effective_target_simulator { } {
5045 # All "src/sim" simulators set this one.
5046 if [board_info target exists is_simulator] {
5047 return [board_info target is_simulator]
5050 # The "sid" simulators don't set that one, but at least they set
5051 # this one.
5052 if [board_info target exists slow_simulator] {
5053 return [board_info target slow_simulator]
5056 return 0
5059 # Return 1 if programs are intended to be run on hardware rather than
5060 # on a simulator
5062 proc check_effective_target_hw { } {
5064 # All "src/sim" simulators set this one.
5065 if [board_info target exists is_simulator] {
5066 if [board_info target is_simulator] {
5067 return 0
5068 } else {
5069 return 1
5073 # The "sid" simulators don't set that one, but at least they set
5074 # this one.
5075 if [board_info target exists slow_simulator] {
5076 if [board_info target slow_simulator] {
5077 return 0
5078 } else {
5079 return 1
5083 return 1
5086 # Return 1 if the target is a VxWorks kernel.
5088 proc check_effective_target_vxworks_kernel { } {
5089 return [check_no_compiler_messages vxworks_kernel assembly {
5090 #if !defined __vxworks || defined __RTP__
5091 #error NO
5092 #endif
5096 # Return 1 if the target is a VxWorks RTP.
5098 proc check_effective_target_vxworks_rtp { } {
5099 return [check_no_compiler_messages vxworks_rtp assembly {
5100 #if !defined __vxworks || !defined __RTP__
5101 #error NO
5102 #endif
5106 # Return 1 if the target is expected to provide wide character support.
5108 proc check_effective_target_wchar { } {
5109 if {[check_missing_uclibc_feature UCLIBC_HAS_WCHAR]} {
5110 return 0
5112 return [check_no_compiler_messages wchar assembly {
5113 #include <wchar.h>
5117 # Return 1 if the target has <pthread.h>.
5119 proc check_effective_target_pthread_h { } {
5120 return [check_no_compiler_messages pthread_h assembly {
5121 #include <pthread.h>
5125 # Return 1 if the target can truncate a file from a file-descriptor,
5126 # as used by libgfortran/io/unix.c:fd_truncate; i.e. ftruncate or
5127 # chsize. We test for a trivially functional truncation; no stubs.
5128 # As libgfortran uses _FILE_OFFSET_BITS 64, we do too; it'll cause a
5129 # different function to be used.
5131 proc check_effective_target_fd_truncate { } {
5132 set prog {
5133 #define _FILE_OFFSET_BITS 64
5134 #include <unistd.h>
5135 #include <stdio.h>
5136 #include <stdlib.h>
5137 int main ()
5139 FILE *f = fopen ("tst.tmp", "wb");
5140 int fd;
5141 const char t[] = "test writing more than ten characters";
5142 char s[11];
5143 int status = 0;
5144 fd = fileno (f);
5145 write (fd, t, sizeof (t) - 1);
5146 lseek (fd, 0, 0);
5147 if (ftruncate (fd, 10) != 0)
5148 status = 1;
5149 close (fd);
5150 fclose (f);
5151 if (status)
5153 unlink ("tst.tmp");
5154 exit (status);
5156 f = fopen ("tst.tmp", "rb");
5157 if (fread (s, 1, sizeof (s), f) != 10 || strncmp (s, t, 10) != 0)
5158 status = 1;
5159 fclose (f);
5160 unlink ("tst.tmp");
5161 exit (status);
5165 if { [check_runtime ftruncate $prog] } {
5166 return 1;
5169 regsub "ftruncate" $prog "chsize" prog
5170 return [check_runtime chsize $prog]
5173 # Add to FLAGS all the target-specific flags needed to access the c99 runtime.
5175 proc add_options_for_c99_runtime { flags } {
5176 if { [istarget *-*-solaris2*] } {
5177 return "$flags -std=c99"
5179 if { [istarget powerpc-*-darwin*] } {
5180 return "$flags -mmacosx-version-min=10.3"
5182 return $flags
5185 # Add to FLAGS all the target-specific flags needed to enable
5186 # full IEEE compliance mode.
5188 proc add_options_for_ieee { flags } {
5189 if { [istarget alpha*-*-*]
5190 || [istarget sh*-*-*] } {
5191 return "$flags -mieee"
5193 if { [istarget rx-*-*] } {
5194 return "$flags -mnofpu"
5196 return $flags
5199 # Add to FLAGS the flags needed to enable functions to bind locally
5200 # when using pic/PIC passes in the testsuite.
5202 proc add_options_for_bind_pic_locally { flags } {
5203 if {[check_no_compiler_messages using_pic2 assembly {
5204 #if __PIC__ != 2
5205 #error FOO
5206 #endif
5207 }]} {
5208 return "$flags -fPIE"
5210 if {[check_no_compiler_messages using_pic1 assembly {
5211 #if __PIC__ != 1
5212 #error FOO
5213 #endif
5214 }]} {
5215 return "$flags -fpie"
5218 return $flags
5221 # Add to FLAGS the flags needed to enable 64-bit vectors.
5223 proc add_options_for_double_vectors { flags } {
5224 if [is-effective-target arm_neon_ok] {
5225 return "$flags -mvectorize-with-neon-double"
5228 return $flags
5231 # Return 1 if the target provides a full C99 runtime.
5233 proc check_effective_target_c99_runtime { } {
5234 return [check_cached_effective_target c99_runtime {
5235 global srcdir
5237 set file [open "$srcdir/gcc.dg/builtins-config.h"]
5238 set contents [read $file]
5239 close $file
5240 append contents {
5241 #ifndef HAVE_C99_RUNTIME
5242 #error FOO
5243 #endif
5245 check_no_compiler_messages_nocache c99_runtime assembly \
5246 $contents [add_options_for_c99_runtime ""]
5250 # Return 1 if target wchar_t is at least 4 bytes.
5252 proc check_effective_target_4byte_wchar_t { } {
5253 return [check_no_compiler_messages 4byte_wchar_t object {
5254 int dummy[sizeof (__WCHAR_TYPE__) >= 4 ? 1 : -1];
5258 # Return 1 if the target supports automatic stack alignment.
5260 proc check_effective_target_automatic_stack_alignment { } {
5261 # Ordinarily x86 supports automatic stack alignment ...
5262 if { [istarget i?86*-*-*] || [istarget x86_64-*-*] } then {
5263 if { [istarget *-*-mingw*] || [istarget *-*-cygwin*] } {
5264 # ... except Win64 SEH doesn't. Succeed for Win32 though.
5265 return [check_effective_target_ilp32];
5267 return 1;
5269 return 0;
5272 # Return true if we are compiling for AVX target.
5274 proc check_avx_available { } {
5275 if { [check_no_compiler_messages avx_available assembly {
5276 #ifndef __AVX__
5277 #error unsupported
5278 #endif
5279 } ""] } {
5280 return 1;
5282 return 0;
5285 # Return true if 32- and 16-bytes vectors are available.
5287 proc check_effective_target_vect_sizes_32B_16B { } {
5288 if { [check_avx_available] && ![check_prefer_avx128] } {
5289 return 1;
5290 } else {
5291 return 0;
5295 # Return true if 128-bits vectors are preferred even if 256-bits vectors
5296 # are available.
5298 proc check_prefer_avx128 { } {
5299 if ![check_avx_available] {
5300 return 0;
5302 return [check_no_messages_and_pattern avx_explicit "xmm" assembly {
5303 float a[1024],b[1024],c[1024];
5304 void foo (void) { int i; for (i = 0; i < 1024; i++) a[i]=b[i]+c[i];}
5305 } "-O2 -ftree-vectorize"]
5309 # Return 1 if avx512f instructions can be compiled.
5311 proc check_effective_target_avx512f { } {
5312 return [check_no_compiler_messages avx512f object {
5313 typedef double __m512d __attribute__ ((__vector_size__ (64)));
5315 __m512d _mm512_add (__m512d a)
5317 return __builtin_ia32_addpd512_mask (a, a, a, 1, 4);
5319 } "-O2 -mavx512f" ]
5322 # Return 1 if avx instructions can be compiled.
5324 proc check_effective_target_avx { } {
5325 if { !([istarget x86_64-*-*] || [istarget i?86-*-*]) } {
5326 return 0
5328 return [check_no_compiler_messages avx object {
5329 void _mm256_zeroall (void)
5331 __builtin_ia32_vzeroall ();
5333 } "-O2 -mavx" ]
5336 # Return 1 if avx2 instructions can be compiled.
5337 proc check_effective_target_avx2 { } {
5338 return [check_no_compiler_messages avx2 object {
5339 typedef long long __v4di __attribute__ ((__vector_size__ (32)));
5340 __v4di
5341 mm256_is32_andnotsi256 (__v4di __X, __v4di __Y)
5343 return __builtin_ia32_andnotsi256 (__X, __Y);
5345 } "-O0 -mavx2" ]
5348 # Return 1 if sse instructions can be compiled.
5349 proc check_effective_target_sse { } {
5350 return [check_no_compiler_messages sse object {
5351 int main ()
5353 __builtin_ia32_stmxcsr ();
5354 return 0;
5356 } "-O2 -msse" ]
5359 # Return 1 if sse2 instructions can be compiled.
5360 proc check_effective_target_sse2 { } {
5361 return [check_no_compiler_messages sse2 object {
5362 typedef long long __m128i __attribute__ ((__vector_size__ (16)));
5364 __m128i _mm_srli_si128 (__m128i __A, int __N)
5366 return (__m128i)__builtin_ia32_psrldqi128 (__A, 8);
5368 } "-O2 -msse2" ]
5371 # Return 1 if F16C instructions can be compiled.
5373 proc check_effective_target_f16c { } {
5374 return [check_no_compiler_messages f16c object {
5375 #include "immintrin.h"
5376 float
5377 foo (unsigned short val)
5379 return _cvtsh_ss (val);
5381 } "-O2 -mf16c" ]
5384 # Return 1 if C wchar_t type is compatible with char16_t.
5386 proc check_effective_target_wchar_t_char16_t_compatible { } {
5387 return [check_no_compiler_messages wchar_t_char16_t object {
5388 __WCHAR_TYPE__ wc;
5389 __CHAR16_TYPE__ *p16 = &wc;
5390 char t[(((__CHAR16_TYPE__) -1) < 0 == ((__WCHAR_TYPE__) -1) < 0) ? 1 : -1];
5394 # Return 1 if C wchar_t type is compatible with char32_t.
5396 proc check_effective_target_wchar_t_char32_t_compatible { } {
5397 return [check_no_compiler_messages wchar_t_char32_t object {
5398 __WCHAR_TYPE__ wc;
5399 __CHAR32_TYPE__ *p32 = &wc;
5400 char t[(((__CHAR32_TYPE__) -1) < 0 == ((__WCHAR_TYPE__) -1) < 0) ? 1 : -1];
5404 # Return 1 if pow10 function exists.
5406 proc check_effective_target_pow10 { } {
5407 return [check_runtime pow10 {
5408 #include <math.h>
5409 int main () {
5410 double x;
5411 x = pow10 (1);
5412 return 0;
5414 } "-lm" ]
5417 # Return 1 if current options generate DFP instructions, 0 otherwise.
5419 proc check_effective_target_hard_dfp {} {
5420 return [check_no_messages_and_pattern hard_dfp "!adddd3" assembly {
5421 typedef float d64 __attribute__((mode(DD)));
5422 d64 x, y, z;
5423 void foo (void) { z = x + y; }
5427 # Return 1 if string.h and wchar.h headers provide C++ requires overloads
5428 # for strchr etc. functions.
5430 proc check_effective_target_correct_iso_cpp_string_wchar_protos { } {
5431 return [check_no_compiler_messages correct_iso_cpp_string_wchar_protos assembly {
5432 #include <string.h>
5433 #include <wchar.h>
5434 #if !defined(__cplusplus) \
5435 || !defined(__CORRECT_ISO_CPP_STRING_H_PROTO) \
5436 || !defined(__CORRECT_ISO_CPP_WCHAR_H_PROTO)
5437 ISO C++ correct string.h and wchar.h protos not supported.
5438 #else
5439 int i;
5440 #endif
5444 # Return 1 if GNU as is used.
5446 proc check_effective_target_gas { } {
5447 global use_gas_saved
5448 global tool
5450 if {![info exists use_gas_saved]} {
5451 # Check if the as used by gcc is GNU as.
5452 set gcc_as [lindex [${tool}_target_compile "-print-prog-name=as" "" "none" ""] 0]
5453 # Provide /dev/null as input, otherwise gas times out reading from
5454 # stdin.
5455 set status [remote_exec host "$gcc_as" "-v /dev/null"]
5456 set as_output [lindex $status 1]
5457 if { [ string first "GNU" $as_output ] >= 0 } {
5458 set use_gas_saved 1
5459 } else {
5460 set use_gas_saved 0
5463 return $use_gas_saved
5466 # Return 1 if GNU ld is used.
5468 proc check_effective_target_gld { } {
5469 global use_gld_saved
5470 global tool
5472 if {![info exists use_gld_saved]} {
5473 # Check if the ld used by gcc is GNU ld.
5474 set gcc_ld [lindex [${tool}_target_compile "-print-prog-name=ld" "" "none" ""] 0]
5475 set status [remote_exec host "$gcc_ld" "--version"]
5476 set ld_output [lindex $status 1]
5477 if { [ string first "GNU" $ld_output ] >= 0 } {
5478 set use_gld_saved 1
5479 } else {
5480 set use_gld_saved 0
5483 return $use_gld_saved
5486 # Return 1 if the compiler has been configure with link-time optimization
5487 # (LTO) support.
5489 proc check_effective_target_lto { } {
5490 global ENABLE_LTO
5491 return [info exists ENABLE_LTO]
5494 # Return 1 if -mx32 -maddress-mode=short can compile, 0 otherwise.
5496 proc check_effective_target_maybe_x32 { } {
5497 return [check_no_compiler_messages maybe_x32 object {
5498 void foo (void) {}
5499 } "-mx32 -maddress-mode=short"]
5502 # Return 1 if this target supports the -fsplit-stack option, 0
5503 # otherwise.
5505 proc check_effective_target_split_stack {} {
5506 return [check_no_compiler_messages split_stack object {
5507 void foo (void) { }
5508 } "-fsplit-stack"]
5511 # Return 1 if this target supports the -masm=intel option, 0
5512 # otherwise
5514 proc check_effective_target_masm_intel {} {
5515 return [check_no_compiler_messages masm_intel object {
5516 extern void abort (void);
5517 } "-masm=intel"]
5520 # Return 1 if the language for the compiler under test is C.
5522 proc check_effective_target_c { } {
5523 global tool
5524 if [string match $tool "gcc"] {
5525 return 1
5527 return 0
5530 # Return 1 if the language for the compiler under test is C++.
5532 proc check_effective_target_c++ { } {
5533 global tool
5534 if [string match $tool "g++"] {
5535 return 1
5537 return 0
5540 # Check whether the current active language standard supports the features
5541 # of C++11/C++1y by checking for the presence of one of the -std
5542 # flags. This assumes that the default for the compiler is C++98, and that
5543 # there will never be multiple -std= arguments on the command line.
5544 proc check_effective_target_c++11_only { } {
5545 if ![check_effective_target_c++] {
5546 return 0
5548 return [check-flags { { } { } { -std=c++0x -std=gnu++0x -std=c++11 -std=gnu++11 } }]
5550 proc check_effective_target_c++11 { } {
5551 if [check_effective_target_c++11_only] {
5552 return 1
5554 return [check_effective_target_c++1y]
5556 proc check_effective_target_c++11_down { } {
5557 if ![check_effective_target_c++] {
5558 return 0
5560 return ![check_effective_target_c++1y]
5563 proc check_effective_target_c++1y_only { } {
5564 if ![check_effective_target_c++] {
5565 return 0
5567 return [check-flags { { } { } { -std=c++1y -std=gnu++1y -std=c++14 -std=gnu++14 } }]
5569 proc check_effective_target_c++1y { } {
5570 return [check_effective_target_c++1y_only]
5573 proc check_effective_target_c++98_only { } {
5574 if ![check_effective_target_c++] {
5575 return 0
5577 return ![check_effective_target_c++11]
5580 # Return 1 if expensive testcases should be run.
5582 proc check_effective_target_run_expensive_tests { } {
5583 if { [getenv GCC_TEST_RUN_EXPENSIVE] != "" } {
5584 return 1
5586 return 0
5589 # Returns 1 if "mempcpy" is available on the target system.
5591 proc check_effective_target_mempcpy {} {
5592 return [check_function_available "mempcpy"]
5595 # Check whether the vectorizer tests are supported by the target and
5596 # append additional target-dependent compile flags to DEFAULT_VECTCFLAGS.
5597 # Set dg-do-what-default to either compile or run, depending on target
5598 # capabilities. Return 1 if vectorizer tests are supported by
5599 # target, 0 otherwise.
5601 proc check_vect_support_and_set_flags { } {
5602 global DEFAULT_VECTCFLAGS
5603 global dg-do-what-default
5605 if [istarget powerpc-*paired*] {
5606 lappend DEFAULT_VECTCFLAGS "-mpaired"
5607 if [check_750cl_hw_available] {
5608 set dg-do-what-default run
5609 } else {
5610 set dg-do-what-default compile
5612 } elseif [istarget powerpc*-*-*] {
5613 # Skip targets not supporting -maltivec.
5614 if ![is-effective-target powerpc_altivec_ok] {
5615 return 0
5618 lappend DEFAULT_VECTCFLAGS "-maltivec"
5619 if [check_p8vector_hw_available] {
5620 lappend DEFAULT_VECTCFLAGS "-mpower8-vector" "-mno-allow-movmisalign"
5621 } elseif [check_vsx_hw_available] {
5622 lappend DEFAULT_VECTCFLAGS "-mvsx" "-mno-allow-movmisalign"
5625 if [check_vmx_hw_available] {
5626 set dg-do-what-default run
5627 } else {
5628 if [is-effective-target ilp32] {
5629 # Specify a cpu that supports VMX for compile-only tests.
5630 lappend DEFAULT_VECTCFLAGS "-mcpu=970"
5632 set dg-do-what-default compile
5634 } elseif { [istarget spu-*-*] } {
5635 set dg-do-what-default run
5636 } elseif { [istarget i?86-*-*] || [istarget x86_64-*-*] } {
5637 lappend DEFAULT_VECTCFLAGS "-msse2"
5638 if { [check_effective_target_sse2_runtime] } {
5639 set dg-do-what-default run
5640 } else {
5641 set dg-do-what-default compile
5643 } elseif { [istarget mips*-*-*]
5644 && ([check_effective_target_mpaired_single]
5645 || [check_effective_target_mips_loongson])
5646 && [check_effective_target_nomips16] } {
5647 if { [check_effective_target_mpaired_single] } {
5648 lappend DEFAULT_VECTCFLAGS "-mpaired-single"
5650 set dg-do-what-default run
5651 } elseif [istarget sparc*-*-*] {
5652 lappend DEFAULT_VECTCFLAGS "-mcpu=ultrasparc" "-mvis"
5653 if [check_effective_target_ultrasparc_hw] {
5654 set dg-do-what-default run
5655 } else {
5656 set dg-do-what-default compile
5658 } elseif [istarget alpha*-*-*] {
5659 # Alpha's vectorization capabilities are extremely limited.
5660 # It's more effort than its worth disabling all of the tests
5661 # that it cannot pass. But if you actually want to see what
5662 # does work, command out the return.
5663 return 0
5665 lappend DEFAULT_VECTCFLAGS "-mmax"
5666 if [check_alpha_max_hw_available] {
5667 set dg-do-what-default run
5668 } else {
5669 set dg-do-what-default compile
5671 } elseif [istarget ia64-*-*] {
5672 set dg-do-what-default run
5673 } elseif [is-effective-target arm_neon_ok] {
5674 eval lappend DEFAULT_VECTCFLAGS [add_options_for_arm_neon ""]
5675 # NEON does not support denormals, so is not used for vectorization by
5676 # default to avoid loss of precision. We must pass -ffast-math to test
5677 # vectorization of float operations.
5678 lappend DEFAULT_VECTCFLAGS "-ffast-math"
5679 if [is-effective-target arm_neon_hw] {
5680 set dg-do-what-default run
5681 } else {
5682 set dg-do-what-default compile
5684 } elseif [istarget "aarch64*-*-*"] {
5685 set dg-do-what-default run
5686 } else {
5687 return 0
5690 return 1
5693 proc check_effective_target_non_strict_align {} {
5694 return [check_no_compiler_messages non_strict_align assembly {
5695 char *y;
5696 typedef char __attribute__ ((__aligned__(__BIGGEST_ALIGNMENT__))) c;
5697 c *z;
5698 void foo(void) { z = (c *) y; }
5699 } "-Wcast-align"]
5702 # Return 1 if the target has <ucontext.h>.
5704 proc check_effective_target_ucontext_h { } {
5705 return [check_no_compiler_messages ucontext_h assembly {
5706 #include <ucontext.h>
5710 proc check_effective_target_aarch64_tiny { } {
5711 if { [istarget aarch64*-*-*] } {
5712 return [check_no_compiler_messages aarch64_tiny object {
5713 #ifdef __AARCH64_CMODEL_TINY__
5714 int dummy;
5715 #else
5716 #error target not AArch64 tiny code model
5717 #endif
5719 } else {
5720 return 0
5724 proc check_effective_target_aarch64_small { } {
5725 if { [istarget aarch64*-*-*] } {
5726 return [check_no_compiler_messages aarch64_small object {
5727 #ifdef __AARCH64_CMODEL_SMALL__
5728 int dummy;
5729 #else
5730 #error target not AArch64 small code model
5731 #endif
5733 } else {
5734 return 0
5738 proc check_effective_target_aarch64_large { } {
5739 if { [istarget aarch64*-*-*] } {
5740 return [check_no_compiler_messages aarch64_large object {
5741 #ifdef __AARCH64_CMODEL_LARGE__
5742 int dummy;
5743 #else
5744 #error target not AArch64 large code model
5745 #endif
5747 } else {
5748 return 0
5752 # Return 1 if <fenv.h> is available with all the standard IEEE
5753 # exceptions and floating-point exceptions are raised by arithmetic
5754 # operations. (If the target requires special options for "inexact"
5755 # exceptions, those need to be specified in the testcases.)
5757 proc check_effective_target_fenv_exceptions {} {
5758 return [check_runtime fenv_exceptions {
5759 #include <fenv.h>
5760 #include <stdlib.h>
5761 #ifndef FE_DIVBYZERO
5762 # error Missing FE_DIVBYZERO
5763 #endif
5764 #ifndef FE_INEXACT
5765 # error Missing FE_INEXACT
5766 #endif
5767 #ifndef FE_INVALID
5768 # error Missing FE_INVALID
5769 #endif
5770 #ifndef FE_OVERFLOW
5771 # error Missing FE_OVERFLOW
5772 #endif
5773 #ifndef FE_UNDERFLOW
5774 # error Missing FE_UNDERFLOW
5775 #endif
5776 volatile float a = 0.0f, r;
5778 main (void)
5780 r = a / a;
5781 if (fetestexcept (FE_INVALID))
5782 exit (0);
5783 else
5784 abort ();
5786 } "-std=gnu99"]
5789 # Return 1 if LOGICAL_OP_NON_SHORT_CIRCUIT is set to 0 for the current target.
5791 proc check_effective_target_logical_op_short_circuit {} {
5792 if { [istarget mips*-*-*]
5793 || [istarget arc*-*-*]
5794 || [istarget avr*-*-*]
5795 || [istarget crisv32-*-*] || [istarget cris-*-*]
5796 || [istarget mmix-*-*]
5797 || [istarget s390*-*-*]
5798 || [check_effective_target_arm_cortex_m] } {
5799 return 1
5801 return 0
5804 # Record that dg-final test TEST requires convential compilation.
5806 proc force_conventional_output_for { test } {
5807 if { [info proc $test] == "" } {
5808 perror "$test does not exist"
5809 exit 1
5811 proc ${test}_required_options {} {
5812 global gcc_force_conventional_output
5813 return $gcc_force_conventional_output