* auto-profile.c (afdo_annotate_cfg): Use update_max_bb_count.
[official-gcc.git] / gcc / go / gofrontend / types.cc
blob5b0c84a0f56bf9ee6ad079fb5a5366e2f08c32c8
1 // types.cc -- Go frontend types.
3 // Copyright 2009 The Go Authors. All rights reserved.
4 // Use of this source code is governed by a BSD-style
5 // license that can be found in the LICENSE file.
7 #include "go-system.h"
9 #include <ostream>
11 #include "go-c.h"
12 #include "gogo.h"
13 #include "go-diagnostics.h"
14 #include "go-encode-id.h"
15 #include "operator.h"
16 #include "expressions.h"
17 #include "statements.h"
18 #include "export.h"
19 #include "import.h"
20 #include "backend.h"
21 #include "types.h"
23 // Forward declarations so that we don't have to make types.h #include
24 // backend.h.
26 static void
27 get_backend_struct_fields(Gogo* gogo, const Struct_field_list* fields,
28 bool use_placeholder,
29 std::vector<Backend::Btyped_identifier>* bfields);
31 static void
32 get_backend_slice_fields(Gogo* gogo, Array_type* type, bool use_placeholder,
33 std::vector<Backend::Btyped_identifier>* bfields);
35 static void
36 get_backend_interface_fields(Gogo* gogo, Interface_type* type,
37 bool use_placeholder,
38 std::vector<Backend::Btyped_identifier>* bfields);
40 // Class Type.
42 Type::Type(Type_classification classification)
43 : classification_(classification), btype_(NULL), type_descriptor_var_(NULL),
44 gc_symbol_var_(NULL)
48 Type::~Type()
52 // Get the base type for a type--skip names and forward declarations.
54 Type*
55 Type::base()
57 switch (this->classification_)
59 case TYPE_NAMED:
60 return this->named_type()->named_base();
61 case TYPE_FORWARD:
62 return this->forward_declaration_type()->real_type()->base();
63 default:
64 return this;
68 const Type*
69 Type::base() const
71 switch (this->classification_)
73 case TYPE_NAMED:
74 return this->named_type()->named_base();
75 case TYPE_FORWARD:
76 return this->forward_declaration_type()->real_type()->base();
77 default:
78 return this;
82 // Skip defined forward declarations.
84 Type*
85 Type::forwarded()
87 Type* t = this;
88 Forward_declaration_type* ftype = t->forward_declaration_type();
89 while (ftype != NULL && ftype->is_defined())
91 t = ftype->real_type();
92 ftype = t->forward_declaration_type();
94 return t;
97 const Type*
98 Type::forwarded() const
100 const Type* t = this;
101 const Forward_declaration_type* ftype = t->forward_declaration_type();
102 while (ftype != NULL && ftype->is_defined())
104 t = ftype->real_type();
105 ftype = t->forward_declaration_type();
107 return t;
110 // If this is a named type, return it. Otherwise, return NULL.
112 Named_type*
113 Type::named_type()
115 return this->forwarded()->convert_no_base<Named_type, TYPE_NAMED>();
118 const Named_type*
119 Type::named_type() const
121 return this->forwarded()->convert_no_base<const Named_type, TYPE_NAMED>();
124 // Return true if this type is not defined.
126 bool
127 Type::is_undefined() const
129 return this->forwarded()->forward_declaration_type() != NULL;
132 // Return true if this is a basic type: a type which is not composed
133 // of other types, and is not void.
135 bool
136 Type::is_basic_type() const
138 switch (this->classification_)
140 case TYPE_INTEGER:
141 case TYPE_FLOAT:
142 case TYPE_COMPLEX:
143 case TYPE_BOOLEAN:
144 case TYPE_STRING:
145 case TYPE_NIL:
146 return true;
148 case TYPE_ERROR:
149 case TYPE_VOID:
150 case TYPE_FUNCTION:
151 case TYPE_POINTER:
152 case TYPE_STRUCT:
153 case TYPE_ARRAY:
154 case TYPE_MAP:
155 case TYPE_CHANNEL:
156 case TYPE_INTERFACE:
157 return false;
159 case TYPE_NAMED:
160 case TYPE_FORWARD:
161 return this->base()->is_basic_type();
163 default:
164 go_unreachable();
168 // Return true if this is an abstract type.
170 bool
171 Type::is_abstract() const
173 switch (this->classification())
175 case TYPE_INTEGER:
176 return this->integer_type()->is_abstract();
177 case TYPE_FLOAT:
178 return this->float_type()->is_abstract();
179 case TYPE_COMPLEX:
180 return this->complex_type()->is_abstract();
181 case TYPE_STRING:
182 return this->is_abstract_string_type();
183 case TYPE_BOOLEAN:
184 return this->is_abstract_boolean_type();
185 default:
186 return false;
190 // Return a non-abstract version of an abstract type.
192 Type*
193 Type::make_non_abstract_type()
195 go_assert(this->is_abstract());
196 switch (this->classification())
198 case TYPE_INTEGER:
199 if (this->integer_type()->is_rune())
200 return Type::lookup_integer_type("int32");
201 else
202 return Type::lookup_integer_type("int");
203 case TYPE_FLOAT:
204 return Type::lookup_float_type("float64");
205 case TYPE_COMPLEX:
206 return Type::lookup_complex_type("complex128");
207 case TYPE_STRING:
208 return Type::lookup_string_type();
209 case TYPE_BOOLEAN:
210 return Type::lookup_bool_type();
211 default:
212 go_unreachable();
216 // Return true if this is an error type. Don't give an error if we
217 // try to dereference an undefined forwarding type, as this is called
218 // in the parser when the type may legitimately be undefined.
220 bool
221 Type::is_error_type() const
223 const Type* t = this->forwarded();
224 // Note that we return false for an undefined forward type.
225 switch (t->classification_)
227 case TYPE_ERROR:
228 return true;
229 case TYPE_NAMED:
230 return t->named_type()->is_named_error_type();
231 default:
232 return false;
236 // If this is a pointer type, return the type to which it points.
237 // Otherwise, return NULL.
239 Type*
240 Type::points_to() const
242 const Pointer_type* ptype = this->convert<const Pointer_type,
243 TYPE_POINTER>();
244 return ptype == NULL ? NULL : ptype->points_to();
247 // Return whether this is a slice type.
249 bool
250 Type::is_slice_type() const
252 return this->array_type() != NULL && this->array_type()->length() == NULL;
255 // Return whether this is the predeclared constant nil being used as a
256 // type.
258 bool
259 Type::is_nil_constant_as_type() const
261 const Type* t = this->forwarded();
262 if (t->forward_declaration_type() != NULL)
264 const Named_object* no = t->forward_declaration_type()->named_object();
265 if (no->is_unknown())
266 no = no->unknown_value()->real_named_object();
267 if (no != NULL
268 && no->is_const()
269 && no->const_value()->expr()->is_nil_expression())
270 return true;
272 return false;
275 // Traverse a type.
278 Type::traverse(Type* type, Traverse* traverse)
280 go_assert((traverse->traverse_mask() & Traverse::traverse_types) != 0
281 || (traverse->traverse_mask()
282 & Traverse::traverse_expressions) != 0);
283 if (traverse->remember_type(type))
285 // We have already traversed this type.
286 return TRAVERSE_CONTINUE;
288 if ((traverse->traverse_mask() & Traverse::traverse_types) != 0)
290 int t = traverse->type(type);
291 if (t == TRAVERSE_EXIT)
292 return TRAVERSE_EXIT;
293 else if (t == TRAVERSE_SKIP_COMPONENTS)
294 return TRAVERSE_CONTINUE;
296 // An array type has an expression which we need to traverse if
297 // traverse_expressions is set.
298 if (type->do_traverse(traverse) == TRAVERSE_EXIT)
299 return TRAVERSE_EXIT;
300 return TRAVERSE_CONTINUE;
303 // Default implementation for do_traverse for child class.
306 Type::do_traverse(Traverse*)
308 return TRAVERSE_CONTINUE;
311 // Return whether two types are identical. If ERRORS_ARE_IDENTICAL,
312 // then return true for all erroneous types; this is used to avoid
313 // cascading errors. If REASON is not NULL, optionally set *REASON to
314 // the reason the types are not identical.
316 bool
317 Type::are_identical(const Type* t1, const Type* t2, bool errors_are_identical,
318 std::string* reason)
320 return Type::are_identical_cmp_tags(t1, t2, COMPARE_TAGS,
321 errors_are_identical, reason);
324 // Like are_identical, but with a CMP_TAGS parameter.
326 bool
327 Type::are_identical_cmp_tags(const Type* t1, const Type* t2, Cmp_tags cmp_tags,
328 bool errors_are_identical, std::string* reason)
330 if (t1 == NULL || t2 == NULL)
332 // Something is wrong.
333 return errors_are_identical ? true : t1 == t2;
336 // Skip defined forward declarations.
337 t1 = t1->forwarded();
338 t2 = t2->forwarded();
340 // Ignore aliases for purposes of type identity.
341 while (t1->named_type() != NULL && t1->named_type()->is_alias())
342 t1 = t1->named_type()->real_type()->forwarded();
343 while (t2->named_type() != NULL && t2->named_type()->is_alias())
344 t2 = t2->named_type()->real_type()->forwarded();
346 if (t1 == t2)
347 return true;
349 // An undefined forward declaration is an error.
350 if (t1->forward_declaration_type() != NULL
351 || t2->forward_declaration_type() != NULL)
352 return errors_are_identical;
354 // Avoid cascading errors with error types.
355 if (t1->is_error_type() || t2->is_error_type())
357 if (errors_are_identical)
358 return true;
359 return t1->is_error_type() && t2->is_error_type();
362 // Get a good reason for the sink type. Note that the sink type on
363 // the left hand side of an assignment is handled in are_assignable.
364 if (t1->is_sink_type() || t2->is_sink_type())
366 if (reason != NULL)
367 *reason = "invalid use of _";
368 return false;
371 // A named type is only identical to itself.
372 if (t1->named_type() != NULL || t2->named_type() != NULL)
373 return false;
375 // Check type shapes.
376 if (t1->classification() != t2->classification())
377 return false;
379 switch (t1->classification())
381 case TYPE_VOID:
382 case TYPE_BOOLEAN:
383 case TYPE_STRING:
384 case TYPE_NIL:
385 // These types are always identical.
386 return true;
388 case TYPE_INTEGER:
389 return t1->integer_type()->is_identical(t2->integer_type());
391 case TYPE_FLOAT:
392 return t1->float_type()->is_identical(t2->float_type());
394 case TYPE_COMPLEX:
395 return t1->complex_type()->is_identical(t2->complex_type());
397 case TYPE_FUNCTION:
398 return t1->function_type()->is_identical(t2->function_type(),
399 false,
400 cmp_tags,
401 errors_are_identical,
402 reason);
404 case TYPE_POINTER:
405 return Type::are_identical_cmp_tags(t1->points_to(), t2->points_to(),
406 cmp_tags, errors_are_identical,
407 reason);
409 case TYPE_STRUCT:
410 return t1->struct_type()->is_identical(t2->struct_type(), cmp_tags,
411 errors_are_identical);
413 case TYPE_ARRAY:
414 return t1->array_type()->is_identical(t2->array_type(), cmp_tags,
415 errors_are_identical);
417 case TYPE_MAP:
418 return t1->map_type()->is_identical(t2->map_type(), cmp_tags,
419 errors_are_identical);
421 case TYPE_CHANNEL:
422 return t1->channel_type()->is_identical(t2->channel_type(), cmp_tags,
423 errors_are_identical);
425 case TYPE_INTERFACE:
426 return t1->interface_type()->is_identical(t2->interface_type(), cmp_tags,
427 errors_are_identical);
429 case TYPE_CALL_MULTIPLE_RESULT:
430 if (reason != NULL)
431 *reason = "invalid use of multiple-value function call";
432 return false;
434 default:
435 go_unreachable();
439 // Return true if it's OK to have a binary operation with types LHS
440 // and RHS. This is not used for shifts or comparisons.
442 bool
443 Type::are_compatible_for_binop(const Type* lhs, const Type* rhs)
445 if (Type::are_identical(lhs, rhs, true, NULL))
446 return true;
448 // A constant of abstract bool type may be mixed with any bool type.
449 if ((rhs->is_abstract_boolean_type() && lhs->is_boolean_type())
450 || (lhs->is_abstract_boolean_type() && rhs->is_boolean_type()))
451 return true;
453 // A constant of abstract string type may be mixed with any string
454 // type.
455 if ((rhs->is_abstract_string_type() && lhs->is_string_type())
456 || (lhs->is_abstract_string_type() && rhs->is_string_type()))
457 return true;
459 lhs = lhs->base();
460 rhs = rhs->base();
462 // A constant of abstract integer, float, or complex type may be
463 // mixed with an integer, float, or complex type.
464 if ((rhs->is_abstract()
465 && (rhs->integer_type() != NULL
466 || rhs->float_type() != NULL
467 || rhs->complex_type() != NULL)
468 && (lhs->integer_type() != NULL
469 || lhs->float_type() != NULL
470 || lhs->complex_type() != NULL))
471 || (lhs->is_abstract()
472 && (lhs->integer_type() != NULL
473 || lhs->float_type() != NULL
474 || lhs->complex_type() != NULL)
475 && (rhs->integer_type() != NULL
476 || rhs->float_type() != NULL
477 || rhs->complex_type() != NULL)))
478 return true;
480 // The nil type may be compared to a pointer, an interface type, a
481 // slice type, a channel type, a map type, or a function type.
482 if (lhs->is_nil_type()
483 && (rhs->points_to() != NULL
484 || rhs->interface_type() != NULL
485 || rhs->is_slice_type()
486 || rhs->map_type() != NULL
487 || rhs->channel_type() != NULL
488 || rhs->function_type() != NULL))
489 return true;
490 if (rhs->is_nil_type()
491 && (lhs->points_to() != NULL
492 || lhs->interface_type() != NULL
493 || lhs->is_slice_type()
494 || lhs->map_type() != NULL
495 || lhs->channel_type() != NULL
496 || lhs->function_type() != NULL))
497 return true;
499 return false;
502 // Return true if a value with type T1 may be compared with a value of
503 // type T2. IS_EQUALITY_OP is true for == or !=, false for <, etc.
505 bool
506 Type::are_compatible_for_comparison(bool is_equality_op, const Type *t1,
507 const Type *t2, std::string *reason)
509 if (t1 != t2
510 && !Type::are_assignable(t1, t2, NULL)
511 && !Type::are_assignable(t2, t1, NULL))
513 if (reason != NULL)
514 *reason = "incompatible types in binary expression";
515 return false;
518 if (!is_equality_op)
520 if (t1->integer_type() == NULL
521 && t1->float_type() == NULL
522 && !t1->is_string_type())
524 if (reason != NULL)
525 *reason = _("invalid comparison of non-ordered type");
526 return false;
529 else if (t1->is_slice_type()
530 || t1->map_type() != NULL
531 || t1->function_type() != NULL
532 || t2->is_slice_type()
533 || t2->map_type() != NULL
534 || t2->function_type() != NULL)
536 if (!t1->is_nil_type() && !t2->is_nil_type())
538 if (reason != NULL)
540 if (t1->is_slice_type() || t2->is_slice_type())
541 *reason = _("slice can only be compared to nil");
542 else if (t1->map_type() != NULL || t2->map_type() != NULL)
543 *reason = _("map can only be compared to nil");
544 else
545 *reason = _("func can only be compared to nil");
547 // Match 6g error messages.
548 if (t1->interface_type() != NULL || t2->interface_type() != NULL)
550 char buf[200];
551 snprintf(buf, sizeof buf, _("invalid operation (%s)"),
552 reason->c_str());
553 *reason = buf;
556 return false;
559 else
561 if (!t1->is_boolean_type()
562 && t1->integer_type() == NULL
563 && t1->float_type() == NULL
564 && t1->complex_type() == NULL
565 && !t1->is_string_type()
566 && t1->points_to() == NULL
567 && t1->channel_type() == NULL
568 && t1->interface_type() == NULL
569 && t1->struct_type() == NULL
570 && t1->array_type() == NULL
571 && !t1->is_nil_type())
573 if (reason != NULL)
574 *reason = _("invalid comparison of non-comparable type");
575 return false;
578 if (t1->named_type() != NULL)
579 return t1->named_type()->named_type_is_comparable(reason);
580 else if (t2->named_type() != NULL)
581 return t2->named_type()->named_type_is_comparable(reason);
582 else if (t1->struct_type() != NULL)
584 if (t1->struct_type()->is_struct_incomparable())
586 if (reason != NULL)
587 *reason = _("invalid comparison of generated struct");
588 return false;
590 const Struct_field_list* fields = t1->struct_type()->fields();
591 for (Struct_field_list::const_iterator p = fields->begin();
592 p != fields->end();
593 ++p)
595 if (!p->type()->is_comparable())
597 if (reason != NULL)
598 *reason = _("invalid comparison of non-comparable struct");
599 return false;
603 else if (t1->array_type() != NULL)
605 if (t1->array_type()->is_array_incomparable())
607 if (reason != NULL)
608 *reason = _("invalid comparison of generated array");
609 return false;
611 if (t1->array_type()->length()->is_nil_expression()
612 || !t1->array_type()->element_type()->is_comparable())
614 if (reason != NULL)
615 *reason = _("invalid comparison of non-comparable array");
616 return false;
621 return true;
624 // Return true if a value with type RHS may be assigned to a variable
625 // with type LHS. If REASON is not NULL, set *REASON to the reason
626 // the types are not assignable.
628 bool
629 Type::are_assignable(const Type* lhs, const Type* rhs, std::string* reason)
631 // Do some checks first. Make sure the types are defined.
632 if (rhs != NULL && !rhs->is_undefined())
634 if (rhs->is_void_type())
636 if (reason != NULL)
637 *reason = "non-value used as value";
638 return false;
640 if (rhs->is_call_multiple_result_type())
642 if (reason != NULL)
643 reason->assign(_("multiple-value function call in "
644 "single-value context"));
645 return false;
649 // Any value may be assigned to the blank identifier.
650 if (lhs != NULL
651 && !lhs->is_undefined()
652 && lhs->is_sink_type())
653 return true;
655 // Identical types are assignable.
656 if (Type::are_identical(lhs, rhs, true, reason))
657 return true;
659 // The types are assignable if they have identical underlying types
660 // and either LHS or RHS is not a named type.
661 if (((lhs->named_type() != NULL && rhs->named_type() == NULL)
662 || (rhs->named_type() != NULL && lhs->named_type() == NULL))
663 && Type::are_identical(lhs->base(), rhs->base(), true, reason))
664 return true;
666 // The types are assignable if LHS is an interface type and RHS
667 // implements the required methods.
668 const Interface_type* lhs_interface_type = lhs->interface_type();
669 if (lhs_interface_type != NULL)
671 if (lhs_interface_type->implements_interface(rhs, reason))
672 return true;
673 const Interface_type* rhs_interface_type = rhs->interface_type();
674 if (rhs_interface_type != NULL
675 && lhs_interface_type->is_compatible_for_assign(rhs_interface_type,
676 reason))
677 return true;
680 // The type are assignable if RHS is a bidirectional channel type,
681 // LHS is a channel type, they have identical element types, and
682 // either LHS or RHS is not a named type.
683 if (lhs->channel_type() != NULL
684 && rhs->channel_type() != NULL
685 && rhs->channel_type()->may_send()
686 && rhs->channel_type()->may_receive()
687 && (lhs->named_type() == NULL || rhs->named_type() == NULL)
688 && Type::are_identical(lhs->channel_type()->element_type(),
689 rhs->channel_type()->element_type(),
690 true,
691 reason))
692 return true;
694 // The nil type may be assigned to a pointer, function, slice, map,
695 // channel, or interface type.
696 if (rhs->is_nil_type()
697 && (lhs->points_to() != NULL
698 || lhs->function_type() != NULL
699 || lhs->is_slice_type()
700 || lhs->map_type() != NULL
701 || lhs->channel_type() != NULL
702 || lhs->interface_type() != NULL))
703 return true;
705 // An untyped numeric constant may be assigned to a numeric type if
706 // it is representable in that type.
707 if ((rhs->is_abstract()
708 && (rhs->integer_type() != NULL
709 || rhs->float_type() != NULL
710 || rhs->complex_type() != NULL))
711 && (lhs->integer_type() != NULL
712 || lhs->float_type() != NULL
713 || lhs->complex_type() != NULL))
714 return true;
716 // Give some better error messages.
717 if (reason != NULL && reason->empty())
719 if (rhs->interface_type() != NULL)
720 reason->assign(_("need explicit conversion"));
721 else if (lhs->named_type() != NULL && rhs->named_type() != NULL)
723 size_t len = (lhs->named_type()->name().length()
724 + rhs->named_type()->name().length()
725 + 100);
726 char* buf = new char[len];
727 snprintf(buf, len, _("cannot use type %s as type %s"),
728 rhs->named_type()->message_name().c_str(),
729 lhs->named_type()->message_name().c_str());
730 reason->assign(buf);
731 delete[] buf;
735 return false;
738 // Return true if a value with type RHS may be converted to type LHS.
739 // If REASON is not NULL, set *REASON to the reason the types are not
740 // convertible.
742 bool
743 Type::are_convertible(const Type* lhs, const Type* rhs, std::string* reason)
745 // The types are convertible if they are assignable.
746 if (Type::are_assignable(lhs, rhs, reason))
747 return true;
749 // A pointer to a regular type may not be converted to a pointer to
750 // a type that may not live in the heap, except when converting from
751 // unsafe.Pointer.
752 if (lhs->points_to() != NULL
753 && rhs->points_to() != NULL
754 && !lhs->points_to()->in_heap()
755 && rhs->points_to()->in_heap()
756 && !rhs->is_unsafe_pointer_type())
758 if (reason != NULL)
759 reason->assign(_("conversion from normal type to notinheap type"));
760 return false;
763 // The types are convertible if they have identical underlying
764 // types, ignoring struct field tags.
765 if ((lhs->named_type() != NULL || rhs->named_type() != NULL)
766 && Type::are_identical_cmp_tags(lhs->base(), rhs->base(), IGNORE_TAGS,
767 true, reason))
768 return true;
770 // The types are convertible if they are both unnamed pointer types
771 // and their pointer base types have identical underlying types,
772 // ignoring struct field tags.
773 if (lhs->named_type() == NULL
774 && rhs->named_type() == NULL
775 && lhs->points_to() != NULL
776 && rhs->points_to() != NULL
777 && (lhs->points_to()->named_type() != NULL
778 || rhs->points_to()->named_type() != NULL)
779 && Type::are_identical_cmp_tags(lhs->points_to()->base(),
780 rhs->points_to()->base(),
781 IGNORE_TAGS,
782 true,
783 reason))
784 return true;
786 // Integer and floating point types are convertible to each other.
787 if ((lhs->integer_type() != NULL || lhs->float_type() != NULL)
788 && (rhs->integer_type() != NULL || rhs->float_type() != NULL))
789 return true;
791 // Complex types are convertible to each other.
792 if (lhs->complex_type() != NULL && rhs->complex_type() != NULL)
793 return true;
795 // An integer, or []byte, or []rune, may be converted to a string.
796 if (lhs->is_string_type())
798 if (rhs->integer_type() != NULL)
799 return true;
800 if (rhs->is_slice_type())
802 const Type* e = rhs->array_type()->element_type()->forwarded();
803 if (e->integer_type() != NULL
804 && (e->integer_type()->is_byte()
805 || e->integer_type()->is_rune()))
806 return true;
810 // A string may be converted to []byte or []rune.
811 if (rhs->is_string_type() && lhs->is_slice_type())
813 const Type* e = lhs->array_type()->element_type()->forwarded();
814 if (e->integer_type() != NULL
815 && (e->integer_type()->is_byte() || e->integer_type()->is_rune()))
816 return true;
819 // An unsafe.Pointer type may be converted to any pointer type or to
820 // a type whose underlying type is uintptr, and vice-versa.
821 if (lhs->is_unsafe_pointer_type()
822 && (rhs->points_to() != NULL
823 || (rhs->integer_type() != NULL
824 && rhs->integer_type() == Type::lookup_integer_type("uintptr")->real_type())))
825 return true;
826 if (rhs->is_unsafe_pointer_type()
827 && (lhs->points_to() != NULL
828 || (lhs->integer_type() != NULL
829 && lhs->integer_type() == Type::lookup_integer_type("uintptr")->real_type())))
830 return true;
832 // Give a better error message.
833 if (reason != NULL)
835 if (reason->empty())
836 *reason = "invalid type conversion";
837 else
839 std::string s = "invalid type conversion (";
840 s += *reason;
841 s += ')';
842 *reason = s;
846 return false;
849 // Return a hash code for the type to be used for method lookup.
851 unsigned int
852 Type::hash_for_method(Gogo* gogo) const
854 if (this->named_type() != NULL && this->named_type()->is_alias())
855 return this->named_type()->real_type()->hash_for_method(gogo);
856 unsigned int ret = 0;
857 if (this->classification_ != TYPE_FORWARD)
858 ret += this->classification_;
859 return ret + this->do_hash_for_method(gogo);
862 // Default implementation of do_hash_for_method. This is appropriate
863 // for types with no subfields.
865 unsigned int
866 Type::do_hash_for_method(Gogo*) const
868 return 0;
871 // Return a hash code for a string, given a starting hash.
873 unsigned int
874 Type::hash_string(const std::string& s, unsigned int h)
876 const char* p = s.data();
877 size_t len = s.length();
878 for (; len > 0; --len)
880 h ^= *p++;
881 h*= 16777619;
883 return h;
886 // A hash table mapping unnamed types to the backend representation of
887 // those types.
889 Type::Type_btypes Type::type_btypes;
891 // Return the backend representation for this type.
893 Btype*
894 Type::get_backend(Gogo* gogo)
896 if (this->btype_ != NULL)
897 return this->btype_;
899 if (this->forward_declaration_type() != NULL
900 || this->named_type() != NULL)
901 return this->get_btype_without_hash(gogo);
903 if (this->is_error_type())
904 return gogo->backend()->error_type();
906 // To avoid confusing the backend, translate all identical Go types
907 // to the same backend representation. We use a hash table to do
908 // that. There is no need to use the hash table for named types, as
909 // named types are only identical to themselves.
911 std::pair<Type*, Type_btype_entry> val;
912 val.first = this;
913 val.second.btype = NULL;
914 val.second.is_placeholder = false;
915 std::pair<Type_btypes::iterator, bool> ins =
916 Type::type_btypes.insert(val);
917 if (!ins.second && ins.first->second.btype != NULL)
919 // Note that GOGO can be NULL here, but only when the GCC
920 // middle-end is asking for a frontend type. That will only
921 // happen for simple types, which should never require
922 // placeholders.
923 if (!ins.first->second.is_placeholder)
924 this->btype_ = ins.first->second.btype;
925 else if (gogo->named_types_are_converted())
927 this->finish_backend(gogo, ins.first->second.btype);
928 ins.first->second.is_placeholder = false;
931 return ins.first->second.btype;
934 Btype* bt = this->get_btype_without_hash(gogo);
936 if (ins.first->second.btype == NULL)
938 ins.first->second.btype = bt;
939 ins.first->second.is_placeholder = false;
941 else
943 // We have already created a backend representation for this
944 // type. This can happen when an unnamed type is defined using
945 // a named type which in turns uses an identical unnamed type.
946 // Use the representation we created earlier and ignore the one we just
947 // built.
948 if (this->btype_ == bt)
949 this->btype_ = ins.first->second.btype;
950 bt = ins.first->second.btype;
953 return bt;
956 // Return the backend representation for a type without looking in the
957 // hash table for identical types. This is used for named types,
958 // since a named type is never identical to any other type.
960 Btype*
961 Type::get_btype_without_hash(Gogo* gogo)
963 if (this->btype_ == NULL)
965 Btype* bt = this->do_get_backend(gogo);
967 // For a recursive function or pointer type, we will temporarily
968 // return a circular pointer type during the recursion. We
969 // don't want to record that for a forwarding type, as it may
970 // confuse us later.
971 if (this->forward_declaration_type() != NULL
972 && gogo->backend()->is_circular_pointer_type(bt))
973 return bt;
975 if (gogo == NULL || !gogo->named_types_are_converted())
976 return bt;
978 this->btype_ = bt;
980 return this->btype_;
983 // Get the backend representation of a type without forcing the
984 // creation of the backend representation of all supporting types.
985 // This will return a backend type that has the correct size but may
986 // be incomplete. E.g., a pointer will just be a placeholder pointer,
987 // and will not contain the final representation of the type to which
988 // it points. This is used while converting all named types to the
989 // backend representation, to avoid problems with indirect references
990 // to types which are not yet complete. When this is called, the
991 // sizes of all direct references (e.g., a struct field) should be
992 // known, but the sizes of indirect references (e.g., the type to
993 // which a pointer points) may not.
995 Btype*
996 Type::get_backend_placeholder(Gogo* gogo)
998 if (gogo->named_types_are_converted())
999 return this->get_backend(gogo);
1000 if (this->btype_ != NULL)
1001 return this->btype_;
1003 Btype* bt;
1004 switch (this->classification_)
1006 case TYPE_ERROR:
1007 case TYPE_VOID:
1008 case TYPE_BOOLEAN:
1009 case TYPE_INTEGER:
1010 case TYPE_FLOAT:
1011 case TYPE_COMPLEX:
1012 case TYPE_STRING:
1013 case TYPE_NIL:
1014 // These are simple types that can just be created directly.
1015 return this->get_backend(gogo);
1017 case TYPE_MAP:
1018 case TYPE_CHANNEL:
1019 // All maps and channels have the same backend representation.
1020 return this->get_backend(gogo);
1022 case TYPE_NAMED:
1023 case TYPE_FORWARD:
1024 // Named types keep track of their own dependencies and manage
1025 // their own placeholders.
1026 return this->get_backend(gogo);
1028 case TYPE_INTERFACE:
1029 if (this->interface_type()->is_empty())
1030 return Interface_type::get_backend_empty_interface_type(gogo);
1031 break;
1033 default:
1034 break;
1037 std::pair<Type*, Type_btype_entry> val;
1038 val.first = this;
1039 val.second.btype = NULL;
1040 val.second.is_placeholder = false;
1041 std::pair<Type_btypes::iterator, bool> ins =
1042 Type::type_btypes.insert(val);
1043 if (!ins.second && ins.first->second.btype != NULL)
1044 return ins.first->second.btype;
1046 switch (this->classification_)
1048 case TYPE_FUNCTION:
1050 // A Go function type is a pointer to a struct type.
1051 Location loc = this->function_type()->location();
1052 bt = gogo->backend()->placeholder_pointer_type("", loc, false);
1054 break;
1056 case TYPE_POINTER:
1058 Location loc = Linemap::unknown_location();
1059 bt = gogo->backend()->placeholder_pointer_type("", loc, false);
1060 Pointer_type* pt = this->convert<Pointer_type, TYPE_POINTER>();
1061 Type::placeholder_pointers.push_back(pt);
1063 break;
1065 case TYPE_STRUCT:
1066 // We don't have to make the struct itself be a placeholder. We
1067 // are promised that we know the sizes of the struct fields.
1068 // But we may have to use a placeholder for any particular
1069 // struct field.
1071 std::vector<Backend::Btyped_identifier> bfields;
1072 get_backend_struct_fields(gogo, this->struct_type()->fields(),
1073 true, &bfields);
1074 bt = gogo->backend()->struct_type(bfields);
1076 break;
1078 case TYPE_ARRAY:
1079 if (this->is_slice_type())
1081 std::vector<Backend::Btyped_identifier> bfields;
1082 get_backend_slice_fields(gogo, this->array_type(), true, &bfields);
1083 bt = gogo->backend()->struct_type(bfields);
1085 else
1087 Btype* element = this->array_type()->get_backend_element(gogo, true);
1088 Bexpression* len = this->array_type()->get_backend_length(gogo);
1089 bt = gogo->backend()->array_type(element, len);
1091 break;
1093 case TYPE_INTERFACE:
1095 go_assert(!this->interface_type()->is_empty());
1096 std::vector<Backend::Btyped_identifier> bfields;
1097 get_backend_interface_fields(gogo, this->interface_type(), true,
1098 &bfields);
1099 bt = gogo->backend()->struct_type(bfields);
1101 break;
1103 case TYPE_SINK:
1104 case TYPE_CALL_MULTIPLE_RESULT:
1105 /* Note that various classifications were handled in the earlier
1106 switch. */
1107 default:
1108 go_unreachable();
1111 if (ins.first->second.btype == NULL)
1113 ins.first->second.btype = bt;
1114 ins.first->second.is_placeholder = true;
1116 else
1118 // A placeholder for this type got created along the way. Use
1119 // that one and ignore the one we just built.
1120 bt = ins.first->second.btype;
1123 return bt;
1126 // Complete the backend representation. This is called for a type
1127 // using a placeholder type.
1129 void
1130 Type::finish_backend(Gogo* gogo, Btype *placeholder)
1132 switch (this->classification_)
1134 case TYPE_ERROR:
1135 case TYPE_VOID:
1136 case TYPE_BOOLEAN:
1137 case TYPE_INTEGER:
1138 case TYPE_FLOAT:
1139 case TYPE_COMPLEX:
1140 case TYPE_STRING:
1141 case TYPE_NIL:
1142 go_unreachable();
1144 case TYPE_FUNCTION:
1146 Btype* bt = this->do_get_backend(gogo);
1147 if (!gogo->backend()->set_placeholder_pointer_type(placeholder, bt))
1148 go_assert(saw_errors());
1150 break;
1152 case TYPE_POINTER:
1154 Btype* bt = this->do_get_backend(gogo);
1155 if (!gogo->backend()->set_placeholder_pointer_type(placeholder, bt))
1156 go_assert(saw_errors());
1158 break;
1160 case TYPE_STRUCT:
1161 // The struct type itself is done, but we have to make sure that
1162 // all the field types are converted.
1163 this->struct_type()->finish_backend_fields(gogo);
1164 break;
1166 case TYPE_ARRAY:
1167 // The array type itself is done, but make sure the element type
1168 // is converted.
1169 this->array_type()->finish_backend_element(gogo);
1170 break;
1172 case TYPE_MAP:
1173 case TYPE_CHANNEL:
1174 go_unreachable();
1176 case TYPE_INTERFACE:
1177 // The interface type itself is done, but make sure the method
1178 // types are converted.
1179 this->interface_type()->finish_backend_methods(gogo);
1180 break;
1182 case TYPE_NAMED:
1183 case TYPE_FORWARD:
1184 go_unreachable();
1186 case TYPE_SINK:
1187 case TYPE_CALL_MULTIPLE_RESULT:
1188 default:
1189 go_unreachable();
1192 this->btype_ = placeholder;
1195 // Return a pointer to the type descriptor for this type.
1197 Bexpression*
1198 Type::type_descriptor_pointer(Gogo* gogo, Location location)
1200 Type* t = this->forwarded();
1201 while (t->named_type() != NULL && t->named_type()->is_alias())
1202 t = t->named_type()->real_type()->forwarded();
1203 if (t->type_descriptor_var_ == NULL)
1205 t->make_type_descriptor_var(gogo);
1206 go_assert(t->type_descriptor_var_ != NULL);
1208 Bexpression* var_expr =
1209 gogo->backend()->var_expression(t->type_descriptor_var_,
1210 VE_rvalue, location);
1211 Bexpression* var_addr =
1212 gogo->backend()->address_expression(var_expr, location);
1213 Type* td_type = Type::make_type_descriptor_type();
1214 Btype* td_btype = td_type->get_backend(gogo);
1215 Btype* ptd_btype = gogo->backend()->pointer_type(td_btype);
1216 return gogo->backend()->convert_expression(ptd_btype, var_addr, location);
1219 // A mapping from unnamed types to type descriptor variables.
1221 Type::Type_descriptor_vars Type::type_descriptor_vars;
1223 // Build the type descriptor for this type.
1225 void
1226 Type::make_type_descriptor_var(Gogo* gogo)
1228 go_assert(this->type_descriptor_var_ == NULL);
1230 Named_type* nt = this->named_type();
1232 // We can have multiple instances of unnamed types, but we only want
1233 // to emit the type descriptor once. We use a hash table. This is
1234 // not necessary for named types, as they are unique, and we store
1235 // the type descriptor in the type itself.
1236 Bvariable** phash = NULL;
1237 if (nt == NULL)
1239 Bvariable* bvnull = NULL;
1240 std::pair<Type_descriptor_vars::iterator, bool> ins =
1241 Type::type_descriptor_vars.insert(std::make_pair(this, bvnull));
1242 if (!ins.second)
1244 // We've already built a type descriptor for this type.
1245 this->type_descriptor_var_ = ins.first->second;
1246 return;
1248 phash = &ins.first->second;
1251 // The type descriptor symbol for the unsafe.Pointer type is defined in
1252 // libgo/go-unsafe-pointer.c, so we just return a reference to that
1253 // symbol if necessary.
1254 if (this->is_unsafe_pointer_type())
1256 Location bloc = Linemap::predeclared_location();
1258 Type* td_type = Type::make_type_descriptor_type();
1259 Btype* td_btype = td_type->get_backend(gogo);
1260 std::string name = gogo->type_descriptor_name(this, nt);
1261 std::string asm_name(go_selectively_encode_id(name));
1262 this->type_descriptor_var_ =
1263 gogo->backend()->immutable_struct_reference(name, asm_name,
1264 td_btype,
1265 bloc);
1267 if (phash != NULL)
1268 *phash = this->type_descriptor_var_;
1269 return;
1272 std::string var_name = gogo->type_descriptor_name(this, nt);
1274 // Build the contents of the type descriptor.
1275 Expression* initializer = this->do_type_descriptor(gogo, NULL);
1277 Btype* initializer_btype = initializer->type()->get_backend(gogo);
1279 Location loc = nt == NULL ? Linemap::predeclared_location() : nt->location();
1281 const Package* dummy;
1282 if (this->type_descriptor_defined_elsewhere(nt, &dummy))
1284 std::string asm_name(go_selectively_encode_id(var_name));
1285 this->type_descriptor_var_ =
1286 gogo->backend()->immutable_struct_reference(var_name, asm_name,
1287 initializer_btype,
1288 loc);
1289 if (phash != NULL)
1290 *phash = this->type_descriptor_var_;
1291 return;
1294 // See if this type descriptor can appear in multiple packages.
1295 bool is_common = false;
1296 if (nt != NULL)
1298 // We create the descriptor for a builtin type whenever we need
1299 // it.
1300 is_common = nt->is_builtin();
1302 else
1304 // This is an unnamed type. The descriptor could be defined in
1305 // any package where it is needed, and the linker will pick one
1306 // descriptor to keep.
1307 is_common = true;
1310 // We are going to build the type descriptor in this package. We
1311 // must create the variable before we convert the initializer to the
1312 // backend representation, because the initializer may refer to the
1313 // type descriptor of this type. By setting type_descriptor_var_ we
1314 // ensure that type_descriptor_pointer will work if called while
1315 // converting INITIALIZER.
1317 std::string asm_name(go_selectively_encode_id(var_name));
1318 this->type_descriptor_var_ =
1319 gogo->backend()->immutable_struct(var_name, asm_name, false, is_common,
1320 initializer_btype, loc);
1321 if (phash != NULL)
1322 *phash = this->type_descriptor_var_;
1324 Translate_context context(gogo, NULL, NULL, NULL);
1325 context.set_is_const();
1326 Bexpression* binitializer = initializer->get_backend(&context);
1328 gogo->backend()->immutable_struct_set_init(this->type_descriptor_var_,
1329 var_name, false, is_common,
1330 initializer_btype, loc,
1331 binitializer);
1334 // Return true if this type descriptor is defined in a different
1335 // package. If this returns true it sets *PACKAGE to the package.
1337 bool
1338 Type::type_descriptor_defined_elsewhere(Named_type* nt,
1339 const Package** package)
1341 if (nt != NULL)
1343 if (nt->named_object()->package() != NULL)
1345 // This is a named type defined in a different package. The
1346 // type descriptor should be defined in that package.
1347 *package = nt->named_object()->package();
1348 return true;
1351 else
1353 if (this->points_to() != NULL
1354 && this->points_to()->named_type() != NULL
1355 && this->points_to()->named_type()->named_object()->package() != NULL)
1357 // This is an unnamed pointer to a named type defined in a
1358 // different package. The descriptor should be defined in
1359 // that package.
1360 *package = this->points_to()->named_type()->named_object()->package();
1361 return true;
1364 return false;
1367 // Return a composite literal for a type descriptor.
1369 Expression*
1370 Type::type_descriptor(Gogo* gogo, Type* type)
1372 return type->do_type_descriptor(gogo, NULL);
1375 // Return a composite literal for a type descriptor with a name.
1377 Expression*
1378 Type::named_type_descriptor(Gogo* gogo, Type* type, Named_type* name)
1380 go_assert(name != NULL && type->named_type() != name);
1381 return type->do_type_descriptor(gogo, name);
1384 // Make a builtin struct type from a list of fields. The fields are
1385 // pairs of a name and a type.
1387 Struct_type*
1388 Type::make_builtin_struct_type(int nfields, ...)
1390 va_list ap;
1391 va_start(ap, nfields);
1393 Location bloc = Linemap::predeclared_location();
1394 Struct_field_list* sfl = new Struct_field_list();
1395 for (int i = 0; i < nfields; i++)
1397 const char* field_name = va_arg(ap, const char *);
1398 Type* type = va_arg(ap, Type*);
1399 sfl->push_back(Struct_field(Typed_identifier(field_name, type, bloc)));
1402 va_end(ap);
1404 Struct_type* ret = Type::make_struct_type(sfl, bloc);
1405 ret->set_is_struct_incomparable();
1406 return ret;
1409 // A list of builtin named types.
1411 std::vector<Named_type*> Type::named_builtin_types;
1413 // Make a builtin named type.
1415 Named_type*
1416 Type::make_builtin_named_type(const char* name, Type* type)
1418 Location bloc = Linemap::predeclared_location();
1419 Named_object* no = Named_object::make_type(name, NULL, type, bloc);
1420 Named_type* ret = no->type_value();
1421 Type::named_builtin_types.push_back(ret);
1422 return ret;
1425 // Convert the named builtin types.
1427 void
1428 Type::convert_builtin_named_types(Gogo* gogo)
1430 for (std::vector<Named_type*>::const_iterator p =
1431 Type::named_builtin_types.begin();
1432 p != Type::named_builtin_types.end();
1433 ++p)
1435 bool r = (*p)->verify();
1436 go_assert(r);
1437 (*p)->convert(gogo);
1441 // Return the type of a type descriptor. We should really tie this to
1442 // runtime.Type rather than copying it. This must match the struct "_type"
1443 // declared in libgo/go/runtime/type.go.
1445 Type*
1446 Type::make_type_descriptor_type()
1448 static Type* ret;
1449 if (ret == NULL)
1451 Location bloc = Linemap::predeclared_location();
1453 Type* uint8_type = Type::lookup_integer_type("uint8");
1454 Type* pointer_uint8_type = Type::make_pointer_type(uint8_type);
1455 Type* uint32_type = Type::lookup_integer_type("uint32");
1456 Type* uintptr_type = Type::lookup_integer_type("uintptr");
1457 Type* string_type = Type::lookup_string_type();
1458 Type* pointer_string_type = Type::make_pointer_type(string_type);
1460 // This is an unnamed version of unsafe.Pointer. Perhaps we
1461 // should use the named version instead, although that would
1462 // require us to create the unsafe package if it has not been
1463 // imported. It probably doesn't matter.
1464 Type* void_type = Type::make_void_type();
1465 Type* unsafe_pointer_type = Type::make_pointer_type(void_type);
1467 Typed_identifier_list *params = new Typed_identifier_list();
1468 params->push_back(Typed_identifier("key", unsafe_pointer_type, bloc));
1469 params->push_back(Typed_identifier("seed", uintptr_type, bloc));
1471 Typed_identifier_list* results = new Typed_identifier_list();
1472 results->push_back(Typed_identifier("", uintptr_type, bloc));
1474 Type* hash_fntype = Type::make_function_type(NULL, params, results,
1475 bloc);
1477 params = new Typed_identifier_list();
1478 params->push_back(Typed_identifier("key1", unsafe_pointer_type, bloc));
1479 params->push_back(Typed_identifier("key2", unsafe_pointer_type, bloc));
1481 results = new Typed_identifier_list();
1482 results->push_back(Typed_identifier("", Type::lookup_bool_type(), bloc));
1484 Type* equal_fntype = Type::make_function_type(NULL, params, results,
1485 bloc);
1487 // Forward declaration for the type descriptor type.
1488 Named_object* named_type_descriptor_type =
1489 Named_object::make_type_declaration("_type", NULL, bloc);
1490 Type* ft = Type::make_forward_declaration(named_type_descriptor_type);
1491 Type* pointer_type_descriptor_type = Type::make_pointer_type(ft);
1493 // The type of a method on a concrete type.
1494 Struct_type* method_type =
1495 Type::make_builtin_struct_type(5,
1496 "name", pointer_string_type,
1497 "pkgPath", pointer_string_type,
1498 "mtyp", pointer_type_descriptor_type,
1499 "typ", pointer_type_descriptor_type,
1500 "tfn", unsafe_pointer_type);
1501 Named_type* named_method_type =
1502 Type::make_builtin_named_type("method", method_type);
1504 // Information for types with a name or methods.
1505 Type* slice_named_method_type =
1506 Type::make_array_type(named_method_type, NULL);
1507 Struct_type* uncommon_type =
1508 Type::make_builtin_struct_type(3,
1509 "name", pointer_string_type,
1510 "pkgPath", pointer_string_type,
1511 "methods", slice_named_method_type);
1512 Named_type* named_uncommon_type =
1513 Type::make_builtin_named_type("uncommonType", uncommon_type);
1515 Type* pointer_uncommon_type =
1516 Type::make_pointer_type(named_uncommon_type);
1518 // The type descriptor type.
1520 Struct_type* type_descriptor_type =
1521 Type::make_builtin_struct_type(12,
1522 "size", uintptr_type,
1523 "ptrdata", uintptr_type,
1524 "hash", uint32_type,
1525 "kind", uint8_type,
1526 "align", uint8_type,
1527 "fieldAlign", uint8_type,
1528 "hashfn", hash_fntype,
1529 "equalfn", equal_fntype,
1530 "gcdata", pointer_uint8_type,
1531 "string", pointer_string_type,
1532 "", pointer_uncommon_type,
1533 "ptrToThis",
1534 pointer_type_descriptor_type);
1536 Named_type* named = Type::make_builtin_named_type("_type",
1537 type_descriptor_type);
1539 named_type_descriptor_type->set_type_value(named);
1541 ret = named;
1544 return ret;
1547 // Make the type of a pointer to a type descriptor as represented in
1548 // Go.
1550 Type*
1551 Type::make_type_descriptor_ptr_type()
1553 static Type* ret;
1554 if (ret == NULL)
1555 ret = Type::make_pointer_type(Type::make_type_descriptor_type());
1556 return ret;
1559 // Return the alignment required by the memequalN function. N is a
1560 // type size: 16, 32, 64, or 128. The memequalN functions are defined
1561 // in libgo/go/runtime/alg.go.
1563 int64_t
1564 Type::memequal_align(Gogo* gogo, int size)
1566 const char* tn;
1567 switch (size)
1569 case 16:
1570 tn = "int16";
1571 break;
1572 case 32:
1573 tn = "int32";
1574 break;
1575 case 64:
1576 tn = "int64";
1577 break;
1578 case 128:
1579 // The code uses [2]int64, which must have the same alignment as
1580 // int64.
1581 tn = "int64";
1582 break;
1583 default:
1584 go_unreachable();
1587 Type* t = Type::lookup_integer_type(tn);
1589 int64_t ret;
1590 if (!t->backend_type_align(gogo, &ret))
1591 go_unreachable();
1592 return ret;
1595 // Return whether this type needs specially built type functions.
1596 // This returns true for types that are comparable and either can not
1597 // use an identity comparison, or are a non-standard size.
1599 bool
1600 Type::needs_specific_type_functions(Gogo* gogo)
1602 Named_type* nt = this->named_type();
1603 if (nt != NULL && nt->is_alias())
1604 return false;
1605 if (!this->is_comparable())
1606 return false;
1607 if (!this->compare_is_identity(gogo))
1608 return true;
1610 // We create a few predeclared types for type descriptors; they are
1611 // really just for the backend and don't need hash or equality
1612 // functions.
1613 if (nt != NULL && Linemap::is_predeclared_location(nt->location()))
1614 return false;
1616 int64_t size, align;
1617 if (!this->backend_type_size(gogo, &size)
1618 || !this->backend_type_align(gogo, &align))
1620 go_assert(saw_errors());
1621 return false;
1623 // This switch matches the one in Type::type_functions.
1624 switch (size)
1626 case 0:
1627 case 1:
1628 case 2:
1629 return align < Type::memequal_align(gogo, 16);
1630 case 4:
1631 return align < Type::memequal_align(gogo, 32);
1632 case 8:
1633 return align < Type::memequal_align(gogo, 64);
1634 case 16:
1635 return align < Type::memequal_align(gogo, 128);
1636 default:
1637 return true;
1641 // Set *HASH_FN and *EQUAL_FN to the runtime functions which compute a
1642 // hash code for this type and which compare whether two values of
1643 // this type are equal. If NAME is not NULL it is the name of this
1644 // type. HASH_FNTYPE and EQUAL_FNTYPE are the types of these
1645 // functions, for convenience; they may be NULL.
1647 void
1648 Type::type_functions(Gogo* gogo, Named_type* name, Function_type* hash_fntype,
1649 Function_type* equal_fntype, Named_object** hash_fn,
1650 Named_object** equal_fn)
1652 // If this loop leaves NAME as NULL, then the type does not have a
1653 // name after all.
1654 while (name != NULL && name->is_alias())
1655 name = name->real_type()->named_type();
1657 if (!this->is_comparable())
1659 *hash_fn = NULL;
1660 *equal_fn = NULL;
1661 return;
1664 if (hash_fntype == NULL || equal_fntype == NULL)
1666 Location bloc = Linemap::predeclared_location();
1668 Type* uintptr_type = Type::lookup_integer_type("uintptr");
1669 Type* void_type = Type::make_void_type();
1670 Type* unsafe_pointer_type = Type::make_pointer_type(void_type);
1672 if (hash_fntype == NULL)
1674 Typed_identifier_list* params = new Typed_identifier_list();
1675 params->push_back(Typed_identifier("key", unsafe_pointer_type,
1676 bloc));
1677 params->push_back(Typed_identifier("seed", uintptr_type, bloc));
1679 Typed_identifier_list* results = new Typed_identifier_list();
1680 results->push_back(Typed_identifier("", uintptr_type, bloc));
1682 hash_fntype = Type::make_function_type(NULL, params, results, bloc);
1684 if (equal_fntype == NULL)
1686 Typed_identifier_list* params = new Typed_identifier_list();
1687 params->push_back(Typed_identifier("key1", unsafe_pointer_type,
1688 bloc));
1689 params->push_back(Typed_identifier("key2", unsafe_pointer_type,
1690 bloc));
1692 Typed_identifier_list* results = new Typed_identifier_list();
1693 results->push_back(Typed_identifier("", Type::lookup_bool_type(),
1694 bloc));
1696 equal_fntype = Type::make_function_type(NULL, params, results, bloc);
1700 const char* hash_fnname;
1701 const char* equal_fnname;
1702 if (this->compare_is_identity(gogo))
1704 int64_t size, align;
1705 if (!this->backend_type_size(gogo, &size)
1706 || !this->backend_type_align(gogo, &align))
1708 go_assert(saw_errors());
1709 return;
1711 bool build_functions = false;
1712 // This switch matches the one in Type::needs_specific_type_functions.
1713 // The alignment tests are because of the memequal functions,
1714 // which assume that the values are aligned as required for an
1715 // integer of that size.
1716 switch (size)
1718 case 0:
1719 hash_fnname = "runtime.memhash0";
1720 equal_fnname = "runtime.memequal0";
1721 break;
1722 case 1:
1723 hash_fnname = "runtime.memhash8";
1724 equal_fnname = "runtime.memequal8";
1725 break;
1726 case 2:
1727 if (align < Type::memequal_align(gogo, 16))
1728 build_functions = true;
1729 else
1731 hash_fnname = "runtime.memhash16";
1732 equal_fnname = "runtime.memequal16";
1734 break;
1735 case 4:
1736 if (align < Type::memequal_align(gogo, 32))
1737 build_functions = true;
1738 else
1740 hash_fnname = "runtime.memhash32";
1741 equal_fnname = "runtime.memequal32";
1743 break;
1744 case 8:
1745 if (align < Type::memequal_align(gogo, 64))
1746 build_functions = true;
1747 else
1749 hash_fnname = "runtime.memhash64";
1750 equal_fnname = "runtime.memequal64";
1752 break;
1753 case 16:
1754 if (align < Type::memequal_align(gogo, 128))
1755 build_functions = true;
1756 else
1758 hash_fnname = "runtime.memhash128";
1759 equal_fnname = "runtime.memequal128";
1761 break;
1762 default:
1763 build_functions = true;
1764 break;
1766 if (build_functions)
1768 // We don't have a built-in function for a type of this size
1769 // and alignment. Build a function to use that calls the
1770 // generic hash/equality functions for identity, passing the size.
1771 this->specific_type_functions(gogo, name, size, hash_fntype,
1772 equal_fntype, hash_fn, equal_fn);
1773 return;
1776 else
1778 switch (this->base()->classification())
1780 case Type::TYPE_ERROR:
1781 case Type::TYPE_VOID:
1782 case Type::TYPE_NIL:
1783 case Type::TYPE_FUNCTION:
1784 case Type::TYPE_MAP:
1785 // For these types is_comparable should have returned false.
1786 go_unreachable();
1788 case Type::TYPE_BOOLEAN:
1789 case Type::TYPE_INTEGER:
1790 case Type::TYPE_POINTER:
1791 case Type::TYPE_CHANNEL:
1792 // For these types compare_is_identity should have returned true.
1793 go_unreachable();
1795 case Type::TYPE_FLOAT:
1796 switch (this->float_type()->bits())
1798 case 32:
1799 hash_fnname = "runtime.f32hash";
1800 equal_fnname = "runtime.f32equal";
1801 break;
1802 case 64:
1803 hash_fnname = "runtime.f64hash";
1804 equal_fnname = "runtime.f64equal";
1805 break;
1806 default:
1807 go_unreachable();
1809 break;
1811 case Type::TYPE_COMPLEX:
1812 switch (this->complex_type()->bits())
1814 case 64:
1815 hash_fnname = "runtime.c64hash";
1816 equal_fnname = "runtime.c64equal";
1817 break;
1818 case 128:
1819 hash_fnname = "runtime.c128hash";
1820 equal_fnname = "runtime.c128equal";
1821 break;
1822 default:
1823 go_unreachable();
1825 break;
1827 case Type::TYPE_STRING:
1828 hash_fnname = "runtime.strhash";
1829 equal_fnname = "runtime.strequal";
1830 break;
1832 case Type::TYPE_STRUCT:
1834 // This is a struct which can not be compared using a
1835 // simple identity function. We need to build a function
1836 // for comparison.
1837 this->specific_type_functions(gogo, name, -1, hash_fntype,
1838 equal_fntype, hash_fn, equal_fn);
1839 return;
1842 case Type::TYPE_ARRAY:
1843 if (this->is_slice_type())
1845 // Type::is_compatible_for_comparison should have
1846 // returned false.
1847 go_unreachable();
1849 else
1851 // This is an array which can not be compared using a
1852 // simple identity function. We need to build a
1853 // function for comparison.
1854 this->specific_type_functions(gogo, name, -1, hash_fntype,
1855 equal_fntype, hash_fn, equal_fn);
1856 return;
1858 break;
1860 case Type::TYPE_INTERFACE:
1861 if (this->interface_type()->is_empty())
1863 hash_fnname = "runtime.nilinterhash";
1864 equal_fnname = "runtime.nilinterequal";
1866 else
1868 hash_fnname = "runtime.interhash";
1869 equal_fnname = "runtime.interequal";
1871 break;
1873 case Type::TYPE_NAMED:
1874 case Type::TYPE_FORWARD:
1875 go_unreachable();
1877 default:
1878 go_unreachable();
1883 Location bloc = Linemap::predeclared_location();
1884 *hash_fn = Named_object::make_function_declaration(hash_fnname, NULL,
1885 hash_fntype, bloc);
1886 (*hash_fn)->func_declaration_value()->set_asm_name(hash_fnname);
1887 *equal_fn = Named_object::make_function_declaration(equal_fnname, NULL,
1888 equal_fntype, bloc);
1889 (*equal_fn)->func_declaration_value()->set_asm_name(equal_fnname);
1892 // A hash table mapping types to the specific hash functions.
1894 Type::Type_functions Type::type_functions_table;
1896 // Handle a type function which is specific to a type: if SIZE == -1,
1897 // this is a struct or array that can not use an identity comparison.
1898 // Otherwise, it is a type that uses an identity comparison but is not
1899 // one of the standard supported sizes.
1901 void
1902 Type::specific_type_functions(Gogo* gogo, Named_type* name, int64_t size,
1903 Function_type* hash_fntype,
1904 Function_type* equal_fntype,
1905 Named_object** hash_fn,
1906 Named_object** equal_fn)
1908 Hash_equal_fn fnull(NULL, NULL);
1909 std::pair<Type*, Hash_equal_fn> val(name != NULL ? name : this, fnull);
1910 std::pair<Type_functions::iterator, bool> ins =
1911 Type::type_functions_table.insert(val);
1912 if (!ins.second)
1914 // We already have functions for this type
1915 *hash_fn = ins.first->second.first;
1916 *equal_fn = ins.first->second.second;
1917 return;
1920 std::string hash_name;
1921 std::string equal_name;
1922 gogo->specific_type_function_names(this, name, &hash_name, &equal_name);
1924 Location bloc = Linemap::predeclared_location();
1926 const Package* package = NULL;
1927 bool is_defined_elsewhere =
1928 this->type_descriptor_defined_elsewhere(name, &package);
1929 if (is_defined_elsewhere)
1931 *hash_fn = Named_object::make_function_declaration(hash_name, package,
1932 hash_fntype, bloc);
1933 *equal_fn = Named_object::make_function_declaration(equal_name, package,
1934 equal_fntype, bloc);
1936 else
1938 *hash_fn = gogo->declare_package_function(hash_name, hash_fntype, bloc);
1939 *equal_fn = gogo->declare_package_function(equal_name, equal_fntype,
1940 bloc);
1943 ins.first->second.first = *hash_fn;
1944 ins.first->second.second = *equal_fn;
1946 if (!is_defined_elsewhere)
1948 if (gogo->in_global_scope())
1949 this->write_specific_type_functions(gogo, name, size, hash_name,
1950 hash_fntype, equal_name,
1951 equal_fntype);
1952 else
1953 gogo->queue_specific_type_function(this, name, size, hash_name,
1954 hash_fntype, equal_name,
1955 equal_fntype);
1959 // Write the hash and equality functions for a type which needs to be
1960 // written specially.
1962 void
1963 Type::write_specific_type_functions(Gogo* gogo, Named_type* name, int64_t size,
1964 const std::string& hash_name,
1965 Function_type* hash_fntype,
1966 const std::string& equal_name,
1967 Function_type* equal_fntype)
1969 Location bloc = Linemap::predeclared_location();
1971 if (gogo->specific_type_functions_are_written())
1973 go_assert(saw_errors());
1974 return;
1977 go_assert(this->is_comparable());
1979 Named_object* hash_fn = gogo->start_function(hash_name, hash_fntype, false,
1980 bloc);
1981 hash_fn->func_value()->set_is_type_specific_function();
1982 gogo->start_block(bloc);
1984 if (size != -1)
1985 this->write_identity_hash(gogo, size);
1986 else if (name != NULL && name->real_type()->named_type() != NULL)
1987 this->write_named_hash(gogo, name, hash_fntype, equal_fntype);
1988 else if (this->struct_type() != NULL)
1989 this->struct_type()->write_hash_function(gogo, name, hash_fntype,
1990 equal_fntype);
1991 else if (this->array_type() != NULL)
1992 this->array_type()->write_hash_function(gogo, name, hash_fntype,
1993 equal_fntype);
1994 else
1995 go_unreachable();
1997 Block* b = gogo->finish_block(bloc);
1998 gogo->add_block(b, bloc);
1999 gogo->lower_block(hash_fn, b);
2000 gogo->finish_function(bloc);
2002 Named_object *equal_fn = gogo->start_function(equal_name, equal_fntype,
2003 false, bloc);
2004 equal_fn->func_value()->set_is_type_specific_function();
2005 gogo->start_block(bloc);
2007 if (size != -1)
2008 this->write_identity_equal(gogo, size);
2009 else if (name != NULL && name->real_type()->named_type() != NULL)
2010 this->write_named_equal(gogo, name);
2011 else if (this->struct_type() != NULL)
2012 this->struct_type()->write_equal_function(gogo, name);
2013 else if (this->array_type() != NULL)
2014 this->array_type()->write_equal_function(gogo, name);
2015 else
2016 go_unreachable();
2018 b = gogo->finish_block(bloc);
2019 gogo->add_block(b, bloc);
2020 gogo->lower_block(equal_fn, b);
2021 gogo->finish_function(bloc);
2023 // Build the function descriptors for the type descriptor to refer to.
2024 hash_fn->func_value()->descriptor(gogo, hash_fn);
2025 equal_fn->func_value()->descriptor(gogo, equal_fn);
2028 // Write a hash function for a type that can use an identity hash but
2029 // is not one of the standard supported sizes. For example, this
2030 // would be used for the type [3]byte. This builds a return statement
2031 // that returns a call to the memhash function, passing the key and
2032 // seed from the function arguments (already constructed before this
2033 // is called), and the constant size.
2035 void
2036 Type::write_identity_hash(Gogo* gogo, int64_t size)
2038 Location bloc = Linemap::predeclared_location();
2040 Type* unsafe_pointer_type = Type::make_pointer_type(Type::make_void_type());
2041 Type* uintptr_type = Type::lookup_integer_type("uintptr");
2043 Typed_identifier_list* params = new Typed_identifier_list();
2044 params->push_back(Typed_identifier("key", unsafe_pointer_type, bloc));
2045 params->push_back(Typed_identifier("seed", uintptr_type, bloc));
2046 params->push_back(Typed_identifier("size", uintptr_type, bloc));
2048 Typed_identifier_list* results = new Typed_identifier_list();
2049 results->push_back(Typed_identifier("", uintptr_type, bloc));
2051 Function_type* memhash_fntype = Type::make_function_type(NULL, params,
2052 results, bloc);
2054 Named_object* memhash =
2055 Named_object::make_function_declaration("runtime.memhash", NULL,
2056 memhash_fntype, bloc);
2057 memhash->func_declaration_value()->set_asm_name("runtime.memhash");
2059 Named_object* key_arg = gogo->lookup("key", NULL);
2060 go_assert(key_arg != NULL);
2061 Named_object* seed_arg = gogo->lookup("seed", NULL);
2062 go_assert(seed_arg != NULL);
2064 Expression* key_ref = Expression::make_var_reference(key_arg, bloc);
2065 Expression* seed_ref = Expression::make_var_reference(seed_arg, bloc);
2066 Expression* size_arg = Expression::make_integer_int64(size, uintptr_type,
2067 bloc);
2068 Expression_list* args = new Expression_list();
2069 args->push_back(key_ref);
2070 args->push_back(seed_ref);
2071 args->push_back(size_arg);
2072 Expression* func = Expression::make_func_reference(memhash, NULL, bloc);
2073 Expression* call = Expression::make_call(func, args, false, bloc);
2075 Expression_list* vals = new Expression_list();
2076 vals->push_back(call);
2077 Statement* s = Statement::make_return_statement(vals, bloc);
2078 gogo->add_statement(s);
2081 // Write an equality function for a type that can use an identity
2082 // equality comparison but is not one of the standard supported sizes.
2083 // For example, this would be used for the type [3]byte. This builds
2084 // a return statement that returns a call to the memequal function,
2085 // passing the two keys from the function arguments (already
2086 // constructed before this is called), and the constant size.
2088 void
2089 Type::write_identity_equal(Gogo* gogo, int64_t size)
2091 Location bloc = Linemap::predeclared_location();
2093 Type* unsafe_pointer_type = Type::make_pointer_type(Type::make_void_type());
2094 Type* uintptr_type = Type::lookup_integer_type("uintptr");
2096 Typed_identifier_list* params = new Typed_identifier_list();
2097 params->push_back(Typed_identifier("key1", unsafe_pointer_type, bloc));
2098 params->push_back(Typed_identifier("key2", unsafe_pointer_type, bloc));
2099 params->push_back(Typed_identifier("size", uintptr_type, bloc));
2101 Typed_identifier_list* results = new Typed_identifier_list();
2102 results->push_back(Typed_identifier("", Type::lookup_bool_type(), bloc));
2104 Function_type* memequal_fntype = Type::make_function_type(NULL, params,
2105 results, bloc);
2107 Named_object* memequal =
2108 Named_object::make_function_declaration("runtime.memequal", NULL,
2109 memequal_fntype, bloc);
2110 memequal->func_declaration_value()->set_asm_name("runtime.memequal");
2112 Named_object* key1_arg = gogo->lookup("key1", NULL);
2113 go_assert(key1_arg != NULL);
2114 Named_object* key2_arg = gogo->lookup("key2", NULL);
2115 go_assert(key2_arg != NULL);
2117 Expression* key1_ref = Expression::make_var_reference(key1_arg, bloc);
2118 Expression* key2_ref = Expression::make_var_reference(key2_arg, bloc);
2119 Expression* size_arg = Expression::make_integer_int64(size, uintptr_type,
2120 bloc);
2121 Expression_list* args = new Expression_list();
2122 args->push_back(key1_ref);
2123 args->push_back(key2_ref);
2124 args->push_back(size_arg);
2125 Expression* func = Expression::make_func_reference(memequal, NULL, bloc);
2126 Expression* call = Expression::make_call(func, args, false, bloc);
2128 Expression_list* vals = new Expression_list();
2129 vals->push_back(call);
2130 Statement* s = Statement::make_return_statement(vals, bloc);
2131 gogo->add_statement(s);
2134 // Write a hash function that simply calls the hash function for a
2135 // named type. This is used when one named type is defined as
2136 // another. This ensures that this case works when the other named
2137 // type is defined in another package and relies on calling hash
2138 // functions defined only in that package.
2140 void
2141 Type::write_named_hash(Gogo* gogo, Named_type* name,
2142 Function_type* hash_fntype, Function_type* equal_fntype)
2144 Location bloc = Linemap::predeclared_location();
2146 Named_type* base_type = name->real_type()->named_type();
2147 while (base_type->is_alias())
2149 base_type = base_type->real_type()->named_type();
2150 go_assert(base_type != NULL);
2152 go_assert(base_type != NULL);
2154 // The pointer to the type we are going to hash. This is an
2155 // unsafe.Pointer.
2156 Named_object* key_arg = gogo->lookup("key", NULL);
2157 go_assert(key_arg != NULL);
2159 // The seed argument to the hash function.
2160 Named_object* seed_arg = gogo->lookup("seed", NULL);
2161 go_assert(seed_arg != NULL);
2163 Named_object* hash_fn;
2164 Named_object* equal_fn;
2165 name->real_type()->type_functions(gogo, base_type, hash_fntype, equal_fntype,
2166 &hash_fn, &equal_fn);
2168 // Call the hash function for the base type.
2169 Expression* key_ref = Expression::make_var_reference(key_arg, bloc);
2170 Expression* seed_ref = Expression::make_var_reference(seed_arg, bloc);
2171 Expression_list* args = new Expression_list();
2172 args->push_back(key_ref);
2173 args->push_back(seed_ref);
2174 Expression* func = Expression::make_func_reference(hash_fn, NULL, bloc);
2175 Expression* call = Expression::make_call(func, args, false, bloc);
2177 // Return the hash of the base type.
2178 Expression_list* vals = new Expression_list();
2179 vals->push_back(call);
2180 Statement* s = Statement::make_return_statement(vals, bloc);
2181 gogo->add_statement(s);
2184 // Write an equality function that simply calls the equality function
2185 // for a named type. This is used when one named type is defined as
2186 // another. This ensures that this case works when the other named
2187 // type is defined in another package and relies on calling equality
2188 // functions defined only in that package.
2190 void
2191 Type::write_named_equal(Gogo* gogo, Named_type* name)
2193 Location bloc = Linemap::predeclared_location();
2195 // The pointers to the types we are going to compare. These have
2196 // type unsafe.Pointer.
2197 Named_object* key1_arg = gogo->lookup("key1", NULL);
2198 Named_object* key2_arg = gogo->lookup("key2", NULL);
2199 go_assert(key1_arg != NULL && key2_arg != NULL);
2201 Named_type* base_type = name->real_type()->named_type();
2202 go_assert(base_type != NULL);
2204 // Build temporaries with the base type.
2205 Type* pt = Type::make_pointer_type(base_type);
2207 Expression* ref = Expression::make_var_reference(key1_arg, bloc);
2208 ref = Expression::make_cast(pt, ref, bloc);
2209 Temporary_statement* p1 = Statement::make_temporary(pt, ref, bloc);
2210 gogo->add_statement(p1);
2212 ref = Expression::make_var_reference(key2_arg, bloc);
2213 ref = Expression::make_cast(pt, ref, bloc);
2214 Temporary_statement* p2 = Statement::make_temporary(pt, ref, bloc);
2215 gogo->add_statement(p2);
2217 // Compare the values for equality.
2218 Expression* t1 = Expression::make_temporary_reference(p1, bloc);
2219 t1 = Expression::make_unary(OPERATOR_MULT, t1, bloc);
2221 Expression* t2 = Expression::make_temporary_reference(p2, bloc);
2222 t2 = Expression::make_unary(OPERATOR_MULT, t2, bloc);
2224 Expression* cond = Expression::make_binary(OPERATOR_EQEQ, t1, t2, bloc);
2226 // Return the equality comparison.
2227 Expression_list* vals = new Expression_list();
2228 vals->push_back(cond);
2229 Statement* s = Statement::make_return_statement(vals, bloc);
2230 gogo->add_statement(s);
2233 // Return a composite literal for the type descriptor for a plain type
2234 // of kind RUNTIME_TYPE_KIND named NAME.
2236 Expression*
2237 Type::type_descriptor_constructor(Gogo* gogo, int runtime_type_kind,
2238 Named_type* name, const Methods* methods,
2239 bool only_value_methods)
2241 Location bloc = Linemap::predeclared_location();
2243 Type* td_type = Type::make_type_descriptor_type();
2244 const Struct_field_list* fields = td_type->struct_type()->fields();
2246 Expression_list* vals = new Expression_list();
2247 vals->reserve(12);
2249 if (!this->has_pointer())
2250 runtime_type_kind |= RUNTIME_TYPE_KIND_NO_POINTERS;
2251 if (this->points_to() != NULL)
2252 runtime_type_kind |= RUNTIME_TYPE_KIND_DIRECT_IFACE;
2253 int64_t ptrsize;
2254 int64_t ptrdata;
2255 if (this->needs_gcprog(gogo, &ptrsize, &ptrdata))
2256 runtime_type_kind |= RUNTIME_TYPE_KIND_GC_PROG;
2258 Struct_field_list::const_iterator p = fields->begin();
2259 go_assert(p->is_field_name("size"));
2260 Expression::Type_info type_info = Expression::TYPE_INFO_SIZE;
2261 vals->push_back(Expression::make_type_info(this, type_info));
2263 ++p;
2264 go_assert(p->is_field_name("ptrdata"));
2265 type_info = Expression::TYPE_INFO_DESCRIPTOR_PTRDATA;
2266 vals->push_back(Expression::make_type_info(this, type_info));
2268 ++p;
2269 go_assert(p->is_field_name("hash"));
2270 unsigned int h;
2271 if (name != NULL)
2272 h = name->hash_for_method(gogo);
2273 else
2274 h = this->hash_for_method(gogo);
2275 vals->push_back(Expression::make_integer_ul(h, p->type(), bloc));
2277 ++p;
2278 go_assert(p->is_field_name("kind"));
2279 vals->push_back(Expression::make_integer_ul(runtime_type_kind, p->type(),
2280 bloc));
2282 ++p;
2283 go_assert(p->is_field_name("align"));
2284 type_info = Expression::TYPE_INFO_ALIGNMENT;
2285 vals->push_back(Expression::make_type_info(this, type_info));
2287 ++p;
2288 go_assert(p->is_field_name("fieldAlign"));
2289 type_info = Expression::TYPE_INFO_FIELD_ALIGNMENT;
2290 vals->push_back(Expression::make_type_info(this, type_info));
2292 ++p;
2293 go_assert(p->is_field_name("hashfn"));
2294 Function_type* hash_fntype = p->type()->function_type();
2296 ++p;
2297 go_assert(p->is_field_name("equalfn"));
2298 Function_type* equal_fntype = p->type()->function_type();
2300 Named_object* hash_fn;
2301 Named_object* equal_fn;
2302 this->type_functions(gogo, name, hash_fntype, equal_fntype, &hash_fn,
2303 &equal_fn);
2304 if (hash_fn == NULL)
2305 vals->push_back(Expression::make_cast(hash_fntype,
2306 Expression::make_nil(bloc),
2307 bloc));
2308 else
2309 vals->push_back(Expression::make_func_reference(hash_fn, NULL, bloc));
2310 if (equal_fn == NULL)
2311 vals->push_back(Expression::make_cast(equal_fntype,
2312 Expression::make_nil(bloc),
2313 bloc));
2314 else
2315 vals->push_back(Expression::make_func_reference(equal_fn, NULL, bloc));
2317 ++p;
2318 go_assert(p->is_field_name("gcdata"));
2319 vals->push_back(Expression::make_gc_symbol(this));
2321 ++p;
2322 go_assert(p->is_field_name("string"));
2323 Expression* s = Expression::make_string((name != NULL
2324 ? name->reflection(gogo)
2325 : this->reflection(gogo)),
2326 bloc);
2327 vals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
2329 ++p;
2330 go_assert(p->is_field_name("uncommonType"));
2331 if (name == NULL && methods == NULL)
2332 vals->push_back(Expression::make_nil(bloc));
2333 else
2335 if (methods == NULL)
2336 methods = name->methods();
2337 vals->push_back(this->uncommon_type_constructor(gogo,
2338 p->type()->deref(),
2339 name, methods,
2340 only_value_methods));
2343 ++p;
2344 go_assert(p->is_field_name("ptrToThis"));
2345 if (name == NULL && methods == NULL)
2346 vals->push_back(Expression::make_nil(bloc));
2347 else
2349 Type* pt;
2350 if (name != NULL)
2351 pt = Type::make_pointer_type(name);
2352 else
2353 pt = Type::make_pointer_type(this);
2354 vals->push_back(Expression::make_type_descriptor(pt, bloc));
2357 ++p;
2358 go_assert(p == fields->end());
2360 return Expression::make_struct_composite_literal(td_type, vals, bloc);
2363 // The maximum length of a GC ptrmask bitmap. This corresponds to the
2364 // length used by the gc toolchain, and also appears in
2365 // libgo/go/reflect/type.go.
2367 static const int64_t max_ptrmask_bytes = 2048;
2369 // Return a pointer to the Garbage Collection information for this type.
2371 Bexpression*
2372 Type::gc_symbol_pointer(Gogo* gogo)
2374 Type* t = this->forwarded();
2375 while (t->named_type() != NULL && t->named_type()->is_alias())
2376 t = t->named_type()->real_type()->forwarded();
2378 if (!t->has_pointer())
2379 return gogo->backend()->nil_pointer_expression();
2381 if (t->gc_symbol_var_ == NULL)
2383 t->make_gc_symbol_var(gogo);
2384 go_assert(t->gc_symbol_var_ != NULL);
2386 Location bloc = Linemap::predeclared_location();
2387 Bexpression* var_expr =
2388 gogo->backend()->var_expression(t->gc_symbol_var_, VE_rvalue, bloc);
2389 Bexpression* addr_expr =
2390 gogo->backend()->address_expression(var_expr, bloc);
2392 Type* uint8_type = Type::lookup_integer_type("uint8");
2393 Type* pointer_uint8_type = Type::make_pointer_type(uint8_type);
2394 Btype* ubtype = pointer_uint8_type->get_backend(gogo);
2395 return gogo->backend()->convert_expression(ubtype, addr_expr, bloc);
2398 // A mapping from unnamed types to GC symbol variables.
2400 Type::GC_symbol_vars Type::gc_symbol_vars;
2402 // Build the GC symbol for this type.
2404 void
2405 Type::make_gc_symbol_var(Gogo* gogo)
2407 go_assert(this->gc_symbol_var_ == NULL);
2409 Named_type* nt = this->named_type();
2411 // We can have multiple instances of unnamed types and similar to type
2412 // descriptors, we only want to the emit the GC data once, so we use a
2413 // hash table.
2414 Bvariable** phash = NULL;
2415 if (nt == NULL)
2417 Bvariable* bvnull = NULL;
2418 std::pair<GC_symbol_vars::iterator, bool> ins =
2419 Type::gc_symbol_vars.insert(std::make_pair(this, bvnull));
2420 if (!ins.second)
2422 // We've already built a gc symbol for this type.
2423 this->gc_symbol_var_ = ins.first->second;
2424 return;
2426 phash = &ins.first->second;
2429 int64_t ptrsize;
2430 int64_t ptrdata;
2431 if (!this->needs_gcprog(gogo, &ptrsize, &ptrdata))
2433 this->gc_symbol_var_ = this->gc_ptrmask_var(gogo, ptrsize, ptrdata);
2434 if (phash != NULL)
2435 *phash = this->gc_symbol_var_;
2436 return;
2439 std::string sym_name = gogo->gc_symbol_name(this);
2441 // Build the contents of the gc symbol.
2442 Expression* sym_init = this->gcprog_constructor(gogo, ptrsize, ptrdata);
2443 Btype* sym_btype = sym_init->type()->get_backend(gogo);
2445 // If the type descriptor for this type is defined somewhere else, so is the
2446 // GC symbol.
2447 const Package* dummy;
2448 if (this->type_descriptor_defined_elsewhere(nt, &dummy))
2450 std::string asm_name(go_selectively_encode_id(sym_name));
2451 this->gc_symbol_var_ =
2452 gogo->backend()->implicit_variable_reference(sym_name, asm_name,
2453 sym_btype);
2454 if (phash != NULL)
2455 *phash = this->gc_symbol_var_;
2456 return;
2459 // See if this gc symbol can appear in multiple packages.
2460 bool is_common = false;
2461 if (nt != NULL)
2463 // We create the symbol for a builtin type whenever we need
2464 // it.
2465 is_common = nt->is_builtin();
2467 else
2469 // This is an unnamed type. The descriptor could be defined in
2470 // any package where it is needed, and the linker will pick one
2471 // descriptor to keep.
2472 is_common = true;
2475 // Since we are building the GC symbol in this package, we must create the
2476 // variable before converting the initializer to its backend representation
2477 // because the initializer may refer to the GC symbol for this type.
2478 std::string asm_name(go_selectively_encode_id(sym_name));
2479 this->gc_symbol_var_ =
2480 gogo->backend()->implicit_variable(sym_name, asm_name,
2481 sym_btype, false, true, is_common, 0);
2482 if (phash != NULL)
2483 *phash = this->gc_symbol_var_;
2485 Translate_context context(gogo, NULL, NULL, NULL);
2486 context.set_is_const();
2487 Bexpression* sym_binit = sym_init->get_backend(&context);
2488 gogo->backend()->implicit_variable_set_init(this->gc_symbol_var_, sym_name,
2489 sym_btype, false, true, is_common,
2490 sym_binit);
2493 // Return whether this type needs a GC program, and set *PTRDATA to
2494 // the size of the pointer data in bytes and *PTRSIZE to the size of a
2495 // pointer.
2497 bool
2498 Type::needs_gcprog(Gogo* gogo, int64_t* ptrsize, int64_t* ptrdata)
2500 Type* voidptr = Type::make_pointer_type(Type::make_void_type());
2501 if (!voidptr->backend_type_size(gogo, ptrsize))
2502 go_unreachable();
2504 if (!this->backend_type_ptrdata(gogo, ptrdata))
2506 go_assert(saw_errors());
2507 return false;
2510 return *ptrdata / *ptrsize > max_ptrmask_bytes;
2513 // A simple class used to build a GC ptrmask for a type.
2515 class Ptrmask
2517 public:
2518 Ptrmask(size_t count)
2519 : bits_((count + 7) / 8, 0)
2522 void
2523 set_from(Gogo*, Type*, int64_t ptrsize, int64_t offset);
2525 std::string
2526 symname() const;
2528 Expression*
2529 constructor(Gogo* gogo) const;
2531 private:
2532 void
2533 set(size_t index)
2534 { this->bits_.at(index / 8) |= 1 << (index % 8); }
2536 // The actual bits.
2537 std::vector<unsigned char> bits_;
2540 // Set bits in ptrmask starting from OFFSET based on TYPE. OFFSET
2541 // counts in bytes. PTRSIZE is the size of a pointer on the target
2542 // system.
2544 void
2545 Ptrmask::set_from(Gogo* gogo, Type* type, int64_t ptrsize, int64_t offset)
2547 switch (type->base()->classification())
2549 default:
2550 case Type::TYPE_NIL:
2551 case Type::TYPE_CALL_MULTIPLE_RESULT:
2552 case Type::TYPE_NAMED:
2553 case Type::TYPE_FORWARD:
2554 go_unreachable();
2556 case Type::TYPE_ERROR:
2557 case Type::TYPE_VOID:
2558 case Type::TYPE_BOOLEAN:
2559 case Type::TYPE_INTEGER:
2560 case Type::TYPE_FLOAT:
2561 case Type::TYPE_COMPLEX:
2562 case Type::TYPE_SINK:
2563 break;
2565 case Type::TYPE_FUNCTION:
2566 case Type::TYPE_POINTER:
2567 case Type::TYPE_MAP:
2568 case Type::TYPE_CHANNEL:
2569 // These types are all a single pointer.
2570 go_assert((offset % ptrsize) == 0);
2571 this->set(offset / ptrsize);
2572 break;
2574 case Type::TYPE_STRING:
2575 // A string starts with a single pointer.
2576 go_assert((offset % ptrsize) == 0);
2577 this->set(offset / ptrsize);
2578 break;
2580 case Type::TYPE_INTERFACE:
2581 // An interface is two pointers.
2582 go_assert((offset % ptrsize) == 0);
2583 this->set(offset / ptrsize);
2584 this->set((offset / ptrsize) + 1);
2585 break;
2587 case Type::TYPE_STRUCT:
2589 if (!type->has_pointer())
2590 return;
2592 const Struct_field_list* fields = type->struct_type()->fields();
2593 int64_t soffset = 0;
2594 for (Struct_field_list::const_iterator pf = fields->begin();
2595 pf != fields->end();
2596 ++pf)
2598 int64_t field_align;
2599 if (!pf->type()->backend_type_field_align(gogo, &field_align))
2601 go_assert(saw_errors());
2602 return;
2604 soffset = (soffset + (field_align - 1)) &~ (field_align - 1);
2606 this->set_from(gogo, pf->type(), ptrsize, offset + soffset);
2608 int64_t field_size;
2609 if (!pf->type()->backend_type_size(gogo, &field_size))
2611 go_assert(saw_errors());
2612 return;
2614 soffset += field_size;
2617 break;
2619 case Type::TYPE_ARRAY:
2620 if (type->is_slice_type())
2622 // A slice starts with a single pointer.
2623 go_assert((offset % ptrsize) == 0);
2624 this->set(offset / ptrsize);
2625 break;
2627 else
2629 if (!type->has_pointer())
2630 return;
2632 int64_t len;
2633 if (!type->array_type()->int_length(&len))
2635 go_assert(saw_errors());
2636 return;
2639 Type* element_type = type->array_type()->element_type();
2640 int64_t ele_size;
2641 if (!element_type->backend_type_size(gogo, &ele_size))
2643 go_assert(saw_errors());
2644 return;
2647 int64_t eoffset = 0;
2648 for (int64_t i = 0; i < len; i++, eoffset += ele_size)
2649 this->set_from(gogo, element_type, ptrsize, offset + eoffset);
2650 break;
2655 // Return a symbol name for this ptrmask. This is used to coalesce
2656 // identical ptrmasks, which are common. The symbol name must use
2657 // only characters that are valid in symbols. It's nice if it's
2658 // short. We convert it to a base64 string.
2660 std::string
2661 Ptrmask::symname() const
2663 const char chars[65] =
2664 "0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ_.";
2665 go_assert(chars[64] == '\0');
2666 std::string ret;
2667 unsigned int b = 0;
2668 int remaining = 0;
2669 for (std::vector<unsigned char>::const_iterator p = this->bits_.begin();
2670 p != this->bits_.end();
2671 ++p)
2673 b |= *p << remaining;
2674 remaining += 8;
2675 while (remaining >= 6)
2677 ret += chars[b & 0x3f];
2678 b >>= 6;
2679 remaining -= 6;
2682 while (remaining > 0)
2684 ret += chars[b & 0x3f];
2685 b >>= 6;
2686 remaining -= 6;
2688 return ret;
2691 // Return a constructor for this ptrmask. This will be used to
2692 // initialize the runtime ptrmask value.
2694 Expression*
2695 Ptrmask::constructor(Gogo* gogo) const
2697 Location bloc = Linemap::predeclared_location();
2698 Type* byte_type = gogo->lookup_global("byte")->type_value();
2699 Expression* len = Expression::make_integer_ul(this->bits_.size(), NULL,
2700 bloc);
2701 Array_type* at = Type::make_array_type(byte_type, len);
2702 Expression_list* vals = new Expression_list();
2703 vals->reserve(this->bits_.size());
2704 for (std::vector<unsigned char>::const_iterator p = this->bits_.begin();
2705 p != this->bits_.end();
2706 ++p)
2707 vals->push_back(Expression::make_integer_ul(*p, byte_type, bloc));
2708 return Expression::make_array_composite_literal(at, vals, bloc);
2711 // The hash table mapping a ptrmask symbol name to the ptrmask variable.
2712 Type::GC_gcbits_vars Type::gc_gcbits_vars;
2714 // Return a ptrmask variable for a type. For a type descriptor this
2715 // is only used for variables that are small enough to not need a
2716 // gcprog, but for a global variable this is used for a variable of
2717 // any size. PTRDATA is the number of bytes of the type that contain
2718 // pointer data. PTRSIZE is the size of a pointer on the target
2719 // system.
2721 Bvariable*
2722 Type::gc_ptrmask_var(Gogo* gogo, int64_t ptrsize, int64_t ptrdata)
2724 Ptrmask ptrmask(ptrdata / ptrsize);
2725 if (ptrdata >= ptrsize)
2726 ptrmask.set_from(gogo, this, ptrsize, 0);
2727 else
2729 // This can happen in error cases. Just build an empty gcbits.
2730 go_assert(saw_errors());
2733 std::string sym_name = gogo->ptrmask_symbol_name(ptrmask.symname());
2734 Bvariable* bvnull = NULL;
2735 std::pair<GC_gcbits_vars::iterator, bool> ins =
2736 Type::gc_gcbits_vars.insert(std::make_pair(sym_name, bvnull));
2737 if (!ins.second)
2739 // We've already built a GC symbol for this set of gcbits.
2740 return ins.first->second;
2743 Expression* val = ptrmask.constructor(gogo);
2744 Translate_context context(gogo, NULL, NULL, NULL);
2745 context.set_is_const();
2746 Bexpression* bval = val->get_backend(&context);
2748 std::string asm_name(go_selectively_encode_id(sym_name));
2749 Btype *btype = val->type()->get_backend(gogo);
2750 Bvariable* ret = gogo->backend()->implicit_variable(sym_name, asm_name,
2751 btype, false, true,
2752 true, 0);
2753 gogo->backend()->implicit_variable_set_init(ret, sym_name, btype, false,
2754 true, true, bval);
2755 ins.first->second = ret;
2756 return ret;
2759 // A GCProg is used to build a program for the garbage collector.
2760 // This is used for types with a lot of pointer data, to reduce the
2761 // size of the data in the compiled program. The program is expanded
2762 // at runtime. For the format, see runGCProg in libgo/go/runtime/mbitmap.go.
2764 class GCProg
2766 public:
2767 GCProg()
2768 : bytes_(), index_(0), nb_(0)
2771 // The number of bits described so far.
2772 int64_t
2773 bit_index() const
2774 { return this->index_; }
2776 void
2777 set_from(Gogo*, Type*, int64_t ptrsize, int64_t offset);
2779 void
2780 end();
2782 Expression*
2783 constructor(Gogo* gogo) const;
2785 private:
2786 void
2787 ptr(int64_t);
2789 bool
2790 should_repeat(int64_t, int64_t);
2792 void
2793 repeat(int64_t, int64_t);
2795 void
2796 zero_until(int64_t);
2798 void
2799 lit(unsigned char);
2801 void
2802 varint(int64_t);
2804 void
2805 flushlit();
2807 // Add a byte to the program.
2808 void
2809 byte(unsigned char x)
2810 { this->bytes_.push_back(x); }
2812 // The maximum number of bytes of literal bits.
2813 static const int max_literal = 127;
2815 // The program.
2816 std::vector<unsigned char> bytes_;
2817 // The index of the last bit described.
2818 int64_t index_;
2819 // The current set of literal bits.
2820 unsigned char b_[max_literal];
2821 // The current number of literal bits.
2822 int nb_;
2825 // Set data in gcprog starting from OFFSET based on TYPE. OFFSET
2826 // counts in bytes. PTRSIZE is the size of a pointer on the target
2827 // system.
2829 void
2830 GCProg::set_from(Gogo* gogo, Type* type, int64_t ptrsize, int64_t offset)
2832 switch (type->base()->classification())
2834 default:
2835 case Type::TYPE_NIL:
2836 case Type::TYPE_CALL_MULTIPLE_RESULT:
2837 case Type::TYPE_NAMED:
2838 case Type::TYPE_FORWARD:
2839 go_unreachable();
2841 case Type::TYPE_ERROR:
2842 case Type::TYPE_VOID:
2843 case Type::TYPE_BOOLEAN:
2844 case Type::TYPE_INTEGER:
2845 case Type::TYPE_FLOAT:
2846 case Type::TYPE_COMPLEX:
2847 case Type::TYPE_SINK:
2848 break;
2850 case Type::TYPE_FUNCTION:
2851 case Type::TYPE_POINTER:
2852 case Type::TYPE_MAP:
2853 case Type::TYPE_CHANNEL:
2854 // These types are all a single pointer.
2855 go_assert((offset % ptrsize) == 0);
2856 this->ptr(offset / ptrsize);
2857 break;
2859 case Type::TYPE_STRING:
2860 // A string starts with a single pointer.
2861 go_assert((offset % ptrsize) == 0);
2862 this->ptr(offset / ptrsize);
2863 break;
2865 case Type::TYPE_INTERFACE:
2866 // An interface is two pointers.
2867 go_assert((offset % ptrsize) == 0);
2868 this->ptr(offset / ptrsize);
2869 this->ptr((offset / ptrsize) + 1);
2870 break;
2872 case Type::TYPE_STRUCT:
2874 if (!type->has_pointer())
2875 return;
2877 const Struct_field_list* fields = type->struct_type()->fields();
2878 int64_t soffset = 0;
2879 for (Struct_field_list::const_iterator pf = fields->begin();
2880 pf != fields->end();
2881 ++pf)
2883 int64_t field_align;
2884 if (!pf->type()->backend_type_field_align(gogo, &field_align))
2886 go_assert(saw_errors());
2887 return;
2889 soffset = (soffset + (field_align - 1)) &~ (field_align - 1);
2891 this->set_from(gogo, pf->type(), ptrsize, offset + soffset);
2893 int64_t field_size;
2894 if (!pf->type()->backend_type_size(gogo, &field_size))
2896 go_assert(saw_errors());
2897 return;
2899 soffset += field_size;
2902 break;
2904 case Type::TYPE_ARRAY:
2905 if (type->is_slice_type())
2907 // A slice starts with a single pointer.
2908 go_assert((offset % ptrsize) == 0);
2909 this->ptr(offset / ptrsize);
2910 break;
2912 else
2914 if (!type->has_pointer())
2915 return;
2917 int64_t len;
2918 if (!type->array_type()->int_length(&len))
2920 go_assert(saw_errors());
2921 return;
2924 Type* element_type = type->array_type()->element_type();
2926 // Flatten array of array to a big array by multiplying counts.
2927 while (element_type->array_type() != NULL
2928 && !element_type->is_slice_type())
2930 int64_t ele_len;
2931 if (!element_type->array_type()->int_length(&ele_len))
2933 go_assert(saw_errors());
2934 return;
2937 len *= ele_len;
2938 element_type = element_type->array_type()->element_type();
2941 int64_t ele_size;
2942 if (!element_type->backend_type_size(gogo, &ele_size))
2944 go_assert(saw_errors());
2945 return;
2948 go_assert(len > 0 && ele_size > 0);
2950 if (!this->should_repeat(ele_size / ptrsize, len))
2952 // Cheaper to just emit the bits.
2953 int64_t eoffset = 0;
2954 for (int64_t i = 0; i < len; i++, eoffset += ele_size)
2955 this->set_from(gogo, element_type, ptrsize, offset + eoffset);
2957 else
2959 go_assert((offset % ptrsize) == 0);
2960 go_assert((ele_size % ptrsize) == 0);
2961 this->set_from(gogo, element_type, ptrsize, offset);
2962 this->zero_until((offset + ele_size) / ptrsize);
2963 this->repeat(ele_size / ptrsize, len - 1);
2966 break;
2971 // Emit a 1 into the bit stream of a GC program at the given bit index.
2973 void
2974 GCProg::ptr(int64_t index)
2976 go_assert(index >= this->index_);
2977 this->zero_until(index);
2978 this->lit(1);
2981 // Return whether it is worthwhile to use a repeat to describe c
2982 // elements of n bits each, compared to just emitting c copies of the
2983 // n-bit description.
2985 bool
2986 GCProg::should_repeat(int64_t n, int64_t c)
2988 // Repeat if there is more than 1 item and if the total data doesn't
2989 // fit into four bytes.
2990 return c > 1 && c * n > 4 * 8;
2993 // Emit an instruction to repeat the description of the last n words c
2994 // times (including the initial description, so c + 1 times in total).
2996 void
2997 GCProg::repeat(int64_t n, int64_t c)
2999 if (n == 0 || c == 0)
3000 return;
3001 this->flushlit();
3002 if (n < 128)
3003 this->byte(0x80 | static_cast<unsigned char>(n & 0x7f));
3004 else
3006 this->byte(0x80);
3007 this->varint(n);
3009 this->varint(c);
3010 this->index_ += n * c;
3013 // Add zeros to the bit stream up to the given index.
3015 void
3016 GCProg::zero_until(int64_t index)
3018 go_assert(index >= this->index_);
3019 int64_t skip = index - this->index_;
3020 if (skip == 0)
3021 return;
3022 if (skip < 4 * 8)
3024 for (int64_t i = 0; i < skip; ++i)
3025 this->lit(0);
3026 return;
3028 this->lit(0);
3029 this->flushlit();
3030 this->repeat(1, skip - 1);
3033 // Add a single literal bit to the program.
3035 void
3036 GCProg::lit(unsigned char x)
3038 if (this->nb_ == GCProg::max_literal)
3039 this->flushlit();
3040 this->b_[this->nb_] = x;
3041 ++this->nb_;
3042 ++this->index_;
3045 // Emit the varint encoding of x.
3047 void
3048 GCProg::varint(int64_t x)
3050 go_assert(x >= 0);
3051 while (x >= 0x80)
3053 this->byte(0x80 | static_cast<unsigned char>(x & 0x7f));
3054 x >>= 7;
3056 this->byte(static_cast<unsigned char>(x & 0x7f));
3059 // Flush any pending literal bits.
3061 void
3062 GCProg::flushlit()
3064 if (this->nb_ == 0)
3065 return;
3066 this->byte(static_cast<unsigned char>(this->nb_));
3067 unsigned char bits = 0;
3068 for (int i = 0; i < this->nb_; ++i)
3070 bits |= this->b_[i] << (i % 8);
3071 if ((i + 1) % 8 == 0)
3073 this->byte(bits);
3074 bits = 0;
3077 if (this->nb_ % 8 != 0)
3078 this->byte(bits);
3079 this->nb_ = 0;
3082 // Mark the end of a GC program.
3084 void
3085 GCProg::end()
3087 this->flushlit();
3088 this->byte(0);
3091 // Return an Expression for the bytes in a GC program.
3093 Expression*
3094 GCProg::constructor(Gogo* gogo) const
3096 Location bloc = Linemap::predeclared_location();
3098 // The first four bytes are the length of the program in target byte
3099 // order. Build a struct whose first type is uint32 to make this
3100 // work.
3102 Type* uint32_type = Type::lookup_integer_type("uint32");
3104 Type* byte_type = gogo->lookup_global("byte")->type_value();
3105 Expression* len = Expression::make_integer_ul(this->bytes_.size(), NULL,
3106 bloc);
3107 Array_type* at = Type::make_array_type(byte_type, len);
3109 Struct_type* st = Type::make_builtin_struct_type(2, "len", uint32_type,
3110 "bytes", at);
3112 Expression_list* vals = new Expression_list();
3113 vals->reserve(this->bytes_.size());
3114 for (std::vector<unsigned char>::const_iterator p = this->bytes_.begin();
3115 p != this->bytes_.end();
3116 ++p)
3117 vals->push_back(Expression::make_integer_ul(*p, byte_type, bloc));
3118 Expression* bytes = Expression::make_array_composite_literal(at, vals, bloc);
3120 vals = new Expression_list();
3121 vals->push_back(Expression::make_integer_ul(this->bytes_.size(), uint32_type,
3122 bloc));
3123 vals->push_back(bytes);
3125 return Expression::make_struct_composite_literal(st, vals, bloc);
3128 // Return a composite literal for the garbage collection program for
3129 // this type. This is only used for types that are too large to use a
3130 // ptrmask.
3132 Expression*
3133 Type::gcprog_constructor(Gogo* gogo, int64_t ptrsize, int64_t ptrdata)
3135 Location bloc = Linemap::predeclared_location();
3137 GCProg prog;
3138 prog.set_from(gogo, this, ptrsize, 0);
3139 int64_t offset = prog.bit_index() * ptrsize;
3140 prog.end();
3142 int64_t type_size;
3143 if (!this->backend_type_size(gogo, &type_size))
3145 go_assert(saw_errors());
3146 return Expression::make_error(bloc);
3149 go_assert(offset >= ptrdata && offset <= type_size);
3151 return prog.constructor(gogo);
3154 // Return a composite literal for the uncommon type information for
3155 // this type. UNCOMMON_STRUCT_TYPE is the type of the uncommon type
3156 // struct. If name is not NULL, it is the name of the type. If
3157 // METHODS is not NULL, it is the list of methods. ONLY_VALUE_METHODS
3158 // is true if only value methods should be included. At least one of
3159 // NAME and METHODS must not be NULL.
3161 Expression*
3162 Type::uncommon_type_constructor(Gogo* gogo, Type* uncommon_type,
3163 Named_type* name, const Methods* methods,
3164 bool only_value_methods) const
3166 Location bloc = Linemap::predeclared_location();
3168 const Struct_field_list* fields = uncommon_type->struct_type()->fields();
3170 Expression_list* vals = new Expression_list();
3171 vals->reserve(3);
3173 Struct_field_list::const_iterator p = fields->begin();
3174 go_assert(p->is_field_name("name"));
3176 ++p;
3177 go_assert(p->is_field_name("pkgPath"));
3179 if (name == NULL)
3181 vals->push_back(Expression::make_nil(bloc));
3182 vals->push_back(Expression::make_nil(bloc));
3184 else
3186 Named_object* no = name->named_object();
3187 std::string n = Gogo::unpack_hidden_name(no->name());
3188 Expression* s = Expression::make_string(n, bloc);
3189 vals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
3191 if (name->is_builtin())
3192 vals->push_back(Expression::make_nil(bloc));
3193 else
3195 const Package* package = no->package();
3196 const std::string& pkgpath(package == NULL
3197 ? gogo->pkgpath()
3198 : package->pkgpath());
3199 s = Expression::make_string(pkgpath, bloc);
3200 vals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
3204 ++p;
3205 go_assert(p->is_field_name("methods"));
3206 vals->push_back(this->methods_constructor(gogo, p->type(), methods,
3207 only_value_methods));
3209 ++p;
3210 go_assert(p == fields->end());
3212 Expression* r = Expression::make_struct_composite_literal(uncommon_type,
3213 vals, bloc);
3214 return Expression::make_unary(OPERATOR_AND, r, bloc);
3217 // Sort methods by name.
3219 class Sort_methods
3221 public:
3222 bool
3223 operator()(const std::pair<std::string, const Method*>& m1,
3224 const std::pair<std::string, const Method*>& m2) const
3226 return (Gogo::unpack_hidden_name(m1.first)
3227 < Gogo::unpack_hidden_name(m2.first));
3231 // Return a composite literal for the type method table for this type.
3232 // METHODS_TYPE is the type of the table, and is a slice type.
3233 // METHODS is the list of methods. If ONLY_VALUE_METHODS is true,
3234 // then only value methods are used.
3236 Expression*
3237 Type::methods_constructor(Gogo* gogo, Type* methods_type,
3238 const Methods* methods,
3239 bool only_value_methods) const
3241 Location bloc = Linemap::predeclared_location();
3243 std::vector<std::pair<std::string, const Method*> > smethods;
3244 if (methods != NULL)
3246 smethods.reserve(methods->count());
3247 for (Methods::const_iterator p = methods->begin();
3248 p != methods->end();
3249 ++p)
3251 if (p->second->is_ambiguous())
3252 continue;
3253 if (only_value_methods && !p->second->is_value_method())
3254 continue;
3256 // This is where we implement the magic //go:nointerface
3257 // comment. If we saw that comment, we don't add this
3258 // method to the type descriptor.
3259 if (p->second->nointerface())
3260 continue;
3262 smethods.push_back(std::make_pair(p->first, p->second));
3266 if (smethods.empty())
3267 return Expression::make_slice_composite_literal(methods_type, NULL, bloc);
3269 std::sort(smethods.begin(), smethods.end(), Sort_methods());
3271 Type* method_type = methods_type->array_type()->element_type();
3273 Expression_list* vals = new Expression_list();
3274 vals->reserve(smethods.size());
3275 for (std::vector<std::pair<std::string, const Method*> >::const_iterator p
3276 = smethods.begin();
3277 p != smethods.end();
3278 ++p)
3279 vals->push_back(this->method_constructor(gogo, method_type, p->first,
3280 p->second, only_value_methods));
3282 return Expression::make_slice_composite_literal(methods_type, vals, bloc);
3285 // Return a composite literal for a single method. METHOD_TYPE is the
3286 // type of the entry. METHOD_NAME is the name of the method and M is
3287 // the method information.
3289 Expression*
3290 Type::method_constructor(Gogo*, Type* method_type,
3291 const std::string& method_name,
3292 const Method* m,
3293 bool only_value_methods) const
3295 Location bloc = Linemap::predeclared_location();
3297 const Struct_field_list* fields = method_type->struct_type()->fields();
3299 Expression_list* vals = new Expression_list();
3300 vals->reserve(5);
3302 Struct_field_list::const_iterator p = fields->begin();
3303 go_assert(p->is_field_name("name"));
3304 const std::string n = Gogo::unpack_hidden_name(method_name);
3305 Expression* s = Expression::make_string(n, bloc);
3306 vals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
3308 ++p;
3309 go_assert(p->is_field_name("pkgPath"));
3310 if (!Gogo::is_hidden_name(method_name))
3311 vals->push_back(Expression::make_nil(bloc));
3312 else
3314 s = Expression::make_string(Gogo::hidden_name_pkgpath(method_name),
3315 bloc);
3316 vals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
3319 Named_object* no = (m->needs_stub_method()
3320 ? m->stub_object()
3321 : m->named_object());
3323 Function_type* mtype;
3324 if (no->is_function())
3325 mtype = no->func_value()->type();
3326 else
3327 mtype = no->func_declaration_value()->type();
3328 go_assert(mtype->is_method());
3329 Type* nonmethod_type = mtype->copy_without_receiver();
3331 ++p;
3332 go_assert(p->is_field_name("mtyp"));
3333 vals->push_back(Expression::make_type_descriptor(nonmethod_type, bloc));
3335 ++p;
3336 go_assert(p->is_field_name("typ"));
3337 bool want_pointer_receiver = !only_value_methods && m->is_value_method();
3338 nonmethod_type = mtype->copy_with_receiver_as_param(want_pointer_receiver);
3339 vals->push_back(Expression::make_type_descriptor(nonmethod_type, bloc));
3341 ++p;
3342 go_assert(p->is_field_name("tfn"));
3343 vals->push_back(Expression::make_func_code_reference(no, bloc));
3345 ++p;
3346 go_assert(p == fields->end());
3348 return Expression::make_struct_composite_literal(method_type, vals, bloc);
3351 // Return a composite literal for the type descriptor of a plain type.
3352 // RUNTIME_TYPE_KIND is the value of the kind field. If NAME is not
3353 // NULL, it is the name to use as well as the list of methods.
3355 Expression*
3356 Type::plain_type_descriptor(Gogo* gogo, int runtime_type_kind,
3357 Named_type* name)
3359 return this->type_descriptor_constructor(gogo, runtime_type_kind,
3360 name, NULL, true);
3363 // Return the type reflection string for this type.
3365 std::string
3366 Type::reflection(Gogo* gogo) const
3368 std::string ret;
3370 // The do_reflection virtual function should set RET to the
3371 // reflection string.
3372 this->do_reflection(gogo, &ret);
3374 return ret;
3377 // Return whether the backend size of the type is known.
3379 bool
3380 Type::is_backend_type_size_known(Gogo* gogo)
3382 switch (this->classification_)
3384 case TYPE_ERROR:
3385 case TYPE_VOID:
3386 case TYPE_BOOLEAN:
3387 case TYPE_INTEGER:
3388 case TYPE_FLOAT:
3389 case TYPE_COMPLEX:
3390 case TYPE_STRING:
3391 case TYPE_FUNCTION:
3392 case TYPE_POINTER:
3393 case TYPE_NIL:
3394 case TYPE_MAP:
3395 case TYPE_CHANNEL:
3396 case TYPE_INTERFACE:
3397 return true;
3399 case TYPE_STRUCT:
3401 const Struct_field_list* fields = this->struct_type()->fields();
3402 for (Struct_field_list::const_iterator pf = fields->begin();
3403 pf != fields->end();
3404 ++pf)
3405 if (!pf->type()->is_backend_type_size_known(gogo))
3406 return false;
3407 return true;
3410 case TYPE_ARRAY:
3412 const Array_type* at = this->array_type();
3413 if (at->length() == NULL)
3414 return true;
3415 else
3417 Numeric_constant nc;
3418 if (!at->length()->numeric_constant_value(&nc))
3419 return false;
3420 mpz_t ival;
3421 if (!nc.to_int(&ival))
3422 return false;
3423 mpz_clear(ival);
3424 return at->element_type()->is_backend_type_size_known(gogo);
3428 case TYPE_NAMED:
3429 this->named_type()->convert(gogo);
3430 return this->named_type()->is_named_backend_type_size_known();
3432 case TYPE_FORWARD:
3434 Forward_declaration_type* fdt = this->forward_declaration_type();
3435 return fdt->real_type()->is_backend_type_size_known(gogo);
3438 case TYPE_SINK:
3439 case TYPE_CALL_MULTIPLE_RESULT:
3440 go_unreachable();
3442 default:
3443 go_unreachable();
3447 // If the size of the type can be determined, set *PSIZE to the size
3448 // in bytes and return true. Otherwise, return false. This queries
3449 // the backend.
3451 bool
3452 Type::backend_type_size(Gogo* gogo, int64_t *psize)
3454 if (!this->is_backend_type_size_known(gogo))
3455 return false;
3456 if (this->is_error_type())
3457 return false;
3458 Btype* bt = this->get_backend_placeholder(gogo);
3459 *psize = gogo->backend()->type_size(bt);
3460 if (*psize == -1)
3462 if (this->named_type() != NULL)
3463 go_error_at(this->named_type()->location(),
3464 "type %s larger than address space",
3465 Gogo::message_name(this->named_type()->name()).c_str());
3466 else
3467 go_error_at(Linemap::unknown_location(),
3468 "type %s larger than address space",
3469 this->reflection(gogo).c_str());
3471 // Make this an error type to avoid knock-on errors.
3472 this->classification_ = TYPE_ERROR;
3473 return false;
3475 return true;
3478 // If the alignment of the type can be determined, set *PALIGN to
3479 // the alignment in bytes and return true. Otherwise, return false.
3481 bool
3482 Type::backend_type_align(Gogo* gogo, int64_t *palign)
3484 if (!this->is_backend_type_size_known(gogo))
3485 return false;
3486 Btype* bt = this->get_backend_placeholder(gogo);
3487 *palign = gogo->backend()->type_alignment(bt);
3488 return true;
3491 // Like backend_type_align, but return the alignment when used as a
3492 // field.
3494 bool
3495 Type::backend_type_field_align(Gogo* gogo, int64_t *palign)
3497 if (!this->is_backend_type_size_known(gogo))
3498 return false;
3499 Btype* bt = this->get_backend_placeholder(gogo);
3500 *palign = gogo->backend()->type_field_alignment(bt);
3501 return true;
3504 // Get the ptrdata value for a type. This is the size of the prefix
3505 // of the type that contains all pointers. Store the ptrdata in
3506 // *PPTRDATA and return whether we found it.
3508 bool
3509 Type::backend_type_ptrdata(Gogo* gogo, int64_t* pptrdata)
3511 *pptrdata = 0;
3513 if (!this->has_pointer())
3514 return true;
3516 if (!this->is_backend_type_size_known(gogo))
3517 return false;
3519 switch (this->classification_)
3521 case TYPE_ERROR:
3522 return true;
3524 case TYPE_FUNCTION:
3525 case TYPE_POINTER:
3526 case TYPE_MAP:
3527 case TYPE_CHANNEL:
3528 // These types are nothing but a pointer.
3529 return this->backend_type_size(gogo, pptrdata);
3531 case TYPE_INTERFACE:
3532 // An interface is a struct of two pointers.
3533 return this->backend_type_size(gogo, pptrdata);
3535 case TYPE_STRING:
3537 // A string is a struct whose first field is a pointer, and
3538 // whose second field is not.
3539 Type* uint8_type = Type::lookup_integer_type("uint8");
3540 Type* ptr = Type::make_pointer_type(uint8_type);
3541 return ptr->backend_type_size(gogo, pptrdata);
3544 case TYPE_NAMED:
3545 case TYPE_FORWARD:
3546 return this->base()->backend_type_ptrdata(gogo, pptrdata);
3548 case TYPE_STRUCT:
3550 const Struct_field_list* fields = this->struct_type()->fields();
3551 int64_t offset = 0;
3552 const Struct_field *ptr = NULL;
3553 int64_t ptr_offset = 0;
3554 for (Struct_field_list::const_iterator pf = fields->begin();
3555 pf != fields->end();
3556 ++pf)
3558 int64_t field_align;
3559 if (!pf->type()->backend_type_field_align(gogo, &field_align))
3560 return false;
3561 offset = (offset + (field_align - 1)) &~ (field_align - 1);
3563 if (pf->type()->has_pointer())
3565 ptr = &*pf;
3566 ptr_offset = offset;
3569 int64_t field_size;
3570 if (!pf->type()->backend_type_size(gogo, &field_size))
3571 return false;
3572 offset += field_size;
3575 if (ptr != NULL)
3577 int64_t ptr_ptrdata;
3578 if (!ptr->type()->backend_type_ptrdata(gogo, &ptr_ptrdata))
3579 return false;
3580 *pptrdata = ptr_offset + ptr_ptrdata;
3582 return true;
3585 case TYPE_ARRAY:
3586 if (this->is_slice_type())
3588 // A slice is a struct whose first field is a pointer, and
3589 // whose remaining fields are not.
3590 Type* element_type = this->array_type()->element_type();
3591 Type* ptr = Type::make_pointer_type(element_type);
3592 return ptr->backend_type_size(gogo, pptrdata);
3594 else
3596 Numeric_constant nc;
3597 if (!this->array_type()->length()->numeric_constant_value(&nc))
3598 return false;
3599 int64_t len;
3600 if (!nc.to_memory_size(&len))
3601 return false;
3603 Type* element_type = this->array_type()->element_type();
3604 int64_t ele_size;
3605 int64_t ele_ptrdata;
3606 if (!element_type->backend_type_size(gogo, &ele_size)
3607 || !element_type->backend_type_ptrdata(gogo, &ele_ptrdata))
3608 return false;
3609 go_assert(ele_size > 0 && ele_ptrdata > 0);
3611 *pptrdata = (len - 1) * ele_size + ele_ptrdata;
3612 return true;
3615 default:
3616 case TYPE_VOID:
3617 case TYPE_BOOLEAN:
3618 case TYPE_INTEGER:
3619 case TYPE_FLOAT:
3620 case TYPE_COMPLEX:
3621 case TYPE_SINK:
3622 case TYPE_NIL:
3623 case TYPE_CALL_MULTIPLE_RESULT:
3624 go_unreachable();
3628 // Get the ptrdata value to store in a type descriptor. This is
3629 // normally the same as backend_type_ptrdata, but for a type that is
3630 // large enough to use a gcprog we may need to store a different value
3631 // if it ends with an array. If the gcprog uses a repeat descriptor
3632 // for the array, and if the array element ends with non-pointer data,
3633 // then the gcprog will produce a value that describes the complete
3634 // array where the backend ptrdata will omit the non-pointer elements
3635 // of the final array element. This is a subtle difference but the
3636 // run time code checks it to verify that it has expanded a gcprog as
3637 // expected.
3639 bool
3640 Type::descriptor_ptrdata(Gogo* gogo, int64_t* pptrdata)
3642 int64_t backend_ptrdata;
3643 if (!this->backend_type_ptrdata(gogo, &backend_ptrdata))
3644 return false;
3646 int64_t ptrsize;
3647 if (!this->needs_gcprog(gogo, &ptrsize, &backend_ptrdata))
3649 *pptrdata = backend_ptrdata;
3650 return true;
3653 GCProg prog;
3654 prog.set_from(gogo, this, ptrsize, 0);
3655 int64_t offset = prog.bit_index() * ptrsize;
3657 go_assert(offset >= backend_ptrdata);
3658 *pptrdata = offset;
3659 return true;
3662 // Default function to export a type.
3664 void
3665 Type::do_export(Export*) const
3667 go_unreachable();
3670 // Import a type.
3672 Type*
3673 Type::import_type(Import* imp)
3675 if (imp->match_c_string("("))
3676 return Function_type::do_import(imp);
3677 else if (imp->match_c_string("*"))
3678 return Pointer_type::do_import(imp);
3679 else if (imp->match_c_string("struct "))
3680 return Struct_type::do_import(imp);
3681 else if (imp->match_c_string("["))
3682 return Array_type::do_import(imp);
3683 else if (imp->match_c_string("map "))
3684 return Map_type::do_import(imp);
3685 else if (imp->match_c_string("chan "))
3686 return Channel_type::do_import(imp);
3687 else if (imp->match_c_string("interface"))
3688 return Interface_type::do_import(imp);
3689 else
3691 go_error_at(imp->location(), "import error: expected type");
3692 return Type::make_error_type();
3696 // Class Error_type.
3698 // Return the backend representation of an Error type.
3700 Btype*
3701 Error_type::do_get_backend(Gogo* gogo)
3703 return gogo->backend()->error_type();
3706 // Return an expression for the type descriptor for an error type.
3709 Expression*
3710 Error_type::do_type_descriptor(Gogo*, Named_type*)
3712 return Expression::make_error(Linemap::predeclared_location());
3715 // We should not be asked for the reflection string for an error type.
3717 void
3718 Error_type::do_reflection(Gogo*, std::string*) const
3720 go_assert(saw_errors());
3723 Type*
3724 Type::make_error_type()
3726 static Error_type singleton_error_type;
3727 return &singleton_error_type;
3730 // Class Void_type.
3732 // Get the backend representation of a void type.
3734 Btype*
3735 Void_type::do_get_backend(Gogo* gogo)
3737 return gogo->backend()->void_type();
3740 Type*
3741 Type::make_void_type()
3743 static Void_type singleton_void_type;
3744 return &singleton_void_type;
3747 // Class Boolean_type.
3749 // Return the backend representation of the boolean type.
3751 Btype*
3752 Boolean_type::do_get_backend(Gogo* gogo)
3754 return gogo->backend()->bool_type();
3757 // Make the type descriptor.
3759 Expression*
3760 Boolean_type::do_type_descriptor(Gogo* gogo, Named_type* name)
3762 if (name != NULL)
3763 return this->plain_type_descriptor(gogo, RUNTIME_TYPE_KIND_BOOL, name);
3764 else
3766 Named_object* no = gogo->lookup_global("bool");
3767 go_assert(no != NULL);
3768 return Type::type_descriptor(gogo, no->type_value());
3772 Type*
3773 Type::make_boolean_type()
3775 static Boolean_type boolean_type;
3776 return &boolean_type;
3779 // The named type "bool".
3781 static Named_type* named_bool_type;
3783 // Get the named type "bool".
3785 Named_type*
3786 Type::lookup_bool_type()
3788 return named_bool_type;
3791 // Make the named type "bool".
3793 Named_type*
3794 Type::make_named_bool_type()
3796 Type* bool_type = Type::make_boolean_type();
3797 Named_object* named_object =
3798 Named_object::make_type("bool", NULL, bool_type,
3799 Linemap::predeclared_location());
3800 Named_type* named_type = named_object->type_value();
3801 named_bool_type = named_type;
3802 return named_type;
3805 // Class Integer_type.
3807 Integer_type::Named_integer_types Integer_type::named_integer_types;
3809 // Create a new integer type. Non-abstract integer types always have
3810 // names.
3812 Named_type*
3813 Integer_type::create_integer_type(const char* name, bool is_unsigned,
3814 int bits, int runtime_type_kind)
3816 Integer_type* integer_type = new Integer_type(false, is_unsigned, bits,
3817 runtime_type_kind);
3818 std::string sname(name);
3819 Named_object* named_object =
3820 Named_object::make_type(sname, NULL, integer_type,
3821 Linemap::predeclared_location());
3822 Named_type* named_type = named_object->type_value();
3823 std::pair<Named_integer_types::iterator, bool> ins =
3824 Integer_type::named_integer_types.insert(std::make_pair(sname, named_type));
3825 go_assert(ins.second);
3826 return named_type;
3829 // Look up an existing integer type.
3831 Named_type*
3832 Integer_type::lookup_integer_type(const char* name)
3834 Named_integer_types::const_iterator p =
3835 Integer_type::named_integer_types.find(name);
3836 go_assert(p != Integer_type::named_integer_types.end());
3837 return p->second;
3840 // Create a new abstract integer type.
3842 Integer_type*
3843 Integer_type::create_abstract_integer_type()
3845 static Integer_type* abstract_type;
3846 if (abstract_type == NULL)
3848 Type* int_type = Type::lookup_integer_type("int");
3849 abstract_type = new Integer_type(true, false,
3850 int_type->integer_type()->bits(),
3851 RUNTIME_TYPE_KIND_INT);
3853 return abstract_type;
3856 // Create a new abstract character type.
3858 Integer_type*
3859 Integer_type::create_abstract_character_type()
3861 static Integer_type* abstract_type;
3862 if (abstract_type == NULL)
3864 abstract_type = new Integer_type(true, false, 32,
3865 RUNTIME_TYPE_KIND_INT32);
3866 abstract_type->set_is_rune();
3868 return abstract_type;
3871 // Integer type compatibility.
3873 bool
3874 Integer_type::is_identical(const Integer_type* t) const
3876 if (this->is_unsigned_ != t->is_unsigned_ || this->bits_ != t->bits_)
3877 return false;
3878 return this->is_abstract_ == t->is_abstract_;
3881 // Hash code.
3883 unsigned int
3884 Integer_type::do_hash_for_method(Gogo*) const
3886 return ((this->bits_ << 4)
3887 + ((this->is_unsigned_ ? 1 : 0) << 8)
3888 + ((this->is_abstract_ ? 1 : 0) << 9));
3891 // Convert an Integer_type to the backend representation.
3893 Btype*
3894 Integer_type::do_get_backend(Gogo* gogo)
3896 if (this->is_abstract_)
3898 go_assert(saw_errors());
3899 return gogo->backend()->error_type();
3901 return gogo->backend()->integer_type(this->is_unsigned_, this->bits_);
3904 // The type descriptor for an integer type. Integer types are always
3905 // named.
3907 Expression*
3908 Integer_type::do_type_descriptor(Gogo* gogo, Named_type* name)
3910 go_assert(name != NULL || saw_errors());
3911 return this->plain_type_descriptor(gogo, this->runtime_type_kind_, name);
3914 // We should not be asked for the reflection string of a basic type.
3916 void
3917 Integer_type::do_reflection(Gogo*, std::string*) const
3919 go_assert(saw_errors());
3922 // Make an integer type.
3924 Named_type*
3925 Type::make_integer_type(const char* name, bool is_unsigned, int bits,
3926 int runtime_type_kind)
3928 return Integer_type::create_integer_type(name, is_unsigned, bits,
3929 runtime_type_kind);
3932 // Make an abstract integer type.
3934 Integer_type*
3935 Type::make_abstract_integer_type()
3937 return Integer_type::create_abstract_integer_type();
3940 // Make an abstract character type.
3942 Integer_type*
3943 Type::make_abstract_character_type()
3945 return Integer_type::create_abstract_character_type();
3948 // Look up an integer type.
3950 Named_type*
3951 Type::lookup_integer_type(const char* name)
3953 return Integer_type::lookup_integer_type(name);
3956 // Class Float_type.
3958 Float_type::Named_float_types Float_type::named_float_types;
3960 // Create a new float type. Non-abstract float types always have
3961 // names.
3963 Named_type*
3964 Float_type::create_float_type(const char* name, int bits,
3965 int runtime_type_kind)
3967 Float_type* float_type = new Float_type(false, bits, runtime_type_kind);
3968 std::string sname(name);
3969 Named_object* named_object =
3970 Named_object::make_type(sname, NULL, float_type,
3971 Linemap::predeclared_location());
3972 Named_type* named_type = named_object->type_value();
3973 std::pair<Named_float_types::iterator, bool> ins =
3974 Float_type::named_float_types.insert(std::make_pair(sname, named_type));
3975 go_assert(ins.second);
3976 return named_type;
3979 // Look up an existing float type.
3981 Named_type*
3982 Float_type::lookup_float_type(const char* name)
3984 Named_float_types::const_iterator p =
3985 Float_type::named_float_types.find(name);
3986 go_assert(p != Float_type::named_float_types.end());
3987 return p->second;
3990 // Create a new abstract float type.
3992 Float_type*
3993 Float_type::create_abstract_float_type()
3995 static Float_type* abstract_type;
3996 if (abstract_type == NULL)
3997 abstract_type = new Float_type(true, 64, RUNTIME_TYPE_KIND_FLOAT64);
3998 return abstract_type;
4001 // Whether this type is identical with T.
4003 bool
4004 Float_type::is_identical(const Float_type* t) const
4006 if (this->bits_ != t->bits_)
4007 return false;
4008 return this->is_abstract_ == t->is_abstract_;
4011 // Hash code.
4013 unsigned int
4014 Float_type::do_hash_for_method(Gogo*) const
4016 return (this->bits_ << 4) + ((this->is_abstract_ ? 1 : 0) << 8);
4019 // Convert to the backend representation.
4021 Btype*
4022 Float_type::do_get_backend(Gogo* gogo)
4024 return gogo->backend()->float_type(this->bits_);
4027 // The type descriptor for a float type. Float types are always named.
4029 Expression*
4030 Float_type::do_type_descriptor(Gogo* gogo, Named_type* name)
4032 go_assert(name != NULL || saw_errors());
4033 return this->plain_type_descriptor(gogo, this->runtime_type_kind_, name);
4036 // We should not be asked for the reflection string of a basic type.
4038 void
4039 Float_type::do_reflection(Gogo*, std::string*) const
4041 go_assert(saw_errors());
4044 // Make a floating point type.
4046 Named_type*
4047 Type::make_float_type(const char* name, int bits, int runtime_type_kind)
4049 return Float_type::create_float_type(name, bits, runtime_type_kind);
4052 // Make an abstract float type.
4054 Float_type*
4055 Type::make_abstract_float_type()
4057 return Float_type::create_abstract_float_type();
4060 // Look up a float type.
4062 Named_type*
4063 Type::lookup_float_type(const char* name)
4065 return Float_type::lookup_float_type(name);
4068 // Class Complex_type.
4070 Complex_type::Named_complex_types Complex_type::named_complex_types;
4072 // Create a new complex type. Non-abstract complex types always have
4073 // names.
4075 Named_type*
4076 Complex_type::create_complex_type(const char* name, int bits,
4077 int runtime_type_kind)
4079 Complex_type* complex_type = new Complex_type(false, bits,
4080 runtime_type_kind);
4081 std::string sname(name);
4082 Named_object* named_object =
4083 Named_object::make_type(sname, NULL, complex_type,
4084 Linemap::predeclared_location());
4085 Named_type* named_type = named_object->type_value();
4086 std::pair<Named_complex_types::iterator, bool> ins =
4087 Complex_type::named_complex_types.insert(std::make_pair(sname,
4088 named_type));
4089 go_assert(ins.second);
4090 return named_type;
4093 // Look up an existing complex type.
4095 Named_type*
4096 Complex_type::lookup_complex_type(const char* name)
4098 Named_complex_types::const_iterator p =
4099 Complex_type::named_complex_types.find(name);
4100 go_assert(p != Complex_type::named_complex_types.end());
4101 return p->second;
4104 // Create a new abstract complex type.
4106 Complex_type*
4107 Complex_type::create_abstract_complex_type()
4109 static Complex_type* abstract_type;
4110 if (abstract_type == NULL)
4111 abstract_type = new Complex_type(true, 128, RUNTIME_TYPE_KIND_COMPLEX128);
4112 return abstract_type;
4115 // Whether this type is identical with T.
4117 bool
4118 Complex_type::is_identical(const Complex_type *t) const
4120 if (this->bits_ != t->bits_)
4121 return false;
4122 return this->is_abstract_ == t->is_abstract_;
4125 // Hash code.
4127 unsigned int
4128 Complex_type::do_hash_for_method(Gogo*) const
4130 return (this->bits_ << 4) + ((this->is_abstract_ ? 1 : 0) << 8);
4133 // Convert to the backend representation.
4135 Btype*
4136 Complex_type::do_get_backend(Gogo* gogo)
4138 return gogo->backend()->complex_type(this->bits_);
4141 // The type descriptor for a complex type. Complex types are always
4142 // named.
4144 Expression*
4145 Complex_type::do_type_descriptor(Gogo* gogo, Named_type* name)
4147 go_assert(name != NULL || saw_errors());
4148 return this->plain_type_descriptor(gogo, this->runtime_type_kind_, name);
4151 // We should not be asked for the reflection string of a basic type.
4153 void
4154 Complex_type::do_reflection(Gogo*, std::string*) const
4156 go_assert(saw_errors());
4159 // Make a complex type.
4161 Named_type*
4162 Type::make_complex_type(const char* name, int bits, int runtime_type_kind)
4164 return Complex_type::create_complex_type(name, bits, runtime_type_kind);
4167 // Make an abstract complex type.
4169 Complex_type*
4170 Type::make_abstract_complex_type()
4172 return Complex_type::create_abstract_complex_type();
4175 // Look up a complex type.
4177 Named_type*
4178 Type::lookup_complex_type(const char* name)
4180 return Complex_type::lookup_complex_type(name);
4183 // Class String_type.
4185 // Convert String_type to the backend representation. A string is a
4186 // struct with two fields: a pointer to the characters and a length.
4188 Btype*
4189 String_type::do_get_backend(Gogo* gogo)
4191 static Btype* backend_string_type;
4192 if (backend_string_type == NULL)
4194 std::vector<Backend::Btyped_identifier> fields(2);
4196 Type* b = gogo->lookup_global("byte")->type_value();
4197 Type* pb = Type::make_pointer_type(b);
4199 // We aren't going to get back to this field to finish the
4200 // backend representation, so force it to be finished now.
4201 if (!gogo->named_types_are_converted())
4203 Btype* bt = pb->get_backend_placeholder(gogo);
4204 pb->finish_backend(gogo, bt);
4207 fields[0].name = "__data";
4208 fields[0].btype = pb->get_backend(gogo);
4209 fields[0].location = Linemap::predeclared_location();
4211 Type* int_type = Type::lookup_integer_type("int");
4212 fields[1].name = "__length";
4213 fields[1].btype = int_type->get_backend(gogo);
4214 fields[1].location = fields[0].location;
4216 backend_string_type = gogo->backend()->struct_type(fields);
4218 return backend_string_type;
4221 // The type descriptor for the string type.
4223 Expression*
4224 String_type::do_type_descriptor(Gogo* gogo, Named_type* name)
4226 if (name != NULL)
4227 return this->plain_type_descriptor(gogo, RUNTIME_TYPE_KIND_STRING, name);
4228 else
4230 Named_object* no = gogo->lookup_global("string");
4231 go_assert(no != NULL);
4232 return Type::type_descriptor(gogo, no->type_value());
4236 // We should not be asked for the reflection string of a basic type.
4238 void
4239 String_type::do_reflection(Gogo*, std::string* ret) const
4241 ret->append("string");
4244 // Make a string type.
4246 Type*
4247 Type::make_string_type()
4249 static String_type string_type;
4250 return &string_type;
4253 // The named type "string".
4255 static Named_type* named_string_type;
4257 // Get the named type "string".
4259 Named_type*
4260 Type::lookup_string_type()
4262 return named_string_type;
4265 // Make the named type string.
4267 Named_type*
4268 Type::make_named_string_type()
4270 Type* string_type = Type::make_string_type();
4271 Named_object* named_object =
4272 Named_object::make_type("string", NULL, string_type,
4273 Linemap::predeclared_location());
4274 Named_type* named_type = named_object->type_value();
4275 named_string_type = named_type;
4276 return named_type;
4279 // The sink type. This is the type of the blank identifier _. Any
4280 // type may be assigned to it.
4282 class Sink_type : public Type
4284 public:
4285 Sink_type()
4286 : Type(TYPE_SINK)
4289 protected:
4290 bool
4291 do_compare_is_identity(Gogo*)
4292 { return false; }
4294 Btype*
4295 do_get_backend(Gogo*)
4296 { go_unreachable(); }
4298 Expression*
4299 do_type_descriptor(Gogo*, Named_type*)
4300 { go_unreachable(); }
4302 void
4303 do_reflection(Gogo*, std::string*) const
4304 { go_unreachable(); }
4306 void
4307 do_mangled_name(Gogo*, std::string*) const
4308 { go_unreachable(); }
4311 // Make the sink type.
4313 Type*
4314 Type::make_sink_type()
4316 static Sink_type sink_type;
4317 return &sink_type;
4320 // Class Function_type.
4322 // Traversal.
4325 Function_type::do_traverse(Traverse* traverse)
4327 if (this->receiver_ != NULL
4328 && Type::traverse(this->receiver_->type(), traverse) == TRAVERSE_EXIT)
4329 return TRAVERSE_EXIT;
4330 if (this->parameters_ != NULL
4331 && this->parameters_->traverse(traverse) == TRAVERSE_EXIT)
4332 return TRAVERSE_EXIT;
4333 if (this->results_ != NULL
4334 && this->results_->traverse(traverse) == TRAVERSE_EXIT)
4335 return TRAVERSE_EXIT;
4336 return TRAVERSE_CONTINUE;
4339 // Returns whether T is a valid redeclaration of this type. If this
4340 // returns false, and REASON is not NULL, *REASON may be set to a
4341 // brief explanation of why it returned false.
4343 bool
4344 Function_type::is_valid_redeclaration(const Function_type* t,
4345 std::string* reason) const
4347 if (!this->is_identical(t, false, COMPARE_TAGS, true, reason))
4348 return false;
4350 // A redeclaration of a function is required to use the same names
4351 // for the receiver and parameters.
4352 if (this->receiver() != NULL
4353 && this->receiver()->name() != t->receiver()->name())
4355 if (reason != NULL)
4356 *reason = "receiver name changed";
4357 return false;
4360 const Typed_identifier_list* parms1 = this->parameters();
4361 const Typed_identifier_list* parms2 = t->parameters();
4362 if (parms1 != NULL)
4364 Typed_identifier_list::const_iterator p1 = parms1->begin();
4365 for (Typed_identifier_list::const_iterator p2 = parms2->begin();
4366 p2 != parms2->end();
4367 ++p2, ++p1)
4369 if (p1->name() != p2->name())
4371 if (reason != NULL)
4372 *reason = "parameter name changed";
4373 return false;
4376 // This is called at parse time, so we may have unknown
4377 // types.
4378 Type* t1 = p1->type()->forwarded();
4379 Type* t2 = p2->type()->forwarded();
4380 if (t1 != t2
4381 && t1->forward_declaration_type() != NULL
4382 && (t2->forward_declaration_type() == NULL
4383 || (t1->forward_declaration_type()->named_object()
4384 != t2->forward_declaration_type()->named_object())))
4385 return false;
4389 const Typed_identifier_list* results1 = this->results();
4390 const Typed_identifier_list* results2 = t->results();
4391 if (results1 != NULL)
4393 Typed_identifier_list::const_iterator res1 = results1->begin();
4394 for (Typed_identifier_list::const_iterator res2 = results2->begin();
4395 res2 != results2->end();
4396 ++res2, ++res1)
4398 if (res1->name() != res2->name())
4400 if (reason != NULL)
4401 *reason = "result name changed";
4402 return false;
4405 // This is called at parse time, so we may have unknown
4406 // types.
4407 Type* t1 = res1->type()->forwarded();
4408 Type* t2 = res2->type()->forwarded();
4409 if (t1 != t2
4410 && t1->forward_declaration_type() != NULL
4411 && (t2->forward_declaration_type() == NULL
4412 || (t1->forward_declaration_type()->named_object()
4413 != t2->forward_declaration_type()->named_object())))
4414 return false;
4418 return true;
4421 // Check whether T is the same as this type.
4423 bool
4424 Function_type::is_identical(const Function_type* t, bool ignore_receiver,
4425 Cmp_tags cmp_tags, bool errors_are_identical,
4426 std::string* reason) const
4428 if (!ignore_receiver)
4430 const Typed_identifier* r1 = this->receiver();
4431 const Typed_identifier* r2 = t->receiver();
4432 if ((r1 != NULL) != (r2 != NULL))
4434 if (reason != NULL)
4435 *reason = _("different receiver types");
4436 return false;
4438 if (r1 != NULL)
4440 if (!Type::are_identical_cmp_tags(r1->type(), r2->type(), cmp_tags,
4441 errors_are_identical, reason))
4443 if (reason != NULL && !reason->empty())
4444 *reason = "receiver: " + *reason;
4445 return false;
4450 const Typed_identifier_list* parms1 = this->parameters();
4451 const Typed_identifier_list* parms2 = t->parameters();
4452 if ((parms1 != NULL) != (parms2 != NULL))
4454 if (reason != NULL)
4455 *reason = _("different number of parameters");
4456 return false;
4458 if (parms1 != NULL)
4460 Typed_identifier_list::const_iterator p1 = parms1->begin();
4461 for (Typed_identifier_list::const_iterator p2 = parms2->begin();
4462 p2 != parms2->end();
4463 ++p2, ++p1)
4465 if (p1 == parms1->end())
4467 if (reason != NULL)
4468 *reason = _("different number of parameters");
4469 return false;
4472 if (!Type::are_identical_cmp_tags(p1->type(), p2->type(), cmp_tags,
4473 errors_are_identical, NULL))
4475 if (reason != NULL)
4476 *reason = _("different parameter types");
4477 return false;
4480 if (p1 != parms1->end())
4482 if (reason != NULL)
4483 *reason = _("different number of parameters");
4484 return false;
4488 if (this->is_varargs() != t->is_varargs())
4490 if (reason != NULL)
4491 *reason = _("different varargs");
4492 return false;
4495 const Typed_identifier_list* results1 = this->results();
4496 const Typed_identifier_list* results2 = t->results();
4497 if ((results1 != NULL) != (results2 != NULL))
4499 if (reason != NULL)
4500 *reason = _("different number of results");
4501 return false;
4503 if (results1 != NULL)
4505 Typed_identifier_list::const_iterator res1 = results1->begin();
4506 for (Typed_identifier_list::const_iterator res2 = results2->begin();
4507 res2 != results2->end();
4508 ++res2, ++res1)
4510 if (res1 == results1->end())
4512 if (reason != NULL)
4513 *reason = _("different number of results");
4514 return false;
4517 if (!Type::are_identical_cmp_tags(res1->type(), res2->type(),
4518 cmp_tags, errors_are_identical,
4519 NULL))
4521 if (reason != NULL)
4522 *reason = _("different result types");
4523 return false;
4526 if (res1 != results1->end())
4528 if (reason != NULL)
4529 *reason = _("different number of results");
4530 return false;
4534 return true;
4537 // Hash code.
4539 unsigned int
4540 Function_type::do_hash_for_method(Gogo* gogo) const
4542 unsigned int ret = 0;
4543 // We ignore the receiver type for hash codes, because we need to
4544 // get the same hash code for a method in an interface and a method
4545 // declared for a type. The former will not have a receiver.
4546 if (this->parameters_ != NULL)
4548 int shift = 1;
4549 for (Typed_identifier_list::const_iterator p = this->parameters_->begin();
4550 p != this->parameters_->end();
4551 ++p, ++shift)
4552 ret += p->type()->hash_for_method(gogo) << shift;
4554 if (this->results_ != NULL)
4556 int shift = 2;
4557 for (Typed_identifier_list::const_iterator p = this->results_->begin();
4558 p != this->results_->end();
4559 ++p, ++shift)
4560 ret += p->type()->hash_for_method(gogo) << shift;
4562 if (this->is_varargs_)
4563 ret += 1;
4564 ret <<= 4;
4565 return ret;
4568 // Hash result parameters.
4570 unsigned int
4571 Function_type::Results_hash::operator()(const Typed_identifier_list* t) const
4573 unsigned int hash = 0;
4574 for (Typed_identifier_list::const_iterator p = t->begin();
4575 p != t->end();
4576 ++p)
4578 hash <<= 2;
4579 hash = Type::hash_string(p->name(), hash);
4580 hash += p->type()->hash_for_method(NULL);
4582 return hash;
4585 // Compare result parameters so that can map identical result
4586 // parameters to a single struct type.
4588 bool
4589 Function_type::Results_equal::operator()(const Typed_identifier_list* a,
4590 const Typed_identifier_list* b) const
4592 if (a->size() != b->size())
4593 return false;
4594 Typed_identifier_list::const_iterator pa = a->begin();
4595 for (Typed_identifier_list::const_iterator pb = b->begin();
4596 pb != b->end();
4597 ++pa, ++pb)
4599 if (pa->name() != pb->name()
4600 || !Type::are_identical(pa->type(), pb->type(), true, NULL))
4601 return false;
4603 return true;
4606 // Hash from results to a backend struct type.
4608 Function_type::Results_structs Function_type::results_structs;
4610 // Get the backend representation for a function type.
4612 Btype*
4613 Function_type::get_backend_fntype(Gogo* gogo)
4615 if (this->fnbtype_ == NULL)
4617 Backend::Btyped_identifier breceiver;
4618 if (this->receiver_ != NULL)
4620 breceiver.name = Gogo::unpack_hidden_name(this->receiver_->name());
4622 // We always pass the address of the receiver parameter, in
4623 // order to make interface calls work with unknown types.
4624 Type* rtype = this->receiver_->type();
4625 if (rtype->points_to() == NULL)
4626 rtype = Type::make_pointer_type(rtype);
4627 breceiver.btype = rtype->get_backend(gogo);
4628 breceiver.location = this->receiver_->location();
4631 std::vector<Backend::Btyped_identifier> bparameters;
4632 if (this->parameters_ != NULL)
4634 bparameters.resize(this->parameters_->size());
4635 size_t i = 0;
4636 for (Typed_identifier_list::const_iterator p =
4637 this->parameters_->begin(); p != this->parameters_->end();
4638 ++p, ++i)
4640 bparameters[i].name = Gogo::unpack_hidden_name(p->name());
4641 bparameters[i].btype = p->type()->get_backend(gogo);
4642 bparameters[i].location = p->location();
4644 go_assert(i == bparameters.size());
4647 std::vector<Backend::Btyped_identifier> bresults;
4648 Btype* bresult_struct = NULL;
4649 if (this->results_ != NULL)
4651 bresults.resize(this->results_->size());
4652 size_t i = 0;
4653 for (Typed_identifier_list::const_iterator p =
4654 this->results_->begin();
4655 p != this->results_->end();
4656 ++p, ++i)
4658 bresults[i].name = Gogo::unpack_hidden_name(p->name());
4659 bresults[i].btype = p->type()->get_backend(gogo);
4660 bresults[i].location = p->location();
4662 go_assert(i == bresults.size());
4664 if (this->results_->size() > 1)
4666 // Use the same results struct for all functions that
4667 // return the same set of results. This is useful to
4668 // unify calls to interface methods with other calls.
4669 std::pair<Typed_identifier_list*, Btype*> val;
4670 val.first = this->results_;
4671 val.second = NULL;
4672 std::pair<Results_structs::iterator, bool> ins =
4673 Function_type::results_structs.insert(val);
4674 if (ins.second)
4676 // Build a new struct type.
4677 Struct_field_list* sfl = new Struct_field_list;
4678 for (Typed_identifier_list::const_iterator p =
4679 this->results_->begin();
4680 p != this->results_->end();
4681 ++p)
4683 Typed_identifier tid = *p;
4684 if (tid.name().empty())
4685 tid = Typed_identifier("UNNAMED", tid.type(),
4686 tid.location());
4687 sfl->push_back(Struct_field(tid));
4689 Struct_type* st = Type::make_struct_type(sfl,
4690 this->location());
4691 st->set_is_struct_incomparable();
4692 ins.first->second = st->get_backend(gogo);
4694 bresult_struct = ins.first->second;
4698 this->fnbtype_ = gogo->backend()->function_type(breceiver, bparameters,
4699 bresults, bresult_struct,
4700 this->location());
4704 return this->fnbtype_;
4707 // Get the backend representation for a Go function type.
4709 Btype*
4710 Function_type::do_get_backend(Gogo* gogo)
4712 // When we do anything with a function value other than call it, it
4713 // is represented as a pointer to a struct whose first field is the
4714 // actual function. So that is what we return as the type of a Go
4715 // function.
4717 Location loc = this->location();
4718 Btype* struct_type =
4719 gogo->backend()->placeholder_struct_type("__go_descriptor", loc);
4720 Btype* ptr_struct_type = gogo->backend()->pointer_type(struct_type);
4722 std::vector<Backend::Btyped_identifier> fields(1);
4723 fields[0].name = "code";
4724 fields[0].btype = this->get_backend_fntype(gogo);
4725 fields[0].location = loc;
4726 if (!gogo->backend()->set_placeholder_struct_type(struct_type, fields))
4727 return gogo->backend()->error_type();
4728 return ptr_struct_type;
4731 // The type of a function type descriptor.
4733 Type*
4734 Function_type::make_function_type_descriptor_type()
4736 static Type* ret;
4737 if (ret == NULL)
4739 Type* tdt = Type::make_type_descriptor_type();
4740 Type* ptdt = Type::make_type_descriptor_ptr_type();
4742 Type* bool_type = Type::lookup_bool_type();
4744 Type* slice_type = Type::make_array_type(ptdt, NULL);
4746 Struct_type* s = Type::make_builtin_struct_type(4,
4747 "", tdt,
4748 "dotdotdot", bool_type,
4749 "in", slice_type,
4750 "out", slice_type);
4752 ret = Type::make_builtin_named_type("FuncType", s);
4755 return ret;
4758 // The type descriptor for a function type.
4760 Expression*
4761 Function_type::do_type_descriptor(Gogo* gogo, Named_type* name)
4763 Location bloc = Linemap::predeclared_location();
4765 Type* ftdt = Function_type::make_function_type_descriptor_type();
4767 const Struct_field_list* fields = ftdt->struct_type()->fields();
4769 Expression_list* vals = new Expression_list();
4770 vals->reserve(4);
4772 Struct_field_list::const_iterator p = fields->begin();
4773 go_assert(p->is_field_name("_type"));
4774 vals->push_back(this->type_descriptor_constructor(gogo,
4775 RUNTIME_TYPE_KIND_FUNC,
4776 name, NULL, true));
4778 ++p;
4779 go_assert(p->is_field_name("dotdotdot"));
4780 vals->push_back(Expression::make_boolean(this->is_varargs(), bloc));
4782 ++p;
4783 go_assert(p->is_field_name("in"));
4784 vals->push_back(this->type_descriptor_params(p->type(), this->receiver(),
4785 this->parameters()));
4787 ++p;
4788 go_assert(p->is_field_name("out"));
4789 vals->push_back(this->type_descriptor_params(p->type(), NULL,
4790 this->results()));
4792 ++p;
4793 go_assert(p == fields->end());
4795 return Expression::make_struct_composite_literal(ftdt, vals, bloc);
4798 // Return a composite literal for the parameters or results of a type
4799 // descriptor.
4801 Expression*
4802 Function_type::type_descriptor_params(Type* params_type,
4803 const Typed_identifier* receiver,
4804 const Typed_identifier_list* params)
4806 Location bloc = Linemap::predeclared_location();
4808 if (receiver == NULL && params == NULL)
4809 return Expression::make_slice_composite_literal(params_type, NULL, bloc);
4811 Expression_list* vals = new Expression_list();
4812 vals->reserve((params == NULL ? 0 : params->size())
4813 + (receiver != NULL ? 1 : 0));
4815 if (receiver != NULL)
4816 vals->push_back(Expression::make_type_descriptor(receiver->type(), bloc));
4818 if (params != NULL)
4820 for (Typed_identifier_list::const_iterator p = params->begin();
4821 p != params->end();
4822 ++p)
4823 vals->push_back(Expression::make_type_descriptor(p->type(), bloc));
4826 return Expression::make_slice_composite_literal(params_type, vals, bloc);
4829 // The reflection string.
4831 void
4832 Function_type::do_reflection(Gogo* gogo, std::string* ret) const
4834 // FIXME: Turn this off until we straighten out the type of the
4835 // struct field used in a go statement which calls a method.
4836 // go_assert(this->receiver_ == NULL);
4838 ret->append("func");
4840 if (this->receiver_ != NULL)
4842 ret->push_back('(');
4843 this->append_reflection(this->receiver_->type(), gogo, ret);
4844 ret->push_back(')');
4847 ret->push_back('(');
4848 const Typed_identifier_list* params = this->parameters();
4849 if (params != NULL)
4851 bool is_varargs = this->is_varargs_;
4852 for (Typed_identifier_list::const_iterator p = params->begin();
4853 p != params->end();
4854 ++p)
4856 if (p != params->begin())
4857 ret->append(", ");
4858 if (!is_varargs || p + 1 != params->end())
4859 this->append_reflection(p->type(), gogo, ret);
4860 else
4862 ret->append("...");
4863 this->append_reflection(p->type()->array_type()->element_type(),
4864 gogo, ret);
4868 ret->push_back(')');
4870 const Typed_identifier_list* results = this->results();
4871 if (results != NULL && !results->empty())
4873 if (results->size() == 1)
4874 ret->push_back(' ');
4875 else
4876 ret->append(" (");
4877 for (Typed_identifier_list::const_iterator p = results->begin();
4878 p != results->end();
4879 ++p)
4881 if (p != results->begin())
4882 ret->append(", ");
4883 this->append_reflection(p->type(), gogo, ret);
4885 if (results->size() > 1)
4886 ret->push_back(')');
4890 // Export a function type.
4892 void
4893 Function_type::do_export(Export* exp) const
4895 // We don't write out the receiver. The only function types which
4896 // should have a receiver are the ones associated with explicitly
4897 // defined methods. For those the receiver type is written out by
4898 // Function::export_func.
4900 exp->write_c_string("(");
4901 bool first = true;
4902 if (this->parameters_ != NULL)
4904 bool is_varargs = this->is_varargs_;
4905 for (Typed_identifier_list::const_iterator p =
4906 this->parameters_->begin();
4907 p != this->parameters_->end();
4908 ++p)
4910 if (first)
4911 first = false;
4912 else
4913 exp->write_c_string(", ");
4914 exp->write_name(p->name());
4915 exp->write_c_string(" ");
4916 if (!is_varargs || p + 1 != this->parameters_->end())
4917 exp->write_type(p->type());
4918 else
4920 exp->write_c_string("...");
4921 exp->write_type(p->type()->array_type()->element_type());
4925 exp->write_c_string(")");
4927 const Typed_identifier_list* results = this->results_;
4928 if (results != NULL)
4930 exp->write_c_string(" ");
4931 if (results->size() == 1 && results->begin()->name().empty())
4932 exp->write_type(results->begin()->type());
4933 else
4935 first = true;
4936 exp->write_c_string("(");
4937 for (Typed_identifier_list::const_iterator p = results->begin();
4938 p != results->end();
4939 ++p)
4941 if (first)
4942 first = false;
4943 else
4944 exp->write_c_string(", ");
4945 exp->write_name(p->name());
4946 exp->write_c_string(" ");
4947 exp->write_type(p->type());
4949 exp->write_c_string(")");
4954 // Import a function type.
4956 Function_type*
4957 Function_type::do_import(Import* imp)
4959 imp->require_c_string("(");
4960 Typed_identifier_list* parameters;
4961 bool is_varargs = false;
4962 if (imp->peek_char() == ')')
4963 parameters = NULL;
4964 else
4966 parameters = new Typed_identifier_list();
4967 while (true)
4969 std::string name = imp->read_name();
4970 imp->require_c_string(" ");
4972 if (imp->match_c_string("..."))
4974 imp->advance(3);
4975 is_varargs = true;
4978 Type* ptype = imp->read_type();
4979 if (is_varargs)
4980 ptype = Type::make_array_type(ptype, NULL);
4981 parameters->push_back(Typed_identifier(name, ptype,
4982 imp->location()));
4983 if (imp->peek_char() != ',')
4984 break;
4985 go_assert(!is_varargs);
4986 imp->require_c_string(", ");
4989 imp->require_c_string(")");
4991 Typed_identifier_list* results;
4992 if (imp->peek_char() != ' ')
4993 results = NULL;
4994 else
4996 imp->advance(1);
4997 results = new Typed_identifier_list;
4998 if (imp->peek_char() != '(')
5000 Type* rtype = imp->read_type();
5001 results->push_back(Typed_identifier("", rtype, imp->location()));
5003 else
5005 imp->advance(1);
5006 while (true)
5008 std::string name = imp->read_name();
5009 imp->require_c_string(" ");
5010 Type* rtype = imp->read_type();
5011 results->push_back(Typed_identifier(name, rtype,
5012 imp->location()));
5013 if (imp->peek_char() != ',')
5014 break;
5015 imp->require_c_string(", ");
5017 imp->require_c_string(")");
5021 Function_type* ret = Type::make_function_type(NULL, parameters, results,
5022 imp->location());
5023 if (is_varargs)
5024 ret->set_is_varargs();
5025 return ret;
5028 // Make a copy of a function type without a receiver.
5030 Function_type*
5031 Function_type::copy_without_receiver() const
5033 go_assert(this->is_method());
5034 Function_type *ret = Type::make_function_type(NULL, this->parameters_,
5035 this->results_,
5036 this->location_);
5037 if (this->is_varargs())
5038 ret->set_is_varargs();
5039 if (this->is_builtin())
5040 ret->set_is_builtin();
5041 return ret;
5044 // Make a copy of a function type with a receiver.
5046 Function_type*
5047 Function_type::copy_with_receiver(Type* receiver_type) const
5049 go_assert(!this->is_method());
5050 Typed_identifier* receiver = new Typed_identifier("", receiver_type,
5051 this->location_);
5052 Function_type* ret = Type::make_function_type(receiver, this->parameters_,
5053 this->results_,
5054 this->location_);
5055 if (this->is_varargs_)
5056 ret->set_is_varargs();
5057 return ret;
5060 // Make a copy of a function type with the receiver as the first
5061 // parameter.
5063 Function_type*
5064 Function_type::copy_with_receiver_as_param(bool want_pointer_receiver) const
5066 go_assert(this->is_method());
5067 Typed_identifier_list* new_params = new Typed_identifier_list();
5068 Type* rtype = this->receiver_->type();
5069 if (want_pointer_receiver)
5070 rtype = Type::make_pointer_type(rtype);
5071 Typed_identifier receiver(this->receiver_->name(), rtype,
5072 this->receiver_->location());
5073 new_params->push_back(receiver);
5074 const Typed_identifier_list* orig_params = this->parameters_;
5075 if (orig_params != NULL && !orig_params->empty())
5077 for (Typed_identifier_list::const_iterator p = orig_params->begin();
5078 p != orig_params->end();
5079 ++p)
5080 new_params->push_back(*p);
5082 return Type::make_function_type(NULL, new_params, this->results_,
5083 this->location_);
5086 // Make a copy of a function type ignoring any receiver and adding a
5087 // closure parameter.
5089 Function_type*
5090 Function_type::copy_with_names() const
5092 Typed_identifier_list* new_params = new Typed_identifier_list();
5093 const Typed_identifier_list* orig_params = this->parameters_;
5094 if (orig_params != NULL && !orig_params->empty())
5096 static int count;
5097 char buf[50];
5098 for (Typed_identifier_list::const_iterator p = orig_params->begin();
5099 p != orig_params->end();
5100 ++p)
5102 snprintf(buf, sizeof buf, "pt.%u", count);
5103 ++count;
5104 new_params->push_back(Typed_identifier(buf, p->type(),
5105 p->location()));
5109 const Typed_identifier_list* orig_results = this->results_;
5110 Typed_identifier_list* new_results;
5111 if (orig_results == NULL || orig_results->empty())
5112 new_results = NULL;
5113 else
5115 new_results = new Typed_identifier_list();
5116 for (Typed_identifier_list::const_iterator p = orig_results->begin();
5117 p != orig_results->end();
5118 ++p)
5119 new_results->push_back(Typed_identifier("", p->type(),
5120 p->location()));
5123 return Type::make_function_type(NULL, new_params, new_results,
5124 this->location());
5127 // Make a function type.
5129 Function_type*
5130 Type::make_function_type(Typed_identifier* receiver,
5131 Typed_identifier_list* parameters,
5132 Typed_identifier_list* results,
5133 Location location)
5135 return new Function_type(receiver, parameters, results, location);
5138 // Make a backend function type.
5140 Backend_function_type*
5141 Type::make_backend_function_type(Typed_identifier* receiver,
5142 Typed_identifier_list* parameters,
5143 Typed_identifier_list* results,
5144 Location location)
5146 return new Backend_function_type(receiver, parameters, results, location);
5149 // Class Pointer_type.
5151 // Traversal.
5154 Pointer_type::do_traverse(Traverse* traverse)
5156 return Type::traverse(this->to_type_, traverse);
5159 // Hash code.
5161 unsigned int
5162 Pointer_type::do_hash_for_method(Gogo* gogo) const
5164 return this->to_type_->hash_for_method(gogo) << 4;
5167 // Get the backend representation for a pointer type.
5169 Btype*
5170 Pointer_type::do_get_backend(Gogo* gogo)
5172 Btype* to_btype = this->to_type_->get_backend(gogo);
5173 return gogo->backend()->pointer_type(to_btype);
5176 // The type of a pointer type descriptor.
5178 Type*
5179 Pointer_type::make_pointer_type_descriptor_type()
5181 static Type* ret;
5182 if (ret == NULL)
5184 Type* tdt = Type::make_type_descriptor_type();
5185 Type* ptdt = Type::make_type_descriptor_ptr_type();
5187 Struct_type* s = Type::make_builtin_struct_type(2,
5188 "", tdt,
5189 "elem", ptdt);
5191 ret = Type::make_builtin_named_type("PtrType", s);
5194 return ret;
5197 // The type descriptor for a pointer type.
5199 Expression*
5200 Pointer_type::do_type_descriptor(Gogo* gogo, Named_type* name)
5202 if (this->is_unsafe_pointer_type())
5204 go_assert(name != NULL);
5205 return this->plain_type_descriptor(gogo,
5206 RUNTIME_TYPE_KIND_UNSAFE_POINTER,
5207 name);
5209 else
5211 Location bloc = Linemap::predeclared_location();
5213 const Methods* methods;
5214 Type* deref = this->points_to();
5215 if (deref->named_type() != NULL)
5216 methods = deref->named_type()->methods();
5217 else if (deref->struct_type() != NULL)
5218 methods = deref->struct_type()->methods();
5219 else
5220 methods = NULL;
5222 Type* ptr_tdt = Pointer_type::make_pointer_type_descriptor_type();
5224 const Struct_field_list* fields = ptr_tdt->struct_type()->fields();
5226 Expression_list* vals = new Expression_list();
5227 vals->reserve(2);
5229 Struct_field_list::const_iterator p = fields->begin();
5230 go_assert(p->is_field_name("_type"));
5231 vals->push_back(this->type_descriptor_constructor(gogo,
5232 RUNTIME_TYPE_KIND_PTR,
5233 name, methods, false));
5235 ++p;
5236 go_assert(p->is_field_name("elem"));
5237 vals->push_back(Expression::make_type_descriptor(deref, bloc));
5239 return Expression::make_struct_composite_literal(ptr_tdt, vals, bloc);
5243 // Reflection string.
5245 void
5246 Pointer_type::do_reflection(Gogo* gogo, std::string* ret) const
5248 ret->push_back('*');
5249 this->append_reflection(this->to_type_, gogo, ret);
5252 // Export.
5254 void
5255 Pointer_type::do_export(Export* exp) const
5257 exp->write_c_string("*");
5258 if (this->is_unsafe_pointer_type())
5259 exp->write_c_string("any");
5260 else
5261 exp->write_type(this->to_type_);
5264 // Import.
5266 Pointer_type*
5267 Pointer_type::do_import(Import* imp)
5269 imp->require_c_string("*");
5270 if (imp->match_c_string("any"))
5272 imp->advance(3);
5273 return Type::make_pointer_type(Type::make_void_type());
5275 Type* to = imp->read_type();
5276 return Type::make_pointer_type(to);
5279 // Cache of pointer types. Key is "to" type, value is pointer type
5280 // that points to key.
5282 Type::Pointer_type_table Type::pointer_types;
5284 // A list of placeholder pointer types. We keep this so we can ensure
5285 // they are finalized.
5287 std::vector<Pointer_type*> Type::placeholder_pointers;
5289 // Make a pointer type.
5291 Pointer_type*
5292 Type::make_pointer_type(Type* to_type)
5294 Pointer_type_table::const_iterator p = pointer_types.find(to_type);
5295 if (p != pointer_types.end())
5296 return p->second;
5297 Pointer_type* ret = new Pointer_type(to_type);
5298 pointer_types[to_type] = ret;
5299 return ret;
5302 // This helper is invoked immediately after named types have been
5303 // converted, to clean up any unresolved pointer types remaining in
5304 // the pointer type cache.
5306 // The motivation for this routine: occasionally the compiler creates
5307 // some specific pointer type as part of a lowering operation (ex:
5308 // pointer-to-void), then Type::backend_type_size() is invoked on the
5309 // type (which creates a Btype placeholder for it), that placeholder
5310 // passed somewhere along the line to the back end, but since there is
5311 // no reference to the type in user code, there is never a call to
5312 // Type::finish_backend for the type (hence the Btype remains as an
5313 // unresolved placeholder). Calling this routine will clean up such
5314 // instances.
5316 void
5317 Type::finish_pointer_types(Gogo* gogo)
5319 // We don't use begin() and end() because it is possible to add new
5320 // placeholder pointer types as we finalized existing ones.
5321 for (size_t i = 0; i < Type::placeholder_pointers.size(); i++)
5323 Pointer_type* pt = Type::placeholder_pointers[i];
5324 Type_btypes::iterator tbti = Type::type_btypes.find(pt);
5325 if (tbti != Type::type_btypes.end() && tbti->second.is_placeholder)
5327 pt->finish_backend(gogo, tbti->second.btype);
5328 tbti->second.is_placeholder = false;
5333 // Class Nil_type.
5335 // Get the backend representation of a nil type. FIXME: Is this ever
5336 // actually called?
5338 Btype*
5339 Nil_type::do_get_backend(Gogo* gogo)
5341 return gogo->backend()->pointer_type(gogo->backend()->void_type());
5344 // Make the nil type.
5346 Type*
5347 Type::make_nil_type()
5349 static Nil_type singleton_nil_type;
5350 return &singleton_nil_type;
5353 // The type of a function call which returns multiple values. This is
5354 // really a struct, but we don't want to confuse a function call which
5355 // returns a struct with a function call which returns multiple
5356 // values.
5358 class Call_multiple_result_type : public Type
5360 public:
5361 Call_multiple_result_type(Call_expression* call)
5362 : Type(TYPE_CALL_MULTIPLE_RESULT),
5363 call_(call)
5366 protected:
5367 bool
5368 do_has_pointer() const
5369 { return false; }
5371 bool
5372 do_compare_is_identity(Gogo*)
5373 { return false; }
5375 Btype*
5376 do_get_backend(Gogo* gogo)
5378 go_assert(saw_errors());
5379 return gogo->backend()->error_type();
5382 Expression*
5383 do_type_descriptor(Gogo*, Named_type*)
5385 go_assert(saw_errors());
5386 return Expression::make_error(Linemap::unknown_location());
5389 void
5390 do_reflection(Gogo*, std::string*) const
5391 { go_assert(saw_errors()); }
5393 void
5394 do_mangled_name(Gogo*, std::string*) const
5395 { go_assert(saw_errors()); }
5397 private:
5398 // The expression being called.
5399 Call_expression* call_;
5402 // Make a call result type.
5404 Type*
5405 Type::make_call_multiple_result_type(Call_expression* call)
5407 return new Call_multiple_result_type(call);
5410 // Class Struct_field.
5412 // Get the name of a field.
5414 const std::string&
5415 Struct_field::field_name() const
5417 const std::string& name(this->typed_identifier_.name());
5418 if (!name.empty())
5419 return name;
5420 else
5422 // This is called during parsing, before anything is lowered, so
5423 // we have to be pretty careful to avoid dereferencing an
5424 // unknown type name.
5425 Type* t = this->typed_identifier_.type();
5426 Type* dt = t;
5427 if (t->classification() == Type::TYPE_POINTER)
5429 // Very ugly.
5430 Pointer_type* ptype = static_cast<Pointer_type*>(t);
5431 dt = ptype->points_to();
5433 if (dt->forward_declaration_type() != NULL)
5434 return dt->forward_declaration_type()->name();
5435 else if (dt->named_type() != NULL)
5437 // Note that this can be an alias name.
5438 return dt->named_type()->name();
5440 else if (t->is_error_type() || dt->is_error_type())
5442 static const std::string error_string = "*error*";
5443 return error_string;
5445 else
5447 // Avoid crashing in the erroneous case where T is named but
5448 // DT is not.
5449 go_assert(t != dt);
5450 if (t->forward_declaration_type() != NULL)
5451 return t->forward_declaration_type()->name();
5452 else if (t->named_type() != NULL)
5453 return t->named_type()->name();
5454 else
5455 go_unreachable();
5460 // Return whether this field is named NAME.
5462 bool
5463 Struct_field::is_field_name(const std::string& name) const
5465 const std::string& me(this->typed_identifier_.name());
5466 if (!me.empty())
5467 return me == name;
5468 else
5470 Type* t = this->typed_identifier_.type();
5471 if (t->points_to() != NULL)
5472 t = t->points_to();
5473 Named_type* nt = t->named_type();
5474 if (nt != NULL && nt->name() == name)
5475 return true;
5477 // This is a horrible hack caused by the fact that we don't pack
5478 // the names of builtin types. FIXME.
5479 if (!this->is_imported_
5480 && nt != NULL
5481 && nt->is_builtin()
5482 && nt->name() == Gogo::unpack_hidden_name(name))
5483 return true;
5485 return false;
5489 // Return whether this field is an unexported field named NAME.
5491 bool
5492 Struct_field::is_unexported_field_name(Gogo* gogo,
5493 const std::string& name) const
5495 const std::string& field_name(this->field_name());
5496 if (Gogo::is_hidden_name(field_name)
5497 && name == Gogo::unpack_hidden_name(field_name)
5498 && gogo->pack_hidden_name(name, false) != field_name)
5499 return true;
5501 // Check for the name of a builtin type. This is like the test in
5502 // is_field_name, only there we return false if this->is_imported_,
5503 // and here we return true.
5504 if (this->is_imported_ && this->is_anonymous())
5506 Type* t = this->typed_identifier_.type();
5507 if (t->points_to() != NULL)
5508 t = t->points_to();
5509 Named_type* nt = t->named_type();
5510 if (nt != NULL
5511 && nt->is_builtin()
5512 && nt->name() == Gogo::unpack_hidden_name(name))
5513 return true;
5516 return false;
5519 // Return whether this field is an embedded built-in type.
5521 bool
5522 Struct_field::is_embedded_builtin(Gogo* gogo) const
5524 const std::string& name(this->field_name());
5525 // We know that a field is an embedded type if it is anonymous.
5526 // We can decide if it is a built-in type by checking to see if it is
5527 // registered globally under the field's name.
5528 // This allows us to distinguish between embedded built-in types and
5529 // embedded types that are aliases to built-in types.
5530 return (this->is_anonymous()
5531 && !Gogo::is_hidden_name(name)
5532 && gogo->lookup_global(name.c_str()) != NULL);
5535 // Class Struct_type.
5537 // A hash table used to find identical unnamed structs so that they
5538 // share method tables.
5540 Struct_type::Identical_structs Struct_type::identical_structs;
5542 // A hash table used to merge method sets for identical unnamed
5543 // structs.
5545 Struct_type::Struct_method_tables Struct_type::struct_method_tables;
5547 // Traversal.
5550 Struct_type::do_traverse(Traverse* traverse)
5552 Struct_field_list* fields = this->fields_;
5553 if (fields != NULL)
5555 for (Struct_field_list::iterator p = fields->begin();
5556 p != fields->end();
5557 ++p)
5559 if (Type::traverse(p->type(), traverse) == TRAVERSE_EXIT)
5560 return TRAVERSE_EXIT;
5563 return TRAVERSE_CONTINUE;
5566 // Verify that the struct type is complete and valid.
5568 bool
5569 Struct_type::do_verify()
5571 Struct_field_list* fields = this->fields_;
5572 if (fields == NULL)
5573 return true;
5574 for (Struct_field_list::iterator p = fields->begin();
5575 p != fields->end();
5576 ++p)
5578 Type* t = p->type();
5579 if (p->is_anonymous())
5581 if ((t->named_type() != NULL && t->points_to() != NULL)
5582 || (t->named_type() == NULL && t->points_to() != NULL
5583 && t->points_to()->points_to() != NULL))
5585 go_error_at(p->location(), "embedded type may not be a pointer");
5586 p->set_type(Type::make_error_type());
5588 else if (t->points_to() != NULL
5589 && t->points_to()->interface_type() != NULL)
5591 go_error_at(p->location(),
5592 "embedded type may not be pointer to interface");
5593 p->set_type(Type::make_error_type());
5597 return true;
5600 // Whether this contains a pointer.
5602 bool
5603 Struct_type::do_has_pointer() const
5605 const Struct_field_list* fields = this->fields();
5606 if (fields == NULL)
5607 return false;
5608 for (Struct_field_list::const_iterator p = fields->begin();
5609 p != fields->end();
5610 ++p)
5612 if (p->type()->has_pointer())
5613 return true;
5615 return false;
5618 // Whether this type is identical to T.
5620 bool
5621 Struct_type::is_identical(const Struct_type* t, Cmp_tags cmp_tags,
5622 bool errors_are_identical) const
5624 if (this->is_struct_incomparable_ != t->is_struct_incomparable_)
5625 return false;
5626 const Struct_field_list* fields1 = this->fields();
5627 const Struct_field_list* fields2 = t->fields();
5628 if (fields1 == NULL || fields2 == NULL)
5629 return fields1 == fields2;
5630 Struct_field_list::const_iterator pf2 = fields2->begin();
5631 for (Struct_field_list::const_iterator pf1 = fields1->begin();
5632 pf1 != fields1->end();
5633 ++pf1, ++pf2)
5635 if (pf2 == fields2->end())
5636 return false;
5637 if (pf1->field_name() != pf2->field_name())
5638 return false;
5639 if (pf1->is_anonymous() != pf2->is_anonymous()
5640 || !Type::are_identical_cmp_tags(pf1->type(), pf2->type(), cmp_tags,
5641 errors_are_identical, NULL))
5642 return false;
5643 if (cmp_tags == COMPARE_TAGS)
5645 if (!pf1->has_tag())
5647 if (pf2->has_tag())
5648 return false;
5650 else
5652 if (!pf2->has_tag())
5653 return false;
5654 if (pf1->tag() != pf2->tag())
5655 return false;
5659 if (pf2 != fields2->end())
5660 return false;
5661 return true;
5664 // Whether comparisons of this struct type are simple identity
5665 // comparisons.
5667 bool
5668 Struct_type::do_compare_is_identity(Gogo* gogo)
5670 const Struct_field_list* fields = this->fields_;
5671 if (fields == NULL)
5672 return true;
5673 int64_t offset = 0;
5674 for (Struct_field_list::const_iterator pf = fields->begin();
5675 pf != fields->end();
5676 ++pf)
5678 if (Gogo::is_sink_name(pf->field_name()))
5679 return false;
5681 if (!pf->type()->compare_is_identity(gogo))
5682 return false;
5684 int64_t field_align;
5685 if (!pf->type()->backend_type_align(gogo, &field_align))
5686 return false;
5687 if ((offset & (field_align - 1)) != 0)
5689 // This struct has padding. We don't guarantee that that
5690 // padding is zero-initialized for a stack variable, so we
5691 // can't use memcmp to compare struct values.
5692 return false;
5695 int64_t field_size;
5696 if (!pf->type()->backend_type_size(gogo, &field_size))
5697 return false;
5698 offset += field_size;
5701 int64_t struct_size;
5702 if (!this->backend_type_size(gogo, &struct_size))
5703 return false;
5704 if (offset != struct_size)
5706 // Trailing padding may not be zero when on the stack.
5707 return false;
5710 return true;
5713 // Return whether this struct type is reflexive--whether a value of
5714 // this type is always equal to itself.
5716 bool
5717 Struct_type::do_is_reflexive()
5719 const Struct_field_list* fields = this->fields_;
5720 if (fields == NULL)
5721 return true;
5722 for (Struct_field_list::const_iterator pf = fields->begin();
5723 pf != fields->end();
5724 ++pf)
5726 if (!pf->type()->is_reflexive())
5727 return false;
5729 return true;
5732 // Return whether this struct type needs a key update when used as a
5733 // map key.
5735 bool
5736 Struct_type::do_needs_key_update()
5738 const Struct_field_list* fields = this->fields_;
5739 if (fields == NULL)
5740 return false;
5741 for (Struct_field_list::const_iterator pf = fields->begin();
5742 pf != fields->end();
5743 ++pf)
5745 if (pf->type()->needs_key_update())
5746 return true;
5748 return false;
5751 // Return whether this struct type is permitted to be in the heap.
5753 bool
5754 Struct_type::do_in_heap()
5756 const Struct_field_list* fields = this->fields_;
5757 if (fields == NULL)
5758 return true;
5759 for (Struct_field_list::const_iterator pf = fields->begin();
5760 pf != fields->end();
5761 ++pf)
5763 if (!pf->type()->in_heap())
5764 return false;
5766 return true;
5769 // Build identity and hash functions for this struct.
5771 // Hash code.
5773 unsigned int
5774 Struct_type::do_hash_for_method(Gogo* gogo) const
5776 unsigned int ret = 0;
5777 if (this->fields() != NULL)
5779 for (Struct_field_list::const_iterator pf = this->fields()->begin();
5780 pf != this->fields()->end();
5781 ++pf)
5782 ret = (ret << 1) + pf->type()->hash_for_method(gogo);
5784 ret <<= 2;
5785 if (this->is_struct_incomparable_)
5786 ret <<= 1;
5787 return ret;
5790 // Find the local field NAME.
5792 const Struct_field*
5793 Struct_type::find_local_field(const std::string& name,
5794 unsigned int *pindex) const
5796 const Struct_field_list* fields = this->fields_;
5797 if (fields == NULL)
5798 return NULL;
5799 unsigned int i = 0;
5800 for (Struct_field_list::const_iterator pf = fields->begin();
5801 pf != fields->end();
5802 ++pf, ++i)
5804 if (pf->is_field_name(name))
5806 if (pindex != NULL)
5807 *pindex = i;
5808 return &*pf;
5811 return NULL;
5814 // Return an expression for field NAME in STRUCT_EXPR, or NULL.
5816 Field_reference_expression*
5817 Struct_type::field_reference(Expression* struct_expr, const std::string& name,
5818 Location location) const
5820 unsigned int depth;
5821 return this->field_reference_depth(struct_expr, name, location, NULL,
5822 &depth);
5825 // Return an expression for a field, along with the depth at which it
5826 // was found.
5828 Field_reference_expression*
5829 Struct_type::field_reference_depth(Expression* struct_expr,
5830 const std::string& name,
5831 Location location,
5832 Saw_named_type* saw,
5833 unsigned int* depth) const
5835 const Struct_field_list* fields = this->fields_;
5836 if (fields == NULL)
5837 return NULL;
5839 // Look for a field with this name.
5840 unsigned int i = 0;
5841 for (Struct_field_list::const_iterator pf = fields->begin();
5842 pf != fields->end();
5843 ++pf, ++i)
5845 if (pf->is_field_name(name))
5847 *depth = 0;
5848 return Expression::make_field_reference(struct_expr, i, location);
5852 // Look for an anonymous field which contains a field with this
5853 // name.
5854 unsigned int found_depth = 0;
5855 Field_reference_expression* ret = NULL;
5856 i = 0;
5857 for (Struct_field_list::const_iterator pf = fields->begin();
5858 pf != fields->end();
5859 ++pf, ++i)
5861 if (!pf->is_anonymous())
5862 continue;
5864 Struct_type* st = pf->type()->deref()->struct_type();
5865 if (st == NULL)
5866 continue;
5868 Saw_named_type* hold_saw = saw;
5869 Saw_named_type saw_here;
5870 Named_type* nt = pf->type()->named_type();
5871 if (nt == NULL)
5872 nt = pf->type()->deref()->named_type();
5873 if (nt != NULL)
5875 Saw_named_type* q;
5876 for (q = saw; q != NULL; q = q->next)
5878 if (q->nt == nt)
5880 // If this is an error, it will be reported
5881 // elsewhere.
5882 break;
5885 if (q != NULL)
5886 continue;
5887 saw_here.next = saw;
5888 saw_here.nt = nt;
5889 saw = &saw_here;
5892 // Look for a reference using a NULL struct expression. If we
5893 // find one, fill in the struct expression with a reference to
5894 // this field.
5895 unsigned int subdepth;
5896 Field_reference_expression* sub = st->field_reference_depth(NULL, name,
5897 location,
5898 saw,
5899 &subdepth);
5901 saw = hold_saw;
5903 if (sub == NULL)
5904 continue;
5906 if (ret == NULL || subdepth < found_depth)
5908 if (ret != NULL)
5909 delete ret;
5910 ret = sub;
5911 found_depth = subdepth;
5912 Expression* here = Expression::make_field_reference(struct_expr, i,
5913 location);
5914 if (pf->type()->points_to() != NULL)
5915 here = Expression::make_unary(OPERATOR_MULT, here, location);
5916 while (sub->expr() != NULL)
5918 sub = sub->expr()->deref()->field_reference_expression();
5919 go_assert(sub != NULL);
5921 sub->set_struct_expression(here);
5922 sub->set_implicit(true);
5924 else if (subdepth > found_depth)
5925 delete sub;
5926 else
5928 // We do not handle ambiguity here--it should be handled by
5929 // Type::bind_field_or_method.
5930 delete sub;
5931 found_depth = 0;
5932 ret = NULL;
5936 if (ret != NULL)
5937 *depth = found_depth + 1;
5939 return ret;
5942 // Return the total number of fields, including embedded fields.
5944 unsigned int
5945 Struct_type::total_field_count() const
5947 if (this->fields_ == NULL)
5948 return 0;
5949 unsigned int ret = 0;
5950 for (Struct_field_list::const_iterator pf = this->fields_->begin();
5951 pf != this->fields_->end();
5952 ++pf)
5954 if (!pf->is_anonymous() || pf->type()->struct_type() == NULL)
5955 ++ret;
5956 else
5957 ret += pf->type()->struct_type()->total_field_count();
5959 return ret;
5962 // Return whether NAME is an unexported field, for better error reporting.
5964 bool
5965 Struct_type::is_unexported_local_field(Gogo* gogo,
5966 const std::string& name) const
5968 const Struct_field_list* fields = this->fields_;
5969 if (fields != NULL)
5971 for (Struct_field_list::const_iterator pf = fields->begin();
5972 pf != fields->end();
5973 ++pf)
5974 if (pf->is_unexported_field_name(gogo, name))
5975 return true;
5977 return false;
5980 // Finalize the methods of an unnamed struct.
5982 void
5983 Struct_type::finalize_methods(Gogo* gogo)
5985 if (this->all_methods_ != NULL)
5986 return;
5988 // It is possible to have multiple identical structs that have
5989 // methods. We want them to share method tables. Otherwise we will
5990 // emit identical methods more than once, which is bad since they
5991 // will even have the same names.
5992 std::pair<Identical_structs::iterator, bool> ins =
5993 Struct_type::identical_structs.insert(std::make_pair(this, this));
5994 if (!ins.second)
5996 // An identical struct was already entered into the hash table.
5997 // Note that finalize_methods is, fortunately, not recursive.
5998 this->all_methods_ = ins.first->second->all_methods_;
5999 return;
6002 Type::finalize_methods(gogo, this, this->location_, &this->all_methods_);
6005 // Return the method NAME, or NULL if there isn't one or if it is
6006 // ambiguous. Set *IS_AMBIGUOUS if the method exists but is
6007 // ambiguous.
6009 Method*
6010 Struct_type::method_function(const std::string& name, bool* is_ambiguous) const
6012 return Type::method_function(this->all_methods_, name, is_ambiguous);
6015 // Return a pointer to the interface method table for this type for
6016 // the interface INTERFACE. IS_POINTER is true if this is for a
6017 // pointer to THIS.
6019 Expression*
6020 Struct_type::interface_method_table(Interface_type* interface,
6021 bool is_pointer)
6023 std::pair<Struct_type*, Struct_type::Struct_method_table_pair*>
6024 val(this, NULL);
6025 std::pair<Struct_type::Struct_method_tables::iterator, bool> ins =
6026 Struct_type::struct_method_tables.insert(val);
6028 Struct_method_table_pair* smtp;
6029 if (!ins.second)
6030 smtp = ins.first->second;
6031 else
6033 smtp = new Struct_method_table_pair();
6034 smtp->first = NULL;
6035 smtp->second = NULL;
6036 ins.first->second = smtp;
6039 return Type::interface_method_table(this, interface, is_pointer,
6040 &smtp->first, &smtp->second);
6043 // Convert struct fields to the backend representation. This is not
6044 // declared in types.h so that types.h doesn't have to #include
6045 // backend.h.
6047 static void
6048 get_backend_struct_fields(Gogo* gogo, const Struct_field_list* fields,
6049 bool use_placeholder,
6050 std::vector<Backend::Btyped_identifier>* bfields)
6052 bfields->resize(fields->size());
6053 size_t i = 0;
6054 for (Struct_field_list::const_iterator p = fields->begin();
6055 p != fields->end();
6056 ++p, ++i)
6058 (*bfields)[i].name = Gogo::unpack_hidden_name(p->field_name());
6059 (*bfields)[i].btype = (use_placeholder
6060 ? p->type()->get_backend_placeholder(gogo)
6061 : p->type()->get_backend(gogo));
6062 (*bfields)[i].location = p->location();
6064 go_assert(i == fields->size());
6067 // Get the backend representation for a struct type.
6069 Btype*
6070 Struct_type::do_get_backend(Gogo* gogo)
6072 std::vector<Backend::Btyped_identifier> bfields;
6073 get_backend_struct_fields(gogo, this->fields_, false, &bfields);
6074 return gogo->backend()->struct_type(bfields);
6077 // Finish the backend representation of the fields of a struct.
6079 void
6080 Struct_type::finish_backend_fields(Gogo* gogo)
6082 const Struct_field_list* fields = this->fields_;
6083 if (fields != NULL)
6085 for (Struct_field_list::const_iterator p = fields->begin();
6086 p != fields->end();
6087 ++p)
6088 p->type()->get_backend(gogo);
6092 // The type of a struct type descriptor.
6094 Type*
6095 Struct_type::make_struct_type_descriptor_type()
6097 static Type* ret;
6098 if (ret == NULL)
6100 Type* tdt = Type::make_type_descriptor_type();
6101 Type* ptdt = Type::make_type_descriptor_ptr_type();
6103 Type* uintptr_type = Type::lookup_integer_type("uintptr");
6104 Type* string_type = Type::lookup_string_type();
6105 Type* pointer_string_type = Type::make_pointer_type(string_type);
6107 Struct_type* sf =
6108 Type::make_builtin_struct_type(5,
6109 "name", pointer_string_type,
6110 "pkgPath", pointer_string_type,
6111 "typ", ptdt,
6112 "tag", pointer_string_type,
6113 "offsetAnon", uintptr_type);
6114 Type* nsf = Type::make_builtin_named_type("structField", sf);
6116 Type* slice_type = Type::make_array_type(nsf, NULL);
6118 Struct_type* s = Type::make_builtin_struct_type(2,
6119 "", tdt,
6120 "fields", slice_type);
6122 ret = Type::make_builtin_named_type("StructType", s);
6125 return ret;
6128 // Build a type descriptor for a struct type.
6130 Expression*
6131 Struct_type::do_type_descriptor(Gogo* gogo, Named_type* name)
6133 Location bloc = Linemap::predeclared_location();
6135 Type* stdt = Struct_type::make_struct_type_descriptor_type();
6137 const Struct_field_list* fields = stdt->struct_type()->fields();
6139 Expression_list* vals = new Expression_list();
6140 vals->reserve(2);
6142 const Methods* methods = this->methods();
6143 // A named struct should not have methods--the methods should attach
6144 // to the named type.
6145 go_assert(methods == NULL || name == NULL);
6147 Struct_field_list::const_iterator ps = fields->begin();
6148 go_assert(ps->is_field_name("_type"));
6149 vals->push_back(this->type_descriptor_constructor(gogo,
6150 RUNTIME_TYPE_KIND_STRUCT,
6151 name, methods, true));
6153 ++ps;
6154 go_assert(ps->is_field_name("fields"));
6156 Expression_list* elements = new Expression_list();
6157 elements->reserve(this->fields_->size());
6158 Type* element_type = ps->type()->array_type()->element_type();
6159 for (Struct_field_list::const_iterator pf = this->fields_->begin();
6160 pf != this->fields_->end();
6161 ++pf)
6163 const Struct_field_list* f = element_type->struct_type()->fields();
6165 Expression_list* fvals = new Expression_list();
6166 fvals->reserve(5);
6168 Struct_field_list::const_iterator q = f->begin();
6169 go_assert(q->is_field_name("name"));
6170 std::string n = Gogo::unpack_hidden_name(pf->field_name());
6171 Expression* s = Expression::make_string(n, bloc);
6172 fvals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
6174 ++q;
6175 go_assert(q->is_field_name("pkgPath"));
6176 bool is_embedded_builtin = pf->is_embedded_builtin(gogo);
6177 if (!Gogo::is_hidden_name(pf->field_name()) && !is_embedded_builtin)
6178 fvals->push_back(Expression::make_nil(bloc));
6179 else
6181 std::string n;
6182 if (is_embedded_builtin)
6183 n = gogo->package_name();
6184 else
6185 n = Gogo::hidden_name_pkgpath(pf->field_name());
6186 Expression* s = Expression::make_string(n, bloc);
6187 fvals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
6190 ++q;
6191 go_assert(q->is_field_name("typ"));
6192 fvals->push_back(Expression::make_type_descriptor(pf->type(), bloc));
6194 ++q;
6195 go_assert(q->is_field_name("tag"));
6196 if (!pf->has_tag())
6197 fvals->push_back(Expression::make_nil(bloc));
6198 else
6200 Expression* s = Expression::make_string(pf->tag(), bloc);
6201 fvals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
6204 ++q;
6205 go_assert(q->is_field_name("offsetAnon"));
6206 Type* uintptr_type = Type::lookup_integer_type("uintptr");
6207 Expression* o = Expression::make_struct_field_offset(this, &*pf);
6208 Expression* one = Expression::make_integer_ul(1, uintptr_type, bloc);
6209 o = Expression::make_binary(OPERATOR_LSHIFT, o, one, bloc);
6210 int av = pf->is_anonymous() ? 1 : 0;
6211 Expression* anon = Expression::make_integer_ul(av, uintptr_type, bloc);
6212 o = Expression::make_binary(OPERATOR_OR, o, anon, bloc);
6213 fvals->push_back(o);
6215 Expression* v = Expression::make_struct_composite_literal(element_type,
6216 fvals, bloc);
6217 elements->push_back(v);
6220 vals->push_back(Expression::make_slice_composite_literal(ps->type(),
6221 elements, bloc));
6223 return Expression::make_struct_composite_literal(stdt, vals, bloc);
6226 // Write the hash function for a struct which can not use the identity
6227 // function.
6229 void
6230 Struct_type::write_hash_function(Gogo* gogo, Named_type*,
6231 Function_type* hash_fntype,
6232 Function_type* equal_fntype)
6234 Location bloc = Linemap::predeclared_location();
6236 // The pointer to the struct that we are going to hash. This is an
6237 // argument to the hash function we are implementing here.
6238 Named_object* key_arg = gogo->lookup("key", NULL);
6239 go_assert(key_arg != NULL);
6240 Type* key_arg_type = key_arg->var_value()->type();
6242 // The seed argument to the hash function.
6243 Named_object* seed_arg = gogo->lookup("seed", NULL);
6244 go_assert(seed_arg != NULL);
6246 Type* uintptr_type = Type::lookup_integer_type("uintptr");
6248 // Make a temporary to hold the return value, initialized to the seed.
6249 Expression* ref = Expression::make_var_reference(seed_arg, bloc);
6250 Temporary_statement* retval = Statement::make_temporary(uintptr_type, ref,
6251 bloc);
6252 gogo->add_statement(retval);
6254 // Make a temporary to hold the key as a uintptr.
6255 ref = Expression::make_var_reference(key_arg, bloc);
6256 ref = Expression::make_cast(uintptr_type, ref, bloc);
6257 Temporary_statement* key = Statement::make_temporary(uintptr_type, ref,
6258 bloc);
6259 gogo->add_statement(key);
6261 // Loop over the struct fields.
6262 const Struct_field_list* fields = this->fields_;
6263 for (Struct_field_list::const_iterator pf = fields->begin();
6264 pf != fields->end();
6265 ++pf)
6267 if (Gogo::is_sink_name(pf->field_name()))
6268 continue;
6270 // Get a pointer to the value of this field.
6271 Expression* offset = Expression::make_struct_field_offset(this, &*pf);
6272 ref = Expression::make_temporary_reference(key, bloc);
6273 Expression* subkey = Expression::make_binary(OPERATOR_PLUS, ref, offset,
6274 bloc);
6275 subkey = Expression::make_cast(key_arg_type, subkey, bloc);
6277 // Get the hash function to use for the type of this field.
6278 Named_object* hash_fn;
6279 Named_object* equal_fn;
6280 pf->type()->type_functions(gogo, pf->type()->named_type(), hash_fntype,
6281 equal_fntype, &hash_fn, &equal_fn);
6283 // Call the hash function for the field, passing retval as the seed.
6284 ref = Expression::make_temporary_reference(retval, bloc);
6285 Expression_list* args = new Expression_list();
6286 args->push_back(subkey);
6287 args->push_back(ref);
6288 Expression* func = Expression::make_func_reference(hash_fn, NULL, bloc);
6289 Expression* call = Expression::make_call(func, args, false, bloc);
6291 // Set retval to the result.
6292 Temporary_reference_expression* tref =
6293 Expression::make_temporary_reference(retval, bloc);
6294 tref->set_is_lvalue();
6295 Statement* s = Statement::make_assignment(tref, call, bloc);
6296 gogo->add_statement(s);
6299 // Return retval to the caller of the hash function.
6300 Expression_list* vals = new Expression_list();
6301 ref = Expression::make_temporary_reference(retval, bloc);
6302 vals->push_back(ref);
6303 Statement* s = Statement::make_return_statement(vals, bloc);
6304 gogo->add_statement(s);
6307 // Write the equality function for a struct which can not use the
6308 // identity function.
6310 void
6311 Struct_type::write_equal_function(Gogo* gogo, Named_type* name)
6313 Location bloc = Linemap::predeclared_location();
6315 // The pointers to the structs we are going to compare.
6316 Named_object* key1_arg = gogo->lookup("key1", NULL);
6317 Named_object* key2_arg = gogo->lookup("key2", NULL);
6318 go_assert(key1_arg != NULL && key2_arg != NULL);
6320 // Build temporaries with the right types.
6321 Type* pt = Type::make_pointer_type(name != NULL
6322 ? static_cast<Type*>(name)
6323 : static_cast<Type*>(this));
6325 Expression* ref = Expression::make_var_reference(key1_arg, bloc);
6326 ref = Expression::make_unsafe_cast(pt, ref, bloc);
6327 Temporary_statement* p1 = Statement::make_temporary(pt, ref, bloc);
6328 gogo->add_statement(p1);
6330 ref = Expression::make_var_reference(key2_arg, bloc);
6331 ref = Expression::make_unsafe_cast(pt, ref, bloc);
6332 Temporary_statement* p2 = Statement::make_temporary(pt, ref, bloc);
6333 gogo->add_statement(p2);
6335 const Struct_field_list* fields = this->fields_;
6336 unsigned int field_index = 0;
6337 for (Struct_field_list::const_iterator pf = fields->begin();
6338 pf != fields->end();
6339 ++pf, ++field_index)
6341 if (Gogo::is_sink_name(pf->field_name()))
6342 continue;
6344 // Compare one field in both P1 and P2.
6345 Expression* f1 = Expression::make_temporary_reference(p1, bloc);
6346 f1 = Expression::make_unary(OPERATOR_MULT, f1, bloc);
6347 f1 = Expression::make_field_reference(f1, field_index, bloc);
6349 Expression* f2 = Expression::make_temporary_reference(p2, bloc);
6350 f2 = Expression::make_unary(OPERATOR_MULT, f2, bloc);
6351 f2 = Expression::make_field_reference(f2, field_index, bloc);
6353 Expression* cond = Expression::make_binary(OPERATOR_NOTEQ, f1, f2, bloc);
6355 // If the values are not equal, return false.
6356 gogo->start_block(bloc);
6357 Expression_list* vals = new Expression_list();
6358 vals->push_back(Expression::make_boolean(false, bloc));
6359 Statement* s = Statement::make_return_statement(vals, bloc);
6360 gogo->add_statement(s);
6361 Block* then_block = gogo->finish_block(bloc);
6363 s = Statement::make_if_statement(cond, then_block, NULL, bloc);
6364 gogo->add_statement(s);
6367 // All the fields are equal, so return true.
6368 Expression_list* vals = new Expression_list();
6369 vals->push_back(Expression::make_boolean(true, bloc));
6370 Statement* s = Statement::make_return_statement(vals, bloc);
6371 gogo->add_statement(s);
6374 // Reflection string.
6376 void
6377 Struct_type::do_reflection(Gogo* gogo, std::string* ret) const
6379 ret->append("struct {");
6381 for (Struct_field_list::const_iterator p = this->fields_->begin();
6382 p != this->fields_->end();
6383 ++p)
6385 if (p != this->fields_->begin())
6386 ret->push_back(';');
6387 ret->push_back(' ');
6388 if (p->is_anonymous())
6389 ret->push_back('?');
6390 else
6391 ret->append(Gogo::unpack_hidden_name(p->field_name()));
6392 ret->push_back(' ');
6393 if (p->is_anonymous()
6394 && p->type()->named_type() != NULL
6395 && p->type()->named_type()->is_alias())
6396 p->type()->named_type()->append_reflection_type_name(gogo, true, ret);
6397 else
6398 this->append_reflection(p->type(), gogo, ret);
6400 if (p->has_tag())
6402 const std::string& tag(p->tag());
6403 ret->append(" \"");
6404 for (std::string::const_iterator p = tag.begin();
6405 p != tag.end();
6406 ++p)
6408 if (*p == '\0')
6409 ret->append("\\x00");
6410 else if (*p == '\n')
6411 ret->append("\\n");
6412 else if (*p == '\t')
6413 ret->append("\\t");
6414 else if (*p == '"')
6415 ret->append("\\\"");
6416 else if (*p == '\\')
6417 ret->append("\\\\");
6418 else
6419 ret->push_back(*p);
6421 ret->push_back('"');
6425 if (!this->fields_->empty())
6426 ret->push_back(' ');
6428 ret->push_back('}');
6431 // If the offset of field INDEX in the backend implementation can be
6432 // determined, set *POFFSET to the offset in bytes and return true.
6433 // Otherwise, return false.
6435 bool
6436 Struct_type::backend_field_offset(Gogo* gogo, unsigned int index,
6437 int64_t* poffset)
6439 if (!this->is_backend_type_size_known(gogo))
6440 return false;
6441 Btype* bt = this->get_backend_placeholder(gogo);
6442 *poffset = gogo->backend()->type_field_offset(bt, index);
6443 return true;
6446 // Export.
6448 void
6449 Struct_type::do_export(Export* exp) const
6451 exp->write_c_string("struct { ");
6452 const Struct_field_list* fields = this->fields_;
6453 go_assert(fields != NULL);
6454 for (Struct_field_list::const_iterator p = fields->begin();
6455 p != fields->end();
6456 ++p)
6458 if (p->is_anonymous())
6459 exp->write_string("? ");
6460 else
6462 exp->write_string(p->field_name());
6463 exp->write_c_string(" ");
6465 exp->write_type(p->type());
6467 if (p->has_tag())
6469 exp->write_c_string(" ");
6470 Expression* expr =
6471 Expression::make_string(p->tag(), Linemap::predeclared_location());
6472 expr->export_expression(exp);
6473 delete expr;
6476 exp->write_c_string("; ");
6478 exp->write_c_string("}");
6481 // Import.
6483 Struct_type*
6484 Struct_type::do_import(Import* imp)
6486 imp->require_c_string("struct { ");
6487 Struct_field_list* fields = new Struct_field_list;
6488 if (imp->peek_char() != '}')
6490 while (true)
6492 std::string name;
6493 if (imp->match_c_string("? "))
6494 imp->advance(2);
6495 else
6497 name = imp->read_identifier();
6498 imp->require_c_string(" ");
6500 Type* ftype = imp->read_type();
6502 Struct_field sf(Typed_identifier(name, ftype, imp->location()));
6503 sf.set_is_imported();
6505 if (imp->peek_char() == ' ')
6507 imp->advance(1);
6508 Expression* expr = Expression::import_expression(imp);
6509 String_expression* sexpr = expr->string_expression();
6510 go_assert(sexpr != NULL);
6511 sf.set_tag(sexpr->val());
6512 delete sexpr;
6515 imp->require_c_string("; ");
6516 fields->push_back(sf);
6517 if (imp->peek_char() == '}')
6518 break;
6521 imp->require_c_string("}");
6523 return Type::make_struct_type(fields, imp->location());
6526 // Whether we can write this struct type to a C header file.
6527 // We can't if any of the fields are structs defined in a different package.
6529 bool
6530 Struct_type::can_write_to_c_header(
6531 std::vector<const Named_object*>* requires,
6532 std::vector<const Named_object*>* declare) const
6534 const Struct_field_list* fields = this->fields_;
6535 if (fields == NULL || fields->empty())
6536 return false;
6537 int sinks = 0;
6538 for (Struct_field_list::const_iterator p = fields->begin();
6539 p != fields->end();
6540 ++p)
6542 if (p->is_anonymous())
6543 return false;
6544 if (!this->can_write_type_to_c_header(p->type(), requires, declare))
6545 return false;
6546 if (Gogo::message_name(p->field_name()) == "_")
6547 sinks++;
6549 if (sinks > 1)
6550 return false;
6551 return true;
6554 // Whether we can write the type T to a C header file.
6556 bool
6557 Struct_type::can_write_type_to_c_header(
6558 const Type* t,
6559 std::vector<const Named_object*>* requires,
6560 std::vector<const Named_object*>* declare) const
6562 t = t->forwarded();
6563 switch (t->classification())
6565 case TYPE_ERROR:
6566 case TYPE_FORWARD:
6567 return false;
6569 case TYPE_VOID:
6570 case TYPE_BOOLEAN:
6571 case TYPE_INTEGER:
6572 case TYPE_FLOAT:
6573 case TYPE_COMPLEX:
6574 case TYPE_STRING:
6575 case TYPE_FUNCTION:
6576 case TYPE_MAP:
6577 case TYPE_CHANNEL:
6578 case TYPE_INTERFACE:
6579 return true;
6581 case TYPE_POINTER:
6582 // Don't try to handle a pointer to an array.
6583 if (t->points_to()->array_type() != NULL
6584 && !t->points_to()->is_slice_type())
6585 return false;
6587 if (t->points_to()->named_type() != NULL
6588 && t->points_to()->struct_type() != NULL)
6589 declare->push_back(t->points_to()->named_type()->named_object());
6590 return true;
6592 case TYPE_STRUCT:
6593 return t->struct_type()->can_write_to_c_header(requires, declare);
6595 case TYPE_ARRAY:
6596 if (t->is_slice_type())
6597 return true;
6598 return this->can_write_type_to_c_header(t->array_type()->element_type(),
6599 requires, declare);
6601 case TYPE_NAMED:
6603 const Named_object* no = t->named_type()->named_object();
6604 if (no->package() != NULL)
6606 if (t->is_unsafe_pointer_type())
6607 return true;
6608 return false;
6610 if (t->struct_type() != NULL)
6612 requires->push_back(no);
6613 return t->struct_type()->can_write_to_c_header(requires, declare);
6615 return this->can_write_type_to_c_header(t->base(), requires, declare);
6618 case TYPE_CALL_MULTIPLE_RESULT:
6619 case TYPE_NIL:
6620 case TYPE_SINK:
6621 default:
6622 go_unreachable();
6626 // Write this struct to a C header file.
6628 void
6629 Struct_type::write_to_c_header(std::ostream& os) const
6631 const Struct_field_list* fields = this->fields_;
6632 for (Struct_field_list::const_iterator p = fields->begin();
6633 p != fields->end();
6634 ++p)
6636 os << '\t';
6637 this->write_field_to_c_header(os, p->field_name(), p->type());
6638 os << ';' << std::endl;
6642 // Write the type of a struct field to a C header file.
6644 void
6645 Struct_type::write_field_to_c_header(std::ostream& os, const std::string& name,
6646 const Type *t) const
6648 bool print_name = true;
6649 t = t->forwarded();
6650 switch (t->classification())
6652 case TYPE_VOID:
6653 os << "void";
6654 break;
6656 case TYPE_BOOLEAN:
6657 os << "_Bool";
6658 break;
6660 case TYPE_INTEGER:
6662 const Integer_type* it = t->integer_type();
6663 if (it->is_unsigned())
6664 os << 'u';
6665 os << "int" << it->bits() << "_t";
6667 break;
6669 case TYPE_FLOAT:
6670 switch (t->float_type()->bits())
6672 case 32:
6673 os << "float";
6674 break;
6675 case 64:
6676 os << "double";
6677 break;
6678 default:
6679 go_unreachable();
6681 break;
6683 case TYPE_COMPLEX:
6684 switch (t->complex_type()->bits())
6686 case 64:
6687 os << "float _Complex";
6688 break;
6689 case 128:
6690 os << "double _Complex";
6691 break;
6692 default:
6693 go_unreachable();
6695 break;
6697 case TYPE_STRING:
6698 os << "String";
6699 break;
6701 case TYPE_FUNCTION:
6702 os << "FuncVal*";
6703 break;
6705 case TYPE_POINTER:
6707 std::vector<const Named_object*> requires;
6708 std::vector<const Named_object*> declare;
6709 if (!this->can_write_type_to_c_header(t->points_to(), &requires,
6710 &declare))
6711 os << "void*";
6712 else
6714 this->write_field_to_c_header(os, "", t->points_to());
6715 os << '*';
6718 break;
6720 case TYPE_MAP:
6721 os << "Map*";
6722 break;
6724 case TYPE_CHANNEL:
6725 os << "Chan*";
6726 break;
6728 case TYPE_INTERFACE:
6729 if (t->interface_type()->is_empty())
6730 os << "Eface";
6731 else
6732 os << "Iface";
6733 break;
6735 case TYPE_STRUCT:
6736 os << "struct {" << std::endl;
6737 t->struct_type()->write_to_c_header(os);
6738 os << "\t}";
6739 break;
6741 case TYPE_ARRAY:
6742 if (t->is_slice_type())
6743 os << "Slice";
6744 else
6746 const Type *ele = t;
6747 std::vector<const Type*> array_types;
6748 while (ele->array_type() != NULL && !ele->is_slice_type())
6750 array_types.push_back(ele);
6751 ele = ele->array_type()->element_type();
6753 this->write_field_to_c_header(os, "", ele);
6754 os << ' ' << Gogo::message_name(name);
6755 print_name = false;
6756 while (!array_types.empty())
6758 ele = array_types.back();
6759 array_types.pop_back();
6760 os << '[';
6761 Numeric_constant nc;
6762 if (!ele->array_type()->length()->numeric_constant_value(&nc))
6763 go_unreachable();
6764 mpz_t val;
6765 if (!nc.to_int(&val))
6766 go_unreachable();
6767 char* s = mpz_get_str(NULL, 10, val);
6768 os << s;
6769 free(s);
6770 mpz_clear(val);
6771 os << ']';
6774 break;
6776 case TYPE_NAMED:
6778 const Named_object* no = t->named_type()->named_object();
6779 if (t->struct_type() != NULL)
6780 os << "struct " << no->message_name();
6781 else if (t->is_unsafe_pointer_type())
6782 os << "void*";
6783 else if (t == Type::lookup_integer_type("uintptr"))
6784 os << "uintptr_t";
6785 else
6787 this->write_field_to_c_header(os, name, t->base());
6788 print_name = false;
6791 break;
6793 case TYPE_ERROR:
6794 case TYPE_FORWARD:
6795 case TYPE_CALL_MULTIPLE_RESULT:
6796 case TYPE_NIL:
6797 case TYPE_SINK:
6798 default:
6799 go_unreachable();
6802 if (print_name && !name.empty())
6803 os << ' ' << Gogo::message_name(name);
6806 // Make a struct type.
6808 Struct_type*
6809 Type::make_struct_type(Struct_field_list* fields,
6810 Location location)
6812 return new Struct_type(fields, location);
6815 // Class Array_type.
6817 // Store the length of an array as an int64_t into *PLEN. Return
6818 // false if the length can not be determined. This will assert if
6819 // called for a slice.
6821 bool
6822 Array_type::int_length(int64_t* plen)
6824 go_assert(this->length_ != NULL);
6825 Numeric_constant nc;
6826 if (!this->length_->numeric_constant_value(&nc))
6827 return false;
6828 return nc.to_memory_size(plen);
6831 // Whether two array types are identical.
6833 bool
6834 Array_type::is_identical(const Array_type* t, Cmp_tags cmp_tags,
6835 bool errors_are_identical) const
6837 if (!Type::are_identical_cmp_tags(this->element_type(), t->element_type(),
6838 cmp_tags, errors_are_identical, NULL))
6839 return false;
6841 if (this->is_array_incomparable_ != t->is_array_incomparable_)
6842 return false;
6844 Expression* l1 = this->length();
6845 Expression* l2 = t->length();
6847 // Slices of the same element type are identical.
6848 if (l1 == NULL && l2 == NULL)
6849 return true;
6851 // Arrays of the same element type are identical if they have the
6852 // same length.
6853 if (l1 != NULL && l2 != NULL)
6855 if (l1 == l2)
6856 return true;
6858 // Try to determine the lengths. If we can't, assume the arrays
6859 // are not identical.
6860 bool ret = false;
6861 Numeric_constant nc1, nc2;
6862 if (l1->numeric_constant_value(&nc1)
6863 && l2->numeric_constant_value(&nc2))
6865 mpz_t v1;
6866 if (nc1.to_int(&v1))
6868 mpz_t v2;
6869 if (nc2.to_int(&v2))
6871 ret = mpz_cmp(v1, v2) == 0;
6872 mpz_clear(v2);
6874 mpz_clear(v1);
6877 return ret;
6880 // Otherwise the arrays are not identical.
6881 return false;
6884 // Traversal.
6887 Array_type::do_traverse(Traverse* traverse)
6889 if (Type::traverse(this->element_type_, traverse) == TRAVERSE_EXIT)
6890 return TRAVERSE_EXIT;
6891 if (this->length_ != NULL
6892 && Expression::traverse(&this->length_, traverse) == TRAVERSE_EXIT)
6893 return TRAVERSE_EXIT;
6894 return TRAVERSE_CONTINUE;
6897 // Check that the length is valid.
6899 bool
6900 Array_type::verify_length()
6902 if (this->length_ == NULL)
6903 return true;
6905 Type_context context(Type::lookup_integer_type("int"), false);
6906 this->length_->determine_type(&context);
6908 if (!this->length_->is_constant())
6910 go_error_at(this->length_->location(), "array bound is not constant");
6911 return false;
6914 Numeric_constant nc;
6915 if (!this->length_->numeric_constant_value(&nc))
6917 if (this->length_->type()->integer_type() != NULL
6918 || this->length_->type()->float_type() != NULL)
6919 go_error_at(this->length_->location(), "array bound is not constant");
6920 else
6921 go_error_at(this->length_->location(), "array bound is not numeric");
6922 return false;
6925 Type* int_type = Type::lookup_integer_type("int");
6926 unsigned int tbits = int_type->integer_type()->bits();
6927 unsigned long val;
6928 switch (nc.to_unsigned_long(&val))
6930 case Numeric_constant::NC_UL_VALID:
6931 if (sizeof(val) >= tbits / 8 && val >> (tbits - 1) != 0)
6933 go_error_at(this->length_->location(), "array bound overflows");
6934 return false;
6936 break;
6937 case Numeric_constant::NC_UL_NOTINT:
6938 go_error_at(this->length_->location(), "array bound truncated to integer");
6939 return false;
6940 case Numeric_constant::NC_UL_NEGATIVE:
6941 go_error_at(this->length_->location(), "negative array bound");
6942 return false;
6943 case Numeric_constant::NC_UL_BIG:
6945 mpz_t val;
6946 if (!nc.to_int(&val))
6947 go_unreachable();
6948 unsigned int bits = mpz_sizeinbase(val, 2);
6949 mpz_clear(val);
6950 if (bits >= tbits)
6952 go_error_at(this->length_->location(), "array bound overflows");
6953 return false;
6956 break;
6957 default:
6958 go_unreachable();
6961 return true;
6964 // Verify the type.
6966 bool
6967 Array_type::do_verify()
6969 if (this->element_type()->is_error_type())
6970 return false;
6971 if (!this->verify_length())
6972 this->length_ = Expression::make_error(this->length_->location());
6973 return true;
6976 // Whether the type contains pointers. This is always true for a
6977 // slice. For an array it is true if the element type has pointers
6978 // and the length is greater than zero.
6980 bool
6981 Array_type::do_has_pointer() const
6983 if (this->length_ == NULL)
6984 return true;
6985 if (!this->element_type_->has_pointer())
6986 return false;
6988 Numeric_constant nc;
6989 if (!this->length_->numeric_constant_value(&nc))
6991 // Error reported elsewhere.
6992 return false;
6995 unsigned long val;
6996 switch (nc.to_unsigned_long(&val))
6998 case Numeric_constant::NC_UL_VALID:
6999 return val > 0;
7000 case Numeric_constant::NC_UL_BIG:
7001 return true;
7002 default:
7003 // Error reported elsewhere.
7004 return false;
7008 // Whether we can use memcmp to compare this array.
7010 bool
7011 Array_type::do_compare_is_identity(Gogo* gogo)
7013 if (this->length_ == NULL)
7014 return false;
7016 // Check for [...], which indicates that this is not a real type.
7017 if (this->length_->is_nil_expression())
7018 return false;
7020 if (!this->element_type_->compare_is_identity(gogo))
7021 return false;
7023 // If there is any padding, then we can't use memcmp.
7024 int64_t size;
7025 int64_t align;
7026 if (!this->element_type_->backend_type_size(gogo, &size)
7027 || !this->element_type_->backend_type_align(gogo, &align))
7028 return false;
7029 if ((size & (align - 1)) != 0)
7030 return false;
7032 return true;
7035 // Array type hash code.
7037 unsigned int
7038 Array_type::do_hash_for_method(Gogo* gogo) const
7040 unsigned int ret;
7042 // There is no very convenient way to get a hash code for the
7043 // length.
7044 ret = this->element_type_->hash_for_method(gogo) + 1;
7045 if (this->is_array_incomparable_)
7046 ret <<= 1;
7047 return ret;
7050 // Write the hash function for an array which can not use the identify
7051 // function.
7053 void
7054 Array_type::write_hash_function(Gogo* gogo, Named_type* name,
7055 Function_type* hash_fntype,
7056 Function_type* equal_fntype)
7058 Location bloc = Linemap::predeclared_location();
7060 // The pointer to the array that we are going to hash. This is an
7061 // argument to the hash function we are implementing here.
7062 Named_object* key_arg = gogo->lookup("key", NULL);
7063 go_assert(key_arg != NULL);
7064 Type* key_arg_type = key_arg->var_value()->type();
7066 // The seed argument to the hash function.
7067 Named_object* seed_arg = gogo->lookup("seed", NULL);
7068 go_assert(seed_arg != NULL);
7070 Type* uintptr_type = Type::lookup_integer_type("uintptr");
7072 // Make a temporary to hold the return value, initialized to the seed.
7073 Expression* ref = Expression::make_var_reference(seed_arg, bloc);
7074 Temporary_statement* retval = Statement::make_temporary(uintptr_type, ref,
7075 bloc);
7076 gogo->add_statement(retval);
7078 // Make a temporary to hold the key as a uintptr.
7079 ref = Expression::make_var_reference(key_arg, bloc);
7080 ref = Expression::make_cast(uintptr_type, ref, bloc);
7081 Temporary_statement* key = Statement::make_temporary(uintptr_type, ref,
7082 bloc);
7083 gogo->add_statement(key);
7085 // Loop over the array elements.
7086 // for i = range a
7087 Type* int_type = Type::lookup_integer_type("int");
7088 Temporary_statement* index = Statement::make_temporary(int_type, NULL, bloc);
7089 gogo->add_statement(index);
7091 Expression* iref = Expression::make_temporary_reference(index, bloc);
7092 Expression* aref = Expression::make_var_reference(key_arg, bloc);
7093 Type* pt = Type::make_pointer_type(name != NULL
7094 ? static_cast<Type*>(name)
7095 : static_cast<Type*>(this));
7096 aref = Expression::make_cast(pt, aref, bloc);
7097 For_range_statement* for_range = Statement::make_for_range_statement(iref,
7098 NULL,
7099 aref,
7100 bloc);
7102 gogo->start_block(bloc);
7104 // Get the hash function for the element type.
7105 Named_object* hash_fn;
7106 Named_object* equal_fn;
7107 this->element_type_->type_functions(gogo, this->element_type_->named_type(),
7108 hash_fntype, equal_fntype, &hash_fn,
7109 &equal_fn);
7111 // Get a pointer to this element in the loop.
7112 Expression* subkey = Expression::make_temporary_reference(key, bloc);
7113 subkey = Expression::make_cast(key_arg_type, subkey, bloc);
7115 // Get the size of each element.
7116 Expression* ele_size = Expression::make_type_info(this->element_type_,
7117 Expression::TYPE_INFO_SIZE);
7119 // Get the hash of this element, passing retval as the seed.
7120 ref = Expression::make_temporary_reference(retval, bloc);
7121 Expression_list* args = new Expression_list();
7122 args->push_back(subkey);
7123 args->push_back(ref);
7124 Expression* func = Expression::make_func_reference(hash_fn, NULL, bloc);
7125 Expression* call = Expression::make_call(func, args, false, bloc);
7127 // Set retval to the result.
7128 Temporary_reference_expression* tref =
7129 Expression::make_temporary_reference(retval, bloc);
7130 tref->set_is_lvalue();
7131 Statement* s = Statement::make_assignment(tref, call, bloc);
7132 gogo->add_statement(s);
7134 // Increase the element pointer.
7135 tref = Expression::make_temporary_reference(key, bloc);
7136 tref->set_is_lvalue();
7137 s = Statement::make_assignment_operation(OPERATOR_PLUSEQ, tref, ele_size,
7138 bloc);
7139 Block* statements = gogo->finish_block(bloc);
7141 for_range->add_statements(statements);
7142 gogo->add_statement(for_range);
7144 // Return retval to the caller of the hash function.
7145 Expression_list* vals = new Expression_list();
7146 ref = Expression::make_temporary_reference(retval, bloc);
7147 vals->push_back(ref);
7148 s = Statement::make_return_statement(vals, bloc);
7149 gogo->add_statement(s);
7152 // Write the equality function for an array which can not use the
7153 // identity function.
7155 void
7156 Array_type::write_equal_function(Gogo* gogo, Named_type* name)
7158 Location bloc = Linemap::predeclared_location();
7160 // The pointers to the arrays we are going to compare.
7161 Named_object* key1_arg = gogo->lookup("key1", NULL);
7162 Named_object* key2_arg = gogo->lookup("key2", NULL);
7163 go_assert(key1_arg != NULL && key2_arg != NULL);
7165 // Build temporaries for the keys with the right types.
7166 Type* pt = Type::make_pointer_type(name != NULL
7167 ? static_cast<Type*>(name)
7168 : static_cast<Type*>(this));
7170 Expression* ref = Expression::make_var_reference(key1_arg, bloc);
7171 ref = Expression::make_unsafe_cast(pt, ref, bloc);
7172 Temporary_statement* p1 = Statement::make_temporary(pt, ref, bloc);
7173 gogo->add_statement(p1);
7175 ref = Expression::make_var_reference(key2_arg, bloc);
7176 ref = Expression::make_unsafe_cast(pt, ref, bloc);
7177 Temporary_statement* p2 = Statement::make_temporary(pt, ref, bloc);
7178 gogo->add_statement(p2);
7180 // Loop over the array elements.
7181 // for i = range a
7182 Type* int_type = Type::lookup_integer_type("int");
7183 Temporary_statement* index = Statement::make_temporary(int_type, NULL, bloc);
7184 gogo->add_statement(index);
7186 Expression* iref = Expression::make_temporary_reference(index, bloc);
7187 Expression* aref = Expression::make_temporary_reference(p1, bloc);
7188 For_range_statement* for_range = Statement::make_for_range_statement(iref,
7189 NULL,
7190 aref,
7191 bloc);
7193 gogo->start_block(bloc);
7195 // Compare element in P1 and P2.
7196 Expression* e1 = Expression::make_temporary_reference(p1, bloc);
7197 e1 = Expression::make_unary(OPERATOR_MULT, e1, bloc);
7198 ref = Expression::make_temporary_reference(index, bloc);
7199 e1 = Expression::make_array_index(e1, ref, NULL, NULL, bloc);
7201 Expression* e2 = Expression::make_temporary_reference(p2, bloc);
7202 e2 = Expression::make_unary(OPERATOR_MULT, e2, bloc);
7203 ref = Expression::make_temporary_reference(index, bloc);
7204 e2 = Expression::make_array_index(e2, ref, NULL, NULL, bloc);
7206 Expression* cond = Expression::make_binary(OPERATOR_NOTEQ, e1, e2, bloc);
7208 // If the elements are not equal, return false.
7209 gogo->start_block(bloc);
7210 Expression_list* vals = new Expression_list();
7211 vals->push_back(Expression::make_boolean(false, bloc));
7212 Statement* s = Statement::make_return_statement(vals, bloc);
7213 gogo->add_statement(s);
7214 Block* then_block = gogo->finish_block(bloc);
7216 s = Statement::make_if_statement(cond, then_block, NULL, bloc);
7217 gogo->add_statement(s);
7219 Block* statements = gogo->finish_block(bloc);
7221 for_range->add_statements(statements);
7222 gogo->add_statement(for_range);
7224 // All the elements are equal, so return true.
7225 vals = new Expression_list();
7226 vals->push_back(Expression::make_boolean(true, bloc));
7227 s = Statement::make_return_statement(vals, bloc);
7228 gogo->add_statement(s);
7231 // Get the backend representation of the fields of a slice. This is
7232 // not declared in types.h so that types.h doesn't have to #include
7233 // backend.h.
7235 // We use int for the count and capacity fields. This matches 6g.
7236 // The language more or less assumes that we can't allocate space of a
7237 // size which does not fit in int.
7239 static void
7240 get_backend_slice_fields(Gogo* gogo, Array_type* type, bool use_placeholder,
7241 std::vector<Backend::Btyped_identifier>* bfields)
7243 bfields->resize(3);
7245 Type* pet = Type::make_pointer_type(type->element_type());
7246 Btype* pbet = (use_placeholder
7247 ? pet->get_backend_placeholder(gogo)
7248 : pet->get_backend(gogo));
7249 Location ploc = Linemap::predeclared_location();
7251 Backend::Btyped_identifier* p = &(*bfields)[0];
7252 p->name = "__values";
7253 p->btype = pbet;
7254 p->location = ploc;
7256 Type* int_type = Type::lookup_integer_type("int");
7258 p = &(*bfields)[1];
7259 p->name = "__count";
7260 p->btype = int_type->get_backend(gogo);
7261 p->location = ploc;
7263 p = &(*bfields)[2];
7264 p->name = "__capacity";
7265 p->btype = int_type->get_backend(gogo);
7266 p->location = ploc;
7269 // Get the backend representation for the type of this array. A fixed array is
7270 // simply represented as ARRAY_TYPE with the appropriate index--i.e., it is
7271 // just like an array in C. An open array is a struct with three
7272 // fields: a data pointer, the length, and the capacity.
7274 Btype*
7275 Array_type::do_get_backend(Gogo* gogo)
7277 if (this->length_ == NULL)
7279 std::vector<Backend::Btyped_identifier> bfields;
7280 get_backend_slice_fields(gogo, this, false, &bfields);
7281 return gogo->backend()->struct_type(bfields);
7283 else
7285 Btype* element = this->get_backend_element(gogo, false);
7286 Bexpression* len = this->get_backend_length(gogo);
7287 return gogo->backend()->array_type(element, len);
7291 // Return the backend representation of the element type.
7293 Btype*
7294 Array_type::get_backend_element(Gogo* gogo, bool use_placeholder)
7296 if (use_placeholder)
7297 return this->element_type_->get_backend_placeholder(gogo);
7298 else
7299 return this->element_type_->get_backend(gogo);
7302 // Return the backend representation of the length. The length may be
7303 // computed using a function call, so we must only evaluate it once.
7305 Bexpression*
7306 Array_type::get_backend_length(Gogo* gogo)
7308 go_assert(this->length_ != NULL);
7309 if (this->blength_ == NULL)
7311 if (this->length_->is_error_expression())
7313 this->blength_ = gogo->backend()->error_expression();
7314 return this->blength_;
7316 Numeric_constant nc;
7317 mpz_t val;
7318 if (this->length_->numeric_constant_value(&nc) && nc.to_int(&val))
7320 if (mpz_sgn(val) < 0)
7322 this->blength_ = gogo->backend()->error_expression();
7323 return this->blength_;
7325 Type* t = nc.type();
7326 if (t == NULL)
7327 t = Type::lookup_integer_type("int");
7328 else if (t->is_abstract())
7329 t = t->make_non_abstract_type();
7330 Btype* btype = t->get_backend(gogo);
7331 this->blength_ =
7332 gogo->backend()->integer_constant_expression(btype, val);
7333 mpz_clear(val);
7335 else
7337 // Make up a translation context for the array length
7338 // expression. FIXME: This won't work in general.
7339 Translate_context context(gogo, NULL, NULL, NULL);
7340 this->blength_ = this->length_->get_backend(&context);
7342 Btype* ibtype = Type::lookup_integer_type("int")->get_backend(gogo);
7343 this->blength_ =
7344 gogo->backend()->convert_expression(ibtype, this->blength_,
7345 this->length_->location());
7348 return this->blength_;
7351 // Finish backend representation of the array.
7353 void
7354 Array_type::finish_backend_element(Gogo* gogo)
7356 Type* et = this->array_type()->element_type();
7357 et->get_backend(gogo);
7358 if (this->is_slice_type())
7360 // This relies on the fact that we always use the same
7361 // structure for a pointer to any given type.
7362 Type* pet = Type::make_pointer_type(et);
7363 pet->get_backend(gogo);
7367 // Return an expression for a pointer to the values in ARRAY.
7369 Expression*
7370 Array_type::get_value_pointer(Gogo*, Expression* array, bool is_lvalue) const
7372 if (this->length() != NULL)
7374 // Fixed array.
7375 go_assert(array->type()->array_type() != NULL);
7376 Type* etype = array->type()->array_type()->element_type();
7377 array = Expression::make_unary(OPERATOR_AND, array, array->location());
7378 return Expression::make_cast(Type::make_pointer_type(etype), array,
7379 array->location());
7382 // Slice.
7384 if (is_lvalue)
7386 Temporary_reference_expression* tref =
7387 array->temporary_reference_expression();
7388 Var_expression* ve = array->var_expression();
7389 if (tref != NULL)
7391 tref = tref->copy()->temporary_reference_expression();
7392 tref->set_is_lvalue();
7393 array = tref;
7395 else if (ve != NULL)
7397 ve = new Var_expression(ve->named_object(), ve->location());
7398 ve->set_in_lvalue_pos();
7399 array = ve;
7403 return Expression::make_slice_info(array,
7404 Expression::SLICE_INFO_VALUE_POINTER,
7405 array->location());
7408 // Return an expression for the length of the array ARRAY which has this
7409 // type.
7411 Expression*
7412 Array_type::get_length(Gogo*, Expression* array) const
7414 if (this->length_ != NULL)
7415 return this->length_;
7417 // This is a slice. We need to read the length field.
7418 return Expression::make_slice_info(array, Expression::SLICE_INFO_LENGTH,
7419 array->location());
7422 // Return an expression for the capacity of the array ARRAY which has this
7423 // type.
7425 Expression*
7426 Array_type::get_capacity(Gogo*, Expression* array) const
7428 if (this->length_ != NULL)
7429 return this->length_;
7431 // This is a slice. We need to read the capacity field.
7432 return Expression::make_slice_info(array, Expression::SLICE_INFO_CAPACITY,
7433 array->location());
7436 // Export.
7438 void
7439 Array_type::do_export(Export* exp) const
7441 exp->write_c_string("[");
7442 if (this->length_ != NULL)
7443 this->length_->export_expression(exp);
7444 exp->write_c_string("] ");
7445 exp->write_type(this->element_type_);
7448 // Import.
7450 Array_type*
7451 Array_type::do_import(Import* imp)
7453 imp->require_c_string("[");
7454 Expression* length;
7455 if (imp->peek_char() == ']')
7456 length = NULL;
7457 else
7458 length = Expression::import_expression(imp);
7459 imp->require_c_string("] ");
7460 Type* element_type = imp->read_type();
7461 return Type::make_array_type(element_type, length);
7464 // The type of an array type descriptor.
7466 Type*
7467 Array_type::make_array_type_descriptor_type()
7469 static Type* ret;
7470 if (ret == NULL)
7472 Type* tdt = Type::make_type_descriptor_type();
7473 Type* ptdt = Type::make_type_descriptor_ptr_type();
7475 Type* uintptr_type = Type::lookup_integer_type("uintptr");
7477 Struct_type* sf =
7478 Type::make_builtin_struct_type(4,
7479 "", tdt,
7480 "elem", ptdt,
7481 "slice", ptdt,
7482 "len", uintptr_type);
7484 ret = Type::make_builtin_named_type("ArrayType", sf);
7487 return ret;
7490 // The type of an slice type descriptor.
7492 Type*
7493 Array_type::make_slice_type_descriptor_type()
7495 static Type* ret;
7496 if (ret == NULL)
7498 Type* tdt = Type::make_type_descriptor_type();
7499 Type* ptdt = Type::make_type_descriptor_ptr_type();
7501 Struct_type* sf =
7502 Type::make_builtin_struct_type(2,
7503 "", tdt,
7504 "elem", ptdt);
7506 ret = Type::make_builtin_named_type("SliceType", sf);
7509 return ret;
7512 // Build a type descriptor for an array/slice type.
7514 Expression*
7515 Array_type::do_type_descriptor(Gogo* gogo, Named_type* name)
7517 if (this->length_ != NULL)
7518 return this->array_type_descriptor(gogo, name);
7519 else
7520 return this->slice_type_descriptor(gogo, name);
7523 // Build a type descriptor for an array type.
7525 Expression*
7526 Array_type::array_type_descriptor(Gogo* gogo, Named_type* name)
7528 Location bloc = Linemap::predeclared_location();
7530 Type* atdt = Array_type::make_array_type_descriptor_type();
7532 const Struct_field_list* fields = atdt->struct_type()->fields();
7534 Expression_list* vals = new Expression_list();
7535 vals->reserve(3);
7537 Struct_field_list::const_iterator p = fields->begin();
7538 go_assert(p->is_field_name("_type"));
7539 vals->push_back(this->type_descriptor_constructor(gogo,
7540 RUNTIME_TYPE_KIND_ARRAY,
7541 name, NULL, true));
7543 ++p;
7544 go_assert(p->is_field_name("elem"));
7545 vals->push_back(Expression::make_type_descriptor(this->element_type_, bloc));
7547 ++p;
7548 go_assert(p->is_field_name("slice"));
7549 Type* slice_type = Type::make_array_type(this->element_type_, NULL);
7550 vals->push_back(Expression::make_type_descriptor(slice_type, bloc));
7552 ++p;
7553 go_assert(p->is_field_name("len"));
7554 vals->push_back(Expression::make_cast(p->type(), this->length_, bloc));
7556 ++p;
7557 go_assert(p == fields->end());
7559 return Expression::make_struct_composite_literal(atdt, vals, bloc);
7562 // Build a type descriptor for a slice type.
7564 Expression*
7565 Array_type::slice_type_descriptor(Gogo* gogo, Named_type* name)
7567 Location bloc = Linemap::predeclared_location();
7569 Type* stdt = Array_type::make_slice_type_descriptor_type();
7571 const Struct_field_list* fields = stdt->struct_type()->fields();
7573 Expression_list* vals = new Expression_list();
7574 vals->reserve(2);
7576 Struct_field_list::const_iterator p = fields->begin();
7577 go_assert(p->is_field_name("_type"));
7578 vals->push_back(this->type_descriptor_constructor(gogo,
7579 RUNTIME_TYPE_KIND_SLICE,
7580 name, NULL, true));
7582 ++p;
7583 go_assert(p->is_field_name("elem"));
7584 vals->push_back(Expression::make_type_descriptor(this->element_type_, bloc));
7586 ++p;
7587 go_assert(p == fields->end());
7589 return Expression::make_struct_composite_literal(stdt, vals, bloc);
7592 // Reflection string.
7594 void
7595 Array_type::do_reflection(Gogo* gogo, std::string* ret) const
7597 ret->push_back('[');
7598 if (this->length_ != NULL)
7600 Numeric_constant nc;
7601 if (!this->length_->numeric_constant_value(&nc))
7603 go_assert(saw_errors());
7604 return;
7606 mpz_t val;
7607 if (!nc.to_int(&val))
7609 go_assert(saw_errors());
7610 return;
7612 char* s = mpz_get_str(NULL, 10, val);
7613 ret->append(s);
7614 free(s);
7615 mpz_clear(val);
7617 ret->push_back(']');
7619 this->append_reflection(this->element_type_, gogo, ret);
7622 // Make an array type.
7624 Array_type*
7625 Type::make_array_type(Type* element_type, Expression* length)
7627 return new Array_type(element_type, length);
7630 // Class Map_type.
7632 Named_object* Map_type::zero_value;
7633 int64_t Map_type::zero_value_size;
7634 int64_t Map_type::zero_value_align;
7636 // If this map requires the "fat" functions, return the pointer to
7637 // pass as the zero value to those functions. Otherwise, in the
7638 // normal case, return NULL. The map requires the "fat" functions if
7639 // the value size is larger than max_zero_size bytes. max_zero_size
7640 // must match maxZero in libgo/go/runtime/hashmap.go.
7642 Expression*
7643 Map_type::fat_zero_value(Gogo* gogo)
7645 int64_t valsize;
7646 if (!this->val_type_->backend_type_size(gogo, &valsize))
7648 go_assert(saw_errors());
7649 return NULL;
7651 if (valsize <= Map_type::max_zero_size)
7652 return NULL;
7654 if (Map_type::zero_value_size < valsize)
7655 Map_type::zero_value_size = valsize;
7657 int64_t valalign;
7658 if (!this->val_type_->backend_type_align(gogo, &valalign))
7660 go_assert(saw_errors());
7661 return NULL;
7664 if (Map_type::zero_value_align < valalign)
7665 Map_type::zero_value_align = valalign;
7667 Location bloc = Linemap::predeclared_location();
7669 if (Map_type::zero_value == NULL)
7671 // The final type will be set in backend_zero_value.
7672 Type* uint8_type = Type::lookup_integer_type("uint8");
7673 Expression* size = Expression::make_integer_ul(0, NULL, bloc);
7674 Array_type* array_type = Type::make_array_type(uint8_type, size);
7675 array_type->set_is_array_incomparable();
7676 Variable* var = new Variable(array_type, NULL, true, false, false, bloc);
7677 std::string name = gogo->map_zero_value_name();
7678 Map_type::zero_value = Named_object::make_variable(name, NULL, var);
7681 Expression* z = Expression::make_var_reference(Map_type::zero_value, bloc);
7682 z = Expression::make_unary(OPERATOR_AND, z, bloc);
7683 Type* unsafe_ptr_type = Type::make_pointer_type(Type::make_void_type());
7684 z = Expression::make_cast(unsafe_ptr_type, z, bloc);
7685 return z;
7688 // Return whether VAR is the map zero value.
7690 bool
7691 Map_type::is_zero_value(Variable* var)
7693 return (Map_type::zero_value != NULL
7694 && Map_type::zero_value->var_value() == var);
7697 // Return the backend representation for the zero value.
7699 Bvariable*
7700 Map_type::backend_zero_value(Gogo* gogo)
7702 Location bloc = Linemap::predeclared_location();
7704 go_assert(Map_type::zero_value != NULL);
7706 Type* uint8_type = Type::lookup_integer_type("uint8");
7707 Btype* buint8_type = uint8_type->get_backend(gogo);
7709 Type* int_type = Type::lookup_integer_type("int");
7711 Expression* e = Expression::make_integer_int64(Map_type::zero_value_size,
7712 int_type, bloc);
7713 Translate_context context(gogo, NULL, NULL, NULL);
7714 Bexpression* blength = e->get_backend(&context);
7716 Btype* barray_type = gogo->backend()->array_type(buint8_type, blength);
7718 std::string zname = Map_type::zero_value->name();
7719 std::string asm_name(go_selectively_encode_id(zname));
7720 Bvariable* zvar =
7721 gogo->backend()->implicit_variable(zname, asm_name,
7722 barray_type, false, true, true,
7723 Map_type::zero_value_align);
7724 gogo->backend()->implicit_variable_set_init(zvar, zname, barray_type,
7725 false, true, true, NULL);
7726 return zvar;
7729 // Traversal.
7732 Map_type::do_traverse(Traverse* traverse)
7734 if (Type::traverse(this->key_type_, traverse) == TRAVERSE_EXIT
7735 || Type::traverse(this->val_type_, traverse) == TRAVERSE_EXIT)
7736 return TRAVERSE_EXIT;
7737 return TRAVERSE_CONTINUE;
7740 // Check that the map type is OK.
7742 bool
7743 Map_type::do_verify()
7745 // The runtime support uses "map[void]void".
7746 if (!this->key_type_->is_comparable() && !this->key_type_->is_void_type())
7747 go_error_at(this->location_, "invalid map key type");
7748 if (!this->key_type_->in_heap())
7749 go_error_at(this->location_, "go:notinheap map key not allowed");
7750 if (!this->val_type_->in_heap())
7751 go_error_at(this->location_, "go:notinheap map value not allowed");
7752 return true;
7755 // Whether two map types are identical.
7757 bool
7758 Map_type::is_identical(const Map_type* t, Cmp_tags cmp_tags,
7759 bool errors_are_identical) const
7761 return (Type::are_identical_cmp_tags(this->key_type(), t->key_type(),
7762 cmp_tags, errors_are_identical, NULL)
7763 && Type::are_identical_cmp_tags(this->val_type(), t->val_type(),
7764 cmp_tags, errors_are_identical,
7765 NULL));
7768 // Hash code.
7770 unsigned int
7771 Map_type::do_hash_for_method(Gogo* gogo) const
7773 return (this->key_type_->hash_for_method(gogo)
7774 + this->val_type_->hash_for_method(gogo)
7775 + 2);
7778 // Get the backend representation for a map type. A map type is
7779 // represented as a pointer to a struct. The struct is hmap in
7780 // runtime/hashmap.go.
7782 Btype*
7783 Map_type::do_get_backend(Gogo* gogo)
7785 static Btype* backend_map_type;
7786 if (backend_map_type == NULL)
7788 std::vector<Backend::Btyped_identifier> bfields(9);
7790 Location bloc = Linemap::predeclared_location();
7792 Type* int_type = Type::lookup_integer_type("int");
7793 bfields[0].name = "count";
7794 bfields[0].btype = int_type->get_backend(gogo);
7795 bfields[0].location = bloc;
7797 Type* uint8_type = Type::lookup_integer_type("uint8");
7798 bfields[1].name = "flags";
7799 bfields[1].btype = uint8_type->get_backend(gogo);
7800 bfields[1].location = bloc;
7802 bfields[2].name = "B";
7803 bfields[2].btype = bfields[1].btype;
7804 bfields[2].location = bloc;
7806 Type* uint16_type = Type::lookup_integer_type("uint16");
7807 bfields[3].name = "noverflow";
7808 bfields[3].btype = uint16_type->get_backend(gogo);
7809 bfields[3].location = bloc;
7811 Type* uint32_type = Type::lookup_integer_type("uint32");
7812 bfields[4].name = "hash0";
7813 bfields[4].btype = uint32_type->get_backend(gogo);
7814 bfields[4].location = bloc;
7816 Btype* bvt = gogo->backend()->void_type();
7817 Btype* bpvt = gogo->backend()->pointer_type(bvt);
7818 bfields[5].name = "buckets";
7819 bfields[5].btype = bpvt;
7820 bfields[5].location = bloc;
7822 bfields[6].name = "oldbuckets";
7823 bfields[6].btype = bpvt;
7824 bfields[6].location = bloc;
7826 Type* uintptr_type = Type::lookup_integer_type("uintptr");
7827 bfields[7].name = "nevacuate";
7828 bfields[7].btype = uintptr_type->get_backend(gogo);
7829 bfields[7].location = bloc;
7831 bfields[8].name = "overflow";
7832 bfields[8].btype = bpvt;
7833 bfields[8].location = bloc;
7835 Btype *bt = gogo->backend()->struct_type(bfields);
7836 bt = gogo->backend()->named_type("runtime.hmap", bt, bloc);
7837 backend_map_type = gogo->backend()->pointer_type(bt);
7839 return backend_map_type;
7842 // The type of a map type descriptor.
7844 Type*
7845 Map_type::make_map_type_descriptor_type()
7847 static Type* ret;
7848 if (ret == NULL)
7850 Type* tdt = Type::make_type_descriptor_type();
7851 Type* ptdt = Type::make_type_descriptor_ptr_type();
7852 Type* uint8_type = Type::lookup_integer_type("uint8");
7853 Type* uint16_type = Type::lookup_integer_type("uint16");
7854 Type* bool_type = Type::lookup_bool_type();
7856 Struct_type* sf =
7857 Type::make_builtin_struct_type(12,
7858 "", tdt,
7859 "key", ptdt,
7860 "elem", ptdt,
7861 "bucket", ptdt,
7862 "hmap", ptdt,
7863 "keysize", uint8_type,
7864 "indirectkey", bool_type,
7865 "valuesize", uint8_type,
7866 "indirectvalue", bool_type,
7867 "bucketsize", uint16_type,
7868 "reflexivekey", bool_type,
7869 "needkeyupdate", bool_type);
7871 ret = Type::make_builtin_named_type("MapType", sf);
7874 return ret;
7877 // Build a type descriptor for a map type.
7879 Expression*
7880 Map_type::do_type_descriptor(Gogo* gogo, Named_type* name)
7882 Location bloc = Linemap::predeclared_location();
7884 Type* mtdt = Map_type::make_map_type_descriptor_type();
7885 Type* uint8_type = Type::lookup_integer_type("uint8");
7886 Type* uint16_type = Type::lookup_integer_type("uint16");
7888 int64_t keysize;
7889 if (!this->key_type_->backend_type_size(gogo, &keysize))
7891 go_error_at(this->location_, "error determining map key type size");
7892 return Expression::make_error(this->location_);
7895 int64_t valsize;
7896 if (!this->val_type_->backend_type_size(gogo, &valsize))
7898 go_error_at(this->location_, "error determining map value type size");
7899 return Expression::make_error(this->location_);
7902 int64_t ptrsize;
7903 if (!Type::make_pointer_type(uint8_type)->backend_type_size(gogo, &ptrsize))
7905 go_assert(saw_errors());
7906 return Expression::make_error(this->location_);
7909 Type* bucket_type = this->bucket_type(gogo, keysize, valsize);
7910 if (bucket_type == NULL)
7912 go_assert(saw_errors());
7913 return Expression::make_error(this->location_);
7916 int64_t bucketsize;
7917 if (!bucket_type->backend_type_size(gogo, &bucketsize))
7919 go_assert(saw_errors());
7920 return Expression::make_error(this->location_);
7923 const Struct_field_list* fields = mtdt->struct_type()->fields();
7925 Expression_list* vals = new Expression_list();
7926 vals->reserve(12);
7928 Struct_field_list::const_iterator p = fields->begin();
7929 go_assert(p->is_field_name("_type"));
7930 vals->push_back(this->type_descriptor_constructor(gogo,
7931 RUNTIME_TYPE_KIND_MAP,
7932 name, NULL, true));
7934 ++p;
7935 go_assert(p->is_field_name("key"));
7936 vals->push_back(Expression::make_type_descriptor(this->key_type_, bloc));
7938 ++p;
7939 go_assert(p->is_field_name("elem"));
7940 vals->push_back(Expression::make_type_descriptor(this->val_type_, bloc));
7942 ++p;
7943 go_assert(p->is_field_name("bucket"));
7944 vals->push_back(Expression::make_type_descriptor(bucket_type, bloc));
7946 ++p;
7947 go_assert(p->is_field_name("hmap"));
7948 Type* hmap_type = this->hmap_type(bucket_type);
7949 vals->push_back(Expression::make_type_descriptor(hmap_type, bloc));
7951 ++p;
7952 go_assert(p->is_field_name("keysize"));
7953 if (keysize > Map_type::max_key_size)
7954 vals->push_back(Expression::make_integer_int64(ptrsize, uint8_type, bloc));
7955 else
7956 vals->push_back(Expression::make_integer_int64(keysize, uint8_type, bloc));
7958 ++p;
7959 go_assert(p->is_field_name("indirectkey"));
7960 vals->push_back(Expression::make_boolean(keysize > Map_type::max_key_size,
7961 bloc));
7963 ++p;
7964 go_assert(p->is_field_name("valuesize"));
7965 if (valsize > Map_type::max_val_size)
7966 vals->push_back(Expression::make_integer_int64(ptrsize, uint8_type, bloc));
7967 else
7968 vals->push_back(Expression::make_integer_int64(valsize, uint8_type, bloc));
7970 ++p;
7971 go_assert(p->is_field_name("indirectvalue"));
7972 vals->push_back(Expression::make_boolean(valsize > Map_type::max_val_size,
7973 bloc));
7975 ++p;
7976 go_assert(p->is_field_name("bucketsize"));
7977 vals->push_back(Expression::make_integer_int64(bucketsize, uint16_type,
7978 bloc));
7980 ++p;
7981 go_assert(p->is_field_name("reflexivekey"));
7982 vals->push_back(Expression::make_boolean(this->key_type_->is_reflexive(),
7983 bloc));
7985 ++p;
7986 go_assert(p->is_field_name("needkeyupdate"));
7987 vals->push_back(Expression::make_boolean(this->key_type_->needs_key_update(),
7988 bloc));
7990 ++p;
7991 go_assert(p == fields->end());
7993 return Expression::make_struct_composite_literal(mtdt, vals, bloc);
7996 // Return the bucket type to use for a map type. This must correspond
7997 // to libgo/go/runtime/hashmap.go.
7999 Type*
8000 Map_type::bucket_type(Gogo* gogo, int64_t keysize, int64_t valsize)
8002 if (this->bucket_type_ != NULL)
8003 return this->bucket_type_;
8005 Type* key_type = this->key_type_;
8006 if (keysize > Map_type::max_key_size)
8007 key_type = Type::make_pointer_type(key_type);
8009 Type* val_type = this->val_type_;
8010 if (valsize > Map_type::max_val_size)
8011 val_type = Type::make_pointer_type(val_type);
8013 Expression* bucket_size = Expression::make_integer_ul(Map_type::bucket_size,
8014 NULL, this->location_);
8016 Type* uint8_type = Type::lookup_integer_type("uint8");
8017 Array_type* topbits_type = Type::make_array_type(uint8_type, bucket_size);
8018 topbits_type->set_is_array_incomparable();
8019 Array_type* keys_type = Type::make_array_type(key_type, bucket_size);
8020 keys_type->set_is_array_incomparable();
8021 Array_type* values_type = Type::make_array_type(val_type, bucket_size);
8022 values_type->set_is_array_incomparable();
8024 // If keys and values have no pointers, the map implementation can
8025 // keep a list of overflow pointers on the side so that buckets can
8026 // be marked as having no pointers. Arrange for the bucket to have
8027 // no pointers by changing the type of the overflow field to uintptr
8028 // in this case. See comment on the hmap.overflow field in
8029 // libgo/go/runtime/hashmap.go.
8030 Type* overflow_type;
8031 if (!key_type->has_pointer() && !val_type->has_pointer())
8032 overflow_type = Type::lookup_integer_type("uintptr");
8033 else
8035 // This should really be a pointer to the bucket type itself,
8036 // but that would require us to construct a Named_type for it to
8037 // give it a way to refer to itself. Since nothing really cares
8038 // (except perhaps for someone using a debugger) just use an
8039 // unsafe pointer.
8040 overflow_type = Type::make_pointer_type(Type::make_void_type());
8043 // Make sure the overflow pointer is the last memory in the struct,
8044 // because the runtime assumes it can use size-ptrSize as the offset
8045 // of the overflow pointer. We double-check that property below
8046 // once the offsets and size are computed.
8048 int64_t topbits_field_size, topbits_field_align;
8049 int64_t keys_field_size, keys_field_align;
8050 int64_t values_field_size, values_field_align;
8051 int64_t overflow_field_size, overflow_field_align;
8052 if (!topbits_type->backend_type_size(gogo, &topbits_field_size)
8053 || !topbits_type->backend_type_field_align(gogo, &topbits_field_align)
8054 || !keys_type->backend_type_size(gogo, &keys_field_size)
8055 || !keys_type->backend_type_field_align(gogo, &keys_field_align)
8056 || !values_type->backend_type_size(gogo, &values_field_size)
8057 || !values_type->backend_type_field_align(gogo, &values_field_align)
8058 || !overflow_type->backend_type_size(gogo, &overflow_field_size)
8059 || !overflow_type->backend_type_field_align(gogo, &overflow_field_align))
8061 go_assert(saw_errors());
8062 return NULL;
8065 Struct_type* ret;
8066 int64_t max_align = std::max(std::max(topbits_field_align, keys_field_align),
8067 values_field_align);
8068 if (max_align <= overflow_field_align)
8069 ret = make_builtin_struct_type(4,
8070 "topbits", topbits_type,
8071 "keys", keys_type,
8072 "values", values_type,
8073 "overflow", overflow_type);
8074 else
8076 size_t off = topbits_field_size;
8077 off = ((off + keys_field_align - 1)
8078 &~ static_cast<size_t>(keys_field_align - 1));
8079 off += keys_field_size;
8080 off = ((off + values_field_align - 1)
8081 &~ static_cast<size_t>(values_field_align - 1));
8082 off += values_field_size;
8084 int64_t padded_overflow_field_size =
8085 ((overflow_field_size + max_align - 1)
8086 &~ static_cast<size_t>(max_align - 1));
8088 size_t ovoff = off;
8089 ovoff = ((ovoff + max_align - 1)
8090 &~ static_cast<size_t>(max_align - 1));
8091 size_t pad = (ovoff - off
8092 + padded_overflow_field_size - overflow_field_size);
8094 Expression* pad_expr = Expression::make_integer_ul(pad, NULL,
8095 this->location_);
8096 Array_type* pad_type = Type::make_array_type(uint8_type, pad_expr);
8097 pad_type->set_is_array_incomparable();
8099 ret = make_builtin_struct_type(5,
8100 "topbits", topbits_type,
8101 "keys", keys_type,
8102 "values", values_type,
8103 "pad", pad_type,
8104 "overflow", overflow_type);
8107 // Verify that the overflow field is just before the end of the
8108 // bucket type.
8110 Btype* btype = ret->get_backend(gogo);
8111 int64_t offset = gogo->backend()->type_field_offset(btype,
8112 ret->field_count() - 1);
8113 int64_t size;
8114 if (!ret->backend_type_size(gogo, &size))
8116 go_assert(saw_errors());
8117 return NULL;
8120 int64_t ptr_size;
8121 if (!Type::make_pointer_type(uint8_type)->backend_type_size(gogo, &ptr_size))
8123 go_assert(saw_errors());
8124 return NULL;
8127 go_assert(offset + ptr_size == size);
8129 ret->set_is_struct_incomparable();
8131 this->bucket_type_ = ret;
8132 return ret;
8135 // Return the hashmap type for a map type.
8137 Type*
8138 Map_type::hmap_type(Type* bucket_type)
8140 if (this->hmap_type_ != NULL)
8141 return this->hmap_type_;
8143 Type* int_type = Type::lookup_integer_type("int");
8144 Type* uint8_type = Type::lookup_integer_type("uint8");
8145 Type* uint32_type = Type::lookup_integer_type("uint32");
8146 Type* uintptr_type = Type::lookup_integer_type("uintptr");
8147 Type* void_ptr_type = Type::make_pointer_type(Type::make_void_type());
8149 Type* ptr_bucket_type = Type::make_pointer_type(bucket_type);
8151 Struct_type* ret = make_builtin_struct_type(8,
8152 "count", int_type,
8153 "flags", uint8_type,
8154 "B", uint8_type,
8155 "hash0", uint32_type,
8156 "buckets", ptr_bucket_type,
8157 "oldbuckets", ptr_bucket_type,
8158 "nevacuate", uintptr_type,
8159 "overflow", void_ptr_type);
8160 ret->set_is_struct_incomparable();
8161 this->hmap_type_ = ret;
8162 return ret;
8165 // Return the iterator type for a map type. This is the type of the
8166 // value used when doing a range over a map.
8168 Type*
8169 Map_type::hiter_type(Gogo* gogo)
8171 if (this->hiter_type_ != NULL)
8172 return this->hiter_type_;
8174 int64_t keysize, valsize;
8175 if (!this->key_type_->backend_type_size(gogo, &keysize)
8176 || !this->val_type_->backend_type_size(gogo, &valsize))
8178 go_assert(saw_errors());
8179 return NULL;
8182 Type* key_ptr_type = Type::make_pointer_type(this->key_type_);
8183 Type* val_ptr_type = Type::make_pointer_type(this->val_type_);
8184 Type* uint8_type = Type::lookup_integer_type("uint8");
8185 Type* uint8_ptr_type = Type::make_pointer_type(uint8_type);
8186 Type* uintptr_type = Type::lookup_integer_type("uintptr");
8187 Type* bucket_type = this->bucket_type(gogo, keysize, valsize);
8188 Type* bucket_ptr_type = Type::make_pointer_type(bucket_type);
8189 Type* hmap_type = this->hmap_type(bucket_type);
8190 Type* hmap_ptr_type = Type::make_pointer_type(hmap_type);
8191 Type* void_ptr_type = Type::make_pointer_type(Type::make_void_type());
8193 Struct_type* ret = make_builtin_struct_type(12,
8194 "key", key_ptr_type,
8195 "val", val_ptr_type,
8196 "t", uint8_ptr_type,
8197 "h", hmap_ptr_type,
8198 "buckets", bucket_ptr_type,
8199 "bptr", bucket_ptr_type,
8200 "overflow0", void_ptr_type,
8201 "overflow1", void_ptr_type,
8202 "startBucket", uintptr_type,
8203 "stuff", uintptr_type,
8204 "bucket", uintptr_type,
8205 "checkBucket", uintptr_type);
8206 ret->set_is_struct_incomparable();
8207 this->hiter_type_ = ret;
8208 return ret;
8211 // Reflection string for a map.
8213 void
8214 Map_type::do_reflection(Gogo* gogo, std::string* ret) const
8216 ret->append("map[");
8217 this->append_reflection(this->key_type_, gogo, ret);
8218 ret->append("]");
8219 this->append_reflection(this->val_type_, gogo, ret);
8222 // Export a map type.
8224 void
8225 Map_type::do_export(Export* exp) const
8227 exp->write_c_string("map [");
8228 exp->write_type(this->key_type_);
8229 exp->write_c_string("] ");
8230 exp->write_type(this->val_type_);
8233 // Import a map type.
8235 Map_type*
8236 Map_type::do_import(Import* imp)
8238 imp->require_c_string("map [");
8239 Type* key_type = imp->read_type();
8240 imp->require_c_string("] ");
8241 Type* val_type = imp->read_type();
8242 return Type::make_map_type(key_type, val_type, imp->location());
8245 // Make a map type.
8247 Map_type*
8248 Type::make_map_type(Type* key_type, Type* val_type, Location location)
8250 return new Map_type(key_type, val_type, location);
8253 // Class Channel_type.
8255 // Verify.
8257 bool
8258 Channel_type::do_verify()
8260 // We have no location for this error, but this is not something the
8261 // ordinary user will see.
8262 if (!this->element_type_->in_heap())
8263 go_error_at(Linemap::unknown_location(),
8264 "chan of go:notinheap type not allowed");
8265 return true;
8268 // Hash code.
8270 unsigned int
8271 Channel_type::do_hash_for_method(Gogo* gogo) const
8273 unsigned int ret = 0;
8274 if (this->may_send_)
8275 ret += 1;
8276 if (this->may_receive_)
8277 ret += 2;
8278 if (this->element_type_ != NULL)
8279 ret += this->element_type_->hash_for_method(gogo) << 2;
8280 return ret << 3;
8283 // Whether this type is the same as T.
8285 bool
8286 Channel_type::is_identical(const Channel_type* t, Cmp_tags cmp_tags,
8287 bool errors_are_identical) const
8289 if (!Type::are_identical_cmp_tags(this->element_type(), t->element_type(),
8290 cmp_tags, errors_are_identical, NULL))
8291 return false;
8292 return (this->may_send_ == t->may_send_
8293 && this->may_receive_ == t->may_receive_);
8296 // Return the backend representation for a channel type. A channel is a pointer
8297 // to a __go_channel struct. The __go_channel struct is defined in
8298 // libgo/runtime/channel.h.
8300 Btype*
8301 Channel_type::do_get_backend(Gogo* gogo)
8303 static Btype* backend_channel_type;
8304 if (backend_channel_type == NULL)
8306 std::vector<Backend::Btyped_identifier> bfields;
8307 Btype* bt = gogo->backend()->struct_type(bfields);
8308 bt = gogo->backend()->named_type("__go_channel", bt,
8309 Linemap::predeclared_location());
8310 backend_channel_type = gogo->backend()->pointer_type(bt);
8312 return backend_channel_type;
8315 // Build a type descriptor for a channel type.
8317 Type*
8318 Channel_type::make_chan_type_descriptor_type()
8320 static Type* ret;
8321 if (ret == NULL)
8323 Type* tdt = Type::make_type_descriptor_type();
8324 Type* ptdt = Type::make_type_descriptor_ptr_type();
8326 Type* uintptr_type = Type::lookup_integer_type("uintptr");
8328 Struct_type* sf =
8329 Type::make_builtin_struct_type(3,
8330 "", tdt,
8331 "elem", ptdt,
8332 "dir", uintptr_type);
8334 ret = Type::make_builtin_named_type("ChanType", sf);
8337 return ret;
8340 // Build a type descriptor for a map type.
8342 Expression*
8343 Channel_type::do_type_descriptor(Gogo* gogo, Named_type* name)
8345 Location bloc = Linemap::predeclared_location();
8347 Type* ctdt = Channel_type::make_chan_type_descriptor_type();
8349 const Struct_field_list* fields = ctdt->struct_type()->fields();
8351 Expression_list* vals = new Expression_list();
8352 vals->reserve(3);
8354 Struct_field_list::const_iterator p = fields->begin();
8355 go_assert(p->is_field_name("_type"));
8356 vals->push_back(this->type_descriptor_constructor(gogo,
8357 RUNTIME_TYPE_KIND_CHAN,
8358 name, NULL, true));
8360 ++p;
8361 go_assert(p->is_field_name("elem"));
8362 vals->push_back(Expression::make_type_descriptor(this->element_type_, bloc));
8364 ++p;
8365 go_assert(p->is_field_name("dir"));
8366 // These bits must match the ones in libgo/runtime/go-type.h.
8367 int val = 0;
8368 if (this->may_receive_)
8369 val |= 1;
8370 if (this->may_send_)
8371 val |= 2;
8372 vals->push_back(Expression::make_integer_ul(val, p->type(), bloc));
8374 ++p;
8375 go_assert(p == fields->end());
8377 return Expression::make_struct_composite_literal(ctdt, vals, bloc);
8380 // Reflection string.
8382 void
8383 Channel_type::do_reflection(Gogo* gogo, std::string* ret) const
8385 if (!this->may_send_)
8386 ret->append("<-");
8387 ret->append("chan");
8388 if (!this->may_receive_)
8389 ret->append("<-");
8390 ret->push_back(' ');
8391 this->append_reflection(this->element_type_, gogo, ret);
8394 // Export.
8396 void
8397 Channel_type::do_export(Export* exp) const
8399 exp->write_c_string("chan ");
8400 if (this->may_send_ && !this->may_receive_)
8401 exp->write_c_string("-< ");
8402 else if (this->may_receive_ && !this->may_send_)
8403 exp->write_c_string("<- ");
8404 exp->write_type(this->element_type_);
8407 // Import.
8409 Channel_type*
8410 Channel_type::do_import(Import* imp)
8412 imp->require_c_string("chan ");
8414 bool may_send;
8415 bool may_receive;
8416 if (imp->match_c_string("-< "))
8418 imp->advance(3);
8419 may_send = true;
8420 may_receive = false;
8422 else if (imp->match_c_string("<- "))
8424 imp->advance(3);
8425 may_receive = true;
8426 may_send = false;
8428 else
8430 may_send = true;
8431 may_receive = true;
8434 Type* element_type = imp->read_type();
8436 return Type::make_channel_type(may_send, may_receive, element_type);
8439 // Return the type to manage a select statement with ncases case
8440 // statements. A value of this type is allocated on the stack. This
8441 // must match the type hselect in libgo/go/runtime/select.go.
8443 Type*
8444 Channel_type::select_type(int ncases)
8446 Type* unsafe_pointer_type = Type::make_pointer_type(Type::make_void_type());
8447 Type* uint16_type = Type::lookup_integer_type("uint16");
8449 static Struct_type* scase_type;
8450 if (scase_type == NULL)
8452 Type* uintptr_type = Type::lookup_integer_type("uintptr");
8453 Type* uint64_type = Type::lookup_integer_type("uint64");
8454 scase_type =
8455 Type::make_builtin_struct_type(7,
8456 "elem", unsafe_pointer_type,
8457 "chan", unsafe_pointer_type,
8458 "pc", uintptr_type,
8459 "kind", uint16_type,
8460 "index", uint16_type,
8461 "receivedp", unsafe_pointer_type,
8462 "releasetime", uint64_type);
8463 scase_type->set_is_struct_incomparable();
8466 Expression* ncases_expr =
8467 Expression::make_integer_ul(ncases, NULL, Linemap::predeclared_location());
8468 Array_type* scases = Type::make_array_type(scase_type, ncases_expr);
8469 scases->set_is_array_incomparable();
8470 Array_type* order = Type::make_array_type(uint16_type, ncases_expr);
8471 order->set_is_array_incomparable();
8473 Struct_type* ret =
8474 Type::make_builtin_struct_type(7,
8475 "tcase", uint16_type,
8476 "ncase", uint16_type,
8477 "pollorder", unsafe_pointer_type,
8478 "lockorder", unsafe_pointer_type,
8479 "scase", scases,
8480 "lockorderarr", order,
8481 "pollorderarr", order);
8482 ret->set_is_struct_incomparable();
8483 return ret;
8486 // Make a new channel type.
8488 Channel_type*
8489 Type::make_channel_type(bool send, bool receive, Type* element_type)
8491 return new Channel_type(send, receive, element_type);
8494 // Class Interface_type.
8496 // Return the list of methods.
8498 const Typed_identifier_list*
8499 Interface_type::methods() const
8501 go_assert(this->methods_are_finalized_ || saw_errors());
8502 return this->all_methods_;
8505 // Return the number of methods.
8507 size_t
8508 Interface_type::method_count() const
8510 go_assert(this->methods_are_finalized_ || saw_errors());
8511 return this->all_methods_ == NULL ? 0 : this->all_methods_->size();
8514 // Traversal.
8517 Interface_type::do_traverse(Traverse* traverse)
8519 Typed_identifier_list* methods = (this->methods_are_finalized_
8520 ? this->all_methods_
8521 : this->parse_methods_);
8522 if (methods == NULL)
8523 return TRAVERSE_CONTINUE;
8524 return methods->traverse(traverse);
8527 // Finalize the methods. This handles interface inheritance.
8529 void
8530 Interface_type::finalize_methods()
8532 if (this->methods_are_finalized_)
8533 return;
8534 this->methods_are_finalized_ = true;
8535 if (this->parse_methods_ == NULL)
8536 return;
8538 this->all_methods_ = new Typed_identifier_list();
8539 this->all_methods_->reserve(this->parse_methods_->size());
8540 Typed_identifier_list inherit;
8541 for (Typed_identifier_list::const_iterator pm =
8542 this->parse_methods_->begin();
8543 pm != this->parse_methods_->end();
8544 ++pm)
8546 const Typed_identifier* p = &*pm;
8547 if (p->name().empty())
8548 inherit.push_back(*p);
8549 else if (this->find_method(p->name()) == NULL)
8550 this->all_methods_->push_back(*p);
8551 else
8552 go_error_at(p->location(), "duplicate method %qs",
8553 Gogo::message_name(p->name()).c_str());
8556 std::vector<Named_type*> seen;
8557 seen.reserve(inherit.size());
8558 bool issued_recursive_error = false;
8559 while (!inherit.empty())
8561 Type* t = inherit.back().type();
8562 Location tl = inherit.back().location();
8563 inherit.pop_back();
8565 Interface_type* it = t->interface_type();
8566 if (it == NULL)
8568 if (!t->is_error())
8569 go_error_at(tl, "interface contains embedded non-interface");
8570 continue;
8572 if (it == this)
8574 if (!issued_recursive_error)
8576 go_error_at(tl, "invalid recursive interface");
8577 issued_recursive_error = true;
8579 continue;
8582 Named_type* nt = t->named_type();
8583 if (nt != NULL && it->parse_methods_ != NULL)
8585 std::vector<Named_type*>::const_iterator q;
8586 for (q = seen.begin(); q != seen.end(); ++q)
8588 if (*q == nt)
8590 go_error_at(tl, "inherited interface loop");
8591 break;
8594 if (q != seen.end())
8595 continue;
8596 seen.push_back(nt);
8599 const Typed_identifier_list* imethods = it->parse_methods_;
8600 if (imethods == NULL)
8601 continue;
8602 for (Typed_identifier_list::const_iterator q = imethods->begin();
8603 q != imethods->end();
8604 ++q)
8606 if (q->name().empty())
8607 inherit.push_back(*q);
8608 else if (this->find_method(q->name()) == NULL)
8609 this->all_methods_->push_back(Typed_identifier(q->name(),
8610 q->type(), tl));
8611 else
8612 go_error_at(tl, "inherited method %qs is ambiguous",
8613 Gogo::message_name(q->name()).c_str());
8617 if (!this->all_methods_->empty())
8618 this->all_methods_->sort_by_name();
8619 else
8621 delete this->all_methods_;
8622 this->all_methods_ = NULL;
8626 // Return the method NAME, or NULL.
8628 const Typed_identifier*
8629 Interface_type::find_method(const std::string& name) const
8631 go_assert(this->methods_are_finalized_);
8632 if (this->all_methods_ == NULL)
8633 return NULL;
8634 for (Typed_identifier_list::const_iterator p = this->all_methods_->begin();
8635 p != this->all_methods_->end();
8636 ++p)
8637 if (p->name() == name)
8638 return &*p;
8639 return NULL;
8642 // Return the method index.
8644 size_t
8645 Interface_type::method_index(const std::string& name) const
8647 go_assert(this->methods_are_finalized_ && this->all_methods_ != NULL);
8648 size_t ret = 0;
8649 for (Typed_identifier_list::const_iterator p = this->all_methods_->begin();
8650 p != this->all_methods_->end();
8651 ++p, ++ret)
8652 if (p->name() == name)
8653 return ret;
8654 go_unreachable();
8657 // Return whether NAME is an unexported method, for better error
8658 // reporting.
8660 bool
8661 Interface_type::is_unexported_method(Gogo* gogo, const std::string& name) const
8663 go_assert(this->methods_are_finalized_);
8664 if (this->all_methods_ == NULL)
8665 return false;
8666 for (Typed_identifier_list::const_iterator p = this->all_methods_->begin();
8667 p != this->all_methods_->end();
8668 ++p)
8670 const std::string& method_name(p->name());
8671 if (Gogo::is_hidden_name(method_name)
8672 && name == Gogo::unpack_hidden_name(method_name)
8673 && gogo->pack_hidden_name(name, false) != method_name)
8674 return true;
8676 return false;
8679 // Whether this type is identical with T.
8681 bool
8682 Interface_type::is_identical(const Interface_type* t, Cmp_tags cmp_tags,
8683 bool errors_are_identical) const
8685 // If methods have not been finalized, then we are asking whether
8686 // func redeclarations are the same. This is an error, so for
8687 // simplicity we say they are never the same.
8688 if (!this->methods_are_finalized_ || !t->methods_are_finalized_)
8689 return false;
8691 // We require the same methods with the same types. The methods
8692 // have already been sorted.
8693 if (this->all_methods_ == NULL || t->all_methods_ == NULL)
8694 return this->all_methods_ == t->all_methods_;
8696 if (this->assume_identical(this, t) || t->assume_identical(t, this))
8697 return true;
8699 Assume_identical* hold_ai = this->assume_identical_;
8700 Assume_identical ai;
8701 ai.t1 = this;
8702 ai.t2 = t;
8703 ai.next = hold_ai;
8704 this->assume_identical_ = &ai;
8706 Typed_identifier_list::const_iterator p1 = this->all_methods_->begin();
8707 Typed_identifier_list::const_iterator p2;
8708 for (p2 = t->all_methods_->begin(); p2 != t->all_methods_->end(); ++p1, ++p2)
8710 if (p1 == this->all_methods_->end())
8711 break;
8712 if (p1->name() != p2->name()
8713 || !Type::are_identical_cmp_tags(p1->type(), p2->type(), cmp_tags,
8714 errors_are_identical, NULL))
8715 break;
8718 this->assume_identical_ = hold_ai;
8720 return p1 == this->all_methods_->end() && p2 == t->all_methods_->end();
8723 // Return true if T1 and T2 are assumed to be identical during a type
8724 // comparison.
8726 bool
8727 Interface_type::assume_identical(const Interface_type* t1,
8728 const Interface_type* t2) const
8730 for (Assume_identical* p = this->assume_identical_;
8731 p != NULL;
8732 p = p->next)
8733 if ((p->t1 == t1 && p->t2 == t2) || (p->t1 == t2 && p->t2 == t1))
8734 return true;
8735 return false;
8738 // Whether we can assign the interface type T to this type. The types
8739 // are known to not be identical. An interface assignment is only
8740 // permitted if T is known to implement all methods in THIS.
8741 // Otherwise a type guard is required.
8743 bool
8744 Interface_type::is_compatible_for_assign(const Interface_type* t,
8745 std::string* reason) const
8747 go_assert(this->methods_are_finalized_ && t->methods_are_finalized_);
8748 if (this->all_methods_ == NULL)
8749 return true;
8750 for (Typed_identifier_list::const_iterator p = this->all_methods_->begin();
8751 p != this->all_methods_->end();
8752 ++p)
8754 const Typed_identifier* m = t->find_method(p->name());
8755 if (m == NULL)
8757 if (reason != NULL)
8759 char buf[200];
8760 snprintf(buf, sizeof buf,
8761 _("need explicit conversion; missing method %s%s%s"),
8762 go_open_quote(), Gogo::message_name(p->name()).c_str(),
8763 go_close_quote());
8764 reason->assign(buf);
8766 return false;
8769 std::string subreason;
8770 if (!Type::are_identical(p->type(), m->type(), true, &subreason))
8772 if (reason != NULL)
8774 std::string n = Gogo::message_name(p->name());
8775 size_t len = 100 + n.length() + subreason.length();
8776 char* buf = new char[len];
8777 if (subreason.empty())
8778 snprintf(buf, len, _("incompatible type for method %s%s%s"),
8779 go_open_quote(), n.c_str(), go_close_quote());
8780 else
8781 snprintf(buf, len,
8782 _("incompatible type for method %s%s%s (%s)"),
8783 go_open_quote(), n.c_str(), go_close_quote(),
8784 subreason.c_str());
8785 reason->assign(buf);
8786 delete[] buf;
8788 return false;
8792 return true;
8795 // Hash code.
8797 unsigned int
8798 Interface_type::do_hash_for_method(Gogo*) const
8800 go_assert(this->methods_are_finalized_);
8801 unsigned int ret = 0;
8802 if (this->all_methods_ != NULL)
8804 for (Typed_identifier_list::const_iterator p =
8805 this->all_methods_->begin();
8806 p != this->all_methods_->end();
8807 ++p)
8809 ret = Type::hash_string(p->name(), ret);
8810 // We don't use the method type in the hash, to avoid
8811 // infinite recursion if an interface method uses a type
8812 // which is an interface which inherits from the interface
8813 // itself.
8814 // type T interface { F() interface {T}}
8815 ret <<= 1;
8818 return ret;
8821 // Return true if T implements the interface. If it does not, and
8822 // REASON is not NULL, set *REASON to a useful error message.
8824 bool
8825 Interface_type::implements_interface(const Type* t, std::string* reason) const
8827 go_assert(this->methods_are_finalized_);
8828 if (this->all_methods_ == NULL)
8829 return true;
8831 bool is_pointer = false;
8832 const Named_type* nt = t->named_type();
8833 const Struct_type* st = t->struct_type();
8834 // If we start with a named type, we don't dereference it to find
8835 // methods.
8836 if (nt == NULL)
8838 const Type* pt = t->points_to();
8839 if (pt != NULL)
8841 // If T is a pointer to a named type, then we need to look at
8842 // the type to which it points.
8843 is_pointer = true;
8844 nt = pt->named_type();
8845 st = pt->struct_type();
8849 // If we have a named type, get the methods from it rather than from
8850 // any struct type.
8851 if (nt != NULL)
8852 st = NULL;
8854 // Only named and struct types have methods.
8855 if (nt == NULL && st == NULL)
8857 if (reason != NULL)
8859 if (t->points_to() != NULL
8860 && t->points_to()->interface_type() != NULL)
8861 reason->assign(_("pointer to interface type has no methods"));
8862 else
8863 reason->assign(_("type has no methods"));
8865 return false;
8868 if (nt != NULL ? !nt->has_any_methods() : !st->has_any_methods())
8870 if (reason != NULL)
8872 if (t->points_to() != NULL
8873 && t->points_to()->interface_type() != NULL)
8874 reason->assign(_("pointer to interface type has no methods"));
8875 else
8876 reason->assign(_("type has no methods"));
8878 return false;
8881 for (Typed_identifier_list::const_iterator p = this->all_methods_->begin();
8882 p != this->all_methods_->end();
8883 ++p)
8885 bool is_ambiguous = false;
8886 Method* m = (nt != NULL
8887 ? nt->method_function(p->name(), &is_ambiguous)
8888 : st->method_function(p->name(), &is_ambiguous));
8889 if (m == NULL)
8891 if (reason != NULL)
8893 std::string n = Gogo::message_name(p->name());
8894 size_t len = n.length() + 100;
8895 char* buf = new char[len];
8896 if (is_ambiguous)
8897 snprintf(buf, len, _("ambiguous method %s%s%s"),
8898 go_open_quote(), n.c_str(), go_close_quote());
8899 else
8900 snprintf(buf, len, _("missing method %s%s%s"),
8901 go_open_quote(), n.c_str(), go_close_quote());
8902 reason->assign(buf);
8903 delete[] buf;
8905 return false;
8908 Function_type *p_fn_type = p->type()->function_type();
8909 Function_type* m_fn_type = m->type()->function_type();
8910 go_assert(p_fn_type != NULL && m_fn_type != NULL);
8911 std::string subreason;
8912 if (!p_fn_type->is_identical(m_fn_type, true, COMPARE_TAGS, true,
8913 &subreason))
8915 if (reason != NULL)
8917 std::string n = Gogo::message_name(p->name());
8918 size_t len = 100 + n.length() + subreason.length();
8919 char* buf = new char[len];
8920 if (subreason.empty())
8921 snprintf(buf, len, _("incompatible type for method %s%s%s"),
8922 go_open_quote(), n.c_str(), go_close_quote());
8923 else
8924 snprintf(buf, len,
8925 _("incompatible type for method %s%s%s (%s)"),
8926 go_open_quote(), n.c_str(), go_close_quote(),
8927 subreason.c_str());
8928 reason->assign(buf);
8929 delete[] buf;
8931 return false;
8934 if (!is_pointer && !m->is_value_method())
8936 if (reason != NULL)
8938 std::string n = Gogo::message_name(p->name());
8939 size_t len = 100 + n.length();
8940 char* buf = new char[len];
8941 snprintf(buf, len,
8942 _("method %s%s%s requires a pointer receiver"),
8943 go_open_quote(), n.c_str(), go_close_quote());
8944 reason->assign(buf);
8945 delete[] buf;
8947 return false;
8950 // If the magic //go:nointerface comment was used, the method
8951 // may not be used to implement interfaces.
8952 if (m->nointerface())
8954 if (reason != NULL)
8956 std::string n = Gogo::message_name(p->name());
8957 size_t len = 100 + n.length();
8958 char* buf = new char[len];
8959 snprintf(buf, len,
8960 _("method %s%s%s is marked go:nointerface"),
8961 go_open_quote(), n.c_str(), go_close_quote());
8962 reason->assign(buf);
8963 delete[] buf;
8965 return false;
8969 return true;
8972 // Return the backend representation of the empty interface type. We
8973 // use the same struct for all empty interfaces.
8975 Btype*
8976 Interface_type::get_backend_empty_interface_type(Gogo* gogo)
8978 static Btype* empty_interface_type;
8979 if (empty_interface_type == NULL)
8981 std::vector<Backend::Btyped_identifier> bfields(2);
8983 Location bloc = Linemap::predeclared_location();
8985 Type* pdt = Type::make_type_descriptor_ptr_type();
8986 bfields[0].name = "__type_descriptor";
8987 bfields[0].btype = pdt->get_backend(gogo);
8988 bfields[0].location = bloc;
8990 Type* vt = Type::make_pointer_type(Type::make_void_type());
8991 bfields[1].name = "__object";
8992 bfields[1].btype = vt->get_backend(gogo);
8993 bfields[1].location = bloc;
8995 empty_interface_type = gogo->backend()->struct_type(bfields);
8997 return empty_interface_type;
9000 // Return a pointer to the backend representation of the method table.
9002 Btype*
9003 Interface_type::get_backend_methods(Gogo* gogo)
9005 if (this->bmethods_ != NULL && !this->bmethods_is_placeholder_)
9006 return this->bmethods_;
9008 Location loc = this->location();
9010 std::vector<Backend::Btyped_identifier>
9011 mfields(this->all_methods_->size() + 1);
9013 Type* pdt = Type::make_type_descriptor_ptr_type();
9014 mfields[0].name = "__type_descriptor";
9015 mfields[0].btype = pdt->get_backend(gogo);
9016 mfields[0].location = loc;
9018 std::string last_name = "";
9019 size_t i = 1;
9020 for (Typed_identifier_list::const_iterator p = this->all_methods_->begin();
9021 p != this->all_methods_->end();
9022 ++p, ++i)
9024 // The type of the method in Go only includes the parameters.
9025 // The actual method also has a receiver, which is always a
9026 // pointer. We need to add that pointer type here in order to
9027 // generate the correct type for the backend.
9028 Function_type* ft = p->type()->function_type();
9029 go_assert(ft->receiver() == NULL);
9031 const Typed_identifier_list* params = ft->parameters();
9032 Typed_identifier_list* mparams = new Typed_identifier_list();
9033 if (params != NULL)
9034 mparams->reserve(params->size() + 1);
9035 Type* vt = Type::make_pointer_type(Type::make_void_type());
9036 mparams->push_back(Typed_identifier("", vt, ft->location()));
9037 if (params != NULL)
9039 for (Typed_identifier_list::const_iterator pp = params->begin();
9040 pp != params->end();
9041 ++pp)
9042 mparams->push_back(*pp);
9045 Typed_identifier_list* mresults = (ft->results() == NULL
9046 ? NULL
9047 : ft->results()->copy());
9048 Function_type* mft = Type::make_function_type(NULL, mparams, mresults,
9049 ft->location());
9051 mfields[i].name = Gogo::unpack_hidden_name(p->name());
9052 mfields[i].btype = mft->get_backend_fntype(gogo);
9053 mfields[i].location = loc;
9055 // Sanity check: the names should be sorted.
9056 go_assert(Gogo::unpack_hidden_name(p->name())
9057 > Gogo::unpack_hidden_name(last_name));
9058 last_name = p->name();
9061 Btype* st = gogo->backend()->struct_type(mfields);
9062 Btype* ret = gogo->backend()->pointer_type(st);
9064 if (this->bmethods_ != NULL && this->bmethods_is_placeholder_)
9065 gogo->backend()->set_placeholder_pointer_type(this->bmethods_, ret);
9066 this->bmethods_ = ret;
9067 this->bmethods_is_placeholder_ = false;
9068 return ret;
9071 // Return a placeholder for the pointer to the backend methods table.
9073 Btype*
9074 Interface_type::get_backend_methods_placeholder(Gogo* gogo)
9076 if (this->bmethods_ == NULL)
9078 Location loc = this->location();
9079 this->bmethods_ = gogo->backend()->placeholder_pointer_type("", loc,
9080 false);
9081 this->bmethods_is_placeholder_ = true;
9083 return this->bmethods_;
9086 // Return the fields of a non-empty interface type. This is not
9087 // declared in types.h so that types.h doesn't have to #include
9088 // backend.h.
9090 static void
9091 get_backend_interface_fields(Gogo* gogo, Interface_type* type,
9092 bool use_placeholder,
9093 std::vector<Backend::Btyped_identifier>* bfields)
9095 Location loc = type->location();
9097 bfields->resize(2);
9099 (*bfields)[0].name = "__methods";
9100 (*bfields)[0].btype = (use_placeholder
9101 ? type->get_backend_methods_placeholder(gogo)
9102 : type->get_backend_methods(gogo));
9103 (*bfields)[0].location = loc;
9105 Type* vt = Type::make_pointer_type(Type::make_void_type());
9106 (*bfields)[1].name = "__object";
9107 (*bfields)[1].btype = vt->get_backend(gogo);
9108 (*bfields)[1].location = Linemap::predeclared_location();
9111 // Return the backend representation for an interface type. An interface is a
9112 // pointer to a struct. The struct has three fields. The first field is a
9113 // pointer to the type descriptor for the dynamic type of the object.
9114 // The second field is a pointer to a table of methods for the
9115 // interface to be used with the object. The third field is the value
9116 // of the object itself.
9118 Btype*
9119 Interface_type::do_get_backend(Gogo* gogo)
9121 if (this->is_empty())
9122 return Interface_type::get_backend_empty_interface_type(gogo);
9123 else
9125 if (this->interface_btype_ != NULL)
9126 return this->interface_btype_;
9127 this->interface_btype_ =
9128 gogo->backend()->placeholder_struct_type("", this->location_);
9129 std::vector<Backend::Btyped_identifier> bfields;
9130 get_backend_interface_fields(gogo, this, false, &bfields);
9131 if (!gogo->backend()->set_placeholder_struct_type(this->interface_btype_,
9132 bfields))
9133 this->interface_btype_ = gogo->backend()->error_type();
9134 return this->interface_btype_;
9138 // Finish the backend representation of the methods.
9140 void
9141 Interface_type::finish_backend_methods(Gogo* gogo)
9143 if (!this->is_empty())
9145 const Typed_identifier_list* methods = this->methods();
9146 if (methods != NULL)
9148 for (Typed_identifier_list::const_iterator p = methods->begin();
9149 p != methods->end();
9150 ++p)
9151 p->type()->get_backend(gogo);
9154 // Getting the backend methods now will set the placeholder
9155 // pointer.
9156 this->get_backend_methods(gogo);
9160 // The type of an interface type descriptor.
9162 Type*
9163 Interface_type::make_interface_type_descriptor_type()
9165 static Type* ret;
9166 if (ret == NULL)
9168 Type* tdt = Type::make_type_descriptor_type();
9169 Type* ptdt = Type::make_type_descriptor_ptr_type();
9171 Type* string_type = Type::lookup_string_type();
9172 Type* pointer_string_type = Type::make_pointer_type(string_type);
9174 Struct_type* sm =
9175 Type::make_builtin_struct_type(3,
9176 "name", pointer_string_type,
9177 "pkgPath", pointer_string_type,
9178 "typ", ptdt);
9180 Type* nsm = Type::make_builtin_named_type("imethod", sm);
9182 Type* slice_nsm = Type::make_array_type(nsm, NULL);
9184 Struct_type* s = Type::make_builtin_struct_type(2,
9185 "", tdt,
9186 "methods", slice_nsm);
9188 ret = Type::make_builtin_named_type("InterfaceType", s);
9191 return ret;
9194 // Build a type descriptor for an interface type.
9196 Expression*
9197 Interface_type::do_type_descriptor(Gogo* gogo, Named_type* name)
9199 Location bloc = Linemap::predeclared_location();
9201 Type* itdt = Interface_type::make_interface_type_descriptor_type();
9203 const Struct_field_list* ifields = itdt->struct_type()->fields();
9205 Expression_list* ivals = new Expression_list();
9206 ivals->reserve(2);
9208 Struct_field_list::const_iterator pif = ifields->begin();
9209 go_assert(pif->is_field_name("_type"));
9210 const int rt = RUNTIME_TYPE_KIND_INTERFACE;
9211 ivals->push_back(this->type_descriptor_constructor(gogo, rt, name, NULL,
9212 true));
9214 ++pif;
9215 go_assert(pif->is_field_name("methods"));
9217 Expression_list* methods = new Expression_list();
9218 if (this->all_methods_ != NULL)
9220 Type* elemtype = pif->type()->array_type()->element_type();
9222 methods->reserve(this->all_methods_->size());
9223 for (Typed_identifier_list::const_iterator pm =
9224 this->all_methods_->begin();
9225 pm != this->all_methods_->end();
9226 ++pm)
9228 const Struct_field_list* mfields = elemtype->struct_type()->fields();
9230 Expression_list* mvals = new Expression_list();
9231 mvals->reserve(3);
9233 Struct_field_list::const_iterator pmf = mfields->begin();
9234 go_assert(pmf->is_field_name("name"));
9235 std::string s = Gogo::unpack_hidden_name(pm->name());
9236 Expression* e = Expression::make_string(s, bloc);
9237 mvals->push_back(Expression::make_unary(OPERATOR_AND, e, bloc));
9239 ++pmf;
9240 go_assert(pmf->is_field_name("pkgPath"));
9241 if (!Gogo::is_hidden_name(pm->name()))
9242 mvals->push_back(Expression::make_nil(bloc));
9243 else
9245 s = Gogo::hidden_name_pkgpath(pm->name());
9246 e = Expression::make_string(s, bloc);
9247 mvals->push_back(Expression::make_unary(OPERATOR_AND, e, bloc));
9250 ++pmf;
9251 go_assert(pmf->is_field_name("typ"));
9252 mvals->push_back(Expression::make_type_descriptor(pm->type(), bloc));
9254 ++pmf;
9255 go_assert(pmf == mfields->end());
9257 e = Expression::make_struct_composite_literal(elemtype, mvals,
9258 bloc);
9259 methods->push_back(e);
9263 ivals->push_back(Expression::make_slice_composite_literal(pif->type(),
9264 methods, bloc));
9266 ++pif;
9267 go_assert(pif == ifields->end());
9269 return Expression::make_struct_composite_literal(itdt, ivals, bloc);
9272 // Reflection string.
9274 void
9275 Interface_type::do_reflection(Gogo* gogo, std::string* ret) const
9277 ret->append("interface {");
9278 const Typed_identifier_list* methods = this->parse_methods_;
9279 if (methods != NULL)
9281 ret->push_back(' ');
9282 for (Typed_identifier_list::const_iterator p = methods->begin();
9283 p != methods->end();
9284 ++p)
9286 if (p != methods->begin())
9287 ret->append("; ");
9288 if (p->name().empty())
9289 this->append_reflection(p->type(), gogo, ret);
9290 else
9292 if (!Gogo::is_hidden_name(p->name()))
9293 ret->append(p->name());
9294 else if (gogo->pkgpath_from_option())
9295 ret->append(p->name().substr(1));
9296 else
9298 // If no -fgo-pkgpath option, backward compatibility
9299 // for how this used to work before -fgo-pkgpath was
9300 // introduced.
9301 std::string pkgpath = Gogo::hidden_name_pkgpath(p->name());
9302 ret->append(pkgpath.substr(pkgpath.find('.') + 1));
9303 ret->push_back('.');
9304 ret->append(Gogo::unpack_hidden_name(p->name()));
9306 std::string sub = p->type()->reflection(gogo);
9307 go_assert(sub.compare(0, 4, "func") == 0);
9308 sub = sub.substr(4);
9309 ret->append(sub);
9312 ret->push_back(' ');
9314 ret->append("}");
9317 // Export.
9319 void
9320 Interface_type::do_export(Export* exp) const
9322 exp->write_c_string("interface { ");
9324 const Typed_identifier_list* methods = this->parse_methods_;
9325 if (methods != NULL)
9327 for (Typed_identifier_list::const_iterator pm = methods->begin();
9328 pm != methods->end();
9329 ++pm)
9331 if (pm->name().empty())
9333 exp->write_c_string("? ");
9334 exp->write_type(pm->type());
9336 else
9338 exp->write_string(pm->name());
9339 exp->write_c_string(" (");
9341 const Function_type* fntype = pm->type()->function_type();
9343 bool first = true;
9344 const Typed_identifier_list* parameters = fntype->parameters();
9345 if (parameters != NULL)
9347 bool is_varargs = fntype->is_varargs();
9348 for (Typed_identifier_list::const_iterator pp =
9349 parameters->begin();
9350 pp != parameters->end();
9351 ++pp)
9353 if (first)
9354 first = false;
9355 else
9356 exp->write_c_string(", ");
9357 exp->write_name(pp->name());
9358 exp->write_c_string(" ");
9359 if (!is_varargs || pp + 1 != parameters->end())
9360 exp->write_type(pp->type());
9361 else
9363 exp->write_c_string("...");
9364 Type *pptype = pp->type();
9365 exp->write_type(pptype->array_type()->element_type());
9370 exp->write_c_string(")");
9372 const Typed_identifier_list* results = fntype->results();
9373 if (results != NULL)
9375 exp->write_c_string(" ");
9376 if (results->size() == 1 && results->begin()->name().empty())
9377 exp->write_type(results->begin()->type());
9378 else
9380 first = true;
9381 exp->write_c_string("(");
9382 for (Typed_identifier_list::const_iterator p =
9383 results->begin();
9384 p != results->end();
9385 ++p)
9387 if (first)
9388 first = false;
9389 else
9390 exp->write_c_string(", ");
9391 exp->write_name(p->name());
9392 exp->write_c_string(" ");
9393 exp->write_type(p->type());
9395 exp->write_c_string(")");
9400 exp->write_c_string("; ");
9404 exp->write_c_string("}");
9407 // Import an interface type.
9409 Interface_type*
9410 Interface_type::do_import(Import* imp)
9412 imp->require_c_string("interface { ");
9414 Typed_identifier_list* methods = new Typed_identifier_list;
9415 while (imp->peek_char() != '}')
9417 std::string name = imp->read_identifier();
9419 if (name == "?")
9421 imp->require_c_string(" ");
9422 Type* t = imp->read_type();
9423 methods->push_back(Typed_identifier("", t, imp->location()));
9424 imp->require_c_string("; ");
9425 continue;
9428 imp->require_c_string(" (");
9430 Typed_identifier_list* parameters;
9431 bool is_varargs = false;
9432 if (imp->peek_char() == ')')
9433 parameters = NULL;
9434 else
9436 parameters = new Typed_identifier_list;
9437 while (true)
9439 std::string name = imp->read_name();
9440 imp->require_c_string(" ");
9442 if (imp->match_c_string("..."))
9444 imp->advance(3);
9445 is_varargs = true;
9448 Type* ptype = imp->read_type();
9449 if (is_varargs)
9450 ptype = Type::make_array_type(ptype, NULL);
9451 parameters->push_back(Typed_identifier(name, ptype,
9452 imp->location()));
9453 if (imp->peek_char() != ',')
9454 break;
9455 go_assert(!is_varargs);
9456 imp->require_c_string(", ");
9459 imp->require_c_string(")");
9461 Typed_identifier_list* results;
9462 if (imp->peek_char() != ' ')
9463 results = NULL;
9464 else
9466 results = new Typed_identifier_list;
9467 imp->advance(1);
9468 if (imp->peek_char() != '(')
9470 Type* rtype = imp->read_type();
9471 results->push_back(Typed_identifier("", rtype, imp->location()));
9473 else
9475 imp->advance(1);
9476 while (true)
9478 std::string name = imp->read_name();
9479 imp->require_c_string(" ");
9480 Type* rtype = imp->read_type();
9481 results->push_back(Typed_identifier(name, rtype,
9482 imp->location()));
9483 if (imp->peek_char() != ',')
9484 break;
9485 imp->require_c_string(", ");
9487 imp->require_c_string(")");
9491 Function_type* fntype = Type::make_function_type(NULL, parameters,
9492 results,
9493 imp->location());
9494 if (is_varargs)
9495 fntype->set_is_varargs();
9496 methods->push_back(Typed_identifier(name, fntype, imp->location()));
9498 imp->require_c_string("; ");
9501 imp->require_c_string("}");
9503 if (methods->empty())
9505 delete methods;
9506 methods = NULL;
9509 Interface_type* ret = Type::make_interface_type(methods, imp->location());
9510 ret->package_ = imp->package();
9511 return ret;
9514 // Make an interface type.
9516 Interface_type*
9517 Type::make_interface_type(Typed_identifier_list* methods,
9518 Location location)
9520 return new Interface_type(methods, location);
9523 // Make an empty interface type.
9525 Interface_type*
9526 Type::make_empty_interface_type(Location location)
9528 Interface_type* ret = new Interface_type(NULL, location);
9529 ret->finalize_methods();
9530 return ret;
9533 // Class Method.
9535 // Bind a method to an object.
9537 Expression*
9538 Method::bind_method(Expression* expr, Location location) const
9540 if (this->stub_ == NULL)
9542 // When there is no stub object, the binding is determined by
9543 // the child class.
9544 return this->do_bind_method(expr, location);
9546 return Expression::make_bound_method(expr, this, this->stub_, location);
9549 // Return the named object associated with a method. This may only be
9550 // called after methods are finalized.
9552 Named_object*
9553 Method::named_object() const
9555 if (this->stub_ != NULL)
9556 return this->stub_;
9557 return this->do_named_object();
9560 // Class Named_method.
9562 // The type of the method.
9564 Function_type*
9565 Named_method::do_type() const
9567 if (this->named_object_->is_function())
9568 return this->named_object_->func_value()->type();
9569 else if (this->named_object_->is_function_declaration())
9570 return this->named_object_->func_declaration_value()->type();
9571 else
9572 go_unreachable();
9575 // Return the location of the method receiver.
9577 Location
9578 Named_method::do_receiver_location() const
9580 return this->do_type()->receiver()->location();
9583 // Bind a method to an object.
9585 Expression*
9586 Named_method::do_bind_method(Expression* expr, Location location) const
9588 Named_object* no = this->named_object_;
9589 Bound_method_expression* bme = Expression::make_bound_method(expr, this,
9590 no, location);
9591 // If this is not a local method, and it does not use a stub, then
9592 // the real method expects a different type. We need to cast the
9593 // first argument.
9594 if (this->depth() > 0 && !this->needs_stub_method())
9596 Function_type* ftype = this->do_type();
9597 go_assert(ftype->is_method());
9598 Type* frtype = ftype->receiver()->type();
9599 bme->set_first_argument_type(frtype);
9601 return bme;
9604 // Return whether this method should not participate in interfaces.
9606 bool
9607 Named_method::do_nointerface() const
9609 Named_object* no = this->named_object_;
9610 return no->is_function() && no->func_value()->nointerface();
9613 // Class Interface_method.
9615 // Bind a method to an object.
9617 Expression*
9618 Interface_method::do_bind_method(Expression* expr,
9619 Location location) const
9621 return Expression::make_interface_field_reference(expr, this->name_,
9622 location);
9625 // Class Methods.
9627 // Insert a new method. Return true if it was inserted, false
9628 // otherwise.
9630 bool
9631 Methods::insert(const std::string& name, Method* m)
9633 std::pair<Method_map::iterator, bool> ins =
9634 this->methods_.insert(std::make_pair(name, m));
9635 if (ins.second)
9636 return true;
9637 else
9639 Method* old_method = ins.first->second;
9640 if (m->depth() < old_method->depth())
9642 delete old_method;
9643 ins.first->second = m;
9644 return true;
9646 else
9648 if (m->depth() == old_method->depth())
9649 old_method->set_is_ambiguous();
9650 return false;
9655 // Return the number of unambiguous methods.
9657 size_t
9658 Methods::count() const
9660 size_t ret = 0;
9661 for (Method_map::const_iterator p = this->methods_.begin();
9662 p != this->methods_.end();
9663 ++p)
9664 if (!p->second->is_ambiguous())
9665 ++ret;
9666 return ret;
9669 // Class Named_type.
9671 // Return the name of the type.
9673 const std::string&
9674 Named_type::name() const
9676 return this->named_object_->name();
9679 // Return the name of the type to use in an error message.
9681 std::string
9682 Named_type::message_name() const
9684 return this->named_object_->message_name();
9687 // Return the base type for this type. We have to be careful about
9688 // circular type definitions, which are invalid but may be seen here.
9690 Type*
9691 Named_type::named_base()
9693 if (this->seen_)
9694 return this;
9695 this->seen_ = true;
9696 Type* ret = this->type_->base();
9697 this->seen_ = false;
9698 return ret;
9701 const Type*
9702 Named_type::named_base() const
9704 if (this->seen_)
9705 return this;
9706 this->seen_ = true;
9707 const Type* ret = this->type_->base();
9708 this->seen_ = false;
9709 return ret;
9712 // Return whether this is an error type. We have to be careful about
9713 // circular type definitions, which are invalid but may be seen here.
9715 bool
9716 Named_type::is_named_error_type() const
9718 if (this->seen_)
9719 return false;
9720 this->seen_ = true;
9721 bool ret = this->type_->is_error_type();
9722 this->seen_ = false;
9723 return ret;
9726 // Whether this type is comparable. We have to be careful about
9727 // circular type definitions.
9729 bool
9730 Named_type::named_type_is_comparable(std::string* reason) const
9732 if (this->seen_)
9733 return false;
9734 this->seen_ = true;
9735 bool ret = Type::are_compatible_for_comparison(true, this->type_,
9736 this->type_, reason);
9737 this->seen_ = false;
9738 return ret;
9741 // Add a method to this type.
9743 Named_object*
9744 Named_type::add_method(const std::string& name, Function* function)
9746 go_assert(!this->is_alias_);
9747 if (this->local_methods_ == NULL)
9748 this->local_methods_ = new Bindings(NULL);
9749 return this->local_methods_->add_function(name, NULL, function);
9752 // Add a method declaration to this type.
9754 Named_object*
9755 Named_type::add_method_declaration(const std::string& name, Package* package,
9756 Function_type* type,
9757 Location location)
9759 go_assert(!this->is_alias_);
9760 if (this->local_methods_ == NULL)
9761 this->local_methods_ = new Bindings(NULL);
9762 return this->local_methods_->add_function_declaration(name, package, type,
9763 location);
9766 // Add an existing method to this type.
9768 void
9769 Named_type::add_existing_method(Named_object* no)
9771 go_assert(!this->is_alias_);
9772 if (this->local_methods_ == NULL)
9773 this->local_methods_ = new Bindings(NULL);
9774 this->local_methods_->add_named_object(no);
9777 // Look for a local method NAME, and returns its named object, or NULL
9778 // if not there.
9780 Named_object*
9781 Named_type::find_local_method(const std::string& name) const
9783 if (this->is_error_)
9784 return NULL;
9785 if (this->is_alias_)
9787 Named_type* nt = this->type_->named_type();
9788 if (nt != NULL)
9790 if (this->seen_alias_)
9791 return NULL;
9792 this->seen_alias_ = true;
9793 Named_object* ret = nt->find_local_method(name);
9794 this->seen_alias_ = false;
9795 return ret;
9797 return NULL;
9799 if (this->local_methods_ == NULL)
9800 return NULL;
9801 return this->local_methods_->lookup(name);
9804 // Return the list of local methods.
9806 const Bindings*
9807 Named_type::local_methods() const
9809 if (this->is_error_)
9810 return NULL;
9811 if (this->is_alias_)
9813 Named_type* nt = this->type_->named_type();
9814 if (nt != NULL)
9816 if (this->seen_alias_)
9817 return NULL;
9818 this->seen_alias_ = true;
9819 const Bindings* ret = nt->local_methods();
9820 this->seen_alias_ = false;
9821 return ret;
9823 return NULL;
9825 return this->local_methods_;
9828 // Return whether NAME is an unexported field or method, for better
9829 // error reporting.
9831 bool
9832 Named_type::is_unexported_local_method(Gogo* gogo,
9833 const std::string& name) const
9835 if (this->is_error_)
9836 return false;
9837 if (this->is_alias_)
9839 Named_type* nt = this->type_->named_type();
9840 if (nt != NULL)
9842 if (this->seen_alias_)
9843 return false;
9844 this->seen_alias_ = true;
9845 bool ret = nt->is_unexported_local_method(gogo, name);
9846 this->seen_alias_ = false;
9847 return ret;
9849 return false;
9851 Bindings* methods = this->local_methods_;
9852 if (methods != NULL)
9854 for (Bindings::const_declarations_iterator p =
9855 methods->begin_declarations();
9856 p != methods->end_declarations();
9857 ++p)
9859 if (Gogo::is_hidden_name(p->first)
9860 && name == Gogo::unpack_hidden_name(p->first)
9861 && gogo->pack_hidden_name(name, false) != p->first)
9862 return true;
9865 return false;
9868 // Build the complete list of methods for this type, which means
9869 // recursively including all methods for anonymous fields. Create all
9870 // stub methods.
9872 void
9873 Named_type::finalize_methods(Gogo* gogo)
9875 if (this->is_alias_)
9876 return;
9877 if (this->all_methods_ != NULL)
9878 return;
9880 if (this->local_methods_ != NULL
9881 && (this->points_to() != NULL || this->interface_type() != NULL))
9883 const Bindings* lm = this->local_methods_;
9884 for (Bindings::const_declarations_iterator p = lm->begin_declarations();
9885 p != lm->end_declarations();
9886 ++p)
9887 go_error_at(p->second->location(),
9888 "invalid pointer or interface receiver type");
9889 delete this->local_methods_;
9890 this->local_methods_ = NULL;
9891 return;
9894 Type::finalize_methods(gogo, this, this->location_, &this->all_methods_);
9897 // Return whether this type has any methods.
9899 bool
9900 Named_type::has_any_methods() const
9902 if (this->is_error_)
9903 return false;
9904 if (this->is_alias_)
9906 if (this->type_->named_type() != NULL)
9908 if (this->seen_alias_)
9909 return false;
9910 this->seen_alias_ = true;
9911 bool ret = this->type_->named_type()->has_any_methods();
9912 this->seen_alias_ = false;
9913 return ret;
9915 if (this->type_->struct_type() != NULL)
9916 return this->type_->struct_type()->has_any_methods();
9917 return false;
9919 return this->all_methods_ != NULL;
9922 // Return the methods for this type.
9924 const Methods*
9925 Named_type::methods() const
9927 if (this->is_error_)
9928 return NULL;
9929 if (this->is_alias_)
9931 if (this->type_->named_type() != NULL)
9933 if (this->seen_alias_)
9934 return NULL;
9935 this->seen_alias_ = true;
9936 const Methods* ret = this->type_->named_type()->methods();
9937 this->seen_alias_ = false;
9938 return ret;
9940 if (this->type_->struct_type() != NULL)
9941 return this->type_->struct_type()->methods();
9942 return NULL;
9944 return this->all_methods_;
9947 // Return the method NAME, or NULL if there isn't one or if it is
9948 // ambiguous. Set *IS_AMBIGUOUS if the method exists but is
9949 // ambiguous.
9951 Method*
9952 Named_type::method_function(const std::string& name, bool* is_ambiguous) const
9954 if (this->is_error_)
9955 return NULL;
9956 if (this->is_alias_)
9958 if (is_ambiguous != NULL)
9959 *is_ambiguous = false;
9960 if (this->type_->named_type() != NULL)
9962 if (this->seen_alias_)
9963 return NULL;
9964 this->seen_alias_ = true;
9965 Named_type* nt = this->type_->named_type();
9966 Method* ret = nt->method_function(name, is_ambiguous);
9967 this->seen_alias_ = false;
9968 return ret;
9970 if (this->type_->struct_type() != NULL)
9971 return this->type_->struct_type()->method_function(name, is_ambiguous);
9972 return NULL;
9974 return Type::method_function(this->all_methods_, name, is_ambiguous);
9977 // Return a pointer to the interface method table for this type for
9978 // the interface INTERFACE. IS_POINTER is true if this is for a
9979 // pointer to THIS.
9981 Expression*
9982 Named_type::interface_method_table(Interface_type* interface, bool is_pointer)
9984 if (this->is_error_)
9985 return Expression::make_error(this->location_);
9986 if (this->is_alias_)
9988 if (this->type_->named_type() != NULL)
9990 if (this->seen_alias_)
9991 return Expression::make_error(this->location_);
9992 this->seen_alias_ = true;
9993 Named_type* nt = this->type_->named_type();
9994 Expression* ret = nt->interface_method_table(interface, is_pointer);
9995 this->seen_alias_ = false;
9996 return ret;
9998 if (this->type_->struct_type() != NULL)
9999 return this->type_->struct_type()->interface_method_table(interface,
10000 is_pointer);
10001 go_unreachable();
10003 return Type::interface_method_table(this, interface, is_pointer,
10004 &this->interface_method_tables_,
10005 &this->pointer_interface_method_tables_);
10008 // Look for a use of a complete type within another type. This is
10009 // used to check that we don't try to use a type within itself.
10011 class Find_type_use : public Traverse
10013 public:
10014 Find_type_use(Named_type* find_type)
10015 : Traverse(traverse_types),
10016 find_type_(find_type), found_(false)
10019 // Whether we found the type.
10020 bool
10021 found() const
10022 { return this->found_; }
10024 protected:
10026 type(Type*);
10028 private:
10029 // The type we are looking for.
10030 Named_type* find_type_;
10031 // Whether we found the type.
10032 bool found_;
10035 // Check for FIND_TYPE in TYPE.
10038 Find_type_use::type(Type* type)
10040 if (type->named_type() != NULL && this->find_type_ == type->named_type())
10042 this->found_ = true;
10043 return TRAVERSE_EXIT;
10046 // It's OK if we see a reference to the type in any type which is
10047 // essentially a pointer: a pointer, a slice, a function, a map, or
10048 // a channel.
10049 if (type->points_to() != NULL
10050 || type->is_slice_type()
10051 || type->function_type() != NULL
10052 || type->map_type() != NULL
10053 || type->channel_type() != NULL)
10054 return TRAVERSE_SKIP_COMPONENTS;
10056 // For an interface, a reference to the type in a method type should
10057 // be ignored, but we have to consider direct inheritance. When
10058 // this is called, there may be cases of direct inheritance
10059 // represented as a method with no name.
10060 if (type->interface_type() != NULL)
10062 const Typed_identifier_list* methods = type->interface_type()->methods();
10063 if (methods != NULL)
10065 for (Typed_identifier_list::const_iterator p = methods->begin();
10066 p != methods->end();
10067 ++p)
10069 if (p->name().empty())
10071 if (Type::traverse(p->type(), this) == TRAVERSE_EXIT)
10072 return TRAVERSE_EXIT;
10076 return TRAVERSE_SKIP_COMPONENTS;
10079 // Otherwise, FIND_TYPE_ depends on TYPE, in the sense that we need
10080 // to convert TYPE to the backend representation before we convert
10081 // FIND_TYPE_.
10082 if (type->named_type() != NULL)
10084 switch (type->base()->classification())
10086 case Type::TYPE_ERROR:
10087 case Type::TYPE_BOOLEAN:
10088 case Type::TYPE_INTEGER:
10089 case Type::TYPE_FLOAT:
10090 case Type::TYPE_COMPLEX:
10091 case Type::TYPE_STRING:
10092 case Type::TYPE_NIL:
10093 break;
10095 case Type::TYPE_ARRAY:
10096 case Type::TYPE_STRUCT:
10097 this->find_type_->add_dependency(type->named_type());
10098 break;
10100 case Type::TYPE_NAMED:
10101 case Type::TYPE_FORWARD:
10102 go_assert(saw_errors());
10103 break;
10105 case Type::TYPE_VOID:
10106 case Type::TYPE_SINK:
10107 case Type::TYPE_FUNCTION:
10108 case Type::TYPE_POINTER:
10109 case Type::TYPE_CALL_MULTIPLE_RESULT:
10110 case Type::TYPE_MAP:
10111 case Type::TYPE_CHANNEL:
10112 case Type::TYPE_INTERFACE:
10113 default:
10114 go_unreachable();
10118 return TRAVERSE_CONTINUE;
10121 // Look for a circular reference of an alias.
10123 class Find_alias : public Traverse
10125 public:
10126 Find_alias(Named_type* find_type)
10127 : Traverse(traverse_types),
10128 find_type_(find_type), found_(false)
10131 // Whether we found the type.
10132 bool
10133 found() const
10134 { return this->found_; }
10136 protected:
10138 type(Type*);
10140 private:
10141 // The type we are looking for.
10142 Named_type* find_type_;
10143 // Whether we found the type.
10144 bool found_;
10148 Find_alias::type(Type* type)
10150 Named_type* nt = type->named_type();
10151 if (nt != NULL)
10153 if (nt == this->find_type_)
10155 this->found_ = true;
10156 return TRAVERSE_EXIT;
10159 // We started from `type T1 = T2`, where T1 is find_type_ and T2
10160 // is, perhaps indirectly, the parameter TYPE. If TYPE is not
10161 // an alias itself, it's OK if whatever T2 is defined as refers
10162 // to T1.
10163 if (!nt->is_alias())
10164 return TRAVERSE_SKIP_COMPONENTS;
10167 return TRAVERSE_CONTINUE;
10170 // Verify that a named type does not refer to itself.
10172 bool
10173 Named_type::do_verify()
10175 if (this->is_verified_)
10176 return true;
10177 this->is_verified_ = true;
10179 if (this->is_error_)
10180 return false;
10182 if (this->is_alias_)
10184 Find_alias find(this);
10185 Type::traverse(this->type_, &find);
10186 if (find.found())
10188 go_error_at(this->location_, "invalid recursive alias %qs",
10189 this->message_name().c_str());
10190 this->is_error_ = true;
10191 return false;
10195 Find_type_use find(this);
10196 Type::traverse(this->type_, &find);
10197 if (find.found())
10199 go_error_at(this->location_, "invalid recursive type %qs",
10200 this->message_name().c_str());
10201 this->is_error_ = true;
10202 return false;
10205 // Check whether any of the local methods overloads an existing
10206 // struct field or interface method. We don't need to check the
10207 // list of methods against itself: that is handled by the Bindings
10208 // code.
10209 if (this->local_methods_ != NULL)
10211 Struct_type* st = this->type_->struct_type();
10212 if (st != NULL)
10214 for (Bindings::const_declarations_iterator p =
10215 this->local_methods_->begin_declarations();
10216 p != this->local_methods_->end_declarations();
10217 ++p)
10219 const std::string& name(p->first);
10220 if (st != NULL && st->find_local_field(name, NULL) != NULL)
10222 go_error_at(p->second->location(),
10223 "method %qs redeclares struct field name",
10224 Gogo::message_name(name).c_str());
10230 return true;
10233 // Return whether this type is or contains a pointer.
10235 bool
10236 Named_type::do_has_pointer() const
10238 if (this->seen_)
10239 return false;
10240 this->seen_ = true;
10241 bool ret = this->type_->has_pointer();
10242 this->seen_ = false;
10243 return ret;
10246 // Return whether comparisons for this type can use the identity
10247 // function.
10249 bool
10250 Named_type::do_compare_is_identity(Gogo* gogo)
10252 // We don't use this->seen_ here because compare_is_identity may
10253 // call base() later, and that will mess up if seen_ is set here.
10254 if (this->seen_in_compare_is_identity_)
10255 return false;
10256 this->seen_in_compare_is_identity_ = true;
10257 bool ret = this->type_->compare_is_identity(gogo);
10258 this->seen_in_compare_is_identity_ = false;
10259 return ret;
10262 // Return whether this type is reflexive--whether it is always equal
10263 // to itself.
10265 bool
10266 Named_type::do_is_reflexive()
10268 if (this->seen_in_compare_is_identity_)
10269 return false;
10270 this->seen_in_compare_is_identity_ = true;
10271 bool ret = this->type_->is_reflexive();
10272 this->seen_in_compare_is_identity_ = false;
10273 return ret;
10276 // Return whether this type needs a key update when used as a map key.
10278 bool
10279 Named_type::do_needs_key_update()
10281 if (this->seen_in_compare_is_identity_)
10282 return true;
10283 this->seen_in_compare_is_identity_ = true;
10284 bool ret = this->type_->needs_key_update();
10285 this->seen_in_compare_is_identity_ = false;
10286 return ret;
10289 // Return a hash code. This is used for method lookup. We simply
10290 // hash on the name itself.
10292 unsigned int
10293 Named_type::do_hash_for_method(Gogo* gogo) const
10295 if (this->is_error_)
10296 return 0;
10298 // Aliases are handled in Type::hash_for_method.
10299 go_assert(!this->is_alias_);
10301 const std::string& name(this->named_object()->name());
10302 unsigned int ret = Type::hash_string(name, 0);
10304 // GOGO will be NULL here when called from Type_hash_identical.
10305 // That is OK because that is only used for internal hash tables
10306 // where we are going to be comparing named types for equality. In
10307 // other cases, which are cases where the runtime is going to
10308 // compare hash codes to see if the types are the same, we need to
10309 // include the pkgpath in the hash.
10310 if (gogo != NULL && !Gogo::is_hidden_name(name) && !this->is_builtin())
10312 const Package* package = this->named_object()->package();
10313 if (package == NULL)
10314 ret = Type::hash_string(gogo->pkgpath(), ret);
10315 else
10316 ret = Type::hash_string(package->pkgpath(), ret);
10319 return ret;
10322 // Convert a named type to the backend representation. In order to
10323 // get dependencies right, we fill in a dummy structure for this type,
10324 // then convert all the dependencies, then complete this type. When
10325 // this function is complete, the size of the type is known.
10327 void
10328 Named_type::convert(Gogo* gogo)
10330 if (this->is_error_ || this->is_converted_)
10331 return;
10333 this->create_placeholder(gogo);
10335 // If we are called to turn unsafe.Sizeof into a constant, we may
10336 // not have verified the type yet. We have to make sure it is
10337 // verified, since that sets the list of dependencies.
10338 this->verify();
10340 // Convert all the dependencies. If they refer indirectly back to
10341 // this type, they will pick up the intermediate representation we just
10342 // created.
10343 for (std::vector<Named_type*>::const_iterator p = this->dependencies_.begin();
10344 p != this->dependencies_.end();
10345 ++p)
10346 (*p)->convert(gogo);
10348 // Complete this type.
10349 Btype* bt = this->named_btype_;
10350 Type* base = this->type_->base();
10351 switch (base->classification())
10353 case TYPE_VOID:
10354 case TYPE_BOOLEAN:
10355 case TYPE_INTEGER:
10356 case TYPE_FLOAT:
10357 case TYPE_COMPLEX:
10358 case TYPE_STRING:
10359 case TYPE_NIL:
10360 break;
10362 case TYPE_MAP:
10363 case TYPE_CHANNEL:
10364 break;
10366 case TYPE_FUNCTION:
10367 case TYPE_POINTER:
10368 // The size of these types is already correct. We don't worry
10369 // about filling them in until later, when we also track
10370 // circular references.
10371 break;
10373 case TYPE_STRUCT:
10375 std::vector<Backend::Btyped_identifier> bfields;
10376 get_backend_struct_fields(gogo, base->struct_type()->fields(),
10377 true, &bfields);
10378 if (!gogo->backend()->set_placeholder_struct_type(bt, bfields))
10379 bt = gogo->backend()->error_type();
10381 break;
10383 case TYPE_ARRAY:
10384 // Slice types were completed in create_placeholder.
10385 if (!base->is_slice_type())
10387 Btype* bet = base->array_type()->get_backend_element(gogo, true);
10388 Bexpression* blen = base->array_type()->get_backend_length(gogo);
10389 if (!gogo->backend()->set_placeholder_array_type(bt, bet, blen))
10390 bt = gogo->backend()->error_type();
10392 break;
10394 case TYPE_INTERFACE:
10395 // Interface types were completed in create_placeholder.
10396 break;
10398 case TYPE_ERROR:
10399 return;
10401 default:
10402 case TYPE_SINK:
10403 case TYPE_CALL_MULTIPLE_RESULT:
10404 case TYPE_NAMED:
10405 case TYPE_FORWARD:
10406 go_unreachable();
10409 this->named_btype_ = bt;
10410 this->is_converted_ = true;
10411 this->is_placeholder_ = false;
10414 // Create the placeholder for a named type. This is the first step in
10415 // converting to the backend representation.
10417 void
10418 Named_type::create_placeholder(Gogo* gogo)
10420 if (this->is_error_)
10421 this->named_btype_ = gogo->backend()->error_type();
10423 if (this->named_btype_ != NULL)
10424 return;
10426 // Create the structure for this type. Note that because we call
10427 // base() here, we don't attempt to represent a named type defined
10428 // as another named type. Instead both named types will point to
10429 // different base representations.
10430 Type* base = this->type_->base();
10431 Btype* bt;
10432 bool set_name = true;
10433 switch (base->classification())
10435 case TYPE_ERROR:
10436 this->is_error_ = true;
10437 this->named_btype_ = gogo->backend()->error_type();
10438 return;
10440 case TYPE_VOID:
10441 case TYPE_BOOLEAN:
10442 case TYPE_INTEGER:
10443 case TYPE_FLOAT:
10444 case TYPE_COMPLEX:
10445 case TYPE_STRING:
10446 case TYPE_NIL:
10447 // These are simple basic types, we can just create them
10448 // directly.
10449 bt = Type::get_named_base_btype(gogo, base);
10450 break;
10452 case TYPE_MAP:
10453 case TYPE_CHANNEL:
10454 // All maps and channels have the same backend representation.
10455 bt = Type::get_named_base_btype(gogo, base);
10456 break;
10458 case TYPE_FUNCTION:
10459 case TYPE_POINTER:
10461 bool for_function = base->classification() == TYPE_FUNCTION;
10462 bt = gogo->backend()->placeholder_pointer_type(this->name(),
10463 this->location_,
10464 for_function);
10465 set_name = false;
10467 break;
10469 case TYPE_STRUCT:
10470 bt = gogo->backend()->placeholder_struct_type(this->name(),
10471 this->location_);
10472 this->is_placeholder_ = true;
10473 set_name = false;
10474 break;
10476 case TYPE_ARRAY:
10477 if (base->is_slice_type())
10478 bt = gogo->backend()->placeholder_struct_type(this->name(),
10479 this->location_);
10480 else
10482 bt = gogo->backend()->placeholder_array_type(this->name(),
10483 this->location_);
10484 this->is_placeholder_ = true;
10486 set_name = false;
10487 break;
10489 case TYPE_INTERFACE:
10490 if (base->interface_type()->is_empty())
10491 bt = Interface_type::get_backend_empty_interface_type(gogo);
10492 else
10494 bt = gogo->backend()->placeholder_struct_type(this->name(),
10495 this->location_);
10496 set_name = false;
10498 break;
10500 default:
10501 case TYPE_SINK:
10502 case TYPE_CALL_MULTIPLE_RESULT:
10503 case TYPE_NAMED:
10504 case TYPE_FORWARD:
10505 go_unreachable();
10508 if (set_name)
10509 bt = gogo->backend()->named_type(this->name(), bt, this->location_);
10511 this->named_btype_ = bt;
10513 if (base->is_slice_type())
10515 // We do not record slices as dependencies of other types,
10516 // because we can fill them in completely here with the final
10517 // size.
10518 std::vector<Backend::Btyped_identifier> bfields;
10519 get_backend_slice_fields(gogo, base->array_type(), true, &bfields);
10520 if (!gogo->backend()->set_placeholder_struct_type(bt, bfields))
10521 this->named_btype_ = gogo->backend()->error_type();
10523 else if (base->interface_type() != NULL
10524 && !base->interface_type()->is_empty())
10526 // We do not record interfaces as dependencies of other types,
10527 // because we can fill them in completely here with the final
10528 // size.
10529 std::vector<Backend::Btyped_identifier> bfields;
10530 get_backend_interface_fields(gogo, base->interface_type(), true,
10531 &bfields);
10532 if (!gogo->backend()->set_placeholder_struct_type(bt, bfields))
10533 this->named_btype_ = gogo->backend()->error_type();
10537 // Get the backend representation for a named type.
10539 Btype*
10540 Named_type::do_get_backend(Gogo* gogo)
10542 if (this->is_error_)
10543 return gogo->backend()->error_type();
10545 Btype* bt = this->named_btype_;
10547 if (!gogo->named_types_are_converted())
10549 // We have not completed converting named types. NAMED_BTYPE_
10550 // is a placeholder and we shouldn't do anything further.
10551 if (bt != NULL)
10552 return bt;
10554 // We don't build dependencies for types whose sizes do not
10555 // change or are not relevant, so we may see them here while
10556 // converting types.
10557 this->create_placeholder(gogo);
10558 bt = this->named_btype_;
10559 go_assert(bt != NULL);
10560 return bt;
10563 // We are not converting types. This should only be called if the
10564 // type has already been converted.
10565 if (!this->is_converted_)
10567 go_assert(saw_errors());
10568 return gogo->backend()->error_type();
10571 go_assert(bt != NULL);
10573 // Complete the backend representation.
10574 Type* base = this->type_->base();
10575 Btype* bt1;
10576 switch (base->classification())
10578 case TYPE_ERROR:
10579 return gogo->backend()->error_type();
10581 case TYPE_VOID:
10582 case TYPE_BOOLEAN:
10583 case TYPE_INTEGER:
10584 case TYPE_FLOAT:
10585 case TYPE_COMPLEX:
10586 case TYPE_STRING:
10587 case TYPE_NIL:
10588 case TYPE_MAP:
10589 case TYPE_CHANNEL:
10590 return bt;
10592 case TYPE_STRUCT:
10593 if (!this->seen_in_get_backend_)
10595 this->seen_in_get_backend_ = true;
10596 base->struct_type()->finish_backend_fields(gogo);
10597 this->seen_in_get_backend_ = false;
10599 return bt;
10601 case TYPE_ARRAY:
10602 if (!this->seen_in_get_backend_)
10604 this->seen_in_get_backend_ = true;
10605 base->array_type()->finish_backend_element(gogo);
10606 this->seen_in_get_backend_ = false;
10608 return bt;
10610 case TYPE_INTERFACE:
10611 if (!this->seen_in_get_backend_)
10613 this->seen_in_get_backend_ = true;
10614 base->interface_type()->finish_backend_methods(gogo);
10615 this->seen_in_get_backend_ = false;
10617 return bt;
10619 case TYPE_FUNCTION:
10620 // Don't build a circular data structure. GENERIC can't handle
10621 // it.
10622 if (this->seen_in_get_backend_)
10624 this->is_circular_ = true;
10625 return gogo->backend()->circular_pointer_type(bt, true);
10627 this->seen_in_get_backend_ = true;
10628 bt1 = Type::get_named_base_btype(gogo, base);
10629 this->seen_in_get_backend_ = false;
10630 if (this->is_circular_)
10631 bt1 = gogo->backend()->circular_pointer_type(bt, true);
10632 if (!gogo->backend()->set_placeholder_pointer_type(bt, bt1))
10633 bt = gogo->backend()->error_type();
10634 return bt;
10636 case TYPE_POINTER:
10637 // Don't build a circular data structure. GENERIC can't handle
10638 // it.
10639 if (this->seen_in_get_backend_)
10641 this->is_circular_ = true;
10642 return gogo->backend()->circular_pointer_type(bt, false);
10644 this->seen_in_get_backend_ = true;
10645 bt1 = Type::get_named_base_btype(gogo, base);
10646 this->seen_in_get_backend_ = false;
10647 if (this->is_circular_)
10648 bt1 = gogo->backend()->circular_pointer_type(bt, false);
10649 if (!gogo->backend()->set_placeholder_pointer_type(bt, bt1))
10650 bt = gogo->backend()->error_type();
10651 return bt;
10653 default:
10654 case TYPE_SINK:
10655 case TYPE_CALL_MULTIPLE_RESULT:
10656 case TYPE_NAMED:
10657 case TYPE_FORWARD:
10658 go_unreachable();
10661 go_unreachable();
10664 // Build a type descriptor for a named type.
10666 Expression*
10667 Named_type::do_type_descriptor(Gogo* gogo, Named_type* name)
10669 if (this->is_error_)
10670 return Expression::make_error(this->location_);
10671 if (name == NULL && this->is_alias_)
10673 if (this->seen_alias_)
10674 return Expression::make_error(this->location_);
10675 this->seen_alias_ = true;
10676 Expression* ret = this->type_->type_descriptor(gogo, NULL);
10677 this->seen_alias_ = false;
10678 return ret;
10681 // If NAME is not NULL, then we don't really want the type
10682 // descriptor for this type; we want the descriptor for the
10683 // underlying type, giving it the name NAME.
10684 return this->named_type_descriptor(gogo, this->type_,
10685 name == NULL ? this : name);
10688 // Add to the reflection string. This is used mostly for the name of
10689 // the type used in a type descriptor, not for actual reflection
10690 // strings.
10692 void
10693 Named_type::do_reflection(Gogo* gogo, std::string* ret) const
10695 this->append_reflection_type_name(gogo, false, ret);
10698 // Add to the reflection string. For an alias we normally use the
10699 // real name, but if USE_ALIAS is true we use the alias name itself.
10701 void
10702 Named_type::append_reflection_type_name(Gogo* gogo, bool use_alias,
10703 std::string* ret) const
10705 if (this->is_error_)
10706 return;
10707 if (this->is_alias_ && !use_alias)
10709 if (this->seen_alias_)
10710 return;
10711 this->seen_alias_ = true;
10712 this->append_reflection(this->type_, gogo, ret);
10713 this->seen_alias_ = false;
10714 return;
10716 if (!this->is_builtin())
10718 // When -fgo-pkgpath or -fgo-prefix is specified, we use it to
10719 // make a unique reflection string, so that the type
10720 // canonicalization in the reflect package will work. In order
10721 // to be compatible with the gc compiler, we put tabs into the
10722 // package path, so that the reflect methods can discard it.
10723 const Package* package = this->named_object_->package();
10724 ret->push_back('\t');
10725 ret->append(package != NULL
10726 ? package->pkgpath_symbol()
10727 : gogo->pkgpath_symbol());
10728 ret->push_back('\t');
10729 ret->append(package != NULL
10730 ? package->package_name()
10731 : gogo->package_name());
10732 ret->push_back('.');
10734 if (this->in_function_ != NULL)
10736 ret->push_back('\t');
10737 const Typed_identifier* rcvr =
10738 this->in_function_->func_value()->type()->receiver();
10739 if (rcvr != NULL)
10741 Named_type* rcvr_type = rcvr->type()->deref()->named_type();
10742 ret->append(Gogo::unpack_hidden_name(rcvr_type->name()));
10743 ret->push_back('.');
10745 ret->append(Gogo::unpack_hidden_name(this->in_function_->name()));
10746 ret->push_back('$');
10747 if (this->in_function_index_ > 0)
10749 char buf[30];
10750 snprintf(buf, sizeof buf, "%u", this->in_function_index_);
10751 ret->append(buf);
10752 ret->push_back('$');
10754 ret->push_back('\t');
10756 ret->append(Gogo::unpack_hidden_name(this->named_object_->name()));
10759 // Export the type. This is called to export a global type.
10761 void
10762 Named_type::export_named_type(Export* exp, const std::string&) const
10764 // We don't need to write the name of the type here, because it will
10765 // be written by Export::write_type anyhow.
10766 exp->write_c_string("type ");
10767 exp->write_type(this);
10768 exp->write_c_string(";\n");
10771 // Import a named type.
10773 void
10774 Named_type::import_named_type(Import* imp, Named_type** ptype)
10776 imp->require_c_string("type ");
10777 Type *type = imp->read_type();
10778 *ptype = type->named_type();
10779 go_assert(*ptype != NULL);
10780 imp->require_c_string(";\n");
10783 // Export the type when it is referenced by another type. In this
10784 // case Export::export_type will already have issued the name.
10786 void
10787 Named_type::do_export(Export* exp) const
10789 exp->write_type(this->type_);
10791 // To save space, we only export the methods directly attached to
10792 // this type.
10793 Bindings* methods = this->local_methods_;
10794 if (methods == NULL)
10795 return;
10797 exp->write_c_string("\n");
10798 for (Bindings::const_definitions_iterator p = methods->begin_definitions();
10799 p != methods->end_definitions();
10800 ++p)
10802 exp->write_c_string(" ");
10803 (*p)->export_named_object(exp);
10806 for (Bindings::const_declarations_iterator p = methods->begin_declarations();
10807 p != methods->end_declarations();
10808 ++p)
10810 if (p->second->is_function_declaration())
10812 exp->write_c_string(" ");
10813 p->second->export_named_object(exp);
10818 // Make a named type.
10820 Named_type*
10821 Type::make_named_type(Named_object* named_object, Type* type,
10822 Location location)
10824 return new Named_type(named_object, type, location);
10827 // Finalize the methods for TYPE. It will be a named type or a struct
10828 // type. This sets *ALL_METHODS to the list of methods, and builds
10829 // all required stubs.
10831 void
10832 Type::finalize_methods(Gogo* gogo, const Type* type, Location location,
10833 Methods** all_methods)
10835 *all_methods = new Methods();
10836 std::vector<const Named_type*> seen;
10837 Type::add_methods_for_type(type, NULL, 0, false, false, &seen, *all_methods);
10838 if ((*all_methods)->empty())
10840 delete *all_methods;
10841 *all_methods = NULL;
10843 Type::build_stub_methods(gogo, type, *all_methods, location);
10846 // Add the methods for TYPE to *METHODS. FIELD_INDEXES is used to
10847 // build up the struct field indexes as we go. DEPTH is the depth of
10848 // the field within TYPE. IS_EMBEDDED_POINTER is true if we are
10849 // adding these methods for an anonymous field with pointer type.
10850 // NEEDS_STUB_METHOD is true if we need to use a stub method which
10851 // calls the real method. TYPES_SEEN is used to avoid infinite
10852 // recursion.
10854 void
10855 Type::add_methods_for_type(const Type* type,
10856 const Method::Field_indexes* field_indexes,
10857 unsigned int depth,
10858 bool is_embedded_pointer,
10859 bool needs_stub_method,
10860 std::vector<const Named_type*>* seen,
10861 Methods* methods)
10863 // Pointer types may not have methods.
10864 if (type->points_to() != NULL)
10865 return;
10867 const Named_type* nt = type->named_type();
10868 if (nt != NULL)
10870 for (std::vector<const Named_type*>::const_iterator p = seen->begin();
10871 p != seen->end();
10872 ++p)
10874 if (*p == nt)
10875 return;
10878 seen->push_back(nt);
10880 Type::add_local_methods_for_type(nt, field_indexes, depth,
10881 is_embedded_pointer, needs_stub_method,
10882 methods);
10885 Type::add_embedded_methods_for_type(type, field_indexes, depth,
10886 is_embedded_pointer, needs_stub_method,
10887 seen, methods);
10889 // If we are called with depth > 0, then we are looking at an
10890 // anonymous field of a struct. If such a field has interface type,
10891 // then we need to add the interface methods. We don't want to add
10892 // them when depth == 0, because we will already handle them
10893 // following the usual rules for an interface type.
10894 if (depth > 0)
10895 Type::add_interface_methods_for_type(type, field_indexes, depth, methods);
10897 if (nt != NULL)
10898 seen->pop_back();
10901 // Add the local methods for the named type NT to *METHODS. The
10902 // parameters are as for add_methods_to_type.
10904 void
10905 Type::add_local_methods_for_type(const Named_type* nt,
10906 const Method::Field_indexes* field_indexes,
10907 unsigned int depth,
10908 bool is_embedded_pointer,
10909 bool needs_stub_method,
10910 Methods* methods)
10912 const Bindings* local_methods = nt->local_methods();
10913 if (local_methods == NULL)
10914 return;
10916 for (Bindings::const_declarations_iterator p =
10917 local_methods->begin_declarations();
10918 p != local_methods->end_declarations();
10919 ++p)
10921 Named_object* no = p->second;
10922 bool is_value_method = (is_embedded_pointer
10923 || !Type::method_expects_pointer(no));
10924 Method* m = new Named_method(no, field_indexes, depth, is_value_method,
10925 (needs_stub_method || depth > 0));
10926 if (!methods->insert(no->name(), m))
10927 delete m;
10931 // Add the embedded methods for TYPE to *METHODS. These are the
10932 // methods attached to anonymous fields. The parameters are as for
10933 // add_methods_to_type.
10935 void
10936 Type::add_embedded_methods_for_type(const Type* type,
10937 const Method::Field_indexes* field_indexes,
10938 unsigned int depth,
10939 bool is_embedded_pointer,
10940 bool needs_stub_method,
10941 std::vector<const Named_type*>* seen,
10942 Methods* methods)
10944 // Look for anonymous fields in TYPE. TYPE has fields if it is a
10945 // struct.
10946 const Struct_type* st = type->struct_type();
10947 if (st == NULL)
10948 return;
10950 const Struct_field_list* fields = st->fields();
10951 if (fields == NULL)
10952 return;
10954 unsigned int i = 0;
10955 for (Struct_field_list::const_iterator pf = fields->begin();
10956 pf != fields->end();
10957 ++pf, ++i)
10959 if (!pf->is_anonymous())
10960 continue;
10962 Type* ftype = pf->type();
10963 bool is_pointer = false;
10964 if (ftype->points_to() != NULL)
10966 ftype = ftype->points_to();
10967 is_pointer = true;
10969 Named_type* fnt = ftype->named_type();
10970 if (fnt == NULL)
10972 // This is an error, but it will be diagnosed elsewhere.
10973 continue;
10976 Method::Field_indexes* sub_field_indexes = new Method::Field_indexes();
10977 sub_field_indexes->next = field_indexes;
10978 sub_field_indexes->field_index = i;
10980 Methods tmp_methods;
10981 Type::add_methods_for_type(fnt, sub_field_indexes, depth + 1,
10982 (is_embedded_pointer || is_pointer),
10983 (needs_stub_method
10984 || is_pointer
10985 || i > 0),
10986 seen,
10987 &tmp_methods);
10988 // Check if there are promoted methods that conflict with field names and
10989 // don't add them to the method map.
10990 for (Methods::const_iterator p = tmp_methods.begin();
10991 p != tmp_methods.end();
10992 ++p)
10994 bool found = false;
10995 for (Struct_field_list::const_iterator fp = fields->begin();
10996 fp != fields->end();
10997 ++fp)
10999 if (fp->field_name() == p->first)
11001 found = true;
11002 break;
11005 if (!found &&
11006 !methods->insert(p->first, p->second))
11007 delete p->second;
11012 // If TYPE is an interface type, then add its method to *METHODS.
11013 // This is for interface methods attached to an anonymous field. The
11014 // parameters are as for add_methods_for_type.
11016 void
11017 Type::add_interface_methods_for_type(const Type* type,
11018 const Method::Field_indexes* field_indexes,
11019 unsigned int depth,
11020 Methods* methods)
11022 const Interface_type* it = type->interface_type();
11023 if (it == NULL)
11024 return;
11026 const Typed_identifier_list* imethods = it->methods();
11027 if (imethods == NULL)
11028 return;
11030 for (Typed_identifier_list::const_iterator pm = imethods->begin();
11031 pm != imethods->end();
11032 ++pm)
11034 Function_type* fntype = pm->type()->function_type();
11035 if (fntype == NULL)
11037 // This is an error, but it should be reported elsewhere
11038 // when we look at the methods for IT.
11039 continue;
11041 go_assert(!fntype->is_method());
11042 fntype = fntype->copy_with_receiver(const_cast<Type*>(type));
11043 Method* m = new Interface_method(pm->name(), pm->location(), fntype,
11044 field_indexes, depth);
11045 if (!methods->insert(pm->name(), m))
11046 delete m;
11050 // Build stub methods for TYPE as needed. METHODS is the set of
11051 // methods for the type. A stub method may be needed when a type
11052 // inherits a method from an anonymous field. When we need the
11053 // address of the method, as in a type descriptor, we need to build a
11054 // little stub which does the required field dereferences and jumps to
11055 // the real method. LOCATION is the location of the type definition.
11057 void
11058 Type::build_stub_methods(Gogo* gogo, const Type* type, const Methods* methods,
11059 Location location)
11061 if (methods == NULL)
11062 return;
11063 for (Methods::const_iterator p = methods->begin();
11064 p != methods->end();
11065 ++p)
11067 Method* m = p->second;
11068 if (m->is_ambiguous() || !m->needs_stub_method())
11069 continue;
11071 const std::string& name(p->first);
11073 // Build a stub method.
11075 const Function_type* fntype = m->type();
11077 static unsigned int counter;
11078 char buf[100];
11079 snprintf(buf, sizeof buf, "$this%u", counter);
11080 ++counter;
11082 Type* receiver_type = const_cast<Type*>(type);
11083 if (!m->is_value_method())
11084 receiver_type = Type::make_pointer_type(receiver_type);
11085 Location receiver_location = m->receiver_location();
11086 Typed_identifier* receiver = new Typed_identifier(buf, receiver_type,
11087 receiver_location);
11089 const Typed_identifier_list* fnparams = fntype->parameters();
11090 Typed_identifier_list* stub_params;
11091 if (fnparams == NULL || fnparams->empty())
11092 stub_params = NULL;
11093 else
11095 // We give each stub parameter a unique name.
11096 stub_params = new Typed_identifier_list();
11097 for (Typed_identifier_list::const_iterator pp = fnparams->begin();
11098 pp != fnparams->end();
11099 ++pp)
11101 char pbuf[100];
11102 snprintf(pbuf, sizeof pbuf, "$p%u", counter);
11103 stub_params->push_back(Typed_identifier(pbuf, pp->type(),
11104 pp->location()));
11105 ++counter;
11109 const Typed_identifier_list* fnresults = fntype->results();
11110 Typed_identifier_list* stub_results;
11111 if (fnresults == NULL || fnresults->empty())
11112 stub_results = NULL;
11113 else
11115 // We create the result parameters without any names, since
11116 // we won't refer to them.
11117 stub_results = new Typed_identifier_list();
11118 for (Typed_identifier_list::const_iterator pr = fnresults->begin();
11119 pr != fnresults->end();
11120 ++pr)
11121 stub_results->push_back(Typed_identifier("", pr->type(),
11122 pr->location()));
11125 Function_type* stub_type = Type::make_function_type(receiver,
11126 stub_params,
11127 stub_results,
11128 fntype->location());
11129 if (fntype->is_varargs())
11130 stub_type->set_is_varargs();
11132 // We only create the function in the package which creates the
11133 // type.
11134 const Package* package;
11135 if (type->named_type() == NULL)
11136 package = NULL;
11137 else
11138 package = type->named_type()->named_object()->package();
11139 std::string stub_name = gogo->stub_method_name(name);
11140 Named_object* stub;
11141 if (package != NULL)
11142 stub = Named_object::make_function_declaration(stub_name, package,
11143 stub_type, location);
11144 else
11146 stub = gogo->start_function(stub_name, stub_type, false,
11147 fntype->location());
11148 Type::build_one_stub_method(gogo, m, buf, stub_params,
11149 fntype->is_varargs(), location);
11150 gogo->finish_function(fntype->location());
11152 if (type->named_type() == NULL && stub->is_function())
11153 stub->func_value()->set_is_unnamed_type_stub_method();
11154 if (m->nointerface() && stub->is_function())
11155 stub->func_value()->set_nointerface();
11158 m->set_stub_object(stub);
11162 // Build a stub method which adjusts the receiver as required to call
11163 // METHOD. RECEIVER_NAME is the name we used for the receiver.
11164 // PARAMS is the list of function parameters.
11166 void
11167 Type::build_one_stub_method(Gogo* gogo, Method* method,
11168 const char* receiver_name,
11169 const Typed_identifier_list* params,
11170 bool is_varargs,
11171 Location location)
11173 Named_object* receiver_object = gogo->lookup(receiver_name, NULL);
11174 go_assert(receiver_object != NULL);
11176 Expression* expr = Expression::make_var_reference(receiver_object, location);
11177 expr = Type::apply_field_indexes(expr, method->field_indexes(), location);
11178 if (expr->type()->points_to() == NULL)
11179 expr = Expression::make_unary(OPERATOR_AND, expr, location);
11181 Expression_list* arguments;
11182 if (params == NULL || params->empty())
11183 arguments = NULL;
11184 else
11186 arguments = new Expression_list();
11187 for (Typed_identifier_list::const_iterator p = params->begin();
11188 p != params->end();
11189 ++p)
11191 Named_object* param = gogo->lookup(p->name(), NULL);
11192 go_assert(param != NULL);
11193 Expression* param_ref = Expression::make_var_reference(param,
11194 location);
11195 arguments->push_back(param_ref);
11199 Expression* func = method->bind_method(expr, location);
11200 go_assert(func != NULL);
11201 Call_expression* call = Expression::make_call(func, arguments, is_varargs,
11202 location);
11204 gogo->add_statement(Statement::make_return_from_call(call, location));
11207 // Apply FIELD_INDEXES to EXPR. The field indexes have to be applied
11208 // in reverse order.
11210 Expression*
11211 Type::apply_field_indexes(Expression* expr,
11212 const Method::Field_indexes* field_indexes,
11213 Location location)
11215 if (field_indexes == NULL)
11216 return expr;
11217 expr = Type::apply_field_indexes(expr, field_indexes->next, location);
11218 Struct_type* stype = expr->type()->deref()->struct_type();
11219 go_assert(stype != NULL
11220 && field_indexes->field_index < stype->field_count());
11221 if (expr->type()->struct_type() == NULL)
11223 go_assert(expr->type()->points_to() != NULL);
11224 expr = Expression::make_unary(OPERATOR_MULT, expr, location);
11225 go_assert(expr->type()->struct_type() == stype);
11227 return Expression::make_field_reference(expr, field_indexes->field_index,
11228 location);
11231 // Return whether NO is a method for which the receiver is a pointer.
11233 bool
11234 Type::method_expects_pointer(const Named_object* no)
11236 const Function_type *fntype;
11237 if (no->is_function())
11238 fntype = no->func_value()->type();
11239 else if (no->is_function_declaration())
11240 fntype = no->func_declaration_value()->type();
11241 else
11242 go_unreachable();
11243 return fntype->receiver()->type()->points_to() != NULL;
11246 // Given a set of methods for a type, METHODS, return the method NAME,
11247 // or NULL if there isn't one or if it is ambiguous. If IS_AMBIGUOUS
11248 // is not NULL, then set *IS_AMBIGUOUS to true if the method exists
11249 // but is ambiguous (and return NULL).
11251 Method*
11252 Type::method_function(const Methods* methods, const std::string& name,
11253 bool* is_ambiguous)
11255 if (is_ambiguous != NULL)
11256 *is_ambiguous = false;
11257 if (methods == NULL)
11258 return NULL;
11259 Methods::const_iterator p = methods->find(name);
11260 if (p == methods->end())
11261 return NULL;
11262 Method* m = p->second;
11263 if (m->is_ambiguous())
11265 if (is_ambiguous != NULL)
11266 *is_ambiguous = true;
11267 return NULL;
11269 return m;
11272 // Return a pointer to the interface method table for TYPE for the
11273 // interface INTERFACE.
11275 Expression*
11276 Type::interface_method_table(Type* type,
11277 Interface_type *interface,
11278 bool is_pointer,
11279 Interface_method_tables** method_tables,
11280 Interface_method_tables** pointer_tables)
11282 go_assert(!interface->is_empty());
11284 Interface_method_tables** pimt = is_pointer ? method_tables : pointer_tables;
11286 if (*pimt == NULL)
11287 *pimt = new Interface_method_tables(5);
11289 std::pair<Interface_type*, Expression*> val(interface, NULL);
11290 std::pair<Interface_method_tables::iterator, bool> ins = (*pimt)->insert(val);
11292 Location loc = Linemap::predeclared_location();
11293 if (ins.second)
11295 // This is a new entry in the hash table.
11296 go_assert(ins.first->second == NULL);
11297 ins.first->second =
11298 Expression::make_interface_mtable_ref(interface, type, is_pointer, loc);
11300 return Expression::make_unary(OPERATOR_AND, ins.first->second, loc);
11303 // Look for field or method NAME for TYPE. Return an Expression for
11304 // the field or method bound to EXPR. If there is no such field or
11305 // method, give an appropriate error and return an error expression.
11307 Expression*
11308 Type::bind_field_or_method(Gogo* gogo, const Type* type, Expression* expr,
11309 const std::string& name,
11310 Location location)
11312 if (type->deref()->is_error_type())
11313 return Expression::make_error(location);
11315 const Named_type* nt = type->deref()->named_type();
11316 const Struct_type* st = type->deref()->struct_type();
11317 const Interface_type* it = type->interface_type();
11319 // If this is a pointer to a pointer, then it is possible that the
11320 // pointed-to type has methods.
11321 bool dereferenced = false;
11322 if (nt == NULL
11323 && st == NULL
11324 && it == NULL
11325 && type->points_to() != NULL
11326 && type->points_to()->points_to() != NULL)
11328 expr = Expression::make_unary(OPERATOR_MULT, expr, location);
11329 type = type->points_to();
11330 if (type->deref()->is_error_type())
11331 return Expression::make_error(location);
11332 nt = type->points_to()->named_type();
11333 st = type->points_to()->struct_type();
11334 dereferenced = true;
11337 bool receiver_can_be_pointer = (expr->type()->points_to() != NULL
11338 || expr->is_addressable());
11339 std::vector<const Named_type*> seen;
11340 bool is_method = false;
11341 bool found_pointer_method = false;
11342 std::string ambig1;
11343 std::string ambig2;
11344 if (Type::find_field_or_method(type, name, receiver_can_be_pointer,
11345 &seen, NULL, &is_method,
11346 &found_pointer_method, &ambig1, &ambig2))
11348 Expression* ret;
11349 if (!is_method)
11351 go_assert(st != NULL);
11352 if (type->struct_type() == NULL)
11354 if (dereferenced)
11356 go_error_at(location, "pointer type has no field %qs",
11357 Gogo::message_name(name).c_str());
11358 return Expression::make_error(location);
11360 go_assert(type->points_to() != NULL);
11361 expr = Expression::make_unary(OPERATOR_MULT, expr,
11362 location);
11363 go_assert(expr->type()->struct_type() == st);
11365 ret = st->field_reference(expr, name, location);
11366 if (ret == NULL)
11368 go_error_at(location, "type has no field %qs",
11369 Gogo::message_name(name).c_str());
11370 return Expression::make_error(location);
11373 else if (it != NULL && it->find_method(name) != NULL)
11374 ret = Expression::make_interface_field_reference(expr, name,
11375 location);
11376 else
11378 Method* m;
11379 if (nt != NULL)
11380 m = nt->method_function(name, NULL);
11381 else if (st != NULL)
11382 m = st->method_function(name, NULL);
11383 else
11384 go_unreachable();
11385 go_assert(m != NULL);
11386 if (dereferenced)
11388 go_error_at(location,
11389 "calling method %qs requires explicit dereference",
11390 Gogo::message_name(name).c_str());
11391 return Expression::make_error(location);
11393 if (!m->is_value_method() && expr->type()->points_to() == NULL)
11394 expr = Expression::make_unary(OPERATOR_AND, expr, location);
11395 ret = m->bind_method(expr, location);
11397 go_assert(ret != NULL);
11398 return ret;
11400 else
11402 if (Gogo::is_erroneous_name(name))
11404 // An error was already reported.
11406 else if (!ambig1.empty())
11407 go_error_at(location, "%qs is ambiguous via %qs and %qs",
11408 Gogo::message_name(name).c_str(), ambig1.c_str(),
11409 ambig2.c_str());
11410 else if (found_pointer_method)
11411 go_error_at(location, "method requires a pointer receiver");
11412 else if (nt == NULL && st == NULL && it == NULL)
11413 go_error_at(location,
11414 ("reference to field %qs in object which "
11415 "has no fields or methods"),
11416 Gogo::message_name(name).c_str());
11417 else
11419 bool is_unexported;
11420 // The test for 'a' and 'z' is to handle builtin names,
11421 // which are not hidden.
11422 if (!Gogo::is_hidden_name(name) && (name[0] < 'a' || name[0] > 'z'))
11423 is_unexported = false;
11424 else
11426 std::string unpacked = Gogo::unpack_hidden_name(name);
11427 seen.clear();
11428 is_unexported = Type::is_unexported_field_or_method(gogo, type,
11429 unpacked,
11430 &seen);
11432 if (is_unexported)
11433 go_error_at(location, "reference to unexported field or method %qs",
11434 Gogo::message_name(name).c_str());
11435 else
11436 go_error_at(location, "reference to undefined field or method %qs",
11437 Gogo::message_name(name).c_str());
11439 return Expression::make_error(location);
11443 // Look in TYPE for a field or method named NAME, return true if one
11444 // is found. This looks through embedded anonymous fields and handles
11445 // ambiguity. If a method is found, sets *IS_METHOD to true;
11446 // otherwise, if a field is found, set it to false. If
11447 // RECEIVER_CAN_BE_POINTER is false, then the receiver is a value
11448 // whose address can not be taken. SEEN is used to avoid infinite
11449 // recursion on invalid types.
11451 // When returning false, this sets *FOUND_POINTER_METHOD if we found a
11452 // method we couldn't use because it requires a pointer. LEVEL is
11453 // used for recursive calls, and can be NULL for a non-recursive call.
11454 // When this function returns false because it finds that the name is
11455 // ambiguous, it will store a path to the ambiguous names in *AMBIG1
11456 // and *AMBIG2. If the name is not found at all, *AMBIG1 and *AMBIG2
11457 // will be unchanged.
11459 // This function just returns whether or not there is a field or
11460 // method, and whether it is a field or method. It doesn't build an
11461 // expression to refer to it. If it is a method, we then look in the
11462 // list of all methods for the type. If it is a field, the search has
11463 // to be done again, looking only for fields, and building up the
11464 // expression as we go.
11466 bool
11467 Type::find_field_or_method(const Type* type,
11468 const std::string& name,
11469 bool receiver_can_be_pointer,
11470 std::vector<const Named_type*>* seen,
11471 int* level,
11472 bool* is_method,
11473 bool* found_pointer_method,
11474 std::string* ambig1,
11475 std::string* ambig2)
11477 // Named types can have locally defined methods.
11478 const Named_type* nt = type->named_type();
11479 if (nt == NULL && type->points_to() != NULL)
11480 nt = type->points_to()->named_type();
11481 if (nt != NULL)
11483 Named_object* no = nt->find_local_method(name);
11484 if (no != NULL)
11486 if (receiver_can_be_pointer || !Type::method_expects_pointer(no))
11488 *is_method = true;
11489 return true;
11492 // Record that we have found a pointer method in order to
11493 // give a better error message if we don't find anything
11494 // else.
11495 *found_pointer_method = true;
11498 for (std::vector<const Named_type*>::const_iterator p = seen->begin();
11499 p != seen->end();
11500 ++p)
11502 if (*p == nt)
11504 // We've already seen this type when searching for methods.
11505 return false;
11510 // Interface types can have methods.
11511 const Interface_type* it = type->interface_type();
11512 if (it != NULL && it->find_method(name) != NULL)
11514 *is_method = true;
11515 return true;
11518 // Struct types can have fields. They can also inherit fields and
11519 // methods from anonymous fields.
11520 const Struct_type* st = type->deref()->struct_type();
11521 if (st == NULL)
11522 return false;
11523 const Struct_field_list* fields = st->fields();
11524 if (fields == NULL)
11525 return false;
11527 if (nt != NULL)
11528 seen->push_back(nt);
11530 int found_level = 0;
11531 bool found_is_method = false;
11532 std::string found_ambig1;
11533 std::string found_ambig2;
11534 const Struct_field* found_parent = NULL;
11535 for (Struct_field_list::const_iterator pf = fields->begin();
11536 pf != fields->end();
11537 ++pf)
11539 if (pf->is_field_name(name))
11541 *is_method = false;
11542 if (nt != NULL)
11543 seen->pop_back();
11544 return true;
11547 if (!pf->is_anonymous())
11548 continue;
11550 if (pf->type()->deref()->is_error_type()
11551 || pf->type()->deref()->is_undefined())
11552 continue;
11554 Named_type* fnt = pf->type()->named_type();
11555 if (fnt == NULL)
11556 fnt = pf->type()->deref()->named_type();
11557 go_assert(fnt != NULL);
11559 // Methods with pointer receivers on embedded field are
11560 // inherited by the pointer to struct, and also by the struct
11561 // type if the field itself is a pointer.
11562 bool can_be_pointer = (receiver_can_be_pointer
11563 || pf->type()->points_to() != NULL);
11564 int sublevel = level == NULL ? 1 : *level + 1;
11565 bool sub_is_method;
11566 std::string subambig1;
11567 std::string subambig2;
11568 bool subfound = Type::find_field_or_method(fnt,
11569 name,
11570 can_be_pointer,
11571 seen,
11572 &sublevel,
11573 &sub_is_method,
11574 found_pointer_method,
11575 &subambig1,
11576 &subambig2);
11577 if (!subfound)
11579 if (!subambig1.empty())
11581 // The name was found via this field, but is ambiguous.
11582 // if the ambiguity is lower or at the same level as
11583 // anything else we have already found, then we want to
11584 // pass the ambiguity back to the caller.
11585 if (found_level == 0 || sublevel <= found_level)
11587 found_ambig1 = (Gogo::message_name(pf->field_name())
11588 + '.' + subambig1);
11589 found_ambig2 = (Gogo::message_name(pf->field_name())
11590 + '.' + subambig2);
11591 found_level = sublevel;
11595 else
11597 // The name was found via this field. Use the level to see
11598 // if we want to use this one, or whether it introduces an
11599 // ambiguity.
11600 if (found_level == 0 || sublevel < found_level)
11602 found_level = sublevel;
11603 found_is_method = sub_is_method;
11604 found_ambig1.clear();
11605 found_ambig2.clear();
11606 found_parent = &*pf;
11608 else if (sublevel > found_level)
11610 else if (found_ambig1.empty())
11612 // We found an ambiguity.
11613 go_assert(found_parent != NULL);
11614 found_ambig1 = Gogo::message_name(found_parent->field_name());
11615 found_ambig2 = Gogo::message_name(pf->field_name());
11617 else
11619 // We found an ambiguity, but we already know of one.
11620 // Just report the earlier one.
11625 // Here if we didn't find anything FOUND_LEVEL is 0. If we found
11626 // something ambiguous, FOUND_LEVEL is not 0 and FOUND_AMBIG1 and
11627 // FOUND_AMBIG2 are not empty. If we found the field, FOUND_LEVEL
11628 // is not 0 and FOUND_AMBIG1 and FOUND_AMBIG2 are empty.
11630 if (nt != NULL)
11631 seen->pop_back();
11633 if (found_level == 0)
11634 return false;
11635 else if (found_is_method
11636 && type->named_type() != NULL
11637 && type->points_to() != NULL)
11639 // If this is a method inherited from a struct field in a named pointer
11640 // type, it is invalid to automatically dereference the pointer to the
11641 // struct to find this method.
11642 if (level != NULL)
11643 *level = found_level;
11644 *is_method = true;
11645 return false;
11647 else if (!found_ambig1.empty())
11649 go_assert(!found_ambig1.empty());
11650 ambig1->assign(found_ambig1);
11651 ambig2->assign(found_ambig2);
11652 if (level != NULL)
11653 *level = found_level;
11654 return false;
11656 else
11658 if (level != NULL)
11659 *level = found_level;
11660 *is_method = found_is_method;
11661 return true;
11665 // Return whether NAME is an unexported field or method for TYPE.
11667 bool
11668 Type::is_unexported_field_or_method(Gogo* gogo, const Type* type,
11669 const std::string& name,
11670 std::vector<const Named_type*>* seen)
11672 const Named_type* nt = type->named_type();
11673 if (nt == NULL)
11674 nt = type->deref()->named_type();
11675 if (nt != NULL)
11677 if (nt->is_unexported_local_method(gogo, name))
11678 return true;
11680 for (std::vector<const Named_type*>::const_iterator p = seen->begin();
11681 p != seen->end();
11682 ++p)
11684 if (*p == nt)
11686 // We've already seen this type.
11687 return false;
11692 const Interface_type* it = type->interface_type();
11693 if (it != NULL && it->is_unexported_method(gogo, name))
11694 return true;
11696 type = type->deref();
11698 const Struct_type* st = type->struct_type();
11699 if (st != NULL && st->is_unexported_local_field(gogo, name))
11700 return true;
11702 if (st == NULL)
11703 return false;
11705 const Struct_field_list* fields = st->fields();
11706 if (fields == NULL)
11707 return false;
11709 if (nt != NULL)
11710 seen->push_back(nt);
11712 for (Struct_field_list::const_iterator pf = fields->begin();
11713 pf != fields->end();
11714 ++pf)
11716 if (pf->is_anonymous()
11717 && !pf->type()->deref()->is_error_type()
11718 && !pf->type()->deref()->is_undefined())
11720 Named_type* subtype = pf->type()->named_type();
11721 if (subtype == NULL)
11722 subtype = pf->type()->deref()->named_type();
11723 if (subtype == NULL)
11725 // This is an error, but it will be diagnosed elsewhere.
11726 continue;
11728 if (Type::is_unexported_field_or_method(gogo, subtype, name, seen))
11730 if (nt != NULL)
11731 seen->pop_back();
11732 return true;
11737 if (nt != NULL)
11738 seen->pop_back();
11740 return false;
11743 // Class Forward_declaration.
11745 Forward_declaration_type::Forward_declaration_type(Named_object* named_object)
11746 : Type(TYPE_FORWARD),
11747 named_object_(named_object->resolve()), warned_(false)
11749 go_assert(this->named_object_->is_unknown()
11750 || this->named_object_->is_type_declaration());
11753 // Return the named object.
11755 Named_object*
11756 Forward_declaration_type::named_object()
11758 return this->named_object_->resolve();
11761 const Named_object*
11762 Forward_declaration_type::named_object() const
11764 return this->named_object_->resolve();
11767 // Return the name of the forward declared type.
11769 const std::string&
11770 Forward_declaration_type::name() const
11772 return this->named_object()->name();
11775 // Warn about a use of a type which has been declared but not defined.
11777 void
11778 Forward_declaration_type::warn() const
11780 Named_object* no = this->named_object_->resolve();
11781 if (no->is_unknown())
11783 // The name was not defined anywhere.
11784 if (!this->warned_)
11786 go_error_at(this->named_object_->location(),
11787 "use of undefined type %qs",
11788 no->message_name().c_str());
11789 this->warned_ = true;
11792 else if (no->is_type_declaration())
11794 // The name was seen as a type, but the type was never defined.
11795 if (no->type_declaration_value()->using_type())
11797 go_error_at(this->named_object_->location(),
11798 "use of undefined type %qs",
11799 no->message_name().c_str());
11800 this->warned_ = true;
11803 else
11805 // The name was defined, but not as a type.
11806 if (!this->warned_)
11808 go_error_at(this->named_object_->location(), "expected type");
11809 this->warned_ = true;
11814 // Get the base type of a declaration. This gives an error if the
11815 // type has not yet been defined.
11817 Type*
11818 Forward_declaration_type::real_type()
11820 if (this->is_defined())
11822 Named_type* nt = this->named_object()->type_value();
11823 if (!nt->is_valid())
11824 return Type::make_error_type();
11825 return this->named_object()->type_value();
11827 else
11829 this->warn();
11830 return Type::make_error_type();
11834 const Type*
11835 Forward_declaration_type::real_type() const
11837 if (this->is_defined())
11839 const Named_type* nt = this->named_object()->type_value();
11840 if (!nt->is_valid())
11841 return Type::make_error_type();
11842 return this->named_object()->type_value();
11844 else
11846 this->warn();
11847 return Type::make_error_type();
11851 // Return whether the base type is defined.
11853 bool
11854 Forward_declaration_type::is_defined() const
11856 return this->named_object()->is_type();
11859 // Add a method. This is used when methods are defined before the
11860 // type.
11862 Named_object*
11863 Forward_declaration_type::add_method(const std::string& name,
11864 Function* function)
11866 Named_object* no = this->named_object();
11867 if (no->is_unknown())
11868 no->declare_as_type();
11869 return no->type_declaration_value()->add_method(name, function);
11872 // Add a method declaration. This is used when methods are declared
11873 // before the type.
11875 Named_object*
11876 Forward_declaration_type::add_method_declaration(const std::string& name,
11877 Package* package,
11878 Function_type* type,
11879 Location location)
11881 Named_object* no = this->named_object();
11882 if (no->is_unknown())
11883 no->declare_as_type();
11884 Type_declaration* td = no->type_declaration_value();
11885 return td->add_method_declaration(name, package, type, location);
11888 // Add an already created object as a method.
11890 void
11891 Forward_declaration_type::add_existing_method(Named_object* nom)
11893 Named_object* no = this->named_object();
11894 if (no->is_unknown())
11895 no->declare_as_type();
11896 no->type_declaration_value()->add_existing_method(nom);
11899 // Traversal.
11902 Forward_declaration_type::do_traverse(Traverse* traverse)
11904 if (this->is_defined()
11905 && Type::traverse(this->real_type(), traverse) == TRAVERSE_EXIT)
11906 return TRAVERSE_EXIT;
11907 return TRAVERSE_CONTINUE;
11910 // Verify the type.
11912 bool
11913 Forward_declaration_type::do_verify()
11915 if (!this->is_defined() && !this->is_nil_constant_as_type())
11917 this->warn();
11918 return false;
11920 return true;
11923 // Get the backend representation for the type.
11925 Btype*
11926 Forward_declaration_type::do_get_backend(Gogo* gogo)
11928 if (this->is_defined())
11929 return Type::get_named_base_btype(gogo, this->real_type());
11931 if (this->warned_)
11932 return gogo->backend()->error_type();
11934 // We represent an undefined type as a struct with no fields. That
11935 // should work fine for the backend, since the same case can arise
11936 // in C.
11937 std::vector<Backend::Btyped_identifier> fields;
11938 Btype* bt = gogo->backend()->struct_type(fields);
11939 return gogo->backend()->named_type(this->name(), bt,
11940 this->named_object()->location());
11943 // Build a type descriptor for a forwarded type.
11945 Expression*
11946 Forward_declaration_type::do_type_descriptor(Gogo* gogo, Named_type* name)
11948 Location ploc = Linemap::predeclared_location();
11949 if (!this->is_defined())
11950 return Expression::make_error(ploc);
11951 else
11953 Type* t = this->real_type();
11954 if (name != NULL)
11955 return this->named_type_descriptor(gogo, t, name);
11956 else
11957 return Expression::make_error(this->named_object_->location());
11961 // The reflection string.
11963 void
11964 Forward_declaration_type::do_reflection(Gogo* gogo, std::string* ret) const
11966 this->append_reflection(this->real_type(), gogo, ret);
11969 // Export a forward declaration. This can happen when a defined type
11970 // refers to a type which is only declared (and is presumably defined
11971 // in some other file in the same package).
11973 void
11974 Forward_declaration_type::do_export(Export*) const
11976 // If there is a base type, that should be exported instead of this.
11977 go_assert(!this->is_defined());
11979 // We don't output anything.
11982 // Make a forward declaration.
11984 Type*
11985 Type::make_forward_declaration(Named_object* named_object)
11987 return new Forward_declaration_type(named_object);
11990 // Class Typed_identifier_list.
11992 // Sort the entries by name.
11994 struct Typed_identifier_list_sort
11996 public:
11997 bool
11998 operator()(const Typed_identifier& t1, const Typed_identifier& t2) const
12000 return (Gogo::unpack_hidden_name(t1.name())
12001 < Gogo::unpack_hidden_name(t2.name()));
12005 void
12006 Typed_identifier_list::sort_by_name()
12008 std::sort(this->entries_.begin(), this->entries_.end(),
12009 Typed_identifier_list_sort());
12012 // Traverse types.
12015 Typed_identifier_list::traverse(Traverse* traverse)
12017 for (Typed_identifier_list::const_iterator p = this->begin();
12018 p != this->end();
12019 ++p)
12021 if (Type::traverse(p->type(), traverse) == TRAVERSE_EXIT)
12022 return TRAVERSE_EXIT;
12024 return TRAVERSE_CONTINUE;
12027 // Copy the list.
12029 Typed_identifier_list*
12030 Typed_identifier_list::copy() const
12032 Typed_identifier_list* ret = new Typed_identifier_list();
12033 for (Typed_identifier_list::const_iterator p = this->begin();
12034 p != this->end();
12035 ++p)
12036 ret->push_back(Typed_identifier(p->name(), p->type(), p->location()));
12037 return ret;