Add __attribute__((malloc) to allocator and remove unused code
[official-gcc.git] / gcc / fortran / resolve.c
blob913320cc669b579653c96eb72020ed0e6ea50a08
1 /* Perform type resolution on the various structures.
2 Copyright (C) 2001-2018 Free Software Foundation, Inc.
3 Contributed by Andy Vaught
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "options.h"
25 #include "bitmap.h"
26 #include "gfortran.h"
27 #include "arith.h" /* For gfc_compare_expr(). */
28 #include "dependency.h"
29 #include "data.h"
30 #include "target-memory.h" /* for gfc_simplify_transfer */
31 #include "constructor.h"
33 /* Types used in equivalence statements. */
35 enum seq_type
37 SEQ_NONDEFAULT, SEQ_NUMERIC, SEQ_CHARACTER, SEQ_MIXED
40 /* Stack to keep track of the nesting of blocks as we move through the
41 code. See resolve_branch() and gfc_resolve_code(). */
43 typedef struct code_stack
45 struct gfc_code *head, *current;
46 struct code_stack *prev;
48 /* This bitmap keeps track of the targets valid for a branch from
49 inside this block except for END {IF|SELECT}s of enclosing
50 blocks. */
51 bitmap reachable_labels;
53 code_stack;
55 static code_stack *cs_base = NULL;
58 /* Nonzero if we're inside a FORALL or DO CONCURRENT block. */
60 static int forall_flag;
61 int gfc_do_concurrent_flag;
63 /* True when we are resolving an expression that is an actual argument to
64 a procedure. */
65 static bool actual_arg = false;
66 /* True when we are resolving an expression that is the first actual argument
67 to a procedure. */
68 static bool first_actual_arg = false;
71 /* Nonzero if we're inside a OpenMP WORKSHARE or PARALLEL WORKSHARE block. */
73 static int omp_workshare_flag;
75 /* True if we are processing a formal arglist. The corresponding function
76 resets the flag each time that it is read. */
77 static bool formal_arg_flag = false;
79 /* True if we are resolving a specification expression. */
80 static bool specification_expr = false;
82 /* The id of the last entry seen. */
83 static int current_entry_id;
85 /* We use bitmaps to determine if a branch target is valid. */
86 static bitmap_obstack labels_obstack;
88 /* True when simplifying a EXPR_VARIABLE argument to an inquiry function. */
89 static bool inquiry_argument = false;
92 bool
93 gfc_is_formal_arg (void)
95 return formal_arg_flag;
98 /* Is the symbol host associated? */
99 static bool
100 is_sym_host_assoc (gfc_symbol *sym, gfc_namespace *ns)
102 for (ns = ns->parent; ns; ns = ns->parent)
104 if (sym->ns == ns)
105 return true;
108 return false;
111 /* Ensure a typespec used is valid; for instance, TYPE(t) is invalid if t is
112 an ABSTRACT derived-type. If where is not NULL, an error message with that
113 locus is printed, optionally using name. */
115 static bool
116 resolve_typespec_used (gfc_typespec* ts, locus* where, const char* name)
118 if (ts->type == BT_DERIVED && ts->u.derived->attr.abstract)
120 if (where)
122 if (name)
123 gfc_error ("%qs at %L is of the ABSTRACT type %qs",
124 name, where, ts->u.derived->name);
125 else
126 gfc_error ("ABSTRACT type %qs used at %L",
127 ts->u.derived->name, where);
130 return false;
133 return true;
137 static bool
138 check_proc_interface (gfc_symbol *ifc, locus *where)
140 /* Several checks for F08:C1216. */
141 if (ifc->attr.procedure)
143 gfc_error ("Interface %qs at %L is declared "
144 "in a later PROCEDURE statement", ifc->name, where);
145 return false;
147 if (ifc->generic)
149 /* For generic interfaces, check if there is
150 a specific procedure with the same name. */
151 gfc_interface *gen = ifc->generic;
152 while (gen && strcmp (gen->sym->name, ifc->name) != 0)
153 gen = gen->next;
154 if (!gen)
156 gfc_error ("Interface %qs at %L may not be generic",
157 ifc->name, where);
158 return false;
161 if (ifc->attr.proc == PROC_ST_FUNCTION)
163 gfc_error ("Interface %qs at %L may not be a statement function",
164 ifc->name, where);
165 return false;
167 if (gfc_is_intrinsic (ifc, 0, ifc->declared_at)
168 || gfc_is_intrinsic (ifc, 1, ifc->declared_at))
169 ifc->attr.intrinsic = 1;
170 if (ifc->attr.intrinsic && !gfc_intrinsic_actual_ok (ifc->name, 0))
172 gfc_error ("Intrinsic procedure %qs not allowed in "
173 "PROCEDURE statement at %L", ifc->name, where);
174 return false;
176 if (!ifc->attr.if_source && !ifc->attr.intrinsic && ifc->name[0] != '\0')
178 gfc_error ("Interface %qs at %L must be explicit", ifc->name, where);
179 return false;
181 return true;
185 static void resolve_symbol (gfc_symbol *sym);
188 /* Resolve the interface for a PROCEDURE declaration or procedure pointer. */
190 static bool
191 resolve_procedure_interface (gfc_symbol *sym)
193 gfc_symbol *ifc = sym->ts.interface;
195 if (!ifc)
196 return true;
198 if (ifc == sym)
200 gfc_error ("PROCEDURE %qs at %L may not be used as its own interface",
201 sym->name, &sym->declared_at);
202 return false;
204 if (!check_proc_interface (ifc, &sym->declared_at))
205 return false;
207 if (ifc->attr.if_source || ifc->attr.intrinsic)
209 /* Resolve interface and copy attributes. */
210 resolve_symbol (ifc);
211 if (ifc->attr.intrinsic)
212 gfc_resolve_intrinsic (ifc, &ifc->declared_at);
214 if (ifc->result)
216 sym->ts = ifc->result->ts;
217 sym->attr.allocatable = ifc->result->attr.allocatable;
218 sym->attr.pointer = ifc->result->attr.pointer;
219 sym->attr.dimension = ifc->result->attr.dimension;
220 sym->attr.class_ok = ifc->result->attr.class_ok;
221 sym->as = gfc_copy_array_spec (ifc->result->as);
222 sym->result = sym;
224 else
226 sym->ts = ifc->ts;
227 sym->attr.allocatable = ifc->attr.allocatable;
228 sym->attr.pointer = ifc->attr.pointer;
229 sym->attr.dimension = ifc->attr.dimension;
230 sym->attr.class_ok = ifc->attr.class_ok;
231 sym->as = gfc_copy_array_spec (ifc->as);
233 sym->ts.interface = ifc;
234 sym->attr.function = ifc->attr.function;
235 sym->attr.subroutine = ifc->attr.subroutine;
237 sym->attr.pure = ifc->attr.pure;
238 sym->attr.elemental = ifc->attr.elemental;
239 sym->attr.contiguous = ifc->attr.contiguous;
240 sym->attr.recursive = ifc->attr.recursive;
241 sym->attr.always_explicit = ifc->attr.always_explicit;
242 sym->attr.ext_attr |= ifc->attr.ext_attr;
243 sym->attr.is_bind_c = ifc->attr.is_bind_c;
244 /* Copy char length. */
245 if (ifc->ts.type == BT_CHARACTER && ifc->ts.u.cl)
247 sym->ts.u.cl = gfc_new_charlen (sym->ns, ifc->ts.u.cl);
248 if (sym->ts.u.cl->length && !sym->ts.u.cl->resolved
249 && !gfc_resolve_expr (sym->ts.u.cl->length))
250 return false;
254 return true;
258 /* Resolve types of formal argument lists. These have to be done early so that
259 the formal argument lists of module procedures can be copied to the
260 containing module before the individual procedures are resolved
261 individually. We also resolve argument lists of procedures in interface
262 blocks because they are self-contained scoping units.
264 Since a dummy argument cannot be a non-dummy procedure, the only
265 resort left for untyped names are the IMPLICIT types. */
267 static void
268 resolve_formal_arglist (gfc_symbol *proc)
270 gfc_formal_arglist *f;
271 gfc_symbol *sym;
272 bool saved_specification_expr;
273 int i;
275 if (proc->result != NULL)
276 sym = proc->result;
277 else
278 sym = proc;
280 if (gfc_elemental (proc)
281 || sym->attr.pointer || sym->attr.allocatable
282 || (sym->as && sym->as->rank != 0))
284 proc->attr.always_explicit = 1;
285 sym->attr.always_explicit = 1;
288 formal_arg_flag = true;
290 for (f = proc->formal; f; f = f->next)
292 gfc_array_spec *as;
294 sym = f->sym;
296 if (sym == NULL)
298 /* Alternate return placeholder. */
299 if (gfc_elemental (proc))
300 gfc_error ("Alternate return specifier in elemental subroutine "
301 "%qs at %L is not allowed", proc->name,
302 &proc->declared_at);
303 if (proc->attr.function)
304 gfc_error ("Alternate return specifier in function "
305 "%qs at %L is not allowed", proc->name,
306 &proc->declared_at);
307 continue;
309 else if (sym->attr.procedure && sym->attr.if_source != IFSRC_DECL
310 && !resolve_procedure_interface (sym))
311 return;
313 if (strcmp (proc->name, sym->name) == 0)
315 gfc_error ("Self-referential argument "
316 "%qs at %L is not allowed", sym->name,
317 &proc->declared_at);
318 return;
321 if (sym->attr.if_source != IFSRC_UNKNOWN)
322 resolve_formal_arglist (sym);
324 if (sym->attr.subroutine || sym->attr.external)
326 if (sym->attr.flavor == FL_UNKNOWN)
327 gfc_add_flavor (&sym->attr, FL_PROCEDURE, sym->name, &sym->declared_at);
329 else
331 if (sym->ts.type == BT_UNKNOWN && !proc->attr.intrinsic
332 && (!sym->attr.function || sym->result == sym))
333 gfc_set_default_type (sym, 1, sym->ns);
336 as = sym->ts.type == BT_CLASS && sym->attr.class_ok
337 ? CLASS_DATA (sym)->as : sym->as;
339 saved_specification_expr = specification_expr;
340 specification_expr = true;
341 gfc_resolve_array_spec (as, 0);
342 specification_expr = saved_specification_expr;
344 /* We can't tell if an array with dimension (:) is assumed or deferred
345 shape until we know if it has the pointer or allocatable attributes.
347 if (as && as->rank > 0 && as->type == AS_DEFERRED
348 && ((sym->ts.type != BT_CLASS
349 && !(sym->attr.pointer || sym->attr.allocatable))
350 || (sym->ts.type == BT_CLASS
351 && !(CLASS_DATA (sym)->attr.class_pointer
352 || CLASS_DATA (sym)->attr.allocatable)))
353 && sym->attr.flavor != FL_PROCEDURE)
355 as->type = AS_ASSUMED_SHAPE;
356 for (i = 0; i < as->rank; i++)
357 as->lower[i] = gfc_get_int_expr (gfc_default_integer_kind, NULL, 1);
360 if ((as && as->rank > 0 && as->type == AS_ASSUMED_SHAPE)
361 || (as && as->type == AS_ASSUMED_RANK)
362 || sym->attr.pointer || sym->attr.allocatable || sym->attr.target
363 || (sym->ts.type == BT_CLASS && sym->attr.class_ok
364 && (CLASS_DATA (sym)->attr.class_pointer
365 || CLASS_DATA (sym)->attr.allocatable
366 || CLASS_DATA (sym)->attr.target))
367 || sym->attr.optional)
369 proc->attr.always_explicit = 1;
370 if (proc->result)
371 proc->result->attr.always_explicit = 1;
374 /* If the flavor is unknown at this point, it has to be a variable.
375 A procedure specification would have already set the type. */
377 if (sym->attr.flavor == FL_UNKNOWN)
378 gfc_add_flavor (&sym->attr, FL_VARIABLE, sym->name, &sym->declared_at);
380 if (gfc_pure (proc))
382 if (sym->attr.flavor == FL_PROCEDURE)
384 /* F08:C1279. */
385 if (!gfc_pure (sym))
387 gfc_error ("Dummy procedure %qs of PURE procedure at %L must "
388 "also be PURE", sym->name, &sym->declared_at);
389 continue;
392 else if (!sym->attr.pointer)
394 if (proc->attr.function && sym->attr.intent != INTENT_IN)
396 if (sym->attr.value)
397 gfc_notify_std (GFC_STD_F2008, "Argument %qs"
398 " of pure function %qs at %L with VALUE "
399 "attribute but without INTENT(IN)",
400 sym->name, proc->name, &sym->declared_at);
401 else
402 gfc_error ("Argument %qs of pure function %qs at %L must "
403 "be INTENT(IN) or VALUE", sym->name, proc->name,
404 &sym->declared_at);
407 if (proc->attr.subroutine && sym->attr.intent == INTENT_UNKNOWN)
409 if (sym->attr.value)
410 gfc_notify_std (GFC_STD_F2008, "Argument %qs"
411 " of pure subroutine %qs at %L with VALUE "
412 "attribute but without INTENT", sym->name,
413 proc->name, &sym->declared_at);
414 else
415 gfc_error ("Argument %qs of pure subroutine %qs at %L "
416 "must have its INTENT specified or have the "
417 "VALUE attribute", sym->name, proc->name,
418 &sym->declared_at);
422 /* F08:C1278a. */
423 if (sym->ts.type == BT_CLASS && sym->attr.intent == INTENT_OUT)
425 gfc_error ("INTENT(OUT) argument %qs of pure procedure %qs at %L"
426 " may not be polymorphic", sym->name, proc->name,
427 &sym->declared_at);
428 continue;
432 if (proc->attr.implicit_pure)
434 if (sym->attr.flavor == FL_PROCEDURE)
436 if (!gfc_pure (sym))
437 proc->attr.implicit_pure = 0;
439 else if (!sym->attr.pointer)
441 if (proc->attr.function && sym->attr.intent != INTENT_IN
442 && !sym->value)
443 proc->attr.implicit_pure = 0;
445 if (proc->attr.subroutine && sym->attr.intent == INTENT_UNKNOWN
446 && !sym->value)
447 proc->attr.implicit_pure = 0;
451 if (gfc_elemental (proc))
453 /* F08:C1289. */
454 if (sym->attr.codimension
455 || (sym->ts.type == BT_CLASS && CLASS_DATA (sym)
456 && CLASS_DATA (sym)->attr.codimension))
458 gfc_error ("Coarray dummy argument %qs at %L to elemental "
459 "procedure", sym->name, &sym->declared_at);
460 continue;
463 if (sym->as || (sym->ts.type == BT_CLASS && CLASS_DATA (sym)
464 && CLASS_DATA (sym)->as))
466 gfc_error ("Argument %qs of elemental procedure at %L must "
467 "be scalar", sym->name, &sym->declared_at);
468 continue;
471 if (sym->attr.allocatable
472 || (sym->ts.type == BT_CLASS && CLASS_DATA (sym)
473 && CLASS_DATA (sym)->attr.allocatable))
475 gfc_error ("Argument %qs of elemental procedure at %L cannot "
476 "have the ALLOCATABLE attribute", sym->name,
477 &sym->declared_at);
478 continue;
481 if (sym->attr.pointer
482 || (sym->ts.type == BT_CLASS && CLASS_DATA (sym)
483 && CLASS_DATA (sym)->attr.class_pointer))
485 gfc_error ("Argument %qs of elemental procedure at %L cannot "
486 "have the POINTER attribute", sym->name,
487 &sym->declared_at);
488 continue;
491 if (sym->attr.flavor == FL_PROCEDURE)
493 gfc_error ("Dummy procedure %qs not allowed in elemental "
494 "procedure %qs at %L", sym->name, proc->name,
495 &sym->declared_at);
496 continue;
499 /* Fortran 2008 Corrigendum 1, C1290a. */
500 if (sym->attr.intent == INTENT_UNKNOWN && !sym->attr.value)
502 gfc_error ("Argument %qs of elemental procedure %qs at %L must "
503 "have its INTENT specified or have the VALUE "
504 "attribute", sym->name, proc->name,
505 &sym->declared_at);
506 continue;
510 /* Each dummy shall be specified to be scalar. */
511 if (proc->attr.proc == PROC_ST_FUNCTION)
513 if (sym->as != NULL)
515 /* F03:C1263 (R1238) The function-name and each dummy-arg-name
516 shall be specified, explicitly or implicitly, to be scalar. */
517 gfc_error ("Argument '%s' of statement function '%s' at %L "
518 "must be scalar", sym->name, proc->name,
519 &proc->declared_at);
520 continue;
523 if (sym->ts.type == BT_CHARACTER)
525 gfc_charlen *cl = sym->ts.u.cl;
526 if (!cl || !cl->length || cl->length->expr_type != EXPR_CONSTANT)
528 gfc_error ("Character-valued argument %qs of statement "
529 "function at %L must have constant length",
530 sym->name, &sym->declared_at);
531 continue;
536 formal_arg_flag = false;
540 /* Work function called when searching for symbols that have argument lists
541 associated with them. */
543 static void
544 find_arglists (gfc_symbol *sym)
546 if (sym->attr.if_source == IFSRC_UNKNOWN || sym->ns != gfc_current_ns
547 || gfc_fl_struct (sym->attr.flavor) || sym->attr.intrinsic)
548 return;
550 resolve_formal_arglist (sym);
554 /* Given a namespace, resolve all formal argument lists within the namespace.
557 static void
558 resolve_formal_arglists (gfc_namespace *ns)
560 if (ns == NULL)
561 return;
563 gfc_traverse_ns (ns, find_arglists);
567 static void
568 resolve_contained_fntype (gfc_symbol *sym, gfc_namespace *ns)
570 bool t;
572 if (sym && sym->attr.flavor == FL_PROCEDURE
573 && sym->ns->parent
574 && sym->ns->parent->proc_name
575 && sym->ns->parent->proc_name->attr.flavor == FL_PROCEDURE
576 && !strcmp (sym->name, sym->ns->parent->proc_name->name))
577 gfc_error ("Contained procedure %qs at %L has the same name as its "
578 "encompassing procedure", sym->name, &sym->declared_at);
580 /* If this namespace is not a function or an entry master function,
581 ignore it. */
582 if (! sym || !(sym->attr.function || sym->attr.flavor == FL_VARIABLE)
583 || sym->attr.entry_master)
584 return;
586 /* Try to find out of what the return type is. */
587 if (sym->result->ts.type == BT_UNKNOWN && sym->result->ts.interface == NULL)
589 t = gfc_set_default_type (sym->result, 0, ns);
591 if (!t && !sym->result->attr.untyped)
593 if (sym->result == sym)
594 gfc_error ("Contained function %qs at %L has no IMPLICIT type",
595 sym->name, &sym->declared_at);
596 else if (!sym->result->attr.proc_pointer)
597 gfc_error ("Result %qs of contained function %qs at %L has "
598 "no IMPLICIT type", sym->result->name, sym->name,
599 &sym->result->declared_at);
600 sym->result->attr.untyped = 1;
604 /* Fortran 95 Draft Standard, page 51, Section 5.1.1.5, on the Character
605 type, lists the only ways a character length value of * can be used:
606 dummy arguments of procedures, named constants, and function results
607 in external functions. Internal function results and results of module
608 procedures are not on this list, ergo, not permitted. */
610 if (sym->result->ts.type == BT_CHARACTER)
612 gfc_charlen *cl = sym->result->ts.u.cl;
613 if ((!cl || !cl->length) && !sym->result->ts.deferred)
615 /* See if this is a module-procedure and adapt error message
616 accordingly. */
617 bool module_proc;
618 gcc_assert (ns->parent && ns->parent->proc_name);
619 module_proc = (ns->parent->proc_name->attr.flavor == FL_MODULE);
621 gfc_error (module_proc
622 ? G_("Character-valued module procedure %qs at %L"
623 " must not be assumed length")
624 : G_("Character-valued internal function %qs at %L"
625 " must not be assumed length"),
626 sym->name, &sym->declared_at);
632 /* Add NEW_ARGS to the formal argument list of PROC, taking care not to
633 introduce duplicates. */
635 static void
636 merge_argument_lists (gfc_symbol *proc, gfc_formal_arglist *new_args)
638 gfc_formal_arglist *f, *new_arglist;
639 gfc_symbol *new_sym;
641 for (; new_args != NULL; new_args = new_args->next)
643 new_sym = new_args->sym;
644 /* See if this arg is already in the formal argument list. */
645 for (f = proc->formal; f; f = f->next)
647 if (new_sym == f->sym)
648 break;
651 if (f)
652 continue;
654 /* Add a new argument. Argument order is not important. */
655 new_arglist = gfc_get_formal_arglist ();
656 new_arglist->sym = new_sym;
657 new_arglist->next = proc->formal;
658 proc->formal = new_arglist;
663 /* Flag the arguments that are not present in all entries. */
665 static void
666 check_argument_lists (gfc_symbol *proc, gfc_formal_arglist *new_args)
668 gfc_formal_arglist *f, *head;
669 head = new_args;
671 for (f = proc->formal; f; f = f->next)
673 if (f->sym == NULL)
674 continue;
676 for (new_args = head; new_args; new_args = new_args->next)
678 if (new_args->sym == f->sym)
679 break;
682 if (new_args)
683 continue;
685 f->sym->attr.not_always_present = 1;
690 /* Resolve alternate entry points. If a symbol has multiple entry points we
691 create a new master symbol for the main routine, and turn the existing
692 symbol into an entry point. */
694 static void
695 resolve_entries (gfc_namespace *ns)
697 gfc_namespace *old_ns;
698 gfc_code *c;
699 gfc_symbol *proc;
700 gfc_entry_list *el;
701 char name[GFC_MAX_SYMBOL_LEN + 1];
702 static int master_count = 0;
704 if (ns->proc_name == NULL)
705 return;
707 /* No need to do anything if this procedure doesn't have alternate entry
708 points. */
709 if (!ns->entries)
710 return;
712 /* We may already have resolved alternate entry points. */
713 if (ns->proc_name->attr.entry_master)
714 return;
716 /* If this isn't a procedure something has gone horribly wrong. */
717 gcc_assert (ns->proc_name->attr.flavor == FL_PROCEDURE);
719 /* Remember the current namespace. */
720 old_ns = gfc_current_ns;
722 gfc_current_ns = ns;
724 /* Add the main entry point to the list of entry points. */
725 el = gfc_get_entry_list ();
726 el->sym = ns->proc_name;
727 el->id = 0;
728 el->next = ns->entries;
729 ns->entries = el;
730 ns->proc_name->attr.entry = 1;
732 /* If it is a module function, it needs to be in the right namespace
733 so that gfc_get_fake_result_decl can gather up the results. The
734 need for this arose in get_proc_name, where these beasts were
735 left in their own namespace, to keep prior references linked to
736 the entry declaration.*/
737 if (ns->proc_name->attr.function
738 && ns->parent && ns->parent->proc_name->attr.flavor == FL_MODULE)
739 el->sym->ns = ns;
741 /* Do the same for entries where the master is not a module
742 procedure. These are retained in the module namespace because
743 of the module procedure declaration. */
744 for (el = el->next; el; el = el->next)
745 if (el->sym->ns->proc_name->attr.flavor == FL_MODULE
746 && el->sym->attr.mod_proc)
747 el->sym->ns = ns;
748 el = ns->entries;
750 /* Add an entry statement for it. */
751 c = gfc_get_code (EXEC_ENTRY);
752 c->ext.entry = el;
753 c->next = ns->code;
754 ns->code = c;
756 /* Create a new symbol for the master function. */
757 /* Give the internal function a unique name (within this file).
758 Also include the function name so the user has some hope of figuring
759 out what is going on. */
760 snprintf (name, GFC_MAX_SYMBOL_LEN, "master.%d.%s",
761 master_count++, ns->proc_name->name);
762 gfc_get_ha_symbol (name, &proc);
763 gcc_assert (proc != NULL);
765 gfc_add_procedure (&proc->attr, PROC_INTERNAL, proc->name, NULL);
766 if (ns->proc_name->attr.subroutine)
767 gfc_add_subroutine (&proc->attr, proc->name, NULL);
768 else
770 gfc_symbol *sym;
771 gfc_typespec *ts, *fts;
772 gfc_array_spec *as, *fas;
773 gfc_add_function (&proc->attr, proc->name, NULL);
774 proc->result = proc;
775 fas = ns->entries->sym->as;
776 fas = fas ? fas : ns->entries->sym->result->as;
777 fts = &ns->entries->sym->result->ts;
778 if (fts->type == BT_UNKNOWN)
779 fts = gfc_get_default_type (ns->entries->sym->result->name, NULL);
780 for (el = ns->entries->next; el; el = el->next)
782 ts = &el->sym->result->ts;
783 as = el->sym->as;
784 as = as ? as : el->sym->result->as;
785 if (ts->type == BT_UNKNOWN)
786 ts = gfc_get_default_type (el->sym->result->name, NULL);
788 if (! gfc_compare_types (ts, fts)
789 || (el->sym->result->attr.dimension
790 != ns->entries->sym->result->attr.dimension)
791 || (el->sym->result->attr.pointer
792 != ns->entries->sym->result->attr.pointer))
793 break;
794 else if (as && fas && ns->entries->sym->result != el->sym->result
795 && gfc_compare_array_spec (as, fas) == 0)
796 gfc_error ("Function %s at %L has entries with mismatched "
797 "array specifications", ns->entries->sym->name,
798 &ns->entries->sym->declared_at);
799 /* The characteristics need to match and thus both need to have
800 the same string length, i.e. both len=*, or both len=4.
801 Having both len=<variable> is also possible, but difficult to
802 check at compile time. */
803 else if (ts->type == BT_CHARACTER && ts->u.cl && fts->u.cl
804 && (((ts->u.cl->length && !fts->u.cl->length)
805 ||(!ts->u.cl->length && fts->u.cl->length))
806 || (ts->u.cl->length
807 && ts->u.cl->length->expr_type
808 != fts->u.cl->length->expr_type)
809 || (ts->u.cl->length
810 && ts->u.cl->length->expr_type == EXPR_CONSTANT
811 && mpz_cmp (ts->u.cl->length->value.integer,
812 fts->u.cl->length->value.integer) != 0)))
813 gfc_notify_std (GFC_STD_GNU, "Function %s at %L with "
814 "entries returning variables of different "
815 "string lengths", ns->entries->sym->name,
816 &ns->entries->sym->declared_at);
819 if (el == NULL)
821 sym = ns->entries->sym->result;
822 /* All result types the same. */
823 proc->ts = *fts;
824 if (sym->attr.dimension)
825 gfc_set_array_spec (proc, gfc_copy_array_spec (sym->as), NULL);
826 if (sym->attr.pointer)
827 gfc_add_pointer (&proc->attr, NULL);
829 else
831 /* Otherwise the result will be passed through a union by
832 reference. */
833 proc->attr.mixed_entry_master = 1;
834 for (el = ns->entries; el; el = el->next)
836 sym = el->sym->result;
837 if (sym->attr.dimension)
839 if (el == ns->entries)
840 gfc_error ("FUNCTION result %s can't be an array in "
841 "FUNCTION %s at %L", sym->name,
842 ns->entries->sym->name, &sym->declared_at);
843 else
844 gfc_error ("ENTRY result %s can't be an array in "
845 "FUNCTION %s at %L", sym->name,
846 ns->entries->sym->name, &sym->declared_at);
848 else if (sym->attr.pointer)
850 if (el == ns->entries)
851 gfc_error ("FUNCTION result %s can't be a POINTER in "
852 "FUNCTION %s at %L", sym->name,
853 ns->entries->sym->name, &sym->declared_at);
854 else
855 gfc_error ("ENTRY result %s can't be a POINTER in "
856 "FUNCTION %s at %L", sym->name,
857 ns->entries->sym->name, &sym->declared_at);
859 else
861 ts = &sym->ts;
862 if (ts->type == BT_UNKNOWN)
863 ts = gfc_get_default_type (sym->name, NULL);
864 switch (ts->type)
866 case BT_INTEGER:
867 if (ts->kind == gfc_default_integer_kind)
868 sym = NULL;
869 break;
870 case BT_REAL:
871 if (ts->kind == gfc_default_real_kind
872 || ts->kind == gfc_default_double_kind)
873 sym = NULL;
874 break;
875 case BT_COMPLEX:
876 if (ts->kind == gfc_default_complex_kind)
877 sym = NULL;
878 break;
879 case BT_LOGICAL:
880 if (ts->kind == gfc_default_logical_kind)
881 sym = NULL;
882 break;
883 case BT_UNKNOWN:
884 /* We will issue error elsewhere. */
885 sym = NULL;
886 break;
887 default:
888 break;
890 if (sym)
892 if (el == ns->entries)
893 gfc_error ("FUNCTION result %s can't be of type %s "
894 "in FUNCTION %s at %L", sym->name,
895 gfc_typename (ts), ns->entries->sym->name,
896 &sym->declared_at);
897 else
898 gfc_error ("ENTRY result %s can't be of type %s "
899 "in FUNCTION %s at %L", sym->name,
900 gfc_typename (ts), ns->entries->sym->name,
901 &sym->declared_at);
907 proc->attr.access = ACCESS_PRIVATE;
908 proc->attr.entry_master = 1;
910 /* Merge all the entry point arguments. */
911 for (el = ns->entries; el; el = el->next)
912 merge_argument_lists (proc, el->sym->formal);
914 /* Check the master formal arguments for any that are not
915 present in all entry points. */
916 for (el = ns->entries; el; el = el->next)
917 check_argument_lists (proc, el->sym->formal);
919 /* Use the master function for the function body. */
920 ns->proc_name = proc;
922 /* Finalize the new symbols. */
923 gfc_commit_symbols ();
925 /* Restore the original namespace. */
926 gfc_current_ns = old_ns;
930 /* Resolve common variables. */
931 static void
932 resolve_common_vars (gfc_common_head *common_block, bool named_common)
934 gfc_symbol *csym = common_block->head;
936 for (; csym; csym = csym->common_next)
938 /* gfc_add_in_common may have been called before, but the reported errors
939 have been ignored to continue parsing.
940 We do the checks again here. */
941 if (!csym->attr.use_assoc)
942 gfc_add_in_common (&csym->attr, csym->name, &common_block->where);
944 if (csym->value || csym->attr.data)
946 if (!csym->ns->is_block_data)
947 gfc_notify_std (GFC_STD_GNU, "Variable %qs at %L is in COMMON "
948 "but only in BLOCK DATA initialization is "
949 "allowed", csym->name, &csym->declared_at);
950 else if (!named_common)
951 gfc_notify_std (GFC_STD_GNU, "Initialized variable %qs at %L is "
952 "in a blank COMMON but initialization is only "
953 "allowed in named common blocks", csym->name,
954 &csym->declared_at);
957 if (UNLIMITED_POLY (csym))
958 gfc_error_now ("%qs in cannot appear in COMMON at %L "
959 "[F2008:C5100]", csym->name, &csym->declared_at);
961 if (csym->ts.type != BT_DERIVED)
962 continue;
964 if (!(csym->ts.u.derived->attr.sequence
965 || csym->ts.u.derived->attr.is_bind_c))
966 gfc_error_now ("Derived type variable %qs in COMMON at %L "
967 "has neither the SEQUENCE nor the BIND(C) "
968 "attribute", csym->name, &csym->declared_at);
969 if (csym->ts.u.derived->attr.alloc_comp)
970 gfc_error_now ("Derived type variable %qs in COMMON at %L "
971 "has an ultimate component that is "
972 "allocatable", csym->name, &csym->declared_at);
973 if (gfc_has_default_initializer (csym->ts.u.derived))
974 gfc_error_now ("Derived type variable %qs in COMMON at %L "
975 "may not have default initializer", csym->name,
976 &csym->declared_at);
978 if (csym->attr.flavor == FL_UNKNOWN && !csym->attr.proc_pointer)
979 gfc_add_flavor (&csym->attr, FL_VARIABLE, csym->name, &csym->declared_at);
983 /* Resolve common blocks. */
984 static void
985 resolve_common_blocks (gfc_symtree *common_root)
987 gfc_symbol *sym;
988 gfc_gsymbol * gsym;
990 if (common_root == NULL)
991 return;
993 if (common_root->left)
994 resolve_common_blocks (common_root->left);
995 if (common_root->right)
996 resolve_common_blocks (common_root->right);
998 resolve_common_vars (common_root->n.common, true);
1000 /* The common name is a global name - in Fortran 2003 also if it has a
1001 C binding name, since Fortran 2008 only the C binding name is a global
1002 identifier. */
1003 if (!common_root->n.common->binding_label
1004 || gfc_notification_std (GFC_STD_F2008))
1006 gsym = gfc_find_gsymbol (gfc_gsym_root,
1007 common_root->n.common->name);
1009 if (gsym && gfc_notification_std (GFC_STD_F2008)
1010 && gsym->type == GSYM_COMMON
1011 && ((common_root->n.common->binding_label
1012 && (!gsym->binding_label
1013 || strcmp (common_root->n.common->binding_label,
1014 gsym->binding_label) != 0))
1015 || (!common_root->n.common->binding_label
1016 && gsym->binding_label)))
1018 gfc_error ("In Fortran 2003 COMMON %qs block at %L is a global "
1019 "identifier and must thus have the same binding name "
1020 "as the same-named COMMON block at %L: %s vs %s",
1021 common_root->n.common->name, &common_root->n.common->where,
1022 &gsym->where,
1023 common_root->n.common->binding_label
1024 ? common_root->n.common->binding_label : "(blank)",
1025 gsym->binding_label ? gsym->binding_label : "(blank)");
1026 return;
1029 if (gsym && gsym->type != GSYM_COMMON
1030 && !common_root->n.common->binding_label)
1032 gfc_error ("COMMON block %qs at %L uses the same global identifier "
1033 "as entity at %L",
1034 common_root->n.common->name, &common_root->n.common->where,
1035 &gsym->where);
1036 return;
1038 if (gsym && gsym->type != GSYM_COMMON)
1040 gfc_error ("Fortran 2008: COMMON block %qs with binding label at "
1041 "%L sharing the identifier with global non-COMMON-block "
1042 "entity at %L", common_root->n.common->name,
1043 &common_root->n.common->where, &gsym->where);
1044 return;
1046 if (!gsym)
1048 gsym = gfc_get_gsymbol (common_root->n.common->name);
1049 gsym->type = GSYM_COMMON;
1050 gsym->where = common_root->n.common->where;
1051 gsym->defined = 1;
1053 gsym->used = 1;
1056 if (common_root->n.common->binding_label)
1058 gsym = gfc_find_gsymbol (gfc_gsym_root,
1059 common_root->n.common->binding_label);
1060 if (gsym && gsym->type != GSYM_COMMON)
1062 gfc_error ("COMMON block at %L with binding label %qs uses the same "
1063 "global identifier as entity at %L",
1064 &common_root->n.common->where,
1065 common_root->n.common->binding_label, &gsym->where);
1066 return;
1068 if (!gsym)
1070 gsym = gfc_get_gsymbol (common_root->n.common->binding_label);
1071 gsym->type = GSYM_COMMON;
1072 gsym->where = common_root->n.common->where;
1073 gsym->defined = 1;
1075 gsym->used = 1;
1078 gfc_find_symbol (common_root->name, gfc_current_ns, 0, &sym);
1079 if (sym == NULL)
1080 return;
1082 if (sym->attr.flavor == FL_PARAMETER)
1083 gfc_error ("COMMON block %qs at %L is used as PARAMETER at %L",
1084 sym->name, &common_root->n.common->where, &sym->declared_at);
1086 if (sym->attr.external)
1087 gfc_error ("COMMON block %qs at %L can not have the EXTERNAL attribute",
1088 sym->name, &common_root->n.common->where);
1090 if (sym->attr.intrinsic)
1091 gfc_error ("COMMON block %qs at %L is also an intrinsic procedure",
1092 sym->name, &common_root->n.common->where);
1093 else if (sym->attr.result
1094 || gfc_is_function_return_value (sym, gfc_current_ns))
1095 gfc_notify_std (GFC_STD_F2003, "COMMON block %qs at %L "
1096 "that is also a function result", sym->name,
1097 &common_root->n.common->where);
1098 else if (sym->attr.flavor == FL_PROCEDURE && sym->attr.proc != PROC_INTERNAL
1099 && sym->attr.proc != PROC_ST_FUNCTION)
1100 gfc_notify_std (GFC_STD_F2003, "COMMON block %qs at %L "
1101 "that is also a global procedure", sym->name,
1102 &common_root->n.common->where);
1106 /* Resolve contained function types. Because contained functions can call one
1107 another, they have to be worked out before any of the contained procedures
1108 can be resolved.
1110 The good news is that if a function doesn't already have a type, the only
1111 way it can get one is through an IMPLICIT type or a RESULT variable, because
1112 by definition contained functions are contained namespace they're contained
1113 in, not in a sibling or parent namespace. */
1115 static void
1116 resolve_contained_functions (gfc_namespace *ns)
1118 gfc_namespace *child;
1119 gfc_entry_list *el;
1121 resolve_formal_arglists (ns);
1123 for (child = ns->contained; child; child = child->sibling)
1125 /* Resolve alternate entry points first. */
1126 resolve_entries (child);
1128 /* Then check function return types. */
1129 resolve_contained_fntype (child->proc_name, child);
1130 for (el = child->entries; el; el = el->next)
1131 resolve_contained_fntype (el->sym, child);
1137 /* A Parameterized Derived Type constructor must contain values for
1138 the PDT KIND parameters or they must have a default initializer.
1139 Go through the constructor picking out the KIND expressions,
1140 storing them in 'param_list' and then call gfc_get_pdt_instance
1141 to obtain the PDT instance. */
1143 static gfc_actual_arglist *param_list, *param_tail, *param;
1145 static bool
1146 get_pdt_spec_expr (gfc_component *c, gfc_expr *expr)
1148 param = gfc_get_actual_arglist ();
1149 if (!param_list)
1150 param_list = param_tail = param;
1151 else
1153 param_tail->next = param;
1154 param_tail = param_tail->next;
1157 param_tail->name = c->name;
1158 if (expr)
1159 param_tail->expr = gfc_copy_expr (expr);
1160 else if (c->initializer)
1161 param_tail->expr = gfc_copy_expr (c->initializer);
1162 else
1164 param_tail->spec_type = SPEC_ASSUMED;
1165 if (c->attr.pdt_kind)
1167 gfc_error ("The KIND parameter %qs in the PDT constructor "
1168 "at %C has no value", param->name);
1169 return false;
1173 return true;
1176 static bool
1177 get_pdt_constructor (gfc_expr *expr, gfc_constructor **constr,
1178 gfc_symbol *derived)
1180 gfc_constructor *cons = NULL;
1181 gfc_component *comp;
1182 bool t = true;
1184 if (expr && expr->expr_type == EXPR_STRUCTURE)
1185 cons = gfc_constructor_first (expr->value.constructor);
1186 else if (constr)
1187 cons = *constr;
1188 gcc_assert (cons);
1190 comp = derived->components;
1192 for (; comp && cons; comp = comp->next, cons = gfc_constructor_next (cons))
1194 if (cons->expr
1195 && cons->expr->expr_type == EXPR_STRUCTURE
1196 && comp->ts.type == BT_DERIVED)
1198 t = get_pdt_constructor (cons->expr, NULL, comp->ts.u.derived);
1199 if (!t)
1200 return t;
1202 else if (comp->ts.type == BT_DERIVED)
1204 t = get_pdt_constructor (NULL, &cons, comp->ts.u.derived);
1205 if (!t)
1206 return t;
1208 else if ((comp->attr.pdt_kind || comp->attr.pdt_len)
1209 && derived->attr.pdt_template)
1211 t = get_pdt_spec_expr (comp, cons->expr);
1212 if (!t)
1213 return t;
1216 return t;
1220 static bool resolve_fl_derived0 (gfc_symbol *sym);
1221 static bool resolve_fl_struct (gfc_symbol *sym);
1224 /* Resolve all of the elements of a structure constructor and make sure that
1225 the types are correct. The 'init' flag indicates that the given
1226 constructor is an initializer. */
1228 static bool
1229 resolve_structure_cons (gfc_expr *expr, int init)
1231 gfc_constructor *cons;
1232 gfc_component *comp;
1233 bool t;
1234 symbol_attribute a;
1236 t = true;
1238 if (expr->ts.type == BT_DERIVED || expr->ts.type == BT_UNION)
1240 if (expr->ts.u.derived->attr.flavor == FL_DERIVED)
1241 resolve_fl_derived0 (expr->ts.u.derived);
1242 else
1243 resolve_fl_struct (expr->ts.u.derived);
1245 /* If this is a Parameterized Derived Type template, find the
1246 instance corresponding to the PDT kind parameters. */
1247 if (expr->ts.u.derived->attr.pdt_template)
1249 param_list = NULL;
1250 t = get_pdt_constructor (expr, NULL, expr->ts.u.derived);
1251 if (!t)
1252 return t;
1253 gfc_get_pdt_instance (param_list, &expr->ts.u.derived, NULL);
1255 expr->param_list = gfc_copy_actual_arglist (param_list);
1257 if (param_list)
1258 gfc_free_actual_arglist (param_list);
1260 if (!expr->ts.u.derived->attr.pdt_type)
1261 return false;
1265 cons = gfc_constructor_first (expr->value.constructor);
1267 /* A constructor may have references if it is the result of substituting a
1268 parameter variable. In this case we just pull out the component we
1269 want. */
1270 if (expr->ref)
1271 comp = expr->ref->u.c.sym->components;
1272 else
1273 comp = expr->ts.u.derived->components;
1275 for (; comp && cons; comp = comp->next, cons = gfc_constructor_next (cons))
1277 int rank;
1279 if (!cons->expr)
1280 continue;
1282 /* Unions use an EXPR_NULL contrived expression to tell the translation
1283 phase to generate an initializer of the appropriate length.
1284 Ignore it here. */
1285 if (cons->expr->ts.type == BT_UNION && cons->expr->expr_type == EXPR_NULL)
1286 continue;
1288 if (!gfc_resolve_expr (cons->expr))
1290 t = false;
1291 continue;
1294 rank = comp->as ? comp->as->rank : 0;
1295 if (comp->ts.type == BT_CLASS
1296 && !comp->ts.u.derived->attr.unlimited_polymorphic
1297 && CLASS_DATA (comp)->as)
1298 rank = CLASS_DATA (comp)->as->rank;
1300 if (cons->expr->expr_type != EXPR_NULL && rank != cons->expr->rank
1301 && (comp->attr.allocatable || cons->expr->rank))
1303 gfc_error ("The rank of the element in the structure "
1304 "constructor at %L does not match that of the "
1305 "component (%d/%d)", &cons->expr->where,
1306 cons->expr->rank, rank);
1307 t = false;
1310 /* If we don't have the right type, try to convert it. */
1312 if (!comp->attr.proc_pointer &&
1313 !gfc_compare_types (&cons->expr->ts, &comp->ts))
1315 if (strcmp (comp->name, "_extends") == 0)
1317 /* Can afford to be brutal with the _extends initializer.
1318 The derived type can get lost because it is PRIVATE
1319 but it is not usage constrained by the standard. */
1320 cons->expr->ts = comp->ts;
1322 else if (comp->attr.pointer && cons->expr->ts.type != BT_UNKNOWN)
1324 gfc_error ("The element in the structure constructor at %L, "
1325 "for pointer component %qs, is %s but should be %s",
1326 &cons->expr->where, comp->name,
1327 gfc_basic_typename (cons->expr->ts.type),
1328 gfc_basic_typename (comp->ts.type));
1329 t = false;
1331 else
1333 bool t2 = gfc_convert_type (cons->expr, &comp->ts, 1);
1334 if (t)
1335 t = t2;
1339 /* For strings, the length of the constructor should be the same as
1340 the one of the structure, ensure this if the lengths are known at
1341 compile time and when we are dealing with PARAMETER or structure
1342 constructors. */
1343 if (cons->expr->ts.type == BT_CHARACTER && comp->ts.u.cl
1344 && comp->ts.u.cl->length
1345 && comp->ts.u.cl->length->expr_type == EXPR_CONSTANT
1346 && cons->expr->ts.u.cl && cons->expr->ts.u.cl->length
1347 && cons->expr->ts.u.cl->length->expr_type == EXPR_CONSTANT
1348 && cons->expr->rank != 0
1349 && mpz_cmp (cons->expr->ts.u.cl->length->value.integer,
1350 comp->ts.u.cl->length->value.integer) != 0)
1352 if (cons->expr->expr_type == EXPR_VARIABLE
1353 && cons->expr->symtree->n.sym->attr.flavor == FL_PARAMETER)
1355 /* Wrap the parameter in an array constructor (EXPR_ARRAY)
1356 to make use of the gfc_resolve_character_array_constructor
1357 machinery. The expression is later simplified away to
1358 an array of string literals. */
1359 gfc_expr *para = cons->expr;
1360 cons->expr = gfc_get_expr ();
1361 cons->expr->ts = para->ts;
1362 cons->expr->where = para->where;
1363 cons->expr->expr_type = EXPR_ARRAY;
1364 cons->expr->rank = para->rank;
1365 cons->expr->shape = gfc_copy_shape (para->shape, para->rank);
1366 gfc_constructor_append_expr (&cons->expr->value.constructor,
1367 para, &cons->expr->where);
1370 if (cons->expr->expr_type == EXPR_ARRAY)
1372 /* Rely on the cleanup of the namespace to deal correctly with
1373 the old charlen. (There was a block here that attempted to
1374 remove the charlen but broke the chain in so doing.) */
1375 cons->expr->ts.u.cl = gfc_new_charlen (gfc_current_ns, NULL);
1376 cons->expr->ts.u.cl->length_from_typespec = true;
1377 cons->expr->ts.u.cl->length = gfc_copy_expr (comp->ts.u.cl->length);
1378 gfc_resolve_character_array_constructor (cons->expr);
1382 if (cons->expr->expr_type == EXPR_NULL
1383 && !(comp->attr.pointer || comp->attr.allocatable
1384 || comp->attr.proc_pointer || comp->ts.f90_type == BT_VOID
1385 || (comp->ts.type == BT_CLASS
1386 && (CLASS_DATA (comp)->attr.class_pointer
1387 || CLASS_DATA (comp)->attr.allocatable))))
1389 t = false;
1390 gfc_error ("The NULL in the structure constructor at %L is "
1391 "being applied to component %qs, which is neither "
1392 "a POINTER nor ALLOCATABLE", &cons->expr->where,
1393 comp->name);
1396 if (comp->attr.proc_pointer && comp->ts.interface)
1398 /* Check procedure pointer interface. */
1399 gfc_symbol *s2 = NULL;
1400 gfc_component *c2;
1401 const char *name;
1402 char err[200];
1404 c2 = gfc_get_proc_ptr_comp (cons->expr);
1405 if (c2)
1407 s2 = c2->ts.interface;
1408 name = c2->name;
1410 else if (cons->expr->expr_type == EXPR_FUNCTION)
1412 s2 = cons->expr->symtree->n.sym->result;
1413 name = cons->expr->symtree->n.sym->result->name;
1415 else if (cons->expr->expr_type != EXPR_NULL)
1417 s2 = cons->expr->symtree->n.sym;
1418 name = cons->expr->symtree->n.sym->name;
1421 if (s2 && !gfc_compare_interfaces (comp->ts.interface, s2, name, 0, 1,
1422 err, sizeof (err), NULL, NULL))
1424 gfc_error_opt (OPT_Wargument_mismatch,
1425 "Interface mismatch for procedure-pointer "
1426 "component %qs in structure constructor at %L:"
1427 " %s", comp->name, &cons->expr->where, err);
1428 return false;
1432 if (!comp->attr.pointer || comp->attr.proc_pointer
1433 || cons->expr->expr_type == EXPR_NULL)
1434 continue;
1436 a = gfc_expr_attr (cons->expr);
1438 if (!a.pointer && !a.target)
1440 t = false;
1441 gfc_error ("The element in the structure constructor at %L, "
1442 "for pointer component %qs should be a POINTER or "
1443 "a TARGET", &cons->expr->where, comp->name);
1446 if (init)
1448 /* F08:C461. Additional checks for pointer initialization. */
1449 if (a.allocatable)
1451 t = false;
1452 gfc_error ("Pointer initialization target at %L "
1453 "must not be ALLOCATABLE", &cons->expr->where);
1455 if (!a.save)
1457 t = false;
1458 gfc_error ("Pointer initialization target at %L "
1459 "must have the SAVE attribute", &cons->expr->where);
1463 /* F2003, C1272 (3). */
1464 bool impure = cons->expr->expr_type == EXPR_VARIABLE
1465 && (gfc_impure_variable (cons->expr->symtree->n.sym)
1466 || gfc_is_coindexed (cons->expr));
1467 if (impure && gfc_pure (NULL))
1469 t = false;
1470 gfc_error ("Invalid expression in the structure constructor for "
1471 "pointer component %qs at %L in PURE procedure",
1472 comp->name, &cons->expr->where);
1475 if (impure)
1476 gfc_unset_implicit_pure (NULL);
1479 return t;
1483 /****************** Expression name resolution ******************/
1485 /* Returns 0 if a symbol was not declared with a type or
1486 attribute declaration statement, nonzero otherwise. */
1488 static int
1489 was_declared (gfc_symbol *sym)
1491 symbol_attribute a;
1493 a = sym->attr;
1495 if (!a.implicit_type && sym->ts.type != BT_UNKNOWN)
1496 return 1;
1498 if (a.allocatable || a.dimension || a.dummy || a.external || a.intrinsic
1499 || a.optional || a.pointer || a.save || a.target || a.volatile_
1500 || a.value || a.access != ACCESS_UNKNOWN || a.intent != INTENT_UNKNOWN
1501 || a.asynchronous || a.codimension)
1502 return 1;
1504 return 0;
1508 /* Determine if a symbol is generic or not. */
1510 static int
1511 generic_sym (gfc_symbol *sym)
1513 gfc_symbol *s;
1515 if (sym->attr.generic ||
1516 (sym->attr.intrinsic && gfc_generic_intrinsic (sym->name)))
1517 return 1;
1519 if (was_declared (sym) || sym->ns->parent == NULL)
1520 return 0;
1522 gfc_find_symbol (sym->name, sym->ns->parent, 1, &s);
1524 if (s != NULL)
1526 if (s == sym)
1527 return 0;
1528 else
1529 return generic_sym (s);
1532 return 0;
1536 /* Determine if a symbol is specific or not. */
1538 static int
1539 specific_sym (gfc_symbol *sym)
1541 gfc_symbol *s;
1543 if (sym->attr.if_source == IFSRC_IFBODY
1544 || sym->attr.proc == PROC_MODULE
1545 || sym->attr.proc == PROC_INTERNAL
1546 || sym->attr.proc == PROC_ST_FUNCTION
1547 || (sym->attr.intrinsic && gfc_specific_intrinsic (sym->name))
1548 || sym->attr.external)
1549 return 1;
1551 if (was_declared (sym) || sym->ns->parent == NULL)
1552 return 0;
1554 gfc_find_symbol (sym->name, sym->ns->parent, 1, &s);
1556 return (s == NULL) ? 0 : specific_sym (s);
1560 /* Figure out if the procedure is specific, generic or unknown. */
1562 enum proc_type
1563 { PTYPE_GENERIC = 1, PTYPE_SPECIFIC, PTYPE_UNKNOWN };
1565 static proc_type
1566 procedure_kind (gfc_symbol *sym)
1568 if (generic_sym (sym))
1569 return PTYPE_GENERIC;
1571 if (specific_sym (sym))
1572 return PTYPE_SPECIFIC;
1574 return PTYPE_UNKNOWN;
1577 /* Check references to assumed size arrays. The flag need_full_assumed_size
1578 is nonzero when matching actual arguments. */
1580 static int need_full_assumed_size = 0;
1582 static bool
1583 check_assumed_size_reference (gfc_symbol *sym, gfc_expr *e)
1585 if (need_full_assumed_size || !(sym->as && sym->as->type == AS_ASSUMED_SIZE))
1586 return false;
1588 /* FIXME: The comparison "e->ref->u.ar.type == AR_FULL" is wrong.
1589 What should it be? */
1590 if (e->ref && (e->ref->u.ar.end[e->ref->u.ar.as->rank - 1] == NULL)
1591 && (e->ref->u.ar.as->type == AS_ASSUMED_SIZE)
1592 && (e->ref->u.ar.type == AR_FULL))
1594 gfc_error ("The upper bound in the last dimension must "
1595 "appear in the reference to the assumed size "
1596 "array %qs at %L", sym->name, &e->where);
1597 return true;
1599 return false;
1603 /* Look for bad assumed size array references in argument expressions
1604 of elemental and array valued intrinsic procedures. Since this is
1605 called from procedure resolution functions, it only recurses at
1606 operators. */
1608 static bool
1609 resolve_assumed_size_actual (gfc_expr *e)
1611 if (e == NULL)
1612 return false;
1614 switch (e->expr_type)
1616 case EXPR_VARIABLE:
1617 if (e->symtree && check_assumed_size_reference (e->symtree->n.sym, e))
1618 return true;
1619 break;
1621 case EXPR_OP:
1622 if (resolve_assumed_size_actual (e->value.op.op1)
1623 || resolve_assumed_size_actual (e->value.op.op2))
1624 return true;
1625 break;
1627 default:
1628 break;
1630 return false;
1634 /* Check a generic procedure, passed as an actual argument, to see if
1635 there is a matching specific name. If none, it is an error, and if
1636 more than one, the reference is ambiguous. */
1637 static int
1638 count_specific_procs (gfc_expr *e)
1640 int n;
1641 gfc_interface *p;
1642 gfc_symbol *sym;
1644 n = 0;
1645 sym = e->symtree->n.sym;
1647 for (p = sym->generic; p; p = p->next)
1648 if (strcmp (sym->name, p->sym->name) == 0)
1650 e->symtree = gfc_find_symtree (p->sym->ns->sym_root,
1651 sym->name);
1652 n++;
1655 if (n > 1)
1656 gfc_error ("%qs at %L is ambiguous", e->symtree->n.sym->name,
1657 &e->where);
1659 if (n == 0)
1660 gfc_error ("GENERIC procedure %qs is not allowed as an actual "
1661 "argument at %L", sym->name, &e->where);
1663 return n;
1667 /* See if a call to sym could possibly be a not allowed RECURSION because of
1668 a missing RECURSIVE declaration. This means that either sym is the current
1669 context itself, or sym is the parent of a contained procedure calling its
1670 non-RECURSIVE containing procedure.
1671 This also works if sym is an ENTRY. */
1673 static bool
1674 is_illegal_recursion (gfc_symbol* sym, gfc_namespace* context)
1676 gfc_symbol* proc_sym;
1677 gfc_symbol* context_proc;
1678 gfc_namespace* real_context;
1680 if (sym->attr.flavor == FL_PROGRAM
1681 || gfc_fl_struct (sym->attr.flavor))
1682 return false;
1684 gcc_assert (sym->attr.flavor == FL_PROCEDURE);
1686 /* If we've got an ENTRY, find real procedure. */
1687 if (sym->attr.entry && sym->ns->entries)
1688 proc_sym = sym->ns->entries->sym;
1689 else
1690 proc_sym = sym;
1692 /* If sym is RECURSIVE, all is well of course. */
1693 if (proc_sym->attr.recursive || flag_recursive)
1694 return false;
1696 /* Find the context procedure's "real" symbol if it has entries.
1697 We look for a procedure symbol, so recurse on the parents if we don't
1698 find one (like in case of a BLOCK construct). */
1699 for (real_context = context; ; real_context = real_context->parent)
1701 /* We should find something, eventually! */
1702 gcc_assert (real_context);
1704 context_proc = (real_context->entries ? real_context->entries->sym
1705 : real_context->proc_name);
1707 /* In some special cases, there may not be a proc_name, like for this
1708 invalid code:
1709 real(bad_kind()) function foo () ...
1710 when checking the call to bad_kind ().
1711 In these cases, we simply return here and assume that the
1712 call is ok. */
1713 if (!context_proc)
1714 return false;
1716 if (context_proc->attr.flavor != FL_LABEL)
1717 break;
1720 /* A call from sym's body to itself is recursion, of course. */
1721 if (context_proc == proc_sym)
1722 return true;
1724 /* The same is true if context is a contained procedure and sym the
1725 containing one. */
1726 if (context_proc->attr.contained)
1728 gfc_symbol* parent_proc;
1730 gcc_assert (context->parent);
1731 parent_proc = (context->parent->entries ? context->parent->entries->sym
1732 : context->parent->proc_name);
1734 if (parent_proc == proc_sym)
1735 return true;
1738 return false;
1742 /* Resolve an intrinsic procedure: Set its function/subroutine attribute,
1743 its typespec and formal argument list. */
1745 bool
1746 gfc_resolve_intrinsic (gfc_symbol *sym, locus *loc)
1748 gfc_intrinsic_sym* isym = NULL;
1749 const char* symstd;
1751 if (sym->formal)
1752 return true;
1754 /* Already resolved. */
1755 if (sym->from_intmod && sym->ts.type != BT_UNKNOWN)
1756 return true;
1758 /* We already know this one is an intrinsic, so we don't call
1759 gfc_is_intrinsic for full checking but rather use gfc_find_function and
1760 gfc_find_subroutine directly to check whether it is a function or
1761 subroutine. */
1763 if (sym->intmod_sym_id && sym->attr.subroutine)
1765 gfc_isym_id id = gfc_isym_id_by_intmod_sym (sym);
1766 isym = gfc_intrinsic_subroutine_by_id (id);
1768 else if (sym->intmod_sym_id)
1770 gfc_isym_id id = gfc_isym_id_by_intmod_sym (sym);
1771 isym = gfc_intrinsic_function_by_id (id);
1773 else if (!sym->attr.subroutine)
1774 isym = gfc_find_function (sym->name);
1776 if (isym && !sym->attr.subroutine)
1778 if (sym->ts.type != BT_UNKNOWN && warn_surprising
1779 && !sym->attr.implicit_type)
1780 gfc_warning (OPT_Wsurprising,
1781 "Type specified for intrinsic function %qs at %L is"
1782 " ignored", sym->name, &sym->declared_at);
1784 if (!sym->attr.function &&
1785 !gfc_add_function(&sym->attr, sym->name, loc))
1786 return false;
1788 sym->ts = isym->ts;
1790 else if (isym || (isym = gfc_find_subroutine (sym->name)))
1792 if (sym->ts.type != BT_UNKNOWN && !sym->attr.implicit_type)
1794 gfc_error ("Intrinsic subroutine %qs at %L shall not have a type"
1795 " specifier", sym->name, &sym->declared_at);
1796 return false;
1799 if (!sym->attr.subroutine &&
1800 !gfc_add_subroutine(&sym->attr, sym->name, loc))
1801 return false;
1803 else
1805 gfc_error ("%qs declared INTRINSIC at %L does not exist", sym->name,
1806 &sym->declared_at);
1807 return false;
1810 gfc_copy_formal_args_intr (sym, isym, NULL);
1812 sym->attr.pure = isym->pure;
1813 sym->attr.elemental = isym->elemental;
1815 /* Check it is actually available in the standard settings. */
1816 if (!gfc_check_intrinsic_standard (isym, &symstd, false, sym->declared_at))
1818 gfc_error ("The intrinsic %qs declared INTRINSIC at %L is not "
1819 "available in the current standard settings but %s. Use "
1820 "an appropriate %<-std=*%> option or enable "
1821 "%<-fall-intrinsics%> in order to use it.",
1822 sym->name, &sym->declared_at, symstd);
1823 return false;
1826 return true;
1830 /* Resolve a procedure expression, like passing it to a called procedure or as
1831 RHS for a procedure pointer assignment. */
1833 static bool
1834 resolve_procedure_expression (gfc_expr* expr)
1836 gfc_symbol* sym;
1838 if (expr->expr_type != EXPR_VARIABLE)
1839 return true;
1840 gcc_assert (expr->symtree);
1842 sym = expr->symtree->n.sym;
1844 if (sym->attr.intrinsic)
1845 gfc_resolve_intrinsic (sym, &expr->where);
1847 if (sym->attr.flavor != FL_PROCEDURE
1848 || (sym->attr.function && sym->result == sym))
1849 return true;
1851 /* A non-RECURSIVE procedure that is used as procedure expression within its
1852 own body is in danger of being called recursively. */
1853 if (is_illegal_recursion (sym, gfc_current_ns))
1854 gfc_warning (0, "Non-RECURSIVE procedure %qs at %L is possibly calling"
1855 " itself recursively. Declare it RECURSIVE or use"
1856 " %<-frecursive%>", sym->name, &expr->where);
1858 return true;
1862 /* Resolve an actual argument list. Most of the time, this is just
1863 resolving the expressions in the list.
1864 The exception is that we sometimes have to decide whether arguments
1865 that look like procedure arguments are really simple variable
1866 references. */
1868 static bool
1869 resolve_actual_arglist (gfc_actual_arglist *arg, procedure_type ptype,
1870 bool no_formal_args)
1872 gfc_symbol *sym;
1873 gfc_symtree *parent_st;
1874 gfc_expr *e;
1875 gfc_component *comp;
1876 int save_need_full_assumed_size;
1877 bool return_value = false;
1878 bool actual_arg_sav = actual_arg, first_actual_arg_sav = first_actual_arg;
1880 actual_arg = true;
1881 first_actual_arg = true;
1883 for (; arg; arg = arg->next)
1885 e = arg->expr;
1886 if (e == NULL)
1888 /* Check the label is a valid branching target. */
1889 if (arg->label)
1891 if (arg->label->defined == ST_LABEL_UNKNOWN)
1893 gfc_error ("Label %d referenced at %L is never defined",
1894 arg->label->value, &arg->label->where);
1895 goto cleanup;
1898 first_actual_arg = false;
1899 continue;
1902 if (e->expr_type == EXPR_VARIABLE
1903 && e->symtree->n.sym->attr.generic
1904 && no_formal_args
1905 && count_specific_procs (e) != 1)
1906 goto cleanup;
1908 if (e->ts.type != BT_PROCEDURE)
1910 save_need_full_assumed_size = need_full_assumed_size;
1911 if (e->expr_type != EXPR_VARIABLE)
1912 need_full_assumed_size = 0;
1913 if (!gfc_resolve_expr (e))
1914 goto cleanup;
1915 need_full_assumed_size = save_need_full_assumed_size;
1916 goto argument_list;
1919 /* See if the expression node should really be a variable reference. */
1921 sym = e->symtree->n.sym;
1923 if (sym->attr.flavor == FL_PROCEDURE
1924 || sym->attr.intrinsic
1925 || sym->attr.external)
1927 int actual_ok;
1929 /* If a procedure is not already determined to be something else
1930 check if it is intrinsic. */
1931 if (gfc_is_intrinsic (sym, sym->attr.subroutine, e->where))
1932 sym->attr.intrinsic = 1;
1934 if (sym->attr.proc == PROC_ST_FUNCTION)
1936 gfc_error ("Statement function %qs at %L is not allowed as an "
1937 "actual argument", sym->name, &e->where);
1940 actual_ok = gfc_intrinsic_actual_ok (sym->name,
1941 sym->attr.subroutine);
1942 if (sym->attr.intrinsic && actual_ok == 0)
1944 gfc_error ("Intrinsic %qs at %L is not allowed as an "
1945 "actual argument", sym->name, &e->where);
1948 if (sym->attr.contained && !sym->attr.use_assoc
1949 && sym->ns->proc_name->attr.flavor != FL_MODULE)
1951 if (!gfc_notify_std (GFC_STD_F2008, "Internal procedure %qs is"
1952 " used as actual argument at %L",
1953 sym->name, &e->where))
1954 goto cleanup;
1957 if (sym->attr.elemental && !sym->attr.intrinsic)
1959 gfc_error ("ELEMENTAL non-INTRINSIC procedure %qs is not "
1960 "allowed as an actual argument at %L", sym->name,
1961 &e->where);
1964 /* Check if a generic interface has a specific procedure
1965 with the same name before emitting an error. */
1966 if (sym->attr.generic && count_specific_procs (e) != 1)
1967 goto cleanup;
1969 /* Just in case a specific was found for the expression. */
1970 sym = e->symtree->n.sym;
1972 /* If the symbol is the function that names the current (or
1973 parent) scope, then we really have a variable reference. */
1975 if (gfc_is_function_return_value (sym, sym->ns))
1976 goto got_variable;
1978 /* If all else fails, see if we have a specific intrinsic. */
1979 if (sym->ts.type == BT_UNKNOWN && sym->attr.intrinsic)
1981 gfc_intrinsic_sym *isym;
1983 isym = gfc_find_function (sym->name);
1984 if (isym == NULL || !isym->specific)
1986 gfc_error ("Unable to find a specific INTRINSIC procedure "
1987 "for the reference %qs at %L", sym->name,
1988 &e->where);
1989 goto cleanup;
1991 sym->ts = isym->ts;
1992 sym->attr.intrinsic = 1;
1993 sym->attr.function = 1;
1996 if (!gfc_resolve_expr (e))
1997 goto cleanup;
1998 goto argument_list;
2001 /* See if the name is a module procedure in a parent unit. */
2003 if (was_declared (sym) || sym->ns->parent == NULL)
2004 goto got_variable;
2006 if (gfc_find_sym_tree (sym->name, sym->ns->parent, 1, &parent_st))
2008 gfc_error ("Symbol %qs at %L is ambiguous", sym->name, &e->where);
2009 goto cleanup;
2012 if (parent_st == NULL)
2013 goto got_variable;
2015 sym = parent_st->n.sym;
2016 e->symtree = parent_st; /* Point to the right thing. */
2018 if (sym->attr.flavor == FL_PROCEDURE
2019 || sym->attr.intrinsic
2020 || sym->attr.external)
2022 if (!gfc_resolve_expr (e))
2023 goto cleanup;
2024 goto argument_list;
2027 got_variable:
2028 e->expr_type = EXPR_VARIABLE;
2029 e->ts = sym->ts;
2030 if ((sym->as != NULL && sym->ts.type != BT_CLASS)
2031 || (sym->ts.type == BT_CLASS && sym->attr.class_ok
2032 && CLASS_DATA (sym)->as))
2034 e->rank = sym->ts.type == BT_CLASS
2035 ? CLASS_DATA (sym)->as->rank : sym->as->rank;
2036 e->ref = gfc_get_ref ();
2037 e->ref->type = REF_ARRAY;
2038 e->ref->u.ar.type = AR_FULL;
2039 e->ref->u.ar.as = sym->ts.type == BT_CLASS
2040 ? CLASS_DATA (sym)->as : sym->as;
2043 /* Expressions are assigned a default ts.type of BT_PROCEDURE in
2044 primary.c (match_actual_arg). If above code determines that it
2045 is a variable instead, it needs to be resolved as it was not
2046 done at the beginning of this function. */
2047 save_need_full_assumed_size = need_full_assumed_size;
2048 if (e->expr_type != EXPR_VARIABLE)
2049 need_full_assumed_size = 0;
2050 if (!gfc_resolve_expr (e))
2051 goto cleanup;
2052 need_full_assumed_size = save_need_full_assumed_size;
2054 argument_list:
2055 /* Check argument list functions %VAL, %LOC and %REF. There is
2056 nothing to do for %REF. */
2057 if (arg->name && arg->name[0] == '%')
2059 if (strncmp ("%VAL", arg->name, 4) == 0)
2061 if (e->ts.type == BT_CHARACTER || e->ts.type == BT_DERIVED)
2063 gfc_error ("By-value argument at %L is not of numeric "
2064 "type", &e->where);
2065 goto cleanup;
2068 if (e->rank)
2070 gfc_error ("By-value argument at %L cannot be an array or "
2071 "an array section", &e->where);
2072 goto cleanup;
2075 /* Intrinsics are still PROC_UNKNOWN here. However,
2076 since same file external procedures are not resolvable
2077 in gfortran, it is a good deal easier to leave them to
2078 intrinsic.c. */
2079 if (ptype != PROC_UNKNOWN
2080 && ptype != PROC_DUMMY
2081 && ptype != PROC_EXTERNAL
2082 && ptype != PROC_MODULE)
2084 gfc_error ("By-value argument at %L is not allowed "
2085 "in this context", &e->where);
2086 goto cleanup;
2090 /* Statement functions have already been excluded above. */
2091 else if (strncmp ("%LOC", arg->name, 4) == 0
2092 && e->ts.type == BT_PROCEDURE)
2094 if (e->symtree->n.sym->attr.proc == PROC_INTERNAL)
2096 gfc_error ("Passing internal procedure at %L by location "
2097 "not allowed", &e->where);
2098 goto cleanup;
2103 comp = gfc_get_proc_ptr_comp(e);
2104 if (e->expr_type == EXPR_VARIABLE
2105 && comp && comp->attr.elemental)
2107 gfc_error ("ELEMENTAL procedure pointer component %qs is not "
2108 "allowed as an actual argument at %L", comp->name,
2109 &e->where);
2112 /* Fortran 2008, C1237. */
2113 if (e->expr_type == EXPR_VARIABLE && gfc_is_coindexed (e)
2114 && gfc_has_ultimate_pointer (e))
2116 gfc_error ("Coindexed actual argument at %L with ultimate pointer "
2117 "component", &e->where);
2118 goto cleanup;
2121 first_actual_arg = false;
2124 return_value = true;
2126 cleanup:
2127 actual_arg = actual_arg_sav;
2128 first_actual_arg = first_actual_arg_sav;
2130 return return_value;
2134 /* Do the checks of the actual argument list that are specific to elemental
2135 procedures. If called with c == NULL, we have a function, otherwise if
2136 expr == NULL, we have a subroutine. */
2138 static bool
2139 resolve_elemental_actual (gfc_expr *expr, gfc_code *c)
2141 gfc_actual_arglist *arg0;
2142 gfc_actual_arglist *arg;
2143 gfc_symbol *esym = NULL;
2144 gfc_intrinsic_sym *isym = NULL;
2145 gfc_expr *e = NULL;
2146 gfc_intrinsic_arg *iformal = NULL;
2147 gfc_formal_arglist *eformal = NULL;
2148 bool formal_optional = false;
2149 bool set_by_optional = false;
2150 int i;
2151 int rank = 0;
2153 /* Is this an elemental procedure? */
2154 if (expr && expr->value.function.actual != NULL)
2156 if (expr->value.function.esym != NULL
2157 && expr->value.function.esym->attr.elemental)
2159 arg0 = expr->value.function.actual;
2160 esym = expr->value.function.esym;
2162 else if (expr->value.function.isym != NULL
2163 && expr->value.function.isym->elemental)
2165 arg0 = expr->value.function.actual;
2166 isym = expr->value.function.isym;
2168 else
2169 return true;
2171 else if (c && c->ext.actual != NULL)
2173 arg0 = c->ext.actual;
2175 if (c->resolved_sym)
2176 esym = c->resolved_sym;
2177 else
2178 esym = c->symtree->n.sym;
2179 gcc_assert (esym);
2181 if (!esym->attr.elemental)
2182 return true;
2184 else
2185 return true;
2187 /* The rank of an elemental is the rank of its array argument(s). */
2188 for (arg = arg0; arg; arg = arg->next)
2190 if (arg->expr != NULL && arg->expr->rank != 0)
2192 rank = arg->expr->rank;
2193 if (arg->expr->expr_type == EXPR_VARIABLE
2194 && arg->expr->symtree->n.sym->attr.optional)
2195 set_by_optional = true;
2197 /* Function specific; set the result rank and shape. */
2198 if (expr)
2200 expr->rank = rank;
2201 if (!expr->shape && arg->expr->shape)
2203 expr->shape = gfc_get_shape (rank);
2204 for (i = 0; i < rank; i++)
2205 mpz_init_set (expr->shape[i], arg->expr->shape[i]);
2208 break;
2212 /* If it is an array, it shall not be supplied as an actual argument
2213 to an elemental procedure unless an array of the same rank is supplied
2214 as an actual argument corresponding to a nonoptional dummy argument of
2215 that elemental procedure(12.4.1.5). */
2216 formal_optional = false;
2217 if (isym)
2218 iformal = isym->formal;
2219 else
2220 eformal = esym->formal;
2222 for (arg = arg0; arg; arg = arg->next)
2224 if (eformal)
2226 if (eformal->sym && eformal->sym->attr.optional)
2227 formal_optional = true;
2228 eformal = eformal->next;
2230 else if (isym && iformal)
2232 if (iformal->optional)
2233 formal_optional = true;
2234 iformal = iformal->next;
2236 else if (isym)
2237 formal_optional = true;
2239 if (pedantic && arg->expr != NULL
2240 && arg->expr->expr_type == EXPR_VARIABLE
2241 && arg->expr->symtree->n.sym->attr.optional
2242 && formal_optional
2243 && arg->expr->rank
2244 && (set_by_optional || arg->expr->rank != rank)
2245 && !(isym && isym->id == GFC_ISYM_CONVERSION))
2247 gfc_warning (OPT_Wpedantic,
2248 "%qs at %L is an array and OPTIONAL; IF IT IS "
2249 "MISSING, it cannot be the actual argument of an "
2250 "ELEMENTAL procedure unless there is a non-optional "
2251 "argument with the same rank (12.4.1.5)",
2252 arg->expr->symtree->n.sym->name, &arg->expr->where);
2256 for (arg = arg0; arg; arg = arg->next)
2258 if (arg->expr == NULL || arg->expr->rank == 0)
2259 continue;
2261 /* Being elemental, the last upper bound of an assumed size array
2262 argument must be present. */
2263 if (resolve_assumed_size_actual (arg->expr))
2264 return false;
2266 /* Elemental procedure's array actual arguments must conform. */
2267 if (e != NULL)
2269 if (!gfc_check_conformance (arg->expr, e, "elemental procedure"))
2270 return false;
2272 else
2273 e = arg->expr;
2276 /* INTENT(OUT) is only allowed for subroutines; if any actual argument
2277 is an array, the intent inout/out variable needs to be also an array. */
2278 if (rank > 0 && esym && expr == NULL)
2279 for (eformal = esym->formal, arg = arg0; arg && eformal;
2280 arg = arg->next, eformal = eformal->next)
2281 if ((eformal->sym->attr.intent == INTENT_OUT
2282 || eformal->sym->attr.intent == INTENT_INOUT)
2283 && arg->expr && arg->expr->rank == 0)
2285 gfc_error ("Actual argument at %L for INTENT(%s) dummy %qs of "
2286 "ELEMENTAL subroutine %qs is a scalar, but another "
2287 "actual argument is an array", &arg->expr->where,
2288 (eformal->sym->attr.intent == INTENT_OUT) ? "OUT"
2289 : "INOUT", eformal->sym->name, esym->name);
2290 return false;
2292 return true;
2296 /* This function does the checking of references to global procedures
2297 as defined in sections 18.1 and 14.1, respectively, of the Fortran
2298 77 and 95 standards. It checks for a gsymbol for the name, making
2299 one if it does not already exist. If it already exists, then the
2300 reference being resolved must correspond to the type of gsymbol.
2301 Otherwise, the new symbol is equipped with the attributes of the
2302 reference. The corresponding code that is called in creating
2303 global entities is parse.c.
2305 In addition, for all but -std=legacy, the gsymbols are used to
2306 check the interfaces of external procedures from the same file.
2307 The namespace of the gsymbol is resolved and then, once this is
2308 done the interface is checked. */
2311 static bool
2312 not_in_recursive (gfc_symbol *sym, gfc_namespace *gsym_ns)
2314 if (!gsym_ns->proc_name->attr.recursive)
2315 return true;
2317 if (sym->ns == gsym_ns)
2318 return false;
2320 if (sym->ns->parent && sym->ns->parent == gsym_ns)
2321 return false;
2323 return true;
2326 static bool
2327 not_entry_self_reference (gfc_symbol *sym, gfc_namespace *gsym_ns)
2329 if (gsym_ns->entries)
2331 gfc_entry_list *entry = gsym_ns->entries;
2333 for (; entry; entry = entry->next)
2335 if (strcmp (sym->name, entry->sym->name) == 0)
2337 if (strcmp (gsym_ns->proc_name->name,
2338 sym->ns->proc_name->name) == 0)
2339 return false;
2341 if (sym->ns->parent
2342 && strcmp (gsym_ns->proc_name->name,
2343 sym->ns->parent->proc_name->name) == 0)
2344 return false;
2348 return true;
2352 /* Check for the requirement of an explicit interface. F08:12.4.2.2. */
2354 bool
2355 gfc_explicit_interface_required (gfc_symbol *sym, char *errmsg, int err_len)
2357 gfc_formal_arglist *arg = gfc_sym_get_dummy_args (sym);
2359 for ( ; arg; arg = arg->next)
2361 if (!arg->sym)
2362 continue;
2364 if (arg->sym->attr.allocatable) /* (2a) */
2366 strncpy (errmsg, _("allocatable argument"), err_len);
2367 return true;
2369 else if (arg->sym->attr.asynchronous)
2371 strncpy (errmsg, _("asynchronous argument"), err_len);
2372 return true;
2374 else if (arg->sym->attr.optional)
2376 strncpy (errmsg, _("optional argument"), err_len);
2377 return true;
2379 else if (arg->sym->attr.pointer)
2381 strncpy (errmsg, _("pointer argument"), err_len);
2382 return true;
2384 else if (arg->sym->attr.target)
2386 strncpy (errmsg, _("target argument"), err_len);
2387 return true;
2389 else if (arg->sym->attr.value)
2391 strncpy (errmsg, _("value argument"), err_len);
2392 return true;
2394 else if (arg->sym->attr.volatile_)
2396 strncpy (errmsg, _("volatile argument"), err_len);
2397 return true;
2399 else if (arg->sym->as && arg->sym->as->type == AS_ASSUMED_SHAPE) /* (2b) */
2401 strncpy (errmsg, _("assumed-shape argument"), err_len);
2402 return true;
2404 else if (arg->sym->as && arg->sym->as->type == AS_ASSUMED_RANK) /* TS 29113, 6.2. */
2406 strncpy (errmsg, _("assumed-rank argument"), err_len);
2407 return true;
2409 else if (arg->sym->attr.codimension) /* (2c) */
2411 strncpy (errmsg, _("coarray argument"), err_len);
2412 return true;
2414 else if (false) /* (2d) TODO: parametrized derived type */
2416 strncpy (errmsg, _("parametrized derived type argument"), err_len);
2417 return true;
2419 else if (arg->sym->ts.type == BT_CLASS) /* (2e) */
2421 strncpy (errmsg, _("polymorphic argument"), err_len);
2422 return true;
2424 else if (arg->sym->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK))
2426 strncpy (errmsg, _("NO_ARG_CHECK attribute"), err_len);
2427 return true;
2429 else if (arg->sym->ts.type == BT_ASSUMED)
2431 /* As assumed-type is unlimited polymorphic (cf. above).
2432 See also TS 29113, Note 6.1. */
2433 strncpy (errmsg, _("assumed-type argument"), err_len);
2434 return true;
2438 if (sym->attr.function)
2440 gfc_symbol *res = sym->result ? sym->result : sym;
2442 if (res->attr.dimension) /* (3a) */
2444 strncpy (errmsg, _("array result"), err_len);
2445 return true;
2447 else if (res->attr.pointer || res->attr.allocatable) /* (3b) */
2449 strncpy (errmsg, _("pointer or allocatable result"), err_len);
2450 return true;
2452 else if (res->ts.type == BT_CHARACTER && res->ts.u.cl
2453 && res->ts.u.cl->length
2454 && res->ts.u.cl->length->expr_type != EXPR_CONSTANT) /* (3c) */
2456 strncpy (errmsg, _("result with non-constant character length"), err_len);
2457 return true;
2461 if (sym->attr.elemental && !sym->attr.intrinsic) /* (4) */
2463 strncpy (errmsg, _("elemental procedure"), err_len);
2464 return true;
2466 else if (sym->attr.is_bind_c) /* (5) */
2468 strncpy (errmsg, _("bind(c) procedure"), err_len);
2469 return true;
2472 return false;
2476 static void
2477 resolve_global_procedure (gfc_symbol *sym, locus *where,
2478 gfc_actual_arglist **actual, int sub)
2480 gfc_gsymbol * gsym;
2481 gfc_namespace *ns;
2482 enum gfc_symbol_type type;
2483 char reason[200];
2485 type = sub ? GSYM_SUBROUTINE : GSYM_FUNCTION;
2487 gsym = gfc_get_gsymbol (sym->binding_label ? sym->binding_label : sym->name);
2489 if ((gsym->type != GSYM_UNKNOWN && gsym->type != type))
2490 gfc_global_used (gsym, where);
2492 if ((sym->attr.if_source == IFSRC_UNKNOWN
2493 || sym->attr.if_source == IFSRC_IFBODY)
2494 && gsym->type != GSYM_UNKNOWN
2495 && !gsym->binding_label
2496 && gsym->ns
2497 && gsym->ns->resolved != -1
2498 && gsym->ns->proc_name
2499 && not_in_recursive (sym, gsym->ns)
2500 && not_entry_self_reference (sym, gsym->ns))
2502 gfc_symbol *def_sym;
2504 /* Resolve the gsymbol namespace if needed. */
2505 if (!gsym->ns->resolved)
2507 gfc_dt_list *old_dt_list;
2509 /* Stash away derived types so that the backend_decls do not
2510 get mixed up. */
2511 old_dt_list = gfc_derived_types;
2512 gfc_derived_types = NULL;
2514 gfc_resolve (gsym->ns);
2516 /* Store the new derived types with the global namespace. */
2517 if (gfc_derived_types)
2518 gsym->ns->derived_types = gfc_derived_types;
2520 /* Restore the derived types of this namespace. */
2521 gfc_derived_types = old_dt_list;
2524 /* Make sure that translation for the gsymbol occurs before
2525 the procedure currently being resolved. */
2526 ns = gfc_global_ns_list;
2527 for (; ns && ns != gsym->ns; ns = ns->sibling)
2529 if (ns->sibling == gsym->ns)
2531 ns->sibling = gsym->ns->sibling;
2532 gsym->ns->sibling = gfc_global_ns_list;
2533 gfc_global_ns_list = gsym->ns;
2534 break;
2538 def_sym = gsym->ns->proc_name;
2540 /* This can happen if a binding name has been specified. */
2541 if (gsym->binding_label && gsym->sym_name != def_sym->name)
2542 gfc_find_symbol (gsym->sym_name, gsym->ns, 0, &def_sym);
2544 if (def_sym->attr.entry_master)
2546 gfc_entry_list *entry;
2547 for (entry = gsym->ns->entries; entry; entry = entry->next)
2548 if (strcmp (entry->sym->name, sym->name) == 0)
2550 def_sym = entry->sym;
2551 break;
2555 if (sym->attr.function && !gfc_compare_types (&sym->ts, &def_sym->ts))
2557 gfc_error ("Return type mismatch of function %qs at %L (%s/%s)",
2558 sym->name, &sym->declared_at, gfc_typename (&sym->ts),
2559 gfc_typename (&def_sym->ts));
2560 goto done;
2563 if (sym->attr.if_source == IFSRC_UNKNOWN
2564 && gfc_explicit_interface_required (def_sym, reason, sizeof(reason)))
2566 gfc_error ("Explicit interface required for %qs at %L: %s",
2567 sym->name, &sym->declared_at, reason);
2568 goto done;
2571 if (!pedantic && (gfc_option.allow_std & GFC_STD_GNU))
2572 /* Turn erros into warnings with -std=gnu and -std=legacy. */
2573 gfc_errors_to_warnings (true);
2575 if (!gfc_compare_interfaces (sym, def_sym, sym->name, 0, 1,
2576 reason, sizeof(reason), NULL, NULL))
2578 gfc_error_opt (OPT_Wargument_mismatch,
2579 "Interface mismatch in global procedure %qs at %L:"
2580 " %s", sym->name, &sym->declared_at, reason);
2581 goto done;
2584 if (!pedantic
2585 || ((gfc_option.warn_std & GFC_STD_LEGACY)
2586 && !(gfc_option.warn_std & GFC_STD_GNU)))
2587 gfc_errors_to_warnings (true);
2589 if (sym->attr.if_source != IFSRC_IFBODY)
2590 gfc_procedure_use (def_sym, actual, where);
2593 done:
2594 gfc_errors_to_warnings (false);
2596 if (gsym->type == GSYM_UNKNOWN)
2598 gsym->type = type;
2599 gsym->where = *where;
2602 gsym->used = 1;
2606 /************* Function resolution *************/
2608 /* Resolve a function call known to be generic.
2609 Section 14.1.2.4.1. */
2611 static match
2612 resolve_generic_f0 (gfc_expr *expr, gfc_symbol *sym)
2614 gfc_symbol *s;
2616 if (sym->attr.generic)
2618 s = gfc_search_interface (sym->generic, 0, &expr->value.function.actual);
2619 if (s != NULL)
2621 expr->value.function.name = s->name;
2622 expr->value.function.esym = s;
2624 if (s->ts.type != BT_UNKNOWN)
2625 expr->ts = s->ts;
2626 else if (s->result != NULL && s->result->ts.type != BT_UNKNOWN)
2627 expr->ts = s->result->ts;
2629 if (s->as != NULL)
2630 expr->rank = s->as->rank;
2631 else if (s->result != NULL && s->result->as != NULL)
2632 expr->rank = s->result->as->rank;
2634 gfc_set_sym_referenced (expr->value.function.esym);
2636 return MATCH_YES;
2639 /* TODO: Need to search for elemental references in generic
2640 interface. */
2643 if (sym->attr.intrinsic)
2644 return gfc_intrinsic_func_interface (expr, 0);
2646 return MATCH_NO;
2650 static bool
2651 resolve_generic_f (gfc_expr *expr)
2653 gfc_symbol *sym;
2654 match m;
2655 gfc_interface *intr = NULL;
2657 sym = expr->symtree->n.sym;
2659 for (;;)
2661 m = resolve_generic_f0 (expr, sym);
2662 if (m == MATCH_YES)
2663 return true;
2664 else if (m == MATCH_ERROR)
2665 return false;
2667 generic:
2668 if (!intr)
2669 for (intr = sym->generic; intr; intr = intr->next)
2670 if (gfc_fl_struct (intr->sym->attr.flavor))
2671 break;
2673 if (sym->ns->parent == NULL)
2674 break;
2675 gfc_find_symbol (sym->name, sym->ns->parent, 1, &sym);
2677 if (sym == NULL)
2678 break;
2679 if (!generic_sym (sym))
2680 goto generic;
2683 /* Last ditch attempt. See if the reference is to an intrinsic
2684 that possesses a matching interface. 14.1.2.4 */
2685 if (sym && !intr && !gfc_is_intrinsic (sym, 0, expr->where))
2687 if (gfc_init_expr_flag)
2688 gfc_error ("Function %qs in initialization expression at %L "
2689 "must be an intrinsic function",
2690 expr->symtree->n.sym->name, &expr->where);
2691 else
2692 gfc_error ("There is no specific function for the generic %qs "
2693 "at %L", expr->symtree->n.sym->name, &expr->where);
2694 return false;
2697 if (intr)
2699 if (!gfc_convert_to_structure_constructor (expr, intr->sym, NULL,
2700 NULL, false))
2701 return false;
2702 if (!gfc_use_derived (expr->ts.u.derived))
2703 return false;
2704 return resolve_structure_cons (expr, 0);
2707 m = gfc_intrinsic_func_interface (expr, 0);
2708 if (m == MATCH_YES)
2709 return true;
2711 if (m == MATCH_NO)
2712 gfc_error ("Generic function %qs at %L is not consistent with a "
2713 "specific intrinsic interface", expr->symtree->n.sym->name,
2714 &expr->where);
2716 return false;
2720 /* Resolve a function call known to be specific. */
2722 static match
2723 resolve_specific_f0 (gfc_symbol *sym, gfc_expr *expr)
2725 match m;
2727 if (sym->attr.external || sym->attr.if_source == IFSRC_IFBODY)
2729 if (sym->attr.dummy)
2731 sym->attr.proc = PROC_DUMMY;
2732 goto found;
2735 sym->attr.proc = PROC_EXTERNAL;
2736 goto found;
2739 if (sym->attr.proc == PROC_MODULE
2740 || sym->attr.proc == PROC_ST_FUNCTION
2741 || sym->attr.proc == PROC_INTERNAL)
2742 goto found;
2744 if (sym->attr.intrinsic)
2746 m = gfc_intrinsic_func_interface (expr, 1);
2747 if (m == MATCH_YES)
2748 return MATCH_YES;
2749 if (m == MATCH_NO)
2750 gfc_error ("Function %qs at %L is INTRINSIC but is not compatible "
2751 "with an intrinsic", sym->name, &expr->where);
2753 return MATCH_ERROR;
2756 return MATCH_NO;
2758 found:
2759 gfc_procedure_use (sym, &expr->value.function.actual, &expr->where);
2761 if (sym->result)
2762 expr->ts = sym->result->ts;
2763 else
2764 expr->ts = sym->ts;
2765 expr->value.function.name = sym->name;
2766 expr->value.function.esym = sym;
2767 /* Prevent crash when sym->ts.u.derived->components is not set due to previous
2768 error(s). */
2769 if (sym->ts.type == BT_CLASS && !CLASS_DATA (sym))
2770 return MATCH_ERROR;
2771 if (sym->ts.type == BT_CLASS && CLASS_DATA (sym)->as)
2772 expr->rank = CLASS_DATA (sym)->as->rank;
2773 else if (sym->as != NULL)
2774 expr->rank = sym->as->rank;
2776 return MATCH_YES;
2780 static bool
2781 resolve_specific_f (gfc_expr *expr)
2783 gfc_symbol *sym;
2784 match m;
2786 sym = expr->symtree->n.sym;
2788 for (;;)
2790 m = resolve_specific_f0 (sym, expr);
2791 if (m == MATCH_YES)
2792 return true;
2793 if (m == MATCH_ERROR)
2794 return false;
2796 if (sym->ns->parent == NULL)
2797 break;
2799 gfc_find_symbol (sym->name, sym->ns->parent, 1, &sym);
2801 if (sym == NULL)
2802 break;
2805 gfc_error ("Unable to resolve the specific function %qs at %L",
2806 expr->symtree->n.sym->name, &expr->where);
2808 return true;
2811 /* Recursively append candidate SYM to CANDIDATES. Store the number of
2812 candidates in CANDIDATES_LEN. */
2814 static void
2815 lookup_function_fuzzy_find_candidates (gfc_symtree *sym,
2816 char **&candidates,
2817 size_t &candidates_len)
2819 gfc_symtree *p;
2821 if (sym == NULL)
2822 return;
2823 if ((sym->n.sym->ts.type != BT_UNKNOWN || sym->n.sym->attr.external)
2824 && sym->n.sym->attr.flavor == FL_PROCEDURE)
2825 vec_push (candidates, candidates_len, sym->name);
2827 p = sym->left;
2828 if (p)
2829 lookup_function_fuzzy_find_candidates (p, candidates, candidates_len);
2831 p = sym->right;
2832 if (p)
2833 lookup_function_fuzzy_find_candidates (p, candidates, candidates_len);
2837 /* Lookup function FN fuzzily, taking names in SYMROOT into account. */
2839 const char*
2840 gfc_lookup_function_fuzzy (const char *fn, gfc_symtree *symroot)
2842 char **candidates = NULL;
2843 size_t candidates_len = 0;
2844 lookup_function_fuzzy_find_candidates (symroot, candidates, candidates_len);
2845 return gfc_closest_fuzzy_match (fn, candidates);
2849 /* Resolve a procedure call not known to be generic nor specific. */
2851 static bool
2852 resolve_unknown_f (gfc_expr *expr)
2854 gfc_symbol *sym;
2855 gfc_typespec *ts;
2857 sym = expr->symtree->n.sym;
2859 if (sym->attr.dummy)
2861 sym->attr.proc = PROC_DUMMY;
2862 expr->value.function.name = sym->name;
2863 goto set_type;
2866 /* See if we have an intrinsic function reference. */
2868 if (gfc_is_intrinsic (sym, 0, expr->where))
2870 if (gfc_intrinsic_func_interface (expr, 1) == MATCH_YES)
2871 return true;
2872 return false;
2875 /* The reference is to an external name. */
2877 sym->attr.proc = PROC_EXTERNAL;
2878 expr->value.function.name = sym->name;
2879 expr->value.function.esym = expr->symtree->n.sym;
2881 if (sym->as != NULL)
2882 expr->rank = sym->as->rank;
2884 /* Type of the expression is either the type of the symbol or the
2885 default type of the symbol. */
2887 set_type:
2888 gfc_procedure_use (sym, &expr->value.function.actual, &expr->where);
2890 if (sym->ts.type != BT_UNKNOWN)
2891 expr->ts = sym->ts;
2892 else
2894 ts = gfc_get_default_type (sym->name, sym->ns);
2896 if (ts->type == BT_UNKNOWN)
2898 const char *guessed
2899 = gfc_lookup_function_fuzzy (sym->name, sym->ns->sym_root);
2900 if (guessed)
2901 gfc_error ("Function %qs at %L has no IMPLICIT type"
2902 "; did you mean %qs?",
2903 sym->name, &expr->where, guessed);
2904 else
2905 gfc_error ("Function %qs at %L has no IMPLICIT type",
2906 sym->name, &expr->where);
2907 return false;
2909 else
2910 expr->ts = *ts;
2913 return true;
2917 /* Return true, if the symbol is an external procedure. */
2918 static bool
2919 is_external_proc (gfc_symbol *sym)
2921 if (!sym->attr.dummy && !sym->attr.contained
2922 && !gfc_is_intrinsic (sym, sym->attr.subroutine, sym->declared_at)
2923 && sym->attr.proc != PROC_ST_FUNCTION
2924 && !sym->attr.proc_pointer
2925 && !sym->attr.use_assoc
2926 && sym->name)
2927 return true;
2929 return false;
2933 /* Figure out if a function reference is pure or not. Also set the name
2934 of the function for a potential error message. Return nonzero if the
2935 function is PURE, zero if not. */
2936 static int
2937 pure_stmt_function (gfc_expr *, gfc_symbol *);
2939 static int
2940 pure_function (gfc_expr *e, const char **name)
2942 int pure;
2943 gfc_component *comp;
2945 *name = NULL;
2947 if (e->symtree != NULL
2948 && e->symtree->n.sym != NULL
2949 && e->symtree->n.sym->attr.proc == PROC_ST_FUNCTION)
2950 return pure_stmt_function (e, e->symtree->n.sym);
2952 comp = gfc_get_proc_ptr_comp (e);
2953 if (comp)
2955 pure = gfc_pure (comp->ts.interface);
2956 *name = comp->name;
2958 else if (e->value.function.esym)
2960 pure = gfc_pure (e->value.function.esym);
2961 *name = e->value.function.esym->name;
2963 else if (e->value.function.isym)
2965 pure = e->value.function.isym->pure
2966 || e->value.function.isym->elemental;
2967 *name = e->value.function.isym->name;
2969 else
2971 /* Implicit functions are not pure. */
2972 pure = 0;
2973 *name = e->value.function.name;
2976 return pure;
2980 static bool
2981 impure_stmt_fcn (gfc_expr *e, gfc_symbol *sym,
2982 int *f ATTRIBUTE_UNUSED)
2984 const char *name;
2986 /* Don't bother recursing into other statement functions
2987 since they will be checked individually for purity. */
2988 if (e->expr_type != EXPR_FUNCTION
2989 || !e->symtree
2990 || e->symtree->n.sym == sym
2991 || e->symtree->n.sym->attr.proc == PROC_ST_FUNCTION)
2992 return false;
2994 return pure_function (e, &name) ? false : true;
2998 static int
2999 pure_stmt_function (gfc_expr *e, gfc_symbol *sym)
3001 return gfc_traverse_expr (e, sym, impure_stmt_fcn, 0) ? 0 : 1;
3005 /* Check if an impure function is allowed in the current context. */
3007 static bool check_pure_function (gfc_expr *e)
3009 const char *name = NULL;
3010 if (!pure_function (e, &name) && name)
3012 if (forall_flag)
3014 gfc_error ("Reference to impure function %qs at %L inside a "
3015 "FORALL %s", name, &e->where,
3016 forall_flag == 2 ? "mask" : "block");
3017 return false;
3019 else if (gfc_do_concurrent_flag)
3021 gfc_error ("Reference to impure function %qs at %L inside a "
3022 "DO CONCURRENT %s", name, &e->where,
3023 gfc_do_concurrent_flag == 2 ? "mask" : "block");
3024 return false;
3026 else if (gfc_pure (NULL))
3028 gfc_error ("Reference to impure function %qs at %L "
3029 "within a PURE procedure", name, &e->where);
3030 return false;
3032 gfc_unset_implicit_pure (NULL);
3034 return true;
3038 /* Update current procedure's array_outer_dependency flag, considering
3039 a call to procedure SYM. */
3041 static void
3042 update_current_proc_array_outer_dependency (gfc_symbol *sym)
3044 /* Check to see if this is a sibling function that has not yet
3045 been resolved. */
3046 gfc_namespace *sibling = gfc_current_ns->sibling;
3047 for (; sibling; sibling = sibling->sibling)
3049 if (sibling->proc_name == sym)
3051 gfc_resolve (sibling);
3052 break;
3056 /* If SYM has references to outer arrays, so has the procedure calling
3057 SYM. If SYM is a procedure pointer, we can assume the worst. */
3058 if (sym->attr.array_outer_dependency
3059 || sym->attr.proc_pointer)
3060 gfc_current_ns->proc_name->attr.array_outer_dependency = 1;
3064 /* Resolve a function call, which means resolving the arguments, then figuring
3065 out which entity the name refers to. */
3067 static bool
3068 resolve_function (gfc_expr *expr)
3070 gfc_actual_arglist *arg;
3071 gfc_symbol *sym;
3072 bool t;
3073 int temp;
3074 procedure_type p = PROC_INTRINSIC;
3075 bool no_formal_args;
3077 sym = NULL;
3078 if (expr->symtree)
3079 sym = expr->symtree->n.sym;
3081 /* If this is a procedure pointer component, it has already been resolved. */
3082 if (gfc_is_proc_ptr_comp (expr))
3083 return true;
3085 /* Avoid re-resolving the arguments of caf_get, which can lead to inserting
3086 another caf_get. */
3087 if (sym && sym->attr.intrinsic
3088 && (sym->intmod_sym_id == GFC_ISYM_CAF_GET
3089 || sym->intmod_sym_id == GFC_ISYM_CAF_SEND))
3090 return true;
3092 if (sym && sym->attr.intrinsic
3093 && !gfc_resolve_intrinsic (sym, &expr->where))
3094 return false;
3096 if (sym && (sym->attr.flavor == FL_VARIABLE || sym->attr.subroutine))
3098 gfc_error ("%qs at %L is not a function", sym->name, &expr->where);
3099 return false;
3102 /* If this ia a deferred TBP with an abstract interface (which may
3103 of course be referenced), expr->value.function.esym will be set. */
3104 if (sym && sym->attr.abstract && !expr->value.function.esym)
3106 gfc_error ("ABSTRACT INTERFACE %qs must not be referenced at %L",
3107 sym->name, &expr->where);
3108 return false;
3111 /* Switch off assumed size checking and do this again for certain kinds
3112 of procedure, once the procedure itself is resolved. */
3113 need_full_assumed_size++;
3115 if (expr->symtree && expr->symtree->n.sym)
3116 p = expr->symtree->n.sym->attr.proc;
3118 if (expr->value.function.isym && expr->value.function.isym->inquiry)
3119 inquiry_argument = true;
3120 no_formal_args = sym && is_external_proc (sym)
3121 && gfc_sym_get_dummy_args (sym) == NULL;
3123 if (!resolve_actual_arglist (expr->value.function.actual,
3124 p, no_formal_args))
3126 inquiry_argument = false;
3127 return false;
3130 inquiry_argument = false;
3132 /* Resume assumed_size checking. */
3133 need_full_assumed_size--;
3135 /* If the procedure is external, check for usage. */
3136 if (sym && is_external_proc (sym))
3137 resolve_global_procedure (sym, &expr->where,
3138 &expr->value.function.actual, 0);
3140 if (sym && sym->ts.type == BT_CHARACTER
3141 && sym->ts.u.cl
3142 && sym->ts.u.cl->length == NULL
3143 && !sym->attr.dummy
3144 && !sym->ts.deferred
3145 && expr->value.function.esym == NULL
3146 && !sym->attr.contained)
3148 /* Internal procedures are taken care of in resolve_contained_fntype. */
3149 gfc_error ("Function %qs is declared CHARACTER(*) and cannot "
3150 "be used at %L since it is not a dummy argument",
3151 sym->name, &expr->where);
3152 return false;
3155 /* See if function is already resolved. */
3157 if (expr->value.function.name != NULL
3158 || expr->value.function.isym != NULL)
3160 if (expr->ts.type == BT_UNKNOWN)
3161 expr->ts = sym->ts;
3162 t = true;
3164 else
3166 /* Apply the rules of section 14.1.2. */
3168 switch (procedure_kind (sym))
3170 case PTYPE_GENERIC:
3171 t = resolve_generic_f (expr);
3172 break;
3174 case PTYPE_SPECIFIC:
3175 t = resolve_specific_f (expr);
3176 break;
3178 case PTYPE_UNKNOWN:
3179 t = resolve_unknown_f (expr);
3180 break;
3182 default:
3183 gfc_internal_error ("resolve_function(): bad function type");
3187 /* If the expression is still a function (it might have simplified),
3188 then we check to see if we are calling an elemental function. */
3190 if (expr->expr_type != EXPR_FUNCTION)
3191 return t;
3193 temp = need_full_assumed_size;
3194 need_full_assumed_size = 0;
3196 if (!resolve_elemental_actual (expr, NULL))
3197 return false;
3199 if (omp_workshare_flag
3200 && expr->value.function.esym
3201 && ! gfc_elemental (expr->value.function.esym))
3203 gfc_error ("User defined non-ELEMENTAL function %qs at %L not allowed "
3204 "in WORKSHARE construct", expr->value.function.esym->name,
3205 &expr->where);
3206 t = false;
3209 #define GENERIC_ID expr->value.function.isym->id
3210 else if (expr->value.function.actual != NULL
3211 && expr->value.function.isym != NULL
3212 && GENERIC_ID != GFC_ISYM_LBOUND
3213 && GENERIC_ID != GFC_ISYM_LCOBOUND
3214 && GENERIC_ID != GFC_ISYM_UCOBOUND
3215 && GENERIC_ID != GFC_ISYM_LEN
3216 && GENERIC_ID != GFC_ISYM_LOC
3217 && GENERIC_ID != GFC_ISYM_C_LOC
3218 && GENERIC_ID != GFC_ISYM_PRESENT)
3220 /* Array intrinsics must also have the last upper bound of an
3221 assumed size array argument. UBOUND and SIZE have to be
3222 excluded from the check if the second argument is anything
3223 than a constant. */
3225 for (arg = expr->value.function.actual; arg; arg = arg->next)
3227 if ((GENERIC_ID == GFC_ISYM_UBOUND || GENERIC_ID == GFC_ISYM_SIZE)
3228 && arg == expr->value.function.actual
3229 && arg->next != NULL && arg->next->expr)
3231 if (arg->next->expr->expr_type != EXPR_CONSTANT)
3232 break;
3234 if (arg->next->name && strncmp (arg->next->name, "kind", 4) == 0)
3235 break;
3237 if ((int)mpz_get_si (arg->next->expr->value.integer)
3238 < arg->expr->rank)
3239 break;
3242 if (arg->expr != NULL
3243 && arg->expr->rank > 0
3244 && resolve_assumed_size_actual (arg->expr))
3245 return false;
3248 #undef GENERIC_ID
3250 need_full_assumed_size = temp;
3252 if (!check_pure_function(expr))
3253 t = false;
3255 /* Functions without the RECURSIVE attribution are not allowed to
3256 * call themselves. */
3257 if (expr->value.function.esym && !expr->value.function.esym->attr.recursive)
3259 gfc_symbol *esym;
3260 esym = expr->value.function.esym;
3262 if (is_illegal_recursion (esym, gfc_current_ns))
3264 if (esym->attr.entry && esym->ns->entries)
3265 gfc_error ("ENTRY %qs at %L cannot be called recursively, as"
3266 " function %qs is not RECURSIVE",
3267 esym->name, &expr->where, esym->ns->entries->sym->name);
3268 else
3269 gfc_error ("Function %qs at %L cannot be called recursively, as it"
3270 " is not RECURSIVE", esym->name, &expr->where);
3272 t = false;
3276 /* Character lengths of use associated functions may contains references to
3277 symbols not referenced from the current program unit otherwise. Make sure
3278 those symbols are marked as referenced. */
3280 if (expr->ts.type == BT_CHARACTER && expr->value.function.esym
3281 && expr->value.function.esym->attr.use_assoc)
3283 gfc_expr_set_symbols_referenced (expr->ts.u.cl->length);
3286 /* Make sure that the expression has a typespec that works. */
3287 if (expr->ts.type == BT_UNKNOWN)
3289 if (expr->symtree->n.sym->result
3290 && expr->symtree->n.sym->result->ts.type != BT_UNKNOWN
3291 && !expr->symtree->n.sym->result->attr.proc_pointer)
3292 expr->ts = expr->symtree->n.sym->result->ts;
3295 if (!expr->ref && !expr->value.function.isym)
3297 if (expr->value.function.esym)
3298 update_current_proc_array_outer_dependency (expr->value.function.esym);
3299 else
3300 update_current_proc_array_outer_dependency (sym);
3302 else if (expr->ref)
3303 /* typebound procedure: Assume the worst. */
3304 gfc_current_ns->proc_name->attr.array_outer_dependency = 1;
3306 return t;
3310 /************* Subroutine resolution *************/
3312 static bool
3313 pure_subroutine (gfc_symbol *sym, const char *name, locus *loc)
3315 if (gfc_pure (sym))
3316 return true;
3318 if (forall_flag)
3320 gfc_error ("Subroutine call to %qs in FORALL block at %L is not PURE",
3321 name, loc);
3322 return false;
3324 else if (gfc_do_concurrent_flag)
3326 gfc_error ("Subroutine call to %qs in DO CONCURRENT block at %L is not "
3327 "PURE", name, loc);
3328 return false;
3330 else if (gfc_pure (NULL))
3332 gfc_error ("Subroutine call to %qs at %L is not PURE", name, loc);
3333 return false;
3336 gfc_unset_implicit_pure (NULL);
3337 return true;
3341 static match
3342 resolve_generic_s0 (gfc_code *c, gfc_symbol *sym)
3344 gfc_symbol *s;
3346 if (sym->attr.generic)
3348 s = gfc_search_interface (sym->generic, 1, &c->ext.actual);
3349 if (s != NULL)
3351 c->resolved_sym = s;
3352 if (!pure_subroutine (s, s->name, &c->loc))
3353 return MATCH_ERROR;
3354 return MATCH_YES;
3357 /* TODO: Need to search for elemental references in generic interface. */
3360 if (sym->attr.intrinsic)
3361 return gfc_intrinsic_sub_interface (c, 0);
3363 return MATCH_NO;
3367 static bool
3368 resolve_generic_s (gfc_code *c)
3370 gfc_symbol *sym;
3371 match m;
3373 sym = c->symtree->n.sym;
3375 for (;;)
3377 m = resolve_generic_s0 (c, sym);
3378 if (m == MATCH_YES)
3379 return true;
3380 else if (m == MATCH_ERROR)
3381 return false;
3383 generic:
3384 if (sym->ns->parent == NULL)
3385 break;
3386 gfc_find_symbol (sym->name, sym->ns->parent, 1, &sym);
3388 if (sym == NULL)
3389 break;
3390 if (!generic_sym (sym))
3391 goto generic;
3394 /* Last ditch attempt. See if the reference is to an intrinsic
3395 that possesses a matching interface. 14.1.2.4 */
3396 sym = c->symtree->n.sym;
3398 if (!gfc_is_intrinsic (sym, 1, c->loc))
3400 gfc_error ("There is no specific subroutine for the generic %qs at %L",
3401 sym->name, &c->loc);
3402 return false;
3405 m = gfc_intrinsic_sub_interface (c, 0);
3406 if (m == MATCH_YES)
3407 return true;
3408 if (m == MATCH_NO)
3409 gfc_error ("Generic subroutine %qs at %L is not consistent with an "
3410 "intrinsic subroutine interface", sym->name, &c->loc);
3412 return false;
3416 /* Resolve a subroutine call known to be specific. */
3418 static match
3419 resolve_specific_s0 (gfc_code *c, gfc_symbol *sym)
3421 match m;
3423 if (sym->attr.external || sym->attr.if_source == IFSRC_IFBODY)
3425 if (sym->attr.dummy)
3427 sym->attr.proc = PROC_DUMMY;
3428 goto found;
3431 sym->attr.proc = PROC_EXTERNAL;
3432 goto found;
3435 if (sym->attr.proc == PROC_MODULE || sym->attr.proc == PROC_INTERNAL)
3436 goto found;
3438 if (sym->attr.intrinsic)
3440 m = gfc_intrinsic_sub_interface (c, 1);
3441 if (m == MATCH_YES)
3442 return MATCH_YES;
3443 if (m == MATCH_NO)
3444 gfc_error ("Subroutine %qs at %L is INTRINSIC but is not compatible "
3445 "with an intrinsic", sym->name, &c->loc);
3447 return MATCH_ERROR;
3450 return MATCH_NO;
3452 found:
3453 gfc_procedure_use (sym, &c->ext.actual, &c->loc);
3455 c->resolved_sym = sym;
3456 if (!pure_subroutine (sym, sym->name, &c->loc))
3457 return MATCH_ERROR;
3459 return MATCH_YES;
3463 static bool
3464 resolve_specific_s (gfc_code *c)
3466 gfc_symbol *sym;
3467 match m;
3469 sym = c->symtree->n.sym;
3471 for (;;)
3473 m = resolve_specific_s0 (c, sym);
3474 if (m == MATCH_YES)
3475 return true;
3476 if (m == MATCH_ERROR)
3477 return false;
3479 if (sym->ns->parent == NULL)
3480 break;
3482 gfc_find_symbol (sym->name, sym->ns->parent, 1, &sym);
3484 if (sym == NULL)
3485 break;
3488 sym = c->symtree->n.sym;
3489 gfc_error ("Unable to resolve the specific subroutine %qs at %L",
3490 sym->name, &c->loc);
3492 return false;
3496 /* Resolve a subroutine call not known to be generic nor specific. */
3498 static bool
3499 resolve_unknown_s (gfc_code *c)
3501 gfc_symbol *sym;
3503 sym = c->symtree->n.sym;
3505 if (sym->attr.dummy)
3507 sym->attr.proc = PROC_DUMMY;
3508 goto found;
3511 /* See if we have an intrinsic function reference. */
3513 if (gfc_is_intrinsic (sym, 1, c->loc))
3515 if (gfc_intrinsic_sub_interface (c, 1) == MATCH_YES)
3516 return true;
3517 return false;
3520 /* The reference is to an external name. */
3522 found:
3523 gfc_procedure_use (sym, &c->ext.actual, &c->loc);
3525 c->resolved_sym = sym;
3527 return pure_subroutine (sym, sym->name, &c->loc);
3531 /* Resolve a subroutine call. Although it was tempting to use the same code
3532 for functions, subroutines and functions are stored differently and this
3533 makes things awkward. */
3535 static bool
3536 resolve_call (gfc_code *c)
3538 bool t;
3539 procedure_type ptype = PROC_INTRINSIC;
3540 gfc_symbol *csym, *sym;
3541 bool no_formal_args;
3543 csym = c->symtree ? c->symtree->n.sym : NULL;
3545 if (csym && csym->ts.type != BT_UNKNOWN)
3547 gfc_error ("%qs at %L has a type, which is not consistent with "
3548 "the CALL at %L", csym->name, &csym->declared_at, &c->loc);
3549 return false;
3552 if (csym && gfc_current_ns->parent && csym->ns != gfc_current_ns)
3554 gfc_symtree *st;
3555 gfc_find_sym_tree (c->symtree->name, gfc_current_ns, 1, &st);
3556 sym = st ? st->n.sym : NULL;
3557 if (sym && csym != sym
3558 && sym->ns == gfc_current_ns
3559 && sym->attr.flavor == FL_PROCEDURE
3560 && sym->attr.contained)
3562 sym->refs++;
3563 if (csym->attr.generic)
3564 c->symtree->n.sym = sym;
3565 else
3566 c->symtree = st;
3567 csym = c->symtree->n.sym;
3571 /* If this ia a deferred TBP, c->expr1 will be set. */
3572 if (!c->expr1 && csym)
3574 if (csym->attr.abstract)
3576 gfc_error ("ABSTRACT INTERFACE %qs must not be referenced at %L",
3577 csym->name, &c->loc);
3578 return false;
3581 /* Subroutines without the RECURSIVE attribution are not allowed to
3582 call themselves. */
3583 if (is_illegal_recursion (csym, gfc_current_ns))
3585 if (csym->attr.entry && csym->ns->entries)
3586 gfc_error ("ENTRY %qs at %L cannot be called recursively, "
3587 "as subroutine %qs is not RECURSIVE",
3588 csym->name, &c->loc, csym->ns->entries->sym->name);
3589 else
3590 gfc_error ("SUBROUTINE %qs at %L cannot be called recursively, "
3591 "as it is not RECURSIVE", csym->name, &c->loc);
3593 t = false;
3597 /* Switch off assumed size checking and do this again for certain kinds
3598 of procedure, once the procedure itself is resolved. */
3599 need_full_assumed_size++;
3601 if (csym)
3602 ptype = csym->attr.proc;
3604 no_formal_args = csym && is_external_proc (csym)
3605 && gfc_sym_get_dummy_args (csym) == NULL;
3606 if (!resolve_actual_arglist (c->ext.actual, ptype, no_formal_args))
3607 return false;
3609 /* Resume assumed_size checking. */
3610 need_full_assumed_size--;
3612 /* If external, check for usage. */
3613 if (csym && is_external_proc (csym))
3614 resolve_global_procedure (csym, &c->loc, &c->ext.actual, 1);
3616 t = true;
3617 if (c->resolved_sym == NULL)
3619 c->resolved_isym = NULL;
3620 switch (procedure_kind (csym))
3622 case PTYPE_GENERIC:
3623 t = resolve_generic_s (c);
3624 break;
3626 case PTYPE_SPECIFIC:
3627 t = resolve_specific_s (c);
3628 break;
3630 case PTYPE_UNKNOWN:
3631 t = resolve_unknown_s (c);
3632 break;
3634 default:
3635 gfc_internal_error ("resolve_subroutine(): bad function type");
3639 /* Some checks of elemental subroutine actual arguments. */
3640 if (!resolve_elemental_actual (NULL, c))
3641 return false;
3643 if (!c->expr1)
3644 update_current_proc_array_outer_dependency (csym);
3645 else
3646 /* Typebound procedure: Assume the worst. */
3647 gfc_current_ns->proc_name->attr.array_outer_dependency = 1;
3649 return t;
3653 /* Compare the shapes of two arrays that have non-NULL shapes. If both
3654 op1->shape and op2->shape are non-NULL return true if their shapes
3655 match. If both op1->shape and op2->shape are non-NULL return false
3656 if their shapes do not match. If either op1->shape or op2->shape is
3657 NULL, return true. */
3659 static bool
3660 compare_shapes (gfc_expr *op1, gfc_expr *op2)
3662 bool t;
3663 int i;
3665 t = true;
3667 if (op1->shape != NULL && op2->shape != NULL)
3669 for (i = 0; i < op1->rank; i++)
3671 if (mpz_cmp (op1->shape[i], op2->shape[i]) != 0)
3673 gfc_error ("Shapes for operands at %L and %L are not conformable",
3674 &op1->where, &op2->where);
3675 t = false;
3676 break;
3681 return t;
3684 /* Convert a logical operator to the corresponding bitwise intrinsic call.
3685 For example A .AND. B becomes IAND(A, B). */
3686 static gfc_expr *
3687 logical_to_bitwise (gfc_expr *e)
3689 gfc_expr *tmp, *op1, *op2;
3690 gfc_isym_id isym;
3691 gfc_actual_arglist *args = NULL;
3693 gcc_assert (e->expr_type == EXPR_OP);
3695 isym = GFC_ISYM_NONE;
3696 op1 = e->value.op.op1;
3697 op2 = e->value.op.op2;
3699 switch (e->value.op.op)
3701 case INTRINSIC_NOT:
3702 isym = GFC_ISYM_NOT;
3703 break;
3704 case INTRINSIC_AND:
3705 isym = GFC_ISYM_IAND;
3706 break;
3707 case INTRINSIC_OR:
3708 isym = GFC_ISYM_IOR;
3709 break;
3710 case INTRINSIC_NEQV:
3711 isym = GFC_ISYM_IEOR;
3712 break;
3713 case INTRINSIC_EQV:
3714 /* "Bitwise eqv" is just the complement of NEQV === IEOR.
3715 Change the old expression to NEQV, which will get replaced by IEOR,
3716 and wrap it in NOT. */
3717 tmp = gfc_copy_expr (e);
3718 tmp->value.op.op = INTRINSIC_NEQV;
3719 tmp = logical_to_bitwise (tmp);
3720 isym = GFC_ISYM_NOT;
3721 op1 = tmp;
3722 op2 = NULL;
3723 break;
3724 default:
3725 gfc_internal_error ("logical_to_bitwise(): Bad intrinsic");
3728 /* Inherit the original operation's operands as arguments. */
3729 args = gfc_get_actual_arglist ();
3730 args->expr = op1;
3731 if (op2)
3733 args->next = gfc_get_actual_arglist ();
3734 args->next->expr = op2;
3737 /* Convert the expression to a function call. */
3738 e->expr_type = EXPR_FUNCTION;
3739 e->value.function.actual = args;
3740 e->value.function.isym = gfc_intrinsic_function_by_id (isym);
3741 e->value.function.name = e->value.function.isym->name;
3742 e->value.function.esym = NULL;
3744 /* Make up a pre-resolved function call symtree if we need to. */
3745 if (!e->symtree || !e->symtree->n.sym)
3747 gfc_symbol *sym;
3748 gfc_get_ha_sym_tree (e->value.function.isym->name, &e->symtree);
3749 sym = e->symtree->n.sym;
3750 sym->result = sym;
3751 sym->attr.flavor = FL_PROCEDURE;
3752 sym->attr.function = 1;
3753 sym->attr.elemental = 1;
3754 sym->attr.pure = 1;
3755 sym->attr.referenced = 1;
3756 gfc_intrinsic_symbol (sym);
3757 gfc_commit_symbol (sym);
3760 args->name = e->value.function.isym->formal->name;
3761 if (e->value.function.isym->formal->next)
3762 args->next->name = e->value.function.isym->formal->next->name;
3764 return e;
3767 /* Recursively append candidate UOP to CANDIDATES. Store the number of
3768 candidates in CANDIDATES_LEN. */
3769 static void
3770 lookup_uop_fuzzy_find_candidates (gfc_symtree *uop,
3771 char **&candidates,
3772 size_t &candidates_len)
3774 gfc_symtree *p;
3776 if (uop == NULL)
3777 return;
3779 /* Not sure how to properly filter here. Use all for a start.
3780 n.uop.op is NULL for empty interface operators (is that legal?) disregard
3781 these as i suppose they don't make terribly sense. */
3783 if (uop->n.uop->op != NULL)
3784 vec_push (candidates, candidates_len, uop->name);
3786 p = uop->left;
3787 if (p)
3788 lookup_uop_fuzzy_find_candidates (p, candidates, candidates_len);
3790 p = uop->right;
3791 if (p)
3792 lookup_uop_fuzzy_find_candidates (p, candidates, candidates_len);
3795 /* Lookup user-operator OP fuzzily, taking names in UOP into account. */
3797 static const char*
3798 lookup_uop_fuzzy (const char *op, gfc_symtree *uop)
3800 char **candidates = NULL;
3801 size_t candidates_len = 0;
3802 lookup_uop_fuzzy_find_candidates (uop, candidates, candidates_len);
3803 return gfc_closest_fuzzy_match (op, candidates);
3807 /* Resolve an operator expression node. This can involve replacing the
3808 operation with a user defined function call. */
3810 static bool
3811 resolve_operator (gfc_expr *e)
3813 gfc_expr *op1, *op2;
3814 char msg[200];
3815 bool dual_locus_error;
3816 bool t;
3818 /* Resolve all subnodes-- give them types. */
3820 switch (e->value.op.op)
3822 default:
3823 if (!gfc_resolve_expr (e->value.op.op2))
3824 return false;
3826 /* Fall through. */
3828 case INTRINSIC_NOT:
3829 case INTRINSIC_UPLUS:
3830 case INTRINSIC_UMINUS:
3831 case INTRINSIC_PARENTHESES:
3832 if (!gfc_resolve_expr (e->value.op.op1))
3833 return false;
3834 break;
3837 /* Typecheck the new node. */
3839 op1 = e->value.op.op1;
3840 op2 = e->value.op.op2;
3841 dual_locus_error = false;
3843 if ((op1 && op1->expr_type == EXPR_NULL)
3844 || (op2 && op2->expr_type == EXPR_NULL))
3846 sprintf (msg, _("Invalid context for NULL() pointer at %%L"));
3847 goto bad_op;
3850 switch (e->value.op.op)
3852 case INTRINSIC_UPLUS:
3853 case INTRINSIC_UMINUS:
3854 if (op1->ts.type == BT_INTEGER
3855 || op1->ts.type == BT_REAL
3856 || op1->ts.type == BT_COMPLEX)
3858 e->ts = op1->ts;
3859 break;
3862 sprintf (msg, _("Operand of unary numeric operator %%<%s%%> at %%L is %s"),
3863 gfc_op2string (e->value.op.op), gfc_typename (&e->ts));
3864 goto bad_op;
3866 case INTRINSIC_PLUS:
3867 case INTRINSIC_MINUS:
3868 case INTRINSIC_TIMES:
3869 case INTRINSIC_DIVIDE:
3870 case INTRINSIC_POWER:
3871 if (gfc_numeric_ts (&op1->ts) && gfc_numeric_ts (&op2->ts))
3873 gfc_type_convert_binary (e, 1);
3874 break;
3877 sprintf (msg,
3878 _("Operands of binary numeric operator %%<%s%%> at %%L are %s/%s"),
3879 gfc_op2string (e->value.op.op), gfc_typename (&op1->ts),
3880 gfc_typename (&op2->ts));
3881 goto bad_op;
3883 case INTRINSIC_CONCAT:
3884 if (op1->ts.type == BT_CHARACTER && op2->ts.type == BT_CHARACTER
3885 && op1->ts.kind == op2->ts.kind)
3887 e->ts.type = BT_CHARACTER;
3888 e->ts.kind = op1->ts.kind;
3889 break;
3892 sprintf (msg,
3893 _("Operands of string concatenation operator at %%L are %s/%s"),
3894 gfc_typename (&op1->ts), gfc_typename (&op2->ts));
3895 goto bad_op;
3897 case INTRINSIC_AND:
3898 case INTRINSIC_OR:
3899 case INTRINSIC_EQV:
3900 case INTRINSIC_NEQV:
3901 if (op1->ts.type == BT_LOGICAL && op2->ts.type == BT_LOGICAL)
3903 e->ts.type = BT_LOGICAL;
3904 e->ts.kind = gfc_kind_max (op1, op2);
3905 if (op1->ts.kind < e->ts.kind)
3906 gfc_convert_type (op1, &e->ts, 2);
3907 else if (op2->ts.kind < e->ts.kind)
3908 gfc_convert_type (op2, &e->ts, 2);
3909 break;
3912 /* Logical ops on integers become bitwise ops with -fdec. */
3913 else if (flag_dec
3914 && (op1->ts.type == BT_INTEGER || op2->ts.type == BT_INTEGER))
3916 e->ts.type = BT_INTEGER;
3917 e->ts.kind = gfc_kind_max (op1, op2);
3918 if (op1->ts.type != e->ts.type || op1->ts.kind != e->ts.kind)
3919 gfc_convert_type (op1, &e->ts, 1);
3920 if (op2->ts.type != e->ts.type || op2->ts.kind != e->ts.kind)
3921 gfc_convert_type (op2, &e->ts, 1);
3922 e = logical_to_bitwise (e);
3923 return resolve_function (e);
3926 sprintf (msg, _("Operands of logical operator %%<%s%%> at %%L are %s/%s"),
3927 gfc_op2string (e->value.op.op), gfc_typename (&op1->ts),
3928 gfc_typename (&op2->ts));
3930 goto bad_op;
3932 case INTRINSIC_NOT:
3933 /* Logical ops on integers become bitwise ops with -fdec. */
3934 if (flag_dec && op1->ts.type == BT_INTEGER)
3936 e->ts.type = BT_INTEGER;
3937 e->ts.kind = op1->ts.kind;
3938 e = logical_to_bitwise (e);
3939 return resolve_function (e);
3942 if (op1->ts.type == BT_LOGICAL)
3944 e->ts.type = BT_LOGICAL;
3945 e->ts.kind = op1->ts.kind;
3946 break;
3949 sprintf (msg, _("Operand of .not. operator at %%L is %s"),
3950 gfc_typename (&op1->ts));
3951 goto bad_op;
3953 case INTRINSIC_GT:
3954 case INTRINSIC_GT_OS:
3955 case INTRINSIC_GE:
3956 case INTRINSIC_GE_OS:
3957 case INTRINSIC_LT:
3958 case INTRINSIC_LT_OS:
3959 case INTRINSIC_LE:
3960 case INTRINSIC_LE_OS:
3961 if (op1->ts.type == BT_COMPLEX || op2->ts.type == BT_COMPLEX)
3963 strcpy (msg, _("COMPLEX quantities cannot be compared at %L"));
3964 goto bad_op;
3967 /* Fall through. */
3969 case INTRINSIC_EQ:
3970 case INTRINSIC_EQ_OS:
3971 case INTRINSIC_NE:
3972 case INTRINSIC_NE_OS:
3973 if (op1->ts.type == BT_CHARACTER && op2->ts.type == BT_CHARACTER
3974 && op1->ts.kind == op2->ts.kind)
3976 e->ts.type = BT_LOGICAL;
3977 e->ts.kind = gfc_default_logical_kind;
3978 break;
3981 if (gfc_numeric_ts (&op1->ts) && gfc_numeric_ts (&op2->ts))
3983 gfc_type_convert_binary (e, 1);
3985 e->ts.type = BT_LOGICAL;
3986 e->ts.kind = gfc_default_logical_kind;
3988 if (warn_compare_reals)
3990 gfc_intrinsic_op op = e->value.op.op;
3992 /* Type conversion has made sure that the types of op1 and op2
3993 agree, so it is only necessary to check the first one. */
3994 if ((op1->ts.type == BT_REAL || op1->ts.type == BT_COMPLEX)
3995 && (op == INTRINSIC_EQ || op == INTRINSIC_EQ_OS
3996 || op == INTRINSIC_NE || op == INTRINSIC_NE_OS))
3998 const char *msg;
4000 if (op == INTRINSIC_EQ || op == INTRINSIC_EQ_OS)
4001 msg = "Equality comparison for %s at %L";
4002 else
4003 msg = "Inequality comparison for %s at %L";
4005 gfc_warning (OPT_Wcompare_reals, msg,
4006 gfc_typename (&op1->ts), &op1->where);
4010 break;
4013 if (op1->ts.type == BT_LOGICAL && op2->ts.type == BT_LOGICAL)
4014 sprintf (msg,
4015 _("Logicals at %%L must be compared with %s instead of %s"),
4016 (e->value.op.op == INTRINSIC_EQ
4017 || e->value.op.op == INTRINSIC_EQ_OS)
4018 ? ".eqv." : ".neqv.", gfc_op2string (e->value.op.op));
4019 else
4020 sprintf (msg,
4021 _("Operands of comparison operator %%<%s%%> at %%L are %s/%s"),
4022 gfc_op2string (e->value.op.op), gfc_typename (&op1->ts),
4023 gfc_typename (&op2->ts));
4025 goto bad_op;
4027 case INTRINSIC_USER:
4028 if (e->value.op.uop->op == NULL)
4030 const char *name = e->value.op.uop->name;
4031 const char *guessed;
4032 guessed = lookup_uop_fuzzy (name, e->value.op.uop->ns->uop_root);
4033 if (guessed)
4034 sprintf (msg, _("Unknown operator %%<%s%%> at %%L; did you mean '%s'?"),
4035 name, guessed);
4036 else
4037 sprintf (msg, _("Unknown operator %%<%s%%> at %%L"), name);
4039 else if (op2 == NULL)
4040 sprintf (msg, _("Operand of user operator %%<%s%%> at %%L is %s"),
4041 e->value.op.uop->name, gfc_typename (&op1->ts));
4042 else
4044 sprintf (msg, _("Operands of user operator %%<%s%%> at %%L are %s/%s"),
4045 e->value.op.uop->name, gfc_typename (&op1->ts),
4046 gfc_typename (&op2->ts));
4047 e->value.op.uop->op->sym->attr.referenced = 1;
4050 goto bad_op;
4052 case INTRINSIC_PARENTHESES:
4053 e->ts = op1->ts;
4054 if (e->ts.type == BT_CHARACTER)
4055 e->ts.u.cl = op1->ts.u.cl;
4056 break;
4058 default:
4059 gfc_internal_error ("resolve_operator(): Bad intrinsic");
4062 /* Deal with arrayness of an operand through an operator. */
4064 t = true;
4066 switch (e->value.op.op)
4068 case INTRINSIC_PLUS:
4069 case INTRINSIC_MINUS:
4070 case INTRINSIC_TIMES:
4071 case INTRINSIC_DIVIDE:
4072 case INTRINSIC_POWER:
4073 case INTRINSIC_CONCAT:
4074 case INTRINSIC_AND:
4075 case INTRINSIC_OR:
4076 case INTRINSIC_EQV:
4077 case INTRINSIC_NEQV:
4078 case INTRINSIC_EQ:
4079 case INTRINSIC_EQ_OS:
4080 case INTRINSIC_NE:
4081 case INTRINSIC_NE_OS:
4082 case INTRINSIC_GT:
4083 case INTRINSIC_GT_OS:
4084 case INTRINSIC_GE:
4085 case INTRINSIC_GE_OS:
4086 case INTRINSIC_LT:
4087 case INTRINSIC_LT_OS:
4088 case INTRINSIC_LE:
4089 case INTRINSIC_LE_OS:
4091 if (op1->rank == 0 && op2->rank == 0)
4092 e->rank = 0;
4094 if (op1->rank == 0 && op2->rank != 0)
4096 e->rank = op2->rank;
4098 if (e->shape == NULL)
4099 e->shape = gfc_copy_shape (op2->shape, op2->rank);
4102 if (op1->rank != 0 && op2->rank == 0)
4104 e->rank = op1->rank;
4106 if (e->shape == NULL)
4107 e->shape = gfc_copy_shape (op1->shape, op1->rank);
4110 if (op1->rank != 0 && op2->rank != 0)
4112 if (op1->rank == op2->rank)
4114 e->rank = op1->rank;
4115 if (e->shape == NULL)
4117 t = compare_shapes (op1, op2);
4118 if (!t)
4119 e->shape = NULL;
4120 else
4121 e->shape = gfc_copy_shape (op1->shape, op1->rank);
4124 else
4126 /* Allow higher level expressions to work. */
4127 e->rank = 0;
4129 /* Try user-defined operators, and otherwise throw an error. */
4130 dual_locus_error = true;
4131 sprintf (msg,
4132 _("Inconsistent ranks for operator at %%L and %%L"));
4133 goto bad_op;
4137 break;
4139 case INTRINSIC_PARENTHESES:
4140 case INTRINSIC_NOT:
4141 case INTRINSIC_UPLUS:
4142 case INTRINSIC_UMINUS:
4143 /* Simply copy arrayness attribute */
4144 e->rank = op1->rank;
4146 if (e->shape == NULL)
4147 e->shape = gfc_copy_shape (op1->shape, op1->rank);
4149 break;
4151 default:
4152 break;
4155 /* Attempt to simplify the expression. */
4156 if (t)
4158 t = gfc_simplify_expr (e, 0);
4159 /* Some calls do not succeed in simplification and return false
4160 even though there is no error; e.g. variable references to
4161 PARAMETER arrays. */
4162 if (!gfc_is_constant_expr (e))
4163 t = true;
4165 return t;
4167 bad_op:
4170 match m = gfc_extend_expr (e);
4171 if (m == MATCH_YES)
4172 return true;
4173 if (m == MATCH_ERROR)
4174 return false;
4177 if (dual_locus_error)
4178 gfc_error (msg, &op1->where, &op2->where);
4179 else
4180 gfc_error (msg, &e->where);
4182 return false;
4186 /************** Array resolution subroutines **************/
4188 enum compare_result
4189 { CMP_LT, CMP_EQ, CMP_GT, CMP_UNKNOWN };
4191 /* Compare two integer expressions. */
4193 static compare_result
4194 compare_bound (gfc_expr *a, gfc_expr *b)
4196 int i;
4198 if (a == NULL || a->expr_type != EXPR_CONSTANT
4199 || b == NULL || b->expr_type != EXPR_CONSTANT)
4200 return CMP_UNKNOWN;
4202 /* If either of the types isn't INTEGER, we must have
4203 raised an error earlier. */
4205 if (a->ts.type != BT_INTEGER || b->ts.type != BT_INTEGER)
4206 return CMP_UNKNOWN;
4208 i = mpz_cmp (a->value.integer, b->value.integer);
4210 if (i < 0)
4211 return CMP_LT;
4212 if (i > 0)
4213 return CMP_GT;
4214 return CMP_EQ;
4218 /* Compare an integer expression with an integer. */
4220 static compare_result
4221 compare_bound_int (gfc_expr *a, int b)
4223 int i;
4225 if (a == NULL || a->expr_type != EXPR_CONSTANT)
4226 return CMP_UNKNOWN;
4228 if (a->ts.type != BT_INTEGER)
4229 gfc_internal_error ("compare_bound_int(): Bad expression");
4231 i = mpz_cmp_si (a->value.integer, b);
4233 if (i < 0)
4234 return CMP_LT;
4235 if (i > 0)
4236 return CMP_GT;
4237 return CMP_EQ;
4241 /* Compare an integer expression with a mpz_t. */
4243 static compare_result
4244 compare_bound_mpz_t (gfc_expr *a, mpz_t b)
4246 int i;
4248 if (a == NULL || a->expr_type != EXPR_CONSTANT)
4249 return CMP_UNKNOWN;
4251 if (a->ts.type != BT_INTEGER)
4252 gfc_internal_error ("compare_bound_int(): Bad expression");
4254 i = mpz_cmp (a->value.integer, b);
4256 if (i < 0)
4257 return CMP_LT;
4258 if (i > 0)
4259 return CMP_GT;
4260 return CMP_EQ;
4264 /* Compute the last value of a sequence given by a triplet.
4265 Return 0 if it wasn't able to compute the last value, or if the
4266 sequence if empty, and 1 otherwise. */
4268 static int
4269 compute_last_value_for_triplet (gfc_expr *start, gfc_expr *end,
4270 gfc_expr *stride, mpz_t last)
4272 mpz_t rem;
4274 if (start == NULL || start->expr_type != EXPR_CONSTANT
4275 || end == NULL || end->expr_type != EXPR_CONSTANT
4276 || (stride != NULL && stride->expr_type != EXPR_CONSTANT))
4277 return 0;
4279 if (start->ts.type != BT_INTEGER || end->ts.type != BT_INTEGER
4280 || (stride != NULL && stride->ts.type != BT_INTEGER))
4281 return 0;
4283 if (stride == NULL || compare_bound_int (stride, 1) == CMP_EQ)
4285 if (compare_bound (start, end) == CMP_GT)
4286 return 0;
4287 mpz_set (last, end->value.integer);
4288 return 1;
4291 if (compare_bound_int (stride, 0) == CMP_GT)
4293 /* Stride is positive */
4294 if (mpz_cmp (start->value.integer, end->value.integer) > 0)
4295 return 0;
4297 else
4299 /* Stride is negative */
4300 if (mpz_cmp (start->value.integer, end->value.integer) < 0)
4301 return 0;
4304 mpz_init (rem);
4305 mpz_sub (rem, end->value.integer, start->value.integer);
4306 mpz_tdiv_r (rem, rem, stride->value.integer);
4307 mpz_sub (last, end->value.integer, rem);
4308 mpz_clear (rem);
4310 return 1;
4314 /* Compare a single dimension of an array reference to the array
4315 specification. */
4317 static bool
4318 check_dimension (int i, gfc_array_ref *ar, gfc_array_spec *as)
4320 mpz_t last_value;
4322 if (ar->dimen_type[i] == DIMEN_STAR)
4324 gcc_assert (ar->stride[i] == NULL);
4325 /* This implies [*] as [*:] and [*:3] are not possible. */
4326 if (ar->start[i] == NULL)
4328 gcc_assert (ar->end[i] == NULL);
4329 return true;
4333 /* Given start, end and stride values, calculate the minimum and
4334 maximum referenced indexes. */
4336 switch (ar->dimen_type[i])
4338 case DIMEN_VECTOR:
4339 case DIMEN_THIS_IMAGE:
4340 break;
4342 case DIMEN_STAR:
4343 case DIMEN_ELEMENT:
4344 if (compare_bound (ar->start[i], as->lower[i]) == CMP_LT)
4346 if (i < as->rank)
4347 gfc_warning (0, "Array reference at %L is out of bounds "
4348 "(%ld < %ld) in dimension %d", &ar->c_where[i],
4349 mpz_get_si (ar->start[i]->value.integer),
4350 mpz_get_si (as->lower[i]->value.integer), i+1);
4351 else
4352 gfc_warning (0, "Array reference at %L is out of bounds "
4353 "(%ld < %ld) in codimension %d", &ar->c_where[i],
4354 mpz_get_si (ar->start[i]->value.integer),
4355 mpz_get_si (as->lower[i]->value.integer),
4356 i + 1 - as->rank);
4357 return true;
4359 if (compare_bound (ar->start[i], as->upper[i]) == CMP_GT)
4361 if (i < as->rank)
4362 gfc_warning (0, "Array reference at %L is out of bounds "
4363 "(%ld > %ld) in dimension %d", &ar->c_where[i],
4364 mpz_get_si (ar->start[i]->value.integer),
4365 mpz_get_si (as->upper[i]->value.integer), i+1);
4366 else
4367 gfc_warning (0, "Array reference at %L is out of bounds "
4368 "(%ld > %ld) in codimension %d", &ar->c_where[i],
4369 mpz_get_si (ar->start[i]->value.integer),
4370 mpz_get_si (as->upper[i]->value.integer),
4371 i + 1 - as->rank);
4372 return true;
4375 break;
4377 case DIMEN_RANGE:
4379 #define AR_START (ar->start[i] ? ar->start[i] : as->lower[i])
4380 #define AR_END (ar->end[i] ? ar->end[i] : as->upper[i])
4382 compare_result comp_start_end = compare_bound (AR_START, AR_END);
4384 /* Check for zero stride, which is not allowed. */
4385 if (compare_bound_int (ar->stride[i], 0) == CMP_EQ)
4387 gfc_error ("Illegal stride of zero at %L", &ar->c_where[i]);
4388 return false;
4391 /* if start == len || (stride > 0 && start < len)
4392 || (stride < 0 && start > len),
4393 then the array section contains at least one element. In this
4394 case, there is an out-of-bounds access if
4395 (start < lower || start > upper). */
4396 if (compare_bound (AR_START, AR_END) == CMP_EQ
4397 || ((compare_bound_int (ar->stride[i], 0) == CMP_GT
4398 || ar->stride[i] == NULL) && comp_start_end == CMP_LT)
4399 || (compare_bound_int (ar->stride[i], 0) == CMP_LT
4400 && comp_start_end == CMP_GT))
4402 if (compare_bound (AR_START, as->lower[i]) == CMP_LT)
4404 gfc_warning (0, "Lower array reference at %L is out of bounds "
4405 "(%ld < %ld) in dimension %d", &ar->c_where[i],
4406 mpz_get_si (AR_START->value.integer),
4407 mpz_get_si (as->lower[i]->value.integer), i+1);
4408 return true;
4410 if (compare_bound (AR_START, as->upper[i]) == CMP_GT)
4412 gfc_warning (0, "Lower array reference at %L is out of bounds "
4413 "(%ld > %ld) in dimension %d", &ar->c_where[i],
4414 mpz_get_si (AR_START->value.integer),
4415 mpz_get_si (as->upper[i]->value.integer), i+1);
4416 return true;
4420 /* If we can compute the highest index of the array section,
4421 then it also has to be between lower and upper. */
4422 mpz_init (last_value);
4423 if (compute_last_value_for_triplet (AR_START, AR_END, ar->stride[i],
4424 last_value))
4426 if (compare_bound_mpz_t (as->lower[i], last_value) == CMP_GT)
4428 gfc_warning (0, "Upper array reference at %L is out of bounds "
4429 "(%ld < %ld) in dimension %d", &ar->c_where[i],
4430 mpz_get_si (last_value),
4431 mpz_get_si (as->lower[i]->value.integer), i+1);
4432 mpz_clear (last_value);
4433 return true;
4435 if (compare_bound_mpz_t (as->upper[i], last_value) == CMP_LT)
4437 gfc_warning (0, "Upper array reference at %L is out of bounds "
4438 "(%ld > %ld) in dimension %d", &ar->c_where[i],
4439 mpz_get_si (last_value),
4440 mpz_get_si (as->upper[i]->value.integer), i+1);
4441 mpz_clear (last_value);
4442 return true;
4445 mpz_clear (last_value);
4447 #undef AR_START
4448 #undef AR_END
4450 break;
4452 default:
4453 gfc_internal_error ("check_dimension(): Bad array reference");
4456 return true;
4460 /* Compare an array reference with an array specification. */
4462 static bool
4463 compare_spec_to_ref (gfc_array_ref *ar)
4465 gfc_array_spec *as;
4466 int i;
4468 as = ar->as;
4469 i = as->rank - 1;
4470 /* TODO: Full array sections are only allowed as actual parameters. */
4471 if (as->type == AS_ASSUMED_SIZE
4472 && (/*ar->type == AR_FULL
4473 ||*/ (ar->type == AR_SECTION
4474 && ar->dimen_type[i] == DIMEN_RANGE && ar->end[i] == NULL)))
4476 gfc_error ("Rightmost upper bound of assumed size array section "
4477 "not specified at %L", &ar->where);
4478 return false;
4481 if (ar->type == AR_FULL)
4482 return true;
4484 if (as->rank != ar->dimen)
4486 gfc_error ("Rank mismatch in array reference at %L (%d/%d)",
4487 &ar->where, ar->dimen, as->rank);
4488 return false;
4491 /* ar->codimen == 0 is a local array. */
4492 if (as->corank != ar->codimen && ar->codimen != 0)
4494 gfc_error ("Coindex rank mismatch in array reference at %L (%d/%d)",
4495 &ar->where, ar->codimen, as->corank);
4496 return false;
4499 for (i = 0; i < as->rank; i++)
4500 if (!check_dimension (i, ar, as))
4501 return false;
4503 /* Local access has no coarray spec. */
4504 if (ar->codimen != 0)
4505 for (i = as->rank; i < as->rank + as->corank; i++)
4507 if (ar->dimen_type[i] != DIMEN_ELEMENT && !ar->in_allocate
4508 && ar->dimen_type[i] != DIMEN_THIS_IMAGE)
4510 gfc_error ("Coindex of codimension %d must be a scalar at %L",
4511 i + 1 - as->rank, &ar->where);
4512 return false;
4514 if (!check_dimension (i, ar, as))
4515 return false;
4518 return true;
4522 /* Resolve one part of an array index. */
4524 static bool
4525 gfc_resolve_index_1 (gfc_expr *index, int check_scalar,
4526 int force_index_integer_kind)
4528 gfc_typespec ts;
4530 if (index == NULL)
4531 return true;
4533 if (!gfc_resolve_expr (index))
4534 return false;
4536 if (check_scalar && index->rank != 0)
4538 gfc_error ("Array index at %L must be scalar", &index->where);
4539 return false;
4542 if (index->ts.type != BT_INTEGER && index->ts.type != BT_REAL)
4544 gfc_error ("Array index at %L must be of INTEGER type, found %s",
4545 &index->where, gfc_basic_typename (index->ts.type));
4546 return false;
4549 if (index->ts.type == BT_REAL)
4550 if (!gfc_notify_std (GFC_STD_LEGACY, "REAL array index at %L",
4551 &index->where))
4552 return false;
4554 if ((index->ts.kind != gfc_index_integer_kind
4555 && force_index_integer_kind)
4556 || index->ts.type != BT_INTEGER)
4558 gfc_clear_ts (&ts);
4559 ts.type = BT_INTEGER;
4560 ts.kind = gfc_index_integer_kind;
4562 gfc_convert_type_warn (index, &ts, 2, 0);
4565 return true;
4568 /* Resolve one part of an array index. */
4570 bool
4571 gfc_resolve_index (gfc_expr *index, int check_scalar)
4573 return gfc_resolve_index_1 (index, check_scalar, 1);
4576 /* Resolve a dim argument to an intrinsic function. */
4578 bool
4579 gfc_resolve_dim_arg (gfc_expr *dim)
4581 if (dim == NULL)
4582 return true;
4584 if (!gfc_resolve_expr (dim))
4585 return false;
4587 if (dim->rank != 0)
4589 gfc_error ("Argument dim at %L must be scalar", &dim->where);
4590 return false;
4594 if (dim->ts.type != BT_INTEGER)
4596 gfc_error ("Argument dim at %L must be of INTEGER type", &dim->where);
4597 return false;
4600 if (dim->ts.kind != gfc_index_integer_kind)
4602 gfc_typespec ts;
4604 gfc_clear_ts (&ts);
4605 ts.type = BT_INTEGER;
4606 ts.kind = gfc_index_integer_kind;
4608 gfc_convert_type_warn (dim, &ts, 2, 0);
4611 return true;
4614 /* Given an expression that contains array references, update those array
4615 references to point to the right array specifications. While this is
4616 filled in during matching, this information is difficult to save and load
4617 in a module, so we take care of it here.
4619 The idea here is that the original array reference comes from the
4620 base symbol. We traverse the list of reference structures, setting
4621 the stored reference to references. Component references can
4622 provide an additional array specification. */
4624 static void
4625 find_array_spec (gfc_expr *e)
4627 gfc_array_spec *as;
4628 gfc_component *c;
4629 gfc_ref *ref;
4631 if (e->symtree->n.sym->ts.type == BT_CLASS)
4632 as = CLASS_DATA (e->symtree->n.sym)->as;
4633 else
4634 as = e->symtree->n.sym->as;
4636 for (ref = e->ref; ref; ref = ref->next)
4637 switch (ref->type)
4639 case REF_ARRAY:
4640 if (as == NULL)
4641 gfc_internal_error ("find_array_spec(): Missing spec");
4643 ref->u.ar.as = as;
4644 as = NULL;
4645 break;
4647 case REF_COMPONENT:
4648 c = ref->u.c.component;
4649 if (c->attr.dimension)
4651 if (as != NULL)
4652 gfc_internal_error ("find_array_spec(): unused as(1)");
4653 as = c->as;
4656 break;
4658 case REF_SUBSTRING:
4659 break;
4662 if (as != NULL)
4663 gfc_internal_error ("find_array_spec(): unused as(2)");
4667 /* Resolve an array reference. */
4669 static bool
4670 resolve_array_ref (gfc_array_ref *ar)
4672 int i, check_scalar;
4673 gfc_expr *e;
4675 for (i = 0; i < ar->dimen + ar->codimen; i++)
4677 check_scalar = ar->dimen_type[i] == DIMEN_RANGE;
4679 /* Do not force gfc_index_integer_kind for the start. We can
4680 do fine with any integer kind. This avoids temporary arrays
4681 created for indexing with a vector. */
4682 if (!gfc_resolve_index_1 (ar->start[i], check_scalar, 0))
4683 return false;
4684 if (!gfc_resolve_index (ar->end[i], check_scalar))
4685 return false;
4686 if (!gfc_resolve_index (ar->stride[i], check_scalar))
4687 return false;
4689 e = ar->start[i];
4691 if (ar->dimen_type[i] == DIMEN_UNKNOWN)
4692 switch (e->rank)
4694 case 0:
4695 ar->dimen_type[i] = DIMEN_ELEMENT;
4696 break;
4698 case 1:
4699 ar->dimen_type[i] = DIMEN_VECTOR;
4700 if (e->expr_type == EXPR_VARIABLE
4701 && e->symtree->n.sym->ts.type == BT_DERIVED)
4702 ar->start[i] = gfc_get_parentheses (e);
4703 break;
4705 default:
4706 gfc_error ("Array index at %L is an array of rank %d",
4707 &ar->c_where[i], e->rank);
4708 return false;
4711 /* Fill in the upper bound, which may be lower than the
4712 specified one for something like a(2:10:5), which is
4713 identical to a(2:7:5). Only relevant for strides not equal
4714 to one. Don't try a division by zero. */
4715 if (ar->dimen_type[i] == DIMEN_RANGE
4716 && ar->stride[i] != NULL && ar->stride[i]->expr_type == EXPR_CONSTANT
4717 && mpz_cmp_si (ar->stride[i]->value.integer, 1L) != 0
4718 && mpz_cmp_si (ar->stride[i]->value.integer, 0L) != 0)
4720 mpz_t size, end;
4722 if (gfc_ref_dimen_size (ar, i, &size, &end))
4724 if (ar->end[i] == NULL)
4726 ar->end[i] =
4727 gfc_get_constant_expr (BT_INTEGER, gfc_index_integer_kind,
4728 &ar->where);
4729 mpz_set (ar->end[i]->value.integer, end);
4731 else if (ar->end[i]->ts.type == BT_INTEGER
4732 && ar->end[i]->expr_type == EXPR_CONSTANT)
4734 mpz_set (ar->end[i]->value.integer, end);
4736 else
4737 gcc_unreachable ();
4739 mpz_clear (size);
4740 mpz_clear (end);
4745 if (ar->type == AR_FULL)
4747 if (ar->as->rank == 0)
4748 ar->type = AR_ELEMENT;
4750 /* Make sure array is the same as array(:,:), this way
4751 we don't need to special case all the time. */
4752 ar->dimen = ar->as->rank;
4753 for (i = 0; i < ar->dimen; i++)
4755 ar->dimen_type[i] = DIMEN_RANGE;
4757 gcc_assert (ar->start[i] == NULL);
4758 gcc_assert (ar->end[i] == NULL);
4759 gcc_assert (ar->stride[i] == NULL);
4763 /* If the reference type is unknown, figure out what kind it is. */
4765 if (ar->type == AR_UNKNOWN)
4767 ar->type = AR_ELEMENT;
4768 for (i = 0; i < ar->dimen; i++)
4769 if (ar->dimen_type[i] == DIMEN_RANGE
4770 || ar->dimen_type[i] == DIMEN_VECTOR)
4772 ar->type = AR_SECTION;
4773 break;
4777 if (!ar->as->cray_pointee && !compare_spec_to_ref (ar))
4778 return false;
4780 if (ar->as->corank && ar->codimen == 0)
4782 int n;
4783 ar->codimen = ar->as->corank;
4784 for (n = ar->dimen; n < ar->dimen + ar->codimen; n++)
4785 ar->dimen_type[n] = DIMEN_THIS_IMAGE;
4788 return true;
4792 static bool
4793 resolve_substring (gfc_ref *ref)
4795 int k = gfc_validate_kind (BT_INTEGER, gfc_charlen_int_kind, false);
4797 if (ref->u.ss.start != NULL)
4799 if (!gfc_resolve_expr (ref->u.ss.start))
4800 return false;
4802 if (ref->u.ss.start->ts.type != BT_INTEGER)
4804 gfc_error ("Substring start index at %L must be of type INTEGER",
4805 &ref->u.ss.start->where);
4806 return false;
4809 if (ref->u.ss.start->rank != 0)
4811 gfc_error ("Substring start index at %L must be scalar",
4812 &ref->u.ss.start->where);
4813 return false;
4816 if (compare_bound_int (ref->u.ss.start, 1) == CMP_LT
4817 && (compare_bound (ref->u.ss.end, ref->u.ss.start) == CMP_EQ
4818 || compare_bound (ref->u.ss.end, ref->u.ss.start) == CMP_GT))
4820 gfc_error ("Substring start index at %L is less than one",
4821 &ref->u.ss.start->where);
4822 return false;
4826 if (ref->u.ss.end != NULL)
4828 if (!gfc_resolve_expr (ref->u.ss.end))
4829 return false;
4831 if (ref->u.ss.end->ts.type != BT_INTEGER)
4833 gfc_error ("Substring end index at %L must be of type INTEGER",
4834 &ref->u.ss.end->where);
4835 return false;
4838 if (ref->u.ss.end->rank != 0)
4840 gfc_error ("Substring end index at %L must be scalar",
4841 &ref->u.ss.end->where);
4842 return false;
4845 if (ref->u.ss.length != NULL
4846 && compare_bound (ref->u.ss.end, ref->u.ss.length->length) == CMP_GT
4847 && (compare_bound (ref->u.ss.end, ref->u.ss.start) == CMP_EQ
4848 || compare_bound (ref->u.ss.end, ref->u.ss.start) == CMP_GT))
4850 gfc_error ("Substring end index at %L exceeds the string length",
4851 &ref->u.ss.start->where);
4852 return false;
4855 if (compare_bound_mpz_t (ref->u.ss.end,
4856 gfc_integer_kinds[k].huge) == CMP_GT
4857 && (compare_bound (ref->u.ss.end, ref->u.ss.start) == CMP_EQ
4858 || compare_bound (ref->u.ss.end, ref->u.ss.start) == CMP_GT))
4860 gfc_error ("Substring end index at %L is too large",
4861 &ref->u.ss.end->where);
4862 return false;
4866 return true;
4870 /* This function supplies missing substring charlens. */
4872 void
4873 gfc_resolve_substring_charlen (gfc_expr *e)
4875 gfc_ref *char_ref;
4876 gfc_expr *start, *end;
4877 gfc_typespec *ts = NULL;
4879 for (char_ref = e->ref; char_ref; char_ref = char_ref->next)
4881 if (char_ref->type == REF_SUBSTRING)
4882 break;
4883 if (char_ref->type == REF_COMPONENT)
4884 ts = &char_ref->u.c.component->ts;
4887 if (!char_ref)
4888 return;
4890 gcc_assert (char_ref->next == NULL);
4892 if (e->ts.u.cl)
4894 if (e->ts.u.cl->length)
4895 gfc_free_expr (e->ts.u.cl->length);
4896 else if (e->expr_type == EXPR_VARIABLE && e->symtree->n.sym->attr.dummy)
4897 return;
4900 e->ts.type = BT_CHARACTER;
4901 e->ts.kind = gfc_default_character_kind;
4903 if (!e->ts.u.cl)
4904 e->ts.u.cl = gfc_new_charlen (gfc_current_ns, NULL);
4906 if (char_ref->u.ss.start)
4907 start = gfc_copy_expr (char_ref->u.ss.start);
4908 else
4909 start = gfc_get_int_expr (gfc_charlen_int_kind, NULL, 1);
4911 if (char_ref->u.ss.end)
4912 end = gfc_copy_expr (char_ref->u.ss.end);
4913 else if (e->expr_type == EXPR_VARIABLE)
4915 if (!ts)
4916 ts = &e->symtree->n.sym->ts;
4917 end = gfc_copy_expr (ts->u.cl->length);
4919 else
4920 end = NULL;
4922 if (!start || !end)
4924 gfc_free_expr (start);
4925 gfc_free_expr (end);
4926 return;
4929 /* Length = (end - start + 1). */
4930 e->ts.u.cl->length = gfc_subtract (end, start);
4931 e->ts.u.cl->length = gfc_add (e->ts.u.cl->length,
4932 gfc_get_int_expr (gfc_charlen_int_kind,
4933 NULL, 1));
4935 /* F2008, 6.4.1: Both the starting point and the ending point shall
4936 be within the range 1, 2, ..., n unless the starting point exceeds
4937 the ending point, in which case the substring has length zero. */
4939 if (mpz_cmp_si (e->ts.u.cl->length->value.integer, 0) < 0)
4940 mpz_set_si (e->ts.u.cl->length->value.integer, 0);
4942 e->ts.u.cl->length->ts.type = BT_INTEGER;
4943 e->ts.u.cl->length->ts.kind = gfc_charlen_int_kind;
4945 /* Make sure that the length is simplified. */
4946 gfc_simplify_expr (e->ts.u.cl->length, 1);
4947 gfc_resolve_expr (e->ts.u.cl->length);
4951 /* Resolve subtype references. */
4953 static bool
4954 resolve_ref (gfc_expr *expr)
4956 int current_part_dimension, n_components, seen_part_dimension;
4957 gfc_ref *ref;
4959 for (ref = expr->ref; ref; ref = ref->next)
4960 if (ref->type == REF_ARRAY && ref->u.ar.as == NULL)
4962 find_array_spec (expr);
4963 break;
4966 for (ref = expr->ref; ref; ref = ref->next)
4967 switch (ref->type)
4969 case REF_ARRAY:
4970 if (!resolve_array_ref (&ref->u.ar))
4971 return false;
4972 break;
4974 case REF_COMPONENT:
4975 break;
4977 case REF_SUBSTRING:
4978 if (!resolve_substring (ref))
4979 return false;
4980 break;
4983 /* Check constraints on part references. */
4985 current_part_dimension = 0;
4986 seen_part_dimension = 0;
4987 n_components = 0;
4989 for (ref = expr->ref; ref; ref = ref->next)
4991 switch (ref->type)
4993 case REF_ARRAY:
4994 switch (ref->u.ar.type)
4996 case AR_FULL:
4997 /* Coarray scalar. */
4998 if (ref->u.ar.as->rank == 0)
5000 current_part_dimension = 0;
5001 break;
5003 /* Fall through. */
5004 case AR_SECTION:
5005 current_part_dimension = 1;
5006 break;
5008 case AR_ELEMENT:
5009 current_part_dimension = 0;
5010 break;
5012 case AR_UNKNOWN:
5013 gfc_internal_error ("resolve_ref(): Bad array reference");
5016 break;
5018 case REF_COMPONENT:
5019 if (current_part_dimension || seen_part_dimension)
5021 /* F03:C614. */
5022 if (ref->u.c.component->attr.pointer
5023 || ref->u.c.component->attr.proc_pointer
5024 || (ref->u.c.component->ts.type == BT_CLASS
5025 && CLASS_DATA (ref->u.c.component)->attr.pointer))
5027 gfc_error ("Component to the right of a part reference "
5028 "with nonzero rank must not have the POINTER "
5029 "attribute at %L", &expr->where);
5030 return false;
5032 else if (ref->u.c.component->attr.allocatable
5033 || (ref->u.c.component->ts.type == BT_CLASS
5034 && CLASS_DATA (ref->u.c.component)->attr.allocatable))
5037 gfc_error ("Component to the right of a part reference "
5038 "with nonzero rank must not have the ALLOCATABLE "
5039 "attribute at %L", &expr->where);
5040 return false;
5044 n_components++;
5045 break;
5047 case REF_SUBSTRING:
5048 break;
5051 if (((ref->type == REF_COMPONENT && n_components > 1)
5052 || ref->next == NULL)
5053 && current_part_dimension
5054 && seen_part_dimension)
5056 gfc_error ("Two or more part references with nonzero rank must "
5057 "not be specified at %L", &expr->where);
5058 return false;
5061 if (ref->type == REF_COMPONENT)
5063 if (current_part_dimension)
5064 seen_part_dimension = 1;
5066 /* reset to make sure */
5067 current_part_dimension = 0;
5071 return true;
5075 /* Given an expression, determine its shape. This is easier than it sounds.
5076 Leaves the shape array NULL if it is not possible to determine the shape. */
5078 static void
5079 expression_shape (gfc_expr *e)
5081 mpz_t array[GFC_MAX_DIMENSIONS];
5082 int i;
5084 if (e->rank <= 0 || e->shape != NULL)
5085 return;
5087 for (i = 0; i < e->rank; i++)
5088 if (!gfc_array_dimen_size (e, i, &array[i]))
5089 goto fail;
5091 e->shape = gfc_get_shape (e->rank);
5093 memcpy (e->shape, array, e->rank * sizeof (mpz_t));
5095 return;
5097 fail:
5098 for (i--; i >= 0; i--)
5099 mpz_clear (array[i]);
5103 /* Given a variable expression node, compute the rank of the expression by
5104 examining the base symbol and any reference structures it may have. */
5106 void
5107 expression_rank (gfc_expr *e)
5109 gfc_ref *ref;
5110 int i, rank;
5112 /* Just to make sure, because EXPR_COMPCALL's also have an e->ref and that
5113 could lead to serious confusion... */
5114 gcc_assert (e->expr_type != EXPR_COMPCALL);
5116 if (e->ref == NULL)
5118 if (e->expr_type == EXPR_ARRAY)
5119 goto done;
5120 /* Constructors can have a rank different from one via RESHAPE(). */
5122 if (e->symtree == NULL)
5124 e->rank = 0;
5125 goto done;
5128 e->rank = (e->symtree->n.sym->as == NULL)
5129 ? 0 : e->symtree->n.sym->as->rank;
5130 goto done;
5133 rank = 0;
5135 for (ref = e->ref; ref; ref = ref->next)
5137 if (ref->type == REF_COMPONENT && ref->u.c.component->attr.proc_pointer
5138 && ref->u.c.component->attr.function && !ref->next)
5139 rank = ref->u.c.component->as ? ref->u.c.component->as->rank : 0;
5141 if (ref->type != REF_ARRAY)
5142 continue;
5144 if (ref->u.ar.type == AR_FULL)
5146 rank = ref->u.ar.as->rank;
5147 break;
5150 if (ref->u.ar.type == AR_SECTION)
5152 /* Figure out the rank of the section. */
5153 if (rank != 0)
5154 gfc_internal_error ("expression_rank(): Two array specs");
5156 for (i = 0; i < ref->u.ar.dimen; i++)
5157 if (ref->u.ar.dimen_type[i] == DIMEN_RANGE
5158 || ref->u.ar.dimen_type[i] == DIMEN_VECTOR)
5159 rank++;
5161 break;
5165 e->rank = rank;
5167 done:
5168 expression_shape (e);
5172 static void
5173 add_caf_get_intrinsic (gfc_expr *e)
5175 gfc_expr *wrapper, *tmp_expr;
5176 gfc_ref *ref;
5177 int n;
5179 for (ref = e->ref; ref; ref = ref->next)
5180 if (ref->type == REF_ARRAY && ref->u.ar.codimen > 0)
5181 break;
5182 if (ref == NULL)
5183 return;
5185 for (n = ref->u.ar.dimen; n < ref->u.ar.dimen + ref->u.ar.codimen; n++)
5186 if (ref->u.ar.dimen_type[n] != DIMEN_ELEMENT)
5187 return;
5189 tmp_expr = XCNEW (gfc_expr);
5190 *tmp_expr = *e;
5191 wrapper = gfc_build_intrinsic_call (gfc_current_ns, GFC_ISYM_CAF_GET,
5192 "caf_get", tmp_expr->where, 1, tmp_expr);
5193 wrapper->ts = e->ts;
5194 wrapper->rank = e->rank;
5195 if (e->rank)
5196 wrapper->shape = gfc_copy_shape (e->shape, e->rank);
5197 *e = *wrapper;
5198 free (wrapper);
5202 static void
5203 remove_caf_get_intrinsic (gfc_expr *e)
5205 gcc_assert (e->expr_type == EXPR_FUNCTION && e->value.function.isym
5206 && e->value.function.isym->id == GFC_ISYM_CAF_GET);
5207 gfc_expr *e2 = e->value.function.actual->expr;
5208 e->value.function.actual->expr = NULL;
5209 gfc_free_actual_arglist (e->value.function.actual);
5210 gfc_free_shape (&e->shape, e->rank);
5211 *e = *e2;
5212 free (e2);
5216 /* Resolve a variable expression. */
5218 static bool
5219 resolve_variable (gfc_expr *e)
5221 gfc_symbol *sym;
5222 bool t;
5224 t = true;
5226 if (e->symtree == NULL)
5227 return false;
5228 sym = e->symtree->n.sym;
5230 /* Use same check as for TYPE(*) below; this check has to be before TYPE(*)
5231 as ts.type is set to BT_ASSUMED in resolve_symbol. */
5232 if (sym->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK))
5234 if (!actual_arg || inquiry_argument)
5236 gfc_error ("Variable %s at %L with NO_ARG_CHECK attribute may only "
5237 "be used as actual argument", sym->name, &e->where);
5238 return false;
5241 /* TS 29113, 407b. */
5242 else if (e->ts.type == BT_ASSUMED)
5244 if (!actual_arg)
5246 gfc_error ("Assumed-type variable %s at %L may only be used "
5247 "as actual argument", sym->name, &e->where);
5248 return false;
5250 else if (inquiry_argument && !first_actual_arg)
5252 /* FIXME: It doesn't work reliably as inquiry_argument is not set
5253 for all inquiry functions in resolve_function; the reason is
5254 that the function-name resolution happens too late in that
5255 function. */
5256 gfc_error ("Assumed-type variable %s at %L as actual argument to "
5257 "an inquiry function shall be the first argument",
5258 sym->name, &e->where);
5259 return false;
5262 /* TS 29113, C535b. */
5263 else if ((sym->ts.type == BT_CLASS && sym->attr.class_ok
5264 && CLASS_DATA (sym)->as
5265 && CLASS_DATA (sym)->as->type == AS_ASSUMED_RANK)
5266 || (sym->ts.type != BT_CLASS && sym->as
5267 && sym->as->type == AS_ASSUMED_RANK))
5269 if (!actual_arg)
5271 gfc_error ("Assumed-rank variable %s at %L may only be used as "
5272 "actual argument", sym->name, &e->where);
5273 return false;
5275 else if (inquiry_argument && !first_actual_arg)
5277 /* FIXME: It doesn't work reliably as inquiry_argument is not set
5278 for all inquiry functions in resolve_function; the reason is
5279 that the function-name resolution happens too late in that
5280 function. */
5281 gfc_error ("Assumed-rank variable %s at %L as actual argument "
5282 "to an inquiry function shall be the first argument",
5283 sym->name, &e->where);
5284 return false;
5288 if ((sym->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK)) && e->ref
5289 && !(e->ref->type == REF_ARRAY && e->ref->u.ar.type == AR_FULL
5290 && e->ref->next == NULL))
5292 gfc_error ("Variable %s at %L with NO_ARG_CHECK attribute shall not have "
5293 "a subobject reference", sym->name, &e->ref->u.ar.where);
5294 return false;
5296 /* TS 29113, 407b. */
5297 else if (e->ts.type == BT_ASSUMED && e->ref
5298 && !(e->ref->type == REF_ARRAY && e->ref->u.ar.type == AR_FULL
5299 && e->ref->next == NULL))
5301 gfc_error ("Assumed-type variable %s at %L shall not have a subobject "
5302 "reference", sym->name, &e->ref->u.ar.where);
5303 return false;
5306 /* TS 29113, C535b. */
5307 if (((sym->ts.type == BT_CLASS && sym->attr.class_ok
5308 && CLASS_DATA (sym)->as
5309 && CLASS_DATA (sym)->as->type == AS_ASSUMED_RANK)
5310 || (sym->ts.type != BT_CLASS && sym->as
5311 && sym->as->type == AS_ASSUMED_RANK))
5312 && e->ref
5313 && !(e->ref->type == REF_ARRAY && e->ref->u.ar.type == AR_FULL
5314 && e->ref->next == NULL))
5316 gfc_error ("Assumed-rank variable %s at %L shall not have a subobject "
5317 "reference", sym->name, &e->ref->u.ar.where);
5318 return false;
5321 /* For variables that are used in an associate (target => object) where
5322 the object's basetype is array valued while the target is scalar,
5323 the ts' type of the component refs is still array valued, which
5324 can't be translated that way. */
5325 if (sym->assoc && e->rank == 0 && e->ref && sym->ts.type == BT_CLASS
5326 && sym->assoc->target->ts.type == BT_CLASS
5327 && CLASS_DATA (sym->assoc->target)->as)
5329 gfc_ref *ref = e->ref;
5330 while (ref)
5332 switch (ref->type)
5334 case REF_COMPONENT:
5335 ref->u.c.sym = sym->ts.u.derived;
5336 /* Stop the loop. */
5337 ref = NULL;
5338 break;
5339 default:
5340 ref = ref->next;
5341 break;
5346 /* If this is an associate-name, it may be parsed with an array reference
5347 in error even though the target is scalar. Fail directly in this case.
5348 TODO Understand why class scalar expressions must be excluded. */
5349 if (sym->assoc && !(sym->ts.type == BT_CLASS && e->rank == 0))
5351 if (sym->ts.type == BT_CLASS)
5352 gfc_fix_class_refs (e);
5353 if (!sym->attr.dimension && e->ref && e->ref->type == REF_ARRAY)
5354 return false;
5357 if (sym->ts.type == BT_DERIVED && sym->ts.u.derived->attr.generic)
5358 sym->ts.u.derived = gfc_find_dt_in_generic (sym->ts.u.derived);
5360 /* On the other hand, the parser may not have known this is an array;
5361 in this case, we have to add a FULL reference. */
5362 if (sym->assoc && sym->attr.dimension && !e->ref)
5364 e->ref = gfc_get_ref ();
5365 e->ref->type = REF_ARRAY;
5366 e->ref->u.ar.type = AR_FULL;
5367 e->ref->u.ar.dimen = 0;
5370 /* Like above, but for class types, where the checking whether an array
5371 ref is present is more complicated. Furthermore make sure not to add
5372 the full array ref to _vptr or _len refs. */
5373 if (sym->assoc && sym->ts.type == BT_CLASS
5374 && CLASS_DATA (sym)->attr.dimension
5375 && (e->ts.type != BT_DERIVED || !e->ts.u.derived->attr.vtype))
5377 gfc_ref *ref, *newref;
5379 newref = gfc_get_ref ();
5380 newref->type = REF_ARRAY;
5381 newref->u.ar.type = AR_FULL;
5382 newref->u.ar.dimen = 0;
5383 /* Because this is an associate var and the first ref either is a ref to
5384 the _data component or not, no traversal of the ref chain is
5385 needed. The array ref needs to be inserted after the _data ref,
5386 or when that is not present, which may happend for polymorphic
5387 types, then at the first position. */
5388 ref = e->ref;
5389 if (!ref)
5390 e->ref = newref;
5391 else if (ref->type == REF_COMPONENT
5392 && strcmp ("_data", ref->u.c.component->name) == 0)
5394 if (!ref->next || ref->next->type != REF_ARRAY)
5396 newref->next = ref->next;
5397 ref->next = newref;
5399 else
5400 /* Array ref present already. */
5401 gfc_free_ref_list (newref);
5403 else if (ref->type == REF_ARRAY)
5404 /* Array ref present already. */
5405 gfc_free_ref_list (newref);
5406 else
5408 newref->next = ref;
5409 e->ref = newref;
5413 if (e->ref && !resolve_ref (e))
5414 return false;
5416 if (sym->attr.flavor == FL_PROCEDURE
5417 && (!sym->attr.function
5418 || (sym->attr.function && sym->result
5419 && sym->result->attr.proc_pointer
5420 && !sym->result->attr.function)))
5422 e->ts.type = BT_PROCEDURE;
5423 goto resolve_procedure;
5426 if (sym->ts.type != BT_UNKNOWN)
5427 gfc_variable_attr (e, &e->ts);
5428 else if (sym->attr.flavor == FL_PROCEDURE
5429 && sym->attr.function && sym->result
5430 && sym->result->ts.type != BT_UNKNOWN
5431 && sym->result->attr.proc_pointer)
5432 e->ts = sym->result->ts;
5433 else
5435 /* Must be a simple variable reference. */
5436 if (!gfc_set_default_type (sym, 1, sym->ns))
5437 return false;
5438 e->ts = sym->ts;
5441 if (check_assumed_size_reference (sym, e))
5442 return false;
5444 /* Deal with forward references to entries during gfc_resolve_code, to
5445 satisfy, at least partially, 12.5.2.5. */
5446 if (gfc_current_ns->entries
5447 && current_entry_id == sym->entry_id
5448 && cs_base
5449 && cs_base->current
5450 && cs_base->current->op != EXEC_ENTRY)
5452 gfc_entry_list *entry;
5453 gfc_formal_arglist *formal;
5454 int n;
5455 bool seen, saved_specification_expr;
5457 /* If the symbol is a dummy... */
5458 if (sym->attr.dummy && sym->ns == gfc_current_ns)
5460 entry = gfc_current_ns->entries;
5461 seen = false;
5463 /* ...test if the symbol is a parameter of previous entries. */
5464 for (; entry && entry->id <= current_entry_id; entry = entry->next)
5465 for (formal = entry->sym->formal; formal; formal = formal->next)
5467 if (formal->sym && sym->name == formal->sym->name)
5469 seen = true;
5470 break;
5474 /* If it has not been seen as a dummy, this is an error. */
5475 if (!seen)
5477 if (specification_expr)
5478 gfc_error ("Variable %qs, used in a specification expression"
5479 ", is referenced at %L before the ENTRY statement "
5480 "in which it is a parameter",
5481 sym->name, &cs_base->current->loc);
5482 else
5483 gfc_error ("Variable %qs is used at %L before the ENTRY "
5484 "statement in which it is a parameter",
5485 sym->name, &cs_base->current->loc);
5486 t = false;
5490 /* Now do the same check on the specification expressions. */
5491 saved_specification_expr = specification_expr;
5492 specification_expr = true;
5493 if (sym->ts.type == BT_CHARACTER
5494 && !gfc_resolve_expr (sym->ts.u.cl->length))
5495 t = false;
5497 if (sym->as)
5498 for (n = 0; n < sym->as->rank; n++)
5500 if (!gfc_resolve_expr (sym->as->lower[n]))
5501 t = false;
5502 if (!gfc_resolve_expr (sym->as->upper[n]))
5503 t = false;
5505 specification_expr = saved_specification_expr;
5507 if (t)
5508 /* Update the symbol's entry level. */
5509 sym->entry_id = current_entry_id + 1;
5512 /* If a symbol has been host_associated mark it. This is used latter,
5513 to identify if aliasing is possible via host association. */
5514 if (sym->attr.flavor == FL_VARIABLE
5515 && gfc_current_ns->parent
5516 && (gfc_current_ns->parent == sym->ns
5517 || (gfc_current_ns->parent->parent
5518 && gfc_current_ns->parent->parent == sym->ns)))
5519 sym->attr.host_assoc = 1;
5521 if (gfc_current_ns->proc_name
5522 && sym->attr.dimension
5523 && (sym->ns != gfc_current_ns
5524 || sym->attr.use_assoc
5525 || sym->attr.in_common))
5526 gfc_current_ns->proc_name->attr.array_outer_dependency = 1;
5528 resolve_procedure:
5529 if (t && !resolve_procedure_expression (e))
5530 t = false;
5532 /* F2008, C617 and C1229. */
5533 if (!inquiry_argument && (e->ts.type == BT_CLASS || e->ts.type == BT_DERIVED)
5534 && gfc_is_coindexed (e))
5536 gfc_ref *ref, *ref2 = NULL;
5538 for (ref = e->ref; ref; ref = ref->next)
5540 if (ref->type == REF_COMPONENT)
5541 ref2 = ref;
5542 if (ref->type == REF_ARRAY && ref->u.ar.codimen > 0)
5543 break;
5546 for ( ; ref; ref = ref->next)
5547 if (ref->type == REF_COMPONENT)
5548 break;
5550 /* Expression itself is not coindexed object. */
5551 if (ref && e->ts.type == BT_CLASS)
5553 gfc_error ("Polymorphic subobject of coindexed object at %L",
5554 &e->where);
5555 t = false;
5558 /* Expression itself is coindexed object. */
5559 if (ref == NULL)
5561 gfc_component *c;
5562 c = ref2 ? ref2->u.c.component : e->symtree->n.sym->components;
5563 for ( ; c; c = c->next)
5564 if (c->attr.allocatable && c->ts.type == BT_CLASS)
5566 gfc_error ("Coindexed object with polymorphic allocatable "
5567 "subcomponent at %L", &e->where);
5568 t = false;
5569 break;
5574 if (t)
5575 expression_rank (e);
5577 if (t && flag_coarray == GFC_FCOARRAY_LIB && gfc_is_coindexed (e))
5578 add_caf_get_intrinsic (e);
5580 /* Simplify cases where access to a parameter array results in a
5581 single constant. Suppress errors since those will have been
5582 issued before, as warnings. */
5583 if (e->rank == 0 && sym->as && sym->attr.flavor == FL_PARAMETER)
5585 gfc_push_suppress_errors ();
5586 gfc_simplify_expr (e, 1);
5587 gfc_pop_suppress_errors ();
5590 return t;
5594 /* Checks to see that the correct symbol has been host associated.
5595 The only situation where this arises is that in which a twice
5596 contained function is parsed after the host association is made.
5597 Therefore, on detecting this, change the symbol in the expression
5598 and convert the array reference into an actual arglist if the old
5599 symbol is a variable. */
5600 static bool
5601 check_host_association (gfc_expr *e)
5603 gfc_symbol *sym, *old_sym;
5604 gfc_symtree *st;
5605 int n;
5606 gfc_ref *ref;
5607 gfc_actual_arglist *arg, *tail = NULL;
5608 bool retval = e->expr_type == EXPR_FUNCTION;
5610 /* If the expression is the result of substitution in
5611 interface.c(gfc_extend_expr) because there is no way in
5612 which the host association can be wrong. */
5613 if (e->symtree == NULL
5614 || e->symtree->n.sym == NULL
5615 || e->user_operator)
5616 return retval;
5618 old_sym = e->symtree->n.sym;
5620 if (gfc_current_ns->parent
5621 && old_sym->ns != gfc_current_ns)
5623 /* Use the 'USE' name so that renamed module symbols are
5624 correctly handled. */
5625 gfc_find_symbol (e->symtree->name, gfc_current_ns, 1, &sym);
5627 if (sym && old_sym != sym
5628 && sym->ts.type == old_sym->ts.type
5629 && sym->attr.flavor == FL_PROCEDURE
5630 && sym->attr.contained)
5632 /* Clear the shape, since it might not be valid. */
5633 gfc_free_shape (&e->shape, e->rank);
5635 /* Give the expression the right symtree! */
5636 gfc_find_sym_tree (e->symtree->name, NULL, 1, &st);
5637 gcc_assert (st != NULL);
5639 if (old_sym->attr.flavor == FL_PROCEDURE
5640 || e->expr_type == EXPR_FUNCTION)
5642 /* Original was function so point to the new symbol, since
5643 the actual argument list is already attached to the
5644 expression. */
5645 e->value.function.esym = NULL;
5646 e->symtree = st;
5648 else
5650 /* Original was variable so convert array references into
5651 an actual arglist. This does not need any checking now
5652 since resolve_function will take care of it. */
5653 e->value.function.actual = NULL;
5654 e->expr_type = EXPR_FUNCTION;
5655 e->symtree = st;
5657 /* Ambiguity will not arise if the array reference is not
5658 the last reference. */
5659 for (ref = e->ref; ref; ref = ref->next)
5660 if (ref->type == REF_ARRAY && ref->next == NULL)
5661 break;
5663 gcc_assert (ref->type == REF_ARRAY);
5665 /* Grab the start expressions from the array ref and
5666 copy them into actual arguments. */
5667 for (n = 0; n < ref->u.ar.dimen; n++)
5669 arg = gfc_get_actual_arglist ();
5670 arg->expr = gfc_copy_expr (ref->u.ar.start[n]);
5671 if (e->value.function.actual == NULL)
5672 tail = e->value.function.actual = arg;
5673 else
5675 tail->next = arg;
5676 tail = arg;
5680 /* Dump the reference list and set the rank. */
5681 gfc_free_ref_list (e->ref);
5682 e->ref = NULL;
5683 e->rank = sym->as ? sym->as->rank : 0;
5686 gfc_resolve_expr (e);
5687 sym->refs++;
5690 /* This might have changed! */
5691 return e->expr_type == EXPR_FUNCTION;
5695 static void
5696 gfc_resolve_character_operator (gfc_expr *e)
5698 gfc_expr *op1 = e->value.op.op1;
5699 gfc_expr *op2 = e->value.op.op2;
5700 gfc_expr *e1 = NULL;
5701 gfc_expr *e2 = NULL;
5703 gcc_assert (e->value.op.op == INTRINSIC_CONCAT);
5705 if (op1->ts.u.cl && op1->ts.u.cl->length)
5706 e1 = gfc_copy_expr (op1->ts.u.cl->length);
5707 else if (op1->expr_type == EXPR_CONSTANT)
5708 e1 = gfc_get_int_expr (gfc_charlen_int_kind, NULL,
5709 op1->value.character.length);
5711 if (op2->ts.u.cl && op2->ts.u.cl->length)
5712 e2 = gfc_copy_expr (op2->ts.u.cl->length);
5713 else if (op2->expr_type == EXPR_CONSTANT)
5714 e2 = gfc_get_int_expr (gfc_charlen_int_kind, NULL,
5715 op2->value.character.length);
5717 e->ts.u.cl = gfc_new_charlen (gfc_current_ns, NULL);
5719 if (!e1 || !e2)
5721 gfc_free_expr (e1);
5722 gfc_free_expr (e2);
5724 return;
5727 e->ts.u.cl->length = gfc_add (e1, e2);
5728 e->ts.u.cl->length->ts.type = BT_INTEGER;
5729 e->ts.u.cl->length->ts.kind = gfc_charlen_int_kind;
5730 gfc_simplify_expr (e->ts.u.cl->length, 0);
5731 gfc_resolve_expr (e->ts.u.cl->length);
5733 return;
5737 /* Ensure that an character expression has a charlen and, if possible, a
5738 length expression. */
5740 static void
5741 fixup_charlen (gfc_expr *e)
5743 /* The cases fall through so that changes in expression type and the need
5744 for multiple fixes are picked up. In all circumstances, a charlen should
5745 be available for the middle end to hang a backend_decl on. */
5746 switch (e->expr_type)
5748 case EXPR_OP:
5749 gfc_resolve_character_operator (e);
5750 /* FALLTHRU */
5752 case EXPR_ARRAY:
5753 if (e->expr_type == EXPR_ARRAY)
5754 gfc_resolve_character_array_constructor (e);
5755 /* FALLTHRU */
5757 case EXPR_SUBSTRING:
5758 if (!e->ts.u.cl && e->ref)
5759 gfc_resolve_substring_charlen (e);
5760 /* FALLTHRU */
5762 default:
5763 if (!e->ts.u.cl)
5764 e->ts.u.cl = gfc_new_charlen (gfc_current_ns, NULL);
5766 break;
5771 /* Update an actual argument to include the passed-object for type-bound
5772 procedures at the right position. */
5774 static gfc_actual_arglist*
5775 update_arglist_pass (gfc_actual_arglist* lst, gfc_expr* po, unsigned argpos,
5776 const char *name)
5778 gcc_assert (argpos > 0);
5780 if (argpos == 1)
5782 gfc_actual_arglist* result;
5784 result = gfc_get_actual_arglist ();
5785 result->expr = po;
5786 result->next = lst;
5787 if (name)
5788 result->name = name;
5790 return result;
5793 if (lst)
5794 lst->next = update_arglist_pass (lst->next, po, argpos - 1, name);
5795 else
5796 lst = update_arglist_pass (NULL, po, argpos - 1, name);
5797 return lst;
5801 /* Extract the passed-object from an EXPR_COMPCALL (a copy of it). */
5803 static gfc_expr*
5804 extract_compcall_passed_object (gfc_expr* e)
5806 gfc_expr* po;
5808 gcc_assert (e->expr_type == EXPR_COMPCALL);
5810 if (e->value.compcall.base_object)
5811 po = gfc_copy_expr (e->value.compcall.base_object);
5812 else
5814 po = gfc_get_expr ();
5815 po->expr_type = EXPR_VARIABLE;
5816 po->symtree = e->symtree;
5817 po->ref = gfc_copy_ref (e->ref);
5818 po->where = e->where;
5821 if (!gfc_resolve_expr (po))
5822 return NULL;
5824 return po;
5828 /* Update the arglist of an EXPR_COMPCALL expression to include the
5829 passed-object. */
5831 static bool
5832 update_compcall_arglist (gfc_expr* e)
5834 gfc_expr* po;
5835 gfc_typebound_proc* tbp;
5837 tbp = e->value.compcall.tbp;
5839 if (tbp->error)
5840 return false;
5842 po = extract_compcall_passed_object (e);
5843 if (!po)
5844 return false;
5846 if (tbp->nopass || e->value.compcall.ignore_pass)
5848 gfc_free_expr (po);
5849 return true;
5852 if (tbp->pass_arg_num <= 0)
5853 return false;
5855 e->value.compcall.actual = update_arglist_pass (e->value.compcall.actual, po,
5856 tbp->pass_arg_num,
5857 tbp->pass_arg);
5859 return true;
5863 /* Extract the passed object from a PPC call (a copy of it). */
5865 static gfc_expr*
5866 extract_ppc_passed_object (gfc_expr *e)
5868 gfc_expr *po;
5869 gfc_ref **ref;
5871 po = gfc_get_expr ();
5872 po->expr_type = EXPR_VARIABLE;
5873 po->symtree = e->symtree;
5874 po->ref = gfc_copy_ref (e->ref);
5875 po->where = e->where;
5877 /* Remove PPC reference. */
5878 ref = &po->ref;
5879 while ((*ref)->next)
5880 ref = &(*ref)->next;
5881 gfc_free_ref_list (*ref);
5882 *ref = NULL;
5884 if (!gfc_resolve_expr (po))
5885 return NULL;
5887 return po;
5891 /* Update the actual arglist of a procedure pointer component to include the
5892 passed-object. */
5894 static bool
5895 update_ppc_arglist (gfc_expr* e)
5897 gfc_expr* po;
5898 gfc_component *ppc;
5899 gfc_typebound_proc* tb;
5901 ppc = gfc_get_proc_ptr_comp (e);
5902 if (!ppc)
5903 return false;
5905 tb = ppc->tb;
5907 if (tb->error)
5908 return false;
5909 else if (tb->nopass)
5910 return true;
5912 po = extract_ppc_passed_object (e);
5913 if (!po)
5914 return false;
5916 /* F08:R739. */
5917 if (po->rank != 0)
5919 gfc_error ("Passed-object at %L must be scalar", &e->where);
5920 return false;
5923 /* F08:C611. */
5924 if (po->ts.type == BT_DERIVED && po->ts.u.derived->attr.abstract)
5926 gfc_error ("Base object for procedure-pointer component call at %L is of"
5927 " ABSTRACT type %qs", &e->where, po->ts.u.derived->name);
5928 return false;
5931 gcc_assert (tb->pass_arg_num > 0);
5932 e->value.compcall.actual = update_arglist_pass (e->value.compcall.actual, po,
5933 tb->pass_arg_num,
5934 tb->pass_arg);
5936 return true;
5940 /* Check that the object a TBP is called on is valid, i.e. it must not be
5941 of ABSTRACT type (as in subobject%abstract_parent%tbp()). */
5943 static bool
5944 check_typebound_baseobject (gfc_expr* e)
5946 gfc_expr* base;
5947 bool return_value = false;
5949 base = extract_compcall_passed_object (e);
5950 if (!base)
5951 return false;
5953 gcc_assert (base->ts.type == BT_DERIVED || base->ts.type == BT_CLASS);
5955 if (base->ts.type == BT_CLASS && !gfc_expr_attr (base).class_ok)
5956 return false;
5958 /* F08:C611. */
5959 if (base->ts.type == BT_DERIVED && base->ts.u.derived->attr.abstract)
5961 gfc_error ("Base object for type-bound procedure call at %L is of"
5962 " ABSTRACT type %qs", &e->where, base->ts.u.derived->name);
5963 goto cleanup;
5966 /* F08:C1230. If the procedure called is NOPASS,
5967 the base object must be scalar. */
5968 if (e->value.compcall.tbp->nopass && base->rank != 0)
5970 gfc_error ("Base object for NOPASS type-bound procedure call at %L must"
5971 " be scalar", &e->where);
5972 goto cleanup;
5975 return_value = true;
5977 cleanup:
5978 gfc_free_expr (base);
5979 return return_value;
5983 /* Resolve a call to a type-bound procedure, either function or subroutine,
5984 statically from the data in an EXPR_COMPCALL expression. The adapted
5985 arglist and the target-procedure symtree are returned. */
5987 static bool
5988 resolve_typebound_static (gfc_expr* e, gfc_symtree** target,
5989 gfc_actual_arglist** actual)
5991 gcc_assert (e->expr_type == EXPR_COMPCALL);
5992 gcc_assert (!e->value.compcall.tbp->is_generic);
5994 /* Update the actual arglist for PASS. */
5995 if (!update_compcall_arglist (e))
5996 return false;
5998 *actual = e->value.compcall.actual;
5999 *target = e->value.compcall.tbp->u.specific;
6001 gfc_free_ref_list (e->ref);
6002 e->ref = NULL;
6003 e->value.compcall.actual = NULL;
6005 /* If we find a deferred typebound procedure, check for derived types
6006 that an overriding typebound procedure has not been missed. */
6007 if (e->value.compcall.name
6008 && !e->value.compcall.tbp->non_overridable
6009 && e->value.compcall.base_object
6010 && e->value.compcall.base_object->ts.type == BT_DERIVED)
6012 gfc_symtree *st;
6013 gfc_symbol *derived;
6015 /* Use the derived type of the base_object. */
6016 derived = e->value.compcall.base_object->ts.u.derived;
6017 st = NULL;
6019 /* If necessary, go through the inheritance chain. */
6020 while (!st && derived)
6022 /* Look for the typebound procedure 'name'. */
6023 if (derived->f2k_derived && derived->f2k_derived->tb_sym_root)
6024 st = gfc_find_symtree (derived->f2k_derived->tb_sym_root,
6025 e->value.compcall.name);
6026 if (!st)
6027 derived = gfc_get_derived_super_type (derived);
6030 /* Now find the specific name in the derived type namespace. */
6031 if (st && st->n.tb && st->n.tb->u.specific)
6032 gfc_find_sym_tree (st->n.tb->u.specific->name,
6033 derived->ns, 1, &st);
6034 if (st)
6035 *target = st;
6037 return true;
6041 /* Get the ultimate declared type from an expression. In addition,
6042 return the last class/derived type reference and the copy of the
6043 reference list. If check_types is set true, derived types are
6044 identified as well as class references. */
6045 static gfc_symbol*
6046 get_declared_from_expr (gfc_ref **class_ref, gfc_ref **new_ref,
6047 gfc_expr *e, bool check_types)
6049 gfc_symbol *declared;
6050 gfc_ref *ref;
6052 declared = NULL;
6053 if (class_ref)
6054 *class_ref = NULL;
6055 if (new_ref)
6056 *new_ref = gfc_copy_ref (e->ref);
6058 for (ref = e->ref; ref; ref = ref->next)
6060 if (ref->type != REF_COMPONENT)
6061 continue;
6063 if ((ref->u.c.component->ts.type == BT_CLASS
6064 || (check_types && gfc_bt_struct (ref->u.c.component->ts.type)))
6065 && ref->u.c.component->attr.flavor != FL_PROCEDURE)
6067 declared = ref->u.c.component->ts.u.derived;
6068 if (class_ref)
6069 *class_ref = ref;
6073 if (declared == NULL)
6074 declared = e->symtree->n.sym->ts.u.derived;
6076 return declared;
6080 /* Given an EXPR_COMPCALL calling a GENERIC typebound procedure, figure out
6081 which of the specific bindings (if any) matches the arglist and transform
6082 the expression into a call of that binding. */
6084 static bool
6085 resolve_typebound_generic_call (gfc_expr* e, const char **name)
6087 gfc_typebound_proc* genproc;
6088 const char* genname;
6089 gfc_symtree *st;
6090 gfc_symbol *derived;
6092 gcc_assert (e->expr_type == EXPR_COMPCALL);
6093 genname = e->value.compcall.name;
6094 genproc = e->value.compcall.tbp;
6096 if (!genproc->is_generic)
6097 return true;
6099 /* Try the bindings on this type and in the inheritance hierarchy. */
6100 for (; genproc; genproc = genproc->overridden)
6102 gfc_tbp_generic* g;
6104 gcc_assert (genproc->is_generic);
6105 for (g = genproc->u.generic; g; g = g->next)
6107 gfc_symbol* target;
6108 gfc_actual_arglist* args;
6109 bool matches;
6111 gcc_assert (g->specific);
6113 if (g->specific->error)
6114 continue;
6116 target = g->specific->u.specific->n.sym;
6118 /* Get the right arglist by handling PASS/NOPASS. */
6119 args = gfc_copy_actual_arglist (e->value.compcall.actual);
6120 if (!g->specific->nopass)
6122 gfc_expr* po;
6123 po = extract_compcall_passed_object (e);
6124 if (!po)
6126 gfc_free_actual_arglist (args);
6127 return false;
6130 gcc_assert (g->specific->pass_arg_num > 0);
6131 gcc_assert (!g->specific->error);
6132 args = update_arglist_pass (args, po, g->specific->pass_arg_num,
6133 g->specific->pass_arg);
6135 resolve_actual_arglist (args, target->attr.proc,
6136 is_external_proc (target)
6137 && gfc_sym_get_dummy_args (target) == NULL);
6139 /* Check if this arglist matches the formal. */
6140 matches = gfc_arglist_matches_symbol (&args, target);
6142 /* Clean up and break out of the loop if we've found it. */
6143 gfc_free_actual_arglist (args);
6144 if (matches)
6146 e->value.compcall.tbp = g->specific;
6147 genname = g->specific_st->name;
6148 /* Pass along the name for CLASS methods, where the vtab
6149 procedure pointer component has to be referenced. */
6150 if (name)
6151 *name = genname;
6152 goto success;
6157 /* Nothing matching found! */
6158 gfc_error ("Found no matching specific binding for the call to the GENERIC"
6159 " %qs at %L", genname, &e->where);
6160 return false;
6162 success:
6163 /* Make sure that we have the right specific instance for the name. */
6164 derived = get_declared_from_expr (NULL, NULL, e, true);
6166 st = gfc_find_typebound_proc (derived, NULL, genname, true, &e->where);
6167 if (st)
6168 e->value.compcall.tbp = st->n.tb;
6170 return true;
6174 /* Resolve a call to a type-bound subroutine. */
6176 static bool
6177 resolve_typebound_call (gfc_code* c, const char **name, bool *overridable)
6179 gfc_actual_arglist* newactual;
6180 gfc_symtree* target;
6182 /* Check that's really a SUBROUTINE. */
6183 if (!c->expr1->value.compcall.tbp->subroutine)
6185 gfc_error ("%qs at %L should be a SUBROUTINE",
6186 c->expr1->value.compcall.name, &c->loc);
6187 return false;
6190 if (!check_typebound_baseobject (c->expr1))
6191 return false;
6193 /* Pass along the name for CLASS methods, where the vtab
6194 procedure pointer component has to be referenced. */
6195 if (name)
6196 *name = c->expr1->value.compcall.name;
6198 if (!resolve_typebound_generic_call (c->expr1, name))
6199 return false;
6201 /* Pass along the NON_OVERRIDABLE attribute of the specific TBP. */
6202 if (overridable)
6203 *overridable = !c->expr1->value.compcall.tbp->non_overridable;
6205 /* Transform into an ordinary EXEC_CALL for now. */
6207 if (!resolve_typebound_static (c->expr1, &target, &newactual))
6208 return false;
6210 c->ext.actual = newactual;
6211 c->symtree = target;
6212 c->op = (c->expr1->value.compcall.assign ? EXEC_ASSIGN_CALL : EXEC_CALL);
6214 gcc_assert (!c->expr1->ref && !c->expr1->value.compcall.actual);
6216 gfc_free_expr (c->expr1);
6217 c->expr1 = gfc_get_expr ();
6218 c->expr1->expr_type = EXPR_FUNCTION;
6219 c->expr1->symtree = target;
6220 c->expr1->where = c->loc;
6222 return resolve_call (c);
6226 /* Resolve a component-call expression. */
6227 static bool
6228 resolve_compcall (gfc_expr* e, const char **name)
6230 gfc_actual_arglist* newactual;
6231 gfc_symtree* target;
6233 /* Check that's really a FUNCTION. */
6234 if (!e->value.compcall.tbp->function)
6236 gfc_error ("%qs at %L should be a FUNCTION",
6237 e->value.compcall.name, &e->where);
6238 return false;
6241 /* These must not be assign-calls! */
6242 gcc_assert (!e->value.compcall.assign);
6244 if (!check_typebound_baseobject (e))
6245 return false;
6247 /* Pass along the name for CLASS methods, where the vtab
6248 procedure pointer component has to be referenced. */
6249 if (name)
6250 *name = e->value.compcall.name;
6252 if (!resolve_typebound_generic_call (e, name))
6253 return false;
6254 gcc_assert (!e->value.compcall.tbp->is_generic);
6256 /* Take the rank from the function's symbol. */
6257 if (e->value.compcall.tbp->u.specific->n.sym->as)
6258 e->rank = e->value.compcall.tbp->u.specific->n.sym->as->rank;
6260 /* For now, we simply transform it into an EXPR_FUNCTION call with the same
6261 arglist to the TBP's binding target. */
6263 if (!resolve_typebound_static (e, &target, &newactual))
6264 return false;
6266 e->value.function.actual = newactual;
6267 e->value.function.name = NULL;
6268 e->value.function.esym = target->n.sym;
6269 e->value.function.isym = NULL;
6270 e->symtree = target;
6271 e->ts = target->n.sym->ts;
6272 e->expr_type = EXPR_FUNCTION;
6274 /* Resolution is not necessary if this is a class subroutine; this
6275 function only has to identify the specific proc. Resolution of
6276 the call will be done next in resolve_typebound_call. */
6277 return gfc_resolve_expr (e);
6281 static bool resolve_fl_derived (gfc_symbol *sym);
6284 /* Resolve a typebound function, or 'method'. First separate all
6285 the non-CLASS references by calling resolve_compcall directly. */
6287 static bool
6288 resolve_typebound_function (gfc_expr* e)
6290 gfc_symbol *declared;
6291 gfc_component *c;
6292 gfc_ref *new_ref;
6293 gfc_ref *class_ref;
6294 gfc_symtree *st;
6295 const char *name;
6296 gfc_typespec ts;
6297 gfc_expr *expr;
6298 bool overridable;
6300 st = e->symtree;
6302 /* Deal with typebound operators for CLASS objects. */
6303 expr = e->value.compcall.base_object;
6304 overridable = !e->value.compcall.tbp->non_overridable;
6305 if (expr && expr->ts.type == BT_CLASS && e->value.compcall.name)
6307 /* If the base_object is not a variable, the corresponding actual
6308 argument expression must be stored in e->base_expression so
6309 that the corresponding tree temporary can be used as the base
6310 object in gfc_conv_procedure_call. */
6311 if (expr->expr_type != EXPR_VARIABLE)
6313 gfc_actual_arglist *args;
6315 for (args= e->value.function.actual; args; args = args->next)
6317 if (expr == args->expr)
6318 expr = args->expr;
6322 /* Since the typebound operators are generic, we have to ensure
6323 that any delays in resolution are corrected and that the vtab
6324 is present. */
6325 ts = expr->ts;
6326 declared = ts.u.derived;
6327 c = gfc_find_component (declared, "_vptr", true, true, NULL);
6328 if (c->ts.u.derived == NULL)
6329 c->ts.u.derived = gfc_find_derived_vtab (declared);
6331 if (!resolve_compcall (e, &name))
6332 return false;
6334 /* Use the generic name if it is there. */
6335 name = name ? name : e->value.function.esym->name;
6336 e->symtree = expr->symtree;
6337 e->ref = gfc_copy_ref (expr->ref);
6338 get_declared_from_expr (&class_ref, NULL, e, false);
6340 /* Trim away the extraneous references that emerge from nested
6341 use of interface.c (extend_expr). */
6342 if (class_ref && class_ref->next)
6344 gfc_free_ref_list (class_ref->next);
6345 class_ref->next = NULL;
6347 else if (e->ref && !class_ref && expr->ts.type != BT_CLASS)
6349 gfc_free_ref_list (e->ref);
6350 e->ref = NULL;
6353 gfc_add_vptr_component (e);
6354 gfc_add_component_ref (e, name);
6355 e->value.function.esym = NULL;
6356 if (expr->expr_type != EXPR_VARIABLE)
6357 e->base_expr = expr;
6358 return true;
6361 if (st == NULL)
6362 return resolve_compcall (e, NULL);
6364 if (!resolve_ref (e))
6365 return false;
6367 /* Get the CLASS declared type. */
6368 declared = get_declared_from_expr (&class_ref, &new_ref, e, true);
6370 if (!resolve_fl_derived (declared))
6371 return false;
6373 /* Weed out cases of the ultimate component being a derived type. */
6374 if ((class_ref && gfc_bt_struct (class_ref->u.c.component->ts.type))
6375 || (!class_ref && st->n.sym->ts.type != BT_CLASS))
6377 gfc_free_ref_list (new_ref);
6378 return resolve_compcall (e, NULL);
6381 c = gfc_find_component (declared, "_data", true, true, NULL);
6382 declared = c->ts.u.derived;
6384 /* Treat the call as if it is a typebound procedure, in order to roll
6385 out the correct name for the specific function. */
6386 if (!resolve_compcall (e, &name))
6388 gfc_free_ref_list (new_ref);
6389 return false;
6391 ts = e->ts;
6393 if (overridable)
6395 /* Convert the expression to a procedure pointer component call. */
6396 e->value.function.esym = NULL;
6397 e->symtree = st;
6399 if (new_ref)
6400 e->ref = new_ref;
6402 /* '_vptr' points to the vtab, which contains the procedure pointers. */
6403 gfc_add_vptr_component (e);
6404 gfc_add_component_ref (e, name);
6406 /* Recover the typespec for the expression. This is really only
6407 necessary for generic procedures, where the additional call
6408 to gfc_add_component_ref seems to throw the collection of the
6409 correct typespec. */
6410 e->ts = ts;
6412 else if (new_ref)
6413 gfc_free_ref_list (new_ref);
6415 return true;
6418 /* Resolve a typebound subroutine, or 'method'. First separate all
6419 the non-CLASS references by calling resolve_typebound_call
6420 directly. */
6422 static bool
6423 resolve_typebound_subroutine (gfc_code *code)
6425 gfc_symbol *declared;
6426 gfc_component *c;
6427 gfc_ref *new_ref;
6428 gfc_ref *class_ref;
6429 gfc_symtree *st;
6430 const char *name;
6431 gfc_typespec ts;
6432 gfc_expr *expr;
6433 bool overridable;
6435 st = code->expr1->symtree;
6437 /* Deal with typebound operators for CLASS objects. */
6438 expr = code->expr1->value.compcall.base_object;
6439 overridable = !code->expr1->value.compcall.tbp->non_overridable;
6440 if (expr && expr->ts.type == BT_CLASS && code->expr1->value.compcall.name)
6442 /* If the base_object is not a variable, the corresponding actual
6443 argument expression must be stored in e->base_expression so
6444 that the corresponding tree temporary can be used as the base
6445 object in gfc_conv_procedure_call. */
6446 if (expr->expr_type != EXPR_VARIABLE)
6448 gfc_actual_arglist *args;
6450 args= code->expr1->value.function.actual;
6451 for (; args; args = args->next)
6452 if (expr == args->expr)
6453 expr = args->expr;
6456 /* Since the typebound operators are generic, we have to ensure
6457 that any delays in resolution are corrected and that the vtab
6458 is present. */
6459 declared = expr->ts.u.derived;
6460 c = gfc_find_component (declared, "_vptr", true, true, NULL);
6461 if (c->ts.u.derived == NULL)
6462 c->ts.u.derived = gfc_find_derived_vtab (declared);
6464 if (!resolve_typebound_call (code, &name, NULL))
6465 return false;
6467 /* Use the generic name if it is there. */
6468 name = name ? name : code->expr1->value.function.esym->name;
6469 code->expr1->symtree = expr->symtree;
6470 code->expr1->ref = gfc_copy_ref (expr->ref);
6472 /* Trim away the extraneous references that emerge from nested
6473 use of interface.c (extend_expr). */
6474 get_declared_from_expr (&class_ref, NULL, code->expr1, false);
6475 if (class_ref && class_ref->next)
6477 gfc_free_ref_list (class_ref->next);
6478 class_ref->next = NULL;
6480 else if (code->expr1->ref && !class_ref)
6482 gfc_free_ref_list (code->expr1->ref);
6483 code->expr1->ref = NULL;
6486 /* Now use the procedure in the vtable. */
6487 gfc_add_vptr_component (code->expr1);
6488 gfc_add_component_ref (code->expr1, name);
6489 code->expr1->value.function.esym = NULL;
6490 if (expr->expr_type != EXPR_VARIABLE)
6491 code->expr1->base_expr = expr;
6492 return true;
6495 if (st == NULL)
6496 return resolve_typebound_call (code, NULL, NULL);
6498 if (!resolve_ref (code->expr1))
6499 return false;
6501 /* Get the CLASS declared type. */
6502 get_declared_from_expr (&class_ref, &new_ref, code->expr1, true);
6504 /* Weed out cases of the ultimate component being a derived type. */
6505 if ((class_ref && gfc_bt_struct (class_ref->u.c.component->ts.type))
6506 || (!class_ref && st->n.sym->ts.type != BT_CLASS))
6508 gfc_free_ref_list (new_ref);
6509 return resolve_typebound_call (code, NULL, NULL);
6512 if (!resolve_typebound_call (code, &name, &overridable))
6514 gfc_free_ref_list (new_ref);
6515 return false;
6517 ts = code->expr1->ts;
6519 if (overridable)
6521 /* Convert the expression to a procedure pointer component call. */
6522 code->expr1->value.function.esym = NULL;
6523 code->expr1->symtree = st;
6525 if (new_ref)
6526 code->expr1->ref = new_ref;
6528 /* '_vptr' points to the vtab, which contains the procedure pointers. */
6529 gfc_add_vptr_component (code->expr1);
6530 gfc_add_component_ref (code->expr1, name);
6532 /* Recover the typespec for the expression. This is really only
6533 necessary for generic procedures, where the additional call
6534 to gfc_add_component_ref seems to throw the collection of the
6535 correct typespec. */
6536 code->expr1->ts = ts;
6538 else if (new_ref)
6539 gfc_free_ref_list (new_ref);
6541 return true;
6545 /* Resolve a CALL to a Procedure Pointer Component (Subroutine). */
6547 static bool
6548 resolve_ppc_call (gfc_code* c)
6550 gfc_component *comp;
6552 comp = gfc_get_proc_ptr_comp (c->expr1);
6553 gcc_assert (comp != NULL);
6555 c->resolved_sym = c->expr1->symtree->n.sym;
6556 c->expr1->expr_type = EXPR_VARIABLE;
6558 if (!comp->attr.subroutine)
6559 gfc_add_subroutine (&comp->attr, comp->name, &c->expr1->where);
6561 if (!resolve_ref (c->expr1))
6562 return false;
6564 if (!update_ppc_arglist (c->expr1))
6565 return false;
6567 c->ext.actual = c->expr1->value.compcall.actual;
6569 if (!resolve_actual_arglist (c->ext.actual, comp->attr.proc,
6570 !(comp->ts.interface
6571 && comp->ts.interface->formal)))
6572 return false;
6574 if (!pure_subroutine (comp->ts.interface, comp->name, &c->expr1->where))
6575 return false;
6577 gfc_ppc_use (comp, &c->expr1->value.compcall.actual, &c->expr1->where);
6579 return true;
6583 /* Resolve a Function Call to a Procedure Pointer Component (Function). */
6585 static bool
6586 resolve_expr_ppc (gfc_expr* e)
6588 gfc_component *comp;
6590 comp = gfc_get_proc_ptr_comp (e);
6591 gcc_assert (comp != NULL);
6593 /* Convert to EXPR_FUNCTION. */
6594 e->expr_type = EXPR_FUNCTION;
6595 e->value.function.isym = NULL;
6596 e->value.function.actual = e->value.compcall.actual;
6597 e->ts = comp->ts;
6598 if (comp->as != NULL)
6599 e->rank = comp->as->rank;
6601 if (!comp->attr.function)
6602 gfc_add_function (&comp->attr, comp->name, &e->where);
6604 if (!resolve_ref (e))
6605 return false;
6607 if (!resolve_actual_arglist (e->value.function.actual, comp->attr.proc,
6608 !(comp->ts.interface
6609 && comp->ts.interface->formal)))
6610 return false;
6612 if (!update_ppc_arglist (e))
6613 return false;
6615 if (!check_pure_function(e))
6616 return false;
6618 gfc_ppc_use (comp, &e->value.compcall.actual, &e->where);
6620 return true;
6624 static bool
6625 gfc_is_expandable_expr (gfc_expr *e)
6627 gfc_constructor *con;
6629 if (e->expr_type == EXPR_ARRAY)
6631 /* Traverse the constructor looking for variables that are flavor
6632 parameter. Parameters must be expanded since they are fully used at
6633 compile time. */
6634 con = gfc_constructor_first (e->value.constructor);
6635 for (; con; con = gfc_constructor_next (con))
6637 if (con->expr->expr_type == EXPR_VARIABLE
6638 && con->expr->symtree
6639 && (con->expr->symtree->n.sym->attr.flavor == FL_PARAMETER
6640 || con->expr->symtree->n.sym->attr.flavor == FL_VARIABLE))
6641 return true;
6642 if (con->expr->expr_type == EXPR_ARRAY
6643 && gfc_is_expandable_expr (con->expr))
6644 return true;
6648 return false;
6652 /* Sometimes variables in specification expressions of the result
6653 of module procedures in submodules wind up not being the 'real'
6654 dummy. Find this, if possible, in the namespace of the first
6655 formal argument. */
6657 static void
6658 fixup_unique_dummy (gfc_expr *e)
6660 gfc_symtree *st = NULL;
6661 gfc_symbol *s = NULL;
6663 if (e->symtree->n.sym->ns->proc_name
6664 && e->symtree->n.sym->ns->proc_name->formal)
6665 s = e->symtree->n.sym->ns->proc_name->formal->sym;
6667 if (s != NULL)
6668 st = gfc_find_symtree (s->ns->sym_root, e->symtree->n.sym->name);
6670 if (st != NULL
6671 && st->n.sym != NULL
6672 && st->n.sym->attr.dummy)
6673 e->symtree = st;
6676 /* Resolve an expression. That is, make sure that types of operands agree
6677 with their operators, intrinsic operators are converted to function calls
6678 for overloaded types and unresolved function references are resolved. */
6680 bool
6681 gfc_resolve_expr (gfc_expr *e)
6683 bool t;
6684 bool inquiry_save, actual_arg_save, first_actual_arg_save;
6686 if (e == NULL)
6687 return true;
6689 /* inquiry_argument only applies to variables. */
6690 inquiry_save = inquiry_argument;
6691 actual_arg_save = actual_arg;
6692 first_actual_arg_save = first_actual_arg;
6694 if (e->expr_type != EXPR_VARIABLE)
6696 inquiry_argument = false;
6697 actual_arg = false;
6698 first_actual_arg = false;
6700 else if (e->symtree != NULL
6701 && *e->symtree->name == '@'
6702 && e->symtree->n.sym->attr.dummy)
6704 /* Deal with submodule specification expressions that are not
6705 found to be referenced in module.c(read_cleanup). */
6706 fixup_unique_dummy (e);
6709 switch (e->expr_type)
6711 case EXPR_OP:
6712 t = resolve_operator (e);
6713 break;
6715 case EXPR_FUNCTION:
6716 case EXPR_VARIABLE:
6718 if (check_host_association (e))
6719 t = resolve_function (e);
6720 else
6721 t = resolve_variable (e);
6723 if (e->ts.type == BT_CHARACTER && e->ts.u.cl == NULL && e->ref
6724 && e->ref->type != REF_SUBSTRING)
6725 gfc_resolve_substring_charlen (e);
6727 break;
6729 case EXPR_COMPCALL:
6730 t = resolve_typebound_function (e);
6731 break;
6733 case EXPR_SUBSTRING:
6734 t = resolve_ref (e);
6735 break;
6737 case EXPR_CONSTANT:
6738 case EXPR_NULL:
6739 t = true;
6740 break;
6742 case EXPR_PPC:
6743 t = resolve_expr_ppc (e);
6744 break;
6746 case EXPR_ARRAY:
6747 t = false;
6748 if (!resolve_ref (e))
6749 break;
6751 t = gfc_resolve_array_constructor (e);
6752 /* Also try to expand a constructor. */
6753 if (t)
6755 expression_rank (e);
6756 if (gfc_is_constant_expr (e) || gfc_is_expandable_expr (e))
6757 gfc_expand_constructor (e, false);
6760 /* This provides the opportunity for the length of constructors with
6761 character valued function elements to propagate the string length
6762 to the expression. */
6763 if (t && e->ts.type == BT_CHARACTER)
6765 /* For efficiency, we call gfc_expand_constructor for BT_CHARACTER
6766 here rather then add a duplicate test for it above. */
6767 gfc_expand_constructor (e, false);
6768 t = gfc_resolve_character_array_constructor (e);
6771 break;
6773 case EXPR_STRUCTURE:
6774 t = resolve_ref (e);
6775 if (!t)
6776 break;
6778 t = resolve_structure_cons (e, 0);
6779 if (!t)
6780 break;
6782 t = gfc_simplify_expr (e, 0);
6783 break;
6785 default:
6786 gfc_internal_error ("gfc_resolve_expr(): Bad expression type");
6789 if (e->ts.type == BT_CHARACTER && t && !e->ts.u.cl)
6790 fixup_charlen (e);
6792 inquiry_argument = inquiry_save;
6793 actual_arg = actual_arg_save;
6794 first_actual_arg = first_actual_arg_save;
6796 return t;
6800 /* Resolve an expression from an iterator. They must be scalar and have
6801 INTEGER or (optionally) REAL type. */
6803 static bool
6804 gfc_resolve_iterator_expr (gfc_expr *expr, bool real_ok,
6805 const char *name_msgid)
6807 if (!gfc_resolve_expr (expr))
6808 return false;
6810 if (expr->rank != 0)
6812 gfc_error ("%s at %L must be a scalar", _(name_msgid), &expr->where);
6813 return false;
6816 if (expr->ts.type != BT_INTEGER)
6818 if (expr->ts.type == BT_REAL)
6820 if (real_ok)
6821 return gfc_notify_std (GFC_STD_F95_DEL,
6822 "%s at %L must be integer",
6823 _(name_msgid), &expr->where);
6824 else
6826 gfc_error ("%s at %L must be INTEGER", _(name_msgid),
6827 &expr->where);
6828 return false;
6831 else
6833 gfc_error ("%s at %L must be INTEGER", _(name_msgid), &expr->where);
6834 return false;
6837 return true;
6841 /* Resolve the expressions in an iterator structure. If REAL_OK is
6842 false allow only INTEGER type iterators, otherwise allow REAL types.
6843 Set own_scope to true for ac-implied-do and data-implied-do as those
6844 have a separate scope such that, e.g., a INTENT(IN) doesn't apply. */
6846 bool
6847 gfc_resolve_iterator (gfc_iterator *iter, bool real_ok, bool own_scope)
6849 if (!gfc_resolve_iterator_expr (iter->var, real_ok, "Loop variable"))
6850 return false;
6852 if (!gfc_check_vardef_context (iter->var, false, false, own_scope,
6853 _("iterator variable")))
6854 return false;
6856 if (!gfc_resolve_iterator_expr (iter->start, real_ok,
6857 "Start expression in DO loop"))
6858 return false;
6860 if (!gfc_resolve_iterator_expr (iter->end, real_ok,
6861 "End expression in DO loop"))
6862 return false;
6864 if (!gfc_resolve_iterator_expr (iter->step, real_ok,
6865 "Step expression in DO loop"))
6866 return false;
6868 if (iter->step->expr_type == EXPR_CONSTANT)
6870 if ((iter->step->ts.type == BT_INTEGER
6871 && mpz_cmp_ui (iter->step->value.integer, 0) == 0)
6872 || (iter->step->ts.type == BT_REAL
6873 && mpfr_sgn (iter->step->value.real) == 0))
6875 gfc_error ("Step expression in DO loop at %L cannot be zero",
6876 &iter->step->where);
6877 return false;
6881 /* Convert start, end, and step to the same type as var. */
6882 if (iter->start->ts.kind != iter->var->ts.kind
6883 || iter->start->ts.type != iter->var->ts.type)
6884 gfc_convert_type (iter->start, &iter->var->ts, 1);
6886 if (iter->end->ts.kind != iter->var->ts.kind
6887 || iter->end->ts.type != iter->var->ts.type)
6888 gfc_convert_type (iter->end, &iter->var->ts, 1);
6890 if (iter->step->ts.kind != iter->var->ts.kind
6891 || iter->step->ts.type != iter->var->ts.type)
6892 gfc_convert_type (iter->step, &iter->var->ts, 1);
6894 if (iter->start->expr_type == EXPR_CONSTANT
6895 && iter->end->expr_type == EXPR_CONSTANT
6896 && iter->step->expr_type == EXPR_CONSTANT)
6898 int sgn, cmp;
6899 if (iter->start->ts.type == BT_INTEGER)
6901 sgn = mpz_cmp_ui (iter->step->value.integer, 0);
6902 cmp = mpz_cmp (iter->end->value.integer, iter->start->value.integer);
6904 else
6906 sgn = mpfr_sgn (iter->step->value.real);
6907 cmp = mpfr_cmp (iter->end->value.real, iter->start->value.real);
6909 if (warn_zerotrip && ((sgn > 0 && cmp < 0) || (sgn < 0 && cmp > 0)))
6910 gfc_warning (OPT_Wzerotrip,
6911 "DO loop at %L will be executed zero times",
6912 &iter->step->where);
6915 if (iter->end->expr_type == EXPR_CONSTANT
6916 && iter->end->ts.type == BT_INTEGER
6917 && iter->step->expr_type == EXPR_CONSTANT
6918 && iter->step->ts.type == BT_INTEGER
6919 && (mpz_cmp_si (iter->step->value.integer, -1L) == 0
6920 || mpz_cmp_si (iter->step->value.integer, 1L) == 0))
6922 bool is_step_positive = mpz_cmp_ui (iter->step->value.integer, 1) == 0;
6923 int k = gfc_validate_kind (BT_INTEGER, iter->end->ts.kind, false);
6925 if (is_step_positive
6926 && mpz_cmp (iter->end->value.integer, gfc_integer_kinds[k].huge) == 0)
6927 gfc_warning (OPT_Wundefined_do_loop,
6928 "DO loop at %L is undefined as it overflows",
6929 &iter->step->where);
6930 else if (!is_step_positive
6931 && mpz_cmp (iter->end->value.integer,
6932 gfc_integer_kinds[k].min_int) == 0)
6933 gfc_warning (OPT_Wundefined_do_loop,
6934 "DO loop at %L is undefined as it underflows",
6935 &iter->step->where);
6938 return true;
6942 /* Traversal function for find_forall_index. f == 2 signals that
6943 that variable itself is not to be checked - only the references. */
6945 static bool
6946 forall_index (gfc_expr *expr, gfc_symbol *sym, int *f)
6948 if (expr->expr_type != EXPR_VARIABLE)
6949 return false;
6951 /* A scalar assignment */
6952 if (!expr->ref || *f == 1)
6954 if (expr->symtree->n.sym == sym)
6955 return true;
6956 else
6957 return false;
6960 if (*f == 2)
6961 *f = 1;
6962 return false;
6966 /* Check whether the FORALL index appears in the expression or not.
6967 Returns true if SYM is found in EXPR. */
6969 bool
6970 find_forall_index (gfc_expr *expr, gfc_symbol *sym, int f)
6972 if (gfc_traverse_expr (expr, sym, forall_index, f))
6973 return true;
6974 else
6975 return false;
6979 /* Resolve a list of FORALL iterators. The FORALL index-name is constrained
6980 to be a scalar INTEGER variable. The subscripts and stride are scalar
6981 INTEGERs, and if stride is a constant it must be nonzero.
6982 Furthermore "A subscript or stride in a forall-triplet-spec shall
6983 not contain a reference to any index-name in the
6984 forall-triplet-spec-list in which it appears." (7.5.4.1) */
6986 static void
6987 resolve_forall_iterators (gfc_forall_iterator *it)
6989 gfc_forall_iterator *iter, *iter2;
6991 for (iter = it; iter; iter = iter->next)
6993 if (gfc_resolve_expr (iter->var)
6994 && (iter->var->ts.type != BT_INTEGER || iter->var->rank != 0))
6995 gfc_error ("FORALL index-name at %L must be a scalar INTEGER",
6996 &iter->var->where);
6998 if (gfc_resolve_expr (iter->start)
6999 && (iter->start->ts.type != BT_INTEGER || iter->start->rank != 0))
7000 gfc_error ("FORALL start expression at %L must be a scalar INTEGER",
7001 &iter->start->where);
7002 if (iter->var->ts.kind != iter->start->ts.kind)
7003 gfc_convert_type (iter->start, &iter->var->ts, 1);
7005 if (gfc_resolve_expr (iter->end)
7006 && (iter->end->ts.type != BT_INTEGER || iter->end->rank != 0))
7007 gfc_error ("FORALL end expression at %L must be a scalar INTEGER",
7008 &iter->end->where);
7009 if (iter->var->ts.kind != iter->end->ts.kind)
7010 gfc_convert_type (iter->end, &iter->var->ts, 1);
7012 if (gfc_resolve_expr (iter->stride))
7014 if (iter->stride->ts.type != BT_INTEGER || iter->stride->rank != 0)
7015 gfc_error ("FORALL stride expression at %L must be a scalar %s",
7016 &iter->stride->where, "INTEGER");
7018 if (iter->stride->expr_type == EXPR_CONSTANT
7019 && mpz_cmp_ui (iter->stride->value.integer, 0) == 0)
7020 gfc_error ("FORALL stride expression at %L cannot be zero",
7021 &iter->stride->where);
7023 if (iter->var->ts.kind != iter->stride->ts.kind)
7024 gfc_convert_type (iter->stride, &iter->var->ts, 1);
7027 for (iter = it; iter; iter = iter->next)
7028 for (iter2 = iter; iter2; iter2 = iter2->next)
7030 if (find_forall_index (iter2->start, iter->var->symtree->n.sym, 0)
7031 || find_forall_index (iter2->end, iter->var->symtree->n.sym, 0)
7032 || find_forall_index (iter2->stride, iter->var->symtree->n.sym, 0))
7033 gfc_error ("FORALL index %qs may not appear in triplet "
7034 "specification at %L", iter->var->symtree->name,
7035 &iter2->start->where);
7040 /* Given a pointer to a symbol that is a derived type, see if it's
7041 inaccessible, i.e. if it's defined in another module and the components are
7042 PRIVATE. The search is recursive if necessary. Returns zero if no
7043 inaccessible components are found, nonzero otherwise. */
7045 static int
7046 derived_inaccessible (gfc_symbol *sym)
7048 gfc_component *c;
7050 if (sym->attr.use_assoc && sym->attr.private_comp)
7051 return 1;
7053 for (c = sym->components; c; c = c->next)
7055 /* Prevent an infinite loop through this function. */
7056 if (c->ts.type == BT_DERIVED && c->attr.pointer
7057 && sym == c->ts.u.derived)
7058 continue;
7060 if (c->ts.type == BT_DERIVED && derived_inaccessible (c->ts.u.derived))
7061 return 1;
7064 return 0;
7068 /* Resolve the argument of a deallocate expression. The expression must be
7069 a pointer or a full array. */
7071 static bool
7072 resolve_deallocate_expr (gfc_expr *e)
7074 symbol_attribute attr;
7075 int allocatable, pointer;
7076 gfc_ref *ref;
7077 gfc_symbol *sym;
7078 gfc_component *c;
7079 bool unlimited;
7081 if (!gfc_resolve_expr (e))
7082 return false;
7084 if (e->expr_type != EXPR_VARIABLE)
7085 goto bad;
7087 sym = e->symtree->n.sym;
7088 unlimited = UNLIMITED_POLY(sym);
7090 if (sym->ts.type == BT_CLASS)
7092 allocatable = CLASS_DATA (sym)->attr.allocatable;
7093 pointer = CLASS_DATA (sym)->attr.class_pointer;
7095 else
7097 allocatable = sym->attr.allocatable;
7098 pointer = sym->attr.pointer;
7100 for (ref = e->ref; ref; ref = ref->next)
7102 switch (ref->type)
7104 case REF_ARRAY:
7105 if (ref->u.ar.type != AR_FULL
7106 && !(ref->u.ar.type == AR_ELEMENT && ref->u.ar.as->rank == 0
7107 && ref->u.ar.codimen && gfc_ref_this_image (ref)))
7108 allocatable = 0;
7109 break;
7111 case REF_COMPONENT:
7112 c = ref->u.c.component;
7113 if (c->ts.type == BT_CLASS)
7115 allocatable = CLASS_DATA (c)->attr.allocatable;
7116 pointer = CLASS_DATA (c)->attr.class_pointer;
7118 else
7120 allocatable = c->attr.allocatable;
7121 pointer = c->attr.pointer;
7123 break;
7125 case REF_SUBSTRING:
7126 allocatable = 0;
7127 break;
7131 attr = gfc_expr_attr (e);
7133 if (allocatable == 0 && attr.pointer == 0 && !unlimited)
7135 bad:
7136 gfc_error ("Allocate-object at %L must be ALLOCATABLE or a POINTER",
7137 &e->where);
7138 return false;
7141 /* F2008, C644. */
7142 if (gfc_is_coindexed (e))
7144 gfc_error ("Coindexed allocatable object at %L", &e->where);
7145 return false;
7148 if (pointer
7149 && !gfc_check_vardef_context (e, true, true, false,
7150 _("DEALLOCATE object")))
7151 return false;
7152 if (!gfc_check_vardef_context (e, false, true, false,
7153 _("DEALLOCATE object")))
7154 return false;
7156 return true;
7160 /* Returns true if the expression e contains a reference to the symbol sym. */
7161 static bool
7162 sym_in_expr (gfc_expr *e, gfc_symbol *sym, int *f ATTRIBUTE_UNUSED)
7164 if (e->expr_type == EXPR_VARIABLE && e->symtree->n.sym == sym)
7165 return true;
7167 return false;
7170 bool
7171 gfc_find_sym_in_expr (gfc_symbol *sym, gfc_expr *e)
7173 return gfc_traverse_expr (e, sym, sym_in_expr, 0);
7177 /* Given the expression node e for an allocatable/pointer of derived type to be
7178 allocated, get the expression node to be initialized afterwards (needed for
7179 derived types with default initializers, and derived types with allocatable
7180 components that need nullification.) */
7182 gfc_expr *
7183 gfc_expr_to_initialize (gfc_expr *e)
7185 gfc_expr *result;
7186 gfc_ref *ref;
7187 int i;
7189 result = gfc_copy_expr (e);
7191 /* Change the last array reference from AR_ELEMENT to AR_FULL. */
7192 for (ref = result->ref; ref; ref = ref->next)
7193 if (ref->type == REF_ARRAY && ref->next == NULL)
7195 ref->u.ar.type = AR_FULL;
7197 for (i = 0; i < ref->u.ar.dimen; i++)
7198 ref->u.ar.start[i] = ref->u.ar.end[i] = ref->u.ar.stride[i] = NULL;
7200 break;
7203 gfc_free_shape (&result->shape, result->rank);
7205 /* Recalculate rank, shape, etc. */
7206 gfc_resolve_expr (result);
7207 return result;
7211 /* If the last ref of an expression is an array ref, return a copy of the
7212 expression with that one removed. Otherwise, a copy of the original
7213 expression. This is used for allocate-expressions and pointer assignment
7214 LHS, where there may be an array specification that needs to be stripped
7215 off when using gfc_check_vardef_context. */
7217 static gfc_expr*
7218 remove_last_array_ref (gfc_expr* e)
7220 gfc_expr* e2;
7221 gfc_ref** r;
7223 e2 = gfc_copy_expr (e);
7224 for (r = &e2->ref; *r; r = &(*r)->next)
7225 if ((*r)->type == REF_ARRAY && !(*r)->next)
7227 gfc_free_ref_list (*r);
7228 *r = NULL;
7229 break;
7232 return e2;
7236 /* Used in resolve_allocate_expr to check that a allocation-object and
7237 a source-expr are conformable. This does not catch all possible
7238 cases; in particular a runtime checking is needed. */
7240 static bool
7241 conformable_arrays (gfc_expr *e1, gfc_expr *e2)
7243 gfc_ref *tail;
7244 for (tail = e2->ref; tail && tail->next; tail = tail->next);
7246 /* First compare rank. */
7247 if ((tail && e1->rank != tail->u.ar.as->rank)
7248 || (!tail && e1->rank != e2->rank))
7250 gfc_error ("Source-expr at %L must be scalar or have the "
7251 "same rank as the allocate-object at %L",
7252 &e1->where, &e2->where);
7253 return false;
7256 if (e1->shape)
7258 int i;
7259 mpz_t s;
7261 mpz_init (s);
7263 for (i = 0; i < e1->rank; i++)
7265 if (tail->u.ar.start[i] == NULL)
7266 break;
7268 if (tail->u.ar.end[i])
7270 mpz_set (s, tail->u.ar.end[i]->value.integer);
7271 mpz_sub (s, s, tail->u.ar.start[i]->value.integer);
7272 mpz_add_ui (s, s, 1);
7274 else
7276 mpz_set (s, tail->u.ar.start[i]->value.integer);
7279 if (mpz_cmp (e1->shape[i], s) != 0)
7281 gfc_error ("Source-expr at %L and allocate-object at %L must "
7282 "have the same shape", &e1->where, &e2->where);
7283 mpz_clear (s);
7284 return false;
7288 mpz_clear (s);
7291 return true;
7295 /* Resolve the expression in an ALLOCATE statement, doing the additional
7296 checks to see whether the expression is OK or not. The expression must
7297 have a trailing array reference that gives the size of the array. */
7299 static bool
7300 resolve_allocate_expr (gfc_expr *e, gfc_code *code, bool *array_alloc_wo_spec)
7302 int i, pointer, allocatable, dimension, is_abstract;
7303 int codimension;
7304 bool coindexed;
7305 bool unlimited;
7306 symbol_attribute attr;
7307 gfc_ref *ref, *ref2;
7308 gfc_expr *e2;
7309 gfc_array_ref *ar;
7310 gfc_symbol *sym = NULL;
7311 gfc_alloc *a;
7312 gfc_component *c;
7313 bool t;
7315 /* Mark the utmost array component as being in allocate to allow DIMEN_STAR
7316 checking of coarrays. */
7317 for (ref = e->ref; ref; ref = ref->next)
7318 if (ref->next == NULL)
7319 break;
7321 if (ref && ref->type == REF_ARRAY)
7322 ref->u.ar.in_allocate = true;
7324 if (!gfc_resolve_expr (e))
7325 goto failure;
7327 /* Make sure the expression is allocatable or a pointer. If it is
7328 pointer, the next-to-last reference must be a pointer. */
7330 ref2 = NULL;
7331 if (e->symtree)
7332 sym = e->symtree->n.sym;
7334 /* Check whether ultimate component is abstract and CLASS. */
7335 is_abstract = 0;
7337 /* Is the allocate-object unlimited polymorphic? */
7338 unlimited = UNLIMITED_POLY(e);
7340 if (e->expr_type != EXPR_VARIABLE)
7342 allocatable = 0;
7343 attr = gfc_expr_attr (e);
7344 pointer = attr.pointer;
7345 dimension = attr.dimension;
7346 codimension = attr.codimension;
7348 else
7350 if (sym->ts.type == BT_CLASS && CLASS_DATA (sym))
7352 allocatable = CLASS_DATA (sym)->attr.allocatable;
7353 pointer = CLASS_DATA (sym)->attr.class_pointer;
7354 dimension = CLASS_DATA (sym)->attr.dimension;
7355 codimension = CLASS_DATA (sym)->attr.codimension;
7356 is_abstract = CLASS_DATA (sym)->attr.abstract;
7358 else
7360 allocatable = sym->attr.allocatable;
7361 pointer = sym->attr.pointer;
7362 dimension = sym->attr.dimension;
7363 codimension = sym->attr.codimension;
7366 coindexed = false;
7368 for (ref = e->ref; ref; ref2 = ref, ref = ref->next)
7370 switch (ref->type)
7372 case REF_ARRAY:
7373 if (ref->u.ar.codimen > 0)
7375 int n;
7376 for (n = ref->u.ar.dimen;
7377 n < ref->u.ar.dimen + ref->u.ar.codimen; n++)
7378 if (ref->u.ar.dimen_type[n] != DIMEN_THIS_IMAGE)
7380 coindexed = true;
7381 break;
7385 if (ref->next != NULL)
7386 pointer = 0;
7387 break;
7389 case REF_COMPONENT:
7390 /* F2008, C644. */
7391 if (coindexed)
7393 gfc_error ("Coindexed allocatable object at %L",
7394 &e->where);
7395 goto failure;
7398 c = ref->u.c.component;
7399 if (c->ts.type == BT_CLASS)
7401 allocatable = CLASS_DATA (c)->attr.allocatable;
7402 pointer = CLASS_DATA (c)->attr.class_pointer;
7403 dimension = CLASS_DATA (c)->attr.dimension;
7404 codimension = CLASS_DATA (c)->attr.codimension;
7405 is_abstract = CLASS_DATA (c)->attr.abstract;
7407 else
7409 allocatable = c->attr.allocatable;
7410 pointer = c->attr.pointer;
7411 dimension = c->attr.dimension;
7412 codimension = c->attr.codimension;
7413 is_abstract = c->attr.abstract;
7415 break;
7417 case REF_SUBSTRING:
7418 allocatable = 0;
7419 pointer = 0;
7420 break;
7425 /* Check for F08:C628. */
7426 if (allocatable == 0 && pointer == 0 && !unlimited)
7428 gfc_error ("Allocate-object at %L must be ALLOCATABLE or a POINTER",
7429 &e->where);
7430 goto failure;
7433 /* Some checks for the SOURCE tag. */
7434 if (code->expr3)
7436 /* Check F03:C631. */
7437 if (!gfc_type_compatible (&e->ts, &code->expr3->ts))
7439 gfc_error ("Type of entity at %L is type incompatible with "
7440 "source-expr at %L", &e->where, &code->expr3->where);
7441 goto failure;
7444 /* Check F03:C632 and restriction following Note 6.18. */
7445 if (code->expr3->rank > 0 && !conformable_arrays (code->expr3, e))
7446 goto failure;
7448 /* Check F03:C633. */
7449 if (code->expr3->ts.kind != e->ts.kind && !unlimited)
7451 gfc_error ("The allocate-object at %L and the source-expr at %L "
7452 "shall have the same kind type parameter",
7453 &e->where, &code->expr3->where);
7454 goto failure;
7457 /* Check F2008, C642. */
7458 if (code->expr3->ts.type == BT_DERIVED
7459 && ((codimension && gfc_expr_attr (code->expr3).lock_comp)
7460 || (code->expr3->ts.u.derived->from_intmod
7461 == INTMOD_ISO_FORTRAN_ENV
7462 && code->expr3->ts.u.derived->intmod_sym_id
7463 == ISOFORTRAN_LOCK_TYPE)))
7465 gfc_error ("The source-expr at %L shall neither be of type "
7466 "LOCK_TYPE nor have a LOCK_TYPE component if "
7467 "allocate-object at %L is a coarray",
7468 &code->expr3->where, &e->where);
7469 goto failure;
7472 /* Check TS18508, C702/C703. */
7473 if (code->expr3->ts.type == BT_DERIVED
7474 && ((codimension && gfc_expr_attr (code->expr3).event_comp)
7475 || (code->expr3->ts.u.derived->from_intmod
7476 == INTMOD_ISO_FORTRAN_ENV
7477 && code->expr3->ts.u.derived->intmod_sym_id
7478 == ISOFORTRAN_EVENT_TYPE)))
7480 gfc_error ("The source-expr at %L shall neither be of type "
7481 "EVENT_TYPE nor have a EVENT_TYPE component if "
7482 "allocate-object at %L is a coarray",
7483 &code->expr3->where, &e->where);
7484 goto failure;
7488 /* Check F08:C629. */
7489 if (is_abstract && code->ext.alloc.ts.type == BT_UNKNOWN
7490 && !code->expr3)
7492 gcc_assert (e->ts.type == BT_CLASS);
7493 gfc_error ("Allocating %s of ABSTRACT base type at %L requires a "
7494 "type-spec or source-expr", sym->name, &e->where);
7495 goto failure;
7498 /* Check F08:C632. */
7499 if (code->ext.alloc.ts.type == BT_CHARACTER && !e->ts.deferred
7500 && !UNLIMITED_POLY (e))
7502 int cmp;
7504 if (!e->ts.u.cl->length)
7505 goto failure;
7507 cmp = gfc_dep_compare_expr (e->ts.u.cl->length,
7508 code->ext.alloc.ts.u.cl->length);
7509 if (cmp == 1 || cmp == -1 || cmp == -3)
7511 gfc_error ("Allocating %s at %L with type-spec requires the same "
7512 "character-length parameter as in the declaration",
7513 sym->name, &e->where);
7514 goto failure;
7518 /* In the variable definition context checks, gfc_expr_attr is used
7519 on the expression. This is fooled by the array specification
7520 present in e, thus we have to eliminate that one temporarily. */
7521 e2 = remove_last_array_ref (e);
7522 t = true;
7523 if (t && pointer)
7524 t = gfc_check_vardef_context (e2, true, true, false,
7525 _("ALLOCATE object"));
7526 if (t)
7527 t = gfc_check_vardef_context (e2, false, true, false,
7528 _("ALLOCATE object"));
7529 gfc_free_expr (e2);
7530 if (!t)
7531 goto failure;
7533 if (e->ts.type == BT_CLASS && CLASS_DATA (e)->attr.dimension
7534 && !code->expr3 && code->ext.alloc.ts.type == BT_DERIVED)
7536 /* For class arrays, the initialization with SOURCE is done
7537 using _copy and trans_call. It is convenient to exploit that
7538 when the allocated type is different from the declared type but
7539 no SOURCE exists by setting expr3. */
7540 code->expr3 = gfc_default_initializer (&code->ext.alloc.ts);
7542 else if (flag_coarray != GFC_FCOARRAY_LIB && e->ts.type == BT_DERIVED
7543 && e->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
7544 && e->ts.u.derived->intmod_sym_id == ISOFORTRAN_EVENT_TYPE)
7546 /* We have to zero initialize the integer variable. */
7547 code->expr3 = gfc_get_int_expr (gfc_default_integer_kind, &e->where, 0);
7550 if (e->ts.type == BT_CLASS && !unlimited && !UNLIMITED_POLY (code->expr3))
7552 /* Make sure the vtab symbol is present when
7553 the module variables are generated. */
7554 gfc_typespec ts = e->ts;
7555 if (code->expr3)
7556 ts = code->expr3->ts;
7557 else if (code->ext.alloc.ts.type == BT_DERIVED)
7558 ts = code->ext.alloc.ts;
7560 /* Finding the vtab also publishes the type's symbol. Therefore this
7561 statement is necessary. */
7562 gfc_find_derived_vtab (ts.u.derived);
7564 else if (unlimited && !UNLIMITED_POLY (code->expr3))
7566 /* Again, make sure the vtab symbol is present when
7567 the module variables are generated. */
7568 gfc_typespec *ts = NULL;
7569 if (code->expr3)
7570 ts = &code->expr3->ts;
7571 else
7572 ts = &code->ext.alloc.ts;
7574 gcc_assert (ts);
7576 /* Finding the vtab also publishes the type's symbol. Therefore this
7577 statement is necessary. */
7578 gfc_find_vtab (ts);
7581 if (dimension == 0 && codimension == 0)
7582 goto success;
7584 /* Make sure the last reference node is an array specification. */
7586 if (!ref2 || ref2->type != REF_ARRAY || ref2->u.ar.type == AR_FULL
7587 || (dimension && ref2->u.ar.dimen == 0))
7589 /* F08:C633. */
7590 if (code->expr3)
7592 if (!gfc_notify_std (GFC_STD_F2008, "Array specification required "
7593 "in ALLOCATE statement at %L", &e->where))
7594 goto failure;
7595 if (code->expr3->rank != 0)
7596 *array_alloc_wo_spec = true;
7597 else
7599 gfc_error ("Array specification or array-valued SOURCE= "
7600 "expression required in ALLOCATE statement at %L",
7601 &e->where);
7602 goto failure;
7605 else
7607 gfc_error ("Array specification required in ALLOCATE statement "
7608 "at %L", &e->where);
7609 goto failure;
7613 /* Make sure that the array section reference makes sense in the
7614 context of an ALLOCATE specification. */
7616 ar = &ref2->u.ar;
7618 if (codimension)
7619 for (i = ar->dimen; i < ar->dimen + ar->codimen; i++)
7620 if (ar->dimen_type[i] == DIMEN_THIS_IMAGE)
7622 gfc_error ("Coarray specification required in ALLOCATE statement "
7623 "at %L", &e->where);
7624 goto failure;
7627 for (i = 0; i < ar->dimen; i++)
7629 if (ar->type == AR_ELEMENT || ar->type == AR_FULL)
7630 goto check_symbols;
7632 switch (ar->dimen_type[i])
7634 case DIMEN_ELEMENT:
7635 break;
7637 case DIMEN_RANGE:
7638 if (ar->start[i] != NULL
7639 && ar->end[i] != NULL
7640 && ar->stride[i] == NULL)
7641 break;
7643 /* Fall through. */
7645 case DIMEN_UNKNOWN:
7646 case DIMEN_VECTOR:
7647 case DIMEN_STAR:
7648 case DIMEN_THIS_IMAGE:
7649 gfc_error ("Bad array specification in ALLOCATE statement at %L",
7650 &e->where);
7651 goto failure;
7654 check_symbols:
7655 for (a = code->ext.alloc.list; a; a = a->next)
7657 sym = a->expr->symtree->n.sym;
7659 /* TODO - check derived type components. */
7660 if (gfc_bt_struct (sym->ts.type) || sym->ts.type == BT_CLASS)
7661 continue;
7663 if ((ar->start[i] != NULL
7664 && gfc_find_sym_in_expr (sym, ar->start[i]))
7665 || (ar->end[i] != NULL
7666 && gfc_find_sym_in_expr (sym, ar->end[i])))
7668 gfc_error ("%qs must not appear in the array specification at "
7669 "%L in the same ALLOCATE statement where it is "
7670 "itself allocated", sym->name, &ar->where);
7671 goto failure;
7676 for (i = ar->dimen; i < ar->codimen + ar->dimen; i++)
7678 if (ar->dimen_type[i] == DIMEN_ELEMENT
7679 || ar->dimen_type[i] == DIMEN_RANGE)
7681 if (i == (ar->dimen + ar->codimen - 1))
7683 gfc_error ("Expected '*' in coindex specification in ALLOCATE "
7684 "statement at %L", &e->where);
7685 goto failure;
7687 continue;
7690 if (ar->dimen_type[i] == DIMEN_STAR && i == (ar->dimen + ar->codimen - 1)
7691 && ar->stride[i] == NULL)
7692 break;
7694 gfc_error ("Bad coarray specification in ALLOCATE statement at %L",
7695 &e->where);
7696 goto failure;
7699 success:
7700 return true;
7702 failure:
7703 return false;
7707 static void
7708 resolve_allocate_deallocate (gfc_code *code, const char *fcn)
7710 gfc_expr *stat, *errmsg, *pe, *qe;
7711 gfc_alloc *a, *p, *q;
7713 stat = code->expr1;
7714 errmsg = code->expr2;
7716 /* Check the stat variable. */
7717 if (stat)
7719 gfc_check_vardef_context (stat, false, false, false,
7720 _("STAT variable"));
7722 if ((stat->ts.type != BT_INTEGER
7723 && !(stat->ref && (stat->ref->type == REF_ARRAY
7724 || stat->ref->type == REF_COMPONENT)))
7725 || stat->rank > 0)
7726 gfc_error ("Stat-variable at %L must be a scalar INTEGER "
7727 "variable", &stat->where);
7729 for (p = code->ext.alloc.list; p; p = p->next)
7730 if (p->expr->symtree->n.sym->name == stat->symtree->n.sym->name)
7732 gfc_ref *ref1, *ref2;
7733 bool found = true;
7735 for (ref1 = p->expr->ref, ref2 = stat->ref; ref1 && ref2;
7736 ref1 = ref1->next, ref2 = ref2->next)
7738 if (ref1->type != REF_COMPONENT || ref2->type != REF_COMPONENT)
7739 continue;
7740 if (ref1->u.c.component->name != ref2->u.c.component->name)
7742 found = false;
7743 break;
7747 if (found)
7749 gfc_error ("Stat-variable at %L shall not be %sd within "
7750 "the same %s statement", &stat->where, fcn, fcn);
7751 break;
7756 /* Check the errmsg variable. */
7757 if (errmsg)
7759 if (!stat)
7760 gfc_warning (0, "ERRMSG at %L is useless without a STAT tag",
7761 &errmsg->where);
7763 gfc_check_vardef_context (errmsg, false, false, false,
7764 _("ERRMSG variable"));
7766 if ((errmsg->ts.type != BT_CHARACTER
7767 && !(errmsg->ref
7768 && (errmsg->ref->type == REF_ARRAY
7769 || errmsg->ref->type == REF_COMPONENT)))
7770 || errmsg->rank > 0 )
7771 gfc_error ("Errmsg-variable at %L must be a scalar CHARACTER "
7772 "variable", &errmsg->where);
7774 for (p = code->ext.alloc.list; p; p = p->next)
7775 if (p->expr->symtree->n.sym->name == errmsg->symtree->n.sym->name)
7777 gfc_ref *ref1, *ref2;
7778 bool found = true;
7780 for (ref1 = p->expr->ref, ref2 = errmsg->ref; ref1 && ref2;
7781 ref1 = ref1->next, ref2 = ref2->next)
7783 if (ref1->type != REF_COMPONENT || ref2->type != REF_COMPONENT)
7784 continue;
7785 if (ref1->u.c.component->name != ref2->u.c.component->name)
7787 found = false;
7788 break;
7792 if (found)
7794 gfc_error ("Errmsg-variable at %L shall not be %sd within "
7795 "the same %s statement", &errmsg->where, fcn, fcn);
7796 break;
7801 /* Check that an allocate-object appears only once in the statement. */
7803 for (p = code->ext.alloc.list; p; p = p->next)
7805 pe = p->expr;
7806 for (q = p->next; q; q = q->next)
7808 qe = q->expr;
7809 if (pe->symtree->n.sym->name == qe->symtree->n.sym->name)
7811 /* This is a potential collision. */
7812 gfc_ref *pr = pe->ref;
7813 gfc_ref *qr = qe->ref;
7815 /* Follow the references until
7816 a) They start to differ, in which case there is no error;
7817 you can deallocate a%b and a%c in a single statement
7818 b) Both of them stop, which is an error
7819 c) One of them stops, which is also an error. */
7820 while (1)
7822 if (pr == NULL && qr == NULL)
7824 gfc_error ("Allocate-object at %L also appears at %L",
7825 &pe->where, &qe->where);
7826 break;
7828 else if (pr != NULL && qr == NULL)
7830 gfc_error ("Allocate-object at %L is subobject of"
7831 " object at %L", &pe->where, &qe->where);
7832 break;
7834 else if (pr == NULL && qr != NULL)
7836 gfc_error ("Allocate-object at %L is subobject of"
7837 " object at %L", &qe->where, &pe->where);
7838 break;
7840 /* Here, pr != NULL && qr != NULL */
7841 gcc_assert(pr->type == qr->type);
7842 if (pr->type == REF_ARRAY)
7844 /* Handle cases like allocate(v(3)%x(3), v(2)%x(3)),
7845 which are legal. */
7846 gcc_assert (qr->type == REF_ARRAY);
7848 if (pr->next && qr->next)
7850 int i;
7851 gfc_array_ref *par = &(pr->u.ar);
7852 gfc_array_ref *qar = &(qr->u.ar);
7854 for (i=0; i<par->dimen; i++)
7856 if ((par->start[i] != NULL
7857 || qar->start[i] != NULL)
7858 && gfc_dep_compare_expr (par->start[i],
7859 qar->start[i]) != 0)
7860 goto break_label;
7864 else
7866 if (pr->u.c.component->name != qr->u.c.component->name)
7867 break;
7870 pr = pr->next;
7871 qr = qr->next;
7873 break_label:
7879 if (strcmp (fcn, "ALLOCATE") == 0)
7881 bool arr_alloc_wo_spec = false;
7883 /* Resolving the expr3 in the loop over all objects to allocate would
7884 execute loop invariant code for each loop item. Therefore do it just
7885 once here. */
7886 if (code->expr3 && code->expr3->mold
7887 && code->expr3->ts.type == BT_DERIVED)
7889 /* Default initialization via MOLD (non-polymorphic). */
7890 gfc_expr *rhs = gfc_default_initializer (&code->expr3->ts);
7891 if (rhs != NULL)
7893 gfc_resolve_expr (rhs);
7894 gfc_free_expr (code->expr3);
7895 code->expr3 = rhs;
7898 for (a = code->ext.alloc.list; a; a = a->next)
7899 resolve_allocate_expr (a->expr, code, &arr_alloc_wo_spec);
7901 if (arr_alloc_wo_spec && code->expr3)
7903 /* Mark the allocate to have to take the array specification
7904 from the expr3. */
7905 code->ext.alloc.arr_spec_from_expr3 = 1;
7908 else
7910 for (a = code->ext.alloc.list; a; a = a->next)
7911 resolve_deallocate_expr (a->expr);
7916 /************ SELECT CASE resolution subroutines ************/
7918 /* Callback function for our mergesort variant. Determines interval
7919 overlaps for CASEs. Return <0 if op1 < op2, 0 for overlap, >0 for
7920 op1 > op2. Assumes we're not dealing with the default case.
7921 We have op1 = (:L), (K:L) or (K:) and op2 = (:N), (M:N) or (M:).
7922 There are nine situations to check. */
7924 static int
7925 compare_cases (const gfc_case *op1, const gfc_case *op2)
7927 int retval;
7929 if (op1->low == NULL) /* op1 = (:L) */
7931 /* op2 = (:N), so overlap. */
7932 retval = 0;
7933 /* op2 = (M:) or (M:N), L < M */
7934 if (op2->low != NULL
7935 && gfc_compare_expr (op1->high, op2->low, INTRINSIC_LT) < 0)
7936 retval = -1;
7938 else if (op1->high == NULL) /* op1 = (K:) */
7940 /* op2 = (M:), so overlap. */
7941 retval = 0;
7942 /* op2 = (:N) or (M:N), K > N */
7943 if (op2->high != NULL
7944 && gfc_compare_expr (op1->low, op2->high, INTRINSIC_GT) > 0)
7945 retval = 1;
7947 else /* op1 = (K:L) */
7949 if (op2->low == NULL) /* op2 = (:N), K > N */
7950 retval = (gfc_compare_expr (op1->low, op2->high, INTRINSIC_GT) > 0)
7951 ? 1 : 0;
7952 else if (op2->high == NULL) /* op2 = (M:), L < M */
7953 retval = (gfc_compare_expr (op1->high, op2->low, INTRINSIC_LT) < 0)
7954 ? -1 : 0;
7955 else /* op2 = (M:N) */
7957 retval = 0;
7958 /* L < M */
7959 if (gfc_compare_expr (op1->high, op2->low, INTRINSIC_LT) < 0)
7960 retval = -1;
7961 /* K > N */
7962 else if (gfc_compare_expr (op1->low, op2->high, INTRINSIC_GT) > 0)
7963 retval = 1;
7967 return retval;
7971 /* Merge-sort a double linked case list, detecting overlap in the
7972 process. LIST is the head of the double linked case list before it
7973 is sorted. Returns the head of the sorted list if we don't see any
7974 overlap, or NULL otherwise. */
7976 static gfc_case *
7977 check_case_overlap (gfc_case *list)
7979 gfc_case *p, *q, *e, *tail;
7980 int insize, nmerges, psize, qsize, cmp, overlap_seen;
7982 /* If the passed list was empty, return immediately. */
7983 if (!list)
7984 return NULL;
7986 overlap_seen = 0;
7987 insize = 1;
7989 /* Loop unconditionally. The only exit from this loop is a return
7990 statement, when we've finished sorting the case list. */
7991 for (;;)
7993 p = list;
7994 list = NULL;
7995 tail = NULL;
7997 /* Count the number of merges we do in this pass. */
7998 nmerges = 0;
8000 /* Loop while there exists a merge to be done. */
8001 while (p)
8003 int i;
8005 /* Count this merge. */
8006 nmerges++;
8008 /* Cut the list in two pieces by stepping INSIZE places
8009 forward in the list, starting from P. */
8010 psize = 0;
8011 q = p;
8012 for (i = 0; i < insize; i++)
8014 psize++;
8015 q = q->right;
8016 if (!q)
8017 break;
8019 qsize = insize;
8021 /* Now we have two lists. Merge them! */
8022 while (psize > 0 || (qsize > 0 && q != NULL))
8024 /* See from which the next case to merge comes from. */
8025 if (psize == 0)
8027 /* P is empty so the next case must come from Q. */
8028 e = q;
8029 q = q->right;
8030 qsize--;
8032 else if (qsize == 0 || q == NULL)
8034 /* Q is empty. */
8035 e = p;
8036 p = p->right;
8037 psize--;
8039 else
8041 cmp = compare_cases (p, q);
8042 if (cmp < 0)
8044 /* The whole case range for P is less than the
8045 one for Q. */
8046 e = p;
8047 p = p->right;
8048 psize--;
8050 else if (cmp > 0)
8052 /* The whole case range for Q is greater than
8053 the case range for P. */
8054 e = q;
8055 q = q->right;
8056 qsize--;
8058 else
8060 /* The cases overlap, or they are the same
8061 element in the list. Either way, we must
8062 issue an error and get the next case from P. */
8063 /* FIXME: Sort P and Q by line number. */
8064 gfc_error ("CASE label at %L overlaps with CASE "
8065 "label at %L", &p->where, &q->where);
8066 overlap_seen = 1;
8067 e = p;
8068 p = p->right;
8069 psize--;
8073 /* Add the next element to the merged list. */
8074 if (tail)
8075 tail->right = e;
8076 else
8077 list = e;
8078 e->left = tail;
8079 tail = e;
8082 /* P has now stepped INSIZE places along, and so has Q. So
8083 they're the same. */
8084 p = q;
8086 tail->right = NULL;
8088 /* If we have done only one merge or none at all, we've
8089 finished sorting the cases. */
8090 if (nmerges <= 1)
8092 if (!overlap_seen)
8093 return list;
8094 else
8095 return NULL;
8098 /* Otherwise repeat, merging lists twice the size. */
8099 insize *= 2;
8104 /* Check to see if an expression is suitable for use in a CASE statement.
8105 Makes sure that all case expressions are scalar constants of the same
8106 type. Return false if anything is wrong. */
8108 static bool
8109 validate_case_label_expr (gfc_expr *e, gfc_expr *case_expr)
8111 if (e == NULL) return true;
8113 if (e->ts.type != case_expr->ts.type)
8115 gfc_error ("Expression in CASE statement at %L must be of type %s",
8116 &e->where, gfc_basic_typename (case_expr->ts.type));
8117 return false;
8120 /* C805 (R808) For a given case-construct, each case-value shall be of
8121 the same type as case-expr. For character type, length differences
8122 are allowed, but the kind type parameters shall be the same. */
8124 if (case_expr->ts.type == BT_CHARACTER && e->ts.kind != case_expr->ts.kind)
8126 gfc_error ("Expression in CASE statement at %L must be of kind %d",
8127 &e->where, case_expr->ts.kind);
8128 return false;
8131 /* Convert the case value kind to that of case expression kind,
8132 if needed */
8134 if (e->ts.kind != case_expr->ts.kind)
8135 gfc_convert_type_warn (e, &case_expr->ts, 2, 0);
8137 if (e->rank != 0)
8139 gfc_error ("Expression in CASE statement at %L must be scalar",
8140 &e->where);
8141 return false;
8144 return true;
8148 /* Given a completely parsed select statement, we:
8150 - Validate all expressions and code within the SELECT.
8151 - Make sure that the selection expression is not of the wrong type.
8152 - Make sure that no case ranges overlap.
8153 - Eliminate unreachable cases and unreachable code resulting from
8154 removing case labels.
8156 The standard does allow unreachable cases, e.g. CASE (5:3). But
8157 they are a hassle for code generation, and to prevent that, we just
8158 cut them out here. This is not necessary for overlapping cases
8159 because they are illegal and we never even try to generate code.
8161 We have the additional caveat that a SELECT construct could have
8162 been a computed GOTO in the source code. Fortunately we can fairly
8163 easily work around that here: The case_expr for a "real" SELECT CASE
8164 is in code->expr1, but for a computed GOTO it is in code->expr2. All
8165 we have to do is make sure that the case_expr is a scalar integer
8166 expression. */
8168 static void
8169 resolve_select (gfc_code *code, bool select_type)
8171 gfc_code *body;
8172 gfc_expr *case_expr;
8173 gfc_case *cp, *default_case, *tail, *head;
8174 int seen_unreachable;
8175 int seen_logical;
8176 int ncases;
8177 bt type;
8178 bool t;
8180 if (code->expr1 == NULL)
8182 /* This was actually a computed GOTO statement. */
8183 case_expr = code->expr2;
8184 if (case_expr->ts.type != BT_INTEGER|| case_expr->rank != 0)
8185 gfc_error ("Selection expression in computed GOTO statement "
8186 "at %L must be a scalar integer expression",
8187 &case_expr->where);
8189 /* Further checking is not necessary because this SELECT was built
8190 by the compiler, so it should always be OK. Just move the
8191 case_expr from expr2 to expr so that we can handle computed
8192 GOTOs as normal SELECTs from here on. */
8193 code->expr1 = code->expr2;
8194 code->expr2 = NULL;
8195 return;
8198 case_expr = code->expr1;
8199 type = case_expr->ts.type;
8201 /* F08:C830. */
8202 if (type != BT_LOGICAL && type != BT_INTEGER && type != BT_CHARACTER)
8204 gfc_error ("Argument of SELECT statement at %L cannot be %s",
8205 &case_expr->where, gfc_typename (&case_expr->ts));
8207 /* Punt. Going on here just produce more garbage error messages. */
8208 return;
8211 /* F08:R842. */
8212 if (!select_type && case_expr->rank != 0)
8214 gfc_error ("Argument of SELECT statement at %L must be a scalar "
8215 "expression", &case_expr->where);
8217 /* Punt. */
8218 return;
8221 /* Raise a warning if an INTEGER case value exceeds the range of
8222 the case-expr. Later, all expressions will be promoted to the
8223 largest kind of all case-labels. */
8225 if (type == BT_INTEGER)
8226 for (body = code->block; body; body = body->block)
8227 for (cp = body->ext.block.case_list; cp; cp = cp->next)
8229 if (cp->low
8230 && gfc_check_integer_range (cp->low->value.integer,
8231 case_expr->ts.kind) != ARITH_OK)
8232 gfc_warning (0, "Expression in CASE statement at %L is "
8233 "not in the range of %s", &cp->low->where,
8234 gfc_typename (&case_expr->ts));
8236 if (cp->high
8237 && cp->low != cp->high
8238 && gfc_check_integer_range (cp->high->value.integer,
8239 case_expr->ts.kind) != ARITH_OK)
8240 gfc_warning (0, "Expression in CASE statement at %L is "
8241 "not in the range of %s", &cp->high->where,
8242 gfc_typename (&case_expr->ts));
8245 /* PR 19168 has a long discussion concerning a mismatch of the kinds
8246 of the SELECT CASE expression and its CASE values. Walk the lists
8247 of case values, and if we find a mismatch, promote case_expr to
8248 the appropriate kind. */
8250 if (type == BT_LOGICAL || type == BT_INTEGER)
8252 for (body = code->block; body; body = body->block)
8254 /* Walk the case label list. */
8255 for (cp = body->ext.block.case_list; cp; cp = cp->next)
8257 /* Intercept the DEFAULT case. It does not have a kind. */
8258 if (cp->low == NULL && cp->high == NULL)
8259 continue;
8261 /* Unreachable case ranges are discarded, so ignore. */
8262 if (cp->low != NULL && cp->high != NULL
8263 && cp->low != cp->high
8264 && gfc_compare_expr (cp->low, cp->high, INTRINSIC_GT) > 0)
8265 continue;
8267 if (cp->low != NULL
8268 && case_expr->ts.kind != gfc_kind_max(case_expr, cp->low))
8269 gfc_convert_type_warn (case_expr, &cp->low->ts, 2, 0);
8271 if (cp->high != NULL
8272 && case_expr->ts.kind != gfc_kind_max(case_expr, cp->high))
8273 gfc_convert_type_warn (case_expr, &cp->high->ts, 2, 0);
8278 /* Assume there is no DEFAULT case. */
8279 default_case = NULL;
8280 head = tail = NULL;
8281 ncases = 0;
8282 seen_logical = 0;
8284 for (body = code->block; body; body = body->block)
8286 /* Assume the CASE list is OK, and all CASE labels can be matched. */
8287 t = true;
8288 seen_unreachable = 0;
8290 /* Walk the case label list, making sure that all case labels
8291 are legal. */
8292 for (cp = body->ext.block.case_list; cp; cp = cp->next)
8294 /* Count the number of cases in the whole construct. */
8295 ncases++;
8297 /* Intercept the DEFAULT case. */
8298 if (cp->low == NULL && cp->high == NULL)
8300 if (default_case != NULL)
8302 gfc_error ("The DEFAULT CASE at %L cannot be followed "
8303 "by a second DEFAULT CASE at %L",
8304 &default_case->where, &cp->where);
8305 t = false;
8306 break;
8308 else
8310 default_case = cp;
8311 continue;
8315 /* Deal with single value cases and case ranges. Errors are
8316 issued from the validation function. */
8317 if (!validate_case_label_expr (cp->low, case_expr)
8318 || !validate_case_label_expr (cp->high, case_expr))
8320 t = false;
8321 break;
8324 if (type == BT_LOGICAL
8325 && ((cp->low == NULL || cp->high == NULL)
8326 || cp->low != cp->high))
8328 gfc_error ("Logical range in CASE statement at %L is not "
8329 "allowed", &cp->low->where);
8330 t = false;
8331 break;
8334 if (type == BT_LOGICAL && cp->low->expr_type == EXPR_CONSTANT)
8336 int value;
8337 value = cp->low->value.logical == 0 ? 2 : 1;
8338 if (value & seen_logical)
8340 gfc_error ("Constant logical value in CASE statement "
8341 "is repeated at %L",
8342 &cp->low->where);
8343 t = false;
8344 break;
8346 seen_logical |= value;
8349 if (cp->low != NULL && cp->high != NULL
8350 && cp->low != cp->high
8351 && gfc_compare_expr (cp->low, cp->high, INTRINSIC_GT) > 0)
8353 if (warn_surprising)
8354 gfc_warning (OPT_Wsurprising,
8355 "Range specification at %L can never be matched",
8356 &cp->where);
8358 cp->unreachable = 1;
8359 seen_unreachable = 1;
8361 else
8363 /* If the case range can be matched, it can also overlap with
8364 other cases. To make sure it does not, we put it in a
8365 double linked list here. We sort that with a merge sort
8366 later on to detect any overlapping cases. */
8367 if (!head)
8369 head = tail = cp;
8370 head->right = head->left = NULL;
8372 else
8374 tail->right = cp;
8375 tail->right->left = tail;
8376 tail = tail->right;
8377 tail->right = NULL;
8382 /* It there was a failure in the previous case label, give up
8383 for this case label list. Continue with the next block. */
8384 if (!t)
8385 continue;
8387 /* See if any case labels that are unreachable have been seen.
8388 If so, we eliminate them. This is a bit of a kludge because
8389 the case lists for a single case statement (label) is a
8390 single forward linked lists. */
8391 if (seen_unreachable)
8393 /* Advance until the first case in the list is reachable. */
8394 while (body->ext.block.case_list != NULL
8395 && body->ext.block.case_list->unreachable)
8397 gfc_case *n = body->ext.block.case_list;
8398 body->ext.block.case_list = body->ext.block.case_list->next;
8399 n->next = NULL;
8400 gfc_free_case_list (n);
8403 /* Strip all other unreachable cases. */
8404 if (body->ext.block.case_list)
8406 for (cp = body->ext.block.case_list; cp && cp->next; cp = cp->next)
8408 if (cp->next->unreachable)
8410 gfc_case *n = cp->next;
8411 cp->next = cp->next->next;
8412 n->next = NULL;
8413 gfc_free_case_list (n);
8420 /* See if there were overlapping cases. If the check returns NULL,
8421 there was overlap. In that case we don't do anything. If head
8422 is non-NULL, we prepend the DEFAULT case. The sorted list can
8423 then used during code generation for SELECT CASE constructs with
8424 a case expression of a CHARACTER type. */
8425 if (head)
8427 head = check_case_overlap (head);
8429 /* Prepend the default_case if it is there. */
8430 if (head != NULL && default_case)
8432 default_case->left = NULL;
8433 default_case->right = head;
8434 head->left = default_case;
8438 /* Eliminate dead blocks that may be the result if we've seen
8439 unreachable case labels for a block. */
8440 for (body = code; body && body->block; body = body->block)
8442 if (body->block->ext.block.case_list == NULL)
8444 /* Cut the unreachable block from the code chain. */
8445 gfc_code *c = body->block;
8446 body->block = c->block;
8448 /* Kill the dead block, but not the blocks below it. */
8449 c->block = NULL;
8450 gfc_free_statements (c);
8454 /* More than two cases is legal but insane for logical selects.
8455 Issue a warning for it. */
8456 if (warn_surprising && type == BT_LOGICAL && ncases > 2)
8457 gfc_warning (OPT_Wsurprising,
8458 "Logical SELECT CASE block at %L has more that two cases",
8459 &code->loc);
8463 /* Check if a derived type is extensible. */
8465 bool
8466 gfc_type_is_extensible (gfc_symbol *sym)
8468 return !(sym->attr.is_bind_c || sym->attr.sequence
8469 || (sym->attr.is_class
8470 && sym->components->ts.u.derived->attr.unlimited_polymorphic));
8474 static void
8475 resolve_types (gfc_namespace *ns);
8477 /* Resolve an associate-name: Resolve target and ensure the type-spec is
8478 correct as well as possibly the array-spec. */
8480 static void
8481 resolve_assoc_var (gfc_symbol* sym, bool resolve_target)
8483 gfc_expr* target;
8485 gcc_assert (sym->assoc);
8486 gcc_assert (sym->attr.flavor == FL_VARIABLE);
8488 /* If this is for SELECT TYPE, the target may not yet be set. In that
8489 case, return. Resolution will be called later manually again when
8490 this is done. */
8491 target = sym->assoc->target;
8492 if (!target)
8493 return;
8494 gcc_assert (!sym->assoc->dangling);
8496 if (resolve_target && !gfc_resolve_expr (target))
8497 return;
8499 /* For variable targets, we get some attributes from the target. */
8500 if (target->expr_type == EXPR_VARIABLE)
8502 gfc_symbol* tsym;
8504 gcc_assert (target->symtree);
8505 tsym = target->symtree->n.sym;
8507 sym->attr.asynchronous = tsym->attr.asynchronous;
8508 sym->attr.volatile_ = tsym->attr.volatile_;
8510 sym->attr.target = tsym->attr.target
8511 || gfc_expr_attr (target).pointer;
8512 if (is_subref_array (target))
8513 sym->attr.subref_array_pointer = 1;
8516 if (target->expr_type == EXPR_NULL)
8518 gfc_error ("Selector at %L cannot be NULL()", &target->where);
8519 return;
8521 else if (target->ts.type == BT_UNKNOWN)
8523 gfc_error ("Selector at %L has no type", &target->where);
8524 return;
8527 /* Get type if this was not already set. Note that it can be
8528 some other type than the target in case this is a SELECT TYPE
8529 selector! So we must not update when the type is already there. */
8530 if (sym->ts.type == BT_UNKNOWN)
8531 sym->ts = target->ts;
8533 gcc_assert (sym->ts.type != BT_UNKNOWN);
8535 /* See if this is a valid association-to-variable. */
8536 sym->assoc->variable = (target->expr_type == EXPR_VARIABLE
8537 && !gfc_has_vector_subscript (target));
8539 /* Finally resolve if this is an array or not. */
8540 if (sym->attr.dimension && target->rank == 0)
8542 /* primary.c makes the assumption that a reference to an associate
8543 name followed by a left parenthesis is an array reference. */
8544 if (sym->ts.type != BT_CHARACTER)
8545 gfc_error ("Associate-name %qs at %L is used as array",
8546 sym->name, &sym->declared_at);
8547 sym->attr.dimension = 0;
8548 return;
8552 /* We cannot deal with class selectors that need temporaries. */
8553 if (target->ts.type == BT_CLASS
8554 && gfc_ref_needs_temporary_p (target->ref))
8556 gfc_error ("CLASS selector at %L needs a temporary which is not "
8557 "yet implemented", &target->where);
8558 return;
8561 if (target->ts.type == BT_CLASS)
8562 gfc_fix_class_refs (target);
8564 if (target->rank != 0)
8566 gfc_array_spec *as;
8567 /* The rank may be incorrectly guessed at parsing, therefore make sure
8568 it is corrected now. */
8569 if (sym->ts.type != BT_CLASS && (!sym->as || sym->assoc->rankguessed))
8571 if (!sym->as)
8572 sym->as = gfc_get_array_spec ();
8573 as = sym->as;
8574 as->rank = target->rank;
8575 as->type = AS_DEFERRED;
8576 as->corank = gfc_get_corank (target);
8577 sym->attr.dimension = 1;
8578 if (as->corank != 0)
8579 sym->attr.codimension = 1;
8582 else
8584 /* target's rank is 0, but the type of the sym is still array valued,
8585 which has to be corrected. */
8586 if (sym->ts.type == BT_CLASS && CLASS_DATA (sym)->as)
8588 gfc_array_spec *as;
8589 symbol_attribute attr;
8590 /* The associated variable's type is still the array type
8591 correct this now. */
8592 gfc_typespec *ts = &target->ts;
8593 gfc_ref *ref;
8594 gfc_component *c;
8595 for (ref = target->ref; ref != NULL; ref = ref->next)
8597 switch (ref->type)
8599 case REF_COMPONENT:
8600 ts = &ref->u.c.component->ts;
8601 break;
8602 case REF_ARRAY:
8603 if (ts->type == BT_CLASS)
8604 ts = &ts->u.derived->components->ts;
8605 break;
8606 default:
8607 break;
8610 /* Create a scalar instance of the current class type. Because the
8611 rank of a class array goes into its name, the type has to be
8612 rebuild. The alternative of (re-)setting just the attributes
8613 and as in the current type, destroys the type also in other
8614 places. */
8615 as = NULL;
8616 sym->ts = *ts;
8617 sym->ts.type = BT_CLASS;
8618 attr = CLASS_DATA (sym)->attr;
8619 attr.class_ok = 0;
8620 attr.associate_var = 1;
8621 attr.dimension = attr.codimension = 0;
8622 attr.class_pointer = 1;
8623 if (!gfc_build_class_symbol (&sym->ts, &attr, &as))
8624 gcc_unreachable ();
8625 /* Make sure the _vptr is set. */
8626 c = gfc_find_component (sym->ts.u.derived, "_vptr", true, true, NULL);
8627 if (c->ts.u.derived == NULL)
8628 c->ts.u.derived = gfc_find_derived_vtab (sym->ts.u.derived);
8629 CLASS_DATA (sym)->attr.pointer = 1;
8630 CLASS_DATA (sym)->attr.class_pointer = 1;
8631 gfc_set_sym_referenced (sym->ts.u.derived);
8632 gfc_commit_symbol (sym->ts.u.derived);
8633 /* _vptr now has the _vtab in it, change it to the _vtype. */
8634 if (c->ts.u.derived->attr.vtab)
8635 c->ts.u.derived = c->ts.u.derived->ts.u.derived;
8636 c->ts.u.derived->ns->types_resolved = 0;
8637 resolve_types (c->ts.u.derived->ns);
8641 /* Mark this as an associate variable. */
8642 sym->attr.associate_var = 1;
8644 /* Fix up the type-spec for CHARACTER types. */
8645 if (sym->ts.type == BT_CHARACTER && !sym->attr.select_type_temporary)
8647 if (!sym->ts.u.cl)
8648 sym->ts.u.cl = target->ts.u.cl;
8650 if (!sym->ts.u.cl->length
8651 && !sym->ts.deferred
8652 && target->expr_type == EXPR_CONSTANT)
8654 sym->ts.u.cl->length =
8655 gfc_get_int_expr (gfc_charlen_int_kind, NULL,
8656 target->value.character.length);
8658 else if ((!sym->ts.u.cl->length
8659 || sym->ts.u.cl->length->expr_type != EXPR_CONSTANT)
8660 && target->expr_type != EXPR_VARIABLE)
8662 sym->ts.u.cl = gfc_get_charlen();
8663 sym->ts.deferred = 1;
8665 /* This is reset in trans-stmt.c after the assignment
8666 of the target expression to the associate name. */
8667 sym->attr.allocatable = 1;
8671 /* If the target is a good class object, so is the associate variable. */
8672 if (sym->ts.type == BT_CLASS && gfc_expr_attr (target).class_ok)
8673 sym->attr.class_ok = 1;
8677 /* Ensure that SELECT TYPE expressions have the correct rank and a full
8678 array reference, where necessary. The symbols are artificial and so
8679 the dimension attribute and arrayspec can also be set. In addition,
8680 sometimes the expr1 arrives as BT_DERIVED, when the symbol is BT_CLASS.
8681 This is corrected here as well.*/
8683 static void
8684 fixup_array_ref (gfc_expr **expr1, gfc_expr *expr2,
8685 int rank, gfc_ref *ref)
8687 gfc_ref *nref = (*expr1)->ref;
8688 gfc_symbol *sym1 = (*expr1)->symtree->n.sym;
8689 gfc_symbol *sym2 = expr2 ? expr2->symtree->n.sym : NULL;
8690 (*expr1)->rank = rank;
8691 if (sym1->ts.type == BT_CLASS)
8693 if ((*expr1)->ts.type != BT_CLASS)
8694 (*expr1)->ts = sym1->ts;
8696 CLASS_DATA (sym1)->attr.dimension = 1;
8697 if (CLASS_DATA (sym1)->as == NULL && sym2)
8698 CLASS_DATA (sym1)->as
8699 = gfc_copy_array_spec (CLASS_DATA (sym2)->as);
8701 else
8703 sym1->attr.dimension = 1;
8704 if (sym1->as == NULL && sym2)
8705 sym1->as = gfc_copy_array_spec (sym2->as);
8708 for (; nref; nref = nref->next)
8709 if (nref->next == NULL)
8710 break;
8712 if (ref && nref && nref->type != REF_ARRAY)
8713 nref->next = gfc_copy_ref (ref);
8714 else if (ref && !nref)
8715 (*expr1)->ref = gfc_copy_ref (ref);
8719 static gfc_expr *
8720 build_loc_call (gfc_expr *sym_expr)
8722 gfc_expr *loc_call;
8723 loc_call = gfc_get_expr ();
8724 loc_call->expr_type = EXPR_FUNCTION;
8725 gfc_get_sym_tree ("_loc", gfc_current_ns, &loc_call->symtree, false);
8726 loc_call->symtree->n.sym->attr.flavor = FL_PROCEDURE;
8727 loc_call->symtree->n.sym->attr.intrinsic = 1;
8728 loc_call->symtree->n.sym->result = loc_call->symtree->n.sym;
8729 gfc_commit_symbol (loc_call->symtree->n.sym);
8730 loc_call->ts.type = BT_INTEGER;
8731 loc_call->ts.kind = gfc_index_integer_kind;
8732 loc_call->value.function.isym = gfc_intrinsic_function_by_id (GFC_ISYM_LOC);
8733 loc_call->value.function.actual = gfc_get_actual_arglist ();
8734 loc_call->value.function.actual->expr = sym_expr;
8735 loc_call->where = sym_expr->where;
8736 return loc_call;
8739 /* Resolve a SELECT TYPE statement. */
8741 static void
8742 resolve_select_type (gfc_code *code, gfc_namespace *old_ns)
8744 gfc_symbol *selector_type;
8745 gfc_code *body, *new_st, *if_st, *tail;
8746 gfc_code *class_is = NULL, *default_case = NULL;
8747 gfc_case *c;
8748 gfc_symtree *st;
8749 char name[GFC_MAX_SYMBOL_LEN];
8750 gfc_namespace *ns;
8751 int error = 0;
8752 int rank = 0;
8753 gfc_ref* ref = NULL;
8754 gfc_expr *selector_expr = NULL;
8756 ns = code->ext.block.ns;
8757 gfc_resolve (ns);
8759 /* Check for F03:C813. */
8760 if (code->expr1->ts.type != BT_CLASS
8761 && !(code->expr2 && code->expr2->ts.type == BT_CLASS))
8763 gfc_error ("Selector shall be polymorphic in SELECT TYPE statement "
8764 "at %L", &code->loc);
8765 return;
8768 if (!code->expr1->symtree->n.sym->attr.class_ok)
8769 return;
8771 if (code->expr2)
8773 if (code->expr1->symtree->n.sym->attr.untyped)
8774 code->expr1->symtree->n.sym->ts = code->expr2->ts;
8775 selector_type = CLASS_DATA (code->expr2)->ts.u.derived;
8777 if (code->expr2->rank && CLASS_DATA (code->expr1)->as)
8778 CLASS_DATA (code->expr1)->as->rank = code->expr2->rank;
8780 /* F2008: C803 The selector expression must not be coindexed. */
8781 if (gfc_is_coindexed (code->expr2))
8783 gfc_error ("Selector at %L must not be coindexed",
8784 &code->expr2->where);
8785 return;
8789 else
8791 selector_type = CLASS_DATA (code->expr1)->ts.u.derived;
8793 if (gfc_is_coindexed (code->expr1))
8795 gfc_error ("Selector at %L must not be coindexed",
8796 &code->expr1->where);
8797 return;
8801 /* Loop over TYPE IS / CLASS IS cases. */
8802 for (body = code->block; body; body = body->block)
8804 c = body->ext.block.case_list;
8806 if (!error)
8808 /* Check for repeated cases. */
8809 for (tail = code->block; tail; tail = tail->block)
8811 gfc_case *d = tail->ext.block.case_list;
8812 if (tail == body)
8813 break;
8815 if (c->ts.type == d->ts.type
8816 && ((c->ts.type == BT_DERIVED
8817 && c->ts.u.derived && d->ts.u.derived
8818 && !strcmp (c->ts.u.derived->name,
8819 d->ts.u.derived->name))
8820 || c->ts.type == BT_UNKNOWN
8821 || (!(c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
8822 && c->ts.kind == d->ts.kind)))
8824 gfc_error ("TYPE IS at %L overlaps with TYPE IS at %L",
8825 &c->where, &d->where);
8826 return;
8831 /* Check F03:C815. */
8832 if ((c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
8833 && !selector_type->attr.unlimited_polymorphic
8834 && !gfc_type_is_extensible (c->ts.u.derived))
8836 gfc_error ("Derived type %qs at %L must be extensible",
8837 c->ts.u.derived->name, &c->where);
8838 error++;
8839 continue;
8842 /* Check F03:C816. */
8843 if (c->ts.type != BT_UNKNOWN && !selector_type->attr.unlimited_polymorphic
8844 && ((c->ts.type != BT_DERIVED && c->ts.type != BT_CLASS)
8845 || !gfc_type_is_extension_of (selector_type, c->ts.u.derived)))
8847 if (c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
8848 gfc_error ("Derived type %qs at %L must be an extension of %qs",
8849 c->ts.u.derived->name, &c->where, selector_type->name);
8850 else
8851 gfc_error ("Unexpected intrinsic type %qs at %L",
8852 gfc_basic_typename (c->ts.type), &c->where);
8853 error++;
8854 continue;
8857 /* Check F03:C814. */
8858 if (c->ts.type == BT_CHARACTER
8859 && (c->ts.u.cl->length != NULL || c->ts.deferred))
8861 gfc_error ("The type-spec at %L shall specify that each length "
8862 "type parameter is assumed", &c->where);
8863 error++;
8864 continue;
8867 /* Intercept the DEFAULT case. */
8868 if (c->ts.type == BT_UNKNOWN)
8870 /* Check F03:C818. */
8871 if (default_case)
8873 gfc_error ("The DEFAULT CASE at %L cannot be followed "
8874 "by a second DEFAULT CASE at %L",
8875 &default_case->ext.block.case_list->where, &c->where);
8876 error++;
8877 continue;
8880 default_case = body;
8884 if (error > 0)
8885 return;
8887 /* Transform SELECT TYPE statement to BLOCK and associate selector to
8888 target if present. If there are any EXIT statements referring to the
8889 SELECT TYPE construct, this is no problem because the gfc_code
8890 reference stays the same and EXIT is equally possible from the BLOCK
8891 it is changed to. */
8892 code->op = EXEC_BLOCK;
8893 if (code->expr2)
8895 gfc_association_list* assoc;
8897 assoc = gfc_get_association_list ();
8898 assoc->st = code->expr1->symtree;
8899 assoc->target = gfc_copy_expr (code->expr2);
8900 assoc->target->where = code->expr2->where;
8901 /* assoc->variable will be set by resolve_assoc_var. */
8903 code->ext.block.assoc = assoc;
8904 code->expr1->symtree->n.sym->assoc = assoc;
8906 resolve_assoc_var (code->expr1->symtree->n.sym, false);
8908 else
8909 code->ext.block.assoc = NULL;
8911 /* Ensure that the selector rank and arrayspec are available to
8912 correct expressions in which they might be missing. */
8913 if (code->expr2 && code->expr2->rank)
8915 rank = code->expr2->rank;
8916 for (ref = code->expr2->ref; ref; ref = ref->next)
8917 if (ref->next == NULL)
8918 break;
8919 if (ref && ref->type == REF_ARRAY)
8920 ref = gfc_copy_ref (ref);
8922 /* Fixup expr1 if necessary. */
8923 if (rank)
8924 fixup_array_ref (&code->expr1, code->expr2, rank, ref);
8926 else if (code->expr1->rank)
8928 rank = code->expr1->rank;
8929 for (ref = code->expr1->ref; ref; ref = ref->next)
8930 if (ref->next == NULL)
8931 break;
8932 if (ref && ref->type == REF_ARRAY)
8933 ref = gfc_copy_ref (ref);
8936 /* Add EXEC_SELECT to switch on type. */
8937 new_st = gfc_get_code (code->op);
8938 new_st->expr1 = code->expr1;
8939 new_st->expr2 = code->expr2;
8940 new_st->block = code->block;
8941 code->expr1 = code->expr2 = NULL;
8942 code->block = NULL;
8943 if (!ns->code)
8944 ns->code = new_st;
8945 else
8946 ns->code->next = new_st;
8947 code = new_st;
8948 code->op = EXEC_SELECT_TYPE;
8950 /* Use the intrinsic LOC function to generate an integer expression
8951 for the vtable of the selector. Note that the rank of the selector
8952 expression has to be set to zero. */
8953 gfc_add_vptr_component (code->expr1);
8954 code->expr1->rank = 0;
8955 code->expr1 = build_loc_call (code->expr1);
8956 selector_expr = code->expr1->value.function.actual->expr;
8958 /* Loop over TYPE IS / CLASS IS cases. */
8959 for (body = code->block; body; body = body->block)
8961 gfc_symbol *vtab;
8962 gfc_expr *e;
8963 c = body->ext.block.case_list;
8965 /* Generate an index integer expression for address of the
8966 TYPE/CLASS vtable and store it in c->low. The hash expression
8967 is stored in c->high and is used to resolve intrinsic cases. */
8968 if (c->ts.type != BT_UNKNOWN)
8970 if (c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
8972 vtab = gfc_find_derived_vtab (c->ts.u.derived);
8973 gcc_assert (vtab);
8974 c->high = gfc_get_int_expr (gfc_integer_4_kind, NULL,
8975 c->ts.u.derived->hash_value);
8977 else
8979 vtab = gfc_find_vtab (&c->ts);
8980 gcc_assert (vtab && CLASS_DATA (vtab)->initializer);
8981 e = CLASS_DATA (vtab)->initializer;
8982 c->high = gfc_copy_expr (e);
8983 if (c->high->ts.kind != gfc_integer_4_kind)
8985 gfc_typespec ts;
8986 ts.kind = gfc_integer_4_kind;
8987 ts.type = BT_INTEGER;
8988 gfc_convert_type_warn (c->high, &ts, 2, 0);
8992 e = gfc_lval_expr_from_sym (vtab);
8993 c->low = build_loc_call (e);
8995 else
8996 continue;
8998 /* Associate temporary to selector. This should only be done
8999 when this case is actually true, so build a new ASSOCIATE
9000 that does precisely this here (instead of using the
9001 'global' one). */
9003 if (c->ts.type == BT_CLASS)
9004 sprintf (name, "__tmp_class_%s", c->ts.u.derived->name);
9005 else if (c->ts.type == BT_DERIVED)
9006 sprintf (name, "__tmp_type_%s", c->ts.u.derived->name);
9007 else if (c->ts.type == BT_CHARACTER)
9009 HOST_WIDE_INT charlen = 0;
9010 if (c->ts.u.cl && c->ts.u.cl->length
9011 && c->ts.u.cl->length->expr_type == EXPR_CONSTANT)
9012 charlen = gfc_mpz_get_hwi (c->ts.u.cl->length->value.integer);
9013 snprintf (name, sizeof (name),
9014 "__tmp_%s_" HOST_WIDE_INT_PRINT_DEC "_%d",
9015 gfc_basic_typename (c->ts.type), charlen, c->ts.kind);
9017 else
9018 sprintf (name, "__tmp_%s_%d", gfc_basic_typename (c->ts.type),
9019 c->ts.kind);
9021 st = gfc_find_symtree (ns->sym_root, name);
9022 gcc_assert (st->n.sym->assoc);
9023 st->n.sym->assoc->target = gfc_get_variable_expr (selector_expr->symtree);
9024 st->n.sym->assoc->target->where = selector_expr->where;
9025 if (c->ts.type != BT_CLASS && c->ts.type != BT_UNKNOWN)
9027 gfc_add_data_component (st->n.sym->assoc->target);
9028 /* Fixup the target expression if necessary. */
9029 if (rank)
9030 fixup_array_ref (&st->n.sym->assoc->target, NULL, rank, ref);
9033 new_st = gfc_get_code (EXEC_BLOCK);
9034 new_st->ext.block.ns = gfc_build_block_ns (ns);
9035 new_st->ext.block.ns->code = body->next;
9036 body->next = new_st;
9038 /* Chain in the new list only if it is marked as dangling. Otherwise
9039 there is a CASE label overlap and this is already used. Just ignore,
9040 the error is diagnosed elsewhere. */
9041 if (st->n.sym->assoc->dangling)
9043 new_st->ext.block.assoc = st->n.sym->assoc;
9044 st->n.sym->assoc->dangling = 0;
9047 resolve_assoc_var (st->n.sym, false);
9050 /* Take out CLASS IS cases for separate treatment. */
9051 body = code;
9052 while (body && body->block)
9054 if (body->block->ext.block.case_list->ts.type == BT_CLASS)
9056 /* Add to class_is list. */
9057 if (class_is == NULL)
9059 class_is = body->block;
9060 tail = class_is;
9062 else
9064 for (tail = class_is; tail->block; tail = tail->block) ;
9065 tail->block = body->block;
9066 tail = tail->block;
9068 /* Remove from EXEC_SELECT list. */
9069 body->block = body->block->block;
9070 tail->block = NULL;
9072 else
9073 body = body->block;
9076 if (class_is)
9078 gfc_symbol *vtab;
9080 if (!default_case)
9082 /* Add a default case to hold the CLASS IS cases. */
9083 for (tail = code; tail->block; tail = tail->block) ;
9084 tail->block = gfc_get_code (EXEC_SELECT_TYPE);
9085 tail = tail->block;
9086 tail->ext.block.case_list = gfc_get_case ();
9087 tail->ext.block.case_list->ts.type = BT_UNKNOWN;
9088 tail->next = NULL;
9089 default_case = tail;
9092 /* More than one CLASS IS block? */
9093 if (class_is->block)
9095 gfc_code **c1,*c2;
9096 bool swapped;
9097 /* Sort CLASS IS blocks by extension level. */
9100 swapped = false;
9101 for (c1 = &class_is; (*c1) && (*c1)->block; c1 = &((*c1)->block))
9103 c2 = (*c1)->block;
9104 /* F03:C817 (check for doubles). */
9105 if ((*c1)->ext.block.case_list->ts.u.derived->hash_value
9106 == c2->ext.block.case_list->ts.u.derived->hash_value)
9108 gfc_error ("Double CLASS IS block in SELECT TYPE "
9109 "statement at %L",
9110 &c2->ext.block.case_list->where);
9111 return;
9113 if ((*c1)->ext.block.case_list->ts.u.derived->attr.extension
9114 < c2->ext.block.case_list->ts.u.derived->attr.extension)
9116 /* Swap. */
9117 (*c1)->block = c2->block;
9118 c2->block = *c1;
9119 *c1 = c2;
9120 swapped = true;
9124 while (swapped);
9127 /* Generate IF chain. */
9128 if_st = gfc_get_code (EXEC_IF);
9129 new_st = if_st;
9130 for (body = class_is; body; body = body->block)
9132 new_st->block = gfc_get_code (EXEC_IF);
9133 new_st = new_st->block;
9134 /* Set up IF condition: Call _gfortran_is_extension_of. */
9135 new_st->expr1 = gfc_get_expr ();
9136 new_st->expr1->expr_type = EXPR_FUNCTION;
9137 new_st->expr1->ts.type = BT_LOGICAL;
9138 new_st->expr1->ts.kind = 4;
9139 new_st->expr1->value.function.name = gfc_get_string (PREFIX ("is_extension_of"));
9140 new_st->expr1->value.function.isym = XCNEW (gfc_intrinsic_sym);
9141 new_st->expr1->value.function.isym->id = GFC_ISYM_EXTENDS_TYPE_OF;
9142 /* Set up arguments. */
9143 new_st->expr1->value.function.actual = gfc_get_actual_arglist ();
9144 new_st->expr1->value.function.actual->expr = gfc_get_variable_expr (selector_expr->symtree);
9145 new_st->expr1->value.function.actual->expr->where = code->loc;
9146 new_st->expr1->where = code->loc;
9147 gfc_add_vptr_component (new_st->expr1->value.function.actual->expr);
9148 vtab = gfc_find_derived_vtab (body->ext.block.case_list->ts.u.derived);
9149 st = gfc_find_symtree (vtab->ns->sym_root, vtab->name);
9150 new_st->expr1->value.function.actual->next = gfc_get_actual_arglist ();
9151 new_st->expr1->value.function.actual->next->expr = gfc_get_variable_expr (st);
9152 new_st->expr1->value.function.actual->next->expr->where = code->loc;
9153 new_st->next = body->next;
9155 if (default_case->next)
9157 new_st->block = gfc_get_code (EXEC_IF);
9158 new_st = new_st->block;
9159 new_st->next = default_case->next;
9162 /* Replace CLASS DEFAULT code by the IF chain. */
9163 default_case->next = if_st;
9166 /* Resolve the internal code. This can not be done earlier because
9167 it requires that the sym->assoc of selectors is set already. */
9168 gfc_current_ns = ns;
9169 gfc_resolve_blocks (code->block, gfc_current_ns);
9170 gfc_current_ns = old_ns;
9172 if (ref)
9173 free (ref);
9177 /* Resolve a transfer statement. This is making sure that:
9178 -- a derived type being transferred has only non-pointer components
9179 -- a derived type being transferred doesn't have private components, unless
9180 it's being transferred from the module where the type was defined
9181 -- we're not trying to transfer a whole assumed size array. */
9183 static void
9184 resolve_transfer (gfc_code *code)
9186 gfc_typespec *ts;
9187 gfc_symbol *sym, *derived;
9188 gfc_ref *ref;
9189 gfc_expr *exp;
9190 bool write = false;
9191 bool formatted = false;
9192 gfc_dt *dt = code->ext.dt;
9193 gfc_symbol *dtio_sub = NULL;
9195 exp = code->expr1;
9197 while (exp != NULL && exp->expr_type == EXPR_OP
9198 && exp->value.op.op == INTRINSIC_PARENTHESES)
9199 exp = exp->value.op.op1;
9201 if (exp && exp->expr_type == EXPR_NULL
9202 && code->ext.dt)
9204 gfc_error ("Invalid context for NULL () intrinsic at %L",
9205 &exp->where);
9206 return;
9209 if (exp == NULL || (exp->expr_type != EXPR_VARIABLE
9210 && exp->expr_type != EXPR_FUNCTION
9211 && exp->expr_type != EXPR_STRUCTURE))
9212 return;
9214 /* If we are reading, the variable will be changed. Note that
9215 code->ext.dt may be NULL if the TRANSFER is related to
9216 an INQUIRE statement -- but in this case, we are not reading, either. */
9217 if (dt && dt->dt_io_kind->value.iokind == M_READ
9218 && !gfc_check_vardef_context (exp, false, false, false,
9219 _("item in READ")))
9220 return;
9222 ts = exp->expr_type == EXPR_STRUCTURE ? &exp->ts : &exp->symtree->n.sym->ts;
9224 /* Go to actual component transferred. */
9225 for (ref = exp->ref; ref; ref = ref->next)
9226 if (ref->type == REF_COMPONENT)
9227 ts = &ref->u.c.component->ts;
9229 if (dt && dt->dt_io_kind->value.iokind != M_INQUIRE
9230 && (ts->type == BT_DERIVED || ts->type == BT_CLASS))
9232 if (ts->type == BT_DERIVED || ts->type == BT_CLASS)
9233 derived = ts->u.derived;
9234 else
9235 derived = ts->u.derived->components->ts.u.derived;
9237 /* Determine when to use the formatted DTIO procedure. */
9238 if (dt && (dt->format_expr || dt->format_label))
9239 formatted = true;
9241 write = dt->dt_io_kind->value.iokind == M_WRITE
9242 || dt->dt_io_kind->value.iokind == M_PRINT;
9243 dtio_sub = gfc_find_specific_dtio_proc (derived, write, formatted);
9245 if (dtio_sub != NULL && exp->expr_type == EXPR_VARIABLE)
9247 dt->udtio = exp;
9248 sym = exp->symtree->n.sym->ns->proc_name;
9249 /* Check to see if this is a nested DTIO call, with the
9250 dummy as the io-list object. */
9251 if (sym && sym == dtio_sub && sym->formal
9252 && sym->formal->sym == exp->symtree->n.sym
9253 && exp->ref == NULL)
9255 if (!sym->attr.recursive)
9257 gfc_error ("DTIO %s procedure at %L must be recursive",
9258 sym->name, &sym->declared_at);
9259 return;
9265 if (ts->type == BT_CLASS && dtio_sub == NULL)
9267 gfc_error ("Data transfer element at %L cannot be polymorphic unless "
9268 "it is processed by a defined input/output procedure",
9269 &code->loc);
9270 return;
9273 if (ts->type == BT_DERIVED)
9275 /* Check that transferred derived type doesn't contain POINTER
9276 components unless it is processed by a defined input/output
9277 procedure". */
9278 if (ts->u.derived->attr.pointer_comp && dtio_sub == NULL)
9280 gfc_error ("Data transfer element at %L cannot have POINTER "
9281 "components unless it is processed by a defined "
9282 "input/output procedure", &code->loc);
9283 return;
9286 /* F08:C935. */
9287 if (ts->u.derived->attr.proc_pointer_comp)
9289 gfc_error ("Data transfer element at %L cannot have "
9290 "procedure pointer components", &code->loc);
9291 return;
9294 if (ts->u.derived->attr.alloc_comp && dtio_sub == NULL)
9296 gfc_error ("Data transfer element at %L cannot have ALLOCATABLE "
9297 "components unless it is processed by a defined "
9298 "input/output procedure", &code->loc);
9299 return;
9302 /* C_PTR and C_FUNPTR have private components which means they can not
9303 be printed. However, if -std=gnu and not -pedantic, allow
9304 the component to be printed to help debugging. */
9305 if (ts->u.derived->ts.f90_type == BT_VOID)
9307 if (!gfc_notify_std (GFC_STD_GNU, "Data transfer element at %L "
9308 "cannot have PRIVATE components", &code->loc))
9309 return;
9311 else if (derived_inaccessible (ts->u.derived) && dtio_sub == NULL)
9313 gfc_error ("Data transfer element at %L cannot have "
9314 "PRIVATE components unless it is processed by "
9315 "a defined input/output procedure", &code->loc);
9316 return;
9320 if (exp->expr_type == EXPR_STRUCTURE)
9321 return;
9323 sym = exp->symtree->n.sym;
9325 if (sym->as != NULL && sym->as->type == AS_ASSUMED_SIZE && exp->ref
9326 && exp->ref->type == REF_ARRAY && exp->ref->u.ar.type == AR_FULL)
9328 gfc_error ("Data transfer element at %L cannot be a full reference to "
9329 "an assumed-size array", &code->loc);
9330 return;
9333 if (async_io_dt && exp->expr_type == EXPR_VARIABLE)
9334 exp->symtree->n.sym->attr.asynchronous = 1;
9338 /*********** Toplevel code resolution subroutines ***********/
9340 /* Find the set of labels that are reachable from this block. We also
9341 record the last statement in each block. */
9343 static void
9344 find_reachable_labels (gfc_code *block)
9346 gfc_code *c;
9348 if (!block)
9349 return;
9351 cs_base->reachable_labels = bitmap_alloc (&labels_obstack);
9353 /* Collect labels in this block. We don't keep those corresponding
9354 to END {IF|SELECT}, these are checked in resolve_branch by going
9355 up through the code_stack. */
9356 for (c = block; c; c = c->next)
9358 if (c->here && c->op != EXEC_END_NESTED_BLOCK)
9359 bitmap_set_bit (cs_base->reachable_labels, c->here->value);
9362 /* Merge with labels from parent block. */
9363 if (cs_base->prev)
9365 gcc_assert (cs_base->prev->reachable_labels);
9366 bitmap_ior_into (cs_base->reachable_labels,
9367 cs_base->prev->reachable_labels);
9372 static void
9373 resolve_lock_unlock_event (gfc_code *code)
9375 if (code->expr1->expr_type == EXPR_FUNCTION
9376 && code->expr1->value.function.isym
9377 && code->expr1->value.function.isym->id == GFC_ISYM_CAF_GET)
9378 remove_caf_get_intrinsic (code->expr1);
9380 if ((code->op == EXEC_LOCK || code->op == EXEC_UNLOCK)
9381 && (code->expr1->ts.type != BT_DERIVED
9382 || code->expr1->expr_type != EXPR_VARIABLE
9383 || code->expr1->ts.u.derived->from_intmod != INTMOD_ISO_FORTRAN_ENV
9384 || code->expr1->ts.u.derived->intmod_sym_id != ISOFORTRAN_LOCK_TYPE
9385 || code->expr1->rank != 0
9386 || (!gfc_is_coarray (code->expr1) &&
9387 !gfc_is_coindexed (code->expr1))))
9388 gfc_error ("Lock variable at %L must be a scalar of type LOCK_TYPE",
9389 &code->expr1->where);
9390 else if ((code->op == EXEC_EVENT_POST || code->op == EXEC_EVENT_WAIT)
9391 && (code->expr1->ts.type != BT_DERIVED
9392 || code->expr1->expr_type != EXPR_VARIABLE
9393 || code->expr1->ts.u.derived->from_intmod
9394 != INTMOD_ISO_FORTRAN_ENV
9395 || code->expr1->ts.u.derived->intmod_sym_id
9396 != ISOFORTRAN_EVENT_TYPE
9397 || code->expr1->rank != 0))
9398 gfc_error ("Event variable at %L must be a scalar of type EVENT_TYPE",
9399 &code->expr1->where);
9400 else if (code->op == EXEC_EVENT_POST && !gfc_is_coarray (code->expr1)
9401 && !gfc_is_coindexed (code->expr1))
9402 gfc_error ("Event variable argument at %L must be a coarray or coindexed",
9403 &code->expr1->where);
9404 else if (code->op == EXEC_EVENT_WAIT && !gfc_is_coarray (code->expr1))
9405 gfc_error ("Event variable argument at %L must be a coarray but not "
9406 "coindexed", &code->expr1->where);
9408 /* Check STAT. */
9409 if (code->expr2
9410 && (code->expr2->ts.type != BT_INTEGER || code->expr2->rank != 0
9411 || code->expr2->expr_type != EXPR_VARIABLE))
9412 gfc_error ("STAT= argument at %L must be a scalar INTEGER variable",
9413 &code->expr2->where);
9415 if (code->expr2
9416 && !gfc_check_vardef_context (code->expr2, false, false, false,
9417 _("STAT variable")))
9418 return;
9420 /* Check ERRMSG. */
9421 if (code->expr3
9422 && (code->expr3->ts.type != BT_CHARACTER || code->expr3->rank != 0
9423 || code->expr3->expr_type != EXPR_VARIABLE))
9424 gfc_error ("ERRMSG= argument at %L must be a scalar CHARACTER variable",
9425 &code->expr3->where);
9427 if (code->expr3
9428 && !gfc_check_vardef_context (code->expr3, false, false, false,
9429 _("ERRMSG variable")))
9430 return;
9432 /* Check for LOCK the ACQUIRED_LOCK. */
9433 if (code->op != EXEC_EVENT_WAIT && code->expr4
9434 && (code->expr4->ts.type != BT_LOGICAL || code->expr4->rank != 0
9435 || code->expr4->expr_type != EXPR_VARIABLE))
9436 gfc_error ("ACQUIRED_LOCK= argument at %L must be a scalar LOGICAL "
9437 "variable", &code->expr4->where);
9439 if (code->op != EXEC_EVENT_WAIT && code->expr4
9440 && !gfc_check_vardef_context (code->expr4, false, false, false,
9441 _("ACQUIRED_LOCK variable")))
9442 return;
9444 /* Check for EVENT WAIT the UNTIL_COUNT. */
9445 if (code->op == EXEC_EVENT_WAIT && code->expr4)
9447 if (!gfc_resolve_expr (code->expr4) || code->expr4->ts.type != BT_INTEGER
9448 || code->expr4->rank != 0)
9449 gfc_error ("UNTIL_COUNT= argument at %L must be a scalar INTEGER "
9450 "expression", &code->expr4->where);
9455 static void
9456 resolve_critical (gfc_code *code)
9458 gfc_symtree *symtree;
9459 gfc_symbol *lock_type;
9460 char name[GFC_MAX_SYMBOL_LEN];
9461 static int serial = 0;
9463 if (flag_coarray != GFC_FCOARRAY_LIB)
9464 return;
9466 symtree = gfc_find_symtree (gfc_current_ns->sym_root,
9467 GFC_PREFIX ("lock_type"));
9468 if (symtree)
9469 lock_type = symtree->n.sym;
9470 else
9472 if (gfc_get_sym_tree (GFC_PREFIX ("lock_type"), gfc_current_ns, &symtree,
9473 false) != 0)
9474 gcc_unreachable ();
9475 lock_type = symtree->n.sym;
9476 lock_type->attr.flavor = FL_DERIVED;
9477 lock_type->attr.zero_comp = 1;
9478 lock_type->from_intmod = INTMOD_ISO_FORTRAN_ENV;
9479 lock_type->intmod_sym_id = ISOFORTRAN_LOCK_TYPE;
9482 sprintf(name, GFC_PREFIX ("lock_var") "%d",serial++);
9483 if (gfc_get_sym_tree (name, gfc_current_ns, &symtree, false) != 0)
9484 gcc_unreachable ();
9486 code->resolved_sym = symtree->n.sym;
9487 symtree->n.sym->attr.flavor = FL_VARIABLE;
9488 symtree->n.sym->attr.referenced = 1;
9489 symtree->n.sym->attr.artificial = 1;
9490 symtree->n.sym->attr.codimension = 1;
9491 symtree->n.sym->ts.type = BT_DERIVED;
9492 symtree->n.sym->ts.u.derived = lock_type;
9493 symtree->n.sym->as = gfc_get_array_spec ();
9494 symtree->n.sym->as->corank = 1;
9495 symtree->n.sym->as->type = AS_EXPLICIT;
9496 symtree->n.sym->as->cotype = AS_EXPLICIT;
9497 symtree->n.sym->as->lower[0] = gfc_get_int_expr (gfc_default_integer_kind,
9498 NULL, 1);
9499 gfc_commit_symbols();
9503 static void
9504 resolve_sync (gfc_code *code)
9506 /* Check imageset. The * case matches expr1 == NULL. */
9507 if (code->expr1)
9509 if (code->expr1->ts.type != BT_INTEGER || code->expr1->rank > 1)
9510 gfc_error ("Imageset argument at %L must be a scalar or rank-1 "
9511 "INTEGER expression", &code->expr1->where);
9512 if (code->expr1->expr_type == EXPR_CONSTANT && code->expr1->rank == 0
9513 && mpz_cmp_si (code->expr1->value.integer, 1) < 0)
9514 gfc_error ("Imageset argument at %L must between 1 and num_images()",
9515 &code->expr1->where);
9516 else if (code->expr1->expr_type == EXPR_ARRAY
9517 && gfc_simplify_expr (code->expr1, 0))
9519 gfc_constructor *cons;
9520 cons = gfc_constructor_first (code->expr1->value.constructor);
9521 for (; cons; cons = gfc_constructor_next (cons))
9522 if (cons->expr->expr_type == EXPR_CONSTANT
9523 && mpz_cmp_si (cons->expr->value.integer, 1) < 0)
9524 gfc_error ("Imageset argument at %L must between 1 and "
9525 "num_images()", &cons->expr->where);
9529 /* Check STAT. */
9530 if (code->expr2
9531 && (code->expr2->ts.type != BT_INTEGER || code->expr2->rank != 0
9532 || code->expr2->expr_type != EXPR_VARIABLE))
9533 gfc_error ("STAT= argument at %L must be a scalar INTEGER variable",
9534 &code->expr2->where);
9536 /* Check ERRMSG. */
9537 if (code->expr3
9538 && (code->expr3->ts.type != BT_CHARACTER || code->expr3->rank != 0
9539 || code->expr3->expr_type != EXPR_VARIABLE))
9540 gfc_error ("ERRMSG= argument at %L must be a scalar CHARACTER variable",
9541 &code->expr3->where);
9545 /* Given a branch to a label, see if the branch is conforming.
9546 The code node describes where the branch is located. */
9548 static void
9549 resolve_branch (gfc_st_label *label, gfc_code *code)
9551 code_stack *stack;
9553 if (label == NULL)
9554 return;
9556 /* Step one: is this a valid branching target? */
9558 if (label->defined == ST_LABEL_UNKNOWN)
9560 gfc_error ("Label %d referenced at %L is never defined", label->value,
9561 &code->loc);
9562 return;
9565 if (label->defined != ST_LABEL_TARGET && label->defined != ST_LABEL_DO_TARGET)
9567 gfc_error ("Statement at %L is not a valid branch target statement "
9568 "for the branch statement at %L", &label->where, &code->loc);
9569 return;
9572 /* Step two: make sure this branch is not a branch to itself ;-) */
9574 if (code->here == label)
9576 gfc_warning (0,
9577 "Branch at %L may result in an infinite loop", &code->loc);
9578 return;
9581 /* Step three: See if the label is in the same block as the
9582 branching statement. The hard work has been done by setting up
9583 the bitmap reachable_labels. */
9585 if (bitmap_bit_p (cs_base->reachable_labels, label->value))
9587 /* Check now whether there is a CRITICAL construct; if so, check
9588 whether the label is still visible outside of the CRITICAL block,
9589 which is invalid. */
9590 for (stack = cs_base; stack; stack = stack->prev)
9592 if (stack->current->op == EXEC_CRITICAL
9593 && bitmap_bit_p (stack->reachable_labels, label->value))
9594 gfc_error ("GOTO statement at %L leaves CRITICAL construct for "
9595 "label at %L", &code->loc, &label->where);
9596 else if (stack->current->op == EXEC_DO_CONCURRENT
9597 && bitmap_bit_p (stack->reachable_labels, label->value))
9598 gfc_error ("GOTO statement at %L leaves DO CONCURRENT construct "
9599 "for label at %L", &code->loc, &label->where);
9602 return;
9605 /* Step four: If we haven't found the label in the bitmap, it may
9606 still be the label of the END of the enclosing block, in which
9607 case we find it by going up the code_stack. */
9609 for (stack = cs_base; stack; stack = stack->prev)
9611 if (stack->current->next && stack->current->next->here == label)
9612 break;
9613 if (stack->current->op == EXEC_CRITICAL)
9615 /* Note: A label at END CRITICAL does not leave the CRITICAL
9616 construct as END CRITICAL is still part of it. */
9617 gfc_error ("GOTO statement at %L leaves CRITICAL construct for label"
9618 " at %L", &code->loc, &label->where);
9619 return;
9621 else if (stack->current->op == EXEC_DO_CONCURRENT)
9623 gfc_error ("GOTO statement at %L leaves DO CONCURRENT construct for "
9624 "label at %L", &code->loc, &label->where);
9625 return;
9629 if (stack)
9631 gcc_assert (stack->current->next->op == EXEC_END_NESTED_BLOCK);
9632 return;
9635 /* The label is not in an enclosing block, so illegal. This was
9636 allowed in Fortran 66, so we allow it as extension. No
9637 further checks are necessary in this case. */
9638 gfc_notify_std (GFC_STD_LEGACY, "Label at %L is not in the same block "
9639 "as the GOTO statement at %L", &label->where,
9640 &code->loc);
9641 return;
9645 /* Check whether EXPR1 has the same shape as EXPR2. */
9647 static bool
9648 resolve_where_shape (gfc_expr *expr1, gfc_expr *expr2)
9650 mpz_t shape[GFC_MAX_DIMENSIONS];
9651 mpz_t shape2[GFC_MAX_DIMENSIONS];
9652 bool result = false;
9653 int i;
9655 /* Compare the rank. */
9656 if (expr1->rank != expr2->rank)
9657 return result;
9659 /* Compare the size of each dimension. */
9660 for (i=0; i<expr1->rank; i++)
9662 if (!gfc_array_dimen_size (expr1, i, &shape[i]))
9663 goto ignore;
9665 if (!gfc_array_dimen_size (expr2, i, &shape2[i]))
9666 goto ignore;
9668 if (mpz_cmp (shape[i], shape2[i]))
9669 goto over;
9672 /* When either of the two expression is an assumed size array, we
9673 ignore the comparison of dimension sizes. */
9674 ignore:
9675 result = true;
9677 over:
9678 gfc_clear_shape (shape, i);
9679 gfc_clear_shape (shape2, i);
9680 return result;
9684 /* Check whether a WHERE assignment target or a WHERE mask expression
9685 has the same shape as the outmost WHERE mask expression. */
9687 static void
9688 resolve_where (gfc_code *code, gfc_expr *mask)
9690 gfc_code *cblock;
9691 gfc_code *cnext;
9692 gfc_expr *e = NULL;
9694 cblock = code->block;
9696 /* Store the first WHERE mask-expr of the WHERE statement or construct.
9697 In case of nested WHERE, only the outmost one is stored. */
9698 if (mask == NULL) /* outmost WHERE */
9699 e = cblock->expr1;
9700 else /* inner WHERE */
9701 e = mask;
9703 while (cblock)
9705 if (cblock->expr1)
9707 /* Check if the mask-expr has a consistent shape with the
9708 outmost WHERE mask-expr. */
9709 if (!resolve_where_shape (cblock->expr1, e))
9710 gfc_error ("WHERE mask at %L has inconsistent shape",
9711 &cblock->expr1->where);
9714 /* the assignment statement of a WHERE statement, or the first
9715 statement in where-body-construct of a WHERE construct */
9716 cnext = cblock->next;
9717 while (cnext)
9719 switch (cnext->op)
9721 /* WHERE assignment statement */
9722 case EXEC_ASSIGN:
9724 /* Check shape consistent for WHERE assignment target. */
9725 if (e && !resolve_where_shape (cnext->expr1, e))
9726 gfc_error ("WHERE assignment target at %L has "
9727 "inconsistent shape", &cnext->expr1->where);
9728 break;
9731 case EXEC_ASSIGN_CALL:
9732 resolve_call (cnext);
9733 if (!cnext->resolved_sym->attr.elemental)
9734 gfc_error("Non-ELEMENTAL user-defined assignment in WHERE at %L",
9735 &cnext->ext.actual->expr->where);
9736 break;
9738 /* WHERE or WHERE construct is part of a where-body-construct */
9739 case EXEC_WHERE:
9740 resolve_where (cnext, e);
9741 break;
9743 default:
9744 gfc_error ("Unsupported statement inside WHERE at %L",
9745 &cnext->loc);
9747 /* the next statement within the same where-body-construct */
9748 cnext = cnext->next;
9750 /* the next masked-elsewhere-stmt, elsewhere-stmt, or end-where-stmt */
9751 cblock = cblock->block;
9756 /* Resolve assignment in FORALL construct.
9757 NVAR is the number of FORALL index variables, and VAR_EXPR records the
9758 FORALL index variables. */
9760 static void
9761 gfc_resolve_assign_in_forall (gfc_code *code, int nvar, gfc_expr **var_expr)
9763 int n;
9765 for (n = 0; n < nvar; n++)
9767 gfc_symbol *forall_index;
9769 forall_index = var_expr[n]->symtree->n.sym;
9771 /* Check whether the assignment target is one of the FORALL index
9772 variable. */
9773 if ((code->expr1->expr_type == EXPR_VARIABLE)
9774 && (code->expr1->symtree->n.sym == forall_index))
9775 gfc_error ("Assignment to a FORALL index variable at %L",
9776 &code->expr1->where);
9777 else
9779 /* If one of the FORALL index variables doesn't appear in the
9780 assignment variable, then there could be a many-to-one
9781 assignment. Emit a warning rather than an error because the
9782 mask could be resolving this problem. */
9783 if (!find_forall_index (code->expr1, forall_index, 0))
9784 gfc_warning (0, "The FORALL with index %qs is not used on the "
9785 "left side of the assignment at %L and so might "
9786 "cause multiple assignment to this object",
9787 var_expr[n]->symtree->name, &code->expr1->where);
9793 /* Resolve WHERE statement in FORALL construct. */
9795 static void
9796 gfc_resolve_where_code_in_forall (gfc_code *code, int nvar,
9797 gfc_expr **var_expr)
9799 gfc_code *cblock;
9800 gfc_code *cnext;
9802 cblock = code->block;
9803 while (cblock)
9805 /* the assignment statement of a WHERE statement, or the first
9806 statement in where-body-construct of a WHERE construct */
9807 cnext = cblock->next;
9808 while (cnext)
9810 switch (cnext->op)
9812 /* WHERE assignment statement */
9813 case EXEC_ASSIGN:
9814 gfc_resolve_assign_in_forall (cnext, nvar, var_expr);
9815 break;
9817 /* WHERE operator assignment statement */
9818 case EXEC_ASSIGN_CALL:
9819 resolve_call (cnext);
9820 if (!cnext->resolved_sym->attr.elemental)
9821 gfc_error("Non-ELEMENTAL user-defined assignment in WHERE at %L",
9822 &cnext->ext.actual->expr->where);
9823 break;
9825 /* WHERE or WHERE construct is part of a where-body-construct */
9826 case EXEC_WHERE:
9827 gfc_resolve_where_code_in_forall (cnext, nvar, var_expr);
9828 break;
9830 default:
9831 gfc_error ("Unsupported statement inside WHERE at %L",
9832 &cnext->loc);
9834 /* the next statement within the same where-body-construct */
9835 cnext = cnext->next;
9837 /* the next masked-elsewhere-stmt, elsewhere-stmt, or end-where-stmt */
9838 cblock = cblock->block;
9843 /* Traverse the FORALL body to check whether the following errors exist:
9844 1. For assignment, check if a many-to-one assignment happens.
9845 2. For WHERE statement, check the WHERE body to see if there is any
9846 many-to-one assignment. */
9848 static void
9849 gfc_resolve_forall_body (gfc_code *code, int nvar, gfc_expr **var_expr)
9851 gfc_code *c;
9853 c = code->block->next;
9854 while (c)
9856 switch (c->op)
9858 case EXEC_ASSIGN:
9859 case EXEC_POINTER_ASSIGN:
9860 gfc_resolve_assign_in_forall (c, nvar, var_expr);
9861 break;
9863 case EXEC_ASSIGN_CALL:
9864 resolve_call (c);
9865 break;
9867 /* Because the gfc_resolve_blocks() will handle the nested FORALL,
9868 there is no need to handle it here. */
9869 case EXEC_FORALL:
9870 break;
9871 case EXEC_WHERE:
9872 gfc_resolve_where_code_in_forall(c, nvar, var_expr);
9873 break;
9874 default:
9875 break;
9877 /* The next statement in the FORALL body. */
9878 c = c->next;
9883 /* Counts the number of iterators needed inside a forall construct, including
9884 nested forall constructs. This is used to allocate the needed memory
9885 in gfc_resolve_forall. */
9887 static int
9888 gfc_count_forall_iterators (gfc_code *code)
9890 int max_iters, sub_iters, current_iters;
9891 gfc_forall_iterator *fa;
9893 gcc_assert(code->op == EXEC_FORALL);
9894 max_iters = 0;
9895 current_iters = 0;
9897 for (fa = code->ext.forall_iterator; fa; fa = fa->next)
9898 current_iters ++;
9900 code = code->block->next;
9902 while (code)
9904 if (code->op == EXEC_FORALL)
9906 sub_iters = gfc_count_forall_iterators (code);
9907 if (sub_iters > max_iters)
9908 max_iters = sub_iters;
9910 code = code->next;
9913 return current_iters + max_iters;
9917 /* Given a FORALL construct, first resolve the FORALL iterator, then call
9918 gfc_resolve_forall_body to resolve the FORALL body. */
9920 static void
9921 gfc_resolve_forall (gfc_code *code, gfc_namespace *ns, int forall_save)
9923 static gfc_expr **var_expr;
9924 static int total_var = 0;
9925 static int nvar = 0;
9926 int i, old_nvar, tmp;
9927 gfc_forall_iterator *fa;
9929 old_nvar = nvar;
9931 /* Start to resolve a FORALL construct */
9932 if (forall_save == 0)
9934 /* Count the total number of FORALL indices in the nested FORALL
9935 construct in order to allocate the VAR_EXPR with proper size. */
9936 total_var = gfc_count_forall_iterators (code);
9938 /* Allocate VAR_EXPR with NUMBER_OF_FORALL_INDEX elements. */
9939 var_expr = XCNEWVEC (gfc_expr *, total_var);
9942 /* The information about FORALL iterator, including FORALL indices start, end
9943 and stride. An outer FORALL indice cannot appear in start, end or stride. */
9944 for (fa = code->ext.forall_iterator; fa; fa = fa->next)
9946 /* Fortran 20008: C738 (R753). */
9947 if (fa->var->ref && fa->var->ref->type == REF_ARRAY)
9949 gfc_error ("FORALL index-name at %L must be a scalar variable "
9950 "of type integer", &fa->var->where);
9951 continue;
9954 /* Check if any outer FORALL index name is the same as the current
9955 one. */
9956 for (i = 0; i < nvar; i++)
9958 if (fa->var->symtree->n.sym == var_expr[i]->symtree->n.sym)
9959 gfc_error ("An outer FORALL construct already has an index "
9960 "with this name %L", &fa->var->where);
9963 /* Record the current FORALL index. */
9964 var_expr[nvar] = gfc_copy_expr (fa->var);
9966 nvar++;
9968 /* No memory leak. */
9969 gcc_assert (nvar <= total_var);
9972 /* Resolve the FORALL body. */
9973 gfc_resolve_forall_body (code, nvar, var_expr);
9975 /* May call gfc_resolve_forall to resolve the inner FORALL loop. */
9976 gfc_resolve_blocks (code->block, ns);
9978 tmp = nvar;
9979 nvar = old_nvar;
9980 /* Free only the VAR_EXPRs allocated in this frame. */
9981 for (i = nvar; i < tmp; i++)
9982 gfc_free_expr (var_expr[i]);
9984 if (nvar == 0)
9986 /* We are in the outermost FORALL construct. */
9987 gcc_assert (forall_save == 0);
9989 /* VAR_EXPR is not needed any more. */
9990 free (var_expr);
9991 total_var = 0;
9996 /* Resolve a BLOCK construct statement. */
9998 static void
9999 resolve_block_construct (gfc_code* code)
10001 /* Resolve the BLOCK's namespace. */
10002 gfc_resolve (code->ext.block.ns);
10004 /* For an ASSOCIATE block, the associations (and their targets) are already
10005 resolved during resolve_symbol. */
10009 /* Resolve lists of blocks found in IF, SELECT CASE, WHERE, FORALL, GOTO and
10010 DO code nodes. */
10012 void
10013 gfc_resolve_blocks (gfc_code *b, gfc_namespace *ns)
10015 bool t;
10017 for (; b; b = b->block)
10019 t = gfc_resolve_expr (b->expr1);
10020 if (!gfc_resolve_expr (b->expr2))
10021 t = false;
10023 switch (b->op)
10025 case EXEC_IF:
10026 if (t && b->expr1 != NULL
10027 && (b->expr1->ts.type != BT_LOGICAL || b->expr1->rank != 0))
10028 gfc_error ("IF clause at %L requires a scalar LOGICAL expression",
10029 &b->expr1->where);
10030 break;
10032 case EXEC_WHERE:
10033 if (t
10034 && b->expr1 != NULL
10035 && (b->expr1->ts.type != BT_LOGICAL || b->expr1->rank == 0))
10036 gfc_error ("WHERE/ELSEWHERE clause at %L requires a LOGICAL array",
10037 &b->expr1->where);
10038 break;
10040 case EXEC_GOTO:
10041 resolve_branch (b->label1, b);
10042 break;
10044 case EXEC_BLOCK:
10045 resolve_block_construct (b);
10046 break;
10048 case EXEC_SELECT:
10049 case EXEC_SELECT_TYPE:
10050 case EXEC_FORALL:
10051 case EXEC_DO:
10052 case EXEC_DO_WHILE:
10053 case EXEC_DO_CONCURRENT:
10054 case EXEC_CRITICAL:
10055 case EXEC_READ:
10056 case EXEC_WRITE:
10057 case EXEC_IOLENGTH:
10058 case EXEC_WAIT:
10059 break;
10061 case EXEC_OMP_ATOMIC:
10062 case EXEC_OACC_ATOMIC:
10064 gfc_omp_atomic_op aop
10065 = (gfc_omp_atomic_op) (b->ext.omp_atomic & GFC_OMP_ATOMIC_MASK);
10067 /* Verify this before calling gfc_resolve_code, which might
10068 change it. */
10069 gcc_assert (b->next && b->next->op == EXEC_ASSIGN);
10070 gcc_assert (((aop != GFC_OMP_ATOMIC_CAPTURE)
10071 && b->next->next == NULL)
10072 || ((aop == GFC_OMP_ATOMIC_CAPTURE)
10073 && b->next->next != NULL
10074 && b->next->next->op == EXEC_ASSIGN
10075 && b->next->next->next == NULL));
10077 break;
10079 case EXEC_OACC_PARALLEL_LOOP:
10080 case EXEC_OACC_PARALLEL:
10081 case EXEC_OACC_KERNELS_LOOP:
10082 case EXEC_OACC_KERNELS:
10083 case EXEC_OACC_DATA:
10084 case EXEC_OACC_HOST_DATA:
10085 case EXEC_OACC_LOOP:
10086 case EXEC_OACC_UPDATE:
10087 case EXEC_OACC_WAIT:
10088 case EXEC_OACC_CACHE:
10089 case EXEC_OACC_ENTER_DATA:
10090 case EXEC_OACC_EXIT_DATA:
10091 case EXEC_OACC_ROUTINE:
10092 case EXEC_OMP_CRITICAL:
10093 case EXEC_OMP_DISTRIBUTE:
10094 case EXEC_OMP_DISTRIBUTE_PARALLEL_DO:
10095 case EXEC_OMP_DISTRIBUTE_PARALLEL_DO_SIMD:
10096 case EXEC_OMP_DISTRIBUTE_SIMD:
10097 case EXEC_OMP_DO:
10098 case EXEC_OMP_DO_SIMD:
10099 case EXEC_OMP_MASTER:
10100 case EXEC_OMP_ORDERED:
10101 case EXEC_OMP_PARALLEL:
10102 case EXEC_OMP_PARALLEL_DO:
10103 case EXEC_OMP_PARALLEL_DO_SIMD:
10104 case EXEC_OMP_PARALLEL_SECTIONS:
10105 case EXEC_OMP_PARALLEL_WORKSHARE:
10106 case EXEC_OMP_SECTIONS:
10107 case EXEC_OMP_SIMD:
10108 case EXEC_OMP_SINGLE:
10109 case EXEC_OMP_TARGET:
10110 case EXEC_OMP_TARGET_DATA:
10111 case EXEC_OMP_TARGET_ENTER_DATA:
10112 case EXEC_OMP_TARGET_EXIT_DATA:
10113 case EXEC_OMP_TARGET_PARALLEL:
10114 case EXEC_OMP_TARGET_PARALLEL_DO:
10115 case EXEC_OMP_TARGET_PARALLEL_DO_SIMD:
10116 case EXEC_OMP_TARGET_SIMD:
10117 case EXEC_OMP_TARGET_TEAMS:
10118 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE:
10119 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO:
10120 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
10121 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_SIMD:
10122 case EXEC_OMP_TARGET_UPDATE:
10123 case EXEC_OMP_TASK:
10124 case EXEC_OMP_TASKGROUP:
10125 case EXEC_OMP_TASKLOOP:
10126 case EXEC_OMP_TASKLOOP_SIMD:
10127 case EXEC_OMP_TASKWAIT:
10128 case EXEC_OMP_TASKYIELD:
10129 case EXEC_OMP_TEAMS:
10130 case EXEC_OMP_TEAMS_DISTRIBUTE:
10131 case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO:
10132 case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
10133 case EXEC_OMP_TEAMS_DISTRIBUTE_SIMD:
10134 case EXEC_OMP_WORKSHARE:
10135 break;
10137 default:
10138 gfc_internal_error ("gfc_resolve_blocks(): Bad block type");
10141 gfc_resolve_code (b->next, ns);
10146 /* Does everything to resolve an ordinary assignment. Returns true
10147 if this is an interface assignment. */
10148 static bool
10149 resolve_ordinary_assign (gfc_code *code, gfc_namespace *ns)
10151 bool rval = false;
10152 gfc_expr *lhs;
10153 gfc_expr *rhs;
10154 int n;
10155 gfc_ref *ref;
10156 symbol_attribute attr;
10158 if (gfc_extend_assign (code, ns))
10160 gfc_expr** rhsptr;
10162 if (code->op == EXEC_ASSIGN_CALL)
10164 lhs = code->ext.actual->expr;
10165 rhsptr = &code->ext.actual->next->expr;
10167 else
10169 gfc_actual_arglist* args;
10170 gfc_typebound_proc* tbp;
10172 gcc_assert (code->op == EXEC_COMPCALL);
10174 args = code->expr1->value.compcall.actual;
10175 lhs = args->expr;
10176 rhsptr = &args->next->expr;
10178 tbp = code->expr1->value.compcall.tbp;
10179 gcc_assert (!tbp->is_generic);
10182 /* Make a temporary rhs when there is a default initializer
10183 and rhs is the same symbol as the lhs. */
10184 if ((*rhsptr)->expr_type == EXPR_VARIABLE
10185 && (*rhsptr)->symtree->n.sym->ts.type == BT_DERIVED
10186 && gfc_has_default_initializer ((*rhsptr)->symtree->n.sym->ts.u.derived)
10187 && (lhs->symtree->n.sym == (*rhsptr)->symtree->n.sym))
10188 *rhsptr = gfc_get_parentheses (*rhsptr);
10190 return true;
10193 lhs = code->expr1;
10194 rhs = code->expr2;
10196 if (rhs->is_boz
10197 && !gfc_notify_std (GFC_STD_GNU, "BOZ literal at %L outside "
10198 "a DATA statement and outside INT/REAL/DBLE/CMPLX",
10199 &code->loc))
10200 return false;
10202 /* Handle the case of a BOZ literal on the RHS. */
10203 if (rhs->is_boz && lhs->ts.type != BT_INTEGER)
10205 int rc;
10206 if (warn_surprising)
10207 gfc_warning (OPT_Wsurprising,
10208 "BOZ literal at %L is bitwise transferred "
10209 "non-integer symbol %qs", &code->loc,
10210 lhs->symtree->n.sym->name);
10212 if (!gfc_convert_boz (rhs, &lhs->ts))
10213 return false;
10214 if ((rc = gfc_range_check (rhs)) != ARITH_OK)
10216 if (rc == ARITH_UNDERFLOW)
10217 gfc_error ("Arithmetic underflow of bit-wise transferred BOZ at %L"
10218 ". This check can be disabled with the option "
10219 "%<-fno-range-check%>", &rhs->where);
10220 else if (rc == ARITH_OVERFLOW)
10221 gfc_error ("Arithmetic overflow of bit-wise transferred BOZ at %L"
10222 ". This check can be disabled with the option "
10223 "%<-fno-range-check%>", &rhs->where);
10224 else if (rc == ARITH_NAN)
10225 gfc_error ("Arithmetic NaN of bit-wise transferred BOZ at %L"
10226 ". This check can be disabled with the option "
10227 "%<-fno-range-check%>", &rhs->where);
10228 return false;
10232 if (lhs->ts.type == BT_CHARACTER
10233 && warn_character_truncation)
10235 HOST_WIDE_INT llen = 0, rlen = 0;
10236 if (lhs->ts.u.cl != NULL
10237 && lhs->ts.u.cl->length != NULL
10238 && lhs->ts.u.cl->length->expr_type == EXPR_CONSTANT)
10239 llen = gfc_mpz_get_hwi (lhs->ts.u.cl->length->value.integer);
10241 if (rhs->expr_type == EXPR_CONSTANT)
10242 rlen = rhs->value.character.length;
10244 else if (rhs->ts.u.cl != NULL
10245 && rhs->ts.u.cl->length != NULL
10246 && rhs->ts.u.cl->length->expr_type == EXPR_CONSTANT)
10247 rlen = gfc_mpz_get_hwi (rhs->ts.u.cl->length->value.integer);
10249 if (rlen && llen && rlen > llen)
10250 gfc_warning_now (OPT_Wcharacter_truncation,
10251 "CHARACTER expression will be truncated "
10252 "in assignment (%ld/%ld) at %L",
10253 (long) llen, (long) rlen, &code->loc);
10256 /* Ensure that a vector index expression for the lvalue is evaluated
10257 to a temporary if the lvalue symbol is referenced in it. */
10258 if (lhs->rank)
10260 for (ref = lhs->ref; ref; ref= ref->next)
10261 if (ref->type == REF_ARRAY)
10263 for (n = 0; n < ref->u.ar.dimen; n++)
10264 if (ref->u.ar.dimen_type[n] == DIMEN_VECTOR
10265 && gfc_find_sym_in_expr (lhs->symtree->n.sym,
10266 ref->u.ar.start[n]))
10267 ref->u.ar.start[n]
10268 = gfc_get_parentheses (ref->u.ar.start[n]);
10272 if (gfc_pure (NULL))
10274 if (lhs->ts.type == BT_DERIVED
10275 && lhs->expr_type == EXPR_VARIABLE
10276 && lhs->ts.u.derived->attr.pointer_comp
10277 && rhs->expr_type == EXPR_VARIABLE
10278 && (gfc_impure_variable (rhs->symtree->n.sym)
10279 || gfc_is_coindexed (rhs)))
10281 /* F2008, C1283. */
10282 if (gfc_is_coindexed (rhs))
10283 gfc_error ("Coindexed expression at %L is assigned to "
10284 "a derived type variable with a POINTER "
10285 "component in a PURE procedure",
10286 &rhs->where);
10287 else
10288 gfc_error ("The impure variable at %L is assigned to "
10289 "a derived type variable with a POINTER "
10290 "component in a PURE procedure (12.6)",
10291 &rhs->where);
10292 return rval;
10295 /* Fortran 2008, C1283. */
10296 if (gfc_is_coindexed (lhs))
10298 gfc_error ("Assignment to coindexed variable at %L in a PURE "
10299 "procedure", &rhs->where);
10300 return rval;
10304 if (gfc_implicit_pure (NULL))
10306 if (lhs->expr_type == EXPR_VARIABLE
10307 && lhs->symtree->n.sym != gfc_current_ns->proc_name
10308 && lhs->symtree->n.sym->ns != gfc_current_ns)
10309 gfc_unset_implicit_pure (NULL);
10311 if (lhs->ts.type == BT_DERIVED
10312 && lhs->expr_type == EXPR_VARIABLE
10313 && lhs->ts.u.derived->attr.pointer_comp
10314 && rhs->expr_type == EXPR_VARIABLE
10315 && (gfc_impure_variable (rhs->symtree->n.sym)
10316 || gfc_is_coindexed (rhs)))
10317 gfc_unset_implicit_pure (NULL);
10319 /* Fortran 2008, C1283. */
10320 if (gfc_is_coindexed (lhs))
10321 gfc_unset_implicit_pure (NULL);
10324 /* F2008, 7.2.1.2. */
10325 attr = gfc_expr_attr (lhs);
10326 if (lhs->ts.type == BT_CLASS && attr.allocatable)
10328 if (attr.codimension)
10330 gfc_error ("Assignment to polymorphic coarray at %L is not "
10331 "permitted", &lhs->where);
10332 return false;
10334 if (!gfc_notify_std (GFC_STD_F2008, "Assignment to an allocatable "
10335 "polymorphic variable at %L", &lhs->where))
10336 return false;
10337 if (!flag_realloc_lhs)
10339 gfc_error ("Assignment to an allocatable polymorphic variable at %L "
10340 "requires %<-frealloc-lhs%>", &lhs->where);
10341 return false;
10344 else if (lhs->ts.type == BT_CLASS)
10346 gfc_error ("Nonallocatable variable must not be polymorphic in intrinsic "
10347 "assignment at %L - check that there is a matching specific "
10348 "subroutine for '=' operator", &lhs->where);
10349 return false;
10352 bool lhs_coindexed = gfc_is_coindexed (lhs);
10354 /* F2008, Section 7.2.1.2. */
10355 if (lhs_coindexed && gfc_has_ultimate_allocatable (lhs))
10357 gfc_error ("Coindexed variable must not have an allocatable ultimate "
10358 "component in assignment at %L", &lhs->where);
10359 return false;
10362 /* Assign the 'data' of a class object to a derived type. */
10363 if (lhs->ts.type == BT_DERIVED
10364 && rhs->ts.type == BT_CLASS
10365 && rhs->expr_type != EXPR_ARRAY)
10366 gfc_add_data_component (rhs);
10368 bool caf_convert_to_send = flag_coarray == GFC_FCOARRAY_LIB
10369 && (lhs_coindexed
10370 || (code->expr2->expr_type == EXPR_FUNCTION
10371 && code->expr2->value.function.isym
10372 && code->expr2->value.function.isym->id == GFC_ISYM_CAF_GET
10373 && (code->expr1->rank == 0 || code->expr2->rank != 0)
10374 && !gfc_expr_attr (rhs).allocatable
10375 && !gfc_has_vector_subscript (rhs)));
10377 gfc_check_assign (lhs, rhs, 1, !caf_convert_to_send);
10379 /* Insert a GFC_ISYM_CAF_SEND intrinsic, when the LHS is a coindexed variable.
10380 Additionally, insert this code when the RHS is a CAF as we then use the
10381 GFC_ISYM_CAF_SEND intrinsic just to avoid a temporary; but do not do so if
10382 the LHS is (re)allocatable or has a vector subscript. If the LHS is a
10383 noncoindexed array and the RHS is a coindexed scalar, use the normal code
10384 path. */
10385 if (caf_convert_to_send)
10387 if (code->expr2->expr_type == EXPR_FUNCTION
10388 && code->expr2->value.function.isym
10389 && code->expr2->value.function.isym->id == GFC_ISYM_CAF_GET)
10390 remove_caf_get_intrinsic (code->expr2);
10391 code->op = EXEC_CALL;
10392 gfc_get_sym_tree (GFC_PREFIX ("caf_send"), ns, &code->symtree, true);
10393 code->resolved_sym = code->symtree->n.sym;
10394 code->resolved_sym->attr.flavor = FL_PROCEDURE;
10395 code->resolved_sym->attr.intrinsic = 1;
10396 code->resolved_sym->attr.subroutine = 1;
10397 code->resolved_isym = gfc_intrinsic_subroutine_by_id (GFC_ISYM_CAF_SEND);
10398 gfc_commit_symbol (code->resolved_sym);
10399 code->ext.actual = gfc_get_actual_arglist ();
10400 code->ext.actual->expr = lhs;
10401 code->ext.actual->next = gfc_get_actual_arglist ();
10402 code->ext.actual->next->expr = rhs;
10403 code->expr1 = NULL;
10404 code->expr2 = NULL;
10407 return false;
10411 /* Add a component reference onto an expression. */
10413 static void
10414 add_comp_ref (gfc_expr *e, gfc_component *c)
10416 gfc_ref **ref;
10417 ref = &(e->ref);
10418 while (*ref)
10419 ref = &((*ref)->next);
10420 *ref = gfc_get_ref ();
10421 (*ref)->type = REF_COMPONENT;
10422 (*ref)->u.c.sym = e->ts.u.derived;
10423 (*ref)->u.c.component = c;
10424 e->ts = c->ts;
10426 /* Add a full array ref, as necessary. */
10427 if (c->as)
10429 gfc_add_full_array_ref (e, c->as);
10430 e->rank = c->as->rank;
10435 /* Build an assignment. Keep the argument 'op' for future use, so that
10436 pointer assignments can be made. */
10438 static gfc_code *
10439 build_assignment (gfc_exec_op op, gfc_expr *expr1, gfc_expr *expr2,
10440 gfc_component *comp1, gfc_component *comp2, locus loc)
10442 gfc_code *this_code;
10444 this_code = gfc_get_code (op);
10445 this_code->next = NULL;
10446 this_code->expr1 = gfc_copy_expr (expr1);
10447 this_code->expr2 = gfc_copy_expr (expr2);
10448 this_code->loc = loc;
10449 if (comp1 && comp2)
10451 add_comp_ref (this_code->expr1, comp1);
10452 add_comp_ref (this_code->expr2, comp2);
10455 return this_code;
10459 /* Makes a temporary variable expression based on the characteristics of
10460 a given variable expression. */
10462 static gfc_expr*
10463 get_temp_from_expr (gfc_expr *e, gfc_namespace *ns)
10465 static int serial = 0;
10466 char name[GFC_MAX_SYMBOL_LEN];
10467 gfc_symtree *tmp;
10468 gfc_array_spec *as;
10469 gfc_array_ref *aref;
10470 gfc_ref *ref;
10472 sprintf (name, GFC_PREFIX("DA%d"), serial++);
10473 gfc_get_sym_tree (name, ns, &tmp, false);
10474 gfc_add_type (tmp->n.sym, &e->ts, NULL);
10476 as = NULL;
10477 ref = NULL;
10478 aref = NULL;
10480 /* Obtain the arrayspec for the temporary. */
10481 if (e->rank && e->expr_type != EXPR_ARRAY
10482 && e->expr_type != EXPR_FUNCTION
10483 && e->expr_type != EXPR_OP)
10485 aref = gfc_find_array_ref (e);
10486 if (e->expr_type == EXPR_VARIABLE
10487 && e->symtree->n.sym->as == aref->as)
10488 as = aref->as;
10489 else
10491 for (ref = e->ref; ref; ref = ref->next)
10492 if (ref->type == REF_COMPONENT
10493 && ref->u.c.component->as == aref->as)
10495 as = aref->as;
10496 break;
10501 /* Add the attributes and the arrayspec to the temporary. */
10502 tmp->n.sym->attr = gfc_expr_attr (e);
10503 tmp->n.sym->attr.function = 0;
10504 tmp->n.sym->attr.result = 0;
10505 tmp->n.sym->attr.flavor = FL_VARIABLE;
10506 tmp->n.sym->attr.dummy = 0;
10507 tmp->n.sym->attr.intent = INTENT_UNKNOWN;
10509 if (as)
10511 tmp->n.sym->as = gfc_copy_array_spec (as);
10512 if (!ref)
10513 ref = e->ref;
10514 if (as->type == AS_DEFERRED)
10515 tmp->n.sym->attr.allocatable = 1;
10517 else if (e->rank && (e->expr_type == EXPR_ARRAY
10518 || e->expr_type == EXPR_FUNCTION
10519 || e->expr_type == EXPR_OP))
10521 tmp->n.sym->as = gfc_get_array_spec ();
10522 tmp->n.sym->as->type = AS_DEFERRED;
10523 tmp->n.sym->as->rank = e->rank;
10524 tmp->n.sym->attr.allocatable = 1;
10525 tmp->n.sym->attr.dimension = 1;
10527 else
10528 tmp->n.sym->attr.dimension = 0;
10530 gfc_set_sym_referenced (tmp->n.sym);
10531 gfc_commit_symbol (tmp->n.sym);
10532 e = gfc_lval_expr_from_sym (tmp->n.sym);
10534 /* Should the lhs be a section, use its array ref for the
10535 temporary expression. */
10536 if (aref && aref->type != AR_FULL)
10538 gfc_free_ref_list (e->ref);
10539 e->ref = gfc_copy_ref (ref);
10541 return e;
10545 /* Add one line of code to the code chain, making sure that 'head' and
10546 'tail' are appropriately updated. */
10548 static void
10549 add_code_to_chain (gfc_code **this_code, gfc_code **head, gfc_code **tail)
10551 gcc_assert (this_code);
10552 if (*head == NULL)
10553 *head = *tail = *this_code;
10554 else
10555 *tail = gfc_append_code (*tail, *this_code);
10556 *this_code = NULL;
10560 /* Counts the potential number of part array references that would
10561 result from resolution of typebound defined assignments. */
10563 static int
10564 nonscalar_typebound_assign (gfc_symbol *derived, int depth)
10566 gfc_component *c;
10567 int c_depth = 0, t_depth;
10569 for (c= derived->components; c; c = c->next)
10571 if ((!gfc_bt_struct (c->ts.type)
10572 || c->attr.pointer
10573 || c->attr.allocatable
10574 || c->attr.proc_pointer_comp
10575 || c->attr.class_pointer
10576 || c->attr.proc_pointer)
10577 && !c->attr.defined_assign_comp)
10578 continue;
10580 if (c->as && c_depth == 0)
10581 c_depth = 1;
10583 if (c->ts.u.derived->attr.defined_assign_comp)
10584 t_depth = nonscalar_typebound_assign (c->ts.u.derived,
10585 c->as ? 1 : 0);
10586 else
10587 t_depth = 0;
10589 c_depth = t_depth > c_depth ? t_depth : c_depth;
10591 return depth + c_depth;
10595 /* Implement 7.2.1.3 of the F08 standard:
10596 "An intrinsic assignment where the variable is of derived type is
10597 performed as if each component of the variable were assigned from the
10598 corresponding component of expr using pointer assignment (7.2.2) for
10599 each pointer component, defined assignment for each nonpointer
10600 nonallocatable component of a type that has a type-bound defined
10601 assignment consistent with the component, intrinsic assignment for
10602 each other nonpointer nonallocatable component, ..."
10604 The pointer assignments are taken care of by the intrinsic
10605 assignment of the structure itself. This function recursively adds
10606 defined assignments where required. The recursion is accomplished
10607 by calling gfc_resolve_code.
10609 When the lhs in a defined assignment has intent INOUT, we need a
10610 temporary for the lhs. In pseudo-code:
10612 ! Only call function lhs once.
10613 if (lhs is not a constant or an variable)
10614 temp_x = expr2
10615 expr2 => temp_x
10616 ! Do the intrinsic assignment
10617 expr1 = expr2
10618 ! Now do the defined assignments
10619 do over components with typebound defined assignment [%cmp]
10620 #if one component's assignment procedure is INOUT
10621 t1 = expr1
10622 #if expr2 non-variable
10623 temp_x = expr2
10624 expr2 => temp_x
10625 # endif
10626 expr1 = expr2
10627 # for each cmp
10628 t1%cmp {defined=} expr2%cmp
10629 expr1%cmp = t1%cmp
10630 #else
10631 expr1 = expr2
10633 # for each cmp
10634 expr1%cmp {defined=} expr2%cmp
10635 #endif
10638 /* The temporary assignments have to be put on top of the additional
10639 code to avoid the result being changed by the intrinsic assignment.
10641 static int component_assignment_level = 0;
10642 static gfc_code *tmp_head = NULL, *tmp_tail = NULL;
10644 static void
10645 generate_component_assignments (gfc_code **code, gfc_namespace *ns)
10647 gfc_component *comp1, *comp2;
10648 gfc_code *this_code = NULL, *head = NULL, *tail = NULL;
10649 gfc_expr *t1;
10650 int error_count, depth;
10652 gfc_get_errors (NULL, &error_count);
10654 /* Filter out continuing processing after an error. */
10655 if (error_count
10656 || (*code)->expr1->ts.type != BT_DERIVED
10657 || (*code)->expr2->ts.type != BT_DERIVED)
10658 return;
10660 /* TODO: Handle more than one part array reference in assignments. */
10661 depth = nonscalar_typebound_assign ((*code)->expr1->ts.u.derived,
10662 (*code)->expr1->rank ? 1 : 0);
10663 if (depth > 1)
10665 gfc_warning (0, "TODO: type-bound defined assignment(s) at %L not "
10666 "done because multiple part array references would "
10667 "occur in intermediate expressions.", &(*code)->loc);
10668 return;
10671 component_assignment_level++;
10673 /* Create a temporary so that functions get called only once. */
10674 if ((*code)->expr2->expr_type != EXPR_VARIABLE
10675 && (*code)->expr2->expr_type != EXPR_CONSTANT)
10677 gfc_expr *tmp_expr;
10679 /* Assign the rhs to the temporary. */
10680 tmp_expr = get_temp_from_expr ((*code)->expr1, ns);
10681 this_code = build_assignment (EXEC_ASSIGN,
10682 tmp_expr, (*code)->expr2,
10683 NULL, NULL, (*code)->loc);
10684 /* Add the code and substitute the rhs expression. */
10685 add_code_to_chain (&this_code, &tmp_head, &tmp_tail);
10686 gfc_free_expr ((*code)->expr2);
10687 (*code)->expr2 = tmp_expr;
10690 /* Do the intrinsic assignment. This is not needed if the lhs is one
10691 of the temporaries generated here, since the intrinsic assignment
10692 to the final result already does this. */
10693 if ((*code)->expr1->symtree->n.sym->name[2] != '@')
10695 this_code = build_assignment (EXEC_ASSIGN,
10696 (*code)->expr1, (*code)->expr2,
10697 NULL, NULL, (*code)->loc);
10698 add_code_to_chain (&this_code, &head, &tail);
10701 comp1 = (*code)->expr1->ts.u.derived->components;
10702 comp2 = (*code)->expr2->ts.u.derived->components;
10704 t1 = NULL;
10705 for (; comp1; comp1 = comp1->next, comp2 = comp2->next)
10707 bool inout = false;
10709 /* The intrinsic assignment does the right thing for pointers
10710 of all kinds and allocatable components. */
10711 if (!gfc_bt_struct (comp1->ts.type)
10712 || comp1->attr.pointer
10713 || comp1->attr.allocatable
10714 || comp1->attr.proc_pointer_comp
10715 || comp1->attr.class_pointer
10716 || comp1->attr.proc_pointer)
10717 continue;
10719 /* Make an assigment for this component. */
10720 this_code = build_assignment (EXEC_ASSIGN,
10721 (*code)->expr1, (*code)->expr2,
10722 comp1, comp2, (*code)->loc);
10724 /* Convert the assignment if there is a defined assignment for
10725 this type. Otherwise, using the call from gfc_resolve_code,
10726 recurse into its components. */
10727 gfc_resolve_code (this_code, ns);
10729 if (this_code->op == EXEC_ASSIGN_CALL)
10731 gfc_formal_arglist *dummy_args;
10732 gfc_symbol *rsym;
10733 /* Check that there is a typebound defined assignment. If not,
10734 then this must be a module defined assignment. We cannot
10735 use the defined_assign_comp attribute here because it must
10736 be this derived type that has the defined assignment and not
10737 a parent type. */
10738 if (!(comp1->ts.u.derived->f2k_derived
10739 && comp1->ts.u.derived->f2k_derived
10740 ->tb_op[INTRINSIC_ASSIGN]))
10742 gfc_free_statements (this_code);
10743 this_code = NULL;
10744 continue;
10747 /* If the first argument of the subroutine has intent INOUT
10748 a temporary must be generated and used instead. */
10749 rsym = this_code->resolved_sym;
10750 dummy_args = gfc_sym_get_dummy_args (rsym);
10751 if (dummy_args
10752 && dummy_args->sym->attr.intent == INTENT_INOUT)
10754 gfc_code *temp_code;
10755 inout = true;
10757 /* Build the temporary required for the assignment and put
10758 it at the head of the generated code. */
10759 if (!t1)
10761 t1 = get_temp_from_expr ((*code)->expr1, ns);
10762 temp_code = build_assignment (EXEC_ASSIGN,
10763 t1, (*code)->expr1,
10764 NULL, NULL, (*code)->loc);
10766 /* For allocatable LHS, check whether it is allocated. Note
10767 that allocatable components with defined assignment are
10768 not yet support. See PR 57696. */
10769 if ((*code)->expr1->symtree->n.sym->attr.allocatable)
10771 gfc_code *block;
10772 gfc_expr *e =
10773 gfc_lval_expr_from_sym ((*code)->expr1->symtree->n.sym);
10774 block = gfc_get_code (EXEC_IF);
10775 block->block = gfc_get_code (EXEC_IF);
10776 block->block->expr1
10777 = gfc_build_intrinsic_call (ns,
10778 GFC_ISYM_ALLOCATED, "allocated",
10779 (*code)->loc, 1, e);
10780 block->block->next = temp_code;
10781 temp_code = block;
10783 add_code_to_chain (&temp_code, &tmp_head, &tmp_tail);
10786 /* Replace the first actual arg with the component of the
10787 temporary. */
10788 gfc_free_expr (this_code->ext.actual->expr);
10789 this_code->ext.actual->expr = gfc_copy_expr (t1);
10790 add_comp_ref (this_code->ext.actual->expr, comp1);
10792 /* If the LHS variable is allocatable and wasn't allocated and
10793 the temporary is allocatable, pointer assign the address of
10794 the freshly allocated LHS to the temporary. */
10795 if ((*code)->expr1->symtree->n.sym->attr.allocatable
10796 && gfc_expr_attr ((*code)->expr1).allocatable)
10798 gfc_code *block;
10799 gfc_expr *cond;
10801 cond = gfc_get_expr ();
10802 cond->ts.type = BT_LOGICAL;
10803 cond->ts.kind = gfc_default_logical_kind;
10804 cond->expr_type = EXPR_OP;
10805 cond->where = (*code)->loc;
10806 cond->value.op.op = INTRINSIC_NOT;
10807 cond->value.op.op1 = gfc_build_intrinsic_call (ns,
10808 GFC_ISYM_ALLOCATED, "allocated",
10809 (*code)->loc, 1, gfc_copy_expr (t1));
10810 block = gfc_get_code (EXEC_IF);
10811 block->block = gfc_get_code (EXEC_IF);
10812 block->block->expr1 = cond;
10813 block->block->next = build_assignment (EXEC_POINTER_ASSIGN,
10814 t1, (*code)->expr1,
10815 NULL, NULL, (*code)->loc);
10816 add_code_to_chain (&block, &head, &tail);
10820 else if (this_code->op == EXEC_ASSIGN && !this_code->next)
10822 /* Don't add intrinsic assignments since they are already
10823 effected by the intrinsic assignment of the structure. */
10824 gfc_free_statements (this_code);
10825 this_code = NULL;
10826 continue;
10829 add_code_to_chain (&this_code, &head, &tail);
10831 if (t1 && inout)
10833 /* Transfer the value to the final result. */
10834 this_code = build_assignment (EXEC_ASSIGN,
10835 (*code)->expr1, t1,
10836 comp1, comp2, (*code)->loc);
10837 add_code_to_chain (&this_code, &head, &tail);
10841 /* Put the temporary assignments at the top of the generated code. */
10842 if (tmp_head && component_assignment_level == 1)
10844 gfc_append_code (tmp_head, head);
10845 head = tmp_head;
10846 tmp_head = tmp_tail = NULL;
10849 // If we did a pointer assignment - thus, we need to ensure that the LHS is
10850 // not accidentally deallocated. Hence, nullify t1.
10851 if (t1 && (*code)->expr1->symtree->n.sym->attr.allocatable
10852 && gfc_expr_attr ((*code)->expr1).allocatable)
10854 gfc_code *block;
10855 gfc_expr *cond;
10856 gfc_expr *e;
10858 e = gfc_lval_expr_from_sym ((*code)->expr1->symtree->n.sym);
10859 cond = gfc_build_intrinsic_call (ns, GFC_ISYM_ASSOCIATED, "associated",
10860 (*code)->loc, 2, gfc_copy_expr (t1), e);
10861 block = gfc_get_code (EXEC_IF);
10862 block->block = gfc_get_code (EXEC_IF);
10863 block->block->expr1 = cond;
10864 block->block->next = build_assignment (EXEC_POINTER_ASSIGN,
10865 t1, gfc_get_null_expr (&(*code)->loc),
10866 NULL, NULL, (*code)->loc);
10867 gfc_append_code (tail, block);
10868 tail = block;
10871 /* Now attach the remaining code chain to the input code. Step on
10872 to the end of the new code since resolution is complete. */
10873 gcc_assert ((*code)->op == EXEC_ASSIGN);
10874 tail->next = (*code)->next;
10875 /* Overwrite 'code' because this would place the intrinsic assignment
10876 before the temporary for the lhs is created. */
10877 gfc_free_expr ((*code)->expr1);
10878 gfc_free_expr ((*code)->expr2);
10879 **code = *head;
10880 if (head != tail)
10881 free (head);
10882 *code = tail;
10884 component_assignment_level--;
10888 /* F2008: Pointer function assignments are of the form:
10889 ptr_fcn (args) = expr
10890 This function breaks these assignments into two statements:
10891 temporary_pointer => ptr_fcn(args)
10892 temporary_pointer = expr */
10894 static bool
10895 resolve_ptr_fcn_assign (gfc_code **code, gfc_namespace *ns)
10897 gfc_expr *tmp_ptr_expr;
10898 gfc_code *this_code;
10899 gfc_component *comp;
10900 gfc_symbol *s;
10902 if ((*code)->expr1->expr_type != EXPR_FUNCTION)
10903 return false;
10905 /* Even if standard does not support this feature, continue to build
10906 the two statements to avoid upsetting frontend_passes.c. */
10907 gfc_notify_std (GFC_STD_F2008, "Pointer procedure assignment at "
10908 "%L", &(*code)->loc);
10910 comp = gfc_get_proc_ptr_comp ((*code)->expr1);
10912 if (comp)
10913 s = comp->ts.interface;
10914 else
10915 s = (*code)->expr1->symtree->n.sym;
10917 if (s == NULL || !s->result->attr.pointer)
10919 gfc_error ("The function result on the lhs of the assignment at "
10920 "%L must have the pointer attribute.",
10921 &(*code)->expr1->where);
10922 (*code)->op = EXEC_NOP;
10923 return false;
10926 tmp_ptr_expr = get_temp_from_expr ((*code)->expr2, ns);
10928 /* get_temp_from_expression is set up for ordinary assignments. To that
10929 end, where array bounds are not known, arrays are made allocatable.
10930 Change the temporary to a pointer here. */
10931 tmp_ptr_expr->symtree->n.sym->attr.pointer = 1;
10932 tmp_ptr_expr->symtree->n.sym->attr.allocatable = 0;
10933 tmp_ptr_expr->where = (*code)->loc;
10935 this_code = build_assignment (EXEC_ASSIGN,
10936 tmp_ptr_expr, (*code)->expr2,
10937 NULL, NULL, (*code)->loc);
10938 this_code->next = (*code)->next;
10939 (*code)->next = this_code;
10940 (*code)->op = EXEC_POINTER_ASSIGN;
10941 (*code)->expr2 = (*code)->expr1;
10942 (*code)->expr1 = tmp_ptr_expr;
10944 return true;
10948 /* Deferred character length assignments from an operator expression
10949 require a temporary because the character length of the lhs can
10950 change in the course of the assignment. */
10952 static bool
10953 deferred_op_assign (gfc_code **code, gfc_namespace *ns)
10955 gfc_expr *tmp_expr;
10956 gfc_code *this_code;
10958 if (!((*code)->expr1->ts.type == BT_CHARACTER
10959 && (*code)->expr1->ts.deferred && (*code)->expr1->rank
10960 && (*code)->expr2->expr_type == EXPR_OP))
10961 return false;
10963 if (!gfc_check_dependency ((*code)->expr1, (*code)->expr2, 1))
10964 return false;
10966 tmp_expr = get_temp_from_expr ((*code)->expr1, ns);
10967 tmp_expr->where = (*code)->loc;
10969 /* A new charlen is required to ensure that the variable string
10970 length is different to that of the original lhs. */
10971 tmp_expr->ts.u.cl = gfc_get_charlen();
10972 tmp_expr->symtree->n.sym->ts.u.cl = tmp_expr->ts.u.cl;
10973 tmp_expr->ts.u.cl->next = (*code)->expr2->ts.u.cl->next;
10974 (*code)->expr2->ts.u.cl->next = tmp_expr->ts.u.cl;
10976 tmp_expr->symtree->n.sym->ts.deferred = 1;
10978 this_code = build_assignment (EXEC_ASSIGN,
10979 (*code)->expr1,
10980 gfc_copy_expr (tmp_expr),
10981 NULL, NULL, (*code)->loc);
10983 (*code)->expr1 = tmp_expr;
10985 this_code->next = (*code)->next;
10986 (*code)->next = this_code;
10988 return true;
10992 /* Given a block of code, recursively resolve everything pointed to by this
10993 code block. */
10995 void
10996 gfc_resolve_code (gfc_code *code, gfc_namespace *ns)
10998 int omp_workshare_save;
10999 int forall_save, do_concurrent_save;
11000 code_stack frame;
11001 bool t;
11003 frame.prev = cs_base;
11004 frame.head = code;
11005 cs_base = &frame;
11007 find_reachable_labels (code);
11009 for (; code; code = code->next)
11011 frame.current = code;
11012 forall_save = forall_flag;
11013 do_concurrent_save = gfc_do_concurrent_flag;
11015 if (code->op == EXEC_FORALL)
11017 forall_flag = 1;
11018 gfc_resolve_forall (code, ns, forall_save);
11019 forall_flag = 2;
11021 else if (code->block)
11023 omp_workshare_save = -1;
11024 switch (code->op)
11026 case EXEC_OACC_PARALLEL_LOOP:
11027 case EXEC_OACC_PARALLEL:
11028 case EXEC_OACC_KERNELS_LOOP:
11029 case EXEC_OACC_KERNELS:
11030 case EXEC_OACC_DATA:
11031 case EXEC_OACC_HOST_DATA:
11032 case EXEC_OACC_LOOP:
11033 gfc_resolve_oacc_blocks (code, ns);
11034 break;
11035 case EXEC_OMP_PARALLEL_WORKSHARE:
11036 omp_workshare_save = omp_workshare_flag;
11037 omp_workshare_flag = 1;
11038 gfc_resolve_omp_parallel_blocks (code, ns);
11039 break;
11040 case EXEC_OMP_PARALLEL:
11041 case EXEC_OMP_PARALLEL_DO:
11042 case EXEC_OMP_PARALLEL_DO_SIMD:
11043 case EXEC_OMP_PARALLEL_SECTIONS:
11044 case EXEC_OMP_TARGET_PARALLEL:
11045 case EXEC_OMP_TARGET_PARALLEL_DO:
11046 case EXEC_OMP_TARGET_PARALLEL_DO_SIMD:
11047 case EXEC_OMP_TARGET_TEAMS:
11048 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE:
11049 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO:
11050 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
11051 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_SIMD:
11052 case EXEC_OMP_TASK:
11053 case EXEC_OMP_TASKLOOP:
11054 case EXEC_OMP_TASKLOOP_SIMD:
11055 case EXEC_OMP_TEAMS:
11056 case EXEC_OMP_TEAMS_DISTRIBUTE:
11057 case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO:
11058 case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
11059 case EXEC_OMP_TEAMS_DISTRIBUTE_SIMD:
11060 omp_workshare_save = omp_workshare_flag;
11061 omp_workshare_flag = 0;
11062 gfc_resolve_omp_parallel_blocks (code, ns);
11063 break;
11064 case EXEC_OMP_DISTRIBUTE:
11065 case EXEC_OMP_DISTRIBUTE_SIMD:
11066 case EXEC_OMP_DO:
11067 case EXEC_OMP_DO_SIMD:
11068 case EXEC_OMP_SIMD:
11069 case EXEC_OMP_TARGET_SIMD:
11070 gfc_resolve_omp_do_blocks (code, ns);
11071 break;
11072 case EXEC_SELECT_TYPE:
11073 /* Blocks are handled in resolve_select_type because we have
11074 to transform the SELECT TYPE into ASSOCIATE first. */
11075 break;
11076 case EXEC_DO_CONCURRENT:
11077 gfc_do_concurrent_flag = 1;
11078 gfc_resolve_blocks (code->block, ns);
11079 gfc_do_concurrent_flag = 2;
11080 break;
11081 case EXEC_OMP_WORKSHARE:
11082 omp_workshare_save = omp_workshare_flag;
11083 omp_workshare_flag = 1;
11084 /* FALL THROUGH */
11085 default:
11086 gfc_resolve_blocks (code->block, ns);
11087 break;
11090 if (omp_workshare_save != -1)
11091 omp_workshare_flag = omp_workshare_save;
11093 start:
11094 t = true;
11095 if (code->op != EXEC_COMPCALL && code->op != EXEC_CALL_PPC)
11096 t = gfc_resolve_expr (code->expr1);
11097 forall_flag = forall_save;
11098 gfc_do_concurrent_flag = do_concurrent_save;
11100 if (!gfc_resolve_expr (code->expr2))
11101 t = false;
11103 if (code->op == EXEC_ALLOCATE
11104 && !gfc_resolve_expr (code->expr3))
11105 t = false;
11107 switch (code->op)
11109 case EXEC_NOP:
11110 case EXEC_END_BLOCK:
11111 case EXEC_END_NESTED_BLOCK:
11112 case EXEC_CYCLE:
11113 case EXEC_PAUSE:
11114 case EXEC_STOP:
11115 case EXEC_ERROR_STOP:
11116 case EXEC_EXIT:
11117 case EXEC_CONTINUE:
11118 case EXEC_DT_END:
11119 case EXEC_ASSIGN_CALL:
11120 break;
11122 case EXEC_CRITICAL:
11123 resolve_critical (code);
11124 break;
11126 case EXEC_SYNC_ALL:
11127 case EXEC_SYNC_IMAGES:
11128 case EXEC_SYNC_MEMORY:
11129 resolve_sync (code);
11130 break;
11132 case EXEC_LOCK:
11133 case EXEC_UNLOCK:
11134 case EXEC_EVENT_POST:
11135 case EXEC_EVENT_WAIT:
11136 resolve_lock_unlock_event (code);
11137 break;
11139 case EXEC_FAIL_IMAGE:
11140 case EXEC_FORM_TEAM:
11141 case EXEC_CHANGE_TEAM:
11142 case EXEC_END_TEAM:
11143 case EXEC_SYNC_TEAM:
11144 break;
11146 case EXEC_ENTRY:
11147 /* Keep track of which entry we are up to. */
11148 current_entry_id = code->ext.entry->id;
11149 break;
11151 case EXEC_WHERE:
11152 resolve_where (code, NULL);
11153 break;
11155 case EXEC_GOTO:
11156 if (code->expr1 != NULL)
11158 if (code->expr1->ts.type != BT_INTEGER)
11159 gfc_error ("ASSIGNED GOTO statement at %L requires an "
11160 "INTEGER variable", &code->expr1->where);
11161 else if (code->expr1->symtree->n.sym->attr.assign != 1)
11162 gfc_error ("Variable %qs has not been assigned a target "
11163 "label at %L", code->expr1->symtree->n.sym->name,
11164 &code->expr1->where);
11166 else
11167 resolve_branch (code->label1, code);
11168 break;
11170 case EXEC_RETURN:
11171 if (code->expr1 != NULL
11172 && (code->expr1->ts.type != BT_INTEGER || code->expr1->rank))
11173 gfc_error ("Alternate RETURN statement at %L requires a SCALAR-"
11174 "INTEGER return specifier", &code->expr1->where);
11175 break;
11177 case EXEC_INIT_ASSIGN:
11178 case EXEC_END_PROCEDURE:
11179 break;
11181 case EXEC_ASSIGN:
11182 if (!t)
11183 break;
11185 /* Remove a GFC_ISYM_CAF_GET inserted for a coindexed variable on
11186 the LHS. */
11187 if (code->expr1->expr_type == EXPR_FUNCTION
11188 && code->expr1->value.function.isym
11189 && code->expr1->value.function.isym->id == GFC_ISYM_CAF_GET)
11190 remove_caf_get_intrinsic (code->expr1);
11192 /* If this is a pointer function in an lvalue variable context,
11193 the new code will have to be resolved afresh. This is also the
11194 case with an error, where the code is transformed into NOP to
11195 prevent ICEs downstream. */
11196 if (resolve_ptr_fcn_assign (&code, ns)
11197 || code->op == EXEC_NOP)
11198 goto start;
11200 if (!gfc_check_vardef_context (code->expr1, false, false, false,
11201 _("assignment")))
11202 break;
11204 if (resolve_ordinary_assign (code, ns))
11206 if (code->op == EXEC_COMPCALL)
11207 goto compcall;
11208 else
11209 goto call;
11212 /* Check for dependencies in deferred character length array
11213 assignments and generate a temporary, if necessary. */
11214 if (code->op == EXEC_ASSIGN && deferred_op_assign (&code, ns))
11215 break;
11217 /* F03 7.4.1.3 for non-allocatable, non-pointer components. */
11218 if (code->op != EXEC_CALL && code->expr1->ts.type == BT_DERIVED
11219 && code->expr1->ts.u.derived
11220 && code->expr1->ts.u.derived->attr.defined_assign_comp)
11221 generate_component_assignments (&code, ns);
11223 break;
11225 case EXEC_LABEL_ASSIGN:
11226 if (code->label1->defined == ST_LABEL_UNKNOWN)
11227 gfc_error ("Label %d referenced at %L is never defined",
11228 code->label1->value, &code->label1->where);
11229 if (t
11230 && (code->expr1->expr_type != EXPR_VARIABLE
11231 || code->expr1->symtree->n.sym->ts.type != BT_INTEGER
11232 || code->expr1->symtree->n.sym->ts.kind
11233 != gfc_default_integer_kind
11234 || code->expr1->symtree->n.sym->as != NULL))
11235 gfc_error ("ASSIGN statement at %L requires a scalar "
11236 "default INTEGER variable", &code->expr1->where);
11237 break;
11239 case EXEC_POINTER_ASSIGN:
11241 gfc_expr* e;
11243 if (!t)
11244 break;
11246 /* This is both a variable definition and pointer assignment
11247 context, so check both of them. For rank remapping, a final
11248 array ref may be present on the LHS and fool gfc_expr_attr
11249 used in gfc_check_vardef_context. Remove it. */
11250 e = remove_last_array_ref (code->expr1);
11251 t = gfc_check_vardef_context (e, true, false, false,
11252 _("pointer assignment"));
11253 if (t)
11254 t = gfc_check_vardef_context (e, false, false, false,
11255 _("pointer assignment"));
11256 gfc_free_expr (e);
11257 if (!t)
11258 break;
11260 gfc_check_pointer_assign (code->expr1, code->expr2);
11262 /* Assigning a class object always is a regular assign. */
11263 if (code->expr2->ts.type == BT_CLASS
11264 && code->expr1->ts.type == BT_CLASS
11265 && !CLASS_DATA (code->expr2)->attr.dimension
11266 && !(gfc_expr_attr (code->expr1).proc_pointer
11267 && code->expr2->expr_type == EXPR_VARIABLE
11268 && code->expr2->symtree->n.sym->attr.flavor
11269 == FL_PROCEDURE))
11270 code->op = EXEC_ASSIGN;
11271 break;
11274 case EXEC_ARITHMETIC_IF:
11276 gfc_expr *e = code->expr1;
11278 gfc_resolve_expr (e);
11279 if (e->expr_type == EXPR_NULL)
11280 gfc_error ("Invalid NULL at %L", &e->where);
11282 if (t && (e->rank > 0
11283 || !(e->ts.type == BT_REAL || e->ts.type == BT_INTEGER)))
11284 gfc_error ("Arithmetic IF statement at %L requires a scalar "
11285 "REAL or INTEGER expression", &e->where);
11287 resolve_branch (code->label1, code);
11288 resolve_branch (code->label2, code);
11289 resolve_branch (code->label3, code);
11291 break;
11293 case EXEC_IF:
11294 if (t && code->expr1 != NULL
11295 && (code->expr1->ts.type != BT_LOGICAL
11296 || code->expr1->rank != 0))
11297 gfc_error ("IF clause at %L requires a scalar LOGICAL expression",
11298 &code->expr1->where);
11299 break;
11301 case EXEC_CALL:
11302 call:
11303 resolve_call (code);
11304 break;
11306 case EXEC_COMPCALL:
11307 compcall:
11308 resolve_typebound_subroutine (code);
11309 break;
11311 case EXEC_CALL_PPC:
11312 resolve_ppc_call (code);
11313 break;
11315 case EXEC_SELECT:
11316 /* Select is complicated. Also, a SELECT construct could be
11317 a transformed computed GOTO. */
11318 resolve_select (code, false);
11319 break;
11321 case EXEC_SELECT_TYPE:
11322 resolve_select_type (code, ns);
11323 break;
11325 case EXEC_BLOCK:
11326 resolve_block_construct (code);
11327 break;
11329 case EXEC_DO:
11330 if (code->ext.iterator != NULL)
11332 gfc_iterator *iter = code->ext.iterator;
11333 if (gfc_resolve_iterator (iter, true, false))
11334 gfc_resolve_do_iterator (code, iter->var->symtree->n.sym,
11335 true);
11337 break;
11339 case EXEC_DO_WHILE:
11340 if (code->expr1 == NULL)
11341 gfc_internal_error ("gfc_resolve_code(): No expression on "
11342 "DO WHILE");
11343 if (t
11344 && (code->expr1->rank != 0
11345 || code->expr1->ts.type != BT_LOGICAL))
11346 gfc_error ("Exit condition of DO WHILE loop at %L must be "
11347 "a scalar LOGICAL expression", &code->expr1->where);
11348 break;
11350 case EXEC_ALLOCATE:
11351 if (t)
11352 resolve_allocate_deallocate (code, "ALLOCATE");
11354 break;
11356 case EXEC_DEALLOCATE:
11357 if (t)
11358 resolve_allocate_deallocate (code, "DEALLOCATE");
11360 break;
11362 case EXEC_OPEN:
11363 if (!gfc_resolve_open (code->ext.open))
11364 break;
11366 resolve_branch (code->ext.open->err, code);
11367 break;
11369 case EXEC_CLOSE:
11370 if (!gfc_resolve_close (code->ext.close))
11371 break;
11373 resolve_branch (code->ext.close->err, code);
11374 break;
11376 case EXEC_BACKSPACE:
11377 case EXEC_ENDFILE:
11378 case EXEC_REWIND:
11379 case EXEC_FLUSH:
11380 if (!gfc_resolve_filepos (code->ext.filepos))
11381 break;
11383 resolve_branch (code->ext.filepos->err, code);
11384 break;
11386 case EXEC_INQUIRE:
11387 if (!gfc_resolve_inquire (code->ext.inquire))
11388 break;
11390 resolve_branch (code->ext.inquire->err, code);
11391 break;
11393 case EXEC_IOLENGTH:
11394 gcc_assert (code->ext.inquire != NULL);
11395 if (!gfc_resolve_inquire (code->ext.inquire))
11396 break;
11398 resolve_branch (code->ext.inquire->err, code);
11399 break;
11401 case EXEC_WAIT:
11402 if (!gfc_resolve_wait (code->ext.wait))
11403 break;
11405 resolve_branch (code->ext.wait->err, code);
11406 resolve_branch (code->ext.wait->end, code);
11407 resolve_branch (code->ext.wait->eor, code);
11408 break;
11410 case EXEC_READ:
11411 case EXEC_WRITE:
11412 if (!gfc_resolve_dt (code->ext.dt, &code->loc))
11413 break;
11415 resolve_branch (code->ext.dt->err, code);
11416 resolve_branch (code->ext.dt->end, code);
11417 resolve_branch (code->ext.dt->eor, code);
11418 break;
11420 case EXEC_TRANSFER:
11421 resolve_transfer (code);
11422 break;
11424 case EXEC_DO_CONCURRENT:
11425 case EXEC_FORALL:
11426 resolve_forall_iterators (code->ext.forall_iterator);
11428 if (code->expr1 != NULL
11429 && (code->expr1->ts.type != BT_LOGICAL || code->expr1->rank))
11430 gfc_error ("FORALL mask clause at %L requires a scalar LOGICAL "
11431 "expression", &code->expr1->where);
11432 break;
11434 case EXEC_OACC_PARALLEL_LOOP:
11435 case EXEC_OACC_PARALLEL:
11436 case EXEC_OACC_KERNELS_LOOP:
11437 case EXEC_OACC_KERNELS:
11438 case EXEC_OACC_DATA:
11439 case EXEC_OACC_HOST_DATA:
11440 case EXEC_OACC_LOOP:
11441 case EXEC_OACC_UPDATE:
11442 case EXEC_OACC_WAIT:
11443 case EXEC_OACC_CACHE:
11444 case EXEC_OACC_ENTER_DATA:
11445 case EXEC_OACC_EXIT_DATA:
11446 case EXEC_OACC_ATOMIC:
11447 case EXEC_OACC_DECLARE:
11448 gfc_resolve_oacc_directive (code, ns);
11449 break;
11451 case EXEC_OMP_ATOMIC:
11452 case EXEC_OMP_BARRIER:
11453 case EXEC_OMP_CANCEL:
11454 case EXEC_OMP_CANCELLATION_POINT:
11455 case EXEC_OMP_CRITICAL:
11456 case EXEC_OMP_FLUSH:
11457 case EXEC_OMP_DISTRIBUTE:
11458 case EXEC_OMP_DISTRIBUTE_PARALLEL_DO:
11459 case EXEC_OMP_DISTRIBUTE_PARALLEL_DO_SIMD:
11460 case EXEC_OMP_DISTRIBUTE_SIMD:
11461 case EXEC_OMP_DO:
11462 case EXEC_OMP_DO_SIMD:
11463 case EXEC_OMP_MASTER:
11464 case EXEC_OMP_ORDERED:
11465 case EXEC_OMP_SECTIONS:
11466 case EXEC_OMP_SIMD:
11467 case EXEC_OMP_SINGLE:
11468 case EXEC_OMP_TARGET:
11469 case EXEC_OMP_TARGET_DATA:
11470 case EXEC_OMP_TARGET_ENTER_DATA:
11471 case EXEC_OMP_TARGET_EXIT_DATA:
11472 case EXEC_OMP_TARGET_PARALLEL:
11473 case EXEC_OMP_TARGET_PARALLEL_DO:
11474 case EXEC_OMP_TARGET_PARALLEL_DO_SIMD:
11475 case EXEC_OMP_TARGET_SIMD:
11476 case EXEC_OMP_TARGET_TEAMS:
11477 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE:
11478 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO:
11479 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
11480 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_SIMD:
11481 case EXEC_OMP_TARGET_UPDATE:
11482 case EXEC_OMP_TASK:
11483 case EXEC_OMP_TASKGROUP:
11484 case EXEC_OMP_TASKLOOP:
11485 case EXEC_OMP_TASKLOOP_SIMD:
11486 case EXEC_OMP_TASKWAIT:
11487 case EXEC_OMP_TASKYIELD:
11488 case EXEC_OMP_TEAMS:
11489 case EXEC_OMP_TEAMS_DISTRIBUTE:
11490 case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO:
11491 case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
11492 case EXEC_OMP_TEAMS_DISTRIBUTE_SIMD:
11493 case EXEC_OMP_WORKSHARE:
11494 gfc_resolve_omp_directive (code, ns);
11495 break;
11497 case EXEC_OMP_PARALLEL:
11498 case EXEC_OMP_PARALLEL_DO:
11499 case EXEC_OMP_PARALLEL_DO_SIMD:
11500 case EXEC_OMP_PARALLEL_SECTIONS:
11501 case EXEC_OMP_PARALLEL_WORKSHARE:
11502 omp_workshare_save = omp_workshare_flag;
11503 omp_workshare_flag = 0;
11504 gfc_resolve_omp_directive (code, ns);
11505 omp_workshare_flag = omp_workshare_save;
11506 break;
11508 default:
11509 gfc_internal_error ("gfc_resolve_code(): Bad statement code");
11513 cs_base = frame.prev;
11517 /* Resolve initial values and make sure they are compatible with
11518 the variable. */
11520 static void
11521 resolve_values (gfc_symbol *sym)
11523 bool t;
11525 if (sym->value == NULL)
11526 return;
11528 if (sym->value->expr_type == EXPR_STRUCTURE)
11529 t= resolve_structure_cons (sym->value, 1);
11530 else
11531 t = gfc_resolve_expr (sym->value);
11533 if (!t)
11534 return;
11536 gfc_check_assign_symbol (sym, NULL, sym->value);
11540 /* Verify any BIND(C) derived types in the namespace so we can report errors
11541 for them once, rather than for each variable declared of that type. */
11543 static void
11544 resolve_bind_c_derived_types (gfc_symbol *derived_sym)
11546 if (derived_sym != NULL && derived_sym->attr.flavor == FL_DERIVED
11547 && derived_sym->attr.is_bind_c == 1)
11548 verify_bind_c_derived_type (derived_sym);
11550 return;
11554 /* Check the interfaces of DTIO procedures associated with derived
11555 type 'sym'. These procedures can either have typebound bindings or
11556 can appear in DTIO generic interfaces. */
11558 static void
11559 gfc_verify_DTIO_procedures (gfc_symbol *sym)
11561 if (!sym || sym->attr.flavor != FL_DERIVED)
11562 return;
11564 gfc_check_dtio_interfaces (sym);
11566 return;
11569 /* Verify that any binding labels used in a given namespace do not collide
11570 with the names or binding labels of any global symbols. Multiple INTERFACE
11571 for the same procedure are permitted. */
11573 static void
11574 gfc_verify_binding_labels (gfc_symbol *sym)
11576 gfc_gsymbol *gsym;
11577 const char *module;
11579 if (!sym || !sym->attr.is_bind_c || sym->attr.is_iso_c
11580 || sym->attr.flavor == FL_DERIVED || !sym->binding_label)
11581 return;
11583 gsym = gfc_find_case_gsymbol (gfc_gsym_root, sym->binding_label);
11585 if (sym->module)
11586 module = sym->module;
11587 else if (sym->ns && sym->ns->proc_name
11588 && sym->ns->proc_name->attr.flavor == FL_MODULE)
11589 module = sym->ns->proc_name->name;
11590 else if (sym->ns && sym->ns->parent
11591 && sym->ns && sym->ns->parent->proc_name
11592 && sym->ns->parent->proc_name->attr.flavor == FL_MODULE)
11593 module = sym->ns->parent->proc_name->name;
11594 else
11595 module = NULL;
11597 if (!gsym
11598 || (!gsym->defined
11599 && (gsym->type == GSYM_FUNCTION || gsym->type == GSYM_SUBROUTINE)))
11601 if (!gsym)
11602 gsym = gfc_get_gsymbol (sym->binding_label);
11603 gsym->where = sym->declared_at;
11604 gsym->sym_name = sym->name;
11605 gsym->binding_label = sym->binding_label;
11606 gsym->ns = sym->ns;
11607 gsym->mod_name = module;
11608 if (sym->attr.function)
11609 gsym->type = GSYM_FUNCTION;
11610 else if (sym->attr.subroutine)
11611 gsym->type = GSYM_SUBROUTINE;
11612 /* Mark as variable/procedure as defined, unless its an INTERFACE. */
11613 gsym->defined = sym->attr.if_source != IFSRC_IFBODY;
11614 return;
11617 if (sym->attr.flavor == FL_VARIABLE && gsym->type != GSYM_UNKNOWN)
11619 gfc_error ("Variable %qs with binding label %qs at %L uses the same global "
11620 "identifier as entity at %L", sym->name,
11621 sym->binding_label, &sym->declared_at, &gsym->where);
11622 /* Clear the binding label to prevent checking multiple times. */
11623 sym->binding_label = NULL;
11626 else if (sym->attr.flavor == FL_VARIABLE && module
11627 && (strcmp (module, gsym->mod_name) != 0
11628 || strcmp (sym->name, gsym->sym_name) != 0))
11630 /* This can only happen if the variable is defined in a module - if it
11631 isn't the same module, reject it. */
11632 gfc_error ("Variable %qs from module %qs with binding label %qs at %L "
11633 "uses the same global identifier as entity at %L from module %qs",
11634 sym->name, module, sym->binding_label,
11635 &sym->declared_at, &gsym->where, gsym->mod_name);
11636 sym->binding_label = NULL;
11638 else if ((sym->attr.function || sym->attr.subroutine)
11639 && ((gsym->type != GSYM_SUBROUTINE && gsym->type != GSYM_FUNCTION)
11640 || (gsym->defined && sym->attr.if_source != IFSRC_IFBODY))
11641 && sym != gsym->ns->proc_name
11642 && (module != gsym->mod_name
11643 || strcmp (gsym->sym_name, sym->name) != 0
11644 || (module && strcmp (module, gsym->mod_name) != 0)))
11646 /* Print an error if the procedure is defined multiple times; we have to
11647 exclude references to the same procedure via module association or
11648 multiple checks for the same procedure. */
11649 gfc_error ("Procedure %qs with binding label %qs at %L uses the same "
11650 "global identifier as entity at %L", sym->name,
11651 sym->binding_label, &sym->declared_at, &gsym->where);
11652 sym->binding_label = NULL;
11657 /* Resolve an index expression. */
11659 static bool
11660 resolve_index_expr (gfc_expr *e)
11662 if (!gfc_resolve_expr (e))
11663 return false;
11665 if (!gfc_simplify_expr (e, 0))
11666 return false;
11668 if (!gfc_specification_expr (e))
11669 return false;
11671 return true;
11675 /* Resolve a charlen structure. */
11677 static bool
11678 resolve_charlen (gfc_charlen *cl)
11680 int k;
11681 bool saved_specification_expr;
11683 if (cl->resolved)
11684 return true;
11686 cl->resolved = 1;
11687 saved_specification_expr = specification_expr;
11688 specification_expr = true;
11690 if (cl->length_from_typespec)
11692 if (!gfc_resolve_expr (cl->length))
11694 specification_expr = saved_specification_expr;
11695 return false;
11698 if (!gfc_simplify_expr (cl->length, 0))
11700 specification_expr = saved_specification_expr;
11701 return false;
11704 /* cl->length has been resolved. It should have an integer type. */
11705 if (cl->length->ts.type != BT_INTEGER)
11707 gfc_error ("Scalar INTEGER expression expected at %L",
11708 &cl->length->where);
11709 return false;
11712 else
11714 if (!resolve_index_expr (cl->length))
11716 specification_expr = saved_specification_expr;
11717 return false;
11721 /* F2008, 4.4.3.2: If the character length parameter value evaluates to
11722 a negative value, the length of character entities declared is zero. */
11723 if (cl->length && cl->length->expr_type == EXPR_CONSTANT
11724 && mpz_sgn (cl->length->value.integer) < 0)
11725 gfc_replace_expr (cl->length,
11726 gfc_get_int_expr (gfc_charlen_int_kind, NULL, 0));
11728 /* Check that the character length is not too large. */
11729 k = gfc_validate_kind (BT_INTEGER, gfc_charlen_int_kind, false);
11730 if (cl->length && cl->length->expr_type == EXPR_CONSTANT
11731 && cl->length->ts.type == BT_INTEGER
11732 && mpz_cmp (cl->length->value.integer, gfc_integer_kinds[k].huge) > 0)
11734 gfc_error ("String length at %L is too large", &cl->length->where);
11735 specification_expr = saved_specification_expr;
11736 return false;
11739 specification_expr = saved_specification_expr;
11740 return true;
11744 /* Test for non-constant shape arrays. */
11746 static bool
11747 is_non_constant_shape_array (gfc_symbol *sym)
11749 gfc_expr *e;
11750 int i;
11751 bool not_constant;
11753 not_constant = false;
11754 if (sym->as != NULL)
11756 /* Unfortunately, !gfc_is_compile_time_shape hits a legal case that
11757 has not been simplified; parameter array references. Do the
11758 simplification now. */
11759 for (i = 0; i < sym->as->rank + sym->as->corank; i++)
11761 e = sym->as->lower[i];
11762 if (e && (!resolve_index_expr(e)
11763 || !gfc_is_constant_expr (e)))
11764 not_constant = true;
11765 e = sym->as->upper[i];
11766 if (e && (!resolve_index_expr(e)
11767 || !gfc_is_constant_expr (e)))
11768 not_constant = true;
11771 return not_constant;
11774 /* Given a symbol and an initialization expression, add code to initialize
11775 the symbol to the function entry. */
11776 static void
11777 build_init_assign (gfc_symbol *sym, gfc_expr *init)
11779 gfc_expr *lval;
11780 gfc_code *init_st;
11781 gfc_namespace *ns = sym->ns;
11783 /* Search for the function namespace if this is a contained
11784 function without an explicit result. */
11785 if (sym->attr.function && sym == sym->result
11786 && sym->name != sym->ns->proc_name->name)
11788 ns = ns->contained;
11789 for (;ns; ns = ns->sibling)
11790 if (strcmp (ns->proc_name->name, sym->name) == 0)
11791 break;
11794 if (ns == NULL)
11796 gfc_free_expr (init);
11797 return;
11800 /* Build an l-value expression for the result. */
11801 lval = gfc_lval_expr_from_sym (sym);
11803 /* Add the code at scope entry. */
11804 init_st = gfc_get_code (EXEC_INIT_ASSIGN);
11805 init_st->next = ns->code;
11806 ns->code = init_st;
11808 /* Assign the default initializer to the l-value. */
11809 init_st->loc = sym->declared_at;
11810 init_st->expr1 = lval;
11811 init_st->expr2 = init;
11815 /* Whether or not we can generate a default initializer for a symbol. */
11817 static bool
11818 can_generate_init (gfc_symbol *sym)
11820 symbol_attribute *a;
11821 if (!sym)
11822 return false;
11823 a = &sym->attr;
11825 /* These symbols should never have a default initialization. */
11826 return !(
11827 a->allocatable
11828 || a->external
11829 || a->pointer
11830 || (sym->ts.type == BT_CLASS && CLASS_DATA (sym)
11831 && (CLASS_DATA (sym)->attr.class_pointer
11832 || CLASS_DATA (sym)->attr.proc_pointer))
11833 || a->in_equivalence
11834 || a->in_common
11835 || a->data
11836 || sym->module
11837 || a->cray_pointee
11838 || a->cray_pointer
11839 || sym->assoc
11840 || (!a->referenced && !a->result)
11841 || (a->dummy && a->intent != INTENT_OUT)
11842 || (a->function && sym != sym->result)
11847 /* Assign the default initializer to a derived type variable or result. */
11849 static void
11850 apply_default_init (gfc_symbol *sym)
11852 gfc_expr *init = NULL;
11854 if (sym->attr.flavor != FL_VARIABLE && !sym->attr.function)
11855 return;
11857 if (sym->ts.type == BT_DERIVED && sym->ts.u.derived)
11858 init = gfc_generate_initializer (&sym->ts, can_generate_init (sym));
11860 if (init == NULL && sym->ts.type != BT_CLASS)
11861 return;
11863 build_init_assign (sym, init);
11864 sym->attr.referenced = 1;
11868 /* Build an initializer for a local. Returns null if the symbol should not have
11869 a default initialization. */
11871 static gfc_expr *
11872 build_default_init_expr (gfc_symbol *sym)
11874 /* These symbols should never have a default initialization. */
11875 if (sym->attr.allocatable
11876 || sym->attr.external
11877 || sym->attr.dummy
11878 || sym->attr.pointer
11879 || sym->attr.in_equivalence
11880 || sym->attr.in_common
11881 || sym->attr.data
11882 || sym->module
11883 || sym->attr.cray_pointee
11884 || sym->attr.cray_pointer
11885 || sym->assoc)
11886 return NULL;
11888 /* Get the appropriate init expression. */
11889 return gfc_build_default_init_expr (&sym->ts, &sym->declared_at);
11892 /* Add an initialization expression to a local variable. */
11893 static void
11894 apply_default_init_local (gfc_symbol *sym)
11896 gfc_expr *init = NULL;
11898 /* The symbol should be a variable or a function return value. */
11899 if ((sym->attr.flavor != FL_VARIABLE && !sym->attr.function)
11900 || (sym->attr.function && sym->result != sym))
11901 return;
11903 /* Try to build the initializer expression. If we can't initialize
11904 this symbol, then init will be NULL. */
11905 init = build_default_init_expr (sym);
11906 if (init == NULL)
11907 return;
11909 /* For saved variables, we don't want to add an initializer at function
11910 entry, so we just add a static initializer. Note that automatic variables
11911 are stack allocated even with -fno-automatic; we have also to exclude
11912 result variable, which are also nonstatic. */
11913 if (!sym->attr.automatic
11914 && (sym->attr.save || sym->ns->save_all
11915 || (flag_max_stack_var_size == 0 && !sym->attr.result
11916 && (sym->ns->proc_name && !sym->ns->proc_name->attr.recursive)
11917 && (!sym->attr.dimension || !is_non_constant_shape_array (sym)))))
11919 /* Don't clobber an existing initializer! */
11920 gcc_assert (sym->value == NULL);
11921 sym->value = init;
11922 return;
11925 build_init_assign (sym, init);
11929 /* Resolution of common features of flavors variable and procedure. */
11931 static bool
11932 resolve_fl_var_and_proc (gfc_symbol *sym, int mp_flag)
11934 gfc_array_spec *as;
11936 if (sym->ts.type == BT_CLASS && sym->attr.class_ok)
11937 as = CLASS_DATA (sym)->as;
11938 else
11939 as = sym->as;
11941 /* Constraints on deferred shape variable. */
11942 if (as == NULL || as->type != AS_DEFERRED)
11944 bool pointer, allocatable, dimension;
11946 if (sym->ts.type == BT_CLASS && sym->attr.class_ok)
11948 pointer = CLASS_DATA (sym)->attr.class_pointer;
11949 allocatable = CLASS_DATA (sym)->attr.allocatable;
11950 dimension = CLASS_DATA (sym)->attr.dimension;
11952 else
11954 pointer = sym->attr.pointer && !sym->attr.select_type_temporary;
11955 allocatable = sym->attr.allocatable;
11956 dimension = sym->attr.dimension;
11959 if (allocatable)
11961 if (dimension && as->type != AS_ASSUMED_RANK)
11963 gfc_error ("Allocatable array %qs at %L must have a deferred "
11964 "shape or assumed rank", sym->name, &sym->declared_at);
11965 return false;
11967 else if (!gfc_notify_std (GFC_STD_F2003, "Scalar object "
11968 "%qs at %L may not be ALLOCATABLE",
11969 sym->name, &sym->declared_at))
11970 return false;
11973 if (pointer && dimension && as->type != AS_ASSUMED_RANK)
11975 gfc_error ("Array pointer %qs at %L must have a deferred shape or "
11976 "assumed rank", sym->name, &sym->declared_at);
11977 return false;
11980 else
11982 if (!mp_flag && !sym->attr.allocatable && !sym->attr.pointer
11983 && sym->ts.type != BT_CLASS && !sym->assoc)
11985 gfc_error ("Array %qs at %L cannot have a deferred shape",
11986 sym->name, &sym->declared_at);
11987 return false;
11991 /* Constraints on polymorphic variables. */
11992 if (sym->ts.type == BT_CLASS && !(sym->result && sym->result != sym))
11994 /* F03:C502. */
11995 if (sym->attr.class_ok
11996 && !sym->attr.select_type_temporary
11997 && !UNLIMITED_POLY (sym)
11998 && !gfc_type_is_extensible (CLASS_DATA (sym)->ts.u.derived))
12000 gfc_error ("Type %qs of CLASS variable %qs at %L is not extensible",
12001 CLASS_DATA (sym)->ts.u.derived->name, sym->name,
12002 &sym->declared_at);
12003 return false;
12006 /* F03:C509. */
12007 /* Assume that use associated symbols were checked in the module ns.
12008 Class-variables that are associate-names are also something special
12009 and excepted from the test. */
12010 if (!sym->attr.class_ok && !sym->attr.use_assoc && !sym->assoc)
12012 gfc_error ("CLASS variable %qs at %L must be dummy, allocatable "
12013 "or pointer", sym->name, &sym->declared_at);
12014 return false;
12018 return true;
12022 /* Additional checks for symbols with flavor variable and derived
12023 type. To be called from resolve_fl_variable. */
12025 static bool
12026 resolve_fl_variable_derived (gfc_symbol *sym, int no_init_flag)
12028 gcc_assert (sym->ts.type == BT_DERIVED || sym->ts.type == BT_CLASS);
12030 /* Check to see if a derived type is blocked from being host
12031 associated by the presence of another class I symbol in the same
12032 namespace. 14.6.1.3 of the standard and the discussion on
12033 comp.lang.fortran. */
12034 if (sym->ns != sym->ts.u.derived->ns
12035 && sym->ns->proc_name->attr.if_source != IFSRC_IFBODY)
12037 gfc_symbol *s;
12038 gfc_find_symbol (sym->ts.u.derived->name, sym->ns, 0, &s);
12039 if (s && s->attr.generic)
12040 s = gfc_find_dt_in_generic (s);
12041 if (s && !gfc_fl_struct (s->attr.flavor))
12043 gfc_error ("The type %qs cannot be host associated at %L "
12044 "because it is blocked by an incompatible object "
12045 "of the same name declared at %L",
12046 sym->ts.u.derived->name, &sym->declared_at,
12047 &s->declared_at);
12048 return false;
12052 /* 4th constraint in section 11.3: "If an object of a type for which
12053 component-initialization is specified (R429) appears in the
12054 specification-part of a module and does not have the ALLOCATABLE
12055 or POINTER attribute, the object shall have the SAVE attribute."
12057 The check for initializers is performed with
12058 gfc_has_default_initializer because gfc_default_initializer generates
12059 a hidden default for allocatable components. */
12060 if (!(sym->value || no_init_flag) && sym->ns->proc_name
12061 && sym->ns->proc_name->attr.flavor == FL_MODULE
12062 && !(sym->ns->save_all && !sym->attr.automatic) && !sym->attr.save
12063 && !sym->attr.pointer && !sym->attr.allocatable
12064 && gfc_has_default_initializer (sym->ts.u.derived)
12065 && !gfc_notify_std (GFC_STD_F2008, "Implied SAVE for module variable "
12066 "%qs at %L, needed due to the default "
12067 "initialization", sym->name, &sym->declared_at))
12068 return false;
12070 /* Assign default initializer. */
12071 if (!(sym->value || sym->attr.pointer || sym->attr.allocatable)
12072 && (!no_init_flag || sym->attr.intent == INTENT_OUT))
12073 sym->value = gfc_generate_initializer (&sym->ts, can_generate_init (sym));
12075 return true;
12079 /* F2008, C402 (R401): A colon shall not be used as a type-param-value
12080 except in the declaration of an entity or component that has the POINTER
12081 or ALLOCATABLE attribute. */
12083 static bool
12084 deferred_requirements (gfc_symbol *sym)
12086 if (sym->ts.deferred
12087 && !(sym->attr.pointer
12088 || sym->attr.allocatable
12089 || sym->attr.associate_var
12090 || sym->attr.omp_udr_artificial_var))
12092 gfc_error ("Entity %qs at %L has a deferred type parameter and "
12093 "requires either the POINTER or ALLOCATABLE attribute",
12094 sym->name, &sym->declared_at);
12095 return false;
12097 return true;
12101 /* Resolve symbols with flavor variable. */
12103 static bool
12104 resolve_fl_variable (gfc_symbol *sym, int mp_flag)
12106 int no_init_flag, automatic_flag;
12107 gfc_expr *e;
12108 const char *auto_save_msg;
12109 bool saved_specification_expr;
12111 auto_save_msg = "Automatic object %qs at %L cannot have the "
12112 "SAVE attribute";
12114 if (!resolve_fl_var_and_proc (sym, mp_flag))
12115 return false;
12117 /* Set this flag to check that variables are parameters of all entries.
12118 This check is effected by the call to gfc_resolve_expr through
12119 is_non_constant_shape_array. */
12120 saved_specification_expr = specification_expr;
12121 specification_expr = true;
12123 if (sym->ns->proc_name
12124 && (sym->ns->proc_name->attr.flavor == FL_MODULE
12125 || sym->ns->proc_name->attr.is_main_program)
12126 && !sym->attr.use_assoc
12127 && !sym->attr.allocatable
12128 && !sym->attr.pointer
12129 && is_non_constant_shape_array (sym))
12131 /* F08:C541. The shape of an array defined in a main program or module
12132 * needs to be constant. */
12133 gfc_error ("The module or main program array %qs at %L must "
12134 "have constant shape", sym->name, &sym->declared_at);
12135 specification_expr = saved_specification_expr;
12136 return false;
12139 /* Constraints on deferred type parameter. */
12140 if (!deferred_requirements (sym))
12141 return false;
12143 if (sym->ts.type == BT_CHARACTER && !sym->attr.associate_var)
12145 /* Make sure that character string variables with assumed length are
12146 dummy arguments. */
12147 e = sym->ts.u.cl->length;
12148 if (e == NULL && !sym->attr.dummy && !sym->attr.result
12149 && !sym->ts.deferred && !sym->attr.select_type_temporary
12150 && !sym->attr.omp_udr_artificial_var)
12152 gfc_error ("Entity with assumed character length at %L must be a "
12153 "dummy argument or a PARAMETER", &sym->declared_at);
12154 specification_expr = saved_specification_expr;
12155 return false;
12158 if (e && sym->attr.save == SAVE_EXPLICIT && !gfc_is_constant_expr (e))
12160 gfc_error (auto_save_msg, sym->name, &sym->declared_at);
12161 specification_expr = saved_specification_expr;
12162 return false;
12165 if (!gfc_is_constant_expr (e)
12166 && !(e->expr_type == EXPR_VARIABLE
12167 && e->symtree->n.sym->attr.flavor == FL_PARAMETER))
12169 if (!sym->attr.use_assoc && sym->ns->proc_name
12170 && (sym->ns->proc_name->attr.flavor == FL_MODULE
12171 || sym->ns->proc_name->attr.is_main_program))
12173 gfc_error ("%qs at %L must have constant character length "
12174 "in this context", sym->name, &sym->declared_at);
12175 specification_expr = saved_specification_expr;
12176 return false;
12178 if (sym->attr.in_common)
12180 gfc_error ("COMMON variable %qs at %L must have constant "
12181 "character length", sym->name, &sym->declared_at);
12182 specification_expr = saved_specification_expr;
12183 return false;
12188 if (sym->value == NULL && sym->attr.referenced)
12189 apply_default_init_local (sym); /* Try to apply a default initialization. */
12191 /* Determine if the symbol may not have an initializer. */
12192 no_init_flag = automatic_flag = 0;
12193 if (sym->attr.allocatable || sym->attr.external || sym->attr.dummy
12194 || sym->attr.intrinsic || sym->attr.result)
12195 no_init_flag = 1;
12196 else if ((sym->attr.dimension || sym->attr.codimension) && !sym->attr.pointer
12197 && is_non_constant_shape_array (sym))
12199 no_init_flag = automatic_flag = 1;
12201 /* Also, they must not have the SAVE attribute.
12202 SAVE_IMPLICIT is checked below. */
12203 if (sym->as && sym->attr.codimension)
12205 int corank = sym->as->corank;
12206 sym->as->corank = 0;
12207 no_init_flag = automatic_flag = is_non_constant_shape_array (sym);
12208 sym->as->corank = corank;
12210 if (automatic_flag && sym->attr.save == SAVE_EXPLICIT)
12212 gfc_error (auto_save_msg, sym->name, &sym->declared_at);
12213 specification_expr = saved_specification_expr;
12214 return false;
12218 /* Ensure that any initializer is simplified. */
12219 if (sym->value)
12220 gfc_simplify_expr (sym->value, 1);
12222 /* Reject illegal initializers. */
12223 if (!sym->mark && sym->value)
12225 if (sym->attr.allocatable || (sym->ts.type == BT_CLASS
12226 && CLASS_DATA (sym)->attr.allocatable))
12227 gfc_error ("Allocatable %qs at %L cannot have an initializer",
12228 sym->name, &sym->declared_at);
12229 else if (sym->attr.external)
12230 gfc_error ("External %qs at %L cannot have an initializer",
12231 sym->name, &sym->declared_at);
12232 else if (sym->attr.dummy
12233 && !(sym->ts.type == BT_DERIVED && sym->attr.intent == INTENT_OUT))
12234 gfc_error ("Dummy %qs at %L cannot have an initializer",
12235 sym->name, &sym->declared_at);
12236 else if (sym->attr.intrinsic)
12237 gfc_error ("Intrinsic %qs at %L cannot have an initializer",
12238 sym->name, &sym->declared_at);
12239 else if (sym->attr.result)
12240 gfc_error ("Function result %qs at %L cannot have an initializer",
12241 sym->name, &sym->declared_at);
12242 else if (automatic_flag)
12243 gfc_error ("Automatic array %qs at %L cannot have an initializer",
12244 sym->name, &sym->declared_at);
12245 else
12246 goto no_init_error;
12247 specification_expr = saved_specification_expr;
12248 return false;
12251 no_init_error:
12252 if (sym->ts.type == BT_DERIVED || sym->ts.type == BT_CLASS)
12254 bool res = resolve_fl_variable_derived (sym, no_init_flag);
12255 specification_expr = saved_specification_expr;
12256 return res;
12259 specification_expr = saved_specification_expr;
12260 return true;
12264 /* Compare the dummy characteristics of a module procedure interface
12265 declaration with the corresponding declaration in a submodule. */
12266 static gfc_formal_arglist *new_formal;
12267 static char errmsg[200];
12269 static void
12270 compare_fsyms (gfc_symbol *sym)
12272 gfc_symbol *fsym;
12274 if (sym == NULL || new_formal == NULL)
12275 return;
12277 fsym = new_formal->sym;
12279 if (sym == fsym)
12280 return;
12282 if (strcmp (sym->name, fsym->name) == 0)
12284 if (!gfc_check_dummy_characteristics (fsym, sym, true, errmsg, 200))
12285 gfc_error ("%s at %L", errmsg, &fsym->declared_at);
12290 /* Resolve a procedure. */
12292 static bool
12293 resolve_fl_procedure (gfc_symbol *sym, int mp_flag)
12295 gfc_formal_arglist *arg;
12297 if (sym->attr.function
12298 && !resolve_fl_var_and_proc (sym, mp_flag))
12299 return false;
12301 if (sym->ts.type == BT_CHARACTER)
12303 gfc_charlen *cl = sym->ts.u.cl;
12305 if (cl && cl->length && gfc_is_constant_expr (cl->length)
12306 && !resolve_charlen (cl))
12307 return false;
12309 if ((!cl || !cl->length || cl->length->expr_type != EXPR_CONSTANT)
12310 && sym->attr.proc == PROC_ST_FUNCTION)
12312 gfc_error ("Character-valued statement function %qs at %L must "
12313 "have constant length", sym->name, &sym->declared_at);
12314 return false;
12318 /* Ensure that derived type for are not of a private type. Internal
12319 module procedures are excluded by 2.2.3.3 - i.e., they are not
12320 externally accessible and can access all the objects accessible in
12321 the host. */
12322 if (!(sym->ns->parent
12323 && sym->ns->parent->proc_name->attr.flavor == FL_MODULE)
12324 && gfc_check_symbol_access (sym))
12326 gfc_interface *iface;
12328 for (arg = gfc_sym_get_dummy_args (sym); arg; arg = arg->next)
12330 if (arg->sym
12331 && arg->sym->ts.type == BT_DERIVED
12332 && !arg->sym->ts.u.derived->attr.use_assoc
12333 && !gfc_check_symbol_access (arg->sym->ts.u.derived)
12334 && !gfc_notify_std (GFC_STD_F2003, "%qs is of a PRIVATE type "
12335 "and cannot be a dummy argument"
12336 " of %qs, which is PUBLIC at %L",
12337 arg->sym->name, sym->name,
12338 &sym->declared_at))
12340 /* Stop this message from recurring. */
12341 arg->sym->ts.u.derived->attr.access = ACCESS_PUBLIC;
12342 return false;
12346 /* PUBLIC interfaces may expose PRIVATE procedures that take types
12347 PRIVATE to the containing module. */
12348 for (iface = sym->generic; iface; iface = iface->next)
12350 for (arg = gfc_sym_get_dummy_args (iface->sym); arg; arg = arg->next)
12352 if (arg->sym
12353 && arg->sym->ts.type == BT_DERIVED
12354 && !arg->sym->ts.u.derived->attr.use_assoc
12355 && !gfc_check_symbol_access (arg->sym->ts.u.derived)
12356 && !gfc_notify_std (GFC_STD_F2003, "Procedure %qs in "
12357 "PUBLIC interface %qs at %L "
12358 "takes dummy arguments of %qs which "
12359 "is PRIVATE", iface->sym->name,
12360 sym->name, &iface->sym->declared_at,
12361 gfc_typename(&arg->sym->ts)))
12363 /* Stop this message from recurring. */
12364 arg->sym->ts.u.derived->attr.access = ACCESS_PUBLIC;
12365 return false;
12371 if (sym->attr.function && sym->value && sym->attr.proc != PROC_ST_FUNCTION
12372 && !sym->attr.proc_pointer)
12374 gfc_error ("Function %qs at %L cannot have an initializer",
12375 sym->name, &sym->declared_at);
12376 return false;
12379 /* An external symbol may not have an initializer because it is taken to be
12380 a procedure. Exception: Procedure Pointers. */
12381 if (sym->attr.external && sym->value && !sym->attr.proc_pointer)
12383 gfc_error ("External object %qs at %L may not have an initializer",
12384 sym->name, &sym->declared_at);
12385 return false;
12388 /* An elemental function is required to return a scalar 12.7.1 */
12389 if (sym->attr.elemental && sym->attr.function && sym->as)
12391 gfc_error ("ELEMENTAL function %qs at %L must have a scalar "
12392 "result", sym->name, &sym->declared_at);
12393 /* Reset so that the error only occurs once. */
12394 sym->attr.elemental = 0;
12395 return false;
12398 if (sym->attr.proc == PROC_ST_FUNCTION
12399 && (sym->attr.allocatable || sym->attr.pointer))
12401 gfc_error ("Statement function %qs at %L may not have pointer or "
12402 "allocatable attribute", sym->name, &sym->declared_at);
12403 return false;
12406 /* 5.1.1.5 of the Standard: A function name declared with an asterisk
12407 char-len-param shall not be array-valued, pointer-valued, recursive
12408 or pure. ....snip... A character value of * may only be used in the
12409 following ways: (i) Dummy arg of procedure - dummy associates with
12410 actual length; (ii) To declare a named constant; or (iii) External
12411 function - but length must be declared in calling scoping unit. */
12412 if (sym->attr.function
12413 && sym->ts.type == BT_CHARACTER && !sym->ts.deferred
12414 && sym->ts.u.cl && sym->ts.u.cl->length == NULL)
12416 if ((sym->as && sym->as->rank) || (sym->attr.pointer)
12417 || (sym->attr.recursive) || (sym->attr.pure))
12419 if (sym->as && sym->as->rank)
12420 gfc_error ("CHARACTER(*) function %qs at %L cannot be "
12421 "array-valued", sym->name, &sym->declared_at);
12423 if (sym->attr.pointer)
12424 gfc_error ("CHARACTER(*) function %qs at %L cannot be "
12425 "pointer-valued", sym->name, &sym->declared_at);
12427 if (sym->attr.pure)
12428 gfc_error ("CHARACTER(*) function %qs at %L cannot be "
12429 "pure", sym->name, &sym->declared_at);
12431 if (sym->attr.recursive)
12432 gfc_error ("CHARACTER(*) function %qs at %L cannot be "
12433 "recursive", sym->name, &sym->declared_at);
12435 return false;
12438 /* Appendix B.2 of the standard. Contained functions give an
12439 error anyway. Deferred character length is an F2003 feature.
12440 Don't warn on intrinsic conversion functions, which start
12441 with two underscores. */
12442 if (!sym->attr.contained && !sym->ts.deferred
12443 && (sym->name[0] != '_' || sym->name[1] != '_'))
12444 gfc_notify_std (GFC_STD_F95_OBS,
12445 "CHARACTER(*) function %qs at %L",
12446 sym->name, &sym->declared_at);
12449 /* F2008, C1218. */
12450 if (sym->attr.elemental)
12452 if (sym->attr.proc_pointer)
12454 gfc_error ("Procedure pointer %qs at %L shall not be elemental",
12455 sym->name, &sym->declared_at);
12456 return false;
12458 if (sym->attr.dummy)
12460 gfc_error ("Dummy procedure %qs at %L shall not be elemental",
12461 sym->name, &sym->declared_at);
12462 return false;
12466 /* F2018, C15100: "The result of an elemental function shall be scalar,
12467 and shall not have the POINTER or ALLOCATABLE attribute." The scalar
12468 pointer is tested and caught elsewhere. */
12469 if (sym->attr.elemental && sym->result
12470 && (sym->result->attr.allocatable || sym->result->attr.pointer))
12472 gfc_error ("Function result variable %qs at %L of elemental "
12473 "function %qs shall not have an ALLOCATABLE or POINTER "
12474 "attribute", sym->result->name,
12475 &sym->result->declared_at, sym->name);
12476 return false;
12479 if (sym->attr.is_bind_c && sym->attr.is_c_interop != 1)
12481 gfc_formal_arglist *curr_arg;
12482 int has_non_interop_arg = 0;
12484 if (!verify_bind_c_sym (sym, &(sym->ts), sym->attr.in_common,
12485 sym->common_block))
12487 /* Clear these to prevent looking at them again if there was an
12488 error. */
12489 sym->attr.is_bind_c = 0;
12490 sym->attr.is_c_interop = 0;
12491 sym->ts.is_c_interop = 0;
12493 else
12495 /* So far, no errors have been found. */
12496 sym->attr.is_c_interop = 1;
12497 sym->ts.is_c_interop = 1;
12500 curr_arg = gfc_sym_get_dummy_args (sym);
12501 while (curr_arg != NULL)
12503 /* Skip implicitly typed dummy args here. */
12504 if (curr_arg->sym->attr.implicit_type == 0)
12505 if (!gfc_verify_c_interop_param (curr_arg->sym))
12506 /* If something is found to fail, record the fact so we
12507 can mark the symbol for the procedure as not being
12508 BIND(C) to try and prevent multiple errors being
12509 reported. */
12510 has_non_interop_arg = 1;
12512 curr_arg = curr_arg->next;
12515 /* See if any of the arguments were not interoperable and if so, clear
12516 the procedure symbol to prevent duplicate error messages. */
12517 if (has_non_interop_arg != 0)
12519 sym->attr.is_c_interop = 0;
12520 sym->ts.is_c_interop = 0;
12521 sym->attr.is_bind_c = 0;
12525 if (!sym->attr.proc_pointer)
12527 if (sym->attr.save == SAVE_EXPLICIT)
12529 gfc_error ("PROCEDURE attribute conflicts with SAVE attribute "
12530 "in %qs at %L", sym->name, &sym->declared_at);
12531 return false;
12533 if (sym->attr.intent)
12535 gfc_error ("PROCEDURE attribute conflicts with INTENT attribute "
12536 "in %qs at %L", sym->name, &sym->declared_at);
12537 return false;
12539 if (sym->attr.subroutine && sym->attr.result)
12541 gfc_error ("PROCEDURE attribute conflicts with RESULT attribute "
12542 "in %qs at %L", sym->name, &sym->declared_at);
12543 return false;
12545 if (sym->attr.external && sym->attr.function && !sym->attr.module_procedure
12546 && ((sym->attr.if_source == IFSRC_DECL && !sym->attr.procedure)
12547 || sym->attr.contained))
12549 gfc_error ("EXTERNAL attribute conflicts with FUNCTION attribute "
12550 "in %qs at %L", sym->name, &sym->declared_at);
12551 return false;
12553 if (strcmp ("ppr@", sym->name) == 0)
12555 gfc_error ("Procedure pointer result %qs at %L "
12556 "is missing the pointer attribute",
12557 sym->ns->proc_name->name, &sym->declared_at);
12558 return false;
12562 /* Assume that a procedure whose body is not known has references
12563 to external arrays. */
12564 if (sym->attr.if_source != IFSRC_DECL)
12565 sym->attr.array_outer_dependency = 1;
12567 /* Compare the characteristics of a module procedure with the
12568 interface declaration. Ideally this would be done with
12569 gfc_compare_interfaces but, at present, the formal interface
12570 cannot be copied to the ts.interface. */
12571 if (sym->attr.module_procedure
12572 && sym->attr.if_source == IFSRC_DECL)
12574 gfc_symbol *iface;
12575 char name[2*GFC_MAX_SYMBOL_LEN + 1];
12576 char *module_name;
12577 char *submodule_name;
12578 strcpy (name, sym->ns->proc_name->name);
12579 module_name = strtok (name, ".");
12580 submodule_name = strtok (NULL, ".");
12582 iface = sym->tlink;
12583 sym->tlink = NULL;
12585 /* Make sure that the result uses the correct charlen for deferred
12586 length results. */
12587 if (iface && sym->result
12588 && iface->ts.type == BT_CHARACTER
12589 && iface->ts.deferred)
12590 sym->result->ts.u.cl = iface->ts.u.cl;
12592 if (iface == NULL)
12593 goto check_formal;
12595 /* Check the procedure characteristics. */
12596 if (sym->attr.elemental != iface->attr.elemental)
12598 gfc_error ("Mismatch in ELEMENTAL attribute between MODULE "
12599 "PROCEDURE at %L and its interface in %s",
12600 &sym->declared_at, module_name);
12601 return false;
12604 if (sym->attr.pure != iface->attr.pure)
12606 gfc_error ("Mismatch in PURE attribute between MODULE "
12607 "PROCEDURE at %L and its interface in %s",
12608 &sym->declared_at, module_name);
12609 return false;
12612 if (sym->attr.recursive != iface->attr.recursive)
12614 gfc_error ("Mismatch in RECURSIVE attribute between MODULE "
12615 "PROCEDURE at %L and its interface in %s",
12616 &sym->declared_at, module_name);
12617 return false;
12620 /* Check the result characteristics. */
12621 if (!gfc_check_result_characteristics (sym, iface, errmsg, 200))
12623 gfc_error ("%s between the MODULE PROCEDURE declaration "
12624 "in MODULE %qs and the declaration at %L in "
12625 "(SUB)MODULE %qs",
12626 errmsg, module_name, &sym->declared_at,
12627 submodule_name ? submodule_name : module_name);
12628 return false;
12631 check_formal:
12632 /* Check the characteristics of the formal arguments. */
12633 if (sym->formal && sym->formal_ns)
12635 for (arg = sym->formal; arg && arg->sym; arg = arg->next)
12637 new_formal = arg;
12638 gfc_traverse_ns (sym->formal_ns, compare_fsyms);
12642 return true;
12646 /* Resolve a list of finalizer procedures. That is, after they have hopefully
12647 been defined and we now know their defined arguments, check that they fulfill
12648 the requirements of the standard for procedures used as finalizers. */
12650 static bool
12651 gfc_resolve_finalizers (gfc_symbol* derived, bool *finalizable)
12653 gfc_finalizer* list;
12654 gfc_finalizer** prev_link; /* For removing wrong entries from the list. */
12655 bool result = true;
12656 bool seen_scalar = false;
12657 gfc_symbol *vtab;
12658 gfc_component *c;
12659 gfc_symbol *parent = gfc_get_derived_super_type (derived);
12661 if (parent)
12662 gfc_resolve_finalizers (parent, finalizable);
12664 /* Ensure that derived-type components have a their finalizers resolved. */
12665 bool has_final = derived->f2k_derived && derived->f2k_derived->finalizers;
12666 for (c = derived->components; c; c = c->next)
12667 if (c->ts.type == BT_DERIVED
12668 && !c->attr.pointer && !c->attr.proc_pointer && !c->attr.allocatable)
12670 bool has_final2 = false;
12671 if (!gfc_resolve_finalizers (c->ts.u.derived, &has_final2))
12672 return false; /* Error. */
12673 has_final = has_final || has_final2;
12675 /* Return early if not finalizable. */
12676 if (!has_final)
12678 if (finalizable)
12679 *finalizable = false;
12680 return true;
12683 /* Walk over the list of finalizer-procedures, check them, and if any one
12684 does not fit in with the standard's definition, print an error and remove
12685 it from the list. */
12686 prev_link = &derived->f2k_derived->finalizers;
12687 for (list = derived->f2k_derived->finalizers; list; list = *prev_link)
12689 gfc_formal_arglist *dummy_args;
12690 gfc_symbol* arg;
12691 gfc_finalizer* i;
12692 int my_rank;
12694 /* Skip this finalizer if we already resolved it. */
12695 if (list->proc_tree)
12697 if (list->proc_tree->n.sym->formal->sym->as == NULL
12698 || list->proc_tree->n.sym->formal->sym->as->rank == 0)
12699 seen_scalar = true;
12700 prev_link = &(list->next);
12701 continue;
12704 /* Check this exists and is a SUBROUTINE. */
12705 if (!list->proc_sym->attr.subroutine)
12707 gfc_error ("FINAL procedure %qs at %L is not a SUBROUTINE",
12708 list->proc_sym->name, &list->where);
12709 goto error;
12712 /* We should have exactly one argument. */
12713 dummy_args = gfc_sym_get_dummy_args (list->proc_sym);
12714 if (!dummy_args || dummy_args->next)
12716 gfc_error ("FINAL procedure at %L must have exactly one argument",
12717 &list->where);
12718 goto error;
12720 arg = dummy_args->sym;
12722 /* This argument must be of our type. */
12723 if (arg->ts.type != BT_DERIVED || arg->ts.u.derived != derived)
12725 gfc_error ("Argument of FINAL procedure at %L must be of type %qs",
12726 &arg->declared_at, derived->name);
12727 goto error;
12730 /* It must neither be a pointer nor allocatable nor optional. */
12731 if (arg->attr.pointer)
12733 gfc_error ("Argument of FINAL procedure at %L must not be a POINTER",
12734 &arg->declared_at);
12735 goto error;
12737 if (arg->attr.allocatable)
12739 gfc_error ("Argument of FINAL procedure at %L must not be"
12740 " ALLOCATABLE", &arg->declared_at);
12741 goto error;
12743 if (arg->attr.optional)
12745 gfc_error ("Argument of FINAL procedure at %L must not be OPTIONAL",
12746 &arg->declared_at);
12747 goto error;
12750 /* It must not be INTENT(OUT). */
12751 if (arg->attr.intent == INTENT_OUT)
12753 gfc_error ("Argument of FINAL procedure at %L must not be"
12754 " INTENT(OUT)", &arg->declared_at);
12755 goto error;
12758 /* Warn if the procedure is non-scalar and not assumed shape. */
12759 if (warn_surprising && arg->as && arg->as->rank != 0
12760 && arg->as->type != AS_ASSUMED_SHAPE)
12761 gfc_warning (OPT_Wsurprising,
12762 "Non-scalar FINAL procedure at %L should have assumed"
12763 " shape argument", &arg->declared_at);
12765 /* Check that it does not match in kind and rank with a FINAL procedure
12766 defined earlier. To really loop over the *earlier* declarations,
12767 we need to walk the tail of the list as new ones were pushed at the
12768 front. */
12769 /* TODO: Handle kind parameters once they are implemented. */
12770 my_rank = (arg->as ? arg->as->rank : 0);
12771 for (i = list->next; i; i = i->next)
12773 gfc_formal_arglist *dummy_args;
12775 /* Argument list might be empty; that is an error signalled earlier,
12776 but we nevertheless continued resolving. */
12777 dummy_args = gfc_sym_get_dummy_args (i->proc_sym);
12778 if (dummy_args)
12780 gfc_symbol* i_arg = dummy_args->sym;
12781 const int i_rank = (i_arg->as ? i_arg->as->rank : 0);
12782 if (i_rank == my_rank)
12784 gfc_error ("FINAL procedure %qs declared at %L has the same"
12785 " rank (%d) as %qs",
12786 list->proc_sym->name, &list->where, my_rank,
12787 i->proc_sym->name);
12788 goto error;
12793 /* Is this the/a scalar finalizer procedure? */
12794 if (my_rank == 0)
12795 seen_scalar = true;
12797 /* Find the symtree for this procedure. */
12798 gcc_assert (!list->proc_tree);
12799 list->proc_tree = gfc_find_sym_in_symtree (list->proc_sym);
12801 prev_link = &list->next;
12802 continue;
12804 /* Remove wrong nodes immediately from the list so we don't risk any
12805 troubles in the future when they might fail later expectations. */
12806 error:
12807 i = list;
12808 *prev_link = list->next;
12809 gfc_free_finalizer (i);
12810 result = false;
12813 if (result == false)
12814 return false;
12816 /* Warn if we haven't seen a scalar finalizer procedure (but we know there
12817 were nodes in the list, must have been for arrays. It is surely a good
12818 idea to have a scalar version there if there's something to finalize. */
12819 if (warn_surprising && derived->f2k_derived->finalizers && !seen_scalar)
12820 gfc_warning (OPT_Wsurprising,
12821 "Only array FINAL procedures declared for derived type %qs"
12822 " defined at %L, suggest also scalar one",
12823 derived->name, &derived->declared_at);
12825 vtab = gfc_find_derived_vtab (derived);
12826 c = vtab->ts.u.derived->components->next->next->next->next->next;
12827 gfc_set_sym_referenced (c->initializer->symtree->n.sym);
12829 if (finalizable)
12830 *finalizable = true;
12832 return true;
12836 /* Check if two GENERIC targets are ambiguous and emit an error is they are. */
12838 static bool
12839 check_generic_tbp_ambiguity (gfc_tbp_generic* t1, gfc_tbp_generic* t2,
12840 const char* generic_name, locus where)
12842 gfc_symbol *sym1, *sym2;
12843 const char *pass1, *pass2;
12844 gfc_formal_arglist *dummy_args;
12846 gcc_assert (t1->specific && t2->specific);
12847 gcc_assert (!t1->specific->is_generic);
12848 gcc_assert (!t2->specific->is_generic);
12849 gcc_assert (t1->is_operator == t2->is_operator);
12851 sym1 = t1->specific->u.specific->n.sym;
12852 sym2 = t2->specific->u.specific->n.sym;
12854 if (sym1 == sym2)
12855 return true;
12857 /* Both must be SUBROUTINEs or both must be FUNCTIONs. */
12858 if (sym1->attr.subroutine != sym2->attr.subroutine
12859 || sym1->attr.function != sym2->attr.function)
12861 gfc_error ("%qs and %qs can't be mixed FUNCTION/SUBROUTINE for"
12862 " GENERIC %qs at %L",
12863 sym1->name, sym2->name, generic_name, &where);
12864 return false;
12867 /* Determine PASS arguments. */
12868 if (t1->specific->nopass)
12869 pass1 = NULL;
12870 else if (t1->specific->pass_arg)
12871 pass1 = t1->specific->pass_arg;
12872 else
12874 dummy_args = gfc_sym_get_dummy_args (t1->specific->u.specific->n.sym);
12875 if (dummy_args)
12876 pass1 = dummy_args->sym->name;
12877 else
12878 pass1 = NULL;
12880 if (t2->specific->nopass)
12881 pass2 = NULL;
12882 else if (t2->specific->pass_arg)
12883 pass2 = t2->specific->pass_arg;
12884 else
12886 dummy_args = gfc_sym_get_dummy_args (t2->specific->u.specific->n.sym);
12887 if (dummy_args)
12888 pass2 = dummy_args->sym->name;
12889 else
12890 pass2 = NULL;
12893 /* Compare the interfaces. */
12894 if (gfc_compare_interfaces (sym1, sym2, sym2->name, !t1->is_operator, 0,
12895 NULL, 0, pass1, pass2))
12897 gfc_error ("%qs and %qs for GENERIC %qs at %L are ambiguous",
12898 sym1->name, sym2->name, generic_name, &where);
12899 return false;
12902 return true;
12906 /* Worker function for resolving a generic procedure binding; this is used to
12907 resolve GENERIC as well as user and intrinsic OPERATOR typebound procedures.
12909 The difference between those cases is finding possible inherited bindings
12910 that are overridden, as one has to look for them in tb_sym_root,
12911 tb_uop_root or tb_op, respectively. Thus the caller must already find
12912 the super-type and set p->overridden correctly. */
12914 static bool
12915 resolve_tb_generic_targets (gfc_symbol* super_type,
12916 gfc_typebound_proc* p, const char* name)
12918 gfc_tbp_generic* target;
12919 gfc_symtree* first_target;
12920 gfc_symtree* inherited;
12922 gcc_assert (p && p->is_generic);
12924 /* Try to find the specific bindings for the symtrees in our target-list. */
12925 gcc_assert (p->u.generic);
12926 for (target = p->u.generic; target; target = target->next)
12927 if (!target->specific)
12929 gfc_typebound_proc* overridden_tbp;
12930 gfc_tbp_generic* g;
12931 const char* target_name;
12933 target_name = target->specific_st->name;
12935 /* Defined for this type directly. */
12936 if (target->specific_st->n.tb && !target->specific_st->n.tb->error)
12938 target->specific = target->specific_st->n.tb;
12939 goto specific_found;
12942 /* Look for an inherited specific binding. */
12943 if (super_type)
12945 inherited = gfc_find_typebound_proc (super_type, NULL, target_name,
12946 true, NULL);
12948 if (inherited)
12950 gcc_assert (inherited->n.tb);
12951 target->specific = inherited->n.tb;
12952 goto specific_found;
12956 gfc_error ("Undefined specific binding %qs as target of GENERIC %qs"
12957 " at %L", target_name, name, &p->where);
12958 return false;
12960 /* Once we've found the specific binding, check it is not ambiguous with
12961 other specifics already found or inherited for the same GENERIC. */
12962 specific_found:
12963 gcc_assert (target->specific);
12965 /* This must really be a specific binding! */
12966 if (target->specific->is_generic)
12968 gfc_error ("GENERIC %qs at %L must target a specific binding,"
12969 " %qs is GENERIC, too", name, &p->where, target_name);
12970 return false;
12973 /* Check those already resolved on this type directly. */
12974 for (g = p->u.generic; g; g = g->next)
12975 if (g != target && g->specific
12976 && !check_generic_tbp_ambiguity (target, g, name, p->where))
12977 return false;
12979 /* Check for ambiguity with inherited specific targets. */
12980 for (overridden_tbp = p->overridden; overridden_tbp;
12981 overridden_tbp = overridden_tbp->overridden)
12982 if (overridden_tbp->is_generic)
12984 for (g = overridden_tbp->u.generic; g; g = g->next)
12986 gcc_assert (g->specific);
12987 if (!check_generic_tbp_ambiguity (target, g, name, p->where))
12988 return false;
12993 /* If we attempt to "overwrite" a specific binding, this is an error. */
12994 if (p->overridden && !p->overridden->is_generic)
12996 gfc_error ("GENERIC %qs at %L can't overwrite specific binding with"
12997 " the same name", name, &p->where);
12998 return false;
13001 /* Take the SUBROUTINE/FUNCTION attributes of the first specific target, as
13002 all must have the same attributes here. */
13003 first_target = p->u.generic->specific->u.specific;
13004 gcc_assert (first_target);
13005 p->subroutine = first_target->n.sym->attr.subroutine;
13006 p->function = first_target->n.sym->attr.function;
13008 return true;
13012 /* Resolve a GENERIC procedure binding for a derived type. */
13014 static bool
13015 resolve_typebound_generic (gfc_symbol* derived, gfc_symtree* st)
13017 gfc_symbol* super_type;
13019 /* Find the overridden binding if any. */
13020 st->n.tb->overridden = NULL;
13021 super_type = gfc_get_derived_super_type (derived);
13022 if (super_type)
13024 gfc_symtree* overridden;
13025 overridden = gfc_find_typebound_proc (super_type, NULL, st->name,
13026 true, NULL);
13028 if (overridden && overridden->n.tb)
13029 st->n.tb->overridden = overridden->n.tb;
13032 /* Resolve using worker function. */
13033 return resolve_tb_generic_targets (super_type, st->n.tb, st->name);
13037 /* Retrieve the target-procedure of an operator binding and do some checks in
13038 common for intrinsic and user-defined type-bound operators. */
13040 static gfc_symbol*
13041 get_checked_tb_operator_target (gfc_tbp_generic* target, locus where)
13043 gfc_symbol* target_proc;
13045 gcc_assert (target->specific && !target->specific->is_generic);
13046 target_proc = target->specific->u.specific->n.sym;
13047 gcc_assert (target_proc);
13049 /* F08:C468. All operator bindings must have a passed-object dummy argument. */
13050 if (target->specific->nopass)
13052 gfc_error ("Type-bound operator at %L can't be NOPASS", &where);
13053 return NULL;
13056 return target_proc;
13060 /* Resolve a type-bound intrinsic operator. */
13062 static bool
13063 resolve_typebound_intrinsic_op (gfc_symbol* derived, gfc_intrinsic_op op,
13064 gfc_typebound_proc* p)
13066 gfc_symbol* super_type;
13067 gfc_tbp_generic* target;
13069 /* If there's already an error here, do nothing (but don't fail again). */
13070 if (p->error)
13071 return true;
13073 /* Operators should always be GENERIC bindings. */
13074 gcc_assert (p->is_generic);
13076 /* Look for an overridden binding. */
13077 super_type = gfc_get_derived_super_type (derived);
13078 if (super_type && super_type->f2k_derived)
13079 p->overridden = gfc_find_typebound_intrinsic_op (super_type, NULL,
13080 op, true, NULL);
13081 else
13082 p->overridden = NULL;
13084 /* Resolve general GENERIC properties using worker function. */
13085 if (!resolve_tb_generic_targets (super_type, p, gfc_op2string(op)))
13086 goto error;
13088 /* Check the targets to be procedures of correct interface. */
13089 for (target = p->u.generic; target; target = target->next)
13091 gfc_symbol* target_proc;
13093 target_proc = get_checked_tb_operator_target (target, p->where);
13094 if (!target_proc)
13095 goto error;
13097 if (!gfc_check_operator_interface (target_proc, op, p->where))
13098 goto error;
13100 /* Add target to non-typebound operator list. */
13101 if (!target->specific->deferred && !derived->attr.use_assoc
13102 && p->access != ACCESS_PRIVATE && derived->ns == gfc_current_ns)
13104 gfc_interface *head, *intr;
13106 /* Preempt 'gfc_check_new_interface' for submodules, where the
13107 mechanism for handling module procedures winds up resolving
13108 operator interfaces twice and would otherwise cause an error. */
13109 for (intr = derived->ns->op[op]; intr; intr = intr->next)
13110 if (intr->sym == target_proc
13111 && target_proc->attr.used_in_submodule)
13112 return true;
13114 if (!gfc_check_new_interface (derived->ns->op[op],
13115 target_proc, p->where))
13116 return false;
13117 head = derived->ns->op[op];
13118 intr = gfc_get_interface ();
13119 intr->sym = target_proc;
13120 intr->where = p->where;
13121 intr->next = head;
13122 derived->ns->op[op] = intr;
13126 return true;
13128 error:
13129 p->error = 1;
13130 return false;
13134 /* Resolve a type-bound user operator (tree-walker callback). */
13136 static gfc_symbol* resolve_bindings_derived;
13137 static bool resolve_bindings_result;
13139 static bool check_uop_procedure (gfc_symbol* sym, locus where);
13141 static void
13142 resolve_typebound_user_op (gfc_symtree* stree)
13144 gfc_symbol* super_type;
13145 gfc_tbp_generic* target;
13147 gcc_assert (stree && stree->n.tb);
13149 if (stree->n.tb->error)
13150 return;
13152 /* Operators should always be GENERIC bindings. */
13153 gcc_assert (stree->n.tb->is_generic);
13155 /* Find overridden procedure, if any. */
13156 super_type = gfc_get_derived_super_type (resolve_bindings_derived);
13157 if (super_type && super_type->f2k_derived)
13159 gfc_symtree* overridden;
13160 overridden = gfc_find_typebound_user_op (super_type, NULL,
13161 stree->name, true, NULL);
13163 if (overridden && overridden->n.tb)
13164 stree->n.tb->overridden = overridden->n.tb;
13166 else
13167 stree->n.tb->overridden = NULL;
13169 /* Resolve basically using worker function. */
13170 if (!resolve_tb_generic_targets (super_type, stree->n.tb, stree->name))
13171 goto error;
13173 /* Check the targets to be functions of correct interface. */
13174 for (target = stree->n.tb->u.generic; target; target = target->next)
13176 gfc_symbol* target_proc;
13178 target_proc = get_checked_tb_operator_target (target, stree->n.tb->where);
13179 if (!target_proc)
13180 goto error;
13182 if (!check_uop_procedure (target_proc, stree->n.tb->where))
13183 goto error;
13186 return;
13188 error:
13189 resolve_bindings_result = false;
13190 stree->n.tb->error = 1;
13194 /* Resolve the type-bound procedures for a derived type. */
13196 static void
13197 resolve_typebound_procedure (gfc_symtree* stree)
13199 gfc_symbol* proc;
13200 locus where;
13201 gfc_symbol* me_arg;
13202 gfc_symbol* super_type;
13203 gfc_component* comp;
13205 gcc_assert (stree);
13207 /* Undefined specific symbol from GENERIC target definition. */
13208 if (!stree->n.tb)
13209 return;
13211 if (stree->n.tb->error)
13212 return;
13214 /* If this is a GENERIC binding, use that routine. */
13215 if (stree->n.tb->is_generic)
13217 if (!resolve_typebound_generic (resolve_bindings_derived, stree))
13218 goto error;
13219 return;
13222 /* Get the target-procedure to check it. */
13223 gcc_assert (!stree->n.tb->is_generic);
13224 gcc_assert (stree->n.tb->u.specific);
13225 proc = stree->n.tb->u.specific->n.sym;
13226 where = stree->n.tb->where;
13228 /* Default access should already be resolved from the parser. */
13229 gcc_assert (stree->n.tb->access != ACCESS_UNKNOWN);
13231 if (stree->n.tb->deferred)
13233 if (!check_proc_interface (proc, &where))
13234 goto error;
13236 else
13238 /* Check for F08:C465. */
13239 if ((!proc->attr.subroutine && !proc->attr.function)
13240 || (proc->attr.proc != PROC_MODULE
13241 && proc->attr.if_source != IFSRC_IFBODY)
13242 || proc->attr.abstract)
13244 gfc_error ("%qs must be a module procedure or an external procedure with"
13245 " an explicit interface at %L", proc->name, &where);
13246 goto error;
13250 stree->n.tb->subroutine = proc->attr.subroutine;
13251 stree->n.tb->function = proc->attr.function;
13253 /* Find the super-type of the current derived type. We could do this once and
13254 store in a global if speed is needed, but as long as not I believe this is
13255 more readable and clearer. */
13256 super_type = gfc_get_derived_super_type (resolve_bindings_derived);
13258 /* If PASS, resolve and check arguments if not already resolved / loaded
13259 from a .mod file. */
13260 if (!stree->n.tb->nopass && stree->n.tb->pass_arg_num == 0)
13262 gfc_formal_arglist *dummy_args;
13264 dummy_args = gfc_sym_get_dummy_args (proc);
13265 if (stree->n.tb->pass_arg)
13267 gfc_formal_arglist *i;
13269 /* If an explicit passing argument name is given, walk the arg-list
13270 and look for it. */
13272 me_arg = NULL;
13273 stree->n.tb->pass_arg_num = 1;
13274 for (i = dummy_args; i; i = i->next)
13276 if (!strcmp (i->sym->name, stree->n.tb->pass_arg))
13278 me_arg = i->sym;
13279 break;
13281 ++stree->n.tb->pass_arg_num;
13284 if (!me_arg)
13286 gfc_error ("Procedure %qs with PASS(%s) at %L has no"
13287 " argument %qs",
13288 proc->name, stree->n.tb->pass_arg, &where,
13289 stree->n.tb->pass_arg);
13290 goto error;
13293 else
13295 /* Otherwise, take the first one; there should in fact be at least
13296 one. */
13297 stree->n.tb->pass_arg_num = 1;
13298 if (!dummy_args)
13300 gfc_error ("Procedure %qs with PASS at %L must have at"
13301 " least one argument", proc->name, &where);
13302 goto error;
13304 me_arg = dummy_args->sym;
13307 /* Now check that the argument-type matches and the passed-object
13308 dummy argument is generally fine. */
13310 gcc_assert (me_arg);
13312 if (me_arg->ts.type != BT_CLASS)
13314 gfc_error ("Non-polymorphic passed-object dummy argument of %qs"
13315 " at %L", proc->name, &where);
13316 goto error;
13319 if (CLASS_DATA (me_arg)->ts.u.derived
13320 != resolve_bindings_derived)
13322 gfc_error ("Argument %qs of %qs with PASS(%s) at %L must be of"
13323 " the derived-type %qs", me_arg->name, proc->name,
13324 me_arg->name, &where, resolve_bindings_derived->name);
13325 goto error;
13328 gcc_assert (me_arg->ts.type == BT_CLASS);
13329 if (CLASS_DATA (me_arg)->as && CLASS_DATA (me_arg)->as->rank != 0)
13331 gfc_error ("Passed-object dummy argument of %qs at %L must be"
13332 " scalar", proc->name, &where);
13333 goto error;
13335 if (CLASS_DATA (me_arg)->attr.allocatable)
13337 gfc_error ("Passed-object dummy argument of %qs at %L must not"
13338 " be ALLOCATABLE", proc->name, &where);
13339 goto error;
13341 if (CLASS_DATA (me_arg)->attr.class_pointer)
13343 gfc_error ("Passed-object dummy argument of %qs at %L must not"
13344 " be POINTER", proc->name, &where);
13345 goto error;
13349 /* If we are extending some type, check that we don't override a procedure
13350 flagged NON_OVERRIDABLE. */
13351 stree->n.tb->overridden = NULL;
13352 if (super_type)
13354 gfc_symtree* overridden;
13355 overridden = gfc_find_typebound_proc (super_type, NULL,
13356 stree->name, true, NULL);
13358 if (overridden)
13360 if (overridden->n.tb)
13361 stree->n.tb->overridden = overridden->n.tb;
13363 if (!gfc_check_typebound_override (stree, overridden))
13364 goto error;
13368 /* See if there's a name collision with a component directly in this type. */
13369 for (comp = resolve_bindings_derived->components; comp; comp = comp->next)
13370 if (!strcmp (comp->name, stree->name))
13372 gfc_error ("Procedure %qs at %L has the same name as a component of"
13373 " %qs",
13374 stree->name, &where, resolve_bindings_derived->name);
13375 goto error;
13378 /* Try to find a name collision with an inherited component. */
13379 if (super_type && gfc_find_component (super_type, stree->name, true, true,
13380 NULL))
13382 gfc_error ("Procedure %qs at %L has the same name as an inherited"
13383 " component of %qs",
13384 stree->name, &where, resolve_bindings_derived->name);
13385 goto error;
13388 stree->n.tb->error = 0;
13389 return;
13391 error:
13392 resolve_bindings_result = false;
13393 stree->n.tb->error = 1;
13397 static bool
13398 resolve_typebound_procedures (gfc_symbol* derived)
13400 int op;
13401 gfc_symbol* super_type;
13403 if (!derived->f2k_derived || !derived->f2k_derived->tb_sym_root)
13404 return true;
13406 super_type = gfc_get_derived_super_type (derived);
13407 if (super_type)
13408 resolve_symbol (super_type);
13410 resolve_bindings_derived = derived;
13411 resolve_bindings_result = true;
13413 if (derived->f2k_derived->tb_sym_root)
13414 gfc_traverse_symtree (derived->f2k_derived->tb_sym_root,
13415 &resolve_typebound_procedure);
13417 if (derived->f2k_derived->tb_uop_root)
13418 gfc_traverse_symtree (derived->f2k_derived->tb_uop_root,
13419 &resolve_typebound_user_op);
13421 for (op = 0; op != GFC_INTRINSIC_OPS; ++op)
13423 gfc_typebound_proc* p = derived->f2k_derived->tb_op[op];
13424 if (p && !resolve_typebound_intrinsic_op (derived,
13425 (gfc_intrinsic_op)op, p))
13426 resolve_bindings_result = false;
13429 return resolve_bindings_result;
13433 /* Add a derived type to the dt_list. The dt_list is used in trans-types.c
13434 to give all identical derived types the same backend_decl. */
13435 static void
13436 add_dt_to_dt_list (gfc_symbol *derived)
13438 gfc_dt_list *dt_list;
13440 for (dt_list = gfc_derived_types; dt_list; dt_list = dt_list->next)
13441 if (derived == dt_list->derived)
13442 return;
13444 dt_list = gfc_get_dt_list ();
13445 dt_list->next = gfc_derived_types;
13446 dt_list->derived = derived;
13447 gfc_derived_types = dt_list;
13451 /* Ensure that a derived-type is really not abstract, meaning that every
13452 inherited DEFERRED binding is overridden by a non-DEFERRED one. */
13454 static bool
13455 ensure_not_abstract_walker (gfc_symbol* sub, gfc_symtree* st)
13457 if (!st)
13458 return true;
13460 if (!ensure_not_abstract_walker (sub, st->left))
13461 return false;
13462 if (!ensure_not_abstract_walker (sub, st->right))
13463 return false;
13465 if (st->n.tb && st->n.tb->deferred)
13467 gfc_symtree* overriding;
13468 overriding = gfc_find_typebound_proc (sub, NULL, st->name, true, NULL);
13469 if (!overriding)
13470 return false;
13471 gcc_assert (overriding->n.tb);
13472 if (overriding->n.tb->deferred)
13474 gfc_error ("Derived-type %qs declared at %L must be ABSTRACT because"
13475 " %qs is DEFERRED and not overridden",
13476 sub->name, &sub->declared_at, st->name);
13477 return false;
13481 return true;
13484 static bool
13485 ensure_not_abstract (gfc_symbol* sub, gfc_symbol* ancestor)
13487 /* The algorithm used here is to recursively travel up the ancestry of sub
13488 and for each ancestor-type, check all bindings. If any of them is
13489 DEFERRED, look it up starting from sub and see if the found (overriding)
13490 binding is not DEFERRED.
13491 This is not the most efficient way to do this, but it should be ok and is
13492 clearer than something sophisticated. */
13494 gcc_assert (ancestor && !sub->attr.abstract);
13496 if (!ancestor->attr.abstract)
13497 return true;
13499 /* Walk bindings of this ancestor. */
13500 if (ancestor->f2k_derived)
13502 bool t;
13503 t = ensure_not_abstract_walker (sub, ancestor->f2k_derived->tb_sym_root);
13504 if (!t)
13505 return false;
13508 /* Find next ancestor type and recurse on it. */
13509 ancestor = gfc_get_derived_super_type (ancestor);
13510 if (ancestor)
13511 return ensure_not_abstract (sub, ancestor);
13513 return true;
13517 /* This check for typebound defined assignments is done recursively
13518 since the order in which derived types are resolved is not always in
13519 order of the declarations. */
13521 static void
13522 check_defined_assignments (gfc_symbol *derived)
13524 gfc_component *c;
13526 for (c = derived->components; c; c = c->next)
13528 if (!gfc_bt_struct (c->ts.type)
13529 || c->attr.pointer
13530 || c->attr.allocatable
13531 || c->attr.proc_pointer_comp
13532 || c->attr.class_pointer
13533 || c->attr.proc_pointer)
13534 continue;
13536 if (c->ts.u.derived->attr.defined_assign_comp
13537 || (c->ts.u.derived->f2k_derived
13538 && c->ts.u.derived->f2k_derived->tb_op[INTRINSIC_ASSIGN]))
13540 derived->attr.defined_assign_comp = 1;
13541 return;
13544 check_defined_assignments (c->ts.u.derived);
13545 if (c->ts.u.derived->attr.defined_assign_comp)
13547 derived->attr.defined_assign_comp = 1;
13548 return;
13554 /* Resolve a single component of a derived type or structure. */
13556 static bool
13557 resolve_component (gfc_component *c, gfc_symbol *sym)
13559 gfc_symbol *super_type;
13561 if (c->attr.artificial)
13562 return true;
13564 /* Do not allow vtype components to be resolved in nameless namespaces
13565 such as block data because the procedure pointers will cause ICEs
13566 and vtables are not needed in these contexts. */
13567 if (sym->attr.vtype && sym->attr.use_assoc
13568 && sym->ns->proc_name == NULL)
13569 return true;
13571 /* F2008, C442. */
13572 if ((!sym->attr.is_class || c != sym->components)
13573 && c->attr.codimension
13574 && (!c->attr.allocatable || (c->as && c->as->type != AS_DEFERRED)))
13576 gfc_error ("Coarray component %qs at %L must be allocatable with "
13577 "deferred shape", c->name, &c->loc);
13578 return false;
13581 /* F2008, C443. */
13582 if (c->attr.codimension && c->ts.type == BT_DERIVED
13583 && c->ts.u.derived->ts.is_iso_c)
13585 gfc_error ("Component %qs at %L of TYPE(C_PTR) or TYPE(C_FUNPTR) "
13586 "shall not be a coarray", c->name, &c->loc);
13587 return false;
13590 /* F2008, C444. */
13591 if (gfc_bt_struct (c->ts.type) && c->ts.u.derived->attr.coarray_comp
13592 && (c->attr.codimension || c->attr.pointer || c->attr.dimension
13593 || c->attr.allocatable))
13595 gfc_error ("Component %qs at %L with coarray component "
13596 "shall be a nonpointer, nonallocatable scalar",
13597 c->name, &c->loc);
13598 return false;
13601 /* F2008, C448. */
13602 if (c->attr.contiguous && (!c->attr.dimension || !c->attr.pointer))
13604 gfc_error ("Component %qs at %L has the CONTIGUOUS attribute but "
13605 "is not an array pointer", c->name, &c->loc);
13606 return false;
13609 /* F2003, 15.2.1 - length has to be one. */
13610 if (sym->attr.is_bind_c && c->ts.type == BT_CHARACTER
13611 && (c->ts.u.cl == NULL || c->ts.u.cl->length == NULL
13612 || !gfc_is_constant_expr (c->ts.u.cl->length)
13613 || mpz_cmp_si (c->ts.u.cl->length->value.integer, 1) != 0))
13615 gfc_error ("Component %qs of BIND(C) type at %L must have length one",
13616 c->name, &c->loc);
13617 return false;
13620 if (c->attr.proc_pointer && c->ts.interface)
13622 gfc_symbol *ifc = c->ts.interface;
13624 if (!sym->attr.vtype && !check_proc_interface (ifc, &c->loc))
13626 c->tb->error = 1;
13627 return false;
13630 if (ifc->attr.if_source || ifc->attr.intrinsic)
13632 /* Resolve interface and copy attributes. */
13633 if (ifc->formal && !ifc->formal_ns)
13634 resolve_symbol (ifc);
13635 if (ifc->attr.intrinsic)
13636 gfc_resolve_intrinsic (ifc, &ifc->declared_at);
13638 if (ifc->result)
13640 c->ts = ifc->result->ts;
13641 c->attr.allocatable = ifc->result->attr.allocatable;
13642 c->attr.pointer = ifc->result->attr.pointer;
13643 c->attr.dimension = ifc->result->attr.dimension;
13644 c->as = gfc_copy_array_spec (ifc->result->as);
13645 c->attr.class_ok = ifc->result->attr.class_ok;
13647 else
13649 c->ts = ifc->ts;
13650 c->attr.allocatable = ifc->attr.allocatable;
13651 c->attr.pointer = ifc->attr.pointer;
13652 c->attr.dimension = ifc->attr.dimension;
13653 c->as = gfc_copy_array_spec (ifc->as);
13654 c->attr.class_ok = ifc->attr.class_ok;
13656 c->ts.interface = ifc;
13657 c->attr.function = ifc->attr.function;
13658 c->attr.subroutine = ifc->attr.subroutine;
13660 c->attr.pure = ifc->attr.pure;
13661 c->attr.elemental = ifc->attr.elemental;
13662 c->attr.recursive = ifc->attr.recursive;
13663 c->attr.always_explicit = ifc->attr.always_explicit;
13664 c->attr.ext_attr |= ifc->attr.ext_attr;
13665 /* Copy char length. */
13666 if (ifc->ts.type == BT_CHARACTER && ifc->ts.u.cl)
13668 gfc_charlen *cl = gfc_new_charlen (sym->ns, ifc->ts.u.cl);
13669 if (cl->length && !cl->resolved
13670 && !gfc_resolve_expr (cl->length))
13672 c->tb->error = 1;
13673 return false;
13675 c->ts.u.cl = cl;
13679 else if (c->attr.proc_pointer && c->ts.type == BT_UNKNOWN)
13681 /* Since PPCs are not implicitly typed, a PPC without an explicit
13682 interface must be a subroutine. */
13683 gfc_add_subroutine (&c->attr, c->name, &c->loc);
13686 /* Procedure pointer components: Check PASS arg. */
13687 if (c->attr.proc_pointer && !c->tb->nopass && c->tb->pass_arg_num == 0
13688 && !sym->attr.vtype)
13690 gfc_symbol* me_arg;
13692 if (c->tb->pass_arg)
13694 gfc_formal_arglist* i;
13696 /* If an explicit passing argument name is given, walk the arg-list
13697 and look for it. */
13699 me_arg = NULL;
13700 c->tb->pass_arg_num = 1;
13701 for (i = c->ts.interface->formal; i; i = i->next)
13703 if (!strcmp (i->sym->name, c->tb->pass_arg))
13705 me_arg = i->sym;
13706 break;
13708 c->tb->pass_arg_num++;
13711 if (!me_arg)
13713 gfc_error ("Procedure pointer component %qs with PASS(%s) "
13714 "at %L has no argument %qs", c->name,
13715 c->tb->pass_arg, &c->loc, c->tb->pass_arg);
13716 c->tb->error = 1;
13717 return false;
13720 else
13722 /* Otherwise, take the first one; there should in fact be at least
13723 one. */
13724 c->tb->pass_arg_num = 1;
13725 if (!c->ts.interface->formal)
13727 gfc_error ("Procedure pointer component %qs with PASS at %L "
13728 "must have at least one argument",
13729 c->name, &c->loc);
13730 c->tb->error = 1;
13731 return false;
13733 me_arg = c->ts.interface->formal->sym;
13736 /* Now check that the argument-type matches. */
13737 gcc_assert (me_arg);
13738 if ((me_arg->ts.type != BT_DERIVED && me_arg->ts.type != BT_CLASS)
13739 || (me_arg->ts.type == BT_DERIVED && me_arg->ts.u.derived != sym)
13740 || (me_arg->ts.type == BT_CLASS
13741 && CLASS_DATA (me_arg)->ts.u.derived != sym))
13743 gfc_error ("Argument %qs of %qs with PASS(%s) at %L must be of"
13744 " the derived type %qs", me_arg->name, c->name,
13745 me_arg->name, &c->loc, sym->name);
13746 c->tb->error = 1;
13747 return false;
13750 /* Check for F03:C453. */
13751 if (CLASS_DATA (me_arg)->attr.dimension)
13753 gfc_error ("Argument %qs of %qs with PASS(%s) at %L "
13754 "must be scalar", me_arg->name, c->name, me_arg->name,
13755 &c->loc);
13756 c->tb->error = 1;
13757 return false;
13760 if (CLASS_DATA (me_arg)->attr.class_pointer)
13762 gfc_error ("Argument %qs of %qs with PASS(%s) at %L "
13763 "may not have the POINTER attribute", me_arg->name,
13764 c->name, me_arg->name, &c->loc);
13765 c->tb->error = 1;
13766 return false;
13769 if (CLASS_DATA (me_arg)->attr.allocatable)
13771 gfc_error ("Argument %qs of %qs with PASS(%s) at %L "
13772 "may not be ALLOCATABLE", me_arg->name, c->name,
13773 me_arg->name, &c->loc);
13774 c->tb->error = 1;
13775 return false;
13778 if (gfc_type_is_extensible (sym) && me_arg->ts.type != BT_CLASS)
13780 gfc_error ("Non-polymorphic passed-object dummy argument of %qs"
13781 " at %L", c->name, &c->loc);
13782 return false;
13787 /* Check type-spec if this is not the parent-type component. */
13788 if (((sym->attr.is_class
13789 && (!sym->components->ts.u.derived->attr.extension
13790 || c != sym->components->ts.u.derived->components))
13791 || (!sym->attr.is_class
13792 && (!sym->attr.extension || c != sym->components)))
13793 && !sym->attr.vtype
13794 && !resolve_typespec_used (&c->ts, &c->loc, c->name))
13795 return false;
13797 super_type = gfc_get_derived_super_type (sym);
13799 /* If this type is an extension, set the accessibility of the parent
13800 component. */
13801 if (super_type
13802 && ((sym->attr.is_class
13803 && c == sym->components->ts.u.derived->components)
13804 || (!sym->attr.is_class && c == sym->components))
13805 && strcmp (super_type->name, c->name) == 0)
13806 c->attr.access = super_type->attr.access;
13808 /* If this type is an extension, see if this component has the same name
13809 as an inherited type-bound procedure. */
13810 if (super_type && !sym->attr.is_class
13811 && gfc_find_typebound_proc (super_type, NULL, c->name, true, NULL))
13813 gfc_error ("Component %qs of %qs at %L has the same name as an"
13814 " inherited type-bound procedure",
13815 c->name, sym->name, &c->loc);
13816 return false;
13819 if (c->ts.type == BT_CHARACTER && !c->attr.proc_pointer
13820 && !c->ts.deferred)
13822 if (c->ts.u.cl->length == NULL
13823 || (!resolve_charlen(c->ts.u.cl))
13824 || !gfc_is_constant_expr (c->ts.u.cl->length))
13826 gfc_error ("Character length of component %qs needs to "
13827 "be a constant specification expression at %L",
13828 c->name,
13829 c->ts.u.cl->length ? &c->ts.u.cl->length->where : &c->loc);
13830 return false;
13834 if (c->ts.type == BT_CHARACTER && c->ts.deferred
13835 && !c->attr.pointer && !c->attr.allocatable)
13837 gfc_error ("Character component %qs of %qs at %L with deferred "
13838 "length must be a POINTER or ALLOCATABLE",
13839 c->name, sym->name, &c->loc);
13840 return false;
13843 /* Add the hidden deferred length field. */
13844 if (c->ts.type == BT_CHARACTER
13845 && (c->ts.deferred || c->attr.pdt_string)
13846 && !c->attr.function
13847 && !sym->attr.is_class)
13849 char name[GFC_MAX_SYMBOL_LEN+9];
13850 gfc_component *strlen;
13851 sprintf (name, "_%s_length", c->name);
13852 strlen = gfc_find_component (sym, name, true, true, NULL);
13853 if (strlen == NULL)
13855 if (!gfc_add_component (sym, name, &strlen))
13856 return false;
13857 strlen->ts.type = BT_INTEGER;
13858 strlen->ts.kind = gfc_charlen_int_kind;
13859 strlen->attr.access = ACCESS_PRIVATE;
13860 strlen->attr.artificial = 1;
13864 if (c->ts.type == BT_DERIVED
13865 && sym->component_access != ACCESS_PRIVATE
13866 && gfc_check_symbol_access (sym)
13867 && !is_sym_host_assoc (c->ts.u.derived, sym->ns)
13868 && !c->ts.u.derived->attr.use_assoc
13869 && !gfc_check_symbol_access (c->ts.u.derived)
13870 && !gfc_notify_std (GFC_STD_F2003, "the component %qs is a "
13871 "PRIVATE type and cannot be a component of "
13872 "%qs, which is PUBLIC at %L", c->name,
13873 sym->name, &sym->declared_at))
13874 return false;
13876 if ((sym->attr.sequence || sym->attr.is_bind_c) && c->ts.type == BT_CLASS)
13878 gfc_error ("Polymorphic component %s at %L in SEQUENCE or BIND(C) "
13879 "type %s", c->name, &c->loc, sym->name);
13880 return false;
13883 if (sym->attr.sequence)
13885 if (c->ts.type == BT_DERIVED && c->ts.u.derived->attr.sequence == 0)
13887 gfc_error ("Component %s of SEQUENCE type declared at %L does "
13888 "not have the SEQUENCE attribute",
13889 c->ts.u.derived->name, &sym->declared_at);
13890 return false;
13894 if (c->ts.type == BT_DERIVED && c->ts.u.derived->attr.generic)
13895 c->ts.u.derived = gfc_find_dt_in_generic (c->ts.u.derived);
13896 else if (c->ts.type == BT_CLASS && c->attr.class_ok
13897 && CLASS_DATA (c)->ts.u.derived->attr.generic)
13898 CLASS_DATA (c)->ts.u.derived
13899 = gfc_find_dt_in_generic (CLASS_DATA (c)->ts.u.derived);
13901 if (!sym->attr.is_class && c->ts.type == BT_DERIVED && !sym->attr.vtype
13902 && c->attr.pointer && c->ts.u.derived->components == NULL
13903 && !c->ts.u.derived->attr.zero_comp)
13905 gfc_error ("The pointer component %qs of %qs at %L is a type "
13906 "that has not been declared", c->name, sym->name,
13907 &c->loc);
13908 return false;
13911 if (c->ts.type == BT_CLASS && c->attr.class_ok
13912 && CLASS_DATA (c)->attr.class_pointer
13913 && CLASS_DATA (c)->ts.u.derived->components == NULL
13914 && !CLASS_DATA (c)->ts.u.derived->attr.zero_comp
13915 && !UNLIMITED_POLY (c))
13917 gfc_error ("The pointer component %qs of %qs at %L is a type "
13918 "that has not been declared", c->name, sym->name,
13919 &c->loc);
13920 return false;
13923 /* If an allocatable component derived type is of the same type as
13924 the enclosing derived type, we need a vtable generating so that
13925 the __deallocate procedure is created. */
13926 if ((c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
13927 && c->ts.u.derived == sym && c->attr.allocatable == 1)
13928 gfc_find_vtab (&c->ts);
13930 /* Ensure that all the derived type components are put on the
13931 derived type list; even in formal namespaces, where derived type
13932 pointer components might not have been declared. */
13933 if (c->ts.type == BT_DERIVED
13934 && c->ts.u.derived
13935 && c->ts.u.derived->components
13936 && c->attr.pointer
13937 && sym != c->ts.u.derived)
13938 add_dt_to_dt_list (c->ts.u.derived);
13940 if (!gfc_resolve_array_spec (c->as,
13941 !(c->attr.pointer || c->attr.proc_pointer
13942 || c->attr.allocatable)))
13943 return false;
13945 if (c->initializer && !sym->attr.vtype
13946 && !c->attr.pdt_kind && !c->attr.pdt_len
13947 && !gfc_check_assign_symbol (sym, c, c->initializer))
13948 return false;
13950 return true;
13954 /* Be nice about the locus for a structure expression - show the locus of the
13955 first non-null sub-expression if we can. */
13957 static locus *
13958 cons_where (gfc_expr *struct_expr)
13960 gfc_constructor *cons;
13962 gcc_assert (struct_expr && struct_expr->expr_type == EXPR_STRUCTURE);
13964 cons = gfc_constructor_first (struct_expr->value.constructor);
13965 for (; cons; cons = gfc_constructor_next (cons))
13967 if (cons->expr && cons->expr->expr_type != EXPR_NULL)
13968 return &cons->expr->where;
13971 return &struct_expr->where;
13974 /* Resolve the components of a structure type. Much less work than derived
13975 types. */
13977 static bool
13978 resolve_fl_struct (gfc_symbol *sym)
13980 gfc_component *c;
13981 gfc_expr *init = NULL;
13982 bool success;
13984 /* Make sure UNIONs do not have overlapping initializers. */
13985 if (sym->attr.flavor == FL_UNION)
13987 for (c = sym->components; c; c = c->next)
13989 if (init && c->initializer)
13991 gfc_error ("Conflicting initializers in union at %L and %L",
13992 cons_where (init), cons_where (c->initializer));
13993 gfc_free_expr (c->initializer);
13994 c->initializer = NULL;
13996 if (init == NULL)
13997 init = c->initializer;
14001 success = true;
14002 for (c = sym->components; c; c = c->next)
14003 if (!resolve_component (c, sym))
14004 success = false;
14006 if (!success)
14007 return false;
14009 if (sym->components)
14010 add_dt_to_dt_list (sym);
14012 return true;
14016 /* Resolve the components of a derived type. This does not have to wait until
14017 resolution stage, but can be done as soon as the dt declaration has been
14018 parsed. */
14020 static bool
14021 resolve_fl_derived0 (gfc_symbol *sym)
14023 gfc_symbol* super_type;
14024 gfc_component *c;
14025 gfc_formal_arglist *f;
14026 bool success;
14028 if (sym->attr.unlimited_polymorphic)
14029 return true;
14031 super_type = gfc_get_derived_super_type (sym);
14033 /* F2008, C432. */
14034 if (super_type && sym->attr.coarray_comp && !super_type->attr.coarray_comp)
14036 gfc_error ("As extending type %qs at %L has a coarray component, "
14037 "parent type %qs shall also have one", sym->name,
14038 &sym->declared_at, super_type->name);
14039 return false;
14042 /* Ensure the extended type gets resolved before we do. */
14043 if (super_type && !resolve_fl_derived0 (super_type))
14044 return false;
14046 /* An ABSTRACT type must be extensible. */
14047 if (sym->attr.abstract && !gfc_type_is_extensible (sym))
14049 gfc_error ("Non-extensible derived-type %qs at %L must not be ABSTRACT",
14050 sym->name, &sym->declared_at);
14051 return false;
14054 c = (sym->attr.is_class) ? sym->components->ts.u.derived->components
14055 : sym->components;
14057 success = true;
14058 for ( ; c != NULL; c = c->next)
14059 if (!resolve_component (c, sym))
14060 success = false;
14062 if (!success)
14063 return false;
14065 /* Now add the caf token field, where needed. */
14066 if (flag_coarray != GFC_FCOARRAY_NONE
14067 && !sym->attr.is_class && !sym->attr.vtype)
14069 for (c = sym->components; c; c = c->next)
14070 if (!c->attr.dimension && !c->attr.codimension
14071 && (c->attr.allocatable || c->attr.pointer))
14073 char name[GFC_MAX_SYMBOL_LEN+9];
14074 gfc_component *token;
14075 sprintf (name, "_caf_%s", c->name);
14076 token = gfc_find_component (sym, name, true, true, NULL);
14077 if (token == NULL)
14079 if (!gfc_add_component (sym, name, &token))
14080 return false;
14081 token->ts.type = BT_VOID;
14082 token->ts.kind = gfc_default_integer_kind;
14083 token->attr.access = ACCESS_PRIVATE;
14084 token->attr.artificial = 1;
14085 token->attr.caf_token = 1;
14090 check_defined_assignments (sym);
14092 if (!sym->attr.defined_assign_comp && super_type)
14093 sym->attr.defined_assign_comp
14094 = super_type->attr.defined_assign_comp;
14096 /* If this is a non-ABSTRACT type extending an ABSTRACT one, ensure that
14097 all DEFERRED bindings are overridden. */
14098 if (super_type && super_type->attr.abstract && !sym->attr.abstract
14099 && !sym->attr.is_class
14100 && !ensure_not_abstract (sym, super_type))
14101 return false;
14103 /* Check that there is a component for every PDT parameter. */
14104 if (sym->attr.pdt_template)
14106 for (f = sym->formal; f; f = f->next)
14108 if (!f->sym)
14109 continue;
14110 c = gfc_find_component (sym, f->sym->name, true, true, NULL);
14111 if (c == NULL)
14113 gfc_error ("Parameterized type %qs does not have a component "
14114 "corresponding to parameter %qs at %L", sym->name,
14115 f->sym->name, &sym->declared_at);
14116 break;
14121 /* Add derived type to the derived type list. */
14122 add_dt_to_dt_list (sym);
14124 return true;
14128 /* The following procedure does the full resolution of a derived type,
14129 including resolution of all type-bound procedures (if present). In contrast
14130 to 'resolve_fl_derived0' this can only be done after the module has been
14131 parsed completely. */
14133 static bool
14134 resolve_fl_derived (gfc_symbol *sym)
14136 gfc_symbol *gen_dt = NULL;
14138 if (sym->attr.unlimited_polymorphic)
14139 return true;
14141 if (!sym->attr.is_class)
14142 gfc_find_symbol (sym->name, sym->ns, 0, &gen_dt);
14143 if (gen_dt && gen_dt->generic && gen_dt->generic->next
14144 && (!gen_dt->generic->sym->attr.use_assoc
14145 || gen_dt->generic->sym->module != gen_dt->generic->next->sym->module)
14146 && !gfc_notify_std (GFC_STD_F2003, "Generic name %qs of function "
14147 "%qs at %L being the same name as derived "
14148 "type at %L", sym->name,
14149 gen_dt->generic->sym == sym
14150 ? gen_dt->generic->next->sym->name
14151 : gen_dt->generic->sym->name,
14152 gen_dt->generic->sym == sym
14153 ? &gen_dt->generic->next->sym->declared_at
14154 : &gen_dt->generic->sym->declared_at,
14155 &sym->declared_at))
14156 return false;
14158 /* Resolve the finalizer procedures. */
14159 if (!gfc_resolve_finalizers (sym, NULL))
14160 return false;
14162 if (sym->attr.is_class && sym->ts.u.derived == NULL)
14164 /* Fix up incomplete CLASS symbols. */
14165 gfc_component *data = gfc_find_component (sym, "_data", true, true, NULL);
14166 gfc_component *vptr = gfc_find_component (sym, "_vptr", true, true, NULL);
14168 /* Nothing more to do for unlimited polymorphic entities. */
14169 if (data->ts.u.derived->attr.unlimited_polymorphic)
14170 return true;
14171 else if (vptr->ts.u.derived == NULL)
14173 gfc_symbol *vtab = gfc_find_derived_vtab (data->ts.u.derived);
14174 gcc_assert (vtab);
14175 vptr->ts.u.derived = vtab->ts.u.derived;
14176 if (!resolve_fl_derived0 (vptr->ts.u.derived))
14177 return false;
14181 if (!resolve_fl_derived0 (sym))
14182 return false;
14184 /* Resolve the type-bound procedures. */
14185 if (!resolve_typebound_procedures (sym))
14186 return false;
14188 /* Generate module vtables subject to their accessibility and their not
14189 being vtables or pdt templates. If this is not done class declarations
14190 in external procedures wind up with their own version and so SELECT TYPE
14191 fails because the vptrs do not have the same address. */
14192 if (gfc_option.allow_std & GFC_STD_F2003
14193 && sym->ns->proc_name
14194 && sym->ns->proc_name->attr.flavor == FL_MODULE
14195 && sym->attr.access != ACCESS_PRIVATE
14196 && !(sym->attr.use_assoc || sym->attr.vtype || sym->attr.pdt_template))
14198 gfc_symbol *vtab = gfc_find_derived_vtab (sym);
14199 gfc_set_sym_referenced (vtab);
14202 return true;
14206 static bool
14207 resolve_fl_namelist (gfc_symbol *sym)
14209 gfc_namelist *nl;
14210 gfc_symbol *nlsym;
14212 for (nl = sym->namelist; nl; nl = nl->next)
14214 /* Check again, the check in match only works if NAMELIST comes
14215 after the decl. */
14216 if (nl->sym->as && nl->sym->as->type == AS_ASSUMED_SIZE)
14218 gfc_error ("Assumed size array %qs in namelist %qs at %L is not "
14219 "allowed", nl->sym->name, sym->name, &sym->declared_at);
14220 return false;
14223 if (nl->sym->as && nl->sym->as->type == AS_ASSUMED_SHAPE
14224 && !gfc_notify_std (GFC_STD_F2003, "NAMELIST array object %qs "
14225 "with assumed shape in namelist %qs at %L",
14226 nl->sym->name, sym->name, &sym->declared_at))
14227 return false;
14229 if (is_non_constant_shape_array (nl->sym)
14230 && !gfc_notify_std (GFC_STD_F2003, "NAMELIST array object %qs "
14231 "with nonconstant shape in namelist %qs at %L",
14232 nl->sym->name, sym->name, &sym->declared_at))
14233 return false;
14235 if (nl->sym->ts.type == BT_CHARACTER
14236 && (nl->sym->ts.u.cl->length == NULL
14237 || !gfc_is_constant_expr (nl->sym->ts.u.cl->length))
14238 && !gfc_notify_std (GFC_STD_F2003, "NAMELIST object %qs with "
14239 "nonconstant character length in "
14240 "namelist %qs at %L", nl->sym->name,
14241 sym->name, &sym->declared_at))
14242 return false;
14246 /* Reject PRIVATE objects in a PUBLIC namelist. */
14247 if (gfc_check_symbol_access (sym))
14249 for (nl = sym->namelist; nl; nl = nl->next)
14251 if (!nl->sym->attr.use_assoc
14252 && !is_sym_host_assoc (nl->sym, sym->ns)
14253 && !gfc_check_symbol_access (nl->sym))
14255 gfc_error ("NAMELIST object %qs was declared PRIVATE and "
14256 "cannot be member of PUBLIC namelist %qs at %L",
14257 nl->sym->name, sym->name, &sym->declared_at);
14258 return false;
14261 if (nl->sym->ts.type == BT_DERIVED
14262 && (nl->sym->ts.u.derived->attr.alloc_comp
14263 || nl->sym->ts.u.derived->attr.pointer_comp))
14265 if (!gfc_notify_std (GFC_STD_F2003, "NAMELIST object %qs in "
14266 "namelist %qs at %L with ALLOCATABLE "
14267 "or POINTER components", nl->sym->name,
14268 sym->name, &sym->declared_at))
14269 return false;
14270 return true;
14273 /* Types with private components that came here by USE-association. */
14274 if (nl->sym->ts.type == BT_DERIVED
14275 && derived_inaccessible (nl->sym->ts.u.derived))
14277 gfc_error ("NAMELIST object %qs has use-associated PRIVATE "
14278 "components and cannot be member of namelist %qs at %L",
14279 nl->sym->name, sym->name, &sym->declared_at);
14280 return false;
14283 /* Types with private components that are defined in the same module. */
14284 if (nl->sym->ts.type == BT_DERIVED
14285 && !is_sym_host_assoc (nl->sym->ts.u.derived, sym->ns)
14286 && nl->sym->ts.u.derived->attr.private_comp)
14288 gfc_error ("NAMELIST object %qs has PRIVATE components and "
14289 "cannot be a member of PUBLIC namelist %qs at %L",
14290 nl->sym->name, sym->name, &sym->declared_at);
14291 return false;
14297 /* 14.1.2 A module or internal procedure represent local entities
14298 of the same type as a namelist member and so are not allowed. */
14299 for (nl = sym->namelist; nl; nl = nl->next)
14301 if (nl->sym->ts.kind != 0 && nl->sym->attr.flavor == FL_VARIABLE)
14302 continue;
14304 if (nl->sym->attr.function && nl->sym == nl->sym->result)
14305 if ((nl->sym == sym->ns->proc_name)
14307 (sym->ns->parent && nl->sym == sym->ns->parent->proc_name))
14308 continue;
14310 nlsym = NULL;
14311 if (nl->sym->name)
14312 gfc_find_symbol (nl->sym->name, sym->ns, 1, &nlsym);
14313 if (nlsym && nlsym->attr.flavor == FL_PROCEDURE)
14315 gfc_error ("PROCEDURE attribute conflicts with NAMELIST "
14316 "attribute in %qs at %L", nlsym->name,
14317 &sym->declared_at);
14318 return false;
14322 if (async_io_dt)
14324 for (nl = sym->namelist; nl; nl = nl->next)
14325 nl->sym->attr.asynchronous = 1;
14327 return true;
14331 static bool
14332 resolve_fl_parameter (gfc_symbol *sym)
14334 /* A parameter array's shape needs to be constant. */
14335 if (sym->as != NULL
14336 && (sym->as->type == AS_DEFERRED
14337 || is_non_constant_shape_array (sym)))
14339 gfc_error ("Parameter array %qs at %L cannot be automatic "
14340 "or of deferred shape", sym->name, &sym->declared_at);
14341 return false;
14344 /* Constraints on deferred type parameter. */
14345 if (!deferred_requirements (sym))
14346 return false;
14348 /* Make sure a parameter that has been implicitly typed still
14349 matches the implicit type, since PARAMETER statements can precede
14350 IMPLICIT statements. */
14351 if (sym->attr.implicit_type
14352 && !gfc_compare_types (&sym->ts, gfc_get_default_type (sym->name,
14353 sym->ns)))
14355 gfc_error ("Implicitly typed PARAMETER %qs at %L doesn't match a "
14356 "later IMPLICIT type", sym->name, &sym->declared_at);
14357 return false;
14360 /* Make sure the types of derived parameters are consistent. This
14361 type checking is deferred until resolution because the type may
14362 refer to a derived type from the host. */
14363 if (sym->ts.type == BT_DERIVED
14364 && !gfc_compare_types (&sym->ts, &sym->value->ts))
14366 gfc_error ("Incompatible derived type in PARAMETER at %L",
14367 &sym->value->where);
14368 return false;
14371 /* F03:C509,C514. */
14372 if (sym->ts.type == BT_CLASS)
14374 gfc_error ("CLASS variable %qs at %L cannot have the PARAMETER attribute",
14375 sym->name, &sym->declared_at);
14376 return false;
14379 return true;
14383 /* Called by resolve_symbol to check PDTs. */
14385 static void
14386 resolve_pdt (gfc_symbol* sym)
14388 gfc_symbol *derived = NULL;
14389 gfc_actual_arglist *param;
14390 gfc_component *c;
14391 bool const_len_exprs = true;
14392 bool assumed_len_exprs = false;
14393 symbol_attribute *attr;
14395 if (sym->ts.type == BT_DERIVED)
14397 derived = sym->ts.u.derived;
14398 attr = &(sym->attr);
14400 else if (sym->ts.type == BT_CLASS)
14402 derived = CLASS_DATA (sym)->ts.u.derived;
14403 attr = &(CLASS_DATA (sym)->attr);
14405 else
14406 gcc_unreachable ();
14408 gcc_assert (derived->attr.pdt_type);
14410 for (param = sym->param_list; param; param = param->next)
14412 c = gfc_find_component (derived, param->name, false, true, NULL);
14413 gcc_assert (c);
14414 if (c->attr.pdt_kind)
14415 continue;
14417 if (param->expr && !gfc_is_constant_expr (param->expr)
14418 && c->attr.pdt_len)
14419 const_len_exprs = false;
14420 else if (param->spec_type == SPEC_ASSUMED)
14421 assumed_len_exprs = true;
14423 if (param->spec_type == SPEC_DEFERRED
14424 && !attr->allocatable && !attr->pointer)
14425 gfc_error ("The object %qs at %L has a deferred LEN "
14426 "parameter %qs and is neither allocatable "
14427 "nor a pointer", sym->name, &sym->declared_at,
14428 param->name);
14432 if (!const_len_exprs
14433 && (sym->ns->proc_name->attr.is_main_program
14434 || sym->ns->proc_name->attr.flavor == FL_MODULE
14435 || sym->attr.save != SAVE_NONE))
14436 gfc_error ("The AUTOMATIC object %qs at %L must not have the "
14437 "SAVE attribute or be a variable declared in the "
14438 "main program, a module or a submodule(F08/C513)",
14439 sym->name, &sym->declared_at);
14441 if (assumed_len_exprs && !(sym->attr.dummy
14442 || sym->attr.select_type_temporary || sym->attr.associate_var))
14443 gfc_error ("The object %qs at %L with ASSUMED type parameters "
14444 "must be a dummy or a SELECT TYPE selector(F08/4.2)",
14445 sym->name, &sym->declared_at);
14449 /* Do anything necessary to resolve a symbol. Right now, we just
14450 assume that an otherwise unknown symbol is a variable. This sort
14451 of thing commonly happens for symbols in module. */
14453 static void
14454 resolve_symbol (gfc_symbol *sym)
14456 int check_constant, mp_flag;
14457 gfc_symtree *symtree;
14458 gfc_symtree *this_symtree;
14459 gfc_namespace *ns;
14460 gfc_component *c;
14461 symbol_attribute class_attr;
14462 gfc_array_spec *as;
14463 bool saved_specification_expr;
14465 if (sym->resolved)
14466 return;
14467 sym->resolved = 1;
14469 /* No symbol will ever have union type; only components can be unions.
14470 Union type declaration symbols have type BT_UNKNOWN but flavor FL_UNION
14471 (just like derived type declaration symbols have flavor FL_DERIVED). */
14472 gcc_assert (sym->ts.type != BT_UNION);
14474 /* Coarrayed polymorphic objects with allocatable or pointer components are
14475 yet unsupported for -fcoarray=lib. */
14476 if (flag_coarray == GFC_FCOARRAY_LIB && sym->ts.type == BT_CLASS
14477 && sym->ts.u.derived && CLASS_DATA (sym)
14478 && CLASS_DATA (sym)->attr.codimension
14479 && (CLASS_DATA (sym)->ts.u.derived->attr.alloc_comp
14480 || CLASS_DATA (sym)->ts.u.derived->attr.pointer_comp))
14482 gfc_error ("Sorry, allocatable/pointer components in polymorphic (CLASS) "
14483 "type coarrays at %L are unsupported", &sym->declared_at);
14484 return;
14487 if (sym->attr.artificial)
14488 return;
14490 if (sym->attr.unlimited_polymorphic)
14491 return;
14493 if (sym->attr.flavor == FL_UNKNOWN
14494 || (sym->attr.flavor == FL_PROCEDURE && !sym->attr.intrinsic
14495 && !sym->attr.generic && !sym->attr.external
14496 && sym->attr.if_source == IFSRC_UNKNOWN
14497 && sym->ts.type == BT_UNKNOWN))
14500 /* If we find that a flavorless symbol is an interface in one of the
14501 parent namespaces, find its symtree in this namespace, free the
14502 symbol and set the symtree to point to the interface symbol. */
14503 for (ns = gfc_current_ns->parent; ns; ns = ns->parent)
14505 symtree = gfc_find_symtree (ns->sym_root, sym->name);
14506 if (symtree && (symtree->n.sym->generic ||
14507 (symtree->n.sym->attr.flavor == FL_PROCEDURE
14508 && sym->ns->construct_entities)))
14510 this_symtree = gfc_find_symtree (gfc_current_ns->sym_root,
14511 sym->name);
14512 if (this_symtree->n.sym == sym)
14514 symtree->n.sym->refs++;
14515 gfc_release_symbol (sym);
14516 this_symtree->n.sym = symtree->n.sym;
14517 return;
14522 /* Otherwise give it a flavor according to such attributes as
14523 it has. */
14524 if (sym->attr.flavor == FL_UNKNOWN && sym->attr.external == 0
14525 && sym->attr.intrinsic == 0)
14526 sym->attr.flavor = FL_VARIABLE;
14527 else if (sym->attr.flavor == FL_UNKNOWN)
14529 sym->attr.flavor = FL_PROCEDURE;
14530 if (sym->attr.dimension)
14531 sym->attr.function = 1;
14535 if (sym->attr.external && sym->ts.type != BT_UNKNOWN && !sym->attr.function)
14536 gfc_add_function (&sym->attr, sym->name, &sym->declared_at);
14538 if (sym->attr.procedure && sym->attr.if_source != IFSRC_DECL
14539 && !resolve_procedure_interface (sym))
14540 return;
14542 if (sym->attr.is_protected && !sym->attr.proc_pointer
14543 && (sym->attr.procedure || sym->attr.external))
14545 if (sym->attr.external)
14546 gfc_error ("PROTECTED attribute conflicts with EXTERNAL attribute "
14547 "at %L", &sym->declared_at);
14548 else
14549 gfc_error ("PROCEDURE attribute conflicts with PROTECTED attribute "
14550 "at %L", &sym->declared_at);
14552 return;
14555 if (sym->attr.flavor == FL_DERIVED && !resolve_fl_derived (sym))
14556 return;
14558 else if ((sym->attr.flavor == FL_STRUCT || sym->attr.flavor == FL_UNION)
14559 && !resolve_fl_struct (sym))
14560 return;
14562 /* Symbols that are module procedures with results (functions) have
14563 the types and array specification copied for type checking in
14564 procedures that call them, as well as for saving to a module
14565 file. These symbols can't stand the scrutiny that their results
14566 can. */
14567 mp_flag = (sym->result != NULL && sym->result != sym);
14569 /* Make sure that the intrinsic is consistent with its internal
14570 representation. This needs to be done before assigning a default
14571 type to avoid spurious warnings. */
14572 if (sym->attr.flavor != FL_MODULE && sym->attr.intrinsic
14573 && !gfc_resolve_intrinsic (sym, &sym->declared_at))
14574 return;
14576 /* Resolve associate names. */
14577 if (sym->assoc)
14578 resolve_assoc_var (sym, true);
14580 /* Assign default type to symbols that need one and don't have one. */
14581 if (sym->ts.type == BT_UNKNOWN)
14583 if (sym->attr.flavor == FL_VARIABLE || sym->attr.flavor == FL_PARAMETER)
14585 gfc_set_default_type (sym, 1, NULL);
14588 if (sym->attr.flavor == FL_PROCEDURE && sym->attr.external
14589 && !sym->attr.function && !sym->attr.subroutine
14590 && gfc_get_default_type (sym->name, sym->ns)->type == BT_UNKNOWN)
14591 gfc_add_subroutine (&sym->attr, sym->name, &sym->declared_at);
14593 if (sym->attr.flavor == FL_PROCEDURE && sym->attr.function)
14595 /* The specific case of an external procedure should emit an error
14596 in the case that there is no implicit type. */
14597 if (!mp_flag)
14599 if (!sym->attr.mixed_entry_master)
14600 gfc_set_default_type (sym, sym->attr.external, NULL);
14602 else
14604 /* Result may be in another namespace. */
14605 resolve_symbol (sym->result);
14607 if (!sym->result->attr.proc_pointer)
14609 sym->ts = sym->result->ts;
14610 sym->as = gfc_copy_array_spec (sym->result->as);
14611 sym->attr.dimension = sym->result->attr.dimension;
14612 sym->attr.pointer = sym->result->attr.pointer;
14613 sym->attr.allocatable = sym->result->attr.allocatable;
14614 sym->attr.contiguous = sym->result->attr.contiguous;
14619 else if (mp_flag && sym->attr.flavor == FL_PROCEDURE && sym->attr.function)
14621 bool saved_specification_expr = specification_expr;
14622 specification_expr = true;
14623 gfc_resolve_array_spec (sym->result->as, false);
14624 specification_expr = saved_specification_expr;
14627 if (sym->ts.type == BT_CLASS && sym->attr.class_ok)
14629 as = CLASS_DATA (sym)->as;
14630 class_attr = CLASS_DATA (sym)->attr;
14631 class_attr.pointer = class_attr.class_pointer;
14633 else
14635 class_attr = sym->attr;
14636 as = sym->as;
14639 /* F2008, C530. */
14640 if (sym->attr.contiguous
14641 && (!class_attr.dimension
14642 || (as->type != AS_ASSUMED_SHAPE && as->type != AS_ASSUMED_RANK
14643 && !class_attr.pointer)))
14645 gfc_error ("%qs at %L has the CONTIGUOUS attribute but is not an "
14646 "array pointer or an assumed-shape or assumed-rank array",
14647 sym->name, &sym->declared_at);
14648 return;
14651 /* Assumed size arrays and assumed shape arrays must be dummy
14652 arguments. Array-spec's of implied-shape should have been resolved to
14653 AS_EXPLICIT already. */
14655 if (as)
14657 /* If AS_IMPLIED_SHAPE makes it to here, it must be a bad
14658 specification expression. */
14659 if (as->type == AS_IMPLIED_SHAPE)
14661 int i;
14662 for (i=0; i<as->rank; i++)
14664 if (as->lower[i] != NULL && as->upper[i] == NULL)
14666 gfc_error ("Bad specification for assumed size array at %L",
14667 &as->lower[i]->where);
14668 return;
14671 gcc_unreachable();
14674 if (((as->type == AS_ASSUMED_SIZE && !as->cp_was_assumed)
14675 || as->type == AS_ASSUMED_SHAPE)
14676 && !sym->attr.dummy && !sym->attr.select_type_temporary)
14678 if (as->type == AS_ASSUMED_SIZE)
14679 gfc_error ("Assumed size array at %L must be a dummy argument",
14680 &sym->declared_at);
14681 else
14682 gfc_error ("Assumed shape array at %L must be a dummy argument",
14683 &sym->declared_at);
14684 return;
14686 /* TS 29113, C535a. */
14687 if (as->type == AS_ASSUMED_RANK && !sym->attr.dummy
14688 && !sym->attr.select_type_temporary)
14690 gfc_error ("Assumed-rank array at %L must be a dummy argument",
14691 &sym->declared_at);
14692 return;
14694 if (as->type == AS_ASSUMED_RANK
14695 && (sym->attr.codimension || sym->attr.value))
14697 gfc_error ("Assumed-rank array at %L may not have the VALUE or "
14698 "CODIMENSION attribute", &sym->declared_at);
14699 return;
14703 /* Make sure symbols with known intent or optional are really dummy
14704 variable. Because of ENTRY statement, this has to be deferred
14705 until resolution time. */
14707 if (!sym->attr.dummy
14708 && (sym->attr.optional || sym->attr.intent != INTENT_UNKNOWN))
14710 gfc_error ("Symbol at %L is not a DUMMY variable", &sym->declared_at);
14711 return;
14714 if (sym->attr.value && !sym->attr.dummy)
14716 gfc_error ("%qs at %L cannot have the VALUE attribute because "
14717 "it is not a dummy argument", sym->name, &sym->declared_at);
14718 return;
14721 if (sym->attr.value && sym->ts.type == BT_CHARACTER)
14723 gfc_charlen *cl = sym->ts.u.cl;
14724 if (!cl || !cl->length || cl->length->expr_type != EXPR_CONSTANT)
14726 gfc_error ("Character dummy variable %qs at %L with VALUE "
14727 "attribute must have constant length",
14728 sym->name, &sym->declared_at);
14729 return;
14732 if (sym->ts.is_c_interop
14733 && mpz_cmp_si (cl->length->value.integer, 1) != 0)
14735 gfc_error ("C interoperable character dummy variable %qs at %L "
14736 "with VALUE attribute must have length one",
14737 sym->name, &sym->declared_at);
14738 return;
14742 if (sym->ts.type == BT_DERIVED && !sym->attr.is_iso_c
14743 && sym->ts.u.derived->attr.generic)
14745 sym->ts.u.derived = gfc_find_dt_in_generic (sym->ts.u.derived);
14746 if (!sym->ts.u.derived)
14748 gfc_error ("The derived type %qs at %L is of type %qs, "
14749 "which has not been defined", sym->name,
14750 &sym->declared_at, sym->ts.u.derived->name);
14751 sym->ts.type = BT_UNKNOWN;
14752 return;
14756 /* Use the same constraints as TYPE(*), except for the type check
14757 and that only scalars and assumed-size arrays are permitted. */
14758 if (sym->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK))
14760 if (!sym->attr.dummy)
14762 gfc_error ("Variable %s at %L with NO_ARG_CHECK attribute shall be "
14763 "a dummy argument", sym->name, &sym->declared_at);
14764 return;
14767 if (sym->ts.type != BT_ASSUMED && sym->ts.type != BT_INTEGER
14768 && sym->ts.type != BT_REAL && sym->ts.type != BT_LOGICAL
14769 && sym->ts.type != BT_COMPLEX)
14771 gfc_error ("Variable %s at %L with NO_ARG_CHECK attribute shall be "
14772 "of type TYPE(*) or of an numeric intrinsic type",
14773 sym->name, &sym->declared_at);
14774 return;
14777 if (sym->attr.allocatable || sym->attr.codimension
14778 || sym->attr.pointer || sym->attr.value)
14780 gfc_error ("Variable %s at %L with NO_ARG_CHECK attribute may not "
14781 "have the ALLOCATABLE, CODIMENSION, POINTER or VALUE "
14782 "attribute", sym->name, &sym->declared_at);
14783 return;
14786 if (sym->attr.intent == INTENT_OUT)
14788 gfc_error ("Variable %s at %L with NO_ARG_CHECK attribute may not "
14789 "have the INTENT(OUT) attribute",
14790 sym->name, &sym->declared_at);
14791 return;
14793 if (sym->attr.dimension && sym->as->type != AS_ASSUMED_SIZE)
14795 gfc_error ("Variable %s at %L with NO_ARG_CHECK attribute shall "
14796 "either be a scalar or an assumed-size array",
14797 sym->name, &sym->declared_at);
14798 return;
14801 /* Set the type to TYPE(*) and add a dimension(*) to ensure
14802 NO_ARG_CHECK is correctly handled in trans*.c, e.g. with
14803 packing. */
14804 sym->ts.type = BT_ASSUMED;
14805 sym->as = gfc_get_array_spec ();
14806 sym->as->type = AS_ASSUMED_SIZE;
14807 sym->as->rank = 1;
14808 sym->as->lower[0] = gfc_get_int_expr (gfc_default_integer_kind, NULL, 1);
14810 else if (sym->ts.type == BT_ASSUMED)
14812 /* TS 29113, C407a. */
14813 if (!sym->attr.dummy)
14815 gfc_error ("Assumed type of variable %s at %L is only permitted "
14816 "for dummy variables", sym->name, &sym->declared_at);
14817 return;
14819 if (sym->attr.allocatable || sym->attr.codimension
14820 || sym->attr.pointer || sym->attr.value)
14822 gfc_error ("Assumed-type variable %s at %L may not have the "
14823 "ALLOCATABLE, CODIMENSION, POINTER or VALUE attribute",
14824 sym->name, &sym->declared_at);
14825 return;
14827 if (sym->attr.intent == INTENT_OUT)
14829 gfc_error ("Assumed-type variable %s at %L may not have the "
14830 "INTENT(OUT) attribute",
14831 sym->name, &sym->declared_at);
14832 return;
14834 if (sym->attr.dimension && sym->as->type == AS_EXPLICIT)
14836 gfc_error ("Assumed-type variable %s at %L shall not be an "
14837 "explicit-shape array", sym->name, &sym->declared_at);
14838 return;
14842 /* If the symbol is marked as bind(c), that it is declared at module level
14843 scope and verify its type and kind. Do not do the latter for symbols
14844 that are implicitly typed because that is handled in
14845 gfc_set_default_type. Handle dummy arguments and procedure definitions
14846 separately. Also, anything that is use associated is not handled here
14847 but instead is handled in the module it is declared in. Finally, derived
14848 type definitions are allowed to be BIND(C) since that only implies that
14849 they're interoperable, and they are checked fully for interoperability
14850 when a variable is declared of that type. */
14851 if (sym->attr.is_bind_c && sym->attr.use_assoc == 0
14852 && sym->attr.dummy == 0 && sym->attr.flavor != FL_PROCEDURE
14853 && sym->attr.flavor != FL_DERIVED)
14855 bool t = true;
14857 /* First, make sure the variable is declared at the
14858 module-level scope (J3/04-007, Section 15.3). */
14859 if (sym->ns->proc_name->attr.flavor != FL_MODULE &&
14860 sym->attr.in_common == 0)
14862 gfc_error ("Variable %qs at %L cannot be BIND(C) because it "
14863 "is neither a COMMON block nor declared at the "
14864 "module level scope", sym->name, &(sym->declared_at));
14865 t = false;
14867 else if (sym->ts.type == BT_CHARACTER
14868 && (sym->ts.u.cl == NULL || sym->ts.u.cl->length == NULL
14869 || !gfc_is_constant_expr (sym->ts.u.cl->length)
14870 || mpz_cmp_si (sym->ts.u.cl->length->value.integer, 1) != 0))
14872 gfc_error ("BIND(C) Variable %qs at %L must have length one",
14873 sym->name, &sym->declared_at);
14874 t = false;
14876 else if (sym->common_head != NULL && sym->attr.implicit_type == 0)
14878 t = verify_com_block_vars_c_interop (sym->common_head);
14880 else if (sym->attr.implicit_type == 0)
14882 /* If type() declaration, we need to verify that the components
14883 of the given type are all C interoperable, etc. */
14884 if (sym->ts.type == BT_DERIVED &&
14885 sym->ts.u.derived->attr.is_c_interop != 1)
14887 /* Make sure the user marked the derived type as BIND(C). If
14888 not, call the verify routine. This could print an error
14889 for the derived type more than once if multiple variables
14890 of that type are declared. */
14891 if (sym->ts.u.derived->attr.is_bind_c != 1)
14892 verify_bind_c_derived_type (sym->ts.u.derived);
14893 t = false;
14896 /* Verify the variable itself as C interoperable if it
14897 is BIND(C). It is not possible for this to succeed if
14898 the verify_bind_c_derived_type failed, so don't have to handle
14899 any error returned by verify_bind_c_derived_type. */
14900 t = verify_bind_c_sym (sym, &(sym->ts), sym->attr.in_common,
14901 sym->common_block);
14904 if (!t)
14906 /* clear the is_bind_c flag to prevent reporting errors more than
14907 once if something failed. */
14908 sym->attr.is_bind_c = 0;
14909 return;
14913 /* If a derived type symbol has reached this point, without its
14914 type being declared, we have an error. Notice that most
14915 conditions that produce undefined derived types have already
14916 been dealt with. However, the likes of:
14917 implicit type(t) (t) ..... call foo (t) will get us here if
14918 the type is not declared in the scope of the implicit
14919 statement. Change the type to BT_UNKNOWN, both because it is so
14920 and to prevent an ICE. */
14921 if (sym->ts.type == BT_DERIVED && !sym->attr.is_iso_c
14922 && sym->ts.u.derived->components == NULL
14923 && !sym->ts.u.derived->attr.zero_comp)
14925 gfc_error ("The derived type %qs at %L is of type %qs, "
14926 "which has not been defined", sym->name,
14927 &sym->declared_at, sym->ts.u.derived->name);
14928 sym->ts.type = BT_UNKNOWN;
14929 return;
14932 /* Make sure that the derived type has been resolved and that the
14933 derived type is visible in the symbol's namespace, if it is a
14934 module function and is not PRIVATE. */
14935 if (sym->ts.type == BT_DERIVED
14936 && sym->ts.u.derived->attr.use_assoc
14937 && sym->ns->proc_name
14938 && sym->ns->proc_name->attr.flavor == FL_MODULE
14939 && !resolve_fl_derived (sym->ts.u.derived))
14940 return;
14942 /* Unless the derived-type declaration is use associated, Fortran 95
14943 does not allow public entries of private derived types.
14944 See 4.4.1 (F95) and 4.5.1.1 (F2003); and related interpretation
14945 161 in 95-006r3. */
14946 if (sym->ts.type == BT_DERIVED
14947 && sym->ns->proc_name && sym->ns->proc_name->attr.flavor == FL_MODULE
14948 && !sym->ts.u.derived->attr.use_assoc
14949 && gfc_check_symbol_access (sym)
14950 && !gfc_check_symbol_access (sym->ts.u.derived)
14951 && !gfc_notify_std (GFC_STD_F2003, "PUBLIC %s %qs at %L of PRIVATE "
14952 "derived type %qs",
14953 (sym->attr.flavor == FL_PARAMETER)
14954 ? "parameter" : "variable",
14955 sym->name, &sym->declared_at,
14956 sym->ts.u.derived->name))
14957 return;
14959 /* F2008, C1302. */
14960 if (sym->ts.type == BT_DERIVED
14961 && ((sym->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
14962 && sym->ts.u.derived->intmod_sym_id == ISOFORTRAN_LOCK_TYPE)
14963 || sym->ts.u.derived->attr.lock_comp)
14964 && !sym->attr.codimension && !sym->ts.u.derived->attr.coarray_comp)
14966 gfc_error ("Variable %s at %L of type LOCK_TYPE or with subcomponent of "
14967 "type LOCK_TYPE must be a coarray", sym->name,
14968 &sym->declared_at);
14969 return;
14972 /* TS18508, C702/C703. */
14973 if (sym->ts.type == BT_DERIVED
14974 && ((sym->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
14975 && sym->ts.u.derived->intmod_sym_id == ISOFORTRAN_EVENT_TYPE)
14976 || sym->ts.u.derived->attr.event_comp)
14977 && !sym->attr.codimension && !sym->ts.u.derived->attr.coarray_comp)
14979 gfc_error ("Variable %s at %L of type EVENT_TYPE or with subcomponent of "
14980 "type EVENT_TYPE must be a coarray", sym->name,
14981 &sym->declared_at);
14982 return;
14985 /* An assumed-size array with INTENT(OUT) shall not be of a type for which
14986 default initialization is defined (5.1.2.4.4). */
14987 if (sym->ts.type == BT_DERIVED
14988 && sym->attr.dummy
14989 && sym->attr.intent == INTENT_OUT
14990 && sym->as
14991 && sym->as->type == AS_ASSUMED_SIZE)
14993 for (c = sym->ts.u.derived->components; c; c = c->next)
14995 if (c->initializer)
14997 gfc_error ("The INTENT(OUT) dummy argument %qs at %L is "
14998 "ASSUMED SIZE and so cannot have a default initializer",
14999 sym->name, &sym->declared_at);
15000 return;
15005 /* F2008, C542. */
15006 if (sym->ts.type == BT_DERIVED && sym->attr.dummy
15007 && sym->attr.intent == INTENT_OUT && sym->attr.lock_comp)
15009 gfc_error ("Dummy argument %qs at %L of LOCK_TYPE shall not be "
15010 "INTENT(OUT)", sym->name, &sym->declared_at);
15011 return;
15014 /* TS18508. */
15015 if (sym->ts.type == BT_DERIVED && sym->attr.dummy
15016 && sym->attr.intent == INTENT_OUT && sym->attr.event_comp)
15018 gfc_error ("Dummy argument %qs at %L of EVENT_TYPE shall not be "
15019 "INTENT(OUT)", sym->name, &sym->declared_at);
15020 return;
15023 /* F2008, C525. */
15024 if ((((sym->ts.type == BT_DERIVED && sym->ts.u.derived->attr.coarray_comp)
15025 || (sym->ts.type == BT_CLASS && sym->attr.class_ok
15026 && CLASS_DATA (sym)->attr.coarray_comp))
15027 || class_attr.codimension)
15028 && (sym->attr.result || sym->result == sym))
15030 gfc_error ("Function result %qs at %L shall not be a coarray or have "
15031 "a coarray component", sym->name, &sym->declared_at);
15032 return;
15035 /* F2008, C524. */
15036 if (sym->attr.codimension && sym->ts.type == BT_DERIVED
15037 && sym->ts.u.derived->ts.is_iso_c)
15039 gfc_error ("Variable %qs at %L of TYPE(C_PTR) or TYPE(C_FUNPTR) "
15040 "shall not be a coarray", sym->name, &sym->declared_at);
15041 return;
15044 /* F2008, C525. */
15045 if (((sym->ts.type == BT_DERIVED && sym->ts.u.derived->attr.coarray_comp)
15046 || (sym->ts.type == BT_CLASS && sym->attr.class_ok
15047 && CLASS_DATA (sym)->attr.coarray_comp))
15048 && (class_attr.codimension || class_attr.pointer || class_attr.dimension
15049 || class_attr.allocatable))
15051 gfc_error ("Variable %qs at %L with coarray component shall be a "
15052 "nonpointer, nonallocatable scalar, which is not a coarray",
15053 sym->name, &sym->declared_at);
15054 return;
15057 /* F2008, C526. The function-result case was handled above. */
15058 if (class_attr.codimension
15059 && !(class_attr.allocatable || sym->attr.dummy || sym->attr.save
15060 || sym->attr.select_type_temporary
15061 || sym->attr.associate_var
15062 || (sym->ns->save_all && !sym->attr.automatic)
15063 || sym->ns->proc_name->attr.flavor == FL_MODULE
15064 || sym->ns->proc_name->attr.is_main_program
15065 || sym->attr.function || sym->attr.result || sym->attr.use_assoc))
15067 gfc_error ("Variable %qs at %L is a coarray and is not ALLOCATABLE, SAVE "
15068 "nor a dummy argument", sym->name, &sym->declared_at);
15069 return;
15071 /* F2008, C528. */
15072 else if (class_attr.codimension && !sym->attr.select_type_temporary
15073 && !class_attr.allocatable && as && as->cotype == AS_DEFERRED)
15075 gfc_error ("Coarray variable %qs at %L shall not have codimensions with "
15076 "deferred shape", sym->name, &sym->declared_at);
15077 return;
15079 else if (class_attr.codimension && class_attr.allocatable && as
15080 && (as->cotype != AS_DEFERRED || as->type != AS_DEFERRED))
15082 gfc_error ("Allocatable coarray variable %qs at %L must have "
15083 "deferred shape", sym->name, &sym->declared_at);
15084 return;
15087 /* F2008, C541. */
15088 if ((((sym->ts.type == BT_DERIVED && sym->ts.u.derived->attr.coarray_comp)
15089 || (sym->ts.type == BT_CLASS && sym->attr.class_ok
15090 && CLASS_DATA (sym)->attr.coarray_comp))
15091 || (class_attr.codimension && class_attr.allocatable))
15092 && sym->attr.dummy && sym->attr.intent == INTENT_OUT)
15094 gfc_error ("Variable %qs at %L is INTENT(OUT) and can thus not be an "
15095 "allocatable coarray or have coarray components",
15096 sym->name, &sym->declared_at);
15097 return;
15100 if (class_attr.codimension && sym->attr.dummy
15101 && sym->ns->proc_name && sym->ns->proc_name->attr.is_bind_c)
15103 gfc_error ("Coarray dummy variable %qs at %L not allowed in BIND(C) "
15104 "procedure %qs", sym->name, &sym->declared_at,
15105 sym->ns->proc_name->name);
15106 return;
15109 if (sym->ts.type == BT_LOGICAL
15110 && ((sym->attr.function && sym->attr.is_bind_c && sym->result == sym)
15111 || ((sym->attr.dummy || sym->attr.result) && sym->ns->proc_name
15112 && sym->ns->proc_name->attr.is_bind_c)))
15114 int i;
15115 for (i = 0; gfc_logical_kinds[i].kind; i++)
15116 if (gfc_logical_kinds[i].kind == sym->ts.kind)
15117 break;
15118 if (!gfc_logical_kinds[i].c_bool && sym->attr.dummy
15119 && !gfc_notify_std (GFC_STD_GNU, "LOGICAL dummy argument %qs at "
15120 "%L with non-C_Bool kind in BIND(C) procedure "
15121 "%qs", sym->name, &sym->declared_at,
15122 sym->ns->proc_name->name))
15123 return;
15124 else if (!gfc_logical_kinds[i].c_bool
15125 && !gfc_notify_std (GFC_STD_GNU, "LOGICAL result variable "
15126 "%qs at %L with non-C_Bool kind in "
15127 "BIND(C) procedure %qs", sym->name,
15128 &sym->declared_at,
15129 sym->attr.function ? sym->name
15130 : sym->ns->proc_name->name))
15131 return;
15134 switch (sym->attr.flavor)
15136 case FL_VARIABLE:
15137 if (!resolve_fl_variable (sym, mp_flag))
15138 return;
15139 break;
15141 case FL_PROCEDURE:
15142 if (sym->formal && !sym->formal_ns)
15144 /* Check that none of the arguments are a namelist. */
15145 gfc_formal_arglist *formal = sym->formal;
15147 for (; formal; formal = formal->next)
15148 if (formal->sym && formal->sym->attr.flavor == FL_NAMELIST)
15150 gfc_error ("Namelist %qs can not be an argument to "
15151 "subroutine or function at %L",
15152 formal->sym->name, &sym->declared_at);
15153 return;
15157 if (!resolve_fl_procedure (sym, mp_flag))
15158 return;
15159 break;
15161 case FL_NAMELIST:
15162 if (!resolve_fl_namelist (sym))
15163 return;
15164 break;
15166 case FL_PARAMETER:
15167 if (!resolve_fl_parameter (sym))
15168 return;
15169 break;
15171 default:
15172 break;
15175 /* Resolve array specifier. Check as well some constraints
15176 on COMMON blocks. */
15178 check_constant = sym->attr.in_common && !sym->attr.pointer;
15180 /* Set the formal_arg_flag so that check_conflict will not throw
15181 an error for host associated variables in the specification
15182 expression for an array_valued function. */
15183 if (sym->attr.function && sym->as)
15184 formal_arg_flag = true;
15186 saved_specification_expr = specification_expr;
15187 specification_expr = true;
15188 gfc_resolve_array_spec (sym->as, check_constant);
15189 specification_expr = saved_specification_expr;
15191 formal_arg_flag = false;
15193 /* Resolve formal namespaces. */
15194 if (sym->formal_ns && sym->formal_ns != gfc_current_ns
15195 && !sym->attr.contained && !sym->attr.intrinsic)
15196 gfc_resolve (sym->formal_ns);
15198 /* Make sure the formal namespace is present. */
15199 if (sym->formal && !sym->formal_ns)
15201 gfc_formal_arglist *formal = sym->formal;
15202 while (formal && !formal->sym)
15203 formal = formal->next;
15205 if (formal)
15207 sym->formal_ns = formal->sym->ns;
15208 if (sym->ns != formal->sym->ns)
15209 sym->formal_ns->refs++;
15213 /* Check threadprivate restrictions. */
15214 if (sym->attr.threadprivate && !sym->attr.save
15215 && !(sym->ns->save_all && !sym->attr.automatic)
15216 && (!sym->attr.in_common
15217 && sym->module == NULL
15218 && (sym->ns->proc_name == NULL
15219 || sym->ns->proc_name->attr.flavor != FL_MODULE)))
15220 gfc_error ("Threadprivate at %L isn't SAVEd", &sym->declared_at);
15222 /* Check omp declare target restrictions. */
15223 if (sym->attr.omp_declare_target
15224 && sym->attr.flavor == FL_VARIABLE
15225 && !sym->attr.save
15226 && !(sym->ns->save_all && !sym->attr.automatic)
15227 && (!sym->attr.in_common
15228 && sym->module == NULL
15229 && (sym->ns->proc_name == NULL
15230 || sym->ns->proc_name->attr.flavor != FL_MODULE)))
15231 gfc_error ("!$OMP DECLARE TARGET variable %qs at %L isn't SAVEd",
15232 sym->name, &sym->declared_at);
15234 /* If we have come this far we can apply default-initializers, as
15235 described in 14.7.5, to those variables that have not already
15236 been assigned one. */
15237 if (sym->ts.type == BT_DERIVED
15238 && !sym->value
15239 && !sym->attr.allocatable
15240 && !sym->attr.alloc_comp)
15242 symbol_attribute *a = &sym->attr;
15244 if ((!a->save && !a->dummy && !a->pointer
15245 && !a->in_common && !a->use_assoc
15246 && a->referenced
15247 && !((a->function || a->result)
15248 && (!a->dimension
15249 || sym->ts.u.derived->attr.alloc_comp
15250 || sym->ts.u.derived->attr.pointer_comp))
15251 && !(a->function && sym != sym->result))
15252 || (a->dummy && a->intent == INTENT_OUT && !a->pointer))
15253 apply_default_init (sym);
15254 else if (a->function && sym->result && a->access != ACCESS_PRIVATE
15255 && (sym->ts.u.derived->attr.alloc_comp
15256 || sym->ts.u.derived->attr.pointer_comp))
15257 /* Mark the result symbol to be referenced, when it has allocatable
15258 components. */
15259 sym->result->attr.referenced = 1;
15262 if (sym->ts.type == BT_CLASS && sym->ns == gfc_current_ns
15263 && sym->attr.dummy && sym->attr.intent == INTENT_OUT
15264 && !CLASS_DATA (sym)->attr.class_pointer
15265 && !CLASS_DATA (sym)->attr.allocatable)
15266 apply_default_init (sym);
15268 /* If this symbol has a type-spec, check it. */
15269 if (sym->attr.flavor == FL_VARIABLE || sym->attr.flavor == FL_PARAMETER
15270 || (sym->attr.flavor == FL_PROCEDURE && sym->attr.function))
15271 if (!resolve_typespec_used (&sym->ts, &sym->declared_at, sym->name))
15272 return;
15274 if (sym->param_list)
15275 resolve_pdt (sym);
15279 /************* Resolve DATA statements *************/
15281 static struct
15283 gfc_data_value *vnode;
15284 mpz_t left;
15286 values;
15289 /* Advance the values structure to point to the next value in the data list. */
15291 static bool
15292 next_data_value (void)
15294 while (mpz_cmp_ui (values.left, 0) == 0)
15297 if (values.vnode->next == NULL)
15298 return false;
15300 values.vnode = values.vnode->next;
15301 mpz_set (values.left, values.vnode->repeat);
15304 return true;
15308 static bool
15309 check_data_variable (gfc_data_variable *var, locus *where)
15311 gfc_expr *e;
15312 mpz_t size;
15313 mpz_t offset;
15314 bool t;
15315 ar_type mark = AR_UNKNOWN;
15316 int i;
15317 mpz_t section_index[GFC_MAX_DIMENSIONS];
15318 gfc_ref *ref;
15319 gfc_array_ref *ar;
15320 gfc_symbol *sym;
15321 int has_pointer;
15323 if (!gfc_resolve_expr (var->expr))
15324 return false;
15326 ar = NULL;
15327 mpz_init_set_si (offset, 0);
15328 e = var->expr;
15330 if (e->expr_type == EXPR_FUNCTION && e->value.function.isym
15331 && e->value.function.isym->id == GFC_ISYM_CAF_GET)
15332 e = e->value.function.actual->expr;
15334 if (e->expr_type != EXPR_VARIABLE)
15335 gfc_internal_error ("check_data_variable(): Bad expression");
15337 sym = e->symtree->n.sym;
15339 if (sym->ns->is_block_data && !sym->attr.in_common)
15341 gfc_error ("BLOCK DATA element %qs at %L must be in COMMON",
15342 sym->name, &sym->declared_at);
15345 if (e->ref == NULL && sym->as)
15347 gfc_error ("DATA array %qs at %L must be specified in a previous"
15348 " declaration", sym->name, where);
15349 return false;
15352 has_pointer = sym->attr.pointer;
15354 if (gfc_is_coindexed (e))
15356 gfc_error ("DATA element %qs at %L cannot have a coindex", sym->name,
15357 where);
15358 return false;
15361 for (ref = e->ref; ref; ref = ref->next)
15363 if (ref->type == REF_COMPONENT && ref->u.c.component->attr.pointer)
15364 has_pointer = 1;
15366 if (has_pointer
15367 && ref->type == REF_ARRAY
15368 && ref->u.ar.type != AR_FULL)
15370 gfc_error ("DATA element %qs at %L is a pointer and so must "
15371 "be a full array", sym->name, where);
15372 return false;
15376 if (e->rank == 0 || has_pointer)
15378 mpz_init_set_ui (size, 1);
15379 ref = NULL;
15381 else
15383 ref = e->ref;
15385 /* Find the array section reference. */
15386 for (ref = e->ref; ref; ref = ref->next)
15388 if (ref->type != REF_ARRAY)
15389 continue;
15390 if (ref->u.ar.type == AR_ELEMENT)
15391 continue;
15392 break;
15394 gcc_assert (ref);
15396 /* Set marks according to the reference pattern. */
15397 switch (ref->u.ar.type)
15399 case AR_FULL:
15400 mark = AR_FULL;
15401 break;
15403 case AR_SECTION:
15404 ar = &ref->u.ar;
15405 /* Get the start position of array section. */
15406 gfc_get_section_index (ar, section_index, &offset);
15407 mark = AR_SECTION;
15408 break;
15410 default:
15411 gcc_unreachable ();
15414 if (!gfc_array_size (e, &size))
15416 gfc_error ("Nonconstant array section at %L in DATA statement",
15417 where);
15418 mpz_clear (offset);
15419 return false;
15423 t = true;
15425 while (mpz_cmp_ui (size, 0) > 0)
15427 if (!next_data_value ())
15429 gfc_error ("DATA statement at %L has more variables than values",
15430 where);
15431 t = false;
15432 break;
15435 t = gfc_check_assign (var->expr, values.vnode->expr, 0);
15436 if (!t)
15437 break;
15439 /* If we have more than one element left in the repeat count,
15440 and we have more than one element left in the target variable,
15441 then create a range assignment. */
15442 /* FIXME: Only done for full arrays for now, since array sections
15443 seem tricky. */
15444 if (mark == AR_FULL && ref && ref->next == NULL
15445 && mpz_cmp_ui (values.left, 1) > 0 && mpz_cmp_ui (size, 1) > 0)
15447 mpz_t range;
15449 if (mpz_cmp (size, values.left) >= 0)
15451 mpz_init_set (range, values.left);
15452 mpz_sub (size, size, values.left);
15453 mpz_set_ui (values.left, 0);
15455 else
15457 mpz_init_set (range, size);
15458 mpz_sub (values.left, values.left, size);
15459 mpz_set_ui (size, 0);
15462 t = gfc_assign_data_value (var->expr, values.vnode->expr,
15463 offset, &range);
15465 mpz_add (offset, offset, range);
15466 mpz_clear (range);
15468 if (!t)
15469 break;
15472 /* Assign initial value to symbol. */
15473 else
15475 mpz_sub_ui (values.left, values.left, 1);
15476 mpz_sub_ui (size, size, 1);
15478 t = gfc_assign_data_value (var->expr, values.vnode->expr,
15479 offset, NULL);
15480 if (!t)
15481 break;
15483 if (mark == AR_FULL)
15484 mpz_add_ui (offset, offset, 1);
15486 /* Modify the array section indexes and recalculate the offset
15487 for next element. */
15488 else if (mark == AR_SECTION)
15489 gfc_advance_section (section_index, ar, &offset);
15493 if (mark == AR_SECTION)
15495 for (i = 0; i < ar->dimen; i++)
15496 mpz_clear (section_index[i]);
15499 mpz_clear (size);
15500 mpz_clear (offset);
15502 return t;
15506 static bool traverse_data_var (gfc_data_variable *, locus *);
15508 /* Iterate over a list of elements in a DATA statement. */
15510 static bool
15511 traverse_data_list (gfc_data_variable *var, locus *where)
15513 mpz_t trip;
15514 iterator_stack frame;
15515 gfc_expr *e, *start, *end, *step;
15516 bool retval = true;
15518 mpz_init (frame.value);
15519 mpz_init (trip);
15521 start = gfc_copy_expr (var->iter.start);
15522 end = gfc_copy_expr (var->iter.end);
15523 step = gfc_copy_expr (var->iter.step);
15525 if (!gfc_simplify_expr (start, 1)
15526 || start->expr_type != EXPR_CONSTANT)
15528 gfc_error ("start of implied-do loop at %L could not be "
15529 "simplified to a constant value", &start->where);
15530 retval = false;
15531 goto cleanup;
15533 if (!gfc_simplify_expr (end, 1)
15534 || end->expr_type != EXPR_CONSTANT)
15536 gfc_error ("end of implied-do loop at %L could not be "
15537 "simplified to a constant value", &start->where);
15538 retval = false;
15539 goto cleanup;
15541 if (!gfc_simplify_expr (step, 1)
15542 || step->expr_type != EXPR_CONSTANT)
15544 gfc_error ("step of implied-do loop at %L could not be "
15545 "simplified to a constant value", &start->where);
15546 retval = false;
15547 goto cleanup;
15550 mpz_set (trip, end->value.integer);
15551 mpz_sub (trip, trip, start->value.integer);
15552 mpz_add (trip, trip, step->value.integer);
15554 mpz_div (trip, trip, step->value.integer);
15556 mpz_set (frame.value, start->value.integer);
15558 frame.prev = iter_stack;
15559 frame.variable = var->iter.var->symtree;
15560 iter_stack = &frame;
15562 while (mpz_cmp_ui (trip, 0) > 0)
15564 if (!traverse_data_var (var->list, where))
15566 retval = false;
15567 goto cleanup;
15570 e = gfc_copy_expr (var->expr);
15571 if (!gfc_simplify_expr (e, 1))
15573 gfc_free_expr (e);
15574 retval = false;
15575 goto cleanup;
15578 mpz_add (frame.value, frame.value, step->value.integer);
15580 mpz_sub_ui (trip, trip, 1);
15583 cleanup:
15584 mpz_clear (frame.value);
15585 mpz_clear (trip);
15587 gfc_free_expr (start);
15588 gfc_free_expr (end);
15589 gfc_free_expr (step);
15591 iter_stack = frame.prev;
15592 return retval;
15596 /* Type resolve variables in the variable list of a DATA statement. */
15598 static bool
15599 traverse_data_var (gfc_data_variable *var, locus *where)
15601 bool t;
15603 for (; var; var = var->next)
15605 if (var->expr == NULL)
15606 t = traverse_data_list (var, where);
15607 else
15608 t = check_data_variable (var, where);
15610 if (!t)
15611 return false;
15614 return true;
15618 /* Resolve the expressions and iterators associated with a data statement.
15619 This is separate from the assignment checking because data lists should
15620 only be resolved once. */
15622 static bool
15623 resolve_data_variables (gfc_data_variable *d)
15625 for (; d; d = d->next)
15627 if (d->list == NULL)
15629 if (!gfc_resolve_expr (d->expr))
15630 return false;
15632 else
15634 if (!gfc_resolve_iterator (&d->iter, false, true))
15635 return false;
15637 if (!resolve_data_variables (d->list))
15638 return false;
15642 return true;
15646 /* Resolve a single DATA statement. We implement this by storing a pointer to
15647 the value list into static variables, and then recursively traversing the
15648 variables list, expanding iterators and such. */
15650 static void
15651 resolve_data (gfc_data *d)
15654 if (!resolve_data_variables (d->var))
15655 return;
15657 values.vnode = d->value;
15658 if (d->value == NULL)
15659 mpz_set_ui (values.left, 0);
15660 else
15661 mpz_set (values.left, d->value->repeat);
15663 if (!traverse_data_var (d->var, &d->where))
15664 return;
15666 /* At this point, we better not have any values left. */
15668 if (next_data_value ())
15669 gfc_error ("DATA statement at %L has more values than variables",
15670 &d->where);
15674 /* 12.6 Constraint: In a pure subprogram any variable which is in common or
15675 accessed by host or use association, is a dummy argument to a pure function,
15676 is a dummy argument with INTENT (IN) to a pure subroutine, or an object that
15677 is storage associated with any such variable, shall not be used in the
15678 following contexts: (clients of this function). */
15680 /* Determines if a variable is not 'pure', i.e., not assignable within a pure
15681 procedure. Returns zero if assignment is OK, nonzero if there is a
15682 problem. */
15684 gfc_impure_variable (gfc_symbol *sym)
15686 gfc_symbol *proc;
15687 gfc_namespace *ns;
15689 if (sym->attr.use_assoc || sym->attr.in_common)
15690 return 1;
15692 /* Check if the symbol's ns is inside the pure procedure. */
15693 for (ns = gfc_current_ns; ns; ns = ns->parent)
15695 if (ns == sym->ns)
15696 break;
15697 if (ns->proc_name->attr.flavor == FL_PROCEDURE && !sym->attr.function)
15698 return 1;
15701 proc = sym->ns->proc_name;
15702 if (sym->attr.dummy
15703 && ((proc->attr.subroutine && sym->attr.intent == INTENT_IN)
15704 || proc->attr.function))
15705 return 1;
15707 /* TODO: Sort out what can be storage associated, if anything, and include
15708 it here. In principle equivalences should be scanned but it does not
15709 seem to be possible to storage associate an impure variable this way. */
15710 return 0;
15714 /* Test whether a symbol is pure or not. For a NULL pointer, checks if the
15715 current namespace is inside a pure procedure. */
15718 gfc_pure (gfc_symbol *sym)
15720 symbol_attribute attr;
15721 gfc_namespace *ns;
15723 if (sym == NULL)
15725 /* Check if the current namespace or one of its parents
15726 belongs to a pure procedure. */
15727 for (ns = gfc_current_ns; ns; ns = ns->parent)
15729 sym = ns->proc_name;
15730 if (sym == NULL)
15731 return 0;
15732 attr = sym->attr;
15733 if (attr.flavor == FL_PROCEDURE && attr.pure)
15734 return 1;
15736 return 0;
15739 attr = sym->attr;
15741 return attr.flavor == FL_PROCEDURE && attr.pure;
15745 /* Test whether a symbol is implicitly pure or not. For a NULL pointer,
15746 checks if the current namespace is implicitly pure. Note that this
15747 function returns false for a PURE procedure. */
15750 gfc_implicit_pure (gfc_symbol *sym)
15752 gfc_namespace *ns;
15754 if (sym == NULL)
15756 /* Check if the current procedure is implicit_pure. Walk up
15757 the procedure list until we find a procedure. */
15758 for (ns = gfc_current_ns; ns; ns = ns->parent)
15760 sym = ns->proc_name;
15761 if (sym == NULL)
15762 return 0;
15764 if (sym->attr.flavor == FL_PROCEDURE)
15765 break;
15769 return sym->attr.flavor == FL_PROCEDURE && sym->attr.implicit_pure
15770 && !sym->attr.pure;
15774 void
15775 gfc_unset_implicit_pure (gfc_symbol *sym)
15777 gfc_namespace *ns;
15779 if (sym == NULL)
15781 /* Check if the current procedure is implicit_pure. Walk up
15782 the procedure list until we find a procedure. */
15783 for (ns = gfc_current_ns; ns; ns = ns->parent)
15785 sym = ns->proc_name;
15786 if (sym == NULL)
15787 return;
15789 if (sym->attr.flavor == FL_PROCEDURE)
15790 break;
15794 if (sym->attr.flavor == FL_PROCEDURE)
15795 sym->attr.implicit_pure = 0;
15796 else
15797 sym->attr.pure = 0;
15801 /* Test whether the current procedure is elemental or not. */
15804 gfc_elemental (gfc_symbol *sym)
15806 symbol_attribute attr;
15808 if (sym == NULL)
15809 sym = gfc_current_ns->proc_name;
15810 if (sym == NULL)
15811 return 0;
15812 attr = sym->attr;
15814 return attr.flavor == FL_PROCEDURE && attr.elemental;
15818 /* Warn about unused labels. */
15820 static void
15821 warn_unused_fortran_label (gfc_st_label *label)
15823 if (label == NULL)
15824 return;
15826 warn_unused_fortran_label (label->left);
15828 if (label->defined == ST_LABEL_UNKNOWN)
15829 return;
15831 switch (label->referenced)
15833 case ST_LABEL_UNKNOWN:
15834 gfc_warning (OPT_Wunused_label, "Label %d at %L defined but not used",
15835 label->value, &label->where);
15836 break;
15838 case ST_LABEL_BAD_TARGET:
15839 gfc_warning (OPT_Wunused_label,
15840 "Label %d at %L defined but cannot be used",
15841 label->value, &label->where);
15842 break;
15844 default:
15845 break;
15848 warn_unused_fortran_label (label->right);
15852 /* Returns the sequence type of a symbol or sequence. */
15854 static seq_type
15855 sequence_type (gfc_typespec ts)
15857 seq_type result;
15858 gfc_component *c;
15860 switch (ts.type)
15862 case BT_DERIVED:
15864 if (ts.u.derived->components == NULL)
15865 return SEQ_NONDEFAULT;
15867 result = sequence_type (ts.u.derived->components->ts);
15868 for (c = ts.u.derived->components->next; c; c = c->next)
15869 if (sequence_type (c->ts) != result)
15870 return SEQ_MIXED;
15872 return result;
15874 case BT_CHARACTER:
15875 if (ts.kind != gfc_default_character_kind)
15876 return SEQ_NONDEFAULT;
15878 return SEQ_CHARACTER;
15880 case BT_INTEGER:
15881 if (ts.kind != gfc_default_integer_kind)
15882 return SEQ_NONDEFAULT;
15884 return SEQ_NUMERIC;
15886 case BT_REAL:
15887 if (!(ts.kind == gfc_default_real_kind
15888 || ts.kind == gfc_default_double_kind))
15889 return SEQ_NONDEFAULT;
15891 return SEQ_NUMERIC;
15893 case BT_COMPLEX:
15894 if (ts.kind != gfc_default_complex_kind)
15895 return SEQ_NONDEFAULT;
15897 return SEQ_NUMERIC;
15899 case BT_LOGICAL:
15900 if (ts.kind != gfc_default_logical_kind)
15901 return SEQ_NONDEFAULT;
15903 return SEQ_NUMERIC;
15905 default:
15906 return SEQ_NONDEFAULT;
15911 /* Resolve derived type EQUIVALENCE object. */
15913 static bool
15914 resolve_equivalence_derived (gfc_symbol *derived, gfc_symbol *sym, gfc_expr *e)
15916 gfc_component *c = derived->components;
15918 if (!derived)
15919 return true;
15921 /* Shall not be an object of nonsequence derived type. */
15922 if (!derived->attr.sequence)
15924 gfc_error ("Derived type variable %qs at %L must have SEQUENCE "
15925 "attribute to be an EQUIVALENCE object", sym->name,
15926 &e->where);
15927 return false;
15930 /* Shall not have allocatable components. */
15931 if (derived->attr.alloc_comp)
15933 gfc_error ("Derived type variable %qs at %L cannot have ALLOCATABLE "
15934 "components to be an EQUIVALENCE object",sym->name,
15935 &e->where);
15936 return false;
15939 if (sym->attr.in_common && gfc_has_default_initializer (sym->ts.u.derived))
15941 gfc_error ("Derived type variable %qs at %L with default "
15942 "initialization cannot be in EQUIVALENCE with a variable "
15943 "in COMMON", sym->name, &e->where);
15944 return false;
15947 for (; c ; c = c->next)
15949 if (gfc_bt_struct (c->ts.type)
15950 && (!resolve_equivalence_derived(c->ts.u.derived, sym, e)))
15951 return false;
15953 /* Shall not be an object of sequence derived type containing a pointer
15954 in the structure. */
15955 if (c->attr.pointer)
15957 gfc_error ("Derived type variable %qs at %L with pointer "
15958 "component(s) cannot be an EQUIVALENCE object",
15959 sym->name, &e->where);
15960 return false;
15963 return true;
15967 /* Resolve equivalence object.
15968 An EQUIVALENCE object shall not be a dummy argument, a pointer, a target,
15969 an allocatable array, an object of nonsequence derived type, an object of
15970 sequence derived type containing a pointer at any level of component
15971 selection, an automatic object, a function name, an entry name, a result
15972 name, a named constant, a structure component, or a subobject of any of
15973 the preceding objects. A substring shall not have length zero. A
15974 derived type shall not have components with default initialization nor
15975 shall two objects of an equivalence group be initialized.
15976 Either all or none of the objects shall have an protected attribute.
15977 The simple constraints are done in symbol.c(check_conflict) and the rest
15978 are implemented here. */
15980 static void
15981 resolve_equivalence (gfc_equiv *eq)
15983 gfc_symbol *sym;
15984 gfc_symbol *first_sym;
15985 gfc_expr *e;
15986 gfc_ref *r;
15987 locus *last_where = NULL;
15988 seq_type eq_type, last_eq_type;
15989 gfc_typespec *last_ts;
15990 int object, cnt_protected;
15991 const char *msg;
15993 last_ts = &eq->expr->symtree->n.sym->ts;
15995 first_sym = eq->expr->symtree->n.sym;
15997 cnt_protected = 0;
15999 for (object = 1; eq; eq = eq->eq, object++)
16001 e = eq->expr;
16003 e->ts = e->symtree->n.sym->ts;
16004 /* match_varspec might not know yet if it is seeing
16005 array reference or substring reference, as it doesn't
16006 know the types. */
16007 if (e->ref && e->ref->type == REF_ARRAY)
16009 gfc_ref *ref = e->ref;
16010 sym = e->symtree->n.sym;
16012 if (sym->attr.dimension)
16014 ref->u.ar.as = sym->as;
16015 ref = ref->next;
16018 /* For substrings, convert REF_ARRAY into REF_SUBSTRING. */
16019 if (e->ts.type == BT_CHARACTER
16020 && ref
16021 && ref->type == REF_ARRAY
16022 && ref->u.ar.dimen == 1
16023 && ref->u.ar.dimen_type[0] == DIMEN_RANGE
16024 && ref->u.ar.stride[0] == NULL)
16026 gfc_expr *start = ref->u.ar.start[0];
16027 gfc_expr *end = ref->u.ar.end[0];
16028 void *mem = NULL;
16030 /* Optimize away the (:) reference. */
16031 if (start == NULL && end == NULL)
16033 if (e->ref == ref)
16034 e->ref = ref->next;
16035 else
16036 e->ref->next = ref->next;
16037 mem = ref;
16039 else
16041 ref->type = REF_SUBSTRING;
16042 if (start == NULL)
16043 start = gfc_get_int_expr (gfc_charlen_int_kind,
16044 NULL, 1);
16045 ref->u.ss.start = start;
16046 if (end == NULL && e->ts.u.cl)
16047 end = gfc_copy_expr (e->ts.u.cl->length);
16048 ref->u.ss.end = end;
16049 ref->u.ss.length = e->ts.u.cl;
16050 e->ts.u.cl = NULL;
16052 ref = ref->next;
16053 free (mem);
16056 /* Any further ref is an error. */
16057 if (ref)
16059 gcc_assert (ref->type == REF_ARRAY);
16060 gfc_error ("Syntax error in EQUIVALENCE statement at %L",
16061 &ref->u.ar.where);
16062 continue;
16066 if (!gfc_resolve_expr (e))
16067 continue;
16069 sym = e->symtree->n.sym;
16071 if (sym->attr.is_protected)
16072 cnt_protected++;
16073 if (cnt_protected > 0 && cnt_protected != object)
16075 gfc_error ("Either all or none of the objects in the "
16076 "EQUIVALENCE set at %L shall have the "
16077 "PROTECTED attribute",
16078 &e->where);
16079 break;
16082 /* Shall not equivalence common block variables in a PURE procedure. */
16083 if (sym->ns->proc_name
16084 && sym->ns->proc_name->attr.pure
16085 && sym->attr.in_common)
16087 /* Need to check for symbols that may have entered the pure
16088 procedure via a USE statement. */
16089 bool saw_sym = false;
16090 if (sym->ns->use_stmts)
16092 gfc_use_rename *r;
16093 for (r = sym->ns->use_stmts->rename; r; r = r->next)
16094 if (strcmp(r->use_name, sym->name) == 0) saw_sym = true;
16096 else
16097 saw_sym = true;
16099 if (saw_sym)
16100 gfc_error ("COMMON block member %qs at %L cannot be an "
16101 "EQUIVALENCE object in the pure procedure %qs",
16102 sym->name, &e->where, sym->ns->proc_name->name);
16103 break;
16106 /* Shall not be a named constant. */
16107 if (e->expr_type == EXPR_CONSTANT)
16109 gfc_error ("Named constant %qs at %L cannot be an EQUIVALENCE "
16110 "object", sym->name, &e->where);
16111 continue;
16114 if (e->ts.type == BT_DERIVED
16115 && !resolve_equivalence_derived (e->ts.u.derived, sym, e))
16116 continue;
16118 /* Check that the types correspond correctly:
16119 Note 5.28:
16120 A numeric sequence structure may be equivalenced to another sequence
16121 structure, an object of default integer type, default real type, double
16122 precision real type, default logical type such that components of the
16123 structure ultimately only become associated to objects of the same
16124 kind. A character sequence structure may be equivalenced to an object
16125 of default character kind or another character sequence structure.
16126 Other objects may be equivalenced only to objects of the same type and
16127 kind parameters. */
16129 /* Identical types are unconditionally OK. */
16130 if (object == 1 || gfc_compare_types (last_ts, &sym->ts))
16131 goto identical_types;
16133 last_eq_type = sequence_type (*last_ts);
16134 eq_type = sequence_type (sym->ts);
16136 /* Since the pair of objects is not of the same type, mixed or
16137 non-default sequences can be rejected. */
16139 msg = "Sequence %s with mixed components in EQUIVALENCE "
16140 "statement at %L with different type objects";
16141 if ((object ==2
16142 && last_eq_type == SEQ_MIXED
16143 && !gfc_notify_std (GFC_STD_GNU, msg, first_sym->name, last_where))
16144 || (eq_type == SEQ_MIXED
16145 && !gfc_notify_std (GFC_STD_GNU, msg, sym->name, &e->where)))
16146 continue;
16148 msg = "Non-default type object or sequence %s in EQUIVALENCE "
16149 "statement at %L with objects of different type";
16150 if ((object ==2
16151 && last_eq_type == SEQ_NONDEFAULT
16152 && !gfc_notify_std (GFC_STD_GNU, msg, first_sym->name, last_where))
16153 || (eq_type == SEQ_NONDEFAULT
16154 && !gfc_notify_std (GFC_STD_GNU, msg, sym->name, &e->where)))
16155 continue;
16157 msg ="Non-CHARACTER object %qs in default CHARACTER "
16158 "EQUIVALENCE statement at %L";
16159 if (last_eq_type == SEQ_CHARACTER
16160 && eq_type != SEQ_CHARACTER
16161 && !gfc_notify_std (GFC_STD_GNU, msg, sym->name, &e->where))
16162 continue;
16164 msg ="Non-NUMERIC object %qs in default NUMERIC "
16165 "EQUIVALENCE statement at %L";
16166 if (last_eq_type == SEQ_NUMERIC
16167 && eq_type != SEQ_NUMERIC
16168 && !gfc_notify_std (GFC_STD_GNU, msg, sym->name, &e->where))
16169 continue;
16171 identical_types:
16172 last_ts =&sym->ts;
16173 last_where = &e->where;
16175 if (!e->ref)
16176 continue;
16178 /* Shall not be an automatic array. */
16179 if (e->ref->type == REF_ARRAY
16180 && !gfc_resolve_array_spec (e->ref->u.ar.as, 1))
16182 gfc_error ("Array %qs at %L with non-constant bounds cannot be "
16183 "an EQUIVALENCE object", sym->name, &e->where);
16184 continue;
16187 r = e->ref;
16188 while (r)
16190 /* Shall not be a structure component. */
16191 if (r->type == REF_COMPONENT)
16193 gfc_error ("Structure component %qs at %L cannot be an "
16194 "EQUIVALENCE object",
16195 r->u.c.component->name, &e->where);
16196 break;
16199 /* A substring shall not have length zero. */
16200 if (r->type == REF_SUBSTRING)
16202 if (compare_bound (r->u.ss.start, r->u.ss.end) == CMP_GT)
16204 gfc_error ("Substring at %L has length zero",
16205 &r->u.ss.start->where);
16206 break;
16209 r = r->next;
16215 /* Function called by resolve_fntype to flag other symbol used in the
16216 length type parameter specification of function resuls. */
16218 static bool
16219 flag_fn_result_spec (gfc_expr *expr,
16220 gfc_symbol *sym ATTRIBUTE_UNUSED,
16221 int *f ATTRIBUTE_UNUSED)
16223 gfc_namespace *ns;
16224 gfc_symbol *s;
16226 if (expr->expr_type == EXPR_VARIABLE)
16228 s = expr->symtree->n.sym;
16229 for (ns = s->ns; ns; ns = ns->parent)
16230 if (!ns->parent)
16231 break;
16233 if (!s->fn_result_spec
16234 && s->attr.flavor == FL_PARAMETER)
16236 /* Function contained in a module.... */
16237 if (ns->proc_name && ns->proc_name->attr.flavor == FL_MODULE)
16239 gfc_symtree *st;
16240 s->fn_result_spec = 1;
16241 /* Make sure that this symbol is translated as a module
16242 variable. */
16243 st = gfc_get_unique_symtree (ns);
16244 st->n.sym = s;
16245 s->refs++;
16247 /* ... which is use associated and called. */
16248 else if (s->attr.use_assoc || s->attr.used_in_submodule
16250 /* External function matched with an interface. */
16251 (s->ns->proc_name
16252 && ((s->ns == ns
16253 && s->ns->proc_name->attr.if_source == IFSRC_DECL)
16254 || s->ns->proc_name->attr.if_source == IFSRC_IFBODY)
16255 && s->ns->proc_name->attr.function))
16256 s->fn_result_spec = 1;
16259 return false;
16263 /* Resolve function and ENTRY types, issue diagnostics if needed. */
16265 static void
16266 resolve_fntype (gfc_namespace *ns)
16268 gfc_entry_list *el;
16269 gfc_symbol *sym;
16271 if (ns->proc_name == NULL || !ns->proc_name->attr.function)
16272 return;
16274 /* If there are any entries, ns->proc_name is the entry master
16275 synthetic symbol and ns->entries->sym actual FUNCTION symbol. */
16276 if (ns->entries)
16277 sym = ns->entries->sym;
16278 else
16279 sym = ns->proc_name;
16280 if (sym->result == sym
16281 && sym->ts.type == BT_UNKNOWN
16282 && !gfc_set_default_type (sym, 0, NULL)
16283 && !sym->attr.untyped)
16285 gfc_error ("Function %qs at %L has no IMPLICIT type",
16286 sym->name, &sym->declared_at);
16287 sym->attr.untyped = 1;
16290 if (sym->ts.type == BT_DERIVED && !sym->ts.u.derived->attr.use_assoc
16291 && !sym->attr.contained
16292 && !gfc_check_symbol_access (sym->ts.u.derived)
16293 && gfc_check_symbol_access (sym))
16295 gfc_notify_std (GFC_STD_F2003, "PUBLIC function %qs at "
16296 "%L of PRIVATE type %qs", sym->name,
16297 &sym->declared_at, sym->ts.u.derived->name);
16300 if (ns->entries)
16301 for (el = ns->entries->next; el; el = el->next)
16303 if (el->sym->result == el->sym
16304 && el->sym->ts.type == BT_UNKNOWN
16305 && !gfc_set_default_type (el->sym, 0, NULL)
16306 && !el->sym->attr.untyped)
16308 gfc_error ("ENTRY %qs at %L has no IMPLICIT type",
16309 el->sym->name, &el->sym->declared_at);
16310 el->sym->attr.untyped = 1;
16314 if (sym->ts.type == BT_CHARACTER)
16315 gfc_traverse_expr (sym->ts.u.cl->length, NULL, flag_fn_result_spec, 0);
16319 /* 12.3.2.1.1 Defined operators. */
16321 static bool
16322 check_uop_procedure (gfc_symbol *sym, locus where)
16324 gfc_formal_arglist *formal;
16326 if (!sym->attr.function)
16328 gfc_error ("User operator procedure %qs at %L must be a FUNCTION",
16329 sym->name, &where);
16330 return false;
16333 if (sym->ts.type == BT_CHARACTER
16334 && !((sym->ts.u.cl && sym->ts.u.cl->length) || sym->ts.deferred)
16335 && !(sym->result && ((sym->result->ts.u.cl
16336 && sym->result->ts.u.cl->length) || sym->result->ts.deferred)))
16338 gfc_error ("User operator procedure %qs at %L cannot be assumed "
16339 "character length", sym->name, &where);
16340 return false;
16343 formal = gfc_sym_get_dummy_args (sym);
16344 if (!formal || !formal->sym)
16346 gfc_error ("User operator procedure %qs at %L must have at least "
16347 "one argument", sym->name, &where);
16348 return false;
16351 if (formal->sym->attr.intent != INTENT_IN)
16353 gfc_error ("First argument of operator interface at %L must be "
16354 "INTENT(IN)", &where);
16355 return false;
16358 if (formal->sym->attr.optional)
16360 gfc_error ("First argument of operator interface at %L cannot be "
16361 "optional", &where);
16362 return false;
16365 formal = formal->next;
16366 if (!formal || !formal->sym)
16367 return true;
16369 if (formal->sym->attr.intent != INTENT_IN)
16371 gfc_error ("Second argument of operator interface at %L must be "
16372 "INTENT(IN)", &where);
16373 return false;
16376 if (formal->sym->attr.optional)
16378 gfc_error ("Second argument of operator interface at %L cannot be "
16379 "optional", &where);
16380 return false;
16383 if (formal->next)
16385 gfc_error ("Operator interface at %L must have, at most, two "
16386 "arguments", &where);
16387 return false;
16390 return true;
16393 static void
16394 gfc_resolve_uops (gfc_symtree *symtree)
16396 gfc_interface *itr;
16398 if (symtree == NULL)
16399 return;
16401 gfc_resolve_uops (symtree->left);
16402 gfc_resolve_uops (symtree->right);
16404 for (itr = symtree->n.uop->op; itr; itr = itr->next)
16405 check_uop_procedure (itr->sym, itr->sym->declared_at);
16409 /* Examine all of the expressions associated with a program unit,
16410 assign types to all intermediate expressions, make sure that all
16411 assignments are to compatible types and figure out which names
16412 refer to which functions or subroutines. It doesn't check code
16413 block, which is handled by gfc_resolve_code. */
16415 static void
16416 resolve_types (gfc_namespace *ns)
16418 gfc_namespace *n;
16419 gfc_charlen *cl;
16420 gfc_data *d;
16421 gfc_equiv *eq;
16422 gfc_namespace* old_ns = gfc_current_ns;
16424 if (ns->types_resolved)
16425 return;
16427 /* Check that all IMPLICIT types are ok. */
16428 if (!ns->seen_implicit_none)
16430 unsigned letter;
16431 for (letter = 0; letter != GFC_LETTERS; ++letter)
16432 if (ns->set_flag[letter]
16433 && !resolve_typespec_used (&ns->default_type[letter],
16434 &ns->implicit_loc[letter], NULL))
16435 return;
16438 gfc_current_ns = ns;
16440 resolve_entries (ns);
16442 resolve_common_vars (&ns->blank_common, false);
16443 resolve_common_blocks (ns->common_root);
16445 resolve_contained_functions (ns);
16447 if (ns->proc_name && ns->proc_name->attr.flavor == FL_PROCEDURE
16448 && ns->proc_name->attr.if_source == IFSRC_IFBODY)
16449 resolve_formal_arglist (ns->proc_name);
16451 gfc_traverse_ns (ns, resolve_bind_c_derived_types);
16453 for (cl = ns->cl_list; cl; cl = cl->next)
16454 resolve_charlen (cl);
16456 gfc_traverse_ns (ns, resolve_symbol);
16458 resolve_fntype (ns);
16460 for (n = ns->contained; n; n = n->sibling)
16462 if (gfc_pure (ns->proc_name) && !gfc_pure (n->proc_name))
16463 gfc_error ("Contained procedure %qs at %L of a PURE procedure must "
16464 "also be PURE", n->proc_name->name,
16465 &n->proc_name->declared_at);
16467 resolve_types (n);
16470 forall_flag = 0;
16471 gfc_do_concurrent_flag = 0;
16472 gfc_check_interfaces (ns);
16474 gfc_traverse_ns (ns, resolve_values);
16476 if (ns->save_all)
16477 gfc_save_all (ns);
16479 iter_stack = NULL;
16480 for (d = ns->data; d; d = d->next)
16481 resolve_data (d);
16483 iter_stack = NULL;
16484 gfc_traverse_ns (ns, gfc_formalize_init_value);
16486 gfc_traverse_ns (ns, gfc_verify_binding_labels);
16488 for (eq = ns->equiv; eq; eq = eq->next)
16489 resolve_equivalence (eq);
16491 /* Warn about unused labels. */
16492 if (warn_unused_label)
16493 warn_unused_fortran_label (ns->st_labels);
16495 gfc_resolve_uops (ns->uop_root);
16497 gfc_traverse_ns (ns, gfc_verify_DTIO_procedures);
16499 gfc_resolve_omp_declare_simd (ns);
16501 gfc_resolve_omp_udrs (ns->omp_udr_root);
16503 ns->types_resolved = 1;
16505 gfc_current_ns = old_ns;
16509 /* Call gfc_resolve_code recursively. */
16511 static void
16512 resolve_codes (gfc_namespace *ns)
16514 gfc_namespace *n;
16515 bitmap_obstack old_obstack;
16517 if (ns->resolved == 1)
16518 return;
16520 for (n = ns->contained; n; n = n->sibling)
16521 resolve_codes (n);
16523 gfc_current_ns = ns;
16525 /* Don't clear 'cs_base' if this is the namespace of a BLOCK construct. */
16526 if (!(ns->proc_name && ns->proc_name->attr.flavor == FL_LABEL))
16527 cs_base = NULL;
16529 /* Set to an out of range value. */
16530 current_entry_id = -1;
16532 old_obstack = labels_obstack;
16533 bitmap_obstack_initialize (&labels_obstack);
16535 gfc_resolve_oacc_declare (ns);
16536 gfc_resolve_omp_local_vars (ns);
16537 gfc_resolve_code (ns->code, ns);
16539 bitmap_obstack_release (&labels_obstack);
16540 labels_obstack = old_obstack;
16544 /* This function is called after a complete program unit has been compiled.
16545 Its purpose is to examine all of the expressions associated with a program
16546 unit, assign types to all intermediate expressions, make sure that all
16547 assignments are to compatible types and figure out which names refer to
16548 which functions or subroutines. */
16550 void
16551 gfc_resolve (gfc_namespace *ns)
16553 gfc_namespace *old_ns;
16554 code_stack *old_cs_base;
16555 struct gfc_omp_saved_state old_omp_state;
16557 if (ns->resolved)
16558 return;
16560 ns->resolved = -1;
16561 old_ns = gfc_current_ns;
16562 old_cs_base = cs_base;
16564 /* As gfc_resolve can be called during resolution of an OpenMP construct
16565 body, we should clear any state associated to it, so that say NS's
16566 DO loops are not interpreted as OpenMP loops. */
16567 if (!ns->construct_entities)
16568 gfc_omp_save_and_clear_state (&old_omp_state);
16570 resolve_types (ns);
16571 component_assignment_level = 0;
16572 resolve_codes (ns);
16574 gfc_current_ns = old_ns;
16575 cs_base = old_cs_base;
16576 ns->resolved = 1;
16578 gfc_run_passes (ns);
16580 if (!ns->construct_entities)
16581 gfc_omp_restore_state (&old_omp_state);