Daily bump.
[official-gcc.git] / gcc / combine.c
blobacaf3b15869af64b8e640106dbc803c7cd653c7c
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information created by
53 flow.c aren't completely updated:
55 - reg_live_length is not updated
56 - reg_n_refs is not adjusted in the rare case when a register is
57 no longer required in a computation
58 - there are extremely rare cases (see distribute_regnotes) when a
59 REG_DEAD note is lost
60 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
61 removed because there is no way to know which register it was
62 linking
64 To simplify substitution, we combine only when the earlier insn(s)
65 consist of only a single assignment. To simplify updating afterward,
66 we never combine when a subroutine call appears in the middle.
68 Since we do not represent assignments to CC0 explicitly except when that
69 is all an insn does, there is no LOG_LINKS entry in an insn that uses
70 the condition code for the insn that set the condition code.
71 Fortunately, these two insns must be consecutive.
72 Therefore, every JUMP_INSN is taken to have an implicit logical link
73 to the preceding insn. This is not quite right, since non-jumps can
74 also use the condition code; but in practice such insns would not
75 combine anyway. */
77 #include "config.h"
78 #include "system.h"
79 #include "rtl.h"
80 #include "tm_p.h"
81 #include "flags.h"
82 #include "regs.h"
83 #include "hard-reg-set.h"
84 #include "basic-block.h"
85 #include "insn-config.h"
86 #include "function.h"
87 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
88 #include "expr.h"
89 #include "insn-attr.h"
90 #include "recog.h"
91 #include "real.h"
92 #include "toplev.h"
94 /* It is not safe to use ordinary gen_lowpart in combine.
95 Use gen_lowpart_for_combine instead. See comments there. */
96 #define gen_lowpart dont_use_gen_lowpart_you_dummy
98 /* Number of attempts to combine instructions in this function. */
100 static int combine_attempts;
102 /* Number of attempts that got as far as substitution in this function. */
104 static int combine_merges;
106 /* Number of instructions combined with added SETs in this function. */
108 static int combine_extras;
110 /* Number of instructions combined in this function. */
112 static int combine_successes;
114 /* Totals over entire compilation. */
116 static int total_attempts, total_merges, total_extras, total_successes;
119 /* Vector mapping INSN_UIDs to cuids.
120 The cuids are like uids but increase monotonically always.
121 Combine always uses cuids so that it can compare them.
122 But actually renumbering the uids, which we used to do,
123 proves to be a bad idea because it makes it hard to compare
124 the dumps produced by earlier passes with those from later passes. */
126 static int *uid_cuid;
127 static int max_uid_cuid;
129 /* Get the cuid of an insn. */
131 #define INSN_CUID(INSN) \
132 (INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
134 /* In case BITS_PER_WORD == HOST_BITS_PER_WIDE_INT, shifting by
135 BITS_PER_WORD would invoke undefined behavior. Work around it. */
137 #define UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD(val) \
138 (((unsigned HOST_WIDE_INT) (val) << (BITS_PER_WORD - 1)) << 1)
140 /* Maximum register number, which is the size of the tables below. */
142 static unsigned int combine_max_regno;
144 /* Record last point of death of (hard or pseudo) register n. */
146 static rtx *reg_last_death;
148 /* Record last point of modification of (hard or pseudo) register n. */
150 static rtx *reg_last_set;
152 /* Record the cuid of the last insn that invalidated memory
153 (anything that writes memory, and subroutine calls, but not pushes). */
155 static int mem_last_set;
157 /* Record the cuid of the last CALL_INSN
158 so we can tell whether a potential combination crosses any calls. */
160 static int last_call_cuid;
162 /* When `subst' is called, this is the insn that is being modified
163 (by combining in a previous insn). The PATTERN of this insn
164 is still the old pattern partially modified and it should not be
165 looked at, but this may be used to examine the successors of the insn
166 to judge whether a simplification is valid. */
168 static rtx subst_insn;
170 /* This is an insn that belongs before subst_insn, but is not currently
171 on the insn chain. */
173 static rtx subst_prev_insn;
175 /* This is the lowest CUID that `subst' is currently dealing with.
176 get_last_value will not return a value if the register was set at or
177 after this CUID. If not for this mechanism, we could get confused if
178 I2 or I1 in try_combine were an insn that used the old value of a register
179 to obtain a new value. In that case, we might erroneously get the
180 new value of the register when we wanted the old one. */
182 static int subst_low_cuid;
184 /* This contains any hard registers that are used in newpat; reg_dead_at_p
185 must consider all these registers to be always live. */
187 static HARD_REG_SET newpat_used_regs;
189 /* This is an insn to which a LOG_LINKS entry has been added. If this
190 insn is the earlier than I2 or I3, combine should rescan starting at
191 that location. */
193 static rtx added_links_insn;
195 /* Basic block number of the block in which we are performing combines. */
196 static int this_basic_block;
198 /* A bitmap indicating which blocks had registers go dead at entry.
199 After combine, we'll need to re-do global life analysis with
200 those blocks as starting points. */
201 static sbitmap refresh_blocks;
202 static int need_refresh;
204 /* The next group of arrays allows the recording of the last value assigned
205 to (hard or pseudo) register n. We use this information to see if a
206 operation being processed is redundant given a prior operation performed
207 on the register. For example, an `and' with a constant is redundant if
208 all the zero bits are already known to be turned off.
210 We use an approach similar to that used by cse, but change it in the
211 following ways:
213 (1) We do not want to reinitialize at each label.
214 (2) It is useful, but not critical, to know the actual value assigned
215 to a register. Often just its form is helpful.
217 Therefore, we maintain the following arrays:
219 reg_last_set_value the last value assigned
220 reg_last_set_label records the value of label_tick when the
221 register was assigned
222 reg_last_set_table_tick records the value of label_tick when a
223 value using the register is assigned
224 reg_last_set_invalid set to non-zero when it is not valid
225 to use the value of this register in some
226 register's value
228 To understand the usage of these tables, it is important to understand
229 the distinction between the value in reg_last_set_value being valid
230 and the register being validly contained in some other expression in the
231 table.
233 Entry I in reg_last_set_value is valid if it is non-zero, and either
234 reg_n_sets[i] is 1 or reg_last_set_label[i] == label_tick.
236 Register I may validly appear in any expression returned for the value
237 of another register if reg_n_sets[i] is 1. It may also appear in the
238 value for register J if reg_last_set_label[i] < reg_last_set_label[j] or
239 reg_last_set_invalid[j] is zero.
241 If an expression is found in the table containing a register which may
242 not validly appear in an expression, the register is replaced by
243 something that won't match, (clobber (const_int 0)).
245 reg_last_set_invalid[i] is set non-zero when register I is being assigned
246 to and reg_last_set_table_tick[i] == label_tick. */
248 /* Record last value assigned to (hard or pseudo) register n. */
250 static rtx *reg_last_set_value;
252 /* Record the value of label_tick when the value for register n is placed in
253 reg_last_set_value[n]. */
255 static int *reg_last_set_label;
257 /* Record the value of label_tick when an expression involving register n
258 is placed in reg_last_set_value. */
260 static int *reg_last_set_table_tick;
262 /* Set non-zero if references to register n in expressions should not be
263 used. */
265 static char *reg_last_set_invalid;
267 /* Incremented for each label. */
269 static int label_tick;
271 /* Some registers that are set more than once and used in more than one
272 basic block are nevertheless always set in similar ways. For example,
273 a QImode register may be loaded from memory in two places on a machine
274 where byte loads zero extend.
276 We record in the following array what we know about the nonzero
277 bits of a register, specifically which bits are known to be zero.
279 If an entry is zero, it means that we don't know anything special. */
281 static unsigned HOST_WIDE_INT *reg_nonzero_bits;
283 /* Mode used to compute significance in reg_nonzero_bits. It is the largest
284 integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
286 static enum machine_mode nonzero_bits_mode;
288 /* Nonzero if we know that a register has some leading bits that are always
289 equal to the sign bit. */
291 static unsigned char *reg_sign_bit_copies;
293 /* Nonzero when reg_nonzero_bits and reg_sign_bit_copies can be safely used.
294 It is zero while computing them and after combine has completed. This
295 former test prevents propagating values based on previously set values,
296 which can be incorrect if a variable is modified in a loop. */
298 static int nonzero_sign_valid;
300 /* These arrays are maintained in parallel with reg_last_set_value
301 and are used to store the mode in which the register was last set,
302 the bits that were known to be zero when it was last set, and the
303 number of sign bits copies it was known to have when it was last set. */
305 static enum machine_mode *reg_last_set_mode;
306 static unsigned HOST_WIDE_INT *reg_last_set_nonzero_bits;
307 static char *reg_last_set_sign_bit_copies;
309 /* Record one modification to rtl structure
310 to be undone by storing old_contents into *where.
311 is_int is 1 if the contents are an int. */
313 struct undo
315 struct undo *next;
316 int is_int;
317 union {rtx r; unsigned int i;} old_contents;
318 union {rtx *r; unsigned int *i;} where;
321 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
322 num_undo says how many are currently recorded.
324 other_insn is nonzero if we have modified some other insn in the process
325 of working on subst_insn. It must be verified too. */
327 struct undobuf
329 struct undo *undos;
330 struct undo *frees;
331 rtx other_insn;
334 static struct undobuf undobuf;
336 /* Number of times the pseudo being substituted for
337 was found and replaced. */
339 static int n_occurrences;
341 static void do_SUBST PARAMS ((rtx *, rtx));
342 static void do_SUBST_INT PARAMS ((unsigned int *,
343 unsigned int));
344 static void init_reg_last_arrays PARAMS ((void));
345 static void setup_incoming_promotions PARAMS ((void));
346 static void set_nonzero_bits_and_sign_copies PARAMS ((rtx, rtx, void *));
347 static int cant_combine_insn_p PARAMS ((rtx));
348 static int can_combine_p PARAMS ((rtx, rtx, rtx, rtx, rtx *, rtx *));
349 static int sets_function_arg_p PARAMS ((rtx));
350 static int combinable_i3pat PARAMS ((rtx, rtx *, rtx, rtx, int, rtx *));
351 static int contains_muldiv PARAMS ((rtx));
352 static rtx try_combine PARAMS ((rtx, rtx, rtx, int *));
353 static void undo_all PARAMS ((void));
354 static void undo_commit PARAMS ((void));
355 static rtx *find_split_point PARAMS ((rtx *, rtx));
356 static rtx subst PARAMS ((rtx, rtx, rtx, int, int));
357 static rtx combine_simplify_rtx PARAMS ((rtx, enum machine_mode, int, int));
358 static rtx simplify_if_then_else PARAMS ((rtx));
359 static rtx simplify_set PARAMS ((rtx));
360 static rtx simplify_logical PARAMS ((rtx, int));
361 static rtx expand_compound_operation PARAMS ((rtx));
362 static rtx expand_field_assignment PARAMS ((rtx));
363 static rtx make_extraction PARAMS ((enum machine_mode, rtx, HOST_WIDE_INT,
364 rtx, unsigned HOST_WIDE_INT, int,
365 int, int));
366 static rtx extract_left_shift PARAMS ((rtx, int));
367 static rtx make_compound_operation PARAMS ((rtx, enum rtx_code));
368 static int get_pos_from_mask PARAMS ((unsigned HOST_WIDE_INT,
369 unsigned HOST_WIDE_INT *));
370 static rtx force_to_mode PARAMS ((rtx, enum machine_mode,
371 unsigned HOST_WIDE_INT, rtx, int));
372 static rtx if_then_else_cond PARAMS ((rtx, rtx *, rtx *));
373 static rtx known_cond PARAMS ((rtx, enum rtx_code, rtx, rtx));
374 static int rtx_equal_for_field_assignment_p PARAMS ((rtx, rtx));
375 static rtx make_field_assignment PARAMS ((rtx));
376 static rtx apply_distributive_law PARAMS ((rtx));
377 static rtx simplify_and_const_int PARAMS ((rtx, enum machine_mode, rtx,
378 unsigned HOST_WIDE_INT));
379 static unsigned HOST_WIDE_INT nonzero_bits PARAMS ((rtx, enum machine_mode));
380 static unsigned int num_sign_bit_copies PARAMS ((rtx, enum machine_mode));
381 static int merge_outer_ops PARAMS ((enum rtx_code *, HOST_WIDE_INT *,
382 enum rtx_code, HOST_WIDE_INT,
383 enum machine_mode, int *));
384 static rtx simplify_shift_const PARAMS ((rtx, enum rtx_code, enum machine_mode,
385 rtx, int));
386 static int recog_for_combine PARAMS ((rtx *, rtx, rtx *));
387 static rtx gen_lowpart_for_combine PARAMS ((enum machine_mode, rtx));
388 static rtx gen_binary PARAMS ((enum rtx_code, enum machine_mode,
389 rtx, rtx));
390 static enum rtx_code simplify_comparison PARAMS ((enum rtx_code, rtx *, rtx *));
391 static void update_table_tick PARAMS ((rtx));
392 static void record_value_for_reg PARAMS ((rtx, rtx, rtx));
393 static void check_promoted_subreg PARAMS ((rtx, rtx));
394 static void record_dead_and_set_regs_1 PARAMS ((rtx, rtx, void *));
395 static void record_dead_and_set_regs PARAMS ((rtx));
396 static int get_last_value_validate PARAMS ((rtx *, rtx, int, int));
397 static rtx get_last_value PARAMS ((rtx));
398 static int use_crosses_set_p PARAMS ((rtx, int));
399 static void reg_dead_at_p_1 PARAMS ((rtx, rtx, void *));
400 static int reg_dead_at_p PARAMS ((rtx, rtx));
401 static void move_deaths PARAMS ((rtx, rtx, int, rtx, rtx *));
402 static int reg_bitfield_target_p PARAMS ((rtx, rtx));
403 static void distribute_notes PARAMS ((rtx, rtx, rtx, rtx, rtx, rtx));
404 static void distribute_links PARAMS ((rtx));
405 static void mark_used_regs_combine PARAMS ((rtx));
406 static int insn_cuid PARAMS ((rtx));
407 static void record_promoted_value PARAMS ((rtx, rtx));
408 static rtx reversed_comparison PARAMS ((rtx, enum machine_mode, rtx, rtx));
409 static enum rtx_code combine_reversed_comparison_code PARAMS ((rtx));
411 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
412 insn. The substitution can be undone by undo_all. If INTO is already
413 set to NEWVAL, do not record this change. Because computing NEWVAL might
414 also call SUBST, we have to compute it before we put anything into
415 the undo table. */
417 static void
418 do_SUBST (into, newval)
419 rtx *into, newval;
421 struct undo *buf;
422 rtx oldval = *into;
424 if (oldval == newval)
425 return;
427 /* We'd like to catch as many invalid transformations here as
428 possible. Unfortunately, there are way too many mode changes
429 that are perfectly valid, so we'd waste too much effort for
430 little gain doing the checks here. Focus on catching invalid
431 transformations involving integer constants. */
432 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
433 && GET_CODE (newval) == CONST_INT)
435 /* Sanity check that we're replacing oldval with a CONST_INT
436 that is a valid sign-extension for the original mode. */
437 if (INTVAL (newval) != trunc_int_for_mode (INTVAL (newval),
438 GET_MODE (oldval)))
439 abort ();
441 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
442 CONST_INT is not valid, because after the replacement, the
443 original mode would be gone. Unfortunately, we can't tell
444 when do_SUBST is called to replace the operand thereof, so we
445 perform this test on oldval instead, checking whether an
446 invalid replacement took place before we got here. */
447 if ((GET_CODE (oldval) == SUBREG
448 && GET_CODE (SUBREG_REG (oldval)) == CONST_INT)
449 || (GET_CODE (oldval) == ZERO_EXTEND
450 && GET_CODE (XEXP (oldval, 0)) == CONST_INT))
451 abort ();
454 if (undobuf.frees)
455 buf = undobuf.frees, undobuf.frees = buf->next;
456 else
457 buf = (struct undo *) xmalloc (sizeof (struct undo));
459 buf->is_int = 0;
460 buf->where.r = into;
461 buf->old_contents.r = oldval;
462 *into = newval;
464 buf->next = undobuf.undos, undobuf.undos = buf;
467 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
469 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
470 for the value of a HOST_WIDE_INT value (including CONST_INT) is
471 not safe. */
473 static void
474 do_SUBST_INT (into, newval)
475 unsigned int *into, newval;
477 struct undo *buf;
478 unsigned int oldval = *into;
480 if (oldval == newval)
481 return;
483 if (undobuf.frees)
484 buf = undobuf.frees, undobuf.frees = buf->next;
485 else
486 buf = (struct undo *) xmalloc (sizeof (struct undo));
488 buf->is_int = 1;
489 buf->where.i = into;
490 buf->old_contents.i = oldval;
491 *into = newval;
493 buf->next = undobuf.undos, undobuf.undos = buf;
496 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
498 /* Main entry point for combiner. F is the first insn of the function.
499 NREGS is the first unused pseudo-reg number.
501 Return non-zero if the combiner has turned an indirect jump
502 instruction into a direct jump. */
504 combine_instructions (f, nregs)
505 rtx f;
506 unsigned int nregs;
508 rtx insn, next;
509 #ifdef HAVE_cc0
510 rtx prev;
511 #endif
512 int i;
513 rtx links, nextlinks;
515 int new_direct_jump_p = 0;
517 combine_attempts = 0;
518 combine_merges = 0;
519 combine_extras = 0;
520 combine_successes = 0;
522 combine_max_regno = nregs;
524 reg_nonzero_bits = ((unsigned HOST_WIDE_INT *)
525 xcalloc (nregs, sizeof (unsigned HOST_WIDE_INT)));
526 reg_sign_bit_copies
527 = (unsigned char *) xcalloc (nregs, sizeof (unsigned char));
529 reg_last_death = (rtx *) xmalloc (nregs * sizeof (rtx));
530 reg_last_set = (rtx *) xmalloc (nregs * sizeof (rtx));
531 reg_last_set_value = (rtx *) xmalloc (nregs * sizeof (rtx));
532 reg_last_set_table_tick = (int *) xmalloc (nregs * sizeof (int));
533 reg_last_set_label = (int *) xmalloc (nregs * sizeof (int));
534 reg_last_set_invalid = (char *) xmalloc (nregs * sizeof (char));
535 reg_last_set_mode
536 = (enum machine_mode *) xmalloc (nregs * sizeof (enum machine_mode));
537 reg_last_set_nonzero_bits
538 = (unsigned HOST_WIDE_INT *) xmalloc (nregs * sizeof (HOST_WIDE_INT));
539 reg_last_set_sign_bit_copies
540 = (char *) xmalloc (nregs * sizeof (char));
542 init_reg_last_arrays ();
544 init_recog_no_volatile ();
546 /* Compute maximum uid value so uid_cuid can be allocated. */
548 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
549 if (INSN_UID (insn) > i)
550 i = INSN_UID (insn);
552 uid_cuid = (int *) xmalloc ((i + 1) * sizeof (int));
553 max_uid_cuid = i;
555 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
557 /* Don't use reg_nonzero_bits when computing it. This can cause problems
558 when, for example, we have j <<= 1 in a loop. */
560 nonzero_sign_valid = 0;
562 /* Compute the mapping from uids to cuids.
563 Cuids are numbers assigned to insns, like uids,
564 except that cuids increase monotonically through the code.
566 Scan all SETs and see if we can deduce anything about what
567 bits are known to be zero for some registers and how many copies
568 of the sign bit are known to exist for those registers.
570 Also set any known values so that we can use it while searching
571 for what bits are known to be set. */
573 label_tick = 1;
575 /* We need to initialize it here, because record_dead_and_set_regs may call
576 get_last_value. */
577 subst_prev_insn = NULL_RTX;
579 setup_incoming_promotions ();
581 refresh_blocks = sbitmap_alloc (n_basic_blocks);
582 sbitmap_zero (refresh_blocks);
583 need_refresh = 0;
585 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
587 uid_cuid[INSN_UID (insn)] = ++i;
588 subst_low_cuid = i;
589 subst_insn = insn;
591 if (INSN_P (insn))
593 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
594 NULL);
595 record_dead_and_set_regs (insn);
597 #ifdef AUTO_INC_DEC
598 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
599 if (REG_NOTE_KIND (links) == REG_INC)
600 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
601 NULL);
602 #endif
605 if (GET_CODE (insn) == CODE_LABEL)
606 label_tick++;
609 nonzero_sign_valid = 1;
611 /* Now scan all the insns in forward order. */
613 this_basic_block = -1;
614 label_tick = 1;
615 last_call_cuid = 0;
616 mem_last_set = 0;
617 init_reg_last_arrays ();
618 setup_incoming_promotions ();
620 for (insn = f; insn; insn = next ? next : NEXT_INSN (insn))
622 next = 0;
624 /* If INSN starts a new basic block, update our basic block number. */
625 if (this_basic_block + 1 < n_basic_blocks
626 && BLOCK_HEAD (this_basic_block + 1) == insn)
627 this_basic_block++;
629 if (GET_CODE (insn) == CODE_LABEL)
630 label_tick++;
632 else if (INSN_P (insn))
634 /* See if we know about function return values before this
635 insn based upon SUBREG flags. */
636 check_promoted_subreg (insn, PATTERN (insn));
638 /* Try this insn with each insn it links back to. */
640 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
641 if ((next = try_combine (insn, XEXP (links, 0),
642 NULL_RTX, &new_direct_jump_p)) != 0)
643 goto retry;
645 /* Try each sequence of three linked insns ending with this one. */
647 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
649 rtx link = XEXP (links, 0);
651 /* If the linked insn has been replaced by a note, then there
652 is no point in pursuing this chain any further. */
653 if (GET_CODE (link) == NOTE)
654 continue;
656 for (nextlinks = LOG_LINKS (link);
657 nextlinks;
658 nextlinks = XEXP (nextlinks, 1))
659 if ((next = try_combine (insn, link,
660 XEXP (nextlinks, 0),
661 &new_direct_jump_p)) != 0)
662 goto retry;
665 #ifdef HAVE_cc0
666 /* Try to combine a jump insn that uses CC0
667 with a preceding insn that sets CC0, and maybe with its
668 logical predecessor as well.
669 This is how we make decrement-and-branch insns.
670 We need this special code because data flow connections
671 via CC0 do not get entered in LOG_LINKS. */
673 if (GET_CODE (insn) == JUMP_INSN
674 && (prev = prev_nonnote_insn (insn)) != 0
675 && GET_CODE (prev) == INSN
676 && sets_cc0_p (PATTERN (prev)))
678 if ((next = try_combine (insn, prev,
679 NULL_RTX, &new_direct_jump_p)) != 0)
680 goto retry;
682 for (nextlinks = LOG_LINKS (prev); nextlinks;
683 nextlinks = XEXP (nextlinks, 1))
684 if ((next = try_combine (insn, prev,
685 XEXP (nextlinks, 0),
686 &new_direct_jump_p)) != 0)
687 goto retry;
690 /* Do the same for an insn that explicitly references CC0. */
691 if (GET_CODE (insn) == INSN
692 && (prev = prev_nonnote_insn (insn)) != 0
693 && GET_CODE (prev) == INSN
694 && sets_cc0_p (PATTERN (prev))
695 && GET_CODE (PATTERN (insn)) == SET
696 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
698 if ((next = try_combine (insn, prev,
699 NULL_RTX, &new_direct_jump_p)) != 0)
700 goto retry;
702 for (nextlinks = LOG_LINKS (prev); nextlinks;
703 nextlinks = XEXP (nextlinks, 1))
704 if ((next = try_combine (insn, prev,
705 XEXP (nextlinks, 0),
706 &new_direct_jump_p)) != 0)
707 goto retry;
710 /* Finally, see if any of the insns that this insn links to
711 explicitly references CC0. If so, try this insn, that insn,
712 and its predecessor if it sets CC0. */
713 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
714 if (GET_CODE (XEXP (links, 0)) == INSN
715 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
716 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
717 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
718 && GET_CODE (prev) == INSN
719 && sets_cc0_p (PATTERN (prev))
720 && (next = try_combine (insn, XEXP (links, 0),
721 prev, &new_direct_jump_p)) != 0)
722 goto retry;
723 #endif
725 /* Try combining an insn with two different insns whose results it
726 uses. */
727 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
728 for (nextlinks = XEXP (links, 1); nextlinks;
729 nextlinks = XEXP (nextlinks, 1))
730 if ((next = try_combine (insn, XEXP (links, 0),
731 XEXP (nextlinks, 0),
732 &new_direct_jump_p)) != 0)
733 goto retry;
735 if (GET_CODE (insn) != NOTE)
736 record_dead_and_set_regs (insn);
738 retry:
743 delete_noop_moves (f);
745 if (need_refresh)
747 update_life_info (refresh_blocks, UPDATE_LIFE_GLOBAL_RM_NOTES,
748 PROP_DEATH_NOTES);
751 /* Clean up. */
752 sbitmap_free (refresh_blocks);
753 free (reg_nonzero_bits);
754 free (reg_sign_bit_copies);
755 free (reg_last_death);
756 free (reg_last_set);
757 free (reg_last_set_value);
758 free (reg_last_set_table_tick);
759 free (reg_last_set_label);
760 free (reg_last_set_invalid);
761 free (reg_last_set_mode);
762 free (reg_last_set_nonzero_bits);
763 free (reg_last_set_sign_bit_copies);
764 free (uid_cuid);
767 struct undo *undo, *next;
768 for (undo = undobuf.frees; undo; undo = next)
770 next = undo->next;
771 free (undo);
773 undobuf.frees = 0;
776 total_attempts += combine_attempts;
777 total_merges += combine_merges;
778 total_extras += combine_extras;
779 total_successes += combine_successes;
781 nonzero_sign_valid = 0;
783 /* Make recognizer allow volatile MEMs again. */
784 init_recog ();
786 return new_direct_jump_p;
789 /* Wipe the reg_last_xxx arrays in preparation for another pass. */
791 static void
792 init_reg_last_arrays ()
794 unsigned int nregs = combine_max_regno;
796 memset ((char *) reg_last_death, 0, nregs * sizeof (rtx));
797 memset ((char *) reg_last_set, 0, nregs * sizeof (rtx));
798 memset ((char *) reg_last_set_value, 0, nregs * sizeof (rtx));
799 memset ((char *) reg_last_set_table_tick, 0, nregs * sizeof (int));
800 memset ((char *) reg_last_set_label, 0, nregs * sizeof (int));
801 memset (reg_last_set_invalid, 0, nregs * sizeof (char));
802 memset ((char *) reg_last_set_mode, 0, nregs * sizeof (enum machine_mode));
803 memset ((char *) reg_last_set_nonzero_bits, 0, nregs * sizeof (HOST_WIDE_INT));
804 memset (reg_last_set_sign_bit_copies, 0, nregs * sizeof (char));
807 /* Set up any promoted values for incoming argument registers. */
809 static void
810 setup_incoming_promotions ()
812 #ifdef PROMOTE_FUNCTION_ARGS
813 unsigned int regno;
814 rtx reg;
815 enum machine_mode mode;
816 int unsignedp;
817 rtx first = get_insns ();
819 #ifndef OUTGOING_REGNO
820 #define OUTGOING_REGNO(N) N
821 #endif
822 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
823 /* Check whether this register can hold an incoming pointer
824 argument. FUNCTION_ARG_REGNO_P tests outgoing register
825 numbers, so translate if necessary due to register windows. */
826 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (regno))
827 && (reg = promoted_input_arg (regno, &mode, &unsignedp)) != 0)
829 record_value_for_reg
830 (reg, first, gen_rtx_fmt_e ((unsignedp ? ZERO_EXTEND
831 : SIGN_EXTEND),
832 GET_MODE (reg),
833 gen_rtx_CLOBBER (mode, const0_rtx)));
835 #endif
838 /* Called via note_stores. If X is a pseudo that is narrower than
839 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
841 If we are setting only a portion of X and we can't figure out what
842 portion, assume all bits will be used since we don't know what will
843 be happening.
845 Similarly, set how many bits of X are known to be copies of the sign bit
846 at all locations in the function. This is the smallest number implied
847 by any set of X. */
849 static void
850 set_nonzero_bits_and_sign_copies (x, set, data)
851 rtx x;
852 rtx set;
853 void *data ATTRIBUTE_UNUSED;
855 unsigned int num;
857 if (GET_CODE (x) == REG
858 && REGNO (x) >= FIRST_PSEUDO_REGISTER
859 /* If this register is undefined at the start of the file, we can't
860 say what its contents were. */
861 && ! REGNO_REG_SET_P (BASIC_BLOCK (0)->global_live_at_start, REGNO (x))
862 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
864 if (set == 0 || GET_CODE (set) == CLOBBER)
866 reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
867 reg_sign_bit_copies[REGNO (x)] = 1;
868 return;
871 /* If this is a complex assignment, see if we can convert it into a
872 simple assignment. */
873 set = expand_field_assignment (set);
875 /* If this is a simple assignment, or we have a paradoxical SUBREG,
876 set what we know about X. */
878 if (SET_DEST (set) == x
879 || (GET_CODE (SET_DEST (set)) == SUBREG
880 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
881 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
882 && SUBREG_REG (SET_DEST (set)) == x))
884 rtx src = SET_SRC (set);
886 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
887 /* If X is narrower than a word and SRC is a non-negative
888 constant that would appear negative in the mode of X,
889 sign-extend it for use in reg_nonzero_bits because some
890 machines (maybe most) will actually do the sign-extension
891 and this is the conservative approach.
893 ??? For 2.5, try to tighten up the MD files in this regard
894 instead of this kludge. */
896 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
897 && GET_CODE (src) == CONST_INT
898 && INTVAL (src) > 0
899 && 0 != (INTVAL (src)
900 & ((HOST_WIDE_INT) 1
901 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
902 src = GEN_INT (INTVAL (src)
903 | ((HOST_WIDE_INT) (-1)
904 << GET_MODE_BITSIZE (GET_MODE (x))));
905 #endif
907 /* Don't call nonzero_bits if it cannot change anything. */
908 if (reg_nonzero_bits[REGNO (x)] != ~(unsigned HOST_WIDE_INT) 0)
909 reg_nonzero_bits[REGNO (x)]
910 |= nonzero_bits (src, nonzero_bits_mode);
911 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
912 if (reg_sign_bit_copies[REGNO (x)] == 0
913 || reg_sign_bit_copies[REGNO (x)] > num)
914 reg_sign_bit_copies[REGNO (x)] = num;
916 else
918 reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
919 reg_sign_bit_copies[REGNO (x)] = 1;
924 /* See if INSN can be combined into I3. PRED and SUCC are optionally
925 insns that were previously combined into I3 or that will be combined
926 into the merger of INSN and I3.
928 Return 0 if the combination is not allowed for any reason.
930 If the combination is allowed, *PDEST will be set to the single
931 destination of INSN and *PSRC to the single source, and this function
932 will return 1. */
934 static int
935 can_combine_p (insn, i3, pred, succ, pdest, psrc)
936 rtx insn;
937 rtx i3;
938 rtx pred ATTRIBUTE_UNUSED;
939 rtx succ;
940 rtx *pdest, *psrc;
942 int i;
943 rtx set = 0, src, dest;
944 rtx p;
945 #ifdef AUTO_INC_DEC
946 rtx link;
947 #endif
948 int all_adjacent = (succ ? (next_active_insn (insn) == succ
949 && next_active_insn (succ) == i3)
950 : next_active_insn (insn) == i3);
952 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
953 or a PARALLEL consisting of such a SET and CLOBBERs.
955 If INSN has CLOBBER parallel parts, ignore them for our processing.
956 By definition, these happen during the execution of the insn. When it
957 is merged with another insn, all bets are off. If they are, in fact,
958 needed and aren't also supplied in I3, they may be added by
959 recog_for_combine. Otherwise, it won't match.
961 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
962 note.
964 Get the source and destination of INSN. If more than one, can't
965 combine. */
967 if (GET_CODE (PATTERN (insn)) == SET)
968 set = PATTERN (insn);
969 else if (GET_CODE (PATTERN (insn)) == PARALLEL
970 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
972 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
974 rtx elt = XVECEXP (PATTERN (insn), 0, i);
976 switch (GET_CODE (elt))
978 /* This is important to combine floating point insns
979 for the SH4 port. */
980 case USE:
981 /* Combining an isolated USE doesn't make sense.
982 We depend here on combinable_i3pat to reject them. */
983 /* The code below this loop only verifies that the inputs of
984 the SET in INSN do not change. We call reg_set_between_p
985 to verify that the REG in the USE does not change between
986 I3 and INSN.
987 If the USE in INSN was for a pseudo register, the matching
988 insn pattern will likely match any register; combining this
989 with any other USE would only be safe if we knew that the
990 used registers have identical values, or if there was
991 something to tell them apart, e.g. different modes. For
992 now, we forgo such complicated tests and simply disallow
993 combining of USES of pseudo registers with any other USE. */
994 if (GET_CODE (XEXP (elt, 0)) == REG
995 && GET_CODE (PATTERN (i3)) == PARALLEL)
997 rtx i3pat = PATTERN (i3);
998 int i = XVECLEN (i3pat, 0) - 1;
999 unsigned int regno = REGNO (XEXP (elt, 0));
1003 rtx i3elt = XVECEXP (i3pat, 0, i);
1005 if (GET_CODE (i3elt) == USE
1006 && GET_CODE (XEXP (i3elt, 0)) == REG
1007 && (REGNO (XEXP (i3elt, 0)) == regno
1008 ? reg_set_between_p (XEXP (elt, 0),
1009 PREV_INSN (insn), i3)
1010 : regno >= FIRST_PSEUDO_REGISTER))
1011 return 0;
1013 while (--i >= 0);
1015 break;
1017 /* We can ignore CLOBBERs. */
1018 case CLOBBER:
1019 break;
1021 case SET:
1022 /* Ignore SETs whose result isn't used but not those that
1023 have side-effects. */
1024 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1025 && ! side_effects_p (elt))
1026 break;
1028 /* If we have already found a SET, this is a second one and
1029 so we cannot combine with this insn. */
1030 if (set)
1031 return 0;
1033 set = elt;
1034 break;
1036 default:
1037 /* Anything else means we can't combine. */
1038 return 0;
1042 if (set == 0
1043 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1044 so don't do anything with it. */
1045 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1046 return 0;
1048 else
1049 return 0;
1051 if (set == 0)
1052 return 0;
1054 set = expand_field_assignment (set);
1055 src = SET_SRC (set), dest = SET_DEST (set);
1057 /* Don't eliminate a store in the stack pointer. */
1058 if (dest == stack_pointer_rtx
1059 /* If we couldn't eliminate a field assignment, we can't combine. */
1060 || GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == STRICT_LOW_PART
1061 /* Don't combine with an insn that sets a register to itself if it has
1062 a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
1063 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1064 /* Can't merge an ASM_OPERANDS. */
1065 || GET_CODE (src) == ASM_OPERANDS
1066 /* Can't merge a function call. */
1067 || GET_CODE (src) == CALL
1068 /* Don't eliminate a function call argument. */
1069 || (GET_CODE (i3) == CALL_INSN
1070 && (find_reg_fusage (i3, USE, dest)
1071 || (GET_CODE (dest) == REG
1072 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1073 && global_regs[REGNO (dest)])))
1074 /* Don't substitute into an incremented register. */
1075 || FIND_REG_INC_NOTE (i3, dest)
1076 || (succ && FIND_REG_INC_NOTE (succ, dest))
1077 #if 0
1078 /* Don't combine the end of a libcall into anything. */
1079 /* ??? This gives worse code, and appears to be unnecessary, since no
1080 pass after flow uses REG_LIBCALL/REG_RETVAL notes. Local-alloc does
1081 use REG_RETVAL notes for noconflict blocks, but other code here
1082 makes sure that those insns don't disappear. */
1083 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
1084 #endif
1085 /* Make sure that DEST is not used after SUCC but before I3. */
1086 || (succ && ! all_adjacent
1087 && reg_used_between_p (dest, succ, i3))
1088 /* Make sure that the value that is to be substituted for the register
1089 does not use any registers whose values alter in between. However,
1090 If the insns are adjacent, a use can't cross a set even though we
1091 think it might (this can happen for a sequence of insns each setting
1092 the same destination; reg_last_set of that register might point to
1093 a NOTE). If INSN has a REG_EQUIV note, the register is always
1094 equivalent to the memory so the substitution is valid even if there
1095 are intervening stores. Also, don't move a volatile asm or
1096 UNSPEC_VOLATILE across any other insns. */
1097 || (! all_adjacent
1098 && (((GET_CODE (src) != MEM
1099 || ! find_reg_note (insn, REG_EQUIV, src))
1100 && use_crosses_set_p (src, INSN_CUID (insn)))
1101 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1102 || GET_CODE (src) == UNSPEC_VOLATILE))
1103 /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
1104 better register allocation by not doing the combine. */
1105 || find_reg_note (i3, REG_NO_CONFLICT, dest)
1106 || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
1107 /* Don't combine across a CALL_INSN, because that would possibly
1108 change whether the life span of some REGs crosses calls or not,
1109 and it is a pain to update that information.
1110 Exception: if source is a constant, moving it later can't hurt.
1111 Accept that special case, because it helps -fforce-addr a lot. */
1112 || (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
1113 return 0;
1115 /* DEST must either be a REG or CC0. */
1116 if (GET_CODE (dest) == REG)
1118 /* If register alignment is being enforced for multi-word items in all
1119 cases except for parameters, it is possible to have a register copy
1120 insn referencing a hard register that is not allowed to contain the
1121 mode being copied and which would not be valid as an operand of most
1122 insns. Eliminate this problem by not combining with such an insn.
1124 Also, on some machines we don't want to extend the life of a hard
1125 register. */
1127 if (GET_CODE (src) == REG
1128 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1129 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1130 /* Don't extend the life of a hard register unless it is
1131 user variable (if we have few registers) or it can't
1132 fit into the desired register (meaning something special
1133 is going on).
1134 Also avoid substituting a return register into I3, because
1135 reload can't handle a conflict with constraints of other
1136 inputs. */
1137 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1138 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1139 return 0;
1141 else if (GET_CODE (dest) != CC0)
1142 return 0;
1144 /* Don't substitute for a register intended as a clobberable operand.
1145 Similarly, don't substitute an expression containing a register that
1146 will be clobbered in I3. */
1147 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1148 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1149 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER
1150 && (reg_overlap_mentioned_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0),
1151 src)
1152 || rtx_equal_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0), dest)))
1153 return 0;
1155 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1156 or not), reject, unless nothing volatile comes between it and I3 */
1158 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1160 /* Make sure succ doesn't contain a volatile reference. */
1161 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1162 return 0;
1164 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1165 if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1166 return 0;
1169 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1170 to be an explicit register variable, and was chosen for a reason. */
1172 if (GET_CODE (src) == ASM_OPERANDS
1173 && GET_CODE (dest) == REG && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1174 return 0;
1176 /* If there are any volatile insns between INSN and I3, reject, because
1177 they might affect machine state. */
1179 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1180 if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1181 return 0;
1183 /* If INSN or I2 contains an autoincrement or autodecrement,
1184 make sure that register is not used between there and I3,
1185 and not already used in I3 either.
1186 Also insist that I3 not be a jump; if it were one
1187 and the incremented register were spilled, we would lose. */
1189 #ifdef AUTO_INC_DEC
1190 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1191 if (REG_NOTE_KIND (link) == REG_INC
1192 && (GET_CODE (i3) == JUMP_INSN
1193 || reg_used_between_p (XEXP (link, 0), insn, i3)
1194 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1195 return 0;
1196 #endif
1198 #ifdef HAVE_cc0
1199 /* Don't combine an insn that follows a CC0-setting insn.
1200 An insn that uses CC0 must not be separated from the one that sets it.
1201 We do, however, allow I2 to follow a CC0-setting insn if that insn
1202 is passed as I1; in that case it will be deleted also.
1203 We also allow combining in this case if all the insns are adjacent
1204 because that would leave the two CC0 insns adjacent as well.
1205 It would be more logical to test whether CC0 occurs inside I1 or I2,
1206 but that would be much slower, and this ought to be equivalent. */
1208 p = prev_nonnote_insn (insn);
1209 if (p && p != pred && GET_CODE (p) == INSN && sets_cc0_p (PATTERN (p))
1210 && ! all_adjacent)
1211 return 0;
1212 #endif
1214 /* If we get here, we have passed all the tests and the combination is
1215 to be allowed. */
1217 *pdest = dest;
1218 *psrc = src;
1220 return 1;
1223 /* Check if PAT is an insn - or a part of it - used to set up an
1224 argument for a function in a hard register. */
1226 static int
1227 sets_function_arg_p (pat)
1228 rtx pat;
1230 int i;
1231 rtx inner_dest;
1233 switch (GET_CODE (pat))
1235 case INSN:
1236 return sets_function_arg_p (PATTERN (pat));
1238 case PARALLEL:
1239 for (i = XVECLEN (pat, 0); --i >= 0;)
1240 if (sets_function_arg_p (XVECEXP (pat, 0, i)))
1241 return 1;
1243 break;
1245 case SET:
1246 inner_dest = SET_DEST (pat);
1247 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1248 || GET_CODE (inner_dest) == SUBREG
1249 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1250 inner_dest = XEXP (inner_dest, 0);
1252 return (GET_CODE (inner_dest) == REG
1253 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1254 && FUNCTION_ARG_REGNO_P (REGNO (inner_dest)));
1256 default:
1257 break;
1260 return 0;
1263 /* LOC is the location within I3 that contains its pattern or the component
1264 of a PARALLEL of the pattern. We validate that it is valid for combining.
1266 One problem is if I3 modifies its output, as opposed to replacing it
1267 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1268 so would produce an insn that is not equivalent to the original insns.
1270 Consider:
1272 (set (reg:DI 101) (reg:DI 100))
1273 (set (subreg:SI (reg:DI 101) 0) <foo>)
1275 This is NOT equivalent to:
1277 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1278 (set (reg:DI 101) (reg:DI 100))])
1280 Not only does this modify 100 (in which case it might still be valid
1281 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1283 We can also run into a problem if I2 sets a register that I1
1284 uses and I1 gets directly substituted into I3 (not via I2). In that
1285 case, we would be getting the wrong value of I2DEST into I3, so we
1286 must reject the combination. This case occurs when I2 and I1 both
1287 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1288 If I1_NOT_IN_SRC is non-zero, it means that finding I1 in the source
1289 of a SET must prevent combination from occurring.
1291 Before doing the above check, we first try to expand a field assignment
1292 into a set of logical operations.
1294 If PI3_DEST_KILLED is non-zero, it is a pointer to a location in which
1295 we place a register that is both set and used within I3. If more than one
1296 such register is detected, we fail.
1298 Return 1 if the combination is valid, zero otherwise. */
1300 static int
1301 combinable_i3pat (i3, loc, i2dest, i1dest, i1_not_in_src, pi3dest_killed)
1302 rtx i3;
1303 rtx *loc;
1304 rtx i2dest;
1305 rtx i1dest;
1306 int i1_not_in_src;
1307 rtx *pi3dest_killed;
1309 rtx x = *loc;
1311 if (GET_CODE (x) == SET)
1313 rtx set = expand_field_assignment (x);
1314 rtx dest = SET_DEST (set);
1315 rtx src = SET_SRC (set);
1316 rtx inner_dest = dest;
1318 #if 0
1319 rtx inner_src = src;
1320 #endif
1322 SUBST (*loc, set);
1324 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1325 || GET_CODE (inner_dest) == SUBREG
1326 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1327 inner_dest = XEXP (inner_dest, 0);
1329 /* We probably don't need this any more now that LIMIT_RELOAD_CLASS
1330 was added. */
1331 #if 0
1332 while (GET_CODE (inner_src) == STRICT_LOW_PART
1333 || GET_CODE (inner_src) == SUBREG
1334 || GET_CODE (inner_src) == ZERO_EXTRACT)
1335 inner_src = XEXP (inner_src, 0);
1337 /* If it is better that two different modes keep two different pseudos,
1338 avoid combining them. This avoids producing the following pattern
1339 on a 386:
1340 (set (subreg:SI (reg/v:QI 21) 0)
1341 (lshiftrt:SI (reg/v:SI 20)
1342 (const_int 24)))
1343 If that were made, reload could not handle the pair of
1344 reg 20/21, since it would try to get any GENERAL_REGS
1345 but some of them don't handle QImode. */
1347 if (rtx_equal_p (inner_src, i2dest)
1348 && GET_CODE (inner_dest) == REG
1349 && ! MODES_TIEABLE_P (GET_MODE (i2dest), GET_MODE (inner_dest)))
1350 return 0;
1351 #endif
1353 /* Check for the case where I3 modifies its output, as
1354 discussed above. */
1355 if ((inner_dest != dest
1356 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1357 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1359 /* This is the same test done in can_combine_p except we can't test
1360 all_adjacent; we don't have to, since this instruction will stay
1361 in place, thus we are not considering increasing the lifetime of
1362 INNER_DEST.
1364 Also, if this insn sets a function argument, combining it with
1365 something that might need a spill could clobber a previous
1366 function argument; the all_adjacent test in can_combine_p also
1367 checks this; here, we do a more specific test for this case. */
1369 || (GET_CODE (inner_dest) == REG
1370 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1371 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1372 GET_MODE (inner_dest))))
1373 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1374 return 0;
1376 /* If DEST is used in I3, it is being killed in this insn,
1377 so record that for later.
1378 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1379 STACK_POINTER_REGNUM, since these are always considered to be
1380 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1381 if (pi3dest_killed && GET_CODE (dest) == REG
1382 && reg_referenced_p (dest, PATTERN (i3))
1383 && REGNO (dest) != FRAME_POINTER_REGNUM
1384 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1385 && REGNO (dest) != HARD_FRAME_POINTER_REGNUM
1386 #endif
1387 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1388 && (REGNO (dest) != ARG_POINTER_REGNUM
1389 || ! fixed_regs [REGNO (dest)])
1390 #endif
1391 && REGNO (dest) != STACK_POINTER_REGNUM)
1393 if (*pi3dest_killed)
1394 return 0;
1396 *pi3dest_killed = dest;
1400 else if (GET_CODE (x) == PARALLEL)
1402 int i;
1404 for (i = 0; i < XVECLEN (x, 0); i++)
1405 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1406 i1_not_in_src, pi3dest_killed))
1407 return 0;
1410 return 1;
1413 /* Return 1 if X is an arithmetic expression that contains a multiplication
1414 and division. We don't count multiplications by powers of two here. */
1416 static int
1417 contains_muldiv (x)
1418 rtx x;
1420 switch (GET_CODE (x))
1422 case MOD: case DIV: case UMOD: case UDIV:
1423 return 1;
1425 case MULT:
1426 return ! (GET_CODE (XEXP (x, 1)) == CONST_INT
1427 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1428 default:
1429 switch (GET_RTX_CLASS (GET_CODE (x)))
1431 case 'c': case '<': case '2':
1432 return contains_muldiv (XEXP (x, 0))
1433 || contains_muldiv (XEXP (x, 1));
1435 case '1':
1436 return contains_muldiv (XEXP (x, 0));
1438 default:
1439 return 0;
1444 /* Determine whether INSN can be used in a combination. Return nonzero if
1445 not. This is used in try_combine to detect early some cases where we
1446 can't perform combinations. */
1448 static int
1449 cant_combine_insn_p (insn)
1450 rtx insn;
1452 rtx set;
1453 rtx src, dest;
1455 /* If this isn't really an insn, we can't do anything.
1456 This can occur when flow deletes an insn that it has merged into an
1457 auto-increment address. */
1458 if (! INSN_P (insn))
1459 return 1;
1461 /* Never combine loads and stores involving hard regs. The register
1462 allocator can usually handle such reg-reg moves by tying. If we allow
1463 the combiner to make substitutions of hard regs, we risk aborting in
1464 reload on machines that have SMALL_REGISTER_CLASSES.
1465 As an exception, we allow combinations involving fixed regs; these are
1466 not available to the register allocator so there's no risk involved. */
1468 set = single_set (insn);
1469 if (! set)
1470 return 0;
1471 src = SET_SRC (set);
1472 dest = SET_DEST (set);
1473 if (GET_CODE (src) == SUBREG)
1474 src = SUBREG_REG (src);
1475 if (GET_CODE (dest) == SUBREG)
1476 dest = SUBREG_REG (dest);
1477 if (REG_P (src) && REG_P (dest)
1478 && ((REGNO (src) < FIRST_PSEUDO_REGISTER
1479 && ! fixed_regs[REGNO (src)])
1480 || (REGNO (dest) < FIRST_PSEUDO_REGISTER
1481 && ! fixed_regs[REGNO (dest)])))
1482 return 1;
1484 return 0;
1487 /* Try to combine the insns I1 and I2 into I3.
1488 Here I1 and I2 appear earlier than I3.
1489 I1 can be zero; then we combine just I2 into I3.
1491 If we are combining three insns and the resulting insn is not recognized,
1492 try splitting it into two insns. If that happens, I2 and I3 are retained
1493 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
1494 are pseudo-deleted.
1496 Return 0 if the combination does not work. Then nothing is changed.
1497 If we did the combination, return the insn at which combine should
1498 resume scanning.
1500 Set NEW_DIRECT_JUMP_P to a non-zero value if try_combine creates a
1501 new direct jump instruction. */
1503 static rtx
1504 try_combine (i3, i2, i1, new_direct_jump_p)
1505 rtx i3, i2, i1;
1506 int *new_direct_jump_p;
1508 /* New patterns for I3 and I2, respectively. */
1509 rtx newpat, newi2pat = 0;
1510 int substed_i2 = 0, substed_i1 = 0;
1511 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
1512 int added_sets_1, added_sets_2;
1513 /* Total number of SETs to put into I3. */
1514 int total_sets;
1515 /* Nonzero is I2's body now appears in I3. */
1516 int i2_is_used;
1517 /* INSN_CODEs for new I3, new I2, and user of condition code. */
1518 int insn_code_number, i2_code_number = 0, other_code_number = 0;
1519 /* Contains I3 if the destination of I3 is used in its source, which means
1520 that the old life of I3 is being killed. If that usage is placed into
1521 I2 and not in I3, a REG_DEAD note must be made. */
1522 rtx i3dest_killed = 0;
1523 /* SET_DEST and SET_SRC of I2 and I1. */
1524 rtx i2dest, i2src, i1dest = 0, i1src = 0;
1525 /* PATTERN (I2), or a copy of it in certain cases. */
1526 rtx i2pat;
1527 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
1528 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
1529 int i1_feeds_i3 = 0;
1530 /* Notes that must be added to REG_NOTES in I3 and I2. */
1531 rtx new_i3_notes, new_i2_notes;
1532 /* Notes that we substituted I3 into I2 instead of the normal case. */
1533 int i3_subst_into_i2 = 0;
1534 /* Notes that I1, I2 or I3 is a MULT operation. */
1535 int have_mult = 0;
1537 int maxreg;
1538 rtx temp;
1539 rtx link;
1540 int i;
1542 /* Exit early if one of the insns involved can't be used for
1543 combinations. */
1544 if (cant_combine_insn_p (i3)
1545 || cant_combine_insn_p (i2)
1546 || (i1 && cant_combine_insn_p (i1))
1547 /* We also can't do anything if I3 has a
1548 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1549 libcall. */
1550 #if 0
1551 /* ??? This gives worse code, and appears to be unnecessary, since no
1552 pass after flow uses REG_LIBCALL/REG_RETVAL notes. */
1553 || find_reg_note (i3, REG_LIBCALL, NULL_RTX)
1554 #endif
1556 return 0;
1558 combine_attempts++;
1559 undobuf.other_insn = 0;
1561 /* Reset the hard register usage information. */
1562 CLEAR_HARD_REG_SET (newpat_used_regs);
1564 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
1565 code below, set I1 to be the earlier of the two insns. */
1566 if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
1567 temp = i1, i1 = i2, i2 = temp;
1569 added_links_insn = 0;
1571 /* First check for one important special-case that the code below will
1572 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
1573 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
1574 we may be able to replace that destination with the destination of I3.
1575 This occurs in the common code where we compute both a quotient and
1576 remainder into a structure, in which case we want to do the computation
1577 directly into the structure to avoid register-register copies.
1579 Note that this case handles both multiple sets in I2 and also
1580 cases where I2 has a number of CLOBBER or PARALLELs.
1582 We make very conservative checks below and only try to handle the
1583 most common cases of this. For example, we only handle the case
1584 where I2 and I3 are adjacent to avoid making difficult register
1585 usage tests. */
1587 if (i1 == 0 && GET_CODE (i3) == INSN && GET_CODE (PATTERN (i3)) == SET
1588 && GET_CODE (SET_SRC (PATTERN (i3))) == REG
1589 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1590 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
1591 && GET_CODE (PATTERN (i2)) == PARALLEL
1592 && ! side_effects_p (SET_DEST (PATTERN (i3)))
1593 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1594 below would need to check what is inside (and reg_overlap_mentioned_p
1595 doesn't support those codes anyway). Don't allow those destinations;
1596 the resulting insn isn't likely to be recognized anyway. */
1597 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
1598 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
1599 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
1600 SET_DEST (PATTERN (i3)))
1601 && next_real_insn (i2) == i3)
1603 rtx p2 = PATTERN (i2);
1605 /* Make sure that the destination of I3,
1606 which we are going to substitute into one output of I2,
1607 is not used within another output of I2. We must avoid making this:
1608 (parallel [(set (mem (reg 69)) ...)
1609 (set (reg 69) ...)])
1610 which is not well-defined as to order of actions.
1611 (Besides, reload can't handle output reloads for this.)
1613 The problem can also happen if the dest of I3 is a memory ref,
1614 if another dest in I2 is an indirect memory ref. */
1615 for (i = 0; i < XVECLEN (p2, 0); i++)
1616 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1617 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1618 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
1619 SET_DEST (XVECEXP (p2, 0, i))))
1620 break;
1622 if (i == XVECLEN (p2, 0))
1623 for (i = 0; i < XVECLEN (p2, 0); i++)
1624 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1625 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1626 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
1628 combine_merges++;
1630 subst_insn = i3;
1631 subst_low_cuid = INSN_CUID (i2);
1633 added_sets_2 = added_sets_1 = 0;
1634 i2dest = SET_SRC (PATTERN (i3));
1636 /* Replace the dest in I2 with our dest and make the resulting
1637 insn the new pattern for I3. Then skip to where we
1638 validate the pattern. Everything was set up above. */
1639 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
1640 SET_DEST (PATTERN (i3)));
1642 newpat = p2;
1643 i3_subst_into_i2 = 1;
1644 goto validate_replacement;
1648 /* If I2 is setting a double-word pseudo to a constant and I3 is setting
1649 one of those words to another constant, merge them by making a new
1650 constant. */
1651 if (i1 == 0
1652 && (temp = single_set (i2)) != 0
1653 && (GET_CODE (SET_SRC (temp)) == CONST_INT
1654 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
1655 && GET_CODE (SET_DEST (temp)) == REG
1656 && GET_MODE_CLASS (GET_MODE (SET_DEST (temp))) == MODE_INT
1657 && GET_MODE_SIZE (GET_MODE (SET_DEST (temp))) == 2 * UNITS_PER_WORD
1658 && GET_CODE (PATTERN (i3)) == SET
1659 && GET_CODE (SET_DEST (PATTERN (i3))) == SUBREG
1660 && SUBREG_REG (SET_DEST (PATTERN (i3))) == SET_DEST (temp)
1661 && GET_MODE_CLASS (GET_MODE (SET_DEST (PATTERN (i3)))) == MODE_INT
1662 && GET_MODE_SIZE (GET_MODE (SET_DEST (PATTERN (i3)))) == UNITS_PER_WORD
1663 && GET_CODE (SET_SRC (PATTERN (i3))) == CONST_INT)
1665 HOST_WIDE_INT lo, hi;
1667 if (GET_CODE (SET_SRC (temp)) == CONST_INT)
1668 lo = INTVAL (SET_SRC (temp)), hi = lo < 0 ? -1 : 0;
1669 else
1671 lo = CONST_DOUBLE_LOW (SET_SRC (temp));
1672 hi = CONST_DOUBLE_HIGH (SET_SRC (temp));
1675 if (subreg_lowpart_p (SET_DEST (PATTERN (i3))))
1677 /* We don't handle the case of the target word being wider
1678 than a host wide int. */
1679 if (HOST_BITS_PER_WIDE_INT < BITS_PER_WORD)
1680 abort ();
1682 lo &= ~(UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1);
1683 lo |= (INTVAL (SET_SRC (PATTERN (i3)))
1684 & (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1686 else if (HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1687 hi = INTVAL (SET_SRC (PATTERN (i3)));
1688 else if (HOST_BITS_PER_WIDE_INT >= 2 * BITS_PER_WORD)
1690 int sign = -(int) ((unsigned HOST_WIDE_INT) lo
1691 >> (HOST_BITS_PER_WIDE_INT - 1));
1693 lo &= ~ (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1694 (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1695 lo |= (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1696 (INTVAL (SET_SRC (PATTERN (i3)))));
1697 if (hi == sign)
1698 hi = lo < 0 ? -1 : 0;
1700 else
1701 /* We don't handle the case of the higher word not fitting
1702 entirely in either hi or lo. */
1703 abort ();
1705 combine_merges++;
1706 subst_insn = i3;
1707 subst_low_cuid = INSN_CUID (i2);
1708 added_sets_2 = added_sets_1 = 0;
1709 i2dest = SET_DEST (temp);
1711 SUBST (SET_SRC (temp),
1712 immed_double_const (lo, hi, GET_MODE (SET_DEST (temp))));
1714 newpat = PATTERN (i2);
1715 goto validate_replacement;
1718 #ifndef HAVE_cc0
1719 /* If we have no I1 and I2 looks like:
1720 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
1721 (set Y OP)])
1722 make up a dummy I1 that is
1723 (set Y OP)
1724 and change I2 to be
1725 (set (reg:CC X) (compare:CC Y (const_int 0)))
1727 (We can ignore any trailing CLOBBERs.)
1729 This undoes a previous combination and allows us to match a branch-and-
1730 decrement insn. */
1732 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
1733 && XVECLEN (PATTERN (i2), 0) >= 2
1734 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
1735 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
1736 == MODE_CC)
1737 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
1738 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
1739 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
1740 && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 1))) == REG
1741 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
1742 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
1744 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
1745 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
1746 break;
1748 if (i == 1)
1750 /* We make I1 with the same INSN_UID as I2. This gives it
1751 the same INSN_CUID for value tracking. Our fake I1 will
1752 never appear in the insn stream so giving it the same INSN_UID
1753 as I2 will not cause a problem. */
1755 subst_prev_insn = i1
1756 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
1757 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX,
1758 NULL_RTX);
1760 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
1761 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
1762 SET_DEST (PATTERN (i1)));
1765 #endif
1767 /* Verify that I2 and I1 are valid for combining. */
1768 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
1769 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
1771 undo_all ();
1772 return 0;
1775 /* Record whether I2DEST is used in I2SRC and similarly for the other
1776 cases. Knowing this will help in register status updating below. */
1777 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
1778 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
1779 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
1781 /* See if I1 directly feeds into I3. It does if I1DEST is not used
1782 in I2SRC. */
1783 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
1785 /* Ensure that I3's pattern can be the destination of combines. */
1786 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
1787 i1 && i2dest_in_i1src && i1_feeds_i3,
1788 &i3dest_killed))
1790 undo_all ();
1791 return 0;
1794 /* See if any of the insns is a MULT operation. Unless one is, we will
1795 reject a combination that is, since it must be slower. Be conservative
1796 here. */
1797 if (GET_CODE (i2src) == MULT
1798 || (i1 != 0 && GET_CODE (i1src) == MULT)
1799 || (GET_CODE (PATTERN (i3)) == SET
1800 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
1801 have_mult = 1;
1803 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
1804 We used to do this EXCEPT in one case: I3 has a post-inc in an
1805 output operand. However, that exception can give rise to insns like
1806 mov r3,(r3)+
1807 which is a famous insn on the PDP-11 where the value of r3 used as the
1808 source was model-dependent. Avoid this sort of thing. */
1810 #if 0
1811 if (!(GET_CODE (PATTERN (i3)) == SET
1812 && GET_CODE (SET_SRC (PATTERN (i3))) == REG
1813 && GET_CODE (SET_DEST (PATTERN (i3))) == MEM
1814 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
1815 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
1816 /* It's not the exception. */
1817 #endif
1818 #ifdef AUTO_INC_DEC
1819 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
1820 if (REG_NOTE_KIND (link) == REG_INC
1821 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
1822 || (i1 != 0
1823 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
1825 undo_all ();
1826 return 0;
1828 #endif
1830 /* See if the SETs in I1 or I2 need to be kept around in the merged
1831 instruction: whenever the value set there is still needed past I3.
1832 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
1834 For the SET in I1, we have two cases: If I1 and I2 independently
1835 feed into I3, the set in I1 needs to be kept around if I1DEST dies
1836 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
1837 in I1 needs to be kept around unless I1DEST dies or is set in either
1838 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
1839 I1DEST. If so, we know I1 feeds into I2. */
1841 added_sets_2 = ! dead_or_set_p (i3, i2dest);
1843 added_sets_1
1844 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
1845 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
1847 /* If the set in I2 needs to be kept around, we must make a copy of
1848 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
1849 PATTERN (I2), we are only substituting for the original I1DEST, not into
1850 an already-substituted copy. This also prevents making self-referential
1851 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
1852 I2DEST. */
1854 i2pat = (GET_CODE (PATTERN (i2)) == PARALLEL
1855 ? gen_rtx_SET (VOIDmode, i2dest, i2src)
1856 : PATTERN (i2));
1858 if (added_sets_2)
1859 i2pat = copy_rtx (i2pat);
1861 combine_merges++;
1863 /* Substitute in the latest insn for the regs set by the earlier ones. */
1865 maxreg = max_reg_num ();
1867 subst_insn = i3;
1869 /* It is possible that the source of I2 or I1 may be performing an
1870 unneeded operation, such as a ZERO_EXTEND of something that is known
1871 to have the high part zero. Handle that case by letting subst look at
1872 the innermost one of them.
1874 Another way to do this would be to have a function that tries to
1875 simplify a single insn instead of merging two or more insns. We don't
1876 do this because of the potential of infinite loops and because
1877 of the potential extra memory required. However, doing it the way
1878 we are is a bit of a kludge and doesn't catch all cases.
1880 But only do this if -fexpensive-optimizations since it slows things down
1881 and doesn't usually win. */
1883 if (flag_expensive_optimizations)
1885 /* Pass pc_rtx so no substitutions are done, just simplifications.
1886 The cases that we are interested in here do not involve the few
1887 cases were is_replaced is checked. */
1888 if (i1)
1890 subst_low_cuid = INSN_CUID (i1);
1891 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
1893 else
1895 subst_low_cuid = INSN_CUID (i2);
1896 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
1900 #ifndef HAVE_cc0
1901 /* Many machines that don't use CC0 have insns that can both perform an
1902 arithmetic operation and set the condition code. These operations will
1903 be represented as a PARALLEL with the first element of the vector
1904 being a COMPARE of an arithmetic operation with the constant zero.
1905 The second element of the vector will set some pseudo to the result
1906 of the same arithmetic operation. If we simplify the COMPARE, we won't
1907 match such a pattern and so will generate an extra insn. Here we test
1908 for this case, where both the comparison and the operation result are
1909 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
1910 I2SRC. Later we will make the PARALLEL that contains I2. */
1912 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
1913 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
1914 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
1915 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
1917 #ifdef EXTRA_CC_MODES
1918 rtx *cc_use;
1919 enum machine_mode compare_mode;
1920 #endif
1922 newpat = PATTERN (i3);
1923 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
1925 i2_is_used = 1;
1927 #ifdef EXTRA_CC_MODES
1928 /* See if a COMPARE with the operand we substituted in should be done
1929 with the mode that is currently being used. If not, do the same
1930 processing we do in `subst' for a SET; namely, if the destination
1931 is used only once, try to replace it with a register of the proper
1932 mode and also replace the COMPARE. */
1933 if (undobuf.other_insn == 0
1934 && (cc_use = find_single_use (SET_DEST (newpat), i3,
1935 &undobuf.other_insn))
1936 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
1937 i2src, const0_rtx))
1938 != GET_MODE (SET_DEST (newpat))))
1940 unsigned int regno = REGNO (SET_DEST (newpat));
1941 rtx new_dest = gen_rtx_REG (compare_mode, regno);
1943 if (regno < FIRST_PSEUDO_REGISTER
1944 || (REG_N_SETS (regno) == 1 && ! added_sets_2
1945 && ! REG_USERVAR_P (SET_DEST (newpat))))
1947 if (regno >= FIRST_PSEUDO_REGISTER)
1948 SUBST (regno_reg_rtx[regno], new_dest);
1950 SUBST (SET_DEST (newpat), new_dest);
1951 SUBST (XEXP (*cc_use, 0), new_dest);
1952 SUBST (SET_SRC (newpat),
1953 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
1955 else
1956 undobuf.other_insn = 0;
1958 #endif
1960 else
1961 #endif
1963 n_occurrences = 0; /* `subst' counts here */
1965 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
1966 need to make a unique copy of I2SRC each time we substitute it
1967 to avoid self-referential rtl. */
1969 subst_low_cuid = INSN_CUID (i2);
1970 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
1971 ! i1_feeds_i3 && i1dest_in_i1src);
1972 substed_i2 = 1;
1974 /* Record whether i2's body now appears within i3's body. */
1975 i2_is_used = n_occurrences;
1978 /* If we already got a failure, don't try to do more. Otherwise,
1979 try to substitute in I1 if we have it. */
1981 if (i1 && GET_CODE (newpat) != CLOBBER)
1983 /* Before we can do this substitution, we must redo the test done
1984 above (see detailed comments there) that ensures that I1DEST
1985 isn't mentioned in any SETs in NEWPAT that are field assignments. */
1987 if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
1988 0, (rtx*) 0))
1990 undo_all ();
1991 return 0;
1994 n_occurrences = 0;
1995 subst_low_cuid = INSN_CUID (i1);
1996 newpat = subst (newpat, i1dest, i1src, 0, 0);
1997 substed_i1 = 1;
2000 /* Fail if an autoincrement side-effect has been duplicated. Be careful
2001 to count all the ways that I2SRC and I1SRC can be used. */
2002 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
2003 && i2_is_used + added_sets_2 > 1)
2004 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
2005 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
2006 > 1))
2007 /* Fail if we tried to make a new register (we used to abort, but there's
2008 really no reason to). */
2009 || max_reg_num () != maxreg
2010 /* Fail if we couldn't do something and have a CLOBBER. */
2011 || GET_CODE (newpat) == CLOBBER
2012 /* Fail if this new pattern is a MULT and we didn't have one before
2013 at the outer level. */
2014 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
2015 && ! have_mult))
2017 undo_all ();
2018 return 0;
2021 /* If the actions of the earlier insns must be kept
2022 in addition to substituting them into the latest one,
2023 we must make a new PARALLEL for the latest insn
2024 to hold additional the SETs. */
2026 if (added_sets_1 || added_sets_2)
2028 combine_extras++;
2030 if (GET_CODE (newpat) == PARALLEL)
2032 rtvec old = XVEC (newpat, 0);
2033 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
2034 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2035 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
2036 sizeof (old->elem[0]) * old->num_elem);
2038 else
2040 rtx old = newpat;
2041 total_sets = 1 + added_sets_1 + added_sets_2;
2042 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2043 XVECEXP (newpat, 0, 0) = old;
2046 if (added_sets_1)
2047 XVECEXP (newpat, 0, --total_sets)
2048 = (GET_CODE (PATTERN (i1)) == PARALLEL
2049 ? gen_rtx_SET (VOIDmode, i1dest, i1src) : PATTERN (i1));
2051 if (added_sets_2)
2053 /* If there is no I1, use I2's body as is. We used to also not do
2054 the subst call below if I2 was substituted into I3,
2055 but that could lose a simplification. */
2056 if (i1 == 0)
2057 XVECEXP (newpat, 0, --total_sets) = i2pat;
2058 else
2059 /* See comment where i2pat is assigned. */
2060 XVECEXP (newpat, 0, --total_sets)
2061 = subst (i2pat, i1dest, i1src, 0, 0);
2065 /* We come here when we are replacing a destination in I2 with the
2066 destination of I3. */
2067 validate_replacement:
2069 /* Note which hard regs this insn has as inputs. */
2070 mark_used_regs_combine (newpat);
2072 /* Is the result of combination a valid instruction? */
2073 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2075 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2076 the second SET's destination is a register that is unused. In that case,
2077 we just need the first SET. This can occur when simplifying a divmod
2078 insn. We *must* test for this case here because the code below that
2079 splits two independent SETs doesn't handle this case correctly when it
2080 updates the register status. Also check the case where the first
2081 SET's destination is unused. That would not cause incorrect code, but
2082 does cause an unneeded insn to remain. */
2084 if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
2085 && XVECLEN (newpat, 0) == 2
2086 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2087 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2088 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == REG
2089 && find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 1)))
2090 && ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 1)))
2091 && asm_noperands (newpat) < 0)
2093 newpat = XVECEXP (newpat, 0, 0);
2094 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2097 else if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
2098 && XVECLEN (newpat, 0) == 2
2099 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2100 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2101 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) == REG
2102 && find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 0)))
2103 && ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 0)))
2104 && asm_noperands (newpat) < 0)
2106 newpat = XVECEXP (newpat, 0, 1);
2107 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2110 /* If we were combining three insns and the result is a simple SET
2111 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2112 insns. There are two ways to do this. It can be split using a
2113 machine-specific method (like when you have an addition of a large
2114 constant) or by combine in the function find_split_point. */
2116 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
2117 && asm_noperands (newpat) < 0)
2119 rtx m_split, *split;
2120 rtx ni2dest = i2dest;
2122 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2123 use I2DEST as a scratch register will help. In the latter case,
2124 convert I2DEST to the mode of the source of NEWPAT if we can. */
2126 m_split = split_insns (newpat, i3);
2128 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2129 inputs of NEWPAT. */
2131 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2132 possible to try that as a scratch reg. This would require adding
2133 more code to make it work though. */
2135 if (m_split == 0 && ! reg_overlap_mentioned_p (ni2dest, newpat))
2137 /* If I2DEST is a hard register or the only use of a pseudo,
2138 we can change its mode. */
2139 if (GET_MODE (SET_DEST (newpat)) != GET_MODE (i2dest)
2140 && GET_MODE (SET_DEST (newpat)) != VOIDmode
2141 && GET_CODE (i2dest) == REG
2142 && (REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2143 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2144 && ! REG_USERVAR_P (i2dest))))
2145 ni2dest = gen_rtx_REG (GET_MODE (SET_DEST (newpat)),
2146 REGNO (i2dest));
2148 m_split = split_insns (gen_rtx_PARALLEL
2149 (VOIDmode,
2150 gen_rtvec (2, newpat,
2151 gen_rtx_CLOBBER (VOIDmode,
2152 ni2dest))),
2153 i3);
2154 /* If the split with the mode-changed register didn't work, try
2155 the original register. */
2156 if (! m_split && ni2dest != i2dest)
2158 ni2dest = i2dest;
2159 m_split = split_insns (gen_rtx_PARALLEL
2160 (VOIDmode,
2161 gen_rtvec (2, newpat,
2162 gen_rtx_CLOBBER (VOIDmode,
2163 i2dest))),
2164 i3);
2168 /* If we've split a jump pattern, we'll wind up with a sequence even
2169 with one instruction. We can handle that below, so extract it. */
2170 if (m_split && GET_CODE (m_split) == SEQUENCE
2171 && XVECLEN (m_split, 0) == 1)
2172 m_split = PATTERN (XVECEXP (m_split, 0, 0));
2174 if (m_split && GET_CODE (m_split) != SEQUENCE)
2176 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
2177 if (insn_code_number >= 0)
2178 newpat = m_split;
2180 else if (m_split && GET_CODE (m_split) == SEQUENCE
2181 && XVECLEN (m_split, 0) == 2
2182 && (next_real_insn (i2) == i3
2183 || ! use_crosses_set_p (PATTERN (XVECEXP (m_split, 0, 0)),
2184 INSN_CUID (i2))))
2186 rtx i2set, i3set;
2187 rtx newi3pat = PATTERN (XVECEXP (m_split, 0, 1));
2188 newi2pat = PATTERN (XVECEXP (m_split, 0, 0));
2190 i3set = single_set (XVECEXP (m_split, 0, 1));
2191 i2set = single_set (XVECEXP (m_split, 0, 0));
2193 /* In case we changed the mode of I2DEST, replace it in the
2194 pseudo-register table here. We can't do it above in case this
2195 code doesn't get executed and we do a split the other way. */
2197 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2198 SUBST (regno_reg_rtx[REGNO (i2dest)], ni2dest);
2200 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2202 /* If I2 or I3 has multiple SETs, we won't know how to track
2203 register status, so don't use these insns. If I2's destination
2204 is used between I2 and I3, we also can't use these insns. */
2206 if (i2_code_number >= 0 && i2set && i3set
2207 && (next_real_insn (i2) == i3
2208 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
2209 insn_code_number = recog_for_combine (&newi3pat, i3,
2210 &new_i3_notes);
2211 if (insn_code_number >= 0)
2212 newpat = newi3pat;
2214 /* It is possible that both insns now set the destination of I3.
2215 If so, we must show an extra use of it. */
2217 if (insn_code_number >= 0)
2219 rtx new_i3_dest = SET_DEST (i3set);
2220 rtx new_i2_dest = SET_DEST (i2set);
2222 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
2223 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
2224 || GET_CODE (new_i3_dest) == SUBREG)
2225 new_i3_dest = XEXP (new_i3_dest, 0);
2227 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
2228 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
2229 || GET_CODE (new_i2_dest) == SUBREG)
2230 new_i2_dest = XEXP (new_i2_dest, 0);
2232 if (GET_CODE (new_i3_dest) == REG
2233 && GET_CODE (new_i2_dest) == REG
2234 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
2235 REG_N_SETS (REGNO (new_i2_dest))++;
2239 /* If we can split it and use I2DEST, go ahead and see if that
2240 helps things be recognized. Verify that none of the registers
2241 are set between I2 and I3. */
2242 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
2243 #ifdef HAVE_cc0
2244 && GET_CODE (i2dest) == REG
2245 #endif
2246 /* We need I2DEST in the proper mode. If it is a hard register
2247 or the only use of a pseudo, we can change its mode. */
2248 && (GET_MODE (*split) == GET_MODE (i2dest)
2249 || GET_MODE (*split) == VOIDmode
2250 || REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2251 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2252 && ! REG_USERVAR_P (i2dest)))
2253 && (next_real_insn (i2) == i3
2254 || ! use_crosses_set_p (*split, INSN_CUID (i2)))
2255 /* We can't overwrite I2DEST if its value is still used by
2256 NEWPAT. */
2257 && ! reg_referenced_p (i2dest, newpat))
2259 rtx newdest = i2dest;
2260 enum rtx_code split_code = GET_CODE (*split);
2261 enum machine_mode split_mode = GET_MODE (*split);
2263 /* Get NEWDEST as a register in the proper mode. We have already
2264 validated that we can do this. */
2265 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
2267 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
2269 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2270 SUBST (regno_reg_rtx[REGNO (i2dest)], newdest);
2273 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
2274 an ASHIFT. This can occur if it was inside a PLUS and hence
2275 appeared to be a memory address. This is a kludge. */
2276 if (split_code == MULT
2277 && GET_CODE (XEXP (*split, 1)) == CONST_INT
2278 && INTVAL (XEXP (*split, 1)) > 0
2279 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
2281 SUBST (*split, gen_rtx_ASHIFT (split_mode,
2282 XEXP (*split, 0), GEN_INT (i)));
2283 /* Update split_code because we may not have a multiply
2284 anymore. */
2285 split_code = GET_CODE (*split);
2288 #ifdef INSN_SCHEDULING
2289 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
2290 be written as a ZERO_EXTEND. */
2291 if (split_code == SUBREG && GET_CODE (SUBREG_REG (*split)) == MEM)
2292 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
2293 SUBREG_REG (*split)));
2294 #endif
2296 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
2297 SUBST (*split, newdest);
2298 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2300 /* If the split point was a MULT and we didn't have one before,
2301 don't use one now. */
2302 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
2303 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2307 /* Check for a case where we loaded from memory in a narrow mode and
2308 then sign extended it, but we need both registers. In that case,
2309 we have a PARALLEL with both loads from the same memory location.
2310 We can split this into a load from memory followed by a register-register
2311 copy. This saves at least one insn, more if register allocation can
2312 eliminate the copy.
2314 We cannot do this if the destination of the second assignment is
2315 a register that we have already assumed is zero-extended. Similarly
2316 for a SUBREG of such a register. */
2318 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2319 && GET_CODE (newpat) == PARALLEL
2320 && XVECLEN (newpat, 0) == 2
2321 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2322 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
2323 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2324 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2325 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
2326 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2327 INSN_CUID (i2))
2328 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2329 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2330 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
2331 (GET_CODE (temp) == REG
2332 && reg_nonzero_bits[REGNO (temp)] != 0
2333 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2334 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2335 && (reg_nonzero_bits[REGNO (temp)]
2336 != GET_MODE_MASK (word_mode))))
2337 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
2338 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
2339 (GET_CODE (temp) == REG
2340 && reg_nonzero_bits[REGNO (temp)] != 0
2341 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2342 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2343 && (reg_nonzero_bits[REGNO (temp)]
2344 != GET_MODE_MASK (word_mode)))))
2345 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2346 SET_SRC (XVECEXP (newpat, 0, 1)))
2347 && ! find_reg_note (i3, REG_UNUSED,
2348 SET_DEST (XVECEXP (newpat, 0, 0))))
2350 rtx ni2dest;
2352 newi2pat = XVECEXP (newpat, 0, 0);
2353 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
2354 newpat = XVECEXP (newpat, 0, 1);
2355 SUBST (SET_SRC (newpat),
2356 gen_lowpart_for_combine (GET_MODE (SET_SRC (newpat)), ni2dest));
2357 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2359 if (i2_code_number >= 0)
2360 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2362 if (insn_code_number >= 0)
2364 rtx insn;
2365 rtx link;
2367 /* If we will be able to accept this, we have made a change to the
2368 destination of I3. This can invalidate a LOG_LINKS pointing
2369 to I3. No other part of combine.c makes such a transformation.
2371 The new I3 will have a destination that was previously the
2372 destination of I1 or I2 and which was used in i2 or I3. Call
2373 distribute_links to make a LOG_LINK from the next use of
2374 that destination. */
2376 PATTERN (i3) = newpat;
2377 distribute_links (gen_rtx_INSN_LIST (VOIDmode, i3, NULL_RTX));
2379 /* I3 now uses what used to be its destination and which is
2380 now I2's destination. That means we need a LOG_LINK from
2381 I3 to I2. But we used to have one, so we still will.
2383 However, some later insn might be using I2's dest and have
2384 a LOG_LINK pointing at I3. We must remove this link.
2385 The simplest way to remove the link is to point it at I1,
2386 which we know will be a NOTE. */
2388 for (insn = NEXT_INSN (i3);
2389 insn && (this_basic_block == n_basic_blocks - 1
2390 || insn != BLOCK_HEAD (this_basic_block + 1));
2391 insn = NEXT_INSN (insn))
2393 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
2395 for (link = LOG_LINKS (insn); link;
2396 link = XEXP (link, 1))
2397 if (XEXP (link, 0) == i3)
2398 XEXP (link, 0) = i1;
2400 break;
2406 /* Similarly, check for a case where we have a PARALLEL of two independent
2407 SETs but we started with three insns. In this case, we can do the sets
2408 as two separate insns. This case occurs when some SET allows two
2409 other insns to combine, but the destination of that SET is still live. */
2411 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2412 && GET_CODE (newpat) == PARALLEL
2413 && XVECLEN (newpat, 0) == 2
2414 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2415 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
2416 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
2417 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2418 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2419 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2420 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2421 INSN_CUID (i2))
2422 /* Don't pass sets with (USE (MEM ...)) dests to the following. */
2423 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != USE
2424 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != USE
2425 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2426 XVECEXP (newpat, 0, 0))
2427 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
2428 XVECEXP (newpat, 0, 1))
2429 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
2430 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
2432 /* Normally, it doesn't matter which of the two is done first,
2433 but it does if one references cc0. In that case, it has to
2434 be first. */
2435 #ifdef HAVE_cc0
2436 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
2438 newi2pat = XVECEXP (newpat, 0, 0);
2439 newpat = XVECEXP (newpat, 0, 1);
2441 else
2442 #endif
2444 newi2pat = XVECEXP (newpat, 0, 1);
2445 newpat = XVECEXP (newpat, 0, 0);
2448 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2450 if (i2_code_number >= 0)
2451 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2454 /* If it still isn't recognized, fail and change things back the way they
2455 were. */
2456 if ((insn_code_number < 0
2457 /* Is the result a reasonable ASM_OPERANDS? */
2458 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
2460 undo_all ();
2461 return 0;
2464 /* If we had to change another insn, make sure it is valid also. */
2465 if (undobuf.other_insn)
2467 rtx other_pat = PATTERN (undobuf.other_insn);
2468 rtx new_other_notes;
2469 rtx note, next;
2471 CLEAR_HARD_REG_SET (newpat_used_regs);
2473 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
2474 &new_other_notes);
2476 if (other_code_number < 0 && ! check_asm_operands (other_pat))
2478 undo_all ();
2479 return 0;
2482 PATTERN (undobuf.other_insn) = other_pat;
2484 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
2485 are still valid. Then add any non-duplicate notes added by
2486 recog_for_combine. */
2487 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
2489 next = XEXP (note, 1);
2491 if (REG_NOTE_KIND (note) == REG_UNUSED
2492 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
2494 if (GET_CODE (XEXP (note, 0)) == REG)
2495 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
2497 remove_note (undobuf.other_insn, note);
2501 for (note = new_other_notes; note; note = XEXP (note, 1))
2502 if (GET_CODE (XEXP (note, 0)) == REG)
2503 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
2505 distribute_notes (new_other_notes, undobuf.other_insn,
2506 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX);
2508 #ifdef HAVE_cc0
2509 /* If I2 is the setter CC0 and I3 is the user CC0 then check whether
2510 they are adjacent to each other or not. */
2512 rtx p = prev_nonnote_insn (i3);
2513 if (p && p != i2 && GET_CODE (p) == INSN && newi2pat
2514 && sets_cc0_p (newi2pat))
2516 undo_all ();
2517 return 0;
2520 #endif
2522 /* We now know that we can do this combination. Merge the insns and
2523 update the status of registers and LOG_LINKS. */
2526 rtx i3notes, i2notes, i1notes = 0;
2527 rtx i3links, i2links, i1links = 0;
2528 rtx midnotes = 0;
2529 unsigned int regno;
2530 /* Compute which registers we expect to eliminate. newi2pat may be setting
2531 either i3dest or i2dest, so we must check it. Also, i1dest may be the
2532 same as i3dest, in which case newi2pat may be setting i1dest. */
2533 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
2534 || i2dest_in_i2src || i2dest_in_i1src
2535 ? 0 : i2dest);
2536 rtx elim_i1 = (i1 == 0 || i1dest_in_i1src
2537 || (newi2pat && reg_set_p (i1dest, newi2pat))
2538 ? 0 : i1dest);
2540 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
2541 clear them. */
2542 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
2543 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
2544 if (i1)
2545 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
2547 /* Ensure that we do not have something that should not be shared but
2548 occurs multiple times in the new insns. Check this by first
2549 resetting all the `used' flags and then copying anything is shared. */
2551 reset_used_flags (i3notes);
2552 reset_used_flags (i2notes);
2553 reset_used_flags (i1notes);
2554 reset_used_flags (newpat);
2555 reset_used_flags (newi2pat);
2556 if (undobuf.other_insn)
2557 reset_used_flags (PATTERN (undobuf.other_insn));
2559 i3notes = copy_rtx_if_shared (i3notes);
2560 i2notes = copy_rtx_if_shared (i2notes);
2561 i1notes = copy_rtx_if_shared (i1notes);
2562 newpat = copy_rtx_if_shared (newpat);
2563 newi2pat = copy_rtx_if_shared (newi2pat);
2564 if (undobuf.other_insn)
2565 reset_used_flags (PATTERN (undobuf.other_insn));
2567 INSN_CODE (i3) = insn_code_number;
2568 PATTERN (i3) = newpat;
2570 if (GET_CODE (i3) == CALL_INSN && CALL_INSN_FUNCTION_USAGE (i3))
2572 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
2574 reset_used_flags (call_usage);
2575 call_usage = copy_rtx (call_usage);
2577 if (substed_i2)
2578 replace_rtx (call_usage, i2dest, i2src);
2580 if (substed_i1)
2581 replace_rtx (call_usage, i1dest, i1src);
2583 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
2586 if (undobuf.other_insn)
2587 INSN_CODE (undobuf.other_insn) = other_code_number;
2589 /* We had one special case above where I2 had more than one set and
2590 we replaced a destination of one of those sets with the destination
2591 of I3. In that case, we have to update LOG_LINKS of insns later
2592 in this basic block. Note that this (expensive) case is rare.
2594 Also, in this case, we must pretend that all REG_NOTEs for I2
2595 actually came from I3, so that REG_UNUSED notes from I2 will be
2596 properly handled. */
2598 if (i3_subst_into_i2)
2600 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
2601 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != USE
2602 && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, i))) == REG
2603 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
2604 && ! find_reg_note (i2, REG_UNUSED,
2605 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
2606 for (temp = NEXT_INSN (i2);
2607 temp && (this_basic_block == n_basic_blocks - 1
2608 || BLOCK_HEAD (this_basic_block) != temp);
2609 temp = NEXT_INSN (temp))
2610 if (temp != i3 && INSN_P (temp))
2611 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
2612 if (XEXP (link, 0) == i2)
2613 XEXP (link, 0) = i3;
2615 if (i3notes)
2617 rtx link = i3notes;
2618 while (XEXP (link, 1))
2619 link = XEXP (link, 1);
2620 XEXP (link, 1) = i2notes;
2622 else
2623 i3notes = i2notes;
2624 i2notes = 0;
2627 LOG_LINKS (i3) = 0;
2628 REG_NOTES (i3) = 0;
2629 LOG_LINKS (i2) = 0;
2630 REG_NOTES (i2) = 0;
2632 if (newi2pat)
2634 INSN_CODE (i2) = i2_code_number;
2635 PATTERN (i2) = newi2pat;
2637 else
2639 PUT_CODE (i2, NOTE);
2640 NOTE_LINE_NUMBER (i2) = NOTE_INSN_DELETED;
2641 NOTE_SOURCE_FILE (i2) = 0;
2644 if (i1)
2646 LOG_LINKS (i1) = 0;
2647 REG_NOTES (i1) = 0;
2648 PUT_CODE (i1, NOTE);
2649 NOTE_LINE_NUMBER (i1) = NOTE_INSN_DELETED;
2650 NOTE_SOURCE_FILE (i1) = 0;
2653 /* Get death notes for everything that is now used in either I3 or
2654 I2 and used to die in a previous insn. If we built two new
2655 patterns, move from I1 to I2 then I2 to I3 so that we get the
2656 proper movement on registers that I2 modifies. */
2658 if (newi2pat)
2660 move_deaths (newi2pat, NULL_RTX, INSN_CUID (i1), i2, &midnotes);
2661 move_deaths (newpat, newi2pat, INSN_CUID (i1), i3, &midnotes);
2663 else
2664 move_deaths (newpat, NULL_RTX, i1 ? INSN_CUID (i1) : INSN_CUID (i2),
2665 i3, &midnotes);
2667 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
2668 if (i3notes)
2669 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
2670 elim_i2, elim_i1);
2671 if (i2notes)
2672 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
2673 elim_i2, elim_i1);
2674 if (i1notes)
2675 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
2676 elim_i2, elim_i1);
2677 if (midnotes)
2678 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2679 elim_i2, elim_i1);
2681 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
2682 know these are REG_UNUSED and want them to go to the desired insn,
2683 so we always pass it as i3. We have not counted the notes in
2684 reg_n_deaths yet, so we need to do so now. */
2686 if (newi2pat && new_i2_notes)
2688 for (temp = new_i2_notes; temp; temp = XEXP (temp, 1))
2689 if (GET_CODE (XEXP (temp, 0)) == REG)
2690 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2692 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2695 if (new_i3_notes)
2697 for (temp = new_i3_notes; temp; temp = XEXP (temp, 1))
2698 if (GET_CODE (XEXP (temp, 0)) == REG)
2699 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2701 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX);
2704 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
2705 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
2706 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
2707 in that case, it might delete I2. Similarly for I2 and I1.
2708 Show an additional death due to the REG_DEAD note we make here. If
2709 we discard it in distribute_notes, we will decrement it again. */
2711 if (i3dest_killed)
2713 if (GET_CODE (i3dest_killed) == REG)
2714 REG_N_DEATHS (REGNO (i3dest_killed))++;
2716 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
2717 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2718 NULL_RTX),
2719 NULL_RTX, i2, NULL_RTX, elim_i2, elim_i1);
2720 else
2721 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2722 NULL_RTX),
2723 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2724 elim_i2, elim_i1);
2727 if (i2dest_in_i2src)
2729 if (GET_CODE (i2dest) == REG)
2730 REG_N_DEATHS (REGNO (i2dest))++;
2732 if (newi2pat && reg_set_p (i2dest, newi2pat))
2733 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2734 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2735 else
2736 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2737 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2738 NULL_RTX, NULL_RTX);
2741 if (i1dest_in_i1src)
2743 if (GET_CODE (i1dest) == REG)
2744 REG_N_DEATHS (REGNO (i1dest))++;
2746 if (newi2pat && reg_set_p (i1dest, newi2pat))
2747 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2748 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2749 else
2750 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2751 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2752 NULL_RTX, NULL_RTX);
2755 distribute_links (i3links);
2756 distribute_links (i2links);
2757 distribute_links (i1links);
2759 if (GET_CODE (i2dest) == REG)
2761 rtx link;
2762 rtx i2_insn = 0, i2_val = 0, set;
2764 /* The insn that used to set this register doesn't exist, and
2765 this life of the register may not exist either. See if one of
2766 I3's links points to an insn that sets I2DEST. If it does,
2767 that is now the last known value for I2DEST. If we don't update
2768 this and I2 set the register to a value that depended on its old
2769 contents, we will get confused. If this insn is used, thing
2770 will be set correctly in combine_instructions. */
2772 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2773 if ((set = single_set (XEXP (link, 0))) != 0
2774 && rtx_equal_p (i2dest, SET_DEST (set)))
2775 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
2777 record_value_for_reg (i2dest, i2_insn, i2_val);
2779 /* If the reg formerly set in I2 died only once and that was in I3,
2780 zero its use count so it won't make `reload' do any work. */
2781 if (! added_sets_2
2782 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
2783 && ! i2dest_in_i2src)
2785 regno = REGNO (i2dest);
2786 REG_N_SETS (regno)--;
2790 if (i1 && GET_CODE (i1dest) == REG)
2792 rtx link;
2793 rtx i1_insn = 0, i1_val = 0, set;
2795 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2796 if ((set = single_set (XEXP (link, 0))) != 0
2797 && rtx_equal_p (i1dest, SET_DEST (set)))
2798 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
2800 record_value_for_reg (i1dest, i1_insn, i1_val);
2802 regno = REGNO (i1dest);
2803 if (! added_sets_1 && ! i1dest_in_i1src)
2804 REG_N_SETS (regno)--;
2807 /* Update reg_nonzero_bits et al for any changes that may have been made
2808 to this insn. The order of set_nonzero_bits_and_sign_copies() is
2809 important. Because newi2pat can affect nonzero_bits of newpat */
2810 if (newi2pat)
2811 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
2812 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
2814 /* Set new_direct_jump_p if a new return or simple jump instruction
2815 has been created.
2817 If I3 is now an unconditional jump, ensure that it has a
2818 BARRIER following it since it may have initially been a
2819 conditional jump. It may also be the last nonnote insn. */
2821 if (GET_CODE (newpat) == RETURN || any_uncondjump_p (i3))
2823 *new_direct_jump_p = 1;
2825 if ((temp = next_nonnote_insn (i3)) == NULL_RTX
2826 || GET_CODE (temp) != BARRIER)
2827 emit_barrier_after (i3);
2829 /* An NOOP jump does not need barrier, but it does need cleaning up
2830 of CFG. */
2831 if (GET_CODE (newpat) == SET
2832 && SET_SRC (newpat) == pc_rtx
2833 && SET_DEST (newpat) == pc_rtx)
2834 *new_direct_jump_p = 1;
2837 combine_successes++;
2838 undo_commit ();
2840 /* Clear this here, so that subsequent get_last_value calls are not
2841 affected. */
2842 subst_prev_insn = NULL_RTX;
2844 if (added_links_insn
2845 && (newi2pat == 0 || INSN_CUID (added_links_insn) < INSN_CUID (i2))
2846 && INSN_CUID (added_links_insn) < INSN_CUID (i3))
2847 return added_links_insn;
2848 else
2849 return newi2pat ? i2 : i3;
2852 /* Undo all the modifications recorded in undobuf. */
2854 static void
2855 undo_all ()
2857 struct undo *undo, *next;
2859 for (undo = undobuf.undos; undo; undo = next)
2861 next = undo->next;
2862 if (undo->is_int)
2863 *undo->where.i = undo->old_contents.i;
2864 else
2865 *undo->where.r = undo->old_contents.r;
2867 undo->next = undobuf.frees;
2868 undobuf.frees = undo;
2871 undobuf.undos = 0;
2873 /* Clear this here, so that subsequent get_last_value calls are not
2874 affected. */
2875 subst_prev_insn = NULL_RTX;
2878 /* We've committed to accepting the changes we made. Move all
2879 of the undos to the free list. */
2881 static void
2882 undo_commit ()
2884 struct undo *undo, *next;
2886 for (undo = undobuf.undos; undo; undo = next)
2888 next = undo->next;
2889 undo->next = undobuf.frees;
2890 undobuf.frees = undo;
2892 undobuf.undos = 0;
2896 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
2897 where we have an arithmetic expression and return that point. LOC will
2898 be inside INSN.
2900 try_combine will call this function to see if an insn can be split into
2901 two insns. */
2903 static rtx *
2904 find_split_point (loc, insn)
2905 rtx *loc;
2906 rtx insn;
2908 rtx x = *loc;
2909 enum rtx_code code = GET_CODE (x);
2910 rtx *split;
2911 unsigned HOST_WIDE_INT len = 0;
2912 HOST_WIDE_INT pos = 0;
2913 int unsignedp = 0;
2914 rtx inner = NULL_RTX;
2916 /* First special-case some codes. */
2917 switch (code)
2919 case SUBREG:
2920 #ifdef INSN_SCHEDULING
2921 /* If we are making a paradoxical SUBREG invalid, it becomes a split
2922 point. */
2923 if (GET_CODE (SUBREG_REG (x)) == MEM)
2924 return loc;
2925 #endif
2926 return find_split_point (&SUBREG_REG (x), insn);
2928 case MEM:
2929 #ifdef HAVE_lo_sum
2930 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
2931 using LO_SUM and HIGH. */
2932 if (GET_CODE (XEXP (x, 0)) == CONST
2933 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
2935 SUBST (XEXP (x, 0),
2936 gen_rtx_LO_SUM (Pmode,
2937 gen_rtx_HIGH (Pmode, XEXP (x, 0)),
2938 XEXP (x, 0)));
2939 return &XEXP (XEXP (x, 0), 0);
2941 #endif
2943 /* If we have a PLUS whose second operand is a constant and the
2944 address is not valid, perhaps will can split it up using
2945 the machine-specific way to split large constants. We use
2946 the first pseudo-reg (one of the virtual regs) as a placeholder;
2947 it will not remain in the result. */
2948 if (GET_CODE (XEXP (x, 0)) == PLUS
2949 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
2950 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
2952 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
2953 rtx seq = split_insns (gen_rtx_SET (VOIDmode, reg, XEXP (x, 0)),
2954 subst_insn);
2956 /* This should have produced two insns, each of which sets our
2957 placeholder. If the source of the second is a valid address,
2958 we can make put both sources together and make a split point
2959 in the middle. */
2961 if (seq && XVECLEN (seq, 0) == 2
2962 && GET_CODE (XVECEXP (seq, 0, 0)) == INSN
2963 && GET_CODE (PATTERN (XVECEXP (seq, 0, 0))) == SET
2964 && SET_DEST (PATTERN (XVECEXP (seq, 0, 0))) == reg
2965 && ! reg_mentioned_p (reg,
2966 SET_SRC (PATTERN (XVECEXP (seq, 0, 0))))
2967 && GET_CODE (XVECEXP (seq, 0, 1)) == INSN
2968 && GET_CODE (PATTERN (XVECEXP (seq, 0, 1))) == SET
2969 && SET_DEST (PATTERN (XVECEXP (seq, 0, 1))) == reg
2970 && memory_address_p (GET_MODE (x),
2971 SET_SRC (PATTERN (XVECEXP (seq, 0, 1)))))
2973 rtx src1 = SET_SRC (PATTERN (XVECEXP (seq, 0, 0)));
2974 rtx src2 = SET_SRC (PATTERN (XVECEXP (seq, 0, 1)));
2976 /* Replace the placeholder in SRC2 with SRC1. If we can
2977 find where in SRC2 it was placed, that can become our
2978 split point and we can replace this address with SRC2.
2979 Just try two obvious places. */
2981 src2 = replace_rtx (src2, reg, src1);
2982 split = 0;
2983 if (XEXP (src2, 0) == src1)
2984 split = &XEXP (src2, 0);
2985 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
2986 && XEXP (XEXP (src2, 0), 0) == src1)
2987 split = &XEXP (XEXP (src2, 0), 0);
2989 if (split)
2991 SUBST (XEXP (x, 0), src2);
2992 return split;
2996 /* If that didn't work, perhaps the first operand is complex and
2997 needs to be computed separately, so make a split point there.
2998 This will occur on machines that just support REG + CONST
2999 and have a constant moved through some previous computation. */
3001 else if (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x, 0), 0))) != 'o'
3002 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
3003 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (XEXP (x, 0), 0))))
3004 == 'o')))
3005 return &XEXP (XEXP (x, 0), 0);
3007 break;
3009 case SET:
3010 #ifdef HAVE_cc0
3011 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
3012 ZERO_EXTRACT, the most likely reason why this doesn't match is that
3013 we need to put the operand into a register. So split at that
3014 point. */
3016 if (SET_DEST (x) == cc0_rtx
3017 && GET_CODE (SET_SRC (x)) != COMPARE
3018 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
3019 && GET_RTX_CLASS (GET_CODE (SET_SRC (x))) != 'o'
3020 && ! (GET_CODE (SET_SRC (x)) == SUBREG
3021 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (SET_SRC (x)))) == 'o'))
3022 return &SET_SRC (x);
3023 #endif
3025 /* See if we can split SET_SRC as it stands. */
3026 split = find_split_point (&SET_SRC (x), insn);
3027 if (split && split != &SET_SRC (x))
3028 return split;
3030 /* See if we can split SET_DEST as it stands. */
3031 split = find_split_point (&SET_DEST (x), insn);
3032 if (split && split != &SET_DEST (x))
3033 return split;
3035 /* See if this is a bitfield assignment with everything constant. If
3036 so, this is an IOR of an AND, so split it into that. */
3037 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
3038 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
3039 <= HOST_BITS_PER_WIDE_INT)
3040 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
3041 && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
3042 && GET_CODE (SET_SRC (x)) == CONST_INT
3043 && ((INTVAL (XEXP (SET_DEST (x), 1))
3044 + INTVAL (XEXP (SET_DEST (x), 2)))
3045 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
3046 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
3048 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
3049 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
3050 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
3051 rtx dest = XEXP (SET_DEST (x), 0);
3052 enum machine_mode mode = GET_MODE (dest);
3053 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
3055 if (BITS_BIG_ENDIAN)
3056 pos = GET_MODE_BITSIZE (mode) - len - pos;
3058 if (src == mask)
3059 SUBST (SET_SRC (x),
3060 gen_binary (IOR, mode, dest, GEN_INT (src << pos)));
3061 else
3062 SUBST (SET_SRC (x),
3063 gen_binary (IOR, mode,
3064 gen_binary (AND, mode, dest,
3065 GEN_INT
3067 trunc_int_for_mode
3068 (~(mask << pos)
3069 & GET_MODE_MASK (mode), mode))),
3070 GEN_INT (src << pos)));
3072 SUBST (SET_DEST (x), dest);
3074 split = find_split_point (&SET_SRC (x), insn);
3075 if (split && split != &SET_SRC (x))
3076 return split;
3079 /* Otherwise, see if this is an operation that we can split into two.
3080 If so, try to split that. */
3081 code = GET_CODE (SET_SRC (x));
3083 switch (code)
3085 case AND:
3086 /* If we are AND'ing with a large constant that is only a single
3087 bit and the result is only being used in a context where we
3088 need to know if it is zero or non-zero, replace it with a bit
3089 extraction. This will avoid the large constant, which might
3090 have taken more than one insn to make. If the constant were
3091 not a valid argument to the AND but took only one insn to make,
3092 this is no worse, but if it took more than one insn, it will
3093 be better. */
3095 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3096 && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
3097 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
3098 && GET_CODE (SET_DEST (x)) == REG
3099 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
3100 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
3101 && XEXP (*split, 0) == SET_DEST (x)
3102 && XEXP (*split, 1) == const0_rtx)
3104 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
3105 XEXP (SET_SRC (x), 0),
3106 pos, NULL_RTX, 1, 1, 0, 0);
3107 if (extraction != 0)
3109 SUBST (SET_SRC (x), extraction);
3110 return find_split_point (loc, insn);
3113 break;
3115 case NE:
3116 /* if STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
3117 is known to be on, this can be converted into a NEG of a shift. */
3118 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
3119 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
3120 && 1 <= (pos = exact_log2
3121 (nonzero_bits (XEXP (SET_SRC (x), 0),
3122 GET_MODE (XEXP (SET_SRC (x), 0))))))
3124 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
3126 SUBST (SET_SRC (x),
3127 gen_rtx_NEG (mode,
3128 gen_rtx_LSHIFTRT (mode,
3129 XEXP (SET_SRC (x), 0),
3130 GEN_INT (pos))));
3132 split = find_split_point (&SET_SRC (x), insn);
3133 if (split && split != &SET_SRC (x))
3134 return split;
3136 break;
3138 case SIGN_EXTEND:
3139 inner = XEXP (SET_SRC (x), 0);
3141 /* We can't optimize if either mode is a partial integer
3142 mode as we don't know how many bits are significant
3143 in those modes. */
3144 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
3145 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
3146 break;
3148 pos = 0;
3149 len = GET_MODE_BITSIZE (GET_MODE (inner));
3150 unsignedp = 0;
3151 break;
3153 case SIGN_EXTRACT:
3154 case ZERO_EXTRACT:
3155 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3156 && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
3158 inner = XEXP (SET_SRC (x), 0);
3159 len = INTVAL (XEXP (SET_SRC (x), 1));
3160 pos = INTVAL (XEXP (SET_SRC (x), 2));
3162 if (BITS_BIG_ENDIAN)
3163 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
3164 unsignedp = (code == ZERO_EXTRACT);
3166 break;
3168 default:
3169 break;
3172 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
3174 enum machine_mode mode = GET_MODE (SET_SRC (x));
3176 /* For unsigned, we have a choice of a shift followed by an
3177 AND or two shifts. Use two shifts for field sizes where the
3178 constant might be too large. We assume here that we can
3179 always at least get 8-bit constants in an AND insn, which is
3180 true for every current RISC. */
3182 if (unsignedp && len <= 8)
3184 SUBST (SET_SRC (x),
3185 gen_rtx_AND (mode,
3186 gen_rtx_LSHIFTRT
3187 (mode, gen_lowpart_for_combine (mode, inner),
3188 GEN_INT (pos)),
3189 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
3191 split = find_split_point (&SET_SRC (x), insn);
3192 if (split && split != &SET_SRC (x))
3193 return split;
3195 else
3197 SUBST (SET_SRC (x),
3198 gen_rtx_fmt_ee
3199 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
3200 gen_rtx_ASHIFT (mode,
3201 gen_lowpart_for_combine (mode, inner),
3202 GEN_INT (GET_MODE_BITSIZE (mode)
3203 - len - pos)),
3204 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
3206 split = find_split_point (&SET_SRC (x), insn);
3207 if (split && split != &SET_SRC (x))
3208 return split;
3212 /* See if this is a simple operation with a constant as the second
3213 operand. It might be that this constant is out of range and hence
3214 could be used as a split point. */
3215 if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
3216 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
3217 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<')
3218 && CONSTANT_P (XEXP (SET_SRC (x), 1))
3219 && (GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (x), 0))) == 'o'
3220 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
3221 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (SET_SRC (x), 0))))
3222 == 'o'))))
3223 return &XEXP (SET_SRC (x), 1);
3225 /* Finally, see if this is a simple operation with its first operand
3226 not in a register. The operation might require this operand in a
3227 register, so return it as a split point. We can always do this
3228 because if the first operand were another operation, we would have
3229 already found it as a split point. */
3230 if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
3231 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
3232 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<'
3233 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '1')
3234 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
3235 return &XEXP (SET_SRC (x), 0);
3237 return 0;
3239 case AND:
3240 case IOR:
3241 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
3242 it is better to write this as (not (ior A B)) so we can split it.
3243 Similarly for IOR. */
3244 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
3246 SUBST (*loc,
3247 gen_rtx_NOT (GET_MODE (x),
3248 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
3249 GET_MODE (x),
3250 XEXP (XEXP (x, 0), 0),
3251 XEXP (XEXP (x, 1), 0))));
3252 return find_split_point (loc, insn);
3255 /* Many RISC machines have a large set of logical insns. If the
3256 second operand is a NOT, put it first so we will try to split the
3257 other operand first. */
3258 if (GET_CODE (XEXP (x, 1)) == NOT)
3260 rtx tem = XEXP (x, 0);
3261 SUBST (XEXP (x, 0), XEXP (x, 1));
3262 SUBST (XEXP (x, 1), tem);
3264 break;
3266 default:
3267 break;
3270 /* Otherwise, select our actions depending on our rtx class. */
3271 switch (GET_RTX_CLASS (code))
3273 case 'b': /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
3274 case '3':
3275 split = find_split_point (&XEXP (x, 2), insn);
3276 if (split)
3277 return split;
3278 /* ... fall through ... */
3279 case '2':
3280 case 'c':
3281 case '<':
3282 split = find_split_point (&XEXP (x, 1), insn);
3283 if (split)
3284 return split;
3285 /* ... fall through ... */
3286 case '1':
3287 /* Some machines have (and (shift ...) ...) insns. If X is not
3288 an AND, but XEXP (X, 0) is, use it as our split point. */
3289 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
3290 return &XEXP (x, 0);
3292 split = find_split_point (&XEXP (x, 0), insn);
3293 if (split)
3294 return split;
3295 return loc;
3298 /* Otherwise, we don't have a split point. */
3299 return 0;
3302 /* Throughout X, replace FROM with TO, and return the result.
3303 The result is TO if X is FROM;
3304 otherwise the result is X, but its contents may have been modified.
3305 If they were modified, a record was made in undobuf so that
3306 undo_all will (among other things) return X to its original state.
3308 If the number of changes necessary is too much to record to undo,
3309 the excess changes are not made, so the result is invalid.
3310 The changes already made can still be undone.
3311 undobuf.num_undo is incremented for such changes, so by testing that
3312 the caller can tell whether the result is valid.
3314 `n_occurrences' is incremented each time FROM is replaced.
3316 IN_DEST is non-zero if we are processing the SET_DEST of a SET.
3318 UNIQUE_COPY is non-zero if each substitution must be unique. We do this
3319 by copying if `n_occurrences' is non-zero. */
3321 static rtx
3322 subst (x, from, to, in_dest, unique_copy)
3323 rtx x, from, to;
3324 int in_dest;
3325 int unique_copy;
3327 enum rtx_code code = GET_CODE (x);
3328 enum machine_mode op0_mode = VOIDmode;
3329 const char *fmt;
3330 int len, i;
3331 rtx new;
3333 /* Two expressions are equal if they are identical copies of a shared
3334 RTX or if they are both registers with the same register number
3335 and mode. */
3337 #define COMBINE_RTX_EQUAL_P(X,Y) \
3338 ((X) == (Y) \
3339 || (GET_CODE (X) == REG && GET_CODE (Y) == REG \
3340 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
3342 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
3344 n_occurrences++;
3345 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
3348 /* If X and FROM are the same register but different modes, they will
3349 not have been seen as equal above. However, flow.c will make a
3350 LOG_LINKS entry for that case. If we do nothing, we will try to
3351 rerecognize our original insn and, when it succeeds, we will
3352 delete the feeding insn, which is incorrect.
3354 So force this insn not to match in this (rare) case. */
3355 if (! in_dest && code == REG && GET_CODE (from) == REG
3356 && REGNO (x) == REGNO (from))
3357 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
3359 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
3360 of which may contain things that can be combined. */
3361 if (code != MEM && code != LO_SUM && GET_RTX_CLASS (code) == 'o')
3362 return x;
3364 /* It is possible to have a subexpression appear twice in the insn.
3365 Suppose that FROM is a register that appears within TO.
3366 Then, after that subexpression has been scanned once by `subst',
3367 the second time it is scanned, TO may be found. If we were
3368 to scan TO here, we would find FROM within it and create a
3369 self-referent rtl structure which is completely wrong. */
3370 if (COMBINE_RTX_EQUAL_P (x, to))
3371 return to;
3373 /* Parallel asm_operands need special attention because all of the
3374 inputs are shared across the arms. Furthermore, unsharing the
3375 rtl results in recognition failures. Failure to handle this case
3376 specially can result in circular rtl.
3378 Solve this by doing a normal pass across the first entry of the
3379 parallel, and only processing the SET_DESTs of the subsequent
3380 entries. Ug. */
3382 if (code == PARALLEL
3383 && GET_CODE (XVECEXP (x, 0, 0)) == SET
3384 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
3386 new = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
3388 /* If this substitution failed, this whole thing fails. */
3389 if (GET_CODE (new) == CLOBBER
3390 && XEXP (new, 0) == const0_rtx)
3391 return new;
3393 SUBST (XVECEXP (x, 0, 0), new);
3395 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
3397 rtx dest = SET_DEST (XVECEXP (x, 0, i));
3399 if (GET_CODE (dest) != REG
3400 && GET_CODE (dest) != CC0
3401 && GET_CODE (dest) != PC)
3403 new = subst (dest, from, to, 0, unique_copy);
3405 /* If this substitution failed, this whole thing fails. */
3406 if (GET_CODE (new) == CLOBBER
3407 && XEXP (new, 0) == const0_rtx)
3408 return new;
3410 SUBST (SET_DEST (XVECEXP (x, 0, i)), new);
3414 else
3416 len = GET_RTX_LENGTH (code);
3417 fmt = GET_RTX_FORMAT (code);
3419 /* We don't need to process a SET_DEST that is a register, CC0,
3420 or PC, so set up to skip this common case. All other cases
3421 where we want to suppress replacing something inside a
3422 SET_SRC are handled via the IN_DEST operand. */
3423 if (code == SET
3424 && (GET_CODE (SET_DEST (x)) == REG
3425 || GET_CODE (SET_DEST (x)) == CC0
3426 || GET_CODE (SET_DEST (x)) == PC))
3427 fmt = "ie";
3429 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
3430 constant. */
3431 if (fmt[0] == 'e')
3432 op0_mode = GET_MODE (XEXP (x, 0));
3434 for (i = 0; i < len; i++)
3436 if (fmt[i] == 'E')
3438 int j;
3439 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3441 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
3443 new = (unique_copy && n_occurrences
3444 ? copy_rtx (to) : to);
3445 n_occurrences++;
3447 else
3449 new = subst (XVECEXP (x, i, j), from, to, 0,
3450 unique_copy);
3452 /* If this substitution failed, this whole thing
3453 fails. */
3454 if (GET_CODE (new) == CLOBBER
3455 && XEXP (new, 0) == const0_rtx)
3456 return new;
3459 SUBST (XVECEXP (x, i, j), new);
3462 else if (fmt[i] == 'e')
3464 /* If this is a register being set, ignore it. */
3465 new = XEXP (x, i);
3466 if (in_dest
3467 && (code == SUBREG || code == STRICT_LOW_PART
3468 || code == ZERO_EXTRACT)
3469 && i == 0
3470 && GET_CODE (new) == REG)
3473 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
3475 /* In general, don't install a subreg involving two
3476 modes not tieable. It can worsen register
3477 allocation, and can even make invalid reload
3478 insns, since the reg inside may need to be copied
3479 from in the outside mode, and that may be invalid
3480 if it is an fp reg copied in integer mode.
3482 We allow two exceptions to this: It is valid if
3483 it is inside another SUBREG and the mode of that
3484 SUBREG and the mode of the inside of TO is
3485 tieable and it is valid if X is a SET that copies
3486 FROM to CC0. */
3488 if (GET_CODE (to) == SUBREG
3489 && ! MODES_TIEABLE_P (GET_MODE (to),
3490 GET_MODE (SUBREG_REG (to)))
3491 && ! (code == SUBREG
3492 && MODES_TIEABLE_P (GET_MODE (x),
3493 GET_MODE (SUBREG_REG (to))))
3494 #ifdef HAVE_cc0
3495 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
3496 #endif
3498 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3500 #ifdef CLASS_CANNOT_CHANGE_MODE
3501 if (code == SUBREG
3502 && GET_CODE (to) == REG
3503 && REGNO (to) < FIRST_PSEUDO_REGISTER
3504 && (TEST_HARD_REG_BIT
3505 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
3506 REGNO (to)))
3507 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (to),
3508 GET_MODE (x)))
3509 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3510 #endif
3512 new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
3513 n_occurrences++;
3515 else
3516 /* If we are in a SET_DEST, suppress most cases unless we
3517 have gone inside a MEM, in which case we want to
3518 simplify the address. We assume here that things that
3519 are actually part of the destination have their inner
3520 parts in the first expression. This is true for SUBREG,
3521 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
3522 things aside from REG and MEM that should appear in a
3523 SET_DEST. */
3524 new = subst (XEXP (x, i), from, to,
3525 (((in_dest
3526 && (code == SUBREG || code == STRICT_LOW_PART
3527 || code == ZERO_EXTRACT))
3528 || code == SET)
3529 && i == 0), unique_copy);
3531 /* If we found that we will have to reject this combination,
3532 indicate that by returning the CLOBBER ourselves, rather than
3533 an expression containing it. This will speed things up as
3534 well as prevent accidents where two CLOBBERs are considered
3535 to be equal, thus producing an incorrect simplification. */
3537 if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
3538 return new;
3540 if (GET_CODE (new) == CONST_INT && GET_CODE (x) == SUBREG)
3542 enum machine_mode mode = GET_MODE (x);
3543 x = simplify_subreg (mode, new,
3544 GET_MODE (SUBREG_REG (x)),
3545 SUBREG_BYTE (x));
3546 if (! x)
3547 x = gen_rtx_CLOBBER (mode, const0_rtx);
3549 else if (GET_CODE (new) == CONST_INT
3550 && GET_CODE (x) == ZERO_EXTEND)
3552 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
3553 new, GET_MODE (XEXP (x, 0)));
3554 if (! x)
3555 abort ();
3557 else
3558 SUBST (XEXP (x, i), new);
3563 /* Try to simplify X. If the simplification changed the code, it is likely
3564 that further simplification will help, so loop, but limit the number
3565 of repetitions that will be performed. */
3567 for (i = 0; i < 4; i++)
3569 /* If X is sufficiently simple, don't bother trying to do anything
3570 with it. */
3571 if (code != CONST_INT && code != REG && code != CLOBBER)
3572 x = combine_simplify_rtx (x, op0_mode, i == 3, in_dest);
3574 if (GET_CODE (x) == code)
3575 break;
3577 code = GET_CODE (x);
3579 /* We no longer know the original mode of operand 0 since we
3580 have changed the form of X) */
3581 op0_mode = VOIDmode;
3584 return x;
3587 /* Simplify X, a piece of RTL. We just operate on the expression at the
3588 outer level; call `subst' to simplify recursively. Return the new
3589 expression.
3591 OP0_MODE is the original mode of XEXP (x, 0); LAST is nonzero if this
3592 will be the iteration even if an expression with a code different from
3593 X is returned; IN_DEST is nonzero if we are inside a SET_DEST. */
3595 static rtx
3596 combine_simplify_rtx (x, op0_mode, last, in_dest)
3597 rtx x;
3598 enum machine_mode op0_mode;
3599 int last;
3600 int in_dest;
3602 enum rtx_code code = GET_CODE (x);
3603 enum machine_mode mode = GET_MODE (x);
3604 rtx temp;
3605 rtx reversed;
3606 int i;
3608 /* If this is a commutative operation, put a constant last and a complex
3609 expression first. We don't need to do this for comparisons here. */
3610 if (GET_RTX_CLASS (code) == 'c'
3611 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
3613 temp = XEXP (x, 0);
3614 SUBST (XEXP (x, 0), XEXP (x, 1));
3615 SUBST (XEXP (x, 1), temp);
3618 /* If this is a PLUS, MINUS, or MULT, and the first operand is the
3619 sign extension of a PLUS with a constant, reverse the order of the sign
3620 extension and the addition. Note that this not the same as the original
3621 code, but overflow is undefined for signed values. Also note that the
3622 PLUS will have been partially moved "inside" the sign-extension, so that
3623 the first operand of X will really look like:
3624 (ashiftrt (plus (ashift A C4) C5) C4).
3625 We convert this to
3626 (plus (ashiftrt (ashift A C4) C2) C4)
3627 and replace the first operand of X with that expression. Later parts
3628 of this function may simplify the expression further.
3630 For example, if we start with (mult (sign_extend (plus A C1)) C2),
3631 we swap the SIGN_EXTEND and PLUS. Later code will apply the
3632 distributive law to produce (plus (mult (sign_extend X) C1) C3).
3634 We do this to simplify address expressions. */
3636 if ((code == PLUS || code == MINUS || code == MULT)
3637 && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3638 && GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
3639 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == ASHIFT
3640 && GET_CODE (XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1)) == CONST_INT
3641 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3642 && XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1) == XEXP (XEXP (x, 0), 1)
3643 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
3644 && (temp = simplify_binary_operation (ASHIFTRT, mode,
3645 XEXP (XEXP (XEXP (x, 0), 0), 1),
3646 XEXP (XEXP (x, 0), 1))) != 0)
3648 rtx new
3649 = simplify_shift_const (NULL_RTX, ASHIFT, mode,
3650 XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 0),
3651 INTVAL (XEXP (XEXP (x, 0), 1)));
3653 new = simplify_shift_const (NULL_RTX, ASHIFTRT, mode, new,
3654 INTVAL (XEXP (XEXP (x, 0), 1)));
3656 SUBST (XEXP (x, 0), gen_binary (PLUS, mode, new, temp));
3659 /* If this is a simple operation applied to an IF_THEN_ELSE, try
3660 applying it to the arms of the IF_THEN_ELSE. This often simplifies
3661 things. Check for cases where both arms are testing the same
3662 condition.
3664 Don't do anything if all operands are very simple. */
3666 if (((GET_RTX_CLASS (code) == '2' || GET_RTX_CLASS (code) == 'c'
3667 || GET_RTX_CLASS (code) == '<')
3668 && ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
3669 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3670 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0))))
3671 == 'o')))
3672 || (GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) != 'o'
3673 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
3674 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 1))))
3675 == 'o')))))
3676 || (GET_RTX_CLASS (code) == '1'
3677 && ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
3678 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3679 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0))))
3680 == 'o'))))))
3682 rtx cond, true_rtx, false_rtx;
3684 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
3685 if (cond != 0
3686 /* If everything is a comparison, what we have is highly unlikely
3687 to be simpler, so don't use it. */
3688 && ! (GET_RTX_CLASS (code) == '<'
3689 && (GET_RTX_CLASS (GET_CODE (true_rtx)) == '<'
3690 || GET_RTX_CLASS (GET_CODE (false_rtx)) == '<')))
3692 rtx cop1 = const0_rtx;
3693 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
3695 if (cond_code == NE && GET_RTX_CLASS (GET_CODE (cond)) == '<')
3696 return x;
3698 /* Simplify the alternative arms; this may collapse the true and
3699 false arms to store-flag values. */
3700 true_rtx = subst (true_rtx, pc_rtx, pc_rtx, 0, 0);
3701 false_rtx = subst (false_rtx, pc_rtx, pc_rtx, 0, 0);
3703 /* If true_rtx and false_rtx are not general_operands, an if_then_else
3704 is unlikely to be simpler. */
3705 if (general_operand (true_rtx, VOIDmode)
3706 && general_operand (false_rtx, VOIDmode))
3708 /* Restarting if we generate a store-flag expression will cause
3709 us to loop. Just drop through in this case. */
3711 /* If the result values are STORE_FLAG_VALUE and zero, we can
3712 just make the comparison operation. */
3713 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
3714 x = gen_binary (cond_code, mode, cond, cop1);
3715 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
3716 && reverse_condition (cond_code) != UNKNOWN)
3717 x = gen_binary (reverse_condition (cond_code),
3718 mode, cond, cop1);
3720 /* Likewise, we can make the negate of a comparison operation
3721 if the result values are - STORE_FLAG_VALUE and zero. */
3722 else if (GET_CODE (true_rtx) == CONST_INT
3723 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
3724 && false_rtx == const0_rtx)
3725 x = simplify_gen_unary (NEG, mode,
3726 gen_binary (cond_code, mode, cond,
3727 cop1),
3728 mode);
3729 else if (GET_CODE (false_rtx) == CONST_INT
3730 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
3731 && true_rtx == const0_rtx)
3732 x = simplify_gen_unary (NEG, mode,
3733 gen_binary (reverse_condition
3734 (cond_code),
3735 mode, cond, cop1),
3736 mode);
3737 else
3738 return gen_rtx_IF_THEN_ELSE (mode,
3739 gen_binary (cond_code, VOIDmode,
3740 cond, cop1),
3741 true_rtx, false_rtx);
3743 code = GET_CODE (x);
3744 op0_mode = VOIDmode;
3749 /* Try to fold this expression in case we have constants that weren't
3750 present before. */
3751 temp = 0;
3752 switch (GET_RTX_CLASS (code))
3754 case '1':
3755 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
3756 break;
3757 case '<':
3759 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
3760 if (cmp_mode == VOIDmode)
3762 cmp_mode = GET_MODE (XEXP (x, 1));
3763 if (cmp_mode == VOIDmode)
3764 cmp_mode = op0_mode;
3766 temp = simplify_relational_operation (code, cmp_mode,
3767 XEXP (x, 0), XEXP (x, 1));
3769 #ifdef FLOAT_STORE_FLAG_VALUE
3770 if (temp != 0 && GET_MODE_CLASS (mode) == MODE_FLOAT)
3772 if (temp == const0_rtx)
3773 temp = CONST0_RTX (mode);
3774 else
3775 temp = immed_real_const_1 (FLOAT_STORE_FLAG_VALUE (mode), mode);
3777 #endif
3778 break;
3779 case 'c':
3780 case '2':
3781 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
3782 break;
3783 case 'b':
3784 case '3':
3785 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
3786 XEXP (x, 1), XEXP (x, 2));
3787 break;
3790 if (temp)
3792 x = temp;
3793 code = GET_CODE (temp);
3794 op0_mode = VOIDmode;
3795 mode = GET_MODE (temp);
3798 /* First see if we can apply the inverse distributive law. */
3799 if (code == PLUS || code == MINUS
3800 || code == AND || code == IOR || code == XOR)
3802 x = apply_distributive_law (x);
3803 code = GET_CODE (x);
3804 op0_mode = VOIDmode;
3807 /* If CODE is an associative operation not otherwise handled, see if we
3808 can associate some operands. This can win if they are constants or
3809 if they are logically related (i.e. (a & b) & a). */
3810 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
3811 || code == AND || code == IOR || code == XOR
3812 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
3813 && ((INTEGRAL_MODE_P (mode) && code != DIV)
3814 || (flag_unsafe_math_optimizations && FLOAT_MODE_P (mode))))
3816 if (GET_CODE (XEXP (x, 0)) == code)
3818 rtx other = XEXP (XEXP (x, 0), 0);
3819 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
3820 rtx inner_op1 = XEXP (x, 1);
3821 rtx inner;
3823 /* Make sure we pass the constant operand if any as the second
3824 one if this is a commutative operation. */
3825 if (CONSTANT_P (inner_op0) && GET_RTX_CLASS (code) == 'c')
3827 rtx tem = inner_op0;
3828 inner_op0 = inner_op1;
3829 inner_op1 = tem;
3831 inner = simplify_binary_operation (code == MINUS ? PLUS
3832 : code == DIV ? MULT
3833 : code,
3834 mode, inner_op0, inner_op1);
3836 /* For commutative operations, try the other pair if that one
3837 didn't simplify. */
3838 if (inner == 0 && GET_RTX_CLASS (code) == 'c')
3840 other = XEXP (XEXP (x, 0), 1);
3841 inner = simplify_binary_operation (code, mode,
3842 XEXP (XEXP (x, 0), 0),
3843 XEXP (x, 1));
3846 if (inner)
3847 return gen_binary (code, mode, other, inner);
3851 /* A little bit of algebraic simplification here. */
3852 switch (code)
3854 case MEM:
3855 /* Ensure that our address has any ASHIFTs converted to MULT in case
3856 address-recognizing predicates are called later. */
3857 temp = make_compound_operation (XEXP (x, 0), MEM);
3858 SUBST (XEXP (x, 0), temp);
3859 break;
3861 case SUBREG:
3862 if (op0_mode == VOIDmode)
3863 op0_mode = GET_MODE (SUBREG_REG (x));
3865 /* simplify_subreg can't use gen_lowpart_for_combine. */
3866 if (CONSTANT_P (SUBREG_REG (x))
3867 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x))
3868 return gen_lowpart_for_combine (mode, SUBREG_REG (x));
3870 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
3871 break;
3873 rtx temp;
3874 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
3875 SUBREG_BYTE (x));
3876 if (temp)
3877 return temp;
3880 /* Don't change the mode of the MEM if that would change the meaning
3881 of the address. */
3882 if (GET_CODE (SUBREG_REG (x)) == MEM
3883 && (MEM_VOLATILE_P (SUBREG_REG (x))
3884 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
3885 return gen_rtx_CLOBBER (mode, const0_rtx);
3887 /* Note that we cannot do any narrowing for non-constants since
3888 we might have been counting on using the fact that some bits were
3889 zero. We now do this in the SET. */
3891 break;
3893 case NOT:
3894 /* (not (plus X -1)) can become (neg X). */
3895 if (GET_CODE (XEXP (x, 0)) == PLUS
3896 && XEXP (XEXP (x, 0), 1) == constm1_rtx)
3897 return gen_rtx_NEG (mode, XEXP (XEXP (x, 0), 0));
3899 /* Similarly, (not (neg X)) is (plus X -1). */
3900 if (GET_CODE (XEXP (x, 0)) == NEG)
3901 return gen_rtx_PLUS (mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
3903 /* (not (xor X C)) for C constant is (xor X D) with D = ~C. */
3904 if (GET_CODE (XEXP (x, 0)) == XOR
3905 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3906 && (temp = simplify_unary_operation (NOT, mode,
3907 XEXP (XEXP (x, 0), 1),
3908 mode)) != 0)
3909 return gen_binary (XOR, mode, XEXP (XEXP (x, 0), 0), temp);
3911 /* (not (ashift 1 X)) is (rotate ~1 X). We used to do this for operands
3912 other than 1, but that is not valid. We could do a similar
3913 simplification for (not (lshiftrt C X)) where C is just the sign bit,
3914 but this doesn't seem common enough to bother with. */
3915 if (GET_CODE (XEXP (x, 0)) == ASHIFT
3916 && XEXP (XEXP (x, 0), 0) == const1_rtx)
3917 return gen_rtx_ROTATE (mode, simplify_gen_unary (NOT, mode,
3918 const1_rtx, mode),
3919 XEXP (XEXP (x, 0), 1));
3921 if (GET_CODE (XEXP (x, 0)) == SUBREG
3922 && subreg_lowpart_p (XEXP (x, 0))
3923 && (GET_MODE_SIZE (GET_MODE (XEXP (x, 0)))
3924 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (x, 0)))))
3925 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == ASHIFT
3926 && XEXP (SUBREG_REG (XEXP (x, 0)), 0) == const1_rtx)
3928 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (XEXP (x, 0)));
3930 x = gen_rtx_ROTATE (inner_mode,
3931 simplify_gen_unary (NOT, inner_mode, const1_rtx,
3932 inner_mode),
3933 XEXP (SUBREG_REG (XEXP (x, 0)), 1));
3934 return gen_lowpart_for_combine (mode, x);
3937 /* If STORE_FLAG_VALUE is -1, (not (comparison foo bar)) can be done by
3938 reversing the comparison code if valid. */
3939 if (STORE_FLAG_VALUE == -1
3940 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
3941 && (reversed = reversed_comparison (x, mode, XEXP (XEXP (x, 0), 0),
3942 XEXP (XEXP (x, 0), 1))))
3943 return reversed;
3945 /* (not (ashiftrt foo C)) where C is the number of bits in FOO minus 1
3946 is (ge foo (const_int 0)) if STORE_FLAG_VALUE is -1, so we can
3947 perform the above simplification. */
3949 if (STORE_FLAG_VALUE == -1
3950 && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3951 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3952 && INTVAL (XEXP (XEXP (x, 0), 1)) == GET_MODE_BITSIZE (mode) - 1)
3953 return gen_rtx_GE (mode, XEXP (XEXP (x, 0), 0), const0_rtx);
3955 /* Apply De Morgan's laws to reduce number of patterns for machines
3956 with negating logical insns (and-not, nand, etc.). If result has
3957 only one NOT, put it first, since that is how the patterns are
3958 coded. */
3960 if (GET_CODE (XEXP (x, 0)) == IOR || GET_CODE (XEXP (x, 0)) == AND)
3962 rtx in1 = XEXP (XEXP (x, 0), 0), in2 = XEXP (XEXP (x, 0), 1);
3963 enum machine_mode op_mode;
3965 op_mode = GET_MODE (in1);
3966 in1 = simplify_gen_unary (NOT, op_mode, in1, op_mode);
3968 op_mode = GET_MODE (in2);
3969 if (op_mode == VOIDmode)
3970 op_mode = mode;
3971 in2 = simplify_gen_unary (NOT, op_mode, in2, op_mode);
3973 if (GET_CODE (in2) == NOT && GET_CODE (in1) != NOT)
3975 rtx tem = in2;
3976 in2 = in1; in1 = tem;
3979 return gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)) == IOR ? AND : IOR,
3980 mode, in1, in2);
3982 break;
3984 case NEG:
3985 /* (neg (plus X 1)) can become (not X). */
3986 if (GET_CODE (XEXP (x, 0)) == PLUS
3987 && XEXP (XEXP (x, 0), 1) == const1_rtx)
3988 return gen_rtx_NOT (mode, XEXP (XEXP (x, 0), 0));
3990 /* Similarly, (neg (not X)) is (plus X 1). */
3991 if (GET_CODE (XEXP (x, 0)) == NOT)
3992 return plus_constant (XEXP (XEXP (x, 0), 0), 1);
3994 /* (neg (minus X Y)) can become (minus Y X). */
3995 if (GET_CODE (XEXP (x, 0)) == MINUS
3996 && (! FLOAT_MODE_P (mode)
3997 /* x-y != -(y-x) with IEEE floating point. */
3998 || TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
3999 || flag_unsafe_math_optimizations))
4000 return gen_binary (MINUS, mode, XEXP (XEXP (x, 0), 1),
4001 XEXP (XEXP (x, 0), 0));
4003 /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
4004 if (GET_CODE (XEXP (x, 0)) == XOR && XEXP (XEXP (x, 0), 1) == const1_rtx
4005 && nonzero_bits (XEXP (XEXP (x, 0), 0), mode) == 1)
4006 return gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
4008 /* NEG commutes with ASHIFT since it is multiplication. Only do this
4009 if we can then eliminate the NEG (e.g.,
4010 if the operand is a constant). */
4012 if (GET_CODE (XEXP (x, 0)) == ASHIFT)
4014 temp = simplify_unary_operation (NEG, mode,
4015 XEXP (XEXP (x, 0), 0), mode);
4016 if (temp)
4017 return gen_binary (ASHIFT, mode, temp, XEXP (XEXP (x, 0), 1));
4020 temp = expand_compound_operation (XEXP (x, 0));
4022 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
4023 replaced by (lshiftrt X C). This will convert
4024 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
4026 if (GET_CODE (temp) == ASHIFTRT
4027 && GET_CODE (XEXP (temp, 1)) == CONST_INT
4028 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
4029 return simplify_shift_const (temp, LSHIFTRT, mode, XEXP (temp, 0),
4030 INTVAL (XEXP (temp, 1)));
4032 /* If X has only a single bit that might be nonzero, say, bit I, convert
4033 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
4034 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
4035 (sign_extract X 1 Y). But only do this if TEMP isn't a register
4036 or a SUBREG of one since we'd be making the expression more
4037 complex if it was just a register. */
4039 if (GET_CODE (temp) != REG
4040 && ! (GET_CODE (temp) == SUBREG
4041 && GET_CODE (SUBREG_REG (temp)) == REG)
4042 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
4044 rtx temp1 = simplify_shift_const
4045 (NULL_RTX, ASHIFTRT, mode,
4046 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
4047 GET_MODE_BITSIZE (mode) - 1 - i),
4048 GET_MODE_BITSIZE (mode) - 1 - i);
4050 /* If all we did was surround TEMP with the two shifts, we
4051 haven't improved anything, so don't use it. Otherwise,
4052 we are better off with TEMP1. */
4053 if (GET_CODE (temp1) != ASHIFTRT
4054 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
4055 || XEXP (XEXP (temp1, 0), 0) != temp)
4056 return temp1;
4058 break;
4060 case TRUNCATE:
4061 /* We can't handle truncation to a partial integer mode here
4062 because we don't know the real bitsize of the partial
4063 integer mode. */
4064 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
4065 break;
4067 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4068 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4069 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
4070 SUBST (XEXP (x, 0),
4071 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
4072 GET_MODE_MASK (mode), NULL_RTX, 0));
4074 /* (truncate:SI ({sign,zero}_extend:DI foo:SI)) == foo:SI. */
4075 if ((GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4076 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4077 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4078 return XEXP (XEXP (x, 0), 0);
4080 /* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
4081 (OP:SI foo:SI) if OP is NEG or ABS. */
4082 if ((GET_CODE (XEXP (x, 0)) == ABS
4083 || GET_CODE (XEXP (x, 0)) == NEG)
4084 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == SIGN_EXTEND
4085 || GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND)
4086 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4087 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4088 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4090 /* (truncate:SI (subreg:DI (truncate:SI X) 0)) is
4091 (truncate:SI x). */
4092 if (GET_CODE (XEXP (x, 0)) == SUBREG
4093 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == TRUNCATE
4094 && subreg_lowpart_p (XEXP (x, 0)))
4095 return SUBREG_REG (XEXP (x, 0));
4097 /* If we know that the value is already truncated, we can
4098 replace the TRUNCATE with a SUBREG if TRULY_NOOP_TRUNCATION
4099 is nonzero for the corresponding modes. But don't do this
4100 for an (LSHIFTRT (MULT ...)) since this will cause problems
4101 with the umulXi3_highpart patterns. */
4102 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4103 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
4104 && num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4105 >= GET_MODE_BITSIZE (mode) + 1
4106 && ! (GET_CODE (XEXP (x, 0)) == LSHIFTRT
4107 && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT))
4108 return gen_lowpart_for_combine (mode, XEXP (x, 0));
4110 /* A truncate of a comparison can be replaced with a subreg if
4111 STORE_FLAG_VALUE permits. This is like the previous test,
4112 but it works even if the comparison is done in a mode larger
4113 than HOST_BITS_PER_WIDE_INT. */
4114 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4115 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
4116 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0)
4117 return gen_lowpart_for_combine (mode, XEXP (x, 0));
4119 /* Similarly, a truncate of a register whose value is a
4120 comparison can be replaced with a subreg if STORE_FLAG_VALUE
4121 permits. */
4122 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4123 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
4124 && (temp = get_last_value (XEXP (x, 0)))
4125 && GET_RTX_CLASS (GET_CODE (temp)) == '<')
4126 return gen_lowpart_for_combine (mode, XEXP (x, 0));
4128 break;
4130 case FLOAT_TRUNCATE:
4131 /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
4132 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4133 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4134 return XEXP (XEXP (x, 0), 0);
4136 /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
4137 (OP:SF foo:SF) if OP is NEG or ABS. */
4138 if ((GET_CODE (XEXP (x, 0)) == ABS
4139 || GET_CODE (XEXP (x, 0)) == NEG)
4140 && GET_CODE (XEXP (XEXP (x, 0), 0)) == FLOAT_EXTEND
4141 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4142 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4143 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4145 /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
4146 is (float_truncate:SF x). */
4147 if (GET_CODE (XEXP (x, 0)) == SUBREG
4148 && subreg_lowpart_p (XEXP (x, 0))
4149 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == FLOAT_TRUNCATE)
4150 return SUBREG_REG (XEXP (x, 0));
4151 break;
4153 #ifdef HAVE_cc0
4154 case COMPARE:
4155 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4156 using cc0, in which case we want to leave it as a COMPARE
4157 so we can distinguish it from a register-register-copy. */
4158 if (XEXP (x, 1) == const0_rtx)
4159 return XEXP (x, 0);
4161 /* In IEEE floating point, x-0 is not the same as x. */
4162 if ((TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
4163 || ! FLOAT_MODE_P (GET_MODE (XEXP (x, 0)))
4164 || flag_unsafe_math_optimizations)
4165 && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
4166 return XEXP (x, 0);
4167 break;
4168 #endif
4170 case CONST:
4171 /* (const (const X)) can become (const X). Do it this way rather than
4172 returning the inner CONST since CONST can be shared with a
4173 REG_EQUAL note. */
4174 if (GET_CODE (XEXP (x, 0)) == CONST)
4175 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4176 break;
4178 #ifdef HAVE_lo_sum
4179 case LO_SUM:
4180 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4181 can add in an offset. find_split_point will split this address up
4182 again if it doesn't match. */
4183 if (GET_CODE (XEXP (x, 0)) == HIGH
4184 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4185 return XEXP (x, 1);
4186 break;
4187 #endif
4189 case PLUS:
4190 /* If we have (plus (plus (A const) B)), associate it so that CONST is
4191 outermost. That's because that's the way indexed addresses are
4192 supposed to appear. This code used to check many more cases, but
4193 they are now checked elsewhere. */
4194 if (GET_CODE (XEXP (x, 0)) == PLUS
4195 && CONSTANT_ADDRESS_P (XEXP (XEXP (x, 0), 1)))
4196 return gen_binary (PLUS, mode,
4197 gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0),
4198 XEXP (x, 1)),
4199 XEXP (XEXP (x, 0), 1));
4201 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4202 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4203 bit-field and can be replaced by either a sign_extend or a
4204 sign_extract. The `and' may be a zero_extend and the two
4205 <c>, -<c> constants may be reversed. */
4206 if (GET_CODE (XEXP (x, 0)) == XOR
4207 && GET_CODE (XEXP (x, 1)) == CONST_INT
4208 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4209 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
4210 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
4211 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
4212 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4213 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
4214 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
4215 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
4216 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
4217 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
4218 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
4219 == (unsigned int) i + 1))))
4220 return simplify_shift_const
4221 (NULL_RTX, ASHIFTRT, mode,
4222 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4223 XEXP (XEXP (XEXP (x, 0), 0), 0),
4224 GET_MODE_BITSIZE (mode) - (i + 1)),
4225 GET_MODE_BITSIZE (mode) - (i + 1));
4227 /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
4228 C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
4229 is 1. This produces better code than the alternative immediately
4230 below. */
4231 if (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
4232 && ((STORE_FLAG_VALUE == -1 && XEXP (x, 1) == const1_rtx)
4233 || (STORE_FLAG_VALUE == 1 && XEXP (x, 1) == constm1_rtx))
4234 && (reversed = reversed_comparison (XEXP (x, 0), mode,
4235 XEXP (XEXP (x, 0), 0),
4236 XEXP (XEXP (x, 0), 1))))
4237 return
4238 simplify_gen_unary (NEG, mode, reversed, mode);
4240 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4241 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4242 the bitsize of the mode - 1. This allows simplification of
4243 "a = (b & 8) == 0;" */
4244 if (XEXP (x, 1) == constm1_rtx
4245 && GET_CODE (XEXP (x, 0)) != REG
4246 && ! (GET_CODE (XEXP (x,0)) == SUBREG
4247 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == REG)
4248 && nonzero_bits (XEXP (x, 0), mode) == 1)
4249 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
4250 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4251 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
4252 GET_MODE_BITSIZE (mode) - 1),
4253 GET_MODE_BITSIZE (mode) - 1);
4255 /* If we are adding two things that have no bits in common, convert
4256 the addition into an IOR. This will often be further simplified,
4257 for example in cases like ((a & 1) + (a & 2)), which can
4258 become a & 3. */
4260 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4261 && (nonzero_bits (XEXP (x, 0), mode)
4262 & nonzero_bits (XEXP (x, 1), mode)) == 0)
4264 /* Try to simplify the expression further. */
4265 rtx tor = gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
4266 temp = combine_simplify_rtx (tor, mode, last, in_dest);
4268 /* If we could, great. If not, do not go ahead with the IOR
4269 replacement, since PLUS appears in many special purpose
4270 address arithmetic instructions. */
4271 if (GET_CODE (temp) != CLOBBER && temp != tor)
4272 return temp;
4274 break;
4276 case MINUS:
4277 /* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
4278 by reversing the comparison code if valid. */
4279 if (STORE_FLAG_VALUE == 1
4280 && XEXP (x, 0) == const1_rtx
4281 && GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) == '<'
4282 && (reversed = reversed_comparison (XEXP (x, 1), mode,
4283 XEXP (XEXP (x, 1), 0),
4284 XEXP (XEXP (x, 1), 1))))
4285 return reversed;
4287 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4288 (and <foo> (const_int pow2-1)) */
4289 if (GET_CODE (XEXP (x, 1)) == AND
4290 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4291 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
4292 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
4293 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
4294 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
4296 /* Canonicalize (minus A (plus B C)) to (minus (minus A B) C) for
4297 integers. */
4298 if (GET_CODE (XEXP (x, 1)) == PLUS && INTEGRAL_MODE_P (mode))
4299 return gen_binary (MINUS, mode,
4300 gen_binary (MINUS, mode, XEXP (x, 0),
4301 XEXP (XEXP (x, 1), 0)),
4302 XEXP (XEXP (x, 1), 1));
4303 break;
4305 case MULT:
4306 /* If we have (mult (plus A B) C), apply the distributive law and then
4307 the inverse distributive law to see if things simplify. This
4308 occurs mostly in addresses, often when unrolling loops. */
4310 if (GET_CODE (XEXP (x, 0)) == PLUS)
4312 x = apply_distributive_law
4313 (gen_binary (PLUS, mode,
4314 gen_binary (MULT, mode,
4315 XEXP (XEXP (x, 0), 0), XEXP (x, 1)),
4316 gen_binary (MULT, mode,
4317 XEXP (XEXP (x, 0), 1),
4318 copy_rtx (XEXP (x, 1)))));
4320 if (GET_CODE (x) != MULT)
4321 return x;
4323 /* Try simplify a*(b/c) as (a*b)/c. */
4324 if (FLOAT_MODE_P (mode) && flag_unsafe_math_optimizations
4325 && GET_CODE (XEXP (x, 0)) == DIV)
4327 rtx tem = simplify_binary_operation (MULT, mode,
4328 XEXP (XEXP (x, 0), 0),
4329 XEXP (x, 1));
4330 if (tem)
4331 return gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
4333 break;
4335 case UDIV:
4336 /* If this is a divide by a power of two, treat it as a shift if
4337 its first operand is a shift. */
4338 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4339 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
4340 && (GET_CODE (XEXP (x, 0)) == ASHIFT
4341 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
4342 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
4343 || GET_CODE (XEXP (x, 0)) == ROTATE
4344 || GET_CODE (XEXP (x, 0)) == ROTATERT))
4345 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
4346 break;
4348 case EQ: case NE:
4349 case GT: case GTU: case GE: case GEU:
4350 case LT: case LTU: case LE: case LEU:
4351 case UNEQ: case LTGT:
4352 case UNGT: case UNGE:
4353 case UNLT: case UNLE:
4354 case UNORDERED: case ORDERED:
4355 /* If the first operand is a condition code, we can't do anything
4356 with it. */
4357 if (GET_CODE (XEXP (x, 0)) == COMPARE
4358 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
4359 #ifdef HAVE_cc0
4360 && XEXP (x, 0) != cc0_rtx
4361 #endif
4364 rtx op0 = XEXP (x, 0);
4365 rtx op1 = XEXP (x, 1);
4366 enum rtx_code new_code;
4368 if (GET_CODE (op0) == COMPARE)
4369 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4371 /* Simplify our comparison, if possible. */
4372 new_code = simplify_comparison (code, &op0, &op1);
4374 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
4375 if only the low-order bit is possibly nonzero in X (such as when
4376 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
4377 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
4378 known to be either 0 or -1, NE becomes a NEG and EQ becomes
4379 (plus X 1).
4381 Remove any ZERO_EXTRACT we made when thinking this was a
4382 comparison. It may now be simpler to use, e.g., an AND. If a
4383 ZERO_EXTRACT is indeed appropriate, it will be placed back by
4384 the call to make_compound_operation in the SET case. */
4386 if (STORE_FLAG_VALUE == 1
4387 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4388 && op1 == const0_rtx
4389 && mode == GET_MODE (op0)
4390 && nonzero_bits (op0, mode) == 1)
4391 return gen_lowpart_for_combine (mode,
4392 expand_compound_operation (op0));
4394 else if (STORE_FLAG_VALUE == 1
4395 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4396 && op1 == const0_rtx
4397 && mode == GET_MODE (op0)
4398 && (num_sign_bit_copies (op0, mode)
4399 == GET_MODE_BITSIZE (mode)))
4401 op0 = expand_compound_operation (op0);
4402 return simplify_gen_unary (NEG, mode,
4403 gen_lowpart_for_combine (mode, op0),
4404 mode);
4407 else if (STORE_FLAG_VALUE == 1
4408 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4409 && op1 == const0_rtx
4410 && mode == GET_MODE (op0)
4411 && nonzero_bits (op0, mode) == 1)
4413 op0 = expand_compound_operation (op0);
4414 return gen_binary (XOR, mode,
4415 gen_lowpart_for_combine (mode, op0),
4416 const1_rtx);
4419 else if (STORE_FLAG_VALUE == 1
4420 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4421 && op1 == const0_rtx
4422 && mode == GET_MODE (op0)
4423 && (num_sign_bit_copies (op0, mode)
4424 == GET_MODE_BITSIZE (mode)))
4426 op0 = expand_compound_operation (op0);
4427 return plus_constant (gen_lowpart_for_combine (mode, op0), 1);
4430 /* If STORE_FLAG_VALUE is -1, we have cases similar to
4431 those above. */
4432 if (STORE_FLAG_VALUE == -1
4433 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4434 && op1 == const0_rtx
4435 && (num_sign_bit_copies (op0, mode)
4436 == GET_MODE_BITSIZE (mode)))
4437 return gen_lowpart_for_combine (mode,
4438 expand_compound_operation (op0));
4440 else if (STORE_FLAG_VALUE == -1
4441 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4442 && op1 == const0_rtx
4443 && mode == GET_MODE (op0)
4444 && nonzero_bits (op0, mode) == 1)
4446 op0 = expand_compound_operation (op0);
4447 return simplify_gen_unary (NEG, mode,
4448 gen_lowpart_for_combine (mode, op0),
4449 mode);
4452 else if (STORE_FLAG_VALUE == -1
4453 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4454 && op1 == const0_rtx
4455 && mode == GET_MODE (op0)
4456 && (num_sign_bit_copies (op0, mode)
4457 == GET_MODE_BITSIZE (mode)))
4459 op0 = expand_compound_operation (op0);
4460 return simplify_gen_unary (NOT, mode,
4461 gen_lowpart_for_combine (mode, op0),
4462 mode);
4465 /* If X is 0/1, (eq X 0) is X-1. */
4466 else if (STORE_FLAG_VALUE == -1
4467 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4468 && op1 == const0_rtx
4469 && mode == GET_MODE (op0)
4470 && nonzero_bits (op0, mode) == 1)
4472 op0 = expand_compound_operation (op0);
4473 return plus_constant (gen_lowpart_for_combine (mode, op0), -1);
4476 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
4477 one bit that might be nonzero, we can convert (ne x 0) to
4478 (ashift x c) where C puts the bit in the sign bit. Remove any
4479 AND with STORE_FLAG_VALUE when we are done, since we are only
4480 going to test the sign bit. */
4481 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4482 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4483 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
4484 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE(mode)-1))
4485 && op1 == const0_rtx
4486 && mode == GET_MODE (op0)
4487 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
4489 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
4490 expand_compound_operation (op0),
4491 GET_MODE_BITSIZE (mode) - 1 - i);
4492 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
4493 return XEXP (x, 0);
4494 else
4495 return x;
4498 /* If the code changed, return a whole new comparison. */
4499 if (new_code != code)
4500 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
4502 /* Otherwise, keep this operation, but maybe change its operands.
4503 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
4504 SUBST (XEXP (x, 0), op0);
4505 SUBST (XEXP (x, 1), op1);
4507 break;
4509 case IF_THEN_ELSE:
4510 return simplify_if_then_else (x);
4512 case ZERO_EXTRACT:
4513 case SIGN_EXTRACT:
4514 case ZERO_EXTEND:
4515 case SIGN_EXTEND:
4516 /* If we are processing SET_DEST, we are done. */
4517 if (in_dest)
4518 return x;
4520 return expand_compound_operation (x);
4522 case SET:
4523 return simplify_set (x);
4525 case AND:
4526 case IOR:
4527 case XOR:
4528 return simplify_logical (x, last);
4530 case ABS:
4531 /* (abs (neg <foo>)) -> (abs <foo>) */
4532 if (GET_CODE (XEXP (x, 0)) == NEG)
4533 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4535 /* If the mode of the operand is VOIDmode (i.e. if it is ASM_OPERANDS),
4536 do nothing. */
4537 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
4538 break;
4540 /* If operand is something known to be positive, ignore the ABS. */
4541 if (GET_CODE (XEXP (x, 0)) == FFS || GET_CODE (XEXP (x, 0)) == ABS
4542 || ((GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4543 <= HOST_BITS_PER_WIDE_INT)
4544 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4545 & ((HOST_WIDE_INT) 1
4546 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1)))
4547 == 0)))
4548 return XEXP (x, 0);
4550 /* If operand is known to be only -1 or 0, convert ABS to NEG. */
4551 if (num_sign_bit_copies (XEXP (x, 0), mode) == GET_MODE_BITSIZE (mode))
4552 return gen_rtx_NEG (mode, XEXP (x, 0));
4554 break;
4556 case FFS:
4557 /* (ffs (*_extend <X>)) = (ffs <X>) */
4558 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4559 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4560 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4561 break;
4563 case FLOAT:
4564 /* (float (sign_extend <X>)) = (float <X>). */
4565 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
4566 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4567 break;
4569 case ASHIFT:
4570 case LSHIFTRT:
4571 case ASHIFTRT:
4572 case ROTATE:
4573 case ROTATERT:
4574 /* If this is a shift by a constant amount, simplify it. */
4575 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4576 return simplify_shift_const (x, code, mode, XEXP (x, 0),
4577 INTVAL (XEXP (x, 1)));
4579 #ifdef SHIFT_COUNT_TRUNCATED
4580 else if (SHIFT_COUNT_TRUNCATED && GET_CODE (XEXP (x, 1)) != REG)
4581 SUBST (XEXP (x, 1),
4582 force_to_mode (XEXP (x, 1), GET_MODE (x),
4583 ((HOST_WIDE_INT) 1
4584 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
4585 - 1,
4586 NULL_RTX, 0));
4587 #endif
4589 break;
4591 case VEC_SELECT:
4593 rtx op0 = XEXP (x, 0);
4594 rtx op1 = XEXP (x, 1);
4595 int len;
4597 if (GET_CODE (op1) != PARALLEL)
4598 abort ();
4599 len = XVECLEN (op1, 0);
4600 if (len == 1
4601 && GET_CODE (XVECEXP (op1, 0, 0)) == CONST_INT
4602 && GET_CODE (op0) == VEC_CONCAT)
4604 int offset = INTVAL (XVECEXP (op1, 0, 0)) * GET_MODE_SIZE (GET_MODE (x));
4606 /* Try to find the element in the VEC_CONCAT. */
4607 for (;;)
4609 if (GET_MODE (op0) == GET_MODE (x))
4610 return op0;
4611 if (GET_CODE (op0) == VEC_CONCAT)
4613 HOST_WIDE_INT op0_size = GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)));
4614 if (op0_size < offset)
4615 op0 = XEXP (op0, 0);
4616 else
4618 offset -= op0_size;
4619 op0 = XEXP (op0, 1);
4622 else
4623 break;
4628 break;
4630 default:
4631 break;
4634 return x;
4637 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
4639 static rtx
4640 simplify_if_then_else (x)
4641 rtx x;
4643 enum machine_mode mode = GET_MODE (x);
4644 rtx cond = XEXP (x, 0);
4645 rtx true_rtx = XEXP (x, 1);
4646 rtx false_rtx = XEXP (x, 2);
4647 enum rtx_code true_code = GET_CODE (cond);
4648 int comparison_p = GET_RTX_CLASS (true_code) == '<';
4649 rtx temp;
4650 int i;
4651 enum rtx_code false_code;
4652 rtx reversed;
4654 /* Simplify storing of the truth value. */
4655 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
4656 return gen_binary (true_code, mode, XEXP (cond, 0), XEXP (cond, 1));
4658 /* Also when the truth value has to be reversed. */
4659 if (comparison_p
4660 && true_rtx == const0_rtx && false_rtx == const_true_rtx
4661 && (reversed = reversed_comparison (cond, mode, XEXP (cond, 0),
4662 XEXP (cond, 1))))
4663 return reversed;
4665 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
4666 in it is being compared against certain values. Get the true and false
4667 comparisons and see if that says anything about the value of each arm. */
4669 if (comparison_p
4670 && ((false_code = combine_reversed_comparison_code (cond))
4671 != UNKNOWN)
4672 && GET_CODE (XEXP (cond, 0)) == REG)
4674 HOST_WIDE_INT nzb;
4675 rtx from = XEXP (cond, 0);
4676 rtx true_val = XEXP (cond, 1);
4677 rtx false_val = true_val;
4678 int swapped = 0;
4680 /* If FALSE_CODE is EQ, swap the codes and arms. */
4682 if (false_code == EQ)
4684 swapped = 1, true_code = EQ, false_code = NE;
4685 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4688 /* If we are comparing against zero and the expression being tested has
4689 only a single bit that might be nonzero, that is its value when it is
4690 not equal to zero. Similarly if it is known to be -1 or 0. */
4692 if (true_code == EQ && true_val == const0_rtx
4693 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
4694 false_code = EQ, false_val = GEN_INT (nzb);
4695 else if (true_code == EQ && true_val == const0_rtx
4696 && (num_sign_bit_copies (from, GET_MODE (from))
4697 == GET_MODE_BITSIZE (GET_MODE (from))))
4698 false_code = EQ, false_val = constm1_rtx;
4700 /* Now simplify an arm if we know the value of the register in the
4701 branch and it is used in the arm. Be careful due to the potential
4702 of locally-shared RTL. */
4704 if (reg_mentioned_p (from, true_rtx))
4705 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
4706 from, true_val),
4707 pc_rtx, pc_rtx, 0, 0);
4708 if (reg_mentioned_p (from, false_rtx))
4709 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
4710 from, false_val),
4711 pc_rtx, pc_rtx, 0, 0);
4713 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
4714 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
4716 true_rtx = XEXP (x, 1);
4717 false_rtx = XEXP (x, 2);
4718 true_code = GET_CODE (cond);
4721 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
4722 reversed, do so to avoid needing two sets of patterns for
4723 subtract-and-branch insns. Similarly if we have a constant in the true
4724 arm, the false arm is the same as the first operand of the comparison, or
4725 the false arm is more complicated than the true arm. */
4727 if (comparison_p
4728 && combine_reversed_comparison_code (cond) != UNKNOWN
4729 && (true_rtx == pc_rtx
4730 || (CONSTANT_P (true_rtx)
4731 && GET_CODE (false_rtx) != CONST_INT && false_rtx != pc_rtx)
4732 || true_rtx == const0_rtx
4733 || (GET_RTX_CLASS (GET_CODE (true_rtx)) == 'o'
4734 && GET_RTX_CLASS (GET_CODE (false_rtx)) != 'o')
4735 || (GET_CODE (true_rtx) == SUBREG
4736 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (true_rtx))) == 'o'
4737 && GET_RTX_CLASS (GET_CODE (false_rtx)) != 'o')
4738 || reg_mentioned_p (true_rtx, false_rtx)
4739 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
4741 true_code = reversed_comparison_code (cond, NULL);
4742 SUBST (XEXP (x, 0),
4743 reversed_comparison (cond, GET_MODE (cond), XEXP (cond, 0),
4744 XEXP (cond, 1)));
4746 SUBST (XEXP (x, 1), false_rtx);
4747 SUBST (XEXP (x, 2), true_rtx);
4749 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4750 cond = XEXP (x, 0);
4752 /* It is possible that the conditional has been simplified out. */
4753 true_code = GET_CODE (cond);
4754 comparison_p = GET_RTX_CLASS (true_code) == '<';
4757 /* If the two arms are identical, we don't need the comparison. */
4759 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
4760 return true_rtx;
4762 /* Convert a == b ? b : a to "a". */
4763 if (true_code == EQ && ! side_effects_p (cond)
4764 && (! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
4765 && rtx_equal_p (XEXP (cond, 0), false_rtx)
4766 && rtx_equal_p (XEXP (cond, 1), true_rtx))
4767 return false_rtx;
4768 else if (true_code == NE && ! side_effects_p (cond)
4769 && (! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
4770 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4771 && rtx_equal_p (XEXP (cond, 1), false_rtx))
4772 return true_rtx;
4774 /* Look for cases where we have (abs x) or (neg (abs X)). */
4776 if (GET_MODE_CLASS (mode) == MODE_INT
4777 && GET_CODE (false_rtx) == NEG
4778 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
4779 && comparison_p
4780 && rtx_equal_p (true_rtx, XEXP (cond, 0))
4781 && ! side_effects_p (true_rtx))
4782 switch (true_code)
4784 case GT:
4785 case GE:
4786 return simplify_gen_unary (ABS, mode, true_rtx, mode);
4787 case LT:
4788 case LE:
4789 return
4790 simplify_gen_unary (NEG, mode,
4791 simplify_gen_unary (ABS, mode, true_rtx, mode),
4792 mode);
4793 default:
4794 break;
4797 /* Look for MIN or MAX. */
4799 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
4800 && comparison_p
4801 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4802 && rtx_equal_p (XEXP (cond, 1), false_rtx)
4803 && ! side_effects_p (cond))
4804 switch (true_code)
4806 case GE:
4807 case GT:
4808 return gen_binary (SMAX, mode, true_rtx, false_rtx);
4809 case LE:
4810 case LT:
4811 return gen_binary (SMIN, mode, true_rtx, false_rtx);
4812 case GEU:
4813 case GTU:
4814 return gen_binary (UMAX, mode, true_rtx, false_rtx);
4815 case LEU:
4816 case LTU:
4817 return gen_binary (UMIN, mode, true_rtx, false_rtx);
4818 default:
4819 break;
4822 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
4823 second operand is zero, this can be done as (OP Z (mult COND C2)) where
4824 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
4825 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
4826 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
4827 neither 1 or -1, but it isn't worth checking for. */
4829 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
4830 && comparison_p && mode != VOIDmode && ! side_effects_p (x))
4832 rtx t = make_compound_operation (true_rtx, SET);
4833 rtx f = make_compound_operation (false_rtx, SET);
4834 rtx cond_op0 = XEXP (cond, 0);
4835 rtx cond_op1 = XEXP (cond, 1);
4836 enum rtx_code op = NIL, extend_op = NIL;
4837 enum machine_mode m = mode;
4838 rtx z = 0, c1 = NULL_RTX;
4840 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
4841 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
4842 || GET_CODE (t) == ASHIFT
4843 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
4844 && rtx_equal_p (XEXP (t, 0), f))
4845 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
4847 /* If an identity-zero op is commutative, check whether there
4848 would be a match if we swapped the operands. */
4849 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
4850 || GET_CODE (t) == XOR)
4851 && rtx_equal_p (XEXP (t, 1), f))
4852 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
4853 else if (GET_CODE (t) == SIGN_EXTEND
4854 && (GET_CODE (XEXP (t, 0)) == PLUS
4855 || GET_CODE (XEXP (t, 0)) == MINUS
4856 || GET_CODE (XEXP (t, 0)) == IOR
4857 || GET_CODE (XEXP (t, 0)) == XOR
4858 || GET_CODE (XEXP (t, 0)) == ASHIFT
4859 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4860 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4861 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4862 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4863 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4864 && (num_sign_bit_copies (f, GET_MODE (f))
4865 > (GET_MODE_BITSIZE (mode)
4866 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
4868 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4869 extend_op = SIGN_EXTEND;
4870 m = GET_MODE (XEXP (t, 0));
4872 else if (GET_CODE (t) == SIGN_EXTEND
4873 && (GET_CODE (XEXP (t, 0)) == PLUS
4874 || GET_CODE (XEXP (t, 0)) == IOR
4875 || GET_CODE (XEXP (t, 0)) == XOR)
4876 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4877 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4878 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4879 && (num_sign_bit_copies (f, GET_MODE (f))
4880 > (GET_MODE_BITSIZE (mode)
4881 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
4883 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
4884 extend_op = SIGN_EXTEND;
4885 m = GET_MODE (XEXP (t, 0));
4887 else if (GET_CODE (t) == ZERO_EXTEND
4888 && (GET_CODE (XEXP (t, 0)) == PLUS
4889 || GET_CODE (XEXP (t, 0)) == MINUS
4890 || GET_CODE (XEXP (t, 0)) == IOR
4891 || GET_CODE (XEXP (t, 0)) == XOR
4892 || GET_CODE (XEXP (t, 0)) == ASHIFT
4893 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4894 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4895 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4896 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4897 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4898 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4899 && ((nonzero_bits (f, GET_MODE (f))
4900 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
4901 == 0))
4903 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4904 extend_op = ZERO_EXTEND;
4905 m = GET_MODE (XEXP (t, 0));
4907 else if (GET_CODE (t) == ZERO_EXTEND
4908 && (GET_CODE (XEXP (t, 0)) == PLUS
4909 || GET_CODE (XEXP (t, 0)) == IOR
4910 || GET_CODE (XEXP (t, 0)) == XOR)
4911 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4912 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4913 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4914 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4915 && ((nonzero_bits (f, GET_MODE (f))
4916 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
4917 == 0))
4919 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
4920 extend_op = ZERO_EXTEND;
4921 m = GET_MODE (XEXP (t, 0));
4924 if (z)
4926 temp = subst (gen_binary (true_code, m, cond_op0, cond_op1),
4927 pc_rtx, pc_rtx, 0, 0);
4928 temp = gen_binary (MULT, m, temp,
4929 gen_binary (MULT, m, c1, const_true_rtx));
4930 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
4931 temp = gen_binary (op, m, gen_lowpart_for_combine (m, z), temp);
4933 if (extend_op != NIL)
4934 temp = simplify_gen_unary (extend_op, mode, temp, m);
4936 return temp;
4940 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
4941 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
4942 negation of a single bit, we can convert this operation to a shift. We
4943 can actually do this more generally, but it doesn't seem worth it. */
4945 if (true_code == NE && XEXP (cond, 1) == const0_rtx
4946 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
4947 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
4948 && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
4949 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
4950 == GET_MODE_BITSIZE (mode))
4951 && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
4952 return
4953 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4954 gen_lowpart_for_combine (mode, XEXP (cond, 0)), i);
4956 return x;
4959 /* Simplify X, a SET expression. Return the new expression. */
4961 static rtx
4962 simplify_set (x)
4963 rtx x;
4965 rtx src = SET_SRC (x);
4966 rtx dest = SET_DEST (x);
4967 enum machine_mode mode
4968 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
4969 rtx other_insn;
4970 rtx *cc_use;
4972 /* (set (pc) (return)) gets written as (return). */
4973 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
4974 return src;
4976 /* Now that we know for sure which bits of SRC we are using, see if we can
4977 simplify the expression for the object knowing that we only need the
4978 low-order bits. */
4980 if (GET_MODE_CLASS (mode) == MODE_INT)
4982 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, NULL_RTX, 0);
4983 SUBST (SET_SRC (x), src);
4986 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
4987 the comparison result and try to simplify it unless we already have used
4988 undobuf.other_insn. */
4989 if ((GET_CODE (src) == COMPARE
4990 #ifdef HAVE_cc0
4991 || dest == cc0_rtx
4992 #endif
4994 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
4995 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
4996 && GET_RTX_CLASS (GET_CODE (*cc_use)) == '<'
4997 && rtx_equal_p (XEXP (*cc_use, 0), dest))
4999 enum rtx_code old_code = GET_CODE (*cc_use);
5000 enum rtx_code new_code;
5001 rtx op0, op1;
5002 int other_changed = 0;
5003 enum machine_mode compare_mode = GET_MODE (dest);
5005 if (GET_CODE (src) == COMPARE)
5006 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
5007 else
5008 op0 = src, op1 = const0_rtx;
5010 /* Simplify our comparison, if possible. */
5011 new_code = simplify_comparison (old_code, &op0, &op1);
5013 #ifdef EXTRA_CC_MODES
5014 /* If this machine has CC modes other than CCmode, check to see if we
5015 need to use a different CC mode here. */
5016 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
5017 #endif /* EXTRA_CC_MODES */
5019 #if !defined (HAVE_cc0) && defined (EXTRA_CC_MODES)
5020 /* If the mode changed, we have to change SET_DEST, the mode in the
5021 compare, and the mode in the place SET_DEST is used. If SET_DEST is
5022 a hard register, just build new versions with the proper mode. If it
5023 is a pseudo, we lose unless it is only time we set the pseudo, in
5024 which case we can safely change its mode. */
5025 if (compare_mode != GET_MODE (dest))
5027 unsigned int regno = REGNO (dest);
5028 rtx new_dest = gen_rtx_REG (compare_mode, regno);
5030 if (regno < FIRST_PSEUDO_REGISTER
5031 || (REG_N_SETS (regno) == 1 && ! REG_USERVAR_P (dest)))
5033 if (regno >= FIRST_PSEUDO_REGISTER)
5034 SUBST (regno_reg_rtx[regno], new_dest);
5036 SUBST (SET_DEST (x), new_dest);
5037 SUBST (XEXP (*cc_use, 0), new_dest);
5038 other_changed = 1;
5040 dest = new_dest;
5043 #endif
5045 /* If the code changed, we have to build a new comparison in
5046 undobuf.other_insn. */
5047 if (new_code != old_code)
5049 unsigned HOST_WIDE_INT mask;
5051 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
5052 dest, const0_rtx));
5054 /* If the only change we made was to change an EQ into an NE or
5055 vice versa, OP0 has only one bit that might be nonzero, and OP1
5056 is zero, check if changing the user of the condition code will
5057 produce a valid insn. If it won't, we can keep the original code
5058 in that insn by surrounding our operation with an XOR. */
5060 if (((old_code == NE && new_code == EQ)
5061 || (old_code == EQ && new_code == NE))
5062 && ! other_changed && op1 == const0_rtx
5063 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
5064 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
5066 rtx pat = PATTERN (other_insn), note = 0;
5068 if ((recog_for_combine (&pat, other_insn, &note) < 0
5069 && ! check_asm_operands (pat)))
5071 PUT_CODE (*cc_use, old_code);
5072 other_insn = 0;
5074 op0 = gen_binary (XOR, GET_MODE (op0), op0, GEN_INT (mask));
5078 other_changed = 1;
5081 if (other_changed)
5082 undobuf.other_insn = other_insn;
5084 #ifdef HAVE_cc0
5085 /* If we are now comparing against zero, change our source if
5086 needed. If we do not use cc0, we always have a COMPARE. */
5087 if (op1 == const0_rtx && dest == cc0_rtx)
5089 SUBST (SET_SRC (x), op0);
5090 src = op0;
5092 else
5093 #endif
5095 /* Otherwise, if we didn't previously have a COMPARE in the
5096 correct mode, we need one. */
5097 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
5099 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5100 src = SET_SRC (x);
5102 else
5104 /* Otherwise, update the COMPARE if needed. */
5105 SUBST (XEXP (src, 0), op0);
5106 SUBST (XEXP (src, 1), op1);
5109 else
5111 /* Get SET_SRC in a form where we have placed back any
5112 compound expressions. Then do the checks below. */
5113 src = make_compound_operation (src, SET);
5114 SUBST (SET_SRC (x), src);
5117 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5118 and X being a REG or (subreg (reg)), we may be able to convert this to
5119 (set (subreg:m2 x) (op)).
5121 We can always do this if M1 is narrower than M2 because that means that
5122 we only care about the low bits of the result.
5124 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
5125 perform a narrower operation than requested since the high-order bits will
5126 be undefined. On machine where it is defined, this transformation is safe
5127 as long as M1 and M2 have the same number of words. */
5129 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5130 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (src))) != 'o'
5131 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
5132 / UNITS_PER_WORD)
5133 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5134 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
5135 #ifndef WORD_REGISTER_OPERATIONS
5136 && (GET_MODE_SIZE (GET_MODE (src))
5137 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5138 #endif
5139 #ifdef CLASS_CANNOT_CHANGE_MODE
5140 && ! (GET_CODE (dest) == REG && REGNO (dest) < FIRST_PSEUDO_REGISTER
5141 && (TEST_HARD_REG_BIT
5142 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
5143 REGNO (dest)))
5144 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (src),
5145 GET_MODE (SUBREG_REG (src))))
5146 #endif
5147 && (GET_CODE (dest) == REG
5148 || (GET_CODE (dest) == SUBREG
5149 && GET_CODE (SUBREG_REG (dest)) == REG)))
5151 SUBST (SET_DEST (x),
5152 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (src)),
5153 dest));
5154 SUBST (SET_SRC (x), SUBREG_REG (src));
5156 src = SET_SRC (x), dest = SET_DEST (x);
5159 #ifdef LOAD_EXTEND_OP
5160 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5161 would require a paradoxical subreg. Replace the subreg with a
5162 zero_extend to avoid the reload that would otherwise be required. */
5164 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5165 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != NIL
5166 && SUBREG_BYTE (src) == 0
5167 && (GET_MODE_SIZE (GET_MODE (src))
5168 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5169 && GET_CODE (SUBREG_REG (src)) == MEM)
5171 SUBST (SET_SRC (x),
5172 gen_rtx (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
5173 GET_MODE (src), SUBREG_REG (src)));
5175 src = SET_SRC (x);
5177 #endif
5179 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5180 are comparing an item known to be 0 or -1 against 0, use a logical
5181 operation instead. Check for one of the arms being an IOR of the other
5182 arm with some value. We compute three terms to be IOR'ed together. In
5183 practice, at most two will be nonzero. Then we do the IOR's. */
5185 if (GET_CODE (dest) != PC
5186 && GET_CODE (src) == IF_THEN_ELSE
5187 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
5188 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
5189 && XEXP (XEXP (src, 0), 1) == const0_rtx
5190 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
5191 #ifdef HAVE_conditional_move
5192 && ! can_conditionally_move_p (GET_MODE (src))
5193 #endif
5194 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
5195 GET_MODE (XEXP (XEXP (src, 0), 0)))
5196 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
5197 && ! side_effects_p (src))
5199 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
5200 ? XEXP (src, 1) : XEXP (src, 2));
5201 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
5202 ? XEXP (src, 2) : XEXP (src, 1));
5203 rtx term1 = const0_rtx, term2, term3;
5205 if (GET_CODE (true_rtx) == IOR
5206 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
5207 term1 = false_rtx, true_rtx = XEXP(true_rtx, 1), false_rtx = const0_rtx;
5208 else if (GET_CODE (true_rtx) == IOR
5209 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
5210 term1 = false_rtx, true_rtx = XEXP(true_rtx, 0), false_rtx = const0_rtx;
5211 else if (GET_CODE (false_rtx) == IOR
5212 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
5213 term1 = true_rtx, false_rtx = XEXP(false_rtx, 1), true_rtx = const0_rtx;
5214 else if (GET_CODE (false_rtx) == IOR
5215 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
5216 term1 = true_rtx, false_rtx = XEXP(false_rtx, 0), true_rtx = const0_rtx;
5218 term2 = gen_binary (AND, GET_MODE (src),
5219 XEXP (XEXP (src, 0), 0), true_rtx);
5220 term3 = gen_binary (AND, GET_MODE (src),
5221 simplify_gen_unary (NOT, GET_MODE (src),
5222 XEXP (XEXP (src, 0), 0),
5223 GET_MODE (src)),
5224 false_rtx);
5226 SUBST (SET_SRC (x),
5227 gen_binary (IOR, GET_MODE (src),
5228 gen_binary (IOR, GET_MODE (src), term1, term2),
5229 term3));
5231 src = SET_SRC (x);
5234 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5235 whole thing fail. */
5236 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
5237 return src;
5238 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
5239 return dest;
5240 else
5241 /* Convert this into a field assignment operation, if possible. */
5242 return make_field_assignment (x);
5245 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5246 result. LAST is nonzero if this is the last retry. */
5248 static rtx
5249 simplify_logical (x, last)
5250 rtx x;
5251 int last;
5253 enum machine_mode mode = GET_MODE (x);
5254 rtx op0 = XEXP (x, 0);
5255 rtx op1 = XEXP (x, 1);
5256 rtx reversed;
5258 switch (GET_CODE (x))
5260 case AND:
5261 /* Convert (A ^ B) & A to A & (~B) since the latter is often a single
5262 insn (and may simplify more). */
5263 if (GET_CODE (op0) == XOR
5264 && rtx_equal_p (XEXP (op0, 0), op1)
5265 && ! side_effects_p (op1))
5266 x = gen_binary (AND, mode,
5267 simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
5268 op1);
5270 if (GET_CODE (op0) == XOR
5271 && rtx_equal_p (XEXP (op0, 1), op1)
5272 && ! side_effects_p (op1))
5273 x = gen_binary (AND, mode,
5274 simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
5275 op1);
5277 /* Similarly for (~(A ^ B)) & A. */
5278 if (GET_CODE (op0) == NOT
5279 && GET_CODE (XEXP (op0, 0)) == XOR
5280 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), op1)
5281 && ! side_effects_p (op1))
5282 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 1), op1);
5284 if (GET_CODE (op0) == NOT
5285 && GET_CODE (XEXP (op0, 0)) == XOR
5286 && rtx_equal_p (XEXP (XEXP (op0, 0), 1), op1)
5287 && ! side_effects_p (op1))
5288 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 0), op1);
5290 /* We can call simplify_and_const_int only if we don't lose
5291 any (sign) bits when converting INTVAL (op1) to
5292 "unsigned HOST_WIDE_INT". */
5293 if (GET_CODE (op1) == CONST_INT
5294 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5295 || INTVAL (op1) > 0))
5297 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
5299 /* If we have (ior (and (X C1) C2)) and the next restart would be
5300 the last, simplify this by making C1 as small as possible
5301 and then exit. */
5302 if (last
5303 && GET_CODE (x) == IOR && GET_CODE (op0) == AND
5304 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5305 && GET_CODE (op1) == CONST_INT)
5306 return gen_binary (IOR, mode,
5307 gen_binary (AND, mode, XEXP (op0, 0),
5308 GEN_INT (INTVAL (XEXP (op0, 1))
5309 & ~INTVAL (op1))), op1);
5311 if (GET_CODE (x) != AND)
5312 return x;
5314 if (GET_RTX_CLASS (GET_CODE (x)) == 'c'
5315 || GET_RTX_CLASS (GET_CODE (x)) == '2')
5316 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
5319 /* Convert (A | B) & A to A. */
5320 if (GET_CODE (op0) == IOR
5321 && (rtx_equal_p (XEXP (op0, 0), op1)
5322 || rtx_equal_p (XEXP (op0, 1), op1))
5323 && ! side_effects_p (XEXP (op0, 0))
5324 && ! side_effects_p (XEXP (op0, 1)))
5325 return op1;
5327 /* In the following group of tests (and those in case IOR below),
5328 we start with some combination of logical operations and apply
5329 the distributive law followed by the inverse distributive law.
5330 Most of the time, this results in no change. However, if some of
5331 the operands are the same or inverses of each other, simplifications
5332 will result.
5334 For example, (and (ior A B) (not B)) can occur as the result of
5335 expanding a bit field assignment. When we apply the distributive
5336 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
5337 which then simplifies to (and (A (not B))).
5339 If we have (and (ior A B) C), apply the distributive law and then
5340 the inverse distributive law to see if things simplify. */
5342 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
5344 x = apply_distributive_law
5345 (gen_binary (GET_CODE (op0), mode,
5346 gen_binary (AND, mode, XEXP (op0, 0), op1),
5347 gen_binary (AND, mode, XEXP (op0, 1),
5348 copy_rtx (op1))));
5349 if (GET_CODE (x) != AND)
5350 return x;
5353 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
5354 return apply_distributive_law
5355 (gen_binary (GET_CODE (op1), mode,
5356 gen_binary (AND, mode, XEXP (op1, 0), op0),
5357 gen_binary (AND, mode, XEXP (op1, 1),
5358 copy_rtx (op0))));
5360 /* Similarly, taking advantage of the fact that
5361 (and (not A) (xor B C)) == (xor (ior A B) (ior A C)) */
5363 if (GET_CODE (op0) == NOT && GET_CODE (op1) == XOR)
5364 return apply_distributive_law
5365 (gen_binary (XOR, mode,
5366 gen_binary (IOR, mode, XEXP (op0, 0), XEXP (op1, 0)),
5367 gen_binary (IOR, mode, copy_rtx (XEXP (op0, 0)),
5368 XEXP (op1, 1))));
5370 else if (GET_CODE (op1) == NOT && GET_CODE (op0) == XOR)
5371 return apply_distributive_law
5372 (gen_binary (XOR, mode,
5373 gen_binary (IOR, mode, XEXP (op1, 0), XEXP (op0, 0)),
5374 gen_binary (IOR, mode, copy_rtx (XEXP (op1, 0)), XEXP (op0, 1))));
5375 break;
5377 case IOR:
5378 /* (ior A C) is C if all bits of A that might be nonzero are on in C. */
5379 if (GET_CODE (op1) == CONST_INT
5380 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5381 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
5382 return op1;
5384 /* Convert (A & B) | A to A. */
5385 if (GET_CODE (op0) == AND
5386 && (rtx_equal_p (XEXP (op0, 0), op1)
5387 || rtx_equal_p (XEXP (op0, 1), op1))
5388 && ! side_effects_p (XEXP (op0, 0))
5389 && ! side_effects_p (XEXP (op0, 1)))
5390 return op1;
5392 /* If we have (ior (and A B) C), apply the distributive law and then
5393 the inverse distributive law to see if things simplify. */
5395 if (GET_CODE (op0) == AND)
5397 x = apply_distributive_law
5398 (gen_binary (AND, mode,
5399 gen_binary (IOR, mode, XEXP (op0, 0), op1),
5400 gen_binary (IOR, mode, XEXP (op0, 1),
5401 copy_rtx (op1))));
5403 if (GET_CODE (x) != IOR)
5404 return x;
5407 if (GET_CODE (op1) == AND)
5409 x = apply_distributive_law
5410 (gen_binary (AND, mode,
5411 gen_binary (IOR, mode, XEXP (op1, 0), op0),
5412 gen_binary (IOR, mode, XEXP (op1, 1),
5413 copy_rtx (op0))));
5415 if (GET_CODE (x) != IOR)
5416 return x;
5419 /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
5420 mode size to (rotate A CX). */
5422 if (((GET_CODE (op0) == ASHIFT && GET_CODE (op1) == LSHIFTRT)
5423 || (GET_CODE (op1) == ASHIFT && GET_CODE (op0) == LSHIFTRT))
5424 && rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
5425 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5426 && GET_CODE (XEXP (op1, 1)) == CONST_INT
5427 && (INTVAL (XEXP (op0, 1)) + INTVAL (XEXP (op1, 1))
5428 == GET_MODE_BITSIZE (mode)))
5429 return gen_rtx_ROTATE (mode, XEXP (op0, 0),
5430 (GET_CODE (op0) == ASHIFT
5431 ? XEXP (op0, 1) : XEXP (op1, 1)));
5433 /* If OP0 is (ashiftrt (plus ...) C), it might actually be
5434 a (sign_extend (plus ...)). If so, OP1 is a CONST_INT, and the PLUS
5435 does not affect any of the bits in OP1, it can really be done
5436 as a PLUS and we can associate. We do this by seeing if OP1
5437 can be safely shifted left C bits. */
5438 if (GET_CODE (op1) == CONST_INT && GET_CODE (op0) == ASHIFTRT
5439 && GET_CODE (XEXP (op0, 0)) == PLUS
5440 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
5441 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5442 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT)
5444 int count = INTVAL (XEXP (op0, 1));
5445 HOST_WIDE_INT mask = INTVAL (op1) << count;
5447 if (mask >> count == INTVAL (op1)
5448 && (mask & nonzero_bits (XEXP (op0, 0), mode)) == 0)
5450 SUBST (XEXP (XEXP (op0, 0), 1),
5451 GEN_INT (INTVAL (XEXP (XEXP (op0, 0), 1)) | mask));
5452 return op0;
5455 break;
5457 case XOR:
5458 /* If we are XORing two things that have no bits in common,
5459 convert them into an IOR. This helps to detect rotation encoded
5460 using those methods and possibly other simplifications. */
5462 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5463 && (nonzero_bits (op0, mode)
5464 & nonzero_bits (op1, mode)) == 0)
5465 return (gen_binary (IOR, mode, op0, op1));
5467 /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
5468 Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
5469 (NOT y). */
5471 int num_negated = 0;
5473 if (GET_CODE (op0) == NOT)
5474 num_negated++, op0 = XEXP (op0, 0);
5475 if (GET_CODE (op1) == NOT)
5476 num_negated++, op1 = XEXP (op1, 0);
5478 if (num_negated == 2)
5480 SUBST (XEXP (x, 0), op0);
5481 SUBST (XEXP (x, 1), op1);
5483 else if (num_negated == 1)
5484 return
5485 simplify_gen_unary (NOT, mode, gen_binary (XOR, mode, op0, op1),
5486 mode);
5489 /* Convert (xor (and A B) B) to (and (not A) B). The latter may
5490 correspond to a machine insn or result in further simplifications
5491 if B is a constant. */
5493 if (GET_CODE (op0) == AND
5494 && rtx_equal_p (XEXP (op0, 1), op1)
5495 && ! side_effects_p (op1))
5496 return gen_binary (AND, mode,
5497 simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
5498 op1);
5500 else if (GET_CODE (op0) == AND
5501 && rtx_equal_p (XEXP (op0, 0), op1)
5502 && ! side_effects_p (op1))
5503 return gen_binary (AND, mode,
5504 simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
5505 op1);
5507 /* (xor (comparison foo bar) (const_int 1)) can become the reversed
5508 comparison if STORE_FLAG_VALUE is 1. */
5509 if (STORE_FLAG_VALUE == 1
5510 && op1 == const1_rtx
5511 && GET_RTX_CLASS (GET_CODE (op0)) == '<'
5512 && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5513 XEXP (op0, 1))))
5514 return reversed;
5516 /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
5517 is (lt foo (const_int 0)), so we can perform the above
5518 simplification if STORE_FLAG_VALUE is 1. */
5520 if (STORE_FLAG_VALUE == 1
5521 && op1 == const1_rtx
5522 && GET_CODE (op0) == LSHIFTRT
5523 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5524 && INTVAL (XEXP (op0, 1)) == GET_MODE_BITSIZE (mode) - 1)
5525 return gen_rtx_GE (mode, XEXP (op0, 0), const0_rtx);
5527 /* (xor (comparison foo bar) (const_int sign-bit))
5528 when STORE_FLAG_VALUE is the sign bit. */
5529 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5530 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5531 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5532 && op1 == const_true_rtx
5533 && GET_RTX_CLASS (GET_CODE (op0)) == '<'
5534 && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5535 XEXP (op0, 1))))
5536 return reversed;
5538 break;
5540 default:
5541 abort ();
5544 return x;
5547 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
5548 operations" because they can be replaced with two more basic operations.
5549 ZERO_EXTEND is also considered "compound" because it can be replaced with
5550 an AND operation, which is simpler, though only one operation.
5552 The function expand_compound_operation is called with an rtx expression
5553 and will convert it to the appropriate shifts and AND operations,
5554 simplifying at each stage.
5556 The function make_compound_operation is called to convert an expression
5557 consisting of shifts and ANDs into the equivalent compound expression.
5558 It is the inverse of this function, loosely speaking. */
5560 static rtx
5561 expand_compound_operation (x)
5562 rtx x;
5564 unsigned HOST_WIDE_INT pos = 0, len;
5565 int unsignedp = 0;
5566 unsigned int modewidth;
5567 rtx tem;
5569 switch (GET_CODE (x))
5571 case ZERO_EXTEND:
5572 unsignedp = 1;
5573 case SIGN_EXTEND:
5574 /* We can't necessarily use a const_int for a multiword mode;
5575 it depends on implicitly extending the value.
5576 Since we don't know the right way to extend it,
5577 we can't tell whether the implicit way is right.
5579 Even for a mode that is no wider than a const_int,
5580 we can't win, because we need to sign extend one of its bits through
5581 the rest of it, and we don't know which bit. */
5582 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
5583 return x;
5585 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
5586 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
5587 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
5588 reloaded. If not for that, MEM's would very rarely be safe.
5590 Reject MODEs bigger than a word, because we might not be able
5591 to reference a two-register group starting with an arbitrary register
5592 (and currently gen_lowpart might crash for a SUBREG). */
5594 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
5595 return x;
5597 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
5598 /* If the inner object has VOIDmode (the only way this can happen
5599 is if it is a ASM_OPERANDS), we can't do anything since we don't
5600 know how much masking to do. */
5601 if (len == 0)
5602 return x;
5604 break;
5606 case ZERO_EXTRACT:
5607 unsignedp = 1;
5608 case SIGN_EXTRACT:
5609 /* If the operand is a CLOBBER, just return it. */
5610 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
5611 return XEXP (x, 0);
5613 if (GET_CODE (XEXP (x, 1)) != CONST_INT
5614 || GET_CODE (XEXP (x, 2)) != CONST_INT
5615 || GET_MODE (XEXP (x, 0)) == VOIDmode)
5616 return x;
5618 len = INTVAL (XEXP (x, 1));
5619 pos = INTVAL (XEXP (x, 2));
5621 /* If this goes outside the object being extracted, replace the object
5622 with a (use (mem ...)) construct that only combine understands
5623 and is used only for this purpose. */
5624 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
5625 SUBST (XEXP (x, 0), gen_rtx_USE (GET_MODE (x), XEXP (x, 0)));
5627 if (BITS_BIG_ENDIAN)
5628 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
5630 break;
5632 default:
5633 return x;
5635 /* Convert sign extension to zero extension, if we know that the high
5636 bit is not set, as this is easier to optimize. It will be converted
5637 back to cheaper alternative in make_extraction. */
5638 if (GET_CODE (x) == SIGN_EXTEND
5639 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5640 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
5641 & ~(((unsigned HOST_WIDE_INT)
5642 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
5643 >> 1))
5644 == 0)))
5646 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
5647 return expand_compound_operation (temp);
5650 /* We can optimize some special cases of ZERO_EXTEND. */
5651 if (GET_CODE (x) == ZERO_EXTEND)
5653 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
5654 know that the last value didn't have any inappropriate bits
5655 set. */
5656 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5657 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5658 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5659 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
5660 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5661 return XEXP (XEXP (x, 0), 0);
5663 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5664 if (GET_CODE (XEXP (x, 0)) == SUBREG
5665 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5666 && subreg_lowpart_p (XEXP (x, 0))
5667 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5668 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
5669 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5670 return SUBREG_REG (XEXP (x, 0));
5672 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
5673 is a comparison and STORE_FLAG_VALUE permits. This is like
5674 the first case, but it works even when GET_MODE (x) is larger
5675 than HOST_WIDE_INT. */
5676 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5677 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5678 && GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x, 0), 0))) == '<'
5679 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5680 <= HOST_BITS_PER_WIDE_INT)
5681 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5682 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5683 return XEXP (XEXP (x, 0), 0);
5685 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5686 if (GET_CODE (XEXP (x, 0)) == SUBREG
5687 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5688 && subreg_lowpart_p (XEXP (x, 0))
5689 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0)))) == '<'
5690 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5691 <= HOST_BITS_PER_WIDE_INT)
5692 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5693 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5694 return SUBREG_REG (XEXP (x, 0));
5698 /* If we reach here, we want to return a pair of shifts. The inner
5699 shift is a left shift of BITSIZE - POS - LEN bits. The outer
5700 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
5701 logical depending on the value of UNSIGNEDP.
5703 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
5704 converted into an AND of a shift.
5706 We must check for the case where the left shift would have a negative
5707 count. This can happen in a case like (x >> 31) & 255 on machines
5708 that can't shift by a constant. On those machines, we would first
5709 combine the shift with the AND to produce a variable-position
5710 extraction. Then the constant of 31 would be substituted in to produce
5711 a such a position. */
5713 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
5714 if (modewidth + len >= pos)
5715 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
5716 GET_MODE (x),
5717 simplify_shift_const (NULL_RTX, ASHIFT,
5718 GET_MODE (x),
5719 XEXP (x, 0),
5720 modewidth - pos - len),
5721 modewidth - len);
5723 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
5724 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
5725 simplify_shift_const (NULL_RTX, LSHIFTRT,
5726 GET_MODE (x),
5727 XEXP (x, 0), pos),
5728 ((HOST_WIDE_INT) 1 << len) - 1);
5729 else
5730 /* Any other cases we can't handle. */
5731 return x;
5733 /* If we couldn't do this for some reason, return the original
5734 expression. */
5735 if (GET_CODE (tem) == CLOBBER)
5736 return x;
5738 return tem;
5741 /* X is a SET which contains an assignment of one object into
5742 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
5743 or certain SUBREGS). If possible, convert it into a series of
5744 logical operations.
5746 We half-heartedly support variable positions, but do not at all
5747 support variable lengths. */
5749 static rtx
5750 expand_field_assignment (x)
5751 rtx x;
5753 rtx inner;
5754 rtx pos; /* Always counts from low bit. */
5755 int len;
5756 rtx mask;
5757 enum machine_mode compute_mode;
5759 /* Loop until we find something we can't simplify. */
5760 while (1)
5762 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
5763 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
5765 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
5766 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
5767 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
5769 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5770 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
5772 inner = XEXP (SET_DEST (x), 0);
5773 len = INTVAL (XEXP (SET_DEST (x), 1));
5774 pos = XEXP (SET_DEST (x), 2);
5776 /* If the position is constant and spans the width of INNER,
5777 surround INNER with a USE to indicate this. */
5778 if (GET_CODE (pos) == CONST_INT
5779 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
5780 inner = gen_rtx_USE (GET_MODE (SET_DEST (x)), inner);
5782 if (BITS_BIG_ENDIAN)
5784 if (GET_CODE (pos) == CONST_INT)
5785 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
5786 - INTVAL (pos));
5787 else if (GET_CODE (pos) == MINUS
5788 && GET_CODE (XEXP (pos, 1)) == CONST_INT
5789 && (INTVAL (XEXP (pos, 1))
5790 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
5791 /* If position is ADJUST - X, new position is X. */
5792 pos = XEXP (pos, 0);
5793 else
5794 pos = gen_binary (MINUS, GET_MODE (pos),
5795 GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner))
5796 - len),
5797 pos);
5801 /* A SUBREG between two modes that occupy the same numbers of words
5802 can be done by moving the SUBREG to the source. */
5803 else if (GET_CODE (SET_DEST (x)) == SUBREG
5804 /* We need SUBREGs to compute nonzero_bits properly. */
5805 && nonzero_sign_valid
5806 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
5807 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
5808 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
5809 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
5811 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
5812 gen_lowpart_for_combine
5813 (GET_MODE (SUBREG_REG (SET_DEST (x))),
5814 SET_SRC (x)));
5815 continue;
5817 else
5818 break;
5820 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5821 inner = SUBREG_REG (inner);
5823 compute_mode = GET_MODE (inner);
5825 /* Don't attempt bitwise arithmetic on non-integral modes. */
5826 if (! INTEGRAL_MODE_P (compute_mode))
5828 enum machine_mode imode;
5830 /* Something is probably seriously wrong if this matches. */
5831 if (! FLOAT_MODE_P (compute_mode))
5832 break;
5834 /* Try to find an integral mode to pun with. */
5835 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
5836 if (imode == BLKmode)
5837 break;
5839 compute_mode = imode;
5840 inner = gen_lowpart_for_combine (imode, inner);
5843 /* Compute a mask of LEN bits, if we can do this on the host machine. */
5844 if (len < HOST_BITS_PER_WIDE_INT)
5845 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
5846 else
5847 break;
5849 /* Now compute the equivalent expression. Make a copy of INNER
5850 for the SET_DEST in case it is a MEM into which we will substitute;
5851 we don't want shared RTL in that case. */
5852 x = gen_rtx_SET
5853 (VOIDmode, copy_rtx (inner),
5854 gen_binary (IOR, compute_mode,
5855 gen_binary (AND, compute_mode,
5856 simplify_gen_unary (NOT, compute_mode,
5857 gen_binary (ASHIFT,
5858 compute_mode,
5859 mask, pos),
5860 compute_mode),
5861 inner),
5862 gen_binary (ASHIFT, compute_mode,
5863 gen_binary (AND, compute_mode,
5864 gen_lowpart_for_combine
5865 (compute_mode, SET_SRC (x)),
5866 mask),
5867 pos)));
5870 return x;
5873 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
5874 it is an RTX that represents a variable starting position; otherwise,
5875 POS is the (constant) starting bit position (counted from the LSB).
5877 INNER may be a USE. This will occur when we started with a bitfield
5878 that went outside the boundary of the object in memory, which is
5879 allowed on most machines. To isolate this case, we produce a USE
5880 whose mode is wide enough and surround the MEM with it. The only
5881 code that understands the USE is this routine. If it is not removed,
5882 it will cause the resulting insn not to match.
5884 UNSIGNEDP is non-zero for an unsigned reference and zero for a
5885 signed reference.
5887 IN_DEST is non-zero if this is a reference in the destination of a
5888 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If non-zero,
5889 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
5890 be used.
5892 IN_COMPARE is non-zero if we are in a COMPARE. This means that a
5893 ZERO_EXTRACT should be built even for bits starting at bit 0.
5895 MODE is the desired mode of the result (if IN_DEST == 0).
5897 The result is an RTX for the extraction or NULL_RTX if the target
5898 can't handle it. */
5900 static rtx
5901 make_extraction (mode, inner, pos, pos_rtx, len,
5902 unsignedp, in_dest, in_compare)
5903 enum machine_mode mode;
5904 rtx inner;
5905 HOST_WIDE_INT pos;
5906 rtx pos_rtx;
5907 unsigned HOST_WIDE_INT len;
5908 int unsignedp;
5909 int in_dest, in_compare;
5911 /* This mode describes the size of the storage area
5912 to fetch the overall value from. Within that, we
5913 ignore the POS lowest bits, etc. */
5914 enum machine_mode is_mode = GET_MODE (inner);
5915 enum machine_mode inner_mode;
5916 enum machine_mode wanted_inner_mode = byte_mode;
5917 enum machine_mode wanted_inner_reg_mode = word_mode;
5918 enum machine_mode pos_mode = word_mode;
5919 enum machine_mode extraction_mode = word_mode;
5920 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
5921 int spans_byte = 0;
5922 rtx new = 0;
5923 rtx orig_pos_rtx = pos_rtx;
5924 HOST_WIDE_INT orig_pos;
5926 /* Get some information about INNER and get the innermost object. */
5927 if (GET_CODE (inner) == USE)
5928 /* (use:SI (mem:QI foo)) stands for (mem:SI foo). */
5929 /* We don't need to adjust the position because we set up the USE
5930 to pretend that it was a full-word object. */
5931 spans_byte = 1, inner = XEXP (inner, 0);
5932 else if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5934 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
5935 consider just the QI as the memory to extract from.
5936 The subreg adds or removes high bits; its mode is
5937 irrelevant to the meaning of this extraction,
5938 since POS and LEN count from the lsb. */
5939 if (GET_CODE (SUBREG_REG (inner)) == MEM)
5940 is_mode = GET_MODE (SUBREG_REG (inner));
5941 inner = SUBREG_REG (inner);
5944 inner_mode = GET_MODE (inner);
5946 if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
5947 pos = INTVAL (pos_rtx), pos_rtx = 0;
5949 /* See if this can be done without an extraction. We never can if the
5950 width of the field is not the same as that of some integer mode. For
5951 registers, we can only avoid the extraction if the position is at the
5952 low-order bit and this is either not in the destination or we have the
5953 appropriate STRICT_LOW_PART operation available.
5955 For MEM, we can avoid an extract if the field starts on an appropriate
5956 boundary and we can change the mode of the memory reference. However,
5957 we cannot directly access the MEM if we have a USE and the underlying
5958 MEM is not TMODE. This combination means that MEM was being used in a
5959 context where bits outside its mode were being referenced; that is only
5960 valid in bit-field insns. */
5962 if (tmode != BLKmode
5963 && ! (spans_byte && inner_mode != tmode)
5964 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
5965 && GET_CODE (inner) != MEM
5966 && (! in_dest
5967 || (GET_CODE (inner) == REG
5968 && have_insn_for (STRICT_LOW_PART, tmode))))
5969 || (GET_CODE (inner) == MEM && pos_rtx == 0
5970 && (pos
5971 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
5972 : BITS_PER_UNIT)) == 0
5973 /* We can't do this if we are widening INNER_MODE (it
5974 may not be aligned, for one thing). */
5975 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
5976 && (inner_mode == tmode
5977 || (! mode_dependent_address_p (XEXP (inner, 0))
5978 && ! MEM_VOLATILE_P (inner))))))
5980 /* If INNER is a MEM, make a new MEM that encompasses just the desired
5981 field. If the original and current mode are the same, we need not
5982 adjust the offset. Otherwise, we do if bytes big endian.
5984 If INNER is not a MEM, get a piece consisting of just the field
5985 of interest (in this case POS % BITS_PER_WORD must be 0). */
5987 if (GET_CODE (inner) == MEM)
5989 HOST_WIDE_INT offset;
5991 /* POS counts from lsb, but make OFFSET count in memory order. */
5992 if (BYTES_BIG_ENDIAN)
5993 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
5994 else
5995 offset = pos / BITS_PER_UNIT;
5997 new = adjust_address_nv (inner, tmode, offset);
5999 else if (GET_CODE (inner) == REG)
6001 /* We can't call gen_lowpart_for_combine here since we always want
6002 a SUBREG and it would sometimes return a new hard register. */
6003 if (tmode != inner_mode)
6005 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
6007 if (WORDS_BIG_ENDIAN
6008 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
6009 final_word = ((GET_MODE_SIZE (inner_mode)
6010 - GET_MODE_SIZE (tmode))
6011 / UNITS_PER_WORD) - final_word;
6013 final_word *= UNITS_PER_WORD;
6014 if (BYTES_BIG_ENDIAN &&
6015 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
6016 final_word += (GET_MODE_SIZE (inner_mode)
6017 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
6019 new = gen_rtx_SUBREG (tmode, inner, final_word);
6021 else
6022 new = inner;
6024 else
6025 new = force_to_mode (inner, tmode,
6026 len >= HOST_BITS_PER_WIDE_INT
6027 ? ~(unsigned HOST_WIDE_INT) 0
6028 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
6029 NULL_RTX, 0);
6031 /* If this extraction is going into the destination of a SET,
6032 make a STRICT_LOW_PART unless we made a MEM. */
6034 if (in_dest)
6035 return (GET_CODE (new) == MEM ? new
6036 : (GET_CODE (new) != SUBREG
6037 ? gen_rtx_CLOBBER (tmode, const0_rtx)
6038 : gen_rtx_STRICT_LOW_PART (VOIDmode, new)));
6040 if (mode == tmode)
6041 return new;
6043 if (GET_CODE (new) == CONST_INT)
6044 return GEN_INT (trunc_int_for_mode (INTVAL (new), mode));
6046 /* If we know that no extraneous bits are set, and that the high
6047 bit is not set, convert the extraction to the cheaper of
6048 sign and zero extension, that are equivalent in these cases. */
6049 if (flag_expensive_optimizations
6050 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
6051 && ((nonzero_bits (new, tmode)
6052 & ~(((unsigned HOST_WIDE_INT)
6053 GET_MODE_MASK (tmode))
6054 >> 1))
6055 == 0)))
6057 rtx temp = gen_rtx_ZERO_EXTEND (mode, new);
6058 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new);
6060 /* Prefer ZERO_EXTENSION, since it gives more information to
6061 backends. */
6062 if (rtx_cost (temp, SET) <= rtx_cost (temp1, SET))
6063 return temp;
6064 return temp1;
6067 /* Otherwise, sign- or zero-extend unless we already are in the
6068 proper mode. */
6070 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
6071 mode, new));
6074 /* Unless this is a COMPARE or we have a funny memory reference,
6075 don't do anything with zero-extending field extracts starting at
6076 the low-order bit since they are simple AND operations. */
6077 if (pos_rtx == 0 && pos == 0 && ! in_dest
6078 && ! in_compare && ! spans_byte && unsignedp)
6079 return 0;
6081 /* Unless we are allowed to span bytes or INNER is not MEM, reject this if
6082 we would be spanning bytes or if the position is not a constant and the
6083 length is not 1. In all other cases, we would only be going outside
6084 our object in cases when an original shift would have been
6085 undefined. */
6086 if (! spans_byte && GET_CODE (inner) == MEM
6087 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6088 || (pos_rtx != 0 && len != 1)))
6089 return 0;
6091 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6092 and the mode for the result. */
6093 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
6095 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
6096 pos_mode = mode_for_extraction (EP_insv, 2);
6097 extraction_mode = mode_for_extraction (EP_insv, 3);
6100 if (! in_dest && unsignedp
6101 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
6103 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
6104 pos_mode = mode_for_extraction (EP_extzv, 3);
6105 extraction_mode = mode_for_extraction (EP_extzv, 0);
6108 if (! in_dest && ! unsignedp
6109 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
6111 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
6112 pos_mode = mode_for_extraction (EP_extv, 3);
6113 extraction_mode = mode_for_extraction (EP_extv, 0);
6116 /* Never narrow an object, since that might not be safe. */
6118 if (mode != VOIDmode
6119 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6120 extraction_mode = mode;
6122 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6123 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6124 pos_mode = GET_MODE (pos_rtx);
6126 /* If this is not from memory, the desired mode is wanted_inner_reg_mode;
6127 if we have to change the mode of memory and cannot, the desired mode is
6128 EXTRACTION_MODE. */
6129 if (GET_CODE (inner) != MEM)
6130 wanted_inner_mode = wanted_inner_reg_mode;
6131 else if (inner_mode != wanted_inner_mode
6132 && (mode_dependent_address_p (XEXP (inner, 0))
6133 || MEM_VOLATILE_P (inner)))
6134 wanted_inner_mode = extraction_mode;
6136 orig_pos = pos;
6138 if (BITS_BIG_ENDIAN)
6140 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6141 BITS_BIG_ENDIAN style. If position is constant, compute new
6142 position. Otherwise, build subtraction.
6143 Note that POS is relative to the mode of the original argument.
6144 If it's a MEM we need to recompute POS relative to that.
6145 However, if we're extracting from (or inserting into) a register,
6146 we want to recompute POS relative to wanted_inner_mode. */
6147 int width = (GET_CODE (inner) == MEM
6148 ? GET_MODE_BITSIZE (is_mode)
6149 : GET_MODE_BITSIZE (wanted_inner_mode));
6151 if (pos_rtx == 0)
6152 pos = width - len - pos;
6153 else
6154 pos_rtx
6155 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
6156 /* POS may be less than 0 now, but we check for that below.
6157 Note that it can only be less than 0 if GET_CODE (inner) != MEM. */
6160 /* If INNER has a wider mode, make it smaller. If this is a constant
6161 extract, try to adjust the byte to point to the byte containing
6162 the value. */
6163 if (wanted_inner_mode != VOIDmode
6164 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6165 && ((GET_CODE (inner) == MEM
6166 && (inner_mode == wanted_inner_mode
6167 || (! mode_dependent_address_p (XEXP (inner, 0))
6168 && ! MEM_VOLATILE_P (inner))))))
6170 int offset = 0;
6172 /* The computations below will be correct if the machine is big
6173 endian in both bits and bytes or little endian in bits and bytes.
6174 If it is mixed, we must adjust. */
6176 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6177 adjust OFFSET to compensate. */
6178 if (BYTES_BIG_ENDIAN
6179 && ! spans_byte
6180 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6181 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6183 /* If this is a constant position, we can move to the desired byte. */
6184 if (pos_rtx == 0)
6186 offset += pos / BITS_PER_UNIT;
6187 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
6190 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6191 && ! spans_byte
6192 && is_mode != wanted_inner_mode)
6193 offset = (GET_MODE_SIZE (is_mode)
6194 - GET_MODE_SIZE (wanted_inner_mode) - offset);
6196 if (offset != 0 || inner_mode != wanted_inner_mode)
6197 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
6200 /* If INNER is not memory, we can always get it into the proper mode. If we
6201 are changing its mode, POS must be a constant and smaller than the size
6202 of the new mode. */
6203 else if (GET_CODE (inner) != MEM)
6205 if (GET_MODE (inner) != wanted_inner_mode
6206 && (pos_rtx != 0
6207 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6208 return 0;
6210 inner = force_to_mode (inner, wanted_inner_mode,
6211 pos_rtx
6212 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6213 ? ~(unsigned HOST_WIDE_INT) 0
6214 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6215 << orig_pos),
6216 NULL_RTX, 0);
6219 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6220 have to zero extend. Otherwise, we can just use a SUBREG. */
6221 if (pos_rtx != 0
6222 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6224 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
6226 /* If we know that no extraneous bits are set, and that the high
6227 bit is not set, convert extraction to cheaper one - either
6228 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6229 cases. */
6230 if (flag_expensive_optimizations
6231 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6232 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
6233 & ~(((unsigned HOST_WIDE_INT)
6234 GET_MODE_MASK (GET_MODE (pos_rtx)))
6235 >> 1))
6236 == 0)))
6238 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6240 /* Prefer ZERO_EXTENSION, since it gives more information to
6241 backends. */
6242 if (rtx_cost (temp1, SET) < rtx_cost (temp, SET))
6243 temp = temp1;
6245 pos_rtx = temp;
6247 else if (pos_rtx != 0
6248 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6249 pos_rtx = gen_lowpart_for_combine (pos_mode, pos_rtx);
6251 /* Make POS_RTX unless we already have it and it is correct. If we don't
6252 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6253 be a CONST_INT. */
6254 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
6255 pos_rtx = orig_pos_rtx;
6257 else if (pos_rtx == 0)
6258 pos_rtx = GEN_INT (pos);
6260 /* Make the required operation. See if we can use existing rtx. */
6261 new = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
6262 extraction_mode, inner, GEN_INT (len), pos_rtx);
6263 if (! in_dest)
6264 new = gen_lowpart_for_combine (mode, new);
6266 return new;
6269 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6270 with any other operations in X. Return X without that shift if so. */
6272 static rtx
6273 extract_left_shift (x, count)
6274 rtx x;
6275 int count;
6277 enum rtx_code code = GET_CODE (x);
6278 enum machine_mode mode = GET_MODE (x);
6279 rtx tem;
6281 switch (code)
6283 case ASHIFT:
6284 /* This is the shift itself. If it is wide enough, we will return
6285 either the value being shifted if the shift count is equal to
6286 COUNT or a shift for the difference. */
6287 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6288 && INTVAL (XEXP (x, 1)) >= count)
6289 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
6290 INTVAL (XEXP (x, 1)) - count);
6291 break;
6293 case NEG: case NOT:
6294 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6295 return simplify_gen_unary (code, mode, tem, mode);
6297 break;
6299 case PLUS: case IOR: case XOR: case AND:
6300 /* If we can safely shift this constant and we find the inner shift,
6301 make a new operation. */
6302 if (GET_CODE (XEXP (x,1)) == CONST_INT
6303 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
6304 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6305 return gen_binary (code, mode, tem,
6306 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
6308 break;
6310 default:
6311 break;
6314 return 0;
6317 /* Look at the expression rooted at X. Look for expressions
6318 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6319 Form these expressions.
6321 Return the new rtx, usually just X.
6323 Also, for machines like the VAX that don't have logical shift insns,
6324 try to convert logical to arithmetic shift operations in cases where
6325 they are equivalent. This undoes the canonicalizations to logical
6326 shifts done elsewhere.
6328 We try, as much as possible, to re-use rtl expressions to save memory.
6330 IN_CODE says what kind of expression we are processing. Normally, it is
6331 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6332 being kludges), it is MEM. When processing the arguments of a comparison
6333 or a COMPARE against zero, it is COMPARE. */
6335 static rtx
6336 make_compound_operation (x, in_code)
6337 rtx x;
6338 enum rtx_code in_code;
6340 enum rtx_code code = GET_CODE (x);
6341 enum machine_mode mode = GET_MODE (x);
6342 int mode_width = GET_MODE_BITSIZE (mode);
6343 rtx rhs, lhs;
6344 enum rtx_code next_code;
6345 int i;
6346 rtx new = 0;
6347 rtx tem;
6348 const char *fmt;
6350 /* Select the code to be used in recursive calls. Once we are inside an
6351 address, we stay there. If we have a comparison, set to COMPARE,
6352 but once inside, go back to our default of SET. */
6354 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
6355 : ((code == COMPARE || GET_RTX_CLASS (code) == '<')
6356 && XEXP (x, 1) == const0_rtx) ? COMPARE
6357 : in_code == COMPARE ? SET : in_code);
6359 /* Process depending on the code of this operation. If NEW is set
6360 non-zero, it will be returned. */
6362 switch (code)
6364 case ASHIFT:
6365 /* Convert shifts by constants into multiplications if inside
6366 an address. */
6367 if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
6368 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6369 && INTVAL (XEXP (x, 1)) >= 0)
6371 new = make_compound_operation (XEXP (x, 0), next_code);
6372 new = gen_rtx_MULT (mode, new,
6373 GEN_INT ((HOST_WIDE_INT) 1
6374 << INTVAL (XEXP (x, 1))));
6376 break;
6378 case AND:
6379 /* If the second operand is not a constant, we can't do anything
6380 with it. */
6381 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6382 break;
6384 /* If the constant is a power of two minus one and the first operand
6385 is a logical right shift, make an extraction. */
6386 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6387 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6389 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6390 new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
6391 0, in_code == COMPARE);
6394 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6395 else if (GET_CODE (XEXP (x, 0)) == SUBREG
6396 && subreg_lowpart_p (XEXP (x, 0))
6397 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
6398 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6400 new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
6401 next_code);
6402 new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new, 0,
6403 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
6404 0, in_code == COMPARE);
6406 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
6407 else if ((GET_CODE (XEXP (x, 0)) == XOR
6408 || GET_CODE (XEXP (x, 0)) == IOR)
6409 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
6410 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
6411 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6413 /* Apply the distributive law, and then try to make extractions. */
6414 new = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
6415 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
6416 XEXP (x, 1)),
6417 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
6418 XEXP (x, 1)));
6419 new = make_compound_operation (new, in_code);
6422 /* If we are have (and (rotate X C) M) and C is larger than the number
6423 of bits in M, this is an extraction. */
6425 else if (GET_CODE (XEXP (x, 0)) == ROTATE
6426 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6427 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6428 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
6430 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6431 new = make_extraction (mode, new,
6432 (GET_MODE_BITSIZE (mode)
6433 - INTVAL (XEXP (XEXP (x, 0), 1))),
6434 NULL_RTX, i, 1, 0, in_code == COMPARE);
6437 /* On machines without logical shifts, if the operand of the AND is
6438 a logical shift and our mask turns off all the propagated sign
6439 bits, we can replace the logical shift with an arithmetic shift. */
6440 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6441 && !have_insn_for (LSHIFTRT, mode)
6442 && have_insn_for (ASHIFTRT, mode)
6443 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6444 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6445 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6446 && mode_width <= HOST_BITS_PER_WIDE_INT)
6448 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
6450 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6451 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6452 SUBST (XEXP (x, 0),
6453 gen_rtx_ASHIFTRT (mode,
6454 make_compound_operation
6455 (XEXP (XEXP (x, 0), 0), next_code),
6456 XEXP (XEXP (x, 0), 1)));
6459 /* If the constant is one less than a power of two, this might be
6460 representable by an extraction even if no shift is present.
6461 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6462 we are in a COMPARE. */
6463 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6464 new = make_extraction (mode,
6465 make_compound_operation (XEXP (x, 0),
6466 next_code),
6467 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
6469 /* If we are in a comparison and this is an AND with a power of two,
6470 convert this into the appropriate bit extract. */
6471 else if (in_code == COMPARE
6472 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
6473 new = make_extraction (mode,
6474 make_compound_operation (XEXP (x, 0),
6475 next_code),
6476 i, NULL_RTX, 1, 1, 0, 1);
6478 break;
6480 case LSHIFTRT:
6481 /* If the sign bit is known to be zero, replace this with an
6482 arithmetic shift. */
6483 if (have_insn_for (ASHIFTRT, mode)
6484 && ! have_insn_for (LSHIFTRT, mode)
6485 && mode_width <= HOST_BITS_PER_WIDE_INT
6486 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
6488 new = gen_rtx_ASHIFTRT (mode,
6489 make_compound_operation (XEXP (x, 0),
6490 next_code),
6491 XEXP (x, 1));
6492 break;
6495 /* ... fall through ... */
6497 case ASHIFTRT:
6498 lhs = XEXP (x, 0);
6499 rhs = XEXP (x, 1);
6501 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6502 this is a SIGN_EXTRACT. */
6503 if (GET_CODE (rhs) == CONST_INT
6504 && GET_CODE (lhs) == ASHIFT
6505 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
6506 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
6508 new = make_compound_operation (XEXP (lhs, 0), next_code);
6509 new = make_extraction (mode, new,
6510 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
6511 NULL_RTX, mode_width - INTVAL (rhs),
6512 code == LSHIFTRT, 0, in_code == COMPARE);
6513 break;
6516 /* See if we have operations between an ASHIFTRT and an ASHIFT.
6517 If so, try to merge the shifts into a SIGN_EXTEND. We could
6518 also do this for some cases of SIGN_EXTRACT, but it doesn't
6519 seem worth the effort; the case checked for occurs on Alpha. */
6521 if (GET_RTX_CLASS (GET_CODE (lhs)) != 'o'
6522 && ! (GET_CODE (lhs) == SUBREG
6523 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (lhs))) == 'o'))
6524 && GET_CODE (rhs) == CONST_INT
6525 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
6526 && (new = extract_left_shift (lhs, INTVAL (rhs))) != 0)
6527 new = make_extraction (mode, make_compound_operation (new, next_code),
6528 0, NULL_RTX, mode_width - INTVAL (rhs),
6529 code == LSHIFTRT, 0, in_code == COMPARE);
6531 break;
6533 case SUBREG:
6534 /* Call ourselves recursively on the inner expression. If we are
6535 narrowing the object and it has a different RTL code from
6536 what it originally did, do this SUBREG as a force_to_mode. */
6538 tem = make_compound_operation (SUBREG_REG (x), in_code);
6539 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
6540 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
6541 && subreg_lowpart_p (x))
6543 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
6544 NULL_RTX, 0);
6546 /* If we have something other than a SUBREG, we might have
6547 done an expansion, so rerun ourselves. */
6548 if (GET_CODE (newer) != SUBREG)
6549 newer = make_compound_operation (newer, in_code);
6551 return newer;
6554 /* If this is a paradoxical subreg, and the new code is a sign or
6555 zero extension, omit the subreg and widen the extension. If it
6556 is a regular subreg, we can still get rid of the subreg by not
6557 widening so much, or in fact removing the extension entirely. */
6558 if ((GET_CODE (tem) == SIGN_EXTEND
6559 || GET_CODE (tem) == ZERO_EXTEND)
6560 && subreg_lowpart_p (x))
6562 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (tem))
6563 || (GET_MODE_SIZE (mode) >
6564 GET_MODE_SIZE (GET_MODE (XEXP (tem, 0)))))
6565 tem = gen_rtx_fmt_e (GET_CODE (tem), mode, XEXP (tem, 0));
6566 else
6567 tem = gen_lowpart_for_combine (mode, XEXP (tem, 0));
6568 return tem;
6570 break;
6572 default:
6573 break;
6576 if (new)
6578 x = gen_lowpart_for_combine (mode, new);
6579 code = GET_CODE (x);
6582 /* Now recursively process each operand of this operation. */
6583 fmt = GET_RTX_FORMAT (code);
6584 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6585 if (fmt[i] == 'e')
6587 new = make_compound_operation (XEXP (x, i), next_code);
6588 SUBST (XEXP (x, i), new);
6591 return x;
6594 /* Given M see if it is a value that would select a field of bits
6595 within an item, but not the entire word. Return -1 if not.
6596 Otherwise, return the starting position of the field, where 0 is the
6597 low-order bit.
6599 *PLEN is set to the length of the field. */
6601 static int
6602 get_pos_from_mask (m, plen)
6603 unsigned HOST_WIDE_INT m;
6604 unsigned HOST_WIDE_INT *plen;
6606 /* Get the bit number of the first 1 bit from the right, -1 if none. */
6607 int pos = exact_log2 (m & -m);
6608 int len;
6610 if (pos < 0)
6611 return -1;
6613 /* Now shift off the low-order zero bits and see if we have a power of
6614 two minus 1. */
6615 len = exact_log2 ((m >> pos) + 1);
6617 if (len <= 0)
6618 return -1;
6620 *plen = len;
6621 return pos;
6624 /* See if X can be simplified knowing that we will only refer to it in
6625 MODE and will only refer to those bits that are nonzero in MASK.
6626 If other bits are being computed or if masking operations are done
6627 that select a superset of the bits in MASK, they can sometimes be
6628 ignored.
6630 Return a possibly simplified expression, but always convert X to
6631 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
6633 Also, if REG is non-zero and X is a register equal in value to REG,
6634 replace X with REG.
6636 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
6637 are all off in X. This is used when X will be complemented, by either
6638 NOT, NEG, or XOR. */
6640 static rtx
6641 force_to_mode (x, mode, mask, reg, just_select)
6642 rtx x;
6643 enum machine_mode mode;
6644 unsigned HOST_WIDE_INT mask;
6645 rtx reg;
6646 int just_select;
6648 enum rtx_code code = GET_CODE (x);
6649 int next_select = just_select || code == XOR || code == NOT || code == NEG;
6650 enum machine_mode op_mode;
6651 unsigned HOST_WIDE_INT fuller_mask, nonzero;
6652 rtx op0, op1, temp;
6654 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
6655 code below will do the wrong thing since the mode of such an
6656 expression is VOIDmode.
6658 Also do nothing if X is a CLOBBER; this can happen if X was
6659 the return value from a call to gen_lowpart_for_combine. */
6660 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
6661 return x;
6663 /* We want to perform the operation is its present mode unless we know
6664 that the operation is valid in MODE, in which case we do the operation
6665 in MODE. */
6666 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
6667 && have_insn_for (code, mode))
6668 ? mode : GET_MODE (x));
6670 /* It is not valid to do a right-shift in a narrower mode
6671 than the one it came in with. */
6672 if ((code == LSHIFTRT || code == ASHIFTRT)
6673 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
6674 op_mode = GET_MODE (x);
6676 /* Truncate MASK to fit OP_MODE. */
6677 if (op_mode)
6678 mask &= GET_MODE_MASK (op_mode);
6680 /* When we have an arithmetic operation, or a shift whose count we
6681 do not know, we need to assume that all bit the up to the highest-order
6682 bit in MASK will be needed. This is how we form such a mask. */
6683 if (op_mode)
6684 fuller_mask = (GET_MODE_BITSIZE (op_mode) >= HOST_BITS_PER_WIDE_INT
6685 ? GET_MODE_MASK (op_mode)
6686 : (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
6687 - 1));
6688 else
6689 fuller_mask = ~(HOST_WIDE_INT) 0;
6691 /* Determine what bits of X are guaranteed to be (non)zero. */
6692 nonzero = nonzero_bits (x, mode);
6694 /* If none of the bits in X are needed, return a zero. */
6695 if (! just_select && (nonzero & mask) == 0)
6696 return const0_rtx;
6698 /* If X is a CONST_INT, return a new one. Do this here since the
6699 test below will fail. */
6700 if (GET_CODE (x) == CONST_INT)
6701 return gen_int_mode (INTVAL (x) & mask, mode);
6703 /* If X is narrower than MODE and we want all the bits in X's mode, just
6704 get X in the proper mode. */
6705 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
6706 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
6707 return gen_lowpart_for_combine (mode, x);
6709 /* If we aren't changing the mode, X is not a SUBREG, and all zero bits in
6710 MASK are already known to be zero in X, we need not do anything. */
6711 if (GET_MODE (x) == mode && code != SUBREG && (~mask & nonzero) == 0)
6712 return x;
6714 switch (code)
6716 case CLOBBER:
6717 /* If X is a (clobber (const_int)), return it since we know we are
6718 generating something that won't match. */
6719 return x;
6721 case USE:
6722 /* X is a (use (mem ..)) that was made from a bit-field extraction that
6723 spanned the boundary of the MEM. If we are now masking so it is
6724 within that boundary, we don't need the USE any more. */
6725 if (! BITS_BIG_ENDIAN
6726 && (mask & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6727 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
6728 break;
6730 case SIGN_EXTEND:
6731 case ZERO_EXTEND:
6732 case ZERO_EXTRACT:
6733 case SIGN_EXTRACT:
6734 x = expand_compound_operation (x);
6735 if (GET_CODE (x) != code)
6736 return force_to_mode (x, mode, mask, reg, next_select);
6737 break;
6739 case REG:
6740 if (reg != 0 && (rtx_equal_p (get_last_value (reg), x)
6741 || rtx_equal_p (reg, get_last_value (x))))
6742 x = reg;
6743 break;
6745 case SUBREG:
6746 if (subreg_lowpart_p (x)
6747 /* We can ignore the effect of this SUBREG if it narrows the mode or
6748 if the constant masks to zero all the bits the mode doesn't
6749 have. */
6750 && ((GET_MODE_SIZE (GET_MODE (x))
6751 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
6752 || (0 == (mask
6753 & GET_MODE_MASK (GET_MODE (x))
6754 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
6755 return force_to_mode (SUBREG_REG (x), mode, mask, reg, next_select);
6756 break;
6758 case AND:
6759 /* If this is an AND with a constant, convert it into an AND
6760 whose constant is the AND of that constant with MASK. If it
6761 remains an AND of MASK, delete it since it is redundant. */
6763 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
6765 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
6766 mask & INTVAL (XEXP (x, 1)));
6768 /* If X is still an AND, see if it is an AND with a mask that
6769 is just some low-order bits. If so, and it is MASK, we don't
6770 need it. */
6772 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6773 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
6774 == (HOST_WIDE_INT) mask))
6775 x = XEXP (x, 0);
6777 /* If it remains an AND, try making another AND with the bits
6778 in the mode mask that aren't in MASK turned on. If the
6779 constant in the AND is wide enough, this might make a
6780 cheaper constant. */
6782 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6783 && GET_MODE_MASK (GET_MODE (x)) != mask
6784 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
6786 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
6787 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
6788 int width = GET_MODE_BITSIZE (GET_MODE (x));
6789 rtx y;
6791 /* If MODE is narrower that HOST_WIDE_INT and CVAL is a negative
6792 number, sign extend it. */
6793 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
6794 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6795 cval |= (HOST_WIDE_INT) -1 << width;
6797 y = gen_binary (AND, GET_MODE (x), XEXP (x, 0), GEN_INT (cval));
6798 if (rtx_cost (y, SET) < rtx_cost (x, SET))
6799 x = y;
6802 break;
6805 goto binop;
6807 case PLUS:
6808 /* In (and (plus FOO C1) M), if M is a mask that just turns off
6809 low-order bits (as in an alignment operation) and FOO is already
6810 aligned to that boundary, mask C1 to that boundary as well.
6811 This may eliminate that PLUS and, later, the AND. */
6814 unsigned int width = GET_MODE_BITSIZE (mode);
6815 unsigned HOST_WIDE_INT smask = mask;
6817 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
6818 number, sign extend it. */
6820 if (width < HOST_BITS_PER_WIDE_INT
6821 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6822 smask |= (HOST_WIDE_INT) -1 << width;
6824 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6825 && exact_log2 (- smask) >= 0
6826 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
6827 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
6828 return force_to_mode (plus_constant (XEXP (x, 0),
6829 (INTVAL (XEXP (x, 1)) & smask)),
6830 mode, smask, reg, next_select);
6833 /* ... fall through ... */
6835 case MULT:
6836 /* For PLUS, MINUS and MULT, we need any bits less significant than the
6837 most significant bit in MASK since carries from those bits will
6838 affect the bits we are interested in. */
6839 mask = fuller_mask;
6840 goto binop;
6842 case MINUS:
6843 /* If X is (minus C Y) where C's least set bit is larger than any bit
6844 in the mask, then we may replace with (neg Y). */
6845 if (GET_CODE (XEXP (x, 0)) == CONST_INT
6846 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
6847 & -INTVAL (XEXP (x, 0))))
6848 > mask))
6850 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
6851 GET_MODE (x));
6852 return force_to_mode (x, mode, mask, reg, next_select);
6855 /* Similarly, if C contains every bit in the mask, then we may
6856 replace with (not Y). */
6857 if (GET_CODE (XEXP (x, 0)) == CONST_INT
6858 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) mask)
6859 == INTVAL (XEXP (x, 0))))
6861 x = simplify_gen_unary (NOT, GET_MODE (x),
6862 XEXP (x, 1), GET_MODE (x));
6863 return force_to_mode (x, mode, mask, reg, next_select);
6866 mask = fuller_mask;
6867 goto binop;
6869 case IOR:
6870 case XOR:
6871 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
6872 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
6873 operation which may be a bitfield extraction. Ensure that the
6874 constant we form is not wider than the mode of X. */
6876 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6877 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6878 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6879 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6880 && GET_CODE (XEXP (x, 1)) == CONST_INT
6881 && ((INTVAL (XEXP (XEXP (x, 0), 1))
6882 + floor_log2 (INTVAL (XEXP (x, 1))))
6883 < GET_MODE_BITSIZE (GET_MODE (x)))
6884 && (INTVAL (XEXP (x, 1))
6885 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
6887 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
6888 << INTVAL (XEXP (XEXP (x, 0), 1)));
6889 temp = gen_binary (GET_CODE (x), GET_MODE (x),
6890 XEXP (XEXP (x, 0), 0), temp);
6891 x = gen_binary (LSHIFTRT, GET_MODE (x), temp,
6892 XEXP (XEXP (x, 0), 1));
6893 return force_to_mode (x, mode, mask, reg, next_select);
6896 binop:
6897 /* For most binary operations, just propagate into the operation and
6898 change the mode if we have an operation of that mode. */
6900 op0 = gen_lowpart_for_combine (op_mode,
6901 force_to_mode (XEXP (x, 0), mode, mask,
6902 reg, next_select));
6903 op1 = gen_lowpart_for_combine (op_mode,
6904 force_to_mode (XEXP (x, 1), mode, mask,
6905 reg, next_select));
6907 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
6908 x = gen_binary (code, op_mode, op0, op1);
6909 break;
6911 case ASHIFT:
6912 /* For left shifts, do the same, but just for the first operand.
6913 However, we cannot do anything with shifts where we cannot
6914 guarantee that the counts are smaller than the size of the mode
6915 because such a count will have a different meaning in a
6916 wider mode. */
6918 if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
6919 && INTVAL (XEXP (x, 1)) >= 0
6920 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
6921 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
6922 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
6923 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
6924 break;
6926 /* If the shift count is a constant and we can do arithmetic in
6927 the mode of the shift, refine which bits we need. Otherwise, use the
6928 conservative form of the mask. */
6929 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6930 && INTVAL (XEXP (x, 1)) >= 0
6931 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
6932 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
6933 mask >>= INTVAL (XEXP (x, 1));
6934 else
6935 mask = fuller_mask;
6937 op0 = gen_lowpart_for_combine (op_mode,
6938 force_to_mode (XEXP (x, 0), op_mode,
6939 mask, reg, next_select));
6941 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
6942 x = gen_binary (code, op_mode, op0, XEXP (x, 1));
6943 break;
6945 case LSHIFTRT:
6946 /* Here we can only do something if the shift count is a constant,
6947 this shift constant is valid for the host, and we can do arithmetic
6948 in OP_MODE. */
6950 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6951 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6952 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
6954 rtx inner = XEXP (x, 0);
6955 unsigned HOST_WIDE_INT inner_mask;
6957 /* Select the mask of the bits we need for the shift operand. */
6958 inner_mask = mask << INTVAL (XEXP (x, 1));
6960 /* We can only change the mode of the shift if we can do arithmetic
6961 in the mode of the shift and INNER_MASK is no wider than the
6962 width of OP_MODE. */
6963 if (GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT
6964 || (inner_mask & ~GET_MODE_MASK (op_mode)) != 0)
6965 op_mode = GET_MODE (x);
6967 inner = force_to_mode (inner, op_mode, inner_mask, reg, next_select);
6969 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
6970 x = gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
6973 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
6974 shift and AND produces only copies of the sign bit (C2 is one less
6975 than a power of two), we can do this with just a shift. */
6977 if (GET_CODE (x) == LSHIFTRT
6978 && GET_CODE (XEXP (x, 1)) == CONST_INT
6979 /* The shift puts one of the sign bit copies in the least significant
6980 bit. */
6981 && ((INTVAL (XEXP (x, 1))
6982 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
6983 >= GET_MODE_BITSIZE (GET_MODE (x)))
6984 && exact_log2 (mask + 1) >= 0
6985 /* Number of bits left after the shift must be more than the mask
6986 needs. */
6987 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
6988 <= GET_MODE_BITSIZE (GET_MODE (x)))
6989 /* Must be more sign bit copies than the mask needs. */
6990 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
6991 >= exact_log2 (mask + 1)))
6992 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
6993 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
6994 - exact_log2 (mask + 1)));
6996 goto shiftrt;
6998 case ASHIFTRT:
6999 /* If we are just looking for the sign bit, we don't need this shift at
7000 all, even if it has a variable count. */
7001 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7002 && (mask == ((unsigned HOST_WIDE_INT) 1
7003 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7004 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7006 /* If this is a shift by a constant, get a mask that contains those bits
7007 that are not copies of the sign bit. We then have two cases: If
7008 MASK only includes those bits, this can be a logical shift, which may
7009 allow simplifications. If MASK is a single-bit field not within
7010 those bits, we are requesting a copy of the sign bit and hence can
7011 shift the sign bit to the appropriate location. */
7013 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
7014 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7016 int i = -1;
7018 /* If the considered data is wider than HOST_WIDE_INT, we can't
7019 represent a mask for all its bits in a single scalar.
7020 But we only care about the lower bits, so calculate these. */
7022 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
7024 nonzero = ~(HOST_WIDE_INT) 0;
7026 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7027 is the number of bits a full-width mask would have set.
7028 We need only shift if these are fewer than nonzero can
7029 hold. If not, we must keep all bits set in nonzero. */
7031 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7032 < HOST_BITS_PER_WIDE_INT)
7033 nonzero >>= INTVAL (XEXP (x, 1))
7034 + HOST_BITS_PER_WIDE_INT
7035 - GET_MODE_BITSIZE (GET_MODE (x)) ;
7037 else
7039 nonzero = GET_MODE_MASK (GET_MODE (x));
7040 nonzero >>= INTVAL (XEXP (x, 1));
7043 if ((mask & ~nonzero) == 0
7044 || (i = exact_log2 (mask)) >= 0)
7046 x = simplify_shift_const
7047 (x, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7048 i < 0 ? INTVAL (XEXP (x, 1))
7049 : GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7051 if (GET_CODE (x) != ASHIFTRT)
7052 return force_to_mode (x, mode, mask, reg, next_select);
7056 /* If MASK is 1, convert this to a LSHIFTRT. This can be done
7057 even if the shift count isn't a constant. */
7058 if (mask == 1)
7059 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0), XEXP (x, 1));
7061 shiftrt:
7063 /* If this is a zero- or sign-extension operation that just affects bits
7064 we don't care about, remove it. Be sure the call above returned
7065 something that is still a shift. */
7067 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7068 && GET_CODE (XEXP (x, 1)) == CONST_INT
7069 && INTVAL (XEXP (x, 1)) >= 0
7070 && (INTVAL (XEXP (x, 1))
7071 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7072 && GET_CODE (XEXP (x, 0)) == ASHIFT
7073 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7074 && INTVAL (XEXP (XEXP (x, 0), 1)) == INTVAL (XEXP (x, 1)))
7075 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7076 reg, next_select);
7078 break;
7080 case ROTATE:
7081 case ROTATERT:
7082 /* If the shift count is constant and we can do computations
7083 in the mode of X, compute where the bits we care about are.
7084 Otherwise, we can't do anything. Don't change the mode of
7085 the shift or propagate MODE into the shift, though. */
7086 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7087 && INTVAL (XEXP (x, 1)) >= 0)
7089 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7090 GET_MODE (x), GEN_INT (mask),
7091 XEXP (x, 1));
7092 if (temp && GET_CODE(temp) == CONST_INT)
7093 SUBST (XEXP (x, 0),
7094 force_to_mode (XEXP (x, 0), GET_MODE (x),
7095 INTVAL (temp), reg, next_select));
7097 break;
7099 case NEG:
7100 /* If we just want the low-order bit, the NEG isn't needed since it
7101 won't change the low-order bit. */
7102 if (mask == 1)
7103 return force_to_mode (XEXP (x, 0), mode, mask, reg, just_select);
7105 /* We need any bits less significant than the most significant bit in
7106 MASK since carries from those bits will affect the bits we are
7107 interested in. */
7108 mask = fuller_mask;
7109 goto unop;
7111 case NOT:
7112 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7113 same as the XOR case above. Ensure that the constant we form is not
7114 wider than the mode of X. */
7116 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7117 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7118 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7119 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
7120 < GET_MODE_BITSIZE (GET_MODE (x)))
7121 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
7123 temp = GEN_INT (mask << INTVAL (XEXP (XEXP (x, 0), 1)));
7124 temp = gen_binary (XOR, GET_MODE (x), XEXP (XEXP (x, 0), 0), temp);
7125 x = gen_binary (LSHIFTRT, GET_MODE (x), temp, XEXP (XEXP (x, 0), 1));
7127 return force_to_mode (x, mode, mask, reg, next_select);
7130 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7131 use the full mask inside the NOT. */
7132 mask = fuller_mask;
7134 unop:
7135 op0 = gen_lowpart_for_combine (op_mode,
7136 force_to_mode (XEXP (x, 0), mode, mask,
7137 reg, next_select));
7138 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7139 x = simplify_gen_unary (code, op_mode, op0, op_mode);
7140 break;
7142 case NE:
7143 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7144 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7145 which is equal to STORE_FLAG_VALUE. */
7146 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
7147 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
7148 && nonzero_bits (XEXP (x, 0), mode) == STORE_FLAG_VALUE)
7149 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7151 break;
7153 case IF_THEN_ELSE:
7154 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7155 written in a narrower mode. We play it safe and do not do so. */
7157 SUBST (XEXP (x, 1),
7158 gen_lowpart_for_combine (GET_MODE (x),
7159 force_to_mode (XEXP (x, 1), mode,
7160 mask, reg, next_select)));
7161 SUBST (XEXP (x, 2),
7162 gen_lowpart_for_combine (GET_MODE (x),
7163 force_to_mode (XEXP (x, 2), mode,
7164 mask, reg,next_select)));
7165 break;
7167 default:
7168 break;
7171 /* Ensure we return a value of the proper mode. */
7172 return gen_lowpart_for_combine (mode, x);
7175 /* Return nonzero if X is an expression that has one of two values depending on
7176 whether some other value is zero or nonzero. In that case, we return the
7177 value that is being tested, *PTRUE is set to the value if the rtx being
7178 returned has a nonzero value, and *PFALSE is set to the other alternative.
7180 If we return zero, we set *PTRUE and *PFALSE to X. */
7182 static rtx
7183 if_then_else_cond (x, ptrue, pfalse)
7184 rtx x;
7185 rtx *ptrue, *pfalse;
7187 enum machine_mode mode = GET_MODE (x);
7188 enum rtx_code code = GET_CODE (x);
7189 rtx cond0, cond1, true0, true1, false0, false1;
7190 unsigned HOST_WIDE_INT nz;
7192 /* If we are comparing a value against zero, we are done. */
7193 if ((code == NE || code == EQ)
7194 && GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) == 0)
7196 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
7197 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
7198 return XEXP (x, 0);
7201 /* If this is a unary operation whose operand has one of two values, apply
7202 our opcode to compute those values. */
7203 else if (GET_RTX_CLASS (code) == '1'
7204 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
7206 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
7207 *pfalse = simplify_gen_unary (code, mode, false0,
7208 GET_MODE (XEXP (x, 0)));
7209 return cond0;
7212 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7213 make can't possibly match and would suppress other optimizations. */
7214 else if (code == COMPARE)
7217 /* If this is a binary operation, see if either side has only one of two
7218 values. If either one does or if both do and they are conditional on
7219 the same value, compute the new true and false values. */
7220 else if (GET_RTX_CLASS (code) == 'c' || GET_RTX_CLASS (code) == '2'
7221 || GET_RTX_CLASS (code) == '<')
7223 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
7224 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
7226 if ((cond0 != 0 || cond1 != 0)
7227 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
7229 /* If if_then_else_cond returned zero, then true/false are the
7230 same rtl. We must copy one of them to prevent invalid rtl
7231 sharing. */
7232 if (cond0 == 0)
7233 true0 = copy_rtx (true0);
7234 else if (cond1 == 0)
7235 true1 = copy_rtx (true1);
7237 *ptrue = gen_binary (code, mode, true0, true1);
7238 *pfalse = gen_binary (code, mode, false0, false1);
7239 return cond0 ? cond0 : cond1;
7242 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7243 operands is zero when the other is non-zero, and vice-versa,
7244 and STORE_FLAG_VALUE is 1 or -1. */
7246 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7247 && (code == PLUS || code == IOR || code == XOR || code == MINUS
7248 || code == UMAX)
7249 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7251 rtx op0 = XEXP (XEXP (x, 0), 1);
7252 rtx op1 = XEXP (XEXP (x, 1), 1);
7254 cond0 = XEXP (XEXP (x, 0), 0);
7255 cond1 = XEXP (XEXP (x, 1), 0);
7257 if (GET_RTX_CLASS (GET_CODE (cond0)) == '<'
7258 && GET_RTX_CLASS (GET_CODE (cond1)) == '<'
7259 && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7260 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7261 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7262 || ((swap_condition (GET_CODE (cond0))
7263 == combine_reversed_comparison_code (cond1))
7264 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7265 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7266 && ! side_effects_p (x))
7268 *ptrue = gen_binary (MULT, mode, op0, const_true_rtx);
7269 *pfalse = gen_binary (MULT, mode,
7270 (code == MINUS
7271 ? simplify_gen_unary (NEG, mode, op1,
7272 mode)
7273 : op1),
7274 const_true_rtx);
7275 return cond0;
7279 /* Similarly for MULT, AND and UMIN, except that for these the result
7280 is always zero. */
7281 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7282 && (code == MULT || code == AND || code == UMIN)
7283 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7285 cond0 = XEXP (XEXP (x, 0), 0);
7286 cond1 = XEXP (XEXP (x, 1), 0);
7288 if (GET_RTX_CLASS (GET_CODE (cond0)) == '<'
7289 && GET_RTX_CLASS (GET_CODE (cond1)) == '<'
7290 && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7291 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7292 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7293 || ((swap_condition (GET_CODE (cond0))
7294 == combine_reversed_comparison_code (cond1))
7295 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7296 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7297 && ! side_effects_p (x))
7299 *ptrue = *pfalse = const0_rtx;
7300 return cond0;
7305 else if (code == IF_THEN_ELSE)
7307 /* If we have IF_THEN_ELSE already, extract the condition and
7308 canonicalize it if it is NE or EQ. */
7309 cond0 = XEXP (x, 0);
7310 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
7311 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
7312 return XEXP (cond0, 0);
7313 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
7315 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
7316 return XEXP (cond0, 0);
7318 else
7319 return cond0;
7322 /* If X is a SUBREG, we can narrow both the true and false values
7323 if the inner expression, if there is a condition. */
7324 else if (code == SUBREG
7325 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
7326 &true0, &false0)))
7328 *ptrue = simplify_gen_subreg (mode, true0,
7329 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7330 *pfalse = simplify_gen_subreg (mode, false0,
7331 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7333 return cond0;
7336 /* If X is a constant, this isn't special and will cause confusions
7337 if we treat it as such. Likewise if it is equivalent to a constant. */
7338 else if (CONSTANT_P (x)
7339 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
7342 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7343 will be least confusing to the rest of the compiler. */
7344 else if (mode == BImode)
7346 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
7347 return x;
7350 /* If X is known to be either 0 or -1, those are the true and
7351 false values when testing X. */
7352 else if (x == constm1_rtx || x == const0_rtx
7353 || (mode != VOIDmode
7354 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
7356 *ptrue = constm1_rtx, *pfalse = const0_rtx;
7357 return x;
7360 /* Likewise for 0 or a single bit. */
7361 else if (mode != VOIDmode
7362 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7363 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
7365 *ptrue = GEN_INT (trunc_int_for_mode (nz, mode)), *pfalse = const0_rtx;
7366 return x;
7369 /* Otherwise fail; show no condition with true and false values the same. */
7370 *ptrue = *pfalse = x;
7371 return 0;
7374 /* Return the value of expression X given the fact that condition COND
7375 is known to be true when applied to REG as its first operand and VAL
7376 as its second. X is known to not be shared and so can be modified in
7377 place.
7379 We only handle the simplest cases, and specifically those cases that
7380 arise with IF_THEN_ELSE expressions. */
7382 static rtx
7383 known_cond (x, cond, reg, val)
7384 rtx x;
7385 enum rtx_code cond;
7386 rtx reg, val;
7388 enum rtx_code code = GET_CODE (x);
7389 rtx temp;
7390 const char *fmt;
7391 int i, j;
7393 if (side_effects_p (x))
7394 return x;
7396 /* If either operand of the condition is a floating point value,
7397 then we have to avoid collapsing an EQ comparison. */
7398 if (cond == EQ
7399 && rtx_equal_p (x, reg)
7400 && ! FLOAT_MODE_P (GET_MODE (x))
7401 && ! FLOAT_MODE_P (GET_MODE (val)))
7402 return val;
7404 if (cond == UNEQ && rtx_equal_p (x, reg))
7405 return val;
7407 /* If X is (abs REG) and we know something about REG's relationship
7408 with zero, we may be able to simplify this. */
7410 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
7411 switch (cond)
7413 case GE: case GT: case EQ:
7414 return XEXP (x, 0);
7415 case LT: case LE:
7416 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
7417 XEXP (x, 0),
7418 GET_MODE (XEXP (x, 0)));
7419 default:
7420 break;
7423 /* The only other cases we handle are MIN, MAX, and comparisons if the
7424 operands are the same as REG and VAL. */
7426 else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == 'c')
7428 if (rtx_equal_p (XEXP (x, 0), val))
7429 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
7431 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
7433 if (GET_RTX_CLASS (code) == '<')
7435 if (comparison_dominates_p (cond, code))
7436 return const_true_rtx;
7438 code = combine_reversed_comparison_code (x);
7439 if (code != UNKNOWN
7440 && comparison_dominates_p (cond, code))
7441 return const0_rtx;
7442 else
7443 return x;
7445 else if (code == SMAX || code == SMIN
7446 || code == UMIN || code == UMAX)
7448 int unsignedp = (code == UMIN || code == UMAX);
7450 /* Do not reverse the condition when it is NE or EQ.
7451 This is because we cannot conclude anything about
7452 the value of 'SMAX (x, y)' when x is not equal to y,
7453 but we can when x equals y. */
7454 if ((code == SMAX || code == UMAX)
7455 && ! (cond == EQ || cond == NE))
7456 cond = reverse_condition (cond);
7458 switch (cond)
7460 case GE: case GT:
7461 return unsignedp ? x : XEXP (x, 1);
7462 case LE: case LT:
7463 return unsignedp ? x : XEXP (x, 0);
7464 case GEU: case GTU:
7465 return unsignedp ? XEXP (x, 1) : x;
7466 case LEU: case LTU:
7467 return unsignedp ? XEXP (x, 0) : x;
7468 default:
7469 break;
7474 else if (code == SUBREG)
7476 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
7477 rtx new, r = known_cond (SUBREG_REG (x), cond, reg, val);
7479 if (SUBREG_REG (x) != r)
7481 /* We must simplify subreg here, before we lose track of the
7482 original inner_mode. */
7483 new = simplify_subreg (GET_MODE (x), r,
7484 inner_mode, SUBREG_BYTE (x));
7485 if (new)
7486 return new;
7487 else
7488 SUBST (SUBREG_REG (x), r);
7491 return x;
7493 /* We don't have to handle SIGN_EXTEND here, because even in the
7494 case of replacing something with a modeless CONST_INT, a
7495 CONST_INT is already (supposed to be) a valid sign extension for
7496 its narrower mode, which implies it's already properly
7497 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
7498 story is different. */
7499 else if (code == ZERO_EXTEND)
7501 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
7502 rtx new, r = known_cond (XEXP (x, 0), cond, reg, val);
7504 if (XEXP (x, 0) != r)
7506 /* We must simplify the zero_extend here, before we lose
7507 track of the original inner_mode. */
7508 new = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
7509 r, inner_mode);
7510 if (new)
7511 return new;
7512 else
7513 SUBST (XEXP (x, 0), r);
7516 return x;
7519 fmt = GET_RTX_FORMAT (code);
7520 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7522 if (fmt[i] == 'e')
7523 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
7524 else if (fmt[i] == 'E')
7525 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7526 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
7527 cond, reg, val));
7530 return x;
7533 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
7534 assignment as a field assignment. */
7536 static int
7537 rtx_equal_for_field_assignment_p (x, y)
7538 rtx x;
7539 rtx y;
7541 if (x == y || rtx_equal_p (x, y))
7542 return 1;
7544 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
7545 return 0;
7547 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
7548 Note that all SUBREGs of MEM are paradoxical; otherwise they
7549 would have been rewritten. */
7550 if (GET_CODE (x) == MEM && GET_CODE (y) == SUBREG
7551 && GET_CODE (SUBREG_REG (y)) == MEM
7552 && rtx_equal_p (SUBREG_REG (y),
7553 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (y)), x)))
7554 return 1;
7556 if (GET_CODE (y) == MEM && GET_CODE (x) == SUBREG
7557 && GET_CODE (SUBREG_REG (x)) == MEM
7558 && rtx_equal_p (SUBREG_REG (x),
7559 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (x)), y)))
7560 return 1;
7562 /* We used to see if get_last_value of X and Y were the same but that's
7563 not correct. In one direction, we'll cause the assignment to have
7564 the wrong destination and in the case, we'll import a register into this
7565 insn that might have already have been dead. So fail if none of the
7566 above cases are true. */
7567 return 0;
7570 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
7571 Return that assignment if so.
7573 We only handle the most common cases. */
7575 static rtx
7576 make_field_assignment (x)
7577 rtx x;
7579 rtx dest = SET_DEST (x);
7580 rtx src = SET_SRC (x);
7581 rtx assign;
7582 rtx rhs, lhs;
7583 HOST_WIDE_INT c1;
7584 HOST_WIDE_INT pos;
7585 unsigned HOST_WIDE_INT len;
7586 rtx other;
7587 enum machine_mode mode;
7589 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
7590 a clear of a one-bit field. We will have changed it to
7591 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
7592 for a SUBREG. */
7594 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
7595 && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
7596 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
7597 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7599 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7600 1, 1, 1, 0);
7601 if (assign != 0)
7602 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7603 return x;
7606 else if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
7607 && subreg_lowpart_p (XEXP (src, 0))
7608 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
7609 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
7610 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
7611 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
7612 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7614 assign = make_extraction (VOIDmode, dest, 0,
7615 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
7616 1, 1, 1, 0);
7617 if (assign != 0)
7618 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7619 return x;
7622 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
7623 one-bit field. */
7624 else if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
7625 && XEXP (XEXP (src, 0), 0) == const1_rtx
7626 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7628 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7629 1, 1, 1, 0);
7630 if (assign != 0)
7631 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
7632 return x;
7635 /* The other case we handle is assignments into a constant-position
7636 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
7637 a mask that has all one bits except for a group of zero bits and
7638 OTHER is known to have zeros where C1 has ones, this is such an
7639 assignment. Compute the position and length from C1. Shift OTHER
7640 to the appropriate position, force it to the required mode, and
7641 make the extraction. Check for the AND in both operands. */
7643 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
7644 return x;
7646 rhs = expand_compound_operation (XEXP (src, 0));
7647 lhs = expand_compound_operation (XEXP (src, 1));
7649 if (GET_CODE (rhs) == AND
7650 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
7651 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
7652 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
7653 else if (GET_CODE (lhs) == AND
7654 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
7655 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
7656 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
7657 else
7658 return x;
7660 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
7661 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
7662 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
7663 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
7664 return x;
7666 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
7667 if (assign == 0)
7668 return x;
7670 /* The mode to use for the source is the mode of the assignment, or of
7671 what is inside a possible STRICT_LOW_PART. */
7672 mode = (GET_CODE (assign) == STRICT_LOW_PART
7673 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
7675 /* Shift OTHER right POS places and make it the source, restricting it
7676 to the proper length and mode. */
7678 src = force_to_mode (simplify_shift_const (NULL_RTX, LSHIFTRT,
7679 GET_MODE (src), other, pos),
7680 mode,
7681 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
7682 ? ~(unsigned HOST_WIDE_INT) 0
7683 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7684 dest, 0);
7686 return gen_rtx_SET (VOIDmode, assign, src);
7689 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
7690 if so. */
7692 static rtx
7693 apply_distributive_law (x)
7694 rtx x;
7696 enum rtx_code code = GET_CODE (x);
7697 rtx lhs, rhs, other;
7698 rtx tem;
7699 enum rtx_code inner_code;
7701 /* Distributivity is not true for floating point.
7702 It can change the value. So don't do it.
7703 -- rms and moshier@world.std.com. */
7704 if (FLOAT_MODE_P (GET_MODE (x)))
7705 return x;
7707 /* The outer operation can only be one of the following: */
7708 if (code != IOR && code != AND && code != XOR
7709 && code != PLUS && code != MINUS)
7710 return x;
7712 lhs = XEXP (x, 0), rhs = XEXP (x, 1);
7714 /* If either operand is a primitive we can't do anything, so get out
7715 fast. */
7716 if (GET_RTX_CLASS (GET_CODE (lhs)) == 'o'
7717 || GET_RTX_CLASS (GET_CODE (rhs)) == 'o')
7718 return x;
7720 lhs = expand_compound_operation (lhs);
7721 rhs = expand_compound_operation (rhs);
7722 inner_code = GET_CODE (lhs);
7723 if (inner_code != GET_CODE (rhs))
7724 return x;
7726 /* See if the inner and outer operations distribute. */
7727 switch (inner_code)
7729 case LSHIFTRT:
7730 case ASHIFTRT:
7731 case AND:
7732 case IOR:
7733 /* These all distribute except over PLUS. */
7734 if (code == PLUS || code == MINUS)
7735 return x;
7736 break;
7738 case MULT:
7739 if (code != PLUS && code != MINUS)
7740 return x;
7741 break;
7743 case ASHIFT:
7744 /* This is also a multiply, so it distributes over everything. */
7745 break;
7747 case SUBREG:
7748 /* Non-paradoxical SUBREGs distributes over all operations, provided
7749 the inner modes and byte offsets are the same, this is an extraction
7750 of a low-order part, we don't convert an fp operation to int or
7751 vice versa, and we would not be converting a single-word
7752 operation into a multi-word operation. The latter test is not
7753 required, but it prevents generating unneeded multi-word operations.
7754 Some of the previous tests are redundant given the latter test, but
7755 are retained because they are required for correctness.
7757 We produce the result slightly differently in this case. */
7759 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
7760 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
7761 || ! subreg_lowpart_p (lhs)
7762 || (GET_MODE_CLASS (GET_MODE (lhs))
7763 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
7764 || (GET_MODE_SIZE (GET_MODE (lhs))
7765 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
7766 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD)
7767 return x;
7769 tem = gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
7770 SUBREG_REG (lhs), SUBREG_REG (rhs));
7771 return gen_lowpart_for_combine (GET_MODE (x), tem);
7773 default:
7774 return x;
7777 /* Set LHS and RHS to the inner operands (A and B in the example
7778 above) and set OTHER to the common operand (C in the example).
7779 These is only one way to do this unless the inner operation is
7780 commutative. */
7781 if (GET_RTX_CLASS (inner_code) == 'c'
7782 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
7783 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
7784 else if (GET_RTX_CLASS (inner_code) == 'c'
7785 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
7786 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
7787 else if (GET_RTX_CLASS (inner_code) == 'c'
7788 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
7789 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
7790 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
7791 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
7792 else
7793 return x;
7795 /* Form the new inner operation, seeing if it simplifies first. */
7796 tem = gen_binary (code, GET_MODE (x), lhs, rhs);
7798 /* There is one exception to the general way of distributing:
7799 (a ^ b) | (a ^ c) -> (~a) & (b ^ c) */
7800 if (code == XOR && inner_code == IOR)
7802 inner_code = AND;
7803 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
7806 /* We may be able to continuing distributing the result, so call
7807 ourselves recursively on the inner operation before forming the
7808 outer operation, which we return. */
7809 return gen_binary (inner_code, GET_MODE (x),
7810 apply_distributive_law (tem), other);
7813 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
7814 in MODE.
7816 Return an equivalent form, if different from X. Otherwise, return X. If
7817 X is zero, we are to always construct the equivalent form. */
7819 static rtx
7820 simplify_and_const_int (x, mode, varop, constop)
7821 rtx x;
7822 enum machine_mode mode;
7823 rtx varop;
7824 unsigned HOST_WIDE_INT constop;
7826 unsigned HOST_WIDE_INT nonzero;
7827 int i;
7829 /* Simplify VAROP knowing that we will be only looking at some of the
7830 bits in it.
7832 Note by passing in CONSTOP, we guarantee that the bits not set in
7833 CONSTOP are not significant and will never be examined. We must
7834 ensure that is the case by explicitly masking out those bits
7835 before returning. */
7836 varop = force_to_mode (varop, mode, constop, NULL_RTX, 0);
7838 /* If VAROP is a CLOBBER, we will fail so return it. */
7839 if (GET_CODE (varop) == CLOBBER)
7840 return varop;
7842 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
7843 to VAROP and return the new constant. */
7844 if (GET_CODE (varop) == CONST_INT)
7845 return GEN_INT (trunc_int_for_mode (INTVAL (varop) & constop, mode));
7847 /* See what bits may be nonzero in VAROP. Unlike the general case of
7848 a call to nonzero_bits, here we don't care about bits outside
7849 MODE. */
7851 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
7853 /* Turn off all bits in the constant that are known to already be zero.
7854 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
7855 which is tested below. */
7857 constop &= nonzero;
7859 /* If we don't have any bits left, return zero. */
7860 if (constop == 0)
7861 return const0_rtx;
7863 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
7864 a power of two, we can replace this with a ASHIFT. */
7865 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
7866 && (i = exact_log2 (constop)) >= 0)
7867 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
7869 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
7870 or XOR, then try to apply the distributive law. This may eliminate
7871 operations if either branch can be simplified because of the AND.
7872 It may also make some cases more complex, but those cases probably
7873 won't match a pattern either with or without this. */
7875 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
7876 return
7877 gen_lowpart_for_combine
7878 (mode,
7879 apply_distributive_law
7880 (gen_binary (GET_CODE (varop), GET_MODE (varop),
7881 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
7882 XEXP (varop, 0), constop),
7883 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
7884 XEXP (varop, 1), constop))));
7886 /* If VAROP is PLUS, and the constant is a mask of low bite, distribute
7887 the AND and see if one of the operands simplifies to zero. If so, we
7888 may eliminate it. */
7890 if (GET_CODE (varop) == PLUS
7891 && exact_log2 (constop + 1) >= 0)
7893 rtx o0, o1;
7895 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
7896 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
7897 if (o0 == const0_rtx)
7898 return o1;
7899 if (o1 == const0_rtx)
7900 return o0;
7903 /* Get VAROP in MODE. Try to get a SUBREG if not. Don't make a new SUBREG
7904 if we already had one (just check for the simplest cases). */
7905 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
7906 && GET_MODE (XEXP (x, 0)) == mode
7907 && SUBREG_REG (XEXP (x, 0)) == varop)
7908 varop = XEXP (x, 0);
7909 else
7910 varop = gen_lowpart_for_combine (mode, varop);
7912 /* If we can't make the SUBREG, try to return what we were given. */
7913 if (GET_CODE (varop) == CLOBBER)
7914 return x ? x : varop;
7916 /* If we are only masking insignificant bits, return VAROP. */
7917 if (constop == nonzero)
7918 x = varop;
7919 else
7921 /* Otherwise, return an AND. */
7922 constop = trunc_int_for_mode (constop, mode);
7923 /* See how much, if any, of X we can use. */
7924 if (x == 0 || GET_CODE (x) != AND || GET_MODE (x) != mode)
7925 x = gen_binary (AND, mode, varop, GEN_INT (constop));
7927 else
7929 if (GET_CODE (XEXP (x, 1)) != CONST_INT
7930 || (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) != constop)
7931 SUBST (XEXP (x, 1), GEN_INT (constop));
7933 SUBST (XEXP (x, 0), varop);
7937 return x;
7940 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
7941 We don't let nonzero_bits recur into num_sign_bit_copies, because that
7942 is less useful. We can't allow both, because that results in exponential
7943 run time recursion. There is a nullstone testcase that triggered
7944 this. This macro avoids accidental uses of num_sign_bit_copies. */
7945 #define num_sign_bit_copies()
7947 /* Given an expression, X, compute which bits in X can be non-zero.
7948 We don't care about bits outside of those defined in MODE.
7950 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
7951 a shift, AND, or zero_extract, we can do better. */
7953 static unsigned HOST_WIDE_INT
7954 nonzero_bits (x, mode)
7955 rtx x;
7956 enum machine_mode mode;
7958 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
7959 unsigned HOST_WIDE_INT inner_nz;
7960 enum rtx_code code;
7961 unsigned int mode_width = GET_MODE_BITSIZE (mode);
7962 rtx tem;
7964 /* For floating-point values, assume all bits are needed. */
7965 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode))
7966 return nonzero;
7968 /* If X is wider than MODE, use its mode instead. */
7969 if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
7971 mode = GET_MODE (x);
7972 nonzero = GET_MODE_MASK (mode);
7973 mode_width = GET_MODE_BITSIZE (mode);
7976 if (mode_width > HOST_BITS_PER_WIDE_INT)
7977 /* Our only callers in this case look for single bit values. So
7978 just return the mode mask. Those tests will then be false. */
7979 return nonzero;
7981 #ifndef WORD_REGISTER_OPERATIONS
7982 /* If MODE is wider than X, but both are a single word for both the host
7983 and target machines, we can compute this from which bits of the
7984 object might be nonzero in its own mode, taking into account the fact
7985 that on many CISC machines, accessing an object in a wider mode
7986 causes the high-order bits to become undefined. So they are
7987 not known to be zero. */
7989 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
7990 && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
7991 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7992 && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
7994 nonzero &= nonzero_bits (x, GET_MODE (x));
7995 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
7996 return nonzero;
7998 #endif
8000 code = GET_CODE (x);
8001 switch (code)
8003 case REG:
8004 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
8005 /* If pointers extend unsigned and this is a pointer in Pmode, say that
8006 all the bits above ptr_mode are known to be zero. */
8007 if (POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
8008 && REG_POINTER (x))
8009 nonzero &= GET_MODE_MASK (ptr_mode);
8010 #endif
8012 /* Include declared information about alignment of pointers. */
8013 /* ??? We don't properly preserve REG_POINTER changes across
8014 pointer-to-integer casts, so we can't trust it except for
8015 things that we know must be pointers. See execute/960116-1.c. */
8016 if ((x == stack_pointer_rtx
8017 || x == frame_pointer_rtx
8018 || x == arg_pointer_rtx)
8019 && REGNO_POINTER_ALIGN (REGNO (x)))
8021 unsigned HOST_WIDE_INT alignment
8022 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
8024 #ifdef PUSH_ROUNDING
8025 /* If PUSH_ROUNDING is defined, it is possible for the
8026 stack to be momentarily aligned only to that amount,
8027 so we pick the least alignment. */
8028 if (x == stack_pointer_rtx && PUSH_ARGS)
8029 alignment = MIN (PUSH_ROUNDING (1), alignment);
8030 #endif
8032 nonzero &= ~(alignment - 1);
8035 /* If X is a register whose nonzero bits value is current, use it.
8036 Otherwise, if X is a register whose value we can find, use that
8037 value. Otherwise, use the previously-computed global nonzero bits
8038 for this register. */
8040 if (reg_last_set_value[REGNO (x)] != 0
8041 && (reg_last_set_mode[REGNO (x)] == mode
8042 || (GET_MODE_CLASS (reg_last_set_mode[REGNO (x)]) == MODE_INT
8043 && GET_MODE_CLASS (mode) == MODE_INT))
8044 && (reg_last_set_label[REGNO (x)] == label_tick
8045 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8046 && REG_N_SETS (REGNO (x)) == 1
8047 && ! REGNO_REG_SET_P (BASIC_BLOCK (0)->global_live_at_start,
8048 REGNO (x))))
8049 && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
8050 return reg_last_set_nonzero_bits[REGNO (x)] & nonzero;
8052 tem = get_last_value (x);
8054 if (tem)
8056 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8057 /* If X is narrower than MODE and TEM is a non-negative
8058 constant that would appear negative in the mode of X,
8059 sign-extend it for use in reg_nonzero_bits because some
8060 machines (maybe most) will actually do the sign-extension
8061 and this is the conservative approach.
8063 ??? For 2.5, try to tighten up the MD files in this regard
8064 instead of this kludge. */
8066 if (GET_MODE_BITSIZE (GET_MODE (x)) < mode_width
8067 && GET_CODE (tem) == CONST_INT
8068 && INTVAL (tem) > 0
8069 && 0 != (INTVAL (tem)
8070 & ((HOST_WIDE_INT) 1
8071 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
8072 tem = GEN_INT (INTVAL (tem)
8073 | ((HOST_WIDE_INT) (-1)
8074 << GET_MODE_BITSIZE (GET_MODE (x))));
8075 #endif
8076 return nonzero_bits (tem, mode) & nonzero;
8078 else if (nonzero_sign_valid && reg_nonzero_bits[REGNO (x)])
8080 unsigned HOST_WIDE_INT mask = reg_nonzero_bits[REGNO (x)];
8082 if (GET_MODE_BITSIZE (GET_MODE (x)) < mode_width)
8083 /* We don't know anything about the upper bits. */
8084 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
8085 return nonzero & mask;
8087 else
8088 return nonzero;
8090 case CONST_INT:
8091 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8092 /* If X is negative in MODE, sign-extend the value. */
8093 if (INTVAL (x) > 0 && mode_width < BITS_PER_WORD
8094 && 0 != (INTVAL (x) & ((HOST_WIDE_INT) 1 << (mode_width - 1))))
8095 return (INTVAL (x) | ((HOST_WIDE_INT) (-1) << mode_width));
8096 #endif
8098 return INTVAL (x);
8100 case MEM:
8101 #ifdef LOAD_EXTEND_OP
8102 /* In many, if not most, RISC machines, reading a byte from memory
8103 zeros the rest of the register. Noticing that fact saves a lot
8104 of extra zero-extends. */
8105 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
8106 nonzero &= GET_MODE_MASK (GET_MODE (x));
8107 #endif
8108 break;
8110 case EQ: case NE:
8111 case UNEQ: case LTGT:
8112 case GT: case GTU: case UNGT:
8113 case LT: case LTU: case UNLT:
8114 case GE: case GEU: case UNGE:
8115 case LE: case LEU: case UNLE:
8116 case UNORDERED: case ORDERED:
8118 /* If this produces an integer result, we know which bits are set.
8119 Code here used to clear bits outside the mode of X, but that is
8120 now done above. */
8122 if (GET_MODE_CLASS (mode) == MODE_INT
8123 && mode_width <= HOST_BITS_PER_WIDE_INT)
8124 nonzero = STORE_FLAG_VALUE;
8125 break;
8127 case NEG:
8128 #if 0
8129 /* Disabled to avoid exponential mutual recursion between nonzero_bits
8130 and num_sign_bit_copies. */
8131 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
8132 == GET_MODE_BITSIZE (GET_MODE (x)))
8133 nonzero = 1;
8134 #endif
8136 if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
8137 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
8138 break;
8140 case ABS:
8141 #if 0
8142 /* Disabled to avoid exponential mutual recursion between nonzero_bits
8143 and num_sign_bit_copies. */
8144 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
8145 == GET_MODE_BITSIZE (GET_MODE (x)))
8146 nonzero = 1;
8147 #endif
8148 break;
8150 case TRUNCATE:
8151 nonzero &= (nonzero_bits (XEXP (x, 0), mode) & GET_MODE_MASK (mode));
8152 break;
8154 case ZERO_EXTEND:
8155 nonzero &= nonzero_bits (XEXP (x, 0), mode);
8156 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
8157 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
8158 break;
8160 case SIGN_EXTEND:
8161 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
8162 Otherwise, show all the bits in the outer mode but not the inner
8163 may be non-zero. */
8164 inner_nz = nonzero_bits (XEXP (x, 0), mode);
8165 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
8167 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
8168 if (inner_nz
8169 & (((HOST_WIDE_INT) 1
8170 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
8171 inner_nz |= (GET_MODE_MASK (mode)
8172 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
8175 nonzero &= inner_nz;
8176 break;
8178 case AND:
8179 nonzero &= (nonzero_bits (XEXP (x, 0), mode)
8180 & nonzero_bits (XEXP (x, 1), mode));
8181 break;
8183 case XOR: case IOR:
8184 case UMIN: case UMAX: case SMIN: case SMAX:
8186 unsigned HOST_WIDE_INT nonzero0 = nonzero_bits (XEXP (x, 0), mode);
8188 /* Don't call nonzero_bits for the second time if it cannot change
8189 anything. */
8190 if ((nonzero & nonzero0) != nonzero)
8191 nonzero &= (nonzero0 | nonzero_bits (XEXP (x, 1), mode));
8193 break;
8195 case PLUS: case MINUS:
8196 case MULT:
8197 case DIV: case UDIV:
8198 case MOD: case UMOD:
8199 /* We can apply the rules of arithmetic to compute the number of
8200 high- and low-order zero bits of these operations. We start by
8201 computing the width (position of the highest-order non-zero bit)
8202 and the number of low-order zero bits for each value. */
8204 unsigned HOST_WIDE_INT nz0 = nonzero_bits (XEXP (x, 0), mode);
8205 unsigned HOST_WIDE_INT nz1 = nonzero_bits (XEXP (x, 1), mode);
8206 int width0 = floor_log2 (nz0) + 1;
8207 int width1 = floor_log2 (nz1) + 1;
8208 int low0 = floor_log2 (nz0 & -nz0);
8209 int low1 = floor_log2 (nz1 & -nz1);
8210 HOST_WIDE_INT op0_maybe_minusp
8211 = (nz0 & ((HOST_WIDE_INT) 1 << (mode_width - 1)));
8212 HOST_WIDE_INT op1_maybe_minusp
8213 = (nz1 & ((HOST_WIDE_INT) 1 << (mode_width - 1)));
8214 unsigned int result_width = mode_width;
8215 int result_low = 0;
8217 switch (code)
8219 case PLUS:
8220 result_width = MAX (width0, width1) + 1;
8221 result_low = MIN (low0, low1);
8222 break;
8223 case MINUS:
8224 result_low = MIN (low0, low1);
8225 break;
8226 case MULT:
8227 result_width = width0 + width1;
8228 result_low = low0 + low1;
8229 break;
8230 case DIV:
8231 if (width1 == 0)
8232 break;
8233 if (! op0_maybe_minusp && ! op1_maybe_minusp)
8234 result_width = width0;
8235 break;
8236 case UDIV:
8237 if (width1 == 0)
8238 break;
8239 result_width = width0;
8240 break;
8241 case MOD:
8242 if (width1 == 0)
8243 break;
8244 if (! op0_maybe_minusp && ! op1_maybe_minusp)
8245 result_width = MIN (width0, width1);
8246 result_low = MIN (low0, low1);
8247 break;
8248 case UMOD:
8249 if (width1 == 0)
8250 break;
8251 result_width = MIN (width0, width1);
8252 result_low = MIN (low0, low1);
8253 break;
8254 default:
8255 abort ();
8258 if (result_width < mode_width)
8259 nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1;
8261 if (result_low > 0)
8262 nonzero &= ~(((HOST_WIDE_INT) 1 << result_low) - 1);
8264 #ifdef POINTERS_EXTEND_UNSIGNED
8265 /* If pointers extend unsigned and this is an addition or subtraction
8266 to a pointer in Pmode, all the bits above ptr_mode are known to be
8267 zero. */
8268 if (POINTERS_EXTEND_UNSIGNED > 0 && GET_MODE (x) == Pmode
8269 && (code == PLUS || code == MINUS)
8270 && GET_CODE (XEXP (x, 0)) == REG && REG_POINTER (XEXP (x, 0)))
8271 nonzero &= GET_MODE_MASK (ptr_mode);
8272 #endif
8274 break;
8276 case ZERO_EXTRACT:
8277 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8278 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8279 nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
8280 break;
8282 case SUBREG:
8283 /* If this is a SUBREG formed for a promoted variable that has
8284 been zero-extended, we know that at least the high-order bits
8285 are zero, though others might be too. */
8287 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x))
8288 nonzero = (GET_MODE_MASK (GET_MODE (x))
8289 & nonzero_bits (SUBREG_REG (x), GET_MODE (x)));
8291 /* If the inner mode is a single word for both the host and target
8292 machines, we can compute this from which bits of the inner
8293 object might be nonzero. */
8294 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
8295 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
8296 <= HOST_BITS_PER_WIDE_INT))
8298 nonzero &= nonzero_bits (SUBREG_REG (x), mode);
8300 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
8301 /* If this is a typical RISC machine, we only have to worry
8302 about the way loads are extended. */
8303 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
8304 ? (((nonzero
8305 & (((unsigned HOST_WIDE_INT) 1
8306 << (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) - 1))))
8307 != 0))
8308 : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) != ZERO_EXTEND)
8309 #endif
8311 /* On many CISC machines, accessing an object in a wider mode
8312 causes the high-order bits to become undefined. So they are
8313 not known to be zero. */
8314 if (GET_MODE_SIZE (GET_MODE (x))
8315 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8316 nonzero |= (GET_MODE_MASK (GET_MODE (x))
8317 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
8320 break;
8322 case ASHIFTRT:
8323 case LSHIFTRT:
8324 case ASHIFT:
8325 case ROTATE:
8326 /* The nonzero bits are in two classes: any bits within MODE
8327 that aren't in GET_MODE (x) are always significant. The rest of the
8328 nonzero bits are those that are significant in the operand of
8329 the shift when shifted the appropriate number of bits. This
8330 shows that high-order bits are cleared by the right shift and
8331 low-order bits by left shifts. */
8332 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8333 && INTVAL (XEXP (x, 1)) >= 0
8334 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8336 enum machine_mode inner_mode = GET_MODE (x);
8337 unsigned int width = GET_MODE_BITSIZE (inner_mode);
8338 int count = INTVAL (XEXP (x, 1));
8339 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
8340 unsigned HOST_WIDE_INT op_nonzero = nonzero_bits (XEXP (x, 0), mode);
8341 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
8342 unsigned HOST_WIDE_INT outer = 0;
8344 if (mode_width > width)
8345 outer = (op_nonzero & nonzero & ~mode_mask);
8347 if (code == LSHIFTRT)
8348 inner >>= count;
8349 else if (code == ASHIFTRT)
8351 inner >>= count;
8353 /* If the sign bit may have been nonzero before the shift, we
8354 need to mark all the places it could have been copied to
8355 by the shift as possibly nonzero. */
8356 if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
8357 inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
8359 else if (code == ASHIFT)
8360 inner <<= count;
8361 else
8362 inner = ((inner << (count % width)
8363 | (inner >> (width - (count % width)))) & mode_mask);
8365 nonzero &= (outer | inner);
8367 break;
8369 case FFS:
8370 /* This is at most the number of bits in the mode. */
8371 nonzero = ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width) + 1)) - 1;
8372 break;
8374 case IF_THEN_ELSE:
8375 nonzero &= (nonzero_bits (XEXP (x, 1), mode)
8376 | nonzero_bits (XEXP (x, 2), mode));
8377 break;
8379 default:
8380 break;
8383 return nonzero;
8386 /* See the macro definition above. */
8387 #undef num_sign_bit_copies
8389 /* Return the number of bits at the high-order end of X that are known to
8390 be equal to the sign bit. X will be used in mode MODE; if MODE is
8391 VOIDmode, X will be used in its own mode. The returned value will always
8392 be between 1 and the number of bits in MODE. */
8394 static unsigned int
8395 num_sign_bit_copies (x, mode)
8396 rtx x;
8397 enum machine_mode mode;
8399 enum rtx_code code = GET_CODE (x);
8400 unsigned int bitwidth;
8401 int num0, num1, result;
8402 unsigned HOST_WIDE_INT nonzero;
8403 rtx tem;
8405 /* If we weren't given a mode, use the mode of X. If the mode is still
8406 VOIDmode, we don't know anything. Likewise if one of the modes is
8407 floating-point. */
8409 if (mode == VOIDmode)
8410 mode = GET_MODE (x);
8412 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x)))
8413 return 1;
8415 bitwidth = GET_MODE_BITSIZE (mode);
8417 /* For a smaller object, just ignore the high bits. */
8418 if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
8420 num0 = num_sign_bit_copies (x, GET_MODE (x));
8421 return MAX (1,
8422 num0 - (int) (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth));
8425 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
8427 #ifndef WORD_REGISTER_OPERATIONS
8428 /* If this machine does not do all register operations on the entire
8429 register and MODE is wider than the mode of X, we can say nothing
8430 at all about the high-order bits. */
8431 return 1;
8432 #else
8433 /* Likewise on machines that do, if the mode of the object is smaller
8434 than a word and loads of that size don't sign extend, we can say
8435 nothing about the high order bits. */
8436 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
8437 #ifdef LOAD_EXTEND_OP
8438 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
8439 #endif
8441 return 1;
8442 #endif
8445 switch (code)
8447 case REG:
8449 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
8450 /* If pointers extend signed and this is a pointer in Pmode, say that
8451 all the bits above ptr_mode are known to be sign bit copies. */
8452 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode && mode == Pmode
8453 && REG_POINTER (x))
8454 return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
8455 #endif
8457 if (reg_last_set_value[REGNO (x)] != 0
8458 && reg_last_set_mode[REGNO (x)] == mode
8459 && (reg_last_set_label[REGNO (x)] == label_tick
8460 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8461 && REG_N_SETS (REGNO (x)) == 1
8462 && ! REGNO_REG_SET_P (BASIC_BLOCK (0)->global_live_at_start,
8463 REGNO (x))))
8464 && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
8465 return reg_last_set_sign_bit_copies[REGNO (x)];
8467 tem = get_last_value (x);
8468 if (tem != 0)
8469 return num_sign_bit_copies (tem, mode);
8471 if (nonzero_sign_valid && reg_sign_bit_copies[REGNO (x)] != 0
8472 && GET_MODE_BITSIZE (GET_MODE (x)) == bitwidth)
8473 return reg_sign_bit_copies[REGNO (x)];
8474 break;
8476 case MEM:
8477 #ifdef LOAD_EXTEND_OP
8478 /* Some RISC machines sign-extend all loads of smaller than a word. */
8479 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
8480 return MAX (1, ((int) bitwidth
8481 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1));
8482 #endif
8483 break;
8485 case CONST_INT:
8486 /* If the constant is negative, take its 1's complement and remask.
8487 Then see how many zero bits we have. */
8488 nonzero = INTVAL (x) & GET_MODE_MASK (mode);
8489 if (bitwidth <= HOST_BITS_PER_WIDE_INT
8490 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8491 nonzero = (~nonzero) & GET_MODE_MASK (mode);
8493 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
8495 case SUBREG:
8496 /* If this is a SUBREG for a promoted object that is sign-extended
8497 and we are looking at it in a wider mode, we know that at least the
8498 high-order bits are known to be sign bit copies. */
8500 if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
8502 num0 = num_sign_bit_copies (SUBREG_REG (x), mode);
8503 return MAX ((int) bitwidth
8504 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1,
8505 num0);
8508 /* For a smaller object, just ignore the high bits. */
8509 if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
8511 num0 = num_sign_bit_copies (SUBREG_REG (x), VOIDmode);
8512 return MAX (1, (num0
8513 - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
8514 - bitwidth)));
8517 #ifdef WORD_REGISTER_OPERATIONS
8518 #ifdef LOAD_EXTEND_OP
8519 /* For paradoxical SUBREGs on machines where all register operations
8520 affect the entire register, just look inside. Note that we are
8521 passing MODE to the recursive call, so the number of sign bit copies
8522 will remain relative to that mode, not the inner mode. */
8524 /* This works only if loads sign extend. Otherwise, if we get a
8525 reload for the inner part, it may be loaded from the stack, and
8526 then we lose all sign bit copies that existed before the store
8527 to the stack. */
8529 if ((GET_MODE_SIZE (GET_MODE (x))
8530 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8531 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND)
8532 return num_sign_bit_copies (SUBREG_REG (x), mode);
8533 #endif
8534 #endif
8535 break;
8537 case SIGN_EXTRACT:
8538 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
8539 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
8540 break;
8542 case SIGN_EXTEND:
8543 return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
8544 + num_sign_bit_copies (XEXP (x, 0), VOIDmode));
8546 case TRUNCATE:
8547 /* For a smaller object, just ignore the high bits. */
8548 num0 = num_sign_bit_copies (XEXP (x, 0), VOIDmode);
8549 return MAX (1, (num0 - (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
8550 - bitwidth)));
8552 case NOT:
8553 return num_sign_bit_copies (XEXP (x, 0), mode);
8555 case ROTATE: case ROTATERT:
8556 /* If we are rotating left by a number of bits less than the number
8557 of sign bit copies, we can just subtract that amount from the
8558 number. */
8559 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8560 && INTVAL (XEXP (x, 1)) >= 0
8561 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
8563 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8564 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
8565 : (int) bitwidth - INTVAL (XEXP (x, 1))));
8567 break;
8569 case NEG:
8570 /* In general, this subtracts one sign bit copy. But if the value
8571 is known to be positive, the number of sign bit copies is the
8572 same as that of the input. Finally, if the input has just one bit
8573 that might be nonzero, all the bits are copies of the sign bit. */
8574 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8575 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8576 return num0 > 1 ? num0 - 1 : 1;
8578 nonzero = nonzero_bits (XEXP (x, 0), mode);
8579 if (nonzero == 1)
8580 return bitwidth;
8582 if (num0 > 1
8583 && (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
8584 num0--;
8586 return num0;
8588 case IOR: case AND: case XOR:
8589 case SMIN: case SMAX: case UMIN: case UMAX:
8590 /* Logical operations will preserve the number of sign-bit copies.
8591 MIN and MAX operations always return one of the operands. */
8592 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8593 num1 = num_sign_bit_copies (XEXP (x, 1), mode);
8594 return MIN (num0, num1);
8596 case PLUS: case MINUS:
8597 /* For addition and subtraction, we can have a 1-bit carry. However,
8598 if we are subtracting 1 from a positive number, there will not
8599 be such a carry. Furthermore, if the positive number is known to
8600 be 0 or 1, we know the result is either -1 or 0. */
8602 if (code == PLUS && XEXP (x, 1) == constm1_rtx
8603 && bitwidth <= HOST_BITS_PER_WIDE_INT)
8605 nonzero = nonzero_bits (XEXP (x, 0), mode);
8606 if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
8607 return (nonzero == 1 || nonzero == 0 ? bitwidth
8608 : bitwidth - floor_log2 (nonzero) - 1);
8611 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8612 num1 = num_sign_bit_copies (XEXP (x, 1), mode);
8613 result = MAX (1, MIN (num0, num1) - 1);
8615 #ifdef POINTERS_EXTEND_UNSIGNED
8616 /* If pointers extend signed and this is an addition or subtraction
8617 to a pointer in Pmode, all the bits above ptr_mode are known to be
8618 sign bit copies. */
8619 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
8620 && (code == PLUS || code == MINUS)
8621 && GET_CODE (XEXP (x, 0)) == REG && REG_POINTER (XEXP (x, 0)))
8622 result = MAX ((int) (GET_MODE_BITSIZE (Pmode)
8623 - GET_MODE_BITSIZE (ptr_mode) + 1),
8624 result);
8625 #endif
8626 return result;
8628 case MULT:
8629 /* The number of bits of the product is the sum of the number of
8630 bits of both terms. However, unless one of the terms if known
8631 to be positive, we must allow for an additional bit since negating
8632 a negative number can remove one sign bit copy. */
8634 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8635 num1 = num_sign_bit_copies (XEXP (x, 1), mode);
8637 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
8638 if (result > 0
8639 && (bitwidth > HOST_BITS_PER_WIDE_INT
8640 || (((nonzero_bits (XEXP (x, 0), mode)
8641 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8642 && ((nonzero_bits (XEXP (x, 1), mode)
8643 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))))
8644 result--;
8646 return MAX (1, result);
8648 case UDIV:
8649 /* The result must be <= the first operand. If the first operand
8650 has the high bit set, we know nothing about the number of sign
8651 bit copies. */
8652 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8653 return 1;
8654 else if ((nonzero_bits (XEXP (x, 0), mode)
8655 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8656 return 1;
8657 else
8658 return num_sign_bit_copies (XEXP (x, 0), mode);
8660 case UMOD:
8661 /* The result must be <= the second operand. */
8662 return num_sign_bit_copies (XEXP (x, 1), mode);
8664 case DIV:
8665 /* Similar to unsigned division, except that we have to worry about
8666 the case where the divisor is negative, in which case we have
8667 to add 1. */
8668 result = num_sign_bit_copies (XEXP (x, 0), mode);
8669 if (result > 1
8670 && (bitwidth > HOST_BITS_PER_WIDE_INT
8671 || (nonzero_bits (XEXP (x, 1), mode)
8672 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
8673 result--;
8675 return result;
8677 case MOD:
8678 result = num_sign_bit_copies (XEXP (x, 1), mode);
8679 if (result > 1
8680 && (bitwidth > HOST_BITS_PER_WIDE_INT
8681 || (nonzero_bits (XEXP (x, 1), mode)
8682 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
8683 result--;
8685 return result;
8687 case ASHIFTRT:
8688 /* Shifts by a constant add to the number of bits equal to the
8689 sign bit. */
8690 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8691 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8692 && INTVAL (XEXP (x, 1)) > 0)
8693 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
8695 return num0;
8697 case ASHIFT:
8698 /* Left shifts destroy copies. */
8699 if (GET_CODE (XEXP (x, 1)) != CONST_INT
8700 || INTVAL (XEXP (x, 1)) < 0
8701 || INTVAL (XEXP (x, 1)) >= (int) bitwidth)
8702 return 1;
8704 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8705 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
8707 case IF_THEN_ELSE:
8708 num0 = num_sign_bit_copies (XEXP (x, 1), mode);
8709 num1 = num_sign_bit_copies (XEXP (x, 2), mode);
8710 return MIN (num0, num1);
8712 case EQ: case NE: case GE: case GT: case LE: case LT:
8713 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
8714 case GEU: case GTU: case LEU: case LTU:
8715 case UNORDERED: case ORDERED:
8716 /* If the constant is negative, take its 1's complement and remask.
8717 Then see how many zero bits we have. */
8718 nonzero = STORE_FLAG_VALUE;
8719 if (bitwidth <= HOST_BITS_PER_WIDE_INT
8720 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8721 nonzero = (~nonzero) & GET_MODE_MASK (mode);
8723 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
8724 break;
8726 default:
8727 break;
8730 /* If we haven't been able to figure it out by one of the above rules,
8731 see if some of the high-order bits are known to be zero. If so,
8732 count those bits and return one less than that amount. If we can't
8733 safely compute the mask for this mode, always return BITWIDTH. */
8735 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8736 return 1;
8738 nonzero = nonzero_bits (x, mode);
8739 return (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))
8740 ? 1 : bitwidth - floor_log2 (nonzero) - 1);
8743 /* Return the number of "extended" bits there are in X, when interpreted
8744 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
8745 unsigned quantities, this is the number of high-order zero bits.
8746 For signed quantities, this is the number of copies of the sign bit
8747 minus 1. In both case, this function returns the number of "spare"
8748 bits. For example, if two quantities for which this function returns
8749 at least 1 are added, the addition is known not to overflow.
8751 This function will always return 0 unless called during combine, which
8752 implies that it must be called from a define_split. */
8754 unsigned int
8755 extended_count (x, mode, unsignedp)
8756 rtx x;
8757 enum machine_mode mode;
8758 int unsignedp;
8760 if (nonzero_sign_valid == 0)
8761 return 0;
8763 return (unsignedp
8764 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8765 ? (GET_MODE_BITSIZE (mode) - 1
8766 - floor_log2 (nonzero_bits (x, mode)))
8767 : 0)
8768 : num_sign_bit_copies (x, mode) - 1);
8771 /* This function is called from `simplify_shift_const' to merge two
8772 outer operations. Specifically, we have already found that we need
8773 to perform operation *POP0 with constant *PCONST0 at the outermost
8774 position. We would now like to also perform OP1 with constant CONST1
8775 (with *POP0 being done last).
8777 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
8778 the resulting operation. *PCOMP_P is set to 1 if we would need to
8779 complement the innermost operand, otherwise it is unchanged.
8781 MODE is the mode in which the operation will be done. No bits outside
8782 the width of this mode matter. It is assumed that the width of this mode
8783 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
8785 If *POP0 or OP1 are NIL, it means no operation is required. Only NEG, PLUS,
8786 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
8787 result is simply *PCONST0.
8789 If the resulting operation cannot be expressed as one operation, we
8790 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
8792 static int
8793 merge_outer_ops (pop0, pconst0, op1, const1, mode, pcomp_p)
8794 enum rtx_code *pop0;
8795 HOST_WIDE_INT *pconst0;
8796 enum rtx_code op1;
8797 HOST_WIDE_INT const1;
8798 enum machine_mode mode;
8799 int *pcomp_p;
8801 enum rtx_code op0 = *pop0;
8802 HOST_WIDE_INT const0 = *pconst0;
8804 const0 &= GET_MODE_MASK (mode);
8805 const1 &= GET_MODE_MASK (mode);
8807 /* If OP0 is an AND, clear unimportant bits in CONST1. */
8808 if (op0 == AND)
8809 const1 &= const0;
8811 /* If OP0 or OP1 is NIL, this is easy. Similarly if they are the same or
8812 if OP0 is SET. */
8814 if (op1 == NIL || op0 == SET)
8815 return 1;
8817 else if (op0 == NIL)
8818 op0 = op1, const0 = const1;
8820 else if (op0 == op1)
8822 switch (op0)
8824 case AND:
8825 const0 &= const1;
8826 break;
8827 case IOR:
8828 const0 |= const1;
8829 break;
8830 case XOR:
8831 const0 ^= const1;
8832 break;
8833 case PLUS:
8834 const0 += const1;
8835 break;
8836 case NEG:
8837 op0 = NIL;
8838 break;
8839 default:
8840 break;
8844 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
8845 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
8846 return 0;
8848 /* If the two constants aren't the same, we can't do anything. The
8849 remaining six cases can all be done. */
8850 else if (const0 != const1)
8851 return 0;
8853 else
8854 switch (op0)
8856 case IOR:
8857 if (op1 == AND)
8858 /* (a & b) | b == b */
8859 op0 = SET;
8860 else /* op1 == XOR */
8861 /* (a ^ b) | b == a | b */
8863 break;
8865 case XOR:
8866 if (op1 == AND)
8867 /* (a & b) ^ b == (~a) & b */
8868 op0 = AND, *pcomp_p = 1;
8869 else /* op1 == IOR */
8870 /* (a | b) ^ b == a & ~b */
8871 op0 = AND, *pconst0 = ~const0;
8872 break;
8874 case AND:
8875 if (op1 == IOR)
8876 /* (a | b) & b == b */
8877 op0 = SET;
8878 else /* op1 == XOR */
8879 /* (a ^ b) & b) == (~a) & b */
8880 *pcomp_p = 1;
8881 break;
8882 default:
8883 break;
8886 /* Check for NO-OP cases. */
8887 const0 &= GET_MODE_MASK (mode);
8888 if (const0 == 0
8889 && (op0 == IOR || op0 == XOR || op0 == PLUS))
8890 op0 = NIL;
8891 else if (const0 == 0 && op0 == AND)
8892 op0 = SET;
8893 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
8894 && op0 == AND)
8895 op0 = NIL;
8897 /* ??? Slightly redundant with the above mask, but not entirely.
8898 Moving this above means we'd have to sign-extend the mode mask
8899 for the final test. */
8900 const0 = trunc_int_for_mode (const0, mode);
8902 *pop0 = op0;
8903 *pconst0 = const0;
8905 return 1;
8908 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
8909 The result of the shift is RESULT_MODE. X, if non-zero, is an expression
8910 that we started with.
8912 The shift is normally computed in the widest mode we find in VAROP, as
8913 long as it isn't a different number of words than RESULT_MODE. Exceptions
8914 are ASHIFTRT and ROTATE, which are always done in their original mode, */
8916 static rtx
8917 simplify_shift_const (x, code, result_mode, varop, orig_count)
8918 rtx x;
8919 enum rtx_code code;
8920 enum machine_mode result_mode;
8921 rtx varop;
8922 int orig_count;
8924 enum rtx_code orig_code = code;
8925 unsigned int count;
8926 int signed_count;
8927 enum machine_mode mode = result_mode;
8928 enum machine_mode shift_mode, tmode;
8929 unsigned int mode_words
8930 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
8931 /* We form (outer_op (code varop count) (outer_const)). */
8932 enum rtx_code outer_op = NIL;
8933 HOST_WIDE_INT outer_const = 0;
8934 rtx const_rtx;
8935 int complement_p = 0;
8936 rtx new;
8938 /* Make sure and truncate the "natural" shift on the way in. We don't
8939 want to do this inside the loop as it makes it more difficult to
8940 combine shifts. */
8941 #ifdef SHIFT_COUNT_TRUNCATED
8942 if (SHIFT_COUNT_TRUNCATED)
8943 orig_count &= GET_MODE_BITSIZE (mode) - 1;
8944 #endif
8946 /* If we were given an invalid count, don't do anything except exactly
8947 what was requested. */
8949 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
8951 if (x)
8952 return x;
8954 return gen_rtx_fmt_ee (code, mode, varop, GEN_INT (orig_count));
8957 count = orig_count;
8959 /* Unless one of the branches of the `if' in this loop does a `continue',
8960 we will `break' the loop after the `if'. */
8962 while (count != 0)
8964 /* If we have an operand of (clobber (const_int 0)), just return that
8965 value. */
8966 if (GET_CODE (varop) == CLOBBER)
8967 return varop;
8969 /* If we discovered we had to complement VAROP, leave. Making a NOT
8970 here would cause an infinite loop. */
8971 if (complement_p)
8972 break;
8974 /* Convert ROTATERT to ROTATE. */
8975 if (code == ROTATERT)
8976 code = ROTATE, count = GET_MODE_BITSIZE (result_mode) - count;
8978 /* We need to determine what mode we will do the shift in. If the
8979 shift is a right shift or a ROTATE, we must always do it in the mode
8980 it was originally done in. Otherwise, we can do it in MODE, the
8981 widest mode encountered. */
8982 shift_mode
8983 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
8984 ? result_mode : mode);
8986 /* Handle cases where the count is greater than the size of the mode
8987 minus 1. For ASHIFT, use the size minus one as the count (this can
8988 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
8989 take the count modulo the size. For other shifts, the result is
8990 zero.
8992 Since these shifts are being produced by the compiler by combining
8993 multiple operations, each of which are defined, we know what the
8994 result is supposed to be. */
8996 if (count > GET_MODE_BITSIZE (shift_mode) - 1)
8998 if (code == ASHIFTRT)
8999 count = GET_MODE_BITSIZE (shift_mode) - 1;
9000 else if (code == ROTATE || code == ROTATERT)
9001 count %= GET_MODE_BITSIZE (shift_mode);
9002 else
9004 /* We can't simply return zero because there may be an
9005 outer op. */
9006 varop = const0_rtx;
9007 count = 0;
9008 break;
9012 /* An arithmetic right shift of a quantity known to be -1 or 0
9013 is a no-op. */
9014 if (code == ASHIFTRT
9015 && (num_sign_bit_copies (varop, shift_mode)
9016 == GET_MODE_BITSIZE (shift_mode)))
9018 count = 0;
9019 break;
9022 /* If we are doing an arithmetic right shift and discarding all but
9023 the sign bit copies, this is equivalent to doing a shift by the
9024 bitsize minus one. Convert it into that shift because it will often
9025 allow other simplifications. */
9027 if (code == ASHIFTRT
9028 && (count + num_sign_bit_copies (varop, shift_mode)
9029 >= GET_MODE_BITSIZE (shift_mode)))
9030 count = GET_MODE_BITSIZE (shift_mode) - 1;
9032 /* We simplify the tests below and elsewhere by converting
9033 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
9034 `make_compound_operation' will convert it to a ASHIFTRT for
9035 those machines (such as VAX) that don't have a LSHIFTRT. */
9036 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9037 && code == ASHIFTRT
9038 && ((nonzero_bits (varop, shift_mode)
9039 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
9040 == 0))
9041 code = LSHIFTRT;
9043 switch (GET_CODE (varop))
9045 case SIGN_EXTEND:
9046 case ZERO_EXTEND:
9047 case SIGN_EXTRACT:
9048 case ZERO_EXTRACT:
9049 new = expand_compound_operation (varop);
9050 if (new != varop)
9052 varop = new;
9053 continue;
9055 break;
9057 case MEM:
9058 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
9059 minus the width of a smaller mode, we can do this with a
9060 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
9061 if ((code == ASHIFTRT || code == LSHIFTRT)
9062 && ! mode_dependent_address_p (XEXP (varop, 0))
9063 && ! MEM_VOLATILE_P (varop)
9064 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9065 MODE_INT, 1)) != BLKmode)
9067 new = adjust_address_nv (varop, tmode,
9068 BYTES_BIG_ENDIAN ? 0
9069 : count / BITS_PER_UNIT);
9071 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9072 : ZERO_EXTEND, mode, new);
9073 count = 0;
9074 continue;
9076 break;
9078 case USE:
9079 /* Similar to the case above, except that we can only do this if
9080 the resulting mode is the same as that of the underlying
9081 MEM and adjust the address depending on the *bits* endianness
9082 because of the way that bit-field extract insns are defined. */
9083 if ((code == ASHIFTRT || code == LSHIFTRT)
9084 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9085 MODE_INT, 1)) != BLKmode
9086 && tmode == GET_MODE (XEXP (varop, 0)))
9088 if (BITS_BIG_ENDIAN)
9089 new = XEXP (varop, 0);
9090 else
9092 new = copy_rtx (XEXP (varop, 0));
9093 SUBST (XEXP (new, 0),
9094 plus_constant (XEXP (new, 0),
9095 count / BITS_PER_UNIT));
9098 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9099 : ZERO_EXTEND, mode, new);
9100 count = 0;
9101 continue;
9103 break;
9105 case SUBREG:
9106 /* If VAROP is a SUBREG, strip it as long as the inner operand has
9107 the same number of words as what we've seen so far. Then store
9108 the widest mode in MODE. */
9109 if (subreg_lowpart_p (varop)
9110 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9111 > GET_MODE_SIZE (GET_MODE (varop)))
9112 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9113 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
9114 == mode_words))
9116 varop = SUBREG_REG (varop);
9117 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
9118 mode = GET_MODE (varop);
9119 continue;
9121 break;
9123 case MULT:
9124 /* Some machines use MULT instead of ASHIFT because MULT
9125 is cheaper. But it is still better on those machines to
9126 merge two shifts into one. */
9127 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9128 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9130 varop
9131 = gen_binary (ASHIFT, GET_MODE (varop), XEXP (varop, 0),
9132 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
9133 continue;
9135 break;
9137 case UDIV:
9138 /* Similar, for when divides are cheaper. */
9139 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9140 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9142 varop
9143 = gen_binary (LSHIFTRT, GET_MODE (varop), XEXP (varop, 0),
9144 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
9145 continue;
9147 break;
9149 case ASHIFTRT:
9150 /* If we are extracting just the sign bit of an arithmetic
9151 right shift, that shift is not needed. However, the sign
9152 bit of a wider mode may be different from what would be
9153 interpreted as the sign bit in a narrower mode, so, if
9154 the result is narrower, don't discard the shift. */
9155 if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1
9156 && (GET_MODE_BITSIZE (result_mode)
9157 >= GET_MODE_BITSIZE (GET_MODE (varop))))
9159 varop = XEXP (varop, 0);
9160 continue;
9163 /* ... fall through ... */
9165 case LSHIFTRT:
9166 case ASHIFT:
9167 case ROTATE:
9168 /* Here we have two nested shifts. The result is usually the
9169 AND of a new shift with a mask. We compute the result below. */
9170 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9171 && INTVAL (XEXP (varop, 1)) >= 0
9172 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
9173 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9174 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
9176 enum rtx_code first_code = GET_CODE (varop);
9177 unsigned int first_count = INTVAL (XEXP (varop, 1));
9178 unsigned HOST_WIDE_INT mask;
9179 rtx mask_rtx;
9181 /* We have one common special case. We can't do any merging if
9182 the inner code is an ASHIFTRT of a smaller mode. However, if
9183 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
9184 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
9185 we can convert it to
9186 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
9187 This simplifies certain SIGN_EXTEND operations. */
9188 if (code == ASHIFT && first_code == ASHIFTRT
9189 && (GET_MODE_BITSIZE (result_mode)
9190 - GET_MODE_BITSIZE (GET_MODE (varop))) == count)
9192 /* C3 has the low-order C1 bits zero. */
9194 mask = (GET_MODE_MASK (mode)
9195 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
9197 varop = simplify_and_const_int (NULL_RTX, result_mode,
9198 XEXP (varop, 0), mask);
9199 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
9200 varop, count);
9201 count = first_count;
9202 code = ASHIFTRT;
9203 continue;
9206 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
9207 than C1 high-order bits equal to the sign bit, we can convert
9208 this to either an ASHIFT or a ASHIFTRT depending on the
9209 two counts.
9211 We cannot do this if VAROP's mode is not SHIFT_MODE. */
9213 if (code == ASHIFTRT && first_code == ASHIFT
9214 && GET_MODE (varop) == shift_mode
9215 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
9216 > first_count))
9218 varop = XEXP (varop, 0);
9220 signed_count = count - first_count;
9221 if (signed_count < 0)
9222 count = -signed_count, code = ASHIFT;
9223 else
9224 count = signed_count;
9226 continue;
9229 /* There are some cases we can't do. If CODE is ASHIFTRT,
9230 we can only do this if FIRST_CODE is also ASHIFTRT.
9232 We can't do the case when CODE is ROTATE and FIRST_CODE is
9233 ASHIFTRT.
9235 If the mode of this shift is not the mode of the outer shift,
9236 we can't do this if either shift is a right shift or ROTATE.
9238 Finally, we can't do any of these if the mode is too wide
9239 unless the codes are the same.
9241 Handle the case where the shift codes are the same
9242 first. */
9244 if (code == first_code)
9246 if (GET_MODE (varop) != result_mode
9247 && (code == ASHIFTRT || code == LSHIFTRT
9248 || code == ROTATE))
9249 break;
9251 count += first_count;
9252 varop = XEXP (varop, 0);
9253 continue;
9256 if (code == ASHIFTRT
9257 || (code == ROTATE && first_code == ASHIFTRT)
9258 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
9259 || (GET_MODE (varop) != result_mode
9260 && (first_code == ASHIFTRT || first_code == LSHIFTRT
9261 || first_code == ROTATE
9262 || code == ROTATE)))
9263 break;
9265 /* To compute the mask to apply after the shift, shift the
9266 nonzero bits of the inner shift the same way the
9267 outer shift will. */
9269 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
9271 mask_rtx
9272 = simplify_binary_operation (code, result_mode, mask_rtx,
9273 GEN_INT (count));
9275 /* Give up if we can't compute an outer operation to use. */
9276 if (mask_rtx == 0
9277 || GET_CODE (mask_rtx) != CONST_INT
9278 || ! merge_outer_ops (&outer_op, &outer_const, AND,
9279 INTVAL (mask_rtx),
9280 result_mode, &complement_p))
9281 break;
9283 /* If the shifts are in the same direction, we add the
9284 counts. Otherwise, we subtract them. */
9285 signed_count = count;
9286 if ((code == ASHIFTRT || code == LSHIFTRT)
9287 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
9288 signed_count += first_count;
9289 else
9290 signed_count -= first_count;
9292 /* If COUNT is positive, the new shift is usually CODE,
9293 except for the two exceptions below, in which case it is
9294 FIRST_CODE. If the count is negative, FIRST_CODE should
9295 always be used */
9296 if (signed_count > 0
9297 && ((first_code == ROTATE && code == ASHIFT)
9298 || (first_code == ASHIFTRT && code == LSHIFTRT)))
9299 code = first_code, count = signed_count;
9300 else if (signed_count < 0)
9301 code = first_code, count = -signed_count;
9302 else
9303 count = signed_count;
9305 varop = XEXP (varop, 0);
9306 continue;
9309 /* If we have (A << B << C) for any shift, we can convert this to
9310 (A << C << B). This wins if A is a constant. Only try this if
9311 B is not a constant. */
9313 else if (GET_CODE (varop) == code
9314 && GET_CODE (XEXP (varop, 1)) != CONST_INT
9315 && 0 != (new
9316 = simplify_binary_operation (code, mode,
9317 XEXP (varop, 0),
9318 GEN_INT (count))))
9320 varop = gen_rtx_fmt_ee (code, mode, new, XEXP (varop, 1));
9321 count = 0;
9322 continue;
9324 break;
9326 case NOT:
9327 /* Make this fit the case below. */
9328 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
9329 GEN_INT (GET_MODE_MASK (mode)));
9330 continue;
9332 case IOR:
9333 case AND:
9334 case XOR:
9335 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
9336 with C the size of VAROP - 1 and the shift is logical if
9337 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9338 we have an (le X 0) operation. If we have an arithmetic shift
9339 and STORE_FLAG_VALUE is 1 or we have a logical shift with
9340 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
9342 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
9343 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
9344 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9345 && (code == LSHIFTRT || code == ASHIFTRT)
9346 && count == GET_MODE_BITSIZE (GET_MODE (varop)) - 1
9347 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9349 count = 0;
9350 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
9351 const0_rtx);
9353 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9354 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9356 continue;
9359 /* If we have (shift (logical)), move the logical to the outside
9360 to allow it to possibly combine with another logical and the
9361 shift to combine with another shift. This also canonicalizes to
9362 what a ZERO_EXTRACT looks like. Also, some machines have
9363 (and (shift)) insns. */
9365 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9366 && (new = simplify_binary_operation (code, result_mode,
9367 XEXP (varop, 1),
9368 GEN_INT (count))) != 0
9369 && GET_CODE (new) == CONST_INT
9370 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
9371 INTVAL (new), result_mode, &complement_p))
9373 varop = XEXP (varop, 0);
9374 continue;
9377 /* If we can't do that, try to simplify the shift in each arm of the
9378 logical expression, make a new logical expression, and apply
9379 the inverse distributive law. */
9381 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9382 XEXP (varop, 0), count);
9383 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9384 XEXP (varop, 1), count);
9386 varop = gen_binary (GET_CODE (varop), shift_mode, lhs, rhs);
9387 varop = apply_distributive_law (varop);
9389 count = 0;
9391 break;
9393 case EQ:
9394 /* convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
9395 says that the sign bit can be tested, FOO has mode MODE, C is
9396 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
9397 that may be nonzero. */
9398 if (code == LSHIFTRT
9399 && XEXP (varop, 1) == const0_rtx
9400 && GET_MODE (XEXP (varop, 0)) == result_mode
9401 && count == GET_MODE_BITSIZE (result_mode) - 1
9402 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9403 && ((STORE_FLAG_VALUE
9404 & ((HOST_WIDE_INT) 1
9405 < (GET_MODE_BITSIZE (result_mode) - 1))))
9406 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9407 && merge_outer_ops (&outer_op, &outer_const, XOR,
9408 (HOST_WIDE_INT) 1, result_mode,
9409 &complement_p))
9411 varop = XEXP (varop, 0);
9412 count = 0;
9413 continue;
9415 break;
9417 case NEG:
9418 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
9419 than the number of bits in the mode is equivalent to A. */
9420 if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1
9421 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
9423 varop = XEXP (varop, 0);
9424 count = 0;
9425 continue;
9428 /* NEG commutes with ASHIFT since it is multiplication. Move the
9429 NEG outside to allow shifts to combine. */
9430 if (code == ASHIFT
9431 && merge_outer_ops (&outer_op, &outer_const, NEG,
9432 (HOST_WIDE_INT) 0, result_mode,
9433 &complement_p))
9435 varop = XEXP (varop, 0);
9436 continue;
9438 break;
9440 case PLUS:
9441 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
9442 is one less than the number of bits in the mode is
9443 equivalent to (xor A 1). */
9444 if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1
9445 && XEXP (varop, 1) == constm1_rtx
9446 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9447 && merge_outer_ops (&outer_op, &outer_const, XOR,
9448 (HOST_WIDE_INT) 1, result_mode,
9449 &complement_p))
9451 count = 0;
9452 varop = XEXP (varop, 0);
9453 continue;
9456 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9457 that might be nonzero in BAR are those being shifted out and those
9458 bits are known zero in FOO, we can replace the PLUS with FOO.
9459 Similarly in the other operand order. This code occurs when
9460 we are computing the size of a variable-size array. */
9462 if ((code == ASHIFTRT || code == LSHIFTRT)
9463 && count < HOST_BITS_PER_WIDE_INT
9464 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
9465 && (nonzero_bits (XEXP (varop, 1), result_mode)
9466 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
9468 varop = XEXP (varop, 0);
9469 continue;
9471 else if ((code == ASHIFTRT || code == LSHIFTRT)
9472 && count < HOST_BITS_PER_WIDE_INT
9473 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9474 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9475 >> count)
9476 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9477 & nonzero_bits (XEXP (varop, 1),
9478 result_mode)))
9480 varop = XEXP (varop, 1);
9481 continue;
9484 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9485 if (code == ASHIFT
9486 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9487 && (new = simplify_binary_operation (ASHIFT, result_mode,
9488 XEXP (varop, 1),
9489 GEN_INT (count))) != 0
9490 && GET_CODE (new) == CONST_INT
9491 && merge_outer_ops (&outer_op, &outer_const, PLUS,
9492 INTVAL (new), result_mode, &complement_p))
9494 varop = XEXP (varop, 0);
9495 continue;
9497 break;
9499 case MINUS:
9500 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9501 with C the size of VAROP - 1 and the shift is logical if
9502 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9503 we have a (gt X 0) operation. If the shift is arithmetic with
9504 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9505 we have a (neg (gt X 0)) operation. */
9507 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9508 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9509 && count == GET_MODE_BITSIZE (GET_MODE (varop)) - 1
9510 && (code == LSHIFTRT || code == ASHIFTRT)
9511 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9512 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
9513 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9515 count = 0;
9516 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
9517 const0_rtx);
9519 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9520 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9522 continue;
9524 break;
9526 case TRUNCATE:
9527 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9528 if the truncate does not affect the value. */
9529 if (code == LSHIFTRT
9530 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9531 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9532 && (INTVAL (XEXP (XEXP (varop, 0), 1))
9533 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9534 - GET_MODE_BITSIZE (GET_MODE (varop)))))
9536 rtx varop_inner = XEXP (varop, 0);
9538 varop_inner
9539 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
9540 XEXP (varop_inner, 0),
9541 GEN_INT
9542 (count + INTVAL (XEXP (varop_inner, 1))));
9543 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
9544 count = 0;
9545 continue;
9547 break;
9549 default:
9550 break;
9553 break;
9556 /* We need to determine what mode to do the shift in. If the shift is
9557 a right shift or ROTATE, we must always do it in the mode it was
9558 originally done in. Otherwise, we can do it in MODE, the widest mode
9559 encountered. The code we care about is that of the shift that will
9560 actually be done, not the shift that was originally requested. */
9561 shift_mode
9562 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9563 ? result_mode : mode);
9565 /* We have now finished analyzing the shift. The result should be
9566 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9567 OUTER_OP is non-NIL, it is an operation that needs to be applied
9568 to the result of the shift. OUTER_CONST is the relevant constant,
9569 but we must turn off all bits turned off in the shift.
9571 If we were passed a value for X, see if we can use any pieces of
9572 it. If not, make new rtx. */
9574 if (x && GET_RTX_CLASS (GET_CODE (x)) == '2'
9575 && GET_CODE (XEXP (x, 1)) == CONST_INT
9576 && INTVAL (XEXP (x, 1)) == count)
9577 const_rtx = XEXP (x, 1);
9578 else
9579 const_rtx = GEN_INT (count);
9581 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
9582 && GET_MODE (XEXP (x, 0)) == shift_mode
9583 && SUBREG_REG (XEXP (x, 0)) == varop)
9584 varop = XEXP (x, 0);
9585 else if (GET_MODE (varop) != shift_mode)
9586 varop = gen_lowpart_for_combine (shift_mode, varop);
9588 /* If we can't make the SUBREG, try to return what we were given. */
9589 if (GET_CODE (varop) == CLOBBER)
9590 return x ? x : varop;
9592 new = simplify_binary_operation (code, shift_mode, varop, const_rtx);
9593 if (new != 0)
9594 x = new;
9595 else
9596 x = gen_rtx_fmt_ee (code, shift_mode, varop, const_rtx);
9598 /* If we have an outer operation and we just made a shift, it is
9599 possible that we could have simplified the shift were it not
9600 for the outer operation. So try to do the simplification
9601 recursively. */
9603 if (outer_op != NIL && GET_CODE (x) == code
9604 && GET_CODE (XEXP (x, 1)) == CONST_INT)
9605 x = simplify_shift_const (x, code, shift_mode, XEXP (x, 0),
9606 INTVAL (XEXP (x, 1)));
9608 /* If we were doing a LSHIFTRT in a wider mode than it was originally,
9609 turn off all the bits that the shift would have turned off. */
9610 if (orig_code == LSHIFTRT && result_mode != shift_mode)
9611 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
9612 GET_MODE_MASK (result_mode) >> orig_count);
9614 /* Do the remainder of the processing in RESULT_MODE. */
9615 x = gen_lowpart_for_combine (result_mode, x);
9617 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9618 operation. */
9619 if (complement_p)
9620 x =simplify_gen_unary (NOT, result_mode, x, result_mode);
9622 if (outer_op != NIL)
9624 if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
9625 outer_const = trunc_int_for_mode (outer_const, result_mode);
9627 if (outer_op == AND)
9628 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
9629 else if (outer_op == SET)
9630 /* This means that we have determined that the result is
9631 equivalent to a constant. This should be rare. */
9632 x = GEN_INT (outer_const);
9633 else if (GET_RTX_CLASS (outer_op) == '1')
9634 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
9635 else
9636 x = gen_binary (outer_op, result_mode, x, GEN_INT (outer_const));
9639 return x;
9642 /* Like recog, but we receive the address of a pointer to a new pattern.
9643 We try to match the rtx that the pointer points to.
9644 If that fails, we may try to modify or replace the pattern,
9645 storing the replacement into the same pointer object.
9647 Modifications include deletion or addition of CLOBBERs.
9649 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9650 the CLOBBERs are placed.
9652 The value is the final insn code from the pattern ultimately matched,
9653 or -1. */
9655 static int
9656 recog_for_combine (pnewpat, insn, pnotes)
9657 rtx *pnewpat;
9658 rtx insn;
9659 rtx *pnotes;
9661 rtx pat = *pnewpat;
9662 int insn_code_number;
9663 int num_clobbers_to_add = 0;
9664 int i;
9665 rtx notes = 0;
9666 rtx dummy_insn;
9668 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9669 we use to indicate that something didn't match. If we find such a
9670 thing, force rejection. */
9671 if (GET_CODE (pat) == PARALLEL)
9672 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9673 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
9674 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
9675 return -1;
9677 /* *pnewpat does not have to be actual PATTERN (insn), so make a dummy
9678 instruction for pattern recognition. */
9679 dummy_insn = shallow_copy_rtx (insn);
9680 PATTERN (dummy_insn) = pat;
9681 REG_NOTES (dummy_insn) = 0;
9683 insn_code_number = recog (pat, dummy_insn, &num_clobbers_to_add);
9685 /* If it isn't, there is the possibility that we previously had an insn
9686 that clobbered some register as a side effect, but the combined
9687 insn doesn't need to do that. So try once more without the clobbers
9688 unless this represents an ASM insn. */
9690 if (insn_code_number < 0 && ! check_asm_operands (pat)
9691 && GET_CODE (pat) == PARALLEL)
9693 int pos;
9695 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
9696 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
9698 if (i != pos)
9699 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
9700 pos++;
9703 SUBST_INT (XVECLEN (pat, 0), pos);
9705 if (pos == 1)
9706 pat = XVECEXP (pat, 0, 0);
9708 PATTERN (dummy_insn) = pat;
9709 insn_code_number = recog (pat, dummy_insn, &num_clobbers_to_add);
9712 /* Recognize all noop sets, these will be killed by followup pass. */
9713 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
9714 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
9716 /* If we had any clobbers to add, make a new pattern than contains
9717 them. Then check to make sure that all of them are dead. */
9718 if (num_clobbers_to_add)
9720 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
9721 rtvec_alloc (GET_CODE (pat) == PARALLEL
9722 ? (XVECLEN (pat, 0)
9723 + num_clobbers_to_add)
9724 : num_clobbers_to_add + 1));
9726 if (GET_CODE (pat) == PARALLEL)
9727 for (i = 0; i < XVECLEN (pat, 0); i++)
9728 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
9729 else
9730 XVECEXP (newpat, 0, 0) = pat;
9732 add_clobbers (newpat, insn_code_number);
9734 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
9735 i < XVECLEN (newpat, 0); i++)
9737 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) == REG
9738 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
9739 return -1;
9740 notes = gen_rtx_EXPR_LIST (REG_UNUSED,
9741 XEXP (XVECEXP (newpat, 0, i), 0), notes);
9743 pat = newpat;
9746 *pnewpat = pat;
9747 *pnotes = notes;
9749 return insn_code_number;
9752 /* Like gen_lowpart but for use by combine. In combine it is not possible
9753 to create any new pseudoregs. However, it is safe to create
9754 invalid memory addresses, because combine will try to recognize
9755 them and all they will do is make the combine attempt fail.
9757 If for some reason this cannot do its job, an rtx
9758 (clobber (const_int 0)) is returned.
9759 An insn containing that will not be recognized. */
9761 #undef gen_lowpart
9763 static rtx
9764 gen_lowpart_for_combine (mode, x)
9765 enum machine_mode mode;
9766 rtx x;
9768 rtx result;
9770 if (GET_MODE (x) == mode)
9771 return x;
9773 /* We can only support MODE being wider than a word if X is a
9774 constant integer or has a mode the same size. */
9776 if (GET_MODE_SIZE (mode) > UNITS_PER_WORD
9777 && ! ((GET_MODE (x) == VOIDmode
9778 && (GET_CODE (x) == CONST_INT
9779 || GET_CODE (x) == CONST_DOUBLE))
9780 || GET_MODE_SIZE (GET_MODE (x)) == GET_MODE_SIZE (mode)))
9781 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9783 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
9784 won't know what to do. So we will strip off the SUBREG here and
9785 process normally. */
9786 if (GET_CODE (x) == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
9788 x = SUBREG_REG (x);
9789 if (GET_MODE (x) == mode)
9790 return x;
9793 result = gen_lowpart_common (mode, x);
9794 #ifdef CLASS_CANNOT_CHANGE_MODE
9795 if (result != 0
9796 && GET_CODE (result) == SUBREG
9797 && GET_CODE (SUBREG_REG (result)) == REG
9798 && REGNO (SUBREG_REG (result)) >= FIRST_PSEUDO_REGISTER
9799 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (result),
9800 GET_MODE (SUBREG_REG (result))))
9801 REG_CHANGES_MODE (REGNO (SUBREG_REG (result))) = 1;
9802 #endif
9804 if (result)
9805 return result;
9807 if (GET_CODE (x) == MEM)
9809 int offset = 0;
9811 /* Refuse to work on a volatile memory ref or one with a mode-dependent
9812 address. */
9813 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
9814 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9816 /* If we want to refer to something bigger than the original memref,
9817 generate a perverse subreg instead. That will force a reload
9818 of the original memref X. */
9819 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode))
9820 return gen_rtx_SUBREG (mode, x, 0);
9822 if (WORDS_BIG_ENDIAN)
9823 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
9824 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
9826 if (BYTES_BIG_ENDIAN)
9828 /* Adjust the address so that the address-after-the-data is
9829 unchanged. */
9830 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
9831 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
9834 return adjust_address_nv (x, mode, offset);
9837 /* If X is a comparison operator, rewrite it in a new mode. This
9838 probably won't match, but may allow further simplifications. */
9839 else if (GET_RTX_CLASS (GET_CODE (x)) == '<')
9840 return gen_rtx_fmt_ee (GET_CODE (x), mode, XEXP (x, 0), XEXP (x, 1));
9842 /* If we couldn't simplify X any other way, just enclose it in a
9843 SUBREG. Normally, this SUBREG won't match, but some patterns may
9844 include an explicit SUBREG or we may simplify it further in combine. */
9845 else
9847 int offset = 0;
9848 rtx res;
9850 /* We can't handle VOIDmodes. We can get here when generating vector
9851 modes since these, unlike integral and floating point modes are not
9852 handled earlier. */
9853 if (GET_MODE (x) == VOIDmode)
9854 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9856 offset = subreg_lowpart_offset (mode, GET_MODE (x));
9857 res = simplify_gen_subreg (mode, x, GET_MODE (x), offset);
9858 if (res)
9859 return res;
9860 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9864 /* These routines make binary and unary operations by first seeing if they
9865 fold; if not, a new expression is allocated. */
9867 static rtx
9868 gen_binary (code, mode, op0, op1)
9869 enum rtx_code code;
9870 enum machine_mode mode;
9871 rtx op0, op1;
9873 rtx result;
9874 rtx tem;
9876 if (GET_RTX_CLASS (code) == 'c'
9877 && swap_commutative_operands_p (op0, op1))
9878 tem = op0, op0 = op1, op1 = tem;
9880 if (GET_RTX_CLASS (code) == '<')
9882 enum machine_mode op_mode = GET_MODE (op0);
9884 /* Strip the COMPARE from (REL_OP (compare X Y) 0) to get
9885 just (REL_OP X Y). */
9886 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
9888 op1 = XEXP (op0, 1);
9889 op0 = XEXP (op0, 0);
9890 op_mode = GET_MODE (op0);
9893 if (op_mode == VOIDmode)
9894 op_mode = GET_MODE (op1);
9895 result = simplify_relational_operation (code, op_mode, op0, op1);
9897 else
9898 result = simplify_binary_operation (code, mode, op0, op1);
9900 if (result)
9901 return result;
9903 /* Put complex operands first and constants second. */
9904 if (GET_RTX_CLASS (code) == 'c'
9905 && swap_commutative_operands_p (op0, op1))
9906 return gen_rtx_fmt_ee (code, mode, op1, op0);
9908 /* If we are turning off bits already known off in OP0, we need not do
9909 an AND. */
9910 else if (code == AND && GET_CODE (op1) == CONST_INT
9911 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9912 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
9913 return op0;
9915 return gen_rtx_fmt_ee (code, mode, op0, op1);
9918 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
9919 comparison code that will be tested.
9921 The result is a possibly different comparison code to use. *POP0 and
9922 *POP1 may be updated.
9924 It is possible that we might detect that a comparison is either always
9925 true or always false. However, we do not perform general constant
9926 folding in combine, so this knowledge isn't useful. Such tautologies
9927 should have been detected earlier. Hence we ignore all such cases. */
9929 static enum rtx_code
9930 simplify_comparison (code, pop0, pop1)
9931 enum rtx_code code;
9932 rtx *pop0;
9933 rtx *pop1;
9935 rtx op0 = *pop0;
9936 rtx op1 = *pop1;
9937 rtx tem, tem1;
9938 int i;
9939 enum machine_mode mode, tmode;
9941 /* Try a few ways of applying the same transformation to both operands. */
9942 while (1)
9944 #ifndef WORD_REGISTER_OPERATIONS
9945 /* The test below this one won't handle SIGN_EXTENDs on these machines,
9946 so check specially. */
9947 if (code != GTU && code != GEU && code != LTU && code != LEU
9948 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
9949 && GET_CODE (XEXP (op0, 0)) == ASHIFT
9950 && GET_CODE (XEXP (op1, 0)) == ASHIFT
9951 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
9952 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
9953 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
9954 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
9955 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9956 && GET_CODE (XEXP (op1, 1)) == CONST_INT
9957 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
9958 && GET_CODE (XEXP (XEXP (op1, 0), 1)) == CONST_INT
9959 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (op1, 1))
9960 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (XEXP (op0, 0), 1))
9961 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (XEXP (op1, 0), 1))
9962 && (INTVAL (XEXP (op0, 1))
9963 == (GET_MODE_BITSIZE (GET_MODE (op0))
9964 - (GET_MODE_BITSIZE
9965 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
9967 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
9968 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
9970 #endif
9972 /* If both operands are the same constant shift, see if we can ignore the
9973 shift. We can if the shift is a rotate or if the bits shifted out of
9974 this shift are known to be zero for both inputs and if the type of
9975 comparison is compatible with the shift. */
9976 if (GET_CODE (op0) == GET_CODE (op1)
9977 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
9978 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
9979 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
9980 && (code != GT && code != LT && code != GE && code != LE))
9981 || (GET_CODE (op0) == ASHIFTRT
9982 && (code != GTU && code != LTU
9983 && code != GEU && code != LEU)))
9984 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9985 && INTVAL (XEXP (op0, 1)) >= 0
9986 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
9987 && XEXP (op0, 1) == XEXP (op1, 1))
9989 enum machine_mode mode = GET_MODE (op0);
9990 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9991 int shift_count = INTVAL (XEXP (op0, 1));
9993 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
9994 mask &= (mask >> shift_count) << shift_count;
9995 else if (GET_CODE (op0) == ASHIFT)
9996 mask = (mask & (mask << shift_count)) >> shift_count;
9998 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
9999 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
10000 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
10001 else
10002 break;
10005 /* If both operands are AND's of a paradoxical SUBREG by constant, the
10006 SUBREGs are of the same mode, and, in both cases, the AND would
10007 be redundant if the comparison was done in the narrower mode,
10008 do the comparison in the narrower mode (e.g., we are AND'ing with 1
10009 and the operand's possibly nonzero bits are 0xffffff01; in that case
10010 if we only care about QImode, we don't need the AND). This case
10011 occurs if the output mode of an scc insn is not SImode and
10012 STORE_FLAG_VALUE == 1 (e.g., the 386).
10014 Similarly, check for a case where the AND's are ZERO_EXTEND
10015 operations from some narrower mode even though a SUBREG is not
10016 present. */
10018 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
10019 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10020 && GET_CODE (XEXP (op1, 1)) == CONST_INT)
10022 rtx inner_op0 = XEXP (op0, 0);
10023 rtx inner_op1 = XEXP (op1, 0);
10024 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
10025 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
10026 int changed = 0;
10028 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
10029 && (GET_MODE_SIZE (GET_MODE (inner_op0))
10030 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
10031 && (GET_MODE (SUBREG_REG (inner_op0))
10032 == GET_MODE (SUBREG_REG (inner_op1)))
10033 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
10034 <= HOST_BITS_PER_WIDE_INT)
10035 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
10036 GET_MODE (SUBREG_REG (inner_op0)))))
10037 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
10038 GET_MODE (SUBREG_REG (inner_op1))))))
10040 op0 = SUBREG_REG (inner_op0);
10041 op1 = SUBREG_REG (inner_op1);
10043 /* The resulting comparison is always unsigned since we masked
10044 off the original sign bit. */
10045 code = unsigned_condition (code);
10047 changed = 1;
10050 else if (c0 == c1)
10051 for (tmode = GET_CLASS_NARROWEST_MODE
10052 (GET_MODE_CLASS (GET_MODE (op0)));
10053 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
10054 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
10056 op0 = gen_lowpart_for_combine (tmode, inner_op0);
10057 op1 = gen_lowpart_for_combine (tmode, inner_op1);
10058 code = unsigned_condition (code);
10059 changed = 1;
10060 break;
10063 if (! changed)
10064 break;
10067 /* If both operands are NOT, we can strip off the outer operation
10068 and adjust the comparison code for swapped operands; similarly for
10069 NEG, except that this must be an equality comparison. */
10070 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
10071 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
10072 && (code == EQ || code == NE)))
10073 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
10075 else
10076 break;
10079 /* If the first operand is a constant, swap the operands and adjust the
10080 comparison code appropriately, but don't do this if the second operand
10081 is already a constant integer. */
10082 if (swap_commutative_operands_p (op0, op1))
10084 tem = op0, op0 = op1, op1 = tem;
10085 code = swap_condition (code);
10088 /* We now enter a loop during which we will try to simplify the comparison.
10089 For the most part, we only are concerned with comparisons with zero,
10090 but some things may really be comparisons with zero but not start
10091 out looking that way. */
10093 while (GET_CODE (op1) == CONST_INT)
10095 enum machine_mode mode = GET_MODE (op0);
10096 unsigned int mode_width = GET_MODE_BITSIZE (mode);
10097 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10098 int equality_comparison_p;
10099 int sign_bit_comparison_p;
10100 int unsigned_comparison_p;
10101 HOST_WIDE_INT const_op;
10103 /* We only want to handle integral modes. This catches VOIDmode,
10104 CCmode, and the floating-point modes. An exception is that we
10105 can handle VOIDmode if OP0 is a COMPARE or a comparison
10106 operation. */
10108 if (GET_MODE_CLASS (mode) != MODE_INT
10109 && ! (mode == VOIDmode
10110 && (GET_CODE (op0) == COMPARE
10111 || GET_RTX_CLASS (GET_CODE (op0)) == '<')))
10112 break;
10114 /* Get the constant we are comparing against and turn off all bits
10115 not on in our mode. */
10116 const_op = trunc_int_for_mode (INTVAL (op1), mode);
10117 op1 = GEN_INT (const_op);
10119 /* If we are comparing against a constant power of two and the value
10120 being compared can only have that single bit nonzero (e.g., it was
10121 `and'ed with that bit), we can replace this with a comparison
10122 with zero. */
10123 if (const_op
10124 && (code == EQ || code == NE || code == GE || code == GEU
10125 || code == LT || code == LTU)
10126 && mode_width <= HOST_BITS_PER_WIDE_INT
10127 && exact_log2 (const_op) >= 0
10128 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
10130 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
10131 op1 = const0_rtx, const_op = 0;
10134 /* Similarly, if we are comparing a value known to be either -1 or
10135 0 with -1, change it to the opposite comparison against zero. */
10137 if (const_op == -1
10138 && (code == EQ || code == NE || code == GT || code == LE
10139 || code == GEU || code == LTU)
10140 && num_sign_bit_copies (op0, mode) == mode_width)
10142 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
10143 op1 = const0_rtx, const_op = 0;
10146 /* Do some canonicalizations based on the comparison code. We prefer
10147 comparisons against zero and then prefer equality comparisons.
10148 If we can reduce the size of a constant, we will do that too. */
10150 switch (code)
10152 case LT:
10153 /* < C is equivalent to <= (C - 1) */
10154 if (const_op > 0)
10156 const_op -= 1;
10157 op1 = GEN_INT (const_op);
10158 code = LE;
10159 /* ... fall through to LE case below. */
10161 else
10162 break;
10164 case LE:
10165 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
10166 if (const_op < 0)
10168 const_op += 1;
10169 op1 = GEN_INT (const_op);
10170 code = LT;
10173 /* If we are doing a <= 0 comparison on a value known to have
10174 a zero sign bit, we can replace this with == 0. */
10175 else if (const_op == 0
10176 && mode_width <= HOST_BITS_PER_WIDE_INT
10177 && (nonzero_bits (op0, mode)
10178 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10179 code = EQ;
10180 break;
10182 case GE:
10183 /* >= C is equivalent to > (C - 1). */
10184 if (const_op > 0)
10186 const_op -= 1;
10187 op1 = GEN_INT (const_op);
10188 code = GT;
10189 /* ... fall through to GT below. */
10191 else
10192 break;
10194 case GT:
10195 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
10196 if (const_op < 0)
10198 const_op += 1;
10199 op1 = GEN_INT (const_op);
10200 code = GE;
10203 /* If we are doing a > 0 comparison on a value known to have
10204 a zero sign bit, we can replace this with != 0. */
10205 else if (const_op == 0
10206 && mode_width <= HOST_BITS_PER_WIDE_INT
10207 && (nonzero_bits (op0, mode)
10208 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10209 code = NE;
10210 break;
10212 case LTU:
10213 /* < C is equivalent to <= (C - 1). */
10214 if (const_op > 0)
10216 const_op -= 1;
10217 op1 = GEN_INT (const_op);
10218 code = LEU;
10219 /* ... fall through ... */
10222 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
10223 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10224 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10226 const_op = 0, op1 = const0_rtx;
10227 code = GE;
10228 break;
10230 else
10231 break;
10233 case LEU:
10234 /* unsigned <= 0 is equivalent to == 0 */
10235 if (const_op == 0)
10236 code = EQ;
10238 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
10239 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10240 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10242 const_op = 0, op1 = const0_rtx;
10243 code = GE;
10245 break;
10247 case GEU:
10248 /* >= C is equivalent to < (C - 1). */
10249 if (const_op > 1)
10251 const_op -= 1;
10252 op1 = GEN_INT (const_op);
10253 code = GTU;
10254 /* ... fall through ... */
10257 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
10258 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10259 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10261 const_op = 0, op1 = const0_rtx;
10262 code = LT;
10263 break;
10265 else
10266 break;
10268 case GTU:
10269 /* unsigned > 0 is equivalent to != 0 */
10270 if (const_op == 0)
10271 code = NE;
10273 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
10274 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10275 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10277 const_op = 0, op1 = const0_rtx;
10278 code = LT;
10280 break;
10282 default:
10283 break;
10286 /* Compute some predicates to simplify code below. */
10288 equality_comparison_p = (code == EQ || code == NE);
10289 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
10290 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
10291 || code == GEU);
10293 /* If this is a sign bit comparison and we can do arithmetic in
10294 MODE, say that we will only be needing the sign bit of OP0. */
10295 if (sign_bit_comparison_p
10296 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10297 op0 = force_to_mode (op0, mode,
10298 ((HOST_WIDE_INT) 1
10299 << (GET_MODE_BITSIZE (mode) - 1)),
10300 NULL_RTX, 0);
10302 /* Now try cases based on the opcode of OP0. If none of the cases
10303 does a "continue", we exit this loop immediately after the
10304 switch. */
10306 switch (GET_CODE (op0))
10308 case ZERO_EXTRACT:
10309 /* If we are extracting a single bit from a variable position in
10310 a constant that has only a single bit set and are comparing it
10311 with zero, we can convert this into an equality comparison
10312 between the position and the location of the single bit. */
10314 if (GET_CODE (XEXP (op0, 0)) == CONST_INT
10315 && XEXP (op0, 1) == const1_rtx
10316 && equality_comparison_p && const_op == 0
10317 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
10319 if (BITS_BIG_ENDIAN)
10321 enum machine_mode new_mode
10322 = mode_for_extraction (EP_extzv, 1);
10323 if (new_mode == MAX_MACHINE_MODE)
10324 i = BITS_PER_WORD - 1 - i;
10325 else
10327 mode = new_mode;
10328 i = (GET_MODE_BITSIZE (mode) - 1 - i);
10332 op0 = XEXP (op0, 2);
10333 op1 = GEN_INT (i);
10334 const_op = i;
10336 /* Result is nonzero iff shift count is equal to I. */
10337 code = reverse_condition (code);
10338 continue;
10341 /* ... fall through ... */
10343 case SIGN_EXTRACT:
10344 tem = expand_compound_operation (op0);
10345 if (tem != op0)
10347 op0 = tem;
10348 continue;
10350 break;
10352 case NOT:
10353 /* If testing for equality, we can take the NOT of the constant. */
10354 if (equality_comparison_p
10355 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
10357 op0 = XEXP (op0, 0);
10358 op1 = tem;
10359 continue;
10362 /* If just looking at the sign bit, reverse the sense of the
10363 comparison. */
10364 if (sign_bit_comparison_p)
10366 op0 = XEXP (op0, 0);
10367 code = (code == GE ? LT : GE);
10368 continue;
10370 break;
10372 case NEG:
10373 /* If testing for equality, we can take the NEG of the constant. */
10374 if (equality_comparison_p
10375 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
10377 op0 = XEXP (op0, 0);
10378 op1 = tem;
10379 continue;
10382 /* The remaining cases only apply to comparisons with zero. */
10383 if (const_op != 0)
10384 break;
10386 /* When X is ABS or is known positive,
10387 (neg X) is < 0 if and only if X != 0. */
10389 if (sign_bit_comparison_p
10390 && (GET_CODE (XEXP (op0, 0)) == ABS
10391 || (mode_width <= HOST_BITS_PER_WIDE_INT
10392 && (nonzero_bits (XEXP (op0, 0), mode)
10393 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
10395 op0 = XEXP (op0, 0);
10396 code = (code == LT ? NE : EQ);
10397 continue;
10400 /* If we have NEG of something whose two high-order bits are the
10401 same, we know that "(-a) < 0" is equivalent to "a > 0". */
10402 if (num_sign_bit_copies (op0, mode) >= 2)
10404 op0 = XEXP (op0, 0);
10405 code = swap_condition (code);
10406 continue;
10408 break;
10410 case ROTATE:
10411 /* If we are testing equality and our count is a constant, we
10412 can perform the inverse operation on our RHS. */
10413 if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10414 && (tem = simplify_binary_operation (ROTATERT, mode,
10415 op1, XEXP (op0, 1))) != 0)
10417 op0 = XEXP (op0, 0);
10418 op1 = tem;
10419 continue;
10422 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
10423 a particular bit. Convert it to an AND of a constant of that
10424 bit. This will be converted into a ZERO_EXTRACT. */
10425 if (const_op == 0 && sign_bit_comparison_p
10426 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10427 && mode_width <= HOST_BITS_PER_WIDE_INT)
10429 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10430 ((HOST_WIDE_INT) 1
10431 << (mode_width - 1
10432 - INTVAL (XEXP (op0, 1)))));
10433 code = (code == LT ? NE : EQ);
10434 continue;
10437 /* Fall through. */
10439 case ABS:
10440 /* ABS is ignorable inside an equality comparison with zero. */
10441 if (const_op == 0 && equality_comparison_p)
10443 op0 = XEXP (op0, 0);
10444 continue;
10446 break;
10448 case SIGN_EXTEND:
10449 /* Can simplify (compare (zero/sign_extend FOO) CONST)
10450 to (compare FOO CONST) if CONST fits in FOO's mode and we
10451 are either testing inequality or have an unsigned comparison
10452 with ZERO_EXTEND or a signed comparison with SIGN_EXTEND. */
10453 if (! unsigned_comparison_p
10454 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10455 <= HOST_BITS_PER_WIDE_INT)
10456 && ((unsigned HOST_WIDE_INT) const_op
10457 < (((unsigned HOST_WIDE_INT) 1
10458 << (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))) - 1)))))
10460 op0 = XEXP (op0, 0);
10461 continue;
10463 break;
10465 case SUBREG:
10466 /* Check for the case where we are comparing A - C1 with C2,
10467 both constants are smaller than 1/2 the maximum positive
10468 value in MODE, and the comparison is equality or unsigned.
10469 In that case, if A is either zero-extended to MODE or has
10470 sufficient sign bits so that the high-order bit in MODE
10471 is a copy of the sign in the inner mode, we can prove that it is
10472 safe to do the operation in the wider mode. This simplifies
10473 many range checks. */
10475 if (mode_width <= HOST_BITS_PER_WIDE_INT
10476 && subreg_lowpart_p (op0)
10477 && GET_CODE (SUBREG_REG (op0)) == PLUS
10478 && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT
10479 && INTVAL (XEXP (SUBREG_REG (op0), 1)) < 0
10480 && (-INTVAL (XEXP (SUBREG_REG (op0), 1))
10481 < (HOST_WIDE_INT) (GET_MODE_MASK (mode) / 2))
10482 && (unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode) / 2
10483 && (0 == (nonzero_bits (XEXP (SUBREG_REG (op0), 0),
10484 GET_MODE (SUBREG_REG (op0)))
10485 & ~GET_MODE_MASK (mode))
10486 || (num_sign_bit_copies (XEXP (SUBREG_REG (op0), 0),
10487 GET_MODE (SUBREG_REG (op0)))
10488 > (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10489 - GET_MODE_BITSIZE (mode)))))
10491 op0 = SUBREG_REG (op0);
10492 continue;
10495 /* If the inner mode is narrower and we are extracting the low part,
10496 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10497 if (subreg_lowpart_p (op0)
10498 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10499 /* Fall through */ ;
10500 else
10501 break;
10503 /* ... fall through ... */
10505 case ZERO_EXTEND:
10506 if ((unsigned_comparison_p || equality_comparison_p)
10507 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10508 <= HOST_BITS_PER_WIDE_INT)
10509 && ((unsigned HOST_WIDE_INT) const_op
10510 < GET_MODE_MASK (GET_MODE (XEXP (op0, 0)))))
10512 op0 = XEXP (op0, 0);
10513 continue;
10515 break;
10517 case PLUS:
10518 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10519 this for equality comparisons due to pathological cases involving
10520 overflows. */
10521 if (equality_comparison_p
10522 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10523 op1, XEXP (op0, 1))))
10525 op0 = XEXP (op0, 0);
10526 op1 = tem;
10527 continue;
10530 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10531 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10532 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10534 op0 = XEXP (XEXP (op0, 0), 0);
10535 code = (code == LT ? EQ : NE);
10536 continue;
10538 break;
10540 case MINUS:
10541 /* We used to optimize signed comparisons against zero, but that
10542 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10543 arrive here as equality comparisons, or (GEU, LTU) are
10544 optimized away. No need to special-case them. */
10546 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10547 (eq B (minus A C)), whichever simplifies. We can only do
10548 this for equality comparisons due to pathological cases involving
10549 overflows. */
10550 if (equality_comparison_p
10551 && 0 != (tem = simplify_binary_operation (PLUS, mode,
10552 XEXP (op0, 1), op1)))
10554 op0 = XEXP (op0, 0);
10555 op1 = tem;
10556 continue;
10559 if (equality_comparison_p
10560 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10561 XEXP (op0, 0), op1)))
10563 op0 = XEXP (op0, 1);
10564 op1 = tem;
10565 continue;
10568 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10569 of bits in X minus 1, is one iff X > 0. */
10570 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10571 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10572 && INTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
10573 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10575 op0 = XEXP (op0, 1);
10576 code = (code == GE ? LE : GT);
10577 continue;
10579 break;
10581 case XOR:
10582 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10583 if C is zero or B is a constant. */
10584 if (equality_comparison_p
10585 && 0 != (tem = simplify_binary_operation (XOR, mode,
10586 XEXP (op0, 1), op1)))
10588 op0 = XEXP (op0, 0);
10589 op1 = tem;
10590 continue;
10592 break;
10594 case EQ: case NE:
10595 case UNEQ: case LTGT:
10596 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
10597 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
10598 case UNORDERED: case ORDERED:
10599 /* We can't do anything if OP0 is a condition code value, rather
10600 than an actual data value. */
10601 if (const_op != 0
10602 #ifdef HAVE_cc0
10603 || XEXP (op0, 0) == cc0_rtx
10604 #endif
10605 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
10606 break;
10608 /* Get the two operands being compared. */
10609 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
10610 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
10611 else
10612 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
10614 /* Check for the cases where we simply want the result of the
10615 earlier test or the opposite of that result. */
10616 if (code == NE || code == EQ
10617 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10618 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10619 && (STORE_FLAG_VALUE
10620 & (((HOST_WIDE_INT) 1
10621 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
10622 && (code == LT || code == GE)))
10624 enum rtx_code new_code;
10625 if (code == LT || code == NE)
10626 new_code = GET_CODE (op0);
10627 else
10628 new_code = combine_reversed_comparison_code (op0);
10630 if (new_code != UNKNOWN)
10632 code = new_code;
10633 op0 = tem;
10634 op1 = tem1;
10635 continue;
10638 break;
10640 case IOR:
10641 /* The sign bit of (ior (plus X (const_int -1)) X) is non-zero
10642 iff X <= 0. */
10643 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
10644 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
10645 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10647 op0 = XEXP (op0, 1);
10648 code = (code == GE ? GT : LE);
10649 continue;
10651 break;
10653 case AND:
10654 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10655 will be converted to a ZERO_EXTRACT later. */
10656 if (const_op == 0 && equality_comparison_p
10657 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10658 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
10660 op0 = simplify_and_const_int
10661 (op0, mode, gen_rtx_LSHIFTRT (mode,
10662 XEXP (op0, 1),
10663 XEXP (XEXP (op0, 0), 1)),
10664 (HOST_WIDE_INT) 1);
10665 continue;
10668 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10669 zero and X is a comparison and C1 and C2 describe only bits set
10670 in STORE_FLAG_VALUE, we can compare with X. */
10671 if (const_op == 0 && equality_comparison_p
10672 && mode_width <= HOST_BITS_PER_WIDE_INT
10673 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10674 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10675 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10676 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
10677 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
10679 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10680 << INTVAL (XEXP (XEXP (op0, 0), 1)));
10681 if ((~STORE_FLAG_VALUE & mask) == 0
10682 && (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (op0, 0), 0))) == '<'
10683 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
10684 && GET_RTX_CLASS (GET_CODE (tem)) == '<')))
10686 op0 = XEXP (XEXP (op0, 0), 0);
10687 continue;
10691 /* If we are doing an equality comparison of an AND of a bit equal
10692 to the sign bit, replace this with a LT or GE comparison of
10693 the underlying value. */
10694 if (equality_comparison_p
10695 && const_op == 0
10696 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10697 && mode_width <= HOST_BITS_PER_WIDE_INT
10698 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10699 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10701 op0 = XEXP (op0, 0);
10702 code = (code == EQ ? GE : LT);
10703 continue;
10706 /* If this AND operation is really a ZERO_EXTEND from a narrower
10707 mode, the constant fits within that mode, and this is either an
10708 equality or unsigned comparison, try to do this comparison in
10709 the narrower mode. */
10710 if ((equality_comparison_p || unsigned_comparison_p)
10711 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10712 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
10713 & GET_MODE_MASK (mode))
10714 + 1)) >= 0
10715 && const_op >> i == 0
10716 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
10718 op0 = gen_lowpart_for_combine (tmode, XEXP (op0, 0));
10719 continue;
10722 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1 fits
10723 in both M1 and M2 and the SUBREG is either paradoxical or
10724 represents the low part, permute the SUBREG and the AND and
10725 try again. */
10726 if (GET_CODE (XEXP (op0, 0)) == SUBREG
10727 && (0
10728 #ifdef WORD_REGISTER_OPERATIONS
10729 || ((mode_width
10730 > (GET_MODE_BITSIZE
10731 (GET_MODE (SUBREG_REG (XEXP (op0, 0))))))
10732 && mode_width <= BITS_PER_WORD)
10733 #endif
10734 || ((mode_width
10735 <= (GET_MODE_BITSIZE
10736 (GET_MODE (SUBREG_REG (XEXP (op0, 0))))))
10737 && subreg_lowpart_p (XEXP (op0, 0))))
10738 #ifndef WORD_REGISTER_OPERATIONS
10739 /* It is unsafe to commute the AND into the SUBREG if the SUBREG
10740 is paradoxical and WORD_REGISTER_OPERATIONS is not defined.
10741 As originally written the upper bits have a defined value
10742 due to the AND operation. However, if we commute the AND
10743 inside the SUBREG then they no longer have defined values
10744 and the meaning of the code has been changed. */
10745 && (GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)))
10746 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (op0, 0)))))
10747 #endif
10748 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10749 && mode_width <= HOST_BITS_PER_WIDE_INT
10750 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (XEXP (op0, 0))))
10751 <= HOST_BITS_PER_WIDE_INT)
10752 && (INTVAL (XEXP (op0, 1)) & ~mask) == 0
10753 && 0 == (~GET_MODE_MASK (GET_MODE (SUBREG_REG (XEXP (op0, 0))))
10754 & INTVAL (XEXP (op0, 1)))
10755 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1)) != mask
10756 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10757 != GET_MODE_MASK (GET_MODE (SUBREG_REG (XEXP (op0, 0))))))
10761 = gen_lowpart_for_combine
10762 (mode,
10763 gen_binary (AND, GET_MODE (SUBREG_REG (XEXP (op0, 0))),
10764 SUBREG_REG (XEXP (op0, 0)), XEXP (op0, 1)));
10765 continue;
10768 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
10769 (eq (and (lshiftrt X) 1) 0). */
10770 if (const_op == 0 && equality_comparison_p
10771 && XEXP (op0, 1) == const1_rtx
10772 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10773 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == NOT)
10775 op0 = simplify_and_const_int
10776 (op0, mode,
10777 gen_rtx_LSHIFTRT (mode, XEXP (XEXP (XEXP (op0, 0), 0), 0),
10778 XEXP (XEXP (op0, 0), 1)),
10779 (HOST_WIDE_INT) 1);
10780 code = (code == NE ? EQ : NE);
10781 continue;
10783 break;
10785 case ASHIFT:
10786 /* If we have (compare (ashift FOO N) (const_int C)) and
10787 the high order N bits of FOO (N+1 if an inequality comparison)
10788 are known to be zero, we can do this by comparing FOO with C
10789 shifted right N bits so long as the low-order N bits of C are
10790 zero. */
10791 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10792 && INTVAL (XEXP (op0, 1)) >= 0
10793 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
10794 < HOST_BITS_PER_WIDE_INT)
10795 && ((const_op
10796 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
10797 && mode_width <= HOST_BITS_PER_WIDE_INT
10798 && (nonzero_bits (XEXP (op0, 0), mode)
10799 & ~(mask >> (INTVAL (XEXP (op0, 1))
10800 + ! equality_comparison_p))) == 0)
10802 /* We must perform a logical shift, not an arithmetic one,
10803 as we want the top N bits of C to be zero. */
10804 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
10806 temp >>= INTVAL (XEXP (op0, 1));
10807 op1 = GEN_INT (trunc_int_for_mode (temp, mode));
10808 op0 = XEXP (op0, 0);
10809 continue;
10812 /* If we are doing a sign bit comparison, it means we are testing
10813 a particular bit. Convert it to the appropriate AND. */
10814 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10815 && mode_width <= HOST_BITS_PER_WIDE_INT)
10817 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10818 ((HOST_WIDE_INT) 1
10819 << (mode_width - 1
10820 - INTVAL (XEXP (op0, 1)))));
10821 code = (code == LT ? NE : EQ);
10822 continue;
10825 /* If this an equality comparison with zero and we are shifting
10826 the low bit to the sign bit, we can convert this to an AND of the
10827 low-order bit. */
10828 if (const_op == 0 && equality_comparison_p
10829 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10830 && INTVAL (XEXP (op0, 1)) == mode_width - 1)
10832 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10833 (HOST_WIDE_INT) 1);
10834 continue;
10836 break;
10838 case ASHIFTRT:
10839 /* If this is an equality comparison with zero, we can do this
10840 as a logical shift, which might be much simpler. */
10841 if (equality_comparison_p && const_op == 0
10842 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
10844 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
10845 XEXP (op0, 0),
10846 INTVAL (XEXP (op0, 1)));
10847 continue;
10850 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
10851 do the comparison in a narrower mode. */
10852 if (! unsigned_comparison_p
10853 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10854 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10855 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10856 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10857 MODE_INT, 1)) != BLKmode
10858 && (((unsigned HOST_WIDE_INT) const_op
10859 + (GET_MODE_MASK (tmode) >> 1) + 1)
10860 <= GET_MODE_MASK (tmode)))
10862 op0 = gen_lowpart_for_combine (tmode, XEXP (XEXP (op0, 0), 0));
10863 continue;
10866 /* Likewise if OP0 is a PLUS of a sign extension with a
10867 constant, which is usually represented with the PLUS
10868 between the shifts. */
10869 if (! unsigned_comparison_p
10870 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10871 && GET_CODE (XEXP (op0, 0)) == PLUS
10872 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10873 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
10874 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
10875 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10876 MODE_INT, 1)) != BLKmode
10877 && (((unsigned HOST_WIDE_INT) const_op
10878 + (GET_MODE_MASK (tmode) >> 1) + 1)
10879 <= GET_MODE_MASK (tmode)))
10881 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
10882 rtx add_const = XEXP (XEXP (op0, 0), 1);
10883 rtx new_const = gen_binary (ASHIFTRT, GET_MODE (op0), add_const,
10884 XEXP (op0, 1));
10886 op0 = gen_binary (PLUS, tmode,
10887 gen_lowpart_for_combine (tmode, inner),
10888 new_const);
10889 continue;
10892 /* ... fall through ... */
10893 case LSHIFTRT:
10894 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
10895 the low order N bits of FOO are known to be zero, we can do this
10896 by comparing FOO with C shifted left N bits so long as no
10897 overflow occurs. */
10898 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10899 && INTVAL (XEXP (op0, 1)) >= 0
10900 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10901 && mode_width <= HOST_BITS_PER_WIDE_INT
10902 && (nonzero_bits (XEXP (op0, 0), mode)
10903 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
10904 && (((unsigned HOST_WIDE_INT) const_op
10905 + (GET_CODE (op0) != LSHIFTRT
10906 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
10907 + 1)
10908 : 0))
10909 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
10911 /* If the shift was logical, then we must make the condition
10912 unsigned. */
10913 if (GET_CODE (op0) == LSHIFTRT)
10914 code = unsigned_condition (code);
10916 const_op <<= INTVAL (XEXP (op0, 1));
10917 op1 = GEN_INT (const_op);
10918 op0 = XEXP (op0, 0);
10919 continue;
10922 /* If we are using this shift to extract just the sign bit, we
10923 can replace this with an LT or GE comparison. */
10924 if (const_op == 0
10925 && (equality_comparison_p || sign_bit_comparison_p)
10926 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10927 && INTVAL (XEXP (op0, 1)) == mode_width - 1)
10929 op0 = XEXP (op0, 0);
10930 code = (code == NE || code == GT ? LT : GE);
10931 continue;
10933 break;
10935 default:
10936 break;
10939 break;
10942 /* Now make any compound operations involved in this comparison. Then,
10943 check for an outmost SUBREG on OP0 that is not doing anything or is
10944 paradoxical. The latter transformation must only be performed when
10945 it is known that the "extra" bits will be the same in op0 and op1 or
10946 that they don't matter. There are three cases to consider:
10948 1. SUBREG_REG (op0) is a register. In this case the bits are don't
10949 care bits and we can assume they have any convenient value. So
10950 making the transformation is safe.
10952 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
10953 In this case the upper bits of op0 are undefined. We should not make
10954 the simplification in that case as we do not know the contents of
10955 those bits.
10957 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
10958 NIL. In that case we know those bits are zeros or ones. We must
10959 also be sure that they are the same as the upper bits of op1.
10961 We can never remove a SUBREG for a non-equality comparison because
10962 the sign bit is in a different place in the underlying object. */
10964 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
10965 op1 = make_compound_operation (op1, SET);
10967 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
10968 /* Case 3 above, to sometimes allow (subreg (mem x)), isn't
10969 implemented. */
10970 && GET_CODE (SUBREG_REG (op0)) == REG
10971 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10972 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
10973 && (code == NE || code == EQ))
10975 if (GET_MODE_SIZE (GET_MODE (op0))
10976 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
10978 op0 = SUBREG_REG (op0);
10979 op1 = gen_lowpart_for_combine (GET_MODE (op0), op1);
10981 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10982 <= HOST_BITS_PER_WIDE_INT)
10983 && (nonzero_bits (SUBREG_REG (op0),
10984 GET_MODE (SUBREG_REG (op0)))
10985 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
10987 tem = gen_lowpart_for_combine (GET_MODE (SUBREG_REG (op0)), op1);
10989 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
10990 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
10991 op0 = SUBREG_REG (op0), op1 = tem;
10995 /* We now do the opposite procedure: Some machines don't have compare
10996 insns in all modes. If OP0's mode is an integer mode smaller than a
10997 word and we can't do a compare in that mode, see if there is a larger
10998 mode for which we can do the compare. There are a number of cases in
10999 which we can use the wider mode. */
11001 mode = GET_MODE (op0);
11002 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
11003 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
11004 && ! have_insn_for (COMPARE, mode))
11005 for (tmode = GET_MODE_WIDER_MODE (mode);
11006 (tmode != VOIDmode
11007 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
11008 tmode = GET_MODE_WIDER_MODE (tmode))
11009 if (have_insn_for (COMPARE, tmode))
11011 int zero_extended;
11013 /* If the only nonzero bits in OP0 and OP1 are those in the
11014 narrower mode and this is an equality or unsigned comparison,
11015 we can use the wider mode. Similarly for sign-extended
11016 values, in which case it is true for all comparisons. */
11017 zero_extended = ((code == EQ || code == NE
11018 || code == GEU || code == GTU
11019 || code == LEU || code == LTU)
11020 && (nonzero_bits (op0, tmode)
11021 & ~GET_MODE_MASK (mode)) == 0
11022 && ((GET_CODE (op1) == CONST_INT
11023 || (nonzero_bits (op1, tmode)
11024 & ~GET_MODE_MASK (mode)) == 0)));
11026 if (zero_extended
11027 || ((num_sign_bit_copies (op0, tmode)
11028 > GET_MODE_BITSIZE (tmode) - GET_MODE_BITSIZE (mode))
11029 && (num_sign_bit_copies (op1, tmode)
11030 > GET_MODE_BITSIZE (tmode) - GET_MODE_BITSIZE (mode))))
11032 /* If OP0 is an AND and we don't have an AND in MODE either,
11033 make a new AND in the proper mode. */
11034 if (GET_CODE (op0) == AND
11035 && !have_insn_for (AND, mode))
11036 op0 = gen_binary (AND, tmode,
11037 gen_lowpart_for_combine (tmode,
11038 XEXP (op0, 0)),
11039 gen_lowpart_for_combine (tmode,
11040 XEXP (op0, 1)));
11042 op0 = gen_lowpart_for_combine (tmode, op0);
11043 if (zero_extended && GET_CODE (op1) == CONST_INT)
11044 op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (mode));
11045 op1 = gen_lowpart_for_combine (tmode, op1);
11046 break;
11049 /* If this is a test for negative, we can make an explicit
11050 test of the sign bit. */
11052 if (op1 == const0_rtx && (code == LT || code == GE)
11053 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11055 op0 = gen_binary (AND, tmode,
11056 gen_lowpart_for_combine (tmode, op0),
11057 GEN_INT ((HOST_WIDE_INT) 1
11058 << (GET_MODE_BITSIZE (mode) - 1)));
11059 code = (code == LT) ? NE : EQ;
11060 break;
11064 #ifdef CANONICALIZE_COMPARISON
11065 /* If this machine only supports a subset of valid comparisons, see if we
11066 can convert an unsupported one into a supported one. */
11067 CANONICALIZE_COMPARISON (code, op0, op1);
11068 #endif
11070 *pop0 = op0;
11071 *pop1 = op1;
11073 return code;
11076 /* Like jump.c' reversed_comparison_code, but use combine infrastructure for
11077 searching backward. */
11078 static enum rtx_code
11079 combine_reversed_comparison_code (exp)
11080 rtx exp;
11082 enum rtx_code code1 = reversed_comparison_code (exp, NULL);
11083 rtx x;
11085 if (code1 != UNKNOWN
11086 || GET_MODE_CLASS (GET_MODE (XEXP (exp, 0))) != MODE_CC)
11087 return code1;
11088 /* Otherwise try and find where the condition codes were last set and
11089 use that. */
11090 x = get_last_value (XEXP (exp, 0));
11091 if (!x || GET_CODE (x) != COMPARE)
11092 return UNKNOWN;
11093 return reversed_comparison_code_parts (GET_CODE (exp),
11094 XEXP (x, 0), XEXP (x, 1), NULL);
11096 /* Return comparison with reversed code of EXP and operands OP0 and OP1.
11097 Return NULL_RTX in case we fail to do the reversal. */
11098 static rtx
11099 reversed_comparison (exp, mode, op0, op1)
11100 rtx exp, op0, op1;
11101 enum machine_mode mode;
11103 enum rtx_code reversed_code = combine_reversed_comparison_code (exp);
11104 if (reversed_code == UNKNOWN)
11105 return NULL_RTX;
11106 else
11107 return gen_binary (reversed_code, mode, op0, op1);
11110 /* Utility function for following routine. Called when X is part of a value
11111 being stored into reg_last_set_value. Sets reg_last_set_table_tick
11112 for each register mentioned. Similar to mention_regs in cse.c */
11114 static void
11115 update_table_tick (x)
11116 rtx x;
11118 enum rtx_code code = GET_CODE (x);
11119 const char *fmt = GET_RTX_FORMAT (code);
11120 int i;
11122 if (code == REG)
11124 unsigned int regno = REGNO (x);
11125 unsigned int endregno
11126 = regno + (regno < FIRST_PSEUDO_REGISTER
11127 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11128 unsigned int r;
11130 for (r = regno; r < endregno; r++)
11131 reg_last_set_table_tick[r] = label_tick;
11133 return;
11136 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11137 /* Note that we can't have an "E" in values stored; see
11138 get_last_value_validate. */
11139 if (fmt[i] == 'e')
11140 update_table_tick (XEXP (x, i));
11143 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
11144 are saying that the register is clobbered and we no longer know its
11145 value. If INSN is zero, don't update reg_last_set; this is only permitted
11146 with VALUE also zero and is used to invalidate the register. */
11148 static void
11149 record_value_for_reg (reg, insn, value)
11150 rtx reg;
11151 rtx insn;
11152 rtx value;
11154 unsigned int regno = REGNO (reg);
11155 unsigned int endregno
11156 = regno + (regno < FIRST_PSEUDO_REGISTER
11157 ? HARD_REGNO_NREGS (regno, GET_MODE (reg)) : 1);
11158 unsigned int i;
11160 /* If VALUE contains REG and we have a previous value for REG, substitute
11161 the previous value. */
11162 if (value && insn && reg_overlap_mentioned_p (reg, value))
11164 rtx tem;
11166 /* Set things up so get_last_value is allowed to see anything set up to
11167 our insn. */
11168 subst_low_cuid = INSN_CUID (insn);
11169 tem = get_last_value (reg);
11171 /* If TEM is simply a binary operation with two CLOBBERs as operands,
11172 it isn't going to be useful and will take a lot of time to process,
11173 so just use the CLOBBER. */
11175 if (tem)
11177 if ((GET_RTX_CLASS (GET_CODE (tem)) == '2'
11178 || GET_RTX_CLASS (GET_CODE (tem)) == 'c')
11179 && GET_CODE (XEXP (tem, 0)) == CLOBBER
11180 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
11181 tem = XEXP (tem, 0);
11183 value = replace_rtx (copy_rtx (value), reg, tem);
11187 /* For each register modified, show we don't know its value, that
11188 we don't know about its bitwise content, that its value has been
11189 updated, and that we don't know the location of the death of the
11190 register. */
11191 for (i = regno; i < endregno; i++)
11193 if (insn)
11194 reg_last_set[i] = insn;
11196 reg_last_set_value[i] = 0;
11197 reg_last_set_mode[i] = 0;
11198 reg_last_set_nonzero_bits[i] = 0;
11199 reg_last_set_sign_bit_copies[i] = 0;
11200 reg_last_death[i] = 0;
11203 /* Mark registers that are being referenced in this value. */
11204 if (value)
11205 update_table_tick (value);
11207 /* Now update the status of each register being set.
11208 If someone is using this register in this block, set this register
11209 to invalid since we will get confused between the two lives in this
11210 basic block. This makes using this register always invalid. In cse, we
11211 scan the table to invalidate all entries using this register, but this
11212 is too much work for us. */
11214 for (i = regno; i < endregno; i++)
11216 reg_last_set_label[i] = label_tick;
11217 if (value && reg_last_set_table_tick[i] == label_tick)
11218 reg_last_set_invalid[i] = 1;
11219 else
11220 reg_last_set_invalid[i] = 0;
11223 /* The value being assigned might refer to X (like in "x++;"). In that
11224 case, we must replace it with (clobber (const_int 0)) to prevent
11225 infinite loops. */
11226 if (value && ! get_last_value_validate (&value, insn,
11227 reg_last_set_label[regno], 0))
11229 value = copy_rtx (value);
11230 if (! get_last_value_validate (&value, insn,
11231 reg_last_set_label[regno], 1))
11232 value = 0;
11235 /* For the main register being modified, update the value, the mode, the
11236 nonzero bits, and the number of sign bit copies. */
11238 reg_last_set_value[regno] = value;
11240 if (value)
11242 enum machine_mode mode = GET_MODE (reg);
11243 subst_low_cuid = INSN_CUID (insn);
11244 reg_last_set_mode[regno] = mode;
11245 if (GET_MODE_CLASS (mode) == MODE_INT
11246 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11247 mode = nonzero_bits_mode;
11248 reg_last_set_nonzero_bits[regno] = nonzero_bits (value, mode);
11249 reg_last_set_sign_bit_copies[regno]
11250 = num_sign_bit_copies (value, GET_MODE (reg));
11254 /* Called via note_stores from record_dead_and_set_regs to handle one
11255 SET or CLOBBER in an insn. DATA is the instruction in which the
11256 set is occurring. */
11258 static void
11259 record_dead_and_set_regs_1 (dest, setter, data)
11260 rtx dest, setter;
11261 void *data;
11263 rtx record_dead_insn = (rtx) data;
11265 if (GET_CODE (dest) == SUBREG)
11266 dest = SUBREG_REG (dest);
11268 if (GET_CODE (dest) == REG)
11270 /* If we are setting the whole register, we know its value. Otherwise
11271 show that we don't know the value. We can handle SUBREG in
11272 some cases. */
11273 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
11274 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
11275 else if (GET_CODE (setter) == SET
11276 && GET_CODE (SET_DEST (setter)) == SUBREG
11277 && SUBREG_REG (SET_DEST (setter)) == dest
11278 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
11279 && subreg_lowpart_p (SET_DEST (setter)))
11280 record_value_for_reg (dest, record_dead_insn,
11281 gen_lowpart_for_combine (GET_MODE (dest),
11282 SET_SRC (setter)));
11283 else
11284 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
11286 else if (GET_CODE (dest) == MEM
11287 /* Ignore pushes, they clobber nothing. */
11288 && ! push_operand (dest, GET_MODE (dest)))
11289 mem_last_set = INSN_CUID (record_dead_insn);
11292 /* Update the records of when each REG was most recently set or killed
11293 for the things done by INSN. This is the last thing done in processing
11294 INSN in the combiner loop.
11296 We update reg_last_set, reg_last_set_value, reg_last_set_mode,
11297 reg_last_set_nonzero_bits, reg_last_set_sign_bit_copies, reg_last_death,
11298 and also the similar information mem_last_set (which insn most recently
11299 modified memory) and last_call_cuid (which insn was the most recent
11300 subroutine call). */
11302 static void
11303 record_dead_and_set_regs (insn)
11304 rtx insn;
11306 rtx link;
11307 unsigned int i;
11309 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
11311 if (REG_NOTE_KIND (link) == REG_DEAD
11312 && GET_CODE (XEXP (link, 0)) == REG)
11314 unsigned int regno = REGNO (XEXP (link, 0));
11315 unsigned int endregno
11316 = regno + (regno < FIRST_PSEUDO_REGISTER
11317 ? HARD_REGNO_NREGS (regno, GET_MODE (XEXP (link, 0)))
11318 : 1);
11320 for (i = regno; i < endregno; i++)
11321 reg_last_death[i] = insn;
11323 else if (REG_NOTE_KIND (link) == REG_INC)
11324 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
11327 if (GET_CODE (insn) == CALL_INSN)
11329 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
11330 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
11332 reg_last_set_value[i] = 0;
11333 reg_last_set_mode[i] = 0;
11334 reg_last_set_nonzero_bits[i] = 0;
11335 reg_last_set_sign_bit_copies[i] = 0;
11336 reg_last_death[i] = 0;
11339 last_call_cuid = mem_last_set = INSN_CUID (insn);
11341 /* Don't bother recording what this insn does. It might set the
11342 return value register, but we can't combine into a call
11343 pattern anyway, so there's no point trying (and it may cause
11344 a crash, if e.g. we wind up asking for last_set_value of a
11345 SUBREG of the return value register). */
11346 return;
11349 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
11352 /* If a SUBREG has the promoted bit set, it is in fact a property of the
11353 register present in the SUBREG, so for each such SUBREG go back and
11354 adjust nonzero and sign bit information of the registers that are
11355 known to have some zero/sign bits set.
11357 This is needed because when combine blows the SUBREGs away, the
11358 information on zero/sign bits is lost and further combines can be
11359 missed because of that. */
11361 static void
11362 record_promoted_value (insn, subreg)
11363 rtx insn;
11364 rtx subreg;
11366 rtx links, set;
11367 unsigned int regno = REGNO (SUBREG_REG (subreg));
11368 enum machine_mode mode = GET_MODE (subreg);
11370 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
11371 return;
11373 for (links = LOG_LINKS (insn); links;)
11375 insn = XEXP (links, 0);
11376 set = single_set (insn);
11378 if (! set || GET_CODE (SET_DEST (set)) != REG
11379 || REGNO (SET_DEST (set)) != regno
11380 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
11382 links = XEXP (links, 1);
11383 continue;
11386 if (reg_last_set[regno] == insn)
11388 if (SUBREG_PROMOTED_UNSIGNED_P (subreg))
11389 reg_last_set_nonzero_bits[regno] &= GET_MODE_MASK (mode);
11392 if (GET_CODE (SET_SRC (set)) == REG)
11394 regno = REGNO (SET_SRC (set));
11395 links = LOG_LINKS (insn);
11397 else
11398 break;
11402 /* Scan X for promoted SUBREGs. For each one found,
11403 note what it implies to the registers used in it. */
11405 static void
11406 check_promoted_subreg (insn, x)
11407 rtx insn;
11408 rtx x;
11410 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
11411 && GET_CODE (SUBREG_REG (x)) == REG)
11412 record_promoted_value (insn, x);
11413 else
11415 const char *format = GET_RTX_FORMAT (GET_CODE (x));
11416 int i, j;
11418 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
11419 switch (format[i])
11421 case 'e':
11422 check_promoted_subreg (insn, XEXP (x, i));
11423 break;
11424 case 'V':
11425 case 'E':
11426 if (XVEC (x, i) != 0)
11427 for (j = 0; j < XVECLEN (x, i); j++)
11428 check_promoted_subreg (insn, XVECEXP (x, i, j));
11429 break;
11434 /* Utility routine for the following function. Verify that all the registers
11435 mentioned in *LOC are valid when *LOC was part of a value set when
11436 label_tick == TICK. Return 0 if some are not.
11438 If REPLACE is non-zero, replace the invalid reference with
11439 (clobber (const_int 0)) and return 1. This replacement is useful because
11440 we often can get useful information about the form of a value (e.g., if
11441 it was produced by a shift that always produces -1 or 0) even though
11442 we don't know exactly what registers it was produced from. */
11444 static int
11445 get_last_value_validate (loc, insn, tick, replace)
11446 rtx *loc;
11447 rtx insn;
11448 int tick;
11449 int replace;
11451 rtx x = *loc;
11452 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
11453 int len = GET_RTX_LENGTH (GET_CODE (x));
11454 int i;
11456 if (GET_CODE (x) == REG)
11458 unsigned int regno = REGNO (x);
11459 unsigned int endregno
11460 = regno + (regno < FIRST_PSEUDO_REGISTER
11461 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11462 unsigned int j;
11464 for (j = regno; j < endregno; j++)
11465 if (reg_last_set_invalid[j]
11466 /* If this is a pseudo-register that was only set once and not
11467 live at the beginning of the function, it is always valid. */
11468 || (! (regno >= FIRST_PSEUDO_REGISTER
11469 && REG_N_SETS (regno) == 1
11470 && (! REGNO_REG_SET_P
11471 (BASIC_BLOCK (0)->global_live_at_start, regno)))
11472 && reg_last_set_label[j] > tick))
11474 if (replace)
11475 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11476 return replace;
11479 return 1;
11481 /* If this is a memory reference, make sure that there were
11482 no stores after it that might have clobbered the value. We don't
11483 have alias info, so we assume any store invalidates it. */
11484 else if (GET_CODE (x) == MEM && ! RTX_UNCHANGING_P (x)
11485 && INSN_CUID (insn) <= mem_last_set)
11487 if (replace)
11488 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11489 return replace;
11492 for (i = 0; i < len; i++)
11493 if ((fmt[i] == 'e'
11494 && get_last_value_validate (&XEXP (x, i), insn, tick, replace) == 0)
11495 /* Don't bother with these. They shouldn't occur anyway. */
11496 || fmt[i] == 'E')
11497 return 0;
11499 /* If we haven't found a reason for it to be invalid, it is valid. */
11500 return 1;
11503 /* Get the last value assigned to X, if known. Some registers
11504 in the value may be replaced with (clobber (const_int 0)) if their value
11505 is known longer known reliably. */
11507 static rtx
11508 get_last_value (x)
11509 rtx x;
11511 unsigned int regno;
11512 rtx value;
11514 /* If this is a non-paradoxical SUBREG, get the value of its operand and
11515 then convert it to the desired mode. If this is a paradoxical SUBREG,
11516 we cannot predict what values the "extra" bits might have. */
11517 if (GET_CODE (x) == SUBREG
11518 && subreg_lowpart_p (x)
11519 && (GET_MODE_SIZE (GET_MODE (x))
11520 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
11521 && (value = get_last_value (SUBREG_REG (x))) != 0)
11522 return gen_lowpart_for_combine (GET_MODE (x), value);
11524 if (GET_CODE (x) != REG)
11525 return 0;
11527 regno = REGNO (x);
11528 value = reg_last_set_value[regno];
11530 /* If we don't have a value, or if it isn't for this basic block and
11531 it's either a hard register, set more than once, or it's a live
11532 at the beginning of the function, return 0.
11534 Because if it's not live at the beginning of the function then the reg
11535 is always set before being used (is never used without being set).
11536 And, if it's set only once, and it's always set before use, then all
11537 uses must have the same last value, even if it's not from this basic
11538 block. */
11540 if (value == 0
11541 || (reg_last_set_label[regno] != label_tick
11542 && (regno < FIRST_PSEUDO_REGISTER
11543 || REG_N_SETS (regno) != 1
11544 || (REGNO_REG_SET_P
11545 (BASIC_BLOCK (0)->global_live_at_start, regno)))))
11546 return 0;
11548 /* If the value was set in a later insn than the ones we are processing,
11549 we can't use it even if the register was only set once. */
11550 if (INSN_CUID (reg_last_set[regno]) >= subst_low_cuid)
11551 return 0;
11553 /* If the value has all its registers valid, return it. */
11554 if (get_last_value_validate (&value, reg_last_set[regno],
11555 reg_last_set_label[regno], 0))
11556 return value;
11558 /* Otherwise, make a copy and replace any invalid register with
11559 (clobber (const_int 0)). If that fails for some reason, return 0. */
11561 value = copy_rtx (value);
11562 if (get_last_value_validate (&value, reg_last_set[regno],
11563 reg_last_set_label[regno], 1))
11564 return value;
11566 return 0;
11569 /* Return nonzero if expression X refers to a REG or to memory
11570 that is set in an instruction more recent than FROM_CUID. */
11572 static int
11573 use_crosses_set_p (x, from_cuid)
11574 rtx x;
11575 int from_cuid;
11577 const char *fmt;
11578 int i;
11579 enum rtx_code code = GET_CODE (x);
11581 if (code == REG)
11583 unsigned int regno = REGNO (x);
11584 unsigned endreg = regno + (regno < FIRST_PSEUDO_REGISTER
11585 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11587 #ifdef PUSH_ROUNDING
11588 /* Don't allow uses of the stack pointer to be moved,
11589 because we don't know whether the move crosses a push insn. */
11590 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
11591 return 1;
11592 #endif
11593 for (; regno < endreg; regno++)
11594 if (reg_last_set[regno]
11595 && INSN_CUID (reg_last_set[regno]) > from_cuid)
11596 return 1;
11597 return 0;
11600 if (code == MEM && mem_last_set > from_cuid)
11601 return 1;
11603 fmt = GET_RTX_FORMAT (code);
11605 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11607 if (fmt[i] == 'E')
11609 int j;
11610 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11611 if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
11612 return 1;
11614 else if (fmt[i] == 'e'
11615 && use_crosses_set_p (XEXP (x, i), from_cuid))
11616 return 1;
11618 return 0;
11621 /* Define three variables used for communication between the following
11622 routines. */
11624 static unsigned int reg_dead_regno, reg_dead_endregno;
11625 static int reg_dead_flag;
11627 /* Function called via note_stores from reg_dead_at_p.
11629 If DEST is within [reg_dead_regno, reg_dead_endregno), set
11630 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
11632 static void
11633 reg_dead_at_p_1 (dest, x, data)
11634 rtx dest;
11635 rtx x;
11636 void *data ATTRIBUTE_UNUSED;
11638 unsigned int regno, endregno;
11640 if (GET_CODE (dest) != REG)
11641 return;
11643 regno = REGNO (dest);
11644 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
11645 ? HARD_REGNO_NREGS (regno, GET_MODE (dest)) : 1);
11647 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
11648 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
11651 /* Return non-zero if REG is known to be dead at INSN.
11653 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
11654 referencing REG, it is dead. If we hit a SET referencing REG, it is
11655 live. Otherwise, see if it is live or dead at the start of the basic
11656 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
11657 must be assumed to be always live. */
11659 static int
11660 reg_dead_at_p (reg, insn)
11661 rtx reg;
11662 rtx insn;
11664 int block;
11665 unsigned int i;
11667 /* Set variables for reg_dead_at_p_1. */
11668 reg_dead_regno = REGNO (reg);
11669 reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
11670 ? HARD_REGNO_NREGS (reg_dead_regno,
11671 GET_MODE (reg))
11672 : 1);
11674 reg_dead_flag = 0;
11676 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. */
11677 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
11679 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11680 if (TEST_HARD_REG_BIT (newpat_used_regs, i))
11681 return 0;
11684 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
11685 beginning of function. */
11686 for (; insn && GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != BARRIER;
11687 insn = prev_nonnote_insn (insn))
11689 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
11690 if (reg_dead_flag)
11691 return reg_dead_flag == 1 ? 1 : 0;
11693 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
11694 return 1;
11697 /* Get the basic block number that we were in. */
11698 if (insn == 0)
11699 block = 0;
11700 else
11702 for (block = 0; block < n_basic_blocks; block++)
11703 if (insn == BLOCK_HEAD (block))
11704 break;
11706 if (block == n_basic_blocks)
11707 return 0;
11710 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11711 if (REGNO_REG_SET_P (BASIC_BLOCK (block)->global_live_at_start, i))
11712 return 0;
11714 return 1;
11717 /* Note hard registers in X that are used. This code is similar to
11718 that in flow.c, but much simpler since we don't care about pseudos. */
11720 static void
11721 mark_used_regs_combine (x)
11722 rtx x;
11724 RTX_CODE code = GET_CODE (x);
11725 unsigned int regno;
11726 int i;
11728 switch (code)
11730 case LABEL_REF:
11731 case SYMBOL_REF:
11732 case CONST_INT:
11733 case CONST:
11734 case CONST_DOUBLE:
11735 case CONST_VECTOR:
11736 case PC:
11737 case ADDR_VEC:
11738 case ADDR_DIFF_VEC:
11739 case ASM_INPUT:
11740 #ifdef HAVE_cc0
11741 /* CC0 must die in the insn after it is set, so we don't need to take
11742 special note of it here. */
11743 case CC0:
11744 #endif
11745 return;
11747 case CLOBBER:
11748 /* If we are clobbering a MEM, mark any hard registers inside the
11749 address as used. */
11750 if (GET_CODE (XEXP (x, 0)) == MEM)
11751 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
11752 return;
11754 case REG:
11755 regno = REGNO (x);
11756 /* A hard reg in a wide mode may really be multiple registers.
11757 If so, mark all of them just like the first. */
11758 if (regno < FIRST_PSEUDO_REGISTER)
11760 unsigned int endregno, r;
11762 /* None of this applies to the stack, frame or arg pointers */
11763 if (regno == STACK_POINTER_REGNUM
11764 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
11765 || regno == HARD_FRAME_POINTER_REGNUM
11766 #endif
11767 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
11768 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
11769 #endif
11770 || regno == FRAME_POINTER_REGNUM)
11771 return;
11773 endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
11774 for (r = regno; r < endregno; r++)
11775 SET_HARD_REG_BIT (newpat_used_regs, r);
11777 return;
11779 case SET:
11781 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
11782 the address. */
11783 rtx testreg = SET_DEST (x);
11785 while (GET_CODE (testreg) == SUBREG
11786 || GET_CODE (testreg) == ZERO_EXTRACT
11787 || GET_CODE (testreg) == SIGN_EXTRACT
11788 || GET_CODE (testreg) == STRICT_LOW_PART)
11789 testreg = XEXP (testreg, 0);
11791 if (GET_CODE (testreg) == MEM)
11792 mark_used_regs_combine (XEXP (testreg, 0));
11794 mark_used_regs_combine (SET_SRC (x));
11796 return;
11798 default:
11799 break;
11802 /* Recursively scan the operands of this expression. */
11805 const char *fmt = GET_RTX_FORMAT (code);
11807 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11809 if (fmt[i] == 'e')
11810 mark_used_regs_combine (XEXP (x, i));
11811 else if (fmt[i] == 'E')
11813 int j;
11815 for (j = 0; j < XVECLEN (x, i); j++)
11816 mark_used_regs_combine (XVECEXP (x, i, j));
11822 /* Remove register number REGNO from the dead registers list of INSN.
11824 Return the note used to record the death, if there was one. */
11827 remove_death (regno, insn)
11828 unsigned int regno;
11829 rtx insn;
11831 rtx note = find_regno_note (insn, REG_DEAD, regno);
11833 if (note)
11835 REG_N_DEATHS (regno)--;
11836 remove_note (insn, note);
11839 return note;
11842 /* For each register (hardware or pseudo) used within expression X, if its
11843 death is in an instruction with cuid between FROM_CUID (inclusive) and
11844 TO_INSN (exclusive), put a REG_DEAD note for that register in the
11845 list headed by PNOTES.
11847 That said, don't move registers killed by maybe_kill_insn.
11849 This is done when X is being merged by combination into TO_INSN. These
11850 notes will then be distributed as needed. */
11852 static void
11853 move_deaths (x, maybe_kill_insn, from_cuid, to_insn, pnotes)
11854 rtx x;
11855 rtx maybe_kill_insn;
11856 int from_cuid;
11857 rtx to_insn;
11858 rtx *pnotes;
11860 const char *fmt;
11861 int len, i;
11862 enum rtx_code code = GET_CODE (x);
11864 if (code == REG)
11866 unsigned int regno = REGNO (x);
11867 rtx where_dead = reg_last_death[regno];
11868 rtx before_dead, after_dead;
11870 /* Don't move the register if it gets killed in between from and to */
11871 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
11872 && ! reg_referenced_p (x, maybe_kill_insn))
11873 return;
11875 /* WHERE_DEAD could be a USE insn made by combine, so first we
11876 make sure that we have insns with valid INSN_CUID values. */
11877 before_dead = where_dead;
11878 while (before_dead && INSN_UID (before_dead) > max_uid_cuid)
11879 before_dead = PREV_INSN (before_dead);
11881 after_dead = where_dead;
11882 while (after_dead && INSN_UID (after_dead) > max_uid_cuid)
11883 after_dead = NEXT_INSN (after_dead);
11885 if (before_dead && after_dead
11886 && INSN_CUID (before_dead) >= from_cuid
11887 && (INSN_CUID (after_dead) < INSN_CUID (to_insn)
11888 || (where_dead != after_dead
11889 && INSN_CUID (after_dead) == INSN_CUID (to_insn))))
11891 rtx note = remove_death (regno, where_dead);
11893 /* It is possible for the call above to return 0. This can occur
11894 when reg_last_death points to I2 or I1 that we combined with.
11895 In that case make a new note.
11897 We must also check for the case where X is a hard register
11898 and NOTE is a death note for a range of hard registers
11899 including X. In that case, we must put REG_DEAD notes for
11900 the remaining registers in place of NOTE. */
11902 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
11903 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11904 > GET_MODE_SIZE (GET_MODE (x))))
11906 unsigned int deadregno = REGNO (XEXP (note, 0));
11907 unsigned int deadend
11908 = (deadregno + HARD_REGNO_NREGS (deadregno,
11909 GET_MODE (XEXP (note, 0))));
11910 unsigned int ourend
11911 = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
11912 unsigned int i;
11914 for (i = deadregno; i < deadend; i++)
11915 if (i < regno || i >= ourend)
11916 REG_NOTES (where_dead)
11917 = gen_rtx_EXPR_LIST (REG_DEAD,
11918 gen_rtx_REG (reg_raw_mode[i], i),
11919 REG_NOTES (where_dead));
11922 /* If we didn't find any note, or if we found a REG_DEAD note that
11923 covers only part of the given reg, and we have a multi-reg hard
11924 register, then to be safe we must check for REG_DEAD notes
11925 for each register other than the first. They could have
11926 their own REG_DEAD notes lying around. */
11927 else if ((note == 0
11928 || (note != 0
11929 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11930 < GET_MODE_SIZE (GET_MODE (x)))))
11931 && regno < FIRST_PSEUDO_REGISTER
11932 && HARD_REGNO_NREGS (regno, GET_MODE (x)) > 1)
11934 unsigned int ourend
11935 = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
11936 unsigned int i, offset;
11937 rtx oldnotes = 0;
11939 if (note)
11940 offset = HARD_REGNO_NREGS (regno, GET_MODE (XEXP (note, 0)));
11941 else
11942 offset = 1;
11944 for (i = regno + offset; i < ourend; i++)
11945 move_deaths (gen_rtx_REG (reg_raw_mode[i], i),
11946 maybe_kill_insn, from_cuid, to_insn, &oldnotes);
11949 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
11951 XEXP (note, 1) = *pnotes;
11952 *pnotes = note;
11954 else
11955 *pnotes = gen_rtx_EXPR_LIST (REG_DEAD, x, *pnotes);
11957 REG_N_DEATHS (regno)++;
11960 return;
11963 else if (GET_CODE (x) == SET)
11965 rtx dest = SET_DEST (x);
11967 move_deaths (SET_SRC (x), maybe_kill_insn, from_cuid, to_insn, pnotes);
11969 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
11970 that accesses one word of a multi-word item, some
11971 piece of everything register in the expression is used by
11972 this insn, so remove any old death. */
11973 /* ??? So why do we test for equality of the sizes? */
11975 if (GET_CODE (dest) == ZERO_EXTRACT
11976 || GET_CODE (dest) == STRICT_LOW_PART
11977 || (GET_CODE (dest) == SUBREG
11978 && (((GET_MODE_SIZE (GET_MODE (dest))
11979 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
11980 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
11981 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
11983 move_deaths (dest, maybe_kill_insn, from_cuid, to_insn, pnotes);
11984 return;
11987 /* If this is some other SUBREG, we know it replaces the entire
11988 value, so use that as the destination. */
11989 if (GET_CODE (dest) == SUBREG)
11990 dest = SUBREG_REG (dest);
11992 /* If this is a MEM, adjust deaths of anything used in the address.
11993 For a REG (the only other possibility), the entire value is
11994 being replaced so the old value is not used in this insn. */
11996 if (GET_CODE (dest) == MEM)
11997 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_cuid,
11998 to_insn, pnotes);
11999 return;
12002 else if (GET_CODE (x) == CLOBBER)
12003 return;
12005 len = GET_RTX_LENGTH (code);
12006 fmt = GET_RTX_FORMAT (code);
12008 for (i = 0; i < len; i++)
12010 if (fmt[i] == 'E')
12012 int j;
12013 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
12014 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_cuid,
12015 to_insn, pnotes);
12017 else if (fmt[i] == 'e')
12018 move_deaths (XEXP (x, i), maybe_kill_insn, from_cuid, to_insn, pnotes);
12022 /* Return 1 if X is the target of a bit-field assignment in BODY, the
12023 pattern of an insn. X must be a REG. */
12025 static int
12026 reg_bitfield_target_p (x, body)
12027 rtx x;
12028 rtx body;
12030 int i;
12032 if (GET_CODE (body) == SET)
12034 rtx dest = SET_DEST (body);
12035 rtx target;
12036 unsigned int regno, tregno, endregno, endtregno;
12038 if (GET_CODE (dest) == ZERO_EXTRACT)
12039 target = XEXP (dest, 0);
12040 else if (GET_CODE (dest) == STRICT_LOW_PART)
12041 target = SUBREG_REG (XEXP (dest, 0));
12042 else
12043 return 0;
12045 if (GET_CODE (target) == SUBREG)
12046 target = SUBREG_REG (target);
12048 if (GET_CODE (target) != REG)
12049 return 0;
12051 tregno = REGNO (target), regno = REGNO (x);
12052 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
12053 return target == x;
12055 endtregno = tregno + HARD_REGNO_NREGS (tregno, GET_MODE (target));
12056 endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
12058 return endregno > tregno && regno < endtregno;
12061 else if (GET_CODE (body) == PARALLEL)
12062 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
12063 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
12064 return 1;
12066 return 0;
12069 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
12070 as appropriate. I3 and I2 are the insns resulting from the combination
12071 insns including FROM (I2 may be zero).
12073 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
12074 not need REG_DEAD notes because they are being substituted for. This
12075 saves searching in the most common cases.
12077 Each note in the list is either ignored or placed on some insns, depending
12078 on the type of note. */
12080 static void
12081 distribute_notes (notes, from_insn, i3, i2, elim_i2, elim_i1)
12082 rtx notes;
12083 rtx from_insn;
12084 rtx i3, i2;
12085 rtx elim_i2, elim_i1;
12087 rtx note, next_note;
12088 rtx tem;
12090 for (note = notes; note; note = next_note)
12092 rtx place = 0, place2 = 0;
12094 /* If this NOTE references a pseudo register, ensure it references
12095 the latest copy of that register. */
12096 if (XEXP (note, 0) && GET_CODE (XEXP (note, 0)) == REG
12097 && REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER)
12098 XEXP (note, 0) = regno_reg_rtx[REGNO (XEXP (note, 0))];
12100 next_note = XEXP (note, 1);
12101 switch (REG_NOTE_KIND (note))
12103 case REG_BR_PROB:
12104 case REG_BR_PRED:
12105 case REG_EXEC_COUNT:
12106 /* Doesn't matter much where we put this, as long as it's somewhere.
12107 It is preferable to keep these notes on branches, which is most
12108 likely to be i3. */
12109 place = i3;
12110 break;
12112 case REG_VTABLE_REF:
12113 /* ??? Should remain with *a particular* memory load. Given the
12114 nature of vtable data, the last insn seems relatively safe. */
12115 place = i3;
12116 break;
12118 case REG_NON_LOCAL_GOTO:
12119 if (GET_CODE (i3) == JUMP_INSN)
12120 place = i3;
12121 else if (i2 && GET_CODE (i2) == JUMP_INSN)
12122 place = i2;
12123 else
12124 abort ();
12125 break;
12127 case REG_EH_REGION:
12128 /* These notes must remain with the call or trapping instruction. */
12129 if (GET_CODE (i3) == CALL_INSN)
12130 place = i3;
12131 else if (i2 && GET_CODE (i2) == CALL_INSN)
12132 place = i2;
12133 else if (flag_non_call_exceptions)
12135 if (may_trap_p (i3))
12136 place = i3;
12137 else if (i2 && may_trap_p (i2))
12138 place = i2;
12139 /* ??? Otherwise assume we've combined things such that we
12140 can now prove that the instructions can't trap. Drop the
12141 note in this case. */
12143 else
12144 abort ();
12145 break;
12147 case REG_NORETURN:
12148 case REG_SETJMP:
12149 /* These notes must remain with the call. It should not be
12150 possible for both I2 and I3 to be a call. */
12151 if (GET_CODE (i3) == CALL_INSN)
12152 place = i3;
12153 else if (i2 && GET_CODE (i2) == CALL_INSN)
12154 place = i2;
12155 else
12156 abort ();
12157 break;
12159 case REG_UNUSED:
12160 /* Any clobbers for i3 may still exist, and so we must process
12161 REG_UNUSED notes from that insn.
12163 Any clobbers from i2 or i1 can only exist if they were added by
12164 recog_for_combine. In that case, recog_for_combine created the
12165 necessary REG_UNUSED notes. Trying to keep any original
12166 REG_UNUSED notes from these insns can cause incorrect output
12167 if it is for the same register as the original i3 dest.
12168 In that case, we will notice that the register is set in i3,
12169 and then add a REG_UNUSED note for the destination of i3, which
12170 is wrong. However, it is possible to have REG_UNUSED notes from
12171 i2 or i1 for register which were both used and clobbered, so
12172 we keep notes from i2 or i1 if they will turn into REG_DEAD
12173 notes. */
12175 /* If this register is set or clobbered in I3, put the note there
12176 unless there is one already. */
12177 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
12179 if (from_insn != i3)
12180 break;
12182 if (! (GET_CODE (XEXP (note, 0)) == REG
12183 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
12184 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
12185 place = i3;
12187 /* Otherwise, if this register is used by I3, then this register
12188 now dies here, so we must put a REG_DEAD note here unless there
12189 is one already. */
12190 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
12191 && ! (GET_CODE (XEXP (note, 0)) == REG
12192 ? find_regno_note (i3, REG_DEAD,
12193 REGNO (XEXP (note, 0)))
12194 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
12196 PUT_REG_NOTE_KIND (note, REG_DEAD);
12197 place = i3;
12199 break;
12201 case REG_EQUAL:
12202 case REG_EQUIV:
12203 case REG_NOALIAS:
12204 /* These notes say something about results of an insn. We can
12205 only support them if they used to be on I3 in which case they
12206 remain on I3. Otherwise they are ignored.
12208 If the note refers to an expression that is not a constant, we
12209 must also ignore the note since we cannot tell whether the
12210 equivalence is still true. It might be possible to do
12211 slightly better than this (we only have a problem if I2DEST
12212 or I1DEST is present in the expression), but it doesn't
12213 seem worth the trouble. */
12215 if (from_insn == i3
12216 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
12217 place = i3;
12218 break;
12220 case REG_INC:
12221 case REG_NO_CONFLICT:
12222 /* These notes say something about how a register is used. They must
12223 be present on any use of the register in I2 or I3. */
12224 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
12225 place = i3;
12227 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
12229 if (place)
12230 place2 = i2;
12231 else
12232 place = i2;
12234 break;
12236 case REG_LABEL:
12237 /* This can show up in several ways -- either directly in the
12238 pattern, or hidden off in the constant pool with (or without?)
12239 a REG_EQUAL note. */
12240 /* ??? Ignore the without-reg_equal-note problem for now. */
12241 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
12242 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
12243 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12244 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
12245 place = i3;
12247 if (i2
12248 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
12249 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
12250 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12251 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
12253 if (place)
12254 place2 = i2;
12255 else
12256 place = i2;
12259 /* Don't attach REG_LABEL note to a JUMP_INSN which has
12260 JUMP_LABEL already. Instead, decrement LABEL_NUSES. */
12261 if (place && GET_CODE (place) == JUMP_INSN && JUMP_LABEL (place))
12263 if (JUMP_LABEL (place) != XEXP (note, 0))
12264 abort ();
12265 if (GET_CODE (JUMP_LABEL (place)) == CODE_LABEL)
12266 LABEL_NUSES (JUMP_LABEL (place))--;
12267 place = 0;
12269 if (place2 && GET_CODE (place2) == JUMP_INSN && JUMP_LABEL (place2))
12271 if (JUMP_LABEL (place2) != XEXP (note, 0))
12272 abort ();
12273 if (GET_CODE (JUMP_LABEL (place2)) == CODE_LABEL)
12274 LABEL_NUSES (JUMP_LABEL (place2))--;
12275 place2 = 0;
12277 break;
12279 case REG_NONNEG:
12280 case REG_WAS_0:
12281 /* These notes say something about the value of a register prior
12282 to the execution of an insn. It is too much trouble to see
12283 if the note is still correct in all situations. It is better
12284 to simply delete it. */
12285 break;
12287 case REG_RETVAL:
12288 /* If the insn previously containing this note still exists,
12289 put it back where it was. Otherwise move it to the previous
12290 insn. Adjust the corresponding REG_LIBCALL note. */
12291 if (GET_CODE (from_insn) != NOTE)
12292 place = from_insn;
12293 else
12295 tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
12296 place = prev_real_insn (from_insn);
12297 if (tem && place)
12298 XEXP (tem, 0) = place;
12299 /* If we're deleting the last remaining instruction of a
12300 libcall sequence, don't add the notes. */
12301 else if (XEXP (note, 0) == from_insn)
12302 tem = place = 0;
12304 break;
12306 case REG_LIBCALL:
12307 /* This is handled similarly to REG_RETVAL. */
12308 if (GET_CODE (from_insn) != NOTE)
12309 place = from_insn;
12310 else
12312 tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
12313 place = next_real_insn (from_insn);
12314 if (tem && place)
12315 XEXP (tem, 0) = place;
12316 /* If we're deleting the last remaining instruction of a
12317 libcall sequence, don't add the notes. */
12318 else if (XEXP (note, 0) == from_insn)
12319 tem = place = 0;
12321 break;
12323 case REG_DEAD:
12324 /* If the register is used as an input in I3, it dies there.
12325 Similarly for I2, if it is non-zero and adjacent to I3.
12327 If the register is not used as an input in either I3 or I2
12328 and it is not one of the registers we were supposed to eliminate,
12329 there are two possibilities. We might have a non-adjacent I2
12330 or we might have somehow eliminated an additional register
12331 from a computation. For example, we might have had A & B where
12332 we discover that B will always be zero. In this case we will
12333 eliminate the reference to A.
12335 In both cases, we must search to see if we can find a previous
12336 use of A and put the death note there. */
12338 if (from_insn
12339 && GET_CODE (from_insn) == CALL_INSN
12340 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
12341 place = from_insn;
12342 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
12343 place = i3;
12344 else if (i2 != 0 && next_nonnote_insn (i2) == i3
12345 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12346 place = i2;
12348 if (rtx_equal_p (XEXP (note, 0), elim_i2)
12349 || rtx_equal_p (XEXP (note, 0), elim_i1))
12350 break;
12352 if (place == 0)
12354 basic_block bb = BASIC_BLOCK (this_basic_block);
12356 for (tem = PREV_INSN (i3); place == 0; tem = PREV_INSN (tem))
12358 if (! INSN_P (tem))
12360 if (tem == bb->head)
12361 break;
12362 continue;
12365 /* If the register is being set at TEM, see if that is all
12366 TEM is doing. If so, delete TEM. Otherwise, make this
12367 into a REG_UNUSED note instead. */
12368 if (reg_set_p (XEXP (note, 0), PATTERN (tem)))
12370 rtx set = single_set (tem);
12371 rtx inner_dest = 0;
12372 #ifdef HAVE_cc0
12373 rtx cc0_setter = NULL_RTX;
12374 #endif
12376 if (set != 0)
12377 for (inner_dest = SET_DEST (set);
12378 (GET_CODE (inner_dest) == STRICT_LOW_PART
12379 || GET_CODE (inner_dest) == SUBREG
12380 || GET_CODE (inner_dest) == ZERO_EXTRACT);
12381 inner_dest = XEXP (inner_dest, 0))
12384 /* Verify that it was the set, and not a clobber that
12385 modified the register.
12387 CC0 targets must be careful to maintain setter/user
12388 pairs. If we cannot delete the setter due to side
12389 effects, mark the user with an UNUSED note instead
12390 of deleting it. */
12392 if (set != 0 && ! side_effects_p (SET_SRC (set))
12393 && rtx_equal_p (XEXP (note, 0), inner_dest)
12394 #ifdef HAVE_cc0
12395 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
12396 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
12397 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
12398 #endif
12401 /* Move the notes and links of TEM elsewhere.
12402 This might delete other dead insns recursively.
12403 First set the pattern to something that won't use
12404 any register. */
12406 PATTERN (tem) = pc_rtx;
12408 distribute_notes (REG_NOTES (tem), tem, tem,
12409 NULL_RTX, NULL_RTX, NULL_RTX);
12410 distribute_links (LOG_LINKS (tem));
12412 PUT_CODE (tem, NOTE);
12413 NOTE_LINE_NUMBER (tem) = NOTE_INSN_DELETED;
12414 NOTE_SOURCE_FILE (tem) = 0;
12416 #ifdef HAVE_cc0
12417 /* Delete the setter too. */
12418 if (cc0_setter)
12420 PATTERN (cc0_setter) = pc_rtx;
12422 distribute_notes (REG_NOTES (cc0_setter),
12423 cc0_setter, cc0_setter,
12424 NULL_RTX, NULL_RTX, NULL_RTX);
12425 distribute_links (LOG_LINKS (cc0_setter));
12427 PUT_CODE (cc0_setter, NOTE);
12428 NOTE_LINE_NUMBER (cc0_setter)
12429 = NOTE_INSN_DELETED;
12430 NOTE_SOURCE_FILE (cc0_setter) = 0;
12432 #endif
12434 /* If the register is both set and used here, put the
12435 REG_DEAD note here, but place a REG_UNUSED note
12436 here too unless there already is one. */
12437 else if (reg_referenced_p (XEXP (note, 0),
12438 PATTERN (tem)))
12440 place = tem;
12442 if (! find_regno_note (tem, REG_UNUSED,
12443 REGNO (XEXP (note, 0))))
12444 REG_NOTES (tem)
12445 = gen_rtx_EXPR_LIST (REG_UNUSED, XEXP (note, 0),
12446 REG_NOTES (tem));
12448 else
12450 PUT_REG_NOTE_KIND (note, REG_UNUSED);
12452 /* If there isn't already a REG_UNUSED note, put one
12453 here. */
12454 if (! find_regno_note (tem, REG_UNUSED,
12455 REGNO (XEXP (note, 0))))
12456 place = tem;
12457 break;
12460 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
12461 || (GET_CODE (tem) == CALL_INSN
12462 && find_reg_fusage (tem, USE, XEXP (note, 0))))
12464 place = tem;
12466 /* If we are doing a 3->2 combination, and we have a
12467 register which formerly died in i3 and was not used
12468 by i2, which now no longer dies in i3 and is used in
12469 i2 but does not die in i2, and place is between i2
12470 and i3, then we may need to move a link from place to
12471 i2. */
12472 if (i2 && INSN_UID (place) <= max_uid_cuid
12473 && INSN_CUID (place) > INSN_CUID (i2)
12474 && from_insn
12475 && INSN_CUID (from_insn) > INSN_CUID (i2)
12476 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12478 rtx links = LOG_LINKS (place);
12479 LOG_LINKS (place) = 0;
12480 distribute_links (links);
12482 break;
12485 if (tem == bb->head)
12486 break;
12489 /* We haven't found an insn for the death note and it
12490 is still a REG_DEAD note, but we have hit the beginning
12491 of the block. If the existing life info says the reg
12492 was dead, there's nothing left to do. Otherwise, we'll
12493 need to do a global life update after combine. */
12494 if (REG_NOTE_KIND (note) == REG_DEAD && place == 0
12495 && REGNO_REG_SET_P (bb->global_live_at_start,
12496 REGNO (XEXP (note, 0))))
12498 SET_BIT (refresh_blocks, this_basic_block);
12499 need_refresh = 1;
12503 /* If the register is set or already dead at PLACE, we needn't do
12504 anything with this note if it is still a REG_DEAD note.
12505 We can here if it is set at all, not if is it totally replace,
12506 which is what `dead_or_set_p' checks, so also check for it being
12507 set partially. */
12509 if (place && REG_NOTE_KIND (note) == REG_DEAD)
12511 unsigned int regno = REGNO (XEXP (note, 0));
12513 /* Similarly, if the instruction on which we want to place
12514 the note is a noop, we'll need do a global live update
12515 after we remove them in delete_noop_moves. */
12516 if (noop_move_p (place))
12518 SET_BIT (refresh_blocks, this_basic_block);
12519 need_refresh = 1;
12522 if (dead_or_set_p (place, XEXP (note, 0))
12523 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
12525 /* Unless the register previously died in PLACE, clear
12526 reg_last_death. [I no longer understand why this is
12527 being done.] */
12528 if (reg_last_death[regno] != place)
12529 reg_last_death[regno] = 0;
12530 place = 0;
12532 else
12533 reg_last_death[regno] = place;
12535 /* If this is a death note for a hard reg that is occupying
12536 multiple registers, ensure that we are still using all
12537 parts of the object. If we find a piece of the object
12538 that is unused, we must arrange for an appropriate REG_DEAD
12539 note to be added for it. However, we can't just emit a USE
12540 and tag the note to it, since the register might actually
12541 be dead; so we recourse, and the recursive call then finds
12542 the previous insn that used this register. */
12544 if (place && regno < FIRST_PSEUDO_REGISTER
12545 && HARD_REGNO_NREGS (regno, GET_MODE (XEXP (note, 0))) > 1)
12547 unsigned int endregno
12548 = regno + HARD_REGNO_NREGS (regno,
12549 GET_MODE (XEXP (note, 0)));
12550 int all_used = 1;
12551 unsigned int i;
12553 for (i = regno; i < endregno; i++)
12554 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
12555 && ! find_regno_fusage (place, USE, i))
12556 || dead_or_set_regno_p (place, i))
12557 all_used = 0;
12559 if (! all_used)
12561 /* Put only REG_DEAD notes for pieces that are
12562 not already dead or set. */
12564 for (i = regno; i < endregno;
12565 i += HARD_REGNO_NREGS (i, reg_raw_mode[i]))
12567 rtx piece = gen_rtx_REG (reg_raw_mode[i], i);
12568 basic_block bb = BASIC_BLOCK (this_basic_block);
12570 if (! dead_or_set_p (place, piece)
12571 && ! reg_bitfield_target_p (piece,
12572 PATTERN (place)))
12574 rtx new_note
12575 = gen_rtx_EXPR_LIST (REG_DEAD, piece, NULL_RTX);
12577 distribute_notes (new_note, place, place,
12578 NULL_RTX, NULL_RTX, NULL_RTX);
12580 else if (! refers_to_regno_p (i, i + 1,
12581 PATTERN (place), 0)
12582 && ! find_regno_fusage (place, USE, i))
12583 for (tem = PREV_INSN (place); ;
12584 tem = PREV_INSN (tem))
12586 if (! INSN_P (tem))
12588 if (tem == bb->head)
12590 SET_BIT (refresh_blocks,
12591 this_basic_block);
12592 need_refresh = 1;
12593 break;
12595 continue;
12597 if (dead_or_set_p (tem, piece)
12598 || reg_bitfield_target_p (piece,
12599 PATTERN (tem)))
12601 REG_NOTES (tem)
12602 = gen_rtx_EXPR_LIST (REG_UNUSED, piece,
12603 REG_NOTES (tem));
12604 break;
12610 place = 0;
12614 break;
12616 default:
12617 /* Any other notes should not be present at this point in the
12618 compilation. */
12619 abort ();
12622 if (place)
12624 XEXP (note, 1) = REG_NOTES (place);
12625 REG_NOTES (place) = note;
12627 else if ((REG_NOTE_KIND (note) == REG_DEAD
12628 || REG_NOTE_KIND (note) == REG_UNUSED)
12629 && GET_CODE (XEXP (note, 0)) == REG)
12630 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
12632 if (place2)
12634 if ((REG_NOTE_KIND (note) == REG_DEAD
12635 || REG_NOTE_KIND (note) == REG_UNUSED)
12636 && GET_CODE (XEXP (note, 0)) == REG)
12637 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
12639 REG_NOTES (place2) = gen_rtx_fmt_ee (GET_CODE (note),
12640 REG_NOTE_KIND (note),
12641 XEXP (note, 0),
12642 REG_NOTES (place2));
12647 /* Similarly to above, distribute the LOG_LINKS that used to be present on
12648 I3, I2, and I1 to new locations. This is also called in one case to
12649 add a link pointing at I3 when I3's destination is changed. */
12651 static void
12652 distribute_links (links)
12653 rtx links;
12655 rtx link, next_link;
12657 for (link = links; link; link = next_link)
12659 rtx place = 0;
12660 rtx insn;
12661 rtx set, reg;
12663 next_link = XEXP (link, 1);
12665 /* If the insn that this link points to is a NOTE or isn't a single
12666 set, ignore it. In the latter case, it isn't clear what we
12667 can do other than ignore the link, since we can't tell which
12668 register it was for. Such links wouldn't be used by combine
12669 anyway.
12671 It is not possible for the destination of the target of the link to
12672 have been changed by combine. The only potential of this is if we
12673 replace I3, I2, and I1 by I3 and I2. But in that case the
12674 destination of I2 also remains unchanged. */
12676 if (GET_CODE (XEXP (link, 0)) == NOTE
12677 || (set = single_set (XEXP (link, 0))) == 0)
12678 continue;
12680 reg = SET_DEST (set);
12681 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
12682 || GET_CODE (reg) == SIGN_EXTRACT
12683 || GET_CODE (reg) == STRICT_LOW_PART)
12684 reg = XEXP (reg, 0);
12686 /* A LOG_LINK is defined as being placed on the first insn that uses
12687 a register and points to the insn that sets the register. Start
12688 searching at the next insn after the target of the link and stop
12689 when we reach a set of the register or the end of the basic block.
12691 Note that this correctly handles the link that used to point from
12692 I3 to I2. Also note that not much searching is typically done here
12693 since most links don't point very far away. */
12695 for (insn = NEXT_INSN (XEXP (link, 0));
12696 (insn && (this_basic_block == n_basic_blocks - 1
12697 || BLOCK_HEAD (this_basic_block + 1) != insn));
12698 insn = NEXT_INSN (insn))
12699 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
12701 if (reg_referenced_p (reg, PATTERN (insn)))
12702 place = insn;
12703 break;
12705 else if (GET_CODE (insn) == CALL_INSN
12706 && find_reg_fusage (insn, USE, reg))
12708 place = insn;
12709 break;
12712 /* If we found a place to put the link, place it there unless there
12713 is already a link to the same insn as LINK at that point. */
12715 if (place)
12717 rtx link2;
12719 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
12720 if (XEXP (link2, 0) == XEXP (link, 0))
12721 break;
12723 if (link2 == 0)
12725 XEXP (link, 1) = LOG_LINKS (place);
12726 LOG_LINKS (place) = link;
12728 /* Set added_links_insn to the earliest insn we added a
12729 link to. */
12730 if (added_links_insn == 0
12731 || INSN_CUID (added_links_insn) > INSN_CUID (place))
12732 added_links_insn = place;
12738 /* Compute INSN_CUID for INSN, which is an insn made by combine. */
12740 static int
12741 insn_cuid (insn)
12742 rtx insn;
12744 while (insn != 0 && INSN_UID (insn) > max_uid_cuid
12745 && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == USE)
12746 insn = NEXT_INSN (insn);
12748 if (INSN_UID (insn) > max_uid_cuid)
12749 abort ();
12751 return INSN_CUID (insn);
12754 void
12755 dump_combine_stats (file)
12756 FILE *file;
12758 fnotice
12759 (file,
12760 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
12761 combine_attempts, combine_merges, combine_extras, combine_successes);
12764 void
12765 dump_combine_total_stats (file)
12766 FILE *file;
12768 fnotice
12769 (file,
12770 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
12771 total_attempts, total_merges, total_extras, total_successes);