2011-04-23 Tobias Burnus <burnus@net-b.de>
[official-gcc.git] / gcc / tree-chrec.c
blob1e49c1d5b214627b378fac6e7bfd9893f1979404
1 /* Chains of recurrences.
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Sebastian Pop <pop@cri.ensmp.fr>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This file implements operations on chains of recurrences. Chains
23 of recurrences are used for modeling evolution functions of scalar
24 variables.
27 #include "config.h"
28 #include "system.h"
29 #include "coretypes.h"
30 #include "tree-pretty-print.h"
31 #include "cfgloop.h"
32 #include "tree-flow.h"
33 #include "tree-chrec.h"
34 #include "tree-pass.h"
35 #include "params.h"
36 #include "tree-scalar-evolution.h"
38 /* Extended folder for chrecs. */
40 /* Determines whether CST is not a constant evolution. */
42 static inline bool
43 is_not_constant_evolution (const_tree cst)
45 return (TREE_CODE (cst) == POLYNOMIAL_CHREC);
48 /* Fold CODE for a polynomial function and a constant. */
50 static inline tree
51 chrec_fold_poly_cst (enum tree_code code,
52 tree type,
53 tree poly,
54 tree cst)
56 gcc_assert (poly);
57 gcc_assert (cst);
58 gcc_assert (TREE_CODE (poly) == POLYNOMIAL_CHREC);
59 gcc_assert (!is_not_constant_evolution (cst));
60 gcc_assert (type == chrec_type (poly));
62 switch (code)
64 case PLUS_EXPR:
65 return build_polynomial_chrec
66 (CHREC_VARIABLE (poly),
67 chrec_fold_plus (type, CHREC_LEFT (poly), cst),
68 CHREC_RIGHT (poly));
70 case MINUS_EXPR:
71 return build_polynomial_chrec
72 (CHREC_VARIABLE (poly),
73 chrec_fold_minus (type, CHREC_LEFT (poly), cst),
74 CHREC_RIGHT (poly));
76 case MULT_EXPR:
77 return build_polynomial_chrec
78 (CHREC_VARIABLE (poly),
79 chrec_fold_multiply (type, CHREC_LEFT (poly), cst),
80 chrec_fold_multiply (type, CHREC_RIGHT (poly), cst));
82 default:
83 return chrec_dont_know;
87 /* Fold the addition of two polynomial functions. */
89 static inline tree
90 chrec_fold_plus_poly_poly (enum tree_code code,
91 tree type,
92 tree poly0,
93 tree poly1)
95 tree left, right;
96 struct loop *loop0 = get_chrec_loop (poly0);
97 struct loop *loop1 = get_chrec_loop (poly1);
98 tree rtype = code == POINTER_PLUS_EXPR ? sizetype : type;
100 gcc_assert (poly0);
101 gcc_assert (poly1);
102 gcc_assert (TREE_CODE (poly0) == POLYNOMIAL_CHREC);
103 gcc_assert (TREE_CODE (poly1) == POLYNOMIAL_CHREC);
104 if (POINTER_TYPE_P (chrec_type (poly0)))
105 gcc_assert (chrec_type (poly1) == sizetype);
106 else
107 gcc_assert (chrec_type (poly0) == chrec_type (poly1));
108 gcc_assert (type == chrec_type (poly0));
111 {a, +, b}_1 + {c, +, d}_2 -> {{a, +, b}_1 + c, +, d}_2,
112 {a, +, b}_2 + {c, +, d}_1 -> {{c, +, d}_1 + a, +, b}_2,
113 {a, +, b}_x + {c, +, d}_x -> {a+c, +, b+d}_x. */
114 if (flow_loop_nested_p (loop0, loop1))
116 if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
117 return build_polynomial_chrec
118 (CHREC_VARIABLE (poly1),
119 chrec_fold_plus (type, poly0, CHREC_LEFT (poly1)),
120 CHREC_RIGHT (poly1));
121 else
122 return build_polynomial_chrec
123 (CHREC_VARIABLE (poly1),
124 chrec_fold_minus (type, poly0, CHREC_LEFT (poly1)),
125 chrec_fold_multiply (type, CHREC_RIGHT (poly1),
126 SCALAR_FLOAT_TYPE_P (type)
127 ? build_real (type, dconstm1)
128 : build_int_cst_type (type, -1)));
131 if (flow_loop_nested_p (loop1, loop0))
133 if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
134 return build_polynomial_chrec
135 (CHREC_VARIABLE (poly0),
136 chrec_fold_plus (type, CHREC_LEFT (poly0), poly1),
137 CHREC_RIGHT (poly0));
138 else
139 return build_polynomial_chrec
140 (CHREC_VARIABLE (poly0),
141 chrec_fold_minus (type, CHREC_LEFT (poly0), poly1),
142 CHREC_RIGHT (poly0));
145 /* This function should never be called for chrecs of loops that
146 do not belong to the same loop nest. */
147 gcc_assert (loop0 == loop1);
149 if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
151 left = chrec_fold_plus
152 (type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));
153 right = chrec_fold_plus
154 (rtype, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
156 else
158 left = chrec_fold_minus
159 (type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));
160 right = chrec_fold_minus
161 (type, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
164 if (chrec_zerop (right))
165 return left;
166 else
167 return build_polynomial_chrec
168 (CHREC_VARIABLE (poly0), left, right);
173 /* Fold the multiplication of two polynomial functions. */
175 static inline tree
176 chrec_fold_multiply_poly_poly (tree type,
177 tree poly0,
178 tree poly1)
180 tree t0, t1, t2;
181 int var;
182 struct loop *loop0 = get_chrec_loop (poly0);
183 struct loop *loop1 = get_chrec_loop (poly1);
185 gcc_assert (poly0);
186 gcc_assert (poly1);
187 gcc_assert (TREE_CODE (poly0) == POLYNOMIAL_CHREC);
188 gcc_assert (TREE_CODE (poly1) == POLYNOMIAL_CHREC);
189 gcc_assert (chrec_type (poly0) == chrec_type (poly1));
190 gcc_assert (type == chrec_type (poly0));
192 /* {a, +, b}_1 * {c, +, d}_2 -> {c*{a, +, b}_1, +, d}_2,
193 {a, +, b}_2 * {c, +, d}_1 -> {a*{c, +, d}_1, +, b}_2,
194 {a, +, b}_x * {c, +, d}_x -> {a*c, +, a*d + b*c + b*d, +, 2*b*d}_x. */
195 if (flow_loop_nested_p (loop0, loop1))
196 /* poly0 is a constant wrt. poly1. */
197 return build_polynomial_chrec
198 (CHREC_VARIABLE (poly1),
199 chrec_fold_multiply (type, CHREC_LEFT (poly1), poly0),
200 CHREC_RIGHT (poly1));
202 if (flow_loop_nested_p (loop1, loop0))
203 /* poly1 is a constant wrt. poly0. */
204 return build_polynomial_chrec
205 (CHREC_VARIABLE (poly0),
206 chrec_fold_multiply (type, CHREC_LEFT (poly0), poly1),
207 CHREC_RIGHT (poly0));
209 gcc_assert (loop0 == loop1);
211 /* poly0 and poly1 are two polynomials in the same variable,
212 {a, +, b}_x * {c, +, d}_x -> {a*c, +, a*d + b*c + b*d, +, 2*b*d}_x. */
214 /* "a*c". */
215 t0 = chrec_fold_multiply (type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));
217 /* "a*d + b*c". */
218 t1 = chrec_fold_multiply (type, CHREC_LEFT (poly0), CHREC_RIGHT (poly1));
219 t1 = chrec_fold_plus (type, t1, chrec_fold_multiply (type,
220 CHREC_RIGHT (poly0),
221 CHREC_LEFT (poly1)));
222 /* "b*d". */
223 t2 = chrec_fold_multiply (type, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
224 /* "a*d + b*c + b*d". */
225 t1 = chrec_fold_plus (type, t1, t2);
226 /* "2*b*d". */
227 t2 = chrec_fold_multiply (type, SCALAR_FLOAT_TYPE_P (type)
228 ? build_real (type, dconst2)
229 : build_int_cst (type, 2), t2);
231 var = CHREC_VARIABLE (poly0);
232 return build_polynomial_chrec (var, t0,
233 build_polynomial_chrec (var, t1, t2));
236 /* When the operands are automatically_generated_chrec_p, the fold has
237 to respect the semantics of the operands. */
239 static inline tree
240 chrec_fold_automatically_generated_operands (tree op0,
241 tree op1)
243 if (op0 == chrec_dont_know
244 || op1 == chrec_dont_know)
245 return chrec_dont_know;
247 if (op0 == chrec_known
248 || op1 == chrec_known)
249 return chrec_known;
251 if (op0 == chrec_not_analyzed_yet
252 || op1 == chrec_not_analyzed_yet)
253 return chrec_not_analyzed_yet;
255 /* The default case produces a safe result. */
256 return chrec_dont_know;
259 /* Fold the addition of two chrecs. */
261 static tree
262 chrec_fold_plus_1 (enum tree_code code, tree type,
263 tree op0, tree op1)
265 tree op1_type = code == POINTER_PLUS_EXPR ? sizetype : type;
267 if (automatically_generated_chrec_p (op0)
268 || automatically_generated_chrec_p (op1))
269 return chrec_fold_automatically_generated_operands (op0, op1);
271 switch (TREE_CODE (op0))
273 case POLYNOMIAL_CHREC:
274 switch (TREE_CODE (op1))
276 case POLYNOMIAL_CHREC:
277 return chrec_fold_plus_poly_poly (code, type, op0, op1);
279 CASE_CONVERT:
280 if (tree_contains_chrecs (op1, NULL))
281 return chrec_dont_know;
283 default:
284 if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
285 return build_polynomial_chrec
286 (CHREC_VARIABLE (op0),
287 chrec_fold_plus (type, CHREC_LEFT (op0), op1),
288 CHREC_RIGHT (op0));
289 else
290 return build_polynomial_chrec
291 (CHREC_VARIABLE (op0),
292 chrec_fold_minus (type, CHREC_LEFT (op0), op1),
293 CHREC_RIGHT (op0));
296 CASE_CONVERT:
297 if (tree_contains_chrecs (op0, NULL))
298 return chrec_dont_know;
300 default:
301 switch (TREE_CODE (op1))
303 case POLYNOMIAL_CHREC:
304 if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
305 return build_polynomial_chrec
306 (CHREC_VARIABLE (op1),
307 chrec_fold_plus (type, op0, CHREC_LEFT (op1)),
308 CHREC_RIGHT (op1));
309 else
310 return build_polynomial_chrec
311 (CHREC_VARIABLE (op1),
312 chrec_fold_minus (type, op0, CHREC_LEFT (op1)),
313 chrec_fold_multiply (type, CHREC_RIGHT (op1),
314 SCALAR_FLOAT_TYPE_P (type)
315 ? build_real (type, dconstm1)
316 : build_int_cst_type (type, -1)));
318 CASE_CONVERT:
319 if (tree_contains_chrecs (op1, NULL))
320 return chrec_dont_know;
322 default:
324 int size = 0;
325 if ((tree_contains_chrecs (op0, &size)
326 || tree_contains_chrecs (op1, &size))
327 && size < PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
328 return build2 (code, type, op0, op1);
329 else if (size < PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
330 return fold_build2 (code, type,
331 fold_convert (type, op0),
332 fold_convert (op1_type, op1));
333 else
334 return chrec_dont_know;
340 /* Fold the addition of two chrecs. */
342 tree
343 chrec_fold_plus (tree type,
344 tree op0,
345 tree op1)
347 enum tree_code code;
348 if (automatically_generated_chrec_p (op0)
349 || automatically_generated_chrec_p (op1))
350 return chrec_fold_automatically_generated_operands (op0, op1);
352 if (integer_zerop (op0))
353 return chrec_convert (type, op1, NULL);
354 if (integer_zerop (op1))
355 return chrec_convert (type, op0, NULL);
357 if (POINTER_TYPE_P (type))
358 code = POINTER_PLUS_EXPR;
359 else
360 code = PLUS_EXPR;
362 return chrec_fold_plus_1 (code, type, op0, op1);
365 /* Fold the subtraction of two chrecs. */
367 tree
368 chrec_fold_minus (tree type,
369 tree op0,
370 tree op1)
372 if (automatically_generated_chrec_p (op0)
373 || automatically_generated_chrec_p (op1))
374 return chrec_fold_automatically_generated_operands (op0, op1);
376 if (integer_zerop (op1))
377 return op0;
379 return chrec_fold_plus_1 (MINUS_EXPR, type, op0, op1);
382 /* Fold the multiplication of two chrecs. */
384 tree
385 chrec_fold_multiply (tree type,
386 tree op0,
387 tree op1)
389 if (automatically_generated_chrec_p (op0)
390 || automatically_generated_chrec_p (op1))
391 return chrec_fold_automatically_generated_operands (op0, op1);
393 switch (TREE_CODE (op0))
395 case POLYNOMIAL_CHREC:
396 switch (TREE_CODE (op1))
398 case POLYNOMIAL_CHREC:
399 return chrec_fold_multiply_poly_poly (type, op0, op1);
401 CASE_CONVERT:
402 if (tree_contains_chrecs (op1, NULL))
403 return chrec_dont_know;
405 default:
406 if (integer_onep (op1))
407 return op0;
408 if (integer_zerop (op1))
409 return build_int_cst (type, 0);
411 return build_polynomial_chrec
412 (CHREC_VARIABLE (op0),
413 chrec_fold_multiply (type, CHREC_LEFT (op0), op1),
414 chrec_fold_multiply (type, CHREC_RIGHT (op0), op1));
417 CASE_CONVERT:
418 if (tree_contains_chrecs (op0, NULL))
419 return chrec_dont_know;
421 default:
422 if (integer_onep (op0))
423 return op1;
425 if (integer_zerop (op0))
426 return build_int_cst (type, 0);
428 switch (TREE_CODE (op1))
430 case POLYNOMIAL_CHREC:
431 return build_polynomial_chrec
432 (CHREC_VARIABLE (op1),
433 chrec_fold_multiply (type, CHREC_LEFT (op1), op0),
434 chrec_fold_multiply (type, CHREC_RIGHT (op1), op0));
436 CASE_CONVERT:
437 if (tree_contains_chrecs (op1, NULL))
438 return chrec_dont_know;
440 default:
441 if (integer_onep (op1))
442 return op0;
443 if (integer_zerop (op1))
444 return build_int_cst (type, 0);
445 return fold_build2 (MULT_EXPR, type, op0, op1);
452 /* Operations. */
454 /* Evaluate the binomial coefficient. Return NULL_TREE if the intermediate
455 calculation overflows, otherwise return C(n,k) with type TYPE. */
457 static tree
458 tree_fold_binomial (tree type, tree n, unsigned int k)
460 unsigned HOST_WIDE_INT lidx, lnum, ldenom, lres, ldum;
461 HOST_WIDE_INT hidx, hnum, hdenom, hres, hdum;
462 unsigned int i;
463 tree res;
465 /* Handle the most frequent cases. */
466 if (k == 0)
467 return build_int_cst (type, 1);
468 if (k == 1)
469 return fold_convert (type, n);
471 /* Check that k <= n. */
472 if (TREE_INT_CST_HIGH (n) == 0
473 && TREE_INT_CST_LOW (n) < k)
474 return NULL_TREE;
476 /* Numerator = n. */
477 lnum = TREE_INT_CST_LOW (n);
478 hnum = TREE_INT_CST_HIGH (n);
480 /* Denominator = 2. */
481 ldenom = 2;
482 hdenom = 0;
484 /* Index = Numerator-1. */
485 if (lnum == 0)
487 hidx = hnum - 1;
488 lidx = ~ (unsigned HOST_WIDE_INT) 0;
490 else
492 hidx = hnum;
493 lidx = lnum - 1;
496 /* Numerator = Numerator*Index = n*(n-1). */
497 if (mul_double (lnum, hnum, lidx, hidx, &lnum, &hnum))
498 return NULL_TREE;
500 for (i = 3; i <= k; i++)
502 /* Index--. */
503 if (lidx == 0)
505 hidx--;
506 lidx = ~ (unsigned HOST_WIDE_INT) 0;
508 else
509 lidx--;
511 /* Numerator *= Index. */
512 if (mul_double (lnum, hnum, lidx, hidx, &lnum, &hnum))
513 return NULL_TREE;
515 /* Denominator *= i. */
516 mul_double (ldenom, hdenom, i, 0, &ldenom, &hdenom);
519 /* Result = Numerator / Denominator. */
520 div_and_round_double (EXACT_DIV_EXPR, 1, lnum, hnum, ldenom, hdenom,
521 &lres, &hres, &ldum, &hdum);
523 res = build_int_cst_wide (type, lres, hres);
524 return int_fits_type_p (res, type) ? res : NULL_TREE;
527 /* Helper function. Use the Newton's interpolating formula for
528 evaluating the value of the evolution function. */
530 static tree
531 chrec_evaluate (unsigned var, tree chrec, tree n, unsigned int k)
533 tree arg0, arg1, binomial_n_k;
534 tree type = TREE_TYPE (chrec);
535 struct loop *var_loop = get_loop (var);
537 while (TREE_CODE (chrec) == POLYNOMIAL_CHREC
538 && flow_loop_nested_p (var_loop, get_chrec_loop (chrec)))
539 chrec = CHREC_LEFT (chrec);
541 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC
542 && CHREC_VARIABLE (chrec) == var)
544 arg1 = chrec_evaluate (var, CHREC_RIGHT (chrec), n, k + 1);
545 if (arg1 == chrec_dont_know)
546 return chrec_dont_know;
547 binomial_n_k = tree_fold_binomial (type, n, k);
548 if (!binomial_n_k)
549 return chrec_dont_know;
550 arg0 = fold_build2 (MULT_EXPR, type,
551 CHREC_LEFT (chrec), binomial_n_k);
552 return chrec_fold_plus (type, arg0, arg1);
555 binomial_n_k = tree_fold_binomial (type, n, k);
556 if (!binomial_n_k)
557 return chrec_dont_know;
559 return fold_build2 (MULT_EXPR, type, chrec, binomial_n_k);
562 /* Evaluates "CHREC (X)" when the varying variable is VAR.
563 Example: Given the following parameters,
565 var = 1
566 chrec = {3, +, 4}_1
567 x = 10
569 The result is given by the Newton's interpolating formula:
570 3 * \binom{10}{0} + 4 * \binom{10}{1}.
573 tree
574 chrec_apply (unsigned var,
575 tree chrec,
576 tree x)
578 tree type = chrec_type (chrec);
579 tree res = chrec_dont_know;
581 if (automatically_generated_chrec_p (chrec)
582 || automatically_generated_chrec_p (x)
584 /* When the symbols are defined in an outer loop, it is possible
585 to symbolically compute the apply, since the symbols are
586 constants with respect to the varying loop. */
587 || chrec_contains_symbols_defined_in_loop (chrec, var))
588 return chrec_dont_know;
590 if (dump_file && (dump_flags & TDF_DETAILS))
591 fprintf (dump_file, "(chrec_apply \n");
593 if (TREE_CODE (x) == INTEGER_CST && SCALAR_FLOAT_TYPE_P (type))
594 x = build_real_from_int_cst (type, x);
596 switch (TREE_CODE (chrec))
598 case POLYNOMIAL_CHREC:
599 if (evolution_function_is_affine_p (chrec))
601 if (CHREC_VARIABLE (chrec) != var)
602 return build_polynomial_chrec
603 (CHREC_VARIABLE (chrec),
604 chrec_apply (var, CHREC_LEFT (chrec), x),
605 chrec_apply (var, CHREC_RIGHT (chrec), x));
607 /* "{a, +, b} (x)" -> "a + b*x". */
608 x = chrec_convert_rhs (type, x, NULL);
609 res = chrec_fold_multiply (TREE_TYPE (x), CHREC_RIGHT (chrec), x);
610 res = chrec_fold_plus (type, CHREC_LEFT (chrec), res);
612 else if (TREE_CODE (x) == INTEGER_CST
613 && tree_int_cst_sgn (x) == 1)
614 /* testsuite/.../ssa-chrec-38.c. */
615 res = chrec_evaluate (var, chrec, x, 0);
616 else
617 res = chrec_dont_know;
618 break;
620 CASE_CONVERT:
621 res = chrec_convert (TREE_TYPE (chrec),
622 chrec_apply (var, TREE_OPERAND (chrec, 0), x),
623 NULL);
624 break;
626 default:
627 res = chrec;
628 break;
631 if (dump_file && (dump_flags & TDF_DETAILS))
633 fprintf (dump_file, " (varying_loop = %d\n", var);
634 fprintf (dump_file, ")\n (chrec = ");
635 print_generic_expr (dump_file, chrec, 0);
636 fprintf (dump_file, ")\n (x = ");
637 print_generic_expr (dump_file, x, 0);
638 fprintf (dump_file, ")\n (res = ");
639 print_generic_expr (dump_file, res, 0);
640 fprintf (dump_file, "))\n");
643 return res;
646 /* For a given CHREC and an induction variable map IV_MAP that maps
647 (loop->num, expr) for every loop number of the current_loops an
648 expression, calls chrec_apply when the expression is not NULL. */
650 tree
651 chrec_apply_map (tree chrec, VEC (tree, heap) *iv_map)
653 int i;
654 tree expr;
656 FOR_EACH_VEC_ELT (tree, iv_map, i, expr)
657 if (expr)
658 chrec = chrec_apply (i, chrec, expr);
660 return chrec;
663 /* Replaces the initial condition in CHREC with INIT_COND. */
665 tree
666 chrec_replace_initial_condition (tree chrec,
667 tree init_cond)
669 if (automatically_generated_chrec_p (chrec))
670 return chrec;
672 gcc_assert (chrec_type (chrec) == chrec_type (init_cond));
674 switch (TREE_CODE (chrec))
676 case POLYNOMIAL_CHREC:
677 return build_polynomial_chrec
678 (CHREC_VARIABLE (chrec),
679 chrec_replace_initial_condition (CHREC_LEFT (chrec), init_cond),
680 CHREC_RIGHT (chrec));
682 default:
683 return init_cond;
687 /* Returns the initial condition of a given CHREC. */
689 tree
690 initial_condition (tree chrec)
692 if (automatically_generated_chrec_p (chrec))
693 return chrec;
695 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
696 return initial_condition (CHREC_LEFT (chrec));
697 else
698 return chrec;
701 /* Returns a univariate function that represents the evolution in
702 LOOP_NUM. Mask the evolution of any other loop. */
704 tree
705 hide_evolution_in_other_loops_than_loop (tree chrec,
706 unsigned loop_num)
708 struct loop *loop = get_loop (loop_num), *chloop;
709 if (automatically_generated_chrec_p (chrec))
710 return chrec;
712 switch (TREE_CODE (chrec))
714 case POLYNOMIAL_CHREC:
715 chloop = get_chrec_loop (chrec);
717 if (chloop == loop)
718 return build_polynomial_chrec
719 (loop_num,
720 hide_evolution_in_other_loops_than_loop (CHREC_LEFT (chrec),
721 loop_num),
722 CHREC_RIGHT (chrec));
724 else if (flow_loop_nested_p (chloop, loop))
725 /* There is no evolution in this loop. */
726 return initial_condition (chrec);
728 else
730 gcc_assert (flow_loop_nested_p (loop, chloop));
731 return hide_evolution_in_other_loops_than_loop (CHREC_LEFT (chrec),
732 loop_num);
735 default:
736 return chrec;
740 /* Returns the evolution part of CHREC in LOOP_NUM when RIGHT is
741 true, otherwise returns the initial condition in LOOP_NUM. */
743 static tree
744 chrec_component_in_loop_num (tree chrec,
745 unsigned loop_num,
746 bool right)
748 tree component;
749 struct loop *loop = get_loop (loop_num), *chloop;
751 if (automatically_generated_chrec_p (chrec))
752 return chrec;
754 switch (TREE_CODE (chrec))
756 case POLYNOMIAL_CHREC:
757 chloop = get_chrec_loop (chrec);
759 if (chloop == loop)
761 if (right)
762 component = CHREC_RIGHT (chrec);
763 else
764 component = CHREC_LEFT (chrec);
766 if (TREE_CODE (CHREC_LEFT (chrec)) != POLYNOMIAL_CHREC
767 || CHREC_VARIABLE (CHREC_LEFT (chrec)) != CHREC_VARIABLE (chrec))
768 return component;
770 else
771 return build_polynomial_chrec
772 (loop_num,
773 chrec_component_in_loop_num (CHREC_LEFT (chrec),
774 loop_num,
775 right),
776 component);
779 else if (flow_loop_nested_p (chloop, loop))
780 /* There is no evolution part in this loop. */
781 return NULL_TREE;
783 else
785 gcc_assert (flow_loop_nested_p (loop, chloop));
786 return chrec_component_in_loop_num (CHREC_LEFT (chrec),
787 loop_num,
788 right);
791 default:
792 if (right)
793 return NULL_TREE;
794 else
795 return chrec;
799 /* Returns the evolution part in LOOP_NUM. Example: the call
800 evolution_part_in_loop_num ({{0, +, 1}_1, +, 2}_1, 1) returns
801 {1, +, 2}_1 */
803 tree
804 evolution_part_in_loop_num (tree chrec,
805 unsigned loop_num)
807 return chrec_component_in_loop_num (chrec, loop_num, true);
810 /* Returns the initial condition in LOOP_NUM. Example: the call
811 initial_condition_in_loop_num ({{0, +, 1}_1, +, 2}_2, 2) returns
812 {0, +, 1}_1 */
814 tree
815 initial_condition_in_loop_num (tree chrec,
816 unsigned loop_num)
818 return chrec_component_in_loop_num (chrec, loop_num, false);
821 /* Set or reset the evolution of CHREC to NEW_EVOL in loop LOOP_NUM.
822 This function is essentially used for setting the evolution to
823 chrec_dont_know, for example after having determined that it is
824 impossible to say how many times a loop will execute. */
826 tree
827 reset_evolution_in_loop (unsigned loop_num,
828 tree chrec,
829 tree new_evol)
831 struct loop *loop = get_loop (loop_num);
833 if (POINTER_TYPE_P (chrec_type (chrec)))
834 gcc_assert (sizetype == chrec_type (new_evol));
835 else
836 gcc_assert (chrec_type (chrec) == chrec_type (new_evol));
838 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC
839 && flow_loop_nested_p (loop, get_chrec_loop (chrec)))
841 tree left = reset_evolution_in_loop (loop_num, CHREC_LEFT (chrec),
842 new_evol);
843 tree right = reset_evolution_in_loop (loop_num, CHREC_RIGHT (chrec),
844 new_evol);
845 return build3 (POLYNOMIAL_CHREC, TREE_TYPE (left),
846 build_int_cst (NULL_TREE, CHREC_VARIABLE (chrec)),
847 left, right);
850 while (TREE_CODE (chrec) == POLYNOMIAL_CHREC
851 && CHREC_VARIABLE (chrec) == loop_num)
852 chrec = CHREC_LEFT (chrec);
854 return build_polynomial_chrec (loop_num, chrec, new_evol);
857 /* Merges two evolution functions that were found by following two
858 alternate paths of a conditional expression. */
860 tree
861 chrec_merge (tree chrec1,
862 tree chrec2)
864 if (chrec1 == chrec_dont_know
865 || chrec2 == chrec_dont_know)
866 return chrec_dont_know;
868 if (chrec1 == chrec_known
869 || chrec2 == chrec_known)
870 return chrec_known;
872 if (chrec1 == chrec_not_analyzed_yet)
873 return chrec2;
874 if (chrec2 == chrec_not_analyzed_yet)
875 return chrec1;
877 if (eq_evolutions_p (chrec1, chrec2))
878 return chrec1;
880 return chrec_dont_know;
885 /* Observers. */
887 /* Helper function for is_multivariate_chrec. */
889 static bool
890 is_multivariate_chrec_rec (const_tree chrec, unsigned int rec_var)
892 if (chrec == NULL_TREE)
893 return false;
895 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
897 if (CHREC_VARIABLE (chrec) != rec_var)
898 return true;
899 else
900 return (is_multivariate_chrec_rec (CHREC_LEFT (chrec), rec_var)
901 || is_multivariate_chrec_rec (CHREC_RIGHT (chrec), rec_var));
903 else
904 return false;
907 /* Determine whether the given chrec is multivariate or not. */
909 bool
910 is_multivariate_chrec (const_tree chrec)
912 if (chrec == NULL_TREE)
913 return false;
915 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
916 return (is_multivariate_chrec_rec (CHREC_LEFT (chrec),
917 CHREC_VARIABLE (chrec))
918 || is_multivariate_chrec_rec (CHREC_RIGHT (chrec),
919 CHREC_VARIABLE (chrec)));
920 else
921 return false;
924 /* Determines whether the chrec contains symbolic names or not. */
926 bool
927 chrec_contains_symbols (const_tree chrec)
929 int i, n;
931 if (chrec == NULL_TREE)
932 return false;
934 if (TREE_CODE (chrec) == SSA_NAME
935 || TREE_CODE (chrec) == VAR_DECL
936 || TREE_CODE (chrec) == PARM_DECL
937 || TREE_CODE (chrec) == FUNCTION_DECL
938 || TREE_CODE (chrec) == LABEL_DECL
939 || TREE_CODE (chrec) == RESULT_DECL
940 || TREE_CODE (chrec) == FIELD_DECL)
941 return true;
943 n = TREE_OPERAND_LENGTH (chrec);
944 for (i = 0; i < n; i++)
945 if (chrec_contains_symbols (TREE_OPERAND (chrec, i)))
946 return true;
947 return false;
950 /* Determines whether the chrec contains undetermined coefficients. */
952 bool
953 chrec_contains_undetermined (const_tree chrec)
955 int i, n;
957 if (chrec == chrec_dont_know)
958 return true;
960 if (chrec == NULL_TREE)
961 return false;
963 n = TREE_OPERAND_LENGTH (chrec);
964 for (i = 0; i < n; i++)
965 if (chrec_contains_undetermined (TREE_OPERAND (chrec, i)))
966 return true;
967 return false;
970 /* Determines whether the tree EXPR contains chrecs, and increment
971 SIZE if it is not a NULL pointer by an estimation of the depth of
972 the tree. */
974 bool
975 tree_contains_chrecs (const_tree expr, int *size)
977 int i, n;
979 if (expr == NULL_TREE)
980 return false;
982 if (size)
983 (*size)++;
985 if (tree_is_chrec (expr))
986 return true;
988 n = TREE_OPERAND_LENGTH (expr);
989 for (i = 0; i < n; i++)
990 if (tree_contains_chrecs (TREE_OPERAND (expr, i), size))
991 return true;
992 return false;
995 /* Recursive helper function. */
997 static bool
998 evolution_function_is_invariant_rec_p (tree chrec, int loopnum)
1000 if (evolution_function_is_constant_p (chrec))
1001 return true;
1003 if (TREE_CODE (chrec) == SSA_NAME
1004 && (loopnum == 0
1005 || expr_invariant_in_loop_p (get_loop (loopnum), chrec)))
1006 return true;
1008 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
1010 if (CHREC_VARIABLE (chrec) == (unsigned) loopnum
1011 || !evolution_function_is_invariant_rec_p (CHREC_RIGHT (chrec),
1012 loopnum)
1013 || !evolution_function_is_invariant_rec_p (CHREC_LEFT (chrec),
1014 loopnum))
1015 return false;
1016 return true;
1019 switch (TREE_OPERAND_LENGTH (chrec))
1021 case 2:
1022 if (!evolution_function_is_invariant_rec_p (TREE_OPERAND (chrec, 1),
1023 loopnum))
1024 return false;
1026 case 1:
1027 if (!evolution_function_is_invariant_rec_p (TREE_OPERAND (chrec, 0),
1028 loopnum))
1029 return false;
1030 return true;
1032 default:
1033 return false;
1036 return false;
1039 /* Return true if CHREC is invariant in loop LOOPNUM, false otherwise. */
1041 bool
1042 evolution_function_is_invariant_p (tree chrec, int loopnum)
1044 return evolution_function_is_invariant_rec_p (chrec, loopnum);
1047 /* Determine whether the given tree is an affine multivariate
1048 evolution. */
1050 bool
1051 evolution_function_is_affine_multivariate_p (const_tree chrec, int loopnum)
1053 if (chrec == NULL_TREE)
1054 return false;
1056 switch (TREE_CODE (chrec))
1058 case POLYNOMIAL_CHREC:
1059 if (evolution_function_is_invariant_rec_p (CHREC_LEFT (chrec), loopnum))
1061 if (evolution_function_is_invariant_rec_p (CHREC_RIGHT (chrec), loopnum))
1062 return true;
1063 else
1065 if (TREE_CODE (CHREC_RIGHT (chrec)) == POLYNOMIAL_CHREC
1066 && CHREC_VARIABLE (CHREC_RIGHT (chrec))
1067 != CHREC_VARIABLE (chrec)
1068 && evolution_function_is_affine_multivariate_p
1069 (CHREC_RIGHT (chrec), loopnum))
1070 return true;
1071 else
1072 return false;
1075 else
1077 if (evolution_function_is_invariant_rec_p (CHREC_RIGHT (chrec), loopnum)
1078 && TREE_CODE (CHREC_LEFT (chrec)) == POLYNOMIAL_CHREC
1079 && CHREC_VARIABLE (CHREC_LEFT (chrec)) != CHREC_VARIABLE (chrec)
1080 && evolution_function_is_affine_multivariate_p
1081 (CHREC_LEFT (chrec), loopnum))
1082 return true;
1083 else
1084 return false;
1087 default:
1088 return false;
1092 /* Determine whether the given tree is a function in zero or one
1093 variables. */
1095 bool
1096 evolution_function_is_univariate_p (const_tree chrec)
1098 if (chrec == NULL_TREE)
1099 return true;
1101 switch (TREE_CODE (chrec))
1103 case POLYNOMIAL_CHREC:
1104 switch (TREE_CODE (CHREC_LEFT (chrec)))
1106 case POLYNOMIAL_CHREC:
1107 if (CHREC_VARIABLE (chrec) != CHREC_VARIABLE (CHREC_LEFT (chrec)))
1108 return false;
1109 if (!evolution_function_is_univariate_p (CHREC_LEFT (chrec)))
1110 return false;
1111 break;
1113 default:
1114 break;
1117 switch (TREE_CODE (CHREC_RIGHT (chrec)))
1119 case POLYNOMIAL_CHREC:
1120 if (CHREC_VARIABLE (chrec) != CHREC_VARIABLE (CHREC_RIGHT (chrec)))
1121 return false;
1122 if (!evolution_function_is_univariate_p (CHREC_RIGHT (chrec)))
1123 return false;
1124 break;
1126 default:
1127 break;
1130 default:
1131 return true;
1135 /* Returns the number of variables of CHREC. Example: the call
1136 nb_vars_in_chrec ({{0, +, 1}_5, +, 2}_6) returns 2. */
1138 unsigned
1139 nb_vars_in_chrec (tree chrec)
1141 if (chrec == NULL_TREE)
1142 return 0;
1144 switch (TREE_CODE (chrec))
1146 case POLYNOMIAL_CHREC:
1147 return 1 + nb_vars_in_chrec
1148 (initial_condition_in_loop_num (chrec, CHREC_VARIABLE (chrec)));
1150 default:
1151 return 0;
1155 static tree chrec_convert_1 (tree, tree, gimple, bool);
1157 /* Converts BASE and STEP of affine scev to TYPE. LOOP is the loop whose iv
1158 the scev corresponds to. AT_STMT is the statement at that the scev is
1159 evaluated. USE_OVERFLOW_SEMANTICS is true if this function should assume that
1160 the rules for overflow of the given language apply (e.g., that signed
1161 arithmetics in C does not overflow) -- i.e., to use them to avoid unnecessary
1162 tests, but also to enforce that the result follows them. Returns true if the
1163 conversion succeeded, false otherwise. */
1165 bool
1166 convert_affine_scev (struct loop *loop, tree type,
1167 tree *base, tree *step, gimple at_stmt,
1168 bool use_overflow_semantics)
1170 tree ct = TREE_TYPE (*step);
1171 bool enforce_overflow_semantics;
1172 bool must_check_src_overflow, must_check_rslt_overflow;
1173 tree new_base, new_step;
1174 tree step_type = POINTER_TYPE_P (type) ? sizetype : type;
1176 /* In general,
1177 (TYPE) (BASE + STEP * i) = (TYPE) BASE + (TYPE -- sign extend) STEP * i,
1178 but we must check some assumptions.
1180 1) If [BASE, +, STEP] wraps, the equation is not valid when precision
1181 of CT is smaller than the precision of TYPE. For example, when we
1182 cast unsigned char [254, +, 1] to unsigned, the values on left side
1183 are 254, 255, 0, 1, ..., but those on the right side are
1184 254, 255, 256, 257, ...
1185 2) In case that we must also preserve the fact that signed ivs do not
1186 overflow, we must additionally check that the new iv does not wrap.
1187 For example, unsigned char [125, +, 1] casted to signed char could
1188 become a wrapping variable with values 125, 126, 127, -128, -127, ...,
1189 which would confuse optimizers that assume that this does not
1190 happen. */
1191 must_check_src_overflow = TYPE_PRECISION (ct) < TYPE_PRECISION (type);
1193 enforce_overflow_semantics = (use_overflow_semantics
1194 && nowrap_type_p (type));
1195 if (enforce_overflow_semantics)
1197 /* We can avoid checking whether the result overflows in the following
1198 cases:
1200 -- must_check_src_overflow is true, and the range of TYPE is superset
1201 of the range of CT -- i.e., in all cases except if CT signed and
1202 TYPE unsigned.
1203 -- both CT and TYPE have the same precision and signedness, and we
1204 verify instead that the source does not overflow (this may be
1205 easier than verifying it for the result, as we may use the
1206 information about the semantics of overflow in CT). */
1207 if (must_check_src_overflow)
1209 if (TYPE_UNSIGNED (type) && !TYPE_UNSIGNED (ct))
1210 must_check_rslt_overflow = true;
1211 else
1212 must_check_rslt_overflow = false;
1214 else if (TYPE_UNSIGNED (ct) == TYPE_UNSIGNED (type)
1215 && TYPE_PRECISION (ct) == TYPE_PRECISION (type))
1217 must_check_rslt_overflow = false;
1218 must_check_src_overflow = true;
1220 else
1221 must_check_rslt_overflow = true;
1223 else
1224 must_check_rslt_overflow = false;
1226 if (must_check_src_overflow
1227 && scev_probably_wraps_p (*base, *step, at_stmt, loop,
1228 use_overflow_semantics))
1229 return false;
1231 new_base = chrec_convert_1 (type, *base, at_stmt,
1232 use_overflow_semantics);
1233 /* The step must be sign extended, regardless of the signedness
1234 of CT and TYPE. This only needs to be handled specially when
1235 CT is unsigned -- to avoid e.g. unsigned char [100, +, 255]
1236 (with values 100, 99, 98, ...) from becoming signed or unsigned
1237 [100, +, 255] with values 100, 355, ...; the sign-extension is
1238 performed by default when CT is signed. */
1239 new_step = *step;
1240 if (TYPE_PRECISION (step_type) > TYPE_PRECISION (ct) && TYPE_UNSIGNED (ct))
1242 tree signed_ct = build_nonstandard_integer_type (TYPE_PRECISION (ct), 0);
1243 new_step = chrec_convert_1 (signed_ct, new_step, at_stmt,
1244 use_overflow_semantics);
1246 new_step = chrec_convert_1 (step_type, new_step, at_stmt, use_overflow_semantics);
1248 if (automatically_generated_chrec_p (new_base)
1249 || automatically_generated_chrec_p (new_step))
1250 return false;
1252 if (must_check_rslt_overflow
1253 /* Note that in this case we cannot use the fact that signed variables
1254 do not overflow, as this is what we are verifying for the new iv. */
1255 && scev_probably_wraps_p (new_base, new_step, at_stmt, loop, false))
1256 return false;
1258 *base = new_base;
1259 *step = new_step;
1260 return true;
1264 /* Convert CHREC for the right hand side of a CHREC.
1265 The increment for a pointer type is always sizetype. */
1267 tree
1268 chrec_convert_rhs (tree type, tree chrec, gimple at_stmt)
1270 if (POINTER_TYPE_P (type))
1271 type = sizetype;
1273 return chrec_convert (type, chrec, at_stmt);
1276 /* Convert CHREC to TYPE. When the analyzer knows the context in
1277 which the CHREC is built, it sets AT_STMT to the statement that
1278 contains the definition of the analyzed variable, otherwise the
1279 conversion is less accurate: the information is used for
1280 determining a more accurate estimation of the number of iterations.
1281 By default AT_STMT could be safely set to NULL_TREE.
1283 The following rule is always true: TREE_TYPE (chrec) ==
1284 TREE_TYPE (CHREC_LEFT (chrec)) == TREE_TYPE (CHREC_RIGHT (chrec)).
1285 An example of what could happen when adding two chrecs and the type
1286 of the CHREC_RIGHT is different than CHREC_LEFT is:
1288 {(uint) 0, +, (uchar) 10} +
1289 {(uint) 0, +, (uchar) 250}
1291 that would produce a wrong result if CHREC_RIGHT is not (uint):
1293 {(uint) 0, +, (uchar) 4}
1295 instead of
1297 {(uint) 0, +, (uint) 260}
1300 tree
1301 chrec_convert (tree type, tree chrec, gimple at_stmt)
1303 return chrec_convert_1 (type, chrec, at_stmt, true);
1306 /* Convert CHREC to TYPE. When the analyzer knows the context in
1307 which the CHREC is built, it sets AT_STMT to the statement that
1308 contains the definition of the analyzed variable, otherwise the
1309 conversion is less accurate: the information is used for
1310 determining a more accurate estimation of the number of iterations.
1311 By default AT_STMT could be safely set to NULL_TREE.
1313 USE_OVERFLOW_SEMANTICS is true if this function should assume that
1314 the rules for overflow of the given language apply (e.g., that signed
1315 arithmetics in C does not overflow) -- i.e., to use them to avoid unnecessary
1316 tests, but also to enforce that the result follows them. */
1318 static tree
1319 chrec_convert_1 (tree type, tree chrec, gimple at_stmt,
1320 bool use_overflow_semantics)
1322 tree ct, res;
1323 tree base, step;
1324 struct loop *loop;
1326 if (automatically_generated_chrec_p (chrec))
1327 return chrec;
1329 ct = chrec_type (chrec);
1330 if (ct == type)
1331 return chrec;
1333 if (!evolution_function_is_affine_p (chrec))
1334 goto keep_cast;
1336 loop = get_chrec_loop (chrec);
1337 base = CHREC_LEFT (chrec);
1338 step = CHREC_RIGHT (chrec);
1340 if (convert_affine_scev (loop, type, &base, &step, at_stmt,
1341 use_overflow_semantics))
1342 return build_polynomial_chrec (loop->num, base, step);
1344 /* If we cannot propagate the cast inside the chrec, just keep the cast. */
1345 keep_cast:
1346 /* Fold will not canonicalize (long)(i - 1) to (long)i - 1 because that
1347 may be more expensive. We do want to perform this optimization here
1348 though for canonicalization reasons. */
1349 if (use_overflow_semantics
1350 && (TREE_CODE (chrec) == PLUS_EXPR
1351 || TREE_CODE (chrec) == MINUS_EXPR)
1352 && TREE_CODE (type) == INTEGER_TYPE
1353 && TREE_CODE (ct) == INTEGER_TYPE
1354 && TYPE_PRECISION (type) > TYPE_PRECISION (ct)
1355 && TYPE_OVERFLOW_UNDEFINED (ct))
1356 res = fold_build2 (TREE_CODE (chrec), type,
1357 fold_convert (type, TREE_OPERAND (chrec, 0)),
1358 fold_convert (type, TREE_OPERAND (chrec, 1)));
1359 else
1360 res = fold_convert (type, chrec);
1362 /* Don't propagate overflows. */
1363 if (CONSTANT_CLASS_P (res))
1364 TREE_OVERFLOW (res) = 0;
1366 /* But reject constants that don't fit in their type after conversion.
1367 This can happen if TYPE_MIN_VALUE or TYPE_MAX_VALUE are not the
1368 natural values associated with TYPE_PRECISION and TYPE_UNSIGNED,
1369 and can cause problems later when computing niters of loops. Note
1370 that we don't do the check before converting because we don't want
1371 to reject conversions of negative chrecs to unsigned types. */
1372 if (TREE_CODE (res) == INTEGER_CST
1373 && TREE_CODE (type) == INTEGER_TYPE
1374 && !int_fits_type_p (res, type))
1375 res = chrec_dont_know;
1377 return res;
1380 /* Convert CHREC to TYPE, without regard to signed overflows. Returns the new
1381 chrec if something else than what chrec_convert would do happens, NULL_TREE
1382 otherwise. */
1384 tree
1385 chrec_convert_aggressive (tree type, tree chrec)
1387 tree inner_type, left, right, lc, rc, rtype;
1389 if (automatically_generated_chrec_p (chrec)
1390 || TREE_CODE (chrec) != POLYNOMIAL_CHREC)
1391 return NULL_TREE;
1393 inner_type = TREE_TYPE (chrec);
1394 if (TYPE_PRECISION (type) > TYPE_PRECISION (inner_type))
1395 return NULL_TREE;
1397 rtype = POINTER_TYPE_P (type) ? sizetype : type;
1399 left = CHREC_LEFT (chrec);
1400 right = CHREC_RIGHT (chrec);
1401 lc = chrec_convert_aggressive (type, left);
1402 if (!lc)
1403 lc = chrec_convert (type, left, NULL);
1404 rc = chrec_convert_aggressive (rtype, right);
1405 if (!rc)
1406 rc = chrec_convert (rtype, right, NULL);
1408 return build_polynomial_chrec (CHREC_VARIABLE (chrec), lc, rc);
1411 /* Returns true when CHREC0 == CHREC1. */
1413 bool
1414 eq_evolutions_p (const_tree chrec0, const_tree chrec1)
1416 if (chrec0 == NULL_TREE
1417 || chrec1 == NULL_TREE
1418 || TREE_CODE (chrec0) != TREE_CODE (chrec1))
1419 return false;
1421 if (chrec0 == chrec1)
1422 return true;
1424 switch (TREE_CODE (chrec0))
1426 case INTEGER_CST:
1427 return operand_equal_p (chrec0, chrec1, 0);
1429 case POLYNOMIAL_CHREC:
1430 return (CHREC_VARIABLE (chrec0) == CHREC_VARIABLE (chrec1)
1431 && eq_evolutions_p (CHREC_LEFT (chrec0), CHREC_LEFT (chrec1))
1432 && eq_evolutions_p (CHREC_RIGHT (chrec0), CHREC_RIGHT (chrec1)));
1434 case PLUS_EXPR:
1435 case MULT_EXPR:
1436 case MINUS_EXPR:
1437 case POINTER_PLUS_EXPR:
1438 return eq_evolutions_p (TREE_OPERAND (chrec0, 0),
1439 TREE_OPERAND (chrec1, 0))
1440 && eq_evolutions_p (TREE_OPERAND (chrec0, 1),
1441 TREE_OPERAND (chrec1, 1));
1443 default:
1444 return false;
1448 /* Returns EV_GROWS if CHREC grows (assuming that it does not overflow),
1449 EV_DECREASES if it decreases, and EV_UNKNOWN if we cannot determine
1450 which of these cases happens. */
1452 enum ev_direction
1453 scev_direction (const_tree chrec)
1455 const_tree step;
1457 if (!evolution_function_is_affine_p (chrec))
1458 return EV_DIR_UNKNOWN;
1460 step = CHREC_RIGHT (chrec);
1461 if (TREE_CODE (step) != INTEGER_CST)
1462 return EV_DIR_UNKNOWN;
1464 if (tree_int_cst_sign_bit (step))
1465 return EV_DIR_DECREASES;
1466 else
1467 return EV_DIR_GROWS;
1470 /* Iterates over all the components of SCEV, and calls CBCK. */
1472 void
1473 for_each_scev_op (tree *scev, bool (*cbck) (tree *, void *), void *data)
1475 switch (TREE_CODE_LENGTH (TREE_CODE (*scev)))
1477 case 3:
1478 for_each_scev_op (&TREE_OPERAND (*scev, 2), cbck, data);
1480 case 2:
1481 for_each_scev_op (&TREE_OPERAND (*scev, 1), cbck, data);
1483 case 1:
1484 for_each_scev_op (&TREE_OPERAND (*scev, 0), cbck, data);
1486 default:
1487 cbck (scev, data);
1488 break;
1492 /* Returns true when the operation can be part of a linear
1493 expression. */
1495 static inline bool
1496 operator_is_linear (tree scev)
1498 switch (TREE_CODE (scev))
1500 case INTEGER_CST:
1501 case POLYNOMIAL_CHREC:
1502 case PLUS_EXPR:
1503 case POINTER_PLUS_EXPR:
1504 case MULT_EXPR:
1505 case MINUS_EXPR:
1506 case NEGATE_EXPR:
1507 case SSA_NAME:
1508 case NON_LVALUE_EXPR:
1509 case BIT_NOT_EXPR:
1510 CASE_CONVERT:
1511 return true;
1513 default:
1514 return false;
1518 /* Return true when SCEV is a linear expression. Linear expressions
1519 can contain additions, substractions and multiplications.
1520 Multiplications are restricted to constant scaling: "cst * x". */
1522 bool
1523 scev_is_linear_expression (tree scev)
1525 if (scev == NULL
1526 || !operator_is_linear (scev))
1527 return false;
1529 if (TREE_CODE (scev) == MULT_EXPR)
1530 return !(tree_contains_chrecs (TREE_OPERAND (scev, 0), NULL)
1531 && tree_contains_chrecs (TREE_OPERAND (scev, 1), NULL));
1533 if (TREE_CODE (scev) == POLYNOMIAL_CHREC
1534 && !evolution_function_is_affine_multivariate_p (scev, CHREC_VARIABLE (scev)))
1535 return false;
1537 switch (TREE_CODE_LENGTH (TREE_CODE (scev)))
1539 case 3:
1540 return scev_is_linear_expression (TREE_OPERAND (scev, 0))
1541 && scev_is_linear_expression (TREE_OPERAND (scev, 1))
1542 && scev_is_linear_expression (TREE_OPERAND (scev, 2));
1544 case 2:
1545 return scev_is_linear_expression (TREE_OPERAND (scev, 0))
1546 && scev_is_linear_expression (TREE_OPERAND (scev, 1));
1548 case 1:
1549 return scev_is_linear_expression (TREE_OPERAND (scev, 0));
1551 case 0:
1552 return true;
1554 default:
1555 return false;
1559 /* Determines whether the expression CHREC contains only interger consts
1560 in the right parts. */
1562 bool
1563 evolution_function_right_is_integer_cst (const_tree chrec)
1565 if (chrec == NULL_TREE)
1566 return false;
1568 switch (TREE_CODE (chrec))
1570 case INTEGER_CST:
1571 return true;
1573 case POLYNOMIAL_CHREC:
1574 return TREE_CODE (CHREC_RIGHT (chrec)) == INTEGER_CST
1575 && (TREE_CODE (CHREC_LEFT (chrec)) != POLYNOMIAL_CHREC
1576 || evolution_function_right_is_integer_cst (CHREC_LEFT (chrec)));
1578 CASE_CONVERT:
1579 return evolution_function_right_is_integer_cst (TREE_OPERAND (chrec, 0));
1581 default:
1582 return false;