1 /* Output routines for Motorola MCore processor
2 Copyright (C) 1993, 1999, 2000, 2001 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
29 #include "hard-reg-set.h"
31 #include "insn-config.h"
32 #include "conditions.h"
34 #include "insn-attr.h"
44 #include "target-def.h"
46 /* Maximum size we are allowed to grow the stack in a single operation.
47 If we want more, we must do it in increments of at most this size.
48 If this value is 0, we don't check at all. */
49 const char * mcore_stack_increment_string
= 0;
50 int mcore_stack_increment
= STACK_UNITS_MAXSTEP
;
52 /* For dumping information about frame sizes. */
53 char * mcore_current_function_name
= 0;
54 long mcore_current_compilation_timestamp
= 0;
56 /* Global variables for machine-dependent things. */
58 /* Saved operands from the last compare to use when we generate an scc
63 /* Provides the class number of the smallest class containing
65 int regno_reg_class
[FIRST_PSEUDO_REGISTER
] =
67 GENERAL_REGS
, ONLYR1_REGS
, LRW_REGS
, LRW_REGS
,
68 LRW_REGS
, LRW_REGS
, LRW_REGS
, LRW_REGS
,
69 LRW_REGS
, LRW_REGS
, LRW_REGS
, LRW_REGS
,
70 LRW_REGS
, LRW_REGS
, LRW_REGS
, GENERAL_REGS
,
71 GENERAL_REGS
, C_REGS
, NO_REGS
, NO_REGS
,
74 /* Provide reg_class from a letter such as appears in the machine
76 enum reg_class reg_class_from_letter
[] =
78 /* a */ LRW_REGS
, /* b */ ONLYR1_REGS
, /* c */ C_REGS
, /* d */ NO_REGS
,
79 /* e */ NO_REGS
, /* f */ NO_REGS
, /* g */ NO_REGS
, /* h */ NO_REGS
,
80 /* i */ NO_REGS
, /* j */ NO_REGS
, /* k */ NO_REGS
, /* l */ NO_REGS
,
81 /* m */ NO_REGS
, /* n */ NO_REGS
, /* o */ NO_REGS
, /* p */ NO_REGS
,
82 /* q */ NO_REGS
, /* r */ GENERAL_REGS
, /* s */ NO_REGS
, /* t */ NO_REGS
,
83 /* u */ NO_REGS
, /* v */ NO_REGS
, /* w */ NO_REGS
, /* x */ ALL_REGS
,
84 /* y */ NO_REGS
, /* z */ NO_REGS
89 int arg_size
; /* stdarg spills (bytes) */
90 int reg_size
; /* non-volatile reg saves (bytes) */
91 int reg_mask
; /* non-volatile reg saves */
92 int local_size
; /* locals */
93 int outbound_size
; /* arg overflow on calls out */
97 /* Describe the steps we'll use to grow it. */
98 #define MAX_STACK_GROWS 4 /* gives us some spare space */
99 int growth
[MAX_STACK_GROWS
];
117 static void output_stack_adjust
PARAMS ((int, int));
118 static int calc_live_regs
PARAMS ((int *));
119 static int const_ok_for_mcore
PARAMS ((int));
120 static int try_constant_tricks
PARAMS ((long, int *, int *));
121 static const char * output_inline_const
PARAMS ((enum machine_mode
, rtx
*));
122 static void block_move_sequence
PARAMS ((rtx
, rtx
, rtx
, rtx
, int, int, int));
123 static void layout_mcore_frame
PARAMS ((struct mcore_frame
*));
124 static cond_type is_cond_candidate
PARAMS ((rtx
));
125 static rtx emit_new_cond_insn
PARAMS ((rtx
, int));
126 static rtx conditionalize_block
PARAMS ((rtx
));
127 static void conditionalize_optimization
PARAMS ((rtx
));
128 static void mcore_add_gc_roots
PARAMS ((void));
129 static rtx handle_structs_in_regs
PARAMS ((enum machine_mode
, tree
, int));
130 static void mcore_mark_dllexport
PARAMS ((tree
));
131 static void mcore_mark_dllimport
PARAMS ((tree
));
132 static int mcore_dllexport_p
PARAMS ((tree
));
133 static int mcore_dllimport_p
PARAMS ((tree
));
134 const struct attribute_spec mcore_attribute_table
[];
135 static tree mcore_handle_naked_attribute
PARAMS ((tree
*, tree
, tree
, int, bool *));
136 #ifdef OBJECT_FORMAT_ELF
137 static void mcore_asm_named_section
PARAMS ((const char *,
141 /* Initialize the GCC target structure. */
142 #ifdef TARGET_DLLIMPORT_DECL_ATTRIBUTES
143 #undef TARGET_MERGE_DECL_ATTRIBUTES
144 #define TARGET_MERGE_DECL_ATTRIBUTES merge_dllimport_decl_attributes
147 #undef TARGET_ATTRIBUTE_TABLE
148 #define TARGET_ATTRIBUTE_TABLE mcore_attribute_table
150 struct gcc_target targetm
= TARGET_INITIALIZER
;
152 /* Adjust the stack and return the number of bytes taken to do it. */
154 output_stack_adjust (direction
, size
)
158 /* If extending stack a lot, we do it incrementally. */
159 if (direction
< 0 && size
> mcore_stack_increment
&& mcore_stack_increment
> 0)
161 rtx tmp
= gen_rtx (REG
, SImode
, 1);
163 emit_insn (gen_movsi (tmp
, GEN_INT (mcore_stack_increment
)));
166 emit_insn (gen_subsi3 (stack_pointer_rtx
, stack_pointer_rtx
, tmp
));
167 memref
= gen_rtx (MEM
, SImode
, stack_pointer_rtx
);
168 MEM_VOLATILE_P (memref
) = 1;
169 emit_insn (gen_movsi (memref
, stack_pointer_rtx
));
170 size
-= mcore_stack_increment
;
172 while (size
> mcore_stack_increment
);
174 /* SIZE is now the residual for the last adjustment,
175 which doesn't require a probe. */
181 rtx val
= GEN_INT (size
);
185 rtx nval
= gen_rtx (REG
, SImode
, 1);
186 emit_insn (gen_movsi (nval
, val
));
191 insn
= gen_addsi3 (stack_pointer_rtx
, stack_pointer_rtx
, val
);
193 insn
= gen_subsi3 (stack_pointer_rtx
, stack_pointer_rtx
, val
);
199 /* Work out the registers which need to be saved,
200 both as a mask and a count. */
203 calc_live_regs (count
)
207 int live_regs_mask
= 0;
211 for (reg
= 0; reg
< FIRST_PSEUDO_REGISTER
; reg
++)
213 if (regs_ever_live
[reg
] && !call_used_regs
[reg
])
216 live_regs_mask
|= (1 << reg
);
220 return live_regs_mask
;
223 /* Print the operand address in x to the stream. */
226 mcore_print_operand_address (stream
, x
)
230 switch (GET_CODE (x
))
233 fprintf (stream
, "(%s)", reg_names
[REGNO (x
)]);
238 rtx base
= XEXP (x
, 0);
239 rtx index
= XEXP (x
, 1);
241 if (GET_CODE (base
) != REG
)
243 /* Ensure that BASE is a register (one of them must be). */
249 switch (GET_CODE (index
))
252 fprintf (stream
, "(%s,%d)", reg_names
[REGNO(base
)],
266 output_addr_const (stream
, x
);
271 /* Print operand x (an rtx) in assembler syntax to file stream
272 according to modifier code.
274 'R' print the next register or memory location along, ie the lsw in
276 'O' print a constant without the #
277 'M' print a constant as its negative
278 'P' print log2 of a power of two
279 'Q' print log2 of an inverse of a power of two
280 'U' print register for ldm/stm instruction
281 'X' print byte number for xtrbN instruction. */
284 mcore_print_operand (stream
, x
, code
)
293 fprintf (asm_out_file
, "32");
295 fprintf (asm_out_file
, "%d", exact_log2 (INTVAL (x
) + 1));
298 fprintf (asm_out_file
, "%d", exact_log2 (INTVAL (x
)));
301 fprintf (asm_out_file
, "%d", exact_log2 (~INTVAL (x
)));
304 fprintf (asm_out_file
, "%d", INTVAL (x
));
307 fprintf (asm_out_file
, "%d", - INTVAL (x
));
310 /* Next location along in memory or register. */
311 switch (GET_CODE (x
))
314 fputs (reg_names
[REGNO (x
) + 1], (stream
));
317 mcore_print_operand_address
318 (stream
, XEXP (adjust_address (x
, SImode
, 4), 0));
325 fprintf (asm_out_file
, "%s-%s", reg_names
[REGNO (x
)],
326 reg_names
[REGNO (x
) + 3]);
329 fprintf (asm_out_file
, "0x%x", INTVAL (x
));
332 fprintf (asm_out_file
, "%d", 3 - INTVAL (x
) / 8);
336 switch (GET_CODE (x
))
339 fputs (reg_names
[REGNO (x
)], (stream
));
342 output_address (XEXP (x
, 0));
345 output_addr_const (stream
, x
);
352 /* What does a constant cost ? */
355 mcore_const_costs (exp
, code
)
360 int val
= INTVAL (exp
);
362 /* Easy constants. */
363 if ( CONST_OK_FOR_I (val
)
364 || CONST_OK_FOR_M (val
)
365 || CONST_OK_FOR_N (val
)
366 || (code
== PLUS
&& CONST_OK_FOR_L (val
)))
369 && ( CONST_OK_FOR_M (~val
)
370 || CONST_OK_FOR_N (~val
)))
372 else if (code
== PLUS
373 && ( CONST_OK_FOR_I (-val
)
374 || CONST_OK_FOR_M (-val
)
375 || CONST_OK_FOR_N (-val
)))
381 /* What does an and instruction cost - we do this b/c immediates may
382 have been relaxed. We want to ensure that cse will cse relaxed immeds
383 out. Otherwise we'll get bad code (multiple reloads of the same const). */
391 if (GET_CODE (XEXP (x
, 1)) != CONST_INT
)
394 val
= INTVAL (XEXP (x
, 1));
396 /* Do it directly. */
397 if (CONST_OK_FOR_K (val
) || CONST_OK_FOR_M (~val
))
399 /* Takes one instruction to load. */
400 else if (const_ok_for_mcore (val
))
402 /* Takes two instructions to load. */
403 else if (TARGET_HARDLIT
&& mcore_const_ok_for_inline (val
))
406 /* Takes a lrw to load. */
410 /* What does an or cost - see and_cost(). */
418 if (GET_CODE (XEXP (x
, 1)) != CONST_INT
)
421 val
= INTVAL (XEXP (x
, 1));
423 /* Do it directly with bclri. */
424 if (CONST_OK_FOR_M (val
))
426 /* Takes one instruction to load. */
427 else if (const_ok_for_mcore (val
))
429 /* Takes two instructions to load. */
430 else if (TARGET_HARDLIT
&& mcore_const_ok_for_inline (val
))
433 /* Takes a lrw to load. */
437 /* Check to see if a comparison against a constant can be made more efficient
438 by incrementing/decrementing the constant to get one that is more efficient
442 mcore_modify_comparison (code
)
445 rtx op1
= arch_compare_op1
;
447 if (GET_CODE (op1
) == CONST_INT
)
449 int val
= INTVAL (op1
);
454 if (CONST_OK_FOR_J (val
+ 1))
456 arch_compare_op1
= GEN_INT (val
+ 1);
469 /* Prepare the operands for a comparison. */
472 mcore_gen_compare_reg (code
)
475 rtx op0
= arch_compare_op0
;
476 rtx op1
= arch_compare_op1
;
477 rtx cc_reg
= gen_rtx (REG
, CCmode
, CC_REG
);
479 if (CONSTANT_P (op1
) && GET_CODE (op1
) != CONST_INT
)
480 op1
= force_reg (SImode
, op1
);
482 /* cmpnei: 0-31 (K immediate)
483 cmplti: 1-32 (J immediate, 0 using btsti x,31). */
486 case EQ
: /* Use inverted condition, cmpne. */
490 case NE
: /* Use normal condition, cmpne. */
491 if (GET_CODE (op1
) == CONST_INT
&& ! CONST_OK_FOR_K (INTVAL (op1
)))
492 op1
= force_reg (SImode
, op1
);
495 case LE
: /* Use inverted condition, reversed cmplt. */
499 case GT
: /* Use normal condition, reversed cmplt. */
500 if (GET_CODE (op1
) == CONST_INT
)
501 op1
= force_reg (SImode
, op1
);
504 case GE
: /* Use inverted condition, cmplt. */
508 case LT
: /* Use normal condition, cmplt. */
509 if (GET_CODE (op1
) == CONST_INT
&&
510 /* covered by btsti x,31 */
512 ! CONST_OK_FOR_J (INTVAL (op1
)))
513 op1
= force_reg (SImode
, op1
);
516 case GTU
: /* Use inverted condition, cmple. */
517 if (GET_CODE (op1
) == CONST_INT
&& INTVAL (op1
) == 0)
519 /* Unsigned > 0 is the same as != 0, but we need
520 to invert the condition, so we want to set
521 code = EQ. This cannot be done however, as the
522 mcore does not support such a test. Instead we
523 cope with this case in the "bgtu" pattern itself
524 so we should never reach this point. */
532 case LEU
: /* Use normal condition, reversed cmphs. */
533 if (GET_CODE (op1
) == CONST_INT
&& INTVAL (op1
) != 0)
534 op1
= force_reg (SImode
, op1
);
537 case LTU
: /* Use inverted condition, cmphs. */
541 case GEU
: /* Use normal condition, cmphs. */
542 if (GET_CODE (op1
) == CONST_INT
&& INTVAL (op1
) != 0)
543 op1
= force_reg (SImode
, op1
);
550 emit_insn (gen_rtx (SET
, VOIDmode
, cc_reg
, gen_rtx (code
, CCmode
, op0
, op1
)));
557 mcore_symbolic_address_p (x
)
560 switch (GET_CODE (x
))
567 return ( (GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
568 || GET_CODE (XEXP (x
, 0)) == LABEL_REF
)
569 && GET_CODE (XEXP (x
, 1)) == CONST_INT
);
576 mcore_call_address_operand (x
, mode
)
578 enum machine_mode mode
;
580 return register_operand (x
, mode
) || CONSTANT_P (x
);
583 /* Functions to output assembly code for a function call. */
586 mcore_output_call (operands
, index
)
590 static char buffer
[20];
591 rtx addr
= operands
[index
];
597 if (mcore_current_function_name
== 0)
600 ASM_OUTPUT_CG_EDGE (asm_out_file
, mcore_current_function_name
,
604 sprintf (buffer
, "jsr\t%%%d", index
);
610 if (mcore_current_function_name
== 0)
613 if (GET_CODE (addr
) != SYMBOL_REF
)
616 ASM_OUTPUT_CG_EDGE (asm_out_file
, mcore_current_function_name
, XSTR (addr
, 0), 0);
619 sprintf (buffer
, "jbsr\t%%%d", index
);
625 /* Can we load a constant with a single instruction ? */
628 const_ok_for_mcore (value
)
631 if (value
>= 0 && value
<= 127)
634 /* Try exact power of two. */
635 if ((value
& (value
- 1)) == 0)
638 /* Try exact power of two - 1. */
639 if ((value
& (value
+ 1)) == 0)
645 /* Can we load a constant inline with up to 2 instructions ? */
648 mcore_const_ok_for_inline (value
)
653 return try_constant_tricks (value
, & x
, & y
) > 0;
656 /* Are we loading the constant using a not ? */
659 mcore_const_trick_uses_not (value
)
664 return try_constant_tricks (value
, & x
, & y
) == 2;
667 /* Try tricks to load a constant inline and return the trick number if
668 success (0 is non-inlinable).
671 1: single instruction (do the usual thing)
672 2: single insn followed by a 'not'
673 3: single insn followed by a subi
674 4: single insn followed by an addi
675 5: single insn followed by rsubi
676 6: single insn followed by bseti
677 7: single insn followed by bclri
678 8: single insn followed by rotli
679 9: single insn followed by lsli
680 10: single insn followed by ixh
681 11: single insn followed by ixw. */
684 try_constant_tricks (value
, x
, y
)
690 unsigned bit
, shf
, rot
;
692 if (const_ok_for_mcore (value
))
693 return 1; /* Do the usual thing. */
697 if (const_ok_for_mcore (~value
))
703 for (i
= 1; i
<= 32; i
++)
705 if (const_ok_for_mcore (value
- i
))
713 if (const_ok_for_mcore (value
+ i
))
724 for (i
= 0; i
<= 31; i
++)
726 if (const_ok_for_mcore (i
- value
))
734 if (const_ok_for_mcore (value
& ~bit
))
742 if (const_ok_for_mcore (value
| bit
))
756 for (i
= 1; i
< 31; i
++)
760 /* MCore has rotate left. */
764 rot
|= c
; /* Simulate rotate. */
766 if (const_ok_for_mcore (rot
))
775 shf
= 0; /* Can't use logical shift, low order bit is one. */
779 if (shf
!= 0 && const_ok_for_mcore (shf
))
788 if ((value
% 3) == 0 && const_ok_for_mcore (value
/ 3))
795 if ((value
% 5) == 0 && const_ok_for_mcore (value
/ 5))
807 /* Check whether reg is dead at first. This is done by searching ahead
808 for either the next use (i.e., reg is live), a death note, or a set of
809 reg. Don't just use dead_or_set_p() since reload does not always mark
810 deaths (especially if PRESERVE_DEATH_NOTES_REGNO_P is not defined). We
811 can ignore subregs by extracting the actual register. BRC */
814 mcore_is_dead (first
, reg
)
820 /* For mcore, subregs can't live independently of their parent regs. */
821 if (GET_CODE (reg
) == SUBREG
)
822 reg
= SUBREG_REG (reg
);
824 /* Dies immediately. */
825 if (dead_or_set_p (first
, reg
))
828 /* Look for conclusive evidence of live/death, otherwise we have
829 to assume that it is live. */
830 for (insn
= NEXT_INSN (first
); insn
; insn
= NEXT_INSN (insn
))
832 if (GET_CODE (insn
) == JUMP_INSN
)
833 return 0; /* We lose track, assume it is alive. */
835 else if (GET_CODE(insn
) == CALL_INSN
)
837 /* Call's might use it for target or register parms. */
838 if (reg_referenced_p (reg
, PATTERN (insn
))
839 || find_reg_fusage (insn
, USE
, reg
))
841 else if (dead_or_set_p (insn
, reg
))
844 else if (GET_CODE (insn
) == INSN
)
846 if (reg_referenced_p (reg
, PATTERN (insn
)))
848 else if (dead_or_set_p (insn
, reg
))
853 /* No conclusive evidence either way, we can not take the chance
854 that control flow hid the use from us -- "I'm not dead yet". */
859 /* Count the number of ones in mask. */
862 mcore_num_ones (mask
)
865 /* A trick to count set bits recently posted on comp.compilers. */
866 mask
= (mask
>> 1 & 0x55555555) + (mask
& 0x55555555);
867 mask
= ((mask
>> 2) & 0x33333333) + (mask
& 0x33333333);
868 mask
= ((mask
>> 4) + mask
) & 0x0f0f0f0f;
869 mask
= ((mask
>> 8) + mask
);
871 return (mask
+ (mask
>> 16)) & 0xff;
874 /* Count the number of zeros in mask. */
877 mcore_num_zeros (mask
)
880 return 32 - mcore_num_ones (mask
);
883 /* Determine byte being masked. */
886 mcore_byte_offset (mask
)
889 if (mask
== 0x00ffffffUL
)
891 else if (mask
== 0xff00ffffUL
)
893 else if (mask
== 0xffff00ffUL
)
895 else if (mask
== 0xffffff00UL
)
901 /* Determine halfword being masked. */
904 mcore_halfword_offset (mask
)
907 if (mask
== 0x0000ffffL
)
909 else if (mask
== 0xffff0000UL
)
915 /* Output a series of bseti's corresponding to mask. */
918 mcore_output_bseti (dst
, mask
)
925 out_operands
[0] = dst
;
927 for (bit
= 0; bit
< 32; bit
++)
929 if ((mask
& 0x1) == 0x1)
931 out_operands
[1] = GEN_INT (bit
);
933 output_asm_insn ("bseti\t%0,%1", out_operands
);
941 /* Output a series of bclri's corresponding to mask. */
944 mcore_output_bclri (dst
, mask
)
951 out_operands
[0] = dst
;
953 for (bit
= 0; bit
< 32; bit
++)
955 if ((mask
& 0x1) == 0x0)
957 out_operands
[1] = GEN_INT (bit
);
959 output_asm_insn ("bclri\t%0,%1", out_operands
);
968 /* Output a conditional move of two constants that are +/- 1 within each
969 other. See the "movtK" patterns in mcore.md. I'm not sure this is
970 really worth the effort. */
973 mcore_output_cmov (operands
, cmp_t
, test
)
982 out_operands
[0] = operands
[0];
984 /* Check to see which constant is loadable. */
985 if (const_ok_for_mcore (INTVAL (operands
[1])))
987 out_operands
[1] = operands
[1];
988 out_operands
[2] = operands
[2];
990 else if (const_ok_for_mcore (INTVAL (operands
[2])))
992 out_operands
[1] = operands
[2];
993 out_operands
[2] = operands
[1];
995 /* Complement test since constants are swapped. */
996 cmp_t
= (cmp_t
== 0);
998 load_value
= INTVAL (out_operands
[1]);
999 adjust_value
= INTVAL (out_operands
[2]);
1001 /* First output the test if folded into the pattern. */
1004 output_asm_insn (test
, operands
);
1006 /* Load the constant - for now, only support constants that can be
1007 generated with a single instruction. maybe add general inlinable
1008 constants later (this will increase the # of patterns since the
1009 instruction sequence has a different length attribute). */
1010 if (load_value
>= 0 && load_value
<= 127)
1011 output_asm_insn ("movi\t%0,%1", out_operands
);
1012 else if ((load_value
& (load_value
- 1)) == 0)
1013 output_asm_insn ("bgeni\t%0,%P1", out_operands
);
1014 else if ((load_value
& (load_value
+ 1)) == 0)
1015 output_asm_insn ("bmaski\t%0,%N1", out_operands
);
1017 /* Output the constant adjustment. */
1018 if (load_value
> adjust_value
)
1021 output_asm_insn ("decf\t%0", out_operands
);
1023 output_asm_insn ("dect\t%0", out_operands
);
1028 output_asm_insn ("incf\t%0", out_operands
);
1030 output_asm_insn ("inct\t%0", out_operands
);
1036 /* Outputs the peephole for moving a constant that gets not'ed followed
1037 by an and (i.e. combine the not and the and into andn). BRC */
1040 mcore_output_andn (insn
, operands
)
1041 rtx insn ATTRIBUTE_UNUSED
;
1045 rtx out_operands
[3];
1046 const char * load_op
;
1049 if (try_constant_tricks (INTVAL (operands
[1]), &x
, &y
) != 2)
1052 out_operands
[0] = operands
[0];
1053 out_operands
[1] = GEN_INT(x
);
1054 out_operands
[2] = operands
[2];
1056 if (x
>= 0 && x
<= 127)
1057 load_op
= "movi\t%0,%1";
1059 /* Try exact power of two. */
1060 else if ((x
& (x
- 1)) == 0)
1061 load_op
= "bgeni\t%0,%P1";
1063 /* Try exact power of two - 1. */
1064 else if ((x
& (x
+ 1)) == 0)
1065 load_op
= "bmaski\t%0,%N1";
1068 load_op
= "BADMOVI\t%0,%1";
1070 sprintf (buf
, "%s\n\tandn\t%%2,%%0", load_op
);
1071 output_asm_insn (buf
, out_operands
);
1076 /* Output an inline constant. */
1079 output_inline_const (mode
, operands
)
1080 enum machine_mode mode
;
1085 rtx out_operands
[3];
1088 const char *dst_fmt
;
1091 value
= INTVAL (operands
[1]);
1093 if ((trick_no
= try_constant_tricks (value
, &x
, &y
)) == 0)
1095 /* lrw's are handled separately: Large inlinable constants
1096 never get turned into lrw's. Our caller uses try_constant_tricks
1097 to back off to an lrw rather than calling this routine. */
1104 /* operands: 0 = dst, 1 = load immed., 2 = immed. adjustment. */
1105 out_operands
[0] = operands
[0];
1106 out_operands
[1] = GEN_INT (x
);
1109 out_operands
[2] = GEN_INT (y
);
1111 /* Select dst format based on mode. */
1112 if (mode
== DImode
&& (! TARGET_LITTLE_END
))
1117 if (x
>= 0 && x
<= 127)
1118 sprintf (load_op
, "movi\t%s,%%1", dst_fmt
);
1120 /* Try exact power of two. */
1121 else if ((x
& (x
- 1)) == 0)
1122 sprintf (load_op
, "bgeni\t%s,%%P1", dst_fmt
);
1124 /* Try exact power of two - 1. */
1125 else if ((x
& (x
+ 1)) == 0)
1126 sprintf (load_op
, "bmaski\t%s,%%N1", dst_fmt
);
1129 sprintf (load_op
, "BADMOVI\t%s,%%1", dst_fmt
);
1134 strcpy (buf
, load_op
);
1137 sprintf (buf
, "%s\n\tnot\t%s\t// %d 0x%x", load_op
, dst_fmt
, value
, value
);
1140 sprintf (buf
, "%s\n\taddi\t%s,%%2\t// %d 0x%x", load_op
, dst_fmt
, value
, value
);
1143 sprintf (buf
, "%s\n\tsubi\t%s,%%2\t// %d 0x%x", load_op
, dst_fmt
, value
, value
);
1146 /* Never happens unless -mrsubi, see try_constant_tricks(). */
1147 sprintf (buf
, "%s\n\trsubi\t%s,%%2\t// %d 0x%x", load_op
, dst_fmt
, value
, value
);
1150 sprintf (buf
, "%s\n\tbseti\t%s,%%P2\t// %d 0x%x", load_op
, dst_fmt
, value
, value
);
1153 sprintf (buf
, "%s\n\tbclri\t%s,%%Q2\t// %d 0x%x", load_op
, dst_fmt
, value
, value
);
1156 sprintf (buf
, "%s\n\trotli\t%s,%%2\t// %d 0x%x", load_op
, dst_fmt
, value
, value
);
1159 sprintf (buf
, "%s\n\tlsli\t%s,%%2\t// %d 0x%x", load_op
, dst_fmt
, value
, value
);
1162 sprintf (buf
, "%s\n\tixh\t%s,%s\t// %d 0x%x", load_op
, dst_fmt
, dst_fmt
, value
, value
);
1165 sprintf (buf
, "%s\n\tixw\t%s,%s\t// %d 0x%x", load_op
, dst_fmt
, dst_fmt
, value
, value
);
1171 output_asm_insn (buf
, out_operands
);
1176 /* Output a move of a word or less value. */
1179 mcore_output_move (insn
, operands
, mode
)
1180 rtx insn ATTRIBUTE_UNUSED
;
1182 enum machine_mode mode ATTRIBUTE_UNUSED
;
1184 rtx dst
= operands
[0];
1185 rtx src
= operands
[1];
1187 if (GET_CODE (dst
) == REG
)
1189 if (GET_CODE (src
) == REG
)
1191 if (REGNO (src
) == CC_REG
) /* r-c */
1194 return "mov\t%0,%1"; /* r-r*/
1196 else if (GET_CODE (src
) == MEM
)
1198 if (GET_CODE (XEXP (src
, 0)) == LABEL_REF
)
1199 return "lrw\t%0,[%1]"; /* a-R */
1201 return "ldw\t%0,%1"; /* r-m */
1203 else if (GET_CODE (src
) == CONST_INT
)
1207 if (CONST_OK_FOR_I (INTVAL (src
))) /* r-I */
1208 return "movi\t%0,%1";
1209 else if (CONST_OK_FOR_M (INTVAL (src
))) /* r-M */
1210 return "bgeni\t%0,%P1\t// %1 %x1";
1211 else if (CONST_OK_FOR_N (INTVAL (src
))) /* r-N */
1212 return "bmaski\t%0,%N1\t// %1 %x1";
1213 else if (try_constant_tricks (INTVAL (src
), &x
, &y
)) /* R-P */
1214 return output_inline_const (SImode
, operands
); /* 1-2 insns */
1216 return "lrw\t%0,%x1\t// %1"; /* Get it from literal pool. */
1219 return "lrw\t%0, %1"; /* Into the literal pool. */
1221 else if (GET_CODE (dst
) == MEM
) /* m-r */
1222 return "stw\t%1,%0";
1227 /* Outputs a constant inline -- regardless of the cost.
1228 Useful for things where we've gotten into trouble and think we'd
1229 be doing an lrw into r15 (forbidden). This lets us get out of
1230 that pickle even after register allocation. */
1233 mcore_output_inline_const_forced (insn
, operands
, mode
)
1234 rtx insn ATTRIBUTE_UNUSED
;
1236 enum machine_mode mode ATTRIBUTE_UNUSED
;
1238 unsigned long value
= INTVAL (operands
[1]);
1239 unsigned long ovalue
= value
;
1248 if (mcore_const_ok_for_inline (value
))
1249 return output_inline_const (SImode
, operands
);
1251 for (i
= 0; (unsigned) i
< ARRAY_SIZE (part
); i
++)
1254 part
[i
].low
= (value
& 0x1F);
1255 value
-= part
[i
].low
;
1257 if (mcore_const_ok_for_inline (value
))
1264 while ((value
& 1) == 0)
1270 if (mcore_const_ok_for_inline (value
))
1275 /* 5 bits per iteration, a maximum of 5 times == 25 bits and leaves
1276 7 bits left in the constant -- which we know we can cover with
1277 a movi. The final value can't be zero otherwise we'd have stopped
1278 in the previous iteration. */
1279 if (value
== 0 || ! mcore_const_ok_for_inline (value
))
1282 /* Now, work our way backwards emitting the constant. */
1284 /* Emit the value that remains -- it will be non-zero. */
1285 operands
[1] = GEN_INT (value
);
1286 output_asm_insn (output_inline_const (SImode
, operands
), operands
);
1290 /* Shift anything we've already loaded. */
1293 operands
[2] = GEN_INT (part
[i
].shift
);
1294 output_asm_insn ("lsli %0,%2", operands
);
1295 value
<<= part
[i
].shift
;
1298 /* Add anything we need into the low 5 bits. */
1299 if (part
[i
].low
!= 0)
1301 operands
[2] = GEN_INT (part
[i
].low
);
1302 output_asm_insn ("addi %0,%2", operands
);
1303 value
+= part
[i
].low
;
1309 if (value
!= ovalue
) /* sanity */
1312 /* We've output all the instructions. */
1316 /* Return a sequence of instructions to perform DI or DF move.
1317 Since the MCORE cannot move a DI or DF in one instruction, we have
1318 to take care when we see overlapping source and dest registers. */
1321 mcore_output_movedouble (operands
, mode
)
1323 enum machine_mode mode ATTRIBUTE_UNUSED
;
1325 rtx dst
= operands
[0];
1326 rtx src
= operands
[1];
1328 if (GET_CODE (dst
) == REG
)
1330 if (GET_CODE (src
) == REG
)
1332 int dstreg
= REGNO (dst
);
1333 int srcreg
= REGNO (src
);
1335 /* Ensure the second source not overwritten. */
1336 if (srcreg
+ 1 == dstreg
)
1337 return "mov %R0,%R1\n\tmov %0,%1";
1339 return "mov %0,%1\n\tmov %R0,%R1";
1341 else if (GET_CODE (src
) == MEM
)
1343 rtx memexp
= memexp
= XEXP (src
, 0);
1344 int dstreg
= REGNO (dst
);
1347 if (GET_CODE (memexp
) == LABEL_REF
)
1348 return "lrw\t%0,[%1]\n\tlrw\t%R0,[%R1]";
1349 else if (GET_CODE (memexp
) == REG
)
1350 basereg
= REGNO (memexp
);
1351 else if (GET_CODE (memexp
) == PLUS
)
1353 if (GET_CODE (XEXP (memexp
, 0)) == REG
)
1354 basereg
= REGNO (XEXP (memexp
, 0));
1355 else if (GET_CODE (XEXP (memexp
, 1)) == REG
)
1356 basereg
= REGNO (XEXP (memexp
, 1));
1363 /* ??? length attribute is wrong here. */
1364 if (dstreg
== basereg
)
1366 /* Just load them in reverse order. */
1367 return "ldw\t%R0,%R1\n\tldw\t%0,%1";
1369 /* XXX: alternative: move basereg to basereg+1
1370 and then fall through. */
1373 return "ldw\t%0,%1\n\tldw\t%R0,%R1";
1375 else if (GET_CODE (src
) == CONST_INT
)
1377 if (TARGET_LITTLE_END
)
1379 if (CONST_OK_FOR_I (INTVAL (src
)))
1380 output_asm_insn ("movi %0,%1", operands
);
1381 else if (CONST_OK_FOR_M (INTVAL (src
)))
1382 output_asm_insn ("bgeni %0,%P1", operands
);
1383 else if (INTVAL (src
) == -1)
1384 output_asm_insn ("bmaski %0,32", operands
);
1385 else if (CONST_OK_FOR_N (INTVAL (src
)))
1386 output_asm_insn ("bmaski %0,%N1", operands
);
1390 if (INTVAL (src
) < 0)
1391 return "bmaski %R0,32";
1393 return "movi %R0,0";
1397 if (CONST_OK_FOR_I (INTVAL (src
)))
1398 output_asm_insn ("movi %R0,%1", operands
);
1399 else if (CONST_OK_FOR_M (INTVAL (src
)))
1400 output_asm_insn ("bgeni %R0,%P1", operands
);
1401 else if (INTVAL (src
) == -1)
1402 output_asm_insn ("bmaski %R0,32", operands
);
1403 else if (CONST_OK_FOR_N (INTVAL (src
)))
1404 output_asm_insn ("bmaski %R0,%N1", operands
);
1408 if (INTVAL (src
) < 0)
1409 return "bmaski %0,32";
1417 else if (GET_CODE (dst
) == MEM
&& GET_CODE (src
) == REG
)
1418 return "stw\t%1,%0\n\tstw\t%R1,%R0";
1423 /* Predicates used by the templates. */
1425 /* Non zero if OP can be source of a simple move operation. */
1428 mcore_general_movsrc_operand (op
, mode
)
1430 enum machine_mode mode
;
1432 /* Any (MEM LABEL_REF) is OK. That is a pc-relative load. */
1433 if (GET_CODE (op
) == MEM
&& GET_CODE (XEXP (op
, 0)) == LABEL_REF
)
1436 return general_operand (op
, mode
);
1439 /* Non zero if OP can be destination of a simple move operation. */
1442 mcore_general_movdst_operand (op
, mode
)
1444 enum machine_mode mode
;
1446 if (GET_CODE (op
) == REG
&& REGNO (op
) == CC_REG
)
1449 return general_operand (op
, mode
);
1452 /* Nonzero if OP is a normal arithmetic register. */
1455 mcore_arith_reg_operand (op
, mode
)
1457 enum machine_mode mode
;
1459 if (! register_operand (op
, mode
))
1462 if (GET_CODE (op
) == SUBREG
)
1463 op
= SUBREG_REG (op
);
1465 if (GET_CODE (op
) == REG
)
1466 return REGNO (op
) != CC_REG
;
1471 /* Non zero if OP should be recognized during reload for an ixh/ixw
1472 operand. See the ixh/ixw patterns. */
1475 mcore_reload_operand (op
, mode
)
1477 enum machine_mode mode
;
1479 if (mcore_arith_reg_operand (op
, mode
))
1482 if (! reload_in_progress
)
1485 return GET_CODE (op
) == MEM
;
1488 /* Nonzero if OP is a valid source operand for an arithmetic insn. */
1491 mcore_arith_J_operand (op
, mode
)
1493 enum machine_mode mode
;
1495 if (register_operand (op
, mode
))
1498 if (GET_CODE (op
) == CONST_INT
&& CONST_OK_FOR_J (INTVAL (op
)))
1504 /* Nonzero if OP is a valid source operand for an arithmetic insn. */
1507 mcore_arith_K_operand (op
, mode
)
1509 enum machine_mode mode
;
1511 if (register_operand (op
, mode
))
1514 if (GET_CODE (op
) == CONST_INT
&& CONST_OK_FOR_K (INTVAL (op
)))
1520 /* Nonzero if OP is a valid source operand for a shift or rotate insn. */
1523 mcore_arith_K_operand_not_0 (op
, mode
)
1525 enum machine_mode mode
;
1527 if (register_operand (op
, mode
))
1530 if ( GET_CODE (op
) == CONST_INT
1531 && CONST_OK_FOR_K (INTVAL (op
))
1532 && INTVAL (op
) != 0)
1539 mcore_arith_K_S_operand (op
, mode
)
1541 enum machine_mode mode
;
1543 if (register_operand (op
, mode
))
1546 if (GET_CODE (op
) == CONST_INT
)
1548 if (CONST_OK_FOR_K (INTVAL (op
)) || CONST_OK_FOR_M (~INTVAL (op
)))
1556 mcore_arith_S_operand (op
)
1559 if (GET_CODE (op
) == CONST_INT
&& CONST_OK_FOR_M (~INTVAL (op
)))
1566 mcore_arith_M_operand (op
, mode
)
1568 enum machine_mode mode
;
1570 if (register_operand (op
, mode
))
1573 if (GET_CODE (op
) == CONST_INT
&& CONST_OK_FOR_M (INTVAL (op
)))
1579 /* Nonzero if OP is a valid source operand for loading. */
1582 mcore_arith_imm_operand (op
, mode
)
1584 enum machine_mode mode
;
1586 if (register_operand (op
, mode
))
1589 if (GET_CODE (op
) == CONST_INT
&& const_ok_for_mcore (INTVAL (op
)))
1596 mcore_arith_any_imm_operand (op
, mode
)
1598 enum machine_mode mode
;
1600 if (register_operand (op
, mode
))
1603 if (GET_CODE (op
) == CONST_INT
)
1609 /* Nonzero if OP is a valid source operand for a cmov with two consts +/- 1. */
1612 mcore_arith_O_operand (op
, mode
)
1614 enum machine_mode mode
;
1616 if (register_operand (op
, mode
))
1619 if (GET_CODE (op
) == CONST_INT
&& CONST_OK_FOR_O (INTVAL (op
)))
1625 /* Nonzero if OP is a valid source operand for a btsti. */
1628 mcore_literal_K_operand (op
, mode
)
1630 enum machine_mode mode ATTRIBUTE_UNUSED
;
1632 if (GET_CODE (op
) == CONST_INT
&& CONST_OK_FOR_K (INTVAL (op
)))
1638 /* Nonzero if OP is a valid source operand for an add/sub insn. */
1641 mcore_addsub_operand (op
, mode
)
1643 enum machine_mode mode
;
1645 if (register_operand (op
, mode
))
1648 if (GET_CODE (op
) == CONST_INT
)
1652 /* The following is removed because it precludes large constants from being
1653 returned as valid source operands for and add/sub insn. While large
1654 constants may not directly be used in an add/sub, they may if first loaded
1655 into a register. Thus, this predicate should indicate that they are valid,
1656 and the constraint in mcore.md should control whether an additional load to
1657 register is needed. (see mcore.md, addsi). -- DAC 4/2/1998 */
1659 if (CONST_OK_FOR_J(INTVAL(op)) || CONST_OK_FOR_L(INTVAL(op)))
1667 /* Nonzero if OP is a valid source operand for a compare operation. */
1670 mcore_compare_operand (op
, mode
)
1672 enum machine_mode mode
;
1674 if (register_operand (op
, mode
))
1677 if (GET_CODE (op
) == CONST_INT
&& INTVAL (op
) == 0)
1683 /* Expand insert bit field. BRC */
1686 mcore_expand_insv (operands
)
1689 int width
= INTVAL (operands
[1]);
1690 int posn
= INTVAL (operands
[2]);
1692 rtx mreg
, sreg
, ereg
;
1694 /* To get width 1 insv, the test in store_bit_field() (expmed.c, line 191)
1695 for width==1 must be removed. Look around line 368. This is something
1696 we really want the md part to do. */
1697 if (width
== 1 && GET_CODE (operands
[3]) == CONST_INT
)
1699 /* Do directly with bseti or bclri. */
1700 /* RBE: 2/97 consider only low bit of constant. */
1701 if ((INTVAL(operands
[3])&1) == 0)
1703 mask
= ~(1 << posn
);
1704 emit_insn (gen_rtx (SET
, SImode
, operands
[0],
1705 gen_rtx (AND
, SImode
, operands
[0], GEN_INT (mask
))));
1710 emit_insn (gen_rtx (SET
, SImode
, operands
[0],
1711 gen_rtx (IOR
, SImode
, operands
[0], GEN_INT (mask
))));
1717 /* Look at some bitfield placements that we aren't interested
1718 in handling ourselves, unless specifically directed to do so. */
1719 if (! TARGET_W_FIELD
)
1720 return 0; /* Generally, give up about now. */
1722 if (width
== 8 && posn
% 8 == 0)
1723 /* Byte sized and aligned; let caller break it up. */
1726 if (width
== 16 && posn
% 16 == 0)
1727 /* Short sized and aligned; let caller break it up. */
1730 /* The general case - we can do this a little bit better than what the
1731 machine independent part tries. This will get rid of all the subregs
1732 that mess up constant folding in combine when working with relaxed
1735 /* If setting the entire field, do it directly. */
1736 if (GET_CODE (operands
[3]) == CONST_INT
&&
1737 INTVAL (operands
[3]) == ((1 << width
) - 1))
1739 mreg
= force_reg (SImode
, GEN_INT (INTVAL (operands
[3]) << posn
));
1740 emit_insn (gen_rtx (SET
, SImode
, operands
[0],
1741 gen_rtx (IOR
, SImode
, operands
[0], mreg
)));
1745 /* Generate the clear mask. */
1746 mreg
= force_reg (SImode
, GEN_INT (~(((1 << width
) - 1) << posn
)));
1748 /* Clear the field, to overlay it later with the source. */
1749 emit_insn (gen_rtx (SET
, SImode
, operands
[0],
1750 gen_rtx (AND
, SImode
, operands
[0], mreg
)));
1752 /* If the source is constant 0, we've nothing to add back. */
1753 if (GET_CODE (operands
[3]) == CONST_INT
&& INTVAL (operands
[3]) == 0)
1756 /* XXX: Should we worry about more games with constant values?
1757 We've covered the high profile: set/clear single-bit and many-bit
1758 fields. How often do we see "arbitrary bit pattern" constants? */
1759 sreg
= copy_to_mode_reg (SImode
, operands
[3]);
1761 /* Extract src as same width as dst (needed for signed values). We
1762 always have to do this since we widen everything to SImode.
1763 We don't have to mask if we're shifting this up against the
1764 MSB of the register (e.g., the shift will push out any hi-order
1766 if (width
+ posn
!= (int) GET_MODE_SIZE (SImode
))
1768 ereg
= force_reg (SImode
, GEN_INT ((1 << width
) - 1));
1769 emit_insn (gen_rtx (SET
, SImode
, sreg
,
1770 gen_rtx (AND
, SImode
, sreg
, ereg
)));
1773 /* Insert source value in dest. */
1775 emit_insn (gen_rtx (SET
, SImode
, sreg
,
1776 gen_rtx (ASHIFT
, SImode
, sreg
, GEN_INT (posn
))));
1778 emit_insn (gen_rtx (SET
, SImode
, operands
[0],
1779 gen_rtx (IOR
, SImode
, operands
[0], sreg
)));
1784 /* Return 1 if OP is a load multiple operation. It is known to be a
1785 PARALLEL and the first section will be tested. */
1787 mcore_load_multiple_operation (op
, mode
)
1789 enum machine_mode mode ATTRIBUTE_UNUSED
;
1791 int count
= XVECLEN (op
, 0);
1796 /* Perform a quick check so we don't blow up below. */
1798 || GET_CODE (XVECEXP (op
, 0, 0)) != SET
1799 || GET_CODE (SET_DEST (XVECEXP (op
, 0, 0))) != REG
1800 || GET_CODE (SET_SRC (XVECEXP (op
, 0, 0))) != MEM
)
1803 dest_regno
= REGNO (SET_DEST (XVECEXP (op
, 0, 0)));
1804 src_addr
= XEXP (SET_SRC (XVECEXP (op
, 0, 0)), 0);
1806 for (i
= 1; i
< count
; i
++)
1808 rtx elt
= XVECEXP (op
, 0, i
);
1810 if (GET_CODE (elt
) != SET
1811 || GET_CODE (SET_DEST (elt
)) != REG
1812 || GET_MODE (SET_DEST (elt
)) != SImode
1813 || REGNO (SET_DEST (elt
)) != (unsigned) (dest_regno
+ i
)
1814 || GET_CODE (SET_SRC (elt
)) != MEM
1815 || GET_MODE (SET_SRC (elt
)) != SImode
1816 || GET_CODE (XEXP (SET_SRC (elt
), 0)) != PLUS
1817 || ! rtx_equal_p (XEXP (XEXP (SET_SRC (elt
), 0), 0), src_addr
)
1818 || GET_CODE (XEXP (XEXP (SET_SRC (elt
), 0), 1)) != CONST_INT
1819 || INTVAL (XEXP (XEXP (SET_SRC (elt
), 0), 1)) != i
* 4)
1826 /* Similar, but tests for store multiple. */
1829 mcore_store_multiple_operation (op
, mode
)
1831 enum machine_mode mode ATTRIBUTE_UNUSED
;
1833 int count
= XVECLEN (op
, 0);
1838 /* Perform a quick check so we don't blow up below. */
1840 || GET_CODE (XVECEXP (op
, 0, 0)) != SET
1841 || GET_CODE (SET_DEST (XVECEXP (op
, 0, 0))) != MEM
1842 || GET_CODE (SET_SRC (XVECEXP (op
, 0, 0))) != REG
)
1845 src_regno
= REGNO (SET_SRC (XVECEXP (op
, 0, 0)));
1846 dest_addr
= XEXP (SET_DEST (XVECEXP (op
, 0, 0)), 0);
1848 for (i
= 1; i
< count
; i
++)
1850 rtx elt
= XVECEXP (op
, 0, i
);
1852 if (GET_CODE (elt
) != SET
1853 || GET_CODE (SET_SRC (elt
)) != REG
1854 || GET_MODE (SET_SRC (elt
)) != SImode
1855 || REGNO (SET_SRC (elt
)) != (unsigned) (src_regno
+ i
)
1856 || GET_CODE (SET_DEST (elt
)) != MEM
1857 || GET_MODE (SET_DEST (elt
)) != SImode
1858 || GET_CODE (XEXP (SET_DEST (elt
), 0)) != PLUS
1859 || ! rtx_equal_p (XEXP (XEXP (SET_DEST (elt
), 0), 0), dest_addr
)
1860 || GET_CODE (XEXP (XEXP (SET_DEST (elt
), 0), 1)) != CONST_INT
1861 || INTVAL (XEXP (XEXP (SET_DEST (elt
), 0), 1)) != i
* 4)
1868 /* ??? Block move stuff stolen from m88k. This code has not been
1869 verified for correctness. */
1871 /* Emit code to perform a block move. Choose the best method.
1873 OPERANDS[0] is the destination.
1874 OPERANDS[1] is the source.
1875 OPERANDS[2] is the size.
1876 OPERANDS[3] is the alignment safe to use. */
1878 /* Emit code to perform a block move with an offset sequence of ldw/st
1879 instructions (..., ldw 0, stw 1, ldw 1, stw 0, ...). SIZE and ALIGN are
1880 known constants. DEST and SRC are registers. OFFSET is the known
1881 starting point for the output pattern. */
1883 static const enum machine_mode mode_from_align
[] =
1885 VOIDmode
, QImode
, HImode
, VOIDmode
, SImode
,
1886 VOIDmode
, VOIDmode
, VOIDmode
, DImode
1890 block_move_sequence (dest
, dst_mem
, src
, src_mem
, size
, align
, offset
)
1898 enum machine_mode mode
[2];
1903 int offset_ld
= offset
;
1904 int offset_st
= offset
;
1906 active
[0] = active
[1] = FALSE
;
1908 /* Establish parameters for the first load and for the second load if
1909 it is known to be the same mode as the first. */
1910 amount
[0] = amount
[1] = align
;
1912 mode
[0] = mode_from_align
[align
];
1914 temp
[0] = gen_reg_rtx (mode
[0]);
1916 if (size
>= 2 * align
)
1919 temp
[1] = gen_reg_rtx (mode
[1]);
1931 /* Change modes as the sequence tails off. */
1932 if (size
< amount
[next
])
1934 amount
[next
] = (size
>= 4 ? 4 : (size
>= 2 ? 2 : 1));
1935 mode
[next
] = mode_from_align
[amount
[next
]];
1936 temp
[next
] = gen_reg_rtx (mode
[next
]);
1939 size
-= amount
[next
];
1940 srcp
= gen_rtx (MEM
,
1942 MEM_IN_STRUCT_P (src_mem
) ? mode
[next
] : BLKmode
,
1946 gen_rtx (PLUS
, Pmode
, src
,
1947 gen_rtx (CONST_INT
, SImode
, offset_ld
)));
1949 RTX_UNCHANGING_P (srcp
) = RTX_UNCHANGING_P (src_mem
);
1950 MEM_VOLATILE_P (srcp
) = MEM_VOLATILE_P (src_mem
);
1951 MEM_IN_STRUCT_P (srcp
) = 1;
1952 emit_insn (gen_rtx (SET
, VOIDmode
, temp
[next
], srcp
));
1953 offset_ld
+= amount
[next
];
1954 active
[next
] = TRUE
;
1959 active
[phase
] = FALSE
;
1961 dstp
= gen_rtx (MEM
,
1963 MEM_IN_STRUCT_P (dst_mem
) ? mode
[phase
] : BLKmode
,
1967 gen_rtx (PLUS
, Pmode
, dest
,
1968 gen_rtx (CONST_INT
, SImode
, offset_st
)));
1970 RTX_UNCHANGING_P (dstp
) = RTX_UNCHANGING_P (dst_mem
);
1971 MEM_VOLATILE_P (dstp
) = MEM_VOLATILE_P (dst_mem
);
1972 MEM_IN_STRUCT_P (dstp
) = 1;
1973 emit_insn (gen_rtx (SET
, VOIDmode
, dstp
, temp
[phase
]));
1974 offset_st
+= amount
[phase
];
1977 while (active
[next
]);
1981 mcore_expand_block_move (dst_mem
, src_mem
, operands
)
1986 int align
= INTVAL (operands
[3]);
1989 if (GET_CODE (operands
[2]) == CONST_INT
)
1991 bytes
= INTVAL (operands
[2]);
1998 /* RBE: bumped 1 and 2 byte align from 1 and 2 to 4 and 8 bytes before
1999 we give up and go to memcpy. */
2000 if ((align
== 4 && (bytes
<= 4*4
2001 || ((bytes
& 01) == 0 && bytes
<= 8*4)
2002 || ((bytes
& 03) == 0 && bytes
<= 16*4)))
2003 || (align
== 2 && bytes
<= 4*2)
2004 || (align
== 1 && bytes
<= 4*1))
2006 block_move_sequence (operands
[0], dst_mem
, operands
[1], src_mem
,
2012 /* If we get here, just use the library routine. */
2013 emit_library_call (gen_rtx (SYMBOL_REF
, Pmode
, "memcpy"), 0, VOIDmode
, 3,
2014 operands
[0], Pmode
, operands
[1], Pmode
, operands
[2],
2019 /* Code to generate prologue and epilogue sequences. */
2020 static int number_of_regs_before_varargs
;
2022 /* Set by SETUP_INCOMING_VARARGS to indicate to prolog that this is
2023 for a varargs function. */
2024 static int current_function_anonymous_args
;
2026 #define STACK_BYTES (STACK_BOUNDARY/BITS_PER_UNIT)
2027 #define STORE_REACH (64) /* Maximum displace of word store + 4. */
2028 #define ADDI_REACH (32) /* Maximum addi operand. */
2031 layout_mcore_frame (infp
)
2032 struct mcore_frame
* infp
;
2041 unsigned int growths
;
2044 /* Might have to spill bytes to re-assemble a big argument that
2045 was passed partially in registers and partially on the stack. */
2046 nbytes
= current_function_pretend_args_size
;
2048 /* Determine how much space for spilled anonymous args (e.g., stdarg). */
2049 if (current_function_anonymous_args
)
2050 nbytes
+= (NPARM_REGS
- number_of_regs_before_varargs
) * UNITS_PER_WORD
;
2052 infp
->arg_size
= nbytes
;
2054 /* How much space to save non-volatile registers we stomp. */
2055 infp
->reg_mask
= calc_live_regs (& n
);
2056 infp
->reg_size
= n
* 4;
2058 /* And the rest of it... locals and space for overflowed outbounds. */
2059 infp
->local_size
= get_frame_size ();
2060 infp
->outbound_size
= current_function_outgoing_args_size
;
2062 /* Make sure we have a whole number of words for the locals. */
2063 if (infp
->local_size
% STACK_BYTES
)
2064 infp
->local_size
= (infp
->local_size
+ STACK_BYTES
- 1) & ~ (STACK_BYTES
-1);
2066 /* Only thing we know we have to pad is the outbound space, since
2067 we've aligned our locals assuming that base of locals is aligned. */
2068 infp
->pad_local
= 0;
2070 infp
->pad_outbound
= 0;
2071 if (infp
->outbound_size
% STACK_BYTES
)
2072 infp
->pad_outbound
= STACK_BYTES
- (infp
->outbound_size
% STACK_BYTES
);
2074 /* Now we see how we want to stage the prologue so that it does
2075 the most appropriate stack growth and register saves to either:
2077 (2) reduce instruction space, or
2078 (3) reduce stack space. */
2079 for (i
= 0; i
< ARRAY_SIZE (infp
->growth
); i
++)
2080 infp
->growth
[i
] = 0;
2082 regarg
= infp
->reg_size
+ infp
->arg_size
;
2083 localregarg
= infp
->local_size
+ regarg
;
2084 localreg
= infp
->local_size
+ infp
->reg_size
;
2085 outbounds
= infp
->outbound_size
+ infp
->pad_outbound
;
2088 /* XXX: Consider one where we consider localregarg + outbound too! */
2090 /* Frame of <= 32 bytes and using stm would get <= 2 registers.
2091 use stw's with offsets and buy the frame in one shot. */
2092 if (localregarg
<= ADDI_REACH
2093 && (infp
->reg_size
<= 8 || (infp
->reg_mask
& 0xc000) != 0xc000))
2095 /* Make sure we'll be aligned. */
2096 if (localregarg
% STACK_BYTES
)
2097 infp
->pad_reg
= STACK_BYTES
- (localregarg
% STACK_BYTES
);
2099 step
= localregarg
+ infp
->pad_reg
;
2100 infp
->reg_offset
= infp
->local_size
;
2102 if (outbounds
+ step
<= ADDI_REACH
&& !frame_pointer_needed
)
2105 infp
->reg_offset
+= outbounds
;
2109 infp
->arg_offset
= step
- 4;
2110 infp
->growth
[growths
++] = step
;
2111 infp
->reg_growth
= growths
;
2112 infp
->local_growth
= growths
;
2114 /* If we haven't already folded it in. */
2116 infp
->growth
[growths
++] = outbounds
;
2121 /* Frame can't be done with a single subi, but can be done with 2
2122 insns. If the 'stm' is getting <= 2 registers, we use stw's and
2123 shift some of the stack purchase into the first subi, so both are
2124 single instructions. */
2125 if (localregarg
<= STORE_REACH
2126 && (infp
->local_size
> ADDI_REACH
)
2127 && (infp
->reg_size
<= 8 || (infp
->reg_mask
& 0xc000) != 0xc000))
2131 /* Make sure we'll be aligned; use either pad_reg or pad_local. */
2132 if (localregarg
% STACK_BYTES
)
2133 infp
->pad_reg
= STACK_BYTES
- (localregarg
% STACK_BYTES
);
2135 all
= localregarg
+ infp
->pad_reg
+ infp
->pad_local
;
2136 step
= ADDI_REACH
; /* As much up front as we can. */
2140 /* XXX: Consider whether step will still be aligned; we believe so. */
2141 infp
->arg_offset
= step
- 4;
2142 infp
->growth
[growths
++] = step
;
2143 infp
->reg_growth
= growths
;
2144 infp
->reg_offset
= step
- infp
->pad_reg
- infp
->reg_size
;
2147 /* Can we fold in any space required for outbounds? */
2148 if (outbounds
+ all
<= ADDI_REACH
&& !frame_pointer_needed
)
2154 /* Get the rest of the locals in place. */
2156 infp
->growth
[growths
++] = step
;
2157 infp
->local_growth
= growths
;
2162 /* Finish off if we need to do so. */
2164 infp
->growth
[growths
++] = outbounds
;
2169 /* Registers + args is nicely aligned, so we'll buy that in one shot.
2170 Then we buy the rest of the frame in 1 or 2 steps depending on
2171 whether we need a frame pointer. */
2172 if ((regarg
% STACK_BYTES
) == 0)
2174 infp
->growth
[growths
++] = regarg
;
2175 infp
->reg_growth
= growths
;
2176 infp
->arg_offset
= regarg
- 4;
2177 infp
->reg_offset
= 0;
2179 if (infp
->local_size
% STACK_BYTES
)
2180 infp
->pad_local
= STACK_BYTES
- (infp
->local_size
% STACK_BYTES
);
2182 step
= infp
->local_size
+ infp
->pad_local
;
2184 if (!frame_pointer_needed
)
2190 infp
->growth
[growths
++] = step
;
2191 infp
->local_growth
= growths
;
2193 /* If there's any left to be done. */
2195 infp
->growth
[growths
++] = outbounds
;
2200 /* XXX: optimizations that we'll want to play with....
2201 -- regarg is not aligned, but it's a small number of registers;
2202 use some of localsize so that regarg is aligned and then
2203 save the registers. */
2205 /* Simple encoding; plods down the stack buying the pieces as it goes.
2206 -- does not optimize space consumption.
2207 -- does not attempt to optimize instruction counts.
2208 -- but it is safe for all alignments. */
2209 if (regarg
% STACK_BYTES
!= 0)
2210 infp
->pad_reg
= STACK_BYTES
- (regarg
% STACK_BYTES
);
2212 infp
->growth
[growths
++] = infp
->arg_size
+ infp
->reg_size
+ infp
->pad_reg
;
2213 infp
->reg_growth
= growths
;
2214 infp
->arg_offset
= infp
->growth
[0] - 4;
2215 infp
->reg_offset
= 0;
2217 if (frame_pointer_needed
)
2219 if (infp
->local_size
% STACK_BYTES
!= 0)
2220 infp
->pad_local
= STACK_BYTES
- (infp
->local_size
% STACK_BYTES
);
2222 infp
->growth
[growths
++] = infp
->local_size
+ infp
->pad_local
;
2223 infp
->local_growth
= growths
;
2225 infp
->growth
[growths
++] = outbounds
;
2229 if ((infp
->local_size
+ outbounds
) % STACK_BYTES
!= 0)
2230 infp
->pad_local
= STACK_BYTES
- ((infp
->local_size
+ outbounds
) % STACK_BYTES
);
2232 infp
->growth
[growths
++] = infp
->local_size
+ infp
->pad_local
+ outbounds
;
2233 infp
->local_growth
= growths
;
2236 /* Anything else that we've forgotten?, plus a few consistency checks. */
2238 assert (infp
->reg_offset
>= 0);
2239 assert (growths
<= MAX_STACK_GROWS
);
2241 for (i
= 0; i
< growths
; i
++)
2243 if (infp
->growth
[i
] % STACK_BYTES
)
2245 fprintf (stderr
,"stack growth of %d is not %d aligned\n",
2246 infp
->growth
[i
], STACK_BYTES
);
2252 /* Define the offset between two registers, one to be eliminated, and
2253 the other its replacement, at the start of a routine. */
2256 mcore_initial_elimination_offset (from
, to
)
2262 struct mcore_frame fi
;
2264 layout_mcore_frame (& fi
);
2267 above_frame
= fi
.local_size
+ fi
.pad_local
+ fi
.reg_size
+ fi
.pad_reg
;
2269 below_frame
= fi
.outbound_size
+ fi
.pad_outbound
;
2271 if (from
== ARG_POINTER_REGNUM
&& to
== FRAME_POINTER_REGNUM
)
2274 if (from
== ARG_POINTER_REGNUM
&& to
== STACK_POINTER_REGNUM
)
2275 return above_frame
+ below_frame
;
2277 if (from
== FRAME_POINTER_REGNUM
&& to
== STACK_POINTER_REGNUM
)
2285 /* Keep track of some information about varargs for the prolog. */
2288 mcore_setup_incoming_varargs (args_so_far
, mode
, type
, ptr_pretend_size
)
2289 CUMULATIVE_ARGS args_so_far
;
2290 enum machine_mode mode
;
2292 int * ptr_pretend_size ATTRIBUTE_UNUSED
;
2294 current_function_anonymous_args
= 1;
2296 /* We need to know how many argument registers are used before
2297 the varargs start, so that we can push the remaining argument
2298 registers during the prologue. */
2299 number_of_regs_before_varargs
= args_so_far
+ mcore_num_arg_regs (mode
, type
);
2301 /* There is a bug somwehere in the arg handling code.
2302 Until I can find it this workaround always pushes the
2303 last named argument onto the stack. */
2304 number_of_regs_before_varargs
= args_so_far
;
2306 /* The last named argument may be split between argument registers
2307 and the stack. Allow for this here. */
2308 if (number_of_regs_before_varargs
> NPARM_REGS
)
2309 number_of_regs_before_varargs
= NPARM_REGS
;
2313 mcore_expand_prolog ()
2315 struct mcore_frame fi
;
2316 int space_allocated
= 0;
2319 /* Find out what we're doing. */
2320 layout_mcore_frame (&fi
);
2322 space_allocated
= fi
.arg_size
+ fi
.reg_size
+ fi
.local_size
+
2323 fi
.outbound_size
+ fi
.pad_outbound
+ fi
.pad_local
+ fi
.pad_reg
;
2327 /* Emit a symbol for this routine's frame size. */
2331 x
= DECL_RTL (current_function_decl
);
2333 if (GET_CODE (x
) != MEM
)
2338 if (GET_CODE (x
) != SYMBOL_REF
)
2341 if (mcore_current_function_name
)
2342 free (mcore_current_function_name
);
2344 len
= strlen (XSTR (x
, 0)) + 1;
2345 mcore_current_function_name
= (char *) xmalloc (len
);
2347 memcpy (mcore_current_function_name
, XSTR (x
, 0), len
);
2349 ASM_OUTPUT_CG_NODE (asm_out_file
, mcore_current_function_name
, space_allocated
);
2351 if (current_function_calls_alloca
)
2352 ASM_OUTPUT_CG_EDGE (asm_out_file
, mcore_current_function_name
, "alloca", 1);
2355 We're looking at how the 8byte alignment affects stack layout
2356 and where we had to pad things. This emits information we can
2357 extract which tells us about frame sizes and the like. */
2358 fprintf (asm_out_file
,
2359 "\t.equ\t__$frame$info$_%s_$_%d_%d_x%x_%d_%d_%d,0\n",
2360 mcore_current_function_name
,
2361 fi
.arg_size
, fi
.reg_size
, fi
.reg_mask
,
2362 fi
.local_size
, fi
.outbound_size
,
2363 frame_pointer_needed
);
2366 if (mcore_naked_function_p ())
2369 /* Handle stdarg+regsaves in one shot: can't be more than 64 bytes. */
2370 output_stack_adjust (-1, fi
.growth
[growth
++]); /* grows it */
2372 /* If we have a parameter passed partially in regs and partially in memory,
2373 the registers will have been stored to memory already in function.c. So
2374 we only need to do something here for varargs functions. */
2375 if (fi
.arg_size
!= 0 && current_function_pretend_args_size
== 0)
2378 int rn
= FIRST_PARM_REG
+ NPARM_REGS
- 1;
2379 int remaining
= fi
.arg_size
;
2381 for (offset
= fi
.arg_offset
; remaining
>= 4; offset
-= 4, rn
--, remaining
-= 4)
2383 emit_insn (gen_movsi
2384 (gen_rtx (MEM
, SImode
,
2385 plus_constant (stack_pointer_rtx
, offset
)),
2386 gen_rtx (REG
, SImode
, rn
)));
2390 /* Do we need another stack adjustment before we do the register saves? */
2391 if (growth
< fi
.reg_growth
)
2392 output_stack_adjust (-1, fi
.growth
[growth
++]); /* grows it */
2394 if (fi
.reg_size
!= 0)
2397 int offs
= fi
.reg_offset
;
2399 for (i
= 15; i
>= 0; i
--)
2401 if (offs
== 0 && i
== 15 && ((fi
.reg_mask
& 0xc000) == 0xc000))
2405 while (fi
.reg_mask
& (1 << first_reg
))
2409 emit_insn (gen_store_multiple (gen_rtx (MEM
, SImode
, stack_pointer_rtx
),
2410 gen_rtx (REG
, SImode
, first_reg
),
2411 GEN_INT (16 - first_reg
)));
2413 i
-= (15 - first_reg
);
2414 offs
+= (16 - first_reg
) * 4;
2416 else if (fi
.reg_mask
& (1 << i
))
2418 emit_insn (gen_movsi
2419 (gen_rtx (MEM
, SImode
,
2420 plus_constant (stack_pointer_rtx
, offs
)),
2421 gen_rtx (REG
, SImode
, i
)));
2427 /* Figure the locals + outbounds. */
2428 if (frame_pointer_needed
)
2430 /* If we haven't already purchased to 'fp'. */
2431 if (growth
< fi
.local_growth
)
2432 output_stack_adjust (-1, fi
.growth
[growth
++]); /* grows it */
2434 emit_insn (gen_movsi (frame_pointer_rtx
, stack_pointer_rtx
));
2436 /* ... and then go any remaining distance for outbounds, etc. */
2437 if (fi
.growth
[growth
])
2438 output_stack_adjust (-1, fi
.growth
[growth
++]);
2442 if (growth
< fi
.local_growth
)
2443 output_stack_adjust (-1, fi
.growth
[growth
++]); /* grows it */
2444 if (fi
.growth
[growth
])
2445 output_stack_adjust (-1, fi
.growth
[growth
++]);
2450 mcore_expand_epilog ()
2452 struct mcore_frame fi
;
2455 int growth
= MAX_STACK_GROWS
- 1 ;
2458 /* Find out what we're doing. */
2459 layout_mcore_frame(&fi
);
2461 if (mcore_naked_function_p ())
2464 /* If we had a frame pointer, restore the sp from that. */
2465 if (frame_pointer_needed
)
2467 emit_insn (gen_movsi (stack_pointer_rtx
, frame_pointer_rtx
));
2468 growth
= fi
.local_growth
- 1;
2472 /* XXX: while loop should accumulate and do a single sell. */
2473 while (growth
>= fi
.local_growth
)
2475 if (fi
.growth
[growth
] != 0)
2476 output_stack_adjust (1, fi
.growth
[growth
]);
2481 /* Make sure we've shrunk stack back to the point where the registers
2482 were laid down. This is typically 0/1 iterations. Then pull the
2483 register save information back off the stack. */
2484 while (growth
>= fi
.reg_growth
)
2485 output_stack_adjust ( 1, fi
.growth
[growth
--]);
2487 offs
= fi
.reg_offset
;
2489 for (i
= 15; i
>= 0; i
--)
2491 if (offs
== 0 && i
== 15 && ((fi
.reg_mask
& 0xc000) == 0xc000))
2495 /* Find the starting register. */
2498 while (fi
.reg_mask
& (1 << first_reg
))
2503 emit_insn (gen_load_multiple (gen_rtx (REG
, SImode
, first_reg
),
2504 gen_rtx (MEM
, SImode
, stack_pointer_rtx
),
2505 GEN_INT (16 - first_reg
)));
2507 i
-= (15 - first_reg
);
2508 offs
+= (16 - first_reg
) * 4;
2510 else if (fi
.reg_mask
& (1 << i
))
2512 emit_insn (gen_movsi
2513 (gen_rtx (REG
, SImode
, i
),
2514 gen_rtx (MEM
, SImode
,
2515 plus_constant (stack_pointer_rtx
, offs
))));
2520 /* Give back anything else. */
2521 /* XXX: Should accumuate total and then give it back. */
2523 output_stack_adjust ( 1, fi
.growth
[growth
--]);
2526 /* This code is borrowed from the SH port. */
2528 /* The MCORE cannot load a large constant into a register, constants have to
2529 come from a pc relative load. The reference of a pc relative load
2530 instruction must be less than 1k infront of the instruction. This
2531 means that we often have to dump a constant inside a function, and
2532 generate code to branch around it.
2534 It is important to minimize this, since the branches will slow things
2535 down and make things bigger.
2537 Worst case code looks like:
2553 We fix this by performing a scan before scheduling, which notices which
2554 instructions need to have their operands fetched from the constant table
2555 and builds the table.
2559 scan, find an instruction which needs a pcrel move. Look forward, find the
2560 last barrier which is within MAX_COUNT bytes of the requirement.
2561 If there isn't one, make one. Process all the instructions between
2562 the find and the barrier.
2564 In the above example, we can tell that L3 is within 1k of L1, so
2565 the first move can be shrunk from the 2 insn+constant sequence into
2566 just 1 insn, and the constant moved to L3 to make:
2576 Then the second move becomes the target for the shortening process. */
2580 rtx value
; /* Value in table. */
2581 rtx label
; /* Label of value. */
2584 /* The maximum number of constants that can fit into one pool, since
2585 the pc relative range is 0...1020 bytes and constants are at least 4
2586 bytes long. We subtact 4 from the range to allow for the case where
2587 we need to add a branch/align before the constant pool. */
2589 #define MAX_COUNT 1016
2590 #define MAX_POOL_SIZE (MAX_COUNT/4)
2591 static pool_node pool_vector
[MAX_POOL_SIZE
];
2592 static int pool_size
;
2594 /* Dump out any constants accumulated in the final pass. These
2595 will only be labels. */
2598 mcore_output_jump_label_table ()
2604 fprintf (asm_out_file
, "\t.align 2\n");
2606 for (i
= 0; i
< pool_size
; i
++)
2608 pool_node
* p
= pool_vector
+ i
;
2610 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file
, "L", CODE_LABEL_NUMBER (p
->label
));
2612 output_asm_insn (".long %0", &p
->value
);
2621 /* Check whether insn is a candidate for a conditional. */
2624 is_cond_candidate (insn
)
2627 /* The only things we conditionalize are those that can be directly
2628 changed into a conditional. Only bother with SImode items. If
2629 we wanted to be a little more aggressive, we could also do other
2630 modes such as DImode with reg-reg move or load 0. */
2631 if (GET_CODE (insn
) == INSN
)
2633 rtx pat
= PATTERN (insn
);
2636 if (GET_CODE (pat
) != SET
)
2639 dst
= XEXP (pat
, 0);
2641 if ((GET_CODE (dst
) != REG
&&
2642 GET_CODE (dst
) != SUBREG
) ||
2643 GET_MODE (dst
) != SImode
)
2646 src
= XEXP (pat
, 1);
2648 if ((GET_CODE (src
) == REG
||
2649 (GET_CODE (src
) == SUBREG
&&
2650 GET_CODE (SUBREG_REG (src
)) == REG
)) &&
2651 GET_MODE (src
) == SImode
)
2652 return COND_MOV_INSN
;
2653 else if (GET_CODE (src
) == CONST_INT
&&
2655 return COND_CLR_INSN
;
2656 else if (GET_CODE (src
) == PLUS
&&
2657 (GET_CODE (XEXP (src
, 0)) == REG
||
2658 (GET_CODE (XEXP (src
, 0)) == SUBREG
&&
2659 GET_CODE (SUBREG_REG (XEXP (src
, 0))) == REG
)) &&
2660 GET_MODE (XEXP (src
, 0)) == SImode
&&
2661 GET_CODE (XEXP (src
, 1)) == CONST_INT
&&
2662 INTVAL (XEXP (src
, 1)) == 1)
2663 return COND_INC_INSN
;
2664 else if (((GET_CODE (src
) == MINUS
&&
2665 GET_CODE (XEXP (src
, 1)) == CONST_INT
&&
2666 INTVAL( XEXP (src
, 1)) == 1) ||
2667 (GET_CODE (src
) == PLUS
&&
2668 GET_CODE (XEXP (src
, 1)) == CONST_INT
&&
2669 INTVAL (XEXP (src
, 1)) == -1)) &&
2670 (GET_CODE (XEXP (src
, 0)) == REG
||
2671 (GET_CODE (XEXP (src
, 0)) == SUBREG
&&
2672 GET_CODE (SUBREG_REG (XEXP (src
, 0))) == REG
)) &&
2673 GET_MODE (XEXP (src
, 0)) == SImode
)
2674 return COND_DEC_INSN
;
2676 /* some insns that we don't bother with:
2677 (set (rx:DI) (ry:DI))
2678 (set (rx:DI) (const_int 0))
2682 else if (GET_CODE (insn
) == JUMP_INSN
&&
2683 GET_CODE (PATTERN (insn
)) == SET
&&
2684 GET_CODE (XEXP (PATTERN (insn
), 1)) == LABEL_REF
)
2685 return COND_BRANCH_INSN
;
2690 /* Emit a conditional version of insn and replace the old insn with the
2691 new one. Return the new insn if emitted. */
2694 emit_new_cond_insn (insn
, cond
)
2702 if ((num
= is_cond_candidate (insn
)) == COND_NO
)
2705 pat
= PATTERN (insn
);
2707 if (GET_CODE (insn
) == INSN
)
2709 dst
= SET_DEST (pat
);
2710 src
= SET_SRC (pat
);
2714 dst
= JUMP_LABEL (insn
);
2723 c_insn
= gen_movt0 (dst
, src
, dst
);
2725 c_insn
= gen_movt0 (dst
, dst
, src
);
2730 c_insn
= gen_incscc (dst
, dst
);
2732 c_insn
= gen_incscc_false (dst
, dst
);
2737 c_insn
= gen_decscc (dst
, dst
);
2739 c_insn
= gen_decscc_false (dst
, dst
);
2742 case COND_BRANCH_INSN
:
2744 c_insn
= gen_branch_true (dst
);
2746 c_insn
= gen_branch_false (dst
);
2753 /* Only copy the notes if they exist. */
2754 if (rtx_length
[GET_CODE (c_insn
)] >= 7 && rtx_length
[GET_CODE (insn
)] >= 7)
2756 /* We really don't need to bother with the notes and links at this
2757 point, but go ahead and save the notes. This will help is_dead()
2758 when applying peepholes (links don't matter since they are not
2759 used any more beyond this point for the mcore). */
2760 REG_NOTES (c_insn
) = REG_NOTES (insn
);
2763 if (num
== COND_BRANCH_INSN
)
2765 /* For jumps, we need to be a little bit careful and emit the new jump
2766 before the old one and to update the use count for the target label.
2767 This way, the barrier following the old (uncond) jump will get
2768 deleted, but the label won't. */
2769 c_insn
= emit_jump_insn_before (c_insn
, insn
);
2771 ++ LABEL_NUSES (dst
);
2773 JUMP_LABEL (c_insn
) = dst
;
2776 c_insn
= emit_insn_after (c_insn
, insn
);
2783 /* Attempt to change a basic block into a series of conditional insns. This
2784 works by taking the branch at the end of the 1st block and scanning for the
2785 end of the 2nd block. If all instructions in the 2nd block have cond.
2786 versions and the label at the start of block 3 is the same as the target
2787 from the branch at block 1, then conditionalize all insn in block 2 using
2788 the inverse condition of the branch at block 1. (Note I'm bending the
2789 definition of basic block here.)
2793 bt L2 <-- end of block 1 (delete)
2796 br L3 <-- end of block 2
2798 L2: ... <-- start of block 3 (NUSES==1)
2809 we can delete the L2 label if NUSES==1 and re-apply the optimization
2810 starting at the last instruction of block 2. This may allow an entire
2811 if-then-else statement to be conditionalized. BRC */
2813 conditionalize_block (first
)
2818 rtx end_blk_1_br
= 0;
2819 rtx end_blk_2_insn
= 0;
2820 rtx start_blk_3_lab
= 0;
2826 /* Check that the first insn is a candidate conditional jump. This is
2827 the one that we'll eliminate. If not, advance to the next insn to
2829 if (GET_CODE (first
) != JUMP_INSN
||
2830 GET_CODE (PATTERN (first
)) != SET
||
2831 GET_CODE (XEXP (PATTERN (first
), 1)) != IF_THEN_ELSE
)
2832 return NEXT_INSN (first
);
2834 /* Extract some information we need. */
2835 end_blk_1_br
= first
;
2836 br_pat
= PATTERN (end_blk_1_br
);
2838 /* Complement the condition since we use the reverse cond. for the insns. */
2839 cond
= (GET_CODE (XEXP (XEXP (br_pat
, 1), 0)) == EQ
);
2841 /* Determine what kind of branch we have. */
2842 if (GET_CODE (XEXP (XEXP (br_pat
, 1), 1)) == LABEL_REF
)
2844 /* A normal branch, so extract label out of first arm. */
2845 br_lab_num
= CODE_LABEL_NUMBER (XEXP (XEXP (XEXP (br_pat
, 1), 1), 0));
2849 /* An inverse branch, so extract the label out of the 2nd arm
2850 and complement the condition. */
2852 br_lab_num
= CODE_LABEL_NUMBER (XEXP (XEXP (XEXP (br_pat
, 1), 2), 0));
2855 /* Scan forward for the start of block 2: it must start with a
2856 label and that label must be the same as the branch target
2857 label from block 1. We don't care about whether block 2 actually
2858 ends with a branch or a label (an uncond. branch is
2859 conditionalizable). */
2860 for (insn
= NEXT_INSN (first
); insn
; insn
= NEXT_INSN (insn
))
2864 code
= GET_CODE (insn
);
2866 /* Look for the label at the start of block 3. */
2867 if (code
== CODE_LABEL
&& CODE_LABEL_NUMBER (insn
) == br_lab_num
)
2870 /* Skip barriers, notes, and conditionalizable insns. If the
2871 insn is not conditionalizable or makes this optimization fail,
2872 just return the next insn so we can start over from that point. */
2873 if (code
!= BARRIER
&& code
!= NOTE
&& !is_cond_candidate (insn
))
2874 return NEXT_INSN (insn
);
2876 /* Remember the last real insn before the label (ie end of block 2). */
2877 if (code
== JUMP_INSN
|| code
== INSN
)
2880 end_blk_2_insn
= insn
;
2887 /* It is possible for this optimization to slow performance if the blocks
2888 are long. This really depends upon whether the branch is likely taken
2889 or not. If the branch is taken, we slow performance in many cases. But,
2890 if the branch is not taken, we always help performance (for a single
2891 block, but for a double block (i.e. when the optimization is re-applied)
2892 this is not true since the 'right thing' depends on the overall length of
2893 the collapsed block). As a compromise, don't apply this optimization on
2894 blocks larger than size 2 (unlikely for the mcore) when speed is important.
2895 the best threshold depends on the latencies of the instructions (i.e.,
2896 the branch penalty). */
2897 if (optimize
> 1 && blk_size
> 2)
2900 /* At this point, we've found the start of block 3 and we know that
2901 it is the destination of the branch from block 1. Also, all
2902 instructions in the block 2 are conditionalizable. So, apply the
2903 conditionalization and delete the branch. */
2904 start_blk_3_lab
= insn
;
2906 for (insn
= NEXT_INSN (end_blk_1_br
); insn
!= start_blk_3_lab
;
2907 insn
= NEXT_INSN (insn
))
2911 if (INSN_DELETED_P (insn
))
2914 /* Try to form a conditional variant of the instruction and emit it. */
2915 if ((newinsn
= emit_new_cond_insn (insn
, cond
)))
2917 if (end_blk_2_insn
== insn
)
2918 end_blk_2_insn
= newinsn
;
2924 /* Note whether we will delete the label starting blk 3 when the jump
2925 gets deleted. If so, we want to re-apply this optimization at the
2926 last real instruction right before the label. */
2927 if (LABEL_NUSES (start_blk_3_lab
) == 1)
2929 start_blk_3_lab
= 0;
2932 /* ??? we probably should redistribute the death notes for this insn, esp.
2933 the death of cc, but it doesn't really matter this late in the game.
2934 The peepholes all use is_dead() which will find the correct death
2935 regardless of whether there is a note. */
2936 delete_insn (end_blk_1_br
);
2938 if (! start_blk_3_lab
)
2939 return end_blk_2_insn
;
2941 /* Return the insn right after the label at the start of block 3. */
2942 return NEXT_INSN (start_blk_3_lab
);
2945 /* Apply the conditionalization of blocks optimization. This is the
2946 outer loop that traverses through the insns scanning for a branch
2947 that signifies an opportunity to apply the optimization. Note that
2948 this optimization is applied late. If we could apply it earlier,
2949 say before cse 2, it may expose more optimization opportunities.
2950 but, the pay back probably isn't really worth the effort (we'd have
2951 to update all reg/flow/notes/links/etc to make it work - and stick it
2952 in before cse 2). */
2955 conditionalize_optimization (first
)
2960 for (insn
= first
; insn
; insn
= conditionalize_block (insn
))
2964 static int saved_warn_return_type
= -1;
2965 static int saved_warn_return_type_count
= 0;
2967 /* This function is called from toplev.c before reorg. */
2970 mcore_dependent_reorg (first
)
2973 /* Reset this variable. */
2974 current_function_anonymous_args
= 0;
2976 /* Restore the warn_return_type if it has been altered. */
2977 if (saved_warn_return_type
!= -1)
2979 /* Only restore the value if we have reached another function.
2980 The test of warn_return_type occurs in final_function () in
2981 c-decl.c a long time after the code for the function is generated,
2982 so we need a counter to tell us when we have finished parsing that
2983 function and can restore the flag. */
2984 if (--saved_warn_return_type_count
== 0)
2986 warn_return_type
= saved_warn_return_type
;
2987 saved_warn_return_type
= -1;
2994 /* Conditionalize blocks where we can. */
2995 conditionalize_optimization (first
);
2997 /* Literal pool generation is now pushed off until the assembler. */
3001 /* Return the reg_class to use when reloading the rtx X into the class
3004 /* If the input is (PLUS REG CONSTANT) representing a stack slot address,
3005 then we want to restrict the class to LRW_REGS since that ensures that
3006 will be able to safely load the constant.
3008 If the input is a constant that should be loaded with mvir1, then use
3011 ??? We don't handle the case where we have (PLUS REG CONSTANT) and
3012 the constant should be loaded with mvir1, because that can lead to cases
3013 where an instruction needs two ONLYR1_REGS reloads. */
3015 mcore_reload_class (x
, class)
3017 enum reg_class
class;
3019 enum reg_class new_class
;
3021 if (class == GENERAL_REGS
&& CONSTANT_P (x
)
3022 && (GET_CODE (x
) != CONST_INT
3023 || ( ! CONST_OK_FOR_I (INTVAL (x
))
3024 && ! CONST_OK_FOR_M (INTVAL (x
))
3025 && ! CONST_OK_FOR_N (INTVAL (x
)))))
3026 new_class
= LRW_REGS
;
3033 /* Tell me if a pair of reg/subreg rtx's actually refer to the same
3034 register. Note that the current version doesn't worry about whether
3035 they are the same mode or note (e.g., a QImode in r2 matches an HImode
3036 in r2 matches an SImode in r2. Might think in the future about whether
3037 we want to be able to say something about modes. */
3039 mcore_is_same_reg (x
, y
)
3043 /* Strip any and all of the subreg wrappers. */
3044 while (GET_CODE (x
) == SUBREG
)
3047 while (GET_CODE (y
) == SUBREG
)
3050 if (GET_CODE(x
) == REG
&& GET_CODE(y
) == REG
&& REGNO(x
) == REGNO(y
))
3056 /* Called to register all of our global variables with the garbage
3059 mcore_add_gc_roots ()
3061 ggc_add_rtx_root (&arch_compare_op0
, 1);
3062 ggc_add_rtx_root (&arch_compare_op1
, 1);
3066 mcore_override_options ()
3068 if (mcore_stack_increment_string
)
3070 mcore_stack_increment
= atoi (mcore_stack_increment_string
);
3072 if (mcore_stack_increment
< 0
3073 || (mcore_stack_increment
== 0
3074 && (mcore_stack_increment_string
[0] != '0'
3075 || mcore_stack_increment_string
[1] != 0)))
3076 error ("invalid option `-mstack-increment=%s'",
3077 mcore_stack_increment_string
);
3080 /* Only the m340 supports little endian code. */
3081 if (TARGET_LITTLE_END
&& ! TARGET_M340
)
3082 target_flags
|= M340_BIT
;
3084 mcore_add_gc_roots ();
3088 mcore_must_pass_on_stack (mode
, type
)
3089 enum machine_mode mode ATTRIBUTE_UNUSED
;
3095 /* If the argugment can have its address taken, it must
3096 be placed on the stack. */
3097 if (TREE_ADDRESSABLE (type
))
3103 /* Compute the number of word sized registers needed to
3104 hold a function argument of mode MODE and type TYPE. */
3106 mcore_num_arg_regs (mode
, type
)
3107 enum machine_mode mode
;
3112 if (MUST_PASS_IN_STACK (mode
, type
))
3115 if (type
&& mode
== BLKmode
)
3116 size
= int_size_in_bytes (type
);
3118 size
= GET_MODE_SIZE (mode
);
3120 return ROUND_ADVANCE (size
);
3124 handle_structs_in_regs (mode
, type
, reg
)
3125 enum machine_mode mode
;
3131 /* The MCore ABI defines that a structure whoes size is not a whole multiple
3132 of bytes is passed packed into registers (or spilled onto the stack if
3133 not enough registers are available) with the last few bytes of the
3134 structure being packed, left-justified, into the last register/stack slot.
3135 GCC handles this correctly if the last word is in a stack slot, but we
3136 have to generate a special, PARALLEL RTX if the last word is in an
3137 argument register. */
3139 && TYPE_MODE (type
) == BLKmode
3140 && TREE_CODE (TYPE_SIZE (type
)) == INTEGER_CST
3141 && (size
= int_size_in_bytes (type
)) > UNITS_PER_WORD
3142 && (size
% UNITS_PER_WORD
!= 0)
3143 && (reg
+ mcore_num_arg_regs (mode
, type
) <= (FIRST_PARM_REG
+ NPARM_REGS
)))
3145 rtx arg_regs
[NPARM_REGS
];
3150 for (nregs
= 0; size
> 0; size
-= UNITS_PER_WORD
)
3153 gen_rtx_EXPR_LIST (SImode
, gen_rtx_REG (SImode
, reg
++),
3154 GEN_INT (nregs
* UNITS_PER_WORD
));
3158 /* We assume here that NPARM_REGS == 6. The assert checks this. */
3159 assert (ARRAY_SIZE (arg_regs
) == 6);
3160 rtvec
= gen_rtvec (nregs
, arg_regs
[0], arg_regs
[1], arg_regs
[2],
3161 arg_regs
[3], arg_regs
[4], arg_regs
[5]);
3163 result
= gen_rtx_PARALLEL (mode
, rtvec
);
3167 return gen_rtx_REG (mode
, reg
);
3171 mcore_function_value (valtype
, func
)
3173 tree func ATTRIBUTE_UNUSED
;
3175 enum machine_mode mode
;
3178 mode
= TYPE_MODE (valtype
);
3180 PROMOTE_MODE (mode
, unsigned_p
, NULL
);
3182 return handle_structs_in_regs (mode
, valtype
, FIRST_RET_REG
);
3185 /* Define where to put the arguments to a function.
3186 Value is zero to push the argument on the stack,
3187 or a hard register in which to store the argument.
3189 MODE is the argument's machine mode.
3190 TYPE is the data type of the argument (as a tree).
3191 This is null for libcalls where that information may
3193 CUM is a variable of type CUMULATIVE_ARGS which gives info about
3194 the preceding args and about the function being called.
3195 NAMED is nonzero if this argument is a named parameter
3196 (otherwise it is an extra parameter matching an ellipsis).
3198 On MCore the first args are normally in registers
3199 and the rest are pushed. Any arg that starts within the first
3200 NPARM_REGS words is at least partially passed in a register unless
3201 its data type forbids. */
3203 mcore_function_arg (cum
, mode
, type
, named
)
3204 CUMULATIVE_ARGS cum
;
3205 enum machine_mode mode
;
3214 if (MUST_PASS_IN_STACK (mode
, type
))
3217 arg_reg
= ROUND_REG (cum
, mode
);
3219 if (arg_reg
< NPARM_REGS
)
3220 return handle_structs_in_regs (mode
, type
, FIRST_PARM_REG
+ arg_reg
);
3225 /* Implements the FUNCTION_ARG_PARTIAL_NREGS macro.
3226 Returns the number of argument registers required to hold *part* of
3227 a parameter of machine mode MODE and type TYPE (which may be NULL if
3228 the type is not known). If the argument fits entirly in the argument
3229 registers, or entirely on the stack, then 0 is returned. CUM is the
3230 number of argument registers already used by earlier parameters to
3233 mcore_function_arg_partial_nregs (cum
, mode
, type
, named
)
3234 CUMULATIVE_ARGS cum
;
3235 enum machine_mode mode
;
3239 int reg
= ROUND_REG (cum
, mode
);
3244 if (MUST_PASS_IN_STACK (mode
, type
))
3247 /* REG is not the *hardware* register number of the register that holds
3248 the argument, it is the *argument* register number. So for example,
3249 the first argument to a function goes in argument register 0, which
3250 translates (for the MCore) into hardware register 2. The second
3251 argument goes into argument register 1, which translates into hardware
3252 register 3, and so on. NPARM_REGS is the number of argument registers
3253 supported by the target, not the maximum hardware register number of
3255 if (reg
>= NPARM_REGS
)
3258 /* If the argument fits entirely in registers, return 0. */
3259 if (reg
+ mcore_num_arg_regs (mode
, type
) <= NPARM_REGS
)
3262 /* The argument overflows the number of available argument registers.
3263 Compute how many argument registers have not yet been assigned to
3264 hold an argument. */
3265 reg
= NPARM_REGS
- reg
;
3267 /* Return partially in registers and partially on the stack. */
3271 /* Return non-zero if SYMBOL is marked as being dllexport'd. */
3273 mcore_dllexport_name_p (symbol
)
3274 const char * symbol
;
3276 return symbol
[0] == '@' && symbol
[1] == 'e' && symbol
[2] == '.';
3279 /* Return non-zero if SYMBOL is marked as being dllimport'd. */
3281 mcore_dllimport_name_p (symbol
)
3282 const char * symbol
;
3284 return symbol
[0] == '@' && symbol
[1] == 'i' && symbol
[2] == '.';
3287 /* Mark a DECL as being dllexport'd. */
3289 mcore_mark_dllexport (decl
)
3292 const char * oldname
;
3297 rtlname
= XEXP (DECL_RTL (decl
), 0);
3299 if (GET_CODE (rtlname
) == SYMBOL_REF
)
3300 oldname
= XSTR (rtlname
, 0);
3301 else if ( GET_CODE (rtlname
) == MEM
3302 && GET_CODE (XEXP (rtlname
, 0)) == SYMBOL_REF
)
3303 oldname
= XSTR (XEXP (rtlname
, 0), 0);
3307 if (mcore_dllexport_name_p (oldname
))
3308 return; /* Already done. */
3310 newname
= alloca (strlen (oldname
) + 4);
3311 sprintf (newname
, "@e.%s", oldname
);
3313 /* We pass newname through get_identifier to ensure it has a unique
3314 address. RTL processing can sometimes peek inside the symbol ref
3315 and compare the string's addresses to see if two symbols are
3317 /* ??? At least I think that's why we do this. */
3318 idp
= get_identifier (newname
);
3320 XEXP (DECL_RTL (decl
), 0) =
3321 gen_rtx (SYMBOL_REF
, Pmode
, IDENTIFIER_POINTER (idp
));
3324 /* Mark a DECL as being dllimport'd. */
3326 mcore_mark_dllimport (decl
)
3329 const char * oldname
;
3335 rtlname
= XEXP (DECL_RTL (decl
), 0);
3337 if (GET_CODE (rtlname
) == SYMBOL_REF
)
3338 oldname
= XSTR (rtlname
, 0);
3339 else if ( GET_CODE (rtlname
) == MEM
3340 && GET_CODE (XEXP (rtlname
, 0)) == SYMBOL_REF
)
3341 oldname
= XSTR (XEXP (rtlname
, 0), 0);
3345 if (mcore_dllexport_name_p (oldname
))
3346 abort (); /* This shouldn't happen. */
3347 else if (mcore_dllimport_name_p (oldname
))
3348 return; /* Already done. */
3350 /* ??? One can well ask why we're making these checks here,
3351 and that would be a good question. */
3353 /* Imported variables can't be initialized. */
3354 if (TREE_CODE (decl
) == VAR_DECL
3355 && !DECL_VIRTUAL_P (decl
)
3356 && DECL_INITIAL (decl
))
3358 error_with_decl (decl
, "initialized variable `%s' is marked dllimport");
3362 /* `extern' needn't be specified with dllimport.
3363 Specify `extern' now and hope for the best. Sigh. */
3364 if (TREE_CODE (decl
) == VAR_DECL
3365 /* ??? Is this test for vtables needed? */
3366 && !DECL_VIRTUAL_P (decl
))
3368 DECL_EXTERNAL (decl
) = 1;
3369 TREE_PUBLIC (decl
) = 1;
3372 newname
= alloca (strlen (oldname
) + 11);
3373 sprintf (newname
, "@i.__imp_%s", oldname
);
3375 /* We pass newname through get_identifier to ensure it has a unique
3376 address. RTL processing can sometimes peek inside the symbol ref
3377 and compare the string's addresses to see if two symbols are
3379 /* ??? At least I think that's why we do this. */
3380 idp
= get_identifier (newname
);
3382 newrtl
= gen_rtx (MEM
, Pmode
,
3383 gen_rtx (SYMBOL_REF
, Pmode
,
3384 IDENTIFIER_POINTER (idp
)));
3385 XEXP (DECL_RTL (decl
), 0) = newrtl
;
3389 mcore_dllexport_p (decl
)
3392 if ( TREE_CODE (decl
) != VAR_DECL
3393 && TREE_CODE (decl
) != FUNCTION_DECL
)
3396 return lookup_attribute ("dllexport", DECL_ATTRIBUTES (decl
)) != 0;
3400 mcore_dllimport_p (decl
)
3403 if ( TREE_CODE (decl
) != VAR_DECL
3404 && TREE_CODE (decl
) != FUNCTION_DECL
)
3407 return lookup_attribute ("dllimport", DECL_ATTRIBUTES (decl
)) != 0;
3410 /* Cover function to implement ENCODE_SECTION_INFO. */
3412 mcore_encode_section_info (decl
)
3415 /* This bit is copied from arm.h. */
3417 && TREE_CONSTANT (decl
)
3418 && (!flag_writable_strings
|| TREE_CODE (decl
) != STRING_CST
))
3420 rtx rtl
= (TREE_CODE_CLASS (TREE_CODE (decl
)) != 'd'
3421 ? TREE_CST_RTL (decl
) : DECL_RTL (decl
));
3422 SYMBOL_REF_FLAG (XEXP (rtl
, 0)) = 1;
3425 /* Mark the decl so we can tell from the rtl whether the object is
3426 dllexport'd or dllimport'd. */
3427 if (mcore_dllexport_p (decl
))
3428 mcore_mark_dllexport (decl
);
3429 else if (mcore_dllimport_p (decl
))
3430 mcore_mark_dllimport (decl
);
3432 /* It might be that DECL has already been marked as dllimport, but
3433 a subsequent definition nullified that. The attribute is gone
3434 but DECL_RTL still has @i.__imp_foo. We need to remove that. */
3435 else if ((TREE_CODE (decl
) == FUNCTION_DECL
3436 || TREE_CODE (decl
) == VAR_DECL
)
3437 && DECL_RTL (decl
) != NULL_RTX
3438 && GET_CODE (DECL_RTL (decl
)) == MEM
3439 && GET_CODE (XEXP (DECL_RTL (decl
), 0)) == MEM
3440 && GET_CODE (XEXP (XEXP (DECL_RTL (decl
), 0), 0)) == SYMBOL_REF
3441 && mcore_dllimport_name_p (XSTR (XEXP (XEXP (DECL_RTL (decl
), 0), 0), 0)))
3443 const char * oldname
= XSTR (XEXP (XEXP (DECL_RTL (decl
), 0), 0), 0);
3444 tree idp
= get_identifier (oldname
+ 9);
3445 rtx newrtl
= gen_rtx (SYMBOL_REF
, Pmode
, IDENTIFIER_POINTER (idp
));
3447 XEXP (DECL_RTL (decl
), 0) = newrtl
;
3449 /* We previously set TREE_PUBLIC and DECL_EXTERNAL.
3450 ??? We leave these alone for now. */
3454 /* MCore specific attribute support.
3455 dllexport - for exporting a function/variable that will live in a dll
3456 dllimport - for importing a function/variable from a dll
3457 naked - do not create a function prologue/epilogue. */
3459 const struct attribute_spec mcore_attribute_table
[] =
3461 /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */
3462 { "dllexport", 0, 0, true, false, false, NULL
},
3463 { "dllimport", 0, 0, true, false, false, NULL
},
3464 { "naked", 0, 0, true, false, false, mcore_handle_naked_attribute
},
3465 { NULL
, 0, 0, false, false, false, NULL
}
3468 /* Handle a "naked" attribute; arguments as in
3469 struct attribute_spec.handler. */
3471 mcore_handle_naked_attribute (node
, name
, args
, flags
, no_add_attrs
)
3474 tree args ATTRIBUTE_UNUSED
;
3475 int flags ATTRIBUTE_UNUSED
;
3478 if (TREE_CODE (*node
) == FUNCTION_DECL
)
3480 /* PR14310 - don't complain about lack of return statement
3481 in naked functions. The solution here is a gross hack
3482 but this is the only way to solve the problem without
3483 adding a new feature to GCC. I did try submitting a patch
3484 that would add such a new feature, but it was (rightfully)
3485 rejected on the grounds that it was creeping featurism,
3486 so hence this code. */
3487 if (warn_return_type
)
3489 saved_warn_return_type
= warn_return_type
;
3490 warn_return_type
= 0;
3491 saved_warn_return_type_count
= 2;
3493 else if (saved_warn_return_type_count
)
3494 saved_warn_return_type_count
= 2;
3498 warning ("`%s' attribute only applies to functions",
3499 IDENTIFIER_POINTER (name
));
3500 *no_add_attrs
= true;
3506 /* Cover function for UNIQUE_SECTION. */
3509 mcore_unique_section (decl
, reloc
)
3511 int reloc ATTRIBUTE_UNUSED
;
3516 const char * prefix
;
3518 name
= IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl
));
3520 /* Strip off any encoding in name. */
3521 STRIP_NAME_ENCODING (name
, name
);
3523 /* The object is put in, for example, section .text$foo.
3524 The linker will then ultimately place them in .text
3525 (everything from the $ on is stripped). */
3526 if (TREE_CODE (decl
) == FUNCTION_DECL
)
3528 /* For compatibility with EPOC, we ignore the fact that the
3529 section might have relocs against it. */
3530 else if (DECL_READONLY_SECTION (decl
, 0))
3535 len
= strlen (name
) + strlen (prefix
);
3536 string
= alloca (len
+ 1);
3538 sprintf (string
, "%s%s", prefix
, name
);
3540 DECL_SECTION_NAME (decl
) = build_string (len
, string
);
3544 mcore_naked_function_p ()
3546 return lookup_attribute ("naked", DECL_ATTRIBUTES (current_function_decl
)) != NULL_TREE
;
3549 #ifdef OBJECT_FORMAT_ELF
3551 mcore_asm_named_section (name
, flags
)
3553 unsigned int flags ATTRIBUTE_UNUSED
;
3555 fprintf (asm_out_file
, "\t.section %s\n", name
);
3557 #endif /* OBJECT_FORMAT_ELF */