1 /* Subroutines used by or related to instruction recognition.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
25 #include "coretypes.h"
29 #include "insn-config.h"
30 #include "insn-attr.h"
31 #include "hard-reg-set.h"
34 #include "addresses.h"
40 #include "basic-block.h"
45 #include "tree-pass.h"
48 #ifndef STACK_PUSH_CODE
49 #ifdef STACK_GROWS_DOWNWARD
50 #define STACK_PUSH_CODE PRE_DEC
52 #define STACK_PUSH_CODE PRE_INC
56 #ifndef STACK_POP_CODE
57 #ifdef STACK_GROWS_DOWNWARD
58 #define STACK_POP_CODE POST_INC
60 #define STACK_POP_CODE POST_DEC
64 #ifndef HAVE_ATTR_enabled
66 get_attr_enabled (rtx insn ATTRIBUTE_UNUSED
)
72 static void validate_replace_rtx_1 (rtx
*, rtx
, rtx
, rtx
, bool);
73 static void validate_replace_src_1 (rtx
*, void *);
74 static rtx
split_insn (rtx
);
76 /* Nonzero means allow operands to be volatile.
77 This should be 0 if you are generating rtl, such as if you are calling
78 the functions in optabs.c and expmed.c (most of the time).
79 This should be 1 if all valid insns need to be recognized,
80 such as in reginfo.c and final.c and reload.c.
82 init_recog and init_recog_no_volatile are responsible for setting this. */
86 struct recog_data recog_data
;
88 /* Contains a vector of operand_alternative structures for every operand.
89 Set up by preprocess_constraints. */
90 struct operand_alternative recog_op_alt
[MAX_RECOG_OPERANDS
][MAX_RECOG_ALTERNATIVES
];
92 /* On return from `constrain_operands', indicate which alternative
95 int which_alternative
;
97 /* Nonzero after end of reload pass.
98 Set to 1 or 0 by toplev.c.
99 Controls the significance of (SUBREG (MEM)). */
101 int reload_completed
;
103 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
104 int epilogue_completed
;
106 /* Initialize data used by the function `recog'.
107 This must be called once in the compilation of a function
108 before any insn recognition may be done in the function. */
111 init_recog_no_volatile (void)
123 /* Check that X is an insn-body for an `asm' with operands
124 and that the operands mentioned in it are legitimate. */
127 check_asm_operands (rtx x
)
131 const char **constraints
;
134 /* Post-reload, be more strict with things. */
135 if (reload_completed
)
137 /* ??? Doh! We've not got the wrapping insn. Cook one up. */
138 extract_insn (make_insn_raw (x
));
139 constrain_operands (1);
140 return which_alternative
>= 0;
143 noperands
= asm_noperands (x
);
149 operands
= XALLOCAVEC (rtx
, noperands
);
150 constraints
= XALLOCAVEC (const char *, noperands
);
152 decode_asm_operands (x
, operands
, NULL
, constraints
, NULL
, NULL
);
154 for (i
= 0; i
< noperands
; i
++)
156 const char *c
= constraints
[i
];
159 if (! asm_operand_ok (operands
[i
], c
, constraints
))
166 /* Static data for the next two routines. */
168 typedef struct change_t
177 static change_t
*changes
;
178 static int changes_allocated
;
180 static int num_changes
= 0;
182 /* Validate a proposed change to OBJECT. LOC is the location in the rtl
183 at which NEW_RTX will be placed. If OBJECT is zero, no validation is done,
184 the change is simply made.
186 Two types of objects are supported: If OBJECT is a MEM, memory_address_p
187 will be called with the address and mode as parameters. If OBJECT is
188 an INSN, CALL_INSN, or JUMP_INSN, the insn will be re-recognized with
191 IN_GROUP is nonzero if this is part of a group of changes that must be
192 performed as a group. In that case, the changes will be stored. The
193 function `apply_change_group' will validate and apply the changes.
195 If IN_GROUP is zero, this is a single change. Try to recognize the insn
196 or validate the memory reference with the change applied. If the result
197 is not valid for the machine, suppress the change and return zero.
198 Otherwise, perform the change and return 1. */
201 validate_change_1 (rtx object
, rtx
*loc
, rtx new_rtx
, bool in_group
, bool unshare
)
205 if (old
== new_rtx
|| rtx_equal_p (old
, new_rtx
))
208 gcc_assert (in_group
!= 0 || num_changes
== 0);
212 /* Save the information describing this change. */
213 if (num_changes
>= changes_allocated
)
215 if (changes_allocated
== 0)
216 /* This value allows for repeated substitutions inside complex
217 indexed addresses, or changes in up to 5 insns. */
218 changes_allocated
= MAX_RECOG_OPERANDS
* 5;
220 changes_allocated
*= 2;
222 changes
= XRESIZEVEC (change_t
, changes
, changes_allocated
);
225 changes
[num_changes
].object
= object
;
226 changes
[num_changes
].loc
= loc
;
227 changes
[num_changes
].old
= old
;
228 changes
[num_changes
].unshare
= unshare
;
230 if (object
&& !MEM_P (object
))
232 /* Set INSN_CODE to force rerecognition of insn. Save old code in
234 changes
[num_changes
].old_code
= INSN_CODE (object
);
235 INSN_CODE (object
) = -1;
240 /* If we are making a group of changes, return 1. Otherwise, validate the
241 change group we made. */
246 return apply_change_group ();
249 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
253 validate_change (rtx object
, rtx
*loc
, rtx new_rtx
, bool in_group
)
255 return validate_change_1 (object
, loc
, new_rtx
, in_group
, false);
258 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
262 validate_unshare_change (rtx object
, rtx
*loc
, rtx new_rtx
, bool in_group
)
264 return validate_change_1 (object
, loc
, new_rtx
, in_group
, true);
268 /* Keep X canonicalized if some changes have made it non-canonical; only
269 modifies the operands of X, not (for example) its code. Simplifications
270 are not the job of this routine.
272 Return true if anything was changed. */
274 canonicalize_change_group (rtx insn
, rtx x
)
276 if (COMMUTATIVE_P (x
)
277 && swap_commutative_operands_p (XEXP (x
, 0), XEXP (x
, 1)))
279 /* Oops, the caller has made X no longer canonical.
280 Let's redo the changes in the correct order. */
281 rtx tem
= XEXP (x
, 0);
282 validate_change (insn
, &XEXP (x
, 0), XEXP (x
, 1), 1);
283 validate_change (insn
, &XEXP (x
, 1), tem
, 1);
291 /* This subroutine of apply_change_group verifies whether the changes to INSN
292 were valid; i.e. whether INSN can still be recognized. */
295 insn_invalid_p (rtx insn
)
297 rtx pat
= PATTERN (insn
);
298 int num_clobbers
= 0;
299 /* If we are before reload and the pattern is a SET, see if we can add
301 int icode
= recog (pat
, insn
,
302 (GET_CODE (pat
) == SET
303 && ! reload_completed
&& ! reload_in_progress
)
304 ? &num_clobbers
: 0);
305 int is_asm
= icode
< 0 && asm_noperands (PATTERN (insn
)) >= 0;
308 /* If this is an asm and the operand aren't legal, then fail. Likewise if
309 this is not an asm and the insn wasn't recognized. */
310 if ((is_asm
&& ! check_asm_operands (PATTERN (insn
)))
311 || (!is_asm
&& icode
< 0))
314 /* If we have to add CLOBBERs, fail if we have to add ones that reference
315 hard registers since our callers can't know if they are live or not.
316 Otherwise, add them. */
317 if (num_clobbers
> 0)
321 if (added_clobbers_hard_reg_p (icode
))
324 newpat
= gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (num_clobbers
+ 1));
325 XVECEXP (newpat
, 0, 0) = pat
;
326 add_clobbers (newpat
, icode
);
327 PATTERN (insn
) = pat
= newpat
;
330 /* After reload, verify that all constraints are satisfied. */
331 if (reload_completed
)
335 if (! constrain_operands (1))
339 INSN_CODE (insn
) = icode
;
343 /* Return number of changes made and not validated yet. */
345 num_changes_pending (void)
350 /* Tentatively apply the changes numbered NUM and up.
351 Return 1 if all changes are valid, zero otherwise. */
354 verify_changes (int num
)
357 rtx last_validated
= NULL_RTX
;
359 /* The changes have been applied and all INSN_CODEs have been reset to force
362 The changes are valid if we aren't given an object, or if we are
363 given a MEM and it still is a valid address, or if this is in insn
364 and it is recognized. In the latter case, if reload has completed,
365 we also require that the operands meet the constraints for
368 for (i
= num
; i
< num_changes
; i
++)
370 rtx object
= changes
[i
].object
;
372 /* If there is no object to test or if it is the same as the one we
373 already tested, ignore it. */
374 if (object
== 0 || object
== last_validated
)
379 if (! memory_address_p (GET_MODE (object
), XEXP (object
, 0)))
382 else if (REG_P (changes
[i
].old
)
383 && asm_noperands (PATTERN (object
)) > 0
384 && REG_EXPR (changes
[i
].old
) != NULL_TREE
385 && DECL_ASSEMBLER_NAME_SET_P (REG_EXPR (changes
[i
].old
))
386 && DECL_REGISTER (REG_EXPR (changes
[i
].old
)))
388 /* Don't allow changes of hard register operands to inline
389 assemblies if they have been defined as register asm ("x"). */
392 else if (insn_invalid_p (object
))
394 rtx pat
= PATTERN (object
);
396 /* Perhaps we couldn't recognize the insn because there were
397 extra CLOBBERs at the end. If so, try to re-recognize
398 without the last CLOBBER (later iterations will cause each of
399 them to be eliminated, in turn). But don't do this if we
400 have an ASM_OPERAND. */
401 if (GET_CODE (pat
) == PARALLEL
402 && GET_CODE (XVECEXP (pat
, 0, XVECLEN (pat
, 0) - 1)) == CLOBBER
403 && asm_noperands (PATTERN (object
)) < 0)
407 if (XVECLEN (pat
, 0) == 2)
408 newpat
= XVECEXP (pat
, 0, 0);
414 = gen_rtx_PARALLEL (VOIDmode
,
415 rtvec_alloc (XVECLEN (pat
, 0) - 1));
416 for (j
= 0; j
< XVECLEN (newpat
, 0); j
++)
417 XVECEXP (newpat
, 0, j
) = XVECEXP (pat
, 0, j
);
420 /* Add a new change to this group to replace the pattern
421 with this new pattern. Then consider this change
422 as having succeeded. The change we added will
423 cause the entire call to fail if things remain invalid.
425 Note that this can lose if a later change than the one
426 we are processing specified &XVECEXP (PATTERN (object), 0, X)
427 but this shouldn't occur. */
429 validate_change (object
, &PATTERN (object
), newpat
, 1);
432 else if (GET_CODE (pat
) == USE
|| GET_CODE (pat
) == CLOBBER
)
433 /* If this insn is a CLOBBER or USE, it is always valid, but is
439 last_validated
= object
;
442 return (i
== num_changes
);
445 /* A group of changes has previously been issued with validate_change
446 and verified with verify_changes. Call df_insn_rescan for each of
447 the insn changed and clear num_changes. */
450 confirm_change_group (void)
453 rtx last_object
= NULL
;
455 for (i
= 0; i
< num_changes
; i
++)
457 rtx object
= changes
[i
].object
;
459 if (changes
[i
].unshare
)
460 *changes
[i
].loc
= copy_rtx (*changes
[i
].loc
);
462 /* Avoid unnecessary rescanning when multiple changes to same instruction
466 if (object
!= last_object
&& last_object
&& INSN_P (last_object
))
467 df_insn_rescan (last_object
);
468 last_object
= object
;
472 if (last_object
&& INSN_P (last_object
))
473 df_insn_rescan (last_object
);
477 /* Apply a group of changes previously issued with `validate_change'.
478 If all changes are valid, call confirm_change_group and return 1,
479 otherwise, call cancel_changes and return 0. */
482 apply_change_group (void)
484 if (verify_changes (0))
486 confirm_change_group ();
497 /* Return the number of changes so far in the current group. */
500 num_validated_changes (void)
505 /* Retract the changes numbered NUM and up. */
508 cancel_changes (int num
)
512 /* Back out all the changes. Do this in the opposite order in which
514 for (i
= num_changes
- 1; i
>= num
; i
--)
516 *changes
[i
].loc
= changes
[i
].old
;
517 if (changes
[i
].object
&& !MEM_P (changes
[i
].object
))
518 INSN_CODE (changes
[i
].object
) = changes
[i
].old_code
;
523 /* A subroutine of validate_replace_rtx_1 that tries to simplify the resulting
527 simplify_while_replacing (rtx
*loc
, rtx to
, rtx object
,
528 enum machine_mode op0_mode
)
531 enum rtx_code code
= GET_CODE (x
);
534 if (SWAPPABLE_OPERANDS_P (x
)
535 && swap_commutative_operands_p (XEXP (x
, 0), XEXP (x
, 1)))
537 validate_unshare_change (object
, loc
,
538 gen_rtx_fmt_ee (COMMUTATIVE_ARITH_P (x
) ? code
539 : swap_condition (code
),
540 GET_MODE (x
), XEXP (x
, 1),
549 /* If we have a PLUS whose second operand is now a CONST_INT, use
550 simplify_gen_binary to try to simplify it.
551 ??? We may want later to remove this, once simplification is
552 separated from this function. */
553 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
&& XEXP (x
, 1) == to
)
554 validate_change (object
, loc
,
556 (PLUS
, GET_MODE (x
), XEXP (x
, 0), XEXP (x
, 1)), 1);
559 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
560 || GET_CODE (XEXP (x
, 1)) == CONST_DOUBLE
)
561 validate_change (object
, loc
,
563 (PLUS
, GET_MODE (x
), XEXP (x
, 0),
564 simplify_gen_unary (NEG
,
565 GET_MODE (x
), XEXP (x
, 1),
570 if (GET_MODE (XEXP (x
, 0)) == VOIDmode
)
572 new_rtx
= simplify_gen_unary (code
, GET_MODE (x
), XEXP (x
, 0),
574 /* If any of the above failed, substitute in something that
575 we know won't be recognized. */
577 new_rtx
= gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
578 validate_change (object
, loc
, new_rtx
, 1);
582 /* All subregs possible to simplify should be simplified. */
583 new_rtx
= simplify_subreg (GET_MODE (x
), SUBREG_REG (x
), op0_mode
,
586 /* Subregs of VOIDmode operands are incorrect. */
587 if (!new_rtx
&& GET_MODE (SUBREG_REG (x
)) == VOIDmode
)
588 new_rtx
= gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
590 validate_change (object
, loc
, new_rtx
, 1);
594 /* If we are replacing a register with memory, try to change the memory
595 to be the mode required for memory in extract operations (this isn't
596 likely to be an insertion operation; if it was, nothing bad will
597 happen, we might just fail in some cases). */
599 if (MEM_P (XEXP (x
, 0))
600 && GET_CODE (XEXP (x
, 1)) == CONST_INT
601 && GET_CODE (XEXP (x
, 2)) == CONST_INT
602 && !mode_dependent_address_p (XEXP (XEXP (x
, 0), 0))
603 && !MEM_VOLATILE_P (XEXP (x
, 0)))
605 enum machine_mode wanted_mode
= VOIDmode
;
606 enum machine_mode is_mode
= GET_MODE (XEXP (x
, 0));
607 int pos
= INTVAL (XEXP (x
, 2));
609 if (GET_CODE (x
) == ZERO_EXTRACT
)
611 enum machine_mode new_mode
612 = mode_for_extraction (EP_extzv
, 1);
613 if (new_mode
!= MAX_MACHINE_MODE
)
614 wanted_mode
= new_mode
;
616 else if (GET_CODE (x
) == SIGN_EXTRACT
)
618 enum machine_mode new_mode
619 = mode_for_extraction (EP_extv
, 1);
620 if (new_mode
!= MAX_MACHINE_MODE
)
621 wanted_mode
= new_mode
;
624 /* If we have a narrower mode, we can do something. */
625 if (wanted_mode
!= VOIDmode
626 && GET_MODE_SIZE (wanted_mode
) < GET_MODE_SIZE (is_mode
))
628 int offset
= pos
/ BITS_PER_UNIT
;
631 /* If the bytes and bits are counted differently, we
632 must adjust the offset. */
633 if (BYTES_BIG_ENDIAN
!= BITS_BIG_ENDIAN
)
635 (GET_MODE_SIZE (is_mode
) - GET_MODE_SIZE (wanted_mode
) -
638 pos
%= GET_MODE_BITSIZE (wanted_mode
);
640 newmem
= adjust_address_nv (XEXP (x
, 0), wanted_mode
, offset
);
642 validate_change (object
, &XEXP (x
, 2), GEN_INT (pos
), 1);
643 validate_change (object
, &XEXP (x
, 0), newmem
, 1);
654 /* Replace every occurrence of FROM in X with TO. Mark each change with
655 validate_change passing OBJECT. */
658 validate_replace_rtx_1 (rtx
*loc
, rtx from
, rtx to
, rtx object
,
665 enum machine_mode op0_mode
= VOIDmode
;
666 int prev_changes
= num_changes
;
672 fmt
= GET_RTX_FORMAT (code
);
674 op0_mode
= GET_MODE (XEXP (x
, 0));
676 /* X matches FROM if it is the same rtx or they are both referring to the
677 same register in the same mode. Avoid calling rtx_equal_p unless the
678 operands look similar. */
681 || (REG_P (x
) && REG_P (from
)
682 && GET_MODE (x
) == GET_MODE (from
)
683 && REGNO (x
) == REGNO (from
))
684 || (GET_CODE (x
) == GET_CODE (from
) && GET_MODE (x
) == GET_MODE (from
)
685 && rtx_equal_p (x
, from
)))
687 validate_unshare_change (object
, loc
, to
, 1);
691 /* Call ourself recursively to perform the replacements.
692 We must not replace inside already replaced expression, otherwise we
693 get infinite recursion for replacements like (reg X)->(subreg (reg X))
694 done by regmove, so we must special case shared ASM_OPERANDS. */
696 if (GET_CODE (x
) == PARALLEL
)
698 for (j
= XVECLEN (x
, 0) - 1; j
>= 0; j
--)
700 if (j
&& GET_CODE (XVECEXP (x
, 0, j
)) == SET
701 && GET_CODE (SET_SRC (XVECEXP (x
, 0, j
))) == ASM_OPERANDS
)
703 /* Verify that operands are really shared. */
704 gcc_assert (ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (x
, 0, 0)))
705 == ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP
707 validate_replace_rtx_1 (&SET_DEST (XVECEXP (x
, 0, j
)),
708 from
, to
, object
, simplify
);
711 validate_replace_rtx_1 (&XVECEXP (x
, 0, j
), from
, to
, object
,
716 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
719 validate_replace_rtx_1 (&XEXP (x
, i
), from
, to
, object
, simplify
);
720 else if (fmt
[i
] == 'E')
721 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
722 validate_replace_rtx_1 (&XVECEXP (x
, i
, j
), from
, to
, object
,
726 /* If we didn't substitute, there is nothing more to do. */
727 if (num_changes
== prev_changes
)
730 /* Allow substituted expression to have different mode. This is used by
731 regmove to change mode of pseudo register. */
732 if (fmt
[0] == 'e' && GET_MODE (XEXP (x
, 0)) != VOIDmode
)
733 op0_mode
= GET_MODE (XEXP (x
, 0));
735 /* Do changes needed to keep rtx consistent. Don't do any other
736 simplifications, as it is not our job. */
738 simplify_while_replacing (loc
, to
, object
, op0_mode
);
741 /* Try replacing every occurrence of FROM in INSN with TO. After all
742 changes have been made, validate by seeing if INSN is still valid. */
745 validate_replace_rtx (rtx from
, rtx to
, rtx insn
)
747 validate_replace_rtx_1 (&PATTERN (insn
), from
, to
, insn
, true);
748 return apply_change_group ();
751 /* Try replacing every occurrence of FROM in WHERE with TO. Assume that WHERE
752 is a part of INSN. After all changes have been made, validate by seeing if
754 validate_replace_rtx (from, to, insn) is equivalent to
755 validate_replace_rtx_part (from, to, &PATTERN (insn), insn). */
758 validate_replace_rtx_part (rtx from
, rtx to
, rtx
*where
, rtx insn
)
760 validate_replace_rtx_1 (where
, from
, to
, insn
, true);
761 return apply_change_group ();
764 /* Same as above, but do not simplify rtx afterwards. */
766 validate_replace_rtx_part_nosimplify (rtx from
, rtx to
, rtx
*where
,
769 validate_replace_rtx_1 (where
, from
, to
, insn
, false);
770 return apply_change_group ();
774 /* Try replacing every occurrence of FROM in INSN with TO. */
777 validate_replace_rtx_group (rtx from
, rtx to
, rtx insn
)
779 validate_replace_rtx_1 (&PATTERN (insn
), from
, to
, insn
, true);
782 /* Function called by note_uses to replace used subexpressions. */
783 struct validate_replace_src_data
785 rtx from
; /* Old RTX */
786 rtx to
; /* New RTX */
787 rtx insn
; /* Insn in which substitution is occurring. */
791 validate_replace_src_1 (rtx
*x
, void *data
)
793 struct validate_replace_src_data
*d
794 = (struct validate_replace_src_data
*) data
;
796 validate_replace_rtx_1 (x
, d
->from
, d
->to
, d
->insn
, true);
799 /* Try replacing every occurrence of FROM in INSN with TO, avoiding
803 validate_replace_src_group (rtx from
, rtx to
, rtx insn
)
805 struct validate_replace_src_data d
;
810 note_uses (&PATTERN (insn
), validate_replace_src_1
, &d
);
813 /* Try simplify INSN.
814 Invoke simplify_rtx () on every SET_SRC and SET_DEST inside the INSN's
815 pattern and return true if something was simplified. */
818 validate_simplify_insn (rtx insn
)
824 pat
= PATTERN (insn
);
826 if (GET_CODE (pat
) == SET
)
828 newpat
= simplify_rtx (SET_SRC (pat
));
829 if (newpat
&& !rtx_equal_p (SET_SRC (pat
), newpat
))
830 validate_change (insn
, &SET_SRC (pat
), newpat
, 1);
831 newpat
= simplify_rtx (SET_DEST (pat
));
832 if (newpat
&& !rtx_equal_p (SET_DEST (pat
), newpat
))
833 validate_change (insn
, &SET_DEST (pat
), newpat
, 1);
835 else if (GET_CODE (pat
) == PARALLEL
)
836 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
838 rtx s
= XVECEXP (pat
, 0, i
);
840 if (GET_CODE (XVECEXP (pat
, 0, i
)) == SET
)
842 newpat
= simplify_rtx (SET_SRC (s
));
843 if (newpat
&& !rtx_equal_p (SET_SRC (s
), newpat
))
844 validate_change (insn
, &SET_SRC (s
), newpat
, 1);
845 newpat
= simplify_rtx (SET_DEST (s
));
846 if (newpat
&& !rtx_equal_p (SET_DEST (s
), newpat
))
847 validate_change (insn
, &SET_DEST (s
), newpat
, 1);
850 return ((num_changes_pending () > 0) && (apply_change_group () > 0));
854 /* Return 1 if the insn using CC0 set by INSN does not contain
855 any ordered tests applied to the condition codes.
856 EQ and NE tests do not count. */
859 next_insn_tests_no_inequality (rtx insn
)
861 rtx next
= next_cc0_user (insn
);
863 /* If there is no next insn, we have to take the conservative choice. */
867 return (INSN_P (next
)
868 && ! inequality_comparisons_p (PATTERN (next
)));
872 /* Return 1 if OP is a valid general operand for machine mode MODE.
873 This is either a register reference, a memory reference,
874 or a constant. In the case of a memory reference, the address
875 is checked for general validity for the target machine.
877 Register and memory references must have mode MODE in order to be valid,
878 but some constants have no machine mode and are valid for any mode.
880 If MODE is VOIDmode, OP is checked for validity for whatever mode
883 The main use of this function is as a predicate in match_operand
884 expressions in the machine description.
886 For an explanation of this function's behavior for registers of
887 class NO_REGS, see the comment for `register_operand'. */
890 general_operand (rtx op
, enum machine_mode mode
)
892 enum rtx_code code
= GET_CODE (op
);
894 if (mode
== VOIDmode
)
895 mode
= GET_MODE (op
);
897 /* Don't accept CONST_INT or anything similar
898 if the caller wants something floating. */
899 if (GET_MODE (op
) == VOIDmode
&& mode
!= VOIDmode
900 && GET_MODE_CLASS (mode
) != MODE_INT
901 && GET_MODE_CLASS (mode
) != MODE_PARTIAL_INT
)
904 if (GET_CODE (op
) == CONST_INT
906 && trunc_int_for_mode (INTVAL (op
), mode
) != INTVAL (op
))
910 return ((GET_MODE (op
) == VOIDmode
|| GET_MODE (op
) == mode
912 && (! flag_pic
|| LEGITIMATE_PIC_OPERAND_P (op
))
913 && LEGITIMATE_CONSTANT_P (op
));
915 /* Except for certain constants with VOIDmode, already checked for,
916 OP's mode must match MODE if MODE specifies a mode. */
918 if (GET_MODE (op
) != mode
)
923 rtx sub
= SUBREG_REG (op
);
925 #ifdef INSN_SCHEDULING
926 /* On machines that have insn scheduling, we want all memory
927 reference to be explicit, so outlaw paradoxical SUBREGs.
928 However, we must allow them after reload so that they can
929 get cleaned up by cleanup_subreg_operands. */
930 if (!reload_completed
&& MEM_P (sub
)
931 && GET_MODE_SIZE (mode
) > GET_MODE_SIZE (GET_MODE (sub
)))
934 /* Avoid memories with nonzero SUBREG_BYTE, as offsetting the memory
935 may result in incorrect reference. We should simplify all valid
936 subregs of MEM anyway. But allow this after reload because we
937 might be called from cleanup_subreg_operands.
939 ??? This is a kludge. */
940 if (!reload_completed
&& SUBREG_BYTE (op
) != 0
944 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
945 create such rtl, and we must reject it. */
946 if (SCALAR_FLOAT_MODE_P (GET_MODE (op
))
947 && GET_MODE_SIZE (GET_MODE (op
)) > GET_MODE_SIZE (GET_MODE (sub
)))
951 code
= GET_CODE (op
);
955 /* A register whose class is NO_REGS is not a general operand. */
956 return (REGNO (op
) >= FIRST_PSEUDO_REGISTER
957 || REGNO_REG_CLASS (REGNO (op
)) != NO_REGS
);
961 rtx y
= XEXP (op
, 0);
963 if (! volatile_ok
&& MEM_VOLATILE_P (op
))
966 /* Use the mem's mode, since it will be reloaded thus. */
967 if (memory_address_p (GET_MODE (op
), y
))
974 /* Return 1 if OP is a valid memory address for a memory reference
977 The main use of this function is as a predicate in match_operand
978 expressions in the machine description. */
981 address_operand (rtx op
, enum machine_mode mode
)
983 return memory_address_p (mode
, op
);
986 /* Return 1 if OP is a register reference of mode MODE.
987 If MODE is VOIDmode, accept a register in any mode.
989 The main use of this function is as a predicate in match_operand
990 expressions in the machine description.
992 As a special exception, registers whose class is NO_REGS are
993 not accepted by `register_operand'. The reason for this change
994 is to allow the representation of special architecture artifacts
995 (such as a condition code register) without extending the rtl
996 definitions. Since registers of class NO_REGS cannot be used
997 as registers in any case where register classes are examined,
998 it is most consistent to keep this function from accepting them. */
1001 register_operand (rtx op
, enum machine_mode mode
)
1003 if (GET_MODE (op
) != mode
&& mode
!= VOIDmode
)
1006 if (GET_CODE (op
) == SUBREG
)
1008 rtx sub
= SUBREG_REG (op
);
1010 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1011 because it is guaranteed to be reloaded into one.
1012 Just make sure the MEM is valid in itself.
1013 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1014 but currently it does result from (SUBREG (REG)...) where the
1015 reg went on the stack.) */
1016 if (! reload_completed
&& MEM_P (sub
))
1017 return general_operand (op
, mode
);
1019 #ifdef CANNOT_CHANGE_MODE_CLASS
1021 && REGNO (sub
) < FIRST_PSEUDO_REGISTER
1022 && REG_CANNOT_CHANGE_MODE_P (REGNO (sub
), GET_MODE (sub
), mode
)
1023 && GET_MODE_CLASS (GET_MODE (sub
)) != MODE_COMPLEX_INT
1024 && GET_MODE_CLASS (GET_MODE (sub
)) != MODE_COMPLEX_FLOAT
)
1028 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
1029 create such rtl, and we must reject it. */
1030 if (SCALAR_FLOAT_MODE_P (GET_MODE (op
))
1031 && GET_MODE_SIZE (GET_MODE (op
)) > GET_MODE_SIZE (GET_MODE (sub
)))
1037 /* We don't consider registers whose class is NO_REGS
1038 to be a register operand. */
1040 && (REGNO (op
) >= FIRST_PSEUDO_REGISTER
1041 || REGNO_REG_CLASS (REGNO (op
)) != NO_REGS
));
1044 /* Return 1 for a register in Pmode; ignore the tested mode. */
1047 pmode_register_operand (rtx op
, enum machine_mode mode ATTRIBUTE_UNUSED
)
1049 return register_operand (op
, Pmode
);
1052 /* Return 1 if OP should match a MATCH_SCRATCH, i.e., if it is a SCRATCH
1053 or a hard register. */
1056 scratch_operand (rtx op
, enum machine_mode mode
)
1058 if (GET_MODE (op
) != mode
&& mode
!= VOIDmode
)
1061 return (GET_CODE (op
) == SCRATCH
1063 && REGNO (op
) < FIRST_PSEUDO_REGISTER
));
1066 /* Return 1 if OP is a valid immediate operand for mode MODE.
1068 The main use of this function is as a predicate in match_operand
1069 expressions in the machine description. */
1072 immediate_operand (rtx op
, enum machine_mode mode
)
1074 /* Don't accept CONST_INT or anything similar
1075 if the caller wants something floating. */
1076 if (GET_MODE (op
) == VOIDmode
&& mode
!= VOIDmode
1077 && GET_MODE_CLASS (mode
) != MODE_INT
1078 && GET_MODE_CLASS (mode
) != MODE_PARTIAL_INT
)
1081 if (GET_CODE (op
) == CONST_INT
1083 && trunc_int_for_mode (INTVAL (op
), mode
) != INTVAL (op
))
1086 return (CONSTANT_P (op
)
1087 && (GET_MODE (op
) == mode
|| mode
== VOIDmode
1088 || GET_MODE (op
) == VOIDmode
)
1089 && (! flag_pic
|| LEGITIMATE_PIC_OPERAND_P (op
))
1090 && LEGITIMATE_CONSTANT_P (op
));
1093 /* Returns 1 if OP is an operand that is a CONST_INT. */
1096 const_int_operand (rtx op
, enum machine_mode mode
)
1098 if (GET_CODE (op
) != CONST_INT
)
1101 if (mode
!= VOIDmode
1102 && trunc_int_for_mode (INTVAL (op
), mode
) != INTVAL (op
))
1108 /* Returns 1 if OP is an operand that is a constant integer or constant
1109 floating-point number. */
1112 const_double_operand (rtx op
, enum machine_mode mode
)
1114 /* Don't accept CONST_INT or anything similar
1115 if the caller wants something floating. */
1116 if (GET_MODE (op
) == VOIDmode
&& mode
!= VOIDmode
1117 && GET_MODE_CLASS (mode
) != MODE_INT
1118 && GET_MODE_CLASS (mode
) != MODE_PARTIAL_INT
)
1121 return ((GET_CODE (op
) == CONST_DOUBLE
|| GET_CODE (op
) == CONST_INT
)
1122 && (mode
== VOIDmode
|| GET_MODE (op
) == mode
1123 || GET_MODE (op
) == VOIDmode
));
1126 /* Return 1 if OP is a general operand that is not an immediate operand. */
1129 nonimmediate_operand (rtx op
, enum machine_mode mode
)
1131 return (general_operand (op
, mode
) && ! CONSTANT_P (op
));
1134 /* Return 1 if OP is a register reference or immediate value of mode MODE. */
1137 nonmemory_operand (rtx op
, enum machine_mode mode
)
1139 if (CONSTANT_P (op
))
1141 /* Don't accept CONST_INT or anything similar
1142 if the caller wants something floating. */
1143 if (GET_MODE (op
) == VOIDmode
&& mode
!= VOIDmode
1144 && GET_MODE_CLASS (mode
) != MODE_INT
1145 && GET_MODE_CLASS (mode
) != MODE_PARTIAL_INT
)
1148 if (GET_CODE (op
) == CONST_INT
1150 && trunc_int_for_mode (INTVAL (op
), mode
) != INTVAL (op
))
1153 return ((GET_MODE (op
) == VOIDmode
|| GET_MODE (op
) == mode
1154 || mode
== VOIDmode
)
1155 && (! flag_pic
|| LEGITIMATE_PIC_OPERAND_P (op
))
1156 && LEGITIMATE_CONSTANT_P (op
));
1159 if (GET_MODE (op
) != mode
&& mode
!= VOIDmode
)
1162 if (GET_CODE (op
) == SUBREG
)
1164 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1165 because it is guaranteed to be reloaded into one.
1166 Just make sure the MEM is valid in itself.
1167 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1168 but currently it does result from (SUBREG (REG)...) where the
1169 reg went on the stack.) */
1170 if (! reload_completed
&& MEM_P (SUBREG_REG (op
)))
1171 return general_operand (op
, mode
);
1172 op
= SUBREG_REG (op
);
1175 /* We don't consider registers whose class is NO_REGS
1176 to be a register operand. */
1178 && (REGNO (op
) >= FIRST_PSEUDO_REGISTER
1179 || REGNO_REG_CLASS (REGNO (op
)) != NO_REGS
));
1182 /* Return 1 if OP is a valid operand that stands for pushing a
1183 value of mode MODE onto the stack.
1185 The main use of this function is as a predicate in match_operand
1186 expressions in the machine description. */
1189 push_operand (rtx op
, enum machine_mode mode
)
1191 unsigned int rounded_size
= GET_MODE_SIZE (mode
);
1193 #ifdef PUSH_ROUNDING
1194 rounded_size
= PUSH_ROUNDING (rounded_size
);
1200 if (mode
!= VOIDmode
&& GET_MODE (op
) != mode
)
1205 if (rounded_size
== GET_MODE_SIZE (mode
))
1207 if (GET_CODE (op
) != STACK_PUSH_CODE
)
1212 if (GET_CODE (op
) != PRE_MODIFY
1213 || GET_CODE (XEXP (op
, 1)) != PLUS
1214 || XEXP (XEXP (op
, 1), 0) != XEXP (op
, 0)
1215 || GET_CODE (XEXP (XEXP (op
, 1), 1)) != CONST_INT
1216 #ifdef STACK_GROWS_DOWNWARD
1217 || INTVAL (XEXP (XEXP (op
, 1), 1)) != - (int) rounded_size
1219 || INTVAL (XEXP (XEXP (op
, 1), 1)) != (int) rounded_size
1225 return XEXP (op
, 0) == stack_pointer_rtx
;
1228 /* Return 1 if OP is a valid operand that stands for popping a
1229 value of mode MODE off the stack.
1231 The main use of this function is as a predicate in match_operand
1232 expressions in the machine description. */
1235 pop_operand (rtx op
, enum machine_mode mode
)
1240 if (mode
!= VOIDmode
&& GET_MODE (op
) != mode
)
1245 if (GET_CODE (op
) != STACK_POP_CODE
)
1248 return XEXP (op
, 0) == stack_pointer_rtx
;
1251 /* Return 1 if ADDR is a valid memory address for mode MODE. */
1254 memory_address_p (enum machine_mode mode ATTRIBUTE_UNUSED
, rtx addr
)
1256 #ifdef GO_IF_LEGITIMATE_ADDRESS
1257 GO_IF_LEGITIMATE_ADDRESS (mode
, addr
, win
);
1263 return targetm
.legitimate_address_p (mode
, addr
, 0);
1267 /* Return 1 if OP is a valid memory reference with mode MODE,
1268 including a valid address.
1270 The main use of this function is as a predicate in match_operand
1271 expressions in the machine description. */
1274 memory_operand (rtx op
, enum machine_mode mode
)
1278 if (! reload_completed
)
1279 /* Note that no SUBREG is a memory operand before end of reload pass,
1280 because (SUBREG (MEM...)) forces reloading into a register. */
1281 return MEM_P (op
) && general_operand (op
, mode
);
1283 if (mode
!= VOIDmode
&& GET_MODE (op
) != mode
)
1287 if (GET_CODE (inner
) == SUBREG
)
1288 inner
= SUBREG_REG (inner
);
1290 return (MEM_P (inner
) && general_operand (op
, mode
));
1293 /* Return 1 if OP is a valid indirect memory reference with mode MODE;
1294 that is, a memory reference whose address is a general_operand. */
1297 indirect_operand (rtx op
, enum machine_mode mode
)
1299 /* Before reload, a SUBREG isn't in memory (see memory_operand, above). */
1300 if (! reload_completed
1301 && GET_CODE (op
) == SUBREG
&& MEM_P (SUBREG_REG (op
)))
1303 int offset
= SUBREG_BYTE (op
);
1304 rtx inner
= SUBREG_REG (op
);
1306 if (mode
!= VOIDmode
&& GET_MODE (op
) != mode
)
1309 /* The only way that we can have a general_operand as the resulting
1310 address is if OFFSET is zero and the address already is an operand
1311 or if the address is (plus Y (const_int -OFFSET)) and Y is an
1314 return ((offset
== 0 && general_operand (XEXP (inner
, 0), Pmode
))
1315 || (GET_CODE (XEXP (inner
, 0)) == PLUS
1316 && GET_CODE (XEXP (XEXP (inner
, 0), 1)) == CONST_INT
1317 && INTVAL (XEXP (XEXP (inner
, 0), 1)) == -offset
1318 && general_operand (XEXP (XEXP (inner
, 0), 0), Pmode
)));
1322 && memory_operand (op
, mode
)
1323 && general_operand (XEXP (op
, 0), Pmode
));
1326 /* Return 1 if this is an ordered comparison operator (not including
1327 ORDERED and UNORDERED). */
1330 ordered_comparison_operator (rtx op
, enum machine_mode mode
)
1332 if (mode
!= VOIDmode
&& GET_MODE (op
) != mode
)
1334 switch (GET_CODE (op
))
1352 /* Return 1 if this is a comparison operator. This allows the use of
1353 MATCH_OPERATOR to recognize all the branch insns. */
1356 comparison_operator (rtx op
, enum machine_mode mode
)
1358 return ((mode
== VOIDmode
|| GET_MODE (op
) == mode
)
1359 && COMPARISON_P (op
));
1362 /* If BODY is an insn body that uses ASM_OPERANDS,
1363 return the number of operands (both input and output) in the insn.
1364 Otherwise return -1. */
1367 asm_noperands (const_rtx body
)
1369 switch (GET_CODE (body
))
1372 /* No output operands: return number of input operands. */
1373 return ASM_OPERANDS_INPUT_LENGTH (body
);
1375 if (GET_CODE (SET_SRC (body
)) == ASM_OPERANDS
)
1376 /* Single output operand: BODY is (set OUTPUT (asm_operands ...)). */
1377 return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (body
)) + 1;
1381 if (GET_CODE (XVECEXP (body
, 0, 0)) == SET
1382 && GET_CODE (SET_SRC (XVECEXP (body
, 0, 0))) == ASM_OPERANDS
)
1384 /* Multiple output operands, or 1 output plus some clobbers:
1385 body is [(set OUTPUT (asm_operands ...))... (clobber (reg ...))...]. */
1389 /* Count backwards through CLOBBERs to determine number of SETs. */
1390 for (i
= XVECLEN (body
, 0); i
> 0; i
--)
1392 if (GET_CODE (XVECEXP (body
, 0, i
- 1)) == SET
)
1394 if (GET_CODE (XVECEXP (body
, 0, i
- 1)) != CLOBBER
)
1398 /* N_SETS is now number of output operands. */
1401 /* Verify that all the SETs we have
1402 came from a single original asm_operands insn
1403 (so that invalid combinations are blocked). */
1404 for (i
= 0; i
< n_sets
; i
++)
1406 rtx elt
= XVECEXP (body
, 0, i
);
1407 if (GET_CODE (elt
) != SET
)
1409 if (GET_CODE (SET_SRC (elt
)) != ASM_OPERANDS
)
1411 /* If these ASM_OPERANDS rtx's came from different original insns
1412 then they aren't allowed together. */
1413 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (elt
))
1414 != ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (body
, 0, 0))))
1417 return (ASM_OPERANDS_INPUT_LENGTH (SET_SRC (XVECEXP (body
, 0, 0)))
1420 else if (GET_CODE (XVECEXP (body
, 0, 0)) == ASM_OPERANDS
)
1422 /* 0 outputs, but some clobbers:
1423 body is [(asm_operands ...) (clobber (reg ...))...]. */
1426 /* Make sure all the other parallel things really are clobbers. */
1427 for (i
= XVECLEN (body
, 0) - 1; i
> 0; i
--)
1428 if (GET_CODE (XVECEXP (body
, 0, i
)) != CLOBBER
)
1431 return ASM_OPERANDS_INPUT_LENGTH (XVECEXP (body
, 0, 0));
1440 /* Assuming BODY is an insn body that uses ASM_OPERANDS,
1441 copy its operands (both input and output) into the vector OPERANDS,
1442 the locations of the operands within the insn into the vector OPERAND_LOCS,
1443 and the constraints for the operands into CONSTRAINTS.
1444 Write the modes of the operands into MODES.
1445 Return the assembler-template.
1447 If MODES, OPERAND_LOCS, CONSTRAINTS or OPERANDS is 0,
1448 we don't store that info. */
1451 decode_asm_operands (rtx body
, rtx
*operands
, rtx
**operand_locs
,
1452 const char **constraints
, enum machine_mode
*modes
,
1459 if (GET_CODE (body
) == SET
&& GET_CODE (SET_SRC (body
)) == ASM_OPERANDS
)
1461 asmop
= SET_SRC (body
);
1462 /* Single output operand: BODY is (set OUTPUT (asm_operands ....)). */
1464 noperands
= ASM_OPERANDS_INPUT_LENGTH (asmop
) + 1;
1466 for (i
= 1; i
< noperands
; i
++)
1469 operand_locs
[i
] = &ASM_OPERANDS_INPUT (asmop
, i
- 1);
1471 operands
[i
] = ASM_OPERANDS_INPUT (asmop
, i
- 1);
1473 constraints
[i
] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop
, i
- 1);
1475 modes
[i
] = ASM_OPERANDS_INPUT_MODE (asmop
, i
- 1);
1478 /* The output is in the SET.
1479 Its constraint is in the ASM_OPERANDS itself. */
1481 operands
[0] = SET_DEST (body
);
1483 operand_locs
[0] = &SET_DEST (body
);
1485 constraints
[0] = ASM_OPERANDS_OUTPUT_CONSTRAINT (asmop
);
1487 modes
[0] = GET_MODE (SET_DEST (body
));
1489 else if (GET_CODE (body
) == ASM_OPERANDS
)
1492 /* No output operands: BODY is (asm_operands ....). */
1494 noperands
= ASM_OPERANDS_INPUT_LENGTH (asmop
);
1496 /* The input operands are found in the 1st element vector. */
1497 /* Constraints for inputs are in the 2nd element vector. */
1498 for (i
= 0; i
< noperands
; i
++)
1501 operand_locs
[i
] = &ASM_OPERANDS_INPUT (asmop
, i
);
1503 operands
[i
] = ASM_OPERANDS_INPUT (asmop
, i
);
1505 constraints
[i
] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop
, i
);
1507 modes
[i
] = ASM_OPERANDS_INPUT_MODE (asmop
, i
);
1510 else if (GET_CODE (body
) == PARALLEL
1511 && GET_CODE (XVECEXP (body
, 0, 0)) == SET
1512 && GET_CODE (SET_SRC (XVECEXP (body
, 0, 0))) == ASM_OPERANDS
)
1514 int nparallel
= XVECLEN (body
, 0); /* Includes CLOBBERs. */
1516 int nout
= 0; /* Does not include CLOBBERs. */
1518 asmop
= SET_SRC (XVECEXP (body
, 0, 0));
1519 nin
= ASM_OPERANDS_INPUT_LENGTH (asmop
);
1521 /* At least one output, plus some CLOBBERs. */
1523 /* The outputs are in the SETs.
1524 Their constraints are in the ASM_OPERANDS itself. */
1525 for (i
= 0; i
< nparallel
; i
++)
1527 if (GET_CODE (XVECEXP (body
, 0, i
)) == CLOBBER
)
1528 break; /* Past last SET */
1531 operands
[i
] = SET_DEST (XVECEXP (body
, 0, i
));
1533 operand_locs
[i
] = &SET_DEST (XVECEXP (body
, 0, i
));
1535 constraints
[i
] = XSTR (SET_SRC (XVECEXP (body
, 0, i
)), 1);
1537 modes
[i
] = GET_MODE (SET_DEST (XVECEXP (body
, 0, i
)));
1541 for (i
= 0; i
< nin
; i
++)
1544 operand_locs
[i
+ nout
] = &ASM_OPERANDS_INPUT (asmop
, i
);
1546 operands
[i
+ nout
] = ASM_OPERANDS_INPUT (asmop
, i
);
1548 constraints
[i
+ nout
] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop
, i
);
1550 modes
[i
+ nout
] = ASM_OPERANDS_INPUT_MODE (asmop
, i
);
1553 else if (GET_CODE (body
) == PARALLEL
1554 && GET_CODE (XVECEXP (body
, 0, 0)) == ASM_OPERANDS
)
1556 /* No outputs, but some CLOBBERs. */
1560 asmop
= XVECEXP (body
, 0, 0);
1561 nin
= ASM_OPERANDS_INPUT_LENGTH (asmop
);
1563 for (i
= 0; i
< nin
; i
++)
1566 operand_locs
[i
] = &ASM_OPERANDS_INPUT (asmop
, i
);
1568 operands
[i
] = ASM_OPERANDS_INPUT (asmop
, i
);
1570 constraints
[i
] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop
, i
);
1572 modes
[i
] = ASM_OPERANDS_INPUT_MODE (asmop
, i
);
1578 *loc
= ASM_OPERANDS_SOURCE_LOCATION (asmop
);
1580 return ASM_OPERANDS_TEMPLATE (asmop
);
1583 /* Check if an asm_operand matches its constraints.
1584 Return > 0 if ok, = 0 if bad, < 0 if inconclusive. */
1587 asm_operand_ok (rtx op
, const char *constraint
, const char **constraints
)
1591 /* Use constrain_operands after reload. */
1592 gcc_assert (!reload_completed
);
1596 char c
= *constraint
;
1613 case '0': case '1': case '2': case '3': case '4':
1614 case '5': case '6': case '7': case '8': case '9':
1615 /* If caller provided constraints pointer, look up
1616 the maching constraint. Otherwise, our caller should have
1617 given us the proper matching constraint, but we can't
1618 actually fail the check if they didn't. Indicate that
1619 results are inconclusive. */
1623 unsigned long match
;
1625 match
= strtoul (constraint
, &end
, 10);
1627 result
= asm_operand_ok (op
, constraints
[match
], NULL
);
1628 constraint
= (const char *) end
;
1634 while (ISDIGIT (*constraint
));
1641 if (address_operand (op
, VOIDmode
))
1645 case TARGET_MEM_CONSTRAINT
:
1646 case 'V': /* non-offsettable */
1647 if (memory_operand (op
, VOIDmode
))
1651 case 'o': /* offsettable */
1652 if (offsettable_nonstrict_memref_p (op
))
1657 /* ??? Before auto-inc-dec, auto inc/dec insns are not supposed to exist,
1658 excepting those that expand_call created. Further, on some
1659 machines which do not have generalized auto inc/dec, an inc/dec
1660 is not a memory_operand.
1662 Match any memory and hope things are resolved after reload. */
1666 || GET_CODE (XEXP (op
, 0)) == PRE_DEC
1667 || GET_CODE (XEXP (op
, 0)) == POST_DEC
))
1674 || GET_CODE (XEXP (op
, 0)) == PRE_INC
1675 || GET_CODE (XEXP (op
, 0)) == POST_INC
))
1681 if (GET_CODE (op
) == CONST_DOUBLE
1682 || (GET_CODE (op
) == CONST_VECTOR
1683 && GET_MODE_CLASS (GET_MODE (op
)) == MODE_VECTOR_FLOAT
))
1688 if (GET_CODE (op
) == CONST_DOUBLE
1689 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op
, 'G', constraint
))
1693 if (GET_CODE (op
) == CONST_DOUBLE
1694 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op
, 'H', constraint
))
1699 if (GET_CODE (op
) == CONST_INT
1700 || (GET_CODE (op
) == CONST_DOUBLE
1701 && GET_MODE (op
) == VOIDmode
))
1706 if (CONSTANT_P (op
) && (! flag_pic
|| LEGITIMATE_PIC_OPERAND_P (op
)))
1711 if (GET_CODE (op
) == CONST_INT
1712 || (GET_CODE (op
) == CONST_DOUBLE
1713 && GET_MODE (op
) == VOIDmode
))
1718 if (GET_CODE (op
) == CONST_INT
1719 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'I', constraint
))
1723 if (GET_CODE (op
) == CONST_INT
1724 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'J', constraint
))
1728 if (GET_CODE (op
) == CONST_INT
1729 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'K', constraint
))
1733 if (GET_CODE (op
) == CONST_INT
1734 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'L', constraint
))
1738 if (GET_CODE (op
) == CONST_INT
1739 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'M', constraint
))
1743 if (GET_CODE (op
) == CONST_INT
1744 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'N', constraint
))
1748 if (GET_CODE (op
) == CONST_INT
1749 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'O', constraint
))
1753 if (GET_CODE (op
) == CONST_INT
1754 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'P', constraint
))
1763 if (general_operand (op
, VOIDmode
))
1768 /* For all other letters, we first check for a register class,
1769 otherwise it is an EXTRA_CONSTRAINT. */
1770 if (REG_CLASS_FROM_CONSTRAINT (c
, constraint
) != NO_REGS
)
1773 if (GET_MODE (op
) == BLKmode
)
1775 if (register_operand (op
, VOIDmode
))
1778 #ifdef EXTRA_CONSTRAINT_STR
1779 else if (EXTRA_MEMORY_CONSTRAINT (c
, constraint
))
1780 /* Every memory operand can be reloaded to fit. */
1781 result
= result
|| memory_operand (op
, VOIDmode
);
1782 else if (EXTRA_ADDRESS_CONSTRAINT (c
, constraint
))
1783 /* Every address operand can be reloaded to fit. */
1784 result
= result
|| address_operand (op
, VOIDmode
);
1785 else if (EXTRA_CONSTRAINT_STR (op
, c
, constraint
))
1790 len
= CONSTRAINT_LEN (c
, constraint
);
1793 while (--len
&& *constraint
);
1801 /* Given an rtx *P, if it is a sum containing an integer constant term,
1802 return the location (type rtx *) of the pointer to that constant term.
1803 Otherwise, return a null pointer. */
1806 find_constant_term_loc (rtx
*p
)
1809 enum rtx_code code
= GET_CODE (*p
);
1811 /* If *P IS such a constant term, P is its location. */
1813 if (code
== CONST_INT
|| code
== SYMBOL_REF
|| code
== LABEL_REF
1817 /* Otherwise, if not a sum, it has no constant term. */
1819 if (GET_CODE (*p
) != PLUS
)
1822 /* If one of the summands is constant, return its location. */
1824 if (XEXP (*p
, 0) && CONSTANT_P (XEXP (*p
, 0))
1825 && XEXP (*p
, 1) && CONSTANT_P (XEXP (*p
, 1)))
1828 /* Otherwise, check each summand for containing a constant term. */
1830 if (XEXP (*p
, 0) != 0)
1832 tem
= find_constant_term_loc (&XEXP (*p
, 0));
1837 if (XEXP (*p
, 1) != 0)
1839 tem
= find_constant_term_loc (&XEXP (*p
, 1));
1847 /* Return 1 if OP is a memory reference
1848 whose address contains no side effects
1849 and remains valid after the addition
1850 of a positive integer less than the
1851 size of the object being referenced.
1853 We assume that the original address is valid and do not check it.
1855 This uses strict_memory_address_p as a subroutine, so
1856 don't use it before reload. */
1859 offsettable_memref_p (rtx op
)
1861 return ((MEM_P (op
))
1862 && offsettable_address_p (1, GET_MODE (op
), XEXP (op
, 0)));
1865 /* Similar, but don't require a strictly valid mem ref:
1866 consider pseudo-regs valid as index or base regs. */
1869 offsettable_nonstrict_memref_p (rtx op
)
1871 return ((MEM_P (op
))
1872 && offsettable_address_p (0, GET_MODE (op
), XEXP (op
, 0)));
1875 /* Return 1 if Y is a memory address which contains no side effects
1876 and would remain valid after the addition of a positive integer
1877 less than the size of that mode.
1879 We assume that the original address is valid and do not check it.
1880 We do check that it is valid for narrower modes.
1882 If STRICTP is nonzero, we require a strictly valid address,
1883 for the sake of use in reload.c. */
1886 offsettable_address_p (int strictp
, enum machine_mode mode
, rtx y
)
1888 enum rtx_code ycode
= GET_CODE (y
);
1892 int (*addressp
) (enum machine_mode
, rtx
) =
1893 (strictp
? strict_memory_address_p
: memory_address_p
);
1894 unsigned int mode_sz
= GET_MODE_SIZE (mode
);
1896 if (CONSTANT_ADDRESS_P (y
))
1899 /* Adjusting an offsettable address involves changing to a narrower mode.
1900 Make sure that's OK. */
1902 if (mode_dependent_address_p (y
))
1905 /* ??? How much offset does an offsettable BLKmode reference need?
1906 Clearly that depends on the situation in which it's being used.
1907 However, the current situation in which we test 0xffffffff is
1908 less than ideal. Caveat user. */
1910 mode_sz
= BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
;
1912 /* If the expression contains a constant term,
1913 see if it remains valid when max possible offset is added. */
1915 if ((ycode
== PLUS
) && (y2
= find_constant_term_loc (&y1
)))
1920 *y2
= plus_constant (*y2
, mode_sz
- 1);
1921 /* Use QImode because an odd displacement may be automatically invalid
1922 for any wider mode. But it should be valid for a single byte. */
1923 good
= (*addressp
) (QImode
, y
);
1925 /* In any case, restore old contents of memory. */
1930 if (GET_RTX_CLASS (ycode
) == RTX_AUTOINC
)
1933 /* The offset added here is chosen as the maximum offset that
1934 any instruction could need to add when operating on something
1935 of the specified mode. We assume that if Y and Y+c are
1936 valid addresses then so is Y+d for all 0<d<c. adjust_address will
1937 go inside a LO_SUM here, so we do so as well. */
1938 if (GET_CODE (y
) == LO_SUM
1940 && mode_sz
<= GET_MODE_ALIGNMENT (mode
) / BITS_PER_UNIT
)
1941 z
= gen_rtx_LO_SUM (GET_MODE (y
), XEXP (y
, 0),
1942 plus_constant (XEXP (y
, 1), mode_sz
- 1));
1944 z
= plus_constant (y
, mode_sz
- 1);
1946 /* Use QImode because an odd displacement may be automatically invalid
1947 for any wider mode. But it should be valid for a single byte. */
1948 return (*addressp
) (QImode
, z
);
1951 /* Return 1 if ADDR is an address-expression whose effect depends
1952 on the mode of the memory reference it is used in.
1954 Autoincrement addressing is a typical example of mode-dependence
1955 because the amount of the increment depends on the mode. */
1958 mode_dependent_address_p (rtx addr
)
1960 /* Auto-increment addressing with anything other than post_modify
1961 or pre_modify always introduces a mode dependency. Catch such
1962 cases now instead of deferring to the target. */
1963 if (GET_CODE (addr
) == PRE_INC
1964 || GET_CODE (addr
) == POST_INC
1965 || GET_CODE (addr
) == PRE_DEC
1966 || GET_CODE (addr
) == POST_DEC
)
1969 GO_IF_MODE_DEPENDENT_ADDRESS (addr
, win
);
1971 /* Label `win' might (not) be used via GO_IF_MODE_DEPENDENT_ADDRESS. */
1972 win
: ATTRIBUTE_UNUSED_LABEL
1976 /* Like extract_insn, but save insn extracted and don't extract again, when
1977 called again for the same insn expecting that recog_data still contain the
1978 valid information. This is used primary by gen_attr infrastructure that
1979 often does extract insn again and again. */
1981 extract_insn_cached (rtx insn
)
1983 if (recog_data
.insn
== insn
&& INSN_CODE (insn
) >= 0)
1985 extract_insn (insn
);
1986 recog_data
.insn
= insn
;
1989 /* Do cached extract_insn, constrain_operands and complain about failures.
1990 Used by insn_attrtab. */
1992 extract_constrain_insn_cached (rtx insn
)
1994 extract_insn_cached (insn
);
1995 if (which_alternative
== -1
1996 && !constrain_operands (reload_completed
))
1997 fatal_insn_not_found (insn
);
2000 /* Do cached constrain_operands and complain about failures. */
2002 constrain_operands_cached (int strict
)
2004 if (which_alternative
== -1)
2005 return constrain_operands (strict
);
2010 /* Analyze INSN and fill in recog_data. */
2013 extract_insn (rtx insn
)
2018 rtx body
= PATTERN (insn
);
2020 recog_data
.n_operands
= 0;
2021 recog_data
.n_alternatives
= 0;
2022 recog_data
.n_dups
= 0;
2024 switch (GET_CODE (body
))
2034 if (GET_CODE (SET_SRC (body
)) == ASM_OPERANDS
)
2039 if ((GET_CODE (XVECEXP (body
, 0, 0)) == SET
2040 && GET_CODE (SET_SRC (XVECEXP (body
, 0, 0))) == ASM_OPERANDS
)
2041 || GET_CODE (XVECEXP (body
, 0, 0)) == ASM_OPERANDS
)
2047 recog_data
.n_operands
= noperands
= asm_noperands (body
);
2050 /* This insn is an `asm' with operands. */
2052 /* expand_asm_operands makes sure there aren't too many operands. */
2053 gcc_assert (noperands
<= MAX_RECOG_OPERANDS
);
2055 /* Now get the operand values and constraints out of the insn. */
2056 decode_asm_operands (body
, recog_data
.operand
,
2057 recog_data
.operand_loc
,
2058 recog_data
.constraints
,
2059 recog_data
.operand_mode
, NULL
);
2062 const char *p
= recog_data
.constraints
[0];
2063 recog_data
.n_alternatives
= 1;
2065 recog_data
.n_alternatives
+= (*p
++ == ',');
2069 fatal_insn_not_found (insn
);
2073 /* Ordinary insn: recognize it, get the operands via insn_extract
2074 and get the constraints. */
2076 icode
= recog_memoized (insn
);
2078 fatal_insn_not_found (insn
);
2080 recog_data
.n_operands
= noperands
= insn_data
[icode
].n_operands
;
2081 recog_data
.n_alternatives
= insn_data
[icode
].n_alternatives
;
2082 recog_data
.n_dups
= insn_data
[icode
].n_dups
;
2084 insn_extract (insn
);
2086 for (i
= 0; i
< noperands
; i
++)
2088 recog_data
.constraints
[i
] = insn_data
[icode
].operand
[i
].constraint
;
2089 recog_data
.operand_mode
[i
] = insn_data
[icode
].operand
[i
].mode
;
2090 /* VOIDmode match_operands gets mode from their real operand. */
2091 if (recog_data
.operand_mode
[i
] == VOIDmode
)
2092 recog_data
.operand_mode
[i
] = GET_MODE (recog_data
.operand
[i
]);
2095 for (i
= 0; i
< noperands
; i
++)
2096 recog_data
.operand_type
[i
]
2097 = (recog_data
.constraints
[i
][0] == '=' ? OP_OUT
2098 : recog_data
.constraints
[i
][0] == '+' ? OP_INOUT
2101 gcc_assert (recog_data
.n_alternatives
<= MAX_RECOG_ALTERNATIVES
);
2103 if (INSN_CODE (insn
) < 0)
2104 for (i
= 0; i
< recog_data
.n_alternatives
; i
++)
2105 recog_data
.alternative_enabled_p
[i
] = true;
2108 recog_data
.insn
= insn
;
2109 for (i
= 0; i
< recog_data
.n_alternatives
; i
++)
2111 which_alternative
= i
;
2112 recog_data
.alternative_enabled_p
[i
] = get_attr_enabled (insn
);
2116 recog_data
.insn
= NULL
;
2117 which_alternative
= -1;
2120 /* After calling extract_insn, you can use this function to extract some
2121 information from the constraint strings into a more usable form.
2122 The collected data is stored in recog_op_alt. */
2124 preprocess_constraints (void)
2128 for (i
= 0; i
< recog_data
.n_operands
; i
++)
2129 memset (recog_op_alt
[i
], 0, (recog_data
.n_alternatives
2130 * sizeof (struct operand_alternative
)));
2132 for (i
= 0; i
< recog_data
.n_operands
; i
++)
2135 struct operand_alternative
*op_alt
;
2136 const char *p
= recog_data
.constraints
[i
];
2138 op_alt
= recog_op_alt
[i
];
2140 for (j
= 0; j
< recog_data
.n_alternatives
; j
++)
2142 op_alt
[j
].cl
= NO_REGS
;
2143 op_alt
[j
].constraint
= p
;
2144 op_alt
[j
].matches
= -1;
2145 op_alt
[j
].matched
= -1;
2147 if (!recog_data
.alternative_enabled_p
[j
])
2149 p
= skip_alternative (p
);
2153 if (*p
== '\0' || *p
== ',')
2155 op_alt
[j
].anything_ok
= 1;
2165 while (c
!= ',' && c
!= '\0');
2166 if (c
== ',' || c
== '\0')
2174 case '=': case '+': case '*': case '%':
2175 case 'E': case 'F': case 'G': case 'H':
2176 case 's': case 'i': case 'n':
2177 case 'I': case 'J': case 'K': case 'L':
2178 case 'M': case 'N': case 'O': case 'P':
2179 /* These don't say anything we care about. */
2183 op_alt
[j
].reject
+= 6;
2186 op_alt
[j
].reject
+= 600;
2189 op_alt
[j
].earlyclobber
= 1;
2192 case '0': case '1': case '2': case '3': case '4':
2193 case '5': case '6': case '7': case '8': case '9':
2196 op_alt
[j
].matches
= strtoul (p
, &end
, 10);
2197 recog_op_alt
[op_alt
[j
].matches
][j
].matched
= i
;
2202 case TARGET_MEM_CONSTRAINT
:
2203 op_alt
[j
].memory_ok
= 1;
2206 op_alt
[j
].decmem_ok
= 1;
2209 op_alt
[j
].incmem_ok
= 1;
2212 op_alt
[j
].nonoffmem_ok
= 1;
2215 op_alt
[j
].offmem_ok
= 1;
2218 op_alt
[j
].anything_ok
= 1;
2222 op_alt
[j
].is_address
= 1;
2223 op_alt
[j
].cl
= reg_class_subunion
[(int) op_alt
[j
].cl
]
2224 [(int) base_reg_class (VOIDmode
, ADDRESS
, SCRATCH
)];
2230 reg_class_subunion
[(int) op_alt
[j
].cl
][(int) GENERAL_REGS
];
2234 if (EXTRA_MEMORY_CONSTRAINT (c
, p
))
2236 op_alt
[j
].memory_ok
= 1;
2239 if (EXTRA_ADDRESS_CONSTRAINT (c
, p
))
2241 op_alt
[j
].is_address
= 1;
2243 = (reg_class_subunion
2244 [(int) op_alt
[j
].cl
]
2245 [(int) base_reg_class (VOIDmode
, ADDRESS
,
2251 = (reg_class_subunion
2252 [(int) op_alt
[j
].cl
]
2253 [(int) REG_CLASS_FROM_CONSTRAINT ((unsigned char) c
, p
)]);
2256 p
+= CONSTRAINT_LEN (c
, p
);
2262 /* Check the operands of an insn against the insn's operand constraints
2263 and return 1 if they are valid.
2264 The information about the insn's operands, constraints, operand modes
2265 etc. is obtained from the global variables set up by extract_insn.
2267 WHICH_ALTERNATIVE is set to a number which indicates which
2268 alternative of constraints was matched: 0 for the first alternative,
2269 1 for the next, etc.
2271 In addition, when two operands are required to match
2272 and it happens that the output operand is (reg) while the
2273 input operand is --(reg) or ++(reg) (a pre-inc or pre-dec),
2274 make the output operand look like the input.
2275 This is because the output operand is the one the template will print.
2277 This is used in final, just before printing the assembler code and by
2278 the routines that determine an insn's attribute.
2280 If STRICT is a positive nonzero value, it means that we have been
2281 called after reload has been completed. In that case, we must
2282 do all checks strictly. If it is zero, it means that we have been called
2283 before reload has completed. In that case, we first try to see if we can
2284 find an alternative that matches strictly. If not, we try again, this
2285 time assuming that reload will fix up the insn. This provides a "best
2286 guess" for the alternative and is used to compute attributes of insns prior
2287 to reload. A negative value of STRICT is used for this internal call. */
2295 constrain_operands (int strict
)
2297 const char *constraints
[MAX_RECOG_OPERANDS
];
2298 int matching_operands
[MAX_RECOG_OPERANDS
];
2299 int earlyclobber
[MAX_RECOG_OPERANDS
];
2302 struct funny_match funny_match
[MAX_RECOG_OPERANDS
];
2303 int funny_match_index
;
2305 which_alternative
= 0;
2306 if (recog_data
.n_operands
== 0 || recog_data
.n_alternatives
== 0)
2309 for (c
= 0; c
< recog_data
.n_operands
; c
++)
2311 constraints
[c
] = recog_data
.constraints
[c
];
2312 matching_operands
[c
] = -1;
2317 int seen_earlyclobber_at
= -1;
2320 funny_match_index
= 0;
2322 if (!recog_data
.alternative_enabled_p
[which_alternative
])
2326 for (i
= 0; i
< recog_data
.n_operands
; i
++)
2327 constraints
[i
] = skip_alternative (constraints
[i
]);
2329 which_alternative
++;
2333 for (opno
= 0; opno
< recog_data
.n_operands
; opno
++)
2335 rtx op
= recog_data
.operand
[opno
];
2336 enum machine_mode mode
= GET_MODE (op
);
2337 const char *p
= constraints
[opno
];
2343 earlyclobber
[opno
] = 0;
2345 /* A unary operator may be accepted by the predicate, but it
2346 is irrelevant for matching constraints. */
2350 if (GET_CODE (op
) == SUBREG
)
2352 if (REG_P (SUBREG_REG (op
))
2353 && REGNO (SUBREG_REG (op
)) < FIRST_PSEUDO_REGISTER
)
2354 offset
= subreg_regno_offset (REGNO (SUBREG_REG (op
)),
2355 GET_MODE (SUBREG_REG (op
)),
2358 op
= SUBREG_REG (op
);
2361 /* An empty constraint or empty alternative
2362 allows anything which matched the pattern. */
2363 if (*p
== 0 || *p
== ',')
2367 switch (c
= *p
, len
= CONSTRAINT_LEN (c
, p
), c
)
2376 case '?': case '!': case '*': case '%':
2381 /* Ignore rest of this alternative as far as
2382 constraint checking is concerned. */
2385 while (*p
&& *p
!= ',');
2390 earlyclobber
[opno
] = 1;
2391 if (seen_earlyclobber_at
< 0)
2392 seen_earlyclobber_at
= opno
;
2395 case '0': case '1': case '2': case '3': case '4':
2396 case '5': case '6': case '7': case '8': case '9':
2398 /* This operand must be the same as a previous one.
2399 This kind of constraint is used for instructions such
2400 as add when they take only two operands.
2402 Note that the lower-numbered operand is passed first.
2404 If we are not testing strictly, assume that this
2405 constraint will be satisfied. */
2410 match
= strtoul (p
, &end
, 10);
2417 rtx op1
= recog_data
.operand
[match
];
2418 rtx op2
= recog_data
.operand
[opno
];
2420 /* A unary operator may be accepted by the predicate,
2421 but it is irrelevant for matching constraints. */
2423 op1
= XEXP (op1
, 0);
2425 op2
= XEXP (op2
, 0);
2427 val
= operands_match_p (op1
, op2
);
2430 matching_operands
[opno
] = match
;
2431 matching_operands
[match
] = opno
;
2436 /* If output is *x and input is *--x, arrange later
2437 to change the output to *--x as well, since the
2438 output op is the one that will be printed. */
2439 if (val
== 2 && strict
> 0)
2441 funny_match
[funny_match_index
].this_op
= opno
;
2442 funny_match
[funny_match_index
++].other
= match
;
2449 /* p is used for address_operands. When we are called by
2450 gen_reload, no one will have checked that the address is
2451 strictly valid, i.e., that all pseudos requiring hard regs
2452 have gotten them. */
2454 || (strict_memory_address_p (recog_data
.operand_mode
[opno
],
2459 /* No need to check general_operand again;
2460 it was done in insn-recog.c. Well, except that reload
2461 doesn't check the validity of its replacements, but
2462 that should only matter when there's a bug. */
2464 /* Anything goes unless it is a REG and really has a hard reg
2465 but the hard reg is not in the class GENERAL_REGS. */
2469 || GENERAL_REGS
== ALL_REGS
2470 || (reload_in_progress
2471 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
)
2472 || reg_fits_class_p (op
, GENERAL_REGS
, offset
, mode
))
2475 else if (strict
< 0 || general_operand (op
, mode
))
2480 /* This is used for a MATCH_SCRATCH in the cases when
2481 we don't actually need anything. So anything goes
2486 case TARGET_MEM_CONSTRAINT
:
2487 /* Memory operands must be valid, to the extent
2488 required by STRICT. */
2492 && !strict_memory_address_p (GET_MODE (op
),
2496 && !memory_address_p (GET_MODE (op
), XEXP (op
, 0)))
2500 /* Before reload, accept what reload can turn into mem. */
2501 else if (strict
< 0 && CONSTANT_P (op
))
2503 /* During reload, accept a pseudo */
2504 else if (reload_in_progress
&& REG_P (op
)
2505 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
)
2511 && (GET_CODE (XEXP (op
, 0)) == PRE_DEC
2512 || GET_CODE (XEXP (op
, 0)) == POST_DEC
))
2518 && (GET_CODE (XEXP (op
, 0)) == PRE_INC
2519 || GET_CODE (XEXP (op
, 0)) == POST_INC
))
2525 if (GET_CODE (op
) == CONST_DOUBLE
2526 || (GET_CODE (op
) == CONST_VECTOR
2527 && GET_MODE_CLASS (GET_MODE (op
)) == MODE_VECTOR_FLOAT
))
2533 if (GET_CODE (op
) == CONST_DOUBLE
2534 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op
, c
, p
))
2539 if (GET_CODE (op
) == CONST_INT
2540 || (GET_CODE (op
) == CONST_DOUBLE
2541 && GET_MODE (op
) == VOIDmode
))
2544 if (CONSTANT_P (op
))
2549 if (GET_CODE (op
) == CONST_INT
2550 || (GET_CODE (op
) == CONST_DOUBLE
2551 && GET_MODE (op
) == VOIDmode
))
2563 if (GET_CODE (op
) == CONST_INT
2564 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), c
, p
))
2570 && ((strict
> 0 && ! offsettable_memref_p (op
))
2572 && !(CONSTANT_P (op
) || MEM_P (op
)))
2573 || (reload_in_progress
2575 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
))))
2580 if ((strict
> 0 && offsettable_memref_p (op
))
2581 || (strict
== 0 && offsettable_nonstrict_memref_p (op
))
2582 /* Before reload, accept what reload can handle. */
2584 && (CONSTANT_P (op
) || MEM_P (op
)))
2585 /* During reload, accept a pseudo */
2586 || (reload_in_progress
&& REG_P (op
)
2587 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
))
2596 ? GENERAL_REGS
: REG_CLASS_FROM_CONSTRAINT (c
, p
));
2602 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
)
2603 || (strict
== 0 && GET_CODE (op
) == SCRATCH
)
2605 && reg_fits_class_p (op
, cl
, offset
, mode
)))
2608 #ifdef EXTRA_CONSTRAINT_STR
2609 else if (EXTRA_CONSTRAINT_STR (op
, c
, p
))
2612 else if (EXTRA_MEMORY_CONSTRAINT (c
, p
)
2613 /* Every memory operand can be reloaded to fit. */
2614 && ((strict
< 0 && MEM_P (op
))
2615 /* Before reload, accept what reload can turn
2617 || (strict
< 0 && CONSTANT_P (op
))
2618 /* During reload, accept a pseudo */
2619 || (reload_in_progress
&& REG_P (op
)
2620 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
)))
2622 else if (EXTRA_ADDRESS_CONSTRAINT (c
, p
)
2623 /* Every address operand can be reloaded to fit. */
2630 while (p
+= len
, c
);
2632 constraints
[opno
] = p
;
2633 /* If this operand did not win somehow,
2634 this alternative loses. */
2638 /* This alternative won; the operands are ok.
2639 Change whichever operands this alternative says to change. */
2644 /* See if any earlyclobber operand conflicts with some other
2647 if (strict
> 0 && seen_earlyclobber_at
>= 0)
2648 for (eopno
= seen_earlyclobber_at
;
2649 eopno
< recog_data
.n_operands
;
2651 /* Ignore earlyclobber operands now in memory,
2652 because we would often report failure when we have
2653 two memory operands, one of which was formerly a REG. */
2654 if (earlyclobber
[eopno
]
2655 && REG_P (recog_data
.operand
[eopno
]))
2656 for (opno
= 0; opno
< recog_data
.n_operands
; opno
++)
2657 if ((MEM_P (recog_data
.operand
[opno
])
2658 || recog_data
.operand_type
[opno
] != OP_OUT
)
2660 /* Ignore things like match_operator operands. */
2661 && *recog_data
.constraints
[opno
] != 0
2662 && ! (matching_operands
[opno
] == eopno
2663 && operands_match_p (recog_data
.operand
[opno
],
2664 recog_data
.operand
[eopno
]))
2665 && ! safe_from_earlyclobber (recog_data
.operand
[opno
],
2666 recog_data
.operand
[eopno
]))
2671 while (--funny_match_index
>= 0)
2673 recog_data
.operand
[funny_match
[funny_match_index
].other
]
2674 = recog_data
.operand
[funny_match
[funny_match_index
].this_op
];
2681 which_alternative
++;
2683 while (which_alternative
< recog_data
.n_alternatives
);
2685 which_alternative
= -1;
2686 /* If we are about to reject this, but we are not to test strictly,
2687 try a very loose test. Only return failure if it fails also. */
2689 return constrain_operands (-1);
2694 /* Return 1 iff OPERAND (assumed to be a REG rtx)
2695 is a hard reg in class CLASS when its regno is offset by OFFSET
2696 and changed to mode MODE.
2697 If REG occupies multiple hard regs, all of them must be in CLASS. */
2700 reg_fits_class_p (rtx operand
, enum reg_class cl
, int offset
,
2701 enum machine_mode mode
)
2703 int regno
= REGNO (operand
);
2708 return (regno
< FIRST_PSEUDO_REGISTER
2709 && in_hard_reg_set_p (reg_class_contents
[(int) cl
],
2710 mode
, regno
+ offset
));
2713 /* Split single instruction. Helper function for split_all_insns and
2714 split_all_insns_noflow. Return last insn in the sequence if successful,
2715 or NULL if unsuccessful. */
2718 split_insn (rtx insn
)
2720 /* Split insns here to get max fine-grain parallelism. */
2721 rtx first
= PREV_INSN (insn
);
2722 rtx last
= try_split (PATTERN (insn
), insn
, 1);
2723 rtx insn_set
, last_set
, note
;
2728 /* If the original instruction was a single set that was known to be
2729 equivalent to a constant, see if we can say the same about the last
2730 instruction in the split sequence. The two instructions must set
2731 the same destination. */
2732 insn_set
= single_set (insn
);
2735 last_set
= single_set (last
);
2736 if (last_set
&& rtx_equal_p (SET_DEST (last_set
), SET_DEST (insn_set
)))
2738 note
= find_reg_equal_equiv_note (insn
);
2739 if (note
&& CONSTANT_P (XEXP (note
, 0)))
2740 set_unique_reg_note (last
, REG_EQUAL
, XEXP (note
, 0));
2741 else if (CONSTANT_P (SET_SRC (insn_set
)))
2742 set_unique_reg_note (last
, REG_EQUAL
, SET_SRC (insn_set
));
2746 /* try_split returns the NOTE that INSN became. */
2747 SET_INSN_DELETED (insn
);
2749 /* ??? Coddle to md files that generate subregs in post-reload
2750 splitters instead of computing the proper hard register. */
2751 if (reload_completed
&& first
!= last
)
2753 first
= NEXT_INSN (first
);
2757 cleanup_subreg_operands (first
);
2760 first
= NEXT_INSN (first
);
2767 /* Split all insns in the function. If UPD_LIFE, update life info after. */
2770 split_all_insns (void)
2776 blocks
= sbitmap_alloc (last_basic_block
);
2777 sbitmap_zero (blocks
);
2780 FOR_EACH_BB_REVERSE (bb
)
2783 bool finish
= false;
2785 rtl_profile_for_bb (bb
);
2786 for (insn
= BB_HEAD (bb
); !finish
; insn
= next
)
2788 /* Can't use `next_real_insn' because that might go across
2789 CODE_LABELS and short-out basic blocks. */
2790 next
= NEXT_INSN (insn
);
2791 finish
= (insn
== BB_END (bb
));
2794 rtx set
= single_set (insn
);
2796 /* Don't split no-op move insns. These should silently
2797 disappear later in final. Splitting such insns would
2798 break the code that handles LIBCALL blocks. */
2799 if (set
&& set_noop_p (set
))
2801 /* Nops get in the way while scheduling, so delete them
2802 now if register allocation has already been done. It
2803 is too risky to try to do this before register
2804 allocation, and there are unlikely to be very many
2805 nops then anyways. */
2806 if (reload_completed
)
2807 delete_insn_and_edges (insn
);
2811 rtx last
= split_insn (insn
);
2814 /* The split sequence may include barrier, but the
2815 BB boundary we are interested in will be set to
2818 while (BARRIER_P (last
))
2819 last
= PREV_INSN (last
);
2820 SET_BIT (blocks
, bb
->index
);
2828 default_rtl_profile ();
2830 find_many_sub_basic_blocks (blocks
);
2832 #ifdef ENABLE_CHECKING
2833 verify_flow_info ();
2836 sbitmap_free (blocks
);
2839 /* Same as split_all_insns, but do not expect CFG to be available.
2840 Used by machine dependent reorg passes. */
2843 split_all_insns_noflow (void)
2847 for (insn
= get_insns (); insn
; insn
= next
)
2849 next
= NEXT_INSN (insn
);
2852 /* Don't split no-op move insns. These should silently
2853 disappear later in final. Splitting such insns would
2854 break the code that handles LIBCALL blocks. */
2855 rtx set
= single_set (insn
);
2856 if (set
&& set_noop_p (set
))
2858 /* Nops get in the way while scheduling, so delete them
2859 now if register allocation has already been done. It
2860 is too risky to try to do this before register
2861 allocation, and there are unlikely to be very many
2864 ??? Should we use delete_insn when the CFG isn't valid? */
2865 if (reload_completed
)
2866 delete_insn_and_edges (insn
);
2875 #ifdef HAVE_peephole2
2876 struct peep2_insn_data
2882 static struct peep2_insn_data peep2_insn_data
[MAX_INSNS_PER_PEEP2
+ 1];
2883 static int peep2_current
;
2884 /* The number of instructions available to match a peep2. */
2885 int peep2_current_count
;
2887 /* A non-insn marker indicating the last insn of the block.
2888 The live_before regset for this element is correct, indicating
2889 DF_LIVE_OUT for the block. */
2890 #define PEEP2_EOB pc_rtx
2892 /* Return the Nth non-note insn after `current', or return NULL_RTX if it
2893 does not exist. Used by the recognizer to find the next insn to match
2894 in a multi-insn pattern. */
2897 peep2_next_insn (int n
)
2899 gcc_assert (n
<= peep2_current_count
);
2902 if (n
>= MAX_INSNS_PER_PEEP2
+ 1)
2903 n
-= MAX_INSNS_PER_PEEP2
+ 1;
2905 return peep2_insn_data
[n
].insn
;
2908 /* Return true if REGNO is dead before the Nth non-note insn
2912 peep2_regno_dead_p (int ofs
, int regno
)
2914 gcc_assert (ofs
< MAX_INSNS_PER_PEEP2
+ 1);
2916 ofs
+= peep2_current
;
2917 if (ofs
>= MAX_INSNS_PER_PEEP2
+ 1)
2918 ofs
-= MAX_INSNS_PER_PEEP2
+ 1;
2920 gcc_assert (peep2_insn_data
[ofs
].insn
!= NULL_RTX
);
2922 return ! REGNO_REG_SET_P (peep2_insn_data
[ofs
].live_before
, regno
);
2925 /* Similarly for a REG. */
2928 peep2_reg_dead_p (int ofs
, rtx reg
)
2932 gcc_assert (ofs
< MAX_INSNS_PER_PEEP2
+ 1);
2934 ofs
+= peep2_current
;
2935 if (ofs
>= MAX_INSNS_PER_PEEP2
+ 1)
2936 ofs
-= MAX_INSNS_PER_PEEP2
+ 1;
2938 gcc_assert (peep2_insn_data
[ofs
].insn
!= NULL_RTX
);
2940 regno
= REGNO (reg
);
2941 n
= hard_regno_nregs
[regno
][GET_MODE (reg
)];
2943 if (REGNO_REG_SET_P (peep2_insn_data
[ofs
].live_before
, regno
+ n
))
2948 /* Try to find a hard register of mode MODE, matching the register class in
2949 CLASS_STR, which is available at the beginning of insn CURRENT_INSN and
2950 remains available until the end of LAST_INSN. LAST_INSN may be NULL_RTX,
2951 in which case the only condition is that the register must be available
2952 before CURRENT_INSN.
2953 Registers that already have bits set in REG_SET will not be considered.
2955 If an appropriate register is available, it will be returned and the
2956 corresponding bit(s) in REG_SET will be set; otherwise, NULL_RTX is
2960 peep2_find_free_register (int from
, int to
, const char *class_str
,
2961 enum machine_mode mode
, HARD_REG_SET
*reg_set
)
2963 static int search_ofs
;
2968 gcc_assert (from
< MAX_INSNS_PER_PEEP2
+ 1);
2969 gcc_assert (to
< MAX_INSNS_PER_PEEP2
+ 1);
2971 from
+= peep2_current
;
2972 if (from
>= MAX_INSNS_PER_PEEP2
+ 1)
2973 from
-= MAX_INSNS_PER_PEEP2
+ 1;
2974 to
+= peep2_current
;
2975 if (to
>= MAX_INSNS_PER_PEEP2
+ 1)
2976 to
-= MAX_INSNS_PER_PEEP2
+ 1;
2978 gcc_assert (peep2_insn_data
[from
].insn
!= NULL_RTX
);
2979 REG_SET_TO_HARD_REG_SET (live
, peep2_insn_data
[from
].live_before
);
2983 HARD_REG_SET this_live
;
2985 if (++from
>= MAX_INSNS_PER_PEEP2
+ 1)
2987 gcc_assert (peep2_insn_data
[from
].insn
!= NULL_RTX
);
2988 REG_SET_TO_HARD_REG_SET (this_live
, peep2_insn_data
[from
].live_before
);
2989 IOR_HARD_REG_SET (live
, this_live
);
2992 cl
= (class_str
[0] == 'r' ? GENERAL_REGS
2993 : REG_CLASS_FROM_CONSTRAINT (class_str
[0], class_str
));
2995 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
2997 int raw_regno
, regno
, success
, j
;
2999 /* Distribute the free registers as much as possible. */
3000 raw_regno
= search_ofs
+ i
;
3001 if (raw_regno
>= FIRST_PSEUDO_REGISTER
)
3002 raw_regno
-= FIRST_PSEUDO_REGISTER
;
3003 #ifdef REG_ALLOC_ORDER
3004 regno
= reg_alloc_order
[raw_regno
];
3009 /* Don't allocate fixed registers. */
3010 if (fixed_regs
[regno
])
3012 /* Don't allocate global registers. */
3013 if (global_regs
[regno
])
3015 /* Make sure the register is of the right class. */
3016 if (! TEST_HARD_REG_BIT (reg_class_contents
[cl
], regno
))
3018 /* And can support the mode we need. */
3019 if (! HARD_REGNO_MODE_OK (regno
, mode
))
3021 /* And that we don't create an extra save/restore. */
3022 if (! call_used_regs
[regno
] && ! df_regs_ever_live_p (regno
))
3024 if (! targetm
.hard_regno_scratch_ok (regno
))
3027 /* And we don't clobber traceback for noreturn functions. */
3028 if ((regno
== FRAME_POINTER_REGNUM
|| regno
== HARD_FRAME_POINTER_REGNUM
)
3029 && (! reload_completed
|| frame_pointer_needed
))
3033 for (j
= hard_regno_nregs
[regno
][mode
] - 1; j
>= 0; j
--)
3035 if (TEST_HARD_REG_BIT (*reg_set
, regno
+ j
)
3036 || TEST_HARD_REG_BIT (live
, regno
+ j
))
3044 add_to_hard_reg_set (reg_set
, mode
, regno
);
3046 /* Start the next search with the next register. */
3047 if (++raw_regno
>= FIRST_PSEUDO_REGISTER
)
3049 search_ofs
= raw_regno
;
3051 return gen_rtx_REG (mode
, regno
);
3059 /* Forget all currently tracked instructions, only remember current
3063 peep2_reinit_state (regset live
)
3067 /* Indicate that all slots except the last holds invalid data. */
3068 for (i
= 0; i
< MAX_INSNS_PER_PEEP2
; ++i
)
3069 peep2_insn_data
[i
].insn
= NULL_RTX
;
3070 peep2_current_count
= 0;
3072 /* Indicate that the last slot contains live_after data. */
3073 peep2_insn_data
[MAX_INSNS_PER_PEEP2
].insn
= PEEP2_EOB
;
3074 peep2_current
= MAX_INSNS_PER_PEEP2
;
3076 COPY_REG_SET (peep2_insn_data
[MAX_INSNS_PER_PEEP2
].live_before
, live
);
3079 /* Perform the peephole2 optimization pass. */
3082 peephole2_optimize (void)
3088 bool do_cleanup_cfg
= false;
3089 bool do_rebuild_jump_labels
= false;
3091 df_set_flags (DF_LR_RUN_DCE
);
3094 /* Initialize the regsets we're going to use. */
3095 for (i
= 0; i
< MAX_INSNS_PER_PEEP2
+ 1; ++i
)
3096 peep2_insn_data
[i
].live_before
= BITMAP_ALLOC (®_obstack
);
3097 live
= BITMAP_ALLOC (®_obstack
);
3099 FOR_EACH_BB_REVERSE (bb
)
3101 rtl_profile_for_bb (bb
);
3103 /* Start up propagation. */
3104 bitmap_copy (live
, DF_LR_OUT (bb
));
3105 df_simulate_initialize_backwards (bb
, live
);
3106 peep2_reinit_state (live
);
3108 for (insn
= BB_END (bb
); ; insn
= prev
)
3110 prev
= PREV_INSN (insn
);
3113 rtx attempt
, before_try
, x
;
3116 bool was_call
= false;
3118 /* Record this insn. */
3119 if (--peep2_current
< 0)
3120 peep2_current
= MAX_INSNS_PER_PEEP2
;
3121 if (peep2_current_count
< MAX_INSNS_PER_PEEP2
3122 && peep2_insn_data
[peep2_current
].insn
== NULL_RTX
)
3123 peep2_current_count
++;
3124 peep2_insn_data
[peep2_current
].insn
= insn
;
3125 df_simulate_one_insn_backwards (bb
, insn
, live
);
3126 COPY_REG_SET (peep2_insn_data
[peep2_current
].live_before
, live
);
3128 if (RTX_FRAME_RELATED_P (insn
))
3130 /* If an insn has RTX_FRAME_RELATED_P set, peephole
3131 substitution would lose the
3132 REG_FRAME_RELATED_EXPR that is attached. */
3133 peep2_reinit_state (live
);
3137 /* Match the peephole. */
3138 attempt
= peephole2_insns (PATTERN (insn
), insn
, &match_len
);
3140 if (attempt
!= NULL
)
3142 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3143 in SEQ and copy our CALL_INSN_FUNCTION_USAGE and other
3144 cfg-related call notes. */
3145 for (i
= 0; i
<= match_len
; ++i
)
3148 rtx old_insn
, new_insn
, note
;
3150 j
= i
+ peep2_current
;
3151 if (j
>= MAX_INSNS_PER_PEEP2
+ 1)
3152 j
-= MAX_INSNS_PER_PEEP2
+ 1;
3153 old_insn
= peep2_insn_data
[j
].insn
;
3154 if (!CALL_P (old_insn
))
3159 while (new_insn
!= NULL_RTX
)
3161 if (CALL_P (new_insn
))
3163 new_insn
= NEXT_INSN (new_insn
);
3166 gcc_assert (new_insn
!= NULL_RTX
);
3168 CALL_INSN_FUNCTION_USAGE (new_insn
)
3169 = CALL_INSN_FUNCTION_USAGE (old_insn
);
3171 for (note
= REG_NOTES (old_insn
);
3173 note
= XEXP (note
, 1))
3174 switch (REG_NOTE_KIND (note
))
3178 add_reg_note (new_insn
, REG_NOTE_KIND (note
),
3182 /* Discard all other reg notes. */
3186 /* Croak if there is another call in the sequence. */
3187 while (++i
<= match_len
)
3189 j
= i
+ peep2_current
;
3190 if (j
>= MAX_INSNS_PER_PEEP2
+ 1)
3191 j
-= MAX_INSNS_PER_PEEP2
+ 1;
3192 old_insn
= peep2_insn_data
[j
].insn
;
3193 gcc_assert (!CALL_P (old_insn
));
3198 i
= match_len
+ peep2_current
;
3199 if (i
>= MAX_INSNS_PER_PEEP2
+ 1)
3200 i
-= MAX_INSNS_PER_PEEP2
+ 1;
3202 note
= find_reg_note (peep2_insn_data
[i
].insn
,
3203 REG_EH_REGION
, NULL_RTX
);
3205 /* Replace the old sequence with the new. */
3206 attempt
= emit_insn_after_setloc (attempt
,
3207 peep2_insn_data
[i
].insn
,
3208 INSN_LOCATOR (peep2_insn_data
[i
].insn
));
3209 before_try
= PREV_INSN (insn
);
3210 delete_insn_chain (insn
, peep2_insn_data
[i
].insn
, false);
3212 /* Re-insert the EH_REGION notes. */
3213 if (note
|| (was_call
&& nonlocal_goto_handler_labels
))
3218 FOR_EACH_EDGE (eh_edge
, ei
, bb
->succs
)
3219 if (eh_edge
->flags
& (EDGE_EH
| EDGE_ABNORMAL_CALL
))
3222 for (x
= attempt
; x
!= before_try
; x
= PREV_INSN (x
))
3224 || (flag_non_call_exceptions
3225 && may_trap_p (PATTERN (x
))
3226 && !find_reg_note (x
, REG_EH_REGION
, NULL
)))
3229 add_reg_note (x
, REG_EH_REGION
, XEXP (note
, 0));
3231 if (x
!= BB_END (bb
) && eh_edge
)
3236 nfte
= split_block (bb
, x
);
3237 flags
= (eh_edge
->flags
3238 & (EDGE_EH
| EDGE_ABNORMAL
));
3240 flags
|= EDGE_ABNORMAL_CALL
;
3241 nehe
= make_edge (nfte
->src
, eh_edge
->dest
,
3244 nehe
->probability
= eh_edge
->probability
;
3246 = REG_BR_PROB_BASE
- nehe
->probability
;
3248 do_cleanup_cfg
|= purge_dead_edges (nfte
->dest
);
3254 /* Converting possibly trapping insn to non-trapping is
3255 possible. Zap dummy outgoing edges. */
3256 do_cleanup_cfg
|= purge_dead_edges (bb
);
3259 #ifdef HAVE_conditional_execution
3260 for (i
= 0; i
< MAX_INSNS_PER_PEEP2
+ 1; ++i
)
3261 peep2_insn_data
[i
].insn
= NULL_RTX
;
3262 peep2_insn_data
[peep2_current
].insn
= PEEP2_EOB
;
3263 peep2_current_count
= 0;
3265 /* Back up lifetime information past the end of the
3266 newly created sequence. */
3267 if (++i
>= MAX_INSNS_PER_PEEP2
+ 1)
3269 bitmap_copy (live
, peep2_insn_data
[i
].live_before
);
3271 /* Update life information for the new sequence. */
3278 i
= MAX_INSNS_PER_PEEP2
;
3279 if (peep2_current_count
< MAX_INSNS_PER_PEEP2
3280 && peep2_insn_data
[i
].insn
== NULL_RTX
)
3281 peep2_current_count
++;
3282 peep2_insn_data
[i
].insn
= x
;
3284 df_simulate_one_insn_backwards (bb
, x
, live
);
3285 bitmap_copy (peep2_insn_data
[i
].live_before
, live
);
3294 /* If we generated a jump instruction, it won't have
3295 JUMP_LABEL set. Recompute after we're done. */
3296 for (x
= attempt
; x
!= before_try
; x
= PREV_INSN (x
))
3299 do_rebuild_jump_labels
= true;
3305 if (insn
== BB_HEAD (bb
))
3310 default_rtl_profile ();
3311 for (i
= 0; i
< MAX_INSNS_PER_PEEP2
+ 1; ++i
)
3312 BITMAP_FREE (peep2_insn_data
[i
].live_before
);
3314 if (do_rebuild_jump_labels
)
3315 rebuild_jump_labels (get_insns ());
3317 #endif /* HAVE_peephole2 */
3319 /* Common predicates for use with define_bypass. */
3321 /* True if the dependency between OUT_INSN and IN_INSN is on the store
3322 data not the address operand(s) of the store. IN_INSN and OUT_INSN
3323 must be either a single_set or a PARALLEL with SETs inside. */
3326 store_data_bypass_p (rtx out_insn
, rtx in_insn
)
3328 rtx out_set
, in_set
;
3329 rtx out_pat
, in_pat
;
3330 rtx out_exp
, in_exp
;
3333 in_set
= single_set (in_insn
);
3336 if (!MEM_P (SET_DEST (in_set
)))
3339 out_set
= single_set (out_insn
);
3342 if (reg_mentioned_p (SET_DEST (out_set
), SET_DEST (in_set
)))
3347 out_pat
= PATTERN (out_insn
);
3349 if (GET_CODE (out_pat
) != PARALLEL
)
3352 for (i
= 0; i
< XVECLEN (out_pat
, 0); i
++)
3354 out_exp
= XVECEXP (out_pat
, 0, i
);
3356 if (GET_CODE (out_exp
) == CLOBBER
)
3359 gcc_assert (GET_CODE (out_exp
) == SET
);
3361 if (reg_mentioned_p (SET_DEST (out_exp
), SET_DEST (in_set
)))
3368 in_pat
= PATTERN (in_insn
);
3369 gcc_assert (GET_CODE (in_pat
) == PARALLEL
);
3371 for (i
= 0; i
< XVECLEN (in_pat
, 0); i
++)
3373 in_exp
= XVECEXP (in_pat
, 0, i
);
3375 if (GET_CODE (in_exp
) == CLOBBER
)
3378 gcc_assert (GET_CODE (in_exp
) == SET
);
3380 if (!MEM_P (SET_DEST (in_exp
)))
3383 out_set
= single_set (out_insn
);
3386 if (reg_mentioned_p (SET_DEST (out_set
), SET_DEST (in_exp
)))
3391 out_pat
= PATTERN (out_insn
);
3392 gcc_assert (GET_CODE (out_pat
) == PARALLEL
);
3394 for (j
= 0; j
< XVECLEN (out_pat
, 0); j
++)
3396 out_exp
= XVECEXP (out_pat
, 0, j
);
3398 if (GET_CODE (out_exp
) == CLOBBER
)
3401 gcc_assert (GET_CODE (out_exp
) == SET
);
3403 if (reg_mentioned_p (SET_DEST (out_exp
), SET_DEST (in_exp
)))
3413 /* True if the dependency between OUT_INSN and IN_INSN is in the IF_THEN_ELSE
3414 condition, and not the THEN or ELSE branch. OUT_INSN may be either a single
3415 or multiple set; IN_INSN should be single_set for truth, but for convenience
3416 of insn categorization may be any JUMP or CALL insn. */
3419 if_test_bypass_p (rtx out_insn
, rtx in_insn
)
3421 rtx out_set
, in_set
;
3423 in_set
= single_set (in_insn
);
3426 gcc_assert (JUMP_P (in_insn
) || CALL_P (in_insn
));
3430 if (GET_CODE (SET_SRC (in_set
)) != IF_THEN_ELSE
)
3432 in_set
= SET_SRC (in_set
);
3434 out_set
= single_set (out_insn
);
3437 if (reg_mentioned_p (SET_DEST (out_set
), XEXP (in_set
, 1))
3438 || reg_mentioned_p (SET_DEST (out_set
), XEXP (in_set
, 2)))
3446 out_pat
= PATTERN (out_insn
);
3447 gcc_assert (GET_CODE (out_pat
) == PARALLEL
);
3449 for (i
= 0; i
< XVECLEN (out_pat
, 0); i
++)
3451 rtx exp
= XVECEXP (out_pat
, 0, i
);
3453 if (GET_CODE (exp
) == CLOBBER
)
3456 gcc_assert (GET_CODE (exp
) == SET
);
3458 if (reg_mentioned_p (SET_DEST (out_set
), XEXP (in_set
, 1))
3459 || reg_mentioned_p (SET_DEST (out_set
), XEXP (in_set
, 2)))
3468 gate_handle_peephole2 (void)
3470 return (optimize
> 0 && flag_peephole2
);
3474 rest_of_handle_peephole2 (void)
3476 #ifdef HAVE_peephole2
3477 peephole2_optimize ();
3482 struct rtl_opt_pass pass_peephole2
=
3486 "peephole2", /* name */
3487 gate_handle_peephole2
, /* gate */
3488 rest_of_handle_peephole2
, /* execute */
3491 0, /* static_pass_number */
3492 TV_PEEPHOLE2
, /* tv_id */
3493 0, /* properties_required */
3494 0, /* properties_provided */
3495 0, /* properties_destroyed */
3496 0, /* todo_flags_start */
3497 TODO_df_finish
| TODO_verify_rtl_sharing
|
3498 TODO_dump_func
/* todo_flags_finish */
3503 rest_of_handle_split_all_insns (void)
3509 struct rtl_opt_pass pass_split_all_insns
=
3513 "split1", /* name */
3515 rest_of_handle_split_all_insns
, /* execute */
3518 0, /* static_pass_number */
3519 TV_NONE
, /* tv_id */
3520 0, /* properties_required */
3521 0, /* properties_provided */
3522 0, /* properties_destroyed */
3523 0, /* todo_flags_start */
3524 TODO_dump_func
/* todo_flags_finish */
3529 rest_of_handle_split_after_reload (void)
3531 /* If optimizing, then go ahead and split insns now. */
3539 struct rtl_opt_pass pass_split_after_reload
=
3543 "split2", /* name */
3545 rest_of_handle_split_after_reload
, /* execute */
3548 0, /* static_pass_number */
3549 TV_NONE
, /* tv_id */
3550 0, /* properties_required */
3551 0, /* properties_provided */
3552 0, /* properties_destroyed */
3553 0, /* todo_flags_start */
3554 TODO_dump_func
/* todo_flags_finish */
3559 gate_handle_split_before_regstack (void)
3561 #if defined (HAVE_ATTR_length) && defined (STACK_REGS)
3562 /* If flow2 creates new instructions which need splitting
3563 and scheduling after reload is not done, they might not be
3564 split until final which doesn't allow splitting
3565 if HAVE_ATTR_length. */
3566 # ifdef INSN_SCHEDULING
3567 return (optimize
&& !flag_schedule_insns_after_reload
);
3577 rest_of_handle_split_before_regstack (void)
3583 struct rtl_opt_pass pass_split_before_regstack
=
3587 "split3", /* name */
3588 gate_handle_split_before_regstack
, /* gate */
3589 rest_of_handle_split_before_regstack
, /* execute */
3592 0, /* static_pass_number */
3593 TV_NONE
, /* tv_id */
3594 0, /* properties_required */
3595 0, /* properties_provided */
3596 0, /* properties_destroyed */
3597 0, /* todo_flags_start */
3598 TODO_dump_func
/* todo_flags_finish */
3603 gate_handle_split_before_sched2 (void)
3605 #ifdef INSN_SCHEDULING
3606 return optimize
> 0 && flag_schedule_insns_after_reload
;
3613 rest_of_handle_split_before_sched2 (void)
3615 #ifdef INSN_SCHEDULING
3621 struct rtl_opt_pass pass_split_before_sched2
=
3625 "split4", /* name */
3626 gate_handle_split_before_sched2
, /* gate */
3627 rest_of_handle_split_before_sched2
, /* execute */
3630 0, /* static_pass_number */
3631 TV_NONE
, /* tv_id */
3632 0, /* properties_required */
3633 0, /* properties_provided */
3634 0, /* properties_destroyed */
3635 0, /* todo_flags_start */
3637 TODO_dump_func
/* todo_flags_finish */
3641 /* The placement of the splitting that we do for shorten_branches
3642 depends on whether regstack is used by the target or not. */
3644 gate_do_final_split (void)
3646 #if defined (HAVE_ATTR_length) && !defined (STACK_REGS)
3653 struct rtl_opt_pass pass_split_for_shorten_branches
=
3657 "split5", /* name */
3658 gate_do_final_split
, /* gate */
3659 split_all_insns_noflow
, /* execute */
3662 0, /* static_pass_number */
3663 TV_NONE
, /* tv_id */
3664 0, /* properties_required */
3665 0, /* properties_provided */
3666 0, /* properties_destroyed */
3667 0, /* todo_flags_start */
3668 TODO_dump_func
| TODO_verify_rtl_sharing
/* todo_flags_finish */