PR libstdc++/3584
[official-gcc.git] / gcc / tree.c
blob3be8579a9c3fa0a82b78a027ad0bedfc72558ca7
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
27 nodes of that code.
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c. */
32 #include "config.h"
33 #include "system.h"
34 #include "flags.h"
35 #include "tree.h"
36 #include "real.h"
37 #include "tm_p.h"
38 #include "function.h"
39 #include "obstack.h"
40 #include "toplev.h"
41 #include "ggc.h"
42 #include "hashtab.h"
43 #include "output.h"
44 #include "target.h"
45 #include "langhooks.h"
47 /* obstack.[ch] explicitly declined to prototype this. */
48 extern int _obstack_allocated_p PARAMS ((struct obstack *h, PTR obj));
50 #ifdef GATHER_STATISTICS
51 /* Statistics-gathering stuff. */
52 typedef enum
54 d_kind,
55 t_kind,
56 b_kind,
57 s_kind,
58 r_kind,
59 e_kind,
60 c_kind,
61 id_kind,
62 perm_list_kind,
63 temp_list_kind,
64 vec_kind,
65 x_kind,
66 lang_decl,
67 lang_type,
68 all_kinds
69 } tree_node_kind;
71 int tree_node_counts[(int) all_kinds];
72 int tree_node_sizes[(int) all_kinds];
74 static const char * const tree_node_kind_names[] = {
75 "decls",
76 "types",
77 "blocks",
78 "stmts",
79 "refs",
80 "exprs",
81 "constants",
82 "identifiers",
83 "perm_tree_lists",
84 "temp_tree_lists",
85 "vecs",
86 "random kinds",
87 "lang_decl kinds",
88 "lang_type kinds"
90 #endif /* GATHER_STATISTICS */
92 /* Unique id for next decl created. */
93 static int next_decl_uid;
94 /* Unique id for next type created. */
95 static int next_type_uid = 1;
97 /* Since we cannot rehash a type after it is in the table, we have to
98 keep the hash code. */
100 struct type_hash GTY(())
102 unsigned long hash;
103 tree type;
106 /* Initial size of the hash table (rounded to next prime). */
107 #define TYPE_HASH_INITIAL_SIZE 1000
109 /* Now here is the hash table. When recording a type, it is added to
110 the slot whose index is the hash code. Note that the hash table is
111 used for several kinds of types (function types, array types and
112 array index range types, for now). While all these live in the
113 same table, they are completely independent, and the hash code is
114 computed differently for each of these. */
116 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
117 htab_t type_hash_table;
119 static void set_type_quals PARAMS ((tree, int));
120 static void append_random_chars PARAMS ((char *));
121 static int type_hash_eq PARAMS ((const void *, const void *));
122 static unsigned int type_hash_hash PARAMS ((const void *));
123 static void print_type_hash_statistics PARAMS((void));
124 static void finish_vector_type PARAMS((tree));
125 static tree make_vector PARAMS ((enum machine_mode, tree, int));
126 static int type_hash_marked_p PARAMS ((const void *));
128 tree global_trees[TI_MAX];
129 tree integer_types[itk_none];
131 /* Init tree.c. */
133 void
134 init_ttree ()
136 /* Initialize the hash table of types. */
137 type_hash_table = htab_create (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
138 type_hash_eq, 0);
142 /* The name of the object as the assembler will see it (but before any
143 translations made by ASM_OUTPUT_LABELREF). Often this is the same
144 as DECL_NAME. It is an IDENTIFIER_NODE. */
145 tree
146 decl_assembler_name (decl)
147 tree decl;
149 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
150 (*lang_hooks.set_decl_assembler_name) (decl);
151 return DECL_CHECK (decl)->decl.assembler_name;
154 /* Compute the number of bytes occupied by 'node'. This routine only
155 looks at TREE_CODE and, if the code is TREE_VEC, TREE_VEC_LENGTH. */
156 size_t
157 tree_size (node)
158 tree node;
160 enum tree_code code = TREE_CODE (node);
162 switch (TREE_CODE_CLASS (code))
164 case 'd': /* A decl node */
165 return sizeof (struct tree_decl);
167 case 't': /* a type node */
168 return sizeof (struct tree_type);
170 case 'b': /* a lexical block node */
171 return sizeof (struct tree_block);
173 case 'r': /* a reference */
174 case 'e': /* an expression */
175 case 's': /* an expression with side effects */
176 case '<': /* a comparison expression */
177 case '1': /* a unary arithmetic expression */
178 case '2': /* a binary arithmetic expression */
179 return (sizeof (struct tree_exp)
180 + (TREE_CODE_LENGTH (code) - 1) * sizeof (char *));
182 case 'c': /* a constant */
183 /* We can't use TREE_CODE_LENGTH for INTEGER_CST, since the number of
184 words is machine-dependent due to varying length of HOST_WIDE_INT,
185 which might be wider than a pointer (e.g., long long). Similarly
186 for REAL_CST, since the number of words is machine-dependent due
187 to varying size and alignment of `double'. */
188 if (code == INTEGER_CST)
189 return sizeof (struct tree_int_cst);
190 else if (code == REAL_CST)
191 return sizeof (struct tree_real_cst);
192 else
193 return (sizeof (struct tree_common)
194 + TREE_CODE_LENGTH (code) * sizeof (char *));
196 case 'x': /* something random, like an identifier. */
198 size_t length;
199 length = (sizeof (struct tree_common)
200 + TREE_CODE_LENGTH (code) * sizeof (char *));
201 if (code == TREE_VEC)
202 length += (TREE_VEC_LENGTH (node) - 1) * sizeof (char *);
203 return length;
206 default:
207 abort ();
211 /* Return a newly allocated node of code CODE.
212 For decl and type nodes, some other fields are initialized.
213 The rest of the node is initialized to zero.
215 Achoo! I got a code in the node. */
217 tree
218 make_node (code)
219 enum tree_code code;
221 tree t;
222 int type = TREE_CODE_CLASS (code);
223 size_t length;
224 #ifdef GATHER_STATISTICS
225 tree_node_kind kind;
226 #endif
227 struct tree_common ttmp;
229 /* We can't allocate a TREE_VEC without knowing how many elements
230 it will have. */
231 if (code == TREE_VEC)
232 abort ();
234 TREE_SET_CODE ((tree)&ttmp, code);
235 length = tree_size ((tree)&ttmp);
237 #ifdef GATHER_STATISTICS
238 switch (type)
240 case 'd': /* A decl node */
241 kind = d_kind;
242 break;
244 case 't': /* a type node */
245 kind = t_kind;
246 break;
248 case 'b': /* a lexical block */
249 kind = b_kind;
250 break;
252 case 's': /* an expression with side effects */
253 kind = s_kind;
254 break;
256 case 'r': /* a reference */
257 kind = r_kind;
258 break;
260 case 'e': /* an expression */
261 case '<': /* a comparison expression */
262 case '1': /* a unary arithmetic expression */
263 case '2': /* a binary arithmetic expression */
264 kind = e_kind;
265 break;
267 case 'c': /* a constant */
268 kind = c_kind;
269 break;
271 case 'x': /* something random, like an identifier. */
272 if (code == IDENTIFIER_NODE)
273 kind = id_kind;
274 else if (code == TREE_VEC)
275 kind = vec_kind;
276 else
277 kind = x_kind;
278 break;
280 default:
281 abort ();
284 tree_node_counts[(int) kind]++;
285 tree_node_sizes[(int) kind] += length;
286 #endif
288 t = ggc_alloc_tree (length);
290 memset ((PTR) t, 0, length);
292 TREE_SET_CODE (t, code);
294 switch (type)
296 case 's':
297 TREE_SIDE_EFFECTS (t) = 1;
298 TREE_TYPE (t) = void_type_node;
299 break;
301 case 'd':
302 if (code != FUNCTION_DECL)
303 DECL_ALIGN (t) = 1;
304 DECL_USER_ALIGN (t) = 0;
305 DECL_IN_SYSTEM_HEADER (t) = in_system_header;
306 DECL_SOURCE_LINE (t) = lineno;
307 DECL_SOURCE_FILE (t) =
308 (input_filename) ? input_filename : "<built-in>";
309 DECL_UID (t) = next_decl_uid++;
311 /* We have not yet computed the alias set for this declaration. */
312 DECL_POINTER_ALIAS_SET (t) = -1;
313 break;
315 case 't':
316 TYPE_UID (t) = next_type_uid++;
317 TYPE_ALIGN (t) = char_type_node ? TYPE_ALIGN (char_type_node) : 0;
318 TYPE_USER_ALIGN (t) = 0;
319 TYPE_MAIN_VARIANT (t) = t;
321 /* Default to no attributes for type, but let target change that. */
322 TYPE_ATTRIBUTES (t) = NULL_TREE;
323 (*targetm.set_default_type_attributes) (t);
325 /* We have not yet computed the alias set for this type. */
326 TYPE_ALIAS_SET (t) = -1;
327 break;
329 case 'c':
330 TREE_CONSTANT (t) = 1;
331 break;
333 case 'e':
334 switch (code)
336 case INIT_EXPR:
337 case MODIFY_EXPR:
338 case VA_ARG_EXPR:
339 case RTL_EXPR:
340 case PREDECREMENT_EXPR:
341 case PREINCREMENT_EXPR:
342 case POSTDECREMENT_EXPR:
343 case POSTINCREMENT_EXPR:
344 /* All of these have side-effects, no matter what their
345 operands are. */
346 TREE_SIDE_EFFECTS (t) = 1;
347 break;
349 default:
350 break;
352 break;
355 return t;
358 /* Return a new node with the same contents as NODE except that its
359 TREE_CHAIN is zero and it has a fresh uid. */
361 tree
362 copy_node (node)
363 tree node;
365 tree t;
366 enum tree_code code = TREE_CODE (node);
367 size_t length;
369 length = tree_size (node);
370 t = ggc_alloc_tree (length);
371 memcpy (t, node, length);
373 TREE_CHAIN (t) = 0;
374 TREE_ASM_WRITTEN (t) = 0;
376 if (TREE_CODE_CLASS (code) == 'd')
377 DECL_UID (t) = next_decl_uid++;
378 else if (TREE_CODE_CLASS (code) == 't')
380 TYPE_UID (t) = next_type_uid++;
381 /* The following is so that the debug code for
382 the copy is different from the original type.
383 The two statements usually duplicate each other
384 (because they clear fields of the same union),
385 but the optimizer should catch that. */
386 TYPE_SYMTAB_POINTER (t) = 0;
387 TYPE_SYMTAB_ADDRESS (t) = 0;
390 return t;
393 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
394 For example, this can copy a list made of TREE_LIST nodes. */
396 tree
397 copy_list (list)
398 tree list;
400 tree head;
401 tree prev, next;
403 if (list == 0)
404 return 0;
406 head = prev = copy_node (list);
407 next = TREE_CHAIN (list);
408 while (next)
410 TREE_CHAIN (prev) = copy_node (next);
411 prev = TREE_CHAIN (prev);
412 next = TREE_CHAIN (next);
414 return head;
418 /* Return a newly constructed INTEGER_CST node whose constant value
419 is specified by the two ints LOW and HI.
420 The TREE_TYPE is set to `int'.
422 This function should be used via the `build_int_2' macro. */
424 tree
425 build_int_2_wide (low, hi)
426 unsigned HOST_WIDE_INT low;
427 HOST_WIDE_INT hi;
429 tree t = make_node (INTEGER_CST);
431 TREE_INT_CST_LOW (t) = low;
432 TREE_INT_CST_HIGH (t) = hi;
433 TREE_TYPE (t) = integer_type_node;
434 return t;
437 /* Return a new VECTOR_CST node whose type is TYPE and whose values
438 are in a list pointed by VALS. */
440 tree
441 build_vector (type, vals)
442 tree type, vals;
444 tree v = make_node (VECTOR_CST);
445 int over1 = 0, over2 = 0;
446 tree link;
448 TREE_VECTOR_CST_ELTS (v) = vals;
449 TREE_TYPE (v) = type;
451 /* Iterate through elements and check for overflow. */
452 for (link = vals; link; link = TREE_CHAIN (link))
454 tree value = TREE_VALUE (link);
456 over1 |= TREE_OVERFLOW (value);
457 over2 |= TREE_CONSTANT_OVERFLOW (value);
460 TREE_OVERFLOW (v) = over1;
461 TREE_CONSTANT_OVERFLOW (v) = over2;
463 return v;
466 /* Return a new REAL_CST node whose type is TYPE and value is D. */
468 tree
469 build_real (type, d)
470 tree type;
471 REAL_VALUE_TYPE d;
473 tree v;
474 REAL_VALUE_TYPE *dp;
475 int overflow = 0;
477 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
478 Consider doing it via real_convert now. */
480 v = make_node (REAL_CST);
481 dp = ggc_alloc (sizeof (REAL_VALUE_TYPE));
482 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
484 TREE_TYPE (v) = type;
485 TREE_REAL_CST_PTR (v) = dp;
486 TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
487 return v;
490 /* Return a new REAL_CST node whose type is TYPE
491 and whose value is the integer value of the INTEGER_CST node I. */
493 REAL_VALUE_TYPE
494 real_value_from_int_cst (type, i)
495 tree type ATTRIBUTE_UNUSED, i;
497 REAL_VALUE_TYPE d;
499 /* Clear all bits of the real value type so that we can later do
500 bitwise comparisons to see if two values are the same. */
501 memset ((char *) &d, 0, sizeof d);
503 if (! TREE_UNSIGNED (TREE_TYPE (i)))
504 REAL_VALUE_FROM_INT (d, TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
505 TYPE_MODE (type));
506 else
507 REAL_VALUE_FROM_UNSIGNED_INT (d, TREE_INT_CST_LOW (i),
508 TREE_INT_CST_HIGH (i), TYPE_MODE (type));
509 return d;
512 /* Given a tree representing an integer constant I, return a tree
513 representing the same value as a floating-point constant of type TYPE. */
515 tree
516 build_real_from_int_cst (type, i)
517 tree type;
518 tree i;
520 tree v;
521 int overflow = TREE_OVERFLOW (i);
523 v = build_real (type, real_value_from_int_cst (type, i));
525 TREE_OVERFLOW (v) |= overflow;
526 TREE_CONSTANT_OVERFLOW (v) |= overflow;
527 return v;
530 /* Return a newly constructed STRING_CST node whose value is
531 the LEN characters at STR.
532 The TREE_TYPE is not initialized. */
534 tree
535 build_string (len, str)
536 int len;
537 const char *str;
539 tree s = make_node (STRING_CST);
541 TREE_STRING_LENGTH (s) = len;
542 TREE_STRING_POINTER (s) = ggc_alloc_string (str, len);
544 return s;
547 /* Return a newly constructed COMPLEX_CST node whose value is
548 specified by the real and imaginary parts REAL and IMAG.
549 Both REAL and IMAG should be constant nodes. TYPE, if specified,
550 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
552 tree
553 build_complex (type, real, imag)
554 tree type;
555 tree real, imag;
557 tree t = make_node (COMPLEX_CST);
559 TREE_REALPART (t) = real;
560 TREE_IMAGPART (t) = imag;
561 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
562 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
563 TREE_CONSTANT_OVERFLOW (t)
564 = TREE_CONSTANT_OVERFLOW (real) | TREE_CONSTANT_OVERFLOW (imag);
565 return t;
568 /* Build a newly constructed TREE_VEC node of length LEN. */
570 tree
571 make_tree_vec (len)
572 int len;
574 tree t;
575 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
577 #ifdef GATHER_STATISTICS
578 tree_node_counts[(int) vec_kind]++;
579 tree_node_sizes[(int) vec_kind] += length;
580 #endif
582 t = ggc_alloc_tree (length);
584 memset ((PTR) t, 0, length);
585 TREE_SET_CODE (t, TREE_VEC);
586 TREE_VEC_LENGTH (t) = len;
588 return t;
591 /* Return 1 if EXPR is the integer constant zero or a complex constant
592 of zero. */
595 integer_zerop (expr)
596 tree expr;
598 STRIP_NOPS (expr);
600 return ((TREE_CODE (expr) == INTEGER_CST
601 && ! TREE_CONSTANT_OVERFLOW (expr)
602 && TREE_INT_CST_LOW (expr) == 0
603 && TREE_INT_CST_HIGH (expr) == 0)
604 || (TREE_CODE (expr) == COMPLEX_CST
605 && integer_zerop (TREE_REALPART (expr))
606 && integer_zerop (TREE_IMAGPART (expr))));
609 /* Return 1 if EXPR is the integer constant one or the corresponding
610 complex constant. */
613 integer_onep (expr)
614 tree expr;
616 STRIP_NOPS (expr);
618 return ((TREE_CODE (expr) == INTEGER_CST
619 && ! TREE_CONSTANT_OVERFLOW (expr)
620 && TREE_INT_CST_LOW (expr) == 1
621 && TREE_INT_CST_HIGH (expr) == 0)
622 || (TREE_CODE (expr) == COMPLEX_CST
623 && integer_onep (TREE_REALPART (expr))
624 && integer_zerop (TREE_IMAGPART (expr))));
627 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
628 it contains. Likewise for the corresponding complex constant. */
631 integer_all_onesp (expr)
632 tree expr;
634 int prec;
635 int uns;
637 STRIP_NOPS (expr);
639 if (TREE_CODE (expr) == COMPLEX_CST
640 && integer_all_onesp (TREE_REALPART (expr))
641 && integer_zerop (TREE_IMAGPART (expr)))
642 return 1;
644 else if (TREE_CODE (expr) != INTEGER_CST
645 || TREE_CONSTANT_OVERFLOW (expr))
646 return 0;
648 uns = TREE_UNSIGNED (TREE_TYPE (expr));
649 if (!uns)
650 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
651 && TREE_INT_CST_HIGH (expr) == -1);
653 /* Note that using TYPE_PRECISION here is wrong. We care about the
654 actual bits, not the (arbitrary) range of the type. */
655 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
656 if (prec >= HOST_BITS_PER_WIDE_INT)
658 HOST_WIDE_INT high_value;
659 int shift_amount;
661 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
663 if (shift_amount > HOST_BITS_PER_WIDE_INT)
664 /* Can not handle precisions greater than twice the host int size. */
665 abort ();
666 else if (shift_amount == HOST_BITS_PER_WIDE_INT)
667 /* Shifting by the host word size is undefined according to the ANSI
668 standard, so we must handle this as a special case. */
669 high_value = -1;
670 else
671 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
673 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
674 && TREE_INT_CST_HIGH (expr) == high_value);
676 else
677 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
680 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
681 one bit on). */
684 integer_pow2p (expr)
685 tree expr;
687 int prec;
688 HOST_WIDE_INT high, low;
690 STRIP_NOPS (expr);
692 if (TREE_CODE (expr) == COMPLEX_CST
693 && integer_pow2p (TREE_REALPART (expr))
694 && integer_zerop (TREE_IMAGPART (expr)))
695 return 1;
697 if (TREE_CODE (expr) != INTEGER_CST || TREE_CONSTANT_OVERFLOW (expr))
698 return 0;
700 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
701 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
702 high = TREE_INT_CST_HIGH (expr);
703 low = TREE_INT_CST_LOW (expr);
705 /* First clear all bits that are beyond the type's precision in case
706 we've been sign extended. */
708 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
710 else if (prec > HOST_BITS_PER_WIDE_INT)
711 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
712 else
714 high = 0;
715 if (prec < HOST_BITS_PER_WIDE_INT)
716 low &= ~((HOST_WIDE_INT) (-1) << prec);
719 if (high == 0 && low == 0)
720 return 0;
722 return ((high == 0 && (low & (low - 1)) == 0)
723 || (low == 0 && (high & (high - 1)) == 0));
726 /* Return the power of two represented by a tree node known to be a
727 power of two. */
730 tree_log2 (expr)
731 tree expr;
733 int prec;
734 HOST_WIDE_INT high, low;
736 STRIP_NOPS (expr);
738 if (TREE_CODE (expr) == COMPLEX_CST)
739 return tree_log2 (TREE_REALPART (expr));
741 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
742 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
744 high = TREE_INT_CST_HIGH (expr);
745 low = TREE_INT_CST_LOW (expr);
747 /* First clear all bits that are beyond the type's precision in case
748 we've been sign extended. */
750 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
752 else if (prec > HOST_BITS_PER_WIDE_INT)
753 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
754 else
756 high = 0;
757 if (prec < HOST_BITS_PER_WIDE_INT)
758 low &= ~((HOST_WIDE_INT) (-1) << prec);
761 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
762 : exact_log2 (low));
765 /* Similar, but return the largest integer Y such that 2 ** Y is less
766 than or equal to EXPR. */
769 tree_floor_log2 (expr)
770 tree expr;
772 int prec;
773 HOST_WIDE_INT high, low;
775 STRIP_NOPS (expr);
777 if (TREE_CODE (expr) == COMPLEX_CST)
778 return tree_log2 (TREE_REALPART (expr));
780 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
781 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
783 high = TREE_INT_CST_HIGH (expr);
784 low = TREE_INT_CST_LOW (expr);
786 /* First clear all bits that are beyond the type's precision in case
787 we've been sign extended. Ignore if type's precision hasn't been set
788 since what we are doing is setting it. */
790 if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
792 else if (prec > HOST_BITS_PER_WIDE_INT)
793 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
794 else
796 high = 0;
797 if (prec < HOST_BITS_PER_WIDE_INT)
798 low &= ~((HOST_WIDE_INT) (-1) << prec);
801 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
802 : floor_log2 (low));
805 /* Return 1 if EXPR is the real constant zero. */
808 real_zerop (expr)
809 tree expr;
811 STRIP_NOPS (expr);
813 return ((TREE_CODE (expr) == REAL_CST
814 && ! TREE_CONSTANT_OVERFLOW (expr)
815 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0))
816 || (TREE_CODE (expr) == COMPLEX_CST
817 && real_zerop (TREE_REALPART (expr))
818 && real_zerop (TREE_IMAGPART (expr))));
821 /* Return 1 if EXPR is the real constant one in real or complex form. */
824 real_onep (expr)
825 tree expr;
827 STRIP_NOPS (expr);
829 return ((TREE_CODE (expr) == REAL_CST
830 && ! TREE_CONSTANT_OVERFLOW (expr)
831 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1))
832 || (TREE_CODE (expr) == COMPLEX_CST
833 && real_onep (TREE_REALPART (expr))
834 && real_zerop (TREE_IMAGPART (expr))));
837 /* Return 1 if EXPR is the real constant two. */
840 real_twop (expr)
841 tree expr;
843 STRIP_NOPS (expr);
845 return ((TREE_CODE (expr) == REAL_CST
846 && ! TREE_CONSTANT_OVERFLOW (expr)
847 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2))
848 || (TREE_CODE (expr) == COMPLEX_CST
849 && real_twop (TREE_REALPART (expr))
850 && real_zerop (TREE_IMAGPART (expr))));
853 /* Return 1 if EXPR is the real constant minus one. */
856 real_minus_onep (expr)
857 tree expr;
859 STRIP_NOPS (expr);
861 return ((TREE_CODE (expr) == REAL_CST
862 && ! TREE_CONSTANT_OVERFLOW (expr)
863 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1))
864 || (TREE_CODE (expr) == COMPLEX_CST
865 && real_minus_onep (TREE_REALPART (expr))
866 && real_zerop (TREE_IMAGPART (expr))));
869 /* Nonzero if EXP is a constant or a cast of a constant. */
872 really_constant_p (exp)
873 tree exp;
875 /* This is not quite the same as STRIP_NOPS. It does more. */
876 while (TREE_CODE (exp) == NOP_EXPR
877 || TREE_CODE (exp) == CONVERT_EXPR
878 || TREE_CODE (exp) == NON_LVALUE_EXPR)
879 exp = TREE_OPERAND (exp, 0);
880 return TREE_CONSTANT (exp);
883 /* Return first list element whose TREE_VALUE is ELEM.
884 Return 0 if ELEM is not in LIST. */
886 tree
887 value_member (elem, list)
888 tree elem, list;
890 while (list)
892 if (elem == TREE_VALUE (list))
893 return list;
894 list = TREE_CHAIN (list);
896 return NULL_TREE;
899 /* Return first list element whose TREE_PURPOSE is ELEM.
900 Return 0 if ELEM is not in LIST. */
902 tree
903 purpose_member (elem, list)
904 tree elem, list;
906 while (list)
908 if (elem == TREE_PURPOSE (list))
909 return list;
910 list = TREE_CHAIN (list);
912 return NULL_TREE;
915 /* Return first list element whose BINFO_TYPE is ELEM.
916 Return 0 if ELEM is not in LIST. */
918 tree
919 binfo_member (elem, list)
920 tree elem, list;
922 while (list)
924 if (elem == BINFO_TYPE (list))
925 return list;
926 list = TREE_CHAIN (list);
928 return NULL_TREE;
931 /* Return nonzero if ELEM is part of the chain CHAIN. */
934 chain_member (elem, chain)
935 tree elem, chain;
937 while (chain)
939 if (elem == chain)
940 return 1;
941 chain = TREE_CHAIN (chain);
944 return 0;
947 /* Return nonzero if ELEM is equal to TREE_VALUE (CHAIN) for any piece of
948 chain CHAIN. This and the next function are currently unused, but
949 are retained for completeness. */
952 chain_member_value (elem, chain)
953 tree elem, chain;
955 while (chain)
957 if (elem == TREE_VALUE (chain))
958 return 1;
959 chain = TREE_CHAIN (chain);
962 return 0;
965 /* Return nonzero if ELEM is equal to TREE_PURPOSE (CHAIN)
966 for any piece of chain CHAIN. */
969 chain_member_purpose (elem, chain)
970 tree elem, chain;
972 while (chain)
974 if (elem == TREE_PURPOSE (chain))
975 return 1;
976 chain = TREE_CHAIN (chain);
979 return 0;
982 /* Return the length of a chain of nodes chained through TREE_CHAIN.
983 We expect a null pointer to mark the end of the chain.
984 This is the Lisp primitive `length'. */
987 list_length (t)
988 tree t;
990 tree tail;
991 int len = 0;
993 for (tail = t; tail; tail = TREE_CHAIN (tail))
994 len++;
996 return len;
999 /* Returns the number of FIELD_DECLs in TYPE. */
1002 fields_length (type)
1003 tree type;
1005 tree t = TYPE_FIELDS (type);
1006 int count = 0;
1008 for (; t; t = TREE_CHAIN (t))
1009 if (TREE_CODE (t) == FIELD_DECL)
1010 ++count;
1012 return count;
1015 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
1016 by modifying the last node in chain 1 to point to chain 2.
1017 This is the Lisp primitive `nconc'. */
1019 tree
1020 chainon (op1, op2)
1021 tree op1, op2;
1024 if (op1)
1026 tree t1;
1027 #ifdef ENABLE_TREE_CHECKING
1028 tree t2;
1029 #endif
1031 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
1033 TREE_CHAIN (t1) = op2;
1034 #ifdef ENABLE_TREE_CHECKING
1035 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
1036 if (t2 == t1)
1037 abort (); /* Circularity created. */
1038 #endif
1039 return op1;
1041 else
1042 return op2;
1045 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
1047 tree
1048 tree_last (chain)
1049 tree chain;
1051 tree next;
1052 if (chain)
1053 while ((next = TREE_CHAIN (chain)))
1054 chain = next;
1055 return chain;
1058 /* Reverse the order of elements in the chain T,
1059 and return the new head of the chain (old last element). */
1061 tree
1062 nreverse (t)
1063 tree t;
1065 tree prev = 0, decl, next;
1066 for (decl = t; decl; decl = next)
1068 next = TREE_CHAIN (decl);
1069 TREE_CHAIN (decl) = prev;
1070 prev = decl;
1072 return prev;
1075 /* Given a chain CHAIN of tree nodes,
1076 construct and return a list of those nodes. */
1078 tree
1079 listify (chain)
1080 tree chain;
1082 tree result = NULL_TREE;
1083 tree in_tail = chain;
1084 tree out_tail = NULL_TREE;
1086 while (in_tail)
1088 tree next = tree_cons (NULL_TREE, in_tail, NULL_TREE);
1089 if (out_tail)
1090 TREE_CHAIN (out_tail) = next;
1091 else
1092 result = next;
1093 out_tail = next;
1094 in_tail = TREE_CHAIN (in_tail);
1097 return result;
1100 /* Return a newly created TREE_LIST node whose
1101 purpose and value fields are PARM and VALUE. */
1103 tree
1104 build_tree_list (parm, value)
1105 tree parm, value;
1107 tree t = make_node (TREE_LIST);
1108 TREE_PURPOSE (t) = parm;
1109 TREE_VALUE (t) = value;
1110 return t;
1113 /* Return a newly created TREE_LIST node whose
1114 purpose and value fields are PARM and VALUE
1115 and whose TREE_CHAIN is CHAIN. */
1117 tree
1118 tree_cons (purpose, value, chain)
1119 tree purpose, value, chain;
1121 tree node;
1123 node = ggc_alloc_tree (sizeof (struct tree_list));
1125 memset (node, 0, sizeof (struct tree_common));
1127 #ifdef GATHER_STATISTICS
1128 tree_node_counts[(int) x_kind]++;
1129 tree_node_sizes[(int) x_kind] += sizeof (struct tree_list);
1130 #endif
1132 TREE_SET_CODE (node, TREE_LIST);
1133 TREE_CHAIN (node) = chain;
1134 TREE_PURPOSE (node) = purpose;
1135 TREE_VALUE (node) = value;
1136 return node;
1140 /* Return the size nominally occupied by an object of type TYPE
1141 when it resides in memory. The value is measured in units of bytes,
1142 and its data type is that normally used for type sizes
1143 (which is the first type created by make_signed_type or
1144 make_unsigned_type). */
1146 tree
1147 size_in_bytes (type)
1148 tree type;
1150 tree t;
1152 if (type == error_mark_node)
1153 return integer_zero_node;
1155 type = TYPE_MAIN_VARIANT (type);
1156 t = TYPE_SIZE_UNIT (type);
1158 if (t == 0)
1160 (*lang_hooks.types.incomplete_type_error) (NULL_TREE, type);
1161 return size_zero_node;
1164 if (TREE_CODE (t) == INTEGER_CST)
1165 force_fit_type (t, 0);
1167 return t;
1170 /* Return the size of TYPE (in bytes) as a wide integer
1171 or return -1 if the size can vary or is larger than an integer. */
1173 HOST_WIDE_INT
1174 int_size_in_bytes (type)
1175 tree type;
1177 tree t;
1179 if (type == error_mark_node)
1180 return 0;
1182 type = TYPE_MAIN_VARIANT (type);
1183 t = TYPE_SIZE_UNIT (type);
1184 if (t == 0
1185 || TREE_CODE (t) != INTEGER_CST
1186 || TREE_OVERFLOW (t)
1187 || TREE_INT_CST_HIGH (t) != 0
1188 /* If the result would appear negative, it's too big to represent. */
1189 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
1190 return -1;
1192 return TREE_INT_CST_LOW (t);
1195 /* Return the bit position of FIELD, in bits from the start of the record.
1196 This is a tree of type bitsizetype. */
1198 tree
1199 bit_position (field)
1200 tree field;
1203 return bit_from_pos (DECL_FIELD_OFFSET (field),
1204 DECL_FIELD_BIT_OFFSET (field));
1207 /* Likewise, but return as an integer. Abort if it cannot be represented
1208 in that way (since it could be a signed value, we don't have the option
1209 of returning -1 like int_size_in_byte can. */
1211 HOST_WIDE_INT
1212 int_bit_position (field)
1213 tree field;
1215 return tree_low_cst (bit_position (field), 0);
1218 /* Return the byte position of FIELD, in bytes from the start of the record.
1219 This is a tree of type sizetype. */
1221 tree
1222 byte_position (field)
1223 tree field;
1225 return byte_from_pos (DECL_FIELD_OFFSET (field),
1226 DECL_FIELD_BIT_OFFSET (field));
1229 /* Likewise, but return as an integer. Abort if it cannot be represented
1230 in that way (since it could be a signed value, we don't have the option
1231 of returning -1 like int_size_in_byte can. */
1233 HOST_WIDE_INT
1234 int_byte_position (field)
1235 tree field;
1237 return tree_low_cst (byte_position (field), 0);
1240 /* Return the strictest alignment, in bits, that T is known to have. */
1242 unsigned int
1243 expr_align (t)
1244 tree t;
1246 unsigned int align0, align1;
1248 switch (TREE_CODE (t))
1250 case NOP_EXPR: case CONVERT_EXPR: case NON_LVALUE_EXPR:
1251 /* If we have conversions, we know that the alignment of the
1252 object must meet each of the alignments of the types. */
1253 align0 = expr_align (TREE_OPERAND (t, 0));
1254 align1 = TYPE_ALIGN (TREE_TYPE (t));
1255 return MAX (align0, align1);
1257 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
1258 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
1259 case WITH_RECORD_EXPR: case CLEANUP_POINT_EXPR: case UNSAVE_EXPR:
1260 /* These don't change the alignment of an object. */
1261 return expr_align (TREE_OPERAND (t, 0));
1263 case COND_EXPR:
1264 /* The best we can do is say that the alignment is the least aligned
1265 of the two arms. */
1266 align0 = expr_align (TREE_OPERAND (t, 1));
1267 align1 = expr_align (TREE_OPERAND (t, 2));
1268 return MIN (align0, align1);
1270 case LABEL_DECL: case CONST_DECL:
1271 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
1272 if (DECL_ALIGN (t) != 0)
1273 return DECL_ALIGN (t);
1274 break;
1276 case FUNCTION_DECL:
1277 return FUNCTION_BOUNDARY;
1279 default:
1280 break;
1283 /* Otherwise take the alignment from that of the type. */
1284 return TYPE_ALIGN (TREE_TYPE (t));
1287 /* Return, as a tree node, the number of elements for TYPE (which is an
1288 ARRAY_TYPE) minus one. This counts only elements of the top array. */
1290 tree
1291 array_type_nelts (type)
1292 tree type;
1294 tree index_type, min, max;
1296 /* If they did it with unspecified bounds, then we should have already
1297 given an error about it before we got here. */
1298 if (! TYPE_DOMAIN (type))
1299 return error_mark_node;
1301 index_type = TYPE_DOMAIN (type);
1302 min = TYPE_MIN_VALUE (index_type);
1303 max = TYPE_MAX_VALUE (index_type);
1305 return (integer_zerop (min)
1306 ? max
1307 : fold (build (MINUS_EXPR, TREE_TYPE (max), max, min)));
1310 /* Return nonzero if arg is static -- a reference to an object in
1311 static storage. This is not the same as the C meaning of `static'. */
1314 staticp (arg)
1315 tree arg;
1317 switch (TREE_CODE (arg))
1319 case FUNCTION_DECL:
1320 /* Nested functions aren't static, since taking their address
1321 involves a trampoline. */
1322 return ((decl_function_context (arg) == 0 || DECL_NO_STATIC_CHAIN (arg))
1323 && ! DECL_NON_ADDR_CONST_P (arg));
1325 case VAR_DECL:
1326 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
1327 && ! DECL_THREAD_LOCAL (arg)
1328 && ! DECL_NON_ADDR_CONST_P (arg));
1330 case CONSTRUCTOR:
1331 return TREE_STATIC (arg);
1333 case LABEL_DECL:
1334 case STRING_CST:
1335 return 1;
1337 /* If we are referencing a bitfield, we can't evaluate an
1338 ADDR_EXPR at compile time and so it isn't a constant. */
1339 case COMPONENT_REF:
1340 return (! DECL_BIT_FIELD (TREE_OPERAND (arg, 1))
1341 && staticp (TREE_OPERAND (arg, 0)));
1343 case BIT_FIELD_REF:
1344 return 0;
1346 #if 0
1347 /* This case is technically correct, but results in setting
1348 TREE_CONSTANT on ADDR_EXPRs that cannot be evaluated at
1349 compile time. */
1350 case INDIRECT_REF:
1351 return TREE_CONSTANT (TREE_OPERAND (arg, 0));
1352 #endif
1354 case ARRAY_REF:
1355 case ARRAY_RANGE_REF:
1356 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
1357 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
1358 return staticp (TREE_OPERAND (arg, 0));
1360 default:
1361 if ((unsigned int) TREE_CODE (arg)
1362 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
1363 return (*lang_hooks.staticp) (arg);
1364 else
1365 return 0;
1369 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
1370 Do this to any expression which may be used in more than one place,
1371 but must be evaluated only once.
1373 Normally, expand_expr would reevaluate the expression each time.
1374 Calling save_expr produces something that is evaluated and recorded
1375 the first time expand_expr is called on it. Subsequent calls to
1376 expand_expr just reuse the recorded value.
1378 The call to expand_expr that generates code that actually computes
1379 the value is the first call *at compile time*. Subsequent calls
1380 *at compile time* generate code to use the saved value.
1381 This produces correct result provided that *at run time* control
1382 always flows through the insns made by the first expand_expr
1383 before reaching the other places where the save_expr was evaluated.
1384 You, the caller of save_expr, must make sure this is so.
1386 Constants, and certain read-only nodes, are returned with no
1387 SAVE_EXPR because that is safe. Expressions containing placeholders
1388 are not touched; see tree.def for an explanation of what these
1389 are used for. */
1391 tree
1392 save_expr (expr)
1393 tree expr;
1395 tree t = fold (expr);
1396 tree inner;
1398 /* We don't care about whether this can be used as an lvalue in this
1399 context. */
1400 while (TREE_CODE (t) == NON_LVALUE_EXPR)
1401 t = TREE_OPERAND (t, 0);
1403 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
1404 a constant, it will be more efficient to not make another SAVE_EXPR since
1405 it will allow better simplification and GCSE will be able to merge the
1406 computations if they actualy occur. */
1407 for (inner = t;
1408 (TREE_CODE_CLASS (TREE_CODE (inner)) == '1'
1409 || (TREE_CODE_CLASS (TREE_CODE (inner)) == '2'
1410 && TREE_CONSTANT (TREE_OPERAND (inner, 1))));
1411 inner = TREE_OPERAND (inner, 0))
1414 /* If the tree evaluates to a constant, then we don't want to hide that
1415 fact (i.e. this allows further folding, and direct checks for constants).
1416 However, a read-only object that has side effects cannot be bypassed.
1417 Since it is no problem to reevaluate literals, we just return the
1418 literal node. */
1419 if (TREE_CONSTANT (inner)
1420 || (TREE_READONLY (inner) && ! TREE_SIDE_EFFECTS (inner))
1421 || TREE_CODE (inner) == SAVE_EXPR || TREE_CODE (inner) == ERROR_MARK)
1422 return t;
1424 /* If T contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
1425 it means that the size or offset of some field of an object depends on
1426 the value within another field.
1428 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
1429 and some variable since it would then need to be both evaluated once and
1430 evaluated more than once. Front-ends must assure this case cannot
1431 happen by surrounding any such subexpressions in their own SAVE_EXPR
1432 and forcing evaluation at the proper time. */
1433 if (contains_placeholder_p (t))
1434 return t;
1436 t = build (SAVE_EXPR, TREE_TYPE (expr), t, current_function_decl, NULL_TREE);
1438 /* This expression might be placed ahead of a jump to ensure that the
1439 value was computed on both sides of the jump. So make sure it isn't
1440 eliminated as dead. */
1441 TREE_SIDE_EFFECTS (t) = 1;
1442 TREE_READONLY (t) = 1;
1443 return t;
1446 /* Arrange for an expression to be expanded multiple independent
1447 times. This is useful for cleanup actions, as the backend can
1448 expand them multiple times in different places. */
1450 tree
1451 unsave_expr (expr)
1452 tree expr;
1454 tree t;
1456 /* If this is already protected, no sense in protecting it again. */
1457 if (TREE_CODE (expr) == UNSAVE_EXPR)
1458 return expr;
1460 t = build1 (UNSAVE_EXPR, TREE_TYPE (expr), expr);
1461 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (expr);
1462 return t;
1465 /* Returns the index of the first non-tree operand for CODE, or the number
1466 of operands if all are trees. */
1469 first_rtl_op (code)
1470 enum tree_code code;
1472 switch (code)
1474 case SAVE_EXPR:
1475 return 2;
1476 case GOTO_SUBROUTINE_EXPR:
1477 case RTL_EXPR:
1478 return 0;
1479 case WITH_CLEANUP_EXPR:
1480 return 2;
1481 case METHOD_CALL_EXPR:
1482 return 3;
1483 default:
1484 return TREE_CODE_LENGTH (code);
1488 /* Return which tree structure is used by T. */
1490 enum tree_node_structure_enum
1491 tree_node_structure (t)
1492 tree t;
1494 enum tree_code code = TREE_CODE (t);
1496 switch (TREE_CODE_CLASS (code))
1498 case 'd': return TS_DECL;
1499 case 't': return TS_TYPE;
1500 case 'b': return TS_BLOCK;
1501 case 'r': case '<': case '1': case '2': case 'e': case 's':
1502 return TS_EXP;
1503 default: /* 'c' and 'x' */
1504 break;
1506 switch (code)
1508 /* 'c' cases. */
1509 case INTEGER_CST: return TS_INT_CST;
1510 case REAL_CST: return TS_REAL_CST;
1511 case COMPLEX_CST: return TS_COMPLEX;
1512 case VECTOR_CST: return TS_VECTOR;
1513 case STRING_CST: return TS_STRING;
1514 /* 'x' cases. */
1515 case ERROR_MARK: return TS_COMMON;
1516 case IDENTIFIER_NODE: return TS_IDENTIFIER;
1517 case TREE_LIST: return TS_LIST;
1518 case TREE_VEC: return TS_VEC;
1519 case PLACEHOLDER_EXPR: return TS_COMMON;
1521 default:
1522 abort ();
1526 /* Perform any modifications to EXPR required when it is unsaved. Does
1527 not recurse into EXPR's subtrees. */
1529 void
1530 unsave_expr_1 (expr)
1531 tree expr;
1533 switch (TREE_CODE (expr))
1535 case SAVE_EXPR:
1536 if (! SAVE_EXPR_PERSISTENT_P (expr))
1537 SAVE_EXPR_RTL (expr) = 0;
1538 break;
1540 case TARGET_EXPR:
1541 /* Don't mess with a TARGET_EXPR that hasn't been expanded.
1542 It's OK for this to happen if it was part of a subtree that
1543 isn't immediately expanded, such as operand 2 of another
1544 TARGET_EXPR. */
1545 if (TREE_OPERAND (expr, 1))
1546 break;
1548 TREE_OPERAND (expr, 1) = TREE_OPERAND (expr, 3);
1549 TREE_OPERAND (expr, 3) = NULL_TREE;
1550 break;
1552 case RTL_EXPR:
1553 /* I don't yet know how to emit a sequence multiple times. */
1554 if (RTL_EXPR_SEQUENCE (expr) != 0)
1555 abort ();
1556 break;
1558 default:
1559 break;
1563 /* Default lang hook for "unsave_expr_now". */
1565 tree
1566 lhd_unsave_expr_now (expr)
1567 tree expr;
1569 enum tree_code code;
1571 /* There's nothing to do for NULL_TREE. */
1572 if (expr == 0)
1573 return expr;
1575 unsave_expr_1 (expr);
1577 code = TREE_CODE (expr);
1578 switch (TREE_CODE_CLASS (code))
1580 case 'c': /* a constant */
1581 case 't': /* a type node */
1582 case 'd': /* A decl node */
1583 case 'b': /* A block node */
1584 break;
1586 case 'x': /* miscellaneous: e.g., identifier, TREE_LIST or ERROR_MARK. */
1587 if (code == TREE_LIST)
1589 lhd_unsave_expr_now (TREE_VALUE (expr));
1590 lhd_unsave_expr_now (TREE_CHAIN (expr));
1592 break;
1594 case 'e': /* an expression */
1595 case 'r': /* a reference */
1596 case 's': /* an expression with side effects */
1597 case '<': /* a comparison expression */
1598 case '2': /* a binary arithmetic expression */
1599 case '1': /* a unary arithmetic expression */
1601 int i;
1603 for (i = first_rtl_op (code) - 1; i >= 0; i--)
1604 lhd_unsave_expr_now (TREE_OPERAND (expr, i));
1606 break;
1608 default:
1609 abort ();
1612 return expr;
1615 /* Return 0 if it is safe to evaluate EXPR multiple times,
1616 return 1 if it is safe if EXPR is unsaved afterward, or
1617 return 2 if it is completely unsafe.
1619 This assumes that CALL_EXPRs and TARGET_EXPRs are never replicated in
1620 an expression tree, so that it safe to unsave them and the surrounding
1621 context will be correct.
1623 SAVE_EXPRs basically *only* appear replicated in an expression tree,
1624 occasionally across the whole of a function. It is therefore only
1625 safe to unsave a SAVE_EXPR if you know that all occurrences appear
1626 below the UNSAVE_EXPR.
1628 RTL_EXPRs consume their rtl during evaluation. It is therefore
1629 never possible to unsave them. */
1632 unsafe_for_reeval (expr)
1633 tree expr;
1635 int unsafeness = 0;
1636 enum tree_code code;
1637 int i, tmp;
1638 tree exp;
1639 int first_rtl;
1641 if (expr == NULL_TREE)
1642 return 1;
1644 code = TREE_CODE (expr);
1645 first_rtl = first_rtl_op (code);
1647 switch (code)
1649 case SAVE_EXPR:
1650 case RTL_EXPR:
1651 return 2;
1653 case TREE_LIST:
1654 for (exp = expr; exp != 0; exp = TREE_CHAIN (exp))
1656 tmp = unsafe_for_reeval (TREE_VALUE (exp));
1657 unsafeness = MAX (tmp, unsafeness);
1660 return unsafeness;
1662 case CALL_EXPR:
1663 tmp = unsafe_for_reeval (TREE_OPERAND (expr, 1));
1664 return MAX (tmp, 1);
1666 case TARGET_EXPR:
1667 unsafeness = 1;
1668 break;
1670 default:
1671 tmp = (*lang_hooks.unsafe_for_reeval) (expr);
1672 if (tmp >= 0)
1673 return tmp;
1674 break;
1677 switch (TREE_CODE_CLASS (code))
1679 case 'c': /* a constant */
1680 case 't': /* a type node */
1681 case 'x': /* something random, like an identifier or an ERROR_MARK. */
1682 case 'd': /* A decl node */
1683 case 'b': /* A block node */
1684 return 0;
1686 case 'e': /* an expression */
1687 case 'r': /* a reference */
1688 case 's': /* an expression with side effects */
1689 case '<': /* a comparison expression */
1690 case '2': /* a binary arithmetic expression */
1691 case '1': /* a unary arithmetic expression */
1692 for (i = first_rtl - 1; i >= 0; i--)
1694 tmp = unsafe_for_reeval (TREE_OPERAND (expr, i));
1695 unsafeness = MAX (tmp, unsafeness);
1698 return unsafeness;
1700 default:
1701 return 2;
1705 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
1706 or offset that depends on a field within a record. */
1709 contains_placeholder_p (exp)
1710 tree exp;
1712 enum tree_code code;
1713 int result;
1715 if (!exp)
1716 return 0;
1718 /* If we have a WITH_RECORD_EXPR, it "cancels" any PLACEHOLDER_EXPR
1719 in it since it is supplying a value for it. */
1720 code = TREE_CODE (exp);
1721 if (code == WITH_RECORD_EXPR)
1722 return 0;
1723 else if (code == PLACEHOLDER_EXPR)
1724 return 1;
1726 switch (TREE_CODE_CLASS (code))
1728 case 'r':
1729 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
1730 position computations since they will be converted into a
1731 WITH_RECORD_EXPR involving the reference, which will assume
1732 here will be valid. */
1733 return contains_placeholder_p (TREE_OPERAND (exp, 0));
1735 case 'x':
1736 if (code == TREE_LIST)
1737 return (contains_placeholder_p (TREE_VALUE (exp))
1738 || (TREE_CHAIN (exp) != 0
1739 && contains_placeholder_p (TREE_CHAIN (exp))));
1740 break;
1742 case '1':
1743 case '2': case '<':
1744 case 'e':
1745 switch (code)
1747 case COMPOUND_EXPR:
1748 /* Ignoring the first operand isn't quite right, but works best. */
1749 return contains_placeholder_p (TREE_OPERAND (exp, 1));
1751 case RTL_EXPR:
1752 case CONSTRUCTOR:
1753 return 0;
1755 case COND_EXPR:
1756 return (contains_placeholder_p (TREE_OPERAND (exp, 0))
1757 || contains_placeholder_p (TREE_OPERAND (exp, 1))
1758 || contains_placeholder_p (TREE_OPERAND (exp, 2)));
1760 case SAVE_EXPR:
1761 /* If we already know this doesn't have a placeholder, don't
1762 check again. */
1763 if (SAVE_EXPR_NOPLACEHOLDER (exp) || SAVE_EXPR_RTL (exp) != 0)
1764 return 0;
1766 SAVE_EXPR_NOPLACEHOLDER (exp) = 1;
1767 result = contains_placeholder_p (TREE_OPERAND (exp, 0));
1768 if (result)
1769 SAVE_EXPR_NOPLACEHOLDER (exp) = 0;
1771 return result;
1773 case CALL_EXPR:
1774 return (TREE_OPERAND (exp, 1) != 0
1775 && contains_placeholder_p (TREE_OPERAND (exp, 1)));
1777 default:
1778 break;
1781 switch (TREE_CODE_LENGTH (code))
1783 case 1:
1784 return contains_placeholder_p (TREE_OPERAND (exp, 0));
1785 case 2:
1786 return (contains_placeholder_p (TREE_OPERAND (exp, 0))
1787 || contains_placeholder_p (TREE_OPERAND (exp, 1)));
1788 default:
1789 return 0;
1792 default:
1793 return 0;
1795 return 0;
1798 /* Return 1 if EXP contains any expressions that produce cleanups for an
1799 outer scope to deal with. Used by fold. */
1802 has_cleanups (exp)
1803 tree exp;
1805 int i, nops, cmp;
1807 if (! TREE_SIDE_EFFECTS (exp))
1808 return 0;
1810 switch (TREE_CODE (exp))
1812 case TARGET_EXPR:
1813 case GOTO_SUBROUTINE_EXPR:
1814 case WITH_CLEANUP_EXPR:
1815 return 1;
1817 case CLEANUP_POINT_EXPR:
1818 return 0;
1820 case CALL_EXPR:
1821 for (exp = TREE_OPERAND (exp, 1); exp; exp = TREE_CHAIN (exp))
1823 cmp = has_cleanups (TREE_VALUE (exp));
1824 if (cmp)
1825 return cmp;
1827 return 0;
1829 default:
1830 break;
1833 /* This general rule works for most tree codes. All exceptions should be
1834 handled above. If this is a language-specific tree code, we can't
1835 trust what might be in the operand, so say we don't know
1836 the situation. */
1837 if ((int) TREE_CODE (exp) >= (int) LAST_AND_UNUSED_TREE_CODE)
1838 return -1;
1840 nops = first_rtl_op (TREE_CODE (exp));
1841 for (i = 0; i < nops; i++)
1842 if (TREE_OPERAND (exp, i) != 0)
1844 int type = TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, i)));
1845 if (type == 'e' || type == '<' || type == '1' || type == '2'
1846 || type == 'r' || type == 's')
1848 cmp = has_cleanups (TREE_OPERAND (exp, i));
1849 if (cmp)
1850 return cmp;
1854 return 0;
1857 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
1858 return a tree with all occurrences of references to F in a
1859 PLACEHOLDER_EXPR replaced by R. Note that we assume here that EXP
1860 contains only arithmetic expressions or a CALL_EXPR with a
1861 PLACEHOLDER_EXPR occurring only in its arglist. */
1863 tree
1864 substitute_in_expr (exp, f, r)
1865 tree exp;
1866 tree f;
1867 tree r;
1869 enum tree_code code = TREE_CODE (exp);
1870 tree op0, op1, op2;
1871 tree new;
1872 tree inner;
1874 switch (TREE_CODE_CLASS (code))
1876 case 'c':
1877 case 'd':
1878 return exp;
1880 case 'x':
1881 if (code == PLACEHOLDER_EXPR)
1882 return exp;
1883 else if (code == TREE_LIST)
1885 op0 = (TREE_CHAIN (exp) == 0
1886 ? 0 : substitute_in_expr (TREE_CHAIN (exp), f, r));
1887 op1 = substitute_in_expr (TREE_VALUE (exp), f, r);
1888 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
1889 return exp;
1891 return tree_cons (TREE_PURPOSE (exp), op1, op0);
1894 abort ();
1896 case '1':
1897 case '2':
1898 case '<':
1899 case 'e':
1900 switch (TREE_CODE_LENGTH (code))
1902 case 1:
1903 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
1904 if (op0 == TREE_OPERAND (exp, 0))
1905 return exp;
1907 if (code == NON_LVALUE_EXPR)
1908 return op0;
1910 new = fold (build1 (code, TREE_TYPE (exp), op0));
1911 break;
1913 case 2:
1914 /* An RTL_EXPR cannot contain a PLACEHOLDER_EXPR; a CONSTRUCTOR
1915 could, but we don't support it. */
1916 if (code == RTL_EXPR)
1917 return exp;
1918 else if (code == CONSTRUCTOR)
1919 abort ();
1921 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
1922 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
1923 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
1924 return exp;
1926 new = fold (build (code, TREE_TYPE (exp), op0, op1));
1927 break;
1929 case 3:
1930 /* It cannot be that anything inside a SAVE_EXPR contains a
1931 PLACEHOLDER_EXPR. */
1932 if (code == SAVE_EXPR)
1933 return exp;
1935 else if (code == CALL_EXPR)
1937 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
1938 if (op1 == TREE_OPERAND (exp, 1))
1939 return exp;
1941 return build (code, TREE_TYPE (exp),
1942 TREE_OPERAND (exp, 0), op1, NULL_TREE);
1945 else if (code != COND_EXPR)
1946 abort ();
1948 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
1949 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
1950 op2 = substitute_in_expr (TREE_OPERAND (exp, 2), f, r);
1951 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
1952 && op2 == TREE_OPERAND (exp, 2))
1953 return exp;
1955 new = fold (build (code, TREE_TYPE (exp), op0, op1, op2));
1956 break;
1958 default:
1959 abort ();
1962 break;
1964 case 'r':
1965 switch (code)
1967 case COMPONENT_REF:
1968 /* If this expression is getting a value from a PLACEHOLDER_EXPR
1969 and it is the right field, replace it with R. */
1970 for (inner = TREE_OPERAND (exp, 0);
1971 TREE_CODE_CLASS (TREE_CODE (inner)) == 'r';
1972 inner = TREE_OPERAND (inner, 0))
1974 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
1975 && TREE_OPERAND (exp, 1) == f)
1976 return r;
1978 /* If this expression hasn't been completed let, leave it
1979 alone. */
1980 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
1981 && TREE_TYPE (inner) == 0)
1982 return exp;
1984 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
1985 if (op0 == TREE_OPERAND (exp, 0))
1986 return exp;
1988 new = fold (build (code, TREE_TYPE (exp), op0,
1989 TREE_OPERAND (exp, 1)));
1990 break;
1992 case BIT_FIELD_REF:
1993 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
1994 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
1995 op2 = substitute_in_expr (TREE_OPERAND (exp, 2), f, r);
1996 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
1997 && op2 == TREE_OPERAND (exp, 2))
1998 return exp;
2000 new = fold (build (code, TREE_TYPE (exp), op0, op1, op2));
2001 break;
2003 case INDIRECT_REF:
2004 case BUFFER_REF:
2005 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2006 if (op0 == TREE_OPERAND (exp, 0))
2007 return exp;
2009 new = fold (build1 (code, TREE_TYPE (exp), op0));
2010 break;
2012 default:
2013 abort ();
2015 break;
2017 default:
2018 abort ();
2021 TREE_READONLY (new) = TREE_READONLY (exp);
2022 return new;
2025 /* Stabilize a reference so that we can use it any number of times
2026 without causing its operands to be evaluated more than once.
2027 Returns the stabilized reference. This works by means of save_expr,
2028 so see the caveats in the comments about save_expr.
2030 Also allows conversion expressions whose operands are references.
2031 Any other kind of expression is returned unchanged. */
2033 tree
2034 stabilize_reference (ref)
2035 tree ref;
2037 tree result;
2038 enum tree_code code = TREE_CODE (ref);
2040 switch (code)
2042 case VAR_DECL:
2043 case PARM_DECL:
2044 case RESULT_DECL:
2045 /* No action is needed in this case. */
2046 return ref;
2048 case NOP_EXPR:
2049 case CONVERT_EXPR:
2050 case FLOAT_EXPR:
2051 case FIX_TRUNC_EXPR:
2052 case FIX_FLOOR_EXPR:
2053 case FIX_ROUND_EXPR:
2054 case FIX_CEIL_EXPR:
2055 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
2056 break;
2058 case INDIRECT_REF:
2059 result = build_nt (INDIRECT_REF,
2060 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
2061 break;
2063 case COMPONENT_REF:
2064 result = build_nt (COMPONENT_REF,
2065 stabilize_reference (TREE_OPERAND (ref, 0)),
2066 TREE_OPERAND (ref, 1));
2067 break;
2069 case BIT_FIELD_REF:
2070 result = build_nt (BIT_FIELD_REF,
2071 stabilize_reference (TREE_OPERAND (ref, 0)),
2072 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2073 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
2074 break;
2076 case ARRAY_REF:
2077 result = build_nt (ARRAY_REF,
2078 stabilize_reference (TREE_OPERAND (ref, 0)),
2079 stabilize_reference_1 (TREE_OPERAND (ref, 1)));
2080 break;
2082 case ARRAY_RANGE_REF:
2083 result = build_nt (ARRAY_RANGE_REF,
2084 stabilize_reference (TREE_OPERAND (ref, 0)),
2085 stabilize_reference_1 (TREE_OPERAND (ref, 1)));
2086 break;
2088 case COMPOUND_EXPR:
2089 /* We cannot wrap the first expression in a SAVE_EXPR, as then
2090 it wouldn't be ignored. This matters when dealing with
2091 volatiles. */
2092 return stabilize_reference_1 (ref);
2094 case RTL_EXPR:
2095 result = build1 (INDIRECT_REF, TREE_TYPE (ref),
2096 save_expr (build1 (ADDR_EXPR,
2097 build_pointer_type (TREE_TYPE (ref)),
2098 ref)));
2099 break;
2101 /* If arg isn't a kind of lvalue we recognize, make no change.
2102 Caller should recognize the error for an invalid lvalue. */
2103 default:
2104 return ref;
2106 case ERROR_MARK:
2107 return error_mark_node;
2110 TREE_TYPE (result) = TREE_TYPE (ref);
2111 TREE_READONLY (result) = TREE_READONLY (ref);
2112 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
2113 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
2115 return result;
2118 /* Subroutine of stabilize_reference; this is called for subtrees of
2119 references. Any expression with side-effects must be put in a SAVE_EXPR
2120 to ensure that it is only evaluated once.
2122 We don't put SAVE_EXPR nodes around everything, because assigning very
2123 simple expressions to temporaries causes us to miss good opportunities
2124 for optimizations. Among other things, the opportunity to fold in the
2125 addition of a constant into an addressing mode often gets lost, e.g.
2126 "y[i+1] += x;". In general, we take the approach that we should not make
2127 an assignment unless we are forced into it - i.e., that any non-side effect
2128 operator should be allowed, and that cse should take care of coalescing
2129 multiple utterances of the same expression should that prove fruitful. */
2131 tree
2132 stabilize_reference_1 (e)
2133 tree e;
2135 tree result;
2136 enum tree_code code = TREE_CODE (e);
2138 /* We cannot ignore const expressions because it might be a reference
2139 to a const array but whose index contains side-effects. But we can
2140 ignore things that are actual constant or that already have been
2141 handled by this function. */
2143 if (TREE_CONSTANT (e) || code == SAVE_EXPR)
2144 return e;
2146 switch (TREE_CODE_CLASS (code))
2148 case 'x':
2149 case 't':
2150 case 'd':
2151 case 'b':
2152 case '<':
2153 case 's':
2154 case 'e':
2155 case 'r':
2156 /* If the expression has side-effects, then encase it in a SAVE_EXPR
2157 so that it will only be evaluated once. */
2158 /* The reference (r) and comparison (<) classes could be handled as
2159 below, but it is generally faster to only evaluate them once. */
2160 if (TREE_SIDE_EFFECTS (e))
2161 return save_expr (e);
2162 return e;
2164 case 'c':
2165 /* Constants need no processing. In fact, we should never reach
2166 here. */
2167 return e;
2169 case '2':
2170 /* Division is slow and tends to be compiled with jumps,
2171 especially the division by powers of 2 that is often
2172 found inside of an array reference. So do it just once. */
2173 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
2174 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
2175 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
2176 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
2177 return save_expr (e);
2178 /* Recursively stabilize each operand. */
2179 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
2180 stabilize_reference_1 (TREE_OPERAND (e, 1)));
2181 break;
2183 case '1':
2184 /* Recursively stabilize each operand. */
2185 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
2186 break;
2188 default:
2189 abort ();
2192 TREE_TYPE (result) = TREE_TYPE (e);
2193 TREE_READONLY (result) = TREE_READONLY (e);
2194 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
2195 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
2197 return result;
2200 /* Low-level constructors for expressions. */
2202 /* Build an expression of code CODE, data type TYPE,
2203 and operands as specified by the arguments ARG1 and following arguments.
2204 Expressions and reference nodes can be created this way.
2205 Constants, decls, types and misc nodes cannot be. */
2207 tree
2208 build VPARAMS ((enum tree_code code, tree tt, ...))
2210 tree t;
2211 int length;
2212 int i;
2213 int fro;
2214 int constant;
2216 VA_OPEN (p, tt);
2217 VA_FIXEDARG (p, enum tree_code, code);
2218 VA_FIXEDARG (p, tree, tt);
2220 t = make_node (code);
2221 length = TREE_CODE_LENGTH (code);
2222 TREE_TYPE (t) = tt;
2224 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
2225 result based on those same flags for the arguments. But if the
2226 arguments aren't really even `tree' expressions, we shouldn't be trying
2227 to do this. */
2228 fro = first_rtl_op (code);
2230 /* Expressions without side effects may be constant if their
2231 arguments are as well. */
2232 constant = (TREE_CODE_CLASS (code) == '<'
2233 || TREE_CODE_CLASS (code) == '1'
2234 || TREE_CODE_CLASS (code) == '2'
2235 || TREE_CODE_CLASS (code) == 'c');
2237 if (length == 2)
2239 /* This is equivalent to the loop below, but faster. */
2240 tree arg0 = va_arg (p, tree);
2241 tree arg1 = va_arg (p, tree);
2243 TREE_OPERAND (t, 0) = arg0;
2244 TREE_OPERAND (t, 1) = arg1;
2245 TREE_READONLY (t) = 1;
2246 if (arg0 && fro > 0)
2248 if (TREE_SIDE_EFFECTS (arg0))
2249 TREE_SIDE_EFFECTS (t) = 1;
2250 if (!TREE_READONLY (arg0))
2251 TREE_READONLY (t) = 0;
2252 if (!TREE_CONSTANT (arg0))
2253 constant = 0;
2256 if (arg1 && fro > 1)
2258 if (TREE_SIDE_EFFECTS (arg1))
2259 TREE_SIDE_EFFECTS (t) = 1;
2260 if (!TREE_READONLY (arg1))
2261 TREE_READONLY (t) = 0;
2262 if (!TREE_CONSTANT (arg1))
2263 constant = 0;
2266 else if (length == 1)
2268 tree arg0 = va_arg (p, tree);
2270 /* The only one-operand cases we handle here are those with side-effects.
2271 Others are handled with build1. So don't bother checked if the
2272 arg has side-effects since we'll already have set it.
2274 ??? This really should use build1 too. */
2275 if (TREE_CODE_CLASS (code) != 's')
2276 abort ();
2277 TREE_OPERAND (t, 0) = arg0;
2279 else
2281 for (i = 0; i < length; i++)
2283 tree operand = va_arg (p, tree);
2285 TREE_OPERAND (t, i) = operand;
2286 if (operand && fro > i)
2288 if (TREE_SIDE_EFFECTS (operand))
2289 TREE_SIDE_EFFECTS (t) = 1;
2290 if (!TREE_CONSTANT (operand))
2291 constant = 0;
2295 VA_CLOSE (p);
2297 TREE_CONSTANT (t) = constant;
2298 return t;
2301 /* Same as above, but only builds for unary operators.
2302 Saves lions share of calls to `build'; cuts down use
2303 of varargs, which is expensive for RISC machines. */
2305 tree
2306 build1 (code, type, node)
2307 enum tree_code code;
2308 tree type;
2309 tree node;
2311 int length;
2312 #ifdef GATHER_STATISTICS
2313 tree_node_kind kind;
2314 #endif
2315 tree t;
2317 #ifdef GATHER_STATISTICS
2318 if (TREE_CODE_CLASS (code) == 'r')
2319 kind = r_kind;
2320 else
2321 kind = e_kind;
2322 #endif
2324 #ifdef ENABLE_CHECKING
2325 if (TREE_CODE_CLASS (code) == '2'
2326 || TREE_CODE_CLASS (code) == '<'
2327 || TREE_CODE_LENGTH (code) != 1)
2328 abort ();
2329 #endif /* ENABLE_CHECKING */
2331 length = sizeof (struct tree_exp);
2333 t = ggc_alloc_tree (length);
2335 memset ((PTR) t, 0, sizeof (struct tree_common));
2337 #ifdef GATHER_STATISTICS
2338 tree_node_counts[(int) kind]++;
2339 tree_node_sizes[(int) kind] += length;
2340 #endif
2342 TREE_SET_CODE (t, code);
2344 TREE_TYPE (t) = type;
2345 TREE_COMPLEXITY (t) = 0;
2346 TREE_OPERAND (t, 0) = node;
2347 if (node && first_rtl_op (code) != 0)
2349 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
2350 TREE_READONLY (t) = TREE_READONLY (node);
2353 switch (code)
2355 case INIT_EXPR:
2356 case MODIFY_EXPR:
2357 case VA_ARG_EXPR:
2358 case RTL_EXPR:
2359 case PREDECREMENT_EXPR:
2360 case PREINCREMENT_EXPR:
2361 case POSTDECREMENT_EXPR:
2362 case POSTINCREMENT_EXPR:
2363 /* All of these have side-effects, no matter what their
2364 operands are. */
2365 TREE_SIDE_EFFECTS (t) = 1;
2366 TREE_READONLY (t) = 0;
2367 break;
2369 case INDIRECT_REF:
2370 /* Whether a dereference is readonly has nothing to do with whether
2371 its operand is readonly. */
2372 TREE_READONLY (t) = 0;
2373 break;
2375 default:
2376 if (TREE_CODE_CLASS (code) == '1' && node && TREE_CONSTANT (node))
2377 TREE_CONSTANT (t) = 1;
2378 break;
2381 return t;
2384 /* Similar except don't specify the TREE_TYPE
2385 and leave the TREE_SIDE_EFFECTS as 0.
2386 It is permissible for arguments to be null,
2387 or even garbage if their values do not matter. */
2389 tree
2390 build_nt VPARAMS ((enum tree_code code, ...))
2392 tree t;
2393 int length;
2394 int i;
2396 VA_OPEN (p, code);
2397 VA_FIXEDARG (p, enum tree_code, code);
2399 t = make_node (code);
2400 length = TREE_CODE_LENGTH (code);
2402 for (i = 0; i < length; i++)
2403 TREE_OPERAND (t, i) = va_arg (p, tree);
2405 VA_CLOSE (p);
2406 return t;
2409 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
2410 We do NOT enter this node in any sort of symbol table.
2412 layout_decl is used to set up the decl's storage layout.
2413 Other slots are initialized to 0 or null pointers. */
2415 tree
2416 build_decl (code, name, type)
2417 enum tree_code code;
2418 tree name, type;
2420 tree t;
2422 t = make_node (code);
2424 /* if (type == error_mark_node)
2425 type = integer_type_node; */
2426 /* That is not done, deliberately, so that having error_mark_node
2427 as the type can suppress useless errors in the use of this variable. */
2429 DECL_NAME (t) = name;
2430 TREE_TYPE (t) = type;
2432 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
2433 layout_decl (t, 0);
2434 else if (code == FUNCTION_DECL)
2435 DECL_MODE (t) = FUNCTION_MODE;
2437 return t;
2440 /* BLOCK nodes are used to represent the structure of binding contours
2441 and declarations, once those contours have been exited and their contents
2442 compiled. This information is used for outputting debugging info. */
2444 tree
2445 build_block (vars, tags, subblocks, supercontext, chain)
2446 tree vars, tags ATTRIBUTE_UNUSED, subblocks, supercontext, chain;
2448 tree block = make_node (BLOCK);
2450 BLOCK_VARS (block) = vars;
2451 BLOCK_SUBBLOCKS (block) = subblocks;
2452 BLOCK_SUPERCONTEXT (block) = supercontext;
2453 BLOCK_CHAIN (block) = chain;
2454 return block;
2457 /* EXPR_WITH_FILE_LOCATION are used to keep track of the exact
2458 location where an expression or an identifier were encountered. It
2459 is necessary for languages where the frontend parser will handle
2460 recursively more than one file (Java is one of them). */
2462 tree
2463 build_expr_wfl (node, file, line, col)
2464 tree node;
2465 const char *file;
2466 int line, col;
2468 static const char *last_file = 0;
2469 static tree last_filenode = NULL_TREE;
2470 tree wfl = make_node (EXPR_WITH_FILE_LOCATION);
2472 EXPR_WFL_NODE (wfl) = node;
2473 EXPR_WFL_SET_LINECOL (wfl, line, col);
2474 if (file != last_file)
2476 last_file = file;
2477 last_filenode = file ? get_identifier (file) : NULL_TREE;
2480 EXPR_WFL_FILENAME_NODE (wfl) = last_filenode;
2481 if (node)
2483 TREE_SIDE_EFFECTS (wfl) = TREE_SIDE_EFFECTS (node);
2484 TREE_TYPE (wfl) = TREE_TYPE (node);
2487 return wfl;
2490 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
2491 is ATTRIBUTE. */
2493 tree
2494 build_decl_attribute_variant (ddecl, attribute)
2495 tree ddecl, attribute;
2497 DECL_ATTRIBUTES (ddecl) = attribute;
2498 return ddecl;
2501 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
2502 is ATTRIBUTE.
2504 Record such modified types already made so we don't make duplicates. */
2506 tree
2507 build_type_attribute_variant (ttype, attribute)
2508 tree ttype, attribute;
2510 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
2512 unsigned int hashcode;
2513 tree ntype;
2515 ntype = copy_node (ttype);
2517 TYPE_POINTER_TO (ntype) = 0;
2518 TYPE_REFERENCE_TO (ntype) = 0;
2519 TYPE_ATTRIBUTES (ntype) = attribute;
2521 /* Create a new main variant of TYPE. */
2522 TYPE_MAIN_VARIANT (ntype) = ntype;
2523 TYPE_NEXT_VARIANT (ntype) = 0;
2524 set_type_quals (ntype, TYPE_UNQUALIFIED);
2526 hashcode = (TYPE_HASH (TREE_CODE (ntype))
2527 + TYPE_HASH (TREE_TYPE (ntype))
2528 + attribute_hash_list (attribute));
2530 switch (TREE_CODE (ntype))
2532 case FUNCTION_TYPE:
2533 hashcode += TYPE_HASH (TYPE_ARG_TYPES (ntype));
2534 break;
2535 case ARRAY_TYPE:
2536 hashcode += TYPE_HASH (TYPE_DOMAIN (ntype));
2537 break;
2538 case INTEGER_TYPE:
2539 hashcode += TYPE_HASH (TYPE_MAX_VALUE (ntype));
2540 break;
2541 case REAL_TYPE:
2542 hashcode += TYPE_HASH (TYPE_PRECISION (ntype));
2543 break;
2544 default:
2545 break;
2548 ntype = type_hash_canon (hashcode, ntype);
2549 ttype = build_qualified_type (ntype, TYPE_QUALS (ttype));
2552 return ttype;
2555 /* Default value of targetm.comp_type_attributes that always returns 1. */
2558 default_comp_type_attributes (type1, type2)
2559 tree type1 ATTRIBUTE_UNUSED;
2560 tree type2 ATTRIBUTE_UNUSED;
2562 return 1;
2565 /* Default version of targetm.set_default_type_attributes that always does
2566 nothing. */
2568 void
2569 default_set_default_type_attributes (type)
2570 tree type ATTRIBUTE_UNUSED;
2574 /* Default version of targetm.insert_attributes that always does nothing. */
2575 void
2576 default_insert_attributes (decl, attr_ptr)
2577 tree decl ATTRIBUTE_UNUSED;
2578 tree *attr_ptr ATTRIBUTE_UNUSED;
2582 /* Default value of targetm.function_attribute_inlinable_p that always
2583 returns false. */
2584 bool
2585 default_function_attribute_inlinable_p (fndecl)
2586 tree fndecl ATTRIBUTE_UNUSED;
2588 /* By default, functions with machine attributes cannot be inlined. */
2589 return false;
2592 /* Default value of targetm.ms_bitfield_layout_p that always returns
2593 false. */
2594 bool
2595 default_ms_bitfield_layout_p (record)
2596 tree record ATTRIBUTE_UNUSED;
2598 /* By default, GCC does not use the MS VC++ bitfield layout rules. */
2599 return false;
2602 /* Return nonzero if IDENT is a valid name for attribute ATTR,
2603 or zero if not.
2605 We try both `text' and `__text__', ATTR may be either one. */
2606 /* ??? It might be a reasonable simplification to require ATTR to be only
2607 `text'. One might then also require attribute lists to be stored in
2608 their canonicalized form. */
2611 is_attribute_p (attr, ident)
2612 const char *attr;
2613 tree ident;
2615 int ident_len, attr_len;
2616 const char *p;
2618 if (TREE_CODE (ident) != IDENTIFIER_NODE)
2619 return 0;
2621 if (strcmp (attr, IDENTIFIER_POINTER (ident)) == 0)
2622 return 1;
2624 p = IDENTIFIER_POINTER (ident);
2625 ident_len = strlen (p);
2626 attr_len = strlen (attr);
2628 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
2629 if (attr[0] == '_')
2631 if (attr[1] != '_'
2632 || attr[attr_len - 2] != '_'
2633 || attr[attr_len - 1] != '_')
2634 abort ();
2635 if (ident_len == attr_len - 4
2636 && strncmp (attr + 2, p, attr_len - 4) == 0)
2637 return 1;
2639 else
2641 if (ident_len == attr_len + 4
2642 && p[0] == '_' && p[1] == '_'
2643 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
2644 && strncmp (attr, p + 2, attr_len) == 0)
2645 return 1;
2648 return 0;
2651 /* Given an attribute name and a list of attributes, return a pointer to the
2652 attribute's list element if the attribute is part of the list, or NULL_TREE
2653 if not found. If the attribute appears more than once, this only
2654 returns the first occurrence; the TREE_CHAIN of the return value should
2655 be passed back in if further occurrences are wanted. */
2657 tree
2658 lookup_attribute (attr_name, list)
2659 const char *attr_name;
2660 tree list;
2662 tree l;
2664 for (l = list; l; l = TREE_CHAIN (l))
2666 if (TREE_CODE (TREE_PURPOSE (l)) != IDENTIFIER_NODE)
2667 abort ();
2668 if (is_attribute_p (attr_name, TREE_PURPOSE (l)))
2669 return l;
2672 return NULL_TREE;
2675 /* Return an attribute list that is the union of a1 and a2. */
2677 tree
2678 merge_attributes (a1, a2)
2679 tree a1, a2;
2681 tree attributes;
2683 /* Either one unset? Take the set one. */
2685 if ((attributes = a1) == 0)
2686 attributes = a2;
2688 /* One that completely contains the other? Take it. */
2690 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
2692 if (attribute_list_contained (a2, a1))
2693 attributes = a2;
2694 else
2696 /* Pick the longest list, and hang on the other list. */
2698 if (list_length (a1) < list_length (a2))
2699 attributes = a2, a2 = a1;
2701 for (; a2 != 0; a2 = TREE_CHAIN (a2))
2703 tree a;
2704 for (a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
2705 attributes);
2706 a != NULL_TREE;
2707 a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
2708 TREE_CHAIN (a)))
2710 if (simple_cst_equal (TREE_VALUE (a), TREE_VALUE (a2)) == 1)
2711 break;
2713 if (a == NULL_TREE)
2715 a1 = copy_node (a2);
2716 TREE_CHAIN (a1) = attributes;
2717 attributes = a1;
2722 return attributes;
2725 /* Given types T1 and T2, merge their attributes and return
2726 the result. */
2728 tree
2729 merge_type_attributes (t1, t2)
2730 tree t1, t2;
2732 return merge_attributes (TYPE_ATTRIBUTES (t1),
2733 TYPE_ATTRIBUTES (t2));
2736 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
2737 the result. */
2739 tree
2740 merge_decl_attributes (olddecl, newdecl)
2741 tree olddecl, newdecl;
2743 return merge_attributes (DECL_ATTRIBUTES (olddecl),
2744 DECL_ATTRIBUTES (newdecl));
2747 #ifdef TARGET_DLLIMPORT_DECL_ATTRIBUTES
2749 /* Specialization of merge_decl_attributes for various Windows targets.
2751 This handles the following situation:
2753 __declspec (dllimport) int foo;
2754 int foo;
2756 The second instance of `foo' nullifies the dllimport. */
2758 tree
2759 merge_dllimport_decl_attributes (old, new)
2760 tree old;
2761 tree new;
2763 tree a;
2764 int delete_dllimport_p;
2766 old = DECL_ATTRIBUTES (old);
2767 new = DECL_ATTRIBUTES (new);
2769 /* What we need to do here is remove from `old' dllimport if it doesn't
2770 appear in `new'. dllimport behaves like extern: if a declaration is
2771 marked dllimport and a definition appears later, then the object
2772 is not dllimport'd. */
2773 if (lookup_attribute ("dllimport", old) != NULL_TREE
2774 && lookup_attribute ("dllimport", new) == NULL_TREE)
2775 delete_dllimport_p = 1;
2776 else
2777 delete_dllimport_p = 0;
2779 a = merge_attributes (old, new);
2781 if (delete_dllimport_p)
2783 tree prev, t;
2785 /* Scan the list for dllimport and delete it. */
2786 for (prev = NULL_TREE, t = a; t; prev = t, t = TREE_CHAIN (t))
2788 if (is_attribute_p ("dllimport", TREE_PURPOSE (t)))
2790 if (prev == NULL_TREE)
2791 a = TREE_CHAIN (a);
2792 else
2793 TREE_CHAIN (prev) = TREE_CHAIN (t);
2794 break;
2799 return a;
2802 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
2804 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
2805 of the various TYPE_QUAL values. */
2807 static void
2808 set_type_quals (type, type_quals)
2809 tree type;
2810 int type_quals;
2812 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
2813 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
2814 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
2817 /* Return a version of the TYPE, qualified as indicated by the
2818 TYPE_QUALS, if one exists. If no qualified version exists yet,
2819 return NULL_TREE. */
2821 tree
2822 get_qualified_type (type, type_quals)
2823 tree type;
2824 int type_quals;
2826 tree t;
2828 /* Search the chain of variants to see if there is already one there just
2829 like the one we need to have. If so, use that existing one. We must
2830 preserve the TYPE_NAME, since there is code that depends on this. */
2831 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
2832 if (TYPE_QUALS (t) == type_quals && TYPE_NAME (t) == TYPE_NAME (type)
2833 && TYPE_CONTEXT (t) == TYPE_CONTEXT (type))
2834 return t;
2836 return NULL_TREE;
2839 /* Like get_qualified_type, but creates the type if it does not
2840 exist. This function never returns NULL_TREE. */
2842 tree
2843 build_qualified_type (type, type_quals)
2844 tree type;
2845 int type_quals;
2847 tree t;
2849 /* See if we already have the appropriate qualified variant. */
2850 t = get_qualified_type (type, type_quals);
2852 /* If not, build it. */
2853 if (!t)
2855 t = build_type_copy (type);
2856 set_type_quals (t, type_quals);
2859 return t;
2862 /* Create a new variant of TYPE, equivalent but distinct.
2863 This is so the caller can modify it. */
2865 tree
2866 build_type_copy (type)
2867 tree type;
2869 tree t, m = TYPE_MAIN_VARIANT (type);
2871 t = copy_node (type);
2873 TYPE_POINTER_TO (t) = 0;
2874 TYPE_REFERENCE_TO (t) = 0;
2876 /* Add this type to the chain of variants of TYPE. */
2877 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
2878 TYPE_NEXT_VARIANT (m) = t;
2880 return t;
2883 /* Hashing of types so that we don't make duplicates.
2884 The entry point is `type_hash_canon'. */
2886 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
2887 with types in the TREE_VALUE slots), by adding the hash codes
2888 of the individual types. */
2890 unsigned int
2891 type_hash_list (list)
2892 tree list;
2894 unsigned int hashcode;
2895 tree tail;
2897 for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
2898 hashcode += TYPE_HASH (TREE_VALUE (tail));
2900 return hashcode;
2903 /* These are the Hashtable callback functions. */
2905 /* Returns true if the types are equal. */
2907 static int
2908 type_hash_eq (va, vb)
2909 const void *va;
2910 const void *vb;
2912 const struct type_hash *a = va, *b = vb;
2913 if (a->hash == b->hash
2914 && TREE_CODE (a->type) == TREE_CODE (b->type)
2915 && TREE_TYPE (a->type) == TREE_TYPE (b->type)
2916 && attribute_list_equal (TYPE_ATTRIBUTES (a->type),
2917 TYPE_ATTRIBUTES (b->type))
2918 && TYPE_ALIGN (a->type) == TYPE_ALIGN (b->type)
2919 && (TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
2920 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
2921 TYPE_MAX_VALUE (b->type)))
2922 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
2923 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
2924 TYPE_MIN_VALUE (b->type)))
2925 /* Note that TYPE_DOMAIN is TYPE_ARG_TYPES for FUNCTION_TYPE. */
2926 && (TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type)
2927 || (TYPE_DOMAIN (a->type)
2928 && TREE_CODE (TYPE_DOMAIN (a->type)) == TREE_LIST
2929 && TYPE_DOMAIN (b->type)
2930 && TREE_CODE (TYPE_DOMAIN (b->type)) == TREE_LIST
2931 && type_list_equal (TYPE_DOMAIN (a->type),
2932 TYPE_DOMAIN (b->type)))))
2933 return 1;
2934 return 0;
2937 /* Return the cached hash value. */
2939 static unsigned int
2940 type_hash_hash (item)
2941 const void *item;
2943 return ((const struct type_hash *) item)->hash;
2946 /* Look in the type hash table for a type isomorphic to TYPE.
2947 If one is found, return it. Otherwise return 0. */
2949 tree
2950 type_hash_lookup (hashcode, type)
2951 unsigned int hashcode;
2952 tree type;
2954 struct type_hash *h, in;
2956 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
2957 must call that routine before comparing TYPE_ALIGNs. */
2958 layout_type (type);
2960 in.hash = hashcode;
2961 in.type = type;
2963 h = htab_find_with_hash (type_hash_table, &in, hashcode);
2964 if (h)
2965 return h->type;
2966 return NULL_TREE;
2969 /* Add an entry to the type-hash-table
2970 for a type TYPE whose hash code is HASHCODE. */
2972 void
2973 type_hash_add (hashcode, type)
2974 unsigned int hashcode;
2975 tree type;
2977 struct type_hash *h;
2978 void **loc;
2980 h = (struct type_hash *) ggc_alloc (sizeof (struct type_hash));
2981 h->hash = hashcode;
2982 h->type = type;
2983 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
2984 *(struct type_hash **) loc = h;
2987 /* Given TYPE, and HASHCODE its hash code, return the canonical
2988 object for an identical type if one already exists.
2989 Otherwise, return TYPE, and record it as the canonical object
2990 if it is a permanent object.
2992 To use this function, first create a type of the sort you want.
2993 Then compute its hash code from the fields of the type that
2994 make it different from other similar types.
2995 Then call this function and use the value.
2996 This function frees the type you pass in if it is a duplicate. */
2998 /* Set to 1 to debug without canonicalization. Never set by program. */
2999 int debug_no_type_hash = 0;
3001 tree
3002 type_hash_canon (hashcode, type)
3003 unsigned int hashcode;
3004 tree type;
3006 tree t1;
3008 if (debug_no_type_hash)
3009 return type;
3011 /* See if the type is in the hash table already. If so, return it.
3012 Otherwise, add the type. */
3013 t1 = type_hash_lookup (hashcode, type);
3014 if (t1 != 0)
3016 #ifdef GATHER_STATISTICS
3017 tree_node_counts[(int) t_kind]--;
3018 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type);
3019 #endif
3020 return t1;
3022 else
3024 type_hash_add (hashcode, type);
3025 return type;
3029 /* See if the data pointed to by the type hash table is marked. We consider
3030 it marked if the type is marked or if a debug type number or symbol
3031 table entry has been made for the type. This reduces the amount of
3032 debugging output and eliminates that dependency of the debug output on
3033 the number of garbage collections. */
3035 static int
3036 type_hash_marked_p (p)
3037 const void *p;
3039 tree type = ((struct type_hash *) p)->type;
3041 return ggc_marked_p (type) || TYPE_SYMTAB_POINTER (type);
3044 static void
3045 print_type_hash_statistics ()
3047 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
3048 (long) htab_size (type_hash_table),
3049 (long) htab_elements (type_hash_table),
3050 htab_collisions (type_hash_table));
3053 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
3054 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
3055 by adding the hash codes of the individual attributes. */
3057 unsigned int
3058 attribute_hash_list (list)
3059 tree list;
3061 unsigned int hashcode;
3062 tree tail;
3064 for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
3065 /* ??? Do we want to add in TREE_VALUE too? */
3066 hashcode += TYPE_HASH (TREE_PURPOSE (tail));
3067 return hashcode;
3070 /* Given two lists of attributes, return true if list l2 is
3071 equivalent to l1. */
3074 attribute_list_equal (l1, l2)
3075 tree l1, l2;
3077 return attribute_list_contained (l1, l2)
3078 && attribute_list_contained (l2, l1);
3081 /* Given two lists of attributes, return true if list L2 is
3082 completely contained within L1. */
3083 /* ??? This would be faster if attribute names were stored in a canonicalized
3084 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
3085 must be used to show these elements are equivalent (which they are). */
3086 /* ??? It's not clear that attributes with arguments will always be handled
3087 correctly. */
3090 attribute_list_contained (l1, l2)
3091 tree l1, l2;
3093 tree t1, t2;
3095 /* First check the obvious, maybe the lists are identical. */
3096 if (l1 == l2)
3097 return 1;
3099 /* Maybe the lists are similar. */
3100 for (t1 = l1, t2 = l2;
3101 t1 != 0 && t2 != 0
3102 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
3103 && TREE_VALUE (t1) == TREE_VALUE (t2);
3104 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
3106 /* Maybe the lists are equal. */
3107 if (t1 == 0 && t2 == 0)
3108 return 1;
3110 for (; t2 != 0; t2 = TREE_CHAIN (t2))
3112 tree attr;
3113 for (attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)), l1);
3114 attr != NULL_TREE;
3115 attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
3116 TREE_CHAIN (attr)))
3118 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) == 1)
3119 break;
3122 if (attr == 0)
3123 return 0;
3125 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) != 1)
3126 return 0;
3129 return 1;
3132 /* Given two lists of types
3133 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
3134 return 1 if the lists contain the same types in the same order.
3135 Also, the TREE_PURPOSEs must match. */
3138 type_list_equal (l1, l2)
3139 tree l1, l2;
3141 tree t1, t2;
3143 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
3144 if (TREE_VALUE (t1) != TREE_VALUE (t2)
3145 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
3146 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
3147 && (TREE_TYPE (TREE_PURPOSE (t1))
3148 == TREE_TYPE (TREE_PURPOSE (t2))))))
3149 return 0;
3151 return t1 == t2;
3154 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
3155 given by TYPE. If the argument list accepts variable arguments,
3156 then this function counts only the ordinary arguments. */
3159 type_num_arguments (type)
3160 tree type;
3162 int i = 0;
3163 tree t;
3165 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
3166 /* If the function does not take a variable number of arguments,
3167 the last element in the list will have type `void'. */
3168 if (VOID_TYPE_P (TREE_VALUE (t)))
3169 break;
3170 else
3171 ++i;
3173 return i;
3176 /* Nonzero if integer constants T1 and T2
3177 represent the same constant value. */
3180 tree_int_cst_equal (t1, t2)
3181 tree t1, t2;
3183 if (t1 == t2)
3184 return 1;
3186 if (t1 == 0 || t2 == 0)
3187 return 0;
3189 if (TREE_CODE (t1) == INTEGER_CST
3190 && TREE_CODE (t2) == INTEGER_CST
3191 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3192 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
3193 return 1;
3195 return 0;
3198 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
3199 The precise way of comparison depends on their data type. */
3202 tree_int_cst_lt (t1, t2)
3203 tree t1, t2;
3205 if (t1 == t2)
3206 return 0;
3208 if (TREE_UNSIGNED (TREE_TYPE (t1)) != TREE_UNSIGNED (TREE_TYPE (t2)))
3210 int t1_sgn = tree_int_cst_sgn (t1);
3211 int t2_sgn = tree_int_cst_sgn (t2);
3213 if (t1_sgn < t2_sgn)
3214 return 1;
3215 else if (t1_sgn > t2_sgn)
3216 return 0;
3217 /* Otherwise, both are non-negative, so we compare them as
3218 unsigned just in case one of them would overflow a signed
3219 type. */
3221 else if (! TREE_UNSIGNED (TREE_TYPE (t1)))
3222 return INT_CST_LT (t1, t2);
3224 return INT_CST_LT_UNSIGNED (t1, t2);
3227 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
3230 tree_int_cst_compare (t1, t2)
3231 tree t1;
3232 tree t2;
3234 if (tree_int_cst_lt (t1, t2))
3235 return -1;
3236 else if (tree_int_cst_lt (t2, t1))
3237 return 1;
3238 else
3239 return 0;
3242 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
3243 the host. If POS is zero, the value can be represented in a single
3244 HOST_WIDE_INT. If POS is nonzero, the value must be positive and can
3245 be represented in a single unsigned HOST_WIDE_INT. */
3248 host_integerp (t, pos)
3249 tree t;
3250 int pos;
3252 return (TREE_CODE (t) == INTEGER_CST
3253 && ! TREE_OVERFLOW (t)
3254 && ((TREE_INT_CST_HIGH (t) == 0
3255 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
3256 || (! pos && TREE_INT_CST_HIGH (t) == -1
3257 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
3258 && ! TREE_UNSIGNED (TREE_TYPE (t)))
3259 || (pos && TREE_INT_CST_HIGH (t) == 0)));
3262 /* Return the HOST_WIDE_INT least significant bits of T if it is an
3263 INTEGER_CST and there is no overflow. POS is nonzero if the result must
3264 be positive. Abort if we cannot satisfy the above conditions. */
3266 HOST_WIDE_INT
3267 tree_low_cst (t, pos)
3268 tree t;
3269 int pos;
3271 if (host_integerp (t, pos))
3272 return TREE_INT_CST_LOW (t);
3273 else
3274 abort ();
3277 /* Return the most significant bit of the integer constant T. */
3280 tree_int_cst_msb (t)
3281 tree t;
3283 int prec;
3284 HOST_WIDE_INT h;
3285 unsigned HOST_WIDE_INT l;
3287 /* Note that using TYPE_PRECISION here is wrong. We care about the
3288 actual bits, not the (arbitrary) range of the type. */
3289 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
3290 rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
3291 2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
3292 return (l & 1) == 1;
3295 /* Return an indication of the sign of the integer constant T.
3296 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
3297 Note that -1 will never be returned it T's type is unsigned. */
3300 tree_int_cst_sgn (t)
3301 tree t;
3303 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
3304 return 0;
3305 else if (TREE_UNSIGNED (TREE_TYPE (t)))
3306 return 1;
3307 else if (TREE_INT_CST_HIGH (t) < 0)
3308 return -1;
3309 else
3310 return 1;
3313 /* Compare two constructor-element-type constants. Return 1 if the lists
3314 are known to be equal; otherwise return 0. */
3317 simple_cst_list_equal (l1, l2)
3318 tree l1, l2;
3320 while (l1 != NULL_TREE && l2 != NULL_TREE)
3322 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
3323 return 0;
3325 l1 = TREE_CHAIN (l1);
3326 l2 = TREE_CHAIN (l2);
3329 return l1 == l2;
3332 /* Return truthvalue of whether T1 is the same tree structure as T2.
3333 Return 1 if they are the same.
3334 Return 0 if they are understandably different.
3335 Return -1 if either contains tree structure not understood by
3336 this function. */
3339 simple_cst_equal (t1, t2)
3340 tree t1, t2;
3342 enum tree_code code1, code2;
3343 int cmp;
3344 int i;
3346 if (t1 == t2)
3347 return 1;
3348 if (t1 == 0 || t2 == 0)
3349 return 0;
3351 code1 = TREE_CODE (t1);
3352 code2 = TREE_CODE (t2);
3354 if (code1 == NOP_EXPR || code1 == CONVERT_EXPR || code1 == NON_LVALUE_EXPR)
3356 if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3357 || code2 == NON_LVALUE_EXPR)
3358 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3359 else
3360 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
3363 else if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3364 || code2 == NON_LVALUE_EXPR)
3365 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
3367 if (code1 != code2)
3368 return 0;
3370 switch (code1)
3372 case INTEGER_CST:
3373 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3374 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
3376 case REAL_CST:
3377 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
3379 case STRING_CST:
3380 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
3381 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
3382 TREE_STRING_LENGTH (t1)));
3384 case CONSTRUCTOR:
3385 if (CONSTRUCTOR_ELTS (t1) == CONSTRUCTOR_ELTS (t2))
3386 return 1;
3387 else
3388 abort ();
3390 case SAVE_EXPR:
3391 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3393 case CALL_EXPR:
3394 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3395 if (cmp <= 0)
3396 return cmp;
3397 return
3398 simple_cst_list_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3400 case TARGET_EXPR:
3401 /* Special case: if either target is an unallocated VAR_DECL,
3402 it means that it's going to be unified with whatever the
3403 TARGET_EXPR is really supposed to initialize, so treat it
3404 as being equivalent to anything. */
3405 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
3406 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
3407 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
3408 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
3409 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
3410 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
3411 cmp = 1;
3412 else
3413 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3415 if (cmp <= 0)
3416 return cmp;
3418 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3420 case WITH_CLEANUP_EXPR:
3421 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3422 if (cmp <= 0)
3423 return cmp;
3425 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
3427 case COMPONENT_REF:
3428 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
3429 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3431 return 0;
3433 case VAR_DECL:
3434 case PARM_DECL:
3435 case CONST_DECL:
3436 case FUNCTION_DECL:
3437 return 0;
3439 default:
3440 break;
3443 /* This general rule works for most tree codes. All exceptions should be
3444 handled above. If this is a language-specific tree code, we can't
3445 trust what might be in the operand, so say we don't know
3446 the situation. */
3447 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
3448 return -1;
3450 switch (TREE_CODE_CLASS (code1))
3452 case '1':
3453 case '2':
3454 case '<':
3455 case 'e':
3456 case 'r':
3457 case 's':
3458 cmp = 1;
3459 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
3461 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
3462 if (cmp <= 0)
3463 return cmp;
3466 return cmp;
3468 default:
3469 return -1;
3473 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
3474 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
3475 than U, respectively. */
3478 compare_tree_int (t, u)
3479 tree t;
3480 unsigned HOST_WIDE_INT u;
3482 if (tree_int_cst_sgn (t) < 0)
3483 return -1;
3484 else if (TREE_INT_CST_HIGH (t) != 0)
3485 return 1;
3486 else if (TREE_INT_CST_LOW (t) == u)
3487 return 0;
3488 else if (TREE_INT_CST_LOW (t) < u)
3489 return -1;
3490 else
3491 return 1;
3494 /* Constructors for pointer, array and function types.
3495 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
3496 constructed by language-dependent code, not here.) */
3498 /* Construct, lay out and return the type of pointers to TO_TYPE.
3499 If such a type has already been constructed, reuse it. */
3501 tree
3502 build_pointer_type (to_type)
3503 tree to_type;
3505 tree t = TYPE_POINTER_TO (to_type);
3507 /* First, if we already have a type for pointers to TO_TYPE, use it. */
3509 if (t != 0)
3510 return t;
3512 /* We need a new one. */
3513 t = make_node (POINTER_TYPE);
3515 TREE_TYPE (t) = to_type;
3517 /* Record this type as the pointer to TO_TYPE. */
3518 TYPE_POINTER_TO (to_type) = t;
3520 /* Lay out the type. This function has many callers that are concerned
3521 with expression-construction, and this simplifies them all.
3522 Also, it guarantees the TYPE_SIZE is in the same obstack as the type. */
3523 layout_type (t);
3525 return t;
3528 /* Build the node for the type of references-to-TO_TYPE. */
3530 tree
3531 build_reference_type (to_type)
3532 tree to_type;
3534 tree t = TYPE_REFERENCE_TO (to_type);
3536 /* First, if we already have a type for pointers to TO_TYPE, use it. */
3538 if (t)
3539 return t;
3541 /* We need a new one. */
3542 t = make_node (REFERENCE_TYPE);
3544 TREE_TYPE (t) = to_type;
3546 /* Record this type as the pointer to TO_TYPE. */
3547 TYPE_REFERENCE_TO (to_type) = t;
3549 layout_type (t);
3551 return t;
3554 /* Build a type that is compatible with t but has no cv quals anywhere
3555 in its type, thus
3557 const char *const *const * -> char ***. */
3559 tree
3560 build_type_no_quals (t)
3561 tree t;
3563 switch (TREE_CODE (t))
3565 case POINTER_TYPE:
3566 return build_pointer_type (build_type_no_quals (TREE_TYPE (t)));
3567 case REFERENCE_TYPE:
3568 return build_reference_type (build_type_no_quals (TREE_TYPE (t)));
3569 default:
3570 return TYPE_MAIN_VARIANT (t);
3574 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
3575 MAXVAL should be the maximum value in the domain
3576 (one less than the length of the array).
3578 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
3579 We don't enforce this limit, that is up to caller (e.g. language front end).
3580 The limit exists because the result is a signed type and we don't handle
3581 sizes that use more than one HOST_WIDE_INT. */
3583 tree
3584 build_index_type (maxval)
3585 tree maxval;
3587 tree itype = make_node (INTEGER_TYPE);
3589 TREE_TYPE (itype) = sizetype;
3590 TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
3591 TYPE_MIN_VALUE (itype) = size_zero_node;
3592 TYPE_MAX_VALUE (itype) = convert (sizetype, maxval);
3593 TYPE_MODE (itype) = TYPE_MODE (sizetype);
3594 TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
3595 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (sizetype);
3596 TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
3597 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (sizetype);
3599 if (host_integerp (maxval, 1))
3600 return type_hash_canon (tree_low_cst (maxval, 1), itype);
3601 else
3602 return itype;
3605 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
3606 ENUMERAL_TYPE, BOOLEAN_TYPE, or CHAR_TYPE), with
3607 low bound LOWVAL and high bound HIGHVAL.
3608 if TYPE==NULL_TREE, sizetype is used. */
3610 tree
3611 build_range_type (type, lowval, highval)
3612 tree type, lowval, highval;
3614 tree itype = make_node (INTEGER_TYPE);
3616 TREE_TYPE (itype) = type;
3617 if (type == NULL_TREE)
3618 type = sizetype;
3620 TYPE_MIN_VALUE (itype) = convert (type, lowval);
3621 TYPE_MAX_VALUE (itype) = highval ? convert (type, highval) : NULL;
3623 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
3624 TYPE_MODE (itype) = TYPE_MODE (type);
3625 TYPE_SIZE (itype) = TYPE_SIZE (type);
3626 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
3627 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
3628 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
3630 if (host_integerp (lowval, 0) && highval != 0 && host_integerp (highval, 0))
3631 return type_hash_canon (tree_low_cst (highval, 0)
3632 - tree_low_cst (lowval, 0),
3633 itype);
3634 else
3635 return itype;
3638 /* Just like build_index_type, but takes lowval and highval instead
3639 of just highval (maxval). */
3641 tree
3642 build_index_2_type (lowval, highval)
3643 tree lowval, highval;
3645 return build_range_type (sizetype, lowval, highval);
3648 /* Return nonzero iff ITYPE1 and ITYPE2 are equal (in the LISP sense).
3649 Needed because when index types are not hashed, equal index types
3650 built at different times appear distinct, even though structurally,
3651 they are not. */
3654 index_type_equal (itype1, itype2)
3655 tree itype1, itype2;
3657 if (TREE_CODE (itype1) != TREE_CODE (itype2))
3658 return 0;
3660 if (TREE_CODE (itype1) == INTEGER_TYPE)
3662 if (TYPE_PRECISION (itype1) != TYPE_PRECISION (itype2)
3663 || TYPE_MODE (itype1) != TYPE_MODE (itype2)
3664 || simple_cst_equal (TYPE_SIZE (itype1), TYPE_SIZE (itype2)) != 1
3665 || TYPE_ALIGN (itype1) != TYPE_ALIGN (itype2))
3666 return 0;
3668 if (1 == simple_cst_equal (TYPE_MIN_VALUE (itype1),
3669 TYPE_MIN_VALUE (itype2))
3670 && 1 == simple_cst_equal (TYPE_MAX_VALUE (itype1),
3671 TYPE_MAX_VALUE (itype2)))
3672 return 1;
3675 return 0;
3678 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
3679 and number of elements specified by the range of values of INDEX_TYPE.
3680 If such a type has already been constructed, reuse it. */
3682 tree
3683 build_array_type (elt_type, index_type)
3684 tree elt_type, index_type;
3686 tree t;
3687 unsigned int hashcode;
3689 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
3691 error ("arrays of functions are not meaningful");
3692 elt_type = integer_type_node;
3695 /* Make sure TYPE_POINTER_TO (elt_type) is filled in. */
3696 build_pointer_type (elt_type);
3698 /* Allocate the array after the pointer type,
3699 in case we free it in type_hash_canon. */
3700 t = make_node (ARRAY_TYPE);
3701 TREE_TYPE (t) = elt_type;
3702 TYPE_DOMAIN (t) = index_type;
3704 if (index_type == 0)
3706 return t;
3709 hashcode = TYPE_HASH (elt_type) + TYPE_HASH (index_type);
3710 t = type_hash_canon (hashcode, t);
3712 if (!COMPLETE_TYPE_P (t))
3713 layout_type (t);
3714 return t;
3717 /* Return the TYPE of the elements comprising
3718 the innermost dimension of ARRAY. */
3720 tree
3721 get_inner_array_type (array)
3722 tree array;
3724 tree type = TREE_TYPE (array);
3726 while (TREE_CODE (type) == ARRAY_TYPE)
3727 type = TREE_TYPE (type);
3729 return type;
3732 /* Construct, lay out and return
3733 the type of functions returning type VALUE_TYPE
3734 given arguments of types ARG_TYPES.
3735 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
3736 are data type nodes for the arguments of the function.
3737 If such a type has already been constructed, reuse it. */
3739 tree
3740 build_function_type (value_type, arg_types)
3741 tree value_type, arg_types;
3743 tree t;
3744 unsigned int hashcode;
3746 if (TREE_CODE (value_type) == FUNCTION_TYPE)
3748 error ("function return type cannot be function");
3749 value_type = integer_type_node;
3752 /* Make a node of the sort we want. */
3753 t = make_node (FUNCTION_TYPE);
3754 TREE_TYPE (t) = value_type;
3755 TYPE_ARG_TYPES (t) = arg_types;
3757 /* If we already have such a type, use the old one and free this one. */
3758 hashcode = TYPE_HASH (value_type) + type_hash_list (arg_types);
3759 t = type_hash_canon (hashcode, t);
3761 if (!COMPLETE_TYPE_P (t))
3762 layout_type (t);
3763 return t;
3766 /* Build a function type. The RETURN_TYPE is the type retured by the
3767 function. If additional arguments are provided, they are
3768 additional argument types. The list of argument types must always
3769 be terminated by NULL_TREE. */
3771 tree
3772 build_function_type_list VPARAMS ((tree return_type, ...))
3774 tree t, args, last;
3776 VA_OPEN (p, return_type);
3777 VA_FIXEDARG (p, tree, return_type);
3779 t = va_arg (p, tree);
3780 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (p, tree))
3781 args = tree_cons (NULL_TREE, t, args);
3783 last = args;
3784 args = nreverse (args);
3785 TREE_CHAIN (last) = void_list_node;
3786 args = build_function_type (return_type, args);
3788 VA_CLOSE (p);
3789 return args;
3792 /* Construct, lay out and return the type of methods belonging to class
3793 BASETYPE and whose arguments and values are described by TYPE.
3794 If that type exists already, reuse it.
3795 TYPE must be a FUNCTION_TYPE node. */
3797 tree
3798 build_method_type (basetype, type)
3799 tree basetype, type;
3801 tree t;
3802 unsigned int hashcode;
3804 /* Make a node of the sort we want. */
3805 t = make_node (METHOD_TYPE);
3807 if (TREE_CODE (type) != FUNCTION_TYPE)
3808 abort ();
3810 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
3811 TREE_TYPE (t) = TREE_TYPE (type);
3813 /* The actual arglist for this function includes a "hidden" argument
3814 which is "this". Put it into the list of argument types. */
3816 TYPE_ARG_TYPES (t)
3817 = tree_cons (NULL_TREE,
3818 build_pointer_type (basetype), TYPE_ARG_TYPES (type));
3820 /* If we already have such a type, use the old one and free this one. */
3821 hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
3822 t = type_hash_canon (hashcode, t);
3824 if (!COMPLETE_TYPE_P (t))
3825 layout_type (t);
3827 return t;
3830 /* Construct, lay out and return the type of offsets to a value
3831 of type TYPE, within an object of type BASETYPE.
3832 If a suitable offset type exists already, reuse it. */
3834 tree
3835 build_offset_type (basetype, type)
3836 tree basetype, type;
3838 tree t;
3839 unsigned int hashcode;
3841 /* Make a node of the sort we want. */
3842 t = make_node (OFFSET_TYPE);
3844 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
3845 TREE_TYPE (t) = type;
3847 /* If we already have such a type, use the old one and free this one. */
3848 hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
3849 t = type_hash_canon (hashcode, t);
3851 if (!COMPLETE_TYPE_P (t))
3852 layout_type (t);
3854 return t;
3857 /* Create a complex type whose components are COMPONENT_TYPE. */
3859 tree
3860 build_complex_type (component_type)
3861 tree component_type;
3863 tree t;
3864 unsigned int hashcode;
3866 /* Make a node of the sort we want. */
3867 t = make_node (COMPLEX_TYPE);
3869 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
3870 set_type_quals (t, TYPE_QUALS (component_type));
3872 /* If we already have such a type, use the old one and free this one. */
3873 hashcode = TYPE_HASH (component_type);
3874 t = type_hash_canon (hashcode, t);
3876 if (!COMPLETE_TYPE_P (t))
3877 layout_type (t);
3879 /* If we are writing Dwarf2 output we need to create a name,
3880 since complex is a fundamental type. */
3881 if ((write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
3882 && ! TYPE_NAME (t))
3884 const char *name;
3885 if (component_type == char_type_node)
3886 name = "complex char";
3887 else if (component_type == signed_char_type_node)
3888 name = "complex signed char";
3889 else if (component_type == unsigned_char_type_node)
3890 name = "complex unsigned char";
3891 else if (component_type == short_integer_type_node)
3892 name = "complex short int";
3893 else if (component_type == short_unsigned_type_node)
3894 name = "complex short unsigned int";
3895 else if (component_type == integer_type_node)
3896 name = "complex int";
3897 else if (component_type == unsigned_type_node)
3898 name = "complex unsigned int";
3899 else if (component_type == long_integer_type_node)
3900 name = "complex long int";
3901 else if (component_type == long_unsigned_type_node)
3902 name = "complex long unsigned int";
3903 else if (component_type == long_long_integer_type_node)
3904 name = "complex long long int";
3905 else if (component_type == long_long_unsigned_type_node)
3906 name = "complex long long unsigned int";
3907 else
3908 name = 0;
3910 if (name != 0)
3911 TYPE_NAME (t) = get_identifier (name);
3914 return t;
3917 /* Return OP, stripped of any conversions to wider types as much as is safe.
3918 Converting the value back to OP's type makes a value equivalent to OP.
3920 If FOR_TYPE is nonzero, we return a value which, if converted to
3921 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
3923 If FOR_TYPE is nonzero, unaligned bit-field references may be changed to the
3924 narrowest type that can hold the value, even if they don't exactly fit.
3925 Otherwise, bit-field references are changed to a narrower type
3926 only if they can be fetched directly from memory in that type.
3928 OP must have integer, real or enumeral type. Pointers are not allowed!
3930 There are some cases where the obvious value we could return
3931 would regenerate to OP if converted to OP's type,
3932 but would not extend like OP to wider types.
3933 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
3934 For example, if OP is (unsigned short)(signed char)-1,
3935 we avoid returning (signed char)-1 if FOR_TYPE is int,
3936 even though extending that to an unsigned short would regenerate OP,
3937 since the result of extending (signed char)-1 to (int)
3938 is different from (int) OP. */
3940 tree
3941 get_unwidened (op, for_type)
3942 tree op;
3943 tree for_type;
3945 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
3946 tree type = TREE_TYPE (op);
3947 unsigned final_prec
3948 = TYPE_PRECISION (for_type != 0 ? for_type : type);
3949 int uns
3950 = (for_type != 0 && for_type != type
3951 && final_prec > TYPE_PRECISION (type)
3952 && TREE_UNSIGNED (type));
3953 tree win = op;
3955 while (TREE_CODE (op) == NOP_EXPR)
3957 int bitschange
3958 = TYPE_PRECISION (TREE_TYPE (op))
3959 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
3961 /* Truncations are many-one so cannot be removed.
3962 Unless we are later going to truncate down even farther. */
3963 if (bitschange < 0
3964 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
3965 break;
3967 /* See what's inside this conversion. If we decide to strip it,
3968 we will set WIN. */
3969 op = TREE_OPERAND (op, 0);
3971 /* If we have not stripped any zero-extensions (uns is 0),
3972 we can strip any kind of extension.
3973 If we have previously stripped a zero-extension,
3974 only zero-extensions can safely be stripped.
3975 Any extension can be stripped if the bits it would produce
3976 are all going to be discarded later by truncating to FOR_TYPE. */
3978 if (bitschange > 0)
3980 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
3981 win = op;
3982 /* TREE_UNSIGNED says whether this is a zero-extension.
3983 Let's avoid computing it if it does not affect WIN
3984 and if UNS will not be needed again. */
3985 if ((uns || TREE_CODE (op) == NOP_EXPR)
3986 && TREE_UNSIGNED (TREE_TYPE (op)))
3988 uns = 1;
3989 win = op;
3994 if (TREE_CODE (op) == COMPONENT_REF
3995 /* Since type_for_size always gives an integer type. */
3996 && TREE_CODE (type) != REAL_TYPE
3997 /* Don't crash if field not laid out yet. */
3998 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
3999 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
4001 unsigned int innerprec
4002 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
4003 int unsignedp = TREE_UNSIGNED (TREE_OPERAND (op, 1));
4004 type = (*lang_hooks.types.type_for_size) (innerprec, unsignedp);
4006 /* We can get this structure field in the narrowest type it fits in.
4007 If FOR_TYPE is 0, do this only for a field that matches the
4008 narrower type exactly and is aligned for it
4009 The resulting extension to its nominal type (a fullword type)
4010 must fit the same conditions as for other extensions. */
4012 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4013 && (for_type || ! DECL_BIT_FIELD (TREE_OPERAND (op, 1)))
4014 && (! uns || final_prec <= innerprec || unsignedp)
4015 && type != 0)
4017 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4018 TREE_OPERAND (op, 1));
4019 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4020 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4024 return win;
4027 /* Return OP or a simpler expression for a narrower value
4028 which can be sign-extended or zero-extended to give back OP.
4029 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
4030 or 0 if the value should be sign-extended. */
4032 tree
4033 get_narrower (op, unsignedp_ptr)
4034 tree op;
4035 int *unsignedp_ptr;
4037 int uns = 0;
4038 int first = 1;
4039 tree win = op;
4041 while (TREE_CODE (op) == NOP_EXPR)
4043 int bitschange
4044 = (TYPE_PRECISION (TREE_TYPE (op))
4045 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
4047 /* Truncations are many-one so cannot be removed. */
4048 if (bitschange < 0)
4049 break;
4051 /* See what's inside this conversion. If we decide to strip it,
4052 we will set WIN. */
4053 op = TREE_OPERAND (op, 0);
4055 if (bitschange > 0)
4057 /* An extension: the outermost one can be stripped,
4058 but remember whether it is zero or sign extension. */
4059 if (first)
4060 uns = TREE_UNSIGNED (TREE_TYPE (op));
4061 /* Otherwise, if a sign extension has been stripped,
4062 only sign extensions can now be stripped;
4063 if a zero extension has been stripped, only zero-extensions. */
4064 else if (uns != TREE_UNSIGNED (TREE_TYPE (op)))
4065 break;
4066 first = 0;
4068 else /* bitschange == 0 */
4070 /* A change in nominal type can always be stripped, but we must
4071 preserve the unsignedness. */
4072 if (first)
4073 uns = TREE_UNSIGNED (TREE_TYPE (op));
4074 first = 0;
4077 win = op;
4080 if (TREE_CODE (op) == COMPONENT_REF
4081 /* Since type_for_size always gives an integer type. */
4082 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
4083 /* Ensure field is laid out already. */
4084 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0)
4086 unsigned HOST_WIDE_INT innerprec
4087 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
4088 tree type = (*lang_hooks.types.type_for_size) (innerprec,
4089 TREE_UNSIGNED (op));
4091 /* We can get this structure field in a narrower type that fits it,
4092 but the resulting extension to its nominal type (a fullword type)
4093 must satisfy the same conditions as for other extensions.
4095 Do this only for fields that are aligned (not bit-fields),
4096 because when bit-field insns will be used there is no
4097 advantage in doing this. */
4099 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4100 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
4101 && (first || uns == TREE_UNSIGNED (TREE_OPERAND (op, 1)))
4102 && type != 0)
4104 if (first)
4105 uns = TREE_UNSIGNED (TREE_OPERAND (op, 1));
4106 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4107 TREE_OPERAND (op, 1));
4108 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4109 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4112 *unsignedp_ptr = uns;
4113 return win;
4116 /* Nonzero if integer constant C has a value that is permissible
4117 for type TYPE (an INTEGER_TYPE). */
4120 int_fits_type_p (c, type)
4121 tree c, type;
4123 /* If the bounds of the type are integers, we can check ourselves.
4124 If not, but this type is a subtype, try checking against that.
4125 Otherwise, use force_fit_type, which checks against the precision. */
4126 if (TYPE_MAX_VALUE (type) != NULL_TREE
4127 && TYPE_MIN_VALUE (type) != NULL_TREE
4128 && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST
4129 && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
4131 if (TREE_UNSIGNED (type))
4132 return (! INT_CST_LT_UNSIGNED (TYPE_MAX_VALUE (type), c)
4133 && ! INT_CST_LT_UNSIGNED (c, TYPE_MIN_VALUE (type))
4134 /* Negative ints never fit unsigned types. */
4135 && ! (TREE_INT_CST_HIGH (c) < 0
4136 && ! TREE_UNSIGNED (TREE_TYPE (c))));
4137 else
4138 return (! INT_CST_LT (TYPE_MAX_VALUE (type), c)
4139 && ! INT_CST_LT (c, TYPE_MIN_VALUE (type))
4140 /* Unsigned ints with top bit set never fit signed types. */
4141 && ! (TREE_INT_CST_HIGH (c) < 0
4142 && TREE_UNSIGNED (TREE_TYPE (c))));
4144 else if (TREE_CODE (type) == INTEGER_TYPE && TREE_TYPE (type) != 0)
4145 return int_fits_type_p (c, TREE_TYPE (type));
4146 else
4148 c = copy_node (c);
4149 TREE_TYPE (c) = type;
4150 return !force_fit_type (c, 0);
4154 /* Given a DECL or TYPE, return the scope in which it was declared, or
4155 NULL_TREE if there is no containing scope. */
4157 tree
4158 get_containing_scope (t)
4159 tree t;
4161 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
4164 /* Return the innermost context enclosing DECL that is
4165 a FUNCTION_DECL, or zero if none. */
4167 tree
4168 decl_function_context (decl)
4169 tree decl;
4171 tree context;
4173 if (TREE_CODE (decl) == ERROR_MARK)
4174 return 0;
4176 if (TREE_CODE (decl) == SAVE_EXPR)
4177 context = SAVE_EXPR_CONTEXT (decl);
4179 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
4180 where we look up the function at runtime. Such functions always take
4181 a first argument of type 'pointer to real context'.
4183 C++ should really be fixed to use DECL_CONTEXT for the real context,
4184 and use something else for the "virtual context". */
4185 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
4186 context
4187 = TYPE_MAIN_VARIANT
4188 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4189 else
4190 context = DECL_CONTEXT (decl);
4192 while (context && TREE_CODE (context) != FUNCTION_DECL)
4194 if (TREE_CODE (context) == BLOCK)
4195 context = BLOCK_SUPERCONTEXT (context);
4196 else
4197 context = get_containing_scope (context);
4200 return context;
4203 /* Return the innermost context enclosing DECL that is
4204 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
4205 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
4207 tree
4208 decl_type_context (decl)
4209 tree decl;
4211 tree context = DECL_CONTEXT (decl);
4213 while (context)
4215 if (TREE_CODE (context) == NAMESPACE_DECL)
4216 return NULL_TREE;
4218 if (TREE_CODE (context) == RECORD_TYPE
4219 || TREE_CODE (context) == UNION_TYPE
4220 || TREE_CODE (context) == QUAL_UNION_TYPE)
4221 return context;
4223 if (TREE_CODE (context) == TYPE_DECL
4224 || TREE_CODE (context) == FUNCTION_DECL)
4225 context = DECL_CONTEXT (context);
4227 else if (TREE_CODE (context) == BLOCK)
4228 context = BLOCK_SUPERCONTEXT (context);
4230 else
4231 /* Unhandled CONTEXT!? */
4232 abort ();
4234 return NULL_TREE;
4237 /* CALL is a CALL_EXPR. Return the declaration for the function
4238 called, or NULL_TREE if the called function cannot be
4239 determined. */
4241 tree
4242 get_callee_fndecl (call)
4243 tree call;
4245 tree addr;
4247 /* It's invalid to call this function with anything but a
4248 CALL_EXPR. */
4249 if (TREE_CODE (call) != CALL_EXPR)
4250 abort ();
4252 /* The first operand to the CALL is the address of the function
4253 called. */
4254 addr = TREE_OPERAND (call, 0);
4256 STRIP_NOPS (addr);
4258 /* If this is a readonly function pointer, extract its initial value. */
4259 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
4260 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
4261 && DECL_INITIAL (addr))
4262 addr = DECL_INITIAL (addr);
4264 /* If the address is just `&f' for some function `f', then we know
4265 that `f' is being called. */
4266 if (TREE_CODE (addr) == ADDR_EXPR
4267 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
4268 return TREE_OPERAND (addr, 0);
4270 /* We couldn't figure out what was being called. */
4271 return NULL_TREE;
4274 /* Print debugging information about the obstack O, named STR. */
4276 void
4277 print_obstack_statistics (str, o)
4278 const char *str;
4279 struct obstack *o;
4281 struct _obstack_chunk *chunk = o->chunk;
4282 int n_chunks = 1;
4283 int n_alloc = 0;
4285 n_alloc += o->next_free - chunk->contents;
4286 chunk = chunk->prev;
4287 while (chunk)
4289 n_chunks += 1;
4290 n_alloc += chunk->limit - &chunk->contents[0];
4291 chunk = chunk->prev;
4293 fprintf (stderr, "obstack %s: %u bytes, %d chunks\n",
4294 str, n_alloc, n_chunks);
4297 /* Print debugging information about tree nodes generated during the compile,
4298 and any language-specific information. */
4300 void
4301 dump_tree_statistics ()
4303 #ifdef GATHER_STATISTICS
4304 int i;
4305 int total_nodes, total_bytes;
4306 #endif
4308 fprintf (stderr, "\n??? tree nodes created\n\n");
4309 #ifdef GATHER_STATISTICS
4310 fprintf (stderr, "Kind Nodes Bytes\n");
4311 fprintf (stderr, "-------------------------------------\n");
4312 total_nodes = total_bytes = 0;
4313 for (i = 0; i < (int) all_kinds; i++)
4315 fprintf (stderr, "%-20s %6d %9d\n", tree_node_kind_names[i],
4316 tree_node_counts[i], tree_node_sizes[i]);
4317 total_nodes += tree_node_counts[i];
4318 total_bytes += tree_node_sizes[i];
4320 fprintf (stderr, "-------------------------------------\n");
4321 fprintf (stderr, "%-20s %6d %9d\n", "Total", total_nodes, total_bytes);
4322 fprintf (stderr, "-------------------------------------\n");
4323 #else
4324 fprintf (stderr, "(No per-node statistics)\n");
4325 #endif
4326 print_type_hash_statistics ();
4327 (*lang_hooks.print_statistics) ();
4330 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
4332 /* Appends 6 random characters to TEMPLATE to (hopefully) avoid name
4333 clashes in cases where we can't reliably choose a unique name.
4335 Derived from mkstemp.c in libiberty. */
4337 static void
4338 append_random_chars (template)
4339 char *template;
4341 static const char letters[]
4342 = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
4343 static unsigned HOST_WIDE_INT value;
4344 unsigned HOST_WIDE_INT v;
4346 if (! value)
4348 struct stat st;
4350 /* VALUE should be unique for each file and must not change between
4351 compiles since this can cause bootstrap comparison errors. */
4353 if (stat (main_input_filename, &st) < 0)
4355 /* This can happen when preprocessed text is shipped between
4356 machines, e.g. with bug reports. Assume that uniqueness
4357 isn't actually an issue. */
4358 value = 1;
4360 else
4362 /* In VMS, ino is an array, so we have to use both values. We
4363 conditionalize that. */
4364 #ifdef VMS
4365 #define INO_TO_INT(INO) ((int) (INO)[1] << 16 ^ (int) (INO)[2])
4366 #else
4367 #define INO_TO_INT(INO) INO
4368 #endif
4369 value = st.st_dev ^ INO_TO_INT (st.st_ino) ^ st.st_mtime;
4373 template += strlen (template);
4375 v = value;
4377 /* Fill in the random bits. */
4378 template[0] = letters[v % 62];
4379 v /= 62;
4380 template[1] = letters[v % 62];
4381 v /= 62;
4382 template[2] = letters[v % 62];
4383 v /= 62;
4384 template[3] = letters[v % 62];
4385 v /= 62;
4386 template[4] = letters[v % 62];
4387 v /= 62;
4388 template[5] = letters[v % 62];
4390 template[6] = '\0';
4393 /* P is a string that will be used in a symbol. Mask out any characters
4394 that are not valid in that context. */
4396 void
4397 clean_symbol_name (p)
4398 char *p;
4400 for (; *p; p++)
4401 if (! (ISALNUM (*p)
4402 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
4403 || *p == '$'
4404 #endif
4405 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
4406 || *p == '.'
4407 #endif
4409 *p = '_';
4412 /* Generate a name for a function unique to this translation unit.
4413 TYPE is some string to identify the purpose of this function to the
4414 linker or collect2. */
4416 tree
4417 get_file_function_name_long (type)
4418 const char *type;
4420 char *buf;
4421 const char *p;
4422 char *q;
4424 if (first_global_object_name)
4425 p = first_global_object_name;
4426 else
4428 /* We don't have anything that we know to be unique to this translation
4429 unit, so use what we do have and throw in some randomness. */
4431 const char *name = weak_global_object_name;
4432 const char *file = main_input_filename;
4434 if (! name)
4435 name = "";
4436 if (! file)
4437 file = input_filename;
4439 q = (char *) alloca (7 + strlen (name) + strlen (file));
4441 sprintf (q, "%s%s", name, file);
4442 append_random_chars (q);
4443 p = q;
4446 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
4447 + strlen (type));
4449 /* Set up the name of the file-level functions we may need.
4450 Use a global object (which is already required to be unique over
4451 the program) rather than the file name (which imposes extra
4452 constraints). */
4453 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
4455 /* Don't need to pull weird characters out of global names. */
4456 if (p != first_global_object_name)
4457 clean_symbol_name (buf + 11);
4459 return get_identifier (buf);
4462 /* If KIND=='I', return a suitable global initializer (constructor) name.
4463 If KIND=='D', return a suitable global clean-up (destructor) name. */
4465 tree
4466 get_file_function_name (kind)
4467 int kind;
4469 char p[2];
4471 p[0] = kind;
4472 p[1] = 0;
4474 return get_file_function_name_long (p);
4477 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4478 The result is placed in BUFFER (which has length BIT_SIZE),
4479 with one bit in each char ('\000' or '\001').
4481 If the constructor is constant, NULL_TREE is returned.
4482 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4484 tree
4485 get_set_constructor_bits (init, buffer, bit_size)
4486 tree init;
4487 char *buffer;
4488 int bit_size;
4490 int i;
4491 tree vals;
4492 HOST_WIDE_INT domain_min
4493 = tree_low_cst (TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (init))), 0);
4494 tree non_const_bits = NULL_TREE;
4496 for (i = 0; i < bit_size; i++)
4497 buffer[i] = 0;
4499 for (vals = TREE_OPERAND (init, 1);
4500 vals != NULL_TREE; vals = TREE_CHAIN (vals))
4502 if (!host_integerp (TREE_VALUE (vals), 0)
4503 || (TREE_PURPOSE (vals) != NULL_TREE
4504 && !host_integerp (TREE_PURPOSE (vals), 0)))
4505 non_const_bits
4506 = tree_cons (TREE_PURPOSE (vals), TREE_VALUE (vals), non_const_bits);
4507 else if (TREE_PURPOSE (vals) != NULL_TREE)
4509 /* Set a range of bits to ones. */
4510 HOST_WIDE_INT lo_index
4511 = tree_low_cst (TREE_PURPOSE (vals), 0) - domain_min;
4512 HOST_WIDE_INT hi_index
4513 = tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
4515 if (lo_index < 0 || lo_index >= bit_size
4516 || hi_index < 0 || hi_index >= bit_size)
4517 abort ();
4518 for (; lo_index <= hi_index; lo_index++)
4519 buffer[lo_index] = 1;
4521 else
4523 /* Set a single bit to one. */
4524 HOST_WIDE_INT index
4525 = tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
4526 if (index < 0 || index >= bit_size)
4528 error ("invalid initializer for bit string");
4529 return NULL_TREE;
4531 buffer[index] = 1;
4534 return non_const_bits;
4537 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4538 The result is placed in BUFFER (which is an array of bytes).
4539 If the constructor is constant, NULL_TREE is returned.
4540 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4542 tree
4543 get_set_constructor_bytes (init, buffer, wd_size)
4544 tree init;
4545 unsigned char *buffer;
4546 int wd_size;
4548 int i;
4549 int set_word_size = BITS_PER_UNIT;
4550 int bit_size = wd_size * set_word_size;
4551 int bit_pos = 0;
4552 unsigned char *bytep = buffer;
4553 char *bit_buffer = (char *) alloca (bit_size);
4554 tree non_const_bits = get_set_constructor_bits (init, bit_buffer, bit_size);
4556 for (i = 0; i < wd_size; i++)
4557 buffer[i] = 0;
4559 for (i = 0; i < bit_size; i++)
4561 if (bit_buffer[i])
4563 if (BYTES_BIG_ENDIAN)
4564 *bytep |= (1 << (set_word_size - 1 - bit_pos));
4565 else
4566 *bytep |= 1 << bit_pos;
4568 bit_pos++;
4569 if (bit_pos >= set_word_size)
4570 bit_pos = 0, bytep++;
4572 return non_const_bits;
4575 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
4576 /* Complain that the tree code of NODE does not match the expected CODE.
4577 FILE, LINE, and FUNCTION are of the caller. */
4579 void
4580 tree_check_failed (node, code, file, line, function)
4581 const tree node;
4582 enum tree_code code;
4583 const char *file;
4584 int line;
4585 const char *function;
4587 internal_error ("tree check: expected %s, have %s in %s, at %s:%d",
4588 tree_code_name[code], tree_code_name[TREE_CODE (node)],
4589 function, trim_filename (file), line);
4592 /* Similar to above, except that we check for a class of tree
4593 code, given in CL. */
4595 void
4596 tree_class_check_failed (node, cl, file, line, function)
4597 const tree node;
4598 int cl;
4599 const char *file;
4600 int line;
4601 const char *function;
4603 internal_error
4604 ("tree check: expected class '%c', have '%c' (%s) in %s, at %s:%d",
4605 cl, TREE_CODE_CLASS (TREE_CODE (node)),
4606 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
4609 #endif /* ENABLE_TREE_CHECKING */
4611 /* For a new vector type node T, build the information necessary for
4612 debugging output. */
4614 static void
4615 finish_vector_type (t)
4616 tree t;
4618 layout_type (t);
4621 tree index = build_int_2 (TYPE_VECTOR_SUBPARTS (t) - 1, 0);
4622 tree array = build_array_type (TREE_TYPE (t),
4623 build_index_type (index));
4624 tree rt = make_node (RECORD_TYPE);
4626 TYPE_FIELDS (rt) = build_decl (FIELD_DECL, get_identifier ("f"), array);
4627 DECL_CONTEXT (TYPE_FIELDS (rt)) = rt;
4628 layout_type (rt);
4629 TYPE_DEBUG_REPRESENTATION_TYPE (t) = rt;
4630 /* In dwarfout.c, type lookup uses TYPE_UID numbers. We want to output
4631 the representation type, and we want to find that die when looking up
4632 the vector type. This is most easily achieved by making the TYPE_UID
4633 numbers equal. */
4634 TYPE_UID (rt) = TYPE_UID (t);
4638 /* Create nodes for all integer types (and error_mark_node) using the sizes
4639 of C datatypes. The caller should call set_sizetype soon after calling
4640 this function to select one of the types as sizetype. */
4642 void
4643 build_common_tree_nodes (signed_char)
4644 int signed_char;
4646 error_mark_node = make_node (ERROR_MARK);
4647 TREE_TYPE (error_mark_node) = error_mark_node;
4649 initialize_sizetypes ();
4651 /* Define both `signed char' and `unsigned char'. */
4652 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
4653 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
4655 /* Define `char', which is like either `signed char' or `unsigned char'
4656 but not the same as either. */
4657 char_type_node
4658 = (signed_char
4659 ? make_signed_type (CHAR_TYPE_SIZE)
4660 : make_unsigned_type (CHAR_TYPE_SIZE));
4662 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
4663 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
4664 integer_type_node = make_signed_type (INT_TYPE_SIZE);
4665 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
4666 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
4667 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
4668 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
4669 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
4671 intQI_type_node = make_signed_type (GET_MODE_BITSIZE (QImode));
4672 intHI_type_node = make_signed_type (GET_MODE_BITSIZE (HImode));
4673 intSI_type_node = make_signed_type (GET_MODE_BITSIZE (SImode));
4674 intDI_type_node = make_signed_type (GET_MODE_BITSIZE (DImode));
4675 intTI_type_node = make_signed_type (GET_MODE_BITSIZE (TImode));
4677 unsigned_intQI_type_node = make_unsigned_type (GET_MODE_BITSIZE (QImode));
4678 unsigned_intHI_type_node = make_unsigned_type (GET_MODE_BITSIZE (HImode));
4679 unsigned_intSI_type_node = make_unsigned_type (GET_MODE_BITSIZE (SImode));
4680 unsigned_intDI_type_node = make_unsigned_type (GET_MODE_BITSIZE (DImode));
4681 unsigned_intTI_type_node = make_unsigned_type (GET_MODE_BITSIZE (TImode));
4684 /* Call this function after calling build_common_tree_nodes and set_sizetype.
4685 It will create several other common tree nodes. */
4687 void
4688 build_common_tree_nodes_2 (short_double)
4689 int short_double;
4691 /* Define these next since types below may used them. */
4692 integer_zero_node = build_int_2 (0, 0);
4693 integer_one_node = build_int_2 (1, 0);
4694 integer_minus_one_node = build_int_2 (-1, -1);
4696 size_zero_node = size_int (0);
4697 size_one_node = size_int (1);
4698 bitsize_zero_node = bitsize_int (0);
4699 bitsize_one_node = bitsize_int (1);
4700 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
4702 void_type_node = make_node (VOID_TYPE);
4703 layout_type (void_type_node);
4705 /* We are not going to have real types in C with less than byte alignment,
4706 so we might as well not have any types that claim to have it. */
4707 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
4708 TYPE_USER_ALIGN (void_type_node) = 0;
4710 null_pointer_node = build_int_2 (0, 0);
4711 TREE_TYPE (null_pointer_node) = build_pointer_type (void_type_node);
4712 layout_type (TREE_TYPE (null_pointer_node));
4714 ptr_type_node = build_pointer_type (void_type_node);
4715 const_ptr_type_node
4716 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
4718 float_type_node = make_node (REAL_TYPE);
4719 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
4720 layout_type (float_type_node);
4722 double_type_node = make_node (REAL_TYPE);
4723 if (short_double)
4724 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
4725 else
4726 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
4727 layout_type (double_type_node);
4729 long_double_type_node = make_node (REAL_TYPE);
4730 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
4731 layout_type (long_double_type_node);
4733 complex_integer_type_node = make_node (COMPLEX_TYPE);
4734 TREE_TYPE (complex_integer_type_node) = integer_type_node;
4735 layout_type (complex_integer_type_node);
4737 complex_float_type_node = make_node (COMPLEX_TYPE);
4738 TREE_TYPE (complex_float_type_node) = float_type_node;
4739 layout_type (complex_float_type_node);
4741 complex_double_type_node = make_node (COMPLEX_TYPE);
4742 TREE_TYPE (complex_double_type_node) = double_type_node;
4743 layout_type (complex_double_type_node);
4745 complex_long_double_type_node = make_node (COMPLEX_TYPE);
4746 TREE_TYPE (complex_long_double_type_node) = long_double_type_node;
4747 layout_type (complex_long_double_type_node);
4750 tree t;
4751 BUILD_VA_LIST_TYPE (t);
4753 /* Many back-ends define record types without seting TYPE_NAME.
4754 If we copied the record type here, we'd keep the original
4755 record type without a name. This breaks name mangling. So,
4756 don't copy record types and let c_common_nodes_and_builtins()
4757 declare the type to be __builtin_va_list. */
4758 if (TREE_CODE (t) != RECORD_TYPE)
4759 t = build_type_copy (t);
4761 va_list_type_node = t;
4764 unsigned_V4SI_type_node
4765 = make_vector (V4SImode, unsigned_intSI_type_node, 1);
4766 unsigned_V2SI_type_node
4767 = make_vector (V2SImode, unsigned_intSI_type_node, 1);
4768 unsigned_V2DI_type_node
4769 = make_vector (V2DImode, unsigned_intDI_type_node, 1);
4770 unsigned_V4HI_type_node
4771 = make_vector (V4HImode, unsigned_intHI_type_node, 1);
4772 unsigned_V8QI_type_node
4773 = make_vector (V8QImode, unsigned_intQI_type_node, 1);
4774 unsigned_V8HI_type_node
4775 = make_vector (V8HImode, unsigned_intHI_type_node, 1);
4776 unsigned_V16QI_type_node
4777 = make_vector (V16QImode, unsigned_intQI_type_node, 1);
4778 unsigned_V1DI_type_node
4779 = make_vector (V1DImode, unsigned_intDI_type_node, 1);
4781 V16SF_type_node = make_vector (V16SFmode, float_type_node, 0);
4782 V4SF_type_node = make_vector (V4SFmode, float_type_node, 0);
4783 V4SI_type_node = make_vector (V4SImode, intSI_type_node, 0);
4784 V2SI_type_node = make_vector (V2SImode, intSI_type_node, 0);
4785 V2DI_type_node = make_vector (V2DImode, intDI_type_node, 0);
4786 V4HI_type_node = make_vector (V4HImode, intHI_type_node, 0);
4787 V8QI_type_node = make_vector (V8QImode, intQI_type_node, 0);
4788 V8HI_type_node = make_vector (V8HImode, intHI_type_node, 0);
4789 V2SF_type_node = make_vector (V2SFmode, float_type_node, 0);
4790 V2DF_type_node = make_vector (V2DFmode, double_type_node, 0);
4791 V16QI_type_node = make_vector (V16QImode, intQI_type_node, 0);
4792 V1DI_type_node = make_vector (V1DImode, intDI_type_node, 0);
4795 /* Returns a vector tree node given a vector mode, the inner type, and
4796 the signness. */
4798 static tree
4799 make_vector (mode, innertype, unsignedp)
4800 enum machine_mode mode;
4801 tree innertype;
4802 int unsignedp;
4804 tree t;
4806 t = make_node (VECTOR_TYPE);
4807 TREE_TYPE (t) = innertype;
4808 TYPE_MODE (t) = mode;
4809 TREE_UNSIGNED (TREE_TYPE (t)) = unsignedp;
4810 finish_vector_type (t);
4812 return t;
4815 /* Given an initializer INIT, return TRUE if INIT is zero or some
4816 aggregate of zeros. Otherwise return FALSE. */
4818 bool
4819 initializer_zerop (init)
4820 tree init;
4822 STRIP_NOPS (init);
4824 switch (TREE_CODE (init))
4826 case INTEGER_CST:
4827 return integer_zerop (init);
4828 case REAL_CST:
4829 return real_zerop (init)
4830 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
4831 case COMPLEX_CST:
4832 return integer_zerop (init)
4833 || (real_zerop (init)
4834 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
4835 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
4836 case CONSTRUCTOR:
4838 if (AGGREGATE_TYPE_P (TREE_TYPE (init)))
4840 tree aggr_init = TREE_OPERAND (init, 1);
4842 while (aggr_init)
4844 if (! initializer_zerop (TREE_VALUE (aggr_init)))
4845 return false;
4846 aggr_init = TREE_CHAIN (aggr_init);
4848 return true;
4850 return false;
4852 default:
4853 return false;
4857 #include "gt-tree.h"