1 /* Register renaming for the GNU compiler.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
25 #include "rtl-error.h"
27 #include "insn-config.h"
29 #include "addresses.h"
30 #include "hard-reg-set.h"
31 #include "basic-block.h"
38 #include "tree-pass.h"
42 #include "regrename.h"
44 /* This file implements the RTL register renaming pass of the compiler. It is
45 a semi-local pass whose goal is to maximize the usage of the register file
46 of the processor by substituting registers for others in the solution given
47 by the register allocator. The algorithm is as follows:
49 1. Local def/use chains are built: within each basic block, chains are
50 opened and closed; if a chain isn't closed at the end of the block,
51 it is dropped. We pre-open chains if we have already examined a
52 predecessor block and found chains live at the end which match
53 live registers at the start of the new block.
55 2. We try to combine the local chains across basic block boundaries by
56 comparing chains that were open at the start or end of a block to
57 those in successor/predecessor blocks.
59 3. For each chain, the set of possible renaming registers is computed.
60 This takes into account the renaming of previously processed chains.
61 Optionally, a preferred class is computed for the renaming register.
63 4. The best renaming register is computed for the chain in the above set,
64 using a round-robin allocation. If a preferred class exists, then the
65 round-robin allocation is done within the class first, if possible.
66 The round-robin allocation of renaming registers itself is global.
68 5. If a renaming register has been found, it is substituted in the chain.
70 Targets can parameterize the pass by specifying a preferred class for the
71 renaming register for a given (super)class of registers to be renamed. */
73 #if HOST_BITS_PER_WIDE_INT <= MAX_RECOG_OPERANDS
74 #error "Use a different bitmap implementation for untracked_operands."
84 /* mark_access is for marking the destination regs in
85 REG_FRAME_RELATED_EXPR notes (as if they were read) so that the
86 note is updated properly. */
90 static const char * const scan_actions_name
[] =
100 /* TICK and THIS_TICK are used to record the last time we saw each
102 static int tick
[FIRST_PSEUDO_REGISTER
];
103 static int this_tick
= 0;
105 static struct obstack rename_obstack
;
107 /* If nonnull, the code calling into the register renamer requested
108 information about insn operands, and we store it here. */
109 VEC(insn_rr_info
, heap
) *insn_rr
;
111 static void scan_rtx (rtx
, rtx
*, enum reg_class
, enum scan_actions
,
113 static bool build_def_use (basic_block
);
115 /* The id to be given to the next opened chain. */
116 static unsigned current_id
;
118 /* A mapping of unique id numbers to chains. */
119 static VEC(du_head_p
, heap
) *id_to_chain
;
121 /* List of currently open chains. */
122 static struct du_head
*open_chains
;
124 /* Bitmap of open chains. The bits set always match the list found in
126 static bitmap_head open_chains_set
;
128 /* Record the registers being tracked in open_chains. */
129 static HARD_REG_SET live_in_chains
;
131 /* Record the registers that are live but not tracked. The intersection
132 between this and live_in_chains is empty. */
133 static HARD_REG_SET live_hard_regs
;
135 /* Set while scanning RTL if INSN_RR is nonnull, i.e. if the current analysis
136 is for a caller that requires operand data. Used in
137 record_operand_use. */
138 static operand_rr_info
*cur_operand
;
140 /* Return the chain corresponding to id number ID. Take into account that
141 chains may have been merged. */
143 regrename_chain_from_id (unsigned int id
)
145 du_head_p first_chain
= VEC_index (du_head_p
, id_to_chain
, id
);
146 du_head_p chain
= first_chain
;
147 while (chain
->id
!= id
)
150 chain
= VEC_index (du_head_p
, id_to_chain
, id
);
152 first_chain
->id
= id
;
156 /* Dump all def/use chains, starting at id FROM. */
159 dump_def_use_chain (int from
)
163 FOR_EACH_VEC_ELT_FROM (du_head_p
, id_to_chain
, i
, head
, from
)
165 struct du_chain
*this_du
= head
->first
;
167 fprintf (dump_file
, "Register %s (%d):",
168 reg_names
[head
->regno
], head
->nregs
);
171 fprintf (dump_file
, " %d [%s]", INSN_UID (this_du
->insn
),
172 reg_class_names
[this_du
->cl
]);
173 this_du
= this_du
->next_use
;
175 fprintf (dump_file
, "\n");
176 head
= head
->next_chain
;
181 free_chain_data (void)
185 for (i
= 0; VEC_iterate(du_head_p
, id_to_chain
, i
, ptr
); i
++)
186 bitmap_clear (&ptr
->conflicts
);
188 VEC_free (du_head_p
, heap
, id_to_chain
);
191 /* Walk all chains starting with CHAINS and record that they conflict with
192 another chain whose id is ID. */
195 mark_conflict (struct du_head
*chains
, unsigned id
)
199 bitmap_set_bit (&chains
->conflicts
, id
);
200 chains
= chains
->next_chain
;
204 /* Examine cur_operand, and if it is nonnull, record information about the
205 use THIS_DU which is part of the chain HEAD. */
208 record_operand_use (struct du_head
*head
, struct du_chain
*this_du
)
210 if (cur_operand
== NULL
)
212 gcc_assert (cur_operand
->n_chains
< MAX_REGS_PER_ADDRESS
);
213 cur_operand
->heads
[cur_operand
->n_chains
] = head
;
214 cur_operand
->chains
[cur_operand
->n_chains
++] = this_du
;
217 /* Create a new chain for THIS_NREGS registers starting at THIS_REGNO,
218 and record its occurrence in *LOC, which is being written to in INSN.
219 This access requires a register of class CL. */
222 create_new_chain (unsigned this_regno
, unsigned this_nregs
, rtx
*loc
,
223 rtx insn
, enum reg_class cl
)
225 struct du_head
*head
= XOBNEW (&rename_obstack
, struct du_head
);
226 struct du_chain
*this_du
;
229 head
->next_chain
= open_chains
;
230 head
->regno
= this_regno
;
231 head
->nregs
= this_nregs
;
232 head
->need_caller_save_reg
= 0;
233 head
->cannot_rename
= 0;
235 VEC_safe_push (du_head_p
, heap
, id_to_chain
, head
);
236 head
->id
= current_id
++;
238 bitmap_initialize (&head
->conflicts
, &bitmap_default_obstack
);
239 bitmap_copy (&head
->conflicts
, &open_chains_set
);
240 mark_conflict (open_chains
, head
->id
);
242 /* Since we're tracking this as a chain now, remove it from the
243 list of conflicting live hard registers and track it in
244 live_in_chains instead. */
248 SET_HARD_REG_BIT (live_in_chains
, head
->regno
+ nregs
);
249 CLEAR_HARD_REG_BIT (live_hard_regs
, head
->regno
+ nregs
);
252 COPY_HARD_REG_SET (head
->hard_conflicts
, live_hard_regs
);
253 bitmap_set_bit (&open_chains_set
, head
->id
);
259 fprintf (dump_file
, "Creating chain %s (%d)",
260 reg_names
[head
->regno
], head
->id
);
261 if (insn
!= NULL_RTX
)
262 fprintf (dump_file
, " at insn %d", INSN_UID (insn
));
263 fprintf (dump_file
, "\n");
266 if (insn
== NULL_RTX
)
268 head
->first
= head
->last
= NULL
;
272 this_du
= XOBNEW (&rename_obstack
, struct du_chain
);
273 head
->first
= head
->last
= this_du
;
275 this_du
->next_use
= 0;
277 this_du
->insn
= insn
;
279 record_operand_use (head
, this_du
);
283 /* For a def-use chain HEAD, find which registers overlap its lifetime and
284 set the corresponding bits in *PSET. */
287 merge_overlapping_regs (HARD_REG_SET
*pset
, struct du_head
*head
)
291 IOR_HARD_REG_SET (*pset
, head
->hard_conflicts
);
292 EXECUTE_IF_SET_IN_BITMAP (&head
->conflicts
, 0, i
, bi
)
294 du_head_p other
= regrename_chain_from_id (i
);
295 unsigned j
= other
->nregs
;
296 gcc_assert (other
!= head
);
298 SET_HARD_REG_BIT (*pset
, other
->regno
+ j
);
302 /* Check if NEW_REG can be the candidate register to rename for
303 REG in THIS_HEAD chain. THIS_UNAVAILABLE is a set of unavailable hard
307 check_new_reg_p (int reg ATTRIBUTE_UNUSED
, int new_reg
,
308 struct du_head
*this_head
, HARD_REG_SET this_unavailable
)
310 enum machine_mode mode
= GET_MODE (*this_head
->first
->loc
);
311 int nregs
= hard_regno_nregs
[new_reg
][mode
];
313 struct du_chain
*tmp
;
315 for (i
= nregs
- 1; i
>= 0; --i
)
316 if (TEST_HARD_REG_BIT (this_unavailable
, new_reg
+ i
)
317 || fixed_regs
[new_reg
+ i
]
318 || global_regs
[new_reg
+ i
]
319 /* Can't use regs which aren't saved by the prologue. */
320 || (! df_regs_ever_live_p (new_reg
+ i
)
321 && ! call_used_regs
[new_reg
+ i
])
322 #ifdef LEAF_REGISTERS
323 /* We can't use a non-leaf register if we're in a
326 && !LEAF_REGISTERS
[new_reg
+ i
])
328 #ifdef HARD_REGNO_RENAME_OK
329 || ! HARD_REGNO_RENAME_OK (reg
+ i
, new_reg
+ i
)
334 /* See whether it accepts all modes that occur in
335 definition and uses. */
336 for (tmp
= this_head
->first
; tmp
; tmp
= tmp
->next_use
)
337 if ((! HARD_REGNO_MODE_OK (new_reg
, GET_MODE (*tmp
->loc
))
338 && ! DEBUG_INSN_P (tmp
->insn
))
339 || (this_head
->need_caller_save_reg
340 && ! (HARD_REGNO_CALL_PART_CLOBBERED
341 (reg
, GET_MODE (*tmp
->loc
)))
342 && (HARD_REGNO_CALL_PART_CLOBBERED
343 (new_reg
, GET_MODE (*tmp
->loc
)))))
349 /* For the chain THIS_HEAD, compute and return the best register to
350 rename to. SUPER_CLASS is the superunion of register classes in
351 the chain. UNAVAILABLE is a set of registers that cannot be used.
352 OLD_REG is the register currently used for the chain. */
355 find_best_rename_reg (du_head_p this_head
, enum reg_class super_class
,
356 HARD_REG_SET
*unavailable
, int old_reg
)
358 bool has_preferred_class
;
359 enum reg_class preferred_class
;
361 int best_new_reg
= old_reg
;
363 /* Further narrow the set of registers we can use for renaming.
364 If the chain needs a call-saved register, mark the call-used
365 registers as unavailable. */
366 if (this_head
->need_caller_save_reg
)
367 IOR_HARD_REG_SET (*unavailable
, call_used_reg_set
);
369 /* Mark registers that overlap this chain's lifetime as unavailable. */
370 merge_overlapping_regs (unavailable
, this_head
);
372 /* Compute preferred rename class of super union of all the classes
375 = (enum reg_class
) targetm
.preferred_rename_class (super_class
);
377 /* If PREFERRED_CLASS is not NO_REGS, we iterate in the first pass
378 over registers that belong to PREFERRED_CLASS and try to find the
379 best register within the class. If that failed, we iterate in
380 the second pass over registers that don't belong to the class.
381 If PREFERRED_CLASS is NO_REGS, we iterate over all registers in
382 ascending order without any preference. */
383 has_preferred_class
= (preferred_class
!= NO_REGS
);
384 for (pass
= (has_preferred_class
? 0 : 1); pass
< 2; pass
++)
387 for (new_reg
= 0; new_reg
< FIRST_PSEUDO_REGISTER
; new_reg
++)
389 if (has_preferred_class
391 != TEST_HARD_REG_BIT (reg_class_contents
[preferred_class
],
395 /* In the first pass, we force the renaming of registers that
396 don't belong to PREFERRED_CLASS to registers that do, even
397 though the latters were used not very long ago. */
398 if (check_new_reg_p (old_reg
, new_reg
, this_head
,
401 && !TEST_HARD_REG_BIT (reg_class_contents
[preferred_class
],
403 || tick
[best_new_reg
] > tick
[new_reg
]))
404 best_new_reg
= new_reg
;
406 if (pass
== 0 && best_new_reg
!= old_reg
)
412 /* Perform register renaming on the current function. */
416 HARD_REG_SET unavailable
;
420 memset (tick
, 0, sizeof tick
);
422 CLEAR_HARD_REG_SET (unavailable
);
423 /* Don't clobber traceback for noreturn functions. */
424 if (frame_pointer_needed
)
426 add_to_hard_reg_set (&unavailable
, Pmode
, FRAME_POINTER_REGNUM
);
427 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
428 add_to_hard_reg_set (&unavailable
, Pmode
, HARD_FRAME_POINTER_REGNUM
);
432 FOR_EACH_VEC_ELT (du_head_p
, id_to_chain
, i
, this_head
)
436 struct du_chain
*tmp
;
437 HARD_REG_SET this_unavailable
;
438 int reg
= this_head
->regno
;
439 enum reg_class super_class
= NO_REGS
;
441 if (this_head
->cannot_rename
)
444 if (fixed_regs
[reg
] || global_regs
[reg
]
445 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
446 || (frame_pointer_needed
&& reg
== HARD_FRAME_POINTER_REGNUM
)
448 || (frame_pointer_needed
&& reg
== FRAME_POINTER_REGNUM
)
453 COPY_HARD_REG_SET (this_unavailable
, unavailable
);
455 /* Iterate over elements in the chain in order to:
456 1. Count number of uses, and narrow the set of registers we can
458 2. Compute the superunion of register classes in this chain. */
460 super_class
= NO_REGS
;
461 for (tmp
= this_head
->first
; tmp
; tmp
= tmp
->next_use
)
463 if (DEBUG_INSN_P (tmp
->insn
))
466 IOR_COMPL_HARD_REG_SET (this_unavailable
,
467 reg_class_contents
[tmp
->cl
]);
469 = reg_class_superunion
[(int) super_class
][(int) tmp
->cl
];
475 best_new_reg
= find_best_rename_reg (this_head
, super_class
,
476 &this_unavailable
, reg
);
480 fprintf (dump_file
, "Register %s in insn %d",
481 reg_names
[reg
], INSN_UID (this_head
->first
->insn
));
482 if (this_head
->need_caller_save_reg
)
483 fprintf (dump_file
, " crosses a call");
486 if (best_new_reg
== reg
)
488 tick
[reg
] = ++this_tick
;
490 fprintf (dump_file
, "; no available better choice\n");
495 fprintf (dump_file
, ", renamed as %s\n", reg_names
[best_new_reg
]);
497 regrename_do_replace (this_head
, best_new_reg
);
498 tick
[best_new_reg
] = ++this_tick
;
499 df_set_regs_ever_live (best_new_reg
, true);
503 /* A structure to record information for each hard register at the start of
505 struct incoming_reg_info
{
506 /* Holds the number of registers used in the chain that gave us information
507 about this register. Zero means no information known yet, while a
508 negative value is used for something that is part of, but not the first
509 register in a multi-register value. */
511 /* Set to true if we have accesses that conflict in the number of registers
516 /* A structure recording information about each basic block. It is saved
517 and restored around basic block boundaries.
518 A pointer to such a structure is stored in each basic block's aux field
519 during regrename_analyze, except for blocks we know can't be optimized
520 (such as entry and exit blocks). */
521 struct bb_rename_info
523 /* The basic block corresponding to this structure. */
525 /* Copies of the global information. */
526 bitmap_head open_chains_set
;
527 bitmap_head incoming_open_chains_set
;
528 struct incoming_reg_info incoming
[FIRST_PSEUDO_REGISTER
];
531 /* Initialize a rename_info structure P for basic block BB, which starts a new
534 init_rename_info (struct bb_rename_info
*p
, basic_block bb
)
538 HARD_REG_SET start_chains_set
;
541 bitmap_initialize (&p
->open_chains_set
, &bitmap_default_obstack
);
542 bitmap_initialize (&p
->incoming_open_chains_set
, &bitmap_default_obstack
);
545 bitmap_clear (&open_chains_set
);
547 CLEAR_HARD_REG_SET (live_in_chains
);
548 REG_SET_TO_HARD_REG_SET (live_hard_regs
, df_get_live_in (bb
));
549 for (def_rec
= df_get_artificial_defs (bb
->index
); *def_rec
; def_rec
++)
551 df_ref def
= *def_rec
;
552 if (DF_REF_FLAGS (def
) & DF_REF_AT_TOP
)
553 SET_HARD_REG_BIT (live_hard_regs
, DF_REF_REGNO (def
));
556 /* Open chains based on information from (at least one) predecessor
557 block. This gives us a chance later on to combine chains across
558 basic block boundaries. Inconsistencies (in access sizes) will
559 be caught normally and dealt with conservatively by disabling the
560 chain for renaming, and there is no risk of losing optimization
561 opportunities by opening chains either: if we did not open the
562 chains, we'd have to track the live register as a hard reg, and
563 we'd be unable to rename it in any case. */
564 CLEAR_HARD_REG_SET (start_chains_set
);
565 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
567 struct incoming_reg_info
*iri
= p
->incoming
+ i
;
568 if (iri
->nregs
> 0 && !iri
->unusable
569 && range_in_hard_reg_set_p (live_hard_regs
, i
, iri
->nregs
))
571 SET_HARD_REG_BIT (start_chains_set
, i
);
572 remove_range_from_hard_reg_set (&live_hard_regs
, i
, iri
->nregs
);
575 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
577 struct incoming_reg_info
*iri
= p
->incoming
+ i
;
578 if (TEST_HARD_REG_BIT (start_chains_set
, i
))
582 fprintf (dump_file
, "opening incoming chain\n");
583 chain
= create_new_chain (i
, iri
->nregs
, NULL
, NULL_RTX
, NO_REGS
);
584 bitmap_set_bit (&p
->incoming_open_chains_set
, chain
->id
);
589 /* Record in RI that the block corresponding to it has an incoming
590 live value, described by CHAIN. */
592 set_incoming_from_chain (struct bb_rename_info
*ri
, du_head_p chain
)
595 int incoming_nregs
= ri
->incoming
[chain
->regno
].nregs
;
598 /* If we've recorded the same information before, everything is fine. */
599 if (incoming_nregs
== chain
->nregs
)
602 fprintf (dump_file
, "reg %d/%d already recorded\n",
603 chain
->regno
, chain
->nregs
);
607 /* If we have no information for any of the involved registers, update
608 the incoming array. */
609 nregs
= chain
->nregs
;
611 if (ri
->incoming
[chain
->regno
+ nregs
].nregs
!= 0
612 || ri
->incoming
[chain
->regno
+ nregs
].unusable
)
616 nregs
= chain
->nregs
;
617 ri
->incoming
[chain
->regno
].nregs
= nregs
;
619 ri
->incoming
[chain
->regno
+ nregs
].nregs
= -nregs
;
621 fprintf (dump_file
, "recorded reg %d/%d\n",
622 chain
->regno
, chain
->nregs
);
626 /* There must be some kind of conflict. Prevent both the old and
627 new ranges from being used. */
628 if (incoming_nregs
< 0)
629 ri
->incoming
[chain
->regno
+ incoming_nregs
].unusable
= true;
630 for (i
= 0; i
< chain
->nregs
; i
++)
631 ri
->incoming
[chain
->regno
+ i
].unusable
= true;
634 /* Merge the two chains C1 and C2 so that all conflict information is
635 recorded and C1, and the id of C2 is changed to that of C1. */
637 merge_chains (du_head_p c1
, du_head_p c2
)
642 if (c2
->first
!= NULL
)
644 if (c1
->first
== NULL
)
645 c1
->first
= c2
->first
;
647 c1
->last
->next_use
= c2
->first
;
651 c2
->first
= c2
->last
= NULL
;
654 IOR_HARD_REG_SET (c1
->hard_conflicts
, c2
->hard_conflicts
);
655 bitmap_ior_into (&c1
->conflicts
, &c2
->conflicts
);
657 c1
->need_caller_save_reg
|= c2
->need_caller_save_reg
;
658 c1
->cannot_rename
|= c2
->cannot_rename
;
661 /* Analyze the current function and build chains for renaming. */
664 regrename_analyze (bitmap bb_mask
)
666 struct bb_rename_info
*rename_info
;
670 int *inverse_postorder
;
672 inverse_postorder
= XNEWVEC (int, last_basic_block
);
673 n_bbs
= pre_and_rev_post_order_compute (NULL
, inverse_postorder
, false);
675 /* Gather some information about the blocks in this function. */
676 rename_info
= XCNEWVEC (struct bb_rename_info
, n_basic_blocks
);
680 struct bb_rename_info
*ri
= rename_info
+ i
;
682 if (bb_mask
!= NULL
&& !bitmap_bit_p (bb_mask
, bb
->index
))
690 id_to_chain
= VEC_alloc (du_head_p
, heap
, 0);
691 bitmap_initialize (&open_chains_set
, &bitmap_default_obstack
);
693 /* The order in which we visit blocks ensures that whenever
694 possible, we only process a block after at least one of its
695 predecessors, which provides a "seeding" effect to make the logic
696 in set_incoming_from_chain and init_rename_info useful. */
698 for (i
= 0; i
< n_bbs
; i
++)
700 basic_block bb1
= BASIC_BLOCK (inverse_postorder
[i
]);
701 struct bb_rename_info
*this_info
;
705 int old_length
= VEC_length (du_head_p
, id_to_chain
);
707 this_info
= (struct bb_rename_info
*) bb1
->aux
;
708 if (this_info
== NULL
)
712 fprintf (dump_file
, "\nprocessing block %d:\n", bb1
->index
);
714 init_rename_info (this_info
, bb1
);
716 success
= build_def_use (bb1
);
720 fprintf (dump_file
, "failed\n");
722 VEC_truncate (du_head_p
, id_to_chain
, old_length
);
723 current_id
= old_length
;
724 bitmap_clear (&this_info
->incoming_open_chains_set
);
729 FOR_BB_INSNS (bb1
, insn
)
731 insn_rr_info
*p
= &VEC_index (insn_rr_info
, insn_rr
,
740 dump_def_use_chain (old_length
);
741 bitmap_copy (&this_info
->open_chains_set
, &open_chains_set
);
743 /* Add successor blocks to the worklist if necessary, and record
744 data about our own open chains at the end of this block, which
745 will be used to pre-open chains when processing the successors. */
746 FOR_EACH_EDGE (e
, ei
, bb1
->succs
)
748 struct bb_rename_info
*dest_ri
;
749 struct du_head
*chain
;
752 fprintf (dump_file
, "successor block %d\n", e
->dest
->index
);
754 if (e
->flags
& (EDGE_EH
| EDGE_ABNORMAL
))
756 dest_ri
= (struct bb_rename_info
*)e
->dest
->aux
;
759 for (chain
= open_chains
; chain
; chain
= chain
->next_chain
)
760 set_incoming_from_chain (dest_ri
, chain
);
764 free (inverse_postorder
);
766 /* Now, combine the chains data we have gathered across basic block
769 For every basic block, there may be chains open at the start, or at the
770 end. Rather than exclude them from renaming, we look for open chains
771 with matching registers at the other side of the CFG edge.
773 For a given chain using register R, open at the start of block B, we
774 must find an open chain using R on the other side of every edge leading
775 to B, if the register is live across this edge. In the code below,
776 N_PREDS_USED counts the number of edges where the register is live, and
777 N_PREDS_JOINED counts those where we found an appropriate chain for
780 We perform the analysis for both incoming and outgoing edges, but we
781 only need to merge once (in the second part, after verifying outgoing
785 struct bb_rename_info
*bb_ri
= (struct bb_rename_info
*) bb
->aux
;
793 fprintf (dump_file
, "processing bb %d in edges\n", bb
->index
);
795 EXECUTE_IF_SET_IN_BITMAP (&bb_ri
->incoming_open_chains_set
, 0, j
, bi
)
799 struct du_head
*chain
= regrename_chain_from_id (j
);
800 int n_preds_used
= 0, n_preds_joined
= 0;
802 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
804 struct bb_rename_info
*src_ri
;
808 bool success
= false;
810 REG_SET_TO_HARD_REG_SET (live
, df_get_live_out (e
->src
));
811 if (!range_overlaps_hard_reg_set_p (live
, chain
->regno
,
816 if (e
->flags
& (EDGE_EH
| EDGE_ABNORMAL
))
819 src_ri
= (struct bb_rename_info
*)e
->src
->aux
;
823 EXECUTE_IF_SET_IN_BITMAP (&src_ri
->open_chains_set
,
826 struct du_head
*outgoing_chain
= regrename_chain_from_id (k
);
828 if (outgoing_chain
->regno
== chain
->regno
829 && outgoing_chain
->nregs
== chain
->nregs
)
836 if (!success
&& dump_file
)
837 fprintf (dump_file
, "failure to match with pred block %d\n",
840 if (n_preds_joined
< n_preds_used
)
843 fprintf (dump_file
, "cannot rename chain %d\n", j
);
844 chain
->cannot_rename
= 1;
850 struct bb_rename_info
*bb_ri
= (struct bb_rename_info
*) bb
->aux
;
858 fprintf (dump_file
, "processing bb %d out edges\n", bb
->index
);
860 EXECUTE_IF_SET_IN_BITMAP (&bb_ri
->open_chains_set
, 0, j
, bi
)
864 struct du_head
*chain
= regrename_chain_from_id (j
);
865 int n_succs_used
= 0, n_succs_joined
= 0;
867 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
869 bool printed
= false;
870 struct bb_rename_info
*dest_ri
;
875 REG_SET_TO_HARD_REG_SET (live
, df_get_live_in (e
->dest
));
876 if (!range_overlaps_hard_reg_set_p (live
, chain
->regno
,
882 dest_ri
= (struct bb_rename_info
*)e
->dest
->aux
;
886 EXECUTE_IF_SET_IN_BITMAP (&dest_ri
->incoming_open_chains_set
,
889 struct du_head
*incoming_chain
= regrename_chain_from_id (k
);
891 if (incoming_chain
->regno
== chain
->regno
892 && incoming_chain
->nregs
== chain
->nregs
)
898 "merging blocks for edge %d -> %d\n",
899 e
->src
->index
, e
->dest
->index
);
902 " merging chains %d (->%d) and %d (->%d) [%s]\n",
903 k
, incoming_chain
->id
, j
, chain
->id
,
904 reg_names
[incoming_chain
->regno
]);
907 merge_chains (chain
, incoming_chain
);
913 if (n_succs_joined
< n_succs_used
)
916 fprintf (dump_file
, "cannot rename chain %d\n",
918 chain
->cannot_rename
= 1;
930 regrename_do_replace (struct du_head
*head
, int reg
)
932 struct du_chain
*chain
;
933 unsigned int base_regno
= head
->regno
;
934 enum machine_mode mode
;
936 for (chain
= head
->first
; chain
; chain
= chain
->next_use
)
938 unsigned int regno
= ORIGINAL_REGNO (*chain
->loc
);
939 struct reg_attrs
*attr
= REG_ATTRS (*chain
->loc
);
940 int reg_ptr
= REG_POINTER (*chain
->loc
);
942 if (DEBUG_INSN_P (chain
->insn
) && REGNO (*chain
->loc
) != base_regno
)
943 INSN_VAR_LOCATION_LOC (chain
->insn
) = gen_rtx_UNKNOWN_VAR_LOC ();
946 *chain
->loc
= gen_raw_REG (GET_MODE (*chain
->loc
), reg
);
947 if (regno
>= FIRST_PSEUDO_REGISTER
)
948 ORIGINAL_REGNO (*chain
->loc
) = regno
;
949 REG_ATTRS (*chain
->loc
) = attr
;
950 REG_POINTER (*chain
->loc
) = reg_ptr
;
953 df_insn_rescan (chain
->insn
);
956 mode
= GET_MODE (*head
->first
->loc
);
958 head
->nregs
= hard_regno_nregs
[reg
][mode
];
962 /* True if we found a register with a size mismatch, which means that we
963 can't track its lifetime accurately. If so, we abort the current block
965 static bool fail_current_block
;
967 /* Return true if OP is a reg for which all bits are set in PSET, false
968 if all bits are clear.
969 In other cases, set fail_current_block and return false. */
972 verify_reg_in_set (rtx op
, HARD_REG_SET
*pset
)
974 unsigned regno
, nregs
;
975 bool all_live
, all_dead
;
980 nregs
= hard_regno_nregs
[regno
][GET_MODE (op
)];
981 all_live
= all_dead
= true;
983 if (TEST_HARD_REG_BIT (*pset
, regno
+ nregs
))
987 if (!all_dead
&& !all_live
)
989 fail_current_block
= true;
995 /* Return true if OP is a reg that is being tracked already in some form.
996 May set fail_current_block if it sees an unhandled case of overlap. */
999 verify_reg_tracked (rtx op
)
1001 return (verify_reg_in_set (op
, &live_hard_regs
)
1002 || verify_reg_in_set (op
, &live_in_chains
));
1005 /* Called through note_stores. DATA points to a rtx_code, either SET or
1006 CLOBBER, which tells us which kind of rtx to look at. If we have a
1007 match, record the set register in live_hard_regs and in the hard_conflicts
1008 bitmap of open chains. */
1011 note_sets_clobbers (rtx x
, const_rtx set
, void *data
)
1013 enum rtx_code code
= *(enum rtx_code
*)data
;
1014 struct du_head
*chain
;
1016 if (GET_CODE (x
) == SUBREG
)
1018 if (!REG_P (x
) || GET_CODE (set
) != code
)
1020 /* There must not be pseudos at this point. */
1021 gcc_assert (HARD_REGISTER_P (x
));
1022 add_to_hard_reg_set (&live_hard_regs
, GET_MODE (x
), REGNO (x
));
1023 for (chain
= open_chains
; chain
; chain
= chain
->next_chain
)
1024 add_to_hard_reg_set (&chain
->hard_conflicts
, GET_MODE (x
), REGNO (x
));
1028 scan_rtx_reg (rtx insn
, rtx
*loc
, enum reg_class cl
, enum scan_actions action
,
1033 enum machine_mode mode
= GET_MODE (x
);
1034 unsigned this_regno
= REGNO (x
);
1035 int this_nregs
= hard_regno_nregs
[this_regno
][mode
];
1037 if (action
== mark_write
)
1040 create_new_chain (this_regno
, this_nregs
, loc
, insn
, cl
);
1044 if ((type
== OP_OUT
) != (action
== terminate_write
|| action
== mark_access
))
1047 for (p
= &open_chains
; *p
;)
1049 struct du_head
*head
= *p
;
1050 struct du_head
*next
= head
->next_chain
;
1051 int exact_match
= (head
->regno
== this_regno
1052 && head
->nregs
== this_nregs
);
1053 int superset
= (this_regno
<= head
->regno
1054 && this_regno
+ this_nregs
>= head
->regno
+ head
->nregs
);
1055 int subset
= (this_regno
>= head
->regno
1056 && this_regno
+ this_nregs
<= head
->regno
+ head
->nregs
);
1058 if (!bitmap_bit_p (&open_chains_set
, head
->id
)
1059 || head
->regno
+ head
->nregs
<= this_regno
1060 || this_regno
+ this_nregs
<= head
->regno
)
1062 p
= &head
->next_chain
;
1066 if (action
== mark_read
|| action
== mark_access
)
1068 /* ??? Class NO_REGS can happen if the md file makes use of
1069 EXTRA_CONSTRAINTS to match registers. Which is arguably
1070 wrong, but there we are. */
1072 if (cl
== NO_REGS
|| (!exact_match
&& !DEBUG_INSN_P (insn
)))
1076 "Cannot rename chain %s (%d) at insn %d (%s)\n",
1077 reg_names
[head
->regno
], head
->id
, INSN_UID (insn
),
1078 scan_actions_name
[(int) action
]);
1079 head
->cannot_rename
= 1;
1082 unsigned nregs
= this_nregs
;
1083 head
->regno
= this_regno
;
1084 head
->nregs
= this_nregs
;
1086 SET_HARD_REG_BIT (live_in_chains
, head
->regno
+ nregs
);
1089 "Widening register in chain %s (%d) at insn %d\n",
1090 reg_names
[head
->regno
], head
->id
, INSN_UID (insn
));
1094 fail_current_block
= true;
1097 "Failing basic block due to unhandled overlap\n");
1102 struct du_chain
*this_du
;
1103 this_du
= XOBNEW (&rename_obstack
, struct du_chain
);
1104 this_du
->next_use
= 0;
1106 this_du
->insn
= insn
;
1108 if (head
->first
== NULL
)
1109 head
->first
= this_du
;
1111 head
->last
->next_use
= this_du
;
1112 record_operand_use (head
, this_du
);
1113 head
->last
= this_du
;
1115 /* Avoid adding the same location in a DEBUG_INSN multiple times,
1116 which could happen with non-exact overlap. */
1117 if (DEBUG_INSN_P (insn
))
1119 /* Otherwise, find any other chains that do not match exactly;
1120 ensure they all get marked unrenamable. */
1121 p
= &head
->next_chain
;
1125 /* Whether the terminated chain can be used for renaming
1126 depends on the action and this being an exact match.
1127 In either case, we remove this element from open_chains. */
1129 if ((action
== terminate_dead
|| action
== terminate_write
)
1130 && (superset
|| subset
))
1134 if (subset
&& !superset
)
1135 head
->cannot_rename
= 1;
1136 bitmap_clear_bit (&open_chains_set
, head
->id
);
1138 nregs
= head
->nregs
;
1141 CLEAR_HARD_REG_BIT (live_in_chains
, head
->regno
+ nregs
);
1142 if (subset
&& !superset
1143 && (head
->regno
+ nregs
< this_regno
1144 || head
->regno
+ nregs
>= this_regno
+ this_nregs
))
1145 SET_HARD_REG_BIT (live_hard_regs
, head
->regno
+ nregs
);
1151 "Closing chain %s (%d) at insn %d (%s%s)\n",
1152 reg_names
[head
->regno
], head
->id
, INSN_UID (insn
),
1153 scan_actions_name
[(int) action
],
1154 superset
? ", superset" : subset
? ", subset" : "");
1156 else if (action
== terminate_dead
|| action
== terminate_write
)
1158 /* In this case, tracking liveness gets too hard. Fail the
1159 entire basic block. */
1162 "Failing basic block due to unhandled overlap\n");
1163 fail_current_block
= true;
1168 head
->cannot_rename
= 1;
1171 "Cannot rename chain %s (%d) at insn %d (%s)\n",
1172 reg_names
[head
->regno
], head
->id
, INSN_UID (insn
),
1173 scan_actions_name
[(int) action
]);
1174 p
= &head
->next_chain
;
1179 /* Adapted from find_reloads_address_1. CL is INDEX_REG_CLASS or
1180 BASE_REG_CLASS depending on how the register is being considered. */
1183 scan_rtx_address (rtx insn
, rtx
*loc
, enum reg_class cl
,
1184 enum scan_actions action
, enum machine_mode mode
,
1188 RTX_CODE code
= GET_CODE (x
);
1192 if (action
== mark_write
|| action
== mark_access
)
1199 rtx orig_op0
= XEXP (x
, 0);
1200 rtx orig_op1
= XEXP (x
, 1);
1201 RTX_CODE code0
= GET_CODE (orig_op0
);
1202 RTX_CODE code1
= GET_CODE (orig_op1
);
1207 enum rtx_code index_code
= SCRATCH
;
1209 if (GET_CODE (op0
) == SUBREG
)
1211 op0
= SUBREG_REG (op0
);
1212 code0
= GET_CODE (op0
);
1215 if (GET_CODE (op1
) == SUBREG
)
1217 op1
= SUBREG_REG (op1
);
1218 code1
= GET_CODE (op1
);
1221 if (code0
== MULT
|| code0
== SIGN_EXTEND
|| code0
== TRUNCATE
1222 || code0
== ZERO_EXTEND
|| code1
== MEM
)
1224 locI
= &XEXP (x
, 0);
1225 locB
= &XEXP (x
, 1);
1226 index_code
= GET_CODE (*locI
);
1228 else if (code1
== MULT
|| code1
== SIGN_EXTEND
|| code1
== TRUNCATE
1229 || code1
== ZERO_EXTEND
|| code0
== MEM
)
1231 locI
= &XEXP (x
, 1);
1232 locB
= &XEXP (x
, 0);
1233 index_code
= GET_CODE (*locI
);
1235 else if (code0
== CONST_INT
|| code0
== CONST
1236 || code0
== SYMBOL_REF
|| code0
== LABEL_REF
)
1238 locB
= &XEXP (x
, 1);
1239 index_code
= GET_CODE (XEXP (x
, 0));
1241 else if (code1
== CONST_INT
|| code1
== CONST
1242 || code1
== SYMBOL_REF
|| code1
== LABEL_REF
)
1244 locB
= &XEXP (x
, 0);
1245 index_code
= GET_CODE (XEXP (x
, 1));
1247 else if (code0
== REG
&& code1
== REG
)
1250 unsigned regno0
= REGNO (op0
), regno1
= REGNO (op1
);
1252 if (REGNO_OK_FOR_INDEX_P (regno1
)
1253 && regno_ok_for_base_p (regno0
, mode
, as
, PLUS
, REG
))
1255 else if (REGNO_OK_FOR_INDEX_P (regno0
)
1256 && regno_ok_for_base_p (regno1
, mode
, as
, PLUS
, REG
))
1258 else if (regno_ok_for_base_p (regno0
, mode
, as
, PLUS
, REG
)
1259 || REGNO_OK_FOR_INDEX_P (regno1
))
1261 else if (regno_ok_for_base_p (regno1
, mode
, as
, PLUS
, REG
))
1266 locI
= &XEXP (x
, index_op
);
1267 locB
= &XEXP (x
, !index_op
);
1268 index_code
= GET_CODE (*locI
);
1270 else if (code0
== REG
)
1272 locI
= &XEXP (x
, 0);
1273 locB
= &XEXP (x
, 1);
1274 index_code
= GET_CODE (*locI
);
1276 else if (code1
== REG
)
1278 locI
= &XEXP (x
, 1);
1279 locB
= &XEXP (x
, 0);
1280 index_code
= GET_CODE (*locI
);
1284 scan_rtx_address (insn
, locI
, INDEX_REG_CLASS
, action
, mode
, as
);
1286 scan_rtx_address (insn
, locB
,
1287 base_reg_class (mode
, as
, PLUS
, index_code
),
1299 #ifndef AUTO_INC_DEC
1300 /* If the target doesn't claim to handle autoinc, this must be
1301 something special, like a stack push. Kill this chain. */
1302 action
= mark_all_read
;
1307 scan_rtx_address (insn
, &XEXP (x
, 0),
1308 base_reg_class (GET_MODE (x
), MEM_ADDR_SPACE (x
),
1310 action
, GET_MODE (x
), MEM_ADDR_SPACE (x
));
1314 scan_rtx_reg (insn
, loc
, cl
, action
, OP_IN
);
1321 fmt
= GET_RTX_FORMAT (code
);
1322 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1325 scan_rtx_address (insn
, &XEXP (x
, i
), cl
, action
, mode
, as
);
1326 else if (fmt
[i
] == 'E')
1327 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
1328 scan_rtx_address (insn
, &XVECEXP (x
, i
, j
), cl
, action
, mode
, as
);
1333 scan_rtx (rtx insn
, rtx
*loc
, enum reg_class cl
, enum scan_actions action
,
1338 enum rtx_code code
= GET_CODE (x
);
1341 code
= GET_CODE (x
);
1356 scan_rtx_reg (insn
, loc
, cl
, action
, type
);
1360 scan_rtx_address (insn
, &XEXP (x
, 0),
1361 base_reg_class (GET_MODE (x
), MEM_ADDR_SPACE (x
),
1363 action
, GET_MODE (x
), MEM_ADDR_SPACE (x
));
1367 scan_rtx (insn
, &SET_SRC (x
), cl
, action
, OP_IN
);
1368 scan_rtx (insn
, &SET_DEST (x
), cl
, action
,
1369 (GET_CODE (PATTERN (insn
)) == COND_EXEC
1370 && verify_reg_tracked (SET_DEST (x
))) ? OP_INOUT
: OP_OUT
);
1373 case STRICT_LOW_PART
:
1374 scan_rtx (insn
, &XEXP (x
, 0), cl
, action
,
1375 verify_reg_tracked (XEXP (x
, 0)) ? OP_INOUT
: OP_OUT
);
1380 scan_rtx (insn
, &XEXP (x
, 0), cl
, action
,
1381 (type
== OP_IN
? OP_IN
:
1382 verify_reg_tracked (XEXP (x
, 0)) ? OP_INOUT
: OP_OUT
));
1383 scan_rtx (insn
, &XEXP (x
, 1), cl
, action
, OP_IN
);
1384 scan_rtx (insn
, &XEXP (x
, 2), cl
, action
, OP_IN
);
1393 /* Should only happen inside MEM. */
1397 scan_rtx (insn
, &SET_DEST (x
), cl
, action
,
1398 (GET_CODE (PATTERN (insn
)) == COND_EXEC
1399 && verify_reg_tracked (SET_DEST (x
))) ? OP_INOUT
: OP_OUT
);
1403 scan_rtx (insn
, &XEXP (x
, 0), cl
, action
, type
);
1405 scan_rtx (insn
, &XEXP (x
, 1), cl
, action
, type
);
1412 fmt
= GET_RTX_FORMAT (code
);
1413 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1416 scan_rtx (insn
, &XEXP (x
, i
), cl
, action
, type
);
1417 else if (fmt
[i
] == 'E')
1418 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
1419 scan_rtx (insn
, &XVECEXP (x
, i
, j
), cl
, action
, type
);
1423 /* Hide operands of the current insn (of which there are N_OPS) by
1424 substituting cc0 for them.
1425 Previous values are stored in the OLD_OPERANDS and OLD_DUPS.
1426 For every bit set in DO_NOT_HIDE, we leave the operand alone.
1427 If INOUT_AND_EC_ONLY is set, we only do this for OP_INOUT type operands
1428 and earlyclobbers. */
1431 hide_operands (int n_ops
, rtx
*old_operands
, rtx
*old_dups
,
1432 unsigned HOST_WIDE_INT do_not_hide
, bool inout_and_ec_only
)
1435 int alt
= which_alternative
;
1436 for (i
= 0; i
< n_ops
; i
++)
1438 old_operands
[i
] = recog_data
.operand
[i
];
1439 /* Don't squash match_operator or match_parallel here, since
1440 we don't know that all of the contained registers are
1441 reachable by proper operands. */
1442 if (recog_data
.constraints
[i
][0] == '\0')
1444 if (do_not_hide
& (1 << i
))
1446 if (!inout_and_ec_only
|| recog_data
.operand_type
[i
] == OP_INOUT
1447 || recog_op_alt
[i
][alt
].earlyclobber
)
1448 *recog_data
.operand_loc
[i
] = cc0_rtx
;
1450 for (i
= 0; i
< recog_data
.n_dups
; i
++)
1452 int opn
= recog_data
.dup_num
[i
];
1453 old_dups
[i
] = *recog_data
.dup_loc
[i
];
1454 if (do_not_hide
& (1 << opn
))
1456 if (!inout_and_ec_only
|| recog_data
.operand_type
[opn
] == OP_INOUT
1457 || recog_op_alt
[opn
][alt
].earlyclobber
)
1458 *recog_data
.dup_loc
[i
] = cc0_rtx
;
1462 /* Undo the substitution performed by hide_operands. INSN is the insn we
1463 are processing; the arguments are the same as in hide_operands. */
1466 restore_operands (rtx insn
, int n_ops
, rtx
*old_operands
, rtx
*old_dups
)
1469 for (i
= 0; i
< recog_data
.n_dups
; i
++)
1470 *recog_data
.dup_loc
[i
] = old_dups
[i
];
1471 for (i
= 0; i
< n_ops
; i
++)
1472 *recog_data
.operand_loc
[i
] = old_operands
[i
];
1473 if (recog_data
.n_dups
)
1474 df_insn_rescan (insn
);
1477 /* For each output operand of INSN, call scan_rtx to create a new
1478 open chain. Do this only for normal or earlyclobber outputs,
1479 depending on EARLYCLOBBER. If INSN_INFO is nonnull, use it to
1480 record information about the operands in the insn. */
1483 record_out_operands (rtx insn
, bool earlyclobber
, insn_rr_info
*insn_info
)
1485 int n_ops
= recog_data
.n_operands
;
1486 int alt
= which_alternative
;
1490 for (i
= 0; i
< n_ops
+ recog_data
.n_dups
; i
++)
1492 int opn
= i
< n_ops
? i
: recog_data
.dup_num
[i
- n_ops
];
1493 rtx
*loc
= (i
< n_ops
1494 ? recog_data
.operand_loc
[opn
]
1495 : recog_data
.dup_loc
[i
- n_ops
]);
1497 enum reg_class cl
= recog_op_alt
[opn
][alt
].cl
;
1499 struct du_head
*prev_open
;
1501 if (recog_data
.operand_type
[opn
] != OP_OUT
1502 || recog_op_alt
[opn
][alt
].earlyclobber
!= earlyclobber
)
1506 cur_operand
= insn_info
->op_info
+ i
;
1508 prev_open
= open_chains
;
1509 scan_rtx (insn
, loc
, cl
, mark_write
, OP_OUT
);
1511 /* ??? Many targets have output constraints on the SET_DEST
1512 of a call insn, which is stupid, since these are certainly
1513 ABI defined hard registers. For these, and for asm operands
1514 that originally referenced hard registers, we must record that
1515 the chain cannot be renamed. */
1517 || (asm_noperands (PATTERN (insn
)) > 0
1519 && REGNO (op
) == ORIGINAL_REGNO (op
)))
1521 if (prev_open
!= open_chains
)
1522 open_chains
->cannot_rename
= 1;
1528 /* Build def/use chain. */
1531 build_def_use (basic_block bb
)
1534 unsigned HOST_WIDE_INT untracked_operands
;
1536 fail_current_block
= false;
1538 for (insn
= BB_HEAD (bb
); ; insn
= NEXT_INSN (insn
))
1540 if (NONDEBUG_INSN_P (insn
))
1544 rtx old_operands
[MAX_RECOG_OPERANDS
];
1545 rtx old_dups
[MAX_DUP_OPERANDS
];
1549 enum rtx_code set_code
= SET
;
1550 enum rtx_code clobber_code
= CLOBBER
;
1551 insn_rr_info
*insn_info
= NULL
;
1553 /* Process the insn, determining its effect on the def-use
1554 chains and live hard registers. We perform the following
1555 steps with the register references in the insn, simulating
1557 (1) Deal with earlyclobber operands and CLOBBERs of non-operands
1558 by creating chains and marking hard regs live.
1559 (2) Any read outside an operand causes any chain it overlaps
1560 with to be marked unrenamable.
1561 (3) Any read inside an operand is added if there's already
1562 an open chain for it.
1563 (4) For any REG_DEAD note we find, close open chains that
1565 (5) For any non-earlyclobber write we find, close open chains
1567 (6) For any non-earlyclobber write we find in an operand, make
1568 a new chain or mark the hard register as live.
1569 (7) For any REG_UNUSED, close any chains we just opened.
1571 We cannot deal with situations where we track a reg in one mode
1572 and see a reference in another mode; these will cause the chain
1573 to be marked unrenamable or even cause us to abort the entire
1576 extract_insn (insn
);
1577 if (! constrain_operands (1))
1578 fatal_insn_not_found (insn
);
1579 preprocess_constraints ();
1580 alt
= which_alternative
;
1581 n_ops
= recog_data
.n_operands
;
1582 untracked_operands
= 0;
1584 if (insn_rr
!= NULL
)
1586 insn_info
= &VEC_index (insn_rr_info
, insn_rr
, INSN_UID (insn
));
1587 insn_info
->op_info
= XOBNEWVEC (&rename_obstack
, operand_rr_info
,
1588 recog_data
.n_operands
);
1589 memset (insn_info
->op_info
, 0,
1590 sizeof (operand_rr_info
) * recog_data
.n_operands
);
1593 /* Simplify the code below by rewriting things to reflect
1594 matching constraints. Also promote OP_OUT to OP_INOUT in
1595 predicated instructions, but only for register operands
1596 that are already tracked, so that we can create a chain
1597 when the first SET makes a register live. */
1599 predicated
= GET_CODE (PATTERN (insn
)) == COND_EXEC
;
1600 for (i
= 0; i
< n_ops
; ++i
)
1602 rtx op
= recog_data
.operand
[i
];
1603 int matches
= recog_op_alt
[i
][alt
].matches
;
1605 recog_op_alt
[i
][alt
].cl
= recog_op_alt
[matches
][alt
].cl
;
1606 if (matches
>= 0 || recog_op_alt
[i
][alt
].matched
>= 0
1607 || (predicated
&& recog_data
.operand_type
[i
] == OP_OUT
))
1609 recog_data
.operand_type
[i
] = OP_INOUT
;
1610 /* A special case to deal with instruction patterns that
1611 have matching operands with different modes. If we're
1612 not already tracking such a reg, we won't start here,
1613 and we must instead make sure to make the operand visible
1614 to the machinery that tracks hard registers. */
1616 && (GET_MODE_SIZE (recog_data
.operand_mode
[i
])
1617 != GET_MODE_SIZE (recog_data
.operand_mode
[matches
]))
1618 && !verify_reg_in_set (op
, &live_in_chains
))
1620 untracked_operands
|= 1 << i
;
1621 untracked_operands
|= 1 << matches
;
1624 /* If there's an in-out operand with a register that is not
1625 being tracked at all yet, open a chain. */
1626 if (recog_data
.operand_type
[i
] == OP_INOUT
1627 && !(untracked_operands
& (1 << i
))
1629 && !verify_reg_tracked (op
))
1631 enum machine_mode mode
= GET_MODE (op
);
1632 unsigned this_regno
= REGNO (op
);
1633 unsigned this_nregs
= hard_regno_nregs
[this_regno
][mode
];
1634 create_new_chain (this_regno
, this_nregs
, NULL
, NULL_RTX
,
1639 if (fail_current_block
)
1642 /* Step 1a: Mark hard registers that are clobbered in this insn,
1643 outside an operand, as live. */
1644 hide_operands (n_ops
, old_operands
, old_dups
, untracked_operands
,
1646 note_stores (PATTERN (insn
), note_sets_clobbers
, &clobber_code
);
1647 restore_operands (insn
, n_ops
, old_operands
, old_dups
);
1649 /* Step 1b: Begin new chains for earlyclobbered writes inside
1651 record_out_operands (insn
, true, insn_info
);
1653 /* Step 2: Mark chains for which we have reads outside operands
1655 We do this by munging all operands into CC0, and closing
1656 everything remaining. */
1658 hide_operands (n_ops
, old_operands
, old_dups
, untracked_operands
,
1660 scan_rtx (insn
, &PATTERN (insn
), NO_REGS
, mark_all_read
, OP_IN
);
1661 restore_operands (insn
, n_ops
, old_operands
, old_dups
);
1663 /* Step 2B: Can't rename function call argument registers. */
1664 if (CALL_P (insn
) && CALL_INSN_FUNCTION_USAGE (insn
))
1665 scan_rtx (insn
, &CALL_INSN_FUNCTION_USAGE (insn
),
1666 NO_REGS
, mark_all_read
, OP_IN
);
1668 /* Step 2C: Can't rename asm operands that were originally
1670 if (asm_noperands (PATTERN (insn
)) > 0)
1671 for (i
= 0; i
< n_ops
; i
++)
1673 rtx
*loc
= recog_data
.operand_loc
[i
];
1677 && REGNO (op
) == ORIGINAL_REGNO (op
)
1678 && (recog_data
.operand_type
[i
] == OP_IN
1679 || recog_data
.operand_type
[i
] == OP_INOUT
))
1680 scan_rtx (insn
, loc
, NO_REGS
, mark_all_read
, OP_IN
);
1683 /* Step 3: Append to chains for reads inside operands. */
1684 for (i
= 0; i
< n_ops
+ recog_data
.n_dups
; i
++)
1686 int opn
= i
< n_ops
? i
: recog_data
.dup_num
[i
- n_ops
];
1687 rtx
*loc
= (i
< n_ops
1688 ? recog_data
.operand_loc
[opn
]
1689 : recog_data
.dup_loc
[i
- n_ops
]);
1690 enum reg_class cl
= recog_op_alt
[opn
][alt
].cl
;
1691 enum op_type type
= recog_data
.operand_type
[opn
];
1693 /* Don't scan match_operand here, since we've no reg class
1694 information to pass down. Any operands that we could
1695 substitute in will be represented elsewhere. */
1696 if (recog_data
.constraints
[opn
][0] == '\0'
1697 || untracked_operands
& (1 << opn
))
1701 cur_operand
= i
== opn
? insn_info
->op_info
+ i
: NULL
;
1702 if (recog_op_alt
[opn
][alt
].is_address
)
1703 scan_rtx_address (insn
, loc
, cl
, mark_read
,
1704 VOIDmode
, ADDR_SPACE_GENERIC
);
1706 scan_rtx (insn
, loc
, cl
, mark_read
, type
);
1710 /* Step 3B: Record updates for regs in REG_INC notes, and
1711 source regs in REG_FRAME_RELATED_EXPR notes. */
1712 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
1713 if (REG_NOTE_KIND (note
) == REG_INC
1714 || REG_NOTE_KIND (note
) == REG_FRAME_RELATED_EXPR
)
1715 scan_rtx (insn
, &XEXP (note
, 0), ALL_REGS
, mark_read
,
1718 /* Step 4: Close chains for registers that die here. */
1719 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
1720 if (REG_NOTE_KIND (note
) == REG_DEAD
)
1722 remove_from_hard_reg_set (&live_hard_regs
,
1723 GET_MODE (XEXP (note
, 0)),
1724 REGNO (XEXP (note
, 0)));
1725 scan_rtx (insn
, &XEXP (note
, 0), NO_REGS
, terminate_dead
,
1729 /* Step 4B: If this is a call, any chain live at this point
1730 requires a caller-saved reg. */
1734 for (p
= open_chains
; p
; p
= p
->next_chain
)
1735 p
->need_caller_save_reg
= 1;
1738 /* Step 5: Close open chains that overlap writes. Similar to
1739 step 2, we hide in-out operands, since we do not want to
1740 close these chains. We also hide earlyclobber operands,
1741 since we've opened chains for them in step 1, and earlier
1742 chains they would overlap with must have been closed at
1743 the previous insn at the latest, as such operands cannot
1744 possibly overlap with any input operands. */
1746 hide_operands (n_ops
, old_operands
, old_dups
, untracked_operands
,
1748 scan_rtx (insn
, &PATTERN (insn
), NO_REGS
, terminate_write
, OP_IN
);
1749 restore_operands (insn
, n_ops
, old_operands
, old_dups
);
1751 /* Step 6a: Mark hard registers that are set in this insn,
1752 outside an operand, as live. */
1753 hide_operands (n_ops
, old_operands
, old_dups
, untracked_operands
,
1755 note_stores (PATTERN (insn
), note_sets_clobbers
, &set_code
);
1756 restore_operands (insn
, n_ops
, old_operands
, old_dups
);
1758 /* Step 6b: Begin new chains for writes inside operands. */
1759 record_out_operands (insn
, false, insn_info
);
1761 /* Step 6c: Record destination regs in REG_FRAME_RELATED_EXPR
1762 notes for update. */
1763 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
1764 if (REG_NOTE_KIND (note
) == REG_FRAME_RELATED_EXPR
)
1765 scan_rtx (insn
, &XEXP (note
, 0), ALL_REGS
, mark_access
,
1768 /* Step 7: Close chains for registers that were never
1769 really used here. */
1770 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
1771 if (REG_NOTE_KIND (note
) == REG_UNUSED
)
1773 remove_from_hard_reg_set (&live_hard_regs
,
1774 GET_MODE (XEXP (note
, 0)),
1775 REGNO (XEXP (note
, 0)));
1776 scan_rtx (insn
, &XEXP (note
, 0), NO_REGS
, terminate_dead
,
1780 else if (DEBUG_INSN_P (insn
)
1781 && !VAR_LOC_UNKNOWN_P (INSN_VAR_LOCATION_LOC (insn
)))
1783 scan_rtx (insn
, &INSN_VAR_LOCATION_LOC (insn
),
1784 ALL_REGS
, mark_read
, OP_IN
);
1786 if (insn
== BB_END (bb
))
1790 if (fail_current_block
)
1796 /* Initialize the register renamer. If INSN_INFO is true, ensure that
1797 insn_rr is nonnull. */
1799 regrename_init (bool insn_info
)
1801 gcc_obstack_init (&rename_obstack
);
1804 VEC_safe_grow_cleared (insn_rr_info
, heap
, insn_rr
, get_max_uid ());
1807 /* Free all global data used by the register renamer. */
1809 regrename_finish (void)
1811 VEC_free (insn_rr_info
, heap
, insn_rr
);
1813 obstack_free (&rename_obstack
, NULL
);
1816 /* Perform register renaming on the current function. */
1819 regrename_optimize (void)
1821 df_set_flags (DF_LR_RUN_DCE
);
1822 df_note_add_problem ();
1824 df_set_flags (DF_DEFER_INSN_RESCAN
);
1826 regrename_init (false);
1828 regrename_analyze (NULL
);
1832 regrename_finish ();
1838 gate_handle_regrename (void)
1840 return (optimize
> 0 && (flag_rename_registers
));
1843 struct rtl_opt_pass pass_regrename
=
1848 gate_handle_regrename
, /* gate */
1849 regrename_optimize
, /* execute */
1852 0, /* static_pass_number */
1853 TV_RENAME_REGISTERS
, /* tv_id */
1854 0, /* properties_required */
1855 0, /* properties_provided */
1856 0, /* properties_destroyed */
1857 0, /* todo_flags_start */
1858 TODO_df_finish
| TODO_verify_rtl_sharing
|
1859 0 /* todo_flags_finish */