Fix __builtin_expect on PowerPCs
[official-gcc.git] / gcc / function.c
blob2e493f32efdc01dd45e30d9866fa3c81e66b6ff9
1 /* Expands front end tree to back end RTL for GNU C-Compiler
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register.
36 Call `put_var_into_stack' when you learn, belatedly, that a variable
37 previously given a pseudo-register must in fact go in the stack.
38 This function changes the DECL_RTL to be a stack slot instead of a reg
39 then scans all the RTL instructions so far generated to correct them. */
41 #include "config.h"
42 #include "system.h"
43 #include "rtl.h"
44 #include "tree.h"
45 #include "flags.h"
46 #include "except.h"
47 #include "function.h"
48 #include "expr.h"
49 #include "regs.h"
50 #include "hard-reg-set.h"
51 #include "insn-config.h"
52 #include "recog.h"
53 #include "output.h"
54 #include "basic-block.h"
55 #include "obstack.h"
56 #include "toplev.h"
57 #include "hash.h"
58 #include "ggc.h"
59 #include "tm_p.h"
61 #ifndef TRAMPOLINE_ALIGNMENT
62 #define TRAMPOLINE_ALIGNMENT FUNCTION_BOUNDARY
63 #endif
65 #ifndef LOCAL_ALIGNMENT
66 #define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
67 #endif
69 #if !defined (PREFERRED_STACK_BOUNDARY) && defined (STACK_BOUNDARY)
70 #define PREFERRED_STACK_BOUNDARY STACK_BOUNDARY
71 #endif
73 /* Some systems use __main in a way incompatible with its use in gcc, in these
74 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
75 give the same symbol without quotes for an alternative entry point. You
76 must define both, or neither. */
77 #ifndef NAME__MAIN
78 #define NAME__MAIN "__main"
79 #define SYMBOL__MAIN __main
80 #endif
82 /* Round a value to the lowest integer less than it that is a multiple of
83 the required alignment. Avoid using division in case the value is
84 negative. Assume the alignment is a power of two. */
85 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
87 /* Similar, but round to the next highest integer that meets the
88 alignment. */
89 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
91 /* NEED_SEPARATE_AP means that we cannot derive ap from the value of fp
92 during rtl generation. If they are different register numbers, this is
93 always true. It may also be true if
94 FIRST_PARM_OFFSET - STARTING_FRAME_OFFSET is not a constant during rtl
95 generation. See fix_lexical_addr for details. */
97 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
98 #define NEED_SEPARATE_AP
99 #endif
101 /* Nonzero if function being compiled doesn't contain any calls
102 (ignoring the prologue and epilogue). This is set prior to
103 local register allocation and is valid for the remaining
104 compiler passes. */
105 int current_function_is_leaf;
107 /* Nonzero if function being compiled doesn't contain any instructions
108 that can throw an exception. This is set prior to final. */
110 int current_function_nothrow;
112 /* Nonzero if function being compiled doesn't modify the stack pointer
113 (ignoring the prologue and epilogue). This is only valid after
114 life_analysis has run. */
115 int current_function_sp_is_unchanging;
117 /* Nonzero if the function being compiled is a leaf function which only
118 uses leaf registers. This is valid after reload (specifically after
119 sched2) and is useful only if the port defines LEAF_REGISTERS. */
120 int current_function_uses_only_leaf_regs;
122 /* Nonzero once virtual register instantiation has been done.
123 assign_stack_local uses frame_pointer_rtx when this is nonzero.
124 calls.c:emit_library_call_value_1 uses it to set up
125 post-instantiation libcalls. */
126 int virtuals_instantiated;
128 /* These variables hold pointers to functions to create and destroy
129 target specific, per-function data structures. */
130 void (*init_machine_status) PARAMS ((struct function *));
131 void (*free_machine_status) PARAMS ((struct function *));
132 /* This variable holds a pointer to a function to register any
133 data items in the target specific, per-function data structure
134 that will need garbage collection. */
135 void (*mark_machine_status) PARAMS ((struct function *));
137 /* Likewise, but for language-specific data. */
138 void (*init_lang_status) PARAMS ((struct function *));
139 void (*save_lang_status) PARAMS ((struct function *));
140 void (*restore_lang_status) PARAMS ((struct function *));
141 void (*mark_lang_status) PARAMS ((struct function *));
142 void (*free_lang_status) PARAMS ((struct function *));
144 /* The FUNCTION_DECL for an inline function currently being expanded. */
145 tree inline_function_decl;
147 /* The currently compiled function. */
148 struct function *cfun = 0;
150 /* Global list of all compiled functions. */
151 struct function *all_functions = 0;
153 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
154 static varray_type prologue;
155 static varray_type epilogue;
157 /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
158 in this function. */
159 static varray_type sibcall_epilogue;
161 /* In order to evaluate some expressions, such as function calls returning
162 structures in memory, we need to temporarily allocate stack locations.
163 We record each allocated temporary in the following structure.
165 Associated with each temporary slot is a nesting level. When we pop up
166 one level, all temporaries associated with the previous level are freed.
167 Normally, all temporaries are freed after the execution of the statement
168 in which they were created. However, if we are inside a ({...}) grouping,
169 the result may be in a temporary and hence must be preserved. If the
170 result could be in a temporary, we preserve it if we can determine which
171 one it is in. If we cannot determine which temporary may contain the
172 result, all temporaries are preserved. A temporary is preserved by
173 pretending it was allocated at the previous nesting level.
175 Automatic variables are also assigned temporary slots, at the nesting
176 level where they are defined. They are marked a "kept" so that
177 free_temp_slots will not free them. */
179 struct temp_slot
181 /* Points to next temporary slot. */
182 struct temp_slot *next;
183 /* The rtx to used to reference the slot. */
184 rtx slot;
185 /* The rtx used to represent the address if not the address of the
186 slot above. May be an EXPR_LIST if multiple addresses exist. */
187 rtx address;
188 /* The alignment (in bits) of the slot. */
189 int align;
190 /* The size, in units, of the slot. */
191 HOST_WIDE_INT size;
192 /* The type of the object in the slot, or zero if it doesn't correspond
193 to a type. We use this to determine whether a slot can be reused.
194 It can be reused if objects of the type of the new slot will always
195 conflict with objects of the type of the old slot. */
196 tree type;
197 /* The value of `sequence_rtl_expr' when this temporary is allocated. */
198 tree rtl_expr;
199 /* Non-zero if this temporary is currently in use. */
200 char in_use;
201 /* Non-zero if this temporary has its address taken. */
202 char addr_taken;
203 /* Nesting level at which this slot is being used. */
204 int level;
205 /* Non-zero if this should survive a call to free_temp_slots. */
206 int keep;
207 /* The offset of the slot from the frame_pointer, including extra space
208 for alignment. This info is for combine_temp_slots. */
209 HOST_WIDE_INT base_offset;
210 /* The size of the slot, including extra space for alignment. This
211 info is for combine_temp_slots. */
212 HOST_WIDE_INT full_size;
215 /* This structure is used to record MEMs or pseudos used to replace VAR, any
216 SUBREGs of VAR, and any MEMs containing VAR as an address. We need to
217 maintain this list in case two operands of an insn were required to match;
218 in that case we must ensure we use the same replacement. */
220 struct fixup_replacement
222 rtx old;
223 rtx new;
224 struct fixup_replacement *next;
227 struct insns_for_mem_entry {
228 /* The KEY in HE will be a MEM. */
229 struct hash_entry he;
230 /* These are the INSNS which reference the MEM. */
231 rtx insns;
234 /* Forward declarations. */
236 static rtx assign_stack_local_1 PARAMS ((enum machine_mode, HOST_WIDE_INT,
237 int, struct function *));
238 static rtx assign_stack_temp_for_type PARAMS ((enum machine_mode,
239 HOST_WIDE_INT, int, tree));
240 static struct temp_slot *find_temp_slot_from_address PARAMS ((rtx));
241 static void put_reg_into_stack PARAMS ((struct function *, rtx, tree,
242 enum machine_mode, enum machine_mode,
243 int, unsigned int, int,
244 struct hash_table *));
245 static void schedule_fixup_var_refs PARAMS ((struct function *, rtx, tree,
246 enum machine_mode,
247 struct hash_table *));
248 static void fixup_var_refs PARAMS ((rtx, enum machine_mode, int,
249 struct hash_table *));
250 static struct fixup_replacement
251 *find_fixup_replacement PARAMS ((struct fixup_replacement **, rtx));
252 static void fixup_var_refs_insns PARAMS ((rtx, rtx, enum machine_mode,
253 int, int));
254 static void fixup_var_refs_insns_with_hash
255 PARAMS ((struct hash_table *, rtx,
256 enum machine_mode, int));
257 static void fixup_var_refs_insn PARAMS ((rtx, rtx, enum machine_mode,
258 int, int));
259 static void fixup_var_refs_1 PARAMS ((rtx, enum machine_mode, rtx *, rtx,
260 struct fixup_replacement **));
261 static rtx fixup_memory_subreg PARAMS ((rtx, rtx, int));
262 static rtx walk_fixup_memory_subreg PARAMS ((rtx, rtx, int));
263 static rtx fixup_stack_1 PARAMS ((rtx, rtx));
264 static void optimize_bit_field PARAMS ((rtx, rtx, rtx *));
265 static void instantiate_decls PARAMS ((tree, int));
266 static void instantiate_decls_1 PARAMS ((tree, int));
267 static void instantiate_decl PARAMS ((rtx, HOST_WIDE_INT, int));
268 static rtx instantiate_new_reg PARAMS ((rtx, HOST_WIDE_INT *));
269 static int instantiate_virtual_regs_1 PARAMS ((rtx *, rtx, int));
270 static void delete_handlers PARAMS ((void));
271 static void pad_to_arg_alignment PARAMS ((struct args_size *, int,
272 struct args_size *));
273 #ifndef ARGS_GROW_DOWNWARD
274 static void pad_below PARAMS ((struct args_size *, enum machine_mode,
275 tree));
276 #endif
277 static rtx round_trampoline_addr PARAMS ((rtx));
278 static rtx adjust_trampoline_addr PARAMS ((rtx));
279 static tree *identify_blocks_1 PARAMS ((rtx, tree *, tree *, tree *));
280 static void reorder_blocks_0 PARAMS ((rtx));
281 static void reorder_blocks_1 PARAMS ((rtx, tree, varray_type *));
282 static tree blocks_nreverse PARAMS ((tree));
283 static int all_blocks PARAMS ((tree, tree *));
284 static tree *get_block_vector PARAMS ((tree, int *));
285 /* We always define `record_insns' even if its not used so that we
286 can always export `prologue_epilogue_contains'. */
287 static void record_insns PARAMS ((rtx, varray_type *)) ATTRIBUTE_UNUSED;
288 static int contains PARAMS ((rtx, varray_type));
289 #ifdef HAVE_return
290 static void emit_return_into_block PARAMS ((basic_block, rtx));
291 #endif
292 static void put_addressof_into_stack PARAMS ((rtx, struct hash_table *));
293 static bool purge_addressof_1 PARAMS ((rtx *, rtx, int, int,
294 struct hash_table *));
295 static void purge_single_hard_subreg_set PARAMS ((rtx));
296 #ifdef HAVE_epilogue
297 static void keep_stack_depressed PARAMS ((rtx));
298 #endif
299 static int is_addressof PARAMS ((rtx *, void *));
300 static struct hash_entry *insns_for_mem_newfunc PARAMS ((struct hash_entry *,
301 struct hash_table *,
302 hash_table_key));
303 static unsigned long insns_for_mem_hash PARAMS ((hash_table_key));
304 static bool insns_for_mem_comp PARAMS ((hash_table_key, hash_table_key));
305 static int insns_for_mem_walk PARAMS ((rtx *, void *));
306 static void compute_insns_for_mem PARAMS ((rtx, rtx, struct hash_table *));
307 static void mark_temp_slot PARAMS ((struct temp_slot *));
308 static void mark_function_status PARAMS ((struct function *));
309 static void mark_function_chain PARAMS ((void *));
310 static void prepare_function_start PARAMS ((void));
311 static void do_clobber_return_reg PARAMS ((rtx, void *));
312 static void do_use_return_reg PARAMS ((rtx, void *));
314 /* Pointer to chain of `struct function' for containing functions. */
315 struct function *outer_function_chain;
317 /* Given a function decl for a containing function,
318 return the `struct function' for it. */
320 struct function *
321 find_function_data (decl)
322 tree decl;
324 struct function *p;
326 for (p = outer_function_chain; p; p = p->next)
327 if (p->decl == decl)
328 return p;
330 abort ();
333 /* Save the current context for compilation of a nested function.
334 This is called from language-specific code. The caller should use
335 the save_lang_status callback to save any language-specific state,
336 since this function knows only about language-independent
337 variables. */
339 void
340 push_function_context_to (context)
341 tree context;
343 struct function *p, *context_data;
345 if (context)
347 context_data = (context == current_function_decl
348 ? cfun
349 : find_function_data (context));
350 context_data->contains_functions = 1;
353 if (cfun == 0)
354 init_dummy_function_start ();
355 p = cfun;
357 p->next = outer_function_chain;
358 outer_function_chain = p;
359 p->fixup_var_refs_queue = 0;
361 if (save_lang_status)
362 (*save_lang_status) (p);
364 cfun = 0;
367 void
368 push_function_context ()
370 push_function_context_to (current_function_decl);
373 /* Restore the last saved context, at the end of a nested function.
374 This function is called from language-specific code. */
376 void
377 pop_function_context_from (context)
378 tree context ATTRIBUTE_UNUSED;
380 struct function *p = outer_function_chain;
381 struct var_refs_queue *queue;
382 struct var_refs_queue *next;
384 cfun = p;
385 outer_function_chain = p->next;
387 current_function_decl = p->decl;
388 reg_renumber = 0;
390 restore_emit_status (p);
392 if (restore_lang_status)
393 (*restore_lang_status) (p);
395 /* Finish doing put_var_into_stack for any of our variables
396 which became addressable during the nested function. */
397 for (queue = p->fixup_var_refs_queue; queue; queue = next)
399 next = queue->next;
400 fixup_var_refs (queue->modified, queue->promoted_mode,
401 queue->unsignedp, 0);
402 free (queue);
404 p->fixup_var_refs_queue = 0;
406 /* Reset variables that have known state during rtx generation. */
407 rtx_equal_function_value_matters = 1;
408 virtuals_instantiated = 0;
409 generating_concat_p = 1;
412 void
413 pop_function_context ()
415 pop_function_context_from (current_function_decl);
418 /* Clear out all parts of the state in F that can safely be discarded
419 after the function has been parsed, but not compiled, to let
420 garbage collection reclaim the memory. */
422 void
423 free_after_parsing (f)
424 struct function *f;
426 /* f->expr->forced_labels is used by code generation. */
427 /* f->emit->regno_reg_rtx is used by code generation. */
428 /* f->varasm is used by code generation. */
429 /* f->eh->eh_return_stub_label is used by code generation. */
431 if (free_lang_status)
432 (*free_lang_status) (f);
433 free_stmt_status (f);
436 /* Clear out all parts of the state in F that can safely be discarded
437 after the function has been compiled, to let garbage collection
438 reclaim the memory. */
440 void
441 free_after_compilation (f)
442 struct function *f;
444 struct temp_slot *ts;
445 struct temp_slot *next;
447 free_eh_status (f);
448 free_expr_status (f);
449 free_emit_status (f);
450 free_varasm_status (f);
452 if (free_machine_status)
453 (*free_machine_status) (f);
455 if (f->x_parm_reg_stack_loc)
456 free (f->x_parm_reg_stack_loc);
458 for (ts = f->x_temp_slots; ts; ts = next)
460 next = ts->next;
461 free (ts);
463 f->x_temp_slots = NULL;
465 f->arg_offset_rtx = NULL;
466 f->return_rtx = NULL;
467 f->internal_arg_pointer = NULL;
468 f->x_nonlocal_labels = NULL;
469 f->x_nonlocal_goto_handler_slots = NULL;
470 f->x_nonlocal_goto_handler_labels = NULL;
471 f->x_nonlocal_goto_stack_level = NULL;
472 f->x_cleanup_label = NULL;
473 f->x_return_label = NULL;
474 f->x_save_expr_regs = NULL;
475 f->x_stack_slot_list = NULL;
476 f->x_rtl_expr_chain = NULL;
477 f->x_tail_recursion_label = NULL;
478 f->x_tail_recursion_reentry = NULL;
479 f->x_arg_pointer_save_area = NULL;
480 f->x_clobber_return_insn = NULL;
481 f->x_context_display = NULL;
482 f->x_trampoline_list = NULL;
483 f->x_parm_birth_insn = NULL;
484 f->x_last_parm_insn = NULL;
485 f->x_parm_reg_stack_loc = NULL;
486 f->fixup_var_refs_queue = NULL;
487 f->original_arg_vector = NULL;
488 f->original_decl_initial = NULL;
489 f->inl_last_parm_insn = NULL;
490 f->epilogue_delay_list = NULL;
493 /* Allocate fixed slots in the stack frame of the current function. */
495 /* Return size needed for stack frame based on slots so far allocated in
496 function F.
497 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
498 the caller may have to do that. */
500 HOST_WIDE_INT
501 get_func_frame_size (f)
502 struct function *f;
504 #ifdef FRAME_GROWS_DOWNWARD
505 return -f->x_frame_offset;
506 #else
507 return f->x_frame_offset;
508 #endif
511 /* Return size needed for stack frame based on slots so far allocated.
512 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
513 the caller may have to do that. */
514 HOST_WIDE_INT
515 get_frame_size ()
517 return get_func_frame_size (cfun);
520 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
521 with machine mode MODE.
523 ALIGN controls the amount of alignment for the address of the slot:
524 0 means according to MODE,
525 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
526 positive specifies alignment boundary in bits.
528 We do not round to stack_boundary here.
530 FUNCTION specifies the function to allocate in. */
532 static rtx
533 assign_stack_local_1 (mode, size, align, function)
534 enum machine_mode mode;
535 HOST_WIDE_INT size;
536 int align;
537 struct function *function;
539 register rtx x, addr;
540 int bigend_correction = 0;
541 int alignment;
543 if (align == 0)
545 tree type;
547 if (mode == BLKmode)
548 alignment = BIGGEST_ALIGNMENT;
549 else
550 alignment = GET_MODE_ALIGNMENT (mode);
552 /* Allow the target to (possibly) increase the alignment of this
553 stack slot. */
554 type = type_for_mode (mode, 0);
555 if (type)
556 alignment = LOCAL_ALIGNMENT (type, alignment);
558 alignment /= BITS_PER_UNIT;
560 else if (align == -1)
562 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
563 size = CEIL_ROUND (size, alignment);
565 else
566 alignment = align / BITS_PER_UNIT;
568 #ifdef FRAME_GROWS_DOWNWARD
569 function->x_frame_offset -= size;
570 #endif
572 /* Ignore alignment we can't do with expected alignment of the boundary. */
573 if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
574 alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
576 if (function->stack_alignment_needed < alignment * BITS_PER_UNIT)
577 function->stack_alignment_needed = alignment * BITS_PER_UNIT;
579 /* Round frame offset to that alignment.
580 We must be careful here, since FRAME_OFFSET might be negative and
581 division with a negative dividend isn't as well defined as we might
582 like. So we instead assume that ALIGNMENT is a power of two and
583 use logical operations which are unambiguous. */
584 #ifdef FRAME_GROWS_DOWNWARD
585 function->x_frame_offset = FLOOR_ROUND (function->x_frame_offset, alignment);
586 #else
587 function->x_frame_offset = CEIL_ROUND (function->x_frame_offset, alignment);
588 #endif
590 /* On a big-endian machine, if we are allocating more space than we will use,
591 use the least significant bytes of those that are allocated. */
592 if (BYTES_BIG_ENDIAN && mode != BLKmode)
593 bigend_correction = size - GET_MODE_SIZE (mode);
595 /* If we have already instantiated virtual registers, return the actual
596 address relative to the frame pointer. */
597 if (function == cfun && virtuals_instantiated)
598 addr = plus_constant (frame_pointer_rtx,
599 (frame_offset + bigend_correction
600 + STARTING_FRAME_OFFSET));
601 else
602 addr = plus_constant (virtual_stack_vars_rtx,
603 function->x_frame_offset + bigend_correction);
605 #ifndef FRAME_GROWS_DOWNWARD
606 function->x_frame_offset += size;
607 #endif
609 x = gen_rtx_MEM (mode, addr);
611 function->x_stack_slot_list
612 = gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list);
614 return x;
617 /* Wrapper around assign_stack_local_1; assign a local stack slot for the
618 current function. */
621 assign_stack_local (mode, size, align)
622 enum machine_mode mode;
623 HOST_WIDE_INT size;
624 int align;
626 return assign_stack_local_1 (mode, size, align, cfun);
629 /* Allocate a temporary stack slot and record it for possible later
630 reuse.
632 MODE is the machine mode to be given to the returned rtx.
634 SIZE is the size in units of the space required. We do no rounding here
635 since assign_stack_local will do any required rounding.
637 KEEP is 1 if this slot is to be retained after a call to
638 free_temp_slots. Automatic variables for a block are allocated
639 with this flag. KEEP is 2 if we allocate a longer term temporary,
640 whose lifetime is controlled by CLEANUP_POINT_EXPRs. KEEP is 3
641 if we are to allocate something at an inner level to be treated as
642 a variable in the block (e.g., a SAVE_EXPR).
644 TYPE is the type that will be used for the stack slot. */
646 static rtx
647 assign_stack_temp_for_type (mode, size, keep, type)
648 enum machine_mode mode;
649 HOST_WIDE_INT size;
650 int keep;
651 tree type;
653 int align;
654 struct temp_slot *p, *best_p = 0;
656 /* If SIZE is -1 it means that somebody tried to allocate a temporary
657 of a variable size. */
658 if (size == -1)
659 abort ();
661 if (mode == BLKmode)
662 align = BIGGEST_ALIGNMENT;
663 else
664 align = GET_MODE_ALIGNMENT (mode);
666 if (! type)
667 type = type_for_mode (mode, 0);
669 if (type)
670 align = LOCAL_ALIGNMENT (type, align);
672 /* Try to find an available, already-allocated temporary of the proper
673 mode which meets the size and alignment requirements. Choose the
674 smallest one with the closest alignment. */
675 for (p = temp_slots; p; p = p->next)
676 if (p->align >= align && p->size >= size && GET_MODE (p->slot) == mode
677 && ! p->in_use
678 && objects_must_conflict_p (p->type, type)
679 && (best_p == 0 || best_p->size > p->size
680 || (best_p->size == p->size && best_p->align > p->align)))
682 if (p->align == align && p->size == size)
684 best_p = 0;
685 break;
687 best_p = p;
690 /* Make our best, if any, the one to use. */
691 if (best_p)
693 /* If there are enough aligned bytes left over, make them into a new
694 temp_slot so that the extra bytes don't get wasted. Do this only
695 for BLKmode slots, so that we can be sure of the alignment. */
696 if (GET_MODE (best_p->slot) == BLKmode)
698 int alignment = best_p->align / BITS_PER_UNIT;
699 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
701 if (best_p->size - rounded_size >= alignment)
703 p = (struct temp_slot *) xmalloc (sizeof (struct temp_slot));
704 p->in_use = p->addr_taken = 0;
705 p->size = best_p->size - rounded_size;
706 p->base_offset = best_p->base_offset + rounded_size;
707 p->full_size = best_p->full_size - rounded_size;
708 p->slot = gen_rtx_MEM (BLKmode,
709 plus_constant (XEXP (best_p->slot, 0),
710 rounded_size));
711 p->align = best_p->align;
712 p->address = 0;
713 p->rtl_expr = 0;
714 p->type = best_p->type;
715 p->next = temp_slots;
716 temp_slots = p;
718 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
719 stack_slot_list);
721 best_p->size = rounded_size;
722 best_p->full_size = rounded_size;
726 p = best_p;
729 /* If we still didn't find one, make a new temporary. */
730 if (p == 0)
732 HOST_WIDE_INT frame_offset_old = frame_offset;
734 p = (struct temp_slot *) xmalloc (sizeof (struct temp_slot));
736 /* We are passing an explicit alignment request to assign_stack_local.
737 One side effect of that is assign_stack_local will not round SIZE
738 to ensure the frame offset remains suitably aligned.
740 So for requests which depended on the rounding of SIZE, we go ahead
741 and round it now. We also make sure ALIGNMENT is at least
742 BIGGEST_ALIGNMENT. */
743 if (mode == BLKmode && align < BIGGEST_ALIGNMENT)
744 abort();
745 p->slot = assign_stack_local (mode,
746 (mode == BLKmode
747 ? CEIL_ROUND (size, align / BITS_PER_UNIT)
748 : size),
749 align);
751 p->align = align;
753 /* The following slot size computation is necessary because we don't
754 know the actual size of the temporary slot until assign_stack_local
755 has performed all the frame alignment and size rounding for the
756 requested temporary. Note that extra space added for alignment
757 can be either above or below this stack slot depending on which
758 way the frame grows. We include the extra space if and only if it
759 is above this slot. */
760 #ifdef FRAME_GROWS_DOWNWARD
761 p->size = frame_offset_old - frame_offset;
762 #else
763 p->size = size;
764 #endif
766 /* Now define the fields used by combine_temp_slots. */
767 #ifdef FRAME_GROWS_DOWNWARD
768 p->base_offset = frame_offset;
769 p->full_size = frame_offset_old - frame_offset;
770 #else
771 p->base_offset = frame_offset_old;
772 p->full_size = frame_offset - frame_offset_old;
773 #endif
774 p->address = 0;
775 p->next = temp_slots;
776 temp_slots = p;
779 p->in_use = 1;
780 p->addr_taken = 0;
781 p->rtl_expr = seq_rtl_expr;
782 p->type = type;
784 if (keep == 2)
786 p->level = target_temp_slot_level;
787 p->keep = 0;
789 else if (keep == 3)
791 p->level = var_temp_slot_level;
792 p->keep = 0;
794 else
796 p->level = temp_slot_level;
797 p->keep = keep;
800 /* We may be reusing an old slot, so clear any MEM flags that may have been
801 set from before. */
802 RTX_UNCHANGING_P (p->slot) = 0;
803 MEM_IN_STRUCT_P (p->slot) = 0;
804 MEM_SCALAR_P (p->slot) = 0;
805 MEM_VOLATILE_P (p->slot) = 0;
807 /* If we know the alias set for the memory that will be used, use
808 it. If there's no TYPE, then we don't know anything about the
809 alias set for the memory. */
810 if (type)
811 MEM_ALIAS_SET (p->slot) = get_alias_set (type);
812 else
813 MEM_ALIAS_SET (p->slot) = 0;
815 /* If a type is specified, set the relevant flags. */
816 if (type != 0)
818 RTX_UNCHANGING_P (p->slot) = TYPE_READONLY (type);
819 MEM_VOLATILE_P (p->slot) = TYPE_VOLATILE (type);
820 MEM_SET_IN_STRUCT_P (p->slot, AGGREGATE_TYPE_P (type));
823 return p->slot;
826 /* Allocate a temporary stack slot and record it for possible later
827 reuse. First three arguments are same as in preceding function. */
830 assign_stack_temp (mode, size, keep)
831 enum machine_mode mode;
832 HOST_WIDE_INT size;
833 int keep;
835 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
838 /* Assign a temporary of given TYPE.
839 KEEP is as for assign_stack_temp.
840 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
841 it is 0 if a register is OK.
842 DONT_PROMOTE is 1 if we should not promote values in register
843 to wider modes. */
846 assign_temp (type, keep, memory_required, dont_promote)
847 tree type;
848 int keep;
849 int memory_required;
850 int dont_promote ATTRIBUTE_UNUSED;
852 enum machine_mode mode = TYPE_MODE (type);
853 #ifndef PROMOTE_FOR_CALL_ONLY
854 int unsignedp = TREE_UNSIGNED (type);
855 #endif
857 if (mode == BLKmode || memory_required)
859 HOST_WIDE_INT size = int_size_in_bytes (type);
860 rtx tmp;
862 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
863 problems with allocating the stack space. */
864 if (size == 0)
865 size = 1;
867 /* Unfortunately, we don't yet know how to allocate variable-sized
868 temporaries. However, sometimes we have a fixed upper limit on
869 the size (which is stored in TYPE_ARRAY_MAX_SIZE) and can use that
870 instead. This is the case for Chill variable-sized strings. */
871 if (size == -1 && TREE_CODE (type) == ARRAY_TYPE
872 && TYPE_ARRAY_MAX_SIZE (type) != NULL_TREE
873 && host_integerp (TYPE_ARRAY_MAX_SIZE (type), 1))
874 size = tree_low_cst (TYPE_ARRAY_MAX_SIZE (type), 1);
876 tmp = assign_stack_temp_for_type (mode, size, keep, type);
877 return tmp;
880 #ifndef PROMOTE_FOR_CALL_ONLY
881 if (! dont_promote)
882 mode = promote_mode (type, mode, &unsignedp, 0);
883 #endif
885 return gen_reg_rtx (mode);
888 /* Combine temporary stack slots which are adjacent on the stack.
890 This allows for better use of already allocated stack space. This is only
891 done for BLKmode slots because we can be sure that we won't have alignment
892 problems in this case. */
894 void
895 combine_temp_slots ()
897 struct temp_slot *p, *q;
898 struct temp_slot *prev_p, *prev_q;
899 int num_slots;
901 /* We can't combine slots, because the information about which slot
902 is in which alias set will be lost. */
903 if (flag_strict_aliasing)
904 return;
906 /* If there are a lot of temp slots, don't do anything unless
907 high levels of optimizaton. */
908 if (! flag_expensive_optimizations)
909 for (p = temp_slots, num_slots = 0; p; p = p->next, num_slots++)
910 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
911 return;
913 for (p = temp_slots, prev_p = 0; p; p = prev_p ? prev_p->next : temp_slots)
915 int delete_p = 0;
917 if (! p->in_use && GET_MODE (p->slot) == BLKmode)
918 for (q = p->next, prev_q = p; q; q = prev_q->next)
920 int delete_q = 0;
921 if (! q->in_use && GET_MODE (q->slot) == BLKmode)
923 if (p->base_offset + p->full_size == q->base_offset)
925 /* Q comes after P; combine Q into P. */
926 p->size += q->size;
927 p->full_size += q->full_size;
928 delete_q = 1;
930 else if (q->base_offset + q->full_size == p->base_offset)
932 /* P comes after Q; combine P into Q. */
933 q->size += p->size;
934 q->full_size += p->full_size;
935 delete_p = 1;
936 break;
939 /* Either delete Q or advance past it. */
940 if (delete_q)
942 prev_q->next = q->next;
943 free (q);
945 else
946 prev_q = q;
948 /* Either delete P or advance past it. */
949 if (delete_p)
951 if (prev_p)
952 prev_p->next = p->next;
953 else
954 temp_slots = p->next;
956 else
957 prev_p = p;
961 /* Find the temp slot corresponding to the object at address X. */
963 static struct temp_slot *
964 find_temp_slot_from_address (x)
965 rtx x;
967 struct temp_slot *p;
968 rtx next;
970 for (p = temp_slots; p; p = p->next)
972 if (! p->in_use)
973 continue;
975 else if (XEXP (p->slot, 0) == x
976 || p->address == x
977 || (GET_CODE (x) == PLUS
978 && XEXP (x, 0) == virtual_stack_vars_rtx
979 && GET_CODE (XEXP (x, 1)) == CONST_INT
980 && INTVAL (XEXP (x, 1)) >= p->base_offset
981 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
982 return p;
984 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
985 for (next = p->address; next; next = XEXP (next, 1))
986 if (XEXP (next, 0) == x)
987 return p;
990 /* If we have a sum involving a register, see if it points to a temp
991 slot. */
992 if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == REG
993 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
994 return p;
995 else if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == REG
996 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
997 return p;
999 return 0;
1002 /* Indicate that NEW is an alternate way of referring to the temp slot
1003 that previously was known by OLD. */
1005 void
1006 update_temp_slot_address (old, new)
1007 rtx old, new;
1009 struct temp_slot *p;
1011 if (rtx_equal_p (old, new))
1012 return;
1014 p = find_temp_slot_from_address (old);
1016 /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
1017 is a register, see if one operand of the PLUS is a temporary
1018 location. If so, NEW points into it. Otherwise, if both OLD and
1019 NEW are a PLUS and if there is a register in common between them.
1020 If so, try a recursive call on those values. */
1021 if (p == 0)
1023 if (GET_CODE (old) != PLUS)
1024 return;
1026 if (GET_CODE (new) == REG)
1028 update_temp_slot_address (XEXP (old, 0), new);
1029 update_temp_slot_address (XEXP (old, 1), new);
1030 return;
1032 else if (GET_CODE (new) != PLUS)
1033 return;
1035 if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
1036 update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
1037 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
1038 update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
1039 else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
1040 update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
1041 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
1042 update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
1044 return;
1047 /* Otherwise add an alias for the temp's address. */
1048 else if (p->address == 0)
1049 p->address = new;
1050 else
1052 if (GET_CODE (p->address) != EXPR_LIST)
1053 p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
1055 p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
1059 /* If X could be a reference to a temporary slot, mark the fact that its
1060 address was taken. */
1062 void
1063 mark_temp_addr_taken (x)
1064 rtx x;
1066 struct temp_slot *p;
1068 if (x == 0)
1069 return;
1071 /* If X is not in memory or is at a constant address, it cannot be in
1072 a temporary slot. */
1073 if (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
1074 return;
1076 p = find_temp_slot_from_address (XEXP (x, 0));
1077 if (p != 0)
1078 p->addr_taken = 1;
1081 /* If X could be a reference to a temporary slot, mark that slot as
1082 belonging to the to one level higher than the current level. If X
1083 matched one of our slots, just mark that one. Otherwise, we can't
1084 easily predict which it is, so upgrade all of them. Kept slots
1085 need not be touched.
1087 This is called when an ({...}) construct occurs and a statement
1088 returns a value in memory. */
1090 void
1091 preserve_temp_slots (x)
1092 rtx x;
1094 struct temp_slot *p = 0;
1096 /* If there is no result, we still might have some objects whose address
1097 were taken, so we need to make sure they stay around. */
1098 if (x == 0)
1100 for (p = temp_slots; p; p = p->next)
1101 if (p->in_use && p->level == temp_slot_level && p->addr_taken)
1102 p->level--;
1104 return;
1107 /* If X is a register that is being used as a pointer, see if we have
1108 a temporary slot we know it points to. To be consistent with
1109 the code below, we really should preserve all non-kept slots
1110 if we can't find a match, but that seems to be much too costly. */
1111 if (GET_CODE (x) == REG && REG_POINTER (x))
1112 p = find_temp_slot_from_address (x);
1114 /* If X is not in memory or is at a constant address, it cannot be in
1115 a temporary slot, but it can contain something whose address was
1116 taken. */
1117 if (p == 0 && (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0))))
1119 for (p = temp_slots; p; p = p->next)
1120 if (p->in_use && p->level == temp_slot_level && p->addr_taken)
1121 p->level--;
1123 return;
1126 /* First see if we can find a match. */
1127 if (p == 0)
1128 p = find_temp_slot_from_address (XEXP (x, 0));
1130 if (p != 0)
1132 /* Move everything at our level whose address was taken to our new
1133 level in case we used its address. */
1134 struct temp_slot *q;
1136 if (p->level == temp_slot_level)
1138 for (q = temp_slots; q; q = q->next)
1139 if (q != p && q->addr_taken && q->level == p->level)
1140 q->level--;
1142 p->level--;
1143 p->addr_taken = 0;
1145 return;
1148 /* Otherwise, preserve all non-kept slots at this level. */
1149 for (p = temp_slots; p; p = p->next)
1150 if (p->in_use && p->level == temp_slot_level && ! p->keep)
1151 p->level--;
1154 /* X is the result of an RTL_EXPR. If it is a temporary slot associated
1155 with that RTL_EXPR, promote it into a temporary slot at the present
1156 level so it will not be freed when we free slots made in the
1157 RTL_EXPR. */
1159 void
1160 preserve_rtl_expr_result (x)
1161 rtx x;
1163 struct temp_slot *p;
1165 /* If X is not in memory or is at a constant address, it cannot be in
1166 a temporary slot. */
1167 if (x == 0 || GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
1168 return;
1170 /* If we can find a match, move it to our level unless it is already at
1171 an upper level. */
1172 p = find_temp_slot_from_address (XEXP (x, 0));
1173 if (p != 0)
1175 p->level = MIN (p->level, temp_slot_level);
1176 p->rtl_expr = 0;
1179 return;
1182 /* Free all temporaries used so far. This is normally called at the end
1183 of generating code for a statement. Don't free any temporaries
1184 currently in use for an RTL_EXPR that hasn't yet been emitted.
1185 We could eventually do better than this since it can be reused while
1186 generating the same RTL_EXPR, but this is complex and probably not
1187 worthwhile. */
1189 void
1190 free_temp_slots ()
1192 struct temp_slot *p;
1194 for (p = temp_slots; p; p = p->next)
1195 if (p->in_use && p->level == temp_slot_level && ! p->keep
1196 && p->rtl_expr == 0)
1197 p->in_use = 0;
1199 combine_temp_slots ();
1202 /* Free all temporary slots used in T, an RTL_EXPR node. */
1204 void
1205 free_temps_for_rtl_expr (t)
1206 tree t;
1208 struct temp_slot *p;
1210 for (p = temp_slots; p; p = p->next)
1211 if (p->rtl_expr == t)
1213 /* If this slot is below the current TEMP_SLOT_LEVEL, then it
1214 needs to be preserved. This can happen if a temporary in
1215 the RTL_EXPR was addressed; preserve_temp_slots will move
1216 the temporary into a higher level. */
1217 if (temp_slot_level <= p->level)
1218 p->in_use = 0;
1219 else
1220 p->rtl_expr = NULL_TREE;
1223 combine_temp_slots ();
1226 /* Mark all temporaries ever allocated in this function as not suitable
1227 for reuse until the current level is exited. */
1229 void
1230 mark_all_temps_used ()
1232 struct temp_slot *p;
1234 for (p = temp_slots; p; p = p->next)
1236 p->in_use = p->keep = 1;
1237 p->level = MIN (p->level, temp_slot_level);
1241 /* Push deeper into the nesting level for stack temporaries. */
1243 void
1244 push_temp_slots ()
1246 temp_slot_level++;
1249 /* Likewise, but save the new level as the place to allocate variables
1250 for blocks. */
1252 #if 0
1253 void
1254 push_temp_slots_for_block ()
1256 push_temp_slots ();
1258 var_temp_slot_level = temp_slot_level;
1261 /* Likewise, but save the new level as the place to allocate temporaries
1262 for TARGET_EXPRs. */
1264 void
1265 push_temp_slots_for_target ()
1267 push_temp_slots ();
1269 target_temp_slot_level = temp_slot_level;
1272 /* Set and get the value of target_temp_slot_level. The only
1273 permitted use of these functions is to save and restore this value. */
1276 get_target_temp_slot_level ()
1278 return target_temp_slot_level;
1281 void
1282 set_target_temp_slot_level (level)
1283 int level;
1285 target_temp_slot_level = level;
1287 #endif
1289 /* Pop a temporary nesting level. All slots in use in the current level
1290 are freed. */
1292 void
1293 pop_temp_slots ()
1295 struct temp_slot *p;
1297 for (p = temp_slots; p; p = p->next)
1298 if (p->in_use && p->level == temp_slot_level && p->rtl_expr == 0)
1299 p->in_use = 0;
1301 combine_temp_slots ();
1303 temp_slot_level--;
1306 /* Initialize temporary slots. */
1308 void
1309 init_temp_slots ()
1311 /* We have not allocated any temporaries yet. */
1312 temp_slots = 0;
1313 temp_slot_level = 0;
1314 var_temp_slot_level = 0;
1315 target_temp_slot_level = 0;
1318 /* Retroactively move an auto variable from a register to a stack slot.
1319 This is done when an address-reference to the variable is seen. */
1321 void
1322 put_var_into_stack (decl)
1323 tree decl;
1325 register rtx reg;
1326 enum machine_mode promoted_mode, decl_mode;
1327 struct function *function = 0;
1328 tree context;
1329 int can_use_addressof;
1330 int volatilep = TREE_CODE (decl) != SAVE_EXPR && TREE_THIS_VOLATILE (decl);
1331 int usedp = (TREE_USED (decl)
1332 || (TREE_CODE (decl) != SAVE_EXPR && DECL_INITIAL (decl) != 0));
1334 context = decl_function_context (decl);
1336 /* Get the current rtl used for this object and its original mode. */
1337 reg = (TREE_CODE (decl) == SAVE_EXPR
1338 ? SAVE_EXPR_RTL (decl)
1339 : DECL_RTL_IF_SET (decl));
1341 /* No need to do anything if decl has no rtx yet
1342 since in that case caller is setting TREE_ADDRESSABLE
1343 and a stack slot will be assigned when the rtl is made. */
1344 if (reg == 0)
1345 return;
1347 /* Get the declared mode for this object. */
1348 decl_mode = (TREE_CODE (decl) == SAVE_EXPR ? TYPE_MODE (TREE_TYPE (decl))
1349 : DECL_MODE (decl));
1350 /* Get the mode it's actually stored in. */
1351 promoted_mode = GET_MODE (reg);
1353 /* If this variable comes from an outer function,
1354 find that function's saved context. */
1355 if (context != current_function_decl && context != inline_function_decl)
1356 for (function = outer_function_chain; function; function = function->next)
1357 if (function->decl == context)
1358 break;
1360 /* If this is a variable-size object with a pseudo to address it,
1361 put that pseudo into the stack, if the var is nonlocal. */
1362 if (TREE_CODE (decl) != SAVE_EXPR && DECL_NONLOCAL (decl)
1363 && GET_CODE (reg) == MEM
1364 && GET_CODE (XEXP (reg, 0)) == REG
1365 && REGNO (XEXP (reg, 0)) > LAST_VIRTUAL_REGISTER)
1367 reg = XEXP (reg, 0);
1368 decl_mode = promoted_mode = GET_MODE (reg);
1371 can_use_addressof
1372 = (function == 0
1373 && optimize > 0
1374 /* FIXME make it work for promoted modes too */
1375 && decl_mode == promoted_mode
1376 #ifdef NON_SAVING_SETJMP
1377 && ! (NON_SAVING_SETJMP && current_function_calls_setjmp)
1378 #endif
1381 /* If we can't use ADDRESSOF, make sure we see through one we already
1382 generated. */
1383 if (! can_use_addressof && GET_CODE (reg) == MEM
1384 && GET_CODE (XEXP (reg, 0)) == ADDRESSOF)
1385 reg = XEXP (XEXP (reg, 0), 0);
1387 /* Now we should have a value that resides in one or more pseudo regs. */
1389 if (GET_CODE (reg) == REG)
1391 /* If this variable lives in the current function and we don't need
1392 to put things in the stack for the sake of setjmp, try to keep it
1393 in a register until we know we actually need the address. */
1394 if (can_use_addressof)
1395 gen_mem_addressof (reg, decl);
1396 else
1397 put_reg_into_stack (function, reg, TREE_TYPE (decl), promoted_mode,
1398 decl_mode, volatilep, 0, usedp, 0);
1400 else if (GET_CODE (reg) == CONCAT)
1402 /* A CONCAT contains two pseudos; put them both in the stack.
1403 We do it so they end up consecutive.
1404 We fixup references to the parts only after we fixup references
1405 to the whole CONCAT, lest we do double fixups for the latter
1406 references. */
1407 enum machine_mode part_mode = GET_MODE (XEXP (reg, 0));
1408 tree part_type = type_for_mode (part_mode, 0);
1409 rtx lopart = XEXP (reg, 0);
1410 rtx hipart = XEXP (reg, 1);
1411 #ifdef FRAME_GROWS_DOWNWARD
1412 /* Since part 0 should have a lower address, do it second. */
1413 put_reg_into_stack (function, hipart, part_type, part_mode,
1414 part_mode, volatilep, 0, 0, 0);
1415 put_reg_into_stack (function, lopart, part_type, part_mode,
1416 part_mode, volatilep, 0, 0, 0);
1417 #else
1418 put_reg_into_stack (function, lopart, part_type, part_mode,
1419 part_mode, volatilep, 0, 0, 0);
1420 put_reg_into_stack (function, hipart, part_type, part_mode,
1421 part_mode, volatilep, 0, 0, 0);
1422 #endif
1424 /* Change the CONCAT into a combined MEM for both parts. */
1425 PUT_CODE (reg, MEM);
1426 set_mem_attributes (reg, decl, 1);
1428 /* The two parts are in memory order already.
1429 Use the lower parts address as ours. */
1430 XEXP (reg, 0) = XEXP (XEXP (reg, 0), 0);
1431 /* Prevent sharing of rtl that might lose. */
1432 if (GET_CODE (XEXP (reg, 0)) == PLUS)
1433 XEXP (reg, 0) = copy_rtx (XEXP (reg, 0));
1434 if (usedp)
1436 schedule_fixup_var_refs (function, reg, TREE_TYPE (decl),
1437 promoted_mode, 0);
1438 schedule_fixup_var_refs (function, lopart, part_type, part_mode, 0);
1439 schedule_fixup_var_refs (function, hipart, part_type, part_mode, 0);
1442 else
1443 return;
1445 if (current_function_check_memory_usage)
1446 emit_library_call (chkr_set_right_libfunc, LCT_CONST_MAKE_BLOCK, VOIDmode,
1447 3, XEXP (reg, 0), Pmode,
1448 GEN_INT (GET_MODE_SIZE (GET_MODE (reg))),
1449 TYPE_MODE (sizetype),
1450 GEN_INT (MEMORY_USE_RW),
1451 TYPE_MODE (integer_type_node));
1454 /* Subroutine of put_var_into_stack. This puts a single pseudo reg REG
1455 into the stack frame of FUNCTION (0 means the current function).
1456 DECL_MODE is the machine mode of the user-level data type.
1457 PROMOTED_MODE is the machine mode of the register.
1458 VOLATILE_P is nonzero if this is for a "volatile" decl.
1459 USED_P is nonzero if this reg might have already been used in an insn. */
1461 static void
1462 put_reg_into_stack (function, reg, type, promoted_mode, decl_mode, volatile_p,
1463 original_regno, used_p, ht)
1464 struct function *function;
1465 rtx reg;
1466 tree type;
1467 enum machine_mode promoted_mode, decl_mode;
1468 int volatile_p;
1469 unsigned int original_regno;
1470 int used_p;
1471 struct hash_table *ht;
1473 struct function *func = function ? function : cfun;
1474 rtx new = 0;
1475 unsigned int regno = original_regno;
1477 if (regno == 0)
1478 regno = REGNO (reg);
1480 if (regno < func->x_max_parm_reg)
1481 new = func->x_parm_reg_stack_loc[regno];
1483 if (new == 0)
1484 new = assign_stack_local_1 (decl_mode, GET_MODE_SIZE (decl_mode), 0, func);
1486 PUT_CODE (reg, MEM);
1487 PUT_MODE (reg, decl_mode);
1488 XEXP (reg, 0) = XEXP (new, 0);
1489 /* `volatil' bit means one thing for MEMs, another entirely for REGs. */
1490 MEM_VOLATILE_P (reg) = volatile_p;
1492 /* If this is a memory ref that contains aggregate components,
1493 mark it as such for cse and loop optimize. If we are reusing a
1494 previously generated stack slot, then we need to copy the bit in
1495 case it was set for other reasons. For instance, it is set for
1496 __builtin_va_alist. */
1497 if (type)
1499 MEM_SET_IN_STRUCT_P (reg,
1500 AGGREGATE_TYPE_P (type) || MEM_IN_STRUCT_P (new));
1501 MEM_ALIAS_SET (reg) = get_alias_set (type);
1503 if (used_p)
1504 schedule_fixup_var_refs (function, reg, type, promoted_mode, ht);
1507 /* Make sure that all refs to the variable, previously made
1508 when it was a register, are fixed up to be valid again.
1509 See function above for meaning of arguments. */
1511 static void
1512 schedule_fixup_var_refs (function, reg, type, promoted_mode, ht)
1513 struct function *function;
1514 rtx reg;
1515 tree type;
1516 enum machine_mode promoted_mode;
1517 struct hash_table *ht;
1519 int unsigned_p = type ? TREE_UNSIGNED (type) : 0;
1521 if (function != 0)
1523 struct var_refs_queue *temp;
1525 temp
1526 = (struct var_refs_queue *) xmalloc (sizeof (struct var_refs_queue));
1527 temp->modified = reg;
1528 temp->promoted_mode = promoted_mode;
1529 temp->unsignedp = unsigned_p;
1530 temp->next = function->fixup_var_refs_queue;
1531 function->fixup_var_refs_queue = temp;
1533 else
1534 /* Variable is local; fix it up now. */
1535 fixup_var_refs (reg, promoted_mode, unsigned_p, ht);
1538 static void
1539 fixup_var_refs (var, promoted_mode, unsignedp, ht)
1540 rtx var;
1541 enum machine_mode promoted_mode;
1542 int unsignedp;
1543 struct hash_table *ht;
1545 tree pending;
1546 rtx first_insn = get_insns ();
1547 struct sequence_stack *stack = seq_stack;
1548 tree rtl_exps = rtl_expr_chain;
1550 /* If there's a hash table, it must record all uses of VAR. */
1551 if (ht)
1553 if (stack != 0)
1554 abort ();
1555 fixup_var_refs_insns_with_hash (ht, var, promoted_mode, unsignedp);
1556 return;
1559 fixup_var_refs_insns (first_insn, var, promoted_mode, unsignedp,
1560 stack == 0);
1562 /* Scan all pending sequences too. */
1563 for (; stack; stack = stack->next)
1565 push_to_full_sequence (stack->first, stack->last);
1566 fixup_var_refs_insns (stack->first, var, promoted_mode, unsignedp,
1567 stack->next != 0);
1568 /* Update remembered end of sequence
1569 in case we added an insn at the end. */
1570 stack->last = get_last_insn ();
1571 end_sequence ();
1574 /* Scan all waiting RTL_EXPRs too. */
1575 for (pending = rtl_exps; pending; pending = TREE_CHAIN (pending))
1577 rtx seq = RTL_EXPR_SEQUENCE (TREE_VALUE (pending));
1578 if (seq != const0_rtx && seq != 0)
1580 push_to_sequence (seq);
1581 fixup_var_refs_insns (seq, var, promoted_mode, unsignedp, 0);
1582 end_sequence ();
1587 /* REPLACEMENTS is a pointer to a list of the struct fixup_replacement and X is
1588 some part of an insn. Return a struct fixup_replacement whose OLD
1589 value is equal to X. Allocate a new structure if no such entry exists. */
1591 static struct fixup_replacement *
1592 find_fixup_replacement (replacements, x)
1593 struct fixup_replacement **replacements;
1594 rtx x;
1596 struct fixup_replacement *p;
1598 /* See if we have already replaced this. */
1599 for (p = *replacements; p != 0 && ! rtx_equal_p (p->old, x); p = p->next)
1602 if (p == 0)
1604 p = (struct fixup_replacement *) xmalloc (sizeof (struct fixup_replacement));
1605 p->old = x;
1606 p->new = 0;
1607 p->next = *replacements;
1608 *replacements = p;
1611 return p;
1614 /* Scan the insn-chain starting with INSN for refs to VAR
1615 and fix them up. TOPLEVEL is nonzero if this chain is the
1616 main chain of insns for the current function. */
1618 static void
1619 fixup_var_refs_insns (insn, var, promoted_mode, unsignedp, toplevel)
1620 rtx insn;
1621 rtx var;
1622 enum machine_mode promoted_mode;
1623 int unsignedp;
1624 int toplevel;
1626 while (insn)
1628 /* fixup_var_refs_insn might modify insn, so save its next
1629 pointer now. */
1630 rtx next = NEXT_INSN (insn);
1632 /* CALL_PLACEHOLDERs are special; we have to switch into each of
1633 the three sequences they (potentially) contain, and process
1634 them recursively. The CALL_INSN itself is not interesting. */
1636 if (GET_CODE (insn) == CALL_INSN
1637 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
1639 int i;
1641 /* Look at the Normal call, sibling call and tail recursion
1642 sequences attached to the CALL_PLACEHOLDER. */
1643 for (i = 0; i < 3; i++)
1645 rtx seq = XEXP (PATTERN (insn), i);
1646 if (seq)
1648 push_to_sequence (seq);
1649 fixup_var_refs_insns (seq, var, promoted_mode, unsignedp, 0);
1650 XEXP (PATTERN (insn), i) = get_insns ();
1651 end_sequence ();
1656 else if (INSN_P (insn))
1657 fixup_var_refs_insn (insn, var, promoted_mode, unsignedp, toplevel);
1659 insn = next;
1663 /* Look up the insns which reference VAR in HT and fix them up. Other
1664 arguments are the same as fixup_var_refs_insns.
1666 N.B. No need for special processing of CALL_PLACEHOLDERs here,
1667 because the hash table will point straight to the interesting insn
1668 (inside the CALL_PLACEHOLDER). */
1669 static void
1670 fixup_var_refs_insns_with_hash (ht, var, promoted_mode, unsignedp)
1671 struct hash_table *ht;
1672 rtx var;
1673 enum machine_mode promoted_mode;
1674 int unsignedp;
1676 struct insns_for_mem_entry *ime = (struct insns_for_mem_entry *)
1677 hash_lookup (ht, var, /*create=*/0, /*copy=*/0);
1678 rtx insn_list = ime->insns;
1680 while (insn_list)
1682 rtx insn = XEXP (insn_list, 0);
1684 if (INSN_P (insn))
1685 fixup_var_refs_insn (insn, var, promoted_mode, unsignedp, 1);
1687 insn_list = XEXP (insn_list, 1);
1692 /* Per-insn processing by fixup_var_refs_insns(_with_hash). INSN is
1693 the insn under examination, VAR is the variable to fix up
1694 references to, PROMOTED_MODE and UNSIGNEDP describe VAR, and
1695 TOPLEVEL is nonzero if this is the main insn chain for this
1696 function. */
1697 static void
1698 fixup_var_refs_insn (insn, var, promoted_mode, unsignedp, toplevel)
1699 rtx insn;
1700 rtx var;
1701 enum machine_mode promoted_mode;
1702 int unsignedp;
1703 int toplevel;
1705 rtx call_dest = 0;
1706 rtx set, prev, prev_set;
1707 rtx note;
1709 /* Remember the notes in case we delete the insn. */
1710 note = REG_NOTES (insn);
1712 /* If this is a CLOBBER of VAR, delete it.
1714 If it has a REG_LIBCALL note, delete the REG_LIBCALL
1715 and REG_RETVAL notes too. */
1716 if (GET_CODE (PATTERN (insn)) == CLOBBER
1717 && (XEXP (PATTERN (insn), 0) == var
1718 || (GET_CODE (XEXP (PATTERN (insn), 0)) == CONCAT
1719 && (XEXP (XEXP (PATTERN (insn), 0), 0) == var
1720 || XEXP (XEXP (PATTERN (insn), 0), 1) == var))))
1722 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0)
1723 /* The REG_LIBCALL note will go away since we are going to
1724 turn INSN into a NOTE, so just delete the
1725 corresponding REG_RETVAL note. */
1726 remove_note (XEXP (note, 0),
1727 find_reg_note (XEXP (note, 0), REG_RETVAL,
1728 NULL_RTX));
1730 /* In unoptimized compilation, we shouldn't call delete_insn
1731 except in jump.c doing warnings. */
1732 PUT_CODE (insn, NOTE);
1733 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1734 NOTE_SOURCE_FILE (insn) = 0;
1737 /* The insn to load VAR from a home in the arglist
1738 is now a no-op. When we see it, just delete it.
1739 Similarly if this is storing VAR from a register from which
1740 it was loaded in the previous insn. This will occur
1741 when an ADDRESSOF was made for an arglist slot. */
1742 else if (toplevel
1743 && (set = single_set (insn)) != 0
1744 && SET_DEST (set) == var
1745 /* If this represents the result of an insn group,
1746 don't delete the insn. */
1747 && find_reg_note (insn, REG_RETVAL, NULL_RTX) == 0
1748 && (rtx_equal_p (SET_SRC (set), var)
1749 || (GET_CODE (SET_SRC (set)) == REG
1750 && (prev = prev_nonnote_insn (insn)) != 0
1751 && (prev_set = single_set (prev)) != 0
1752 && SET_DEST (prev_set) == SET_SRC (set)
1753 && rtx_equal_p (SET_SRC (prev_set), var))))
1755 /* In unoptimized compilation, we shouldn't call delete_insn
1756 except in jump.c doing warnings. */
1757 PUT_CODE (insn, NOTE);
1758 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1759 NOTE_SOURCE_FILE (insn) = 0;
1761 else
1763 struct fixup_replacement *replacements = 0;
1764 rtx next_insn = NEXT_INSN (insn);
1766 if (SMALL_REGISTER_CLASSES)
1768 /* If the insn that copies the results of a CALL_INSN
1769 into a pseudo now references VAR, we have to use an
1770 intermediate pseudo since we want the life of the
1771 return value register to be only a single insn.
1773 If we don't use an intermediate pseudo, such things as
1774 address computations to make the address of VAR valid
1775 if it is not can be placed between the CALL_INSN and INSN.
1777 To make sure this doesn't happen, we record the destination
1778 of the CALL_INSN and see if the next insn uses both that
1779 and VAR. */
1781 if (call_dest != 0 && GET_CODE (insn) == INSN
1782 && reg_mentioned_p (var, PATTERN (insn))
1783 && reg_mentioned_p (call_dest, PATTERN (insn)))
1785 rtx temp = gen_reg_rtx (GET_MODE (call_dest));
1787 emit_insn_before (gen_move_insn (temp, call_dest), insn);
1789 PATTERN (insn) = replace_rtx (PATTERN (insn),
1790 call_dest, temp);
1793 if (GET_CODE (insn) == CALL_INSN
1794 && GET_CODE (PATTERN (insn)) == SET)
1795 call_dest = SET_DEST (PATTERN (insn));
1796 else if (GET_CODE (insn) == CALL_INSN
1797 && GET_CODE (PATTERN (insn)) == PARALLEL
1798 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1799 call_dest = SET_DEST (XVECEXP (PATTERN (insn), 0, 0));
1800 else
1801 call_dest = 0;
1804 /* See if we have to do anything to INSN now that VAR is in
1805 memory. If it needs to be loaded into a pseudo, use a single
1806 pseudo for the entire insn in case there is a MATCH_DUP
1807 between two operands. We pass a pointer to the head of
1808 a list of struct fixup_replacements. If fixup_var_refs_1
1809 needs to allocate pseudos or replacement MEMs (for SUBREGs),
1810 it will record them in this list.
1812 If it allocated a pseudo for any replacement, we copy into
1813 it here. */
1815 fixup_var_refs_1 (var, promoted_mode, &PATTERN (insn), insn,
1816 &replacements);
1818 /* If this is last_parm_insn, and any instructions were output
1819 after it to fix it up, then we must set last_parm_insn to
1820 the last such instruction emitted. */
1821 if (insn == last_parm_insn)
1822 last_parm_insn = PREV_INSN (next_insn);
1824 while (replacements)
1826 struct fixup_replacement *next;
1828 if (GET_CODE (replacements->new) == REG)
1830 rtx insert_before;
1831 rtx seq;
1833 /* OLD might be a (subreg (mem)). */
1834 if (GET_CODE (replacements->old) == SUBREG)
1835 replacements->old
1836 = fixup_memory_subreg (replacements->old, insn, 0);
1837 else
1838 replacements->old
1839 = fixup_stack_1 (replacements->old, insn);
1841 insert_before = insn;
1843 /* If we are changing the mode, do a conversion.
1844 This might be wasteful, but combine.c will
1845 eliminate much of the waste. */
1847 if (GET_MODE (replacements->new)
1848 != GET_MODE (replacements->old))
1850 start_sequence ();
1851 convert_move (replacements->new,
1852 replacements->old, unsignedp);
1853 seq = gen_sequence ();
1854 end_sequence ();
1856 else
1857 seq = gen_move_insn (replacements->new,
1858 replacements->old);
1860 emit_insn_before (seq, insert_before);
1863 next = replacements->next;
1864 free (replacements);
1865 replacements = next;
1869 /* Also fix up any invalid exprs in the REG_NOTES of this insn.
1870 But don't touch other insns referred to by reg-notes;
1871 we will get them elsewhere. */
1872 while (note)
1874 if (GET_CODE (note) != INSN_LIST)
1875 XEXP (note, 0)
1876 = walk_fixup_memory_subreg (XEXP (note, 0), insn, 1);
1877 note = XEXP (note, 1);
1881 /* VAR is a MEM that used to be a pseudo register with mode PROMOTED_MODE.
1882 See if the rtx expression at *LOC in INSN needs to be changed.
1884 REPLACEMENTS is a pointer to a list head that starts out zero, but may
1885 contain a list of original rtx's and replacements. If we find that we need
1886 to modify this insn by replacing a memory reference with a pseudo or by
1887 making a new MEM to implement a SUBREG, we consult that list to see if
1888 we have already chosen a replacement. If none has already been allocated,
1889 we allocate it and update the list. fixup_var_refs_insn will copy VAR
1890 or the SUBREG, as appropriate, to the pseudo. */
1892 static void
1893 fixup_var_refs_1 (var, promoted_mode, loc, insn, replacements)
1894 register rtx var;
1895 enum machine_mode promoted_mode;
1896 register rtx *loc;
1897 rtx insn;
1898 struct fixup_replacement **replacements;
1900 register int i;
1901 register rtx x = *loc;
1902 RTX_CODE code = GET_CODE (x);
1903 register const char *fmt;
1904 register rtx tem, tem1;
1905 struct fixup_replacement *replacement;
1907 switch (code)
1909 case ADDRESSOF:
1910 if (XEXP (x, 0) == var)
1912 /* Prevent sharing of rtl that might lose. */
1913 rtx sub = copy_rtx (XEXP (var, 0));
1915 if (! validate_change (insn, loc, sub, 0))
1917 rtx y = gen_reg_rtx (GET_MODE (sub));
1918 rtx seq, new_insn;
1920 /* We should be able to replace with a register or all is lost.
1921 Note that we can't use validate_change to verify this, since
1922 we're not caring for replacing all dups simultaneously. */
1923 if (! validate_replace_rtx (*loc, y, insn))
1924 abort ();
1926 /* Careful! First try to recognize a direct move of the
1927 value, mimicking how things are done in gen_reload wrt
1928 PLUS. Consider what happens when insn is a conditional
1929 move instruction and addsi3 clobbers flags. */
1931 start_sequence ();
1932 new_insn = emit_insn (gen_rtx_SET (VOIDmode, y, sub));
1933 seq = gen_sequence ();
1934 end_sequence ();
1936 if (recog_memoized (new_insn) < 0)
1938 /* That failed. Fall back on force_operand and hope. */
1940 start_sequence ();
1941 sub = force_operand (sub, y);
1942 if (sub != y)
1943 emit_insn (gen_move_insn (y, sub));
1944 seq = gen_sequence ();
1945 end_sequence ();
1948 #ifdef HAVE_cc0
1949 /* Don't separate setter from user. */
1950 if (PREV_INSN (insn) && sets_cc0_p (PREV_INSN (insn)))
1951 insn = PREV_INSN (insn);
1952 #endif
1954 emit_insn_before (seq, insn);
1957 return;
1959 case MEM:
1960 if (var == x)
1962 /* If we already have a replacement, use it. Otherwise,
1963 try to fix up this address in case it is invalid. */
1965 replacement = find_fixup_replacement (replacements, var);
1966 if (replacement->new)
1968 *loc = replacement->new;
1969 return;
1972 *loc = replacement->new = x = fixup_stack_1 (x, insn);
1974 /* Unless we are forcing memory to register or we changed the mode,
1975 we can leave things the way they are if the insn is valid. */
1977 INSN_CODE (insn) = -1;
1978 if (! flag_force_mem && GET_MODE (x) == promoted_mode
1979 && recog_memoized (insn) >= 0)
1980 return;
1982 *loc = replacement->new = gen_reg_rtx (promoted_mode);
1983 return;
1986 /* If X contains VAR, we need to unshare it here so that we update
1987 each occurrence separately. But all identical MEMs in one insn
1988 must be replaced with the same rtx because of the possibility of
1989 MATCH_DUPs. */
1991 if (reg_mentioned_p (var, x))
1993 replacement = find_fixup_replacement (replacements, x);
1994 if (replacement->new == 0)
1995 replacement->new = copy_most_rtx (x, var);
1997 *loc = x = replacement->new;
1998 code = GET_CODE (x);
2000 break;
2002 case REG:
2003 case CC0:
2004 case PC:
2005 case CONST_INT:
2006 case CONST:
2007 case SYMBOL_REF:
2008 case LABEL_REF:
2009 case CONST_DOUBLE:
2010 return;
2012 case SIGN_EXTRACT:
2013 case ZERO_EXTRACT:
2014 /* Note that in some cases those types of expressions are altered
2015 by optimize_bit_field, and do not survive to get here. */
2016 if (XEXP (x, 0) == var
2017 || (GET_CODE (XEXP (x, 0)) == SUBREG
2018 && SUBREG_REG (XEXP (x, 0)) == var))
2020 /* Get TEM as a valid MEM in the mode presently in the insn.
2022 We don't worry about the possibility of MATCH_DUP here; it
2023 is highly unlikely and would be tricky to handle. */
2025 tem = XEXP (x, 0);
2026 if (GET_CODE (tem) == SUBREG)
2028 if (GET_MODE_BITSIZE (GET_MODE (tem))
2029 > GET_MODE_BITSIZE (GET_MODE (var)))
2031 replacement = find_fixup_replacement (replacements, var);
2032 if (replacement->new == 0)
2033 replacement->new = gen_reg_rtx (GET_MODE (var));
2034 SUBREG_REG (tem) = replacement->new;
2036 /* The following code works only if we have a MEM, so we
2037 need to handle the subreg here. We directly substitute
2038 it assuming that a subreg must be OK here. We already
2039 scheduled a replacement to copy the mem into the
2040 subreg. */
2041 XEXP (x, 0) = tem;
2042 return;
2044 else
2045 tem = fixup_memory_subreg (tem, insn, 0);
2047 else
2048 tem = fixup_stack_1 (tem, insn);
2050 /* Unless we want to load from memory, get TEM into the proper mode
2051 for an extract from memory. This can only be done if the
2052 extract is at a constant position and length. */
2054 if (! flag_force_mem && GET_CODE (XEXP (x, 1)) == CONST_INT
2055 && GET_CODE (XEXP (x, 2)) == CONST_INT
2056 && ! mode_dependent_address_p (XEXP (tem, 0))
2057 && ! MEM_VOLATILE_P (tem))
2059 enum machine_mode wanted_mode = VOIDmode;
2060 enum machine_mode is_mode = GET_MODE (tem);
2061 HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
2063 #ifdef HAVE_extzv
2064 if (GET_CODE (x) == ZERO_EXTRACT)
2066 wanted_mode
2067 = insn_data[(int) CODE_FOR_extzv].operand[1].mode;
2068 if (wanted_mode == VOIDmode)
2069 wanted_mode = word_mode;
2071 #endif
2072 #ifdef HAVE_extv
2073 if (GET_CODE (x) == SIGN_EXTRACT)
2075 wanted_mode = insn_data[(int) CODE_FOR_extv].operand[1].mode;
2076 if (wanted_mode == VOIDmode)
2077 wanted_mode = word_mode;
2079 #endif
2080 /* If we have a narrower mode, we can do something. */
2081 if (wanted_mode != VOIDmode
2082 && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
2084 HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
2085 rtx old_pos = XEXP (x, 2);
2086 rtx newmem;
2088 /* If the bytes and bits are counted differently, we
2089 must adjust the offset. */
2090 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
2091 offset = (GET_MODE_SIZE (is_mode)
2092 - GET_MODE_SIZE (wanted_mode) - offset);
2094 pos %= GET_MODE_BITSIZE (wanted_mode);
2096 newmem = gen_rtx_MEM (wanted_mode,
2097 plus_constant (XEXP (tem, 0), offset));
2098 MEM_COPY_ATTRIBUTES (newmem, tem);
2100 /* Make the change and see if the insn remains valid. */
2101 INSN_CODE (insn) = -1;
2102 XEXP (x, 0) = newmem;
2103 XEXP (x, 2) = GEN_INT (pos);
2105 if (recog_memoized (insn) >= 0)
2106 return;
2108 /* Otherwise, restore old position. XEXP (x, 0) will be
2109 restored later. */
2110 XEXP (x, 2) = old_pos;
2114 /* If we get here, the bitfield extract insn can't accept a memory
2115 reference. Copy the input into a register. */
2117 tem1 = gen_reg_rtx (GET_MODE (tem));
2118 emit_insn_before (gen_move_insn (tem1, tem), insn);
2119 XEXP (x, 0) = tem1;
2120 return;
2122 break;
2124 case SUBREG:
2125 if (SUBREG_REG (x) == var)
2127 /* If this is a special SUBREG made because VAR was promoted
2128 from a wider mode, replace it with VAR and call ourself
2129 recursively, this time saying that the object previously
2130 had its current mode (by virtue of the SUBREG). */
2132 if (SUBREG_PROMOTED_VAR_P (x))
2134 *loc = var;
2135 fixup_var_refs_1 (var, GET_MODE (var), loc, insn, replacements);
2136 return;
2139 /* If this SUBREG makes VAR wider, it has become a paradoxical
2140 SUBREG with VAR in memory, but these aren't allowed at this
2141 stage of the compilation. So load VAR into a pseudo and take
2142 a SUBREG of that pseudo. */
2143 if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (var)))
2145 replacement = find_fixup_replacement (replacements, var);
2146 if (replacement->new == 0)
2147 replacement->new = gen_reg_rtx (promoted_mode);
2148 SUBREG_REG (x) = replacement->new;
2149 return;
2152 /* See if we have already found a replacement for this SUBREG.
2153 If so, use it. Otherwise, make a MEM and see if the insn
2154 is recognized. If not, or if we should force MEM into a register,
2155 make a pseudo for this SUBREG. */
2156 replacement = find_fixup_replacement (replacements, x);
2157 if (replacement->new)
2159 *loc = replacement->new;
2160 return;
2163 replacement->new = *loc = fixup_memory_subreg (x, insn, 0);
2165 INSN_CODE (insn) = -1;
2166 if (! flag_force_mem && recog_memoized (insn) >= 0)
2167 return;
2169 *loc = replacement->new = gen_reg_rtx (GET_MODE (x));
2170 return;
2172 break;
2174 case SET:
2175 /* First do special simplification of bit-field references. */
2176 if (GET_CODE (SET_DEST (x)) == SIGN_EXTRACT
2177 || GET_CODE (SET_DEST (x)) == ZERO_EXTRACT)
2178 optimize_bit_field (x, insn, 0);
2179 if (GET_CODE (SET_SRC (x)) == SIGN_EXTRACT
2180 || GET_CODE (SET_SRC (x)) == ZERO_EXTRACT)
2181 optimize_bit_field (x, insn, 0);
2183 /* For a paradoxical SUBREG inside a ZERO_EXTRACT, load the object
2184 into a register and then store it back out. */
2185 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
2186 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG
2187 && SUBREG_REG (XEXP (SET_DEST (x), 0)) == var
2188 && (GET_MODE_SIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
2189 > GET_MODE_SIZE (GET_MODE (var))))
2191 replacement = find_fixup_replacement (replacements, var);
2192 if (replacement->new == 0)
2193 replacement->new = gen_reg_rtx (GET_MODE (var));
2195 SUBREG_REG (XEXP (SET_DEST (x), 0)) = replacement->new;
2196 emit_insn_after (gen_move_insn (var, replacement->new), insn);
2199 /* If SET_DEST is now a paradoxical SUBREG, put the result of this
2200 insn into a pseudo and store the low part of the pseudo into VAR. */
2201 if (GET_CODE (SET_DEST (x)) == SUBREG
2202 && SUBREG_REG (SET_DEST (x)) == var
2203 && (GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
2204 > GET_MODE_SIZE (GET_MODE (var))))
2206 SET_DEST (x) = tem = gen_reg_rtx (GET_MODE (SET_DEST (x)));
2207 emit_insn_after (gen_move_insn (var, gen_lowpart (GET_MODE (var),
2208 tem)),
2209 insn);
2210 break;
2214 rtx dest = SET_DEST (x);
2215 rtx src = SET_SRC (x);
2216 #ifdef HAVE_insv
2217 rtx outerdest = dest;
2218 #endif
2220 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2221 || GET_CODE (dest) == SIGN_EXTRACT
2222 || GET_CODE (dest) == ZERO_EXTRACT)
2223 dest = XEXP (dest, 0);
2225 if (GET_CODE (src) == SUBREG)
2226 src = SUBREG_REG (src);
2228 /* If VAR does not appear at the top level of the SET
2229 just scan the lower levels of the tree. */
2231 if (src != var && dest != var)
2232 break;
2234 /* We will need to rerecognize this insn. */
2235 INSN_CODE (insn) = -1;
2237 #ifdef HAVE_insv
2238 if (GET_CODE (outerdest) == ZERO_EXTRACT && dest == var)
2240 /* Since this case will return, ensure we fixup all the
2241 operands here. */
2242 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 1),
2243 insn, replacements);
2244 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 2),
2245 insn, replacements);
2246 fixup_var_refs_1 (var, promoted_mode, &SET_SRC (x),
2247 insn, replacements);
2249 tem = XEXP (outerdest, 0);
2251 /* Clean up (SUBREG:SI (MEM:mode ...) 0)
2252 that may appear inside a ZERO_EXTRACT.
2253 This was legitimate when the MEM was a REG. */
2254 if (GET_CODE (tem) == SUBREG
2255 && SUBREG_REG (tem) == var)
2256 tem = fixup_memory_subreg (tem, insn, 0);
2257 else
2258 tem = fixup_stack_1 (tem, insn);
2260 if (GET_CODE (XEXP (outerdest, 1)) == CONST_INT
2261 && GET_CODE (XEXP (outerdest, 2)) == CONST_INT
2262 && ! mode_dependent_address_p (XEXP (tem, 0))
2263 && ! MEM_VOLATILE_P (tem))
2265 enum machine_mode wanted_mode;
2266 enum machine_mode is_mode = GET_MODE (tem);
2267 HOST_WIDE_INT pos = INTVAL (XEXP (outerdest, 2));
2269 wanted_mode = insn_data[(int) CODE_FOR_insv].operand[0].mode;
2270 if (wanted_mode == VOIDmode)
2271 wanted_mode = word_mode;
2273 /* If we have a narrower mode, we can do something. */
2274 if (GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
2276 HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
2277 rtx old_pos = XEXP (outerdest, 2);
2278 rtx newmem;
2280 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
2281 offset = (GET_MODE_SIZE (is_mode)
2282 - GET_MODE_SIZE (wanted_mode) - offset);
2284 pos %= GET_MODE_BITSIZE (wanted_mode);
2286 newmem = gen_rtx_MEM (wanted_mode,
2287 plus_constant (XEXP (tem, 0),
2288 offset));
2289 MEM_COPY_ATTRIBUTES (newmem, tem);
2291 /* Make the change and see if the insn remains valid. */
2292 INSN_CODE (insn) = -1;
2293 XEXP (outerdest, 0) = newmem;
2294 XEXP (outerdest, 2) = GEN_INT (pos);
2296 if (recog_memoized (insn) >= 0)
2297 return;
2299 /* Otherwise, restore old position. XEXP (x, 0) will be
2300 restored later. */
2301 XEXP (outerdest, 2) = old_pos;
2305 /* If we get here, the bit-field store doesn't allow memory
2306 or isn't located at a constant position. Load the value into
2307 a register, do the store, and put it back into memory. */
2309 tem1 = gen_reg_rtx (GET_MODE (tem));
2310 emit_insn_before (gen_move_insn (tem1, tem), insn);
2311 emit_insn_after (gen_move_insn (tem, tem1), insn);
2312 XEXP (outerdest, 0) = tem1;
2313 return;
2315 #endif
2317 /* STRICT_LOW_PART is a no-op on memory references
2318 and it can cause combinations to be unrecognizable,
2319 so eliminate it. */
2321 if (dest == var && GET_CODE (SET_DEST (x)) == STRICT_LOW_PART)
2322 SET_DEST (x) = XEXP (SET_DEST (x), 0);
2324 /* A valid insn to copy VAR into or out of a register
2325 must be left alone, to avoid an infinite loop here.
2326 If the reference to VAR is by a subreg, fix that up,
2327 since SUBREG is not valid for a memref.
2328 Also fix up the address of the stack slot.
2330 Note that we must not try to recognize the insn until
2331 after we know that we have valid addresses and no
2332 (subreg (mem ...) ...) constructs, since these interfere
2333 with determining the validity of the insn. */
2335 if ((SET_SRC (x) == var
2336 || (GET_CODE (SET_SRC (x)) == SUBREG
2337 && SUBREG_REG (SET_SRC (x)) == var))
2338 && (GET_CODE (SET_DEST (x)) == REG
2339 || (GET_CODE (SET_DEST (x)) == SUBREG
2340 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG))
2341 && GET_MODE (var) == promoted_mode
2342 && x == single_set (insn))
2344 rtx pat, last;
2346 replacement = find_fixup_replacement (replacements, SET_SRC (x));
2347 if (replacement->new)
2348 SET_SRC (x) = replacement->new;
2349 else if (GET_CODE (SET_SRC (x)) == SUBREG)
2350 SET_SRC (x) = replacement->new
2351 = fixup_memory_subreg (SET_SRC (x), insn, 0);
2352 else
2353 SET_SRC (x) = replacement->new
2354 = fixup_stack_1 (SET_SRC (x), insn);
2356 if (recog_memoized (insn) >= 0)
2357 return;
2359 /* INSN is not valid, but we know that we want to
2360 copy SET_SRC (x) to SET_DEST (x) in some way. So
2361 we generate the move and see whether it requires more
2362 than one insn. If it does, we emit those insns and
2363 delete INSN. Otherwise, we an just replace the pattern
2364 of INSN; we have already verified above that INSN has
2365 no other function that to do X. */
2367 pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2368 if (GET_CODE (pat) == SEQUENCE)
2370 last = emit_insn_before (pat, insn);
2372 /* INSN might have REG_RETVAL or other important notes, so
2373 we need to store the pattern of the last insn in the
2374 sequence into INSN similarly to the normal case. LAST
2375 should not have REG_NOTES, but we allow them if INSN has
2376 no REG_NOTES. */
2377 if (REG_NOTES (last) && REG_NOTES (insn))
2378 abort ();
2379 if (REG_NOTES (last))
2380 REG_NOTES (insn) = REG_NOTES (last);
2381 PATTERN (insn) = PATTERN (last);
2383 PUT_CODE (last, NOTE);
2384 NOTE_LINE_NUMBER (last) = NOTE_INSN_DELETED;
2385 NOTE_SOURCE_FILE (last) = 0;
2387 else
2388 PATTERN (insn) = pat;
2390 return;
2393 if ((SET_DEST (x) == var
2394 || (GET_CODE (SET_DEST (x)) == SUBREG
2395 && SUBREG_REG (SET_DEST (x)) == var))
2396 && (GET_CODE (SET_SRC (x)) == REG
2397 || (GET_CODE (SET_SRC (x)) == SUBREG
2398 && GET_CODE (SUBREG_REG (SET_SRC (x))) == REG))
2399 && GET_MODE (var) == promoted_mode
2400 && x == single_set (insn))
2402 rtx pat, last;
2404 if (GET_CODE (SET_DEST (x)) == SUBREG)
2405 SET_DEST (x) = fixup_memory_subreg (SET_DEST (x), insn, 0);
2406 else
2407 SET_DEST (x) = fixup_stack_1 (SET_DEST (x), insn);
2409 if (recog_memoized (insn) >= 0)
2410 return;
2412 pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2413 if (GET_CODE (pat) == SEQUENCE)
2415 last = emit_insn_before (pat, insn);
2417 /* INSN might have REG_RETVAL or other important notes, so
2418 we need to store the pattern of the last insn in the
2419 sequence into INSN similarly to the normal case. LAST
2420 should not have REG_NOTES, but we allow them if INSN has
2421 no REG_NOTES. */
2422 if (REG_NOTES (last) && REG_NOTES (insn))
2423 abort ();
2424 if (REG_NOTES (last))
2425 REG_NOTES (insn) = REG_NOTES (last);
2426 PATTERN (insn) = PATTERN (last);
2428 PUT_CODE (last, NOTE);
2429 NOTE_LINE_NUMBER (last) = NOTE_INSN_DELETED;
2430 NOTE_SOURCE_FILE (last) = 0;
2432 else
2433 PATTERN (insn) = pat;
2435 return;
2438 /* Otherwise, storing into VAR must be handled specially
2439 by storing into a temporary and copying that into VAR
2440 with a new insn after this one. Note that this case
2441 will be used when storing into a promoted scalar since
2442 the insn will now have different modes on the input
2443 and output and hence will be invalid (except for the case
2444 of setting it to a constant, which does not need any
2445 change if it is valid). We generate extra code in that case,
2446 but combine.c will eliminate it. */
2448 if (dest == var)
2450 rtx temp;
2451 rtx fixeddest = SET_DEST (x);
2453 /* STRICT_LOW_PART can be discarded, around a MEM. */
2454 if (GET_CODE (fixeddest) == STRICT_LOW_PART)
2455 fixeddest = XEXP (fixeddest, 0);
2456 /* Convert (SUBREG (MEM)) to a MEM in a changed mode. */
2457 if (GET_CODE (fixeddest) == SUBREG)
2459 fixeddest = fixup_memory_subreg (fixeddest, insn, 0);
2460 promoted_mode = GET_MODE (fixeddest);
2462 else
2463 fixeddest = fixup_stack_1 (fixeddest, insn);
2465 temp = gen_reg_rtx (promoted_mode);
2467 emit_insn_after (gen_move_insn (fixeddest,
2468 gen_lowpart (GET_MODE (fixeddest),
2469 temp)),
2470 insn);
2472 SET_DEST (x) = temp;
2476 default:
2477 break;
2480 /* Nothing special about this RTX; fix its operands. */
2482 fmt = GET_RTX_FORMAT (code);
2483 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2485 if (fmt[i] == 'e')
2486 fixup_var_refs_1 (var, promoted_mode, &XEXP (x, i), insn, replacements);
2487 else if (fmt[i] == 'E')
2489 register int j;
2490 for (j = 0; j < XVECLEN (x, i); j++)
2491 fixup_var_refs_1 (var, promoted_mode, &XVECEXP (x, i, j),
2492 insn, replacements);
2497 /* Given X, an rtx of the form (SUBREG:m1 (MEM:m2 addr)),
2498 return an rtx (MEM:m1 newaddr) which is equivalent.
2499 If any insns must be emitted to compute NEWADDR, put them before INSN.
2501 UNCRITICAL nonzero means accept paradoxical subregs.
2502 This is used for subregs found inside REG_NOTES. */
2504 static rtx
2505 fixup_memory_subreg (x, insn, uncritical)
2506 rtx x;
2507 rtx insn;
2508 int uncritical;
2510 int offset = SUBREG_BYTE (x);
2511 rtx addr = XEXP (SUBREG_REG (x), 0);
2512 enum machine_mode mode = GET_MODE (x);
2513 rtx result;
2515 /* Paradoxical SUBREGs are usually invalid during RTL generation. */
2516 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))
2517 && ! uncritical)
2518 abort ();
2520 addr = plus_constant (addr, offset);
2521 if (!flag_force_addr && memory_address_p (mode, addr))
2522 /* Shortcut if no insns need be emitted. */
2523 return change_address (SUBREG_REG (x), mode, addr);
2524 start_sequence ();
2525 result = change_address (SUBREG_REG (x), mode, addr);
2526 emit_insn_before (gen_sequence (), insn);
2527 end_sequence ();
2528 return result;
2531 /* Do fixup_memory_subreg on all (SUBREG (MEM ...) ...) contained in X.
2532 Replace subexpressions of X in place.
2533 If X itself is a (SUBREG (MEM ...) ...), return the replacement expression.
2534 Otherwise return X, with its contents possibly altered.
2536 If any insns must be emitted to compute NEWADDR, put them before INSN.
2538 UNCRITICAL is as in fixup_memory_subreg. */
2540 static rtx
2541 walk_fixup_memory_subreg (x, insn, uncritical)
2542 register rtx x;
2543 rtx insn;
2544 int uncritical;
2546 register enum rtx_code code;
2547 register const char *fmt;
2548 register int i;
2550 if (x == 0)
2551 return 0;
2553 code = GET_CODE (x);
2555 if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
2556 return fixup_memory_subreg (x, insn, uncritical);
2558 /* Nothing special about this RTX; fix its operands. */
2560 fmt = GET_RTX_FORMAT (code);
2561 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2563 if (fmt[i] == 'e')
2564 XEXP (x, i) = walk_fixup_memory_subreg (XEXP (x, i), insn, uncritical);
2565 else if (fmt[i] == 'E')
2567 register int j;
2568 for (j = 0; j < XVECLEN (x, i); j++)
2569 XVECEXP (x, i, j)
2570 = walk_fixup_memory_subreg (XVECEXP (x, i, j), insn, uncritical);
2573 return x;
2576 /* For each memory ref within X, if it refers to a stack slot
2577 with an out of range displacement, put the address in a temp register
2578 (emitting new insns before INSN to load these registers)
2579 and alter the memory ref to use that register.
2580 Replace each such MEM rtx with a copy, to avoid clobberage. */
2582 static rtx
2583 fixup_stack_1 (x, insn)
2584 rtx x;
2585 rtx insn;
2587 register int i;
2588 register RTX_CODE code = GET_CODE (x);
2589 register const char *fmt;
2591 if (code == MEM)
2593 register rtx ad = XEXP (x, 0);
2594 /* If we have address of a stack slot but it's not valid
2595 (displacement is too large), compute the sum in a register. */
2596 if (GET_CODE (ad) == PLUS
2597 && GET_CODE (XEXP (ad, 0)) == REG
2598 && ((REGNO (XEXP (ad, 0)) >= FIRST_VIRTUAL_REGISTER
2599 && REGNO (XEXP (ad, 0)) <= LAST_VIRTUAL_REGISTER)
2600 || REGNO (XEXP (ad, 0)) == FRAME_POINTER_REGNUM
2601 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2602 || REGNO (XEXP (ad, 0)) == HARD_FRAME_POINTER_REGNUM
2603 #endif
2604 || REGNO (XEXP (ad, 0)) == STACK_POINTER_REGNUM
2605 || REGNO (XEXP (ad, 0)) == ARG_POINTER_REGNUM
2606 || XEXP (ad, 0) == current_function_internal_arg_pointer)
2607 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
2609 rtx temp, seq;
2610 if (memory_address_p (GET_MODE (x), ad))
2611 return x;
2613 start_sequence ();
2614 temp = copy_to_reg (ad);
2615 seq = gen_sequence ();
2616 end_sequence ();
2617 emit_insn_before (seq, insn);
2618 return change_address (x, VOIDmode, temp);
2620 return x;
2623 fmt = GET_RTX_FORMAT (code);
2624 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2626 if (fmt[i] == 'e')
2627 XEXP (x, i) = fixup_stack_1 (XEXP (x, i), insn);
2628 else if (fmt[i] == 'E')
2630 register int j;
2631 for (j = 0; j < XVECLEN (x, i); j++)
2632 XVECEXP (x, i, j) = fixup_stack_1 (XVECEXP (x, i, j), insn);
2635 return x;
2638 /* Optimization: a bit-field instruction whose field
2639 happens to be a byte or halfword in memory
2640 can be changed to a move instruction.
2642 We call here when INSN is an insn to examine or store into a bit-field.
2643 BODY is the SET-rtx to be altered.
2645 EQUIV_MEM is the table `reg_equiv_mem' if that is available; else 0.
2646 (Currently this is called only from function.c, and EQUIV_MEM
2647 is always 0.) */
2649 static void
2650 optimize_bit_field (body, insn, equiv_mem)
2651 rtx body;
2652 rtx insn;
2653 rtx *equiv_mem;
2655 register rtx bitfield;
2656 int destflag;
2657 rtx seq = 0;
2658 enum machine_mode mode;
2660 if (GET_CODE (SET_DEST (body)) == SIGN_EXTRACT
2661 || GET_CODE (SET_DEST (body)) == ZERO_EXTRACT)
2662 bitfield = SET_DEST (body), destflag = 1;
2663 else
2664 bitfield = SET_SRC (body), destflag = 0;
2666 /* First check that the field being stored has constant size and position
2667 and is in fact a byte or halfword suitably aligned. */
2669 if (GET_CODE (XEXP (bitfield, 1)) == CONST_INT
2670 && GET_CODE (XEXP (bitfield, 2)) == CONST_INT
2671 && ((mode = mode_for_size (INTVAL (XEXP (bitfield, 1)), MODE_INT, 1))
2672 != BLKmode)
2673 && INTVAL (XEXP (bitfield, 2)) % INTVAL (XEXP (bitfield, 1)) == 0)
2675 register rtx memref = 0;
2677 /* Now check that the containing word is memory, not a register,
2678 and that it is safe to change the machine mode. */
2680 if (GET_CODE (XEXP (bitfield, 0)) == MEM)
2681 memref = XEXP (bitfield, 0);
2682 else if (GET_CODE (XEXP (bitfield, 0)) == REG
2683 && equiv_mem != 0)
2684 memref = equiv_mem[REGNO (XEXP (bitfield, 0))];
2685 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
2686 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == MEM)
2687 memref = SUBREG_REG (XEXP (bitfield, 0));
2688 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
2689 && equiv_mem != 0
2690 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == REG)
2691 memref = equiv_mem[REGNO (SUBREG_REG (XEXP (bitfield, 0)))];
2693 if (memref
2694 && ! mode_dependent_address_p (XEXP (memref, 0))
2695 && ! MEM_VOLATILE_P (memref))
2697 /* Now adjust the address, first for any subreg'ing
2698 that we are now getting rid of,
2699 and then for which byte of the word is wanted. */
2701 HOST_WIDE_INT offset = INTVAL (XEXP (bitfield, 2));
2702 rtx insns;
2704 /* Adjust OFFSET to count bits from low-address byte. */
2705 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
2706 offset = (GET_MODE_BITSIZE (GET_MODE (XEXP (bitfield, 0)))
2707 - offset - INTVAL (XEXP (bitfield, 1)));
2709 /* Adjust OFFSET to count bytes from low-address byte. */
2710 offset /= BITS_PER_UNIT;
2711 if (GET_CODE (XEXP (bitfield, 0)) == SUBREG)
2713 offset += (SUBREG_BYTE (XEXP (bitfield, 0))
2714 / UNITS_PER_WORD) * UNITS_PER_WORD;
2715 if (BYTES_BIG_ENDIAN)
2716 offset -= (MIN (UNITS_PER_WORD,
2717 GET_MODE_SIZE (GET_MODE (XEXP (bitfield, 0))))
2718 - MIN (UNITS_PER_WORD,
2719 GET_MODE_SIZE (GET_MODE (memref))));
2722 start_sequence ();
2723 memref = change_address (memref, mode,
2724 plus_constant (XEXP (memref, 0), offset));
2725 insns = get_insns ();
2726 end_sequence ();
2727 emit_insns_before (insns, insn);
2729 /* Store this memory reference where
2730 we found the bit field reference. */
2732 if (destflag)
2734 validate_change (insn, &SET_DEST (body), memref, 1);
2735 if (! CONSTANT_ADDRESS_P (SET_SRC (body)))
2737 rtx src = SET_SRC (body);
2738 while (GET_CODE (src) == SUBREG
2739 && SUBREG_BYTE (src) == 0)
2740 src = SUBREG_REG (src);
2741 if (GET_MODE (src) != GET_MODE (memref))
2742 src = gen_lowpart (GET_MODE (memref), SET_SRC (body));
2743 validate_change (insn, &SET_SRC (body), src, 1);
2745 else if (GET_MODE (SET_SRC (body)) != VOIDmode
2746 && GET_MODE (SET_SRC (body)) != GET_MODE (memref))
2747 /* This shouldn't happen because anything that didn't have
2748 one of these modes should have got converted explicitly
2749 and then referenced through a subreg.
2750 This is so because the original bit-field was
2751 handled by agg_mode and so its tree structure had
2752 the same mode that memref now has. */
2753 abort ();
2755 else
2757 rtx dest = SET_DEST (body);
2759 while (GET_CODE (dest) == SUBREG
2760 && SUBREG_BYTE (dest) == 0
2761 && (GET_MODE_CLASS (GET_MODE (dest))
2762 == GET_MODE_CLASS (GET_MODE (SUBREG_REG (dest))))
2763 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
2764 <= UNITS_PER_WORD))
2765 dest = SUBREG_REG (dest);
2767 validate_change (insn, &SET_DEST (body), dest, 1);
2769 if (GET_MODE (dest) == GET_MODE (memref))
2770 validate_change (insn, &SET_SRC (body), memref, 1);
2771 else
2773 /* Convert the mem ref to the destination mode. */
2774 rtx newreg = gen_reg_rtx (GET_MODE (dest));
2776 start_sequence ();
2777 convert_move (newreg, memref,
2778 GET_CODE (SET_SRC (body)) == ZERO_EXTRACT);
2779 seq = get_insns ();
2780 end_sequence ();
2782 validate_change (insn, &SET_SRC (body), newreg, 1);
2786 /* See if we can convert this extraction or insertion into
2787 a simple move insn. We might not be able to do so if this
2788 was, for example, part of a PARALLEL.
2790 If we succeed, write out any needed conversions. If we fail,
2791 it is hard to guess why we failed, so don't do anything
2792 special; just let the optimization be suppressed. */
2794 if (apply_change_group () && seq)
2795 emit_insns_before (seq, insn);
2800 /* These routines are responsible for converting virtual register references
2801 to the actual hard register references once RTL generation is complete.
2803 The following four variables are used for communication between the
2804 routines. They contain the offsets of the virtual registers from their
2805 respective hard registers. */
2807 static int in_arg_offset;
2808 static int var_offset;
2809 static int dynamic_offset;
2810 static int out_arg_offset;
2811 static int cfa_offset;
2813 /* In most machines, the stack pointer register is equivalent to the bottom
2814 of the stack. */
2816 #ifndef STACK_POINTER_OFFSET
2817 #define STACK_POINTER_OFFSET 0
2818 #endif
2820 /* If not defined, pick an appropriate default for the offset of dynamically
2821 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
2822 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
2824 #ifndef STACK_DYNAMIC_OFFSET
2826 /* The bottom of the stack points to the actual arguments. If
2827 REG_PARM_STACK_SPACE is defined, this includes the space for the register
2828 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
2829 stack space for register parameters is not pushed by the caller, but
2830 rather part of the fixed stack areas and hence not included in
2831 `current_function_outgoing_args_size'. Nevertheless, we must allow
2832 for it when allocating stack dynamic objects. */
2834 #if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
2835 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2836 ((ACCUMULATE_OUTGOING_ARGS \
2837 ? (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (FNDECL)) : 0)\
2838 + (STACK_POINTER_OFFSET)) \
2840 #else
2841 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2842 ((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0) \
2843 + (STACK_POINTER_OFFSET))
2844 #endif
2845 #endif
2847 /* On most machines, the CFA coincides with the first incoming parm. */
2849 #ifndef ARG_POINTER_CFA_OFFSET
2850 #define ARG_POINTER_CFA_OFFSET(FNDECL) FIRST_PARM_OFFSET (FNDECL)
2851 #endif
2853 /* Build up a (MEM (ADDRESSOF (REG))) rtx for a register REG that just had
2854 its address taken. DECL is the decl for the object stored in the
2855 register, for later use if we do need to force REG into the stack.
2856 REG is overwritten by the MEM like in put_reg_into_stack. */
2859 gen_mem_addressof (reg, decl)
2860 rtx reg;
2861 tree decl;
2863 rtx r = gen_rtx_ADDRESSOF (Pmode, gen_reg_rtx (GET_MODE (reg)),
2864 REGNO (reg), decl);
2866 /* If the original REG was a user-variable, then so is the REG whose
2867 address is being taken. Likewise for unchanging. */
2868 REG_USERVAR_P (XEXP (r, 0)) = REG_USERVAR_P (reg);
2869 RTX_UNCHANGING_P (XEXP (r, 0)) = RTX_UNCHANGING_P (reg);
2871 PUT_CODE (reg, MEM);
2872 XEXP (reg, 0) = r;
2873 if (decl)
2875 tree type = TREE_TYPE (decl);
2876 enum machine_mode decl_mode
2877 = (TREE_CODE (decl) == SAVE_EXPR ? TYPE_MODE (TREE_TYPE (decl))
2878 : DECL_MODE (decl));
2880 PUT_MODE (reg, decl_mode);
2881 MEM_VOLATILE_P (reg) = TREE_SIDE_EFFECTS (decl);
2882 MEM_SET_IN_STRUCT_P (reg, AGGREGATE_TYPE_P (type));
2883 MEM_ALIAS_SET (reg) = get_alias_set (decl);
2885 if (TREE_USED (decl) || DECL_INITIAL (decl) != 0)
2886 fixup_var_refs (reg, GET_MODE (reg), TREE_UNSIGNED (type), 0);
2888 else
2890 /* We have no alias information about this newly created MEM. */
2891 MEM_ALIAS_SET (reg) = 0;
2893 fixup_var_refs (reg, GET_MODE (reg), 0, 0);
2896 return reg;
2899 /* If DECL has an RTL that is an ADDRESSOF rtx, put it into the stack. */
2901 void
2902 flush_addressof (decl)
2903 tree decl;
2905 if ((TREE_CODE (decl) == PARM_DECL || TREE_CODE (decl) == VAR_DECL)
2906 && DECL_RTL (decl) != 0
2907 && GET_CODE (DECL_RTL (decl)) == MEM
2908 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF
2909 && GET_CODE (XEXP (XEXP (DECL_RTL (decl), 0), 0)) == REG)
2910 put_addressof_into_stack (XEXP (DECL_RTL (decl), 0), 0);
2913 /* Force the register pointed to by R, an ADDRESSOF rtx, into the stack. */
2915 static void
2916 put_addressof_into_stack (r, ht)
2917 rtx r;
2918 struct hash_table *ht;
2920 tree decl, type;
2921 int volatile_p, used_p;
2923 rtx reg = XEXP (r, 0);
2925 if (GET_CODE (reg) != REG)
2926 abort ();
2928 decl = ADDRESSOF_DECL (r);
2929 if (decl)
2931 type = TREE_TYPE (decl);
2932 volatile_p = (TREE_CODE (decl) != SAVE_EXPR
2933 && TREE_THIS_VOLATILE (decl));
2934 used_p = (TREE_USED (decl)
2935 || (TREE_CODE (decl) != SAVE_EXPR
2936 && DECL_INITIAL (decl) != 0));
2938 else
2940 type = NULL_TREE;
2941 volatile_p = 0;
2942 used_p = 1;
2945 put_reg_into_stack (0, reg, type, GET_MODE (reg), GET_MODE (reg),
2946 volatile_p, ADDRESSOF_REGNO (r), used_p, ht);
2949 /* List of replacements made below in purge_addressof_1 when creating
2950 bitfield insertions. */
2951 static rtx purge_bitfield_addressof_replacements;
2953 /* List of replacements made below in purge_addressof_1 for patterns
2954 (MEM (ADDRESSOF (REG ...))). The key of the list entry is the
2955 corresponding (ADDRESSOF (REG ...)) and value is a substitution for
2956 the all pattern. List PURGE_BITFIELD_ADDRESSOF_REPLACEMENTS is not
2957 enough in complex cases, e.g. when some field values can be
2958 extracted by usage MEM with narrower mode. */
2959 static rtx purge_addressof_replacements;
2961 /* Helper function for purge_addressof. See if the rtx expression at *LOC
2962 in INSN needs to be changed. If FORCE, always put any ADDRESSOFs into
2963 the stack. If the function returns FALSE then the replacement could not
2964 be made. */
2966 static bool
2967 purge_addressof_1 (loc, insn, force, store, ht)
2968 rtx *loc;
2969 rtx insn;
2970 int force, store;
2971 struct hash_table *ht;
2973 rtx x;
2974 RTX_CODE code;
2975 int i, j;
2976 const char *fmt;
2977 bool result = true;
2979 /* Re-start here to avoid recursion in common cases. */
2980 restart:
2982 x = *loc;
2983 if (x == 0)
2984 return true;
2986 code = GET_CODE (x);
2988 /* If we don't return in any of the cases below, we will recurse inside
2989 the RTX, which will normally result in any ADDRESSOF being forced into
2990 memory. */
2991 if (code == SET)
2993 result = purge_addressof_1 (&SET_DEST (x), insn, force, 1, ht);
2994 result &= purge_addressof_1 (&SET_SRC (x), insn, force, 0, ht);
2995 return result;
2997 else if (code == ADDRESSOF)
2999 rtx sub, insns;
3001 if (GET_CODE (XEXP (x, 0)) != MEM)
3003 put_addressof_into_stack (x, ht);
3004 return true;
3007 /* We must create a copy of the rtx because it was created by
3008 overwriting a REG rtx which is always shared. */
3009 sub = copy_rtx (XEXP (XEXP (x, 0), 0));
3010 if (validate_change (insn, loc, sub, 0)
3011 || validate_replace_rtx (x, sub, insn))
3012 return true;
3014 start_sequence ();
3015 sub = force_operand (sub, NULL_RTX);
3016 if (! validate_change (insn, loc, sub, 0)
3017 && ! validate_replace_rtx (x, sub, insn))
3018 abort ();
3020 insns = gen_sequence ();
3021 end_sequence ();
3022 emit_insn_before (insns, insn);
3023 return true;
3026 else if (code == MEM && GET_CODE (XEXP (x, 0)) == ADDRESSOF && ! force)
3028 rtx sub = XEXP (XEXP (x, 0), 0);
3029 rtx sub2;
3031 if (GET_CODE (sub) == MEM)
3033 sub2 = gen_rtx_MEM (GET_MODE (x), copy_rtx (XEXP (sub, 0)));
3034 MEM_COPY_ATTRIBUTES (sub2, sub);
3035 sub = sub2;
3037 else if (GET_CODE (sub) == REG
3038 && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
3040 else if (GET_CODE (sub) == REG && GET_MODE (x) != GET_MODE (sub))
3042 int size_x, size_sub;
3044 if (!insn)
3046 /* When processing REG_NOTES look at the list of
3047 replacements done on the insn to find the register that X
3048 was replaced by. */
3049 rtx tem;
3051 for (tem = purge_bitfield_addressof_replacements;
3052 tem != NULL_RTX;
3053 tem = XEXP (XEXP (tem, 1), 1))
3054 if (rtx_equal_p (x, XEXP (tem, 0)))
3056 *loc = XEXP (XEXP (tem, 1), 0);
3057 return true;
3060 /* See comment for purge_addressof_replacements. */
3061 for (tem = purge_addressof_replacements;
3062 tem != NULL_RTX;
3063 tem = XEXP (XEXP (tem, 1), 1))
3064 if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0)))
3066 rtx z = XEXP (XEXP (tem, 1), 0);
3068 if (GET_MODE (x) == GET_MODE (z)
3069 || (GET_CODE (XEXP (XEXP (tem, 1), 0)) != REG
3070 && GET_CODE (XEXP (XEXP (tem, 1), 0)) != SUBREG))
3071 abort ();
3073 /* It can happen that the note may speak of things
3074 in a wider (or just different) mode than the
3075 code did. This is especially true of
3076 REG_RETVAL. */
3078 if (GET_CODE (z) == SUBREG && SUBREG_BYTE (z) == 0)
3079 z = SUBREG_REG (z);
3081 if (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
3082 && (GET_MODE_SIZE (GET_MODE (x))
3083 > GET_MODE_SIZE (GET_MODE (z))))
3085 /* This can occur as a result in invalid
3086 pointer casts, e.g. float f; ...
3087 *(long long int *)&f.
3088 ??? We could emit a warning here, but
3089 without a line number that wouldn't be
3090 very helpful. */
3091 z = gen_rtx_SUBREG (GET_MODE (x), z, 0);
3093 else
3094 z = gen_lowpart (GET_MODE (x), z);
3096 *loc = z;
3097 return true;
3100 /* Sometimes we may not be able to find the replacement. For
3101 example when the original insn was a MEM in a wider mode,
3102 and the note is part of a sign extension of a narrowed
3103 version of that MEM. Gcc testcase compile/990829-1.c can
3104 generate an example of this siutation. Rather than complain
3105 we return false, which will prompt our caller to remove the
3106 offending note. */
3107 return false;
3110 size_x = GET_MODE_BITSIZE (GET_MODE (x));
3111 size_sub = GET_MODE_BITSIZE (GET_MODE (sub));
3113 /* Don't even consider working with paradoxical subregs,
3114 or the moral equivalent seen here. */
3115 if (size_x <= size_sub
3116 && int_mode_for_mode (GET_MODE (sub)) != BLKmode)
3118 /* Do a bitfield insertion to mirror what would happen
3119 in memory. */
3121 rtx val, seq;
3123 if (store)
3125 rtx p = PREV_INSN (insn);
3127 start_sequence ();
3128 val = gen_reg_rtx (GET_MODE (x));
3129 if (! validate_change (insn, loc, val, 0))
3131 /* Discard the current sequence and put the
3132 ADDRESSOF on stack. */
3133 end_sequence ();
3134 goto give_up;
3136 seq = gen_sequence ();
3137 end_sequence ();
3138 emit_insn_before (seq, insn);
3139 compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (),
3140 insn, ht);
3142 start_sequence ();
3143 store_bit_field (sub, size_x, 0, GET_MODE (x),
3144 val, GET_MODE_SIZE (GET_MODE (sub)),
3145 GET_MODE_ALIGNMENT (GET_MODE (sub)));
3147 /* Make sure to unshare any shared rtl that store_bit_field
3148 might have created. */
3149 unshare_all_rtl_again (get_insns ());
3151 seq = gen_sequence ();
3152 end_sequence ();
3153 p = emit_insn_after (seq, insn);
3154 if (NEXT_INSN (insn))
3155 compute_insns_for_mem (NEXT_INSN (insn),
3156 p ? NEXT_INSN (p) : NULL_RTX,
3157 ht);
3159 else
3161 rtx p = PREV_INSN (insn);
3163 start_sequence ();
3164 val = extract_bit_field (sub, size_x, 0, 1, NULL_RTX,
3165 GET_MODE (x), GET_MODE (x),
3166 GET_MODE_SIZE (GET_MODE (sub)),
3167 GET_MODE_SIZE (GET_MODE (sub)));
3169 if (! validate_change (insn, loc, val, 0))
3171 /* Discard the current sequence and put the
3172 ADDRESSOF on stack. */
3173 end_sequence ();
3174 goto give_up;
3177 seq = gen_sequence ();
3178 end_sequence ();
3179 emit_insn_before (seq, insn);
3180 compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (),
3181 insn, ht);
3184 /* Remember the replacement so that the same one can be done
3185 on the REG_NOTES. */
3186 purge_bitfield_addressof_replacements
3187 = gen_rtx_EXPR_LIST (VOIDmode, x,
3188 gen_rtx_EXPR_LIST
3189 (VOIDmode, val,
3190 purge_bitfield_addressof_replacements));
3192 /* We replaced with a reg -- all done. */
3193 return true;
3197 else if (validate_change (insn, loc, sub, 0))
3199 /* Remember the replacement so that the same one can be done
3200 on the REG_NOTES. */
3201 if (GET_CODE (sub) == REG || GET_CODE (sub) == SUBREG)
3203 rtx tem;
3205 for (tem = purge_addressof_replacements;
3206 tem != NULL_RTX;
3207 tem = XEXP (XEXP (tem, 1), 1))
3208 if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0)))
3210 XEXP (XEXP (tem, 1), 0) = sub;
3211 return true;
3213 purge_addressof_replacements
3214 = gen_rtx (EXPR_LIST, VOIDmode, XEXP (x, 0),
3215 gen_rtx_EXPR_LIST (VOIDmode, sub,
3216 purge_addressof_replacements));
3217 return true;
3219 goto restart;
3223 give_up:
3224 /* Scan all subexpressions. */
3225 fmt = GET_RTX_FORMAT (code);
3226 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3228 if (*fmt == 'e')
3229 result &= purge_addressof_1 (&XEXP (x, i), insn, force, 0, ht);
3230 else if (*fmt == 'E')
3231 for (j = 0; j < XVECLEN (x, i); j++)
3232 result &= purge_addressof_1 (&XVECEXP (x, i, j), insn, force, 0, ht);
3235 return result;
3238 /* Return a new hash table entry in HT. */
3240 static struct hash_entry *
3241 insns_for_mem_newfunc (he, ht, k)
3242 struct hash_entry *he;
3243 struct hash_table *ht;
3244 hash_table_key k ATTRIBUTE_UNUSED;
3246 struct insns_for_mem_entry *ifmhe;
3247 if (he)
3248 return he;
3250 ifmhe = ((struct insns_for_mem_entry *)
3251 hash_allocate (ht, sizeof (struct insns_for_mem_entry)));
3252 ifmhe->insns = NULL_RTX;
3254 return &ifmhe->he;
3257 /* Return a hash value for K, a REG. */
3259 static unsigned long
3260 insns_for_mem_hash (k)
3261 hash_table_key k;
3263 /* K is really a RTX. Just use the address as the hash value. */
3264 return (unsigned long) k;
3267 /* Return non-zero if K1 and K2 (two REGs) are the same. */
3269 static bool
3270 insns_for_mem_comp (k1, k2)
3271 hash_table_key k1;
3272 hash_table_key k2;
3274 return k1 == k2;
3277 struct insns_for_mem_walk_info {
3278 /* The hash table that we are using to record which INSNs use which
3279 MEMs. */
3280 struct hash_table *ht;
3282 /* The INSN we are currently proessing. */
3283 rtx insn;
3285 /* Zero if we are walking to find ADDRESSOFs, one if we are walking
3286 to find the insns that use the REGs in the ADDRESSOFs. */
3287 int pass;
3290 /* Called from compute_insns_for_mem via for_each_rtx. If R is a REG
3291 that might be used in an ADDRESSOF expression, record this INSN in
3292 the hash table given by DATA (which is really a pointer to an
3293 insns_for_mem_walk_info structure). */
3295 static int
3296 insns_for_mem_walk (r, data)
3297 rtx *r;
3298 void *data;
3300 struct insns_for_mem_walk_info *ifmwi
3301 = (struct insns_for_mem_walk_info *) data;
3303 if (ifmwi->pass == 0 && *r && GET_CODE (*r) == ADDRESSOF
3304 && GET_CODE (XEXP (*r, 0)) == REG)
3305 hash_lookup (ifmwi->ht, XEXP (*r, 0), /*create=*/1, /*copy=*/0);
3306 else if (ifmwi->pass == 1 && *r && GET_CODE (*r) == REG)
3308 /* Lookup this MEM in the hashtable, creating it if necessary. */
3309 struct insns_for_mem_entry *ifme
3310 = (struct insns_for_mem_entry *) hash_lookup (ifmwi->ht,
3312 /*create=*/0,
3313 /*copy=*/0);
3315 /* If we have not already recorded this INSN, do so now. Since
3316 we process the INSNs in order, we know that if we have
3317 recorded it it must be at the front of the list. */
3318 if (ifme && (!ifme->insns || XEXP (ifme->insns, 0) != ifmwi->insn))
3319 ifme->insns = gen_rtx_EXPR_LIST (VOIDmode, ifmwi->insn,
3320 ifme->insns);
3323 return 0;
3326 /* Walk the INSNS, until we reach LAST_INSN, recording which INSNs use
3327 which REGs in HT. */
3329 static void
3330 compute_insns_for_mem (insns, last_insn, ht)
3331 rtx insns;
3332 rtx last_insn;
3333 struct hash_table *ht;
3335 rtx insn;
3336 struct insns_for_mem_walk_info ifmwi;
3337 ifmwi.ht = ht;
3339 for (ifmwi.pass = 0; ifmwi.pass < 2; ++ifmwi.pass)
3340 for (insn = insns; insn != last_insn; insn = NEXT_INSN (insn))
3341 if (INSN_P (insn))
3343 ifmwi.insn = insn;
3344 for_each_rtx (&insn, insns_for_mem_walk, &ifmwi);
3348 /* Helper function for purge_addressof called through for_each_rtx.
3349 Returns true iff the rtl is an ADDRESSOF. */
3350 static int
3351 is_addressof (rtl, data)
3352 rtx *rtl;
3353 void *data ATTRIBUTE_UNUSED;
3355 return GET_CODE (*rtl) == ADDRESSOF;
3358 /* Eliminate all occurrences of ADDRESSOF from INSNS. Elide any remaining
3359 (MEM (ADDRESSOF)) patterns, and force any needed registers into the
3360 stack. */
3362 void
3363 purge_addressof (insns)
3364 rtx insns;
3366 rtx insn;
3367 struct hash_table ht;
3369 /* When we actually purge ADDRESSOFs, we turn REGs into MEMs. That
3370 requires a fixup pass over the instruction stream to correct
3371 INSNs that depended on the REG being a REG, and not a MEM. But,
3372 these fixup passes are slow. Furthermore, most MEMs are not
3373 mentioned in very many instructions. So, we speed up the process
3374 by pre-calculating which REGs occur in which INSNs; that allows
3375 us to perform the fixup passes much more quickly. */
3376 hash_table_init (&ht,
3377 insns_for_mem_newfunc,
3378 insns_for_mem_hash,
3379 insns_for_mem_comp);
3380 compute_insns_for_mem (insns, NULL_RTX, &ht);
3382 for (insn = insns; insn; insn = NEXT_INSN (insn))
3383 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
3384 || GET_CODE (insn) == CALL_INSN)
3386 if (! purge_addressof_1 (&PATTERN (insn), insn,
3387 asm_noperands (PATTERN (insn)) > 0, 0, &ht))
3388 /* If we could not replace the ADDRESSOFs in the insn,
3389 something is wrong. */
3390 abort ();
3392 if (! purge_addressof_1 (&REG_NOTES (insn), NULL_RTX, 0, 0, &ht))
3394 /* If we could not replace the ADDRESSOFs in the insn's notes,
3395 we can just remove the offending notes instead. */
3396 rtx note;
3398 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3400 /* If we find a REG_RETVAL note then the insn is a libcall.
3401 Such insns must have REG_EQUAL notes as well, in order
3402 for later passes of the compiler to work. So it is not
3403 safe to delete the notes here, and instead we abort. */
3404 if (REG_NOTE_KIND (note) == REG_RETVAL)
3405 abort ();
3406 if (for_each_rtx (&note, is_addressof, NULL))
3407 remove_note (insn, note);
3412 /* Clean up. */
3413 hash_table_free (&ht);
3414 purge_bitfield_addressof_replacements = 0;
3415 purge_addressof_replacements = 0;
3417 /* REGs are shared. purge_addressof will destructively replace a REG
3418 with a MEM, which creates shared MEMs.
3420 Unfortunately, the children of put_reg_into_stack assume that MEMs
3421 referring to the same stack slot are shared (fixup_var_refs and
3422 the associated hash table code).
3424 So, we have to do another unsharing pass after we have flushed any
3425 REGs that had their address taken into the stack.
3427 It may be worth tracking whether or not we converted any REGs into
3428 MEMs to avoid this overhead when it is not needed. */
3429 unshare_all_rtl_again (get_insns ());
3432 /* Convert a SET of a hard subreg to a set of the appropriet hard
3433 register. A subroutine of purge_hard_subreg_sets. */
3435 static void
3436 purge_single_hard_subreg_set (pattern)
3437 rtx pattern;
3439 rtx reg = SET_DEST (pattern);
3440 enum machine_mode mode = GET_MODE (SET_DEST (pattern));
3441 int offset = 0;
3443 if (GET_CODE (reg) == SUBREG && GET_CODE (SUBREG_REG (reg)) == REG
3444 && REGNO (SUBREG_REG (reg)) < FIRST_PSEUDO_REGISTER)
3446 offset = subreg_regno_offset (REGNO (SUBREG_REG (reg)),
3447 GET_MODE (SUBREG_REG (reg)),
3448 SUBREG_BYTE (reg),
3449 GET_MODE (reg));
3450 reg = SUBREG_REG (reg);
3454 if (GET_CODE (reg) == REG && REGNO (reg) < FIRST_PSEUDO_REGISTER)
3456 reg = gen_rtx_REG (mode, REGNO (reg) + offset);
3457 SET_DEST (pattern) = reg;
3461 /* Eliminate all occurrences of SETs of hard subregs from INSNS. The
3462 only such SETs that we expect to see are those left in because
3463 integrate can't handle sets of parts of a return value register.
3465 We don't use alter_subreg because we only want to eliminate subregs
3466 of hard registers. */
3468 void
3469 purge_hard_subreg_sets (insn)
3470 rtx insn;
3472 for (; insn; insn = NEXT_INSN (insn))
3474 if (INSN_P (insn))
3476 rtx pattern = PATTERN (insn);
3477 switch (GET_CODE (pattern))
3479 case SET:
3480 if (GET_CODE (SET_DEST (pattern)) == SUBREG)
3481 purge_single_hard_subreg_set (pattern);
3482 break;
3483 case PARALLEL:
3485 int j;
3486 for (j = XVECLEN (pattern, 0) - 1; j >= 0; j--)
3488 rtx inner_pattern = XVECEXP (pattern, 0, j);
3489 if (GET_CODE (inner_pattern) == SET
3490 && GET_CODE (SET_DEST (inner_pattern)) == SUBREG)
3491 purge_single_hard_subreg_set (inner_pattern);
3494 break;
3495 default:
3496 break;
3502 /* Pass through the INSNS of function FNDECL and convert virtual register
3503 references to hard register references. */
3505 void
3506 instantiate_virtual_regs (fndecl, insns)
3507 tree fndecl;
3508 rtx insns;
3510 rtx insn;
3511 unsigned int i;
3513 /* Compute the offsets to use for this function. */
3514 in_arg_offset = FIRST_PARM_OFFSET (fndecl);
3515 var_offset = STARTING_FRAME_OFFSET;
3516 dynamic_offset = STACK_DYNAMIC_OFFSET (fndecl);
3517 out_arg_offset = STACK_POINTER_OFFSET;
3518 cfa_offset = ARG_POINTER_CFA_OFFSET (fndecl);
3520 /* Scan all variables and parameters of this function. For each that is
3521 in memory, instantiate all virtual registers if the result is a valid
3522 address. If not, we do it later. That will handle most uses of virtual
3523 regs on many machines. */
3524 instantiate_decls (fndecl, 1);
3526 /* Initialize recognition, indicating that volatile is OK. */
3527 init_recog ();
3529 /* Scan through all the insns, instantiating every virtual register still
3530 present. */
3531 for (insn = insns; insn; insn = NEXT_INSN (insn))
3532 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
3533 || GET_CODE (insn) == CALL_INSN)
3535 instantiate_virtual_regs_1 (&PATTERN (insn), insn, 1);
3536 instantiate_virtual_regs_1 (&REG_NOTES (insn), NULL_RTX, 0);
3537 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
3538 if (GET_CODE (insn) == CALL_INSN)
3539 instantiate_virtual_regs_1 (&CALL_INSN_FUNCTION_USAGE (insn),
3540 NULL_RTX, 0);
3543 /* Instantiate the stack slots for the parm registers, for later use in
3544 addressof elimination. */
3545 for (i = 0; i < max_parm_reg; ++i)
3546 if (parm_reg_stack_loc[i])
3547 instantiate_virtual_regs_1 (&parm_reg_stack_loc[i], NULL_RTX, 0);
3549 /* Now instantiate the remaining register equivalences for debugging info.
3550 These will not be valid addresses. */
3551 instantiate_decls (fndecl, 0);
3553 /* Indicate that, from now on, assign_stack_local should use
3554 frame_pointer_rtx. */
3555 virtuals_instantiated = 1;
3558 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
3559 all virtual registers in their DECL_RTL's.
3561 If VALID_ONLY, do this only if the resulting address is still valid.
3562 Otherwise, always do it. */
3564 static void
3565 instantiate_decls (fndecl, valid_only)
3566 tree fndecl;
3567 int valid_only;
3569 tree decl;
3571 /* Process all parameters of the function. */
3572 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
3574 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (decl));
3576 instantiate_decl (DECL_RTL (decl), size, valid_only);
3578 /* If the parameter was promoted, then the incoming RTL mode may be
3579 larger than the declared type size. We must use the larger of
3580 the two sizes. */
3581 size = MAX (GET_MODE_SIZE (GET_MODE (DECL_INCOMING_RTL (decl))), size);
3582 instantiate_decl (DECL_INCOMING_RTL (decl), size, valid_only);
3585 /* Now process all variables defined in the function or its subblocks. */
3586 instantiate_decls_1 (DECL_INITIAL (fndecl), valid_only);
3589 /* Subroutine of instantiate_decls: Process all decls in the given
3590 BLOCK node and all its subblocks. */
3592 static void
3593 instantiate_decls_1 (let, valid_only)
3594 tree let;
3595 int valid_only;
3597 tree t;
3599 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
3600 if (DECL_RTL_SET_P (t))
3601 instantiate_decl (DECL_RTL (t),
3602 int_size_in_bytes (TREE_TYPE (t)),
3603 valid_only);
3605 /* Process all subblocks. */
3606 for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
3607 instantiate_decls_1 (t, valid_only);
3610 /* Subroutine of the preceding procedures: Given RTL representing a
3611 decl and the size of the object, do any instantiation required.
3613 If VALID_ONLY is non-zero, it means that the RTL should only be
3614 changed if the new address is valid. */
3616 static void
3617 instantiate_decl (x, size, valid_only)
3618 rtx x;
3619 HOST_WIDE_INT size;
3620 int valid_only;
3622 enum machine_mode mode;
3623 rtx addr;
3625 /* If this is not a MEM, no need to do anything. Similarly if the
3626 address is a constant or a register that is not a virtual register. */
3628 if (x == 0 || GET_CODE (x) != MEM)
3629 return;
3631 addr = XEXP (x, 0);
3632 if (CONSTANT_P (addr)
3633 || (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == REG)
3634 || (GET_CODE (addr) == REG
3635 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
3636 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
3637 return;
3639 /* If we should only do this if the address is valid, copy the address.
3640 We need to do this so we can undo any changes that might make the
3641 address invalid. This copy is unfortunate, but probably can't be
3642 avoided. */
3644 if (valid_only)
3645 addr = copy_rtx (addr);
3647 instantiate_virtual_regs_1 (&addr, NULL_RTX, 0);
3649 if (valid_only && size >= 0)
3651 unsigned HOST_WIDE_INT decl_size = size;
3653 /* Now verify that the resulting address is valid for every integer or
3654 floating-point mode up to and including SIZE bytes long. We do this
3655 since the object might be accessed in any mode and frame addresses
3656 are shared. */
3658 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
3659 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
3660 mode = GET_MODE_WIDER_MODE (mode))
3661 if (! memory_address_p (mode, addr))
3662 return;
3664 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
3665 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
3666 mode = GET_MODE_WIDER_MODE (mode))
3667 if (! memory_address_p (mode, addr))
3668 return;
3671 /* Put back the address now that we have updated it and we either know
3672 it is valid or we don't care whether it is valid. */
3674 XEXP (x, 0) = addr;
3677 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
3678 is a virtual register, return the requivalent hard register and set the
3679 offset indirectly through the pointer. Otherwise, return 0. */
3681 static rtx
3682 instantiate_new_reg (x, poffset)
3683 rtx x;
3684 HOST_WIDE_INT *poffset;
3686 rtx new;
3687 HOST_WIDE_INT offset;
3689 if (x == virtual_incoming_args_rtx)
3690 new = arg_pointer_rtx, offset = in_arg_offset;
3691 else if (x == virtual_stack_vars_rtx)
3692 new = frame_pointer_rtx, offset = var_offset;
3693 else if (x == virtual_stack_dynamic_rtx)
3694 new = stack_pointer_rtx, offset = dynamic_offset;
3695 else if (x == virtual_outgoing_args_rtx)
3696 new = stack_pointer_rtx, offset = out_arg_offset;
3697 else if (x == virtual_cfa_rtx)
3698 new = arg_pointer_rtx, offset = cfa_offset;
3699 else
3700 return 0;
3702 *poffset = offset;
3703 return new;
3706 /* Given a pointer to a piece of rtx and an optional pointer to the
3707 containing object, instantiate any virtual registers present in it.
3709 If EXTRA_INSNS, we always do the replacement and generate
3710 any extra insns before OBJECT. If it zero, we do nothing if replacement
3711 is not valid.
3713 Return 1 if we either had nothing to do or if we were able to do the
3714 needed replacement. Return 0 otherwise; we only return zero if
3715 EXTRA_INSNS is zero.
3717 We first try some simple transformations to avoid the creation of extra
3718 pseudos. */
3720 static int
3721 instantiate_virtual_regs_1 (loc, object, extra_insns)
3722 rtx *loc;
3723 rtx object;
3724 int extra_insns;
3726 rtx x;
3727 RTX_CODE code;
3728 rtx new = 0;
3729 HOST_WIDE_INT offset = 0;
3730 rtx temp;
3731 rtx seq;
3732 int i, j;
3733 const char *fmt;
3735 /* Re-start here to avoid recursion in common cases. */
3736 restart:
3738 x = *loc;
3739 if (x == 0)
3740 return 1;
3742 code = GET_CODE (x);
3744 /* Check for some special cases. */
3745 switch (code)
3747 case CONST_INT:
3748 case CONST_DOUBLE:
3749 case CONST:
3750 case SYMBOL_REF:
3751 case CODE_LABEL:
3752 case PC:
3753 case CC0:
3754 case ASM_INPUT:
3755 case ADDR_VEC:
3756 case ADDR_DIFF_VEC:
3757 case RETURN:
3758 return 1;
3760 case SET:
3761 /* We are allowed to set the virtual registers. This means that
3762 the actual register should receive the source minus the
3763 appropriate offset. This is used, for example, in the handling
3764 of non-local gotos. */
3765 if ((new = instantiate_new_reg (SET_DEST (x), &offset)) != 0)
3767 rtx src = SET_SRC (x);
3769 /* We are setting the register, not using it, so the relevant
3770 offset is the negative of the offset to use were we using
3771 the register. */
3772 offset = - offset;
3773 instantiate_virtual_regs_1 (&src, NULL_RTX, 0);
3775 /* The only valid sources here are PLUS or REG. Just do
3776 the simplest possible thing to handle them. */
3777 if (GET_CODE (src) != REG && GET_CODE (src) != PLUS)
3778 abort ();
3780 start_sequence ();
3781 if (GET_CODE (src) != REG)
3782 temp = force_operand (src, NULL_RTX);
3783 else
3784 temp = src;
3785 temp = force_operand (plus_constant (temp, offset), NULL_RTX);
3786 seq = get_insns ();
3787 end_sequence ();
3789 emit_insns_before (seq, object);
3790 SET_DEST (x) = new;
3792 if (! validate_change (object, &SET_SRC (x), temp, 0)
3793 || ! extra_insns)
3794 abort ();
3796 return 1;
3799 instantiate_virtual_regs_1 (&SET_DEST (x), object, extra_insns);
3800 loc = &SET_SRC (x);
3801 goto restart;
3803 case PLUS:
3804 /* Handle special case of virtual register plus constant. */
3805 if (CONSTANT_P (XEXP (x, 1)))
3807 rtx old, new_offset;
3809 /* Check for (plus (plus VIRT foo) (const_int)) first. */
3810 if (GET_CODE (XEXP (x, 0)) == PLUS)
3812 if ((new = instantiate_new_reg (XEXP (XEXP (x, 0), 0), &offset)))
3814 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 1), object,
3815 extra_insns);
3816 new = gen_rtx_PLUS (Pmode, new, XEXP (XEXP (x, 0), 1));
3818 else
3820 loc = &XEXP (x, 0);
3821 goto restart;
3825 #ifdef POINTERS_EXTEND_UNSIGNED
3826 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
3827 we can commute the PLUS and SUBREG because pointers into the
3828 frame are well-behaved. */
3829 else if (GET_CODE (XEXP (x, 0)) == SUBREG && GET_MODE (x) == ptr_mode
3830 && GET_CODE (XEXP (x, 1)) == CONST_INT
3831 && 0 != (new
3832 = instantiate_new_reg (SUBREG_REG (XEXP (x, 0)),
3833 &offset))
3834 && validate_change (object, loc,
3835 plus_constant (gen_lowpart (ptr_mode,
3836 new),
3837 offset
3838 + INTVAL (XEXP (x, 1))),
3840 return 1;
3841 #endif
3842 else if ((new = instantiate_new_reg (XEXP (x, 0), &offset)) == 0)
3844 /* We know the second operand is a constant. Unless the
3845 first operand is a REG (which has been already checked),
3846 it needs to be checked. */
3847 if (GET_CODE (XEXP (x, 0)) != REG)
3849 loc = &XEXP (x, 0);
3850 goto restart;
3852 return 1;
3855 new_offset = plus_constant (XEXP (x, 1), offset);
3857 /* If the new constant is zero, try to replace the sum with just
3858 the register. */
3859 if (new_offset == const0_rtx
3860 && validate_change (object, loc, new, 0))
3861 return 1;
3863 /* Next try to replace the register and new offset.
3864 There are two changes to validate here and we can't assume that
3865 in the case of old offset equals new just changing the register
3866 will yield a valid insn. In the interests of a little efficiency,
3867 however, we only call validate change once (we don't queue up the
3868 changes and then call apply_change_group). */
3870 old = XEXP (x, 0);
3871 if (offset == 0
3872 ? ! validate_change (object, &XEXP (x, 0), new, 0)
3873 : (XEXP (x, 0) = new,
3874 ! validate_change (object, &XEXP (x, 1), new_offset, 0)))
3876 if (! extra_insns)
3878 XEXP (x, 0) = old;
3879 return 0;
3882 /* Otherwise copy the new constant into a register and replace
3883 constant with that register. */
3884 temp = gen_reg_rtx (Pmode);
3885 XEXP (x, 0) = new;
3886 if (validate_change (object, &XEXP (x, 1), temp, 0))
3887 emit_insn_before (gen_move_insn (temp, new_offset), object);
3888 else
3890 /* If that didn't work, replace this expression with a
3891 register containing the sum. */
3893 XEXP (x, 0) = old;
3894 new = gen_rtx_PLUS (Pmode, new, new_offset);
3896 start_sequence ();
3897 temp = force_operand (new, NULL_RTX);
3898 seq = get_insns ();
3899 end_sequence ();
3901 emit_insns_before (seq, object);
3902 if (! validate_change (object, loc, temp, 0)
3903 && ! validate_replace_rtx (x, temp, object))
3904 abort ();
3908 return 1;
3911 /* Fall through to generic two-operand expression case. */
3912 case EXPR_LIST:
3913 case CALL:
3914 case COMPARE:
3915 case MINUS:
3916 case MULT:
3917 case DIV: case UDIV:
3918 case MOD: case UMOD:
3919 case AND: case IOR: case XOR:
3920 case ROTATERT: case ROTATE:
3921 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
3922 case NE: case EQ:
3923 case GE: case GT: case GEU: case GTU:
3924 case LE: case LT: case LEU: case LTU:
3925 if (XEXP (x, 1) && ! CONSTANT_P (XEXP (x, 1)))
3926 instantiate_virtual_regs_1 (&XEXP (x, 1), object, extra_insns);
3927 loc = &XEXP (x, 0);
3928 goto restart;
3930 case MEM:
3931 /* Most cases of MEM that convert to valid addresses have already been
3932 handled by our scan of decls. The only special handling we
3933 need here is to make a copy of the rtx to ensure it isn't being
3934 shared if we have to change it to a pseudo.
3936 If the rtx is a simple reference to an address via a virtual register,
3937 it can potentially be shared. In such cases, first try to make it
3938 a valid address, which can also be shared. Otherwise, copy it and
3939 proceed normally.
3941 First check for common cases that need no processing. These are
3942 usually due to instantiation already being done on a previous instance
3943 of a shared rtx. */
3945 temp = XEXP (x, 0);
3946 if (CONSTANT_ADDRESS_P (temp)
3947 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3948 || temp == arg_pointer_rtx
3949 #endif
3950 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3951 || temp == hard_frame_pointer_rtx
3952 #endif
3953 || temp == frame_pointer_rtx)
3954 return 1;
3956 if (GET_CODE (temp) == PLUS
3957 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
3958 && (XEXP (temp, 0) == frame_pointer_rtx
3959 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3960 || XEXP (temp, 0) == hard_frame_pointer_rtx
3961 #endif
3962 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3963 || XEXP (temp, 0) == arg_pointer_rtx
3964 #endif
3966 return 1;
3968 if (temp == virtual_stack_vars_rtx
3969 || temp == virtual_incoming_args_rtx
3970 || (GET_CODE (temp) == PLUS
3971 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
3972 && (XEXP (temp, 0) == virtual_stack_vars_rtx
3973 || XEXP (temp, 0) == virtual_incoming_args_rtx)))
3975 /* This MEM may be shared. If the substitution can be done without
3976 the need to generate new pseudos, we want to do it in place
3977 so all copies of the shared rtx benefit. The call below will
3978 only make substitutions if the resulting address is still
3979 valid.
3981 Note that we cannot pass X as the object in the recursive call
3982 since the insn being processed may not allow all valid
3983 addresses. However, if we were not passed on object, we can
3984 only modify X without copying it if X will have a valid
3985 address.
3987 ??? Also note that this can still lose if OBJECT is an insn that
3988 has less restrictions on an address that some other insn.
3989 In that case, we will modify the shared address. This case
3990 doesn't seem very likely, though. One case where this could
3991 happen is in the case of a USE or CLOBBER reference, but we
3992 take care of that below. */
3994 if (instantiate_virtual_regs_1 (&XEXP (x, 0),
3995 object ? object : x, 0))
3996 return 1;
3998 /* Otherwise make a copy and process that copy. We copy the entire
3999 RTL expression since it might be a PLUS which could also be
4000 shared. */
4001 *loc = x = copy_rtx (x);
4004 /* Fall through to generic unary operation case. */
4005 case SUBREG:
4006 case STRICT_LOW_PART:
4007 case NEG: case NOT:
4008 case PRE_DEC: case PRE_INC: case POST_DEC: case POST_INC:
4009 case SIGN_EXTEND: case ZERO_EXTEND:
4010 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
4011 case FLOAT: case FIX:
4012 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
4013 case ABS:
4014 case SQRT:
4015 case FFS:
4016 /* These case either have just one operand or we know that we need not
4017 check the rest of the operands. */
4018 loc = &XEXP (x, 0);
4019 goto restart;
4021 case USE:
4022 case CLOBBER:
4023 /* If the operand is a MEM, see if the change is a valid MEM. If not,
4024 go ahead and make the invalid one, but do it to a copy. For a REG,
4025 just make the recursive call, since there's no chance of a problem. */
4027 if ((GET_CODE (XEXP (x, 0)) == MEM
4028 && instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), XEXP (x, 0),
4030 || (GET_CODE (XEXP (x, 0)) == REG
4031 && instantiate_virtual_regs_1 (&XEXP (x, 0), object, 0)))
4032 return 1;
4034 XEXP (x, 0) = copy_rtx (XEXP (x, 0));
4035 loc = &XEXP (x, 0);
4036 goto restart;
4038 case REG:
4039 /* Try to replace with a PLUS. If that doesn't work, compute the sum
4040 in front of this insn and substitute the temporary. */
4041 if ((new = instantiate_new_reg (x, &offset)) != 0)
4043 temp = plus_constant (new, offset);
4044 if (!validate_change (object, loc, temp, 0))
4046 if (! extra_insns)
4047 return 0;
4049 start_sequence ();
4050 temp = force_operand (temp, NULL_RTX);
4051 seq = get_insns ();
4052 end_sequence ();
4054 emit_insns_before (seq, object);
4055 if (! validate_change (object, loc, temp, 0)
4056 && ! validate_replace_rtx (x, temp, object))
4057 abort ();
4061 return 1;
4063 case ADDRESSOF:
4064 if (GET_CODE (XEXP (x, 0)) == REG)
4065 return 1;
4067 else if (GET_CODE (XEXP (x, 0)) == MEM)
4069 /* If we have a (addressof (mem ..)), do any instantiation inside
4070 since we know we'll be making the inside valid when we finally
4071 remove the ADDRESSOF. */
4072 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), NULL_RTX, 0);
4073 return 1;
4075 break;
4077 default:
4078 break;
4081 /* Scan all subexpressions. */
4082 fmt = GET_RTX_FORMAT (code);
4083 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
4084 if (*fmt == 'e')
4086 if (!instantiate_virtual_regs_1 (&XEXP (x, i), object, extra_insns))
4087 return 0;
4089 else if (*fmt == 'E')
4090 for (j = 0; j < XVECLEN (x, i); j++)
4091 if (! instantiate_virtual_regs_1 (&XVECEXP (x, i, j), object,
4092 extra_insns))
4093 return 0;
4095 return 1;
4098 /* Optimization: assuming this function does not receive nonlocal gotos,
4099 delete the handlers for such, as well as the insns to establish
4100 and disestablish them. */
4102 static void
4103 delete_handlers ()
4105 rtx insn;
4106 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4108 /* Delete the handler by turning off the flag that would
4109 prevent jump_optimize from deleting it.
4110 Also permit deletion of the nonlocal labels themselves
4111 if nothing local refers to them. */
4112 if (GET_CODE (insn) == CODE_LABEL)
4114 tree t, last_t;
4116 LABEL_PRESERVE_P (insn) = 0;
4118 /* Remove it from the nonlocal_label list, to avoid confusing
4119 flow. */
4120 for (t = nonlocal_labels, last_t = 0; t;
4121 last_t = t, t = TREE_CHAIN (t))
4122 if (DECL_RTL (TREE_VALUE (t)) == insn)
4123 break;
4124 if (t)
4126 if (! last_t)
4127 nonlocal_labels = TREE_CHAIN (nonlocal_labels);
4128 else
4129 TREE_CHAIN (last_t) = TREE_CHAIN (t);
4132 if (GET_CODE (insn) == INSN)
4134 int can_delete = 0;
4135 rtx t;
4136 for (t = nonlocal_goto_handler_slots; t != 0; t = XEXP (t, 1))
4137 if (reg_mentioned_p (t, PATTERN (insn)))
4139 can_delete = 1;
4140 break;
4142 if (can_delete
4143 || (nonlocal_goto_stack_level != 0
4144 && reg_mentioned_p (nonlocal_goto_stack_level,
4145 PATTERN (insn))))
4146 delete_insn (insn);
4152 max_parm_reg_num ()
4154 return max_parm_reg;
4157 /* Return the first insn following those generated by `assign_parms'. */
4160 get_first_nonparm_insn ()
4162 if (last_parm_insn)
4163 return NEXT_INSN (last_parm_insn);
4164 return get_insns ();
4167 /* Return the first NOTE_INSN_BLOCK_BEG note in the function.
4168 Crash if there is none. */
4171 get_first_block_beg ()
4173 register rtx searcher;
4174 register rtx insn = get_first_nonparm_insn ();
4176 for (searcher = insn; searcher; searcher = NEXT_INSN (searcher))
4177 if (GET_CODE (searcher) == NOTE
4178 && NOTE_LINE_NUMBER (searcher) == NOTE_INSN_BLOCK_BEG)
4179 return searcher;
4181 abort (); /* Invalid call to this function. (See comments above.) */
4182 return NULL_RTX;
4185 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
4186 This means a type for which function calls must pass an address to the
4187 function or get an address back from the function.
4188 EXP may be a type node or an expression (whose type is tested). */
4191 aggregate_value_p (exp)
4192 tree exp;
4194 int i, regno, nregs;
4195 rtx reg;
4197 tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
4199 if (TREE_CODE (type) == VOID_TYPE)
4200 return 0;
4201 if (RETURN_IN_MEMORY (type))
4202 return 1;
4203 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
4204 and thus can't be returned in registers. */
4205 if (TREE_ADDRESSABLE (type))
4206 return 1;
4207 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
4208 return 1;
4209 /* Make sure we have suitable call-clobbered regs to return
4210 the value in; if not, we must return it in memory. */
4211 reg = hard_function_value (type, 0, 0);
4213 /* If we have something other than a REG (e.g. a PARALLEL), then assume
4214 it is OK. */
4215 if (GET_CODE (reg) != REG)
4216 return 0;
4218 regno = REGNO (reg);
4219 nregs = HARD_REGNO_NREGS (regno, TYPE_MODE (type));
4220 for (i = 0; i < nregs; i++)
4221 if (! call_used_regs[regno + i])
4222 return 1;
4223 return 0;
4226 /* Assign RTL expressions to the function's parameters.
4227 This may involve copying them into registers and using
4228 those registers as the RTL for them. */
4230 void
4231 assign_parms (fndecl)
4232 tree fndecl;
4234 register tree parm;
4235 register rtx entry_parm = 0;
4236 register rtx stack_parm = 0;
4237 CUMULATIVE_ARGS args_so_far;
4238 enum machine_mode promoted_mode, passed_mode;
4239 enum machine_mode nominal_mode, promoted_nominal_mode;
4240 int unsignedp;
4241 /* Total space needed so far for args on the stack,
4242 given as a constant and a tree-expression. */
4243 struct args_size stack_args_size;
4244 tree fntype = TREE_TYPE (fndecl);
4245 tree fnargs = DECL_ARGUMENTS (fndecl);
4246 /* This is used for the arg pointer when referring to stack args. */
4247 rtx internal_arg_pointer;
4248 /* This is a dummy PARM_DECL that we used for the function result if
4249 the function returns a structure. */
4250 tree function_result_decl = 0;
4251 #ifdef SETUP_INCOMING_VARARGS
4252 int varargs_setup = 0;
4253 #endif
4254 rtx conversion_insns = 0;
4255 struct args_size alignment_pad;
4257 /* Nonzero if the last arg is named `__builtin_va_alist',
4258 which is used on some machines for old-fashioned non-ANSI varargs.h;
4259 this should be stuck onto the stack as if it had arrived there. */
4260 int hide_last_arg
4261 = (current_function_varargs
4262 && fnargs
4263 && (parm = tree_last (fnargs)) != 0
4264 && DECL_NAME (parm)
4265 && (! strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
4266 "__builtin_va_alist")));
4268 /* Nonzero if function takes extra anonymous args.
4269 This means the last named arg must be on the stack
4270 right before the anonymous ones. */
4271 int stdarg
4272 = (TYPE_ARG_TYPES (fntype) != 0
4273 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
4274 != void_type_node));
4276 current_function_stdarg = stdarg;
4278 /* If the reg that the virtual arg pointer will be translated into is
4279 not a fixed reg or is the stack pointer, make a copy of the virtual
4280 arg pointer, and address parms via the copy. The frame pointer is
4281 considered fixed even though it is not marked as such.
4283 The second time through, simply use ap to avoid generating rtx. */
4285 if ((ARG_POINTER_REGNUM == STACK_POINTER_REGNUM
4286 || ! (fixed_regs[ARG_POINTER_REGNUM]
4287 || ARG_POINTER_REGNUM == FRAME_POINTER_REGNUM)))
4288 internal_arg_pointer = copy_to_reg (virtual_incoming_args_rtx);
4289 else
4290 internal_arg_pointer = virtual_incoming_args_rtx;
4291 current_function_internal_arg_pointer = internal_arg_pointer;
4293 stack_args_size.constant = 0;
4294 stack_args_size.var = 0;
4296 /* If struct value address is treated as the first argument, make it so. */
4297 if (aggregate_value_p (DECL_RESULT (fndecl))
4298 && ! current_function_returns_pcc_struct
4299 && struct_value_incoming_rtx == 0)
4301 tree type = build_pointer_type (TREE_TYPE (fntype));
4303 function_result_decl = build_decl (PARM_DECL, NULL_TREE, type);
4305 DECL_ARG_TYPE (function_result_decl) = type;
4306 TREE_CHAIN (function_result_decl) = fnargs;
4307 fnargs = function_result_decl;
4310 max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
4311 parm_reg_stack_loc = (rtx *) xcalloc (max_parm_reg, sizeof (rtx));
4313 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
4314 INIT_CUMULATIVE_INCOMING_ARGS (args_so_far, fntype, NULL_RTX);
4315 #else
4316 INIT_CUMULATIVE_ARGS (args_so_far, fntype, NULL_RTX, 0);
4317 #endif
4319 /* We haven't yet found an argument that we must push and pretend the
4320 caller did. */
4321 current_function_pretend_args_size = 0;
4323 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
4325 struct args_size stack_offset;
4326 struct args_size arg_size;
4327 int passed_pointer = 0;
4328 int did_conversion = 0;
4329 tree passed_type = DECL_ARG_TYPE (parm);
4330 tree nominal_type = TREE_TYPE (parm);
4331 int pretend_named;
4333 /* Set LAST_NAMED if this is last named arg before some
4334 anonymous args. */
4335 int last_named = ((TREE_CHAIN (parm) == 0
4336 || DECL_NAME (TREE_CHAIN (parm)) == 0)
4337 && (stdarg || current_function_varargs));
4338 /* Set NAMED_ARG if this arg should be treated as a named arg. For
4339 most machines, if this is a varargs/stdarg function, then we treat
4340 the last named arg as if it were anonymous too. */
4341 int named_arg = STRICT_ARGUMENT_NAMING ? 1 : ! last_named;
4343 if (TREE_TYPE (parm) == error_mark_node
4344 /* This can happen after weird syntax errors
4345 or if an enum type is defined among the parms. */
4346 || TREE_CODE (parm) != PARM_DECL
4347 || passed_type == NULL)
4349 SET_DECL_RTL (parm, gen_rtx_MEM (BLKmode, const0_rtx));
4350 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
4351 TREE_USED (parm) = 1;
4352 continue;
4355 /* For varargs.h function, save info about regs and stack space
4356 used by the individual args, not including the va_alist arg. */
4357 if (hide_last_arg && last_named)
4358 current_function_args_info = args_so_far;
4360 /* Find mode of arg as it is passed, and mode of arg
4361 as it should be during execution of this function. */
4362 passed_mode = TYPE_MODE (passed_type);
4363 nominal_mode = TYPE_MODE (nominal_type);
4365 /* If the parm's mode is VOID, its value doesn't matter,
4366 and avoid the usual things like emit_move_insn that could crash. */
4367 if (nominal_mode == VOIDmode)
4369 SET_DECL_RTL (parm, const0_rtx);
4370 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
4371 continue;
4374 /* If the parm is to be passed as a transparent union, use the
4375 type of the first field for the tests below. We have already
4376 verified that the modes are the same. */
4377 if (DECL_TRANSPARENT_UNION (parm)
4378 || (TREE_CODE (passed_type) == UNION_TYPE
4379 && TYPE_TRANSPARENT_UNION (passed_type)))
4380 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
4382 /* See if this arg was passed by invisible reference. It is if
4383 it is an object whose size depends on the contents of the
4384 object itself or if the machine requires these objects be passed
4385 that way. */
4387 if ((TREE_CODE (TYPE_SIZE (passed_type)) != INTEGER_CST
4388 && contains_placeholder_p (TYPE_SIZE (passed_type)))
4389 || TREE_ADDRESSABLE (passed_type)
4390 #ifdef FUNCTION_ARG_PASS_BY_REFERENCE
4391 || FUNCTION_ARG_PASS_BY_REFERENCE (args_so_far, passed_mode,
4392 passed_type, named_arg)
4393 #endif
4396 passed_type = nominal_type = build_pointer_type (passed_type);
4397 passed_pointer = 1;
4398 passed_mode = nominal_mode = Pmode;
4401 promoted_mode = passed_mode;
4403 #ifdef PROMOTE_FUNCTION_ARGS
4404 /* Compute the mode in which the arg is actually extended to. */
4405 unsignedp = TREE_UNSIGNED (passed_type);
4406 promoted_mode = promote_mode (passed_type, promoted_mode, &unsignedp, 1);
4407 #endif
4409 /* Let machine desc say which reg (if any) the parm arrives in.
4410 0 means it arrives on the stack. */
4411 #ifdef FUNCTION_INCOMING_ARG
4412 entry_parm = FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
4413 passed_type, named_arg);
4414 #else
4415 entry_parm = FUNCTION_ARG (args_so_far, promoted_mode,
4416 passed_type, named_arg);
4417 #endif
4419 if (entry_parm == 0)
4420 promoted_mode = passed_mode;
4422 #ifdef SETUP_INCOMING_VARARGS
4423 /* If this is the last named parameter, do any required setup for
4424 varargs or stdargs. We need to know about the case of this being an
4425 addressable type, in which case we skip the registers it
4426 would have arrived in.
4428 For stdargs, LAST_NAMED will be set for two parameters, the one that
4429 is actually the last named, and the dummy parameter. We only
4430 want to do this action once.
4432 Also, indicate when RTL generation is to be suppressed. */
4433 if (last_named && !varargs_setup)
4435 SETUP_INCOMING_VARARGS (args_so_far, promoted_mode, passed_type,
4436 current_function_pretend_args_size, 0);
4437 varargs_setup = 1;
4439 #endif
4441 /* Determine parm's home in the stack,
4442 in case it arrives in the stack or we should pretend it did.
4444 Compute the stack position and rtx where the argument arrives
4445 and its size.
4447 There is one complexity here: If this was a parameter that would
4448 have been passed in registers, but wasn't only because it is
4449 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
4450 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
4451 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of
4452 0 as it was the previous time. */
4454 pretend_named = named_arg || PRETEND_OUTGOING_VARARGS_NAMED;
4455 locate_and_pad_parm (promoted_mode, passed_type,
4456 #ifdef STACK_PARMS_IN_REG_PARM_AREA
4458 #else
4459 #ifdef FUNCTION_INCOMING_ARG
4460 FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
4461 passed_type,
4462 pretend_named) != 0,
4463 #else
4464 FUNCTION_ARG (args_so_far, promoted_mode,
4465 passed_type,
4466 pretend_named) != 0,
4467 #endif
4468 #endif
4469 fndecl, &stack_args_size, &stack_offset, &arg_size,
4470 &alignment_pad);
4473 rtx offset_rtx = ARGS_SIZE_RTX (stack_offset);
4475 if (offset_rtx == const0_rtx)
4476 stack_parm = gen_rtx_MEM (promoted_mode, internal_arg_pointer);
4477 else
4478 stack_parm = gen_rtx_MEM (promoted_mode,
4479 gen_rtx_PLUS (Pmode,
4480 internal_arg_pointer,
4481 offset_rtx));
4483 set_mem_attributes (stack_parm, parm, 1);
4486 /* If this parameter was passed both in registers and in the stack,
4487 use the copy on the stack. */
4488 if (MUST_PASS_IN_STACK (promoted_mode, passed_type))
4489 entry_parm = 0;
4491 #ifdef FUNCTION_ARG_PARTIAL_NREGS
4492 /* If this parm was passed part in regs and part in memory,
4493 pretend it arrived entirely in memory
4494 by pushing the register-part onto the stack.
4496 In the special case of a DImode or DFmode that is split,
4497 we could put it together in a pseudoreg directly,
4498 but for now that's not worth bothering with. */
4500 if (entry_parm)
4502 int nregs = FUNCTION_ARG_PARTIAL_NREGS (args_so_far, promoted_mode,
4503 passed_type, named_arg);
4505 if (nregs > 0)
4507 current_function_pretend_args_size
4508 = (((nregs * UNITS_PER_WORD) + (PARM_BOUNDARY / BITS_PER_UNIT) - 1)
4509 / (PARM_BOUNDARY / BITS_PER_UNIT)
4510 * (PARM_BOUNDARY / BITS_PER_UNIT));
4512 /* Handle calls that pass values in multiple non-contiguous
4513 locations. The Irix 6 ABI has examples of this. */
4514 if (GET_CODE (entry_parm) == PARALLEL)
4515 emit_group_store (validize_mem (stack_parm), entry_parm,
4516 int_size_in_bytes (TREE_TYPE (parm)),
4517 TYPE_ALIGN (TREE_TYPE (parm)));
4519 else
4520 move_block_from_reg (REGNO (entry_parm),
4521 validize_mem (stack_parm), nregs,
4522 int_size_in_bytes (TREE_TYPE (parm)));
4524 entry_parm = stack_parm;
4527 #endif
4529 /* If we didn't decide this parm came in a register,
4530 by default it came on the stack. */
4531 if (entry_parm == 0)
4532 entry_parm = stack_parm;
4534 /* Record permanently how this parm was passed. */
4535 DECL_INCOMING_RTL (parm) = entry_parm;
4537 /* If there is actually space on the stack for this parm,
4538 count it in stack_args_size; otherwise set stack_parm to 0
4539 to indicate there is no preallocated stack slot for the parm. */
4541 if (entry_parm == stack_parm
4542 || (GET_CODE (entry_parm) == PARALLEL
4543 && XEXP (XVECEXP (entry_parm, 0, 0), 0) == NULL_RTX)
4544 #if defined (REG_PARM_STACK_SPACE) && ! defined (MAYBE_REG_PARM_STACK_SPACE)
4545 /* On some machines, even if a parm value arrives in a register
4546 there is still an (uninitialized) stack slot allocated for it.
4548 ??? When MAYBE_REG_PARM_STACK_SPACE is defined, we can't tell
4549 whether this parameter already has a stack slot allocated,
4550 because an arg block exists only if current_function_args_size
4551 is larger than some threshold, and we haven't calculated that
4552 yet. So, for now, we just assume that stack slots never exist
4553 in this case. */
4554 || REG_PARM_STACK_SPACE (fndecl) > 0
4555 #endif
4558 stack_args_size.constant += arg_size.constant;
4559 if (arg_size.var)
4560 ADD_PARM_SIZE (stack_args_size, arg_size.var);
4562 else
4563 /* No stack slot was pushed for this parm. */
4564 stack_parm = 0;
4566 /* Update info on where next arg arrives in registers. */
4568 FUNCTION_ARG_ADVANCE (args_so_far, promoted_mode,
4569 passed_type, named_arg);
4571 /* If we can't trust the parm stack slot to be aligned enough
4572 for its ultimate type, don't use that slot after entry.
4573 We'll make another stack slot, if we need one. */
4575 unsigned int thisparm_boundary
4576 = FUNCTION_ARG_BOUNDARY (promoted_mode, passed_type);
4578 if (GET_MODE_ALIGNMENT (nominal_mode) > thisparm_boundary)
4579 stack_parm = 0;
4582 /* If parm was passed in memory, and we need to convert it on entry,
4583 don't store it back in that same slot. */
4584 if (entry_parm != 0
4585 && nominal_mode != BLKmode && nominal_mode != passed_mode)
4586 stack_parm = 0;
4588 /* When an argument is passed in multiple locations, we can't
4589 make use of this information, but we can save some copying if
4590 the whole argument is passed in a single register. */
4591 if (GET_CODE (entry_parm) == PARALLEL
4592 && nominal_mode != BLKmode && passed_mode != BLKmode)
4594 int i, len = XVECLEN (entry_parm, 0);
4596 for (i = 0; i < len; i++)
4597 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
4598 && GET_CODE (XEXP (XVECEXP (entry_parm, 0, i), 0)) == REG
4599 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
4600 == passed_mode)
4601 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
4603 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
4604 DECL_INCOMING_RTL (parm) = entry_parm;
4605 break;
4609 /* ENTRY_PARM is an RTX for the parameter as it arrives,
4610 in the mode in which it arrives.
4611 STACK_PARM is an RTX for a stack slot where the parameter can live
4612 during the function (in case we want to put it there).
4613 STACK_PARM is 0 if no stack slot was pushed for it.
4615 Now output code if necessary to convert ENTRY_PARM to
4616 the type in which this function declares it,
4617 and store that result in an appropriate place,
4618 which may be a pseudo reg, may be STACK_PARM,
4619 or may be a local stack slot if STACK_PARM is 0.
4621 Set DECL_RTL to that place. */
4623 if (nominal_mode == BLKmode || GET_CODE (entry_parm) == PARALLEL)
4625 /* If a BLKmode arrives in registers, copy it to a stack slot.
4626 Handle calls that pass values in multiple non-contiguous
4627 locations. The Irix 6 ABI has examples of this. */
4628 if (GET_CODE (entry_parm) == REG
4629 || GET_CODE (entry_parm) == PARALLEL)
4631 int size_stored
4632 = CEIL_ROUND (int_size_in_bytes (TREE_TYPE (parm)),
4633 UNITS_PER_WORD);
4635 /* Note that we will be storing an integral number of words.
4636 So we have to be careful to ensure that we allocate an
4637 integral number of words. We do this below in the
4638 assign_stack_local if space was not allocated in the argument
4639 list. If it was, this will not work if PARM_BOUNDARY is not
4640 a multiple of BITS_PER_WORD. It isn't clear how to fix this
4641 if it becomes a problem. */
4643 if (stack_parm == 0)
4645 stack_parm
4646 = assign_stack_local (GET_MODE (entry_parm),
4647 size_stored, 0);
4648 set_mem_attributes (stack_parm, parm, 1);
4651 else if (PARM_BOUNDARY % BITS_PER_WORD != 0)
4652 abort ();
4654 /* Handle calls that pass values in multiple non-contiguous
4655 locations. The Irix 6 ABI has examples of this. */
4656 if (GET_CODE (entry_parm) == PARALLEL)
4657 emit_group_store (validize_mem (stack_parm), entry_parm,
4658 int_size_in_bytes (TREE_TYPE (parm)),
4659 TYPE_ALIGN (TREE_TYPE (parm)));
4660 else
4661 move_block_from_reg (REGNO (entry_parm),
4662 validize_mem (stack_parm),
4663 size_stored / UNITS_PER_WORD,
4664 int_size_in_bytes (TREE_TYPE (parm)));
4666 SET_DECL_RTL (parm, stack_parm);
4668 else if (! ((! optimize
4669 && ! DECL_REGISTER (parm)
4670 && ! DECL_INLINE (fndecl))
4671 || TREE_SIDE_EFFECTS (parm)
4672 /* If -ffloat-store specified, don't put explicit
4673 float variables into registers. */
4674 || (flag_float_store
4675 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE))
4676 /* Always assign pseudo to structure return or item passed
4677 by invisible reference. */
4678 || passed_pointer || parm == function_result_decl)
4680 /* Store the parm in a pseudoregister during the function, but we
4681 may need to do it in a wider mode. */
4683 register rtx parmreg;
4684 unsigned int regno, regnoi = 0, regnor = 0;
4686 unsignedp = TREE_UNSIGNED (TREE_TYPE (parm));
4688 promoted_nominal_mode
4689 = promote_mode (TREE_TYPE (parm), nominal_mode, &unsignedp, 0);
4691 parmreg = gen_reg_rtx (promoted_nominal_mode);
4692 mark_user_reg (parmreg);
4694 /* If this was an item that we received a pointer to, set DECL_RTL
4695 appropriately. */
4696 if (passed_pointer)
4698 SET_DECL_RTL (parm,
4699 gen_rtx_MEM (TYPE_MODE (TREE_TYPE (passed_type)),
4700 parmreg));
4701 set_mem_attributes (DECL_RTL (parm), parm, 1);
4703 else
4705 SET_DECL_RTL (parm, parmreg);
4706 maybe_set_unchanging (DECL_RTL (parm), parm);
4709 /* Copy the value into the register. */
4710 if (nominal_mode != passed_mode
4711 || promoted_nominal_mode != promoted_mode)
4713 int save_tree_used;
4714 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
4715 mode, by the caller. We now have to convert it to
4716 NOMINAL_MODE, if different. However, PARMREG may be in
4717 a different mode than NOMINAL_MODE if it is being stored
4718 promoted.
4720 If ENTRY_PARM is a hard register, it might be in a register
4721 not valid for operating in its mode (e.g., an odd-numbered
4722 register for a DFmode). In that case, moves are the only
4723 thing valid, so we can't do a convert from there. This
4724 occurs when the calling sequence allow such misaligned
4725 usages.
4727 In addition, the conversion may involve a call, which could
4728 clobber parameters which haven't been copied to pseudo
4729 registers yet. Therefore, we must first copy the parm to
4730 a pseudo reg here, and save the conversion until after all
4731 parameters have been moved. */
4733 rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
4735 emit_move_insn (tempreg, validize_mem (entry_parm));
4737 push_to_sequence (conversion_insns);
4738 tempreg = convert_to_mode (nominal_mode, tempreg, unsignedp);
4740 if (GET_CODE (tempreg) == SUBREG
4741 && GET_MODE (tempreg) == nominal_mode
4742 && GET_CODE (SUBREG_REG (tempreg)) == REG
4743 && nominal_mode == passed_mode
4744 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (entry_parm)
4745 && GET_MODE_SIZE (GET_MODE (tempreg))
4746 < GET_MODE_SIZE (GET_MODE (entry_parm)))
4748 /* The argument is already sign/zero extended, so note it
4749 into the subreg. */
4750 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
4751 SUBREG_PROMOTED_UNSIGNED_P (tempreg) = unsignedp;
4754 /* TREE_USED gets set erroneously during expand_assignment. */
4755 save_tree_used = TREE_USED (parm);
4756 expand_assignment (parm,
4757 make_tree (nominal_type, tempreg), 0, 0);
4758 TREE_USED (parm) = save_tree_used;
4759 conversion_insns = get_insns ();
4760 did_conversion = 1;
4761 end_sequence ();
4763 else
4764 emit_move_insn (parmreg, validize_mem (entry_parm));
4766 /* If we were passed a pointer but the actual value
4767 can safely live in a register, put it in one. */
4768 if (passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
4769 && ! ((! optimize
4770 && ! DECL_REGISTER (parm)
4771 && ! DECL_INLINE (fndecl))
4772 || TREE_SIDE_EFFECTS (parm)
4773 /* If -ffloat-store specified, don't put explicit
4774 float variables into registers. */
4775 || (flag_float_store
4776 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE)))
4778 /* We can't use nominal_mode, because it will have been set to
4779 Pmode above. We must use the actual mode of the parm. */
4780 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
4781 mark_user_reg (parmreg);
4782 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
4784 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
4785 int unsigned_p = TREE_UNSIGNED (TREE_TYPE (parm));
4786 push_to_sequence (conversion_insns);
4787 emit_move_insn (tempreg, DECL_RTL (parm));
4788 SET_DECL_RTL (parm,
4789 convert_to_mode (GET_MODE (parmreg),
4790 tempreg,
4791 unsigned_p));
4792 emit_move_insn (parmreg, DECL_RTL (parm));
4793 conversion_insns = get_insns();
4794 did_conversion = 1;
4795 end_sequence ();
4797 else
4798 emit_move_insn (parmreg, DECL_RTL (parm));
4799 SET_DECL_RTL (parm, parmreg);
4800 /* STACK_PARM is the pointer, not the parm, and PARMREG is
4801 now the parm. */
4802 stack_parm = 0;
4804 #ifdef FUNCTION_ARG_CALLEE_COPIES
4805 /* If we are passed an arg by reference and it is our responsibility
4806 to make a copy, do it now.
4807 PASSED_TYPE and PASSED mode now refer to the pointer, not the
4808 original argument, so we must recreate them in the call to
4809 FUNCTION_ARG_CALLEE_COPIES. */
4810 /* ??? Later add code to handle the case that if the argument isn't
4811 modified, don't do the copy. */
4813 else if (passed_pointer
4814 && FUNCTION_ARG_CALLEE_COPIES (args_so_far,
4815 TYPE_MODE (DECL_ARG_TYPE (parm)),
4816 DECL_ARG_TYPE (parm),
4817 named_arg)
4818 && ! TREE_ADDRESSABLE (DECL_ARG_TYPE (parm)))
4820 rtx copy;
4821 tree type = DECL_ARG_TYPE (parm);
4823 /* This sequence may involve a library call perhaps clobbering
4824 registers that haven't been copied to pseudos yet. */
4826 push_to_sequence (conversion_insns);
4828 if (!COMPLETE_TYPE_P (type)
4829 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4830 /* This is a variable sized object. */
4831 copy = gen_rtx_MEM (BLKmode,
4832 allocate_dynamic_stack_space
4833 (expr_size (parm), NULL_RTX,
4834 TYPE_ALIGN (type)));
4835 else
4836 copy = assign_stack_temp (TYPE_MODE (type),
4837 int_size_in_bytes (type), 1);
4838 set_mem_attributes (copy, parm, 1);
4840 store_expr (parm, copy, 0);
4841 emit_move_insn (parmreg, XEXP (copy, 0));
4842 if (current_function_check_memory_usage)
4843 emit_library_call (chkr_set_right_libfunc,
4844 LCT_CONST_MAKE_BLOCK, VOIDmode, 3,
4845 XEXP (copy, 0), Pmode,
4846 GEN_INT (int_size_in_bytes (type)),
4847 TYPE_MODE (sizetype),
4848 GEN_INT (MEMORY_USE_RW),
4849 TYPE_MODE (integer_type_node));
4850 conversion_insns = get_insns ();
4851 did_conversion = 1;
4852 end_sequence ();
4854 #endif /* FUNCTION_ARG_CALLEE_COPIES */
4856 /* In any case, record the parm's desired stack location
4857 in case we later discover it must live in the stack.
4859 If it is a COMPLEX value, store the stack location for both
4860 halves. */
4862 if (GET_CODE (parmreg) == CONCAT)
4863 regno = MAX (REGNO (XEXP (parmreg, 0)), REGNO (XEXP (parmreg, 1)));
4864 else
4865 regno = REGNO (parmreg);
4867 if (regno >= max_parm_reg)
4869 rtx *new;
4870 int old_max_parm_reg = max_parm_reg;
4872 /* It's slow to expand this one register at a time,
4873 but it's also rare and we need max_parm_reg to be
4874 precisely correct. */
4875 max_parm_reg = regno + 1;
4876 new = (rtx *) xrealloc (parm_reg_stack_loc,
4877 max_parm_reg * sizeof (rtx));
4878 memset ((char *) (new + old_max_parm_reg), 0,
4879 (max_parm_reg - old_max_parm_reg) * sizeof (rtx));
4880 parm_reg_stack_loc = new;
4883 if (GET_CODE (parmreg) == CONCAT)
4885 enum machine_mode submode = GET_MODE (XEXP (parmreg, 0));
4887 regnor = REGNO (gen_realpart (submode, parmreg));
4888 regnoi = REGNO (gen_imagpart (submode, parmreg));
4890 if (stack_parm != 0)
4892 parm_reg_stack_loc[regnor]
4893 = gen_realpart (submode, stack_parm);
4894 parm_reg_stack_loc[regnoi]
4895 = gen_imagpart (submode, stack_parm);
4897 else
4899 parm_reg_stack_loc[regnor] = 0;
4900 parm_reg_stack_loc[regnoi] = 0;
4903 else
4904 parm_reg_stack_loc[REGNO (parmreg)] = stack_parm;
4906 /* Mark the register as eliminable if we did no conversion
4907 and it was copied from memory at a fixed offset,
4908 and the arg pointer was not copied to a pseudo-reg.
4909 If the arg pointer is a pseudo reg or the offset formed
4910 an invalid address, such memory-equivalences
4911 as we make here would screw up life analysis for it. */
4912 if (nominal_mode == passed_mode
4913 && ! did_conversion
4914 && stack_parm != 0
4915 && GET_CODE (stack_parm) == MEM
4916 && stack_offset.var == 0
4917 && reg_mentioned_p (virtual_incoming_args_rtx,
4918 XEXP (stack_parm, 0)))
4920 rtx linsn = get_last_insn ();
4921 rtx sinsn, set;
4923 /* Mark complex types separately. */
4924 if (GET_CODE (parmreg) == CONCAT)
4925 /* Scan backwards for the set of the real and
4926 imaginary parts. */
4927 for (sinsn = linsn; sinsn != 0;
4928 sinsn = prev_nonnote_insn (sinsn))
4930 set = single_set (sinsn);
4931 if (set != 0
4932 && SET_DEST (set) == regno_reg_rtx [regnoi])
4933 REG_NOTES (sinsn)
4934 = gen_rtx_EXPR_LIST (REG_EQUIV,
4935 parm_reg_stack_loc[regnoi],
4936 REG_NOTES (sinsn));
4937 else if (set != 0
4938 && SET_DEST (set) == regno_reg_rtx [regnor])
4939 REG_NOTES (sinsn)
4940 = gen_rtx_EXPR_LIST (REG_EQUIV,
4941 parm_reg_stack_loc[regnor],
4942 REG_NOTES (sinsn));
4944 else if ((set = single_set (linsn)) != 0
4945 && SET_DEST (set) == parmreg)
4946 REG_NOTES (linsn)
4947 = gen_rtx_EXPR_LIST (REG_EQUIV,
4948 stack_parm, REG_NOTES (linsn));
4951 /* For pointer data type, suggest pointer register. */
4952 if (POINTER_TYPE_P (TREE_TYPE (parm)))
4953 mark_reg_pointer (parmreg,
4954 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4956 /* If something wants our address, try to use ADDRESSOF. */
4957 if (TREE_ADDRESSABLE (parm))
4959 /* If we end up putting something into the stack,
4960 fixup_var_refs_insns will need to make a pass over
4961 all the instructions. It looks throughs the pending
4962 sequences -- but it can't see the ones in the
4963 CONVERSION_INSNS, if they're not on the sequence
4964 stack. So, we go back to that sequence, just so that
4965 the fixups will happen. */
4966 push_to_sequence (conversion_insns);
4967 put_var_into_stack (parm);
4968 conversion_insns = get_insns ();
4969 end_sequence ();
4972 else
4974 /* Value must be stored in the stack slot STACK_PARM
4975 during function execution. */
4977 if (promoted_mode != nominal_mode)
4979 /* Conversion is required. */
4980 rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
4982 emit_move_insn (tempreg, validize_mem (entry_parm));
4984 push_to_sequence (conversion_insns);
4985 entry_parm = convert_to_mode (nominal_mode, tempreg,
4986 TREE_UNSIGNED (TREE_TYPE (parm)));
4987 if (stack_parm)
4989 /* ??? This may need a big-endian conversion on sparc64. */
4990 stack_parm = change_address (stack_parm, nominal_mode,
4991 NULL_RTX);
4993 conversion_insns = get_insns ();
4994 did_conversion = 1;
4995 end_sequence ();
4998 if (entry_parm != stack_parm)
5000 if (stack_parm == 0)
5002 stack_parm
5003 = assign_stack_local (GET_MODE (entry_parm),
5004 GET_MODE_SIZE (GET_MODE (entry_parm)), 0);
5005 set_mem_attributes (stack_parm, parm, 1);
5008 if (promoted_mode != nominal_mode)
5010 push_to_sequence (conversion_insns);
5011 emit_move_insn (validize_mem (stack_parm),
5012 validize_mem (entry_parm));
5013 conversion_insns = get_insns ();
5014 end_sequence ();
5016 else
5017 emit_move_insn (validize_mem (stack_parm),
5018 validize_mem (entry_parm));
5020 if (current_function_check_memory_usage)
5022 push_to_sequence (conversion_insns);
5023 emit_library_call (chkr_set_right_libfunc, LCT_CONST_MAKE_BLOCK,
5024 VOIDmode, 3, XEXP (stack_parm, 0), Pmode,
5025 GEN_INT (GET_MODE_SIZE (GET_MODE
5026 (entry_parm))),
5027 TYPE_MODE (sizetype),
5028 GEN_INT (MEMORY_USE_RW),
5029 TYPE_MODE (integer_type_node));
5031 conversion_insns = get_insns ();
5032 end_sequence ();
5034 SET_DECL_RTL (parm, stack_parm);
5037 /* If this "parameter" was the place where we are receiving the
5038 function's incoming structure pointer, set up the result. */
5039 if (parm == function_result_decl)
5041 tree result = DECL_RESULT (fndecl);
5043 SET_DECL_RTL (result,
5044 gen_rtx_MEM (DECL_MODE (result), DECL_RTL (parm)));
5046 set_mem_attributes (DECL_RTL (result), result, 1);
5050 /* Output all parameter conversion instructions (possibly including calls)
5051 now that all parameters have been copied out of hard registers. */
5052 emit_insns (conversion_insns);
5054 last_parm_insn = get_last_insn ();
5056 current_function_args_size = stack_args_size.constant;
5058 /* Adjust function incoming argument size for alignment and
5059 minimum length. */
5061 #ifdef REG_PARM_STACK_SPACE
5062 #ifndef MAYBE_REG_PARM_STACK_SPACE
5063 current_function_args_size = MAX (current_function_args_size,
5064 REG_PARM_STACK_SPACE (fndecl));
5065 #endif
5066 #endif
5068 #ifdef STACK_BOUNDARY
5069 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
5071 current_function_args_size
5072 = ((current_function_args_size + STACK_BYTES - 1)
5073 / STACK_BYTES) * STACK_BYTES;
5074 #endif
5076 #ifdef ARGS_GROW_DOWNWARD
5077 current_function_arg_offset_rtx
5078 = (stack_args_size.var == 0 ? GEN_INT (-stack_args_size.constant)
5079 : expand_expr (size_diffop (stack_args_size.var,
5080 size_int (-stack_args_size.constant)),
5081 NULL_RTX, VOIDmode, EXPAND_MEMORY_USE_BAD));
5082 #else
5083 current_function_arg_offset_rtx = ARGS_SIZE_RTX (stack_args_size);
5084 #endif
5086 /* See how many bytes, if any, of its args a function should try to pop
5087 on return. */
5089 current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
5090 current_function_args_size);
5092 /* For stdarg.h function, save info about
5093 regs and stack space used by the named args. */
5095 if (!hide_last_arg)
5096 current_function_args_info = args_so_far;
5098 /* Set the rtx used for the function return value. Put this in its
5099 own variable so any optimizers that need this information don't have
5100 to include tree.h. Do this here so it gets done when an inlined
5101 function gets output. */
5103 current_function_return_rtx
5104 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
5105 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
5108 /* Indicate whether REGNO is an incoming argument to the current function
5109 that was promoted to a wider mode. If so, return the RTX for the
5110 register (to get its mode). PMODE and PUNSIGNEDP are set to the mode
5111 that REGNO is promoted from and whether the promotion was signed or
5112 unsigned. */
5114 #ifdef PROMOTE_FUNCTION_ARGS
5117 promoted_input_arg (regno, pmode, punsignedp)
5118 unsigned int regno;
5119 enum machine_mode *pmode;
5120 int *punsignedp;
5122 tree arg;
5124 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
5125 arg = TREE_CHAIN (arg))
5126 if (GET_CODE (DECL_INCOMING_RTL (arg)) == REG
5127 && REGNO (DECL_INCOMING_RTL (arg)) == regno
5128 && TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg)))
5130 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
5131 int unsignedp = TREE_UNSIGNED (TREE_TYPE (arg));
5133 mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1);
5134 if (mode == GET_MODE (DECL_INCOMING_RTL (arg))
5135 && mode != DECL_MODE (arg))
5137 *pmode = DECL_MODE (arg);
5138 *punsignedp = unsignedp;
5139 return DECL_INCOMING_RTL (arg);
5143 return 0;
5146 #endif
5148 /* Compute the size and offset from the start of the stacked arguments for a
5149 parm passed in mode PASSED_MODE and with type TYPE.
5151 INITIAL_OFFSET_PTR points to the current offset into the stacked
5152 arguments.
5154 The starting offset and size for this parm are returned in *OFFSET_PTR
5155 and *ARG_SIZE_PTR, respectively.
5157 IN_REGS is non-zero if the argument will be passed in registers. It will
5158 never be set if REG_PARM_STACK_SPACE is not defined.
5160 FNDECL is the function in which the argument was defined.
5162 There are two types of rounding that are done. The first, controlled by
5163 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
5164 list to be aligned to the specific boundary (in bits). This rounding
5165 affects the initial and starting offsets, but not the argument size.
5167 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
5168 optionally rounds the size of the parm to PARM_BOUNDARY. The
5169 initial offset is not affected by this rounding, while the size always
5170 is and the starting offset may be. */
5172 /* offset_ptr will be negative for ARGS_GROW_DOWNWARD case;
5173 initial_offset_ptr is positive because locate_and_pad_parm's
5174 callers pass in the total size of args so far as
5175 initial_offset_ptr. arg_size_ptr is always positive.*/
5177 void
5178 locate_and_pad_parm (passed_mode, type, in_regs, fndecl,
5179 initial_offset_ptr, offset_ptr, arg_size_ptr,
5180 alignment_pad)
5181 enum machine_mode passed_mode;
5182 tree type;
5183 int in_regs ATTRIBUTE_UNUSED;
5184 tree fndecl ATTRIBUTE_UNUSED;
5185 struct args_size *initial_offset_ptr;
5186 struct args_size *offset_ptr;
5187 struct args_size *arg_size_ptr;
5188 struct args_size *alignment_pad;
5191 tree sizetree
5192 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
5193 enum direction where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
5194 int boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
5196 #ifdef REG_PARM_STACK_SPACE
5197 /* If we have found a stack parm before we reach the end of the
5198 area reserved for registers, skip that area. */
5199 if (! in_regs)
5201 int reg_parm_stack_space = 0;
5203 #ifdef MAYBE_REG_PARM_STACK_SPACE
5204 reg_parm_stack_space = MAYBE_REG_PARM_STACK_SPACE;
5205 #else
5206 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
5207 #endif
5208 if (reg_parm_stack_space > 0)
5210 if (initial_offset_ptr->var)
5212 initial_offset_ptr->var
5213 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
5214 ssize_int (reg_parm_stack_space));
5215 initial_offset_ptr->constant = 0;
5217 else if (initial_offset_ptr->constant < reg_parm_stack_space)
5218 initial_offset_ptr->constant = reg_parm_stack_space;
5221 #endif /* REG_PARM_STACK_SPACE */
5223 arg_size_ptr->var = 0;
5224 arg_size_ptr->constant = 0;
5225 alignment_pad->var = 0;
5226 alignment_pad->constant = 0;
5228 #ifdef ARGS_GROW_DOWNWARD
5229 if (initial_offset_ptr->var)
5231 offset_ptr->constant = 0;
5232 offset_ptr->var = size_binop (MINUS_EXPR, ssize_int (0),
5233 initial_offset_ptr->var);
5235 else
5237 offset_ptr->constant = -initial_offset_ptr->constant;
5238 offset_ptr->var = 0;
5240 if (where_pad != none
5241 && (!host_integerp (sizetree, 1)
5242 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
5243 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5244 SUB_PARM_SIZE (*offset_ptr, sizetree);
5245 if (where_pad != downward)
5246 pad_to_arg_alignment (offset_ptr, boundary, alignment_pad);
5247 if (initial_offset_ptr->var)
5248 arg_size_ptr->var = size_binop (MINUS_EXPR,
5249 size_binop (MINUS_EXPR,
5250 ssize_int (0),
5251 initial_offset_ptr->var),
5252 offset_ptr->var);
5254 else
5255 arg_size_ptr->constant = (-initial_offset_ptr->constant
5256 - offset_ptr->constant);
5258 #else /* !ARGS_GROW_DOWNWARD */
5259 if (!in_regs
5260 #ifdef REG_PARM_STACK_SPACE
5261 || REG_PARM_STACK_SPACE (fndecl) > 0
5262 #endif
5264 pad_to_arg_alignment (initial_offset_ptr, boundary, alignment_pad);
5265 *offset_ptr = *initial_offset_ptr;
5267 #ifdef PUSH_ROUNDING
5268 if (passed_mode != BLKmode)
5269 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
5270 #endif
5272 /* Pad_below needs the pre-rounded size to know how much to pad below
5273 so this must be done before rounding up. */
5274 if (where_pad == downward
5275 /* However, BLKmode args passed in regs have their padding done elsewhere.
5276 The stack slot must be able to hold the entire register. */
5277 && !(in_regs && passed_mode == BLKmode))
5278 pad_below (offset_ptr, passed_mode, sizetree);
5280 if (where_pad != none
5281 && (!host_integerp (sizetree, 1)
5282 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
5283 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5285 ADD_PARM_SIZE (*arg_size_ptr, sizetree);
5286 #endif /* ARGS_GROW_DOWNWARD */
5289 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
5290 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
5292 static void
5293 pad_to_arg_alignment (offset_ptr, boundary, alignment_pad)
5294 struct args_size *offset_ptr;
5295 int boundary;
5296 struct args_size *alignment_pad;
5298 tree save_var = NULL_TREE;
5299 HOST_WIDE_INT save_constant = 0;
5301 int boundary_in_bytes = boundary / BITS_PER_UNIT;
5303 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5305 save_var = offset_ptr->var;
5306 save_constant = offset_ptr->constant;
5309 alignment_pad->var = NULL_TREE;
5310 alignment_pad->constant = 0;
5312 if (boundary > BITS_PER_UNIT)
5314 if (offset_ptr->var)
5316 offset_ptr->var =
5317 #ifdef ARGS_GROW_DOWNWARD
5318 round_down
5319 #else
5320 round_up
5321 #endif
5322 (ARGS_SIZE_TREE (*offset_ptr),
5323 boundary / BITS_PER_UNIT);
5324 offset_ptr->constant = 0; /*?*/
5325 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5326 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
5327 save_var);
5329 else
5331 offset_ptr->constant =
5332 #ifdef ARGS_GROW_DOWNWARD
5333 FLOOR_ROUND (offset_ptr->constant, boundary_in_bytes);
5334 #else
5335 CEIL_ROUND (offset_ptr->constant, boundary_in_bytes);
5336 #endif
5337 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5338 alignment_pad->constant = offset_ptr->constant - save_constant;
5343 #ifndef ARGS_GROW_DOWNWARD
5344 static void
5345 pad_below (offset_ptr, passed_mode, sizetree)
5346 struct args_size *offset_ptr;
5347 enum machine_mode passed_mode;
5348 tree sizetree;
5350 if (passed_mode != BLKmode)
5352 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
5353 offset_ptr->constant
5354 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
5355 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
5356 - GET_MODE_SIZE (passed_mode));
5358 else
5360 if (TREE_CODE (sizetree) != INTEGER_CST
5361 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
5363 /* Round the size up to multiple of PARM_BOUNDARY bits. */
5364 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5365 /* Add it in. */
5366 ADD_PARM_SIZE (*offset_ptr, s2);
5367 SUB_PARM_SIZE (*offset_ptr, sizetree);
5371 #endif
5373 /* Walk the tree of blocks describing the binding levels within a function
5374 and warn about uninitialized variables.
5375 This is done after calling flow_analysis and before global_alloc
5376 clobbers the pseudo-regs to hard regs. */
5378 void
5379 uninitialized_vars_warning (block)
5380 tree block;
5382 register tree decl, sub;
5383 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
5385 if (warn_uninitialized
5386 && TREE_CODE (decl) == VAR_DECL
5387 /* These warnings are unreliable for and aggregates
5388 because assigning the fields one by one can fail to convince
5389 flow.c that the entire aggregate was initialized.
5390 Unions are troublesome because members may be shorter. */
5391 && ! AGGREGATE_TYPE_P (TREE_TYPE (decl))
5392 && DECL_RTL (decl) != 0
5393 && GET_CODE (DECL_RTL (decl)) == REG
5394 /* Global optimizations can make it difficult to determine if a
5395 particular variable has been initialized. However, a VAR_DECL
5396 with a nonzero DECL_INITIAL had an initializer, so do not
5397 claim it is potentially uninitialized.
5399 We do not care about the actual value in DECL_INITIAL, so we do
5400 not worry that it may be a dangling pointer. */
5401 && DECL_INITIAL (decl) == NULL_TREE
5402 && regno_uninitialized (REGNO (DECL_RTL (decl))))
5403 warning_with_decl (decl,
5404 "`%s' might be used uninitialized in this function");
5405 if (extra_warnings
5406 && TREE_CODE (decl) == VAR_DECL
5407 && DECL_RTL (decl) != 0
5408 && GET_CODE (DECL_RTL (decl)) == REG
5409 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
5410 warning_with_decl (decl,
5411 "variable `%s' might be clobbered by `longjmp' or `vfork'");
5413 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
5414 uninitialized_vars_warning (sub);
5417 /* Do the appropriate part of uninitialized_vars_warning
5418 but for arguments instead of local variables. */
5420 void
5421 setjmp_args_warning ()
5423 register tree decl;
5424 for (decl = DECL_ARGUMENTS (current_function_decl);
5425 decl; decl = TREE_CHAIN (decl))
5426 if (DECL_RTL (decl) != 0
5427 && GET_CODE (DECL_RTL (decl)) == REG
5428 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
5429 warning_with_decl (decl,
5430 "argument `%s' might be clobbered by `longjmp' or `vfork'");
5433 /* If this function call setjmp, put all vars into the stack
5434 unless they were declared `register'. */
5436 void
5437 setjmp_protect (block)
5438 tree block;
5440 register tree decl, sub;
5441 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
5442 if ((TREE_CODE (decl) == VAR_DECL
5443 || TREE_CODE (decl) == PARM_DECL)
5444 && DECL_RTL (decl) != 0
5445 && (GET_CODE (DECL_RTL (decl)) == REG
5446 || (GET_CODE (DECL_RTL (decl)) == MEM
5447 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
5448 /* If this variable came from an inline function, it must be
5449 that its life doesn't overlap the setjmp. If there was a
5450 setjmp in the function, it would already be in memory. We
5451 must exclude such variable because their DECL_RTL might be
5452 set to strange things such as virtual_stack_vars_rtx. */
5453 && ! DECL_FROM_INLINE (decl)
5454 && (
5455 #ifdef NON_SAVING_SETJMP
5456 /* If longjmp doesn't restore the registers,
5457 don't put anything in them. */
5458 NON_SAVING_SETJMP
5460 #endif
5461 ! DECL_REGISTER (decl)))
5462 put_var_into_stack (decl);
5463 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
5464 setjmp_protect (sub);
5467 /* Like the previous function, but for args instead of local variables. */
5469 void
5470 setjmp_protect_args ()
5472 register tree decl;
5473 for (decl = DECL_ARGUMENTS (current_function_decl);
5474 decl; decl = TREE_CHAIN (decl))
5475 if ((TREE_CODE (decl) == VAR_DECL
5476 || TREE_CODE (decl) == PARM_DECL)
5477 && DECL_RTL (decl) != 0
5478 && (GET_CODE (DECL_RTL (decl)) == REG
5479 || (GET_CODE (DECL_RTL (decl)) == MEM
5480 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
5481 && (
5482 /* If longjmp doesn't restore the registers,
5483 don't put anything in them. */
5484 #ifdef NON_SAVING_SETJMP
5485 NON_SAVING_SETJMP
5487 #endif
5488 ! DECL_REGISTER (decl)))
5489 put_var_into_stack (decl);
5492 /* Return the context-pointer register corresponding to DECL,
5493 or 0 if it does not need one. */
5496 lookup_static_chain (decl)
5497 tree decl;
5499 tree context = decl_function_context (decl);
5500 tree link;
5502 if (context == 0
5503 || (TREE_CODE (decl) == FUNCTION_DECL && DECL_NO_STATIC_CHAIN (decl)))
5504 return 0;
5506 /* We treat inline_function_decl as an alias for the current function
5507 because that is the inline function whose vars, types, etc.
5508 are being merged into the current function.
5509 See expand_inline_function. */
5510 if (context == current_function_decl || context == inline_function_decl)
5511 return virtual_stack_vars_rtx;
5513 for (link = context_display; link; link = TREE_CHAIN (link))
5514 if (TREE_PURPOSE (link) == context)
5515 return RTL_EXPR_RTL (TREE_VALUE (link));
5517 abort ();
5520 /* Convert a stack slot address ADDR for variable VAR
5521 (from a containing function)
5522 into an address valid in this function (using a static chain). */
5525 fix_lexical_addr (addr, var)
5526 rtx addr;
5527 tree var;
5529 rtx basereg;
5530 HOST_WIDE_INT displacement;
5531 tree context = decl_function_context (var);
5532 struct function *fp;
5533 rtx base = 0;
5535 /* If this is the present function, we need not do anything. */
5536 if (context == current_function_decl || context == inline_function_decl)
5537 return addr;
5539 for (fp = outer_function_chain; fp; fp = fp->next)
5540 if (fp->decl == context)
5541 break;
5543 if (fp == 0)
5544 abort ();
5546 if (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == MEM)
5547 addr = XEXP (XEXP (addr, 0), 0);
5549 /* Decode given address as base reg plus displacement. */
5550 if (GET_CODE (addr) == REG)
5551 basereg = addr, displacement = 0;
5552 else if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
5553 basereg = XEXP (addr, 0), displacement = INTVAL (XEXP (addr, 1));
5554 else
5555 abort ();
5557 /* We accept vars reached via the containing function's
5558 incoming arg pointer and via its stack variables pointer. */
5559 if (basereg == fp->internal_arg_pointer)
5561 /* If reached via arg pointer, get the arg pointer value
5562 out of that function's stack frame.
5564 There are two cases: If a separate ap is needed, allocate a
5565 slot in the outer function for it and dereference it that way.
5566 This is correct even if the real ap is actually a pseudo.
5567 Otherwise, just adjust the offset from the frame pointer to
5568 compensate. */
5570 #ifdef NEED_SEPARATE_AP
5571 rtx addr;
5573 if (fp->x_arg_pointer_save_area == 0)
5574 fp->x_arg_pointer_save_area
5575 = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, fp);
5577 addr = fix_lexical_addr (XEXP (fp->x_arg_pointer_save_area, 0), var);
5578 addr = memory_address (Pmode, addr);
5580 base = gen_rtx_MEM (Pmode, addr);
5581 MEM_ALIAS_SET (base) = get_frame_alias_set ();
5582 base = copy_to_reg (base);
5583 #else
5584 displacement += (FIRST_PARM_OFFSET (context) - STARTING_FRAME_OFFSET);
5585 base = lookup_static_chain (var);
5586 #endif
5589 else if (basereg == virtual_stack_vars_rtx)
5591 /* This is the same code as lookup_static_chain, duplicated here to
5592 avoid an extra call to decl_function_context. */
5593 tree link;
5595 for (link = context_display; link; link = TREE_CHAIN (link))
5596 if (TREE_PURPOSE (link) == context)
5598 base = RTL_EXPR_RTL (TREE_VALUE (link));
5599 break;
5603 if (base == 0)
5604 abort ();
5606 /* Use same offset, relative to appropriate static chain or argument
5607 pointer. */
5608 return plus_constant (base, displacement);
5611 /* Return the address of the trampoline for entering nested fn FUNCTION.
5612 If necessary, allocate a trampoline (in the stack frame)
5613 and emit rtl to initialize its contents (at entry to this function). */
5616 trampoline_address (function)
5617 tree function;
5619 tree link;
5620 tree rtlexp;
5621 rtx tramp;
5622 struct function *fp;
5623 tree fn_context;
5625 /* Find an existing trampoline and return it. */
5626 for (link = trampoline_list; link; link = TREE_CHAIN (link))
5627 if (TREE_PURPOSE (link) == function)
5628 return
5629 adjust_trampoline_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0));
5631 for (fp = outer_function_chain; fp; fp = fp->next)
5632 for (link = fp->x_trampoline_list; link; link = TREE_CHAIN (link))
5633 if (TREE_PURPOSE (link) == function)
5635 tramp = fix_lexical_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0),
5636 function);
5637 return adjust_trampoline_addr (tramp);
5640 /* None exists; we must make one. */
5642 /* Find the `struct function' for the function containing FUNCTION. */
5643 fp = 0;
5644 fn_context = decl_function_context (function);
5645 if (fn_context != current_function_decl
5646 && fn_context != inline_function_decl)
5647 for (fp = outer_function_chain; fp; fp = fp->next)
5648 if (fp->decl == fn_context)
5649 break;
5651 /* Allocate run-time space for this trampoline
5652 (usually in the defining function's stack frame). */
5653 #ifdef ALLOCATE_TRAMPOLINE
5654 tramp = ALLOCATE_TRAMPOLINE (fp);
5655 #else
5656 /* If rounding needed, allocate extra space
5657 to ensure we have TRAMPOLINE_SIZE bytes left after rounding up. */
5658 #ifdef TRAMPOLINE_ALIGNMENT
5659 #define TRAMPOLINE_REAL_SIZE \
5660 (TRAMPOLINE_SIZE + (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT) - 1)
5661 #else
5662 #define TRAMPOLINE_REAL_SIZE (TRAMPOLINE_SIZE)
5663 #endif
5664 tramp = assign_stack_local_1 (BLKmode, TRAMPOLINE_REAL_SIZE, 0,
5665 fp ? fp : cfun);
5666 #endif
5668 /* Record the trampoline for reuse and note it for later initialization
5669 by expand_function_end. */
5670 if (fp != 0)
5672 rtlexp = make_node (RTL_EXPR);
5673 RTL_EXPR_RTL (rtlexp) = tramp;
5674 fp->x_trampoline_list = tree_cons (function, rtlexp,
5675 fp->x_trampoline_list);
5677 else
5679 /* Make the RTL_EXPR node temporary, not momentary, so that the
5680 trampoline_list doesn't become garbage. */
5681 rtlexp = make_node (RTL_EXPR);
5683 RTL_EXPR_RTL (rtlexp) = tramp;
5684 trampoline_list = tree_cons (function, rtlexp, trampoline_list);
5687 tramp = fix_lexical_addr (XEXP (tramp, 0), function);
5688 return adjust_trampoline_addr (tramp);
5691 /* Given a trampoline address,
5692 round it to multiple of TRAMPOLINE_ALIGNMENT. */
5694 static rtx
5695 round_trampoline_addr (tramp)
5696 rtx tramp;
5698 #ifdef TRAMPOLINE_ALIGNMENT
5699 /* Round address up to desired boundary. */
5700 rtx temp = gen_reg_rtx (Pmode);
5701 temp = expand_binop (Pmode, add_optab, tramp,
5702 GEN_INT (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT - 1),
5703 temp, 0, OPTAB_LIB_WIDEN);
5704 tramp = expand_binop (Pmode, and_optab, temp,
5705 GEN_INT (-TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT),
5706 temp, 0, OPTAB_LIB_WIDEN);
5707 #endif
5708 return tramp;
5711 /* Given a trampoline address, round it then apply any
5712 platform-specific adjustments so that the result can be used for a
5713 function call . */
5715 static rtx
5716 adjust_trampoline_addr (tramp)
5717 rtx tramp;
5719 tramp = round_trampoline_addr (tramp);
5720 #ifdef TRAMPOLINE_ADJUST_ADDRESS
5721 TRAMPOLINE_ADJUST_ADDRESS (tramp);
5722 #endif
5723 return tramp;
5726 /* Put all this function's BLOCK nodes including those that are chained
5727 onto the first block into a vector, and return it.
5728 Also store in each NOTE for the beginning or end of a block
5729 the index of that block in the vector.
5730 The arguments are BLOCK, the chain of top-level blocks of the function,
5731 and INSNS, the insn chain of the function. */
5733 void
5734 identify_blocks ()
5736 int n_blocks;
5737 tree *block_vector, *last_block_vector;
5738 tree *block_stack;
5739 tree block = DECL_INITIAL (current_function_decl);
5741 if (block == 0)
5742 return;
5744 /* Fill the BLOCK_VECTOR with all of the BLOCKs in this function, in
5745 depth-first order. */
5746 block_vector = get_block_vector (block, &n_blocks);
5747 block_stack = (tree *) xmalloc (n_blocks * sizeof (tree));
5749 last_block_vector = identify_blocks_1 (get_insns (),
5750 block_vector + 1,
5751 block_vector + n_blocks,
5752 block_stack);
5754 /* If we didn't use all of the subblocks, we've misplaced block notes. */
5755 /* ??? This appears to happen all the time. Latent bugs elsewhere? */
5756 if (0 && last_block_vector != block_vector + n_blocks)
5757 abort ();
5759 free (block_vector);
5760 free (block_stack);
5763 /* Subroutine of identify_blocks. Do the block substitution on the
5764 insn chain beginning with INSNS. Recurse for CALL_PLACEHOLDER chains.
5766 BLOCK_STACK is pushed and popped for each BLOCK_BEGIN/BLOCK_END pair.
5767 BLOCK_VECTOR is incremented for each block seen. */
5769 static tree *
5770 identify_blocks_1 (insns, block_vector, end_block_vector, orig_block_stack)
5771 rtx insns;
5772 tree *block_vector;
5773 tree *end_block_vector;
5774 tree *orig_block_stack;
5776 rtx insn;
5777 tree *block_stack = orig_block_stack;
5779 for (insn = insns; insn; insn = NEXT_INSN (insn))
5781 if (GET_CODE (insn) == NOTE)
5783 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
5785 tree b;
5787 /* If there are more block notes than BLOCKs, something
5788 is badly wrong. */
5789 if (block_vector == end_block_vector)
5790 abort ();
5792 b = *block_vector++;
5793 NOTE_BLOCK (insn) = b;
5794 *block_stack++ = b;
5796 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
5798 /* If there are more NOTE_INSN_BLOCK_ENDs than
5799 NOTE_INSN_BLOCK_BEGs, something is badly wrong. */
5800 if (block_stack == orig_block_stack)
5801 abort ();
5803 NOTE_BLOCK (insn) = *--block_stack;
5806 else if (GET_CODE (insn) == CALL_INSN
5807 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
5809 rtx cp = PATTERN (insn);
5811 block_vector = identify_blocks_1 (XEXP (cp, 0), block_vector,
5812 end_block_vector, block_stack);
5813 if (XEXP (cp, 1))
5814 block_vector = identify_blocks_1 (XEXP (cp, 1), block_vector,
5815 end_block_vector, block_stack);
5816 if (XEXP (cp, 2))
5817 block_vector = identify_blocks_1 (XEXP (cp, 2), block_vector,
5818 end_block_vector, block_stack);
5822 /* If there are more NOTE_INSN_BLOCK_BEGINs than NOTE_INSN_BLOCK_ENDs,
5823 something is badly wrong. */
5824 if (block_stack != orig_block_stack)
5825 abort ();
5827 return block_vector;
5830 /* Identify BLOCKs referenced by more than one
5831 NOTE_INSN_BLOCK_{BEG,END}, and create duplicate blocks. */
5833 void
5834 reorder_blocks ()
5836 tree block = DECL_INITIAL (current_function_decl);
5837 varray_type block_stack;
5839 if (block == NULL_TREE)
5840 return;
5842 VARRAY_TREE_INIT (block_stack, 10, "block_stack");
5844 /* Prune the old trees away, so that they don't get in the way. */
5845 BLOCK_SUBBLOCKS (block) = NULL_TREE;
5846 BLOCK_CHAIN (block) = NULL_TREE;
5848 reorder_blocks_0 (get_insns ());
5849 reorder_blocks_1 (get_insns (), block, &block_stack);
5851 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
5853 VARRAY_FREE (block_stack);
5856 /* Helper function for reorder_blocks. Process the insn chain beginning
5857 at INSNS. Recurse for CALL_PLACEHOLDER insns. */
5859 static void
5860 reorder_blocks_0 (insns)
5861 rtx insns;
5863 rtx insn;
5865 for (insn = insns; insn; insn = NEXT_INSN (insn))
5867 if (GET_CODE (insn) == NOTE)
5869 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
5871 tree block = NOTE_BLOCK (insn);
5872 TREE_ASM_WRITTEN (block) = 0;
5875 else if (GET_CODE (insn) == CALL_INSN
5876 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
5878 rtx cp = PATTERN (insn);
5879 reorder_blocks_0 (XEXP (cp, 0));
5880 if (XEXP (cp, 1))
5881 reorder_blocks_0 (XEXP (cp, 1));
5882 if (XEXP (cp, 2))
5883 reorder_blocks_0 (XEXP (cp, 2));
5888 static void
5889 reorder_blocks_1 (insns, current_block, p_block_stack)
5890 rtx insns;
5891 tree current_block;
5892 varray_type *p_block_stack;
5894 rtx insn;
5896 for (insn = insns; insn; insn = NEXT_INSN (insn))
5898 if (GET_CODE (insn) == NOTE)
5900 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
5902 tree block = NOTE_BLOCK (insn);
5903 /* If we have seen this block before, copy it. */
5904 if (TREE_ASM_WRITTEN (block))
5906 block = copy_node (block);
5907 NOTE_BLOCK (insn) = block;
5909 BLOCK_SUBBLOCKS (block) = 0;
5910 TREE_ASM_WRITTEN (block) = 1;
5911 BLOCK_SUPERCONTEXT (block) = current_block;
5912 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
5913 BLOCK_SUBBLOCKS (current_block) = block;
5914 current_block = block;
5915 VARRAY_PUSH_TREE (*p_block_stack, block);
5917 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
5919 NOTE_BLOCK (insn) = VARRAY_TOP_TREE (*p_block_stack);
5920 VARRAY_POP (*p_block_stack);
5921 BLOCK_SUBBLOCKS (current_block)
5922 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
5923 current_block = BLOCK_SUPERCONTEXT (current_block);
5926 else if (GET_CODE (insn) == CALL_INSN
5927 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
5929 rtx cp = PATTERN (insn);
5930 reorder_blocks_1 (XEXP (cp, 0), current_block, p_block_stack);
5931 if (XEXP (cp, 1))
5932 reorder_blocks_1 (XEXP (cp, 1), current_block, p_block_stack);
5933 if (XEXP (cp, 2))
5934 reorder_blocks_1 (XEXP (cp, 2), current_block, p_block_stack);
5939 /* Reverse the order of elements in the chain T of blocks,
5940 and return the new head of the chain (old last element). */
5942 static tree
5943 blocks_nreverse (t)
5944 tree t;
5946 register tree prev = 0, decl, next;
5947 for (decl = t; decl; decl = next)
5949 next = BLOCK_CHAIN (decl);
5950 BLOCK_CHAIN (decl) = prev;
5951 prev = decl;
5953 return prev;
5956 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
5957 non-NULL, list them all into VECTOR, in a depth-first preorder
5958 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
5959 blocks. */
5961 static int
5962 all_blocks (block, vector)
5963 tree block;
5964 tree *vector;
5966 int n_blocks = 0;
5968 while (block)
5970 TREE_ASM_WRITTEN (block) = 0;
5972 /* Record this block. */
5973 if (vector)
5974 vector[n_blocks] = block;
5976 ++n_blocks;
5978 /* Record the subblocks, and their subblocks... */
5979 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
5980 vector ? vector + n_blocks : 0);
5981 block = BLOCK_CHAIN (block);
5984 return n_blocks;
5987 /* Return a vector containing all the blocks rooted at BLOCK. The
5988 number of elements in the vector is stored in N_BLOCKS_P. The
5989 vector is dynamically allocated; it is the caller's responsibility
5990 to call `free' on the pointer returned. */
5992 static tree *
5993 get_block_vector (block, n_blocks_p)
5994 tree block;
5995 int *n_blocks_p;
5997 tree *block_vector;
5999 *n_blocks_p = all_blocks (block, NULL);
6000 block_vector = (tree *) xmalloc (*n_blocks_p * sizeof (tree));
6001 all_blocks (block, block_vector);
6003 return block_vector;
6006 static int next_block_index = 2;
6008 /* Set BLOCK_NUMBER for all the blocks in FN. */
6010 void
6011 number_blocks (fn)
6012 tree fn;
6014 int i;
6015 int n_blocks;
6016 tree *block_vector;
6018 /* For SDB and XCOFF debugging output, we start numbering the blocks
6019 from 1 within each function, rather than keeping a running
6020 count. */
6021 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
6022 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
6023 next_block_index = 1;
6024 #endif
6026 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
6028 /* The top-level BLOCK isn't numbered at all. */
6029 for (i = 1; i < n_blocks; ++i)
6030 /* We number the blocks from two. */
6031 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
6033 free (block_vector);
6035 return;
6038 /* Allocate a function structure and reset its contents to the defaults. */
6039 static void
6040 prepare_function_start ()
6042 cfun = (struct function *) xcalloc (1, sizeof (struct function));
6044 init_stmt_for_function ();
6045 init_eh_for_function ();
6047 cse_not_expected = ! optimize;
6049 /* Caller save not needed yet. */
6050 caller_save_needed = 0;
6052 /* No stack slots have been made yet. */
6053 stack_slot_list = 0;
6055 current_function_has_nonlocal_label = 0;
6056 current_function_has_nonlocal_goto = 0;
6058 /* There is no stack slot for handling nonlocal gotos. */
6059 nonlocal_goto_handler_slots = 0;
6060 nonlocal_goto_stack_level = 0;
6062 /* No labels have been declared for nonlocal use. */
6063 nonlocal_labels = 0;
6064 nonlocal_goto_handler_labels = 0;
6066 /* No function calls so far in this function. */
6067 function_call_count = 0;
6069 /* No parm regs have been allocated.
6070 (This is important for output_inline_function.) */
6071 max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
6073 /* Initialize the RTL mechanism. */
6074 init_emit ();
6076 /* Initialize the queue of pending postincrement and postdecrements,
6077 and some other info in expr.c. */
6078 init_expr ();
6080 /* We haven't done register allocation yet. */
6081 reg_renumber = 0;
6083 init_varasm_status (cfun);
6085 /* Clear out data used for inlining. */
6086 cfun->inlinable = 0;
6087 cfun->original_decl_initial = 0;
6088 cfun->original_arg_vector = 0;
6090 #ifdef STACK_BOUNDARY
6091 cfun->stack_alignment_needed = STACK_BOUNDARY;
6092 cfun->preferred_stack_boundary = STACK_BOUNDARY;
6093 #else
6094 cfun->stack_alignment_needed = 0;
6095 cfun->preferred_stack_boundary = 0;
6096 #endif
6098 /* Set if a call to setjmp is seen. */
6099 current_function_calls_setjmp = 0;
6101 /* Set if a call to longjmp is seen. */
6102 current_function_calls_longjmp = 0;
6104 current_function_calls_alloca = 0;
6105 current_function_contains_functions = 0;
6106 current_function_is_leaf = 0;
6107 current_function_nothrow = 0;
6108 current_function_sp_is_unchanging = 0;
6109 current_function_uses_only_leaf_regs = 0;
6110 current_function_has_computed_jump = 0;
6111 current_function_is_thunk = 0;
6113 current_function_returns_pcc_struct = 0;
6114 current_function_returns_struct = 0;
6115 current_function_epilogue_delay_list = 0;
6116 current_function_uses_const_pool = 0;
6117 current_function_uses_pic_offset_table = 0;
6118 current_function_cannot_inline = 0;
6120 /* We have not yet needed to make a label to jump to for tail-recursion. */
6121 tail_recursion_label = 0;
6123 /* We haven't had a need to make a save area for ap yet. */
6124 arg_pointer_save_area = 0;
6126 /* No stack slots allocated yet. */
6127 frame_offset = 0;
6129 /* No SAVE_EXPRs in this function yet. */
6130 save_expr_regs = 0;
6132 /* No RTL_EXPRs in this function yet. */
6133 rtl_expr_chain = 0;
6135 /* Set up to allocate temporaries. */
6136 init_temp_slots ();
6138 /* Indicate that we need to distinguish between the return value of the
6139 present function and the return value of a function being called. */
6140 rtx_equal_function_value_matters = 1;
6142 /* Indicate that we have not instantiated virtual registers yet. */
6143 virtuals_instantiated = 0;
6145 /* Indicate that we want CONCATs now. */
6146 generating_concat_p = 1;
6148 /* Indicate we have no need of a frame pointer yet. */
6149 frame_pointer_needed = 0;
6151 /* By default assume not varargs or stdarg. */
6152 current_function_varargs = 0;
6153 current_function_stdarg = 0;
6155 /* We haven't made any trampolines for this function yet. */
6156 trampoline_list = 0;
6158 init_pending_stack_adjust ();
6159 inhibit_defer_pop = 0;
6161 current_function_outgoing_args_size = 0;
6163 if (init_lang_status)
6164 (*init_lang_status) (cfun);
6165 if (init_machine_status)
6166 (*init_machine_status) (cfun);
6169 /* Initialize the rtl expansion mechanism so that we can do simple things
6170 like generate sequences. This is used to provide a context during global
6171 initialization of some passes. */
6172 void
6173 init_dummy_function_start ()
6175 prepare_function_start ();
6178 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
6179 and initialize static variables for generating RTL for the statements
6180 of the function. */
6182 void
6183 init_function_start (subr, filename, line)
6184 tree subr;
6185 const char *filename;
6186 int line;
6188 prepare_function_start ();
6190 /* Remember this function for later. */
6191 cfun->next_global = all_functions;
6192 all_functions = cfun;
6194 current_function_name = (*decl_printable_name) (subr, 2);
6195 cfun->decl = subr;
6197 /* Nonzero if this is a nested function that uses a static chain. */
6199 current_function_needs_context
6200 = (decl_function_context (current_function_decl) != 0
6201 && ! DECL_NO_STATIC_CHAIN (current_function_decl));
6203 /* Within function body, compute a type's size as soon it is laid out. */
6204 immediate_size_expand++;
6206 /* Prevent ever trying to delete the first instruction of a function.
6207 Also tell final how to output a linenum before the function prologue.
6208 Note linenums could be missing, e.g. when compiling a Java .class file. */
6209 if (line > 0)
6210 emit_line_note (filename, line);
6212 /* Make sure first insn is a note even if we don't want linenums.
6213 This makes sure the first insn will never be deleted.
6214 Also, final expects a note to appear there. */
6215 emit_note (NULL, NOTE_INSN_DELETED);
6217 /* Set flags used by final.c. */
6218 if (aggregate_value_p (DECL_RESULT (subr)))
6220 #ifdef PCC_STATIC_STRUCT_RETURN
6221 current_function_returns_pcc_struct = 1;
6222 #endif
6223 current_function_returns_struct = 1;
6226 /* Warn if this value is an aggregate type,
6227 regardless of which calling convention we are using for it. */
6228 if (warn_aggregate_return
6229 && AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
6230 warning ("function returns an aggregate");
6232 current_function_returns_pointer
6233 = POINTER_TYPE_P (TREE_TYPE (DECL_RESULT (subr)));
6236 /* Make sure all values used by the optimization passes have sane
6237 defaults. */
6238 void
6239 init_function_for_compilation ()
6241 reg_renumber = 0;
6243 /* No prologue/epilogue insns yet. */
6244 VARRAY_GROW (prologue, 0);
6245 VARRAY_GROW (epilogue, 0);
6246 VARRAY_GROW (sibcall_epilogue, 0);
6249 /* Indicate that the current function uses extra args
6250 not explicitly mentioned in the argument list in any fashion. */
6252 void
6253 mark_varargs ()
6255 current_function_varargs = 1;
6258 /* Expand a call to __main at the beginning of a possible main function. */
6260 #if defined(INIT_SECTION_ASM_OP) && !defined(INVOKE__main)
6261 #undef HAS_INIT_SECTION
6262 #define HAS_INIT_SECTION
6263 #endif
6265 void
6266 expand_main_function ()
6268 #if !defined (HAS_INIT_SECTION)
6269 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, NAME__MAIN), 0,
6270 VOIDmode, 0);
6271 #endif /* not HAS_INIT_SECTION */
6274 extern struct obstack permanent_obstack;
6276 /* The PENDING_SIZES represent the sizes of variable-sized types.
6277 Create RTL for the various sizes now (using temporary variables),
6278 so that we can refer to the sizes from the RTL we are generating
6279 for the current function. The PENDING_SIZES are a TREE_LIST. The
6280 TREE_VALUE of each node is a SAVE_EXPR. */
6282 void
6283 expand_pending_sizes (pending_sizes)
6284 tree pending_sizes;
6286 tree tem;
6288 /* Evaluate now the sizes of any types declared among the arguments. */
6289 for (tem = pending_sizes; tem; tem = TREE_CHAIN (tem))
6291 expand_expr (TREE_VALUE (tem), const0_rtx, VOIDmode,
6292 EXPAND_MEMORY_USE_BAD);
6293 /* Flush the queue in case this parameter declaration has
6294 side-effects. */
6295 emit_queue ();
6299 /* Start the RTL for a new function, and set variables used for
6300 emitting RTL.
6301 SUBR is the FUNCTION_DECL node.
6302 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
6303 the function's parameters, which must be run at any return statement. */
6305 void
6306 expand_function_start (subr, parms_have_cleanups)
6307 tree subr;
6308 int parms_have_cleanups;
6310 tree tem;
6311 rtx last_ptr = NULL_RTX;
6313 /* Make sure volatile mem refs aren't considered
6314 valid operands of arithmetic insns. */
6315 init_recog_no_volatile ();
6317 /* Set this before generating any memory accesses. */
6318 current_function_check_memory_usage
6319 = (flag_check_memory_usage
6320 && ! DECL_NO_CHECK_MEMORY_USAGE (current_function_decl));
6322 current_function_instrument_entry_exit
6323 = (flag_instrument_function_entry_exit
6324 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
6326 current_function_limit_stack
6327 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
6329 /* If function gets a static chain arg, store it in the stack frame.
6330 Do this first, so it gets the first stack slot offset. */
6331 if (current_function_needs_context)
6333 last_ptr = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
6335 /* Delay copying static chain if it is not a register to avoid
6336 conflicts with regs used for parameters. */
6337 if (! SMALL_REGISTER_CLASSES
6338 || GET_CODE (static_chain_incoming_rtx) == REG)
6339 emit_move_insn (last_ptr, static_chain_incoming_rtx);
6342 /* If the parameters of this function need cleaning up, get a label
6343 for the beginning of the code which executes those cleanups. This must
6344 be done before doing anything with return_label. */
6345 if (parms_have_cleanups)
6346 cleanup_label = gen_label_rtx ();
6347 else
6348 cleanup_label = 0;
6350 /* Make the label for return statements to jump to. Do not special
6351 case machines with special return instructions -- they will be
6352 handled later during jump, ifcvt, or epilogue creation. */
6353 return_label = gen_label_rtx ();
6355 /* Initialize rtx used to return the value. */
6356 /* Do this before assign_parms so that we copy the struct value address
6357 before any library calls that assign parms might generate. */
6359 /* Decide whether to return the value in memory or in a register. */
6360 if (aggregate_value_p (DECL_RESULT (subr)))
6362 /* Returning something that won't go in a register. */
6363 register rtx value_address = 0;
6365 #ifdef PCC_STATIC_STRUCT_RETURN
6366 if (current_function_returns_pcc_struct)
6368 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
6369 value_address = assemble_static_space (size);
6371 else
6372 #endif
6374 /* Expect to be passed the address of a place to store the value.
6375 If it is passed as an argument, assign_parms will take care of
6376 it. */
6377 if (struct_value_incoming_rtx)
6379 value_address = gen_reg_rtx (Pmode);
6380 emit_move_insn (value_address, struct_value_incoming_rtx);
6383 if (value_address)
6385 SET_DECL_RTL (DECL_RESULT (subr),
6386 gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)),
6387 value_address));
6388 set_mem_attributes (DECL_RTL (DECL_RESULT (subr)),
6389 DECL_RESULT (subr), 1);
6392 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
6393 /* If return mode is void, this decl rtl should not be used. */
6394 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
6395 else
6397 /* Compute the return values into a pseudo reg, which we will copy
6398 into the true return register after the cleanups are done. */
6400 /* In order to figure out what mode to use for the pseudo, we
6401 figure out what the mode of the eventual return register will
6402 actually be, and use that. */
6403 rtx hard_reg
6404 = hard_function_value (TREE_TYPE (DECL_RESULT (subr)),
6405 subr, 1);
6407 /* Structures that are returned in registers are not aggregate_value_p,
6408 so we may see a PARALLEL. Don't play pseudo games with this. */
6409 if (! REG_P (hard_reg))
6410 SET_DECL_RTL (DECL_RESULT (subr), hard_reg);
6411 else
6413 /* Create the pseudo. */
6414 SET_DECL_RTL (DECL_RESULT (subr), gen_reg_rtx (GET_MODE (hard_reg)));
6416 /* Needed because we may need to move this to memory
6417 in case it's a named return value whose address is taken. */
6418 DECL_REGISTER (DECL_RESULT (subr)) = 1;
6422 /* Initialize rtx for parameters and local variables.
6423 In some cases this requires emitting insns. */
6425 assign_parms (subr);
6427 /* Copy the static chain now if it wasn't a register. The delay is to
6428 avoid conflicts with the parameter passing registers. */
6430 if (SMALL_REGISTER_CLASSES && current_function_needs_context)
6431 if (GET_CODE (static_chain_incoming_rtx) != REG)
6432 emit_move_insn (last_ptr, static_chain_incoming_rtx);
6434 /* The following was moved from init_function_start.
6435 The move is supposed to make sdb output more accurate. */
6436 /* Indicate the beginning of the function body,
6437 as opposed to parm setup. */
6438 emit_note (NULL, NOTE_INSN_FUNCTION_BEG);
6440 if (GET_CODE (get_last_insn ()) != NOTE)
6441 emit_note (NULL, NOTE_INSN_DELETED);
6442 parm_birth_insn = get_last_insn ();
6444 context_display = 0;
6445 if (current_function_needs_context)
6447 /* Fetch static chain values for containing functions. */
6448 tem = decl_function_context (current_function_decl);
6449 /* Copy the static chain pointer into a pseudo. If we have
6450 small register classes, copy the value from memory if
6451 static_chain_incoming_rtx is a REG. */
6452 if (tem)
6454 /* If the static chain originally came in a register, put it back
6455 there, then move it out in the next insn. The reason for
6456 this peculiar code is to satisfy function integration. */
6457 if (SMALL_REGISTER_CLASSES
6458 && GET_CODE (static_chain_incoming_rtx) == REG)
6459 emit_move_insn (static_chain_incoming_rtx, last_ptr);
6460 last_ptr = copy_to_reg (static_chain_incoming_rtx);
6463 while (tem)
6465 tree rtlexp = make_node (RTL_EXPR);
6467 RTL_EXPR_RTL (rtlexp) = last_ptr;
6468 context_display = tree_cons (tem, rtlexp, context_display);
6469 tem = decl_function_context (tem);
6470 if (tem == 0)
6471 break;
6472 /* Chain thru stack frames, assuming pointer to next lexical frame
6473 is found at the place we always store it. */
6474 #ifdef FRAME_GROWS_DOWNWARD
6475 last_ptr = plus_constant (last_ptr,
6476 -(HOST_WIDE_INT) GET_MODE_SIZE (Pmode));
6477 #endif
6478 last_ptr = gen_rtx_MEM (Pmode, memory_address (Pmode, last_ptr));
6479 MEM_ALIAS_SET (last_ptr) = get_frame_alias_set ();
6480 last_ptr = copy_to_reg (last_ptr);
6482 /* If we are not optimizing, ensure that we know that this
6483 piece of context is live over the entire function. */
6484 if (! optimize)
6485 save_expr_regs = gen_rtx_EXPR_LIST (VOIDmode, last_ptr,
6486 save_expr_regs);
6490 if (current_function_instrument_entry_exit)
6492 rtx fun = DECL_RTL (current_function_decl);
6493 if (GET_CODE (fun) == MEM)
6494 fun = XEXP (fun, 0);
6495 else
6496 abort ();
6497 emit_library_call (profile_function_entry_libfunc, 0, VOIDmode, 2,
6498 fun, Pmode,
6499 expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
6501 hard_frame_pointer_rtx),
6502 Pmode);
6505 #ifdef PROFILE_HOOK
6506 if (profile_flag)
6507 PROFILE_HOOK (profile_label_no);
6508 #endif
6510 /* After the display initializations is where the tail-recursion label
6511 should go, if we end up needing one. Ensure we have a NOTE here
6512 since some things (like trampolines) get placed before this. */
6513 tail_recursion_reentry = emit_note (NULL, NOTE_INSN_DELETED);
6515 /* Evaluate now the sizes of any types declared among the arguments. */
6516 expand_pending_sizes (nreverse (get_pending_sizes ()));
6518 /* Make sure there is a line number after the function entry setup code. */
6519 force_next_line_note ();
6522 /* Undo the effects of init_dummy_function_start. */
6523 void
6524 expand_dummy_function_end ()
6526 /* End any sequences that failed to be closed due to syntax errors. */
6527 while (in_sequence_p ())
6528 end_sequence ();
6530 /* Outside function body, can't compute type's actual size
6531 until next function's body starts. */
6533 free_after_parsing (cfun);
6534 free_after_compilation (cfun);
6535 free (cfun);
6536 cfun = 0;
6539 /* Call DOIT for each hard register used as a return value from
6540 the current function. */
6542 void
6543 diddle_return_value (doit, arg)
6544 void (*doit) PARAMS ((rtx, void *));
6545 void *arg;
6547 rtx outgoing = current_function_return_rtx;
6549 if (! outgoing)
6550 return;
6552 if (GET_CODE (outgoing) == REG)
6553 (*doit) (outgoing, arg);
6554 else if (GET_CODE (outgoing) == PARALLEL)
6556 int i;
6558 for (i = 0; i < XVECLEN (outgoing, 0); i++)
6560 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
6562 if (GET_CODE (x) == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
6563 (*doit) (x, arg);
6568 static void
6569 do_clobber_return_reg (reg, arg)
6570 rtx reg;
6571 void *arg ATTRIBUTE_UNUSED;
6573 emit_insn (gen_rtx_CLOBBER (VOIDmode, reg));
6576 void
6577 clobber_return_register ()
6579 diddle_return_value (do_clobber_return_reg, NULL);
6581 /* In case we do use pseudo to return value, clobber it too. */
6582 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
6584 tree decl_result = DECL_RESULT (current_function_decl);
6585 rtx decl_rtl = DECL_RTL (decl_result);
6586 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
6588 do_clobber_return_reg (decl_rtl, NULL);
6593 static void
6594 do_use_return_reg (reg, arg)
6595 rtx reg;
6596 void *arg ATTRIBUTE_UNUSED;
6598 emit_insn (gen_rtx_USE (VOIDmode, reg));
6601 void
6602 use_return_register ()
6604 diddle_return_value (do_use_return_reg, NULL);
6607 /* Generate RTL for the end of the current function.
6608 FILENAME and LINE are the current position in the source file.
6610 It is up to language-specific callers to do cleanups for parameters--
6611 or else, supply 1 for END_BINDINGS and we will call expand_end_bindings. */
6613 void
6614 expand_function_end (filename, line, end_bindings)
6615 const char *filename;
6616 int line;
6617 int end_bindings;
6619 tree link;
6620 rtx clobber_after;
6622 #ifdef TRAMPOLINE_TEMPLATE
6623 static rtx initial_trampoline;
6624 #endif
6626 finish_expr_for_function ();
6628 #ifdef NON_SAVING_SETJMP
6629 /* Don't put any variables in registers if we call setjmp
6630 on a machine that fails to restore the registers. */
6631 if (NON_SAVING_SETJMP && current_function_calls_setjmp)
6633 if (DECL_INITIAL (current_function_decl) != error_mark_node)
6634 setjmp_protect (DECL_INITIAL (current_function_decl));
6636 setjmp_protect_args ();
6638 #endif
6640 /* Save the argument pointer if a save area was made for it. */
6641 if (arg_pointer_save_area)
6643 /* arg_pointer_save_area may not be a valid memory address, so we
6644 have to check it and fix it if necessary. */
6645 rtx seq;
6646 start_sequence ();
6647 emit_move_insn (validize_mem (arg_pointer_save_area),
6648 virtual_incoming_args_rtx);
6649 seq = gen_sequence ();
6650 end_sequence ();
6651 emit_insn_before (seq, tail_recursion_reentry);
6654 /* Initialize any trampolines required by this function. */
6655 for (link = trampoline_list; link; link = TREE_CHAIN (link))
6657 tree function = TREE_PURPOSE (link);
6658 rtx context ATTRIBUTE_UNUSED = lookup_static_chain (function);
6659 rtx tramp = RTL_EXPR_RTL (TREE_VALUE (link));
6660 #ifdef TRAMPOLINE_TEMPLATE
6661 rtx blktramp;
6662 #endif
6663 rtx seq;
6665 #ifdef TRAMPOLINE_TEMPLATE
6666 /* First make sure this compilation has a template for
6667 initializing trampolines. */
6668 if (initial_trampoline == 0)
6670 initial_trampoline
6671 = gen_rtx_MEM (BLKmode, assemble_trampoline_template ());
6673 ggc_add_rtx_root (&initial_trampoline, 1);
6675 #endif
6677 /* Generate insns to initialize the trampoline. */
6678 start_sequence ();
6679 tramp = round_trampoline_addr (XEXP (tramp, 0));
6680 #ifdef TRAMPOLINE_TEMPLATE
6681 blktramp = change_address (initial_trampoline, BLKmode, tramp);
6682 emit_block_move (blktramp, initial_trampoline,
6683 GEN_INT (TRAMPOLINE_SIZE),
6684 TRAMPOLINE_ALIGNMENT);
6685 #endif
6686 INITIALIZE_TRAMPOLINE (tramp, XEXP (DECL_RTL (function), 0), context);
6687 seq = get_insns ();
6688 end_sequence ();
6690 /* Put those insns at entry to the containing function (this one). */
6691 emit_insns_before (seq, tail_recursion_reentry);
6694 /* If we are doing stack checking and this function makes calls,
6695 do a stack probe at the start of the function to ensure we have enough
6696 space for another stack frame. */
6697 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
6699 rtx insn, seq;
6701 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6702 if (GET_CODE (insn) == CALL_INSN)
6704 start_sequence ();
6705 probe_stack_range (STACK_CHECK_PROTECT,
6706 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
6707 seq = get_insns ();
6708 end_sequence ();
6709 emit_insns_before (seq, tail_recursion_reentry);
6710 break;
6714 /* Warn about unused parms if extra warnings were specified. */
6715 /* Either ``-W -Wunused'' or ``-Wunused-parameter'' enables this
6716 warning. WARN_UNUSED_PARAMETER is negative when set by
6717 -Wunused. */
6718 if (warn_unused_parameter > 0
6719 || (warn_unused_parameter < 0 && extra_warnings))
6721 tree decl;
6723 for (decl = DECL_ARGUMENTS (current_function_decl);
6724 decl; decl = TREE_CHAIN (decl))
6725 if (! TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
6726 && DECL_NAME (decl) && ! DECL_ARTIFICIAL (decl))
6727 warning_with_decl (decl, "unused parameter `%s'");
6730 /* Delete handlers for nonlocal gotos if nothing uses them. */
6731 if (nonlocal_goto_handler_slots != 0
6732 && ! current_function_has_nonlocal_label)
6733 delete_handlers ();
6735 /* End any sequences that failed to be closed due to syntax errors. */
6736 while (in_sequence_p ())
6737 end_sequence ();
6739 /* Outside function body, can't compute type's actual size
6740 until next function's body starts. */
6741 immediate_size_expand--;
6743 clear_pending_stack_adjust ();
6744 do_pending_stack_adjust ();
6746 /* Mark the end of the function body.
6747 If control reaches this insn, the function can drop through
6748 without returning a value. */
6749 emit_note (NULL, NOTE_INSN_FUNCTION_END);
6751 /* Must mark the last line number note in the function, so that the test
6752 coverage code can avoid counting the last line twice. This just tells
6753 the code to ignore the immediately following line note, since there
6754 already exists a copy of this note somewhere above. This line number
6755 note is still needed for debugging though, so we can't delete it. */
6756 if (flag_test_coverage)
6757 emit_note (NULL, NOTE_INSN_REPEATED_LINE_NUMBER);
6759 /* Output a linenumber for the end of the function.
6760 SDB depends on this. */
6761 emit_line_note_force (filename, line);
6763 /* Before the return label (if any), clobber the return
6764 registers so that they are not propogated live to the rest of
6765 the function. This can only happen with functions that drop
6766 through; if there had been a return statement, there would
6767 have either been a return rtx, or a jump to the return label.
6769 We delay actual code generation after the current_function_value_rtx
6770 is computed. */
6771 clobber_after = get_last_insn ();
6773 /* Output the label for the actual return from the function,
6774 if one is expected. This happens either because a function epilogue
6775 is used instead of a return instruction, or because a return was done
6776 with a goto in order to run local cleanups, or because of pcc-style
6777 structure returning. */
6778 if (return_label)
6779 emit_label (return_label);
6781 /* C++ uses this. */
6782 if (end_bindings)
6783 expand_end_bindings (0, 0, 0);
6785 if (current_function_instrument_entry_exit)
6787 rtx fun = DECL_RTL (current_function_decl);
6788 if (GET_CODE (fun) == MEM)
6789 fun = XEXP (fun, 0);
6790 else
6791 abort ();
6792 emit_library_call (profile_function_exit_libfunc, 0, VOIDmode, 2,
6793 fun, Pmode,
6794 expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
6796 hard_frame_pointer_rtx),
6797 Pmode);
6800 /* Let except.c know where it should emit the call to unregister
6801 the function context for sjlj exceptions. */
6802 if (flag_exceptions && USING_SJLJ_EXCEPTIONS)
6803 sjlj_emit_function_exit_after (get_last_insn ());
6805 /* If we had calls to alloca, and this machine needs
6806 an accurate stack pointer to exit the function,
6807 insert some code to save and restore the stack pointer. */
6808 #ifdef EXIT_IGNORE_STACK
6809 if (! EXIT_IGNORE_STACK)
6810 #endif
6811 if (current_function_calls_alloca)
6813 rtx tem = 0;
6815 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
6816 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
6819 /* If scalar return value was computed in a pseudo-reg, or was a named
6820 return value that got dumped to the stack, copy that to the hard
6821 return register. */
6822 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
6824 tree decl_result = DECL_RESULT (current_function_decl);
6825 rtx decl_rtl = DECL_RTL (decl_result);
6827 if (REG_P (decl_rtl)
6828 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
6829 : DECL_REGISTER (decl_result))
6831 rtx real_decl_rtl;
6833 #ifdef FUNCTION_OUTGOING_VALUE
6834 real_decl_rtl = FUNCTION_OUTGOING_VALUE (TREE_TYPE (decl_result),
6835 current_function_decl);
6836 #else
6837 real_decl_rtl = FUNCTION_VALUE (TREE_TYPE (decl_result),
6838 current_function_decl);
6839 #endif
6840 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
6842 /* If this is a BLKmode structure being returned in registers,
6843 then use the mode computed in expand_return. Note that if
6844 decl_rtl is memory, then its mode may have been changed,
6845 but that current_function_return_rtx has not. */
6846 if (GET_MODE (real_decl_rtl) == BLKmode)
6847 PUT_MODE (real_decl_rtl, GET_MODE (current_function_return_rtx));
6849 /* If a named return value dumped decl_return to memory, then
6850 we may need to re-do the PROMOTE_MODE signed/unsigned
6851 extension. */
6852 if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
6854 int unsignedp = TREE_UNSIGNED (TREE_TYPE (decl_result));
6856 #ifdef PROMOTE_FUNCTION_RETURN
6857 promote_mode (TREE_TYPE (decl_result), GET_MODE (decl_rtl),
6858 &unsignedp, 1);
6859 #endif
6861 convert_move (real_decl_rtl, decl_rtl, unsignedp);
6863 else if (GET_CODE (real_decl_rtl) == PARALLEL)
6864 emit_group_load (real_decl_rtl, decl_rtl,
6865 int_size_in_bytes (TREE_TYPE (decl_result)),
6866 TYPE_ALIGN (TREE_TYPE (decl_result)));
6867 else
6868 emit_move_insn (real_decl_rtl, decl_rtl);
6870 /* The delay slot scheduler assumes that current_function_return_rtx
6871 holds the hard register containing the return value, not a
6872 temporary pseudo. */
6873 current_function_return_rtx = real_decl_rtl;
6877 /* If returning a structure, arrange to return the address of the value
6878 in a place where debuggers expect to find it.
6880 If returning a structure PCC style,
6881 the caller also depends on this value.
6882 And current_function_returns_pcc_struct is not necessarily set. */
6883 if (current_function_returns_struct
6884 || current_function_returns_pcc_struct)
6886 rtx value_address
6887 = XEXP (DECL_RTL (DECL_RESULT (current_function_decl)), 0);
6888 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
6889 #ifdef FUNCTION_OUTGOING_VALUE
6890 rtx outgoing
6891 = FUNCTION_OUTGOING_VALUE (build_pointer_type (type),
6892 current_function_decl);
6893 #else
6894 rtx outgoing
6895 = FUNCTION_VALUE (build_pointer_type (type), current_function_decl);
6896 #endif
6898 /* Mark this as a function return value so integrate will delete the
6899 assignment and USE below when inlining this function. */
6900 REG_FUNCTION_VALUE_P (outgoing) = 1;
6902 #ifdef POINTERS_EXTEND_UNSIGNED
6903 /* The address may be ptr_mode and OUTGOING may be Pmode. */
6904 if (GET_MODE (outgoing) != GET_MODE (value_address))
6905 value_address = convert_memory_address (GET_MODE (outgoing),
6906 value_address);
6907 #endif
6909 emit_move_insn (outgoing, value_address);
6911 /* Show return register used to hold result (in this case the address
6912 of the result. */
6913 current_function_return_rtx = outgoing;
6916 /* If this is an implementation of throw, do what's necessary to
6917 communicate between __builtin_eh_return and the epilogue. */
6918 expand_eh_return ();
6920 /* Emit the actual code to clobber return register. */
6922 rtx seq, after;
6924 start_sequence ();
6925 clobber_return_register ();
6926 seq = gen_sequence ();
6927 end_sequence ();
6929 after = emit_insn_after (seq, clobber_after);
6931 if (clobber_after != after)
6932 cfun->x_clobber_return_insn = after;
6935 /* ??? This should no longer be necessary since stupid is no longer with
6936 us, but there are some parts of the compiler (eg reload_combine, and
6937 sh mach_dep_reorg) that still try and compute their own lifetime info
6938 instead of using the general framework. */
6939 use_return_register ();
6941 /* Output a return insn if we are using one.
6942 Otherwise, let the rtl chain end here, to drop through
6943 into the epilogue. */
6945 #ifdef HAVE_return
6946 if (HAVE_return)
6948 emit_jump_insn (gen_return ());
6949 emit_barrier ();
6951 #endif
6953 /* Fix up any gotos that jumped out to the outermost
6954 binding level of the function.
6955 Must follow emitting RETURN_LABEL. */
6957 /* If you have any cleanups to do at this point,
6958 and they need to create temporary variables,
6959 then you will lose. */
6960 expand_fixups (get_insns ());
6963 /* Extend a vector that records the INSN_UIDs of INSNS (either a
6964 sequence or a single insn). */
6966 static void
6967 record_insns (insns, vecp)
6968 rtx insns;
6969 varray_type *vecp;
6971 if (GET_CODE (insns) == SEQUENCE)
6973 int len = XVECLEN (insns, 0);
6974 int i = VARRAY_SIZE (*vecp);
6976 VARRAY_GROW (*vecp, i + len);
6977 while (--len >= 0)
6979 VARRAY_INT (*vecp, i) = INSN_UID (XVECEXP (insns, 0, len));
6980 ++i;
6983 else
6985 int i = VARRAY_SIZE (*vecp);
6986 VARRAY_GROW (*vecp, i + 1);
6987 VARRAY_INT (*vecp, i) = INSN_UID (insns);
6991 /* Determine how many INSN_UIDs in VEC are part of INSN. */
6993 static int
6994 contains (insn, vec)
6995 rtx insn;
6996 varray_type vec;
6998 register int i, j;
7000 if (GET_CODE (insn) == INSN
7001 && GET_CODE (PATTERN (insn)) == SEQUENCE)
7003 int count = 0;
7004 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
7005 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
7006 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i)) == VARRAY_INT (vec, j))
7007 count++;
7008 return count;
7010 else
7012 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
7013 if (INSN_UID (insn) == VARRAY_INT (vec, j))
7014 return 1;
7016 return 0;
7020 prologue_epilogue_contains (insn)
7021 rtx insn;
7023 if (contains (insn, prologue))
7024 return 1;
7025 if (contains (insn, epilogue))
7026 return 1;
7027 return 0;
7031 sibcall_epilogue_contains (insn)
7032 rtx insn;
7034 if (sibcall_epilogue)
7035 return contains (insn, sibcall_epilogue);
7036 return 0;
7039 #ifdef HAVE_return
7040 /* Insert gen_return at the end of block BB. This also means updating
7041 block_for_insn appropriately. */
7043 static void
7044 emit_return_into_block (bb, line_note)
7045 basic_block bb;
7046 rtx line_note;
7048 rtx p, end;
7050 p = NEXT_INSN (bb->end);
7051 end = emit_jump_insn_after (gen_return (), bb->end);
7052 if (line_note)
7053 emit_line_note_after (NOTE_SOURCE_FILE (line_note),
7054 NOTE_LINE_NUMBER (line_note), bb->end);
7056 while (1)
7058 set_block_for_insn (p, bb);
7059 if (p == bb->end)
7060 break;
7061 p = PREV_INSN (p);
7063 bb->end = end;
7065 #endif /* HAVE_return */
7067 #ifdef HAVE_epilogue
7069 /* Modify SEQ, a SEQUENCE that is part of the epilogue, to no modifications
7070 to the stack pointer. */
7072 static void
7073 keep_stack_depressed (seq)
7074 rtx seq;
7076 int i;
7077 rtx sp_from_reg = 0;
7078 int sp_modified_unknown = 0;
7080 /* If the epilogue is just a single instruction, it's OK as is */
7082 if (GET_CODE (seq) != SEQUENCE)
7083 return;
7085 /* Scan all insns in SEQ looking for ones that modified the stack
7086 pointer. Record if it modified the stack pointer by copying it
7087 from the frame pointer or if it modified it in some other way.
7088 Then modify any subsequent stack pointer references to take that
7089 into account. We start by only allowing SP to be copied from a
7090 register (presumably FP) and then be subsequently referenced. */
7092 for (i = 0; i < XVECLEN (seq, 0); i++)
7094 rtx insn = XVECEXP (seq, 0, i);
7096 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
7097 continue;
7099 if (reg_set_p (stack_pointer_rtx, insn))
7101 rtx set = single_set (insn);
7103 /* If SP is set as a side-effect, we can't support this. */
7104 if (set == 0)
7105 abort ();
7107 if (GET_CODE (SET_SRC (set)) == REG)
7108 sp_from_reg = SET_SRC (set);
7109 else
7110 sp_modified_unknown = 1;
7112 /* Don't allow the SP modification to happen. */
7113 PUT_CODE (insn, NOTE);
7114 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
7115 NOTE_SOURCE_FILE (insn) = 0;
7117 else if (reg_referenced_p (stack_pointer_rtx, PATTERN (insn)))
7119 if (sp_modified_unknown)
7120 abort ();
7122 else if (sp_from_reg != 0)
7123 PATTERN (insn)
7124 = replace_rtx (PATTERN (insn), stack_pointer_rtx, sp_from_reg);
7128 #endif
7130 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
7131 this into place with notes indicating where the prologue ends and where
7132 the epilogue begins. Update the basic block information when possible. */
7134 void
7135 thread_prologue_and_epilogue_insns (f)
7136 rtx f ATTRIBUTE_UNUSED;
7138 int inserted = 0;
7139 edge e;
7140 rtx seq;
7141 #ifdef HAVE_prologue
7142 rtx prologue_end = NULL_RTX;
7143 #endif
7144 #if defined (HAVE_epilogue) || defined(HAVE_return)
7145 rtx epilogue_end = NULL_RTX;
7146 #endif
7148 #ifdef HAVE_prologue
7149 if (HAVE_prologue)
7151 start_sequence ();
7152 seq = gen_prologue ();
7153 emit_insn (seq);
7155 /* Retain a map of the prologue insns. */
7156 if (GET_CODE (seq) != SEQUENCE)
7157 seq = get_insns ();
7158 record_insns (seq, &prologue);
7159 prologue_end = emit_note (NULL, NOTE_INSN_PROLOGUE_END);
7161 seq = gen_sequence ();
7162 end_sequence ();
7164 /* If optimization is off, and perhaps in an empty function,
7165 the entry block will have no successors. */
7166 if (ENTRY_BLOCK_PTR->succ)
7168 /* Can't deal with multiple successsors of the entry block. */
7169 if (ENTRY_BLOCK_PTR->succ->succ_next)
7170 abort ();
7172 insert_insn_on_edge (seq, ENTRY_BLOCK_PTR->succ);
7173 inserted = 1;
7175 else
7176 emit_insn_after (seq, f);
7178 #endif
7180 /* If the exit block has no non-fake predecessors, we don't need
7181 an epilogue. */
7182 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7183 if ((e->flags & EDGE_FAKE) == 0)
7184 break;
7185 if (e == NULL)
7186 goto epilogue_done;
7188 #ifdef HAVE_return
7189 if (optimize && HAVE_return)
7191 /* If we're allowed to generate a simple return instruction,
7192 then by definition we don't need a full epilogue. Examine
7193 the block that falls through to EXIT. If it does not
7194 contain any code, examine its predecessors and try to
7195 emit (conditional) return instructions. */
7197 basic_block last;
7198 edge e_next;
7199 rtx label;
7201 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7202 if (e->flags & EDGE_FALLTHRU)
7203 break;
7204 if (e == NULL)
7205 goto epilogue_done;
7206 last = e->src;
7208 /* Verify that there are no active instructions in the last block. */
7209 label = last->end;
7210 while (label && GET_CODE (label) != CODE_LABEL)
7212 if (active_insn_p (label))
7213 break;
7214 label = PREV_INSN (label);
7217 if (last->head == label && GET_CODE (label) == CODE_LABEL)
7219 rtx epilogue_line_note = NULL_RTX;
7221 /* Locate the line number associated with the closing brace,
7222 if we can find one. */
7223 for (seq = get_last_insn ();
7224 seq && ! active_insn_p (seq);
7225 seq = PREV_INSN (seq))
7226 if (GET_CODE (seq) == NOTE && NOTE_LINE_NUMBER (seq) > 0)
7228 epilogue_line_note = seq;
7229 break;
7232 for (e = last->pred; e; e = e_next)
7234 basic_block bb = e->src;
7235 rtx jump;
7237 e_next = e->pred_next;
7238 if (bb == ENTRY_BLOCK_PTR)
7239 continue;
7241 jump = bb->end;
7242 if ((GET_CODE (jump) != JUMP_INSN) || JUMP_LABEL (jump) != label)
7243 continue;
7245 /* If we have an unconditional jump, we can replace that
7246 with a simple return instruction. */
7247 if (simplejump_p (jump))
7249 emit_return_into_block (bb, epilogue_line_note);
7250 flow_delete_insn (jump);
7253 /* If we have a conditional jump, we can try to replace
7254 that with a conditional return instruction. */
7255 else if (condjump_p (jump))
7257 rtx ret, *loc;
7259 ret = SET_SRC (PATTERN (jump));
7260 if (GET_CODE (XEXP (ret, 1)) == LABEL_REF)
7261 loc = &XEXP (ret, 1);
7262 else
7263 loc = &XEXP (ret, 2);
7264 ret = gen_rtx_RETURN (VOIDmode);
7266 if (! validate_change (jump, loc, ret, 0))
7267 continue;
7268 if (JUMP_LABEL (jump))
7269 LABEL_NUSES (JUMP_LABEL (jump))--;
7271 /* If this block has only one successor, it both jumps
7272 and falls through to the fallthru block, so we can't
7273 delete the edge. */
7274 if (bb->succ->succ_next == NULL)
7275 continue;
7277 else
7278 continue;
7280 /* Fix up the CFG for the successful change we just made. */
7281 redirect_edge_succ (e, EXIT_BLOCK_PTR);
7284 /* Emit a return insn for the exit fallthru block. Whether
7285 this is still reachable will be determined later. */
7287 emit_barrier_after (last->end);
7288 emit_return_into_block (last, epilogue_line_note);
7289 epilogue_end = last->end;
7290 goto epilogue_done;
7293 #endif
7294 #ifdef HAVE_epilogue
7295 if (HAVE_epilogue)
7297 /* Find the edge that falls through to EXIT. Other edges may exist
7298 due to RETURN instructions, but those don't need epilogues.
7299 There really shouldn't be a mixture -- either all should have
7300 been converted or none, however... */
7302 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7303 if (e->flags & EDGE_FALLTHRU)
7304 break;
7305 if (e == NULL)
7306 goto epilogue_done;
7308 start_sequence ();
7309 epilogue_end = emit_note (NULL, NOTE_INSN_EPILOGUE_BEG);
7311 seq = gen_epilogue ();
7313 /* If this function returns with the stack depressed, massage
7314 the epilogue to actually do that. */
7315 if (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
7316 && TYPE_RETURNS_STACK_DEPRESSED (TREE_TYPE (current_function_decl)))
7317 keep_stack_depressed (seq);
7319 emit_jump_insn (seq);
7321 /* Retain a map of the epilogue insns. */
7322 if (GET_CODE (seq) != SEQUENCE)
7323 seq = get_insns ();
7324 record_insns (seq, &epilogue);
7326 seq = gen_sequence ();
7327 end_sequence ();
7329 insert_insn_on_edge (seq, e);
7330 inserted = 1;
7332 #endif
7333 epilogue_done:
7335 if (inserted)
7336 commit_edge_insertions ();
7338 #ifdef HAVE_sibcall_epilogue
7339 /* Emit sibling epilogues before any sibling call sites. */
7340 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7342 basic_block bb = e->src;
7343 rtx insn = bb->end;
7344 rtx i;
7345 rtx newinsn;
7347 if (GET_CODE (insn) != CALL_INSN
7348 || ! SIBLING_CALL_P (insn))
7349 continue;
7351 start_sequence ();
7352 seq = gen_sibcall_epilogue ();
7353 end_sequence ();
7355 i = PREV_INSN (insn);
7356 newinsn = emit_insn_before (seq, insn);
7358 /* Update the UID to basic block map. */
7359 for (i = NEXT_INSN (i); i != insn; i = NEXT_INSN (i))
7360 set_block_for_insn (i, bb);
7362 /* Retain a map of the epilogue insns. Used in life analysis to
7363 avoid getting rid of sibcall epilogue insns. */
7364 record_insns (GET_CODE (seq) == SEQUENCE
7365 ? seq : newinsn, &sibcall_epilogue);
7367 #endif
7369 #ifdef HAVE_prologue
7370 if (prologue_end)
7372 rtx insn, prev;
7374 /* GDB handles `break f' by setting a breakpoint on the first
7375 line note after the prologue. Which means (1) that if
7376 there are line number notes before where we inserted the
7377 prologue we should move them, and (2) we should generate a
7378 note before the end of the first basic block, if there isn't
7379 one already there.
7381 ??? This behaviour is completely broken when dealing with
7382 multiple entry functions. We simply place the note always
7383 into first basic block and let alternate entry points
7384 to be missed.
7387 for (insn = prologue_end; insn; insn = prev)
7389 prev = PREV_INSN (insn);
7390 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7392 /* Note that we cannot reorder the first insn in the
7393 chain, since rest_of_compilation relies on that
7394 remaining constant. */
7395 if (prev == NULL)
7396 break;
7397 reorder_insns (insn, insn, prologue_end);
7401 /* Find the last line number note in the first block. */
7402 for (insn = BASIC_BLOCK (0)->end;
7403 insn != prologue_end && insn;
7404 insn = PREV_INSN (insn))
7405 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7406 break;
7408 /* If we didn't find one, make a copy of the first line number
7409 we run across. */
7410 if (! insn)
7412 for (insn = next_active_insn (prologue_end);
7413 insn;
7414 insn = PREV_INSN (insn))
7415 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7417 emit_line_note_after (NOTE_SOURCE_FILE (insn),
7418 NOTE_LINE_NUMBER (insn),
7419 prologue_end);
7420 break;
7424 #endif
7425 #ifdef HAVE_epilogue
7426 if (epilogue_end)
7428 rtx insn, next;
7430 /* Similarly, move any line notes that appear after the epilogue.
7431 There is no need, however, to be quite so anal about the existance
7432 of such a note. */
7433 for (insn = epilogue_end; insn; insn = next)
7435 next = NEXT_INSN (insn);
7436 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7437 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
7440 #endif
7443 /* Reposition the prologue-end and epilogue-begin notes after instruction
7444 scheduling and delayed branch scheduling. */
7446 void
7447 reposition_prologue_and_epilogue_notes (f)
7448 rtx f ATTRIBUTE_UNUSED;
7450 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
7451 int len;
7453 if ((len = VARRAY_SIZE (prologue)) > 0)
7455 register rtx insn, note = 0;
7457 /* Scan from the beginning until we reach the last prologue insn.
7458 We apparently can't depend on basic_block_{head,end} after
7459 reorg has run. */
7460 for (insn = f; len && insn; insn = NEXT_INSN (insn))
7462 if (GET_CODE (insn) == NOTE)
7464 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
7465 note = insn;
7467 else if ((len -= contains (insn, prologue)) == 0)
7469 rtx next;
7470 /* Find the prologue-end note if we haven't already, and
7471 move it to just after the last prologue insn. */
7472 if (note == 0)
7474 for (note = insn; (note = NEXT_INSN (note));)
7475 if (GET_CODE (note) == NOTE
7476 && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
7477 break;
7480 next = NEXT_INSN (note);
7482 /* Whether or not we can depend on BLOCK_HEAD,
7483 attempt to keep it up-to-date. */
7484 if (BLOCK_HEAD (0) == note)
7485 BLOCK_HEAD (0) = next;
7487 remove_insn (note);
7488 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
7489 if (GET_CODE (insn) == CODE_LABEL)
7490 insn = NEXT_INSN (insn);
7491 add_insn_after (note, insn);
7496 if ((len = VARRAY_SIZE (epilogue)) > 0)
7498 register rtx insn, note = 0;
7500 /* Scan from the end until we reach the first epilogue insn.
7501 We apparently can't depend on basic_block_{head,end} after
7502 reorg has run. */
7503 for (insn = get_last_insn (); len && insn; insn = PREV_INSN (insn))
7505 if (GET_CODE (insn) == NOTE)
7507 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
7508 note = insn;
7510 else if ((len -= contains (insn, epilogue)) == 0)
7512 /* Find the epilogue-begin note if we haven't already, and
7513 move it to just before the first epilogue insn. */
7514 if (note == 0)
7516 for (note = insn; (note = PREV_INSN (note));)
7517 if (GET_CODE (note) == NOTE
7518 && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
7519 break;
7522 /* Whether or not we can depend on BLOCK_HEAD,
7523 attempt to keep it up-to-date. */
7524 if (n_basic_blocks
7525 && BLOCK_HEAD (n_basic_blocks-1) == insn)
7526 BLOCK_HEAD (n_basic_blocks-1) = note;
7528 remove_insn (note);
7529 add_insn_before (note, insn);
7533 #endif /* HAVE_prologue or HAVE_epilogue */
7536 /* Mark T for GC. */
7538 static void
7539 mark_temp_slot (t)
7540 struct temp_slot *t;
7542 while (t)
7544 ggc_mark_rtx (t->slot);
7545 ggc_mark_rtx (t->address);
7546 ggc_mark_tree (t->rtl_expr);
7547 ggc_mark_tree (t->type);
7549 t = t->next;
7553 /* Mark P for GC. */
7555 static void
7556 mark_function_status (p)
7557 struct function *p;
7559 int i;
7560 rtx *r;
7562 if (p == 0)
7563 return;
7565 ggc_mark_rtx (p->arg_offset_rtx);
7567 if (p->x_parm_reg_stack_loc)
7568 for (i = p->x_max_parm_reg, r = p->x_parm_reg_stack_loc;
7569 i > 0; --i, ++r)
7570 ggc_mark_rtx (*r);
7572 ggc_mark_rtx (p->return_rtx);
7573 ggc_mark_rtx (p->x_cleanup_label);
7574 ggc_mark_rtx (p->x_return_label);
7575 ggc_mark_rtx (p->x_save_expr_regs);
7576 ggc_mark_rtx (p->x_stack_slot_list);
7577 ggc_mark_rtx (p->x_parm_birth_insn);
7578 ggc_mark_rtx (p->x_tail_recursion_label);
7579 ggc_mark_rtx (p->x_tail_recursion_reentry);
7580 ggc_mark_rtx (p->internal_arg_pointer);
7581 ggc_mark_rtx (p->x_arg_pointer_save_area);
7582 ggc_mark_tree (p->x_rtl_expr_chain);
7583 ggc_mark_rtx (p->x_last_parm_insn);
7584 ggc_mark_tree (p->x_context_display);
7585 ggc_mark_tree (p->x_trampoline_list);
7586 ggc_mark_rtx (p->epilogue_delay_list);
7587 ggc_mark_rtx (p->x_clobber_return_insn);
7589 mark_temp_slot (p->x_temp_slots);
7592 struct var_refs_queue *q = p->fixup_var_refs_queue;
7593 while (q)
7595 ggc_mark_rtx (q->modified);
7596 q = q->next;
7600 ggc_mark_rtx (p->x_nonlocal_goto_handler_slots);
7601 ggc_mark_rtx (p->x_nonlocal_goto_handler_labels);
7602 ggc_mark_rtx (p->x_nonlocal_goto_stack_level);
7603 ggc_mark_tree (p->x_nonlocal_labels);
7606 /* Mark the function chain ARG (which is really a struct function **)
7607 for GC. */
7609 static void
7610 mark_function_chain (arg)
7611 void *arg;
7613 struct function *f = *(struct function **) arg;
7615 for (; f; f = f->next_global)
7617 ggc_mark_tree (f->decl);
7619 mark_function_status (f);
7620 mark_eh_status (f->eh);
7621 mark_stmt_status (f->stmt);
7622 mark_expr_status (f->expr);
7623 mark_emit_status (f->emit);
7624 mark_varasm_status (f->varasm);
7626 if (mark_machine_status)
7627 (*mark_machine_status) (f);
7628 if (mark_lang_status)
7629 (*mark_lang_status) (f);
7631 if (f->original_arg_vector)
7632 ggc_mark_rtvec ((rtvec) f->original_arg_vector);
7633 if (f->original_decl_initial)
7634 ggc_mark_tree (f->original_decl_initial);
7638 /* Called once, at initialization, to initialize function.c. */
7640 void
7641 init_function_once ()
7643 ggc_add_root (&all_functions, 1, sizeof all_functions,
7644 mark_function_chain);
7646 VARRAY_INT_INIT (prologue, 0, "prologue");
7647 VARRAY_INT_INIT (epilogue, 0, "epilogue");
7648 VARRAY_INT_INIT (sibcall_epilogue, 0, "sibcall_epilogue");