Merge trunk version 190524 into gupc branch.
[official-gcc.git] / gcc / cfg.c
blobba8320812cd123053fc63dc011211b8976995369
1 /* Control flow graph manipulation code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This file contains low level functions to manipulate the CFG and
23 analyze it. All other modules should not transform the data structure
24 directly and use abstraction instead. The file is supposed to be
25 ordered bottom-up and should not contain any code dependent on a
26 particular intermediate language (RTL or trees).
28 Available functionality:
29 - Initialization/deallocation
30 init_flow, clear_edges
31 - Low level basic block manipulation
32 alloc_block, expunge_block
33 - Edge manipulation
34 make_edge, make_single_succ_edge, cached_make_edge, remove_edge
35 - Low level edge redirection (without updating instruction chain)
36 redirect_edge_succ, redirect_edge_succ_nodup, redirect_edge_pred
37 - Dumping and debugging
38 dump_flow_info, debug_flow_info, dump_edge_info
39 - Allocation of AUX fields for basic blocks
40 alloc_aux_for_blocks, free_aux_for_blocks, alloc_aux_for_block
41 - clear_bb_flags
42 - Consistency checking
43 verify_flow_info
44 - Dumping and debugging
45 print_rtl_with_bb, dump_bb, debug_bb, debug_bb_n
47 TODO: Document these "Available functionality" functions in the files
48 that implement them.
51 #include "config.h"
52 #include "system.h"
53 #include "coretypes.h"
54 #include "obstack.h"
55 #include "ggc.h"
56 #include "hashtab.h"
57 #include "alloc-pool.h"
58 #include "basic-block.h"
59 #include "df.h"
60 #include "cfgloop.h" /* FIXME: For struct loop. */
61 #include "dumpfile.h"
64 #define RDIV(X,Y) (((X) + (Y) / 2) / (Y))
66 /* Called once at initialization time. */
68 void
69 init_flow (struct function *the_fun)
71 if (!the_fun->cfg)
72 the_fun->cfg = ggc_alloc_cleared_control_flow_graph ();
73 n_edges_for_function (the_fun) = 0;
74 ENTRY_BLOCK_PTR_FOR_FUNCTION (the_fun)
75 = ggc_alloc_cleared_basic_block_def ();
76 ENTRY_BLOCK_PTR_FOR_FUNCTION (the_fun)->index = ENTRY_BLOCK;
77 EXIT_BLOCK_PTR_FOR_FUNCTION (the_fun)
78 = ggc_alloc_cleared_basic_block_def ();
79 EXIT_BLOCK_PTR_FOR_FUNCTION (the_fun)->index = EXIT_BLOCK;
80 ENTRY_BLOCK_PTR_FOR_FUNCTION (the_fun)->next_bb
81 = EXIT_BLOCK_PTR_FOR_FUNCTION (the_fun);
82 EXIT_BLOCK_PTR_FOR_FUNCTION (the_fun)->prev_bb
83 = ENTRY_BLOCK_PTR_FOR_FUNCTION (the_fun);
86 /* Helper function for remove_edge and clear_edges. Frees edge structure
87 without actually removing it from the pred/succ arrays. */
89 static void
90 free_edge (edge e)
92 n_edges--;
93 ggc_free (e);
96 /* Free the memory associated with the edge structures. */
98 void
99 clear_edges (void)
101 basic_block bb;
102 edge e;
103 edge_iterator ei;
105 FOR_EACH_BB (bb)
107 FOR_EACH_EDGE (e, ei, bb->succs)
108 free_edge (e);
109 VEC_truncate (edge, bb->succs, 0);
110 VEC_truncate (edge, bb->preds, 0);
113 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
114 free_edge (e);
115 VEC_truncate (edge, EXIT_BLOCK_PTR->preds, 0);
116 VEC_truncate (edge, ENTRY_BLOCK_PTR->succs, 0);
118 gcc_assert (!n_edges);
121 /* Allocate memory for basic_block. */
123 basic_block
124 alloc_block (void)
126 basic_block bb;
127 bb = ggc_alloc_cleared_basic_block_def ();
128 return bb;
131 /* Link block B to chain after AFTER. */
132 void
133 link_block (basic_block b, basic_block after)
135 b->next_bb = after->next_bb;
136 b->prev_bb = after;
137 after->next_bb = b;
138 b->next_bb->prev_bb = b;
141 /* Unlink block B from chain. */
142 void
143 unlink_block (basic_block b)
145 b->next_bb->prev_bb = b->prev_bb;
146 b->prev_bb->next_bb = b->next_bb;
147 b->prev_bb = NULL;
148 b->next_bb = NULL;
151 /* Sequentially order blocks and compact the arrays. */
152 void
153 compact_blocks (void)
155 int i;
157 SET_BASIC_BLOCK (ENTRY_BLOCK, ENTRY_BLOCK_PTR);
158 SET_BASIC_BLOCK (EXIT_BLOCK, EXIT_BLOCK_PTR);
160 if (df)
161 df_compact_blocks ();
162 else
164 basic_block bb;
166 i = NUM_FIXED_BLOCKS;
167 FOR_EACH_BB (bb)
169 SET_BASIC_BLOCK (i, bb);
170 bb->index = i;
171 i++;
173 gcc_assert (i == n_basic_blocks);
175 for (; i < last_basic_block; i++)
176 SET_BASIC_BLOCK (i, NULL);
178 last_basic_block = n_basic_blocks;
181 /* Remove block B from the basic block array. */
183 void
184 expunge_block (basic_block b)
186 unlink_block (b);
187 SET_BASIC_BLOCK (b->index, NULL);
188 n_basic_blocks--;
189 /* We should be able to ggc_free here, but we are not.
190 The dead SSA_NAMES are left pointing to dead statements that are pointing
191 to dead basic blocks making garbage collector to die.
192 We should be able to release all dead SSA_NAMES and at the same time we should
193 clear out BB pointer of dead statements consistently. */
196 /* Connect E to E->src. */
198 static inline void
199 connect_src (edge e)
201 VEC_safe_push (edge, gc, e->src->succs, e);
202 df_mark_solutions_dirty ();
205 /* Connect E to E->dest. */
207 static inline void
208 connect_dest (edge e)
210 basic_block dest = e->dest;
211 VEC_safe_push (edge, gc, dest->preds, e);
212 e->dest_idx = EDGE_COUNT (dest->preds) - 1;
213 df_mark_solutions_dirty ();
216 /* Disconnect edge E from E->src. */
218 static inline void
219 disconnect_src (edge e)
221 basic_block src = e->src;
222 edge_iterator ei;
223 edge tmp;
225 for (ei = ei_start (src->succs); (tmp = ei_safe_edge (ei)); )
227 if (tmp == e)
229 VEC_unordered_remove (edge, src->succs, ei.index);
230 df_mark_solutions_dirty ();
231 return;
233 else
234 ei_next (&ei);
237 gcc_unreachable ();
240 /* Disconnect edge E from E->dest. */
242 static inline void
243 disconnect_dest (edge e)
245 basic_block dest = e->dest;
246 unsigned int dest_idx = e->dest_idx;
248 VEC_unordered_remove (edge, dest->preds, dest_idx);
250 /* If we removed an edge in the middle of the edge vector, we need
251 to update dest_idx of the edge that moved into the "hole". */
252 if (dest_idx < EDGE_COUNT (dest->preds))
253 EDGE_PRED (dest, dest_idx)->dest_idx = dest_idx;
254 df_mark_solutions_dirty ();
257 /* Create an edge connecting SRC and DEST with flags FLAGS. Return newly
258 created edge. Use this only if you are sure that this edge can't
259 possibly already exist. */
261 edge
262 unchecked_make_edge (basic_block src, basic_block dst, int flags)
264 edge e;
265 e = ggc_alloc_cleared_edge_def ();
266 n_edges++;
268 e->src = src;
269 e->dest = dst;
270 e->flags = flags;
272 connect_src (e);
273 connect_dest (e);
275 execute_on_growing_pred (e);
276 return e;
279 /* Create an edge connecting SRC and DST with FLAGS optionally using
280 edge cache CACHE. Return the new edge, NULL if already exist. */
282 edge
283 cached_make_edge (sbitmap edge_cache, basic_block src, basic_block dst, int flags)
285 if (edge_cache == NULL
286 || src == ENTRY_BLOCK_PTR
287 || dst == EXIT_BLOCK_PTR)
288 return make_edge (src, dst, flags);
290 /* Does the requested edge already exist? */
291 if (! TEST_BIT (edge_cache, dst->index))
293 /* The edge does not exist. Create one and update the
294 cache. */
295 SET_BIT (edge_cache, dst->index);
296 return unchecked_make_edge (src, dst, flags);
299 /* At this point, we know that the requested edge exists. Adjust
300 flags if necessary. */
301 if (flags)
303 edge e = find_edge (src, dst);
304 e->flags |= flags;
307 return NULL;
310 /* Create an edge connecting SRC and DEST with flags FLAGS. Return newly
311 created edge or NULL if already exist. */
313 edge
314 make_edge (basic_block src, basic_block dest, int flags)
316 edge e = find_edge (src, dest);
318 /* Make sure we don't add duplicate edges. */
319 if (e)
321 e->flags |= flags;
322 return NULL;
325 return unchecked_make_edge (src, dest, flags);
328 /* Create an edge connecting SRC to DEST and set probability by knowing
329 that it is the single edge leaving SRC. */
331 edge
332 make_single_succ_edge (basic_block src, basic_block dest, int flags)
334 edge e = make_edge (src, dest, flags);
336 e->probability = REG_BR_PROB_BASE;
337 e->count = src->count;
338 return e;
341 /* This function will remove an edge from the flow graph. */
343 void
344 remove_edge_raw (edge e)
346 remove_predictions_associated_with_edge (e);
347 execute_on_shrinking_pred (e);
349 disconnect_src (e);
350 disconnect_dest (e);
352 free_edge (e);
355 /* Redirect an edge's successor from one block to another. */
357 void
358 redirect_edge_succ (edge e, basic_block new_succ)
360 execute_on_shrinking_pred (e);
362 disconnect_dest (e);
364 e->dest = new_succ;
366 /* Reconnect the edge to the new successor block. */
367 connect_dest (e);
369 execute_on_growing_pred (e);
372 /* Redirect an edge's predecessor from one block to another. */
374 void
375 redirect_edge_pred (edge e, basic_block new_pred)
377 disconnect_src (e);
379 e->src = new_pred;
381 /* Reconnect the edge to the new predecessor block. */
382 connect_src (e);
385 /* Clear all basic block flags that do not have to be preserved. */
386 void
387 clear_bb_flags (void)
389 basic_block bb;
391 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
392 bb->flags &= BB_FLAGS_TO_PRESERVE;
395 /* Check the consistency of profile information. We can't do that
396 in verify_flow_info, as the counts may get invalid for incompletely
397 solved graphs, later eliminating of conditionals or roundoff errors.
398 It is still practical to have them reported for debugging of simple
399 testcases. */
400 static void
401 check_bb_profile (basic_block bb, FILE * file, int indent, int flags)
403 edge e;
404 int sum = 0;
405 gcov_type lsum;
406 edge_iterator ei;
407 char *s_indent = (char *) alloca ((size_t) indent + 1);
408 memset ((void *) s_indent, ' ', (size_t) indent);
409 s_indent[indent] = '\0';
411 if (profile_status == PROFILE_ABSENT)
412 return;
414 if (bb != EXIT_BLOCK_PTR)
416 FOR_EACH_EDGE (e, ei, bb->succs)
417 sum += e->probability;
418 if (EDGE_COUNT (bb->succs) && abs (sum - REG_BR_PROB_BASE) > 100)
419 fprintf (file, "%s%sInvalid sum of outgoing probabilities %.1f%%\n",
420 (flags & TDF_COMMENT) ? ";; " : "", s_indent,
421 sum * 100.0 / REG_BR_PROB_BASE);
422 lsum = 0;
423 FOR_EACH_EDGE (e, ei, bb->succs)
424 lsum += e->count;
425 if (EDGE_COUNT (bb->succs)
426 && (lsum - bb->count > 100 || lsum - bb->count < -100))
427 fprintf (file, "%s%sInvalid sum of outgoing counts %i, should be %i\n",
428 (flags & TDF_COMMENT) ? ";; " : "", s_indent,
429 (int) lsum, (int) bb->count);
431 if (bb != ENTRY_BLOCK_PTR)
433 sum = 0;
434 FOR_EACH_EDGE (e, ei, bb->preds)
435 sum += EDGE_FREQUENCY (e);
436 if (abs (sum - bb->frequency) > 100)
437 fprintf (file,
438 "%s%sInvalid sum of incoming frequencies %i, should be %i\n",
439 (flags & TDF_COMMENT) ? ";; " : "", s_indent,
440 sum, bb->frequency);
441 lsum = 0;
442 FOR_EACH_EDGE (e, ei, bb->preds)
443 lsum += e->count;
444 if (lsum - bb->count > 100 || lsum - bb->count < -100)
445 fprintf (file, "%s%sInvalid sum of incoming counts %i, should be %i\n",
446 (flags & TDF_COMMENT) ? ";; " : "", s_indent,
447 (int) lsum, (int) bb->count);
451 void
452 dump_edge_info (FILE *file, edge e, int flags, int do_succ)
454 basic_block side = (do_succ ? e->dest : e->src);
455 bool do_details = false;
457 if ((flags & TDF_DETAILS) != 0
458 && (flags & TDF_SLIM) == 0)
459 do_details = true;
461 /* ENTRY_BLOCK_PTR/EXIT_BLOCK_PTR depend on cfun.
462 Compare against ENTRY_BLOCK/EXIT_BLOCK to avoid that dependency. */
463 if (side->index == ENTRY_BLOCK)
464 fputs (" ENTRY", file);
465 else if (side->index == EXIT_BLOCK)
466 fputs (" EXIT", file);
467 else
468 fprintf (file, " %d", side->index);
470 if (e->probability && do_details)
471 fprintf (file, " [%.1f%%] ", e->probability * 100.0 / REG_BR_PROB_BASE);
473 if (e->count && do_details)
475 fputs (" count:", file);
476 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, e->count);
479 if (e->flags && do_details)
481 static const char * const bitnames[] =
483 #define DEF_EDGE_FLAG(NAME,IDX) #NAME ,
484 #include "cfg-flags.def"
485 NULL
486 #undef DEF_EDGE_FLAG
488 bool comma = false;
489 int i, flags = e->flags;
491 gcc_assert (e->flags <= EDGE_ALL_FLAGS);
492 fputs (" (", file);
493 for (i = 0; flags; i++)
494 if (flags & (1 << i))
496 flags &= ~(1 << i);
498 if (comma)
499 fputc (',', file);
500 fputs (bitnames[i], file);
501 comma = true;
504 fputc (')', file);
508 /* Simple routines to easily allocate AUX fields of basic blocks. */
510 static struct obstack block_aux_obstack;
511 static void *first_block_aux_obj = 0;
512 static struct obstack edge_aux_obstack;
513 static void *first_edge_aux_obj = 0;
515 /* Allocate a memory block of SIZE as BB->aux. The obstack must
516 be first initialized by alloc_aux_for_blocks. */
518 static void
519 alloc_aux_for_block (basic_block bb, int size)
521 /* Verify that aux field is clear. */
522 gcc_assert (!bb->aux && first_block_aux_obj);
523 bb->aux = obstack_alloc (&block_aux_obstack, size);
524 memset (bb->aux, 0, size);
527 /* Initialize the block_aux_obstack and if SIZE is nonzero, call
528 alloc_aux_for_block for each basic block. */
530 void
531 alloc_aux_for_blocks (int size)
533 static int initialized;
535 if (!initialized)
537 gcc_obstack_init (&block_aux_obstack);
538 initialized = 1;
540 else
541 /* Check whether AUX data are still allocated. */
542 gcc_assert (!first_block_aux_obj);
544 first_block_aux_obj = obstack_alloc (&block_aux_obstack, 0);
545 if (size)
547 basic_block bb;
549 FOR_ALL_BB (bb)
550 alloc_aux_for_block (bb, size);
554 /* Clear AUX pointers of all blocks. */
556 void
557 clear_aux_for_blocks (void)
559 basic_block bb;
561 FOR_ALL_BB (bb)
562 bb->aux = NULL;
565 /* Free data allocated in block_aux_obstack and clear AUX pointers
566 of all blocks. */
568 void
569 free_aux_for_blocks (void)
571 gcc_assert (first_block_aux_obj);
572 obstack_free (&block_aux_obstack, first_block_aux_obj);
573 first_block_aux_obj = NULL;
575 clear_aux_for_blocks ();
578 /* Allocate a memory edge of SIZE as E->aux. The obstack must
579 be first initialized by alloc_aux_for_edges. */
581 void
582 alloc_aux_for_edge (edge e, int size)
584 /* Verify that aux field is clear. */
585 gcc_assert (!e->aux && first_edge_aux_obj);
586 e->aux = obstack_alloc (&edge_aux_obstack, size);
587 memset (e->aux, 0, size);
590 /* Initialize the edge_aux_obstack and if SIZE is nonzero, call
591 alloc_aux_for_edge for each basic edge. */
593 void
594 alloc_aux_for_edges (int size)
596 static int initialized;
598 if (!initialized)
600 gcc_obstack_init (&edge_aux_obstack);
601 initialized = 1;
603 else
604 /* Check whether AUX data are still allocated. */
605 gcc_assert (!first_edge_aux_obj);
607 first_edge_aux_obj = obstack_alloc (&edge_aux_obstack, 0);
608 if (size)
610 basic_block bb;
612 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
614 edge e;
615 edge_iterator ei;
617 FOR_EACH_EDGE (e, ei, bb->succs)
618 alloc_aux_for_edge (e, size);
623 /* Clear AUX pointers of all edges. */
625 void
626 clear_aux_for_edges (void)
628 basic_block bb;
629 edge e;
631 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
633 edge_iterator ei;
634 FOR_EACH_EDGE (e, ei, bb->succs)
635 e->aux = NULL;
639 /* Free data allocated in edge_aux_obstack and clear AUX pointers
640 of all edges. */
642 void
643 free_aux_for_edges (void)
645 gcc_assert (first_edge_aux_obj);
646 obstack_free (&edge_aux_obstack, first_edge_aux_obj);
647 first_edge_aux_obj = NULL;
649 clear_aux_for_edges ();
652 DEBUG_FUNCTION void
653 debug_bb (basic_block bb)
655 dump_bb (stderr, bb, 0, dump_flags);
658 DEBUG_FUNCTION basic_block
659 debug_bb_n (int n)
661 basic_block bb = BASIC_BLOCK (n);
662 debug_bb (bb);
663 return bb;
666 /* Dumps cfg related information about basic block BB to OUTF.
667 If HEADER is true, dump things that appear before the instructions
668 contained in BB. If FOOTER is true, dump things that appear after.
669 Flags are the TDF_* masks as documented in dumpfile.h.
670 NB: With TDF_DETAILS, it is assumed that cfun is available, so
671 that maybe_hot_bb_p and probably_never_executed_bb_p don't ICE. */
673 void
674 dump_bb_info (FILE *outf, basic_block bb, int indent, int flags,
675 bool do_header, bool do_footer)
677 edge_iterator ei;
678 edge e;
679 static const char * const bb_bitnames[] =
681 #define DEF_BASIC_BLOCK_FLAG(NAME,IDX) #NAME ,
682 #include "cfg-flags.def"
683 NULL
684 #undef DEF_BASIC_BLOCK_FLAG
686 const unsigned n_bitnames = sizeof (bb_bitnames) / sizeof (char *);
687 bool first;
688 char *s_indent = (char *) alloca ((size_t) indent + 1);
689 memset ((void *) s_indent, ' ', (size_t) indent);
690 s_indent[indent] = '\0';
692 gcc_assert (bb->flags <= BB_ALL_FLAGS);
694 if (do_header)
696 unsigned i;
698 if (flags & TDF_COMMENT)
699 fputs (";; ", outf);
700 fprintf (outf, "%sbasic block %d, loop depth %d",
701 s_indent, bb->index, bb_loop_depth (bb));
702 if (flags & TDF_DETAILS)
704 fprintf (outf, ", count " HOST_WIDEST_INT_PRINT_DEC,
705 (HOST_WIDEST_INT) bb->count);
706 fprintf (outf, ", freq %i", bb->frequency);
707 if (maybe_hot_bb_p (bb))
708 fputs (", maybe hot", outf);
709 if (probably_never_executed_bb_p (bb))
710 fputs (", probably never executed", outf);
712 fputc ('\n', outf);
713 if (TDF_DETAILS)
714 check_bb_profile (bb, outf, indent, flags);
716 if (flags & TDF_DETAILS)
718 if (flags & TDF_COMMENT)
719 fputs (";; ", outf);
720 fprintf (outf, "%s prev block ", s_indent);
721 if (bb->prev_bb)
722 fprintf (outf, "%d", bb->prev_bb->index);
723 else
724 fprintf (outf, "(nil)");
725 fprintf (outf, ", next block ");
726 if (bb->next_bb)
727 fprintf (outf, "%d", bb->next_bb->index);
728 else
729 fprintf (outf, "(nil)");
731 fputs (", flags:", outf);
732 first = true;
733 for (i = 0; i < n_bitnames; i++)
734 if (bb->flags & (1 << i))
736 if (first)
737 fputs (" (", outf);
738 else
739 fputs (", ", outf);
740 first = false;
741 fputs (bb_bitnames[i], outf);
743 if (!first)
744 fputc (')', outf);
745 fputc ('\n', outf);
748 if (flags & TDF_COMMENT)
749 fputs (";; ", outf);
750 fprintf (outf, "%s pred: ", s_indent);
751 first = true;
752 FOR_EACH_EDGE (e, ei, bb->preds)
754 if (! first)
756 if (flags & TDF_COMMENT)
757 fputs (";; ", outf);
758 fprintf (outf, "%s ", s_indent);
760 first = false;
761 dump_edge_info (outf, e, flags, 0);
762 fputc ('\n', outf);
766 if (do_footer)
768 if (flags & TDF_COMMENT)
769 fputs (";; ", outf);
770 fprintf (outf, "%s succ: ", s_indent);
771 first = true;
772 FOR_EACH_EDGE (e, ei, bb->succs)
774 if (! first)
776 if (flags & TDF_COMMENT)
777 fputs (";; ", outf);
778 fprintf (outf, "%s ", s_indent);
780 first = false;
781 dump_edge_info (outf, e, flags, 1);
782 fputc ('\n', outf);
787 /* Dumps a brief description of cfg to FILE. */
789 void
790 brief_dump_cfg (FILE *file, int flags)
792 basic_block bb;
794 FOR_EACH_BB (bb)
796 dump_bb_info (file, bb, 0,
797 flags & (TDF_COMMENT | TDF_DETAILS),
798 true, true);
802 /* An edge originally destinating BB of FREQUENCY and COUNT has been proved to
803 leave the block by TAKEN_EDGE. Update profile of BB such that edge E can be
804 redirected to destination of TAKEN_EDGE.
806 This function may leave the profile inconsistent in the case TAKEN_EDGE
807 frequency or count is believed to be lower than FREQUENCY or COUNT
808 respectively. */
809 void
810 update_bb_profile_for_threading (basic_block bb, int edge_frequency,
811 gcov_type count, edge taken_edge)
813 edge c;
814 int prob;
815 edge_iterator ei;
817 bb->count -= count;
818 if (bb->count < 0)
820 if (dump_file)
821 fprintf (dump_file, "bb %i count became negative after threading",
822 bb->index);
823 bb->count = 0;
826 /* Compute the probability of TAKEN_EDGE being reached via threaded edge.
827 Watch for overflows. */
828 if (bb->frequency)
829 prob = edge_frequency * REG_BR_PROB_BASE / bb->frequency;
830 else
831 prob = 0;
832 if (prob > taken_edge->probability)
834 if (dump_file)
835 fprintf (dump_file, "Jump threading proved probability of edge "
836 "%i->%i too small (it is %i, should be %i).\n",
837 taken_edge->src->index, taken_edge->dest->index,
838 taken_edge->probability, prob);
839 prob = taken_edge->probability;
842 /* Now rescale the probabilities. */
843 taken_edge->probability -= prob;
844 prob = REG_BR_PROB_BASE - prob;
845 bb->frequency -= edge_frequency;
846 if (bb->frequency < 0)
847 bb->frequency = 0;
848 if (prob <= 0)
850 if (dump_file)
851 fprintf (dump_file, "Edge frequencies of bb %i has been reset, "
852 "frequency of block should end up being 0, it is %i\n",
853 bb->index, bb->frequency);
854 EDGE_SUCC (bb, 0)->probability = REG_BR_PROB_BASE;
855 ei = ei_start (bb->succs);
856 ei_next (&ei);
857 for (; (c = ei_safe_edge (ei)); ei_next (&ei))
858 c->probability = 0;
860 else if (prob != REG_BR_PROB_BASE)
862 int scale = RDIV (65536 * REG_BR_PROB_BASE, prob);
864 FOR_EACH_EDGE (c, ei, bb->succs)
866 /* Protect from overflow due to additional scaling. */
867 if (c->probability > prob)
868 c->probability = REG_BR_PROB_BASE;
869 else
871 c->probability = RDIV (c->probability * scale, 65536);
872 if (c->probability > REG_BR_PROB_BASE)
873 c->probability = REG_BR_PROB_BASE;
878 gcc_assert (bb == taken_edge->src);
879 taken_edge->count -= count;
880 if (taken_edge->count < 0)
882 if (dump_file)
883 fprintf (dump_file, "edge %i->%i count became negative after threading",
884 taken_edge->src->index, taken_edge->dest->index);
885 taken_edge->count = 0;
889 /* Multiply all frequencies of basic blocks in array BBS of length NBBS
890 by NUM/DEN, in int arithmetic. May lose some accuracy. */
891 void
892 scale_bbs_frequencies_int (basic_block *bbs, int nbbs, int num, int den)
894 int i;
895 edge e;
896 if (num < 0)
897 num = 0;
899 /* Scale NUM and DEN to avoid overflows. Frequencies are in order of
900 10^4, if we make DEN <= 10^3, we can afford to upscale by 100
901 and still safely fit in int during calculations. */
902 if (den > 1000)
904 if (num > 1000000)
905 return;
907 num = RDIV (1000 * num, den);
908 den = 1000;
910 if (num > 100 * den)
911 return;
913 for (i = 0; i < nbbs; i++)
915 edge_iterator ei;
916 bbs[i]->frequency = RDIV (bbs[i]->frequency * num, den);
917 /* Make sure the frequencies do not grow over BB_FREQ_MAX. */
918 if (bbs[i]->frequency > BB_FREQ_MAX)
919 bbs[i]->frequency = BB_FREQ_MAX;
920 bbs[i]->count = RDIV (bbs[i]->count * num, den);
921 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
922 e->count = RDIV (e->count * num, den);
926 /* numbers smaller than this value are safe to multiply without getting
927 64bit overflow. */
928 #define MAX_SAFE_MULTIPLIER (1 << (sizeof (HOST_WIDEST_INT) * 4 - 1))
930 /* Multiply all frequencies of basic blocks in array BBS of length NBBS
931 by NUM/DEN, in gcov_type arithmetic. More accurate than previous
932 function but considerably slower. */
933 void
934 scale_bbs_frequencies_gcov_type (basic_block *bbs, int nbbs, gcov_type num,
935 gcov_type den)
937 int i;
938 edge e;
939 gcov_type fraction = RDIV (num * 65536, den);
941 gcc_assert (fraction >= 0);
943 if (num < MAX_SAFE_MULTIPLIER)
944 for (i = 0; i < nbbs; i++)
946 edge_iterator ei;
947 bbs[i]->frequency = RDIV (bbs[i]->frequency * num, den);
948 if (bbs[i]->count <= MAX_SAFE_MULTIPLIER)
949 bbs[i]->count = RDIV (bbs[i]->count * num, den);
950 else
951 bbs[i]->count = RDIV (bbs[i]->count * fraction, 65536);
952 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
953 if (bbs[i]->count <= MAX_SAFE_MULTIPLIER)
954 e->count = RDIV (e->count * num, den);
955 else
956 e->count = RDIV (e->count * fraction, 65536);
958 else
959 for (i = 0; i < nbbs; i++)
961 edge_iterator ei;
962 if (sizeof (gcov_type) > sizeof (int))
963 bbs[i]->frequency = RDIV (bbs[i]->frequency * num, den);
964 else
965 bbs[i]->frequency = RDIV (bbs[i]->frequency * fraction, 65536);
966 bbs[i]->count = RDIV (bbs[i]->count * fraction, 65536);
967 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
968 e->count = RDIV (e->count * fraction, 65536);
972 /* Data structures used to maintain mapping between basic blocks and
973 copies. */
974 static htab_t bb_original;
975 static htab_t bb_copy;
977 /* And between loops and copies. */
978 static htab_t loop_copy;
979 static alloc_pool original_copy_bb_pool;
981 struct htab_bb_copy_original_entry
983 /* Block we are attaching info to. */
984 int index1;
985 /* Index of original or copy (depending on the hashtable) */
986 int index2;
989 static hashval_t
990 bb_copy_original_hash (const void *p)
992 const struct htab_bb_copy_original_entry *data
993 = ((const struct htab_bb_copy_original_entry *)p);
995 return data->index1;
997 static int
998 bb_copy_original_eq (const void *p, const void *q)
1000 const struct htab_bb_copy_original_entry *data
1001 = ((const struct htab_bb_copy_original_entry *)p);
1002 const struct htab_bb_copy_original_entry *data2
1003 = ((const struct htab_bb_copy_original_entry *)q);
1005 return data->index1 == data2->index1;
1008 /* Initialize the data structures to maintain mapping between blocks
1009 and its copies. */
1010 void
1011 initialize_original_copy_tables (void)
1013 gcc_assert (!original_copy_bb_pool);
1014 original_copy_bb_pool
1015 = create_alloc_pool ("original_copy",
1016 sizeof (struct htab_bb_copy_original_entry), 10);
1017 bb_original = htab_create (10, bb_copy_original_hash,
1018 bb_copy_original_eq, NULL);
1019 bb_copy = htab_create (10, bb_copy_original_hash, bb_copy_original_eq, NULL);
1020 loop_copy = htab_create (10, bb_copy_original_hash, bb_copy_original_eq, NULL);
1023 /* Free the data structures to maintain mapping between blocks and
1024 its copies. */
1025 void
1026 free_original_copy_tables (void)
1028 gcc_assert (original_copy_bb_pool);
1029 htab_delete (bb_copy);
1030 htab_delete (bb_original);
1031 htab_delete (loop_copy);
1032 free_alloc_pool (original_copy_bb_pool);
1033 bb_copy = NULL;
1034 bb_original = NULL;
1035 loop_copy = NULL;
1036 original_copy_bb_pool = NULL;
1039 /* Removes the value associated with OBJ from table TAB. */
1041 static void
1042 copy_original_table_clear (htab_t tab, unsigned obj)
1044 void **slot;
1045 struct htab_bb_copy_original_entry key, *elt;
1047 if (!original_copy_bb_pool)
1048 return;
1050 key.index1 = obj;
1051 slot = htab_find_slot (tab, &key, NO_INSERT);
1052 if (!slot)
1053 return;
1055 elt = (struct htab_bb_copy_original_entry *) *slot;
1056 htab_clear_slot (tab, slot);
1057 pool_free (original_copy_bb_pool, elt);
1060 /* Sets the value associated with OBJ in table TAB to VAL.
1061 Do nothing when data structures are not initialized. */
1063 static void
1064 copy_original_table_set (htab_t tab, unsigned obj, unsigned val)
1066 struct htab_bb_copy_original_entry **slot;
1067 struct htab_bb_copy_original_entry key;
1069 if (!original_copy_bb_pool)
1070 return;
1072 key.index1 = obj;
1073 slot = (struct htab_bb_copy_original_entry **)
1074 htab_find_slot (tab, &key, INSERT);
1075 if (!*slot)
1077 *slot = (struct htab_bb_copy_original_entry *)
1078 pool_alloc (original_copy_bb_pool);
1079 (*slot)->index1 = obj;
1081 (*slot)->index2 = val;
1084 /* Set original for basic block. Do nothing when data structures are not
1085 initialized so passes not needing this don't need to care. */
1086 void
1087 set_bb_original (basic_block bb, basic_block original)
1089 copy_original_table_set (bb_original, bb->index, original->index);
1092 /* Get the original basic block. */
1093 basic_block
1094 get_bb_original (basic_block bb)
1096 struct htab_bb_copy_original_entry *entry;
1097 struct htab_bb_copy_original_entry key;
1099 gcc_assert (original_copy_bb_pool);
1101 key.index1 = bb->index;
1102 entry = (struct htab_bb_copy_original_entry *) htab_find (bb_original, &key);
1103 if (entry)
1104 return BASIC_BLOCK (entry->index2);
1105 else
1106 return NULL;
1109 /* Set copy for basic block. Do nothing when data structures are not
1110 initialized so passes not needing this don't need to care. */
1111 void
1112 set_bb_copy (basic_block bb, basic_block copy)
1114 copy_original_table_set (bb_copy, bb->index, copy->index);
1117 /* Get the copy of basic block. */
1118 basic_block
1119 get_bb_copy (basic_block bb)
1121 struct htab_bb_copy_original_entry *entry;
1122 struct htab_bb_copy_original_entry key;
1124 gcc_assert (original_copy_bb_pool);
1126 key.index1 = bb->index;
1127 entry = (struct htab_bb_copy_original_entry *) htab_find (bb_copy, &key);
1128 if (entry)
1129 return BASIC_BLOCK (entry->index2);
1130 else
1131 return NULL;
1134 /* Set copy for LOOP to COPY. Do nothing when data structures are not
1135 initialized so passes not needing this don't need to care. */
1137 void
1138 set_loop_copy (struct loop *loop, struct loop *copy)
1140 if (!copy)
1141 copy_original_table_clear (loop_copy, loop->num);
1142 else
1143 copy_original_table_set (loop_copy, loop->num, copy->num);
1146 /* Get the copy of LOOP. */
1148 struct loop *
1149 get_loop_copy (struct loop *loop)
1151 struct htab_bb_copy_original_entry *entry;
1152 struct htab_bb_copy_original_entry key;
1154 gcc_assert (original_copy_bb_pool);
1156 key.index1 = loop->num;
1157 entry = (struct htab_bb_copy_original_entry *) htab_find (loop_copy, &key);
1158 if (entry)
1159 return get_loop (entry->index2);
1160 else
1161 return NULL;