2013-05-23 Richard Biener <rguenther@suse.de>
[official-gcc.git] / gcc / tree-cfg.c
blob721c4f77d4ad23f9e53480756e9dece0a972c503
1 /* Control flow functions for trees.
2 Copyright (C) 2001-2013 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "hash-table.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "tm_p.h"
28 #include "basic-block.h"
29 #include "flags.h"
30 #include "function.h"
31 #include "ggc.h"
32 #include "gimple-pretty-print.h"
33 #include "tree-flow.h"
34 #include "tree-dump.h"
35 #include "tree-pass.h"
36 #include "diagnostic-core.h"
37 #include "except.h"
38 #include "cfgloop.h"
39 #include "tree-ssa-propagate.h"
40 #include "value-prof.h"
41 #include "pointer-set.h"
42 #include "tree-inline.h"
43 #include "target.h"
45 /* This file contains functions for building the Control Flow Graph (CFG)
46 for a function tree. */
48 /* Local declarations. */
50 /* Initial capacity for the basic block array. */
51 static const int initial_cfg_capacity = 20;
53 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
54 which use a particular edge. The CASE_LABEL_EXPRs are chained together
55 via their CASE_CHAIN field, which we clear after we're done with the
56 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
58 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
59 update the case vector in response to edge redirections.
61 Right now this table is set up and torn down at key points in the
62 compilation process. It would be nice if we could make the table
63 more persistent. The key is getting notification of changes to
64 the CFG (particularly edge removal, creation and redirection). */
66 static struct pointer_map_t *edge_to_cases;
68 /* If we record edge_to_cases, this bitmap will hold indexes
69 of basic blocks that end in a GIMPLE_SWITCH which we touched
70 due to edge manipulations. */
72 static bitmap touched_switch_bbs;
74 /* CFG statistics. */
75 struct cfg_stats_d
77 long num_merged_labels;
80 static struct cfg_stats_d cfg_stats;
82 /* Nonzero if we found a computed goto while building basic blocks. */
83 static bool found_computed_goto;
85 /* Hash table to store last discriminator assigned for each locus. */
86 struct locus_discrim_map
88 location_t locus;
89 int discriminator;
92 /* Hashtable helpers. */
94 struct locus_descrim_hasher : typed_free_remove <locus_discrim_map>
96 typedef locus_discrim_map value_type;
97 typedef locus_discrim_map compare_type;
98 static inline hashval_t hash (const value_type *);
99 static inline bool equal (const value_type *, const compare_type *);
102 /* Trivial hash function for a location_t. ITEM is a pointer to
103 a hash table entry that maps a location_t to a discriminator. */
105 inline hashval_t
106 locus_descrim_hasher::hash (const value_type *item)
108 return item->locus;
111 /* Equality function for the locus-to-discriminator map. A and B
112 point to the two hash table entries to compare. */
114 inline bool
115 locus_descrim_hasher::equal (const value_type *a, const compare_type *b)
117 return a->locus == b->locus;
120 static hash_table <locus_descrim_hasher> discriminator_per_locus;
122 /* Basic blocks and flowgraphs. */
123 static void make_blocks (gimple_seq);
124 static void factor_computed_gotos (void);
126 /* Edges. */
127 static void make_edges (void);
128 static void make_cond_expr_edges (basic_block);
129 static void make_gimple_switch_edges (basic_block);
130 static void make_goto_expr_edges (basic_block);
131 static void make_gimple_asm_edges (basic_block);
132 static void assign_discriminator (location_t, basic_block);
133 static edge gimple_redirect_edge_and_branch (edge, basic_block);
134 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
135 static unsigned int split_critical_edges (void);
137 /* Various helpers. */
138 static inline bool stmt_starts_bb_p (gimple, gimple);
139 static int gimple_verify_flow_info (void);
140 static void gimple_make_forwarder_block (edge);
141 static gimple first_non_label_stmt (basic_block);
142 static bool verify_gimple_transaction (gimple);
144 /* Flowgraph optimization and cleanup. */
145 static void gimple_merge_blocks (basic_block, basic_block);
146 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
147 static void remove_bb (basic_block);
148 static edge find_taken_edge_computed_goto (basic_block, tree);
149 static edge find_taken_edge_cond_expr (basic_block, tree);
150 static edge find_taken_edge_switch_expr (basic_block, tree);
151 static tree find_case_label_for_value (gimple, tree);
153 void
154 init_empty_tree_cfg_for_function (struct function *fn)
156 /* Initialize the basic block array. */
157 init_flow (fn);
158 profile_status_for_function (fn) = PROFILE_ABSENT;
159 n_basic_blocks_for_function (fn) = NUM_FIXED_BLOCKS;
160 last_basic_block_for_function (fn) = NUM_FIXED_BLOCKS;
161 vec_alloc (basic_block_info_for_function (fn), initial_cfg_capacity);
162 vec_safe_grow_cleared (basic_block_info_for_function (fn),
163 initial_cfg_capacity);
165 /* Build a mapping of labels to their associated blocks. */
166 vec_alloc (label_to_block_map_for_function (fn), initial_cfg_capacity);
167 vec_safe_grow_cleared (label_to_block_map_for_function (fn),
168 initial_cfg_capacity);
170 SET_BASIC_BLOCK_FOR_FUNCTION (fn, ENTRY_BLOCK,
171 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn));
172 SET_BASIC_BLOCK_FOR_FUNCTION (fn, EXIT_BLOCK,
173 EXIT_BLOCK_PTR_FOR_FUNCTION (fn));
175 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn)->next_bb
176 = EXIT_BLOCK_PTR_FOR_FUNCTION (fn);
177 EXIT_BLOCK_PTR_FOR_FUNCTION (fn)->prev_bb
178 = ENTRY_BLOCK_PTR_FOR_FUNCTION (fn);
181 void
182 init_empty_tree_cfg (void)
184 init_empty_tree_cfg_for_function (cfun);
187 /*---------------------------------------------------------------------------
188 Create basic blocks
189 ---------------------------------------------------------------------------*/
191 /* Entry point to the CFG builder for trees. SEQ is the sequence of
192 statements to be added to the flowgraph. */
194 static void
195 build_gimple_cfg (gimple_seq seq)
197 /* Register specific gimple functions. */
198 gimple_register_cfg_hooks ();
200 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
202 init_empty_tree_cfg ();
204 found_computed_goto = 0;
205 make_blocks (seq);
207 /* Computed gotos are hell to deal with, especially if there are
208 lots of them with a large number of destinations. So we factor
209 them to a common computed goto location before we build the
210 edge list. After we convert back to normal form, we will un-factor
211 the computed gotos since factoring introduces an unwanted jump. */
212 if (found_computed_goto)
213 factor_computed_gotos ();
215 /* Make sure there is always at least one block, even if it's empty. */
216 if (n_basic_blocks == NUM_FIXED_BLOCKS)
217 create_empty_bb (ENTRY_BLOCK_PTR);
219 /* Adjust the size of the array. */
220 if (basic_block_info->length () < (size_t) n_basic_blocks)
221 vec_safe_grow_cleared (basic_block_info, n_basic_blocks);
223 /* To speed up statement iterator walks, we first purge dead labels. */
224 cleanup_dead_labels ();
226 /* Group case nodes to reduce the number of edges.
227 We do this after cleaning up dead labels because otherwise we miss
228 a lot of obvious case merging opportunities. */
229 group_case_labels ();
231 /* Create the edges of the flowgraph. */
232 discriminator_per_locus.create (13);
233 make_edges ();
234 cleanup_dead_labels ();
235 discriminator_per_locus.dispose ();
238 static unsigned int
239 execute_build_cfg (void)
241 gimple_seq body = gimple_body (current_function_decl);
243 build_gimple_cfg (body);
244 gimple_set_body (current_function_decl, NULL);
245 if (dump_file && (dump_flags & TDF_DETAILS))
247 fprintf (dump_file, "Scope blocks:\n");
248 dump_scope_blocks (dump_file, dump_flags);
250 cleanup_tree_cfg ();
251 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
252 return 0;
255 struct gimple_opt_pass pass_build_cfg =
258 GIMPLE_PASS,
259 "cfg", /* name */
260 OPTGROUP_NONE, /* optinfo_flags */
261 NULL, /* gate */
262 execute_build_cfg, /* execute */
263 NULL, /* sub */
264 NULL, /* next */
265 0, /* static_pass_number */
266 TV_TREE_CFG, /* tv_id */
267 PROP_gimple_leh, /* properties_required */
268 PROP_cfg | PROP_loops, /* properties_provided */
269 0, /* properties_destroyed */
270 0, /* todo_flags_start */
271 TODO_verify_stmts /* todo_flags_finish */
276 /* Return true if T is a computed goto. */
278 static bool
279 computed_goto_p (gimple t)
281 return (gimple_code (t) == GIMPLE_GOTO
282 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
286 /* Search the CFG for any computed gotos. If found, factor them to a
287 common computed goto site. Also record the location of that site so
288 that we can un-factor the gotos after we have converted back to
289 normal form. */
291 static void
292 factor_computed_gotos (void)
294 basic_block bb;
295 tree factored_label_decl = NULL;
296 tree var = NULL;
297 gimple factored_computed_goto_label = NULL;
298 gimple factored_computed_goto = NULL;
300 /* We know there are one or more computed gotos in this function.
301 Examine the last statement in each basic block to see if the block
302 ends with a computed goto. */
304 FOR_EACH_BB (bb)
306 gimple_stmt_iterator gsi = gsi_last_bb (bb);
307 gimple last;
309 if (gsi_end_p (gsi))
310 continue;
312 last = gsi_stmt (gsi);
314 /* Ignore the computed goto we create when we factor the original
315 computed gotos. */
316 if (last == factored_computed_goto)
317 continue;
319 /* If the last statement is a computed goto, factor it. */
320 if (computed_goto_p (last))
322 gimple assignment;
324 /* The first time we find a computed goto we need to create
325 the factored goto block and the variable each original
326 computed goto will use for their goto destination. */
327 if (!factored_computed_goto)
329 basic_block new_bb = create_empty_bb (bb);
330 gimple_stmt_iterator new_gsi = gsi_start_bb (new_bb);
332 /* Create the destination of the factored goto. Each original
333 computed goto will put its desired destination into this
334 variable and jump to the label we create immediately
335 below. */
336 var = create_tmp_var (ptr_type_node, "gotovar");
338 /* Build a label for the new block which will contain the
339 factored computed goto. */
340 factored_label_decl = create_artificial_label (UNKNOWN_LOCATION);
341 factored_computed_goto_label
342 = gimple_build_label (factored_label_decl);
343 gsi_insert_after (&new_gsi, factored_computed_goto_label,
344 GSI_NEW_STMT);
346 /* Build our new computed goto. */
347 factored_computed_goto = gimple_build_goto (var);
348 gsi_insert_after (&new_gsi, factored_computed_goto, GSI_NEW_STMT);
351 /* Copy the original computed goto's destination into VAR. */
352 assignment = gimple_build_assign (var, gimple_goto_dest (last));
353 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
355 /* And re-vector the computed goto to the new destination. */
356 gimple_goto_set_dest (last, factored_label_decl);
362 /* Build a flowgraph for the sequence of stmts SEQ. */
364 static void
365 make_blocks (gimple_seq seq)
367 gimple_stmt_iterator i = gsi_start (seq);
368 gimple stmt = NULL;
369 bool start_new_block = true;
370 bool first_stmt_of_seq = true;
371 basic_block bb = ENTRY_BLOCK_PTR;
373 while (!gsi_end_p (i))
375 gimple prev_stmt;
377 prev_stmt = stmt;
378 stmt = gsi_stmt (i);
380 /* If the statement starts a new basic block or if we have determined
381 in a previous pass that we need to create a new block for STMT, do
382 so now. */
383 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
385 if (!first_stmt_of_seq)
386 gsi_split_seq_before (&i, &seq);
387 bb = create_basic_block (seq, NULL, bb);
388 start_new_block = false;
391 /* Now add STMT to BB and create the subgraphs for special statement
392 codes. */
393 gimple_set_bb (stmt, bb);
395 if (computed_goto_p (stmt))
396 found_computed_goto = true;
398 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
399 next iteration. */
400 if (stmt_ends_bb_p (stmt))
402 /* If the stmt can make abnormal goto use a new temporary
403 for the assignment to the LHS. This makes sure the old value
404 of the LHS is available on the abnormal edge. Otherwise
405 we will end up with overlapping life-ranges for abnormal
406 SSA names. */
407 if (gimple_has_lhs (stmt)
408 && stmt_can_make_abnormal_goto (stmt)
409 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
411 tree lhs = gimple_get_lhs (stmt);
412 tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
413 gimple s = gimple_build_assign (lhs, tmp);
414 gimple_set_location (s, gimple_location (stmt));
415 gimple_set_block (s, gimple_block (stmt));
416 gimple_set_lhs (stmt, tmp);
417 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
418 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
419 DECL_GIMPLE_REG_P (tmp) = 1;
420 gsi_insert_after (&i, s, GSI_SAME_STMT);
422 start_new_block = true;
425 gsi_next (&i);
426 first_stmt_of_seq = false;
431 /* Create and return a new empty basic block after bb AFTER. */
433 static basic_block
434 create_bb (void *h, void *e, basic_block after)
436 basic_block bb;
438 gcc_assert (!e);
440 /* Create and initialize a new basic block. Since alloc_block uses
441 GC allocation that clears memory to allocate a basic block, we do
442 not have to clear the newly allocated basic block here. */
443 bb = alloc_block ();
445 bb->index = last_basic_block;
446 bb->flags = BB_NEW;
447 set_bb_seq (bb, h ? (gimple_seq) h : NULL);
449 /* Add the new block to the linked list of blocks. */
450 link_block (bb, after);
452 /* Grow the basic block array if needed. */
453 if ((size_t) last_basic_block == basic_block_info->length ())
455 size_t new_size = last_basic_block + (last_basic_block + 3) / 4;
456 vec_safe_grow_cleared (basic_block_info, new_size);
459 /* Add the newly created block to the array. */
460 SET_BASIC_BLOCK (last_basic_block, bb);
462 n_basic_blocks++;
463 last_basic_block++;
465 return bb;
469 /*---------------------------------------------------------------------------
470 Edge creation
471 ---------------------------------------------------------------------------*/
473 /* Fold COND_EXPR_COND of each COND_EXPR. */
475 void
476 fold_cond_expr_cond (void)
478 basic_block bb;
480 FOR_EACH_BB (bb)
482 gimple stmt = last_stmt (bb);
484 if (stmt && gimple_code (stmt) == GIMPLE_COND)
486 location_t loc = gimple_location (stmt);
487 tree cond;
488 bool zerop, onep;
490 fold_defer_overflow_warnings ();
491 cond = fold_binary_loc (loc, gimple_cond_code (stmt), boolean_type_node,
492 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
493 if (cond)
495 zerop = integer_zerop (cond);
496 onep = integer_onep (cond);
498 else
499 zerop = onep = false;
501 fold_undefer_overflow_warnings (zerop || onep,
502 stmt,
503 WARN_STRICT_OVERFLOW_CONDITIONAL);
504 if (zerop)
505 gimple_cond_make_false (stmt);
506 else if (onep)
507 gimple_cond_make_true (stmt);
512 /* Join all the blocks in the flowgraph. */
514 static void
515 make_edges (void)
517 basic_block bb;
518 struct omp_region *cur_region = NULL;
520 /* Create an edge from entry to the first block with executable
521 statements in it. */
522 make_edge (ENTRY_BLOCK_PTR, BASIC_BLOCK (NUM_FIXED_BLOCKS), EDGE_FALLTHRU);
524 /* Traverse the basic block array placing edges. */
525 FOR_EACH_BB (bb)
527 gimple last = last_stmt (bb);
528 bool fallthru;
530 if (last)
532 enum gimple_code code = gimple_code (last);
533 switch (code)
535 case GIMPLE_GOTO:
536 make_goto_expr_edges (bb);
537 fallthru = false;
538 break;
539 case GIMPLE_RETURN:
540 make_edge (bb, EXIT_BLOCK_PTR, 0);
541 fallthru = false;
542 break;
543 case GIMPLE_COND:
544 make_cond_expr_edges (bb);
545 fallthru = false;
546 break;
547 case GIMPLE_SWITCH:
548 make_gimple_switch_edges (bb);
549 fallthru = false;
550 break;
551 case GIMPLE_RESX:
552 make_eh_edges (last);
553 fallthru = false;
554 break;
555 case GIMPLE_EH_DISPATCH:
556 fallthru = make_eh_dispatch_edges (last);
557 break;
559 case GIMPLE_CALL:
560 /* If this function receives a nonlocal goto, then we need to
561 make edges from this call site to all the nonlocal goto
562 handlers. */
563 if (stmt_can_make_abnormal_goto (last))
564 make_abnormal_goto_edges (bb, true);
566 /* If this statement has reachable exception handlers, then
567 create abnormal edges to them. */
568 make_eh_edges (last);
570 /* BUILTIN_RETURN is really a return statement. */
571 if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
572 make_edge (bb, EXIT_BLOCK_PTR, 0), fallthru = false;
573 /* Some calls are known not to return. */
574 else
575 fallthru = !(gimple_call_flags (last) & ECF_NORETURN);
576 break;
578 case GIMPLE_ASSIGN:
579 /* A GIMPLE_ASSIGN may throw internally and thus be considered
580 control-altering. */
581 if (is_ctrl_altering_stmt (last))
582 make_eh_edges (last);
583 fallthru = true;
584 break;
586 case GIMPLE_ASM:
587 make_gimple_asm_edges (bb);
588 fallthru = true;
589 break;
591 case GIMPLE_OMP_PARALLEL:
592 case GIMPLE_OMP_TASK:
593 case GIMPLE_OMP_FOR:
594 case GIMPLE_OMP_SINGLE:
595 case GIMPLE_OMP_MASTER:
596 case GIMPLE_OMP_ORDERED:
597 case GIMPLE_OMP_CRITICAL:
598 case GIMPLE_OMP_SECTION:
599 cur_region = new_omp_region (bb, code, cur_region);
600 fallthru = true;
601 break;
603 case GIMPLE_OMP_SECTIONS:
604 cur_region = new_omp_region (bb, code, cur_region);
605 fallthru = true;
606 break;
608 case GIMPLE_OMP_SECTIONS_SWITCH:
609 fallthru = false;
610 break;
612 case GIMPLE_OMP_ATOMIC_LOAD:
613 case GIMPLE_OMP_ATOMIC_STORE:
614 fallthru = true;
615 break;
617 case GIMPLE_OMP_RETURN:
618 /* In the case of a GIMPLE_OMP_SECTION, the edge will go
619 somewhere other than the next block. This will be
620 created later. */
621 cur_region->exit = bb;
622 fallthru = cur_region->type != GIMPLE_OMP_SECTION;
623 cur_region = cur_region->outer;
624 break;
626 case GIMPLE_OMP_CONTINUE:
627 cur_region->cont = bb;
628 switch (cur_region->type)
630 case GIMPLE_OMP_FOR:
631 /* Mark all GIMPLE_OMP_FOR and GIMPLE_OMP_CONTINUE
632 succs edges as abnormal to prevent splitting
633 them. */
634 single_succ_edge (cur_region->entry)->flags |= EDGE_ABNORMAL;
635 /* Make the loopback edge. */
636 make_edge (bb, single_succ (cur_region->entry),
637 EDGE_ABNORMAL);
639 /* Create an edge from GIMPLE_OMP_FOR to exit, which
640 corresponds to the case that the body of the loop
641 is not executed at all. */
642 make_edge (cur_region->entry, bb->next_bb, EDGE_ABNORMAL);
643 make_edge (bb, bb->next_bb, EDGE_FALLTHRU | EDGE_ABNORMAL);
644 fallthru = false;
645 break;
647 case GIMPLE_OMP_SECTIONS:
648 /* Wire up the edges into and out of the nested sections. */
650 basic_block switch_bb = single_succ (cur_region->entry);
652 struct omp_region *i;
653 for (i = cur_region->inner; i ; i = i->next)
655 gcc_assert (i->type == GIMPLE_OMP_SECTION);
656 make_edge (switch_bb, i->entry, 0);
657 make_edge (i->exit, bb, EDGE_FALLTHRU);
660 /* Make the loopback edge to the block with
661 GIMPLE_OMP_SECTIONS_SWITCH. */
662 make_edge (bb, switch_bb, 0);
664 /* Make the edge from the switch to exit. */
665 make_edge (switch_bb, bb->next_bb, 0);
666 fallthru = false;
668 break;
670 default:
671 gcc_unreachable ();
673 break;
675 case GIMPLE_TRANSACTION:
677 tree abort_label = gimple_transaction_label (last);
678 if (abort_label)
679 make_edge (bb, label_to_block (abort_label), EDGE_TM_ABORT);
680 fallthru = true;
682 break;
684 default:
685 gcc_assert (!stmt_ends_bb_p (last));
686 fallthru = true;
689 else
690 fallthru = true;
692 if (fallthru)
694 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
695 if (last)
696 assign_discriminator (gimple_location (last), bb->next_bb);
700 if (root_omp_region)
701 free_omp_regions ();
703 /* Fold COND_EXPR_COND of each COND_EXPR. */
704 fold_cond_expr_cond ();
707 /* Find the next available discriminator value for LOCUS. The
708 discriminator distinguishes among several basic blocks that
709 share a common locus, allowing for more accurate sample-based
710 profiling. */
712 static int
713 next_discriminator_for_locus (location_t locus)
715 struct locus_discrim_map item;
716 struct locus_discrim_map **slot;
718 item.locus = locus;
719 item.discriminator = 0;
720 slot = discriminator_per_locus.find_slot_with_hash (&item, locus, INSERT);
721 gcc_assert (slot);
722 if (*slot == HTAB_EMPTY_ENTRY)
724 *slot = XNEW (struct locus_discrim_map);
725 gcc_assert (*slot);
726 (*slot)->locus = locus;
727 (*slot)->discriminator = 0;
729 (*slot)->discriminator++;
730 return (*slot)->discriminator;
733 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
735 static bool
736 same_line_p (location_t locus1, location_t locus2)
738 expanded_location from, to;
740 if (locus1 == locus2)
741 return true;
743 from = expand_location (locus1);
744 to = expand_location (locus2);
746 if (from.line != to.line)
747 return false;
748 if (from.file == to.file)
749 return true;
750 return (from.file != NULL
751 && to.file != NULL
752 && filename_cmp (from.file, to.file) == 0);
755 /* Assign a unique discriminator value to block BB if it begins at the same
756 LOCUS as its predecessor block. */
758 static void
759 assign_discriminator (location_t locus, basic_block bb)
761 gimple first_in_to_bb, last_in_to_bb;
763 if (locus == 0 || bb->discriminator != 0)
764 return;
766 first_in_to_bb = first_non_label_stmt (bb);
767 last_in_to_bb = last_stmt (bb);
768 if ((first_in_to_bb && same_line_p (locus, gimple_location (first_in_to_bb)))
769 || (last_in_to_bb && same_line_p (locus, gimple_location (last_in_to_bb))))
770 bb->discriminator = next_discriminator_for_locus (locus);
773 /* Create the edges for a GIMPLE_COND starting at block BB. */
775 static void
776 make_cond_expr_edges (basic_block bb)
778 gimple entry = last_stmt (bb);
779 gimple then_stmt, else_stmt;
780 basic_block then_bb, else_bb;
781 tree then_label, else_label;
782 edge e;
783 location_t entry_locus;
785 gcc_assert (entry);
786 gcc_assert (gimple_code (entry) == GIMPLE_COND);
788 entry_locus = gimple_location (entry);
790 /* Entry basic blocks for each component. */
791 then_label = gimple_cond_true_label (entry);
792 else_label = gimple_cond_false_label (entry);
793 then_bb = label_to_block (then_label);
794 else_bb = label_to_block (else_label);
795 then_stmt = first_stmt (then_bb);
796 else_stmt = first_stmt (else_bb);
798 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
799 assign_discriminator (entry_locus, then_bb);
800 e->goto_locus = gimple_location (then_stmt);
801 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
802 if (e)
804 assign_discriminator (entry_locus, else_bb);
805 e->goto_locus = gimple_location (else_stmt);
808 /* We do not need the labels anymore. */
809 gimple_cond_set_true_label (entry, NULL_TREE);
810 gimple_cond_set_false_label (entry, NULL_TREE);
814 /* Called for each element in the hash table (P) as we delete the
815 edge to cases hash table.
817 Clear all the TREE_CHAINs to prevent problems with copying of
818 SWITCH_EXPRs and structure sharing rules, then free the hash table
819 element. */
821 static bool
822 edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED, void **value,
823 void *data ATTRIBUTE_UNUSED)
825 tree t, next;
827 for (t = (tree) *value; t; t = next)
829 next = CASE_CHAIN (t);
830 CASE_CHAIN (t) = NULL;
833 *value = NULL;
834 return true;
837 /* Start recording information mapping edges to case labels. */
839 void
840 start_recording_case_labels (void)
842 gcc_assert (edge_to_cases == NULL);
843 edge_to_cases = pointer_map_create ();
844 touched_switch_bbs = BITMAP_ALLOC (NULL);
847 /* Return nonzero if we are recording information for case labels. */
849 static bool
850 recording_case_labels_p (void)
852 return (edge_to_cases != NULL);
855 /* Stop recording information mapping edges to case labels and
856 remove any information we have recorded. */
857 void
858 end_recording_case_labels (void)
860 bitmap_iterator bi;
861 unsigned i;
862 pointer_map_traverse (edge_to_cases, edge_to_cases_cleanup, NULL);
863 pointer_map_destroy (edge_to_cases);
864 edge_to_cases = NULL;
865 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
867 basic_block bb = BASIC_BLOCK (i);
868 if (bb)
870 gimple stmt = last_stmt (bb);
871 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
872 group_case_labels_stmt (stmt);
875 BITMAP_FREE (touched_switch_bbs);
878 /* If we are inside a {start,end}_recording_cases block, then return
879 a chain of CASE_LABEL_EXPRs from T which reference E.
881 Otherwise return NULL. */
883 static tree
884 get_cases_for_edge (edge e, gimple t)
886 void **slot;
887 size_t i, n;
889 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
890 chains available. Return NULL so the caller can detect this case. */
891 if (!recording_case_labels_p ())
892 return NULL;
894 slot = pointer_map_contains (edge_to_cases, e);
895 if (slot)
896 return (tree) *slot;
898 /* If we did not find E in the hash table, then this must be the first
899 time we have been queried for information about E & T. Add all the
900 elements from T to the hash table then perform the query again. */
902 n = gimple_switch_num_labels (t);
903 for (i = 0; i < n; i++)
905 tree elt = gimple_switch_label (t, i);
906 tree lab = CASE_LABEL (elt);
907 basic_block label_bb = label_to_block (lab);
908 edge this_edge = find_edge (e->src, label_bb);
910 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
911 a new chain. */
912 slot = pointer_map_insert (edge_to_cases, this_edge);
913 CASE_CHAIN (elt) = (tree) *slot;
914 *slot = elt;
917 return (tree) *pointer_map_contains (edge_to_cases, e);
920 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
922 static void
923 make_gimple_switch_edges (basic_block bb)
925 gimple entry = last_stmt (bb);
926 location_t entry_locus;
927 size_t i, n;
929 entry_locus = gimple_location (entry);
931 n = gimple_switch_num_labels (entry);
933 for (i = 0; i < n; ++i)
935 tree lab = CASE_LABEL (gimple_switch_label (entry, i));
936 basic_block label_bb = label_to_block (lab);
937 make_edge (bb, label_bb, 0);
938 assign_discriminator (entry_locus, label_bb);
943 /* Return the basic block holding label DEST. */
945 basic_block
946 label_to_block_fn (struct function *ifun, tree dest)
948 int uid = LABEL_DECL_UID (dest);
950 /* We would die hard when faced by an undefined label. Emit a label to
951 the very first basic block. This will hopefully make even the dataflow
952 and undefined variable warnings quite right. */
953 if (seen_error () && uid < 0)
955 gimple_stmt_iterator gsi = gsi_start_bb (BASIC_BLOCK (NUM_FIXED_BLOCKS));
956 gimple stmt;
958 stmt = gimple_build_label (dest);
959 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
960 uid = LABEL_DECL_UID (dest);
962 if (vec_safe_length (ifun->cfg->x_label_to_block_map) <= (unsigned int) uid)
963 return NULL;
964 return (*ifun->cfg->x_label_to_block_map)[uid];
967 /* Create edges for an abnormal goto statement at block BB. If FOR_CALL
968 is true, the source statement is a CALL_EXPR instead of a GOTO_EXPR. */
970 void
971 make_abnormal_goto_edges (basic_block bb, bool for_call)
973 basic_block target_bb;
974 gimple_stmt_iterator gsi;
976 FOR_EACH_BB (target_bb)
978 for (gsi = gsi_start_bb (target_bb); !gsi_end_p (gsi); gsi_next (&gsi))
980 gimple label_stmt = gsi_stmt (gsi);
981 tree target;
983 if (gimple_code (label_stmt) != GIMPLE_LABEL)
984 break;
986 target = gimple_label_label (label_stmt);
988 /* Make an edge to every label block that has been marked as a
989 potential target for a computed goto or a non-local goto. */
990 if ((FORCED_LABEL (target) && !for_call)
991 || (DECL_NONLOCAL (target) && for_call))
993 make_edge (bb, target_bb, EDGE_ABNORMAL);
994 break;
997 if (!gsi_end_p (gsi))
999 /* Make an edge to every setjmp-like call. */
1000 gimple call_stmt = gsi_stmt (gsi);
1001 if (is_gimple_call (call_stmt)
1002 && (gimple_call_flags (call_stmt) & ECF_RETURNS_TWICE))
1003 make_edge (bb, target_bb, EDGE_ABNORMAL);
1008 /* Create edges for a goto statement at block BB. */
1010 static void
1011 make_goto_expr_edges (basic_block bb)
1013 gimple_stmt_iterator last = gsi_last_bb (bb);
1014 gimple goto_t = gsi_stmt (last);
1016 /* A simple GOTO creates normal edges. */
1017 if (simple_goto_p (goto_t))
1019 tree dest = gimple_goto_dest (goto_t);
1020 basic_block label_bb = label_to_block (dest);
1021 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
1022 e->goto_locus = gimple_location (goto_t);
1023 assign_discriminator (e->goto_locus, label_bb);
1024 gsi_remove (&last, true);
1025 return;
1028 /* A computed GOTO creates abnormal edges. */
1029 make_abnormal_goto_edges (bb, false);
1032 /* Create edges for an asm statement with labels at block BB. */
1034 static void
1035 make_gimple_asm_edges (basic_block bb)
1037 gimple stmt = last_stmt (bb);
1038 location_t stmt_loc = gimple_location (stmt);
1039 int i, n = gimple_asm_nlabels (stmt);
1041 for (i = 0; i < n; ++i)
1043 tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
1044 basic_block label_bb = label_to_block (label);
1045 make_edge (bb, label_bb, 0);
1046 assign_discriminator (stmt_loc, label_bb);
1050 /*---------------------------------------------------------------------------
1051 Flowgraph analysis
1052 ---------------------------------------------------------------------------*/
1054 /* Cleanup useless labels in basic blocks. This is something we wish
1055 to do early because it allows us to group case labels before creating
1056 the edges for the CFG, and it speeds up block statement iterators in
1057 all passes later on.
1058 We rerun this pass after CFG is created, to get rid of the labels that
1059 are no longer referenced. After then we do not run it any more, since
1060 (almost) no new labels should be created. */
1062 /* A map from basic block index to the leading label of that block. */
1063 static struct label_record
1065 /* The label. */
1066 tree label;
1068 /* True if the label is referenced from somewhere. */
1069 bool used;
1070 } *label_for_bb;
1072 /* Given LABEL return the first label in the same basic block. */
1074 static tree
1075 main_block_label (tree label)
1077 basic_block bb = label_to_block (label);
1078 tree main_label = label_for_bb[bb->index].label;
1080 /* label_to_block possibly inserted undefined label into the chain. */
1081 if (!main_label)
1083 label_for_bb[bb->index].label = label;
1084 main_label = label;
1087 label_for_bb[bb->index].used = true;
1088 return main_label;
1091 /* Clean up redundant labels within the exception tree. */
1093 static void
1094 cleanup_dead_labels_eh (void)
1096 eh_landing_pad lp;
1097 eh_region r;
1098 tree lab;
1099 int i;
1101 if (cfun->eh == NULL)
1102 return;
1104 for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i)
1105 if (lp && lp->post_landing_pad)
1107 lab = main_block_label (lp->post_landing_pad);
1108 if (lab != lp->post_landing_pad)
1110 EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
1111 EH_LANDING_PAD_NR (lab) = lp->index;
1115 FOR_ALL_EH_REGION (r)
1116 switch (r->type)
1118 case ERT_CLEANUP:
1119 case ERT_MUST_NOT_THROW:
1120 break;
1122 case ERT_TRY:
1124 eh_catch c;
1125 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
1127 lab = c->label;
1128 if (lab)
1129 c->label = main_block_label (lab);
1132 break;
1134 case ERT_ALLOWED_EXCEPTIONS:
1135 lab = r->u.allowed.label;
1136 if (lab)
1137 r->u.allowed.label = main_block_label (lab);
1138 break;
1143 /* Cleanup redundant labels. This is a three-step process:
1144 1) Find the leading label for each block.
1145 2) Redirect all references to labels to the leading labels.
1146 3) Cleanup all useless labels. */
1148 void
1149 cleanup_dead_labels (void)
1151 basic_block bb;
1152 label_for_bb = XCNEWVEC (struct label_record, last_basic_block);
1154 /* Find a suitable label for each block. We use the first user-defined
1155 label if there is one, or otherwise just the first label we see. */
1156 FOR_EACH_BB (bb)
1158 gimple_stmt_iterator i;
1160 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
1162 tree label;
1163 gimple stmt = gsi_stmt (i);
1165 if (gimple_code (stmt) != GIMPLE_LABEL)
1166 break;
1168 label = gimple_label_label (stmt);
1170 /* If we have not yet seen a label for the current block,
1171 remember this one and see if there are more labels. */
1172 if (!label_for_bb[bb->index].label)
1174 label_for_bb[bb->index].label = label;
1175 continue;
1178 /* If we did see a label for the current block already, but it
1179 is an artificially created label, replace it if the current
1180 label is a user defined label. */
1181 if (!DECL_ARTIFICIAL (label)
1182 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
1184 label_for_bb[bb->index].label = label;
1185 break;
1190 /* Now redirect all jumps/branches to the selected label.
1191 First do so for each block ending in a control statement. */
1192 FOR_EACH_BB (bb)
1194 gimple stmt = last_stmt (bb);
1195 tree label, new_label;
1197 if (!stmt)
1198 continue;
1200 switch (gimple_code (stmt))
1202 case GIMPLE_COND:
1203 label = gimple_cond_true_label (stmt);
1204 if (label)
1206 new_label = main_block_label (label);
1207 if (new_label != label)
1208 gimple_cond_set_true_label (stmt, new_label);
1211 label = gimple_cond_false_label (stmt);
1212 if (label)
1214 new_label = main_block_label (label);
1215 if (new_label != label)
1216 gimple_cond_set_false_label (stmt, new_label);
1218 break;
1220 case GIMPLE_SWITCH:
1222 size_t i, n = gimple_switch_num_labels (stmt);
1224 /* Replace all destination labels. */
1225 for (i = 0; i < n; ++i)
1227 tree case_label = gimple_switch_label (stmt, i);
1228 label = CASE_LABEL (case_label);
1229 new_label = main_block_label (label);
1230 if (new_label != label)
1231 CASE_LABEL (case_label) = new_label;
1233 break;
1236 case GIMPLE_ASM:
1238 int i, n = gimple_asm_nlabels (stmt);
1240 for (i = 0; i < n; ++i)
1242 tree cons = gimple_asm_label_op (stmt, i);
1243 tree label = main_block_label (TREE_VALUE (cons));
1244 TREE_VALUE (cons) = label;
1246 break;
1249 /* We have to handle gotos until they're removed, and we don't
1250 remove them until after we've created the CFG edges. */
1251 case GIMPLE_GOTO:
1252 if (!computed_goto_p (stmt))
1254 label = gimple_goto_dest (stmt);
1255 new_label = main_block_label (label);
1256 if (new_label != label)
1257 gimple_goto_set_dest (stmt, new_label);
1259 break;
1261 case GIMPLE_TRANSACTION:
1263 tree label = gimple_transaction_label (stmt);
1264 if (label)
1266 tree new_label = main_block_label (label);
1267 if (new_label != label)
1268 gimple_transaction_set_label (stmt, new_label);
1271 break;
1273 default:
1274 break;
1278 /* Do the same for the exception region tree labels. */
1279 cleanup_dead_labels_eh ();
1281 /* Finally, purge dead labels. All user-defined labels and labels that
1282 can be the target of non-local gotos and labels which have their
1283 address taken are preserved. */
1284 FOR_EACH_BB (bb)
1286 gimple_stmt_iterator i;
1287 tree label_for_this_bb = label_for_bb[bb->index].label;
1289 if (!label_for_this_bb)
1290 continue;
1292 /* If the main label of the block is unused, we may still remove it. */
1293 if (!label_for_bb[bb->index].used)
1294 label_for_this_bb = NULL;
1296 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1298 tree label;
1299 gimple stmt = gsi_stmt (i);
1301 if (gimple_code (stmt) != GIMPLE_LABEL)
1302 break;
1304 label = gimple_label_label (stmt);
1306 if (label == label_for_this_bb
1307 || !DECL_ARTIFICIAL (label)
1308 || DECL_NONLOCAL (label)
1309 || FORCED_LABEL (label))
1310 gsi_next (&i);
1311 else
1312 gsi_remove (&i, true);
1316 free (label_for_bb);
1319 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1320 the ones jumping to the same label.
1321 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1323 void
1324 group_case_labels_stmt (gimple stmt)
1326 int old_size = gimple_switch_num_labels (stmt);
1327 int i, j, new_size = old_size;
1328 basic_block default_bb = NULL;
1330 default_bb = label_to_block (CASE_LABEL (gimple_switch_default_label (stmt)));
1332 /* Look for possible opportunities to merge cases. */
1333 i = 1;
1334 while (i < old_size)
1336 tree base_case, base_high;
1337 basic_block base_bb;
1339 base_case = gimple_switch_label (stmt, i);
1341 gcc_assert (base_case);
1342 base_bb = label_to_block (CASE_LABEL (base_case));
1344 /* Discard cases that have the same destination as the
1345 default case. */
1346 if (base_bb == default_bb)
1348 gimple_switch_set_label (stmt, i, NULL_TREE);
1349 i++;
1350 new_size--;
1351 continue;
1354 base_high = CASE_HIGH (base_case)
1355 ? CASE_HIGH (base_case)
1356 : CASE_LOW (base_case);
1357 i++;
1359 /* Try to merge case labels. Break out when we reach the end
1360 of the label vector or when we cannot merge the next case
1361 label with the current one. */
1362 while (i < old_size)
1364 tree merge_case = gimple_switch_label (stmt, i);
1365 basic_block merge_bb = label_to_block (CASE_LABEL (merge_case));
1366 double_int bhp1 = tree_to_double_int (base_high) + double_int_one;
1368 /* Merge the cases if they jump to the same place,
1369 and their ranges are consecutive. */
1370 if (merge_bb == base_bb
1371 && tree_to_double_int (CASE_LOW (merge_case)) == bhp1)
1373 base_high = CASE_HIGH (merge_case) ?
1374 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1375 CASE_HIGH (base_case) = base_high;
1376 gimple_switch_set_label (stmt, i, NULL_TREE);
1377 new_size--;
1378 i++;
1380 else
1381 break;
1385 /* Compress the case labels in the label vector, and adjust the
1386 length of the vector. */
1387 for (i = 0, j = 0; i < new_size; i++)
1389 while (! gimple_switch_label (stmt, j))
1390 j++;
1391 gimple_switch_set_label (stmt, i,
1392 gimple_switch_label (stmt, j++));
1395 gcc_assert (new_size <= old_size);
1396 gimple_switch_set_num_labels (stmt, new_size);
1399 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1400 and scan the sorted vector of cases. Combine the ones jumping to the
1401 same label. */
1403 void
1404 group_case_labels (void)
1406 basic_block bb;
1408 FOR_EACH_BB (bb)
1410 gimple stmt = last_stmt (bb);
1411 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1412 group_case_labels_stmt (stmt);
1416 /* Checks whether we can merge block B into block A. */
1418 static bool
1419 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1421 gimple stmt;
1422 gimple_stmt_iterator gsi;
1424 if (!single_succ_p (a))
1425 return false;
1427 if (single_succ_edge (a)->flags & EDGE_COMPLEX)
1428 return false;
1430 if (single_succ (a) != b)
1431 return false;
1433 if (!single_pred_p (b))
1434 return false;
1436 if (b == EXIT_BLOCK_PTR)
1437 return false;
1439 /* If A ends by a statement causing exceptions or something similar, we
1440 cannot merge the blocks. */
1441 stmt = last_stmt (a);
1442 if (stmt && stmt_ends_bb_p (stmt))
1443 return false;
1445 /* Do not allow a block with only a non-local label to be merged. */
1446 if (stmt
1447 && gimple_code (stmt) == GIMPLE_LABEL
1448 && DECL_NONLOCAL (gimple_label_label (stmt)))
1449 return false;
1451 /* Examine the labels at the beginning of B. */
1452 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi); gsi_next (&gsi))
1454 tree lab;
1455 stmt = gsi_stmt (gsi);
1456 if (gimple_code (stmt) != GIMPLE_LABEL)
1457 break;
1458 lab = gimple_label_label (stmt);
1460 /* Do not remove user forced labels or for -O0 any user labels. */
1461 if (!DECL_ARTIFICIAL (lab) && (!optimize || FORCED_LABEL (lab)))
1462 return false;
1465 /* Protect the loop latches. */
1466 if (current_loops && b->loop_father->latch == b)
1467 return false;
1469 /* It must be possible to eliminate all phi nodes in B. If ssa form
1470 is not up-to-date and a name-mapping is registered, we cannot eliminate
1471 any phis. Symbols marked for renaming are never a problem though. */
1472 for (gsi = gsi_start_phis (b); !gsi_end_p (gsi); gsi_next (&gsi))
1474 gimple phi = gsi_stmt (gsi);
1475 /* Technically only new names matter. */
1476 if (name_registered_for_update_p (PHI_RESULT (phi)))
1477 return false;
1480 /* When not optimizing, don't merge if we'd lose goto_locus. */
1481 if (!optimize
1482 && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
1484 location_t goto_locus = single_succ_edge (a)->goto_locus;
1485 gimple_stmt_iterator prev, next;
1486 prev = gsi_last_nondebug_bb (a);
1487 next = gsi_after_labels (b);
1488 if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
1489 gsi_next_nondebug (&next);
1490 if ((gsi_end_p (prev)
1491 || gimple_location (gsi_stmt (prev)) != goto_locus)
1492 && (gsi_end_p (next)
1493 || gimple_location (gsi_stmt (next)) != goto_locus))
1494 return false;
1497 return true;
1500 /* Return true if the var whose chain of uses starts at PTR has no
1501 nondebug uses. */
1502 bool
1503 has_zero_uses_1 (const ssa_use_operand_t *head)
1505 const ssa_use_operand_t *ptr;
1507 for (ptr = head->next; ptr != head; ptr = ptr->next)
1508 if (!is_gimple_debug (USE_STMT (ptr)))
1509 return false;
1511 return true;
1514 /* Return true if the var whose chain of uses starts at PTR has a
1515 single nondebug use. Set USE_P and STMT to that single nondebug
1516 use, if so, or to NULL otherwise. */
1517 bool
1518 single_imm_use_1 (const ssa_use_operand_t *head,
1519 use_operand_p *use_p, gimple *stmt)
1521 ssa_use_operand_t *ptr, *single_use = 0;
1523 for (ptr = head->next; ptr != head; ptr = ptr->next)
1524 if (!is_gimple_debug (USE_STMT (ptr)))
1526 if (single_use)
1528 single_use = NULL;
1529 break;
1531 single_use = ptr;
1534 if (use_p)
1535 *use_p = single_use;
1537 if (stmt)
1538 *stmt = single_use ? single_use->loc.stmt : NULL;
1540 return !!single_use;
1543 /* Replaces all uses of NAME by VAL. */
1545 void
1546 replace_uses_by (tree name, tree val)
1548 imm_use_iterator imm_iter;
1549 use_operand_p use;
1550 gimple stmt;
1551 edge e;
1553 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1555 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1557 replace_exp (use, val);
1559 if (gimple_code (stmt) == GIMPLE_PHI)
1561 e = gimple_phi_arg_edge (stmt, PHI_ARG_INDEX_FROM_USE (use));
1562 if (e->flags & EDGE_ABNORMAL)
1564 /* This can only occur for virtual operands, since
1565 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1566 would prevent replacement. */
1567 gcc_checking_assert (virtual_operand_p (name));
1568 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1573 if (gimple_code (stmt) != GIMPLE_PHI)
1575 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
1576 gimple orig_stmt = stmt;
1577 size_t i;
1579 /* Mark the block if we changed the last stmt in it. */
1580 if (cfgcleanup_altered_bbs
1581 && stmt_ends_bb_p (stmt))
1582 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1584 /* FIXME. It shouldn't be required to keep TREE_CONSTANT
1585 on ADDR_EXPRs up-to-date on GIMPLE. Propagation will
1586 only change sth from non-invariant to invariant, and only
1587 when propagating constants. */
1588 if (is_gimple_min_invariant (val))
1589 for (i = 0; i < gimple_num_ops (stmt); i++)
1591 tree op = gimple_op (stmt, i);
1592 /* Operands may be empty here. For example, the labels
1593 of a GIMPLE_COND are nulled out following the creation
1594 of the corresponding CFG edges. */
1595 if (op && TREE_CODE (op) == ADDR_EXPR)
1596 recompute_tree_invariant_for_addr_expr (op);
1599 if (fold_stmt (&gsi))
1600 stmt = gsi_stmt (gsi);
1602 if (maybe_clean_or_replace_eh_stmt (orig_stmt, stmt))
1603 gimple_purge_dead_eh_edges (gimple_bb (stmt));
1605 update_stmt (stmt);
1609 gcc_checking_assert (has_zero_uses (name));
1611 /* Also update the trees stored in loop structures. */
1612 if (current_loops)
1614 struct loop *loop;
1615 loop_iterator li;
1617 FOR_EACH_LOOP (li, loop, 0)
1619 substitute_in_loop_info (loop, name, val);
1624 /* Merge block B into block A. */
1626 static void
1627 gimple_merge_blocks (basic_block a, basic_block b)
1629 gimple_stmt_iterator last, gsi, psi;
1631 if (dump_file)
1632 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
1634 /* Remove all single-valued PHI nodes from block B of the form
1635 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1636 gsi = gsi_last_bb (a);
1637 for (psi = gsi_start_phis (b); !gsi_end_p (psi); )
1639 gimple phi = gsi_stmt (psi);
1640 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
1641 gimple copy;
1642 bool may_replace_uses = (virtual_operand_p (def)
1643 || may_propagate_copy (def, use));
1645 /* In case we maintain loop closed ssa form, do not propagate arguments
1646 of loop exit phi nodes. */
1647 if (current_loops
1648 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
1649 && !virtual_operand_p (def)
1650 && TREE_CODE (use) == SSA_NAME
1651 && a->loop_father != b->loop_father)
1652 may_replace_uses = false;
1654 if (!may_replace_uses)
1656 gcc_assert (!virtual_operand_p (def));
1658 /* Note that just emitting the copies is fine -- there is no problem
1659 with ordering of phi nodes. This is because A is the single
1660 predecessor of B, therefore results of the phi nodes cannot
1661 appear as arguments of the phi nodes. */
1662 copy = gimple_build_assign (def, use);
1663 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
1664 remove_phi_node (&psi, false);
1666 else
1668 /* If we deal with a PHI for virtual operands, we can simply
1669 propagate these without fussing with folding or updating
1670 the stmt. */
1671 if (virtual_operand_p (def))
1673 imm_use_iterator iter;
1674 use_operand_p use_p;
1675 gimple stmt;
1677 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
1678 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1679 SET_USE (use_p, use);
1681 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
1682 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
1684 else
1685 replace_uses_by (def, use);
1687 remove_phi_node (&psi, true);
1691 /* Ensure that B follows A. */
1692 move_block_after (b, a);
1694 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
1695 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
1697 /* Remove labels from B and set gimple_bb to A for other statements. */
1698 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
1700 gimple stmt = gsi_stmt (gsi);
1701 if (gimple_code (stmt) == GIMPLE_LABEL)
1703 tree label = gimple_label_label (stmt);
1704 int lp_nr;
1706 gsi_remove (&gsi, false);
1708 /* Now that we can thread computed gotos, we might have
1709 a situation where we have a forced label in block B
1710 However, the label at the start of block B might still be
1711 used in other ways (think about the runtime checking for
1712 Fortran assigned gotos). So we can not just delete the
1713 label. Instead we move the label to the start of block A. */
1714 if (FORCED_LABEL (label))
1716 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
1717 gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
1719 /* Other user labels keep around in a form of a debug stmt. */
1720 else if (!DECL_ARTIFICIAL (label) && MAY_HAVE_DEBUG_STMTS)
1722 gimple dbg = gimple_build_debug_bind (label,
1723 integer_zero_node,
1724 stmt);
1725 gimple_debug_bind_reset_value (dbg);
1726 gsi_insert_before (&gsi, dbg, GSI_SAME_STMT);
1729 lp_nr = EH_LANDING_PAD_NR (label);
1730 if (lp_nr)
1732 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
1733 lp->post_landing_pad = NULL;
1736 else
1738 gimple_set_bb (stmt, a);
1739 gsi_next (&gsi);
1743 /* Merge the sequences. */
1744 last = gsi_last_bb (a);
1745 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
1746 set_bb_seq (b, NULL);
1748 if (cfgcleanup_altered_bbs)
1749 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
1753 /* Return the one of two successors of BB that is not reachable by a
1754 complex edge, if there is one. Else, return BB. We use
1755 this in optimizations that use post-dominators for their heuristics,
1756 to catch the cases in C++ where function calls are involved. */
1758 basic_block
1759 single_noncomplex_succ (basic_block bb)
1761 edge e0, e1;
1762 if (EDGE_COUNT (bb->succs) != 2)
1763 return bb;
1765 e0 = EDGE_SUCC (bb, 0);
1766 e1 = EDGE_SUCC (bb, 1);
1767 if (e0->flags & EDGE_COMPLEX)
1768 return e1->dest;
1769 if (e1->flags & EDGE_COMPLEX)
1770 return e0->dest;
1772 return bb;
1775 /* T is CALL_EXPR. Set current_function_calls_* flags. */
1777 void
1778 notice_special_calls (gimple call)
1780 int flags = gimple_call_flags (call);
1782 if (flags & ECF_MAY_BE_ALLOCA)
1783 cfun->calls_alloca = true;
1784 if (flags & ECF_RETURNS_TWICE)
1785 cfun->calls_setjmp = true;
1789 /* Clear flags set by notice_special_calls. Used by dead code removal
1790 to update the flags. */
1792 void
1793 clear_special_calls (void)
1795 cfun->calls_alloca = false;
1796 cfun->calls_setjmp = false;
1799 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
1801 static void
1802 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
1804 /* Since this block is no longer reachable, we can just delete all
1805 of its PHI nodes. */
1806 remove_phi_nodes (bb);
1808 /* Remove edges to BB's successors. */
1809 while (EDGE_COUNT (bb->succs) > 0)
1810 remove_edge (EDGE_SUCC (bb, 0));
1814 /* Remove statements of basic block BB. */
1816 static void
1817 remove_bb (basic_block bb)
1819 gimple_stmt_iterator i;
1821 if (dump_file)
1823 fprintf (dump_file, "Removing basic block %d\n", bb->index);
1824 if (dump_flags & TDF_DETAILS)
1826 dump_bb (dump_file, bb, 0, dump_flags);
1827 fprintf (dump_file, "\n");
1831 if (current_loops)
1833 struct loop *loop = bb->loop_father;
1835 /* If a loop gets removed, clean up the information associated
1836 with it. */
1837 if (loop->latch == bb
1838 || loop->header == bb)
1839 free_numbers_of_iterations_estimates_loop (loop);
1842 /* Remove all the instructions in the block. */
1843 if (bb_seq (bb) != NULL)
1845 /* Walk backwards so as to get a chance to substitute all
1846 released DEFs into debug stmts. See
1847 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
1848 details. */
1849 for (i = gsi_last_bb (bb); !gsi_end_p (i);)
1851 gimple stmt = gsi_stmt (i);
1852 if (gimple_code (stmt) == GIMPLE_LABEL
1853 && (FORCED_LABEL (gimple_label_label (stmt))
1854 || DECL_NONLOCAL (gimple_label_label (stmt))))
1856 basic_block new_bb;
1857 gimple_stmt_iterator new_gsi;
1859 /* A non-reachable non-local label may still be referenced.
1860 But it no longer needs to carry the extra semantics of
1861 non-locality. */
1862 if (DECL_NONLOCAL (gimple_label_label (stmt)))
1864 DECL_NONLOCAL (gimple_label_label (stmt)) = 0;
1865 FORCED_LABEL (gimple_label_label (stmt)) = 1;
1868 new_bb = bb->prev_bb;
1869 new_gsi = gsi_start_bb (new_bb);
1870 gsi_remove (&i, false);
1871 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
1873 else
1875 /* Release SSA definitions if we are in SSA. Note that we
1876 may be called when not in SSA. For example,
1877 final_cleanup calls this function via
1878 cleanup_tree_cfg. */
1879 if (gimple_in_ssa_p (cfun))
1880 release_defs (stmt);
1882 gsi_remove (&i, true);
1885 if (gsi_end_p (i))
1886 i = gsi_last_bb (bb);
1887 else
1888 gsi_prev (&i);
1892 remove_phi_nodes_and_edges_for_unreachable_block (bb);
1893 bb->il.gimple.seq = NULL;
1894 bb->il.gimple.phi_nodes = NULL;
1898 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
1899 predicate VAL, return the edge that will be taken out of the block.
1900 If VAL does not match a unique edge, NULL is returned. */
1902 edge
1903 find_taken_edge (basic_block bb, tree val)
1905 gimple stmt;
1907 stmt = last_stmt (bb);
1909 gcc_assert (stmt);
1910 gcc_assert (is_ctrl_stmt (stmt));
1912 if (val == NULL)
1913 return NULL;
1915 if (!is_gimple_min_invariant (val))
1916 return NULL;
1918 if (gimple_code (stmt) == GIMPLE_COND)
1919 return find_taken_edge_cond_expr (bb, val);
1921 if (gimple_code (stmt) == GIMPLE_SWITCH)
1922 return find_taken_edge_switch_expr (bb, val);
1924 if (computed_goto_p (stmt))
1926 /* Only optimize if the argument is a label, if the argument is
1927 not a label then we can not construct a proper CFG.
1929 It may be the case that we only need to allow the LABEL_REF to
1930 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
1931 appear inside a LABEL_EXPR just to be safe. */
1932 if ((TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
1933 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
1934 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
1935 return NULL;
1938 gcc_unreachable ();
1941 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
1942 statement, determine which of the outgoing edges will be taken out of the
1943 block. Return NULL if either edge may be taken. */
1945 static edge
1946 find_taken_edge_computed_goto (basic_block bb, tree val)
1948 basic_block dest;
1949 edge e = NULL;
1951 dest = label_to_block (val);
1952 if (dest)
1954 e = find_edge (bb, dest);
1955 gcc_assert (e != NULL);
1958 return e;
1961 /* Given a constant value VAL and the entry block BB to a COND_EXPR
1962 statement, determine which of the two edges will be taken out of the
1963 block. Return NULL if either edge may be taken. */
1965 static edge
1966 find_taken_edge_cond_expr (basic_block bb, tree val)
1968 edge true_edge, false_edge;
1970 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
1972 gcc_assert (TREE_CODE (val) == INTEGER_CST);
1973 return (integer_zerop (val) ? false_edge : true_edge);
1976 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
1977 statement, determine which edge will be taken out of the block. Return
1978 NULL if any edge may be taken. */
1980 static edge
1981 find_taken_edge_switch_expr (basic_block bb, tree val)
1983 basic_block dest_bb;
1984 edge e;
1985 gimple switch_stmt;
1986 tree taken_case;
1988 switch_stmt = last_stmt (bb);
1989 taken_case = find_case_label_for_value (switch_stmt, val);
1990 dest_bb = label_to_block (CASE_LABEL (taken_case));
1992 e = find_edge (bb, dest_bb);
1993 gcc_assert (e);
1994 return e;
1998 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
1999 We can make optimal use here of the fact that the case labels are
2000 sorted: We can do a binary search for a case matching VAL. */
2002 static tree
2003 find_case_label_for_value (gimple switch_stmt, tree val)
2005 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
2006 tree default_case = gimple_switch_default_label (switch_stmt);
2008 for (low = 0, high = n; high - low > 1; )
2010 size_t i = (high + low) / 2;
2011 tree t = gimple_switch_label (switch_stmt, i);
2012 int cmp;
2014 /* Cache the result of comparing CASE_LOW and val. */
2015 cmp = tree_int_cst_compare (CASE_LOW (t), val);
2017 if (cmp > 0)
2018 high = i;
2019 else
2020 low = i;
2022 if (CASE_HIGH (t) == NULL)
2024 /* A singe-valued case label. */
2025 if (cmp == 0)
2026 return t;
2028 else
2030 /* A case range. We can only handle integer ranges. */
2031 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2032 return t;
2036 return default_case;
2040 /* Dump a basic block on stderr. */
2042 void
2043 gimple_debug_bb (basic_block bb)
2045 dump_bb (stderr, bb, 0, TDF_VOPS|TDF_MEMSYMS|TDF_BLOCKS);
2049 /* Dump basic block with index N on stderr. */
2051 basic_block
2052 gimple_debug_bb_n (int n)
2054 gimple_debug_bb (BASIC_BLOCK (n));
2055 return BASIC_BLOCK (n);
2059 /* Dump the CFG on stderr.
2061 FLAGS are the same used by the tree dumping functions
2062 (see TDF_* in dumpfile.h). */
2064 void
2065 gimple_debug_cfg (int flags)
2067 gimple_dump_cfg (stderr, flags);
2071 /* Dump the program showing basic block boundaries on the given FILE.
2073 FLAGS are the same used by the tree dumping functions (see TDF_* in
2074 tree.h). */
2076 void
2077 gimple_dump_cfg (FILE *file, int flags)
2079 if (flags & TDF_DETAILS)
2081 dump_function_header (file, current_function_decl, flags);
2082 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2083 n_basic_blocks, n_edges, last_basic_block);
2085 brief_dump_cfg (file, flags | TDF_COMMENT);
2086 fprintf (file, "\n");
2089 if (flags & TDF_STATS)
2090 dump_cfg_stats (file);
2092 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2096 /* Dump CFG statistics on FILE. */
2098 void
2099 dump_cfg_stats (FILE *file)
2101 static long max_num_merged_labels = 0;
2102 unsigned long size, total = 0;
2103 long num_edges;
2104 basic_block bb;
2105 const char * const fmt_str = "%-30s%-13s%12s\n";
2106 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2107 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2108 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2109 const char *funcname = current_function_name ();
2111 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2113 fprintf (file, "---------------------------------------------------------\n");
2114 fprintf (file, fmt_str, "", " Number of ", "Memory");
2115 fprintf (file, fmt_str, "", " instances ", "used ");
2116 fprintf (file, "---------------------------------------------------------\n");
2118 size = n_basic_blocks * sizeof (struct basic_block_def);
2119 total += size;
2120 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks,
2121 SCALE (size), LABEL (size));
2123 num_edges = 0;
2124 FOR_EACH_BB (bb)
2125 num_edges += EDGE_COUNT (bb->succs);
2126 size = num_edges * sizeof (struct edge_def);
2127 total += size;
2128 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2130 fprintf (file, "---------------------------------------------------------\n");
2131 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2132 LABEL (total));
2133 fprintf (file, "---------------------------------------------------------\n");
2134 fprintf (file, "\n");
2136 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2137 max_num_merged_labels = cfg_stats.num_merged_labels;
2139 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2140 cfg_stats.num_merged_labels, max_num_merged_labels);
2142 fprintf (file, "\n");
2146 /* Dump CFG statistics on stderr. Keep extern so that it's always
2147 linked in the final executable. */
2149 DEBUG_FUNCTION void
2150 debug_cfg_stats (void)
2152 dump_cfg_stats (stderr);
2155 /*---------------------------------------------------------------------------
2156 Miscellaneous helpers
2157 ---------------------------------------------------------------------------*/
2159 /* Return true if T, a GIMPLE_CALL, can make an abnormal transfer of control
2160 flow. Transfers of control flow associated with EH are excluded. */
2162 static bool
2163 call_can_make_abnormal_goto (gimple t)
2165 /* If the function has no non-local labels, then a call cannot make an
2166 abnormal transfer of control. */
2167 if (!cfun->has_nonlocal_label
2168 && !cfun->calls_setjmp)
2169 return false;
2171 /* Likewise if the call has no side effects. */
2172 if (!gimple_has_side_effects (t))
2173 return false;
2175 /* Likewise if the called function is leaf. */
2176 if (gimple_call_flags (t) & ECF_LEAF)
2177 return false;
2179 return true;
2183 /* Return true if T can make an abnormal transfer of control flow.
2184 Transfers of control flow associated with EH are excluded. */
2186 bool
2187 stmt_can_make_abnormal_goto (gimple t)
2189 if (computed_goto_p (t))
2190 return true;
2191 if (is_gimple_call (t))
2192 return call_can_make_abnormal_goto (t);
2193 return false;
2197 /* Return true if T represents a stmt that always transfers control. */
2199 bool
2200 is_ctrl_stmt (gimple t)
2202 switch (gimple_code (t))
2204 case GIMPLE_COND:
2205 case GIMPLE_SWITCH:
2206 case GIMPLE_GOTO:
2207 case GIMPLE_RETURN:
2208 case GIMPLE_RESX:
2209 return true;
2210 default:
2211 return false;
2216 /* Return true if T is a statement that may alter the flow of control
2217 (e.g., a call to a non-returning function). */
2219 bool
2220 is_ctrl_altering_stmt (gimple t)
2222 gcc_assert (t);
2224 switch (gimple_code (t))
2226 case GIMPLE_CALL:
2228 int flags = gimple_call_flags (t);
2230 /* A call alters control flow if it can make an abnormal goto. */
2231 if (call_can_make_abnormal_goto (t))
2232 return true;
2234 /* A call also alters control flow if it does not return. */
2235 if (flags & ECF_NORETURN)
2236 return true;
2238 /* TM ending statements have backedges out of the transaction.
2239 Return true so we split the basic block containing them.
2240 Note that the TM_BUILTIN test is merely an optimization. */
2241 if ((flags & ECF_TM_BUILTIN)
2242 && is_tm_ending_fndecl (gimple_call_fndecl (t)))
2243 return true;
2245 /* BUILT_IN_RETURN call is same as return statement. */
2246 if (gimple_call_builtin_p (t, BUILT_IN_RETURN))
2247 return true;
2249 break;
2251 case GIMPLE_EH_DISPATCH:
2252 /* EH_DISPATCH branches to the individual catch handlers at
2253 this level of a try or allowed-exceptions region. It can
2254 fallthru to the next statement as well. */
2255 return true;
2257 case GIMPLE_ASM:
2258 if (gimple_asm_nlabels (t) > 0)
2259 return true;
2260 break;
2262 CASE_GIMPLE_OMP:
2263 /* OpenMP directives alter control flow. */
2264 return true;
2266 case GIMPLE_TRANSACTION:
2267 /* A transaction start alters control flow. */
2268 return true;
2270 default:
2271 break;
2274 /* If a statement can throw, it alters control flow. */
2275 return stmt_can_throw_internal (t);
2279 /* Return true if T is a simple local goto. */
2281 bool
2282 simple_goto_p (gimple t)
2284 return (gimple_code (t) == GIMPLE_GOTO
2285 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2289 /* Return true if STMT should start a new basic block. PREV_STMT is
2290 the statement preceding STMT. It is used when STMT is a label or a
2291 case label. Labels should only start a new basic block if their
2292 previous statement wasn't a label. Otherwise, sequence of labels
2293 would generate unnecessary basic blocks that only contain a single
2294 label. */
2296 static inline bool
2297 stmt_starts_bb_p (gimple stmt, gimple prev_stmt)
2299 if (stmt == NULL)
2300 return false;
2302 /* Labels start a new basic block only if the preceding statement
2303 wasn't a label of the same type. This prevents the creation of
2304 consecutive blocks that have nothing but a single label. */
2305 if (gimple_code (stmt) == GIMPLE_LABEL)
2307 /* Nonlocal and computed GOTO targets always start a new block. */
2308 if (DECL_NONLOCAL (gimple_label_label (stmt))
2309 || FORCED_LABEL (gimple_label_label (stmt)))
2310 return true;
2312 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
2314 if (DECL_NONLOCAL (gimple_label_label (prev_stmt)))
2315 return true;
2317 cfg_stats.num_merged_labels++;
2318 return false;
2320 else
2321 return true;
2323 else if (gimple_code (stmt) == GIMPLE_CALL
2324 && gimple_call_flags (stmt) & ECF_RETURNS_TWICE)
2325 /* setjmp acts similar to a nonlocal GOTO target and thus should
2326 start a new block. */
2327 return true;
2329 return false;
2333 /* Return true if T should end a basic block. */
2335 bool
2336 stmt_ends_bb_p (gimple t)
2338 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2341 /* Remove block annotations and other data structures. */
2343 void
2344 delete_tree_cfg_annotations (void)
2346 vec_free (label_to_block_map);
2350 /* Return the first statement in basic block BB. */
2352 gimple
2353 first_stmt (basic_block bb)
2355 gimple_stmt_iterator i = gsi_start_bb (bb);
2356 gimple stmt = NULL;
2358 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2360 gsi_next (&i);
2361 stmt = NULL;
2363 return stmt;
2366 /* Return the first non-label statement in basic block BB. */
2368 static gimple
2369 first_non_label_stmt (basic_block bb)
2371 gimple_stmt_iterator i = gsi_start_bb (bb);
2372 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
2373 gsi_next (&i);
2374 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2377 /* Return the last statement in basic block BB. */
2379 gimple
2380 last_stmt (basic_block bb)
2382 gimple_stmt_iterator i = gsi_last_bb (bb);
2383 gimple stmt = NULL;
2385 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2387 gsi_prev (&i);
2388 stmt = NULL;
2390 return stmt;
2393 /* Return the last statement of an otherwise empty block. Return NULL
2394 if the block is totally empty, or if it contains more than one
2395 statement. */
2397 gimple
2398 last_and_only_stmt (basic_block bb)
2400 gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
2401 gimple last, prev;
2403 if (gsi_end_p (i))
2404 return NULL;
2406 last = gsi_stmt (i);
2407 gsi_prev_nondebug (&i);
2408 if (gsi_end_p (i))
2409 return last;
2411 /* Empty statements should no longer appear in the instruction stream.
2412 Everything that might have appeared before should be deleted by
2413 remove_useless_stmts, and the optimizers should just gsi_remove
2414 instead of smashing with build_empty_stmt.
2416 Thus the only thing that should appear here in a block containing
2417 one executable statement is a label. */
2418 prev = gsi_stmt (i);
2419 if (gimple_code (prev) == GIMPLE_LABEL)
2420 return last;
2421 else
2422 return NULL;
2425 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2427 static void
2428 reinstall_phi_args (edge new_edge, edge old_edge)
2430 edge_var_map_vector *v;
2431 edge_var_map *vm;
2432 int i;
2433 gimple_stmt_iterator phis;
2435 v = redirect_edge_var_map_vector (old_edge);
2436 if (!v)
2437 return;
2439 for (i = 0, phis = gsi_start_phis (new_edge->dest);
2440 v->iterate (i, &vm) && !gsi_end_p (phis);
2441 i++, gsi_next (&phis))
2443 gimple phi = gsi_stmt (phis);
2444 tree result = redirect_edge_var_map_result (vm);
2445 tree arg = redirect_edge_var_map_def (vm);
2447 gcc_assert (result == gimple_phi_result (phi));
2449 add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
2452 redirect_edge_var_map_clear (old_edge);
2455 /* Returns the basic block after which the new basic block created
2456 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2457 near its "logical" location. This is of most help to humans looking
2458 at debugging dumps. */
2460 static basic_block
2461 split_edge_bb_loc (edge edge_in)
2463 basic_block dest = edge_in->dest;
2464 basic_block dest_prev = dest->prev_bb;
2466 if (dest_prev)
2468 edge e = find_edge (dest_prev, dest);
2469 if (e && !(e->flags & EDGE_COMPLEX))
2470 return edge_in->src;
2472 return dest_prev;
2475 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2476 Abort on abnormal edges. */
2478 static basic_block
2479 gimple_split_edge (edge edge_in)
2481 basic_block new_bb, after_bb, dest;
2482 edge new_edge, e;
2484 /* Abnormal edges cannot be split. */
2485 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2487 dest = edge_in->dest;
2489 after_bb = split_edge_bb_loc (edge_in);
2491 new_bb = create_empty_bb (after_bb);
2492 new_bb->frequency = EDGE_FREQUENCY (edge_in);
2493 new_bb->count = edge_in->count;
2494 new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
2495 new_edge->probability = REG_BR_PROB_BASE;
2496 new_edge->count = edge_in->count;
2498 e = redirect_edge_and_branch (edge_in, new_bb);
2499 gcc_assert (e == edge_in);
2500 reinstall_phi_args (new_edge, e);
2502 return new_bb;
2506 /* Verify properties of the address expression T with base object BASE. */
2508 static tree
2509 verify_address (tree t, tree base)
2511 bool old_constant;
2512 bool old_side_effects;
2513 bool new_constant;
2514 bool new_side_effects;
2516 old_constant = TREE_CONSTANT (t);
2517 old_side_effects = TREE_SIDE_EFFECTS (t);
2519 recompute_tree_invariant_for_addr_expr (t);
2520 new_side_effects = TREE_SIDE_EFFECTS (t);
2521 new_constant = TREE_CONSTANT (t);
2523 if (old_constant != new_constant)
2525 error ("constant not recomputed when ADDR_EXPR changed");
2526 return t;
2528 if (old_side_effects != new_side_effects)
2530 error ("side effects not recomputed when ADDR_EXPR changed");
2531 return t;
2534 if (!(TREE_CODE (base) == VAR_DECL
2535 || TREE_CODE (base) == PARM_DECL
2536 || TREE_CODE (base) == RESULT_DECL))
2537 return NULL_TREE;
2539 if (DECL_GIMPLE_REG_P (base))
2541 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2542 return base;
2545 return NULL_TREE;
2548 /* Callback for walk_tree, check that all elements with address taken are
2549 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2550 inside a PHI node. */
2552 static tree
2553 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
2555 tree t = *tp, x;
2557 if (TYPE_P (t))
2558 *walk_subtrees = 0;
2560 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2561 #define CHECK_OP(N, MSG) \
2562 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2563 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2565 switch (TREE_CODE (t))
2567 case SSA_NAME:
2568 if (SSA_NAME_IN_FREE_LIST (t))
2570 error ("SSA name in freelist but still referenced");
2571 return *tp;
2573 break;
2575 case INDIRECT_REF:
2576 error ("INDIRECT_REF in gimple IL");
2577 return t;
2579 case MEM_REF:
2580 x = TREE_OPERAND (t, 0);
2581 if (!POINTER_TYPE_P (TREE_TYPE (x))
2582 || !is_gimple_mem_ref_addr (x))
2584 error ("invalid first operand of MEM_REF");
2585 return x;
2587 if (TREE_CODE (TREE_OPERAND (t, 1)) != INTEGER_CST
2588 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
2590 error ("invalid offset operand of MEM_REF");
2591 return TREE_OPERAND (t, 1);
2593 if (TREE_CODE (x) == ADDR_EXPR
2594 && (x = verify_address (x, TREE_OPERAND (x, 0))))
2595 return x;
2596 *walk_subtrees = 0;
2597 break;
2599 case ASSERT_EXPR:
2600 x = fold (ASSERT_EXPR_COND (t));
2601 if (x == boolean_false_node)
2603 error ("ASSERT_EXPR with an always-false condition");
2604 return *tp;
2606 break;
2608 case MODIFY_EXPR:
2609 error ("MODIFY_EXPR not expected while having tuples");
2610 return *tp;
2612 case ADDR_EXPR:
2614 tree tem;
2616 gcc_assert (is_gimple_address (t));
2618 /* Skip any references (they will be checked when we recurse down the
2619 tree) and ensure that any variable used as a prefix is marked
2620 addressable. */
2621 for (x = TREE_OPERAND (t, 0);
2622 handled_component_p (x);
2623 x = TREE_OPERAND (x, 0))
2626 if ((tem = verify_address (t, x)))
2627 return tem;
2629 if (!(TREE_CODE (x) == VAR_DECL
2630 || TREE_CODE (x) == PARM_DECL
2631 || TREE_CODE (x) == RESULT_DECL))
2632 return NULL;
2634 if (!TREE_ADDRESSABLE (x))
2636 error ("address taken, but ADDRESSABLE bit not set");
2637 return x;
2640 break;
2643 case COND_EXPR:
2644 x = COND_EXPR_COND (t);
2645 if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
2647 error ("non-integral used in condition");
2648 return x;
2650 if (!is_gimple_condexpr (x))
2652 error ("invalid conditional operand");
2653 return x;
2655 break;
2657 case NON_LVALUE_EXPR:
2658 case TRUTH_NOT_EXPR:
2659 gcc_unreachable ();
2661 CASE_CONVERT:
2662 case FIX_TRUNC_EXPR:
2663 case FLOAT_EXPR:
2664 case NEGATE_EXPR:
2665 case ABS_EXPR:
2666 case BIT_NOT_EXPR:
2667 CHECK_OP (0, "invalid operand to unary operator");
2668 break;
2670 case REALPART_EXPR:
2671 case IMAGPART_EXPR:
2672 case COMPONENT_REF:
2673 case ARRAY_REF:
2674 case ARRAY_RANGE_REF:
2675 case BIT_FIELD_REF:
2676 case VIEW_CONVERT_EXPR:
2677 /* We have a nest of references. Verify that each of the operands
2678 that determine where to reference is either a constant or a variable,
2679 verify that the base is valid, and then show we've already checked
2680 the subtrees. */
2681 while (handled_component_p (t))
2683 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
2684 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
2685 else if (TREE_CODE (t) == ARRAY_REF
2686 || TREE_CODE (t) == ARRAY_RANGE_REF)
2688 CHECK_OP (1, "invalid array index");
2689 if (TREE_OPERAND (t, 2))
2690 CHECK_OP (2, "invalid array lower bound");
2691 if (TREE_OPERAND (t, 3))
2692 CHECK_OP (3, "invalid array stride");
2694 else if (TREE_CODE (t) == BIT_FIELD_REF)
2696 if (!host_integerp (TREE_OPERAND (t, 1), 1)
2697 || !host_integerp (TREE_OPERAND (t, 2), 1))
2699 error ("invalid position or size operand to BIT_FIELD_REF");
2700 return t;
2702 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
2703 && (TYPE_PRECISION (TREE_TYPE (t))
2704 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2706 error ("integral result type precision does not match "
2707 "field size of BIT_FIELD_REF");
2708 return t;
2710 else if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
2711 && !AGGREGATE_TYPE_P (TREE_TYPE (t))
2712 && TYPE_MODE (TREE_TYPE (t)) != BLKmode
2713 && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t)))
2714 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2716 error ("mode precision of non-integral result does not "
2717 "match field size of BIT_FIELD_REF");
2718 return t;
2722 t = TREE_OPERAND (t, 0);
2725 if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
2727 error ("invalid reference prefix");
2728 return t;
2730 *walk_subtrees = 0;
2731 break;
2732 case PLUS_EXPR:
2733 case MINUS_EXPR:
2734 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
2735 POINTER_PLUS_EXPR. */
2736 if (POINTER_TYPE_P (TREE_TYPE (t)))
2738 error ("invalid operand to plus/minus, type is a pointer");
2739 return t;
2741 CHECK_OP (0, "invalid operand to binary operator");
2742 CHECK_OP (1, "invalid operand to binary operator");
2743 break;
2745 case POINTER_PLUS_EXPR:
2746 /* Check to make sure the first operand is a pointer or reference type. */
2747 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
2749 error ("invalid operand to pointer plus, first operand is not a pointer");
2750 return t;
2752 /* Check to make sure the second operand is a ptrofftype. */
2753 if (!ptrofftype_p (TREE_TYPE (TREE_OPERAND (t, 1))))
2755 error ("invalid operand to pointer plus, second operand is not an "
2756 "integer type of appropriate width");
2757 return t;
2759 /* FALLTHROUGH */
2760 case LT_EXPR:
2761 case LE_EXPR:
2762 case GT_EXPR:
2763 case GE_EXPR:
2764 case EQ_EXPR:
2765 case NE_EXPR:
2766 case UNORDERED_EXPR:
2767 case ORDERED_EXPR:
2768 case UNLT_EXPR:
2769 case UNLE_EXPR:
2770 case UNGT_EXPR:
2771 case UNGE_EXPR:
2772 case UNEQ_EXPR:
2773 case LTGT_EXPR:
2774 case MULT_EXPR:
2775 case TRUNC_DIV_EXPR:
2776 case CEIL_DIV_EXPR:
2777 case FLOOR_DIV_EXPR:
2778 case ROUND_DIV_EXPR:
2779 case TRUNC_MOD_EXPR:
2780 case CEIL_MOD_EXPR:
2781 case FLOOR_MOD_EXPR:
2782 case ROUND_MOD_EXPR:
2783 case RDIV_EXPR:
2784 case EXACT_DIV_EXPR:
2785 case MIN_EXPR:
2786 case MAX_EXPR:
2787 case LSHIFT_EXPR:
2788 case RSHIFT_EXPR:
2789 case LROTATE_EXPR:
2790 case RROTATE_EXPR:
2791 case BIT_IOR_EXPR:
2792 case BIT_XOR_EXPR:
2793 case BIT_AND_EXPR:
2794 CHECK_OP (0, "invalid operand to binary operator");
2795 CHECK_OP (1, "invalid operand to binary operator");
2796 break;
2798 case CONSTRUCTOR:
2799 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2800 *walk_subtrees = 0;
2801 break;
2803 case CASE_LABEL_EXPR:
2804 if (CASE_CHAIN (t))
2806 error ("invalid CASE_CHAIN");
2807 return t;
2809 break;
2811 default:
2812 break;
2814 return NULL;
2816 #undef CHECK_OP
2820 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
2821 Returns true if there is an error, otherwise false. */
2823 static bool
2824 verify_types_in_gimple_min_lval (tree expr)
2826 tree op;
2828 if (is_gimple_id (expr))
2829 return false;
2831 if (TREE_CODE (expr) != TARGET_MEM_REF
2832 && TREE_CODE (expr) != MEM_REF)
2834 error ("invalid expression for min lvalue");
2835 return true;
2838 /* TARGET_MEM_REFs are strange beasts. */
2839 if (TREE_CODE (expr) == TARGET_MEM_REF)
2840 return false;
2842 op = TREE_OPERAND (expr, 0);
2843 if (!is_gimple_val (op))
2845 error ("invalid operand in indirect reference");
2846 debug_generic_stmt (op);
2847 return true;
2849 /* Memory references now generally can involve a value conversion. */
2851 return false;
2854 /* Verify if EXPR is a valid GIMPLE reference expression. If
2855 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
2856 if there is an error, otherwise false. */
2858 static bool
2859 verify_types_in_gimple_reference (tree expr, bool require_lvalue)
2861 while (handled_component_p (expr))
2863 tree op = TREE_OPERAND (expr, 0);
2865 if (TREE_CODE (expr) == ARRAY_REF
2866 || TREE_CODE (expr) == ARRAY_RANGE_REF)
2868 if (!is_gimple_val (TREE_OPERAND (expr, 1))
2869 || (TREE_OPERAND (expr, 2)
2870 && !is_gimple_val (TREE_OPERAND (expr, 2)))
2871 || (TREE_OPERAND (expr, 3)
2872 && !is_gimple_val (TREE_OPERAND (expr, 3))))
2874 error ("invalid operands to array reference");
2875 debug_generic_stmt (expr);
2876 return true;
2880 /* Verify if the reference array element types are compatible. */
2881 if (TREE_CODE (expr) == ARRAY_REF
2882 && !useless_type_conversion_p (TREE_TYPE (expr),
2883 TREE_TYPE (TREE_TYPE (op))))
2885 error ("type mismatch in array reference");
2886 debug_generic_stmt (TREE_TYPE (expr));
2887 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2888 return true;
2890 if (TREE_CODE (expr) == ARRAY_RANGE_REF
2891 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
2892 TREE_TYPE (TREE_TYPE (op))))
2894 error ("type mismatch in array range reference");
2895 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
2896 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2897 return true;
2900 if ((TREE_CODE (expr) == REALPART_EXPR
2901 || TREE_CODE (expr) == IMAGPART_EXPR)
2902 && !useless_type_conversion_p (TREE_TYPE (expr),
2903 TREE_TYPE (TREE_TYPE (op))))
2905 error ("type mismatch in real/imagpart reference");
2906 debug_generic_stmt (TREE_TYPE (expr));
2907 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2908 return true;
2911 if (TREE_CODE (expr) == COMPONENT_REF
2912 && !useless_type_conversion_p (TREE_TYPE (expr),
2913 TREE_TYPE (TREE_OPERAND (expr, 1))))
2915 error ("type mismatch in component reference");
2916 debug_generic_stmt (TREE_TYPE (expr));
2917 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
2918 return true;
2921 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
2923 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
2924 that their operand is not an SSA name or an invariant when
2925 requiring an lvalue (this usually means there is a SRA or IPA-SRA
2926 bug). Otherwise there is nothing to verify, gross mismatches at
2927 most invoke undefined behavior. */
2928 if (require_lvalue
2929 && (TREE_CODE (op) == SSA_NAME
2930 || is_gimple_min_invariant (op)))
2932 error ("conversion of an SSA_NAME on the left hand side");
2933 debug_generic_stmt (expr);
2934 return true;
2936 else if (TREE_CODE (op) == SSA_NAME
2937 && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
2939 error ("conversion of register to a different size");
2940 debug_generic_stmt (expr);
2941 return true;
2943 else if (!handled_component_p (op))
2944 return false;
2947 expr = op;
2950 if (TREE_CODE (expr) == MEM_REF)
2952 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0)))
2954 error ("invalid address operand in MEM_REF");
2955 debug_generic_stmt (expr);
2956 return true;
2958 if (TREE_CODE (TREE_OPERAND (expr, 1)) != INTEGER_CST
2959 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
2961 error ("invalid offset operand in MEM_REF");
2962 debug_generic_stmt (expr);
2963 return true;
2966 else if (TREE_CODE (expr) == TARGET_MEM_REF)
2968 if (!TMR_BASE (expr)
2969 || !is_gimple_mem_ref_addr (TMR_BASE (expr)))
2971 error ("invalid address operand in TARGET_MEM_REF");
2972 return true;
2974 if (!TMR_OFFSET (expr)
2975 || TREE_CODE (TMR_OFFSET (expr)) != INTEGER_CST
2976 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr))))
2978 error ("invalid offset operand in TARGET_MEM_REF");
2979 debug_generic_stmt (expr);
2980 return true;
2984 return ((require_lvalue || !is_gimple_min_invariant (expr))
2985 && verify_types_in_gimple_min_lval (expr));
2988 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
2989 list of pointer-to types that is trivially convertible to DEST. */
2991 static bool
2992 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
2994 tree src;
2996 if (!TYPE_POINTER_TO (src_obj))
2997 return true;
2999 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3000 if (useless_type_conversion_p (dest, src))
3001 return true;
3003 return false;
3006 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3007 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3009 static bool
3010 valid_fixed_convert_types_p (tree type1, tree type2)
3012 return (FIXED_POINT_TYPE_P (type1)
3013 && (INTEGRAL_TYPE_P (type2)
3014 || SCALAR_FLOAT_TYPE_P (type2)
3015 || FIXED_POINT_TYPE_P (type2)));
3018 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3019 is a problem, otherwise false. */
3021 static bool
3022 verify_gimple_call (gimple stmt)
3024 tree fn = gimple_call_fn (stmt);
3025 tree fntype, fndecl;
3026 unsigned i;
3028 if (gimple_call_internal_p (stmt))
3030 if (fn)
3032 error ("gimple call has two targets");
3033 debug_generic_stmt (fn);
3034 return true;
3037 else
3039 if (!fn)
3041 error ("gimple call has no target");
3042 return true;
3046 if (fn && !is_gimple_call_addr (fn))
3048 error ("invalid function in gimple call");
3049 debug_generic_stmt (fn);
3050 return true;
3053 if (fn
3054 && (!POINTER_TYPE_P (TREE_TYPE (fn))
3055 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3056 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE)))
3058 error ("non-function in gimple call");
3059 return true;
3062 fndecl = gimple_call_fndecl (stmt);
3063 if (fndecl
3064 && TREE_CODE (fndecl) == FUNCTION_DECL
3065 && DECL_LOOPING_CONST_OR_PURE_P (fndecl)
3066 && !DECL_PURE_P (fndecl)
3067 && !TREE_READONLY (fndecl))
3069 error ("invalid pure const state for function");
3070 return true;
3073 if (gimple_call_lhs (stmt)
3074 && (!is_gimple_lvalue (gimple_call_lhs (stmt))
3075 || verify_types_in_gimple_reference (gimple_call_lhs (stmt), true)))
3077 error ("invalid LHS in gimple call");
3078 return true;
3081 if (gimple_call_lhs (stmt) && gimple_call_noreturn_p (stmt))
3083 error ("LHS in noreturn call");
3084 return true;
3087 fntype = gimple_call_fntype (stmt);
3088 if (fntype
3089 && gimple_call_lhs (stmt)
3090 && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt)),
3091 TREE_TYPE (fntype))
3092 /* ??? At least C++ misses conversions at assignments from
3093 void * call results.
3094 ??? Java is completely off. Especially with functions
3095 returning java.lang.Object.
3096 For now simply allow arbitrary pointer type conversions. */
3097 && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt)))
3098 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3100 error ("invalid conversion in gimple call");
3101 debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt)));
3102 debug_generic_stmt (TREE_TYPE (fntype));
3103 return true;
3106 if (gimple_call_chain (stmt)
3107 && !is_gimple_val (gimple_call_chain (stmt)))
3109 error ("invalid static chain in gimple call");
3110 debug_generic_stmt (gimple_call_chain (stmt));
3111 return true;
3114 /* If there is a static chain argument, this should not be an indirect
3115 call, and the decl should have DECL_STATIC_CHAIN set. */
3116 if (gimple_call_chain (stmt))
3118 if (!gimple_call_fndecl (stmt))
3120 error ("static chain in indirect gimple call");
3121 return true;
3123 fn = TREE_OPERAND (fn, 0);
3125 if (!DECL_STATIC_CHAIN (fn))
3127 error ("static chain with function that doesn%'t use one");
3128 return true;
3132 /* ??? The C frontend passes unpromoted arguments in case it
3133 didn't see a function declaration before the call. So for now
3134 leave the call arguments mostly unverified. Once we gimplify
3135 unit-at-a-time we have a chance to fix this. */
3137 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3139 tree arg = gimple_call_arg (stmt, i);
3140 if ((is_gimple_reg_type (TREE_TYPE (arg))
3141 && !is_gimple_val (arg))
3142 || (!is_gimple_reg_type (TREE_TYPE (arg))
3143 && !is_gimple_lvalue (arg)))
3145 error ("invalid argument to gimple call");
3146 debug_generic_expr (arg);
3147 return true;
3151 return false;
3154 /* Verifies the gimple comparison with the result type TYPE and
3155 the operands OP0 and OP1. */
3157 static bool
3158 verify_gimple_comparison (tree type, tree op0, tree op1)
3160 tree op0_type = TREE_TYPE (op0);
3161 tree op1_type = TREE_TYPE (op1);
3163 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3165 error ("invalid operands in gimple comparison");
3166 return true;
3169 /* For comparisons we do not have the operations type as the
3170 effective type the comparison is carried out in. Instead
3171 we require that either the first operand is trivially
3172 convertible into the second, or the other way around.
3173 Because we special-case pointers to void we allow
3174 comparisons of pointers with the same mode as well. */
3175 if (!useless_type_conversion_p (op0_type, op1_type)
3176 && !useless_type_conversion_p (op1_type, op0_type)
3177 && (!POINTER_TYPE_P (op0_type)
3178 || !POINTER_TYPE_P (op1_type)
3179 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3181 error ("mismatching comparison operand types");
3182 debug_generic_expr (op0_type);
3183 debug_generic_expr (op1_type);
3184 return true;
3187 /* The resulting type of a comparison may be an effective boolean type. */
3188 if (INTEGRAL_TYPE_P (type)
3189 && (TREE_CODE (type) == BOOLEAN_TYPE
3190 || TYPE_PRECISION (type) == 1))
3192 if (TREE_CODE (op0_type) == VECTOR_TYPE
3193 || TREE_CODE (op1_type) == VECTOR_TYPE)
3195 error ("vector comparison returning a boolean");
3196 debug_generic_expr (op0_type);
3197 debug_generic_expr (op1_type);
3198 return true;
3201 /* Or an integer vector type with the same size and element count
3202 as the comparison operand types. */
3203 else if (TREE_CODE (type) == VECTOR_TYPE
3204 && TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE)
3206 if (TREE_CODE (op0_type) != VECTOR_TYPE
3207 || TREE_CODE (op1_type) != VECTOR_TYPE)
3209 error ("non-vector operands in vector comparison");
3210 debug_generic_expr (op0_type);
3211 debug_generic_expr (op1_type);
3212 return true;
3215 if (TYPE_VECTOR_SUBPARTS (type) != TYPE_VECTOR_SUBPARTS (op0_type)
3216 || (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (type)))
3217 != GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0_type))))
3218 /* The result of a vector comparison is of signed
3219 integral type. */
3220 || TYPE_UNSIGNED (TREE_TYPE (type)))
3222 error ("invalid vector comparison resulting type");
3223 debug_generic_expr (type);
3224 return true;
3227 else
3229 error ("bogus comparison result type");
3230 debug_generic_expr (type);
3231 return true;
3234 return false;
3237 /* Verify a gimple assignment statement STMT with an unary rhs.
3238 Returns true if anything is wrong. */
3240 static bool
3241 verify_gimple_assign_unary (gimple stmt)
3243 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3244 tree lhs = gimple_assign_lhs (stmt);
3245 tree lhs_type = TREE_TYPE (lhs);
3246 tree rhs1 = gimple_assign_rhs1 (stmt);
3247 tree rhs1_type = TREE_TYPE (rhs1);
3249 if (!is_gimple_reg (lhs))
3251 error ("non-register as LHS of unary operation");
3252 return true;
3255 if (!is_gimple_val (rhs1))
3257 error ("invalid operand in unary operation");
3258 return true;
3261 /* First handle conversions. */
3262 switch (rhs_code)
3264 CASE_CONVERT:
3266 /* Allow conversions from pointer type to integral type only if
3267 there is no sign or zero extension involved.
3268 For targets were the precision of ptrofftype doesn't match that
3269 of pointers we need to allow arbitrary conversions to ptrofftype. */
3270 if ((POINTER_TYPE_P (lhs_type)
3271 && INTEGRAL_TYPE_P (rhs1_type))
3272 || (POINTER_TYPE_P (rhs1_type)
3273 && INTEGRAL_TYPE_P (lhs_type)
3274 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3275 || ptrofftype_p (sizetype))))
3276 return false;
3278 /* Allow conversion from integral to offset type and vice versa. */
3279 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3280 && INTEGRAL_TYPE_P (rhs1_type))
3281 || (INTEGRAL_TYPE_P (lhs_type)
3282 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3283 return false;
3285 /* Otherwise assert we are converting between types of the
3286 same kind. */
3287 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3289 error ("invalid types in nop conversion");
3290 debug_generic_expr (lhs_type);
3291 debug_generic_expr (rhs1_type);
3292 return true;
3295 return false;
3298 case ADDR_SPACE_CONVERT_EXPR:
3300 if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
3301 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
3302 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
3304 error ("invalid types in address space conversion");
3305 debug_generic_expr (lhs_type);
3306 debug_generic_expr (rhs1_type);
3307 return true;
3310 return false;
3313 case FIXED_CONVERT_EXPR:
3315 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3316 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3318 error ("invalid types in fixed-point conversion");
3319 debug_generic_expr (lhs_type);
3320 debug_generic_expr (rhs1_type);
3321 return true;
3324 return false;
3327 case FLOAT_EXPR:
3329 if ((!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3330 && (!VECTOR_INTEGER_TYPE_P (rhs1_type)
3331 || !VECTOR_FLOAT_TYPE_P(lhs_type)))
3333 error ("invalid types in conversion to floating point");
3334 debug_generic_expr (lhs_type);
3335 debug_generic_expr (rhs1_type);
3336 return true;
3339 return false;
3342 case FIX_TRUNC_EXPR:
3344 if ((!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3345 && (!VECTOR_INTEGER_TYPE_P (lhs_type)
3346 || !VECTOR_FLOAT_TYPE_P(rhs1_type)))
3348 error ("invalid types in conversion to integer");
3349 debug_generic_expr (lhs_type);
3350 debug_generic_expr (rhs1_type);
3351 return true;
3354 return false;
3357 case VEC_UNPACK_HI_EXPR:
3358 case VEC_UNPACK_LO_EXPR:
3359 case REDUC_MAX_EXPR:
3360 case REDUC_MIN_EXPR:
3361 case REDUC_PLUS_EXPR:
3362 case VEC_UNPACK_FLOAT_HI_EXPR:
3363 case VEC_UNPACK_FLOAT_LO_EXPR:
3364 /* FIXME. */
3365 return false;
3367 case NEGATE_EXPR:
3368 case ABS_EXPR:
3369 case BIT_NOT_EXPR:
3370 case PAREN_EXPR:
3371 case NON_LVALUE_EXPR:
3372 case CONJ_EXPR:
3373 break;
3375 default:
3376 gcc_unreachable ();
3379 /* For the remaining codes assert there is no conversion involved. */
3380 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3382 error ("non-trivial conversion in unary operation");
3383 debug_generic_expr (lhs_type);
3384 debug_generic_expr (rhs1_type);
3385 return true;
3388 return false;
3391 /* Verify a gimple assignment statement STMT with a binary rhs.
3392 Returns true if anything is wrong. */
3394 static bool
3395 verify_gimple_assign_binary (gimple stmt)
3397 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3398 tree lhs = gimple_assign_lhs (stmt);
3399 tree lhs_type = TREE_TYPE (lhs);
3400 tree rhs1 = gimple_assign_rhs1 (stmt);
3401 tree rhs1_type = TREE_TYPE (rhs1);
3402 tree rhs2 = gimple_assign_rhs2 (stmt);
3403 tree rhs2_type = TREE_TYPE (rhs2);
3405 if (!is_gimple_reg (lhs))
3407 error ("non-register as LHS of binary operation");
3408 return true;
3411 if (!is_gimple_val (rhs1)
3412 || !is_gimple_val (rhs2))
3414 error ("invalid operands in binary operation");
3415 return true;
3418 /* First handle operations that involve different types. */
3419 switch (rhs_code)
3421 case COMPLEX_EXPR:
3423 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3424 || !(INTEGRAL_TYPE_P (rhs1_type)
3425 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3426 || !(INTEGRAL_TYPE_P (rhs2_type)
3427 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3429 error ("type mismatch in complex expression");
3430 debug_generic_expr (lhs_type);
3431 debug_generic_expr (rhs1_type);
3432 debug_generic_expr (rhs2_type);
3433 return true;
3436 return false;
3439 case LSHIFT_EXPR:
3440 case RSHIFT_EXPR:
3441 case LROTATE_EXPR:
3442 case RROTATE_EXPR:
3444 /* Shifts and rotates are ok on integral types, fixed point
3445 types and integer vector types. */
3446 if ((!INTEGRAL_TYPE_P (rhs1_type)
3447 && !FIXED_POINT_TYPE_P (rhs1_type)
3448 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3449 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3450 || (!INTEGRAL_TYPE_P (rhs2_type)
3451 /* Vector shifts of vectors are also ok. */
3452 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3453 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3454 && TREE_CODE (rhs2_type) == VECTOR_TYPE
3455 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3456 || !useless_type_conversion_p (lhs_type, rhs1_type))
3458 error ("type mismatch in shift expression");
3459 debug_generic_expr (lhs_type);
3460 debug_generic_expr (rhs1_type);
3461 debug_generic_expr (rhs2_type);
3462 return true;
3465 return false;
3468 case VEC_LSHIFT_EXPR:
3469 case VEC_RSHIFT_EXPR:
3471 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3472 || !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3473 || POINTER_TYPE_P (TREE_TYPE (rhs1_type))
3474 || FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type))
3475 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type)))
3476 || (!INTEGRAL_TYPE_P (rhs2_type)
3477 && (TREE_CODE (rhs2_type) != VECTOR_TYPE
3478 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3479 || !useless_type_conversion_p (lhs_type, rhs1_type))
3481 error ("type mismatch in vector shift expression");
3482 debug_generic_expr (lhs_type);
3483 debug_generic_expr (rhs1_type);
3484 debug_generic_expr (rhs2_type);
3485 return true;
3487 /* For shifting a vector of non-integral components we
3488 only allow shifting by a constant multiple of the element size. */
3489 if (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3490 && (TREE_CODE (rhs2) != INTEGER_CST
3491 || !div_if_zero_remainder (EXACT_DIV_EXPR, rhs2,
3492 TYPE_SIZE (TREE_TYPE (rhs1_type)))))
3494 error ("non-element sized vector shift of floating point vector");
3495 return true;
3498 return false;
3501 case WIDEN_LSHIFT_EXPR:
3503 if (!INTEGRAL_TYPE_P (lhs_type)
3504 || !INTEGRAL_TYPE_P (rhs1_type)
3505 || TREE_CODE (rhs2) != INTEGER_CST
3506 || (2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)))
3508 error ("type mismatch in widening vector shift expression");
3509 debug_generic_expr (lhs_type);
3510 debug_generic_expr (rhs1_type);
3511 debug_generic_expr (rhs2_type);
3512 return true;
3515 return false;
3518 case VEC_WIDEN_LSHIFT_HI_EXPR:
3519 case VEC_WIDEN_LSHIFT_LO_EXPR:
3521 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3522 || TREE_CODE (lhs_type) != VECTOR_TYPE
3523 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3524 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))
3525 || TREE_CODE (rhs2) != INTEGER_CST
3526 || (2 * TYPE_PRECISION (TREE_TYPE (rhs1_type))
3527 > TYPE_PRECISION (TREE_TYPE (lhs_type))))
3529 error ("type mismatch in widening vector shift expression");
3530 debug_generic_expr (lhs_type);
3531 debug_generic_expr (rhs1_type);
3532 debug_generic_expr (rhs2_type);
3533 return true;
3536 return false;
3539 case PLUS_EXPR:
3540 case MINUS_EXPR:
3542 /* We use regular PLUS_EXPR and MINUS_EXPR for vectors.
3543 ??? This just makes the checker happy and may not be what is
3544 intended. */
3545 if (TREE_CODE (lhs_type) == VECTOR_TYPE
3546 && POINTER_TYPE_P (TREE_TYPE (lhs_type)))
3548 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3549 || TREE_CODE (rhs2_type) != VECTOR_TYPE)
3551 error ("invalid non-vector operands to vector valued plus");
3552 return true;
3554 lhs_type = TREE_TYPE (lhs_type);
3555 rhs1_type = TREE_TYPE (rhs1_type);
3556 rhs2_type = TREE_TYPE (rhs2_type);
3557 /* PLUS_EXPR is commutative, so we might end up canonicalizing
3558 the pointer to 2nd place. */
3559 if (POINTER_TYPE_P (rhs2_type))
3561 tree tem = rhs1_type;
3562 rhs1_type = rhs2_type;
3563 rhs2_type = tem;
3565 goto do_pointer_plus_expr_check;
3567 if (POINTER_TYPE_P (lhs_type)
3568 || POINTER_TYPE_P (rhs1_type)
3569 || POINTER_TYPE_P (rhs2_type))
3571 error ("invalid (pointer) operands to plus/minus");
3572 return true;
3575 /* Continue with generic binary expression handling. */
3576 break;
3579 case POINTER_PLUS_EXPR:
3581 do_pointer_plus_expr_check:
3582 if (!POINTER_TYPE_P (rhs1_type)
3583 || !useless_type_conversion_p (lhs_type, rhs1_type)
3584 || !ptrofftype_p (rhs2_type))
3586 error ("type mismatch in pointer plus expression");
3587 debug_generic_stmt (lhs_type);
3588 debug_generic_stmt (rhs1_type);
3589 debug_generic_stmt (rhs2_type);
3590 return true;
3593 return false;
3596 case TRUTH_ANDIF_EXPR:
3597 case TRUTH_ORIF_EXPR:
3598 case TRUTH_AND_EXPR:
3599 case TRUTH_OR_EXPR:
3600 case TRUTH_XOR_EXPR:
3602 gcc_unreachable ();
3604 case LT_EXPR:
3605 case LE_EXPR:
3606 case GT_EXPR:
3607 case GE_EXPR:
3608 case EQ_EXPR:
3609 case NE_EXPR:
3610 case UNORDERED_EXPR:
3611 case ORDERED_EXPR:
3612 case UNLT_EXPR:
3613 case UNLE_EXPR:
3614 case UNGT_EXPR:
3615 case UNGE_EXPR:
3616 case UNEQ_EXPR:
3617 case LTGT_EXPR:
3618 /* Comparisons are also binary, but the result type is not
3619 connected to the operand types. */
3620 return verify_gimple_comparison (lhs_type, rhs1, rhs2);
3622 case WIDEN_MULT_EXPR:
3623 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
3624 return true;
3625 return ((2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type))
3626 || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)));
3628 case WIDEN_SUM_EXPR:
3629 case VEC_WIDEN_MULT_HI_EXPR:
3630 case VEC_WIDEN_MULT_LO_EXPR:
3631 case VEC_WIDEN_MULT_EVEN_EXPR:
3632 case VEC_WIDEN_MULT_ODD_EXPR:
3633 case VEC_PACK_TRUNC_EXPR:
3634 case VEC_PACK_SAT_EXPR:
3635 case VEC_PACK_FIX_TRUNC_EXPR:
3636 /* FIXME. */
3637 return false;
3639 case MULT_EXPR:
3640 case MULT_HIGHPART_EXPR:
3641 case TRUNC_DIV_EXPR:
3642 case CEIL_DIV_EXPR:
3643 case FLOOR_DIV_EXPR:
3644 case ROUND_DIV_EXPR:
3645 case TRUNC_MOD_EXPR:
3646 case CEIL_MOD_EXPR:
3647 case FLOOR_MOD_EXPR:
3648 case ROUND_MOD_EXPR:
3649 case RDIV_EXPR:
3650 case EXACT_DIV_EXPR:
3651 case MIN_EXPR:
3652 case MAX_EXPR:
3653 case BIT_IOR_EXPR:
3654 case BIT_XOR_EXPR:
3655 case BIT_AND_EXPR:
3656 /* Continue with generic binary expression handling. */
3657 break;
3659 default:
3660 gcc_unreachable ();
3663 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3664 || !useless_type_conversion_p (lhs_type, rhs2_type))
3666 error ("type mismatch in binary expression");
3667 debug_generic_stmt (lhs_type);
3668 debug_generic_stmt (rhs1_type);
3669 debug_generic_stmt (rhs2_type);
3670 return true;
3673 return false;
3676 /* Verify a gimple assignment statement STMT with a ternary rhs.
3677 Returns true if anything is wrong. */
3679 static bool
3680 verify_gimple_assign_ternary (gimple stmt)
3682 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3683 tree lhs = gimple_assign_lhs (stmt);
3684 tree lhs_type = TREE_TYPE (lhs);
3685 tree rhs1 = gimple_assign_rhs1 (stmt);
3686 tree rhs1_type = TREE_TYPE (rhs1);
3687 tree rhs2 = gimple_assign_rhs2 (stmt);
3688 tree rhs2_type = TREE_TYPE (rhs2);
3689 tree rhs3 = gimple_assign_rhs3 (stmt);
3690 tree rhs3_type = TREE_TYPE (rhs3);
3692 if (!is_gimple_reg (lhs))
3694 error ("non-register as LHS of ternary operation");
3695 return true;
3698 if (((rhs_code == VEC_COND_EXPR || rhs_code == COND_EXPR)
3699 ? !is_gimple_condexpr (rhs1) : !is_gimple_val (rhs1))
3700 || !is_gimple_val (rhs2)
3701 || !is_gimple_val (rhs3))
3703 error ("invalid operands in ternary operation");
3704 return true;
3707 /* First handle operations that involve different types. */
3708 switch (rhs_code)
3710 case WIDEN_MULT_PLUS_EXPR:
3711 case WIDEN_MULT_MINUS_EXPR:
3712 if ((!INTEGRAL_TYPE_P (rhs1_type)
3713 && !FIXED_POINT_TYPE_P (rhs1_type))
3714 || !useless_type_conversion_p (rhs1_type, rhs2_type)
3715 || !useless_type_conversion_p (lhs_type, rhs3_type)
3716 || 2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)
3717 || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))
3719 error ("type mismatch in widening multiply-accumulate expression");
3720 debug_generic_expr (lhs_type);
3721 debug_generic_expr (rhs1_type);
3722 debug_generic_expr (rhs2_type);
3723 debug_generic_expr (rhs3_type);
3724 return true;
3726 break;
3728 case FMA_EXPR:
3729 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3730 || !useless_type_conversion_p (lhs_type, rhs2_type)
3731 || !useless_type_conversion_p (lhs_type, rhs3_type))
3733 error ("type mismatch in fused multiply-add expression");
3734 debug_generic_expr (lhs_type);
3735 debug_generic_expr (rhs1_type);
3736 debug_generic_expr (rhs2_type);
3737 debug_generic_expr (rhs3_type);
3738 return true;
3740 break;
3742 case COND_EXPR:
3743 case VEC_COND_EXPR:
3744 if (!useless_type_conversion_p (lhs_type, rhs2_type)
3745 || !useless_type_conversion_p (lhs_type, rhs3_type))
3747 error ("type mismatch in conditional expression");
3748 debug_generic_expr (lhs_type);
3749 debug_generic_expr (rhs2_type);
3750 debug_generic_expr (rhs3_type);
3751 return true;
3753 break;
3755 case VEC_PERM_EXPR:
3756 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3757 || !useless_type_conversion_p (lhs_type, rhs2_type))
3759 error ("type mismatch in vector permute expression");
3760 debug_generic_expr (lhs_type);
3761 debug_generic_expr (rhs1_type);
3762 debug_generic_expr (rhs2_type);
3763 debug_generic_expr (rhs3_type);
3764 return true;
3767 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3768 || TREE_CODE (rhs2_type) != VECTOR_TYPE
3769 || TREE_CODE (rhs3_type) != VECTOR_TYPE)
3771 error ("vector types expected in vector permute expression");
3772 debug_generic_expr (lhs_type);
3773 debug_generic_expr (rhs1_type);
3774 debug_generic_expr (rhs2_type);
3775 debug_generic_expr (rhs3_type);
3776 return true;
3779 if (TYPE_VECTOR_SUBPARTS (rhs1_type) != TYPE_VECTOR_SUBPARTS (rhs2_type)
3780 || TYPE_VECTOR_SUBPARTS (rhs2_type)
3781 != TYPE_VECTOR_SUBPARTS (rhs3_type)
3782 || TYPE_VECTOR_SUBPARTS (rhs3_type)
3783 != TYPE_VECTOR_SUBPARTS (lhs_type))
3785 error ("vectors with different element number found "
3786 "in vector permute expression");
3787 debug_generic_expr (lhs_type);
3788 debug_generic_expr (rhs1_type);
3789 debug_generic_expr (rhs2_type);
3790 debug_generic_expr (rhs3_type);
3791 return true;
3794 if (TREE_CODE (TREE_TYPE (rhs3_type)) != INTEGER_TYPE
3795 || GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs3_type)))
3796 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type))))
3798 error ("invalid mask type in vector permute expression");
3799 debug_generic_expr (lhs_type);
3800 debug_generic_expr (rhs1_type);
3801 debug_generic_expr (rhs2_type);
3802 debug_generic_expr (rhs3_type);
3803 return true;
3806 return false;
3808 case DOT_PROD_EXPR:
3809 case REALIGN_LOAD_EXPR:
3810 /* FIXME. */
3811 return false;
3813 default:
3814 gcc_unreachable ();
3816 return false;
3819 /* Verify a gimple assignment statement STMT with a single rhs.
3820 Returns true if anything is wrong. */
3822 static bool
3823 verify_gimple_assign_single (gimple stmt)
3825 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3826 tree lhs = gimple_assign_lhs (stmt);
3827 tree lhs_type = TREE_TYPE (lhs);
3828 tree rhs1 = gimple_assign_rhs1 (stmt);
3829 tree rhs1_type = TREE_TYPE (rhs1);
3830 bool res = false;
3832 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3834 error ("non-trivial conversion at assignment");
3835 debug_generic_expr (lhs_type);
3836 debug_generic_expr (rhs1_type);
3837 return true;
3840 if (gimple_clobber_p (stmt)
3841 && !(DECL_P (lhs) || TREE_CODE (lhs) == MEM_REF))
3843 error ("non-decl/MEM_REF LHS in clobber statement");
3844 debug_generic_expr (lhs);
3845 return true;
3848 if (handled_component_p (lhs))
3849 res |= verify_types_in_gimple_reference (lhs, true);
3851 /* Special codes we cannot handle via their class. */
3852 switch (rhs_code)
3854 case ADDR_EXPR:
3856 tree op = TREE_OPERAND (rhs1, 0);
3857 if (!is_gimple_addressable (op))
3859 error ("invalid operand in unary expression");
3860 return true;
3863 /* Technically there is no longer a need for matching types, but
3864 gimple hygiene asks for this check. In LTO we can end up
3865 combining incompatible units and thus end up with addresses
3866 of globals that change their type to a common one. */
3867 if (!in_lto_p
3868 && !types_compatible_p (TREE_TYPE (op),
3869 TREE_TYPE (TREE_TYPE (rhs1)))
3870 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
3871 TREE_TYPE (op)))
3873 error ("type mismatch in address expression");
3874 debug_generic_stmt (TREE_TYPE (rhs1));
3875 debug_generic_stmt (TREE_TYPE (op));
3876 return true;
3879 return verify_types_in_gimple_reference (op, true);
3882 /* tcc_reference */
3883 case INDIRECT_REF:
3884 error ("INDIRECT_REF in gimple IL");
3885 return true;
3887 case COMPONENT_REF:
3888 case BIT_FIELD_REF:
3889 case ARRAY_REF:
3890 case ARRAY_RANGE_REF:
3891 case VIEW_CONVERT_EXPR:
3892 case REALPART_EXPR:
3893 case IMAGPART_EXPR:
3894 case TARGET_MEM_REF:
3895 case MEM_REF:
3896 if (!is_gimple_reg (lhs)
3897 && is_gimple_reg_type (TREE_TYPE (lhs)))
3899 error ("invalid rhs for gimple memory store");
3900 debug_generic_stmt (lhs);
3901 debug_generic_stmt (rhs1);
3902 return true;
3904 return res || verify_types_in_gimple_reference (rhs1, false);
3906 /* tcc_constant */
3907 case SSA_NAME:
3908 case INTEGER_CST:
3909 case REAL_CST:
3910 case FIXED_CST:
3911 case COMPLEX_CST:
3912 case VECTOR_CST:
3913 case STRING_CST:
3914 return res;
3916 /* tcc_declaration */
3917 case CONST_DECL:
3918 return res;
3919 case VAR_DECL:
3920 case PARM_DECL:
3921 if (!is_gimple_reg (lhs)
3922 && !is_gimple_reg (rhs1)
3923 && is_gimple_reg_type (TREE_TYPE (lhs)))
3925 error ("invalid rhs for gimple memory store");
3926 debug_generic_stmt (lhs);
3927 debug_generic_stmt (rhs1);
3928 return true;
3930 return res;
3932 case CONSTRUCTOR:
3933 if (TREE_CODE (rhs1_type) == VECTOR_TYPE)
3935 unsigned int i;
3936 tree elt_i, elt_v, elt_t = NULL_TREE;
3938 if (CONSTRUCTOR_NELTS (rhs1) == 0)
3939 return res;
3940 /* For vector CONSTRUCTORs we require that either it is empty
3941 CONSTRUCTOR, or it is a CONSTRUCTOR of smaller vector elements
3942 (then the element count must be correct to cover the whole
3943 outer vector and index must be NULL on all elements, or it is
3944 a CONSTRUCTOR of scalar elements, where we as an exception allow
3945 smaller number of elements (assuming zero filling) and
3946 consecutive indexes as compared to NULL indexes (such
3947 CONSTRUCTORs can appear in the IL from FEs). */
3948 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (rhs1), i, elt_i, elt_v)
3950 if (elt_t == NULL_TREE)
3952 elt_t = TREE_TYPE (elt_v);
3953 if (TREE_CODE (elt_t) == VECTOR_TYPE)
3955 tree elt_t = TREE_TYPE (elt_v);
3956 if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
3957 TREE_TYPE (elt_t)))
3959 error ("incorrect type of vector CONSTRUCTOR"
3960 " elements");
3961 debug_generic_stmt (rhs1);
3962 return true;
3964 else if (CONSTRUCTOR_NELTS (rhs1)
3965 * TYPE_VECTOR_SUBPARTS (elt_t)
3966 != TYPE_VECTOR_SUBPARTS (rhs1_type))
3968 error ("incorrect number of vector CONSTRUCTOR"
3969 " elements");
3970 debug_generic_stmt (rhs1);
3971 return true;
3974 else if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
3975 elt_t))
3977 error ("incorrect type of vector CONSTRUCTOR elements");
3978 debug_generic_stmt (rhs1);
3979 return true;
3981 else if (CONSTRUCTOR_NELTS (rhs1)
3982 > TYPE_VECTOR_SUBPARTS (rhs1_type))
3984 error ("incorrect number of vector CONSTRUCTOR elements");
3985 debug_generic_stmt (rhs1);
3986 return true;
3989 else if (!useless_type_conversion_p (elt_t, TREE_TYPE (elt_v)))
3991 error ("incorrect type of vector CONSTRUCTOR elements");
3992 debug_generic_stmt (rhs1);
3993 return true;
3995 if (elt_i != NULL_TREE
3996 && (TREE_CODE (elt_t) == VECTOR_TYPE
3997 || TREE_CODE (elt_i) != INTEGER_CST
3998 || compare_tree_int (elt_i, i) != 0))
4000 error ("vector CONSTRUCTOR with non-NULL element index");
4001 debug_generic_stmt (rhs1);
4002 return true;
4006 return res;
4007 case OBJ_TYPE_REF:
4008 case ASSERT_EXPR:
4009 case WITH_SIZE_EXPR:
4010 /* FIXME. */
4011 return res;
4013 default:;
4016 return res;
4019 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
4020 is a problem, otherwise false. */
4022 static bool
4023 verify_gimple_assign (gimple stmt)
4025 switch (gimple_assign_rhs_class (stmt))
4027 case GIMPLE_SINGLE_RHS:
4028 return verify_gimple_assign_single (stmt);
4030 case GIMPLE_UNARY_RHS:
4031 return verify_gimple_assign_unary (stmt);
4033 case GIMPLE_BINARY_RHS:
4034 return verify_gimple_assign_binary (stmt);
4036 case GIMPLE_TERNARY_RHS:
4037 return verify_gimple_assign_ternary (stmt);
4039 default:
4040 gcc_unreachable ();
4044 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
4045 is a problem, otherwise false. */
4047 static bool
4048 verify_gimple_return (gimple stmt)
4050 tree op = gimple_return_retval (stmt);
4051 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
4053 /* We cannot test for present return values as we do not fix up missing
4054 return values from the original source. */
4055 if (op == NULL)
4056 return false;
4058 if (!is_gimple_val (op)
4059 && TREE_CODE (op) != RESULT_DECL)
4061 error ("invalid operand in return statement");
4062 debug_generic_stmt (op);
4063 return true;
4066 if ((TREE_CODE (op) == RESULT_DECL
4067 && DECL_BY_REFERENCE (op))
4068 || (TREE_CODE (op) == SSA_NAME
4069 && SSA_NAME_VAR (op)
4070 && TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL
4071 && DECL_BY_REFERENCE (SSA_NAME_VAR (op))))
4072 op = TREE_TYPE (op);
4074 if (!useless_type_conversion_p (restype, TREE_TYPE (op)))
4076 error ("invalid conversion in return statement");
4077 debug_generic_stmt (restype);
4078 debug_generic_stmt (TREE_TYPE (op));
4079 return true;
4082 return false;
4086 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
4087 is a problem, otherwise false. */
4089 static bool
4090 verify_gimple_goto (gimple stmt)
4092 tree dest = gimple_goto_dest (stmt);
4094 /* ??? We have two canonical forms of direct goto destinations, a
4095 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
4096 if (TREE_CODE (dest) != LABEL_DECL
4097 && (!is_gimple_val (dest)
4098 || !POINTER_TYPE_P (TREE_TYPE (dest))))
4100 error ("goto destination is neither a label nor a pointer");
4101 return true;
4104 return false;
4107 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
4108 is a problem, otherwise false. */
4110 static bool
4111 verify_gimple_switch (gimple stmt)
4113 unsigned int i, n;
4114 tree elt, prev_upper_bound = NULL_TREE;
4115 tree index_type, elt_type = NULL_TREE;
4117 if (!is_gimple_val (gimple_switch_index (stmt)))
4119 error ("invalid operand to switch statement");
4120 debug_generic_stmt (gimple_switch_index (stmt));
4121 return true;
4124 index_type = TREE_TYPE (gimple_switch_index (stmt));
4125 if (! INTEGRAL_TYPE_P (index_type))
4127 error ("non-integral type switch statement");
4128 debug_generic_expr (index_type);
4129 return true;
4132 elt = gimple_switch_label (stmt, 0);
4133 if (CASE_LOW (elt) != NULL_TREE || CASE_HIGH (elt) != NULL_TREE)
4135 error ("invalid default case label in switch statement");
4136 debug_generic_expr (elt);
4137 return true;
4140 n = gimple_switch_num_labels (stmt);
4141 for (i = 1; i < n; i++)
4143 elt = gimple_switch_label (stmt, i);
4145 if (! CASE_LOW (elt))
4147 error ("invalid case label in switch statement");
4148 debug_generic_expr (elt);
4149 return true;
4151 if (CASE_HIGH (elt)
4152 && ! tree_int_cst_lt (CASE_LOW (elt), CASE_HIGH (elt)))
4154 error ("invalid case range in switch statement");
4155 debug_generic_expr (elt);
4156 return true;
4159 if (elt_type)
4161 if (TREE_TYPE (CASE_LOW (elt)) != elt_type
4162 || (CASE_HIGH (elt) && TREE_TYPE (CASE_HIGH (elt)) != elt_type))
4164 error ("type mismatch for case label in switch statement");
4165 debug_generic_expr (elt);
4166 return true;
4169 else
4171 elt_type = TREE_TYPE (CASE_LOW (elt));
4172 if (TYPE_PRECISION (index_type) < TYPE_PRECISION (elt_type))
4174 error ("type precision mismatch in switch statement");
4175 return true;
4179 if (prev_upper_bound)
4181 if (! tree_int_cst_lt (prev_upper_bound, CASE_LOW (elt)))
4183 error ("case labels not sorted in switch statement");
4184 return true;
4188 prev_upper_bound = CASE_HIGH (elt);
4189 if (! prev_upper_bound)
4190 prev_upper_bound = CASE_LOW (elt);
4193 return false;
4196 /* Verify a gimple debug statement STMT.
4197 Returns true if anything is wrong. */
4199 static bool
4200 verify_gimple_debug (gimple stmt ATTRIBUTE_UNUSED)
4202 /* There isn't much that could be wrong in a gimple debug stmt. A
4203 gimple debug bind stmt, for example, maps a tree, that's usually
4204 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
4205 component or member of an aggregate type, to another tree, that
4206 can be an arbitrary expression. These stmts expand into debug
4207 insns, and are converted to debug notes by var-tracking.c. */
4208 return false;
4211 /* Verify a gimple label statement STMT.
4212 Returns true if anything is wrong. */
4214 static bool
4215 verify_gimple_label (gimple stmt)
4217 tree decl = gimple_label_label (stmt);
4218 int uid;
4219 bool err = false;
4221 if (TREE_CODE (decl) != LABEL_DECL)
4222 return true;
4224 uid = LABEL_DECL_UID (decl);
4225 if (cfun->cfg
4226 && (uid == -1 || (*label_to_block_map)[uid] != gimple_bb (stmt)))
4228 error ("incorrect entry in label_to_block_map");
4229 err |= true;
4232 uid = EH_LANDING_PAD_NR (decl);
4233 if (uid)
4235 eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
4236 if (decl != lp->post_landing_pad)
4238 error ("incorrect setting of landing pad number");
4239 err |= true;
4243 return err;
4246 /* Verify the GIMPLE statement STMT. Returns true if there is an
4247 error, otherwise false. */
4249 static bool
4250 verify_gimple_stmt (gimple stmt)
4252 switch (gimple_code (stmt))
4254 case GIMPLE_ASSIGN:
4255 return verify_gimple_assign (stmt);
4257 case GIMPLE_LABEL:
4258 return verify_gimple_label (stmt);
4260 case GIMPLE_CALL:
4261 return verify_gimple_call (stmt);
4263 case GIMPLE_COND:
4264 if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
4266 error ("invalid comparison code in gimple cond");
4267 return true;
4269 if (!(!gimple_cond_true_label (stmt)
4270 || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
4271 || !(!gimple_cond_false_label (stmt)
4272 || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
4274 error ("invalid labels in gimple cond");
4275 return true;
4278 return verify_gimple_comparison (boolean_type_node,
4279 gimple_cond_lhs (stmt),
4280 gimple_cond_rhs (stmt));
4282 case GIMPLE_GOTO:
4283 return verify_gimple_goto (stmt);
4285 case GIMPLE_SWITCH:
4286 return verify_gimple_switch (stmt);
4288 case GIMPLE_RETURN:
4289 return verify_gimple_return (stmt);
4291 case GIMPLE_ASM:
4292 return false;
4294 case GIMPLE_TRANSACTION:
4295 return verify_gimple_transaction (stmt);
4297 /* Tuples that do not have tree operands. */
4298 case GIMPLE_NOP:
4299 case GIMPLE_PREDICT:
4300 case GIMPLE_RESX:
4301 case GIMPLE_EH_DISPATCH:
4302 case GIMPLE_EH_MUST_NOT_THROW:
4303 return false;
4305 CASE_GIMPLE_OMP:
4306 /* OpenMP directives are validated by the FE and never operated
4307 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4308 non-gimple expressions when the main index variable has had
4309 its address taken. This does not affect the loop itself
4310 because the header of an GIMPLE_OMP_FOR is merely used to determine
4311 how to setup the parallel iteration. */
4312 return false;
4314 case GIMPLE_DEBUG:
4315 return verify_gimple_debug (stmt);
4317 default:
4318 gcc_unreachable ();
4322 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
4323 and false otherwise. */
4325 static bool
4326 verify_gimple_phi (gimple phi)
4328 bool err = false;
4329 unsigned i;
4330 tree phi_result = gimple_phi_result (phi);
4331 bool virtual_p;
4333 if (!phi_result)
4335 error ("invalid PHI result");
4336 return true;
4339 virtual_p = virtual_operand_p (phi_result);
4340 if (TREE_CODE (phi_result) != SSA_NAME
4341 || (virtual_p
4342 && SSA_NAME_VAR (phi_result) != gimple_vop (cfun)))
4344 error ("invalid PHI result");
4345 err = true;
4348 for (i = 0; i < gimple_phi_num_args (phi); i++)
4350 tree t = gimple_phi_arg_def (phi, i);
4352 if (!t)
4354 error ("missing PHI def");
4355 err |= true;
4356 continue;
4358 /* Addressable variables do have SSA_NAMEs but they
4359 are not considered gimple values. */
4360 else if ((TREE_CODE (t) == SSA_NAME
4361 && virtual_p != virtual_operand_p (t))
4362 || (virtual_p
4363 && (TREE_CODE (t) != SSA_NAME
4364 || SSA_NAME_VAR (t) != gimple_vop (cfun)))
4365 || (!virtual_p
4366 && !is_gimple_val (t)))
4368 error ("invalid PHI argument");
4369 debug_generic_expr (t);
4370 err |= true;
4372 #ifdef ENABLE_TYPES_CHECKING
4373 if (!useless_type_conversion_p (TREE_TYPE (phi_result), TREE_TYPE (t)))
4375 error ("incompatible types in PHI argument %u", i);
4376 debug_generic_stmt (TREE_TYPE (phi_result));
4377 debug_generic_stmt (TREE_TYPE (t));
4378 err |= true;
4380 #endif
4383 return err;
4386 /* Verify the GIMPLE statements inside the sequence STMTS. */
4388 static bool
4389 verify_gimple_in_seq_2 (gimple_seq stmts)
4391 gimple_stmt_iterator ittr;
4392 bool err = false;
4394 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
4396 gimple stmt = gsi_stmt (ittr);
4398 switch (gimple_code (stmt))
4400 case GIMPLE_BIND:
4401 err |= verify_gimple_in_seq_2 (gimple_bind_body (stmt));
4402 break;
4404 case GIMPLE_TRY:
4405 err |= verify_gimple_in_seq_2 (gimple_try_eval (stmt));
4406 err |= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt));
4407 break;
4409 case GIMPLE_EH_FILTER:
4410 err |= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt));
4411 break;
4413 case GIMPLE_EH_ELSE:
4414 err |= verify_gimple_in_seq_2 (gimple_eh_else_n_body (stmt));
4415 err |= verify_gimple_in_seq_2 (gimple_eh_else_e_body (stmt));
4416 break;
4418 case GIMPLE_CATCH:
4419 err |= verify_gimple_in_seq_2 (gimple_catch_handler (stmt));
4420 break;
4422 case GIMPLE_TRANSACTION:
4423 err |= verify_gimple_transaction (stmt);
4424 break;
4426 default:
4428 bool err2 = verify_gimple_stmt (stmt);
4429 if (err2)
4430 debug_gimple_stmt (stmt);
4431 err |= err2;
4436 return err;
4439 /* Verify the contents of a GIMPLE_TRANSACTION. Returns true if there
4440 is a problem, otherwise false. */
4442 static bool
4443 verify_gimple_transaction (gimple stmt)
4445 tree lab = gimple_transaction_label (stmt);
4446 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
4447 return true;
4448 return verify_gimple_in_seq_2 (gimple_transaction_body (stmt));
4452 /* Verify the GIMPLE statements inside the statement list STMTS. */
4454 DEBUG_FUNCTION void
4455 verify_gimple_in_seq (gimple_seq stmts)
4457 timevar_push (TV_TREE_STMT_VERIFY);
4458 if (verify_gimple_in_seq_2 (stmts))
4459 internal_error ("verify_gimple failed");
4460 timevar_pop (TV_TREE_STMT_VERIFY);
4463 /* Return true when the T can be shared. */
4465 bool
4466 tree_node_can_be_shared (tree t)
4468 if (IS_TYPE_OR_DECL_P (t)
4469 || is_gimple_min_invariant (t)
4470 || TREE_CODE (t) == SSA_NAME
4471 || t == error_mark_node
4472 || TREE_CODE (t) == IDENTIFIER_NODE)
4473 return true;
4475 if (TREE_CODE (t) == CASE_LABEL_EXPR)
4476 return true;
4478 if (DECL_P (t))
4479 return true;
4481 return false;
4484 /* Called via walk_tree. Verify tree sharing. */
4486 static tree
4487 verify_node_sharing_1 (tree *tp, int *walk_subtrees, void *data)
4489 struct pointer_set_t *visited = (struct pointer_set_t *) data;
4491 if (tree_node_can_be_shared (*tp))
4493 *walk_subtrees = false;
4494 return NULL;
4497 if (pointer_set_insert (visited, *tp))
4498 return *tp;
4500 return NULL;
4503 /* Called via walk_gimple_stmt. Verify tree sharing. */
4505 static tree
4506 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
4508 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4509 return verify_node_sharing_1 (tp, walk_subtrees, wi->info);
4512 static bool eh_error_found;
4513 static int
4514 verify_eh_throw_stmt_node (void **slot, void *data)
4516 struct throw_stmt_node *node = (struct throw_stmt_node *)*slot;
4517 struct pointer_set_t *visited = (struct pointer_set_t *) data;
4519 if (!pointer_set_contains (visited, node->stmt))
4521 error ("dead STMT in EH table");
4522 debug_gimple_stmt (node->stmt);
4523 eh_error_found = true;
4525 return 1;
4528 /* Verify if the location LOCs block is in BLOCKS. */
4530 static bool
4531 verify_location (pointer_set_t *blocks, location_t loc)
4533 tree block = LOCATION_BLOCK (loc);
4534 if (block != NULL_TREE
4535 && !pointer_set_contains (blocks, block))
4537 error ("location references block not in block tree");
4538 return true;
4540 if (block != NULL_TREE)
4541 return verify_location (blocks, BLOCK_SOURCE_LOCATION (block));
4542 return false;
4545 /* Called via walk_tree. Verify that expressions have no blocks. */
4547 static tree
4548 verify_expr_no_block (tree *tp, int *walk_subtrees, void *)
4550 if (!EXPR_P (*tp))
4552 *walk_subtrees = false;
4553 return NULL;
4556 location_t loc = EXPR_LOCATION (*tp);
4557 if (LOCATION_BLOCK (loc) != NULL)
4558 return *tp;
4560 return NULL;
4563 /* Called via walk_tree. Verify locations of expressions. */
4565 static tree
4566 verify_expr_location_1 (tree *tp, int *walk_subtrees, void *data)
4568 struct pointer_set_t *blocks = (struct pointer_set_t *) data;
4570 if (TREE_CODE (*tp) == VAR_DECL
4571 && DECL_HAS_DEBUG_EXPR_P (*tp))
4573 tree t = DECL_DEBUG_EXPR (*tp);
4574 tree addr = walk_tree (&t, verify_expr_no_block, NULL, NULL);
4575 if (addr)
4576 return addr;
4578 if ((TREE_CODE (*tp) == VAR_DECL
4579 || TREE_CODE (*tp) == PARM_DECL
4580 || TREE_CODE (*tp) == RESULT_DECL)
4581 && DECL_HAS_VALUE_EXPR_P (*tp))
4583 tree t = DECL_VALUE_EXPR (*tp);
4584 tree addr = walk_tree (&t, verify_expr_no_block, NULL, NULL);
4585 if (addr)
4586 return addr;
4589 if (!EXPR_P (*tp))
4591 *walk_subtrees = false;
4592 return NULL;
4595 location_t loc = EXPR_LOCATION (*tp);
4596 if (verify_location (blocks, loc))
4597 return *tp;
4599 return NULL;
4602 /* Called via walk_gimple_op. Verify locations of expressions. */
4604 static tree
4605 verify_expr_location (tree *tp, int *walk_subtrees, void *data)
4607 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4608 return verify_expr_location_1 (tp, walk_subtrees, wi->info);
4611 /* Insert all subblocks of BLOCK into BLOCKS and recurse. */
4613 static void
4614 collect_subblocks (pointer_set_t *blocks, tree block)
4616 tree t;
4617 for (t = BLOCK_SUBBLOCKS (block); t; t = BLOCK_CHAIN (t))
4619 pointer_set_insert (blocks, t);
4620 collect_subblocks (blocks, t);
4624 /* Verify the GIMPLE statements in the CFG of FN. */
4626 DEBUG_FUNCTION void
4627 verify_gimple_in_cfg (struct function *fn)
4629 basic_block bb;
4630 bool err = false;
4631 struct pointer_set_t *visited, *visited_stmts, *blocks;
4633 timevar_push (TV_TREE_STMT_VERIFY);
4634 visited = pointer_set_create ();
4635 visited_stmts = pointer_set_create ();
4637 /* Collect all BLOCKs referenced by the BLOCK tree of FN. */
4638 blocks = pointer_set_create ();
4639 if (DECL_INITIAL (fn->decl))
4641 pointer_set_insert (blocks, DECL_INITIAL (fn->decl));
4642 collect_subblocks (blocks, DECL_INITIAL (fn->decl));
4645 FOR_EACH_BB_FN (bb, fn)
4647 gimple_stmt_iterator gsi;
4649 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4651 gimple phi = gsi_stmt (gsi);
4652 bool err2 = false;
4653 unsigned i;
4655 pointer_set_insert (visited_stmts, phi);
4657 if (gimple_bb (phi) != bb)
4659 error ("gimple_bb (phi) is set to a wrong basic block");
4660 err2 = true;
4663 err2 |= verify_gimple_phi (phi);
4665 /* Only PHI arguments have locations. */
4666 if (gimple_location (phi) != UNKNOWN_LOCATION)
4668 error ("PHI node with location");
4669 err2 = true;
4672 for (i = 0; i < gimple_phi_num_args (phi); i++)
4674 tree arg = gimple_phi_arg_def (phi, i);
4675 tree addr = walk_tree (&arg, verify_node_sharing_1,
4676 visited, NULL);
4677 if (addr)
4679 error ("incorrect sharing of tree nodes");
4680 debug_generic_expr (addr);
4681 err2 |= true;
4683 location_t loc = gimple_phi_arg_location (phi, i);
4684 if (virtual_operand_p (gimple_phi_result (phi))
4685 && loc != UNKNOWN_LOCATION)
4687 error ("virtual PHI with argument locations");
4688 err2 = true;
4690 addr = walk_tree (&arg, verify_expr_location_1, blocks, NULL);
4691 if (addr)
4693 debug_generic_expr (addr);
4694 err2 = true;
4696 err2 |= verify_location (blocks, loc);
4699 if (err2)
4700 debug_gimple_stmt (phi);
4701 err |= err2;
4704 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4706 gimple stmt = gsi_stmt (gsi);
4707 bool err2 = false;
4708 struct walk_stmt_info wi;
4709 tree addr;
4710 int lp_nr;
4712 pointer_set_insert (visited_stmts, stmt);
4714 if (gimple_bb (stmt) != bb)
4716 error ("gimple_bb (stmt) is set to a wrong basic block");
4717 err2 = true;
4720 err2 |= verify_gimple_stmt (stmt);
4721 err2 |= verify_location (blocks, gimple_location (stmt));
4723 memset (&wi, 0, sizeof (wi));
4724 wi.info = (void *) visited;
4725 addr = walk_gimple_op (stmt, verify_node_sharing, &wi);
4726 if (addr)
4728 error ("incorrect sharing of tree nodes");
4729 debug_generic_expr (addr);
4730 err2 |= true;
4733 memset (&wi, 0, sizeof (wi));
4734 wi.info = (void *) blocks;
4735 addr = walk_gimple_op (stmt, verify_expr_location, &wi);
4736 if (addr)
4738 debug_generic_expr (addr);
4739 err2 |= true;
4742 /* ??? Instead of not checking these stmts at all the walker
4743 should know its context via wi. */
4744 if (!is_gimple_debug (stmt)
4745 && !is_gimple_omp (stmt))
4747 memset (&wi, 0, sizeof (wi));
4748 addr = walk_gimple_op (stmt, verify_expr, &wi);
4749 if (addr)
4751 debug_generic_expr (addr);
4752 inform (gimple_location (stmt), "in statement");
4753 err2 |= true;
4757 /* If the statement is marked as part of an EH region, then it is
4758 expected that the statement could throw. Verify that when we
4759 have optimizations that simplify statements such that we prove
4760 that they cannot throw, that we update other data structures
4761 to match. */
4762 lp_nr = lookup_stmt_eh_lp (stmt);
4763 if (lp_nr != 0)
4765 if (!stmt_could_throw_p (stmt))
4767 error ("statement marked for throw, but doesn%'t");
4768 err2 |= true;
4770 else if (lp_nr > 0
4771 && !gsi_one_before_end_p (gsi)
4772 && stmt_can_throw_internal (stmt))
4774 error ("statement marked for throw in middle of block");
4775 err2 |= true;
4779 if (err2)
4780 debug_gimple_stmt (stmt);
4781 err |= err2;
4785 eh_error_found = false;
4786 if (get_eh_throw_stmt_table (cfun))
4787 htab_traverse (get_eh_throw_stmt_table (cfun),
4788 verify_eh_throw_stmt_node,
4789 visited_stmts);
4791 if (err || eh_error_found)
4792 internal_error ("verify_gimple failed");
4794 pointer_set_destroy (visited);
4795 pointer_set_destroy (visited_stmts);
4796 pointer_set_destroy (blocks);
4797 verify_histograms ();
4798 timevar_pop (TV_TREE_STMT_VERIFY);
4802 /* Verifies that the flow information is OK. */
4804 static int
4805 gimple_verify_flow_info (void)
4807 int err = 0;
4808 basic_block bb;
4809 gimple_stmt_iterator gsi;
4810 gimple stmt;
4811 edge e;
4812 edge_iterator ei;
4814 if (ENTRY_BLOCK_PTR->il.gimple.seq || ENTRY_BLOCK_PTR->il.gimple.phi_nodes)
4816 error ("ENTRY_BLOCK has IL associated with it");
4817 err = 1;
4820 if (EXIT_BLOCK_PTR->il.gimple.seq || EXIT_BLOCK_PTR->il.gimple.phi_nodes)
4822 error ("EXIT_BLOCK has IL associated with it");
4823 err = 1;
4826 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
4827 if (e->flags & EDGE_FALLTHRU)
4829 error ("fallthru to exit from bb %d", e->src->index);
4830 err = 1;
4833 FOR_EACH_BB (bb)
4835 bool found_ctrl_stmt = false;
4837 stmt = NULL;
4839 /* Skip labels on the start of basic block. */
4840 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4842 tree label;
4843 gimple prev_stmt = stmt;
4845 stmt = gsi_stmt (gsi);
4847 if (gimple_code (stmt) != GIMPLE_LABEL)
4848 break;
4850 label = gimple_label_label (stmt);
4851 if (prev_stmt && DECL_NONLOCAL (label))
4853 error ("nonlocal label ");
4854 print_generic_expr (stderr, label, 0);
4855 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4856 bb->index);
4857 err = 1;
4860 if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
4862 error ("EH landing pad label ");
4863 print_generic_expr (stderr, label, 0);
4864 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4865 bb->index);
4866 err = 1;
4869 if (label_to_block (label) != bb)
4871 error ("label ");
4872 print_generic_expr (stderr, label, 0);
4873 fprintf (stderr, " to block does not match in bb %d",
4874 bb->index);
4875 err = 1;
4878 if (decl_function_context (label) != current_function_decl)
4880 error ("label ");
4881 print_generic_expr (stderr, label, 0);
4882 fprintf (stderr, " has incorrect context in bb %d",
4883 bb->index);
4884 err = 1;
4888 /* Verify that body of basic block BB is free of control flow. */
4889 for (; !gsi_end_p (gsi); gsi_next (&gsi))
4891 gimple stmt = gsi_stmt (gsi);
4893 if (found_ctrl_stmt)
4895 error ("control flow in the middle of basic block %d",
4896 bb->index);
4897 err = 1;
4900 if (stmt_ends_bb_p (stmt))
4901 found_ctrl_stmt = true;
4903 if (gimple_code (stmt) == GIMPLE_LABEL)
4905 error ("label ");
4906 print_generic_expr (stderr, gimple_label_label (stmt), 0);
4907 fprintf (stderr, " in the middle of basic block %d", bb->index);
4908 err = 1;
4912 gsi = gsi_last_bb (bb);
4913 if (gsi_end_p (gsi))
4914 continue;
4916 stmt = gsi_stmt (gsi);
4918 if (gimple_code (stmt) == GIMPLE_LABEL)
4919 continue;
4921 err |= verify_eh_edges (stmt);
4923 if (is_ctrl_stmt (stmt))
4925 FOR_EACH_EDGE (e, ei, bb->succs)
4926 if (e->flags & EDGE_FALLTHRU)
4928 error ("fallthru edge after a control statement in bb %d",
4929 bb->index);
4930 err = 1;
4934 if (gimple_code (stmt) != GIMPLE_COND)
4936 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
4937 after anything else but if statement. */
4938 FOR_EACH_EDGE (e, ei, bb->succs)
4939 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
4941 error ("true/false edge after a non-GIMPLE_COND in bb %d",
4942 bb->index);
4943 err = 1;
4947 switch (gimple_code (stmt))
4949 case GIMPLE_COND:
4951 edge true_edge;
4952 edge false_edge;
4954 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
4956 if (!true_edge
4957 || !false_edge
4958 || !(true_edge->flags & EDGE_TRUE_VALUE)
4959 || !(false_edge->flags & EDGE_FALSE_VALUE)
4960 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4961 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4962 || EDGE_COUNT (bb->succs) >= 3)
4964 error ("wrong outgoing edge flags at end of bb %d",
4965 bb->index);
4966 err = 1;
4969 break;
4971 case GIMPLE_GOTO:
4972 if (simple_goto_p (stmt))
4974 error ("explicit goto at end of bb %d", bb->index);
4975 err = 1;
4977 else
4979 /* FIXME. We should double check that the labels in the
4980 destination blocks have their address taken. */
4981 FOR_EACH_EDGE (e, ei, bb->succs)
4982 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
4983 | EDGE_FALSE_VALUE))
4984 || !(e->flags & EDGE_ABNORMAL))
4986 error ("wrong outgoing edge flags at end of bb %d",
4987 bb->index);
4988 err = 1;
4991 break;
4993 case GIMPLE_CALL:
4994 if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
4995 break;
4996 /* ... fallthru ... */
4997 case GIMPLE_RETURN:
4998 if (!single_succ_p (bb)
4999 || (single_succ_edge (bb)->flags
5000 & (EDGE_FALLTHRU | EDGE_ABNORMAL
5001 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5003 error ("wrong outgoing edge flags at end of bb %d", bb->index);
5004 err = 1;
5006 if (single_succ (bb) != EXIT_BLOCK_PTR)
5008 error ("return edge does not point to exit in bb %d",
5009 bb->index);
5010 err = 1;
5012 break;
5014 case GIMPLE_SWITCH:
5016 tree prev;
5017 edge e;
5018 size_t i, n;
5020 n = gimple_switch_num_labels (stmt);
5022 /* Mark all the destination basic blocks. */
5023 for (i = 0; i < n; ++i)
5025 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
5026 basic_block label_bb = label_to_block (lab);
5027 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
5028 label_bb->aux = (void *)1;
5031 /* Verify that the case labels are sorted. */
5032 prev = gimple_switch_label (stmt, 0);
5033 for (i = 1; i < n; ++i)
5035 tree c = gimple_switch_label (stmt, i);
5036 if (!CASE_LOW (c))
5038 error ("found default case not at the start of "
5039 "case vector");
5040 err = 1;
5041 continue;
5043 if (CASE_LOW (prev)
5044 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
5046 error ("case labels not sorted: ");
5047 print_generic_expr (stderr, prev, 0);
5048 fprintf (stderr," is greater than ");
5049 print_generic_expr (stderr, c, 0);
5050 fprintf (stderr," but comes before it.\n");
5051 err = 1;
5053 prev = c;
5055 /* VRP will remove the default case if it can prove it will
5056 never be executed. So do not verify there always exists
5057 a default case here. */
5059 FOR_EACH_EDGE (e, ei, bb->succs)
5061 if (!e->dest->aux)
5063 error ("extra outgoing edge %d->%d",
5064 bb->index, e->dest->index);
5065 err = 1;
5068 e->dest->aux = (void *)2;
5069 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
5070 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5072 error ("wrong outgoing edge flags at end of bb %d",
5073 bb->index);
5074 err = 1;
5078 /* Check that we have all of them. */
5079 for (i = 0; i < n; ++i)
5081 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
5082 basic_block label_bb = label_to_block (lab);
5084 if (label_bb->aux != (void *)2)
5086 error ("missing edge %i->%i", bb->index, label_bb->index);
5087 err = 1;
5091 FOR_EACH_EDGE (e, ei, bb->succs)
5092 e->dest->aux = (void *)0;
5094 break;
5096 case GIMPLE_EH_DISPATCH:
5097 err |= verify_eh_dispatch_edge (stmt);
5098 break;
5100 default:
5101 break;
5105 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
5106 verify_dominators (CDI_DOMINATORS);
5108 return err;
5112 /* Updates phi nodes after creating a forwarder block joined
5113 by edge FALLTHRU. */
5115 static void
5116 gimple_make_forwarder_block (edge fallthru)
5118 edge e;
5119 edge_iterator ei;
5120 basic_block dummy, bb;
5121 tree var;
5122 gimple_stmt_iterator gsi;
5124 dummy = fallthru->src;
5125 bb = fallthru->dest;
5127 if (single_pred_p (bb))
5128 return;
5130 /* If we redirected a branch we must create new PHI nodes at the
5131 start of BB. */
5132 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
5134 gimple phi, new_phi;
5136 phi = gsi_stmt (gsi);
5137 var = gimple_phi_result (phi);
5138 new_phi = create_phi_node (var, bb);
5139 gimple_phi_set_result (phi, copy_ssa_name (var, phi));
5140 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
5141 UNKNOWN_LOCATION);
5144 /* Add the arguments we have stored on edges. */
5145 FOR_EACH_EDGE (e, ei, bb->preds)
5147 if (e == fallthru)
5148 continue;
5150 flush_pending_stmts (e);
5155 /* Return a non-special label in the head of basic block BLOCK.
5156 Create one if it doesn't exist. */
5158 tree
5159 gimple_block_label (basic_block bb)
5161 gimple_stmt_iterator i, s = gsi_start_bb (bb);
5162 bool first = true;
5163 tree label;
5164 gimple stmt;
5166 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
5168 stmt = gsi_stmt (i);
5169 if (gimple_code (stmt) != GIMPLE_LABEL)
5170 break;
5171 label = gimple_label_label (stmt);
5172 if (!DECL_NONLOCAL (label))
5174 if (!first)
5175 gsi_move_before (&i, &s);
5176 return label;
5180 label = create_artificial_label (UNKNOWN_LOCATION);
5181 stmt = gimple_build_label (label);
5182 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
5183 return label;
5187 /* Attempt to perform edge redirection by replacing a possibly complex
5188 jump instruction by a goto or by removing the jump completely.
5189 This can apply only if all edges now point to the same block. The
5190 parameters and return values are equivalent to
5191 redirect_edge_and_branch. */
5193 static edge
5194 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
5196 basic_block src = e->src;
5197 gimple_stmt_iterator i;
5198 gimple stmt;
5200 /* We can replace or remove a complex jump only when we have exactly
5201 two edges. */
5202 if (EDGE_COUNT (src->succs) != 2
5203 /* Verify that all targets will be TARGET. Specifically, the
5204 edge that is not E must also go to TARGET. */
5205 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
5206 return NULL;
5208 i = gsi_last_bb (src);
5209 if (gsi_end_p (i))
5210 return NULL;
5212 stmt = gsi_stmt (i);
5214 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
5216 gsi_remove (&i, true);
5217 e = ssa_redirect_edge (e, target);
5218 e->flags = EDGE_FALLTHRU;
5219 return e;
5222 return NULL;
5226 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
5227 edge representing the redirected branch. */
5229 static edge
5230 gimple_redirect_edge_and_branch (edge e, basic_block dest)
5232 basic_block bb = e->src;
5233 gimple_stmt_iterator gsi;
5234 edge ret;
5235 gimple stmt;
5237 if (e->flags & EDGE_ABNORMAL)
5238 return NULL;
5240 if (e->dest == dest)
5241 return NULL;
5243 if (e->flags & EDGE_EH)
5244 return redirect_eh_edge (e, dest);
5246 if (e->src != ENTRY_BLOCK_PTR)
5248 ret = gimple_try_redirect_by_replacing_jump (e, dest);
5249 if (ret)
5250 return ret;
5253 gsi = gsi_last_bb (bb);
5254 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
5256 switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
5258 case GIMPLE_COND:
5259 /* For COND_EXPR, we only need to redirect the edge. */
5260 break;
5262 case GIMPLE_GOTO:
5263 /* No non-abnormal edges should lead from a non-simple goto, and
5264 simple ones should be represented implicitly. */
5265 gcc_unreachable ();
5267 case GIMPLE_SWITCH:
5269 tree label = gimple_block_label (dest);
5270 tree cases = get_cases_for_edge (e, stmt);
5272 /* If we have a list of cases associated with E, then use it
5273 as it's a lot faster than walking the entire case vector. */
5274 if (cases)
5276 edge e2 = find_edge (e->src, dest);
5277 tree last, first;
5279 first = cases;
5280 while (cases)
5282 last = cases;
5283 CASE_LABEL (cases) = label;
5284 cases = CASE_CHAIN (cases);
5287 /* If there was already an edge in the CFG, then we need
5288 to move all the cases associated with E to E2. */
5289 if (e2)
5291 tree cases2 = get_cases_for_edge (e2, stmt);
5293 CASE_CHAIN (last) = CASE_CHAIN (cases2);
5294 CASE_CHAIN (cases2) = first;
5296 bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index);
5298 else
5300 size_t i, n = gimple_switch_num_labels (stmt);
5302 for (i = 0; i < n; i++)
5304 tree elt = gimple_switch_label (stmt, i);
5305 if (label_to_block (CASE_LABEL (elt)) == e->dest)
5306 CASE_LABEL (elt) = label;
5310 break;
5312 case GIMPLE_ASM:
5314 int i, n = gimple_asm_nlabels (stmt);
5315 tree label = NULL;
5317 for (i = 0; i < n; ++i)
5319 tree cons = gimple_asm_label_op (stmt, i);
5320 if (label_to_block (TREE_VALUE (cons)) == e->dest)
5322 if (!label)
5323 label = gimple_block_label (dest);
5324 TREE_VALUE (cons) = label;
5328 /* If we didn't find any label matching the former edge in the
5329 asm labels, we must be redirecting the fallthrough
5330 edge. */
5331 gcc_assert (label || (e->flags & EDGE_FALLTHRU));
5333 break;
5335 case GIMPLE_RETURN:
5336 gsi_remove (&gsi, true);
5337 e->flags |= EDGE_FALLTHRU;
5338 break;
5340 case GIMPLE_OMP_RETURN:
5341 case GIMPLE_OMP_CONTINUE:
5342 case GIMPLE_OMP_SECTIONS_SWITCH:
5343 case GIMPLE_OMP_FOR:
5344 /* The edges from OMP constructs can be simply redirected. */
5345 break;
5347 case GIMPLE_EH_DISPATCH:
5348 if (!(e->flags & EDGE_FALLTHRU))
5349 redirect_eh_dispatch_edge (stmt, e, dest);
5350 break;
5352 case GIMPLE_TRANSACTION:
5353 /* The ABORT edge has a stored label associated with it, otherwise
5354 the edges are simply redirectable. */
5355 if (e->flags == 0)
5356 gimple_transaction_set_label (stmt, gimple_block_label (dest));
5357 break;
5359 default:
5360 /* Otherwise it must be a fallthru edge, and we don't need to
5361 do anything besides redirecting it. */
5362 gcc_assert (e->flags & EDGE_FALLTHRU);
5363 break;
5366 /* Update/insert PHI nodes as necessary. */
5368 /* Now update the edges in the CFG. */
5369 e = ssa_redirect_edge (e, dest);
5371 return e;
5374 /* Returns true if it is possible to remove edge E by redirecting
5375 it to the destination of the other edge from E->src. */
5377 static bool
5378 gimple_can_remove_branch_p (const_edge e)
5380 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
5381 return false;
5383 return true;
5386 /* Simple wrapper, as we can always redirect fallthru edges. */
5388 static basic_block
5389 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
5391 e = gimple_redirect_edge_and_branch (e, dest);
5392 gcc_assert (e);
5394 return NULL;
5398 /* Splits basic block BB after statement STMT (but at least after the
5399 labels). If STMT is NULL, BB is split just after the labels. */
5401 static basic_block
5402 gimple_split_block (basic_block bb, void *stmt)
5404 gimple_stmt_iterator gsi;
5405 gimple_stmt_iterator gsi_tgt;
5406 gimple act;
5407 gimple_seq list;
5408 basic_block new_bb;
5409 edge e;
5410 edge_iterator ei;
5412 new_bb = create_empty_bb (bb);
5414 /* Redirect the outgoing edges. */
5415 new_bb->succs = bb->succs;
5416 bb->succs = NULL;
5417 FOR_EACH_EDGE (e, ei, new_bb->succs)
5418 e->src = new_bb;
5420 if (stmt && gimple_code ((gimple) stmt) == GIMPLE_LABEL)
5421 stmt = NULL;
5423 /* Move everything from GSI to the new basic block. */
5424 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5426 act = gsi_stmt (gsi);
5427 if (gimple_code (act) == GIMPLE_LABEL)
5428 continue;
5430 if (!stmt)
5431 break;
5433 if (stmt == act)
5435 gsi_next (&gsi);
5436 break;
5440 if (gsi_end_p (gsi))
5441 return new_bb;
5443 /* Split the statement list - avoid re-creating new containers as this
5444 brings ugly quadratic memory consumption in the inliner.
5445 (We are still quadratic since we need to update stmt BB pointers,
5446 sadly.) */
5447 gsi_split_seq_before (&gsi, &list);
5448 set_bb_seq (new_bb, list);
5449 for (gsi_tgt = gsi_start (list);
5450 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
5451 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
5453 return new_bb;
5457 /* Moves basic block BB after block AFTER. */
5459 static bool
5460 gimple_move_block_after (basic_block bb, basic_block after)
5462 if (bb->prev_bb == after)
5463 return true;
5465 unlink_block (bb);
5466 link_block (bb, after);
5468 return true;
5472 /* Return TRUE if block BB has no executable statements, otherwise return
5473 FALSE. */
5475 bool
5476 gimple_empty_block_p (basic_block bb)
5478 /* BB must have no executable statements. */
5479 gimple_stmt_iterator gsi = gsi_after_labels (bb);
5480 if (phi_nodes (bb))
5481 return false;
5482 if (gsi_end_p (gsi))
5483 return true;
5484 if (is_gimple_debug (gsi_stmt (gsi)))
5485 gsi_next_nondebug (&gsi);
5486 return gsi_end_p (gsi);
5490 /* Split a basic block if it ends with a conditional branch and if the
5491 other part of the block is not empty. */
5493 static basic_block
5494 gimple_split_block_before_cond_jump (basic_block bb)
5496 gimple last, split_point;
5497 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
5498 if (gsi_end_p (gsi))
5499 return NULL;
5500 last = gsi_stmt (gsi);
5501 if (gimple_code (last) != GIMPLE_COND
5502 && gimple_code (last) != GIMPLE_SWITCH)
5503 return NULL;
5504 gsi_prev_nondebug (&gsi);
5505 split_point = gsi_stmt (gsi);
5506 return split_block (bb, split_point)->dest;
5510 /* Return true if basic_block can be duplicated. */
5512 static bool
5513 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
5515 return true;
5518 /* Create a duplicate of the basic block BB. NOTE: This does not
5519 preserve SSA form. */
5521 static basic_block
5522 gimple_duplicate_bb (basic_block bb)
5524 basic_block new_bb;
5525 gimple_stmt_iterator gsi, gsi_tgt;
5526 gimple_seq phis = phi_nodes (bb);
5527 gimple phi, stmt, copy;
5529 new_bb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
5531 /* Copy the PHI nodes. We ignore PHI node arguments here because
5532 the incoming edges have not been setup yet. */
5533 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
5535 phi = gsi_stmt (gsi);
5536 copy = create_phi_node (NULL_TREE, new_bb);
5537 create_new_def_for (gimple_phi_result (phi), copy,
5538 gimple_phi_result_ptr (copy));
5541 gsi_tgt = gsi_start_bb (new_bb);
5542 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5544 def_operand_p def_p;
5545 ssa_op_iter op_iter;
5546 tree lhs;
5548 stmt = gsi_stmt (gsi);
5549 if (gimple_code (stmt) == GIMPLE_LABEL)
5550 continue;
5552 /* Don't duplicate label debug stmts. */
5553 if (gimple_debug_bind_p (stmt)
5554 && TREE_CODE (gimple_debug_bind_get_var (stmt))
5555 == LABEL_DECL)
5556 continue;
5558 /* Create a new copy of STMT and duplicate STMT's virtual
5559 operands. */
5560 copy = gimple_copy (stmt);
5561 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
5563 maybe_duplicate_eh_stmt (copy, stmt);
5564 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
5566 /* When copying around a stmt writing into a local non-user
5567 aggregate, make sure it won't share stack slot with other
5568 vars. */
5569 lhs = gimple_get_lhs (stmt);
5570 if (lhs && TREE_CODE (lhs) != SSA_NAME)
5572 tree base = get_base_address (lhs);
5573 if (base
5574 && (TREE_CODE (base) == VAR_DECL
5575 || TREE_CODE (base) == RESULT_DECL)
5576 && DECL_IGNORED_P (base)
5577 && !TREE_STATIC (base)
5578 && !DECL_EXTERNAL (base)
5579 && (TREE_CODE (base) != VAR_DECL
5580 || !DECL_HAS_VALUE_EXPR_P (base)))
5581 DECL_NONSHAREABLE (base) = 1;
5584 /* Create new names for all the definitions created by COPY and
5585 add replacement mappings for each new name. */
5586 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
5587 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
5590 return new_bb;
5593 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
5595 static void
5596 add_phi_args_after_copy_edge (edge e_copy)
5598 basic_block bb, bb_copy = e_copy->src, dest;
5599 edge e;
5600 edge_iterator ei;
5601 gimple phi, phi_copy;
5602 tree def;
5603 gimple_stmt_iterator psi, psi_copy;
5605 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
5606 return;
5608 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
5610 if (e_copy->dest->flags & BB_DUPLICATED)
5611 dest = get_bb_original (e_copy->dest);
5612 else
5613 dest = e_copy->dest;
5615 e = find_edge (bb, dest);
5616 if (!e)
5618 /* During loop unrolling the target of the latch edge is copied.
5619 In this case we are not looking for edge to dest, but to
5620 duplicated block whose original was dest. */
5621 FOR_EACH_EDGE (e, ei, bb->succs)
5623 if ((e->dest->flags & BB_DUPLICATED)
5624 && get_bb_original (e->dest) == dest)
5625 break;
5628 gcc_assert (e != NULL);
5631 for (psi = gsi_start_phis (e->dest),
5632 psi_copy = gsi_start_phis (e_copy->dest);
5633 !gsi_end_p (psi);
5634 gsi_next (&psi), gsi_next (&psi_copy))
5636 phi = gsi_stmt (psi);
5637 phi_copy = gsi_stmt (psi_copy);
5638 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
5639 add_phi_arg (phi_copy, def, e_copy,
5640 gimple_phi_arg_location_from_edge (phi, e));
5645 /* Basic block BB_COPY was created by code duplication. Add phi node
5646 arguments for edges going out of BB_COPY. The blocks that were
5647 duplicated have BB_DUPLICATED set. */
5649 void
5650 add_phi_args_after_copy_bb (basic_block bb_copy)
5652 edge e_copy;
5653 edge_iterator ei;
5655 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
5657 add_phi_args_after_copy_edge (e_copy);
5661 /* Blocks in REGION_COPY array of length N_REGION were created by
5662 duplication of basic blocks. Add phi node arguments for edges
5663 going from these blocks. If E_COPY is not NULL, also add
5664 phi node arguments for its destination.*/
5666 void
5667 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
5668 edge e_copy)
5670 unsigned i;
5672 for (i = 0; i < n_region; i++)
5673 region_copy[i]->flags |= BB_DUPLICATED;
5675 for (i = 0; i < n_region; i++)
5676 add_phi_args_after_copy_bb (region_copy[i]);
5677 if (e_copy)
5678 add_phi_args_after_copy_edge (e_copy);
5680 for (i = 0; i < n_region; i++)
5681 region_copy[i]->flags &= ~BB_DUPLICATED;
5684 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
5685 important exit edge EXIT. By important we mean that no SSA name defined
5686 inside region is live over the other exit edges of the region. All entry
5687 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
5688 to the duplicate of the region. Dominance and loop information is
5689 updated if UPDATE_DOMINANCE is true, but not the SSA web. If
5690 UPDATE_DOMINANCE is false then we assume that the caller will update the
5691 dominance information after calling this function. The new basic
5692 blocks are stored to REGION_COPY in the same order as they had in REGION,
5693 provided that REGION_COPY is not NULL.
5694 The function returns false if it is unable to copy the region,
5695 true otherwise. */
5697 bool
5698 gimple_duplicate_sese_region (edge entry, edge exit,
5699 basic_block *region, unsigned n_region,
5700 basic_block *region_copy,
5701 bool update_dominance)
5703 unsigned i;
5704 bool free_region_copy = false, copying_header = false;
5705 struct loop *loop = entry->dest->loop_father;
5706 edge exit_copy;
5707 vec<basic_block> doms;
5708 edge redirected;
5709 int total_freq = 0, entry_freq = 0;
5710 gcov_type total_count = 0, entry_count = 0;
5712 if (!can_copy_bbs_p (region, n_region))
5713 return false;
5715 /* Some sanity checking. Note that we do not check for all possible
5716 missuses of the functions. I.e. if you ask to copy something weird,
5717 it will work, but the state of structures probably will not be
5718 correct. */
5719 for (i = 0; i < n_region; i++)
5721 /* We do not handle subloops, i.e. all the blocks must belong to the
5722 same loop. */
5723 if (region[i]->loop_father != loop)
5724 return false;
5726 if (region[i] != entry->dest
5727 && region[i] == loop->header)
5728 return false;
5731 set_loop_copy (loop, loop);
5733 /* In case the function is used for loop header copying (which is the primary
5734 use), ensure that EXIT and its copy will be new latch and entry edges. */
5735 if (loop->header == entry->dest)
5737 copying_header = true;
5738 set_loop_copy (loop, loop_outer (loop));
5740 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
5741 return false;
5743 for (i = 0; i < n_region; i++)
5744 if (region[i] != exit->src
5745 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
5746 return false;
5749 if (!region_copy)
5751 region_copy = XNEWVEC (basic_block, n_region);
5752 free_region_copy = true;
5755 initialize_original_copy_tables ();
5757 /* Record blocks outside the region that are dominated by something
5758 inside. */
5759 if (update_dominance)
5761 doms.create (0);
5762 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5765 if (entry->dest->count)
5767 total_count = entry->dest->count;
5768 entry_count = entry->count;
5769 /* Fix up corner cases, to avoid division by zero or creation of negative
5770 frequencies. */
5771 if (entry_count > total_count)
5772 entry_count = total_count;
5774 else
5776 total_freq = entry->dest->frequency;
5777 entry_freq = EDGE_FREQUENCY (entry);
5778 /* Fix up corner cases, to avoid division by zero or creation of negative
5779 frequencies. */
5780 if (total_freq == 0)
5781 total_freq = 1;
5782 else if (entry_freq > total_freq)
5783 entry_freq = total_freq;
5786 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
5787 split_edge_bb_loc (entry), update_dominance);
5788 if (total_count)
5790 scale_bbs_frequencies_gcov_type (region, n_region,
5791 total_count - entry_count,
5792 total_count);
5793 scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count,
5794 total_count);
5796 else
5798 scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
5799 total_freq);
5800 scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
5803 if (copying_header)
5805 loop->header = exit->dest;
5806 loop->latch = exit->src;
5809 /* Redirect the entry and add the phi node arguments. */
5810 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
5811 gcc_assert (redirected != NULL);
5812 flush_pending_stmts (entry);
5814 /* Concerning updating of dominators: We must recount dominators
5815 for entry block and its copy. Anything that is outside of the
5816 region, but was dominated by something inside needs recounting as
5817 well. */
5818 if (update_dominance)
5820 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
5821 doms.safe_push (get_bb_original (entry->dest));
5822 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5823 doms.release ();
5826 /* Add the other PHI node arguments. */
5827 add_phi_args_after_copy (region_copy, n_region, NULL);
5829 if (free_region_copy)
5830 free (region_copy);
5832 free_original_copy_tables ();
5833 return true;
5836 /* Checks if BB is part of the region defined by N_REGION BBS. */
5837 static bool
5838 bb_part_of_region_p (basic_block bb, basic_block* bbs, unsigned n_region)
5840 unsigned int n;
5842 for (n = 0; n < n_region; n++)
5844 if (bb == bbs[n])
5845 return true;
5847 return false;
5850 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
5851 are stored to REGION_COPY in the same order in that they appear
5852 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
5853 the region, EXIT an exit from it. The condition guarding EXIT
5854 is moved to ENTRY. Returns true if duplication succeeds, false
5855 otherwise.
5857 For example,
5859 some_code;
5860 if (cond)
5862 else
5865 is transformed to
5867 if (cond)
5869 some_code;
5872 else
5874 some_code;
5879 bool
5880 gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED, edge exit ATTRIBUTE_UNUSED,
5881 basic_block *region ATTRIBUTE_UNUSED, unsigned n_region ATTRIBUTE_UNUSED,
5882 basic_block *region_copy ATTRIBUTE_UNUSED)
5884 unsigned i;
5885 bool free_region_copy = false;
5886 struct loop *loop = exit->dest->loop_father;
5887 struct loop *orig_loop = entry->dest->loop_father;
5888 basic_block switch_bb, entry_bb, nentry_bb;
5889 vec<basic_block> doms;
5890 int total_freq = 0, exit_freq = 0;
5891 gcov_type total_count = 0, exit_count = 0;
5892 edge exits[2], nexits[2], e;
5893 gimple_stmt_iterator gsi;
5894 gimple cond_stmt;
5895 edge sorig, snew;
5896 basic_block exit_bb;
5897 gimple_stmt_iterator psi;
5898 gimple phi;
5899 tree def;
5900 struct loop *target, *aloop, *cloop;
5902 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
5903 exits[0] = exit;
5904 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
5906 if (!can_copy_bbs_p (region, n_region))
5907 return false;
5909 initialize_original_copy_tables ();
5910 set_loop_copy (orig_loop, loop);
5912 target= loop;
5913 for (aloop = orig_loop->inner; aloop; aloop = aloop->next)
5915 if (bb_part_of_region_p (aloop->header, region, n_region))
5917 cloop = duplicate_loop (aloop, target);
5918 duplicate_subloops (aloop, cloop);
5922 if (!region_copy)
5924 region_copy = XNEWVEC (basic_block, n_region);
5925 free_region_copy = true;
5928 gcc_assert (!need_ssa_update_p (cfun));
5930 /* Record blocks outside the region that are dominated by something
5931 inside. */
5932 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5934 if (exit->src->count)
5936 total_count = exit->src->count;
5937 exit_count = exit->count;
5938 /* Fix up corner cases, to avoid division by zero or creation of negative
5939 frequencies. */
5940 if (exit_count > total_count)
5941 exit_count = total_count;
5943 else
5945 total_freq = exit->src->frequency;
5946 exit_freq = EDGE_FREQUENCY (exit);
5947 /* Fix up corner cases, to avoid division by zero or creation of negative
5948 frequencies. */
5949 if (total_freq == 0)
5950 total_freq = 1;
5951 if (exit_freq > total_freq)
5952 exit_freq = total_freq;
5955 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
5956 split_edge_bb_loc (exit), true);
5957 if (total_count)
5959 scale_bbs_frequencies_gcov_type (region, n_region,
5960 total_count - exit_count,
5961 total_count);
5962 scale_bbs_frequencies_gcov_type (region_copy, n_region, exit_count,
5963 total_count);
5965 else
5967 scale_bbs_frequencies_int (region, n_region, total_freq - exit_freq,
5968 total_freq);
5969 scale_bbs_frequencies_int (region_copy, n_region, exit_freq, total_freq);
5972 /* Create the switch block, and put the exit condition to it. */
5973 entry_bb = entry->dest;
5974 nentry_bb = get_bb_copy (entry_bb);
5975 if (!last_stmt (entry->src)
5976 || !stmt_ends_bb_p (last_stmt (entry->src)))
5977 switch_bb = entry->src;
5978 else
5979 switch_bb = split_edge (entry);
5980 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
5982 gsi = gsi_last_bb (switch_bb);
5983 cond_stmt = last_stmt (exit->src);
5984 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
5985 cond_stmt = gimple_copy (cond_stmt);
5987 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
5989 sorig = single_succ_edge (switch_bb);
5990 sorig->flags = exits[1]->flags;
5991 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
5993 /* Register the new edge from SWITCH_BB in loop exit lists. */
5994 rescan_loop_exit (snew, true, false);
5996 /* Add the PHI node arguments. */
5997 add_phi_args_after_copy (region_copy, n_region, snew);
5999 /* Get rid of now superfluous conditions and associated edges (and phi node
6000 arguments). */
6001 exit_bb = exit->dest;
6003 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
6004 PENDING_STMT (e) = NULL;
6006 /* The latch of ORIG_LOOP was copied, and so was the backedge
6007 to the original header. We redirect this backedge to EXIT_BB. */
6008 for (i = 0; i < n_region; i++)
6009 if (get_bb_original (region_copy[i]) == orig_loop->latch)
6011 gcc_assert (single_succ_edge (region_copy[i]));
6012 e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
6013 PENDING_STMT (e) = NULL;
6014 for (psi = gsi_start_phis (exit_bb);
6015 !gsi_end_p (psi);
6016 gsi_next (&psi))
6018 phi = gsi_stmt (psi);
6019 def = PHI_ARG_DEF (phi, nexits[0]->dest_idx);
6020 add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e));
6023 e = redirect_edge_and_branch (nexits[1], nexits[0]->dest);
6024 PENDING_STMT (e) = NULL;
6026 /* Anything that is outside of the region, but was dominated by something
6027 inside needs to update dominance info. */
6028 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
6029 doms.release ();
6030 /* Update the SSA web. */
6031 update_ssa (TODO_update_ssa);
6033 if (free_region_copy)
6034 free (region_copy);
6036 free_original_copy_tables ();
6037 return true;
6040 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
6041 adding blocks when the dominator traversal reaches EXIT. This
6042 function silently assumes that ENTRY strictly dominates EXIT. */
6044 void
6045 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
6046 vec<basic_block> *bbs_p)
6048 basic_block son;
6050 for (son = first_dom_son (CDI_DOMINATORS, entry);
6051 son;
6052 son = next_dom_son (CDI_DOMINATORS, son))
6054 bbs_p->safe_push (son);
6055 if (son != exit)
6056 gather_blocks_in_sese_region (son, exit, bbs_p);
6060 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
6061 The duplicates are recorded in VARS_MAP. */
6063 static void
6064 replace_by_duplicate_decl (tree *tp, struct pointer_map_t *vars_map,
6065 tree to_context)
6067 tree t = *tp, new_t;
6068 struct function *f = DECL_STRUCT_FUNCTION (to_context);
6069 void **loc;
6071 if (DECL_CONTEXT (t) == to_context)
6072 return;
6074 loc = pointer_map_contains (vars_map, t);
6076 if (!loc)
6078 loc = pointer_map_insert (vars_map, t);
6080 if (SSA_VAR_P (t))
6082 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
6083 add_local_decl (f, new_t);
6085 else
6087 gcc_assert (TREE_CODE (t) == CONST_DECL);
6088 new_t = copy_node (t);
6090 DECL_CONTEXT (new_t) = to_context;
6092 *loc = new_t;
6094 else
6095 new_t = (tree) *loc;
6097 *tp = new_t;
6101 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
6102 VARS_MAP maps old ssa names and var_decls to the new ones. */
6104 static tree
6105 replace_ssa_name (tree name, struct pointer_map_t *vars_map,
6106 tree to_context)
6108 void **loc;
6109 tree new_name;
6111 gcc_assert (!virtual_operand_p (name));
6113 loc = pointer_map_contains (vars_map, name);
6115 if (!loc)
6117 tree decl = SSA_NAME_VAR (name);
6118 if (decl)
6120 replace_by_duplicate_decl (&decl, vars_map, to_context);
6121 new_name = make_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6122 decl, SSA_NAME_DEF_STMT (name));
6123 if (SSA_NAME_IS_DEFAULT_DEF (name))
6124 set_ssa_default_def (DECL_STRUCT_FUNCTION (to_context),
6125 decl, new_name);
6127 else
6128 new_name = copy_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6129 name, SSA_NAME_DEF_STMT (name));
6131 loc = pointer_map_insert (vars_map, name);
6132 *loc = new_name;
6134 else
6135 new_name = (tree) *loc;
6137 return new_name;
6140 struct move_stmt_d
6142 tree orig_block;
6143 tree new_block;
6144 tree from_context;
6145 tree to_context;
6146 struct pointer_map_t *vars_map;
6147 htab_t new_label_map;
6148 struct pointer_map_t *eh_map;
6149 bool remap_decls_p;
6152 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
6153 contained in *TP if it has been ORIG_BLOCK previously and change the
6154 DECL_CONTEXT of every local variable referenced in *TP. */
6156 static tree
6157 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
6159 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
6160 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
6161 tree t = *tp;
6163 if (EXPR_P (t))
6165 tree block = TREE_BLOCK (t);
6166 if (block == p->orig_block
6167 || (p->orig_block == NULL_TREE
6168 && block != NULL_TREE))
6169 TREE_SET_BLOCK (t, p->new_block);
6170 #ifdef ENABLE_CHECKING
6171 else if (block != NULL_TREE)
6173 while (block && TREE_CODE (block) == BLOCK && block != p->orig_block)
6174 block = BLOCK_SUPERCONTEXT (block);
6175 gcc_assert (block == p->orig_block);
6177 #endif
6179 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
6181 if (TREE_CODE (t) == SSA_NAME)
6182 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
6183 else if (TREE_CODE (t) == LABEL_DECL)
6185 if (p->new_label_map)
6187 struct tree_map in, *out;
6188 in.base.from = t;
6189 out = (struct tree_map *)
6190 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
6191 if (out)
6192 *tp = t = out->to;
6195 DECL_CONTEXT (t) = p->to_context;
6197 else if (p->remap_decls_p)
6199 /* Replace T with its duplicate. T should no longer appear in the
6200 parent function, so this looks wasteful; however, it may appear
6201 in referenced_vars, and more importantly, as virtual operands of
6202 statements, and in alias lists of other variables. It would be
6203 quite difficult to expunge it from all those places. ??? It might
6204 suffice to do this for addressable variables. */
6205 if ((TREE_CODE (t) == VAR_DECL
6206 && !is_global_var (t))
6207 || TREE_CODE (t) == CONST_DECL)
6208 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
6210 *walk_subtrees = 0;
6212 else if (TYPE_P (t))
6213 *walk_subtrees = 0;
6215 return NULL_TREE;
6218 /* Helper for move_stmt_r. Given an EH region number for the source
6219 function, map that to the duplicate EH regio number in the dest. */
6221 static int
6222 move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
6224 eh_region old_r, new_r;
6225 void **slot;
6227 old_r = get_eh_region_from_number (old_nr);
6228 slot = pointer_map_contains (p->eh_map, old_r);
6229 new_r = (eh_region) *slot;
6231 return new_r->index;
6234 /* Similar, but operate on INTEGER_CSTs. */
6236 static tree
6237 move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
6239 int old_nr, new_nr;
6241 old_nr = tree_low_cst (old_t_nr, 0);
6242 new_nr = move_stmt_eh_region_nr (old_nr, p);
6244 return build_int_cst (integer_type_node, new_nr);
6247 /* Like move_stmt_op, but for gimple statements.
6249 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
6250 contained in the current statement in *GSI_P and change the
6251 DECL_CONTEXT of every local variable referenced in the current
6252 statement. */
6254 static tree
6255 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
6256 struct walk_stmt_info *wi)
6258 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
6259 gimple stmt = gsi_stmt (*gsi_p);
6260 tree block = gimple_block (stmt);
6262 if (block == p->orig_block
6263 || (p->orig_block == NULL_TREE
6264 && block != NULL_TREE))
6265 gimple_set_block (stmt, p->new_block);
6267 switch (gimple_code (stmt))
6269 case GIMPLE_CALL:
6270 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
6272 tree r, fndecl = gimple_call_fndecl (stmt);
6273 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
6274 switch (DECL_FUNCTION_CODE (fndecl))
6276 case BUILT_IN_EH_COPY_VALUES:
6277 r = gimple_call_arg (stmt, 1);
6278 r = move_stmt_eh_region_tree_nr (r, p);
6279 gimple_call_set_arg (stmt, 1, r);
6280 /* FALLTHRU */
6282 case BUILT_IN_EH_POINTER:
6283 case BUILT_IN_EH_FILTER:
6284 r = gimple_call_arg (stmt, 0);
6285 r = move_stmt_eh_region_tree_nr (r, p);
6286 gimple_call_set_arg (stmt, 0, r);
6287 break;
6289 default:
6290 break;
6293 break;
6295 case GIMPLE_RESX:
6297 int r = gimple_resx_region (stmt);
6298 r = move_stmt_eh_region_nr (r, p);
6299 gimple_resx_set_region (stmt, r);
6301 break;
6303 case GIMPLE_EH_DISPATCH:
6305 int r = gimple_eh_dispatch_region (stmt);
6306 r = move_stmt_eh_region_nr (r, p);
6307 gimple_eh_dispatch_set_region (stmt, r);
6309 break;
6311 case GIMPLE_OMP_RETURN:
6312 case GIMPLE_OMP_CONTINUE:
6313 break;
6314 default:
6315 if (is_gimple_omp (stmt))
6317 /* Do not remap variables inside OMP directives. Variables
6318 referenced in clauses and directive header belong to the
6319 parent function and should not be moved into the child
6320 function. */
6321 bool save_remap_decls_p = p->remap_decls_p;
6322 p->remap_decls_p = false;
6323 *handled_ops_p = true;
6325 walk_gimple_seq_mod (gimple_omp_body_ptr (stmt), move_stmt_r,
6326 move_stmt_op, wi);
6328 p->remap_decls_p = save_remap_decls_p;
6330 break;
6333 return NULL_TREE;
6336 /* Move basic block BB from function CFUN to function DEST_FN. The
6337 block is moved out of the original linked list and placed after
6338 block AFTER in the new list. Also, the block is removed from the
6339 original array of blocks and placed in DEST_FN's array of blocks.
6340 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
6341 updated to reflect the moved edges.
6343 The local variables are remapped to new instances, VARS_MAP is used
6344 to record the mapping. */
6346 static void
6347 move_block_to_fn (struct function *dest_cfun, basic_block bb,
6348 basic_block after, bool update_edge_count_p,
6349 struct move_stmt_d *d)
6351 struct control_flow_graph *cfg;
6352 edge_iterator ei;
6353 edge e;
6354 gimple_stmt_iterator si;
6355 unsigned old_len, new_len;
6357 /* Remove BB from dominance structures. */
6358 delete_from_dominance_info (CDI_DOMINATORS, bb);
6360 /* Move BB from its current loop to the copy in the new function. */
6361 if (current_loops)
6363 struct loop *new_loop = (struct loop *)bb->loop_father->aux;
6364 if (new_loop)
6365 bb->loop_father = new_loop;
6368 /* Link BB to the new linked list. */
6369 move_block_after (bb, after);
6371 /* Update the edge count in the corresponding flowgraphs. */
6372 if (update_edge_count_p)
6373 FOR_EACH_EDGE (e, ei, bb->succs)
6375 cfun->cfg->x_n_edges--;
6376 dest_cfun->cfg->x_n_edges++;
6379 /* Remove BB from the original basic block array. */
6380 (*cfun->cfg->x_basic_block_info)[bb->index] = NULL;
6381 cfun->cfg->x_n_basic_blocks--;
6383 /* Grow DEST_CFUN's basic block array if needed. */
6384 cfg = dest_cfun->cfg;
6385 cfg->x_n_basic_blocks++;
6386 if (bb->index >= cfg->x_last_basic_block)
6387 cfg->x_last_basic_block = bb->index + 1;
6389 old_len = vec_safe_length (cfg->x_basic_block_info);
6390 if ((unsigned) cfg->x_last_basic_block >= old_len)
6392 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
6393 vec_safe_grow_cleared (cfg->x_basic_block_info, new_len);
6396 (*cfg->x_basic_block_info)[bb->index] = bb;
6398 /* Remap the variables in phi nodes. */
6399 for (si = gsi_start_phis (bb); !gsi_end_p (si); )
6401 gimple phi = gsi_stmt (si);
6402 use_operand_p use;
6403 tree op = PHI_RESULT (phi);
6404 ssa_op_iter oi;
6405 unsigned i;
6407 if (virtual_operand_p (op))
6409 /* Remove the phi nodes for virtual operands (alias analysis will be
6410 run for the new function, anyway). */
6411 remove_phi_node (&si, true);
6412 continue;
6415 SET_PHI_RESULT (phi,
6416 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
6417 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
6419 op = USE_FROM_PTR (use);
6420 if (TREE_CODE (op) == SSA_NAME)
6421 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
6424 for (i = 0; i < EDGE_COUNT (bb->preds); i++)
6426 location_t locus = gimple_phi_arg_location (phi, i);
6427 tree block = LOCATION_BLOCK (locus);
6429 if (locus == UNKNOWN_LOCATION)
6430 continue;
6431 if (d->orig_block == NULL_TREE || block == d->orig_block)
6433 if (d->new_block == NULL_TREE)
6434 locus = LOCATION_LOCUS (locus);
6435 else
6436 locus = COMBINE_LOCATION_DATA (line_table, locus, d->new_block);
6437 gimple_phi_arg_set_location (phi, i, locus);
6441 gsi_next (&si);
6444 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6446 gimple stmt = gsi_stmt (si);
6447 struct walk_stmt_info wi;
6449 memset (&wi, 0, sizeof (wi));
6450 wi.info = d;
6451 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
6453 if (gimple_code (stmt) == GIMPLE_LABEL)
6455 tree label = gimple_label_label (stmt);
6456 int uid = LABEL_DECL_UID (label);
6458 gcc_assert (uid > -1);
6460 old_len = vec_safe_length (cfg->x_label_to_block_map);
6461 if (old_len <= (unsigned) uid)
6463 new_len = 3 * uid / 2 + 1;
6464 vec_safe_grow_cleared (cfg->x_label_to_block_map, new_len);
6467 (*cfg->x_label_to_block_map)[uid] = bb;
6468 (*cfun->cfg->x_label_to_block_map)[uid] = NULL;
6470 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
6472 if (uid >= dest_cfun->cfg->last_label_uid)
6473 dest_cfun->cfg->last_label_uid = uid + 1;
6476 maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
6477 remove_stmt_from_eh_lp_fn (cfun, stmt);
6479 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
6480 gimple_remove_stmt_histograms (cfun, stmt);
6482 /* We cannot leave any operands allocated from the operand caches of
6483 the current function. */
6484 free_stmt_operands (stmt);
6485 push_cfun (dest_cfun);
6486 update_stmt (stmt);
6487 pop_cfun ();
6490 FOR_EACH_EDGE (e, ei, bb->succs)
6491 if (e->goto_locus != UNKNOWN_LOCATION)
6493 tree block = LOCATION_BLOCK (e->goto_locus);
6494 if (d->orig_block == NULL_TREE
6495 || block == d->orig_block)
6496 e->goto_locus = d->new_block ?
6497 COMBINE_LOCATION_DATA (line_table, e->goto_locus, d->new_block) :
6498 LOCATION_LOCUS (e->goto_locus);
6502 /* Examine the statements in BB (which is in SRC_CFUN); find and return
6503 the outermost EH region. Use REGION as the incoming base EH region. */
6505 static eh_region
6506 find_outermost_region_in_block (struct function *src_cfun,
6507 basic_block bb, eh_region region)
6509 gimple_stmt_iterator si;
6511 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6513 gimple stmt = gsi_stmt (si);
6514 eh_region stmt_region;
6515 int lp_nr;
6517 lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
6518 stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
6519 if (stmt_region)
6521 if (region == NULL)
6522 region = stmt_region;
6523 else if (stmt_region != region)
6525 region = eh_region_outermost (src_cfun, stmt_region, region);
6526 gcc_assert (region != NULL);
6531 return region;
6534 static tree
6535 new_label_mapper (tree decl, void *data)
6537 htab_t hash = (htab_t) data;
6538 struct tree_map *m;
6539 void **slot;
6541 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
6543 m = XNEW (struct tree_map);
6544 m->hash = DECL_UID (decl);
6545 m->base.from = decl;
6546 m->to = create_artificial_label (UNKNOWN_LOCATION);
6547 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
6548 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
6549 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
6551 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
6552 gcc_assert (*slot == NULL);
6554 *slot = m;
6556 return m->to;
6559 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
6560 subblocks. */
6562 static void
6563 replace_block_vars_by_duplicates (tree block, struct pointer_map_t *vars_map,
6564 tree to_context)
6566 tree *tp, t;
6568 for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp))
6570 t = *tp;
6571 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != CONST_DECL)
6572 continue;
6573 replace_by_duplicate_decl (&t, vars_map, to_context);
6574 if (t != *tp)
6576 if (TREE_CODE (*tp) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*tp))
6578 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (*tp));
6579 DECL_HAS_VALUE_EXPR_P (t) = 1;
6581 DECL_CHAIN (t) = DECL_CHAIN (*tp);
6582 *tp = t;
6586 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
6587 replace_block_vars_by_duplicates (block, vars_map, to_context);
6590 /* Fixup the loop arrays and numbers after moving LOOP and its subloops
6591 from FN1 to FN2. */
6593 static void
6594 fixup_loop_arrays_after_move (struct function *fn1, struct function *fn2,
6595 struct loop *loop)
6597 /* Discard it from the old loop array. */
6598 (*get_loops (fn1))[loop->num] = NULL;
6600 /* Place it in the new loop array, assigning it a new number. */
6601 loop->num = number_of_loops (fn2);
6602 vec_safe_push (loops_for_fn (fn2)->larray, loop);
6604 /* Recurse to children. */
6605 for (loop = loop->inner; loop; loop = loop->next)
6606 fixup_loop_arrays_after_move (fn1, fn2, loop);
6609 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
6610 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
6611 single basic block in the original CFG and the new basic block is
6612 returned. DEST_CFUN must not have a CFG yet.
6614 Note that the region need not be a pure SESE region. Blocks inside
6615 the region may contain calls to abort/exit. The only restriction
6616 is that ENTRY_BB should be the only entry point and it must
6617 dominate EXIT_BB.
6619 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
6620 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
6621 to the new function.
6623 All local variables referenced in the region are assumed to be in
6624 the corresponding BLOCK_VARS and unexpanded variable lists
6625 associated with DEST_CFUN. */
6627 basic_block
6628 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
6629 basic_block exit_bb, tree orig_block)
6631 vec<basic_block> bbs, dom_bbs;
6632 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
6633 basic_block after, bb, *entry_pred, *exit_succ, abb;
6634 struct function *saved_cfun = cfun;
6635 int *entry_flag, *exit_flag;
6636 unsigned *entry_prob, *exit_prob;
6637 unsigned i, num_entry_edges, num_exit_edges;
6638 edge e;
6639 edge_iterator ei;
6640 htab_t new_label_map;
6641 struct pointer_map_t *vars_map, *eh_map;
6642 struct loop *loop = entry_bb->loop_father;
6643 struct move_stmt_d d;
6645 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
6646 region. */
6647 gcc_assert (entry_bb != exit_bb
6648 && (!exit_bb
6649 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
6651 /* Collect all the blocks in the region. Manually add ENTRY_BB
6652 because it won't be added by dfs_enumerate_from. */
6653 bbs.create (0);
6654 bbs.safe_push (entry_bb);
6655 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
6657 /* The blocks that used to be dominated by something in BBS will now be
6658 dominated by the new block. */
6659 dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
6660 bbs.address (),
6661 bbs.length ());
6663 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
6664 the predecessor edges to ENTRY_BB and the successor edges to
6665 EXIT_BB so that we can re-attach them to the new basic block that
6666 will replace the region. */
6667 num_entry_edges = EDGE_COUNT (entry_bb->preds);
6668 entry_pred = XNEWVEC (basic_block, num_entry_edges);
6669 entry_flag = XNEWVEC (int, num_entry_edges);
6670 entry_prob = XNEWVEC (unsigned, num_entry_edges);
6671 i = 0;
6672 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
6674 entry_prob[i] = e->probability;
6675 entry_flag[i] = e->flags;
6676 entry_pred[i++] = e->src;
6677 remove_edge (e);
6680 if (exit_bb)
6682 num_exit_edges = EDGE_COUNT (exit_bb->succs);
6683 exit_succ = XNEWVEC (basic_block, num_exit_edges);
6684 exit_flag = XNEWVEC (int, num_exit_edges);
6685 exit_prob = XNEWVEC (unsigned, num_exit_edges);
6686 i = 0;
6687 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
6689 exit_prob[i] = e->probability;
6690 exit_flag[i] = e->flags;
6691 exit_succ[i++] = e->dest;
6692 remove_edge (e);
6695 else
6697 num_exit_edges = 0;
6698 exit_succ = NULL;
6699 exit_flag = NULL;
6700 exit_prob = NULL;
6703 /* Switch context to the child function to initialize DEST_FN's CFG. */
6704 gcc_assert (dest_cfun->cfg == NULL);
6705 push_cfun (dest_cfun);
6707 init_empty_tree_cfg ();
6709 /* Initialize EH information for the new function. */
6710 eh_map = NULL;
6711 new_label_map = NULL;
6712 if (saved_cfun->eh)
6714 eh_region region = NULL;
6716 FOR_EACH_VEC_ELT (bbs, i, bb)
6717 region = find_outermost_region_in_block (saved_cfun, bb, region);
6719 init_eh_for_function ();
6720 if (region != NULL)
6722 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
6723 eh_map = duplicate_eh_regions (saved_cfun, region, 0,
6724 new_label_mapper, new_label_map);
6728 /* Initialize an empty loop tree. */
6729 struct loops *loops = ggc_alloc_cleared_loops ();
6730 init_loops_structure (dest_cfun, loops, 1);
6731 loops->state = LOOPS_MAY_HAVE_MULTIPLE_LATCHES;
6732 set_loops_for_fn (dest_cfun, loops);
6734 /* Move the outlined loop tree part. */
6735 FOR_EACH_VEC_ELT (bbs, i, bb)
6737 if (bb->loop_father->header == bb
6738 && loop_outer (bb->loop_father) == loop)
6740 struct loop *loop = bb->loop_father;
6741 flow_loop_tree_node_remove (bb->loop_father);
6742 flow_loop_tree_node_add (get_loop (dest_cfun, 0), loop);
6743 fixup_loop_arrays_after_move (saved_cfun, cfun, loop);
6746 /* Remove loop exits from the outlined region. */
6747 if (loops_for_fn (saved_cfun)->exits)
6748 FOR_EACH_EDGE (e, ei, bb->succs)
6750 void **slot = htab_find_slot_with_hash
6751 (loops_for_fn (saved_cfun)->exits, e,
6752 htab_hash_pointer (e), NO_INSERT);
6753 if (slot)
6754 htab_clear_slot (loops_for_fn (saved_cfun)->exits, slot);
6759 /* Adjust the number of blocks in the tree root of the outlined part. */
6760 get_loop (dest_cfun, 0)->num_nodes = bbs.length () + 2;
6762 /* Setup a mapping to be used by move_block_to_fn. */
6763 loop->aux = current_loops->tree_root;
6765 pop_cfun ();
6767 /* Move blocks from BBS into DEST_CFUN. */
6768 gcc_assert (bbs.length () >= 2);
6769 after = dest_cfun->cfg->x_entry_block_ptr;
6770 vars_map = pointer_map_create ();
6772 memset (&d, 0, sizeof (d));
6773 d.orig_block = orig_block;
6774 d.new_block = DECL_INITIAL (dest_cfun->decl);
6775 d.from_context = cfun->decl;
6776 d.to_context = dest_cfun->decl;
6777 d.vars_map = vars_map;
6778 d.new_label_map = new_label_map;
6779 d.eh_map = eh_map;
6780 d.remap_decls_p = true;
6782 FOR_EACH_VEC_ELT (bbs, i, bb)
6784 /* No need to update edge counts on the last block. It has
6785 already been updated earlier when we detached the region from
6786 the original CFG. */
6787 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
6788 after = bb;
6791 loop->aux = NULL;
6792 /* Loop sizes are no longer correct, fix them up. */
6793 loop->num_nodes -= bbs.length ();
6794 for (struct loop *outer = loop_outer (loop);
6795 outer; outer = loop_outer (outer))
6796 outer->num_nodes -= bbs.length ();
6798 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
6799 if (orig_block)
6801 tree block;
6802 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6803 == NULL_TREE);
6804 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6805 = BLOCK_SUBBLOCKS (orig_block);
6806 for (block = BLOCK_SUBBLOCKS (orig_block);
6807 block; block = BLOCK_CHAIN (block))
6808 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
6809 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
6812 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
6813 vars_map, dest_cfun->decl);
6815 if (new_label_map)
6816 htab_delete (new_label_map);
6817 if (eh_map)
6818 pointer_map_destroy (eh_map);
6819 pointer_map_destroy (vars_map);
6821 /* Rewire the entry and exit blocks. The successor to the entry
6822 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
6823 the child function. Similarly, the predecessor of DEST_FN's
6824 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
6825 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
6826 various CFG manipulation function get to the right CFG.
6828 FIXME, this is silly. The CFG ought to become a parameter to
6829 these helpers. */
6830 push_cfun (dest_cfun);
6831 make_edge (ENTRY_BLOCK_PTR, entry_bb, EDGE_FALLTHRU);
6832 if (exit_bb)
6833 make_edge (exit_bb, EXIT_BLOCK_PTR, 0);
6834 pop_cfun ();
6836 /* Back in the original function, the SESE region has disappeared,
6837 create a new basic block in its place. */
6838 bb = create_empty_bb (entry_pred[0]);
6839 if (current_loops)
6840 add_bb_to_loop (bb, loop);
6841 for (i = 0; i < num_entry_edges; i++)
6843 e = make_edge (entry_pred[i], bb, entry_flag[i]);
6844 e->probability = entry_prob[i];
6847 for (i = 0; i < num_exit_edges; i++)
6849 e = make_edge (bb, exit_succ[i], exit_flag[i]);
6850 e->probability = exit_prob[i];
6853 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
6854 FOR_EACH_VEC_ELT (dom_bbs, i, abb)
6855 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
6856 dom_bbs.release ();
6858 if (exit_bb)
6860 free (exit_prob);
6861 free (exit_flag);
6862 free (exit_succ);
6864 free (entry_prob);
6865 free (entry_flag);
6866 free (entry_pred);
6867 bbs.release ();
6869 return bb;
6873 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in dumpfile.h)
6876 void
6877 dump_function_to_file (tree fndecl, FILE *file, int flags)
6879 tree arg, var, old_current_fndecl = current_function_decl;
6880 struct function *dsf;
6881 bool ignore_topmost_bind = false, any_var = false;
6882 basic_block bb;
6883 tree chain;
6884 bool tmclone = (TREE_CODE (fndecl) == FUNCTION_DECL
6885 && decl_is_tm_clone (fndecl));
6886 struct function *fun = DECL_STRUCT_FUNCTION (fndecl);
6888 current_function_decl = fndecl;
6889 fprintf (file, "%s %s(", function_name (fun), tmclone ? "[tm-clone] " : "");
6891 arg = DECL_ARGUMENTS (fndecl);
6892 while (arg)
6894 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
6895 fprintf (file, " ");
6896 print_generic_expr (file, arg, dump_flags);
6897 if (flags & TDF_VERBOSE)
6898 print_node (file, "", arg, 4);
6899 if (DECL_CHAIN (arg))
6900 fprintf (file, ", ");
6901 arg = DECL_CHAIN (arg);
6903 fprintf (file, ")\n");
6905 if (flags & TDF_VERBOSE)
6906 print_node (file, "", fndecl, 2);
6908 dsf = DECL_STRUCT_FUNCTION (fndecl);
6909 if (dsf && (flags & TDF_EH))
6910 dump_eh_tree (file, dsf);
6912 if (flags & TDF_RAW && !gimple_has_body_p (fndecl))
6914 dump_node (fndecl, TDF_SLIM | flags, file);
6915 current_function_decl = old_current_fndecl;
6916 return;
6919 /* When GIMPLE is lowered, the variables are no longer available in
6920 BIND_EXPRs, so display them separately. */
6921 if (fun && fun->decl == fndecl && (fun->curr_properties & PROP_gimple_lcf))
6923 unsigned ix;
6924 ignore_topmost_bind = true;
6926 fprintf (file, "{\n");
6927 if (!vec_safe_is_empty (fun->local_decls))
6928 FOR_EACH_LOCAL_DECL (fun, ix, var)
6930 print_generic_decl (file, var, flags);
6931 if (flags & TDF_VERBOSE)
6932 print_node (file, "", var, 4);
6933 fprintf (file, "\n");
6935 any_var = true;
6937 if (gimple_in_ssa_p (cfun))
6938 for (ix = 1; ix < num_ssa_names; ++ix)
6940 tree name = ssa_name (ix);
6941 if (name && !SSA_NAME_VAR (name))
6943 fprintf (file, " ");
6944 print_generic_expr (file, TREE_TYPE (name), flags);
6945 fprintf (file, " ");
6946 print_generic_expr (file, name, flags);
6947 fprintf (file, ";\n");
6949 any_var = true;
6954 if (fun && fun->decl == fndecl
6955 && fun->cfg
6956 && basic_block_info_for_function (fun))
6958 /* If the CFG has been built, emit a CFG-based dump. */
6959 if (!ignore_topmost_bind)
6960 fprintf (file, "{\n");
6962 if (any_var && n_basic_blocks_for_function (fun))
6963 fprintf (file, "\n");
6965 FOR_EACH_BB_FN (bb, fun)
6966 dump_bb (file, bb, 2, flags | TDF_COMMENT);
6968 fprintf (file, "}\n");
6970 else if (DECL_SAVED_TREE (fndecl) == NULL)
6972 /* The function is now in GIMPLE form but the CFG has not been
6973 built yet. Emit the single sequence of GIMPLE statements
6974 that make up its body. */
6975 gimple_seq body = gimple_body (fndecl);
6977 if (gimple_seq_first_stmt (body)
6978 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
6979 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
6980 print_gimple_seq (file, body, 0, flags);
6981 else
6983 if (!ignore_topmost_bind)
6984 fprintf (file, "{\n");
6986 if (any_var)
6987 fprintf (file, "\n");
6989 print_gimple_seq (file, body, 2, flags);
6990 fprintf (file, "}\n");
6993 else
6995 int indent;
6997 /* Make a tree based dump. */
6998 chain = DECL_SAVED_TREE (fndecl);
6999 if (chain && TREE_CODE (chain) == BIND_EXPR)
7001 if (ignore_topmost_bind)
7003 chain = BIND_EXPR_BODY (chain);
7004 indent = 2;
7006 else
7007 indent = 0;
7009 else
7011 if (!ignore_topmost_bind)
7012 fprintf (file, "{\n");
7013 indent = 2;
7016 if (any_var)
7017 fprintf (file, "\n");
7019 print_generic_stmt_indented (file, chain, flags, indent);
7020 if (ignore_topmost_bind)
7021 fprintf (file, "}\n");
7024 if (flags & TDF_ENUMERATE_LOCALS)
7025 dump_enumerated_decls (file, flags);
7026 fprintf (file, "\n\n");
7028 current_function_decl = old_current_fndecl;
7031 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
7033 DEBUG_FUNCTION void
7034 debug_function (tree fn, int flags)
7036 dump_function_to_file (fn, stderr, flags);
7040 /* Print on FILE the indexes for the predecessors of basic_block BB. */
7042 static void
7043 print_pred_bbs (FILE *file, basic_block bb)
7045 edge e;
7046 edge_iterator ei;
7048 FOR_EACH_EDGE (e, ei, bb->preds)
7049 fprintf (file, "bb_%d ", e->src->index);
7053 /* Print on FILE the indexes for the successors of basic_block BB. */
7055 static void
7056 print_succ_bbs (FILE *file, basic_block bb)
7058 edge e;
7059 edge_iterator ei;
7061 FOR_EACH_EDGE (e, ei, bb->succs)
7062 fprintf (file, "bb_%d ", e->dest->index);
7065 /* Print to FILE the basic block BB following the VERBOSITY level. */
7067 void
7068 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
7070 char *s_indent = (char *) alloca ((size_t) indent + 1);
7071 memset ((void *) s_indent, ' ', (size_t) indent);
7072 s_indent[indent] = '\0';
7074 /* Print basic_block's header. */
7075 if (verbosity >= 2)
7077 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
7078 print_pred_bbs (file, bb);
7079 fprintf (file, "}, succs = {");
7080 print_succ_bbs (file, bb);
7081 fprintf (file, "})\n");
7084 /* Print basic_block's body. */
7085 if (verbosity >= 3)
7087 fprintf (file, "%s {\n", s_indent);
7088 dump_bb (file, bb, indent + 4, TDF_VOPS|TDF_MEMSYMS);
7089 fprintf (file, "%s }\n", s_indent);
7093 static void print_loop_and_siblings (FILE *, struct loop *, int, int);
7095 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
7096 VERBOSITY level this outputs the contents of the loop, or just its
7097 structure. */
7099 static void
7100 print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
7102 char *s_indent;
7103 basic_block bb;
7105 if (loop == NULL)
7106 return;
7108 s_indent = (char *) alloca ((size_t) indent + 1);
7109 memset ((void *) s_indent, ' ', (size_t) indent);
7110 s_indent[indent] = '\0';
7112 /* Print loop's header. */
7113 fprintf (file, "%sloop_%d (", s_indent, loop->num);
7114 if (loop->header)
7115 fprintf (file, "header = %d", loop->header->index);
7116 else
7118 fprintf (file, "deleted)\n");
7119 return;
7121 if (loop->latch)
7122 fprintf (file, ", latch = %d", loop->latch->index);
7123 else
7124 fprintf (file, ", multiple latches");
7125 fprintf (file, ", niter = ");
7126 print_generic_expr (file, loop->nb_iterations, 0);
7128 if (loop->any_upper_bound)
7130 fprintf (file, ", upper_bound = ");
7131 dump_double_int (file, loop->nb_iterations_upper_bound, true);
7134 if (loop->any_estimate)
7136 fprintf (file, ", estimate = ");
7137 dump_double_int (file, loop->nb_iterations_estimate, true);
7139 fprintf (file, ")\n");
7141 /* Print loop's body. */
7142 if (verbosity >= 1)
7144 fprintf (file, "%s{\n", s_indent);
7145 FOR_EACH_BB (bb)
7146 if (bb->loop_father == loop)
7147 print_loops_bb (file, bb, indent, verbosity);
7149 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
7150 fprintf (file, "%s}\n", s_indent);
7154 /* Print the LOOP and its sibling loops on FILE, indented INDENT
7155 spaces. Following VERBOSITY level this outputs the contents of the
7156 loop, or just its structure. */
7158 static void
7159 print_loop_and_siblings (FILE *file, struct loop *loop, int indent,
7160 int verbosity)
7162 if (loop == NULL)
7163 return;
7165 print_loop (file, loop, indent, verbosity);
7166 print_loop_and_siblings (file, loop->next, indent, verbosity);
7169 /* Follow a CFG edge from the entry point of the program, and on entry
7170 of a loop, pretty print the loop structure on FILE. */
7172 void
7173 print_loops (FILE *file, int verbosity)
7175 basic_block bb;
7177 bb = ENTRY_BLOCK_PTR;
7178 if (bb && bb->loop_father)
7179 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
7182 /* Dump a loop. */
7184 DEBUG_FUNCTION void
7185 debug (struct loop &ref)
7187 print_loop (stderr, &ref, 0, /*verbosity*/0);
7190 DEBUG_FUNCTION void
7191 debug (struct loop *ptr)
7193 if (ptr)
7194 debug (*ptr);
7195 else
7196 fprintf (stderr, "<nil>\n");
7199 /* Dump a loop verbosely. */
7201 DEBUG_FUNCTION void
7202 debug_verbose (struct loop &ref)
7204 print_loop (stderr, &ref, 0, /*verbosity*/3);
7207 DEBUG_FUNCTION void
7208 debug_verbose (struct loop *ptr)
7210 if (ptr)
7211 debug (*ptr);
7212 else
7213 fprintf (stderr, "<nil>\n");
7217 /* Debugging loops structure at tree level, at some VERBOSITY level. */
7219 DEBUG_FUNCTION void
7220 debug_loops (int verbosity)
7222 print_loops (stderr, verbosity);
7225 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
7227 DEBUG_FUNCTION void
7228 debug_loop (struct loop *loop, int verbosity)
7230 print_loop (stderr, loop, 0, verbosity);
7233 /* Print on stderr the code of loop number NUM, at some VERBOSITY
7234 level. */
7236 DEBUG_FUNCTION void
7237 debug_loop_num (unsigned num, int verbosity)
7239 debug_loop (get_loop (cfun, num), verbosity);
7242 /* Return true if BB ends with a call, possibly followed by some
7243 instructions that must stay with the call. Return false,
7244 otherwise. */
7246 static bool
7247 gimple_block_ends_with_call_p (basic_block bb)
7249 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
7250 return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi));
7254 /* Return true if BB ends with a conditional branch. Return false,
7255 otherwise. */
7257 static bool
7258 gimple_block_ends_with_condjump_p (const_basic_block bb)
7260 gimple stmt = last_stmt (CONST_CAST_BB (bb));
7261 return (stmt && gimple_code (stmt) == GIMPLE_COND);
7265 /* Return true if we need to add fake edge to exit at statement T.
7266 Helper function for gimple_flow_call_edges_add. */
7268 static bool
7269 need_fake_edge_p (gimple t)
7271 tree fndecl = NULL_TREE;
7272 int call_flags = 0;
7274 /* NORETURN and LONGJMP calls already have an edge to exit.
7275 CONST and PURE calls do not need one.
7276 We don't currently check for CONST and PURE here, although
7277 it would be a good idea, because those attributes are
7278 figured out from the RTL in mark_constant_function, and
7279 the counter incrementation code from -fprofile-arcs
7280 leads to different results from -fbranch-probabilities. */
7281 if (is_gimple_call (t))
7283 fndecl = gimple_call_fndecl (t);
7284 call_flags = gimple_call_flags (t);
7287 if (is_gimple_call (t)
7288 && fndecl
7289 && DECL_BUILT_IN (fndecl)
7290 && (call_flags & ECF_NOTHROW)
7291 && !(call_flags & ECF_RETURNS_TWICE)
7292 /* fork() doesn't really return twice, but the effect of
7293 wrapping it in __gcov_fork() which calls __gcov_flush()
7294 and clears the counters before forking has the same
7295 effect as returning twice. Force a fake edge. */
7296 && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
7297 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
7298 return false;
7300 if (is_gimple_call (t))
7302 edge_iterator ei;
7303 edge e;
7304 basic_block bb;
7306 if (!(call_flags & ECF_NORETURN))
7307 return true;
7309 bb = gimple_bb (t);
7310 FOR_EACH_EDGE (e, ei, bb->succs)
7311 if ((e->flags & EDGE_FAKE) == 0)
7312 return true;
7315 if (gimple_code (t) == GIMPLE_ASM
7316 && (gimple_asm_volatile_p (t) || gimple_asm_input_p (t)))
7317 return true;
7319 return false;
7323 /* Add fake edges to the function exit for any non constant and non
7324 noreturn calls (or noreturn calls with EH/abnormal edges),
7325 volatile inline assembly in the bitmap of blocks specified by BLOCKS
7326 or to the whole CFG if BLOCKS is zero. Return the number of blocks
7327 that were split.
7329 The goal is to expose cases in which entering a basic block does
7330 not imply that all subsequent instructions must be executed. */
7332 static int
7333 gimple_flow_call_edges_add (sbitmap blocks)
7335 int i;
7336 int blocks_split = 0;
7337 int last_bb = last_basic_block;
7338 bool check_last_block = false;
7340 if (n_basic_blocks == NUM_FIXED_BLOCKS)
7341 return 0;
7343 if (! blocks)
7344 check_last_block = true;
7345 else
7346 check_last_block = bitmap_bit_p (blocks, EXIT_BLOCK_PTR->prev_bb->index);
7348 /* In the last basic block, before epilogue generation, there will be
7349 a fallthru edge to EXIT. Special care is required if the last insn
7350 of the last basic block is a call because make_edge folds duplicate
7351 edges, which would result in the fallthru edge also being marked
7352 fake, which would result in the fallthru edge being removed by
7353 remove_fake_edges, which would result in an invalid CFG.
7355 Moreover, we can't elide the outgoing fake edge, since the block
7356 profiler needs to take this into account in order to solve the minimal
7357 spanning tree in the case that the call doesn't return.
7359 Handle this by adding a dummy instruction in a new last basic block. */
7360 if (check_last_block)
7362 basic_block bb = EXIT_BLOCK_PTR->prev_bb;
7363 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
7364 gimple t = NULL;
7366 if (!gsi_end_p (gsi))
7367 t = gsi_stmt (gsi);
7369 if (t && need_fake_edge_p (t))
7371 edge e;
7373 e = find_edge (bb, EXIT_BLOCK_PTR);
7374 if (e)
7376 gsi_insert_on_edge (e, gimple_build_nop ());
7377 gsi_commit_edge_inserts ();
7382 /* Now add fake edges to the function exit for any non constant
7383 calls since there is no way that we can determine if they will
7384 return or not... */
7385 for (i = 0; i < last_bb; i++)
7387 basic_block bb = BASIC_BLOCK (i);
7388 gimple_stmt_iterator gsi;
7389 gimple stmt, last_stmt;
7391 if (!bb)
7392 continue;
7394 if (blocks && !bitmap_bit_p (blocks, i))
7395 continue;
7397 gsi = gsi_last_nondebug_bb (bb);
7398 if (!gsi_end_p (gsi))
7400 last_stmt = gsi_stmt (gsi);
7403 stmt = gsi_stmt (gsi);
7404 if (need_fake_edge_p (stmt))
7406 edge e;
7408 /* The handling above of the final block before the
7409 epilogue should be enough to verify that there is
7410 no edge to the exit block in CFG already.
7411 Calling make_edge in such case would cause us to
7412 mark that edge as fake and remove it later. */
7413 #ifdef ENABLE_CHECKING
7414 if (stmt == last_stmt)
7416 e = find_edge (bb, EXIT_BLOCK_PTR);
7417 gcc_assert (e == NULL);
7419 #endif
7421 /* Note that the following may create a new basic block
7422 and renumber the existing basic blocks. */
7423 if (stmt != last_stmt)
7425 e = split_block (bb, stmt);
7426 if (e)
7427 blocks_split++;
7429 make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
7431 gsi_prev (&gsi);
7433 while (!gsi_end_p (gsi));
7437 if (blocks_split)
7438 verify_flow_info ();
7440 return blocks_split;
7443 /* Removes edge E and all the blocks dominated by it, and updates dominance
7444 information. The IL in E->src needs to be updated separately.
7445 If dominance info is not available, only the edge E is removed.*/
7447 void
7448 remove_edge_and_dominated_blocks (edge e)
7450 vec<basic_block> bbs_to_remove = vNULL;
7451 vec<basic_block> bbs_to_fix_dom = vNULL;
7452 bitmap df, df_idom;
7453 edge f;
7454 edge_iterator ei;
7455 bool none_removed = false;
7456 unsigned i;
7457 basic_block bb, dbb;
7458 bitmap_iterator bi;
7460 if (!dom_info_available_p (CDI_DOMINATORS))
7462 remove_edge (e);
7463 return;
7466 /* No updating is needed for edges to exit. */
7467 if (e->dest == EXIT_BLOCK_PTR)
7469 if (cfgcleanup_altered_bbs)
7470 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
7471 remove_edge (e);
7472 return;
7475 /* First, we find the basic blocks to remove. If E->dest has a predecessor
7476 that is not dominated by E->dest, then this set is empty. Otherwise,
7477 all the basic blocks dominated by E->dest are removed.
7479 Also, to DF_IDOM we store the immediate dominators of the blocks in
7480 the dominance frontier of E (i.e., of the successors of the
7481 removed blocks, if there are any, and of E->dest otherwise). */
7482 FOR_EACH_EDGE (f, ei, e->dest->preds)
7484 if (f == e)
7485 continue;
7487 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
7489 none_removed = true;
7490 break;
7494 df = BITMAP_ALLOC (NULL);
7495 df_idom = BITMAP_ALLOC (NULL);
7497 if (none_removed)
7498 bitmap_set_bit (df_idom,
7499 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
7500 else
7502 bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
7503 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
7505 FOR_EACH_EDGE (f, ei, bb->succs)
7507 if (f->dest != EXIT_BLOCK_PTR)
7508 bitmap_set_bit (df, f->dest->index);
7511 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
7512 bitmap_clear_bit (df, bb->index);
7514 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
7516 bb = BASIC_BLOCK (i);
7517 bitmap_set_bit (df_idom,
7518 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
7522 if (cfgcleanup_altered_bbs)
7524 /* Record the set of the altered basic blocks. */
7525 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
7526 bitmap_ior_into (cfgcleanup_altered_bbs, df);
7529 /* Remove E and the cancelled blocks. */
7530 if (none_removed)
7531 remove_edge (e);
7532 else
7534 /* Walk backwards so as to get a chance to substitute all
7535 released DEFs into debug stmts. See
7536 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
7537 details. */
7538 for (i = bbs_to_remove.length (); i-- > 0; )
7539 delete_basic_block (bbs_to_remove[i]);
7542 /* Update the dominance information. The immediate dominator may change only
7543 for blocks whose immediate dominator belongs to DF_IDOM:
7545 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
7546 removal. Let Z the arbitrary block such that idom(Z) = Y and
7547 Z dominates X after the removal. Before removal, there exists a path P
7548 from Y to X that avoids Z. Let F be the last edge on P that is
7549 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
7550 dominates W, and because of P, Z does not dominate W), and W belongs to
7551 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
7552 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
7554 bb = BASIC_BLOCK (i);
7555 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
7556 dbb;
7557 dbb = next_dom_son (CDI_DOMINATORS, dbb))
7558 bbs_to_fix_dom.safe_push (dbb);
7561 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
7563 BITMAP_FREE (df);
7564 BITMAP_FREE (df_idom);
7565 bbs_to_remove.release ();
7566 bbs_to_fix_dom.release ();
7569 /* Purge dead EH edges from basic block BB. */
7571 bool
7572 gimple_purge_dead_eh_edges (basic_block bb)
7574 bool changed = false;
7575 edge e;
7576 edge_iterator ei;
7577 gimple stmt = last_stmt (bb);
7579 if (stmt && stmt_can_throw_internal (stmt))
7580 return false;
7582 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7584 if (e->flags & EDGE_EH)
7586 remove_edge_and_dominated_blocks (e);
7587 changed = true;
7589 else
7590 ei_next (&ei);
7593 return changed;
7596 /* Purge dead EH edges from basic block listed in BLOCKS. */
7598 bool
7599 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
7601 bool changed = false;
7602 unsigned i;
7603 bitmap_iterator bi;
7605 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7607 basic_block bb = BASIC_BLOCK (i);
7609 /* Earlier gimple_purge_dead_eh_edges could have removed
7610 this basic block already. */
7611 gcc_assert (bb || changed);
7612 if (bb != NULL)
7613 changed |= gimple_purge_dead_eh_edges (bb);
7616 return changed;
7619 /* Purge dead abnormal call edges from basic block BB. */
7621 bool
7622 gimple_purge_dead_abnormal_call_edges (basic_block bb)
7624 bool changed = false;
7625 edge e;
7626 edge_iterator ei;
7627 gimple stmt = last_stmt (bb);
7629 if (!cfun->has_nonlocal_label
7630 && !cfun->calls_setjmp)
7631 return false;
7633 if (stmt && stmt_can_make_abnormal_goto (stmt))
7634 return false;
7636 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7638 if (e->flags & EDGE_ABNORMAL)
7640 if (e->flags & EDGE_FALLTHRU)
7641 e->flags &= ~EDGE_ABNORMAL;
7642 else
7643 remove_edge_and_dominated_blocks (e);
7644 changed = true;
7646 else
7647 ei_next (&ei);
7650 return changed;
7653 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
7655 bool
7656 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks)
7658 bool changed = false;
7659 unsigned i;
7660 bitmap_iterator bi;
7662 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7664 basic_block bb = BASIC_BLOCK (i);
7666 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
7667 this basic block already. */
7668 gcc_assert (bb || changed);
7669 if (bb != NULL)
7670 changed |= gimple_purge_dead_abnormal_call_edges (bb);
7673 return changed;
7676 /* This function is called whenever a new edge is created or
7677 redirected. */
7679 static void
7680 gimple_execute_on_growing_pred (edge e)
7682 basic_block bb = e->dest;
7684 if (!gimple_seq_empty_p (phi_nodes (bb)))
7685 reserve_phi_args_for_new_edge (bb);
7688 /* This function is called immediately before edge E is removed from
7689 the edge vector E->dest->preds. */
7691 static void
7692 gimple_execute_on_shrinking_pred (edge e)
7694 if (!gimple_seq_empty_p (phi_nodes (e->dest)))
7695 remove_phi_args (e);
7698 /*---------------------------------------------------------------------------
7699 Helper functions for Loop versioning
7700 ---------------------------------------------------------------------------*/
7702 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
7703 of 'first'. Both of them are dominated by 'new_head' basic block. When
7704 'new_head' was created by 'second's incoming edge it received phi arguments
7705 on the edge by split_edge(). Later, additional edge 'e' was created to
7706 connect 'new_head' and 'first'. Now this routine adds phi args on this
7707 additional edge 'e' that new_head to second edge received as part of edge
7708 splitting. */
7710 static void
7711 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
7712 basic_block new_head, edge e)
7714 gimple phi1, phi2;
7715 gimple_stmt_iterator psi1, psi2;
7716 tree def;
7717 edge e2 = find_edge (new_head, second);
7719 /* Because NEW_HEAD has been created by splitting SECOND's incoming
7720 edge, we should always have an edge from NEW_HEAD to SECOND. */
7721 gcc_assert (e2 != NULL);
7723 /* Browse all 'second' basic block phi nodes and add phi args to
7724 edge 'e' for 'first' head. PHI args are always in correct order. */
7726 for (psi2 = gsi_start_phis (second),
7727 psi1 = gsi_start_phis (first);
7728 !gsi_end_p (psi2) && !gsi_end_p (psi1);
7729 gsi_next (&psi2), gsi_next (&psi1))
7731 phi1 = gsi_stmt (psi1);
7732 phi2 = gsi_stmt (psi2);
7733 def = PHI_ARG_DEF (phi2, e2->dest_idx);
7734 add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
7739 /* Adds a if else statement to COND_BB with condition COND_EXPR.
7740 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
7741 the destination of the ELSE part. */
7743 static void
7744 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
7745 basic_block second_head ATTRIBUTE_UNUSED,
7746 basic_block cond_bb, void *cond_e)
7748 gimple_stmt_iterator gsi;
7749 gimple new_cond_expr;
7750 tree cond_expr = (tree) cond_e;
7751 edge e0;
7753 /* Build new conditional expr */
7754 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
7755 NULL_TREE, NULL_TREE);
7757 /* Add new cond in cond_bb. */
7758 gsi = gsi_last_bb (cond_bb);
7759 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
7761 /* Adjust edges appropriately to connect new head with first head
7762 as well as second head. */
7763 e0 = single_succ_edge (cond_bb);
7764 e0->flags &= ~EDGE_FALLTHRU;
7765 e0->flags |= EDGE_FALSE_VALUE;
7769 /* Do book-keeping of basic block BB for the profile consistency checker.
7770 If AFTER_PASS is 0, do pre-pass accounting, or if AFTER_PASS is 1
7771 then do post-pass accounting. Store the counting in RECORD. */
7772 static void
7773 gimple_account_profile_record (basic_block bb, int after_pass,
7774 struct profile_record *record)
7776 gimple_stmt_iterator i;
7777 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
7779 record->size[after_pass]
7780 += estimate_num_insns (gsi_stmt (i), &eni_size_weights);
7781 if (profile_status == PROFILE_READ)
7782 record->time[after_pass]
7783 += estimate_num_insns (gsi_stmt (i),
7784 &eni_time_weights) * bb->count;
7785 else if (profile_status == PROFILE_GUESSED)
7786 record->time[after_pass]
7787 += estimate_num_insns (gsi_stmt (i),
7788 &eni_time_weights) * bb->frequency;
7792 struct cfg_hooks gimple_cfg_hooks = {
7793 "gimple",
7794 gimple_verify_flow_info,
7795 gimple_dump_bb, /* dump_bb */
7796 gimple_dump_bb_for_graph, /* dump_bb_for_graph */
7797 create_bb, /* create_basic_block */
7798 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
7799 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
7800 gimple_can_remove_branch_p, /* can_remove_branch_p */
7801 remove_bb, /* delete_basic_block */
7802 gimple_split_block, /* split_block */
7803 gimple_move_block_after, /* move_block_after */
7804 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
7805 gimple_merge_blocks, /* merge_blocks */
7806 gimple_predict_edge, /* predict_edge */
7807 gimple_predicted_by_p, /* predicted_by_p */
7808 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
7809 gimple_duplicate_bb, /* duplicate_block */
7810 gimple_split_edge, /* split_edge */
7811 gimple_make_forwarder_block, /* make_forward_block */
7812 NULL, /* tidy_fallthru_edge */
7813 NULL, /* force_nonfallthru */
7814 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
7815 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
7816 gimple_flow_call_edges_add, /* flow_call_edges_add */
7817 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
7818 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
7819 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
7820 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
7821 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
7822 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
7823 flush_pending_stmts, /* flush_pending_stmts */
7824 gimple_empty_block_p, /* block_empty_p */
7825 gimple_split_block_before_cond_jump, /* split_block_before_cond_jump */
7826 gimple_account_profile_record,
7830 /* Split all critical edges. */
7832 static unsigned int
7833 split_critical_edges (void)
7835 basic_block bb;
7836 edge e;
7837 edge_iterator ei;
7839 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
7840 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
7841 mappings around the calls to split_edge. */
7842 start_recording_case_labels ();
7843 FOR_ALL_BB (bb)
7845 FOR_EACH_EDGE (e, ei, bb->succs)
7847 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
7848 split_edge (e);
7849 /* PRE inserts statements to edges and expects that
7850 since split_critical_edges was done beforehand, committing edge
7851 insertions will not split more edges. In addition to critical
7852 edges we must split edges that have multiple successors and
7853 end by control flow statements, such as RESX.
7854 Go ahead and split them too. This matches the logic in
7855 gimple_find_edge_insert_loc. */
7856 else if ((!single_pred_p (e->dest)
7857 || !gimple_seq_empty_p (phi_nodes (e->dest))
7858 || e->dest == EXIT_BLOCK_PTR)
7859 && e->src != ENTRY_BLOCK_PTR
7860 && !(e->flags & EDGE_ABNORMAL))
7862 gimple_stmt_iterator gsi;
7864 gsi = gsi_last_bb (e->src);
7865 if (!gsi_end_p (gsi)
7866 && stmt_ends_bb_p (gsi_stmt (gsi))
7867 && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN
7868 && !gimple_call_builtin_p (gsi_stmt (gsi),
7869 BUILT_IN_RETURN)))
7870 split_edge (e);
7874 end_recording_case_labels ();
7875 return 0;
7878 struct gimple_opt_pass pass_split_crit_edges =
7881 GIMPLE_PASS,
7882 "crited", /* name */
7883 OPTGROUP_NONE, /* optinfo_flags */
7884 NULL, /* gate */
7885 split_critical_edges, /* execute */
7886 NULL, /* sub */
7887 NULL, /* next */
7888 0, /* static_pass_number */
7889 TV_TREE_SPLIT_EDGES, /* tv_id */
7890 PROP_cfg, /* properties required */
7891 PROP_no_crit_edges, /* properties_provided */
7892 0, /* properties_destroyed */
7893 0, /* todo_flags_start */
7894 TODO_verify_flow /* todo_flags_finish */
7899 /* Build a ternary operation and gimplify it. Emit code before GSI.
7900 Return the gimple_val holding the result. */
7902 tree
7903 gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
7904 tree type, tree a, tree b, tree c)
7906 tree ret;
7907 location_t loc = gimple_location (gsi_stmt (*gsi));
7909 ret = fold_build3_loc (loc, code, type, a, b, c);
7910 STRIP_NOPS (ret);
7912 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7913 GSI_SAME_STMT);
7916 /* Build a binary operation and gimplify it. Emit code before GSI.
7917 Return the gimple_val holding the result. */
7919 tree
7920 gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
7921 tree type, tree a, tree b)
7923 tree ret;
7925 ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b);
7926 STRIP_NOPS (ret);
7928 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7929 GSI_SAME_STMT);
7932 /* Build a unary operation and gimplify it. Emit code before GSI.
7933 Return the gimple_val holding the result. */
7935 tree
7936 gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
7937 tree a)
7939 tree ret;
7941 ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a);
7942 STRIP_NOPS (ret);
7944 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7945 GSI_SAME_STMT);
7950 /* Emit return warnings. */
7952 static unsigned int
7953 execute_warn_function_return (void)
7955 source_location location;
7956 gimple last;
7957 edge e;
7958 edge_iterator ei;
7960 if (!targetm.warn_func_return (cfun->decl))
7961 return 0;
7963 /* If we have a path to EXIT, then we do return. */
7964 if (TREE_THIS_VOLATILE (cfun->decl)
7965 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0)
7967 location = UNKNOWN_LOCATION;
7968 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7970 last = last_stmt (e->src);
7971 if ((gimple_code (last) == GIMPLE_RETURN
7972 || gimple_call_builtin_p (last, BUILT_IN_RETURN))
7973 && (location = gimple_location (last)) != UNKNOWN_LOCATION)
7974 break;
7976 if (location == UNKNOWN_LOCATION)
7977 location = cfun->function_end_locus;
7978 warning_at (location, 0, "%<noreturn%> function does return");
7981 /* If we see "return;" in some basic block, then we do reach the end
7982 without returning a value. */
7983 else if (warn_return_type
7984 && !TREE_NO_WARNING (cfun->decl)
7985 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0
7986 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun->decl))))
7988 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7990 gimple last = last_stmt (e->src);
7991 if (gimple_code (last) == GIMPLE_RETURN
7992 && gimple_return_retval (last) == NULL
7993 && !gimple_no_warning_p (last))
7995 location = gimple_location (last);
7996 if (location == UNKNOWN_LOCATION)
7997 location = cfun->function_end_locus;
7998 warning_at (location, OPT_Wreturn_type, "control reaches end of non-void function");
7999 TREE_NO_WARNING (cfun->decl) = 1;
8000 break;
8004 return 0;
8008 /* Given a basic block B which ends with a conditional and has
8009 precisely two successors, determine which of the edges is taken if
8010 the conditional is true and which is taken if the conditional is
8011 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
8013 void
8014 extract_true_false_edges_from_block (basic_block b,
8015 edge *true_edge,
8016 edge *false_edge)
8018 edge e = EDGE_SUCC (b, 0);
8020 if (e->flags & EDGE_TRUE_VALUE)
8022 *true_edge = e;
8023 *false_edge = EDGE_SUCC (b, 1);
8025 else
8027 *false_edge = e;
8028 *true_edge = EDGE_SUCC (b, 1);
8032 struct gimple_opt_pass pass_warn_function_return =
8035 GIMPLE_PASS,
8036 "*warn_function_return", /* name */
8037 OPTGROUP_NONE, /* optinfo_flags */
8038 NULL, /* gate */
8039 execute_warn_function_return, /* execute */
8040 NULL, /* sub */
8041 NULL, /* next */
8042 0, /* static_pass_number */
8043 TV_NONE, /* tv_id */
8044 PROP_cfg, /* properties_required */
8045 0, /* properties_provided */
8046 0, /* properties_destroyed */
8047 0, /* todo_flags_start */
8048 0 /* todo_flags_finish */
8052 /* Emit noreturn warnings. */
8054 static unsigned int
8055 execute_warn_function_noreturn (void)
8057 if (!TREE_THIS_VOLATILE (current_function_decl)
8058 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) == 0)
8059 warn_function_noreturn (current_function_decl);
8060 return 0;
8063 static bool
8064 gate_warn_function_noreturn (void)
8066 return warn_suggest_attribute_noreturn;
8069 struct gimple_opt_pass pass_warn_function_noreturn =
8072 GIMPLE_PASS,
8073 "*warn_function_noreturn", /* name */
8074 OPTGROUP_NONE, /* optinfo_flags */
8075 gate_warn_function_noreturn, /* gate */
8076 execute_warn_function_noreturn, /* execute */
8077 NULL, /* sub */
8078 NULL, /* next */
8079 0, /* static_pass_number */
8080 TV_NONE, /* tv_id */
8081 PROP_cfg, /* properties_required */
8082 0, /* properties_provided */
8083 0, /* properties_destroyed */
8084 0, /* todo_flags_start */
8085 0 /* todo_flags_finish */
8090 /* Walk a gimplified function and warn for functions whose return value is
8091 ignored and attribute((warn_unused_result)) is set. This is done before
8092 inlining, so we don't have to worry about that. */
8094 static void
8095 do_warn_unused_result (gimple_seq seq)
8097 tree fdecl, ftype;
8098 gimple_stmt_iterator i;
8100 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
8102 gimple g = gsi_stmt (i);
8104 switch (gimple_code (g))
8106 case GIMPLE_BIND:
8107 do_warn_unused_result (gimple_bind_body (g));
8108 break;
8109 case GIMPLE_TRY:
8110 do_warn_unused_result (gimple_try_eval (g));
8111 do_warn_unused_result (gimple_try_cleanup (g));
8112 break;
8113 case GIMPLE_CATCH:
8114 do_warn_unused_result (gimple_catch_handler (g));
8115 break;
8116 case GIMPLE_EH_FILTER:
8117 do_warn_unused_result (gimple_eh_filter_failure (g));
8118 break;
8120 case GIMPLE_CALL:
8121 if (gimple_call_lhs (g))
8122 break;
8123 if (gimple_call_internal_p (g))
8124 break;
8126 /* This is a naked call, as opposed to a GIMPLE_CALL with an
8127 LHS. All calls whose value is ignored should be
8128 represented like this. Look for the attribute. */
8129 fdecl = gimple_call_fndecl (g);
8130 ftype = gimple_call_fntype (g);
8132 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
8134 location_t loc = gimple_location (g);
8136 if (fdecl)
8137 warning_at (loc, OPT_Wunused_result,
8138 "ignoring return value of %qD, "
8139 "declared with attribute warn_unused_result",
8140 fdecl);
8141 else
8142 warning_at (loc, OPT_Wunused_result,
8143 "ignoring return value of function "
8144 "declared with attribute warn_unused_result");
8146 break;
8148 default:
8149 /* Not a container, not a call, or a call whose value is used. */
8150 break;
8155 static unsigned int
8156 run_warn_unused_result (void)
8158 do_warn_unused_result (gimple_body (current_function_decl));
8159 return 0;
8162 static bool
8163 gate_warn_unused_result (void)
8165 return flag_warn_unused_result;
8168 struct gimple_opt_pass pass_warn_unused_result =
8171 GIMPLE_PASS,
8172 "*warn_unused_result", /* name */
8173 OPTGROUP_NONE, /* optinfo_flags */
8174 gate_warn_unused_result, /* gate */
8175 run_warn_unused_result, /* execute */
8176 NULL, /* sub */
8177 NULL, /* next */
8178 0, /* static_pass_number */
8179 TV_NONE, /* tv_id */
8180 PROP_gimple_any, /* properties_required */
8181 0, /* properties_provided */
8182 0, /* properties_destroyed */
8183 0, /* todo_flags_start */
8184 0, /* todo_flags_finish */
8189 /* Garbage collection support for edge_def. */
8191 extern void gt_ggc_mx (tree&);
8192 extern void gt_ggc_mx (gimple&);
8193 extern void gt_ggc_mx (rtx&);
8194 extern void gt_ggc_mx (basic_block&);
8196 void
8197 gt_ggc_mx (edge_def *e)
8199 tree block = LOCATION_BLOCK (e->goto_locus);
8200 gt_ggc_mx (e->src);
8201 gt_ggc_mx (e->dest);
8202 if (current_ir_type () == IR_GIMPLE)
8203 gt_ggc_mx (e->insns.g);
8204 else
8205 gt_ggc_mx (e->insns.r);
8206 gt_ggc_mx (block);
8209 /* PCH support for edge_def. */
8211 extern void gt_pch_nx (tree&);
8212 extern void gt_pch_nx (gimple&);
8213 extern void gt_pch_nx (rtx&);
8214 extern void gt_pch_nx (basic_block&);
8216 void
8217 gt_pch_nx (edge_def *e)
8219 tree block = LOCATION_BLOCK (e->goto_locus);
8220 gt_pch_nx (e->src);
8221 gt_pch_nx (e->dest);
8222 if (current_ir_type () == IR_GIMPLE)
8223 gt_pch_nx (e->insns.g);
8224 else
8225 gt_pch_nx (e->insns.r);
8226 gt_pch_nx (block);
8229 void
8230 gt_pch_nx (edge_def *e, gt_pointer_operator op, void *cookie)
8232 tree block = LOCATION_BLOCK (e->goto_locus);
8233 op (&(e->src), cookie);
8234 op (&(e->dest), cookie);
8235 if (current_ir_type () == IR_GIMPLE)
8236 op (&(e->insns.g), cookie);
8237 else
8238 op (&(e->insns.r), cookie);
8239 op (&(block), cookie);