Fix __builtin_expect on PowerPCs
[official-gcc.git] / gcc / tree.c
blob2461c9bd40eae88136921892e66ede6099a4f193
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
27 nodes of that code.
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c.
32 The low-level allocation routines oballoc and permalloc
33 are used also for allocating many other kinds of objects
34 by all passes of the compiler. */
36 #include "config.h"
37 #include "system.h"
38 #include "flags.h"
39 #include "tree.h"
40 #include "tm_p.h"
41 #include "function.h"
42 #include "obstack.h"
43 #include "toplev.h"
44 #include "ggc.h"
45 #include "hashtab.h"
46 #include "output.h"
48 #define obstack_chunk_alloc xmalloc
49 #define obstack_chunk_free free
50 /* obstack.[ch] explicitly declined to prototype this. */
51 extern int _obstack_allocated_p PARAMS ((struct obstack *h, PTR obj));
53 static void unsave_expr_now_r PARAMS ((tree));
55 /* Objects allocated on this obstack last forever. */
57 struct obstack permanent_obstack;
59 /* Table indexed by tree code giving a string containing a character
60 classifying the tree code. Possibilities are
61 t, d, s, c, r, <, 1, 2 and e. See tree.def for details. */
63 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
65 char tree_code_type[MAX_TREE_CODES] = {
66 #include "tree.def"
68 #undef DEFTREECODE
70 /* Table indexed by tree code giving number of expression
71 operands beyond the fixed part of the node structure.
72 Not used for types or decls. */
74 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
76 int tree_code_length[MAX_TREE_CODES] = {
77 #include "tree.def"
79 #undef DEFTREECODE
81 /* Names of tree components.
82 Used for printing out the tree and error messages. */
83 #define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
85 const char *tree_code_name[MAX_TREE_CODES] = {
86 #include "tree.def"
88 #undef DEFTREECODE
90 /* Statistics-gathering stuff. */
91 typedef enum
93 d_kind,
94 t_kind,
95 b_kind,
96 s_kind,
97 r_kind,
98 e_kind,
99 c_kind,
100 id_kind,
101 op_id_kind,
102 perm_list_kind,
103 temp_list_kind,
104 vec_kind,
105 x_kind,
106 lang_decl,
107 lang_type,
108 all_kinds
109 } tree_node_kind;
111 int tree_node_counts[(int) all_kinds];
112 int tree_node_sizes[(int) all_kinds];
113 int id_string_size = 0;
115 static const char * const tree_node_kind_names[] = {
116 "decls",
117 "types",
118 "blocks",
119 "stmts",
120 "refs",
121 "exprs",
122 "constants",
123 "identifiers",
124 "op_identifiers",
125 "perm_tree_lists",
126 "temp_tree_lists",
127 "vecs",
128 "random kinds",
129 "lang_decl kinds",
130 "lang_type kinds"
133 /* Unique id for next decl created. */
134 static int next_decl_uid;
135 /* Unique id for next type created. */
136 static int next_type_uid = 1;
138 /* Here is how primitive or already-canonicalized types' hash
139 codes are made. */
140 #define TYPE_HASH(TYPE) ((unsigned long) (TYPE) & 0777777)
142 /* Since we cannot rehash a type after it is in the table, we have to
143 keep the hash code. */
145 struct type_hash
147 unsigned long hash;
148 tree type;
151 /* Initial size of the hash table (rounded to next prime). */
152 #define TYPE_HASH_INITIAL_SIZE 1000
154 /* Now here is the hash table. When recording a type, it is added to
155 the slot whose index is the hash code. Note that the hash table is
156 used for several kinds of types (function types, array types and
157 array index range types, for now). While all these live in the
158 same table, they are completely independent, and the hash code is
159 computed differently for each of these. */
161 htab_t type_hash_table;
163 static void build_real_from_int_cst_1 PARAMS ((PTR));
164 static void set_type_quals PARAMS ((tree, int));
165 static void append_random_chars PARAMS ((char *));
166 static void mark_type_hash PARAMS ((void *));
167 static int type_hash_eq PARAMS ((const void*, const void*));
168 static unsigned int type_hash_hash PARAMS ((const void*));
169 static void print_type_hash_statistics PARAMS((void));
170 static int mark_hash_entry PARAMS((void **, void *));
171 static void finish_vector_type PARAMS((tree));
172 static int mark_tree_hashtable_entry PARAMS((void **, void *));
174 /* If non-null, these are language-specific helper functions for
175 unsave_expr_now. If present, LANG_UNSAVE is called before its
176 argument (an UNSAVE_EXPR) is to be unsaved, and all other
177 processing in unsave_expr_now is aborted. LANG_UNSAVE_EXPR_NOW is
178 called from unsave_expr_1 for language-specific tree codes. */
179 void (*lang_unsave) PARAMS ((tree *));
180 void (*lang_unsave_expr_now) PARAMS ((tree));
182 /* If non-null, these are language-specific helper functions for
183 unsafe_for_reeval. Return negative to not handle some tree. */
184 int (*lang_unsafe_for_reeval) PARAMS ((tree));
186 /* Set the DECL_ASSEMBLER_NAME for a node. If it is the sort of thing
187 that the assembler should talk about, set DECL_ASSEMBLER_NAME to an
188 appropriate IDENTIFIER_NODE. Otherwise, set it to the
189 ERROR_MARK_NODE to ensure that the assembler does not talk about
190 it. */
191 void (*lang_set_decl_assembler_name) PARAMS ((tree));
193 tree global_trees[TI_MAX];
194 tree integer_types[itk_none];
196 /* Set the DECL_ASSEMBLER_NAME for DECL. */
197 void
198 set_decl_assembler_name (decl)
199 tree decl;
201 /* The language-independent code should never use the
202 DECL_ASSEMBLER_NAME for lots of DECLs. Only FUNCTION_DECLs and
203 VAR_DECLs for variables with static storage duration need a real
204 DECL_ASSEMBLER_NAME. */
205 if (TREE_CODE (decl) == FUNCTION_DECL
206 || (TREE_CODE (decl) == VAR_DECL
207 && (TREE_STATIC (decl)
208 || DECL_EXTERNAL (decl)
209 || TREE_PUBLIC (decl))))
210 /* By default, assume the name to use in assembly code is the
211 same as that used in the source language. (That's correct
212 for C, and GCC used to set DECL_ASSEMBLER_NAME to the same
213 value as DECL_NAME in build_decl, so this choice provides
214 backwards compatibility with existing front-ends. */
215 SET_DECL_ASSEMBLER_NAME (decl, DECL_NAME (decl));
216 else
217 /* Nobody should ever be asking for the DECL_ASSEMBLER_NAME of
218 these DECLs -- unless they're in language-dependent code, in
219 which case lang_set_decl_assembler_name should handle things. */
220 abort ();
223 /* Init the principal obstacks. */
225 void
226 init_obstacks ()
228 gcc_obstack_init (&permanent_obstack);
230 /* Initialize the hash table of types. */
231 type_hash_table = htab_create (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
232 type_hash_eq, 0);
233 ggc_add_root (&type_hash_table, 1, sizeof type_hash_table, mark_type_hash);
234 ggc_add_tree_root (global_trees, TI_MAX);
235 ggc_add_tree_root (integer_types, itk_none);
237 /* Set lang_set_decl_set_assembler_name to a default value. */
238 lang_set_decl_assembler_name = set_decl_assembler_name;
242 /* Allocate SIZE bytes in the permanent obstack
243 and return a pointer to them. */
245 char *
246 permalloc (size)
247 int size;
249 return (char *) obstack_alloc (&permanent_obstack, size);
252 /* Allocate NELEM items of SIZE bytes in the permanent obstack
253 and return a pointer to them. The storage is cleared before
254 returning the value. */
256 char *
257 perm_calloc (nelem, size)
258 int nelem;
259 long size;
261 char *rval = (char *) obstack_alloc (&permanent_obstack, nelem * size);
262 memset (rval, 0, nelem * size);
263 return rval;
266 /* Compute the number of bytes occupied by 'node'. This routine only
267 looks at TREE_CODE and, if the code is TREE_VEC, TREE_VEC_LENGTH. */
268 size_t
269 tree_size (node)
270 tree node;
272 enum tree_code code = TREE_CODE (node);
274 switch (TREE_CODE_CLASS (code))
276 case 'd': /* A decl node */
277 return sizeof (struct tree_decl);
279 case 't': /* a type node */
280 return sizeof (struct tree_type);
282 case 'b': /* a lexical block node */
283 return sizeof (struct tree_block);
285 case 'r': /* a reference */
286 case 'e': /* an expression */
287 case 's': /* an expression with side effects */
288 case '<': /* a comparison expression */
289 case '1': /* a unary arithmetic expression */
290 case '2': /* a binary arithmetic expression */
291 return (sizeof (struct tree_exp)
292 + (TREE_CODE_LENGTH (code) - 1) * sizeof (char *));
294 case 'c': /* a constant */
295 /* We can't use TREE_CODE_LENGTH for INTEGER_CST, since the number of
296 words is machine-dependent due to varying length of HOST_WIDE_INT,
297 which might be wider than a pointer (e.g., long long). Similarly
298 for REAL_CST, since the number of words is machine-dependent due
299 to varying size and alignment of `double'. */
300 if (code == INTEGER_CST)
301 return sizeof (struct tree_int_cst);
302 else if (code == REAL_CST)
303 return sizeof (struct tree_real_cst);
304 else
305 return (sizeof (struct tree_common)
306 + TREE_CODE_LENGTH (code) * sizeof (char *));
308 case 'x': /* something random, like an identifier. */
310 size_t length;
311 length = (sizeof (struct tree_common)
312 + TREE_CODE_LENGTH (code) * sizeof (char *));
313 if (code == TREE_VEC)
314 length += (TREE_VEC_LENGTH (node) - 1) * sizeof (char *);
315 return length;
318 default:
319 abort ();
323 /* Return a newly allocated node of code CODE.
324 For decl and type nodes, some other fields are initialized.
325 The rest of the node is initialized to zero.
327 Achoo! I got a code in the node. */
329 tree
330 make_node (code)
331 enum tree_code code;
333 register tree t;
334 register int type = TREE_CODE_CLASS (code);
335 register size_t length;
336 #ifdef GATHER_STATISTICS
337 register tree_node_kind kind;
338 #endif
339 struct tree_common ttmp;
341 /* We can't allocate a TREE_VEC without knowing how many elements
342 it will have. */
343 if (code == TREE_VEC)
344 abort ();
346 TREE_SET_CODE ((tree)&ttmp, code);
347 length = tree_size ((tree)&ttmp);
349 #ifdef GATHER_STATISTICS
350 switch (type)
352 case 'd': /* A decl node */
353 kind = d_kind;
354 break;
356 case 't': /* a type node */
357 kind = t_kind;
358 break;
360 case 'b': /* a lexical block */
361 kind = b_kind;
362 break;
364 case 's': /* an expression with side effects */
365 kind = s_kind;
366 break;
368 case 'r': /* a reference */
369 kind = r_kind;
370 break;
372 case 'e': /* an expression */
373 case '<': /* a comparison expression */
374 case '1': /* a unary arithmetic expression */
375 case '2': /* a binary arithmetic expression */
376 kind = e_kind;
377 break;
379 case 'c': /* a constant */
380 kind = c_kind;
381 break;
383 case 'x': /* something random, like an identifier. */
384 if (code == IDENTIFIER_NODE)
385 kind = id_kind;
386 else if (code == OP_IDENTIFIER)
387 kind = op_id_kind;
388 else if (code == TREE_VEC)
389 kind = vec_kind;
390 else
391 kind = x_kind;
392 break;
394 default:
395 abort ();
398 tree_node_counts[(int) kind]++;
399 tree_node_sizes[(int) kind] += length;
400 #endif
402 t = ggc_alloc_tree (length);
404 memset ((PTR) t, 0, length);
406 TREE_SET_CODE (t, code);
408 switch (type)
410 case 's':
411 TREE_SIDE_EFFECTS (t) = 1;
412 TREE_TYPE (t) = void_type_node;
413 break;
415 case 'd':
416 if (code != FUNCTION_DECL)
417 DECL_ALIGN (t) = 1;
418 DECL_USER_ALIGN (t) = 0;
419 DECL_IN_SYSTEM_HEADER (t) = in_system_header;
420 DECL_SOURCE_LINE (t) = lineno;
421 DECL_SOURCE_FILE (t) =
422 (input_filename) ? input_filename : "<built-in>";
423 DECL_UID (t) = next_decl_uid++;
424 /* Note that we have not yet computed the alias set for this
425 declaration. */
426 DECL_POINTER_ALIAS_SET (t) = -1;
427 break;
429 case 't':
430 TYPE_UID (t) = next_type_uid++;
431 TYPE_ALIGN (t) = char_type_node ? TYPE_ALIGN (char_type_node) : 0;
432 TYPE_USER_ALIGN (t) = 0;
433 TYPE_MAIN_VARIANT (t) = t;
434 TYPE_ATTRIBUTES (t) = NULL_TREE;
435 #ifdef SET_DEFAULT_TYPE_ATTRIBUTES
436 SET_DEFAULT_TYPE_ATTRIBUTES (t);
437 #endif
438 /* Note that we have not yet computed the alias set for this
439 type. */
440 TYPE_ALIAS_SET (t) = -1;
441 break;
443 case 'c':
444 TREE_CONSTANT (t) = 1;
445 break;
447 case 'e':
448 switch (code)
450 case INIT_EXPR:
451 case MODIFY_EXPR:
452 case VA_ARG_EXPR:
453 case RTL_EXPR:
454 case PREDECREMENT_EXPR:
455 case PREINCREMENT_EXPR:
456 case POSTDECREMENT_EXPR:
457 case POSTINCREMENT_EXPR:
458 /* All of these have side-effects, no matter what their
459 operands are. */
460 TREE_SIDE_EFFECTS (t) = 1;
461 break;
463 default:
464 break;
466 break;
469 return t;
472 /* A front-end can reset this to an appropriate function if types need
473 special handling. */
475 tree (*make_lang_type_fn) PARAMS ((enum tree_code)) = make_node;
477 /* Return a new type (with the indicated CODE), doing whatever
478 language-specific processing is required. */
480 tree
481 make_lang_type (code)
482 enum tree_code code;
484 return (*make_lang_type_fn) (code);
487 /* Return a new node with the same contents as NODE except that its
488 TREE_CHAIN is zero and it has a fresh uid. */
490 tree
491 copy_node (node)
492 tree node;
494 register tree t;
495 register enum tree_code code = TREE_CODE (node);
496 register size_t length;
498 length = tree_size (node);
499 t = ggc_alloc_tree (length);
500 memcpy (t, node, length);
502 TREE_CHAIN (t) = 0;
503 TREE_ASM_WRITTEN (t) = 0;
505 if (TREE_CODE_CLASS (code) == 'd')
506 DECL_UID (t) = next_decl_uid++;
507 else if (TREE_CODE_CLASS (code) == 't')
509 TYPE_UID (t) = next_type_uid++;
510 /* The following is so that the debug code for
511 the copy is different from the original type.
512 The two statements usually duplicate each other
513 (because they clear fields of the same union),
514 but the optimizer should catch that. */
515 TYPE_SYMTAB_POINTER (t) = 0;
516 TYPE_SYMTAB_ADDRESS (t) = 0;
519 return t;
522 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
523 For example, this can copy a list made of TREE_LIST nodes. */
525 tree
526 copy_list (list)
527 tree list;
529 tree head;
530 register tree prev, next;
532 if (list == 0)
533 return 0;
535 head = prev = copy_node (list);
536 next = TREE_CHAIN (list);
537 while (next)
539 TREE_CHAIN (prev) = copy_node (next);
540 prev = TREE_CHAIN (prev);
541 next = TREE_CHAIN (next);
543 return head;
547 /* Return a newly constructed INTEGER_CST node whose constant value
548 is specified by the two ints LOW and HI.
549 The TREE_TYPE is set to `int'.
551 This function should be used via the `build_int_2' macro. */
553 tree
554 build_int_2_wide (low, hi)
555 unsigned HOST_WIDE_INT low;
556 HOST_WIDE_INT hi;
558 register tree t = make_node (INTEGER_CST);
560 TREE_INT_CST_LOW (t) = low;
561 TREE_INT_CST_HIGH (t) = hi;
562 TREE_TYPE (t) = integer_type_node;
563 return t;
566 /* Return a new REAL_CST node whose type is TYPE and value is D. */
568 tree
569 build_real (type, d)
570 tree type;
571 REAL_VALUE_TYPE d;
573 tree v;
574 int overflow = 0;
576 /* Check for valid float value for this type on this target machine;
577 if not, can print error message and store a valid value in D. */
578 #ifdef CHECK_FLOAT_VALUE
579 CHECK_FLOAT_VALUE (TYPE_MODE (type), d, overflow);
580 #endif
582 v = make_node (REAL_CST);
583 TREE_TYPE (v) = type;
584 TREE_REAL_CST (v) = d;
585 TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
586 return v;
589 /* Return a new REAL_CST node whose type is TYPE
590 and whose value is the integer value of the INTEGER_CST node I. */
592 #if !defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
594 REAL_VALUE_TYPE
595 real_value_from_int_cst (type, i)
596 tree type ATTRIBUTE_UNUSED, i;
598 REAL_VALUE_TYPE d;
600 #ifdef REAL_ARITHMETIC
601 /* Clear all bits of the real value type so that we can later do
602 bitwise comparisons to see if two values are the same. */
603 memset ((char *) &d, 0, sizeof d);
605 if (! TREE_UNSIGNED (TREE_TYPE (i)))
606 REAL_VALUE_FROM_INT (d, TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
607 TYPE_MODE (type));
608 else
609 REAL_VALUE_FROM_UNSIGNED_INT (d, TREE_INT_CST_LOW (i),
610 TREE_INT_CST_HIGH (i), TYPE_MODE (type));
611 #else /* not REAL_ARITHMETIC */
612 /* Some 386 compilers mishandle unsigned int to float conversions,
613 so introduce a temporary variable E to avoid those bugs. */
614 if (TREE_INT_CST_HIGH (i) < 0 && ! TREE_UNSIGNED (TREE_TYPE (i)))
616 REAL_VALUE_TYPE e;
618 d = (double) (~TREE_INT_CST_HIGH (i));
619 e = ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
620 * (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
621 d *= e;
622 e = (double) (~TREE_INT_CST_LOW (i));
623 d += e;
624 d = (- d - 1.0);
626 else
628 REAL_VALUE_TYPE e;
630 d = (double) (unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (i);
631 e = ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
632 * (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
633 d *= e;
634 e = (double) TREE_INT_CST_LOW (i);
635 d += e;
637 #endif /* not REAL_ARITHMETIC */
638 return d;
641 /* Args to pass to and from build_real_from_int_cst_1. */
643 struct brfic_args
645 tree type; /* Input: type to conver to. */
646 tree i; /* Input: operand to convert. */
647 REAL_VALUE_TYPE d; /* Output: floating point value. */
650 /* Convert an integer to a floating point value while protected by a floating
651 point exception handler. */
653 static void
654 build_real_from_int_cst_1 (data)
655 PTR data;
657 struct brfic_args *args = (struct brfic_args *) data;
659 #ifdef REAL_ARITHMETIC
660 args->d = real_value_from_int_cst (args->type, args->i);
661 #else
662 args->d
663 = REAL_VALUE_TRUNCATE (TYPE_MODE (args->type),
664 real_value_from_int_cst (args->type, args->i));
665 #endif
668 /* Given a tree representing an integer constant I, return a tree
669 representing the same value as a floating-point constant of type TYPE.
670 We cannot perform this operation if there is no way of doing arithmetic
671 on floating-point values. */
673 tree
674 build_real_from_int_cst (type, i)
675 tree type;
676 tree i;
678 tree v;
679 int overflow = TREE_OVERFLOW (i);
680 REAL_VALUE_TYPE d;
681 struct brfic_args args;
683 v = make_node (REAL_CST);
684 TREE_TYPE (v) = type;
686 /* Setup input for build_real_from_int_cst_1() */
687 args.type = type;
688 args.i = i;
690 if (do_float_handler (build_real_from_int_cst_1, (PTR) &args))
691 /* Receive output from build_real_from_int_cst_1() */
692 d = args.d;
693 else
695 /* We got an exception from build_real_from_int_cst_1() */
696 d = dconst0;
697 overflow = 1;
700 /* Check for valid float value for this type on this target machine. */
702 #ifdef CHECK_FLOAT_VALUE
703 CHECK_FLOAT_VALUE (TYPE_MODE (type), d, overflow);
704 #endif
706 TREE_REAL_CST (v) = d;
707 TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
708 return v;
711 #endif /* not REAL_IS_NOT_DOUBLE, or REAL_ARITHMETIC */
713 /* Return a newly constructed STRING_CST node whose value is
714 the LEN characters at STR.
715 The TREE_TYPE is not initialized. */
717 tree
718 build_string (len, str)
719 int len;
720 const char *str;
722 register tree s = make_node (STRING_CST);
724 TREE_STRING_LENGTH (s) = len;
725 TREE_STRING_POINTER (s) = ggc_alloc_string (str, len);
727 return s;
730 /* Return a newly constructed COMPLEX_CST node whose value is
731 specified by the real and imaginary parts REAL and IMAG.
732 Both REAL and IMAG should be constant nodes. TYPE, if specified,
733 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
735 tree
736 build_complex (type, real, imag)
737 tree type;
738 tree real, imag;
740 register tree t = make_node (COMPLEX_CST);
742 TREE_REALPART (t) = real;
743 TREE_IMAGPART (t) = imag;
744 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
745 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
746 TREE_CONSTANT_OVERFLOW (t)
747 = TREE_CONSTANT_OVERFLOW (real) | TREE_CONSTANT_OVERFLOW (imag);
748 return t;
751 /* Build a newly constructed TREE_VEC node of length LEN. */
753 tree
754 make_tree_vec (len)
755 int len;
757 register tree t;
758 register int length = (len-1) * sizeof (tree) + sizeof (struct tree_vec);
760 #ifdef GATHER_STATISTICS
761 tree_node_counts[(int)vec_kind]++;
762 tree_node_sizes[(int)vec_kind] += length;
763 #endif
765 t = ggc_alloc_tree (length);
767 memset ((PTR) t, 0, length);
768 TREE_SET_CODE (t, TREE_VEC);
769 TREE_VEC_LENGTH (t) = len;
771 return t;
774 /* Return 1 if EXPR is the integer constant zero or a complex constant
775 of zero. */
778 integer_zerop (expr)
779 tree expr;
781 STRIP_NOPS (expr);
783 return ((TREE_CODE (expr) == INTEGER_CST
784 && ! TREE_CONSTANT_OVERFLOW (expr)
785 && TREE_INT_CST_LOW (expr) == 0
786 && TREE_INT_CST_HIGH (expr) == 0)
787 || (TREE_CODE (expr) == COMPLEX_CST
788 && integer_zerop (TREE_REALPART (expr))
789 && integer_zerop (TREE_IMAGPART (expr))));
792 /* Return 1 if EXPR is the integer constant one or the corresponding
793 complex constant. */
796 integer_onep (expr)
797 tree expr;
799 STRIP_NOPS (expr);
801 return ((TREE_CODE (expr) == INTEGER_CST
802 && ! TREE_CONSTANT_OVERFLOW (expr)
803 && TREE_INT_CST_LOW (expr) == 1
804 && TREE_INT_CST_HIGH (expr) == 0)
805 || (TREE_CODE (expr) == COMPLEX_CST
806 && integer_onep (TREE_REALPART (expr))
807 && integer_zerop (TREE_IMAGPART (expr))));
810 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
811 it contains. Likewise for the corresponding complex constant. */
814 integer_all_onesp (expr)
815 tree expr;
817 register int prec;
818 register int uns;
820 STRIP_NOPS (expr);
822 if (TREE_CODE (expr) == COMPLEX_CST
823 && integer_all_onesp (TREE_REALPART (expr))
824 && integer_zerop (TREE_IMAGPART (expr)))
825 return 1;
827 else if (TREE_CODE (expr) != INTEGER_CST
828 || TREE_CONSTANT_OVERFLOW (expr))
829 return 0;
831 uns = TREE_UNSIGNED (TREE_TYPE (expr));
832 if (!uns)
833 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
834 && TREE_INT_CST_HIGH (expr) == -1);
836 /* Note that using TYPE_PRECISION here is wrong. We care about the
837 actual bits, not the (arbitrary) range of the type. */
838 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
839 if (prec >= HOST_BITS_PER_WIDE_INT)
841 HOST_WIDE_INT high_value;
842 int shift_amount;
844 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
846 if (shift_amount > HOST_BITS_PER_WIDE_INT)
847 /* Can not handle precisions greater than twice the host int size. */
848 abort ();
849 else if (shift_amount == HOST_BITS_PER_WIDE_INT)
850 /* Shifting by the host word size is undefined according to the ANSI
851 standard, so we must handle this as a special case. */
852 high_value = -1;
853 else
854 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
856 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
857 && TREE_INT_CST_HIGH (expr) == high_value);
859 else
860 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
863 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
864 one bit on). */
867 integer_pow2p (expr)
868 tree expr;
870 int prec;
871 HOST_WIDE_INT high, low;
873 STRIP_NOPS (expr);
875 if (TREE_CODE (expr) == COMPLEX_CST
876 && integer_pow2p (TREE_REALPART (expr))
877 && integer_zerop (TREE_IMAGPART (expr)))
878 return 1;
880 if (TREE_CODE (expr) != INTEGER_CST || TREE_CONSTANT_OVERFLOW (expr))
881 return 0;
883 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
884 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
885 high = TREE_INT_CST_HIGH (expr);
886 low = TREE_INT_CST_LOW (expr);
888 /* First clear all bits that are beyond the type's precision in case
889 we've been sign extended. */
891 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
893 else if (prec > HOST_BITS_PER_WIDE_INT)
894 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
895 else
897 high = 0;
898 if (prec < HOST_BITS_PER_WIDE_INT)
899 low &= ~((HOST_WIDE_INT) (-1) << prec);
902 if (high == 0 && low == 0)
903 return 0;
905 return ((high == 0 && (low & (low - 1)) == 0)
906 || (low == 0 && (high & (high - 1)) == 0));
909 /* Return the power of two represented by a tree node known to be a
910 power of two. */
913 tree_log2 (expr)
914 tree expr;
916 int prec;
917 HOST_WIDE_INT high, low;
919 STRIP_NOPS (expr);
921 if (TREE_CODE (expr) == COMPLEX_CST)
922 return tree_log2 (TREE_REALPART (expr));
924 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
925 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
927 high = TREE_INT_CST_HIGH (expr);
928 low = TREE_INT_CST_LOW (expr);
930 /* First clear all bits that are beyond the type's precision in case
931 we've been sign extended. */
933 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
935 else if (prec > HOST_BITS_PER_WIDE_INT)
936 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
937 else
939 high = 0;
940 if (prec < HOST_BITS_PER_WIDE_INT)
941 low &= ~((HOST_WIDE_INT) (-1) << prec);
944 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
945 : exact_log2 (low));
948 /* Similar, but return the largest integer Y such that 2 ** Y is less
949 than or equal to EXPR. */
952 tree_floor_log2 (expr)
953 tree expr;
955 int prec;
956 HOST_WIDE_INT high, low;
958 STRIP_NOPS (expr);
960 if (TREE_CODE (expr) == COMPLEX_CST)
961 return tree_log2 (TREE_REALPART (expr));
963 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
964 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
966 high = TREE_INT_CST_HIGH (expr);
967 low = TREE_INT_CST_LOW (expr);
969 /* First clear all bits that are beyond the type's precision in case
970 we've been sign extended. Ignore if type's precision hasn't been set
971 since what we are doing is setting it. */
973 if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
975 else if (prec > HOST_BITS_PER_WIDE_INT)
976 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
977 else
979 high = 0;
980 if (prec < HOST_BITS_PER_WIDE_INT)
981 low &= ~((HOST_WIDE_INT) (-1) << prec);
984 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
985 : floor_log2 (low));
988 /* Return 1 if EXPR is the real constant zero. */
991 real_zerop (expr)
992 tree expr;
994 STRIP_NOPS (expr);
996 return ((TREE_CODE (expr) == REAL_CST
997 && ! TREE_CONSTANT_OVERFLOW (expr)
998 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0))
999 || (TREE_CODE (expr) == COMPLEX_CST
1000 && real_zerop (TREE_REALPART (expr))
1001 && real_zerop (TREE_IMAGPART (expr))));
1004 /* Return 1 if EXPR is the real constant one in real or complex form. */
1007 real_onep (expr)
1008 tree expr;
1010 STRIP_NOPS (expr);
1012 return ((TREE_CODE (expr) == REAL_CST
1013 && ! TREE_CONSTANT_OVERFLOW (expr)
1014 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1))
1015 || (TREE_CODE (expr) == COMPLEX_CST
1016 && real_onep (TREE_REALPART (expr))
1017 && real_zerop (TREE_IMAGPART (expr))));
1020 /* Return 1 if EXPR is the real constant two. */
1023 real_twop (expr)
1024 tree expr;
1026 STRIP_NOPS (expr);
1028 return ((TREE_CODE (expr) == REAL_CST
1029 && ! TREE_CONSTANT_OVERFLOW (expr)
1030 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2))
1031 || (TREE_CODE (expr) == COMPLEX_CST
1032 && real_twop (TREE_REALPART (expr))
1033 && real_zerop (TREE_IMAGPART (expr))));
1036 /* Nonzero if EXP is a constant or a cast of a constant. */
1039 really_constant_p (exp)
1040 tree exp;
1042 /* This is not quite the same as STRIP_NOPS. It does more. */
1043 while (TREE_CODE (exp) == NOP_EXPR
1044 || TREE_CODE (exp) == CONVERT_EXPR
1045 || TREE_CODE (exp) == NON_LVALUE_EXPR)
1046 exp = TREE_OPERAND (exp, 0);
1047 return TREE_CONSTANT (exp);
1050 /* Return first list element whose TREE_VALUE is ELEM.
1051 Return 0 if ELEM is not in LIST. */
1053 tree
1054 value_member (elem, list)
1055 tree elem, list;
1057 while (list)
1059 if (elem == TREE_VALUE (list))
1060 return list;
1061 list = TREE_CHAIN (list);
1063 return NULL_TREE;
1066 /* Return first list element whose TREE_PURPOSE is ELEM.
1067 Return 0 if ELEM is not in LIST. */
1069 tree
1070 purpose_member (elem, list)
1071 tree elem, list;
1073 while (list)
1075 if (elem == TREE_PURPOSE (list))
1076 return list;
1077 list = TREE_CHAIN (list);
1079 return NULL_TREE;
1082 /* Return first list element whose BINFO_TYPE is ELEM.
1083 Return 0 if ELEM is not in LIST. */
1085 tree
1086 binfo_member (elem, list)
1087 tree elem, list;
1089 while (list)
1091 if (elem == BINFO_TYPE (list))
1092 return list;
1093 list = TREE_CHAIN (list);
1095 return NULL_TREE;
1098 /* Return nonzero if ELEM is part of the chain CHAIN. */
1101 chain_member (elem, chain)
1102 tree elem, chain;
1104 while (chain)
1106 if (elem == chain)
1107 return 1;
1108 chain = TREE_CHAIN (chain);
1111 return 0;
1114 /* Return nonzero if ELEM is equal to TREE_VALUE (CHAIN) for any piece of
1115 chain CHAIN. This and the next function are currently unused, but
1116 are retained for completeness. */
1119 chain_member_value (elem, chain)
1120 tree elem, chain;
1122 while (chain)
1124 if (elem == TREE_VALUE (chain))
1125 return 1;
1126 chain = TREE_CHAIN (chain);
1129 return 0;
1132 /* Return nonzero if ELEM is equal to TREE_PURPOSE (CHAIN)
1133 for any piece of chain CHAIN. */
1136 chain_member_purpose (elem, chain)
1137 tree elem, chain;
1139 while (chain)
1141 if (elem == TREE_PURPOSE (chain))
1142 return 1;
1143 chain = TREE_CHAIN (chain);
1146 return 0;
1149 /* Return the length of a chain of nodes chained through TREE_CHAIN.
1150 We expect a null pointer to mark the end of the chain.
1151 This is the Lisp primitive `length'. */
1154 list_length (t)
1155 tree t;
1157 register tree tail;
1158 register int len = 0;
1160 for (tail = t; tail; tail = TREE_CHAIN (tail))
1161 len++;
1163 return len;
1166 /* Returns the number of FIELD_DECLs in TYPE. */
1169 fields_length (type)
1170 tree type;
1172 tree t = TYPE_FIELDS (type);
1173 int count = 0;
1175 for (; t; t = TREE_CHAIN (t))
1176 if (TREE_CODE (t) == FIELD_DECL)
1177 ++count;
1179 return count;
1182 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
1183 by modifying the last node in chain 1 to point to chain 2.
1184 This is the Lisp primitive `nconc'. */
1186 tree
1187 chainon (op1, op2)
1188 tree op1, op2;
1191 if (op1)
1193 register tree t1;
1194 #ifdef ENABLE_TREE_CHECKING
1195 register tree t2;
1196 #endif
1198 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
1200 TREE_CHAIN (t1) = op2;
1201 #ifdef ENABLE_TREE_CHECKING
1202 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
1203 if (t2 == t1)
1204 abort (); /* Circularity created. */
1205 #endif
1206 return op1;
1208 else
1209 return op2;
1212 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
1214 tree
1215 tree_last (chain)
1216 register tree chain;
1218 register tree next;
1219 if (chain)
1220 while ((next = TREE_CHAIN (chain)))
1221 chain = next;
1222 return chain;
1225 /* Reverse the order of elements in the chain T,
1226 and return the new head of the chain (old last element). */
1228 tree
1229 nreverse (t)
1230 tree t;
1232 register tree prev = 0, decl, next;
1233 for (decl = t; decl; decl = next)
1235 next = TREE_CHAIN (decl);
1236 TREE_CHAIN (decl) = prev;
1237 prev = decl;
1239 return prev;
1242 /* Given a chain CHAIN of tree nodes,
1243 construct and return a list of those nodes. */
1245 tree
1246 listify (chain)
1247 tree chain;
1249 tree result = NULL_TREE;
1250 tree in_tail = chain;
1251 tree out_tail = NULL_TREE;
1253 while (in_tail)
1255 tree next = tree_cons (NULL_TREE, in_tail, NULL_TREE);
1256 if (out_tail)
1257 TREE_CHAIN (out_tail) = next;
1258 else
1259 result = next;
1260 out_tail = next;
1261 in_tail = TREE_CHAIN (in_tail);
1264 return result;
1267 /* Return a newly created TREE_LIST node whose
1268 purpose and value fields are PARM and VALUE. */
1270 tree
1271 build_tree_list (parm, value)
1272 tree parm, value;
1274 register tree t = make_node (TREE_LIST);
1275 TREE_PURPOSE (t) = parm;
1276 TREE_VALUE (t) = value;
1277 return t;
1280 /* Return a newly created TREE_LIST node whose
1281 purpose and value fields are PARM and VALUE
1282 and whose TREE_CHAIN is CHAIN. */
1284 tree
1285 tree_cons (purpose, value, chain)
1286 tree purpose, value, chain;
1288 register tree node;
1290 node = ggc_alloc_tree (sizeof (struct tree_list));
1292 memset (node, 0, sizeof (struct tree_common));
1294 #ifdef GATHER_STATISTICS
1295 tree_node_counts[(int) x_kind]++;
1296 tree_node_sizes[(int) x_kind] += sizeof (struct tree_list);
1297 #endif
1299 TREE_SET_CODE (node, TREE_LIST);
1300 TREE_CHAIN (node) = chain;
1301 TREE_PURPOSE (node) = purpose;
1302 TREE_VALUE (node) = value;
1303 return node;
1307 /* Return the size nominally occupied by an object of type TYPE
1308 when it resides in memory. The value is measured in units of bytes,
1309 and its data type is that normally used for type sizes
1310 (which is the first type created by make_signed_type or
1311 make_unsigned_type). */
1313 tree
1314 size_in_bytes (type)
1315 tree type;
1317 tree t;
1319 if (type == error_mark_node)
1320 return integer_zero_node;
1322 type = TYPE_MAIN_VARIANT (type);
1323 t = TYPE_SIZE_UNIT (type);
1325 if (t == 0)
1327 incomplete_type_error (NULL_TREE, type);
1328 return size_zero_node;
1331 if (TREE_CODE (t) == INTEGER_CST)
1332 force_fit_type (t, 0);
1334 return t;
1337 /* Return the size of TYPE (in bytes) as a wide integer
1338 or return -1 if the size can vary or is larger than an integer. */
1340 HOST_WIDE_INT
1341 int_size_in_bytes (type)
1342 tree type;
1344 tree t;
1346 if (type == error_mark_node)
1347 return 0;
1349 type = TYPE_MAIN_VARIANT (type);
1350 t = TYPE_SIZE_UNIT (type);
1351 if (t == 0
1352 || TREE_CODE (t) != INTEGER_CST
1353 || TREE_OVERFLOW (t)
1354 || TREE_INT_CST_HIGH (t) != 0
1355 /* If the result would appear negative, it's too big to represent. */
1356 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
1357 return -1;
1359 return TREE_INT_CST_LOW (t);
1362 /* Return the bit position of FIELD, in bits from the start of the record.
1363 This is a tree of type bitsizetype. */
1365 tree
1366 bit_position (field)
1367 tree field;
1370 return bit_from_pos (DECL_FIELD_OFFSET (field),
1371 DECL_FIELD_BIT_OFFSET (field));
1374 /* Likewise, but return as an integer. Abort if it cannot be represented
1375 in that way (since it could be a signed value, we don't have the option
1376 of returning -1 like int_size_in_byte can. */
1378 HOST_WIDE_INT
1379 int_bit_position (field)
1380 tree field;
1382 return tree_low_cst (bit_position (field), 0);
1385 /* Return the byte position of FIELD, in bytes from the start of the record.
1386 This is a tree of type sizetype. */
1388 tree
1389 byte_position (field)
1390 tree field;
1392 return byte_from_pos (DECL_FIELD_OFFSET (field),
1393 DECL_FIELD_BIT_OFFSET (field));
1396 /* Likewise, but return as an integer. Abort if it cannot be represented
1397 in that way (since it could be a signed value, we don't have the option
1398 of returning -1 like int_size_in_byte can. */
1400 HOST_WIDE_INT
1401 int_byte_position (field)
1402 tree field;
1404 return tree_low_cst (byte_position (field), 0);
1407 /* Return the strictest alignment, in bits, that T is known to have. */
1409 unsigned int
1410 expr_align (t)
1411 tree t;
1413 unsigned int align0, align1;
1415 switch (TREE_CODE (t))
1417 case NOP_EXPR: case CONVERT_EXPR: case NON_LVALUE_EXPR:
1418 /* If we have conversions, we know that the alignment of the
1419 object must meet each of the alignments of the types. */
1420 align0 = expr_align (TREE_OPERAND (t, 0));
1421 align1 = TYPE_ALIGN (TREE_TYPE (t));
1422 return MAX (align0, align1);
1424 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
1425 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
1426 case WITH_RECORD_EXPR: case CLEANUP_POINT_EXPR: case UNSAVE_EXPR:
1427 /* These don't change the alignment of an object. */
1428 return expr_align (TREE_OPERAND (t, 0));
1430 case COND_EXPR:
1431 /* The best we can do is say that the alignment is the least aligned
1432 of the two arms. */
1433 align0 = expr_align (TREE_OPERAND (t, 1));
1434 align1 = expr_align (TREE_OPERAND (t, 2));
1435 return MIN (align0, align1);
1437 case LABEL_DECL: case CONST_DECL:
1438 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
1439 if (DECL_ALIGN (t) != 0)
1440 return DECL_ALIGN (t);
1441 break;
1443 case FUNCTION_DECL:
1444 return FUNCTION_BOUNDARY;
1446 default:
1447 break;
1450 /* Otherwise take the alignment from that of the type. */
1451 return TYPE_ALIGN (TREE_TYPE (t));
1454 /* Return, as a tree node, the number of elements for TYPE (which is an
1455 ARRAY_TYPE) minus one. This counts only elements of the top array. */
1457 tree
1458 array_type_nelts (type)
1459 tree type;
1461 tree index_type, min, max;
1463 /* If they did it with unspecified bounds, then we should have already
1464 given an error about it before we got here. */
1465 if (! TYPE_DOMAIN (type))
1466 return error_mark_node;
1468 index_type = TYPE_DOMAIN (type);
1469 min = TYPE_MIN_VALUE (index_type);
1470 max = TYPE_MAX_VALUE (index_type);
1472 return (integer_zerop (min)
1473 ? max
1474 : fold (build (MINUS_EXPR, TREE_TYPE (max), max, min)));
1477 /* Return nonzero if arg is static -- a reference to an object in
1478 static storage. This is not the same as the C meaning of `static'. */
1481 staticp (arg)
1482 tree arg;
1484 switch (TREE_CODE (arg))
1486 case FUNCTION_DECL:
1487 /* Nested functions aren't static, since taking their address
1488 involves a trampoline. */
1489 return (decl_function_context (arg) == 0 || DECL_NO_STATIC_CHAIN (arg))
1490 && ! DECL_NON_ADDR_CONST_P (arg);
1492 case VAR_DECL:
1493 return (TREE_STATIC (arg) || DECL_EXTERNAL (arg))
1494 && ! DECL_NON_ADDR_CONST_P (arg);
1496 case CONSTRUCTOR:
1497 return TREE_STATIC (arg);
1499 case LABEL_DECL:
1500 case STRING_CST:
1501 return 1;
1503 /* If we are referencing a bitfield, we can't evaluate an
1504 ADDR_EXPR at compile time and so it isn't a constant. */
1505 case COMPONENT_REF:
1506 return (! DECL_BIT_FIELD (TREE_OPERAND (arg, 1))
1507 && staticp (TREE_OPERAND (arg, 0)));
1509 case BIT_FIELD_REF:
1510 return 0;
1512 #if 0
1513 /* This case is technically correct, but results in setting
1514 TREE_CONSTANT on ADDR_EXPRs that cannot be evaluated at
1515 compile time. */
1516 case INDIRECT_REF:
1517 return TREE_CONSTANT (TREE_OPERAND (arg, 0));
1518 #endif
1520 case ARRAY_REF:
1521 case ARRAY_RANGE_REF:
1522 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
1523 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
1524 return staticp (TREE_OPERAND (arg, 0));
1526 default:
1527 return 0;
1531 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
1532 Do this to any expression which may be used in more than one place,
1533 but must be evaluated only once.
1535 Normally, expand_expr would reevaluate the expression each time.
1536 Calling save_expr produces something that is evaluated and recorded
1537 the first time expand_expr is called on it. Subsequent calls to
1538 expand_expr just reuse the recorded value.
1540 The call to expand_expr that generates code that actually computes
1541 the value is the first call *at compile time*. Subsequent calls
1542 *at compile time* generate code to use the saved value.
1543 This produces correct result provided that *at run time* control
1544 always flows through the insns made by the first expand_expr
1545 before reaching the other places where the save_expr was evaluated.
1546 You, the caller of save_expr, must make sure this is so.
1548 Constants, and certain read-only nodes, are returned with no
1549 SAVE_EXPR because that is safe. Expressions containing placeholders
1550 are not touched; see tree.def for an explanation of what these
1551 are used for. */
1553 tree
1554 save_expr (expr)
1555 tree expr;
1557 register tree t = fold (expr);
1559 /* We don't care about whether this can be used as an lvalue in this
1560 context. */
1561 while (TREE_CODE (t) == NON_LVALUE_EXPR)
1562 t = TREE_OPERAND (t, 0);
1564 /* If the tree evaluates to a constant, then we don't want to hide that
1565 fact (i.e. this allows further folding, and direct checks for constants).
1566 However, a read-only object that has side effects cannot be bypassed.
1567 Since it is no problem to reevaluate literals, we just return the
1568 literal node. */
1570 if (TREE_CONSTANT (t) || (TREE_READONLY (t) && ! TREE_SIDE_EFFECTS (t))
1571 || TREE_CODE (t) == SAVE_EXPR || TREE_CODE (t) == ERROR_MARK)
1572 return t;
1574 /* If T contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
1575 it means that the size or offset of some field of an object depends on
1576 the value within another field.
1578 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
1579 and some variable since it would then need to be both evaluated once and
1580 evaluated more than once. Front-ends must assure this case cannot
1581 happen by surrounding any such subexpressions in their own SAVE_EXPR
1582 and forcing evaluation at the proper time. */
1583 if (contains_placeholder_p (t))
1584 return t;
1586 t = build (SAVE_EXPR, TREE_TYPE (expr), t, current_function_decl, NULL_TREE);
1588 /* This expression might be placed ahead of a jump to ensure that the
1589 value was computed on both sides of the jump. So make sure it isn't
1590 eliminated as dead. */
1591 TREE_SIDE_EFFECTS (t) = 1;
1592 TREE_READONLY (t) = 1;
1593 return t;
1596 /* Arrange for an expression to be expanded multiple independent
1597 times. This is useful for cleanup actions, as the backend can
1598 expand them multiple times in different places. */
1600 tree
1601 unsave_expr (expr)
1602 tree expr;
1604 tree t;
1606 /* If this is already protected, no sense in protecting it again. */
1607 if (TREE_CODE (expr) == UNSAVE_EXPR)
1608 return expr;
1610 t = build1 (UNSAVE_EXPR, TREE_TYPE (expr), expr);
1611 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (expr);
1612 return t;
1615 /* Returns the index of the first non-tree operand for CODE, or the number
1616 of operands if all are trees. */
1619 first_rtl_op (code)
1620 enum tree_code code;
1622 switch (code)
1624 case SAVE_EXPR:
1625 return 2;
1626 case GOTO_SUBROUTINE_EXPR:
1627 case RTL_EXPR:
1628 return 0;
1629 case WITH_CLEANUP_EXPR:
1630 /* Should be defined to be 2. */
1631 return 1;
1632 case METHOD_CALL_EXPR:
1633 return 3;
1634 default:
1635 return TREE_CODE_LENGTH (code);
1639 /* Perform any modifications to EXPR required when it is unsaved. Does
1640 not recurse into EXPR's subtrees. */
1642 void
1643 unsave_expr_1 (expr)
1644 tree expr;
1646 switch (TREE_CODE (expr))
1648 case SAVE_EXPR:
1649 if (! SAVE_EXPR_PERSISTENT_P (expr))
1650 SAVE_EXPR_RTL (expr) = 0;
1651 break;
1653 case TARGET_EXPR:
1654 /* Don't mess with a TARGET_EXPR that hasn't been expanded.
1655 It's OK for this to happen if it was part of a subtree that
1656 isn't immediately expanded, such as operand 2 of another
1657 TARGET_EXPR. */
1658 if (TREE_OPERAND (expr, 1))
1659 break;
1661 TREE_OPERAND (expr, 1) = TREE_OPERAND (expr, 3);
1662 TREE_OPERAND (expr, 3) = NULL_TREE;
1663 break;
1665 case RTL_EXPR:
1666 /* I don't yet know how to emit a sequence multiple times. */
1667 if (RTL_EXPR_SEQUENCE (expr) != 0)
1668 abort ();
1669 break;
1671 default:
1672 if (lang_unsave_expr_now != 0)
1673 (*lang_unsave_expr_now) (expr);
1674 break;
1678 /* Helper function for unsave_expr_now. */
1680 static void
1681 unsave_expr_now_r (expr)
1682 tree expr;
1684 enum tree_code code;
1686 /* There's nothing to do for NULL_TREE. */
1687 if (expr == 0)
1688 return;
1690 unsave_expr_1 (expr);
1692 code = TREE_CODE (expr);
1693 switch (TREE_CODE_CLASS (code))
1695 case 'c': /* a constant */
1696 case 't': /* a type node */
1697 case 'd': /* A decl node */
1698 case 'b': /* A block node */
1699 break;
1701 case 'x': /* miscellaneous: e.g., identifier, TREE_LIST or ERROR_MARK. */
1702 if (code == TREE_LIST)
1704 unsave_expr_now_r (TREE_VALUE (expr));
1705 unsave_expr_now_r (TREE_CHAIN (expr));
1707 break;
1709 case 'e': /* an expression */
1710 case 'r': /* a reference */
1711 case 's': /* an expression with side effects */
1712 case '<': /* a comparison expression */
1713 case '2': /* a binary arithmetic expression */
1714 case '1': /* a unary arithmetic expression */
1716 int i;
1718 for (i = first_rtl_op (code) - 1; i >= 0; i--)
1719 unsave_expr_now_r (TREE_OPERAND (expr, i));
1721 break;
1723 default:
1724 abort ();
1728 /* Modify a tree in place so that all the evaluate only once things
1729 are cleared out. Return the EXPR given. */
1731 tree
1732 unsave_expr_now (expr)
1733 tree expr;
1735 if (lang_unsave!= 0)
1736 (*lang_unsave) (&expr);
1737 else
1738 unsave_expr_now_r (expr);
1740 return expr;
1743 /* Return 0 if it is safe to evaluate EXPR multiple times,
1744 return 1 if it is safe if EXPR is unsaved afterward, or
1745 return 2 if it is completely unsafe.
1747 This assumes that CALL_EXPRs and TARGET_EXPRs are never replicated in
1748 an expression tree, so that it safe to unsave them and the surrounding
1749 context will be correct.
1751 SAVE_EXPRs basically *only* appear replicated in an expression tree,
1752 occasionally across the whole of a function. It is therefore only
1753 safe to unsave a SAVE_EXPR if you know that all occurrences appear
1754 below the UNSAVE_EXPR.
1756 RTL_EXPRs consume their rtl during evaluation. It is therefore
1757 never possible to unsave them. */
1760 unsafe_for_reeval (expr)
1761 tree expr;
1763 int unsafeness = 0;
1764 enum tree_code code;
1765 int i, tmp;
1766 tree exp;
1767 int first_rtl;
1769 if (expr == NULL_TREE)
1770 return 1;
1772 code = TREE_CODE (expr);
1773 first_rtl = first_rtl_op (code);
1775 switch (code)
1777 case SAVE_EXPR:
1778 case RTL_EXPR:
1779 return 2;
1781 case TREE_LIST:
1782 for (exp = expr; exp != 0; exp = TREE_CHAIN (exp))
1784 tmp = unsafe_for_reeval (TREE_VALUE (exp));
1785 unsafeness = MAX (tmp, unsafeness);
1788 return unsafeness;
1790 case CALL_EXPR:
1791 tmp = unsafe_for_reeval (TREE_OPERAND (expr, 1));
1792 return MAX (tmp, 1);
1794 case TARGET_EXPR:
1795 unsafeness = 1;
1796 break;
1798 default:
1799 if (lang_unsafe_for_reeval != 0)
1801 tmp = (*lang_unsafe_for_reeval) (expr);
1802 if (tmp >= 0)
1803 return tmp;
1805 break;
1808 switch (TREE_CODE_CLASS (code))
1810 case 'c': /* a constant */
1811 case 't': /* a type node */
1812 case 'x': /* something random, like an identifier or an ERROR_MARK. */
1813 case 'd': /* A decl node */
1814 case 'b': /* A block node */
1815 return 0;
1817 case 'e': /* an expression */
1818 case 'r': /* a reference */
1819 case 's': /* an expression with side effects */
1820 case '<': /* a comparison expression */
1821 case '2': /* a binary arithmetic expression */
1822 case '1': /* a unary arithmetic expression */
1823 for (i = first_rtl - 1; i >= 0; i--)
1825 tmp = unsafe_for_reeval (TREE_OPERAND (expr, i));
1826 unsafeness = MAX (tmp, unsafeness);
1829 return unsafeness;
1831 default:
1832 return 2;
1836 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
1837 or offset that depends on a field within a record. */
1840 contains_placeholder_p (exp)
1841 tree exp;
1843 register enum tree_code code;
1844 int result;
1846 if (!exp)
1847 return 0;
1849 /* If we have a WITH_RECORD_EXPR, it "cancels" any PLACEHOLDER_EXPR
1850 in it since it is supplying a value for it. */
1851 code = TREE_CODE (exp);
1852 if (code == WITH_RECORD_EXPR)
1853 return 0;
1854 else if (code == PLACEHOLDER_EXPR)
1855 return 1;
1857 switch (TREE_CODE_CLASS (code))
1859 case 'r':
1860 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
1861 position computations since they will be converted into a
1862 WITH_RECORD_EXPR involving the reference, which will assume
1863 here will be valid. */
1864 return contains_placeholder_p (TREE_OPERAND (exp, 0));
1866 case 'x':
1867 if (code == TREE_LIST)
1868 return (contains_placeholder_p (TREE_VALUE (exp))
1869 || (TREE_CHAIN (exp) != 0
1870 && contains_placeholder_p (TREE_CHAIN (exp))));
1871 break;
1873 case '1':
1874 case '2': case '<':
1875 case 'e':
1876 switch (code)
1878 case COMPOUND_EXPR:
1879 /* Ignoring the first operand isn't quite right, but works best. */
1880 return contains_placeholder_p (TREE_OPERAND (exp, 1));
1882 case RTL_EXPR:
1883 case CONSTRUCTOR:
1884 return 0;
1886 case COND_EXPR:
1887 return (contains_placeholder_p (TREE_OPERAND (exp, 0))
1888 || contains_placeholder_p (TREE_OPERAND (exp, 1))
1889 || contains_placeholder_p (TREE_OPERAND (exp, 2)));
1891 case SAVE_EXPR:
1892 /* If we already know this doesn't have a placeholder, don't
1893 check again. */
1894 if (SAVE_EXPR_NOPLACEHOLDER (exp) || SAVE_EXPR_RTL (exp) != 0)
1895 return 0;
1897 SAVE_EXPR_NOPLACEHOLDER (exp) = 1;
1898 result = contains_placeholder_p (TREE_OPERAND (exp, 0));
1899 if (result)
1900 SAVE_EXPR_NOPLACEHOLDER (exp) = 0;
1902 return result;
1904 case CALL_EXPR:
1905 return (TREE_OPERAND (exp, 1) != 0
1906 && contains_placeholder_p (TREE_OPERAND (exp, 1)));
1908 default:
1909 break;
1912 switch (TREE_CODE_LENGTH (code))
1914 case 1:
1915 return contains_placeholder_p (TREE_OPERAND (exp, 0));
1916 case 2:
1917 return (contains_placeholder_p (TREE_OPERAND (exp, 0))
1918 || contains_placeholder_p (TREE_OPERAND (exp, 1)));
1919 default:
1920 return 0;
1923 default:
1924 return 0;
1926 return 0;
1929 /* Return 1 if EXP contains any expressions that produce cleanups for an
1930 outer scope to deal with. Used by fold. */
1933 has_cleanups (exp)
1934 tree exp;
1936 int i, nops, cmp;
1938 if (! TREE_SIDE_EFFECTS (exp))
1939 return 0;
1941 switch (TREE_CODE (exp))
1943 case TARGET_EXPR:
1944 case GOTO_SUBROUTINE_EXPR:
1945 case WITH_CLEANUP_EXPR:
1946 return 1;
1948 case CLEANUP_POINT_EXPR:
1949 return 0;
1951 case CALL_EXPR:
1952 for (exp = TREE_OPERAND (exp, 1); exp; exp = TREE_CHAIN (exp))
1954 cmp = has_cleanups (TREE_VALUE (exp));
1955 if (cmp)
1956 return cmp;
1958 return 0;
1960 default:
1961 break;
1964 /* This general rule works for most tree codes. All exceptions should be
1965 handled above. If this is a language-specific tree code, we can't
1966 trust what might be in the operand, so say we don't know
1967 the situation. */
1968 if ((int) TREE_CODE (exp) >= (int) LAST_AND_UNUSED_TREE_CODE)
1969 return -1;
1971 nops = first_rtl_op (TREE_CODE (exp));
1972 for (i = 0; i < nops; i++)
1973 if (TREE_OPERAND (exp, i) != 0)
1975 int type = TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, i)));
1976 if (type == 'e' || type == '<' || type == '1' || type == '2'
1977 || type == 'r' || type == 's')
1979 cmp = has_cleanups (TREE_OPERAND (exp, i));
1980 if (cmp)
1981 return cmp;
1985 return 0;
1988 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
1989 return a tree with all occurrences of references to F in a
1990 PLACEHOLDER_EXPR replaced by R. Note that we assume here that EXP
1991 contains only arithmetic expressions or a CALL_EXPR with a
1992 PLACEHOLDER_EXPR occurring only in its arglist. */
1994 tree
1995 substitute_in_expr (exp, f, r)
1996 tree exp;
1997 tree f;
1998 tree r;
2000 enum tree_code code = TREE_CODE (exp);
2001 tree op0, op1, op2;
2002 tree new;
2003 tree inner;
2005 switch (TREE_CODE_CLASS (code))
2007 case 'c':
2008 case 'd':
2009 return exp;
2011 case 'x':
2012 if (code == PLACEHOLDER_EXPR)
2013 return exp;
2014 else if (code == TREE_LIST)
2016 op0 = (TREE_CHAIN (exp) == 0
2017 ? 0 : substitute_in_expr (TREE_CHAIN (exp), f, r));
2018 op1 = substitute_in_expr (TREE_VALUE (exp), f, r);
2019 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
2020 return exp;
2022 return tree_cons (TREE_PURPOSE (exp), op1, op0);
2025 abort ();
2027 case '1':
2028 case '2':
2029 case '<':
2030 case 'e':
2031 switch (TREE_CODE_LENGTH (code))
2033 case 1:
2034 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2035 if (op0 == TREE_OPERAND (exp, 0))
2036 return exp;
2038 if (code == NON_LVALUE_EXPR)
2039 return op0;
2041 new = fold (build1 (code, TREE_TYPE (exp), op0));
2042 break;
2044 case 2:
2045 /* An RTL_EXPR cannot contain a PLACEHOLDER_EXPR; a CONSTRUCTOR
2046 could, but we don't support it. */
2047 if (code == RTL_EXPR)
2048 return exp;
2049 else if (code == CONSTRUCTOR)
2050 abort ();
2052 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2053 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2054 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2055 return exp;
2057 new = fold (build (code, TREE_TYPE (exp), op0, op1));
2058 break;
2060 case 3:
2061 /* It cannot be that anything inside a SAVE_EXPR contains a
2062 PLACEHOLDER_EXPR. */
2063 if (code == SAVE_EXPR)
2064 return exp;
2066 else if (code == CALL_EXPR)
2068 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2069 if (op1 == TREE_OPERAND (exp, 1))
2070 return exp;
2072 return build (code, TREE_TYPE (exp),
2073 TREE_OPERAND (exp, 0), op1, NULL_TREE);
2076 else if (code != COND_EXPR)
2077 abort ();
2079 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2080 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2081 op2 = substitute_in_expr (TREE_OPERAND (exp, 2), f, r);
2082 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2083 && op2 == TREE_OPERAND (exp, 2))
2084 return exp;
2086 new = fold (build (code, TREE_TYPE (exp), op0, op1, op2));
2087 break;
2089 default:
2090 abort ();
2093 break;
2095 case 'r':
2096 switch (code)
2098 case COMPONENT_REF:
2099 /* If this expression is getting a value from a PLACEHOLDER_EXPR
2100 and it is the right field, replace it with R. */
2101 for (inner = TREE_OPERAND (exp, 0);
2102 TREE_CODE_CLASS (TREE_CODE (inner)) == 'r';
2103 inner = TREE_OPERAND (inner, 0))
2105 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2106 && TREE_OPERAND (exp, 1) == f)
2107 return r;
2109 /* If this expression hasn't been completed let, leave it
2110 alone. */
2111 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2112 && TREE_TYPE (inner) == 0)
2113 return exp;
2115 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2116 if (op0 == TREE_OPERAND (exp, 0))
2117 return exp;
2119 new = fold (build (code, TREE_TYPE (exp), op0,
2120 TREE_OPERAND (exp, 1)));
2121 break;
2123 case BIT_FIELD_REF:
2124 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2125 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2126 op2 = substitute_in_expr (TREE_OPERAND (exp, 2), f, r);
2127 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2128 && op2 == TREE_OPERAND (exp, 2))
2129 return exp;
2131 new = fold (build (code, TREE_TYPE (exp), op0, op1, op2));
2132 break;
2134 case INDIRECT_REF:
2135 case BUFFER_REF:
2136 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2137 if (op0 == TREE_OPERAND (exp, 0))
2138 return exp;
2140 new = fold (build1 (code, TREE_TYPE (exp), op0));
2141 break;
2143 default:
2144 abort ();
2146 break;
2148 default:
2149 abort ();
2152 TREE_READONLY (new) = TREE_READONLY (exp);
2153 return new;
2156 /* Stabilize a reference so that we can use it any number of times
2157 without causing its operands to be evaluated more than once.
2158 Returns the stabilized reference. This works by means of save_expr,
2159 so see the caveats in the comments about save_expr.
2161 Also allows conversion expressions whose operands are references.
2162 Any other kind of expression is returned unchanged. */
2164 tree
2165 stabilize_reference (ref)
2166 tree ref;
2168 register tree result;
2169 register enum tree_code code = TREE_CODE (ref);
2171 switch (code)
2173 case VAR_DECL:
2174 case PARM_DECL:
2175 case RESULT_DECL:
2176 /* No action is needed in this case. */
2177 return ref;
2179 case NOP_EXPR:
2180 case CONVERT_EXPR:
2181 case FLOAT_EXPR:
2182 case FIX_TRUNC_EXPR:
2183 case FIX_FLOOR_EXPR:
2184 case FIX_ROUND_EXPR:
2185 case FIX_CEIL_EXPR:
2186 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
2187 break;
2189 case INDIRECT_REF:
2190 result = build_nt (INDIRECT_REF,
2191 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
2192 break;
2194 case COMPONENT_REF:
2195 result = build_nt (COMPONENT_REF,
2196 stabilize_reference (TREE_OPERAND (ref, 0)),
2197 TREE_OPERAND (ref, 1));
2198 break;
2200 case BIT_FIELD_REF:
2201 result = build_nt (BIT_FIELD_REF,
2202 stabilize_reference (TREE_OPERAND (ref, 0)),
2203 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2204 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
2205 break;
2207 case ARRAY_REF:
2208 result = build_nt (ARRAY_REF,
2209 stabilize_reference (TREE_OPERAND (ref, 0)),
2210 stabilize_reference_1 (TREE_OPERAND (ref, 1)));
2211 break;
2213 case ARRAY_RANGE_REF:
2214 result = build_nt (ARRAY_RANGE_REF,
2215 stabilize_reference (TREE_OPERAND (ref, 0)),
2216 stabilize_reference_1 (TREE_OPERAND (ref, 1)));
2217 break;
2219 case COMPOUND_EXPR:
2220 /* We cannot wrap the first expression in a SAVE_EXPR, as then
2221 it wouldn't be ignored. This matters when dealing with
2222 volatiles. */
2223 return stabilize_reference_1 (ref);
2225 case RTL_EXPR:
2226 result = build1 (INDIRECT_REF, TREE_TYPE (ref),
2227 save_expr (build1 (ADDR_EXPR,
2228 build_pointer_type (TREE_TYPE (ref)),
2229 ref)));
2230 break;
2232 /* If arg isn't a kind of lvalue we recognize, make no change.
2233 Caller should recognize the error for an invalid lvalue. */
2234 default:
2235 return ref;
2237 case ERROR_MARK:
2238 return error_mark_node;
2241 TREE_TYPE (result) = TREE_TYPE (ref);
2242 TREE_READONLY (result) = TREE_READONLY (ref);
2243 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
2244 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
2246 return result;
2249 /* Subroutine of stabilize_reference; this is called for subtrees of
2250 references. Any expression with side-effects must be put in a SAVE_EXPR
2251 to ensure that it is only evaluated once.
2253 We don't put SAVE_EXPR nodes around everything, because assigning very
2254 simple expressions to temporaries causes us to miss good opportunities
2255 for optimizations. Among other things, the opportunity to fold in the
2256 addition of a constant into an addressing mode often gets lost, e.g.
2257 "y[i+1] += x;". In general, we take the approach that we should not make
2258 an assignment unless we are forced into it - i.e., that any non-side effect
2259 operator should be allowed, and that cse should take care of coalescing
2260 multiple utterances of the same expression should that prove fruitful. */
2262 tree
2263 stabilize_reference_1 (e)
2264 tree e;
2266 register tree result;
2267 register enum tree_code code = TREE_CODE (e);
2269 /* We cannot ignore const expressions because it might be a reference
2270 to a const array but whose index contains side-effects. But we can
2271 ignore things that are actual constant or that already have been
2272 handled by this function. */
2274 if (TREE_CONSTANT (e) || code == SAVE_EXPR)
2275 return e;
2277 switch (TREE_CODE_CLASS (code))
2279 case 'x':
2280 case 't':
2281 case 'd':
2282 case 'b':
2283 case '<':
2284 case 's':
2285 case 'e':
2286 case 'r':
2287 /* If the expression has side-effects, then encase it in a SAVE_EXPR
2288 so that it will only be evaluated once. */
2289 /* The reference (r) and comparison (<) classes could be handled as
2290 below, but it is generally faster to only evaluate them once. */
2291 if (TREE_SIDE_EFFECTS (e))
2292 return save_expr (e);
2293 return e;
2295 case 'c':
2296 /* Constants need no processing. In fact, we should never reach
2297 here. */
2298 return e;
2300 case '2':
2301 /* Division is slow and tends to be compiled with jumps,
2302 especially the division by powers of 2 that is often
2303 found inside of an array reference. So do it just once. */
2304 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
2305 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
2306 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
2307 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
2308 return save_expr (e);
2309 /* Recursively stabilize each operand. */
2310 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
2311 stabilize_reference_1 (TREE_OPERAND (e, 1)));
2312 break;
2314 case '1':
2315 /* Recursively stabilize each operand. */
2316 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
2317 break;
2319 default:
2320 abort ();
2323 TREE_TYPE (result) = TREE_TYPE (e);
2324 TREE_READONLY (result) = TREE_READONLY (e);
2325 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
2326 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
2328 return result;
2331 /* Low-level constructors for expressions. */
2333 /* Build an expression of code CODE, data type TYPE,
2334 and operands as specified by the arguments ARG1 and following arguments.
2335 Expressions and reference nodes can be created this way.
2336 Constants, decls, types and misc nodes cannot be. */
2338 tree
2339 build VPARAMS ((enum tree_code code, tree tt, ...))
2341 #ifndef ANSI_PROTOTYPES
2342 enum tree_code code;
2343 tree tt;
2344 #endif
2345 va_list p;
2346 register tree t;
2347 register int length;
2348 register int i;
2349 int fro;
2350 int constant;
2352 VA_START (p, tt);
2354 #ifndef ANSI_PROTOTYPES
2355 code = va_arg (p, enum tree_code);
2356 tt = va_arg (p, tree);
2357 #endif
2359 t = make_node (code);
2360 length = TREE_CODE_LENGTH (code);
2361 TREE_TYPE (t) = tt;
2363 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
2364 result based on those same flags for the arguments. But if the
2365 arguments aren't really even `tree' expressions, we shouldn't be trying
2366 to do this. */
2367 fro = first_rtl_op (code);
2369 /* Expressions without side effects may be constant if their
2370 arguments are as well. */
2371 constant = (TREE_CODE_CLASS (code) == '<'
2372 || TREE_CODE_CLASS (code) == '1'
2373 || TREE_CODE_CLASS (code) == '2'
2374 || TREE_CODE_CLASS (code) == 'c');
2376 if (length == 2)
2378 /* This is equivalent to the loop below, but faster. */
2379 register tree arg0 = va_arg (p, tree);
2380 register tree arg1 = va_arg (p, tree);
2382 TREE_OPERAND (t, 0) = arg0;
2383 TREE_OPERAND (t, 1) = arg1;
2384 TREE_READONLY (t) = 1;
2385 if (arg0 && fro > 0)
2387 if (TREE_SIDE_EFFECTS (arg0))
2388 TREE_SIDE_EFFECTS (t) = 1;
2389 if (!TREE_READONLY (arg0))
2390 TREE_READONLY (t) = 0;
2391 if (!TREE_CONSTANT (arg0))
2392 constant = 0;
2395 if (arg1 && fro > 1)
2397 if (TREE_SIDE_EFFECTS (arg1))
2398 TREE_SIDE_EFFECTS (t) = 1;
2399 if (!TREE_READONLY (arg1))
2400 TREE_READONLY (t) = 0;
2401 if (!TREE_CONSTANT (arg1))
2402 constant = 0;
2405 else if (length == 1)
2407 register tree arg0 = va_arg (p, tree);
2409 /* The only one-operand cases we handle here are those with side-effects.
2410 Others are handled with build1. So don't bother checked if the
2411 arg has side-effects since we'll already have set it.
2413 ??? This really should use build1 too. */
2414 if (TREE_CODE_CLASS (code) != 's')
2415 abort ();
2416 TREE_OPERAND (t, 0) = arg0;
2418 else
2420 for (i = 0; i < length; i++)
2422 register tree operand = va_arg (p, tree);
2424 TREE_OPERAND (t, i) = operand;
2425 if (operand && fro > i)
2427 if (TREE_SIDE_EFFECTS (operand))
2428 TREE_SIDE_EFFECTS (t) = 1;
2429 if (!TREE_CONSTANT (operand))
2430 constant = 0;
2434 va_end (p);
2436 TREE_CONSTANT (t) = constant;
2437 return t;
2440 /* Same as above, but only builds for unary operators.
2441 Saves lions share of calls to `build'; cuts down use
2442 of varargs, which is expensive for RISC machines. */
2444 tree
2445 build1 (code, type, node)
2446 enum tree_code code;
2447 tree type;
2448 tree node;
2450 register int length;
2451 #ifdef GATHER_STATISTICS
2452 register tree_node_kind kind;
2453 #endif
2454 register tree t;
2456 #ifdef GATHER_STATISTICS
2457 if (TREE_CODE_CLASS (code) == 'r')
2458 kind = r_kind;
2459 else
2460 kind = e_kind;
2461 #endif
2463 #ifdef ENABLE_CHECKING
2464 if (TREE_CODE_CLASS (code) == '2'
2465 || TREE_CODE_CLASS (code) == '<'
2466 || TREE_CODE_LENGTH (code) != 1)
2467 abort ();
2468 #endif /* ENABLE_CHECKING */
2470 length = sizeof (struct tree_exp);
2472 t = ggc_alloc_tree (length);
2474 memset ((PTR) t, 0, sizeof (struct tree_common));
2476 #ifdef GATHER_STATISTICS
2477 tree_node_counts[(int) kind]++;
2478 tree_node_sizes[(int) kind] += length;
2479 #endif
2481 TREE_SET_CODE (t, code);
2483 TREE_TYPE (t) = type;
2484 TREE_COMPLEXITY (t) = 0;
2485 TREE_OPERAND (t, 0) = node;
2486 if (node && first_rtl_op (code) != 0)
2488 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
2489 TREE_READONLY (t) = TREE_READONLY (node);
2492 switch (code)
2494 case INIT_EXPR:
2495 case MODIFY_EXPR:
2496 case VA_ARG_EXPR:
2497 case RTL_EXPR:
2498 case PREDECREMENT_EXPR:
2499 case PREINCREMENT_EXPR:
2500 case POSTDECREMENT_EXPR:
2501 case POSTINCREMENT_EXPR:
2502 /* All of these have side-effects, no matter what their
2503 operands are. */
2504 TREE_SIDE_EFFECTS (t) = 1;
2505 TREE_READONLY (t) = 0;
2506 break;
2508 default:
2509 if (TREE_CODE_CLASS (code) == '1' && node && TREE_CONSTANT (node))
2510 TREE_CONSTANT (t) = 1;
2511 break;
2514 return t;
2517 /* Similar except don't specify the TREE_TYPE
2518 and leave the TREE_SIDE_EFFECTS as 0.
2519 It is permissible for arguments to be null,
2520 or even garbage if their values do not matter. */
2522 tree
2523 build_nt VPARAMS ((enum tree_code code, ...))
2525 #ifndef ANSI_PROTOTYPES
2526 enum tree_code code;
2527 #endif
2528 va_list p;
2529 register tree t;
2530 register int length;
2531 register int i;
2533 VA_START (p, code);
2535 #ifndef ANSI_PROTOTYPES
2536 code = va_arg (p, enum tree_code);
2537 #endif
2539 t = make_node (code);
2540 length = TREE_CODE_LENGTH (code);
2542 for (i = 0; i < length; i++)
2543 TREE_OPERAND (t, i) = va_arg (p, tree);
2545 va_end (p);
2546 return t;
2549 #if 0
2550 /* Commented out because this wants to be done very
2551 differently. See cp-lex.c. */
2552 tree
2553 build_op_identifier (op1, op2)
2554 tree op1, op2;
2556 register tree t = make_node (OP_IDENTIFIER);
2557 TREE_PURPOSE (t) = op1;
2558 TREE_VALUE (t) = op2;
2559 return t;
2561 #endif
2563 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
2564 We do NOT enter this node in any sort of symbol table.
2566 layout_decl is used to set up the decl's storage layout.
2567 Other slots are initialized to 0 or null pointers. */
2569 tree
2570 build_decl (code, name, type)
2571 enum tree_code code;
2572 tree name, type;
2574 register tree t;
2576 t = make_node (code);
2578 /* if (type == error_mark_node)
2579 type = integer_type_node; */
2580 /* That is not done, deliberately, so that having error_mark_node
2581 as the type can suppress useless errors in the use of this variable. */
2583 DECL_NAME (t) = name;
2584 TREE_TYPE (t) = type;
2586 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
2587 layout_decl (t, 0);
2588 else if (code == FUNCTION_DECL)
2589 DECL_MODE (t) = FUNCTION_MODE;
2591 return t;
2594 /* BLOCK nodes are used to represent the structure of binding contours
2595 and declarations, once those contours have been exited and their contents
2596 compiled. This information is used for outputting debugging info. */
2598 tree
2599 build_block (vars, tags, subblocks, supercontext, chain)
2600 tree vars, tags ATTRIBUTE_UNUSED, subblocks, supercontext, chain;
2602 register tree block = make_node (BLOCK);
2604 BLOCK_VARS (block) = vars;
2605 BLOCK_SUBBLOCKS (block) = subblocks;
2606 BLOCK_SUPERCONTEXT (block) = supercontext;
2607 BLOCK_CHAIN (block) = chain;
2608 return block;
2611 /* EXPR_WITH_FILE_LOCATION are used to keep track of the exact
2612 location where an expression or an identifier were encountered. It
2613 is necessary for languages where the frontend parser will handle
2614 recursively more than one file (Java is one of them). */
2616 tree
2617 build_expr_wfl (node, file, line, col)
2618 tree node;
2619 const char *file;
2620 int line, col;
2622 static const char *last_file = 0;
2623 static tree last_filenode = NULL_TREE;
2624 register tree wfl = make_node (EXPR_WITH_FILE_LOCATION);
2626 EXPR_WFL_NODE (wfl) = node;
2627 EXPR_WFL_SET_LINECOL (wfl, line, col);
2628 if (file != last_file)
2630 last_file = file;
2631 last_filenode = file ? get_identifier (file) : NULL_TREE;
2634 EXPR_WFL_FILENAME_NODE (wfl) = last_filenode;
2635 if (node)
2637 TREE_SIDE_EFFECTS (wfl) = TREE_SIDE_EFFECTS (node);
2638 TREE_TYPE (wfl) = TREE_TYPE (node);
2641 return wfl;
2644 /* Return a declaration like DDECL except that its DECL_MACHINE_ATTRIBUTE
2645 is ATTRIBUTE. */
2647 tree
2648 build_decl_attribute_variant (ddecl, attribute)
2649 tree ddecl, attribute;
2651 DECL_MACHINE_ATTRIBUTES (ddecl) = attribute;
2652 return ddecl;
2655 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
2656 is ATTRIBUTE.
2658 Record such modified types already made so we don't make duplicates. */
2660 tree
2661 build_type_attribute_variant (ttype, attribute)
2662 tree ttype, attribute;
2664 if ( ! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
2666 unsigned int hashcode;
2667 tree ntype;
2669 ntype = copy_node (ttype);
2671 TYPE_POINTER_TO (ntype) = 0;
2672 TYPE_REFERENCE_TO (ntype) = 0;
2673 TYPE_ATTRIBUTES (ntype) = attribute;
2675 /* Create a new main variant of TYPE. */
2676 TYPE_MAIN_VARIANT (ntype) = ntype;
2677 TYPE_NEXT_VARIANT (ntype) = 0;
2678 set_type_quals (ntype, TYPE_UNQUALIFIED);
2680 hashcode = (TYPE_HASH (TREE_CODE (ntype))
2681 + TYPE_HASH (TREE_TYPE (ntype))
2682 + attribute_hash_list (attribute));
2684 switch (TREE_CODE (ntype))
2686 case FUNCTION_TYPE:
2687 hashcode += TYPE_HASH (TYPE_ARG_TYPES (ntype));
2688 break;
2689 case ARRAY_TYPE:
2690 hashcode += TYPE_HASH (TYPE_DOMAIN (ntype));
2691 break;
2692 case INTEGER_TYPE:
2693 hashcode += TYPE_HASH (TYPE_MAX_VALUE (ntype));
2694 break;
2695 case REAL_TYPE:
2696 hashcode += TYPE_HASH (TYPE_PRECISION (ntype));
2697 break;
2698 default:
2699 break;
2702 ntype = type_hash_canon (hashcode, ntype);
2703 ttype = build_qualified_type (ntype, TYPE_QUALS (ttype));
2706 return ttype;
2709 /* Return a 1 if ATTR_NAME and ATTR_ARGS is valid for either declaration DECL
2710 or type TYPE and 0 otherwise. Validity is determined the configuration
2711 macros VALID_MACHINE_DECL_ATTRIBUTE and VALID_MACHINE_TYPE_ATTRIBUTE. */
2714 valid_machine_attribute (attr_name, attr_args, decl, type)
2715 tree attr_name;
2716 tree attr_args ATTRIBUTE_UNUSED;
2717 tree decl ATTRIBUTE_UNUSED;
2718 tree type ATTRIBUTE_UNUSED;
2720 int validated = 0;
2721 #ifdef VALID_MACHINE_DECL_ATTRIBUTE
2722 tree decl_attr_list = decl != 0 ? DECL_MACHINE_ATTRIBUTES (decl) : 0;
2723 #endif
2724 #ifdef VALID_MACHINE_TYPE_ATTRIBUTE
2725 tree type_attr_list = TYPE_ATTRIBUTES (type);
2726 #endif
2728 if (TREE_CODE (attr_name) != IDENTIFIER_NODE)
2729 abort ();
2731 #ifdef VALID_MACHINE_DECL_ATTRIBUTE
2732 if (decl != 0
2733 && VALID_MACHINE_DECL_ATTRIBUTE (decl, decl_attr_list, attr_name,
2734 attr_args))
2736 tree attr = lookup_attribute (IDENTIFIER_POINTER (attr_name),
2737 decl_attr_list);
2739 if (attr != NULL_TREE)
2741 /* Override existing arguments. Declarations are unique so we can
2742 modify this in place. */
2743 TREE_VALUE (attr) = attr_args;
2745 else
2747 decl_attr_list = tree_cons (attr_name, attr_args, decl_attr_list);
2748 decl = build_decl_attribute_variant (decl, decl_attr_list);
2751 validated = 1;
2753 #endif
2755 #ifdef VALID_MACHINE_TYPE_ATTRIBUTE
2756 if (validated)
2757 /* Don't apply the attribute to both the decl and the type. */
2759 else if (VALID_MACHINE_TYPE_ATTRIBUTE (type, type_attr_list, attr_name,
2760 attr_args))
2762 tree attr = lookup_attribute (IDENTIFIER_POINTER (attr_name),
2763 type_attr_list);
2765 if (attr != NULL_TREE)
2767 /* Override existing arguments.
2768 ??? This currently works since attribute arguments are not
2769 included in `attribute_hash_list'. Something more complicated
2770 may be needed in the future. */
2771 TREE_VALUE (attr) = attr_args;
2773 else
2775 /* If this is part of a declaration, create a type variant,
2776 otherwise, this is part of a type definition, so add it
2777 to the base type. */
2778 type_attr_list = tree_cons (attr_name, attr_args, type_attr_list);
2779 if (decl != 0)
2780 type = build_type_attribute_variant (type, type_attr_list);
2781 else
2782 TYPE_ATTRIBUTES (type) = type_attr_list;
2785 if (decl != 0)
2786 TREE_TYPE (decl) = type;
2788 validated = 1;
2791 /* Handle putting a type attribute on pointer-to-function-type by putting
2792 the attribute on the function type. */
2793 else if (POINTER_TYPE_P (type)
2794 && TREE_CODE (TREE_TYPE (type)) == FUNCTION_TYPE
2795 && VALID_MACHINE_TYPE_ATTRIBUTE (TREE_TYPE (type), type_attr_list,
2796 attr_name, attr_args))
2798 tree inner_type = TREE_TYPE (type);
2799 tree inner_attr_list = TYPE_ATTRIBUTES (inner_type);
2800 tree attr = lookup_attribute (IDENTIFIER_POINTER (attr_name),
2801 type_attr_list);
2803 if (attr != NULL_TREE)
2804 TREE_VALUE (attr) = attr_args;
2805 else
2807 inner_attr_list = tree_cons (attr_name, attr_args, inner_attr_list);
2808 inner_type = build_type_attribute_variant (inner_type,
2809 inner_attr_list);
2812 if (decl != 0)
2813 TREE_TYPE (decl) = build_pointer_type (inner_type);
2814 else
2816 /* Clear TYPE_POINTER_TO for the old inner type, since
2817 `type' won't be pointing to it anymore. */
2818 TYPE_POINTER_TO (TREE_TYPE (type)) = NULL_TREE;
2819 TREE_TYPE (type) = inner_type;
2822 validated = 1;
2824 #endif
2826 return validated;
2829 /* Return non-zero if IDENT is a valid name for attribute ATTR,
2830 or zero if not.
2832 We try both `text' and `__text__', ATTR may be either one. */
2833 /* ??? It might be a reasonable simplification to require ATTR to be only
2834 `text'. One might then also require attribute lists to be stored in
2835 their canonicalized form. */
2838 is_attribute_p (attr, ident)
2839 const char *attr;
2840 tree ident;
2842 int ident_len, attr_len;
2843 const char *p;
2845 if (TREE_CODE (ident) != IDENTIFIER_NODE)
2846 return 0;
2848 if (strcmp (attr, IDENTIFIER_POINTER (ident)) == 0)
2849 return 1;
2851 p = IDENTIFIER_POINTER (ident);
2852 ident_len = strlen (p);
2853 attr_len = strlen (attr);
2855 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
2856 if (attr[0] == '_')
2858 if (attr[1] != '_'
2859 || attr[attr_len - 2] != '_'
2860 || attr[attr_len - 1] != '_')
2861 abort ();
2862 if (ident_len == attr_len - 4
2863 && strncmp (attr + 2, p, attr_len - 4) == 0)
2864 return 1;
2866 else
2868 if (ident_len == attr_len + 4
2869 && p[0] == '_' && p[1] == '_'
2870 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
2871 && strncmp (attr, p + 2, attr_len) == 0)
2872 return 1;
2875 return 0;
2878 /* Given an attribute name and a list of attributes, return a pointer to the
2879 attribute's list element if the attribute is part of the list, or NULL_TREE
2880 if not found. */
2882 tree
2883 lookup_attribute (attr_name, list)
2884 const char *attr_name;
2885 tree list;
2887 tree l;
2889 for (l = list; l; l = TREE_CHAIN (l))
2891 if (TREE_CODE (TREE_PURPOSE (l)) != IDENTIFIER_NODE)
2892 abort ();
2893 if (is_attribute_p (attr_name, TREE_PURPOSE (l)))
2894 return l;
2897 return NULL_TREE;
2900 /* Return an attribute list that is the union of a1 and a2. */
2902 tree
2903 merge_attributes (a1, a2)
2904 register tree a1, a2;
2906 tree attributes;
2908 /* Either one unset? Take the set one. */
2910 if ((attributes = a1) == 0)
2911 attributes = a2;
2913 /* One that completely contains the other? Take it. */
2915 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
2917 if (attribute_list_contained (a2, a1))
2918 attributes = a2;
2919 else
2921 /* Pick the longest list, and hang on the other list. */
2922 /* ??? For the moment we punt on the issue of attrs with args. */
2924 if (list_length (a1) < list_length (a2))
2925 attributes = a2, a2 = a1;
2927 for (; a2 != 0; a2 = TREE_CHAIN (a2))
2928 if (lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
2929 attributes) == NULL_TREE)
2931 a1 = copy_node (a2);
2932 TREE_CHAIN (a1) = attributes;
2933 attributes = a1;
2937 return attributes;
2940 /* Given types T1 and T2, merge their attributes and return
2941 the result. */
2943 tree
2944 merge_machine_type_attributes (t1, t2)
2945 tree t1, t2;
2947 #ifdef MERGE_MACHINE_TYPE_ATTRIBUTES
2948 return MERGE_MACHINE_TYPE_ATTRIBUTES (t1, t2);
2949 #else
2950 return merge_attributes (TYPE_ATTRIBUTES (t1),
2951 TYPE_ATTRIBUTES (t2));
2952 #endif
2955 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
2956 the result. */
2958 tree
2959 merge_machine_decl_attributes (olddecl, newdecl)
2960 tree olddecl, newdecl;
2962 #ifdef MERGE_MACHINE_DECL_ATTRIBUTES
2963 return MERGE_MACHINE_DECL_ATTRIBUTES (olddecl, newdecl);
2964 #else
2965 return merge_attributes (DECL_MACHINE_ATTRIBUTES (olddecl),
2966 DECL_MACHINE_ATTRIBUTES (newdecl));
2967 #endif
2970 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
2971 of the various TYPE_QUAL values. */
2973 static void
2974 set_type_quals (type, type_quals)
2975 tree type;
2976 int type_quals;
2978 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
2979 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
2980 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
2983 /* Return a version of the TYPE, qualified as indicated by the
2984 TYPE_QUALS, if one exists. If no qualified version exists yet,
2985 return NULL_TREE. */
2987 tree
2988 get_qualified_type (type, type_quals)
2989 tree type;
2990 int type_quals;
2992 tree t;
2994 /* Search the chain of variants to see if there is already one there just
2995 like the one we need to have. If so, use that existing one. We must
2996 preserve the TYPE_NAME, since there is code that depends on this. */
2997 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
2998 if (TYPE_QUALS (t) == type_quals && TYPE_NAME (t) == TYPE_NAME (type))
2999 return t;
3001 return NULL_TREE;
3004 /* Like get_qualified_type, but creates the type if it does not
3005 exist. This function never returns NULL_TREE. */
3007 tree
3008 build_qualified_type (type, type_quals)
3009 tree type;
3010 int type_quals;
3012 tree t;
3014 /* See if we already have the appropriate qualified variant. */
3015 t = get_qualified_type (type, type_quals);
3017 /* If not, build it. */
3018 if (!t)
3020 t = build_type_copy (type);
3021 set_type_quals (t, type_quals);
3024 return t;
3027 /* Create a new variant of TYPE, equivalent but distinct.
3028 This is so the caller can modify it. */
3030 tree
3031 build_type_copy (type)
3032 tree type;
3034 register tree t, m = TYPE_MAIN_VARIANT (type);
3036 t = copy_node (type);
3038 TYPE_POINTER_TO (t) = 0;
3039 TYPE_REFERENCE_TO (t) = 0;
3041 /* Add this type to the chain of variants of TYPE. */
3042 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
3043 TYPE_NEXT_VARIANT (m) = t;
3045 return t;
3048 /* Hashing of types so that we don't make duplicates.
3049 The entry point is `type_hash_canon'. */
3051 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
3052 with types in the TREE_VALUE slots), by adding the hash codes
3053 of the individual types. */
3055 unsigned int
3056 type_hash_list (list)
3057 tree list;
3059 unsigned int hashcode;
3060 register tree tail;
3062 for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
3063 hashcode += TYPE_HASH (TREE_VALUE (tail));
3065 return hashcode;
3068 /* These are the Hashtable callback functions. */
3070 /* Returns true if the types are equal. */
3072 static int
3073 type_hash_eq (va, vb)
3074 const void *va;
3075 const void *vb;
3077 const struct type_hash *a = va, *b = vb;
3078 if (a->hash == b->hash
3079 && TREE_CODE (a->type) == TREE_CODE (b->type)
3080 && TREE_TYPE (a->type) == TREE_TYPE (b->type)
3081 && attribute_list_equal (TYPE_ATTRIBUTES (a->type),
3082 TYPE_ATTRIBUTES (b->type))
3083 && TYPE_ALIGN (a->type) == TYPE_ALIGN (b->type)
3084 && (TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
3085 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
3086 TYPE_MAX_VALUE (b->type)))
3087 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
3088 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
3089 TYPE_MIN_VALUE (b->type)))
3090 /* Note that TYPE_DOMAIN is TYPE_ARG_TYPES for FUNCTION_TYPE. */
3091 && (TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type)
3092 || (TYPE_DOMAIN (a->type)
3093 && TREE_CODE (TYPE_DOMAIN (a->type)) == TREE_LIST
3094 && TYPE_DOMAIN (b->type)
3095 && TREE_CODE (TYPE_DOMAIN (b->type)) == TREE_LIST
3096 && type_list_equal (TYPE_DOMAIN (a->type),
3097 TYPE_DOMAIN (b->type)))))
3098 return 1;
3099 return 0;
3102 /* Return the cached hash value. */
3104 static unsigned int
3105 type_hash_hash (item)
3106 const void *item;
3108 return ((const struct type_hash *) item)->hash;
3111 /* Look in the type hash table for a type isomorphic to TYPE.
3112 If one is found, return it. Otherwise return 0. */
3114 tree
3115 type_hash_lookup (hashcode, type)
3116 unsigned int hashcode;
3117 tree type;
3119 struct type_hash *h, in;
3121 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
3122 must call that routine before comparing TYPE_ALIGNs. */
3123 layout_type (type);
3125 in.hash = hashcode;
3126 in.type = type;
3128 h = htab_find_with_hash (type_hash_table, &in, hashcode);
3129 if (h)
3130 return h->type;
3131 return NULL_TREE;
3134 /* Add an entry to the type-hash-table
3135 for a type TYPE whose hash code is HASHCODE. */
3137 void
3138 type_hash_add (hashcode, type)
3139 unsigned int hashcode;
3140 tree type;
3142 struct type_hash *h;
3143 void **loc;
3145 h = (struct type_hash *) permalloc (sizeof (struct type_hash));
3146 h->hash = hashcode;
3147 h->type = type;
3148 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
3149 *(struct type_hash **) loc = h;
3152 /* Given TYPE, and HASHCODE its hash code, return the canonical
3153 object for an identical type if one already exists.
3154 Otherwise, return TYPE, and record it as the canonical object
3155 if it is a permanent object.
3157 To use this function, first create a type of the sort you want.
3158 Then compute its hash code from the fields of the type that
3159 make it different from other similar types.
3160 Then call this function and use the value.
3161 This function frees the type you pass in if it is a duplicate. */
3163 /* Set to 1 to debug without canonicalization. Never set by program. */
3164 int debug_no_type_hash = 0;
3166 tree
3167 type_hash_canon (hashcode, type)
3168 unsigned int hashcode;
3169 tree type;
3171 tree t1;
3173 if (debug_no_type_hash)
3174 return type;
3176 t1 = type_hash_lookup (hashcode, type);
3177 if (t1 != 0)
3179 #ifdef GATHER_STATISTICS
3180 tree_node_counts[(int) t_kind]--;
3181 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type);
3182 #endif
3183 return t1;
3186 /* If this is a permanent type, record it for later reuse. */
3187 type_hash_add (hashcode, type);
3189 return type;
3192 /* Callback function for htab_traverse. */
3194 static int
3195 mark_hash_entry (entry, param)
3196 void **entry;
3197 void *param ATTRIBUTE_UNUSED;
3199 struct type_hash *p = *(struct type_hash **) entry;
3201 ggc_mark_tree (p->type);
3203 /* Continue scan. */
3204 return 1;
3207 /* Mark ARG (which is really a htab_t *) for GC. */
3209 static void
3210 mark_type_hash (arg)
3211 void *arg;
3213 htab_t t = *(htab_t *) arg;
3215 htab_traverse (t, mark_hash_entry, 0);
3218 /* Mark the hashtable slot pointed to by ENTRY (which is really a
3219 `tree**') for GC. */
3221 static int
3222 mark_tree_hashtable_entry (entry, data)
3223 void **entry;
3224 void *data ATTRIBUTE_UNUSED;
3226 ggc_mark_tree ((tree) *entry);
3227 return 1;
3230 /* Mark ARG (which is really a htab_t whose slots are trees) for
3231 GC. */
3233 void
3234 mark_tree_hashtable (arg)
3235 void *arg;
3237 htab_t t = *(htab_t *) arg;
3238 htab_traverse (t, mark_tree_hashtable_entry, 0);
3241 static void
3242 print_type_hash_statistics ()
3244 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
3245 (long) htab_size (type_hash_table),
3246 (long) htab_elements (type_hash_table),
3247 htab_collisions (type_hash_table));
3250 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
3251 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
3252 by adding the hash codes of the individual attributes. */
3254 unsigned int
3255 attribute_hash_list (list)
3256 tree list;
3258 unsigned int hashcode;
3259 register tree tail;
3261 for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
3262 /* ??? Do we want to add in TREE_VALUE too? */
3263 hashcode += TYPE_HASH (TREE_PURPOSE (tail));
3264 return hashcode;
3267 /* Given two lists of attributes, return true if list l2 is
3268 equivalent to l1. */
3271 attribute_list_equal (l1, l2)
3272 tree l1, l2;
3274 return attribute_list_contained (l1, l2)
3275 && attribute_list_contained (l2, l1);
3278 /* Given two lists of attributes, return true if list L2 is
3279 completely contained within L1. */
3280 /* ??? This would be faster if attribute names were stored in a canonicalized
3281 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
3282 must be used to show these elements are equivalent (which they are). */
3283 /* ??? It's not clear that attributes with arguments will always be handled
3284 correctly. */
3287 attribute_list_contained (l1, l2)
3288 tree l1, l2;
3290 register tree t1, t2;
3292 /* First check the obvious, maybe the lists are identical. */
3293 if (l1 == l2)
3294 return 1;
3296 /* Maybe the lists are similar. */
3297 for (t1 = l1, t2 = l2;
3298 t1 != 0 && t2 != 0
3299 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
3300 && TREE_VALUE (t1) == TREE_VALUE (t2);
3301 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
3303 /* Maybe the lists are equal. */
3304 if (t1 == 0 && t2 == 0)
3305 return 1;
3307 for (; t2 != 0; t2 = TREE_CHAIN (t2))
3309 tree attr
3310 = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)), l1);
3312 if (attr == 0)
3313 return 0;
3315 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) != 1)
3316 return 0;
3319 return 1;
3322 /* Given two lists of types
3323 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
3324 return 1 if the lists contain the same types in the same order.
3325 Also, the TREE_PURPOSEs must match. */
3328 type_list_equal (l1, l2)
3329 tree l1, l2;
3331 register tree t1, t2;
3333 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
3334 if (TREE_VALUE (t1) != TREE_VALUE (t2)
3335 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
3336 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
3337 && (TREE_TYPE (TREE_PURPOSE (t1))
3338 == TREE_TYPE (TREE_PURPOSE (t2))))))
3339 return 0;
3341 return t1 == t2;
3344 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
3345 given by TYPE. If the argument list accepts variable arguments,
3346 then this function counts only the ordinary arguments. */
3349 type_num_arguments (type)
3350 tree type;
3352 int i = 0;
3353 tree t;
3355 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
3356 /* If the function does not take a variable number of arguments,
3357 the last element in the list will have type `void'. */
3358 if (VOID_TYPE_P (TREE_VALUE (t)))
3359 break;
3360 else
3361 ++i;
3363 return i;
3366 /* Nonzero if integer constants T1 and T2
3367 represent the same constant value. */
3370 tree_int_cst_equal (t1, t2)
3371 tree t1, t2;
3373 if (t1 == t2)
3374 return 1;
3376 if (t1 == 0 || t2 == 0)
3377 return 0;
3379 if (TREE_CODE (t1) == INTEGER_CST
3380 && TREE_CODE (t2) == INTEGER_CST
3381 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3382 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
3383 return 1;
3385 return 0;
3388 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
3389 The precise way of comparison depends on their data type. */
3392 tree_int_cst_lt (t1, t2)
3393 tree t1, t2;
3395 if (t1 == t2)
3396 return 0;
3398 if (! TREE_UNSIGNED (TREE_TYPE (t1)))
3399 return INT_CST_LT (t1, t2);
3401 return INT_CST_LT_UNSIGNED (t1, t2);
3404 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
3407 tree_int_cst_compare (t1, t2)
3408 tree t1;
3409 tree t2;
3411 if (tree_int_cst_lt (t1, t2))
3412 return -1;
3413 else if (tree_int_cst_lt (t2, t1))
3414 return 1;
3415 else
3416 return 0;
3419 /* Return 1 if T is an INTEGER_CST that can be represented in a single
3420 HOST_WIDE_INT value. If POS is nonzero, the result must be positive. */
3423 host_integerp (t, pos)
3424 tree t;
3425 int pos;
3427 return (TREE_CODE (t) == INTEGER_CST
3428 && ! TREE_OVERFLOW (t)
3429 && ((TREE_INT_CST_HIGH (t) == 0
3430 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
3431 || (! pos && TREE_INT_CST_HIGH (t) == -1
3432 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
3433 || (! pos && TREE_INT_CST_HIGH (t) == 0
3434 && TREE_UNSIGNED (TREE_TYPE (t)))));
3437 /* Return the HOST_WIDE_INT least significant bits of T if it is an
3438 INTEGER_CST and there is no overflow. POS is nonzero if the result must
3439 be positive. Abort if we cannot satisfy the above conditions. */
3441 HOST_WIDE_INT
3442 tree_low_cst (t, pos)
3443 tree t;
3444 int pos;
3446 if (host_integerp (t, pos))
3447 return TREE_INT_CST_LOW (t);
3448 else
3449 abort ();
3452 /* Return the most significant bit of the integer constant T. */
3455 tree_int_cst_msb (t)
3456 tree t;
3458 register int prec;
3459 HOST_WIDE_INT h;
3460 unsigned HOST_WIDE_INT l;
3462 /* Note that using TYPE_PRECISION here is wrong. We care about the
3463 actual bits, not the (arbitrary) range of the type. */
3464 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
3465 rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
3466 2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
3467 return (l & 1) == 1;
3470 /* Return an indication of the sign of the integer constant T.
3471 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
3472 Note that -1 will never be returned it T's type is unsigned. */
3475 tree_int_cst_sgn (t)
3476 tree t;
3478 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
3479 return 0;
3480 else if (TREE_UNSIGNED (TREE_TYPE (t)))
3481 return 1;
3482 else if (TREE_INT_CST_HIGH (t) < 0)
3483 return -1;
3484 else
3485 return 1;
3488 /* Compare two constructor-element-type constants. Return 1 if the lists
3489 are known to be equal; otherwise return 0. */
3492 simple_cst_list_equal (l1, l2)
3493 tree l1, l2;
3495 while (l1 != NULL_TREE && l2 != NULL_TREE)
3497 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
3498 return 0;
3500 l1 = TREE_CHAIN (l1);
3501 l2 = TREE_CHAIN (l2);
3504 return l1 == l2;
3507 /* Return truthvalue of whether T1 is the same tree structure as T2.
3508 Return 1 if they are the same.
3509 Return 0 if they are understandably different.
3510 Return -1 if either contains tree structure not understood by
3511 this function. */
3514 simple_cst_equal (t1, t2)
3515 tree t1, t2;
3517 register enum tree_code code1, code2;
3518 int cmp;
3519 int i;
3521 if (t1 == t2)
3522 return 1;
3523 if (t1 == 0 || t2 == 0)
3524 return 0;
3526 code1 = TREE_CODE (t1);
3527 code2 = TREE_CODE (t2);
3529 if (code1 == NOP_EXPR || code1 == CONVERT_EXPR || code1 == NON_LVALUE_EXPR)
3531 if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3532 || code2 == NON_LVALUE_EXPR)
3533 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3534 else
3535 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
3538 else if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3539 || code2 == NON_LVALUE_EXPR)
3540 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
3542 if (code1 != code2)
3543 return 0;
3545 switch (code1)
3547 case INTEGER_CST:
3548 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3549 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
3551 case REAL_CST:
3552 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
3554 case STRING_CST:
3555 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
3556 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
3557 TREE_STRING_LENGTH (t1)));
3559 case CONSTRUCTOR:
3560 if (CONSTRUCTOR_ELTS (t1) == CONSTRUCTOR_ELTS (t2))
3561 return 1;
3562 else
3563 abort ();
3565 case SAVE_EXPR:
3566 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3568 case CALL_EXPR:
3569 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3570 if (cmp <= 0)
3571 return cmp;
3572 return
3573 simple_cst_list_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3575 case TARGET_EXPR:
3576 /* Special case: if either target is an unallocated VAR_DECL,
3577 it means that it's going to be unified with whatever the
3578 TARGET_EXPR is really supposed to initialize, so treat it
3579 as being equivalent to anything. */
3580 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
3581 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
3582 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
3583 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
3584 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
3585 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
3586 cmp = 1;
3587 else
3588 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3590 if (cmp <= 0)
3591 return cmp;
3593 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3595 case WITH_CLEANUP_EXPR:
3596 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3597 if (cmp <= 0)
3598 return cmp;
3600 return simple_cst_equal (TREE_OPERAND (t1, 2), TREE_OPERAND (t1, 2));
3602 case COMPONENT_REF:
3603 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
3604 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3606 return 0;
3608 case VAR_DECL:
3609 case PARM_DECL:
3610 case CONST_DECL:
3611 case FUNCTION_DECL:
3612 return 0;
3614 default:
3615 break;
3618 /* This general rule works for most tree codes. All exceptions should be
3619 handled above. If this is a language-specific tree code, we can't
3620 trust what might be in the operand, so say we don't know
3621 the situation. */
3622 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
3623 return -1;
3625 switch (TREE_CODE_CLASS (code1))
3627 case '1':
3628 case '2':
3629 case '<':
3630 case 'e':
3631 case 'r':
3632 case 's':
3633 cmp = 1;
3634 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
3636 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
3637 if (cmp <= 0)
3638 return cmp;
3641 return cmp;
3643 default:
3644 return -1;
3648 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
3649 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
3650 than U, respectively. */
3653 compare_tree_int (t, u)
3654 tree t;
3655 unsigned int u;
3657 if (tree_int_cst_sgn (t) < 0)
3658 return -1;
3659 else if (TREE_INT_CST_HIGH (t) != 0)
3660 return 1;
3661 else if (TREE_INT_CST_LOW (t) == u)
3662 return 0;
3663 else if (TREE_INT_CST_LOW (t) < u)
3664 return -1;
3665 else
3666 return 1;
3669 /* Constructors for pointer, array and function types.
3670 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
3671 constructed by language-dependent code, not here.) */
3673 /* Construct, lay out and return the type of pointers to TO_TYPE.
3674 If such a type has already been constructed, reuse it. */
3676 tree
3677 build_pointer_type (to_type)
3678 tree to_type;
3680 register tree t = TYPE_POINTER_TO (to_type);
3682 /* First, if we already have a type for pointers to TO_TYPE, use it. */
3684 if (t != 0)
3685 return t;
3687 /* We need a new one. */
3688 t = make_node (POINTER_TYPE);
3690 TREE_TYPE (t) = to_type;
3692 /* Record this type as the pointer to TO_TYPE. */
3693 TYPE_POINTER_TO (to_type) = t;
3695 /* Lay out the type. This function has many callers that are concerned
3696 with expression-construction, and this simplifies them all.
3697 Also, it guarantees the TYPE_SIZE is in the same obstack as the type. */
3698 layout_type (t);
3700 return t;
3703 /* Build the node for the type of references-to-TO_TYPE. */
3705 tree
3706 build_reference_type (to_type)
3707 tree to_type;
3709 register tree t = TYPE_REFERENCE_TO (to_type);
3711 /* First, if we already have a type for pointers to TO_TYPE, use it. */
3713 if (t)
3714 return t;
3716 /* We need a new one. */
3717 t = make_node (REFERENCE_TYPE);
3719 TREE_TYPE (t) = to_type;
3721 /* Record this type as the pointer to TO_TYPE. */
3722 TYPE_REFERENCE_TO (to_type) = t;
3724 layout_type (t);
3726 return t;
3729 /* Build a type that is compatible with t but has no cv quals anywhere
3730 in its type, thus
3732 const char *const *const * -> char ***. */
3734 tree
3735 build_type_no_quals (t)
3736 tree t;
3738 switch (TREE_CODE (t))
3740 case POINTER_TYPE:
3741 return build_pointer_type (build_type_no_quals (TREE_TYPE (t)));
3742 case REFERENCE_TYPE:
3743 return build_reference_type (build_type_no_quals (TREE_TYPE (t)));
3744 default:
3745 return TYPE_MAIN_VARIANT (t);
3749 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
3750 MAXVAL should be the maximum value in the domain
3751 (one less than the length of the array).
3753 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
3754 We don't enforce this limit, that is up to caller (e.g. language front end).
3755 The limit exists because the result is a signed type and we don't handle
3756 sizes that use more than one HOST_WIDE_INT. */
3758 tree
3759 build_index_type (maxval)
3760 tree maxval;
3762 register tree itype = make_node (INTEGER_TYPE);
3764 TREE_TYPE (itype) = sizetype;
3765 TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
3766 TYPE_MIN_VALUE (itype) = size_zero_node;
3767 TYPE_MAX_VALUE (itype) = convert (sizetype, maxval);
3768 TYPE_MODE (itype) = TYPE_MODE (sizetype);
3769 TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
3770 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (sizetype);
3771 TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
3772 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (sizetype);
3774 if (host_integerp (maxval, 1))
3775 return type_hash_canon (tree_low_cst (maxval, 1), itype);
3776 else
3777 return itype;
3780 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
3781 ENUMERAL_TYPE, BOOLEAN_TYPE, or CHAR_TYPE), with
3782 low bound LOWVAL and high bound HIGHVAL.
3783 if TYPE==NULL_TREE, sizetype is used. */
3785 tree
3786 build_range_type (type, lowval, highval)
3787 tree type, lowval, highval;
3789 register tree itype = make_node (INTEGER_TYPE);
3791 TREE_TYPE (itype) = type;
3792 if (type == NULL_TREE)
3793 type = sizetype;
3795 TYPE_MIN_VALUE (itype) = convert (type, lowval);
3796 TYPE_MAX_VALUE (itype) = highval ? convert (type, highval) : NULL;
3798 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
3799 TYPE_MODE (itype) = TYPE_MODE (type);
3800 TYPE_SIZE (itype) = TYPE_SIZE (type);
3801 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
3802 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
3803 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
3805 if (host_integerp (lowval, 0) && highval != 0 && host_integerp (highval, 0))
3806 return type_hash_canon (tree_low_cst (highval, 0)
3807 - tree_low_cst (lowval, 0),
3808 itype);
3809 else
3810 return itype;
3813 /* Just like build_index_type, but takes lowval and highval instead
3814 of just highval (maxval). */
3816 tree
3817 build_index_2_type (lowval,highval)
3818 tree lowval, highval;
3820 return build_range_type (sizetype, lowval, highval);
3823 /* Return nonzero iff ITYPE1 and ITYPE2 are equal (in the LISP sense).
3824 Needed because when index types are not hashed, equal index types
3825 built at different times appear distinct, even though structurally,
3826 they are not. */
3829 index_type_equal (itype1, itype2)
3830 tree itype1, itype2;
3832 if (TREE_CODE (itype1) != TREE_CODE (itype2))
3833 return 0;
3835 if (TREE_CODE (itype1) == INTEGER_TYPE)
3837 if (TYPE_PRECISION (itype1) != TYPE_PRECISION (itype2)
3838 || TYPE_MODE (itype1) != TYPE_MODE (itype2)
3839 || simple_cst_equal (TYPE_SIZE (itype1), TYPE_SIZE (itype2)) != 1
3840 || TYPE_ALIGN (itype1) != TYPE_ALIGN (itype2))
3841 return 0;
3843 if (1 == simple_cst_equal (TYPE_MIN_VALUE (itype1),
3844 TYPE_MIN_VALUE (itype2))
3845 && 1 == simple_cst_equal (TYPE_MAX_VALUE (itype1),
3846 TYPE_MAX_VALUE (itype2)))
3847 return 1;
3850 return 0;
3853 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
3854 and number of elements specified by the range of values of INDEX_TYPE.
3855 If such a type has already been constructed, reuse it. */
3857 tree
3858 build_array_type (elt_type, index_type)
3859 tree elt_type, index_type;
3861 register tree t;
3862 unsigned int hashcode;
3864 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
3866 error ("arrays of functions are not meaningful");
3867 elt_type = integer_type_node;
3870 /* Make sure TYPE_POINTER_TO (elt_type) is filled in. */
3871 build_pointer_type (elt_type);
3873 /* Allocate the array after the pointer type,
3874 in case we free it in type_hash_canon. */
3875 t = make_node (ARRAY_TYPE);
3876 TREE_TYPE (t) = elt_type;
3877 TYPE_DOMAIN (t) = index_type;
3879 if (index_type == 0)
3881 return t;
3884 hashcode = TYPE_HASH (elt_type) + TYPE_HASH (index_type);
3885 t = type_hash_canon (hashcode, t);
3887 if (!COMPLETE_TYPE_P (t))
3888 layout_type (t);
3889 return t;
3892 /* Return the TYPE of the elements comprising
3893 the innermost dimension of ARRAY. */
3895 tree
3896 get_inner_array_type (array)
3897 tree array;
3899 tree type = TREE_TYPE (array);
3901 while (TREE_CODE (type) == ARRAY_TYPE)
3902 type = TREE_TYPE (type);
3904 return type;
3907 /* Construct, lay out and return
3908 the type of functions returning type VALUE_TYPE
3909 given arguments of types ARG_TYPES.
3910 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
3911 are data type nodes for the arguments of the function.
3912 If such a type has already been constructed, reuse it. */
3914 tree
3915 build_function_type (value_type, arg_types)
3916 tree value_type, arg_types;
3918 register tree t;
3919 unsigned int hashcode;
3921 if (TREE_CODE (value_type) == FUNCTION_TYPE)
3923 error ("function return type cannot be function");
3924 value_type = integer_type_node;
3927 /* Make a node of the sort we want. */
3928 t = make_node (FUNCTION_TYPE);
3929 TREE_TYPE (t) = value_type;
3930 TYPE_ARG_TYPES (t) = arg_types;
3932 /* If we already have such a type, use the old one and free this one. */
3933 hashcode = TYPE_HASH (value_type) + type_hash_list (arg_types);
3934 t = type_hash_canon (hashcode, t);
3936 if (!COMPLETE_TYPE_P (t))
3937 layout_type (t);
3938 return t;
3941 /* Construct, lay out and return the type of methods belonging to class
3942 BASETYPE and whose arguments and values are described by TYPE.
3943 If that type exists already, reuse it.
3944 TYPE must be a FUNCTION_TYPE node. */
3946 tree
3947 build_method_type (basetype, type)
3948 tree basetype, type;
3950 register tree t;
3951 unsigned int hashcode;
3953 /* Make a node of the sort we want. */
3954 t = make_node (METHOD_TYPE);
3956 if (TREE_CODE (type) != FUNCTION_TYPE)
3957 abort ();
3959 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
3960 TREE_TYPE (t) = TREE_TYPE (type);
3962 /* The actual arglist for this function includes a "hidden" argument
3963 which is "this". Put it into the list of argument types. */
3965 TYPE_ARG_TYPES (t)
3966 = tree_cons (NULL_TREE,
3967 build_pointer_type (basetype), TYPE_ARG_TYPES (type));
3969 /* If we already have such a type, use the old one and free this one. */
3970 hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
3971 t = type_hash_canon (hashcode, t);
3973 if (!COMPLETE_TYPE_P (t))
3974 layout_type (t);
3976 return t;
3979 /* Construct, lay out and return the type of offsets to a value
3980 of type TYPE, within an object of type BASETYPE.
3981 If a suitable offset type exists already, reuse it. */
3983 tree
3984 build_offset_type (basetype, type)
3985 tree basetype, type;
3987 register tree t;
3988 unsigned int hashcode;
3990 /* Make a node of the sort we want. */
3991 t = make_node (OFFSET_TYPE);
3993 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
3994 TREE_TYPE (t) = type;
3996 /* If we already have such a type, use the old one and free this one. */
3997 hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
3998 t = type_hash_canon (hashcode, t);
4000 if (!COMPLETE_TYPE_P (t))
4001 layout_type (t);
4003 return t;
4006 /* Create a complex type whose components are COMPONENT_TYPE. */
4008 tree
4009 build_complex_type (component_type)
4010 tree component_type;
4012 register tree t;
4013 unsigned int hashcode;
4015 /* Make a node of the sort we want. */
4016 t = make_node (COMPLEX_TYPE);
4018 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
4019 set_type_quals (t, TYPE_QUALS (component_type));
4021 /* If we already have such a type, use the old one and free this one. */
4022 hashcode = TYPE_HASH (component_type);
4023 t = type_hash_canon (hashcode, t);
4025 if (!COMPLETE_TYPE_P (t))
4026 layout_type (t);
4028 /* If we are writing Dwarf2 output we need to create a name,
4029 since complex is a fundamental type. */
4030 if (write_symbols == DWARF2_DEBUG && ! TYPE_NAME (t))
4032 const char *name;
4033 if (component_type == char_type_node)
4034 name = "complex char";
4035 else if (component_type == signed_char_type_node)
4036 name = "complex signed char";
4037 else if (component_type == unsigned_char_type_node)
4038 name = "complex unsigned char";
4039 else if (component_type == short_integer_type_node)
4040 name = "complex short int";
4041 else if (component_type == short_unsigned_type_node)
4042 name = "complex short unsigned int";
4043 else if (component_type == integer_type_node)
4044 name = "complex int";
4045 else if (component_type == unsigned_type_node)
4046 name = "complex unsigned int";
4047 else if (component_type == long_integer_type_node)
4048 name = "complex long int";
4049 else if (component_type == long_unsigned_type_node)
4050 name = "complex long unsigned int";
4051 else if (component_type == long_long_integer_type_node)
4052 name = "complex long long int";
4053 else if (component_type == long_long_unsigned_type_node)
4054 name = "complex long long unsigned int";
4055 else
4056 name = 0;
4058 if (name != 0)
4059 TYPE_NAME (t) = get_identifier (name);
4062 return t;
4065 /* Return OP, stripped of any conversions to wider types as much as is safe.
4066 Converting the value back to OP's type makes a value equivalent to OP.
4068 If FOR_TYPE is nonzero, we return a value which, if converted to
4069 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
4071 If FOR_TYPE is nonzero, unaligned bit-field references may be changed to the
4072 narrowest type that can hold the value, even if they don't exactly fit.
4073 Otherwise, bit-field references are changed to a narrower type
4074 only if they can be fetched directly from memory in that type.
4076 OP must have integer, real or enumeral type. Pointers are not allowed!
4078 There are some cases where the obvious value we could return
4079 would regenerate to OP if converted to OP's type,
4080 but would not extend like OP to wider types.
4081 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
4082 For example, if OP is (unsigned short)(signed char)-1,
4083 we avoid returning (signed char)-1 if FOR_TYPE is int,
4084 even though extending that to an unsigned short would regenerate OP,
4085 since the result of extending (signed char)-1 to (int)
4086 is different from (int) OP. */
4088 tree
4089 get_unwidened (op, for_type)
4090 register tree op;
4091 tree for_type;
4093 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
4094 register tree type = TREE_TYPE (op);
4095 register unsigned final_prec
4096 = TYPE_PRECISION (for_type != 0 ? for_type : type);
4097 register int uns
4098 = (for_type != 0 && for_type != type
4099 && final_prec > TYPE_PRECISION (type)
4100 && TREE_UNSIGNED (type));
4101 register tree win = op;
4103 while (TREE_CODE (op) == NOP_EXPR)
4105 register int bitschange
4106 = TYPE_PRECISION (TREE_TYPE (op))
4107 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
4109 /* Truncations are many-one so cannot be removed.
4110 Unless we are later going to truncate down even farther. */
4111 if (bitschange < 0
4112 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
4113 break;
4115 /* See what's inside this conversion. If we decide to strip it,
4116 we will set WIN. */
4117 op = TREE_OPERAND (op, 0);
4119 /* If we have not stripped any zero-extensions (uns is 0),
4120 we can strip any kind of extension.
4121 If we have previously stripped a zero-extension,
4122 only zero-extensions can safely be stripped.
4123 Any extension can be stripped if the bits it would produce
4124 are all going to be discarded later by truncating to FOR_TYPE. */
4126 if (bitschange > 0)
4128 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
4129 win = op;
4130 /* TREE_UNSIGNED says whether this is a zero-extension.
4131 Let's avoid computing it if it does not affect WIN
4132 and if UNS will not be needed again. */
4133 if ((uns || TREE_CODE (op) == NOP_EXPR)
4134 && TREE_UNSIGNED (TREE_TYPE (op)))
4136 uns = 1;
4137 win = op;
4142 if (TREE_CODE (op) == COMPONENT_REF
4143 /* Since type_for_size always gives an integer type. */
4144 && TREE_CODE (type) != REAL_TYPE
4145 /* Don't crash if field not laid out yet. */
4146 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
4147 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
4149 unsigned int innerprec
4150 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
4152 type = type_for_size (innerprec, TREE_UNSIGNED (TREE_OPERAND (op, 1)));
4154 /* We can get this structure field in the narrowest type it fits in.
4155 If FOR_TYPE is 0, do this only for a field that matches the
4156 narrower type exactly and is aligned for it
4157 The resulting extension to its nominal type (a fullword type)
4158 must fit the same conditions as for other extensions. */
4160 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4161 && (for_type || ! DECL_BIT_FIELD (TREE_OPERAND (op, 1)))
4162 && (! uns || final_prec <= innerprec
4163 || TREE_UNSIGNED (TREE_OPERAND (op, 1)))
4164 && type != 0)
4166 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4167 TREE_OPERAND (op, 1));
4168 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4169 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4173 return win;
4176 /* Return OP or a simpler expression for a narrower value
4177 which can be sign-extended or zero-extended to give back OP.
4178 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
4179 or 0 if the value should be sign-extended. */
4181 tree
4182 get_narrower (op, unsignedp_ptr)
4183 register tree op;
4184 int *unsignedp_ptr;
4186 register int uns = 0;
4187 int first = 1;
4188 register tree win = op;
4190 while (TREE_CODE (op) == NOP_EXPR)
4192 register int bitschange
4193 = (TYPE_PRECISION (TREE_TYPE (op))
4194 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
4196 /* Truncations are many-one so cannot be removed. */
4197 if (bitschange < 0)
4198 break;
4200 /* See what's inside this conversion. If we decide to strip it,
4201 we will set WIN. */
4202 op = TREE_OPERAND (op, 0);
4204 if (bitschange > 0)
4206 /* An extension: the outermost one can be stripped,
4207 but remember whether it is zero or sign extension. */
4208 if (first)
4209 uns = TREE_UNSIGNED (TREE_TYPE (op));
4210 /* Otherwise, if a sign extension has been stripped,
4211 only sign extensions can now be stripped;
4212 if a zero extension has been stripped, only zero-extensions. */
4213 else if (uns != TREE_UNSIGNED (TREE_TYPE (op)))
4214 break;
4215 first = 0;
4217 else /* bitschange == 0 */
4219 /* A change in nominal type can always be stripped, but we must
4220 preserve the unsignedness. */
4221 if (first)
4222 uns = TREE_UNSIGNED (TREE_TYPE (op));
4223 first = 0;
4226 win = op;
4229 if (TREE_CODE (op) == COMPONENT_REF
4230 /* Since type_for_size always gives an integer type. */
4231 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
4232 /* Ensure field is laid out already. */
4233 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0)
4235 unsigned HOST_WIDE_INT innerprec
4236 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
4237 tree type = type_for_size (innerprec, TREE_UNSIGNED (op));
4239 /* We can get this structure field in a narrower type that fits it,
4240 but the resulting extension to its nominal type (a fullword type)
4241 must satisfy the same conditions as for other extensions.
4243 Do this only for fields that are aligned (not bit-fields),
4244 because when bit-field insns will be used there is no
4245 advantage in doing this. */
4247 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4248 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
4249 && (first || uns == TREE_UNSIGNED (TREE_OPERAND (op, 1)))
4250 && type != 0)
4252 if (first)
4253 uns = TREE_UNSIGNED (TREE_OPERAND (op, 1));
4254 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4255 TREE_OPERAND (op, 1));
4256 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4257 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4260 *unsignedp_ptr = uns;
4261 return win;
4264 /* Nonzero if integer constant C has a value that is permissible
4265 for type TYPE (an INTEGER_TYPE). */
4268 int_fits_type_p (c, type)
4269 tree c, type;
4271 /* If the bounds of the type are integers, we can check ourselves.
4272 Otherwise,. use force_fit_type, which checks against the precision. */
4273 if (TYPE_MAX_VALUE (type) != NULL_TREE
4274 && TYPE_MIN_VALUE (type) != NULL_TREE
4275 && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST
4276 && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
4278 if (TREE_UNSIGNED (type))
4279 return (! INT_CST_LT_UNSIGNED (TYPE_MAX_VALUE (type), c)
4280 && ! INT_CST_LT_UNSIGNED (c, TYPE_MIN_VALUE (type))
4281 /* Negative ints never fit unsigned types. */
4282 && ! (TREE_INT_CST_HIGH (c) < 0
4283 && ! TREE_UNSIGNED (TREE_TYPE (c))));
4284 else
4285 return (! INT_CST_LT (TYPE_MAX_VALUE (type), c)
4286 && ! INT_CST_LT (c, TYPE_MIN_VALUE (type))
4287 /* Unsigned ints with top bit set never fit signed types. */
4288 && ! (TREE_INT_CST_HIGH (c) < 0
4289 && TREE_UNSIGNED (TREE_TYPE (c))));
4291 else
4293 c = copy_node (c);
4294 TREE_TYPE (c) = type;
4295 return !force_fit_type (c, 0);
4299 /* Given a DECL or TYPE, return the scope in which it was declared, or
4300 NULL_TREE if there is no containing scope. */
4302 tree
4303 get_containing_scope (t)
4304 tree t;
4306 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
4309 /* Return the innermost context enclosing DECL that is
4310 a FUNCTION_DECL, or zero if none. */
4312 tree
4313 decl_function_context (decl)
4314 tree decl;
4316 tree context;
4318 if (TREE_CODE (decl) == ERROR_MARK)
4319 return 0;
4321 if (TREE_CODE (decl) == SAVE_EXPR)
4322 context = SAVE_EXPR_CONTEXT (decl);
4324 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
4325 where we look up the function at runtime. Such functions always take
4326 a first argument of type 'pointer to real context'.
4328 C++ should really be fixed to use DECL_CONTEXT for the real context,
4329 and use something else for the "virtual context". */
4330 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
4331 context
4332 = TYPE_MAIN_VARIANT
4333 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4334 else
4335 context = DECL_CONTEXT (decl);
4337 while (context && TREE_CODE (context) != FUNCTION_DECL)
4339 if (TREE_CODE (context) == BLOCK)
4340 context = BLOCK_SUPERCONTEXT (context);
4341 else
4342 context = get_containing_scope (context);
4345 return context;
4348 /* Return the innermost context enclosing DECL that is
4349 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
4350 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
4352 tree
4353 decl_type_context (decl)
4354 tree decl;
4356 tree context = DECL_CONTEXT (decl);
4358 while (context)
4360 if (TREE_CODE (context) == RECORD_TYPE
4361 || TREE_CODE (context) == UNION_TYPE
4362 || TREE_CODE (context) == QUAL_UNION_TYPE)
4363 return context;
4365 if (TREE_CODE (context) == TYPE_DECL
4366 || TREE_CODE (context) == FUNCTION_DECL)
4367 context = DECL_CONTEXT (context);
4369 else if (TREE_CODE (context) == BLOCK)
4370 context = BLOCK_SUPERCONTEXT (context);
4372 else
4373 /* Unhandled CONTEXT!? */
4374 abort ();
4376 return NULL_TREE;
4379 /* CALL is a CALL_EXPR. Return the declaration for the function
4380 called, or NULL_TREE if the called function cannot be
4381 determined. */
4383 tree
4384 get_callee_fndecl (call)
4385 tree call;
4387 tree addr;
4389 /* It's invalid to call this function with anything but a
4390 CALL_EXPR. */
4391 if (TREE_CODE (call) != CALL_EXPR)
4392 abort ();
4394 /* The first operand to the CALL is the address of the function
4395 called. */
4396 addr = TREE_OPERAND (call, 0);
4398 STRIP_NOPS (addr);
4400 /* If this is a readonly function pointer, extract its initial value. */
4401 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
4402 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
4403 && DECL_INITIAL (addr))
4404 addr = DECL_INITIAL (addr);
4406 /* If the address is just `&f' for some function `f', then we know
4407 that `f' is being called. */
4408 if (TREE_CODE (addr) == ADDR_EXPR
4409 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
4410 return TREE_OPERAND (addr, 0);
4412 /* We couldn't figure out what was being called. */
4413 return NULL_TREE;
4416 /* Print debugging information about the obstack O, named STR. */
4418 void
4419 print_obstack_statistics (str, o)
4420 const char *str;
4421 struct obstack *o;
4423 struct _obstack_chunk *chunk = o->chunk;
4424 int n_chunks = 1;
4425 int n_alloc = 0;
4427 n_alloc += o->next_free - chunk->contents;
4428 chunk = chunk->prev;
4429 while (chunk)
4431 n_chunks += 1;
4432 n_alloc += chunk->limit - &chunk->contents[0];
4433 chunk = chunk->prev;
4435 fprintf (stderr, "obstack %s: %u bytes, %d chunks\n",
4436 str, n_alloc, n_chunks);
4439 /* Print debugging information about tree nodes generated during the compile,
4440 and any language-specific information. */
4442 void
4443 dump_tree_statistics ()
4445 #ifdef GATHER_STATISTICS
4446 int i;
4447 int total_nodes, total_bytes;
4448 #endif
4450 fprintf (stderr, "\n??? tree nodes created\n\n");
4451 #ifdef GATHER_STATISTICS
4452 fprintf (stderr, "Kind Nodes Bytes\n");
4453 fprintf (stderr, "-------------------------------------\n");
4454 total_nodes = total_bytes = 0;
4455 for (i = 0; i < (int) all_kinds; i++)
4457 fprintf (stderr, "%-20s %6d %9d\n", tree_node_kind_names[i],
4458 tree_node_counts[i], tree_node_sizes[i]);
4459 total_nodes += tree_node_counts[i];
4460 total_bytes += tree_node_sizes[i];
4462 fprintf (stderr, "%-20s %9d\n", "identifier names", id_string_size);
4463 fprintf (stderr, "-------------------------------------\n");
4464 fprintf (stderr, "%-20s %6d %9d\n", "Total", total_nodes, total_bytes);
4465 fprintf (stderr, "-------------------------------------\n");
4466 #else
4467 fprintf (stderr, "(No per-node statistics)\n");
4468 #endif
4469 print_obstack_statistics ("permanent_obstack", &permanent_obstack);
4470 print_type_hash_statistics ();
4471 print_lang_statistics ();
4474 #define FILE_FUNCTION_PREFIX_LEN 9
4476 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
4478 /* Appends 6 random characters to TEMPLATE to (hopefully) avoid name
4479 clashes in cases where we can't reliably choose a unique name.
4481 Derived from mkstemp.c in libiberty. */
4483 static void
4484 append_random_chars (template)
4485 char *template;
4487 static const char letters[]
4488 = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
4489 static unsigned HOST_WIDE_INT value;
4490 unsigned HOST_WIDE_INT v;
4492 #ifdef HAVE_GETTIMEOFDAY
4493 struct timeval tv;
4494 #endif
4496 template += strlen (template);
4498 #ifdef HAVE_GETTIMEOFDAY
4499 /* Get some more or less random data. */
4500 gettimeofday (&tv, NULL);
4501 value += ((unsigned HOST_WIDE_INT) tv.tv_usec << 16) ^ tv.tv_sec ^ getpid ();
4502 #else
4503 value += getpid ();
4504 #endif
4506 v = value;
4508 /* Fill in the random bits. */
4509 template[0] = letters[v % 62];
4510 v /= 62;
4511 template[1] = letters[v % 62];
4512 v /= 62;
4513 template[2] = letters[v % 62];
4514 v /= 62;
4515 template[3] = letters[v % 62];
4516 v /= 62;
4517 template[4] = letters[v % 62];
4518 v /= 62;
4519 template[5] = letters[v % 62];
4521 template[6] = '\0';
4524 /* P is a string that will be used in a symbol. Mask out any characters
4525 that are not valid in that context. */
4527 void
4528 clean_symbol_name (p)
4529 char *p;
4531 for (; *p; p++)
4532 if (! (ISDIGIT(*p)
4533 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
4534 || *p == '$'
4535 #endif
4536 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
4537 || *p == '.'
4538 #endif
4539 || ISUPPER (*p)
4540 || ISLOWER (*p)))
4541 *p = '_';
4544 /* Generate a name for a function unique to this translation unit.
4545 TYPE is some string to identify the purpose of this function to the
4546 linker or collect2. */
4548 tree
4549 get_file_function_name_long (type)
4550 const char *type;
4552 char *buf;
4553 const char *p;
4554 char *q;
4556 if (first_global_object_name)
4557 p = first_global_object_name;
4558 else
4560 /* We don't have anything that we know to be unique to this translation
4561 unit, so use what we do have and throw in some randomness. */
4563 const char *name = weak_global_object_name;
4564 const char *file = main_input_filename;
4566 if (! name)
4567 name = "";
4568 if (! file)
4569 file = input_filename;
4571 q = (char *) alloca (7 + strlen (name) + strlen (file));
4573 sprintf (q, "%s%s", name, file);
4574 append_random_chars (q);
4575 p = q;
4578 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
4579 + strlen (type));
4581 /* Set up the name of the file-level functions we may need.
4582 Use a global object (which is already required to be unique over
4583 the program) rather than the file name (which imposes extra
4584 constraints). */
4585 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
4587 /* Don't need to pull weird characters out of global names. */
4588 if (p != first_global_object_name)
4589 clean_symbol_name (buf + 11);
4591 return get_identifier (buf);
4594 /* If KIND=='I', return a suitable global initializer (constructor) name.
4595 If KIND=='D', return a suitable global clean-up (destructor) name. */
4597 tree
4598 get_file_function_name (kind)
4599 int kind;
4601 char p[2];
4603 p[0] = kind;
4604 p[1] = 0;
4606 return get_file_function_name_long (p);
4609 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4610 The result is placed in BUFFER (which has length BIT_SIZE),
4611 with one bit in each char ('\000' or '\001').
4613 If the constructor is constant, NULL_TREE is returned.
4614 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4616 tree
4617 get_set_constructor_bits (init, buffer, bit_size)
4618 tree init;
4619 char *buffer;
4620 int bit_size;
4622 int i;
4623 tree vals;
4624 HOST_WIDE_INT domain_min
4625 = tree_low_cst (TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (init))), 0);
4626 tree non_const_bits = NULL_TREE;
4628 for (i = 0; i < bit_size; i++)
4629 buffer[i] = 0;
4631 for (vals = TREE_OPERAND (init, 1);
4632 vals != NULL_TREE; vals = TREE_CHAIN (vals))
4634 if (!host_integerp (TREE_VALUE (vals), 0)
4635 || (TREE_PURPOSE (vals) != NULL_TREE
4636 && !host_integerp (TREE_PURPOSE (vals), 0)))
4637 non_const_bits
4638 = tree_cons (TREE_PURPOSE (vals), TREE_VALUE (vals), non_const_bits);
4639 else if (TREE_PURPOSE (vals) != NULL_TREE)
4641 /* Set a range of bits to ones. */
4642 HOST_WIDE_INT lo_index
4643 = tree_low_cst (TREE_PURPOSE (vals), 0) - domain_min;
4644 HOST_WIDE_INT hi_index
4645 = tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
4647 if (lo_index < 0 || lo_index >= bit_size
4648 || hi_index < 0 || hi_index >= bit_size)
4649 abort ();
4650 for (; lo_index <= hi_index; lo_index++)
4651 buffer[lo_index] = 1;
4653 else
4655 /* Set a single bit to one. */
4656 HOST_WIDE_INT index
4657 = tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
4658 if (index < 0 || index >= bit_size)
4660 error ("invalid initializer for bit string");
4661 return NULL_TREE;
4663 buffer[index] = 1;
4666 return non_const_bits;
4669 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4670 The result is placed in BUFFER (which is an array of bytes).
4671 If the constructor is constant, NULL_TREE is returned.
4672 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4674 tree
4675 get_set_constructor_bytes (init, buffer, wd_size)
4676 tree init;
4677 unsigned char *buffer;
4678 int wd_size;
4680 int i;
4681 int set_word_size = BITS_PER_UNIT;
4682 int bit_size = wd_size * set_word_size;
4683 int bit_pos = 0;
4684 unsigned char *bytep = buffer;
4685 char *bit_buffer = (char *) alloca (bit_size);
4686 tree non_const_bits = get_set_constructor_bits (init, bit_buffer, bit_size);
4688 for (i = 0; i < wd_size; i++)
4689 buffer[i] = 0;
4691 for (i = 0; i < bit_size; i++)
4693 if (bit_buffer[i])
4695 if (BYTES_BIG_ENDIAN)
4696 *bytep |= (1 << (set_word_size - 1 - bit_pos));
4697 else
4698 *bytep |= 1 << bit_pos;
4700 bit_pos++;
4701 if (bit_pos >= set_word_size)
4702 bit_pos = 0, bytep++;
4704 return non_const_bits;
4707 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
4708 /* Complain that the tree code of NODE does not match the expected CODE.
4709 FILE, LINE, and FUNCTION are of the caller. */
4711 void
4712 tree_check_failed (node, code, file, line, function)
4713 const tree node;
4714 enum tree_code code;
4715 const char *file;
4716 int line;
4717 const char *function;
4719 internal_error ("Tree check: expected %s, have %s in %s, at %s:%d",
4720 tree_code_name[code], tree_code_name[TREE_CODE (node)],
4721 function, trim_filename (file), line);
4724 /* Similar to above, except that we check for a class of tree
4725 code, given in CL. */
4727 void
4728 tree_class_check_failed (node, cl, file, line, function)
4729 const tree node;
4730 int cl;
4731 const char *file;
4732 int line;
4733 const char *function;
4735 internal_error
4736 ("Tree check: expected class '%c', have '%c' (%s) in %s, at %s:%d",
4737 cl, TREE_CODE_CLASS (TREE_CODE (node)),
4738 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
4741 #endif /* ENABLE_TREE_CHECKING */
4743 /* For a new vector type node T, build the information necessary for
4744 debuggint output. */
4746 static void
4747 finish_vector_type (t)
4748 tree t;
4750 layout_type (t);
4753 tree index = build_int_2 (TYPE_VECTOR_SUBPARTS (t) - 1, 0);
4754 tree array = build_array_type (TREE_TYPE (t),
4755 build_index_type (index));
4756 tree rt = make_node (RECORD_TYPE);
4758 TYPE_FIELDS (rt) = build_decl (FIELD_DECL, get_identifier ("f"), array);
4759 DECL_CONTEXT (TYPE_FIELDS (rt)) = rt;
4760 layout_type (rt);
4761 TYPE_DEBUG_REPRESENTATION_TYPE (t) = rt;
4762 /* In dwarfout.c, type lookup uses TYPE_UID numbers. We want to output
4763 the representation type, and we want to find that die when looking up
4764 the vector type. This is most easily achieved by making the TYPE_UID
4765 numbers equal. */
4766 TYPE_UID (rt) = TYPE_UID (t);
4770 /* Create nodes for all integer types (and error_mark_node) using the sizes
4771 of C datatypes. The caller should call set_sizetype soon after calling
4772 this function to select one of the types as sizetype. */
4774 void
4775 build_common_tree_nodes (signed_char)
4776 int signed_char;
4778 error_mark_node = make_node (ERROR_MARK);
4779 TREE_TYPE (error_mark_node) = error_mark_node;
4781 initialize_sizetypes ();
4783 /* Define both `signed char' and `unsigned char'. */
4784 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
4785 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
4787 /* Define `char', which is like either `signed char' or `unsigned char'
4788 but not the same as either. */
4789 char_type_node
4790 = (signed_char
4791 ? make_signed_type (CHAR_TYPE_SIZE)
4792 : make_unsigned_type (CHAR_TYPE_SIZE));
4794 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
4795 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
4796 integer_type_node = make_signed_type (INT_TYPE_SIZE);
4797 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
4798 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
4799 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
4800 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
4801 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
4803 intQI_type_node = make_signed_type (GET_MODE_BITSIZE (QImode));
4804 intHI_type_node = make_signed_type (GET_MODE_BITSIZE (HImode));
4805 intSI_type_node = make_signed_type (GET_MODE_BITSIZE (SImode));
4806 intDI_type_node = make_signed_type (GET_MODE_BITSIZE (DImode));
4807 intTI_type_node = make_signed_type (GET_MODE_BITSIZE (TImode));
4809 unsigned_intQI_type_node = make_unsigned_type (GET_MODE_BITSIZE (QImode));
4810 unsigned_intHI_type_node = make_unsigned_type (GET_MODE_BITSIZE (HImode));
4811 unsigned_intSI_type_node = make_unsigned_type (GET_MODE_BITSIZE (SImode));
4812 unsigned_intDI_type_node = make_unsigned_type (GET_MODE_BITSIZE (DImode));
4813 unsigned_intTI_type_node = make_unsigned_type (GET_MODE_BITSIZE (TImode));
4816 /* Call this function after calling build_common_tree_nodes and set_sizetype.
4817 It will create several other common tree nodes. */
4819 void
4820 build_common_tree_nodes_2 (short_double)
4821 int short_double;
4823 /* Define these next since types below may used them. */
4824 integer_zero_node = build_int_2 (0, 0);
4825 integer_one_node = build_int_2 (1, 0);
4826 integer_minus_one_node = build_int_2 (-1, -1);
4828 size_zero_node = size_int (0);
4829 size_one_node = size_int (1);
4830 bitsize_zero_node = bitsize_int (0);
4831 bitsize_one_node = bitsize_int (1);
4832 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
4834 void_type_node = make_node (VOID_TYPE);
4835 layout_type (void_type_node);
4837 /* We are not going to have real types in C with less than byte alignment,
4838 so we might as well not have any types that claim to have it. */
4839 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
4840 TYPE_USER_ALIGN (void_type_node) = 0;
4842 null_pointer_node = build_int_2 (0, 0);
4843 TREE_TYPE (null_pointer_node) = build_pointer_type (void_type_node);
4844 layout_type (TREE_TYPE (null_pointer_node));
4846 ptr_type_node = build_pointer_type (void_type_node);
4847 const_ptr_type_node
4848 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
4850 float_type_node = make_node (REAL_TYPE);
4851 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
4852 layout_type (float_type_node);
4854 double_type_node = make_node (REAL_TYPE);
4855 if (short_double)
4856 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
4857 else
4858 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
4859 layout_type (double_type_node);
4861 long_double_type_node = make_node (REAL_TYPE);
4862 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
4863 layout_type (long_double_type_node);
4865 complex_integer_type_node = make_node (COMPLEX_TYPE);
4866 TREE_TYPE (complex_integer_type_node) = integer_type_node;
4867 layout_type (complex_integer_type_node);
4869 complex_float_type_node = make_node (COMPLEX_TYPE);
4870 TREE_TYPE (complex_float_type_node) = float_type_node;
4871 layout_type (complex_float_type_node);
4873 complex_double_type_node = make_node (COMPLEX_TYPE);
4874 TREE_TYPE (complex_double_type_node) = double_type_node;
4875 layout_type (complex_double_type_node);
4877 complex_long_double_type_node = make_node (COMPLEX_TYPE);
4878 TREE_TYPE (complex_long_double_type_node) = long_double_type_node;
4879 layout_type (complex_long_double_type_node);
4882 tree t;
4883 BUILD_VA_LIST_TYPE (t);
4885 /* Many back-ends define record types without seting TYPE_NAME.
4886 If we copied the record type here, we'd keep the original
4887 record type without a name. This breaks name mangling. So,
4888 don't copy record types and let c_common_nodes_and_builtins()
4889 declare the type to be __builtin_va_list. */
4890 if (TREE_CODE (t) != RECORD_TYPE)
4891 t = build_type_copy (t);
4893 va_list_type_node = t;
4896 V4SF_type_node = make_node (VECTOR_TYPE);
4897 TREE_TYPE (V4SF_type_node) = float_type_node;
4898 TYPE_MODE (V4SF_type_node) = V4SFmode;
4899 finish_vector_type (V4SF_type_node);
4901 V4SI_type_node = make_node (VECTOR_TYPE);
4902 TREE_TYPE (V4SI_type_node) = intSI_type_node;
4903 TYPE_MODE (V4SI_type_node) = V4SImode;
4904 finish_vector_type (V4SI_type_node);
4906 V2SI_type_node = make_node (VECTOR_TYPE);
4907 TREE_TYPE (V2SI_type_node) = intSI_type_node;
4908 TYPE_MODE (V2SI_type_node) = V2SImode;
4909 finish_vector_type (V2SI_type_node);
4911 V4HI_type_node = make_node (VECTOR_TYPE);
4912 TREE_TYPE (V4HI_type_node) = intHI_type_node;
4913 TYPE_MODE (V4HI_type_node) = V4HImode;
4914 finish_vector_type (V4HI_type_node);
4916 V8QI_type_node = make_node (VECTOR_TYPE);
4917 TREE_TYPE (V8QI_type_node) = intQI_type_node;
4918 TYPE_MODE (V8QI_type_node) = V8QImode;
4919 finish_vector_type (V8QI_type_node);