sem_ch6.adb (Possible_Freeze): If the type is an incomplete CW type...
[official-gcc.git] / gcc / ada / sem_ch6.adb
blob2fec97c49c0eb9ae9e7c27178548a4e54a5a778e
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 6 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Contracts; use Contracts;
30 with Debug; use Debug;
31 with Einfo; use Einfo;
32 with Elists; use Elists;
33 with Errout; use Errout;
34 with Expander; use Expander;
35 with Exp_Ch6; use Exp_Ch6;
36 with Exp_Ch7; use Exp_Ch7;
37 with Exp_Ch9; use Exp_Ch9;
38 with Exp_Dbug; use Exp_Dbug;
39 with Exp_Disp; use Exp_Disp;
40 with Exp_Tss; use Exp_Tss;
41 with Exp_Util; use Exp_Util;
42 with Fname; use Fname;
43 with Freeze; use Freeze;
44 with Ghost; use Ghost;
45 with Inline; use Inline;
46 with Itypes; use Itypes;
47 with Lib.Xref; use Lib.Xref;
48 with Layout; use Layout;
49 with Namet; use Namet;
50 with Lib; use Lib;
51 with Nlists; use Nlists;
52 with Nmake; use Nmake;
53 with Opt; use Opt;
54 with Output; use Output;
55 with Restrict; use Restrict;
56 with Rident; use Rident;
57 with Rtsfind; use Rtsfind;
58 with Sem; use Sem;
59 with Sem_Aux; use Sem_Aux;
60 with Sem_Cat; use Sem_Cat;
61 with Sem_Ch3; use Sem_Ch3;
62 with Sem_Ch4; use Sem_Ch4;
63 with Sem_Ch5; use Sem_Ch5;
64 with Sem_Ch8; use Sem_Ch8;
65 with Sem_Ch10; use Sem_Ch10;
66 with Sem_Ch12; use Sem_Ch12;
67 with Sem_Ch13; use Sem_Ch13;
68 with Sem_Dim; use Sem_Dim;
69 with Sem_Disp; use Sem_Disp;
70 with Sem_Dist; use Sem_Dist;
71 with Sem_Elim; use Sem_Elim;
72 with Sem_Eval; use Sem_Eval;
73 with Sem_Mech; use Sem_Mech;
74 with Sem_Prag; use Sem_Prag;
75 with Sem_Res; use Sem_Res;
76 with Sem_Util; use Sem_Util;
77 with Sem_Type; use Sem_Type;
78 with Sem_Warn; use Sem_Warn;
79 with Sinput; use Sinput;
80 with Stand; use Stand;
81 with Sinfo; use Sinfo;
82 with Sinfo.CN; use Sinfo.CN;
83 with Snames; use Snames;
84 with Stringt; use Stringt;
85 with Style;
86 with Stylesw; use Stylesw;
87 with Tbuild; use Tbuild;
88 with Uintp; use Uintp;
89 with Urealp; use Urealp;
90 with Validsw; use Validsw;
92 package body Sem_Ch6 is
94 May_Hide_Profile : Boolean := False;
95 -- This flag is used to indicate that two formals in two subprograms being
96 -- checked for conformance differ only in that one is an access parameter
97 -- while the other is of a general access type with the same designated
98 -- type. In this case, if the rest of the signatures match, a call to
99 -- either subprogram may be ambiguous, which is worth a warning. The flag
100 -- is set in Compatible_Types, and the warning emitted in
101 -- New_Overloaded_Entity.
103 -----------------------
104 -- Local Subprograms --
105 -----------------------
107 procedure Analyze_Function_Return (N : Node_Id);
108 -- Subsidiary to Analyze_Return_Statement. Called when the return statement
109 -- applies to a [generic] function.
111 procedure Analyze_Generic_Subprogram_Body (N : Node_Id; Gen_Id : Entity_Id);
112 -- Analyze a generic subprogram body. N is the body to be analyzed, and
113 -- Gen_Id is the defining entity Id for the corresponding spec.
115 procedure Analyze_Null_Procedure
116 (N : Node_Id;
117 Is_Completion : out Boolean);
118 -- A null procedure can be a declaration or (Ada 2012) a completion
120 procedure Analyze_Return_Statement (N : Node_Id);
121 -- Common processing for simple and extended return statements
123 procedure Analyze_Return_Type (N : Node_Id);
124 -- Subsidiary to Process_Formals: analyze subtype mark in function
125 -- specification in a context where the formals are visible and hide
126 -- outer homographs.
128 procedure Analyze_Subprogram_Body_Helper (N : Node_Id);
129 -- Does all the real work of Analyze_Subprogram_Body. This is split out so
130 -- that we can use RETURN but not skip the debug output at the end.
132 function Can_Override_Operator (Subp : Entity_Id) return Boolean;
133 -- Returns true if Subp can override a predefined operator.
135 procedure Check_Conformance
136 (New_Id : Entity_Id;
137 Old_Id : Entity_Id;
138 Ctype : Conformance_Type;
139 Errmsg : Boolean;
140 Conforms : out Boolean;
141 Err_Loc : Node_Id := Empty;
142 Get_Inst : Boolean := False;
143 Skip_Controlling_Formals : Boolean := False);
144 -- Given two entities, this procedure checks that the profiles associated
145 -- with these entities meet the conformance criterion given by the third
146 -- parameter. If they conform, Conforms is set True and control returns
147 -- to the caller. If they do not conform, Conforms is set to False, and
148 -- in addition, if Errmsg is True on the call, proper messages are output
149 -- to complain about the conformance failure. If Err_Loc is non_Empty
150 -- the error messages are placed on Err_Loc, if Err_Loc is empty, then
151 -- error messages are placed on the appropriate part of the construct
152 -- denoted by New_Id. If Get_Inst is true, then this is a mode conformance
153 -- against a formal access-to-subprogram type so Get_Instance_Of must
154 -- be called.
156 procedure Check_Limited_Return
157 (N : Node_Id;
158 Expr : Node_Id;
159 R_Type : Entity_Id);
160 -- Check the appropriate (Ada 95 or Ada 2005) rules for returning limited
161 -- types. Used only for simple return statements. Expr is the expression
162 -- returned.
164 procedure Check_Subprogram_Order (N : Node_Id);
165 -- N is the N_Subprogram_Body node for a subprogram. This routine applies
166 -- the alpha ordering rule for N if this ordering requirement applicable.
168 procedure Check_Returns
169 (HSS : Node_Id;
170 Mode : Character;
171 Err : out Boolean;
172 Proc : Entity_Id := Empty);
173 -- Called to check for missing return statements in a function body, or for
174 -- returns present in a procedure body which has No_Return set. HSS is the
175 -- handled statement sequence for the subprogram body. This procedure
176 -- checks all flow paths to make sure they either have return (Mode = 'F',
177 -- used for functions) or do not have a return (Mode = 'P', used for
178 -- No_Return procedures). The flag Err is set if there are any control
179 -- paths not explicitly terminated by a return in the function case, and is
180 -- True otherwise. Proc is the entity for the procedure case and is used
181 -- in posting the warning message.
183 procedure Check_Untagged_Equality (Eq_Op : Entity_Id);
184 -- In Ada 2012, a primitive equality operator on an untagged record type
185 -- must appear before the type is frozen, and have the same visibility as
186 -- that of the type. This procedure checks that this rule is met, and
187 -- otherwise emits an error on the subprogram declaration and a warning
188 -- on the earlier freeze point if it is easy to locate. In Ada 2012 mode,
189 -- this routine outputs errors (or warnings if -gnatd.E is set). In earlier
190 -- versions of Ada, warnings are output if Warn_On_Ada_2012_Incompatibility
191 -- is set, otherwise the call has no effect.
193 procedure Enter_Overloaded_Entity (S : Entity_Id);
194 -- This procedure makes S, a new overloaded entity, into the first visible
195 -- entity with that name.
197 function Is_Non_Overriding_Operation
198 (Prev_E : Entity_Id;
199 New_E : Entity_Id) return Boolean;
200 -- Enforce the rule given in 12.3(18): a private operation in an instance
201 -- overrides an inherited operation only if the corresponding operation
202 -- was overriding in the generic. This needs to be checked for primitive
203 -- operations of types derived (in the generic unit) from formal private
204 -- or formal derived types.
206 procedure Make_Inequality_Operator (S : Entity_Id);
207 -- Create the declaration for an inequality operator that is implicitly
208 -- created by a user-defined equality operator that yields a boolean.
210 procedure Set_Formal_Validity (Formal_Id : Entity_Id);
211 -- Formal_Id is an formal parameter entity. This procedure deals with
212 -- setting the proper validity status for this entity, which depends on
213 -- the kind of parameter and the validity checking mode.
215 ---------------------------------------------
216 -- Analyze_Abstract_Subprogram_Declaration --
217 ---------------------------------------------
219 procedure Analyze_Abstract_Subprogram_Declaration (N : Node_Id) is
220 Scop : constant Entity_Id := Current_Scope;
221 Subp_Id : constant Entity_Id :=
222 Analyze_Subprogram_Specification (Specification (N));
224 begin
225 Check_SPARK_05_Restriction ("abstract subprogram is not allowed", N);
227 Generate_Definition (Subp_Id);
229 Set_Is_Abstract_Subprogram (Subp_Id);
230 New_Overloaded_Entity (Subp_Id);
231 Check_Delayed_Subprogram (Subp_Id);
233 Set_Categorization_From_Scope (Subp_Id, Scop);
235 -- An abstract subprogram declared within a Ghost region is rendered
236 -- Ghost (SPARK RM 6.9(2)).
238 if Ghost_Mode > None then
239 Set_Is_Ghost_Entity (Subp_Id);
240 end if;
242 if Ekind (Scope (Subp_Id)) = E_Protected_Type then
243 Error_Msg_N ("abstract subprogram not allowed in protected type", N);
245 -- Issue a warning if the abstract subprogram is neither a dispatching
246 -- operation nor an operation that overrides an inherited subprogram or
247 -- predefined operator, since this most likely indicates a mistake.
249 elsif Warn_On_Redundant_Constructs
250 and then not Is_Dispatching_Operation (Subp_Id)
251 and then not Present (Overridden_Operation (Subp_Id))
252 and then (not Is_Operator_Symbol_Name (Chars (Subp_Id))
253 or else Scop /= Scope (Etype (First_Formal (Subp_Id))))
254 then
255 Error_Msg_N
256 ("abstract subprogram is not dispatching or overriding?r?", N);
257 end if;
259 Generate_Reference_To_Formals (Subp_Id);
260 Check_Eliminated (Subp_Id);
262 if Has_Aspects (N) then
263 Analyze_Aspect_Specifications (N, Subp_Id);
264 end if;
265 end Analyze_Abstract_Subprogram_Declaration;
267 ---------------------------------
268 -- Analyze_Expression_Function --
269 ---------------------------------
271 procedure Analyze_Expression_Function (N : Node_Id) is
272 Expr : constant Node_Id := Expression (N);
273 Loc : constant Source_Ptr := Sloc (N);
274 LocX : constant Source_Ptr := Sloc (Expr);
275 Spec : constant Node_Id := Specification (N);
277 Def_Id : Entity_Id;
279 Prev : Entity_Id;
280 -- If the expression is a completion, Prev is the entity whose
281 -- declaration is completed. Def_Id is needed to analyze the spec.
283 New_Body : Node_Id;
284 New_Spec : Node_Id;
285 Ret : Node_Id;
286 Asp : Node_Id;
288 begin
289 -- This is one of the occasions on which we transform the tree during
290 -- semantic analysis. If this is a completion, transform the expression
291 -- function into an equivalent subprogram body, and analyze it.
293 -- Expression functions are inlined unconditionally. The back-end will
294 -- determine whether this is possible.
296 Inline_Processing_Required := True;
298 -- Create a specification for the generated body. This must be done
299 -- prior to the analysis of the initial declaration.
301 New_Spec := Copy_Subprogram_Spec (Spec);
302 Prev := Current_Entity_In_Scope (Defining_Entity (Spec));
304 -- If there are previous overloadable entities with the same name,
305 -- check whether any of them is completed by the expression function.
306 -- In a generic context a formal subprogram has no completion.
308 if Present (Prev)
309 and then Is_Overloadable (Prev)
310 and then not Is_Formal_Subprogram (Prev)
311 then
312 Def_Id := Analyze_Subprogram_Specification (Spec);
313 Prev := Find_Corresponding_Spec (N);
315 -- The previous entity may be an expression function as well, in
316 -- which case the redeclaration is illegal.
318 if Present (Prev)
319 and then Nkind (Original_Node (Unit_Declaration_Node (Prev))) =
320 N_Expression_Function
321 then
322 Error_Msg_Sloc := Sloc (Prev);
323 Error_Msg_N ("& conflicts with declaration#", Def_Id);
324 return;
325 end if;
326 end if;
328 Ret := Make_Simple_Return_Statement (LocX, Expression (N));
330 New_Body :=
331 Make_Subprogram_Body (Loc,
332 Specification => New_Spec,
333 Declarations => Empty_List,
334 Handled_Statement_Sequence =>
335 Make_Handled_Sequence_Of_Statements (LocX,
336 Statements => New_List (Ret)));
337 Set_Was_Expression_Function (New_Body);
339 -- If the expression completes a generic subprogram, we must create a
340 -- separate node for the body, because at instantiation the original
341 -- node of the generic copy must be a generic subprogram body, and
342 -- cannot be a expression function. Otherwise we just rewrite the
343 -- expression with the non-generic body.
345 if Present (Prev) and then Ekind (Prev) = E_Generic_Function then
346 Insert_After (N, New_Body);
348 -- Propagate any aspects or pragmas that apply to the expression
349 -- function to the proper body when the expression function acts
350 -- as a completion.
352 if Has_Aspects (N) then
353 Move_Aspects (N, To => New_Body);
354 end if;
356 Relocate_Pragmas_To_Body (New_Body);
358 Rewrite (N, Make_Null_Statement (Loc));
359 Set_Has_Completion (Prev, False);
360 Analyze (N);
361 Analyze (New_Body);
362 Set_Is_Inlined (Prev);
364 -- If the expression function is a completion, the previous declaration
365 -- must come from source. We know already that it appears in the current
366 -- scope. The entity itself may be internally created if within a body
367 -- to be inlined.
369 elsif Present (Prev)
370 and then Comes_From_Source (Parent (Prev))
371 and then not Is_Formal_Subprogram (Prev)
372 then
373 Set_Has_Completion (Prev, False);
374 Set_Is_Inlined (Prev);
376 -- An expression function that is a completion freezes the
377 -- expression. This means freezing the return type, and if it is
378 -- an access type, freezing its designated type as well.
380 -- Note that we cannot defer this freezing to the analysis of the
381 -- expression itself, because a freeze node might appear in a nested
382 -- scope, leading to an elaboration order issue in gigi.
384 Freeze_Before (N, Etype (Prev));
386 if Is_Access_Type (Etype (Prev)) then
387 Freeze_Before (N, Designated_Type (Etype (Prev)));
388 end if;
390 -- For navigation purposes, indicate that the function is a body
392 Generate_Reference (Prev, Defining_Entity (N), 'b', Force => True);
393 Rewrite (N, New_Body);
395 -- Correct the parent pointer of the aspect specification list to
396 -- reference the rewritten node.
398 if Has_Aspects (N) then
399 Set_Parent (Aspect_Specifications (N), N);
400 end if;
402 -- Propagate any pragmas that apply to the expression function to the
403 -- proper body when the expression function acts as a completion.
404 -- Aspects are automatically transfered because of node rewriting.
406 Relocate_Pragmas_To_Body (N);
407 Analyze (N);
409 -- Prev is the previous entity with the same name, but it is can
410 -- be an unrelated spec that is not completed by the expression
411 -- function. In that case the relevant entity is the one in the body.
412 -- Not clear that the backend can inline it in this case ???
414 if Has_Completion (Prev) then
416 -- The formals of the expression function are body formals,
417 -- and do not appear in the ali file, which will only contain
418 -- references to the formals of the original subprogram spec.
420 declare
421 F1 : Entity_Id;
422 F2 : Entity_Id;
424 begin
425 F1 := First_Formal (Def_Id);
426 F2 := First_Formal (Prev);
428 while Present (F1) loop
429 Set_Spec_Entity (F1, F2);
430 Next_Formal (F1);
431 Next_Formal (F2);
432 end loop;
433 end;
435 else
436 Set_Is_Inlined (Defining_Entity (New_Body));
437 end if;
439 -- If this is not a completion, create both a declaration and a body, so
440 -- that the expression can be inlined whenever possible.
442 else
443 -- An expression function that is not a completion is not a
444 -- subprogram declaration, and thus cannot appear in a protected
445 -- definition.
447 if Nkind (Parent (N)) = N_Protected_Definition then
448 Error_Msg_N
449 ("an expression function is not a legal protected operation", N);
450 end if;
452 Rewrite (N, Make_Subprogram_Declaration (Loc, Specification => Spec));
454 -- Correct the parent pointer of the aspect specification list to
455 -- reference the rewritten node.
457 if Has_Aspects (N) then
458 Set_Parent (Aspect_Specifications (N), N);
459 end if;
461 Analyze (N);
462 Def_Id := Defining_Entity (N);
464 -- If aspect SPARK_Mode was specified on the body, it needs to be
465 -- repeated both on the generated spec and the body.
467 Asp := Find_Aspect (Defining_Unit_Name (Spec), Aspect_SPARK_Mode);
469 if Present (Asp) then
470 Asp := New_Copy_Tree (Asp);
471 Set_Analyzed (Asp, False);
472 Set_Aspect_Specifications (New_Body, New_List (Asp));
473 end if;
475 -- Within a generic pre-analyze the original expression for name
476 -- capture. The body is also generated but plays no role in
477 -- this because it is not part of the original source.
479 if Inside_A_Generic then
480 Set_Has_Completion (Def_Id);
481 Push_Scope (Def_Id);
482 Install_Formals (Def_Id);
483 Preanalyze_Spec_Expression (Expr, Etype (Def_Id));
484 End_Scope;
485 end if;
487 Set_Is_Inlined (Defining_Entity (N));
489 -- Establish the linkages between the spec and the body. These are
490 -- used when the expression function acts as the prefix of attribute
491 -- 'Access in order to freeze the original expression which has been
492 -- moved to the generated body.
494 Set_Corresponding_Body (N, Defining_Entity (New_Body));
495 Set_Corresponding_Spec (New_Body, Defining_Entity (N));
497 -- To prevent premature freeze action, insert the new body at the end
498 -- of the current declarations, or at the end of the package spec.
499 -- However, resolve usage names now, to prevent spurious visibility
500 -- on later entities. Note that the function can now be called in
501 -- the current declarative part, which will appear to be prior to
502 -- the presence of the body in the code. There are nevertheless no
503 -- order of elaboration issues because all name resolution has taken
504 -- place at the point of declaration.
506 declare
507 Decls : List_Id := List_Containing (N);
508 Expr : constant Node_Id := Expression (Ret);
509 Par : constant Node_Id := Parent (Decls);
510 Typ : constant Entity_Id := Etype (Def_Id);
512 begin
513 -- If this is a wrapper created for in an instance for a formal
514 -- subprogram, insert body after declaration, to be analyzed when
515 -- the enclosing instance is analyzed.
517 if GNATprove_Mode
518 and then Is_Generic_Actual_Subprogram (Defining_Entity (N))
519 then
520 Insert_After (N, New_Body);
522 else
523 if Nkind (Par) = N_Package_Specification
524 and then Decls = Visible_Declarations (Par)
525 and then Present (Private_Declarations (Par))
526 and then not Is_Empty_List (Private_Declarations (Par))
527 then
528 Decls := Private_Declarations (Par);
529 end if;
531 Insert_After (Last (Decls), New_Body);
533 -- Preanalyze the expression for name capture, except in an
534 -- instance, where this has been done during generic analysis,
535 -- and will be redone when analyzing the body.
537 Set_Parent (Expr, Ret);
538 Push_Scope (Def_Id);
539 Install_Formals (Def_Id);
541 if not In_Instance then
542 Preanalyze_Spec_Expression (Expr, Typ);
543 Check_Limited_Return (Original_Node (N), Expr, Typ);
544 end if;
546 End_Scope;
547 end if;
548 end;
549 end if;
551 -- If the return expression is a static constant, we suppress warning
552 -- messages on unused formals, which in most cases will be noise.
554 Set_Is_Trivial_Subprogram
555 (Defining_Entity (New_Body), Is_OK_Static_Expression (Expr));
556 end Analyze_Expression_Function;
558 ----------------------------------------
559 -- Analyze_Extended_Return_Statement --
560 ----------------------------------------
562 procedure Analyze_Extended_Return_Statement (N : Node_Id) is
563 begin
564 Check_Compiler_Unit ("extended return statement", N);
565 Analyze_Return_Statement (N);
566 end Analyze_Extended_Return_Statement;
568 ----------------------------
569 -- Analyze_Function_Call --
570 ----------------------------
572 procedure Analyze_Function_Call (N : Node_Id) is
573 Actuals : constant List_Id := Parameter_Associations (N);
574 Func_Nam : constant Node_Id := Name (N);
575 Actual : Node_Id;
577 begin
578 Analyze (Func_Nam);
580 -- A call of the form A.B (X) may be an Ada 2005 call, which is
581 -- rewritten as B (A, X). If the rewriting is successful, the call
582 -- has been analyzed and we just return.
584 if Nkind (Func_Nam) = N_Selected_Component
585 and then Name (N) /= Func_Nam
586 and then Is_Rewrite_Substitution (N)
587 and then Present (Etype (N))
588 then
589 return;
590 end if;
592 -- If error analyzing name, then set Any_Type as result type and return
594 if Etype (Func_Nam) = Any_Type then
595 Set_Etype (N, Any_Type);
596 return;
597 end if;
599 -- Otherwise analyze the parameters
601 if Present (Actuals) then
602 Actual := First (Actuals);
603 while Present (Actual) loop
604 Analyze (Actual);
605 Check_Parameterless_Call (Actual);
606 Next (Actual);
607 end loop;
608 end if;
610 Analyze_Call (N);
611 end Analyze_Function_Call;
613 -----------------------------
614 -- Analyze_Function_Return --
615 -----------------------------
617 procedure Analyze_Function_Return (N : Node_Id) is
618 Loc : constant Source_Ptr := Sloc (N);
619 Stm_Entity : constant Entity_Id := Return_Statement_Entity (N);
620 Scope_Id : constant Entity_Id := Return_Applies_To (Stm_Entity);
622 R_Type : constant Entity_Id := Etype (Scope_Id);
623 -- Function result subtype
625 procedure Check_Aggregate_Accessibility (Aggr : Node_Id);
626 -- Apply legality rule of 6.5 (8.2) to the access discriminants of an
627 -- aggregate in a return statement.
629 procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id);
630 -- Check that the return_subtype_indication properly matches the result
631 -- subtype of the function, as required by RM-6.5(5.1/2-5.3/2).
633 -----------------------------------
634 -- Check_Aggregate_Accessibility --
635 -----------------------------------
637 procedure Check_Aggregate_Accessibility (Aggr : Node_Id) is
638 Typ : constant Entity_Id := Etype (Aggr);
639 Assoc : Node_Id;
640 Discr : Entity_Id;
641 Expr : Node_Id;
642 Obj : Node_Id;
644 begin
645 if Is_Record_Type (Typ) and then Has_Discriminants (Typ) then
646 Discr := First_Discriminant (Typ);
647 Assoc := First (Component_Associations (Aggr));
648 while Present (Discr) loop
649 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type then
650 Expr := Expression (Assoc);
651 if Nkind (Expr) = N_Attribute_Reference
652 and then Attribute_Name (Expr) /= Name_Unrestricted_Access
653 then
654 Obj := Prefix (Expr);
655 while Nkind_In (Obj, N_Indexed_Component,
656 N_Selected_Component)
657 loop
658 Obj := Prefix (Obj);
659 end loop;
661 -- No check needed for an aliased formal.
662 -- A run-time check may still be needed ???
664 if Is_Entity_Name (Obj)
665 and then Is_Formal (Entity (Obj))
666 and then Is_Aliased (Entity (Obj))
667 then
668 null;
670 elsif Object_Access_Level (Obj) >
671 Scope_Depth (Scope (Scope_Id))
672 then
673 Error_Msg_N
674 ("access discriminant in return aggregate would be "
675 & "a dangling reference", Obj);
676 end if;
677 end if;
678 end if;
680 Next_Discriminant (Discr);
681 end loop;
682 end if;
683 end Check_Aggregate_Accessibility;
685 -------------------------------------
686 -- Check_Return_Subtype_Indication --
687 -------------------------------------
689 procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id) is
690 Return_Obj : constant Node_Id := Defining_Identifier (Obj_Decl);
692 R_Stm_Type : constant Entity_Id := Etype (Return_Obj);
693 -- Subtype given in the extended return statement (must match R_Type)
695 Subtype_Ind : constant Node_Id :=
696 Object_Definition (Original_Node (Obj_Decl));
698 R_Type_Is_Anon_Access : constant Boolean :=
699 Ekind_In (R_Type,
700 E_Anonymous_Access_Subprogram_Type,
701 E_Anonymous_Access_Protected_Subprogram_Type,
702 E_Anonymous_Access_Type);
703 -- True if return type of the function is an anonymous access type
704 -- Can't we make Is_Anonymous_Access_Type in einfo ???
706 R_Stm_Type_Is_Anon_Access : constant Boolean :=
707 Ekind_In (R_Stm_Type,
708 E_Anonymous_Access_Subprogram_Type,
709 E_Anonymous_Access_Protected_Subprogram_Type,
710 E_Anonymous_Access_Type);
711 -- True if type of the return object is an anonymous access type
713 procedure Error_No_Match (N : Node_Id);
714 -- Output error messages for case where types do not statically
715 -- match. N is the location for the messages.
717 --------------------
718 -- Error_No_Match --
719 --------------------
721 procedure Error_No_Match (N : Node_Id) is
722 begin
723 Error_Msg_N
724 ("subtype must statically match function result subtype", N);
726 if not Predicates_Match (R_Stm_Type, R_Type) then
727 Error_Msg_Node_2 := R_Type;
728 Error_Msg_NE
729 ("\predicate of& does not match predicate of&",
730 N, R_Stm_Type);
731 end if;
732 end Error_No_Match;
734 -- Start of processing for Check_Return_Subtype_Indication
736 begin
737 -- First, avoid cascaded errors
739 if Error_Posted (Obj_Decl) or else Error_Posted (Subtype_Ind) then
740 return;
741 end if;
743 -- "return access T" case; check that the return statement also has
744 -- "access T", and that the subtypes statically match:
745 -- if this is an access to subprogram the signatures must match.
747 if R_Type_Is_Anon_Access then
748 if R_Stm_Type_Is_Anon_Access then
750 Ekind (Designated_Type (R_Stm_Type)) /= E_Subprogram_Type
751 then
752 if Base_Type (Designated_Type (R_Stm_Type)) /=
753 Base_Type (Designated_Type (R_Type))
754 or else not Subtypes_Statically_Match (R_Stm_Type, R_Type)
755 then
756 Error_No_Match (Subtype_Mark (Subtype_Ind));
757 end if;
759 else
760 -- For two anonymous access to subprogram types, the
761 -- types themselves must be type conformant.
763 if not Conforming_Types
764 (R_Stm_Type, R_Type, Fully_Conformant)
765 then
766 Error_No_Match (Subtype_Ind);
767 end if;
768 end if;
770 else
771 Error_Msg_N ("must use anonymous access type", Subtype_Ind);
772 end if;
774 -- If the return object is of an anonymous access type, then report
775 -- an error if the function's result type is not also anonymous.
777 elsif R_Stm_Type_Is_Anon_Access
778 and then not R_Type_Is_Anon_Access
779 then
780 Error_Msg_N ("anonymous access not allowed for function with "
781 & "named access result", Subtype_Ind);
783 -- Subtype indication case: check that the return object's type is
784 -- covered by the result type, and that the subtypes statically match
785 -- when the result subtype is constrained. Also handle record types
786 -- with unknown discriminants for which we have built the underlying
787 -- record view. Coverage is needed to allow specific-type return
788 -- objects when the result type is class-wide (see AI05-32).
790 elsif Covers (Base_Type (R_Type), Base_Type (R_Stm_Type))
791 or else (Is_Underlying_Record_View (Base_Type (R_Stm_Type))
792 and then
793 Covers
794 (Base_Type (R_Type),
795 Underlying_Record_View (Base_Type (R_Stm_Type))))
796 then
797 -- A null exclusion may be present on the return type, on the
798 -- function specification, on the object declaration or on the
799 -- subtype itself.
801 if Is_Access_Type (R_Type)
802 and then
803 (Can_Never_Be_Null (R_Type)
804 or else Null_Exclusion_Present (Parent (Scope_Id))) /=
805 Can_Never_Be_Null (R_Stm_Type)
806 then
807 Error_No_Match (Subtype_Ind);
808 end if;
810 -- AI05-103: for elementary types, subtypes must statically match
812 if Is_Constrained (R_Type)
813 or else Is_Access_Type (R_Type)
814 then
815 if not Subtypes_Statically_Match (R_Stm_Type, R_Type) then
816 Error_No_Match (Subtype_Ind);
817 end if;
818 end if;
820 -- All remaining cases are illegal
822 -- Note: previous versions of this subprogram allowed the return
823 -- value to be the ancestor of the return type if the return type
824 -- was a null extension. This was plainly incorrect.
826 else
827 Error_Msg_N
828 ("wrong type for return_subtype_indication", Subtype_Ind);
829 end if;
830 end Check_Return_Subtype_Indication;
832 ---------------------
833 -- Local Variables --
834 ---------------------
836 Expr : Node_Id;
837 Obj_Decl : Node_Id;
839 -- Start of processing for Analyze_Function_Return
841 begin
842 Set_Return_Present (Scope_Id);
844 if Nkind (N) = N_Simple_Return_Statement then
845 Expr := Expression (N);
847 -- Guard against a malformed expression. The parser may have tried to
848 -- recover but the node is not analyzable.
850 if Nkind (Expr) = N_Error then
851 Set_Etype (Expr, Any_Type);
852 Expander_Mode_Save_And_Set (False);
853 return;
855 else
856 -- The resolution of a controlled [extension] aggregate associated
857 -- with a return statement creates a temporary which needs to be
858 -- finalized on function exit. Wrap the return statement inside a
859 -- block so that the finalization machinery can detect this case.
860 -- This early expansion is done only when the return statement is
861 -- not part of a handled sequence of statements.
863 if Nkind_In (Expr, N_Aggregate,
864 N_Extension_Aggregate)
865 and then Needs_Finalization (R_Type)
866 and then Nkind (Parent (N)) /= N_Handled_Sequence_Of_Statements
867 then
868 Rewrite (N,
869 Make_Block_Statement (Loc,
870 Handled_Statement_Sequence =>
871 Make_Handled_Sequence_Of_Statements (Loc,
872 Statements => New_List (Relocate_Node (N)))));
874 Analyze (N);
875 return;
876 end if;
878 Analyze (Expr);
880 -- Ada 2005 (AI-251): If the type of the returned object is
881 -- an access to an interface type then we add an implicit type
882 -- conversion to force the displacement of the "this" pointer to
883 -- reference the secondary dispatch table. We cannot delay the
884 -- generation of this implicit conversion until the expansion
885 -- because in this case the type resolution changes the decoration
886 -- of the expression node to match R_Type; by contrast, if the
887 -- returned object is a class-wide interface type then it is too
888 -- early to generate here the implicit conversion since the return
889 -- statement may be rewritten by the expander into an extended
890 -- return statement whose expansion takes care of adding the
891 -- implicit type conversion to displace the pointer to the object.
893 if Expander_Active
894 and then Serious_Errors_Detected = 0
895 and then Is_Access_Type (R_Type)
896 and then Nkind (Expr) /= N_Null
897 and then Is_Interface (Designated_Type (R_Type))
898 and then Is_Progenitor (Designated_Type (R_Type),
899 Designated_Type (Etype (Expr)))
900 then
901 Rewrite (Expr, Convert_To (R_Type, Relocate_Node (Expr)));
902 Analyze (Expr);
903 end if;
905 Resolve (Expr, R_Type);
906 Check_Limited_Return (N, Expr, R_Type);
908 if Present (Expr) and then Nkind (Expr) = N_Aggregate then
909 Check_Aggregate_Accessibility (Expr);
910 end if;
911 end if;
913 -- RETURN only allowed in SPARK as the last statement in function
915 if Nkind (Parent (N)) /= N_Handled_Sequence_Of_Statements
916 and then
917 (Nkind (Parent (Parent (N))) /= N_Subprogram_Body
918 or else Present (Next (N)))
919 then
920 Check_SPARK_05_Restriction
921 ("RETURN should be the last statement in function", N);
922 end if;
924 else
925 Check_SPARK_05_Restriction ("extended RETURN is not allowed", N);
926 Obj_Decl := Last (Return_Object_Declarations (N));
928 -- Analyze parts specific to extended_return_statement:
930 declare
931 Has_Aliased : constant Boolean := Aliased_Present (Obj_Decl);
932 HSS : constant Node_Id := Handled_Statement_Sequence (N);
934 begin
935 Expr := Expression (Obj_Decl);
937 -- Note: The check for OK_For_Limited_Init will happen in
938 -- Analyze_Object_Declaration; we treat it as a normal
939 -- object declaration.
941 Set_Is_Return_Object (Defining_Identifier (Obj_Decl));
942 Analyze (Obj_Decl);
944 Check_Return_Subtype_Indication (Obj_Decl);
946 if Present (HSS) then
947 Analyze (HSS);
949 if Present (Exception_Handlers (HSS)) then
951 -- ???Has_Nested_Block_With_Handler needs to be set.
952 -- Probably by creating an actual N_Block_Statement.
953 -- Probably in Expand.
955 null;
956 end if;
957 end if;
959 -- Mark the return object as referenced, since the return is an
960 -- implicit reference of the object.
962 Set_Referenced (Defining_Identifier (Obj_Decl));
964 Check_References (Stm_Entity);
966 -- Check RM 6.5 (5.9/3)
968 if Has_Aliased then
969 if Ada_Version < Ada_2012 then
971 -- Shouldn't this test Warn_On_Ada_2012_Compatibility ???
972 -- Can it really happen (extended return???)
974 Error_Msg_N
975 ("aliased only allowed for limited return objects "
976 & "in Ada 2012??", N);
978 elsif not Is_Limited_View (R_Type) then
979 Error_Msg_N
980 ("aliased only allowed for limited return objects", N);
981 end if;
982 end if;
983 end;
984 end if;
986 -- Case of Expr present
988 if Present (Expr)
990 -- Defend against previous errors
992 and then Nkind (Expr) /= N_Empty
993 and then Present (Etype (Expr))
994 then
995 -- Apply constraint check. Note that this is done before the implicit
996 -- conversion of the expression done for anonymous access types to
997 -- ensure correct generation of the null-excluding check associated
998 -- with null-excluding expressions found in return statements.
1000 Apply_Constraint_Check (Expr, R_Type);
1002 -- Ada 2005 (AI-318-02): When the result type is an anonymous access
1003 -- type, apply an implicit conversion of the expression to that type
1004 -- to force appropriate static and run-time accessibility checks.
1006 if Ada_Version >= Ada_2005
1007 and then Ekind (R_Type) = E_Anonymous_Access_Type
1008 then
1009 Rewrite (Expr, Convert_To (R_Type, Relocate_Node (Expr)));
1010 Analyze_And_Resolve (Expr, R_Type);
1012 -- If this is a local anonymous access to subprogram, the
1013 -- accessibility check can be applied statically. The return is
1014 -- illegal if the access type of the return expression is declared
1015 -- inside of the subprogram (except if it is the subtype indication
1016 -- of an extended return statement).
1018 elsif Ekind (R_Type) = E_Anonymous_Access_Subprogram_Type then
1019 if not Comes_From_Source (Current_Scope)
1020 or else Ekind (Current_Scope) = E_Return_Statement
1021 then
1022 null;
1024 elsif
1025 Scope_Depth (Scope (Etype (Expr))) >= Scope_Depth (Scope_Id)
1026 then
1027 Error_Msg_N ("cannot return local access to subprogram", N);
1028 end if;
1030 -- The expression cannot be of a formal incomplete type
1032 elsif Ekind (Etype (Expr)) = E_Incomplete_Type
1033 and then Is_Generic_Type (Etype (Expr))
1034 then
1035 Error_Msg_N
1036 ("cannot return expression of a formal incomplete type", N);
1037 end if;
1039 -- If the result type is class-wide, then check that the return
1040 -- expression's type is not declared at a deeper level than the
1041 -- function (RM05-6.5(5.6/2)).
1043 if Ada_Version >= Ada_2005
1044 and then Is_Class_Wide_Type (R_Type)
1045 then
1046 if Type_Access_Level (Etype (Expr)) >
1047 Subprogram_Access_Level (Scope_Id)
1048 then
1049 Error_Msg_N
1050 ("level of return expression type is deeper than "
1051 & "class-wide function!", Expr);
1052 end if;
1053 end if;
1055 -- Check incorrect use of dynamically tagged expression
1057 if Is_Tagged_Type (R_Type) then
1058 Check_Dynamically_Tagged_Expression
1059 (Expr => Expr,
1060 Typ => R_Type,
1061 Related_Nod => N);
1062 end if;
1064 -- ??? A real run-time accessibility check is needed in cases
1065 -- involving dereferences of access parameters. For now we just
1066 -- check the static cases.
1068 if (Ada_Version < Ada_2005 or else Debug_Flag_Dot_L)
1069 and then Is_Limited_View (Etype (Scope_Id))
1070 and then Object_Access_Level (Expr) >
1071 Subprogram_Access_Level (Scope_Id)
1072 then
1073 -- Suppress the message in a generic, where the rewriting
1074 -- is irrelevant.
1076 if Inside_A_Generic then
1077 null;
1079 else
1080 Rewrite (N,
1081 Make_Raise_Program_Error (Loc,
1082 Reason => PE_Accessibility_Check_Failed));
1083 Analyze (N);
1085 Error_Msg_Warn := SPARK_Mode /= On;
1086 Error_Msg_N ("cannot return a local value by reference<<", N);
1087 Error_Msg_NE ("\& [<<", N, Standard_Program_Error);
1088 end if;
1089 end if;
1091 if Known_Null (Expr)
1092 and then Nkind (Parent (Scope_Id)) = N_Function_Specification
1093 and then Null_Exclusion_Present (Parent (Scope_Id))
1094 then
1095 Apply_Compile_Time_Constraint_Error
1096 (N => Expr,
1097 Msg => "(Ada 2005) null not allowed for "
1098 & "null-excluding return??",
1099 Reason => CE_Null_Not_Allowed);
1100 end if;
1102 -- RM 6.5 (5.4/3): accessibility checks also apply if the return object
1103 -- has no initializing expression.
1105 elsif Ada_Version > Ada_2005 and then Is_Class_Wide_Type (R_Type) then
1106 if Type_Access_Level (Etype (Defining_Identifier (Obj_Decl))) >
1107 Subprogram_Access_Level (Scope_Id)
1108 then
1109 Error_Msg_N
1110 ("level of return expression type is deeper than "
1111 & "class-wide function!", Obj_Decl);
1112 end if;
1113 end if;
1114 end Analyze_Function_Return;
1116 -------------------------------------
1117 -- Analyze_Generic_Subprogram_Body --
1118 -------------------------------------
1120 procedure Analyze_Generic_Subprogram_Body
1121 (N : Node_Id;
1122 Gen_Id : Entity_Id)
1124 Gen_Decl : constant Node_Id := Unit_Declaration_Node (Gen_Id);
1125 Kind : constant Entity_Kind := Ekind (Gen_Id);
1126 Body_Id : Entity_Id;
1127 New_N : Node_Id;
1128 Spec : Node_Id;
1130 begin
1131 -- Copy body and disable expansion while analyzing the generic For a
1132 -- stub, do not copy the stub (which would load the proper body), this
1133 -- will be done when the proper body is analyzed.
1135 if Nkind (N) /= N_Subprogram_Body_Stub then
1136 New_N := Copy_Generic_Node (N, Empty, Instantiating => False);
1137 Rewrite (N, New_N);
1139 -- Once the contents of the generic copy and the template are
1140 -- swapped, do the same for their respective aspect specifications.
1142 Exchange_Aspects (N, New_N);
1144 -- Collect all contract-related source pragmas found within the
1145 -- template and attach them to the contract of the subprogram body.
1146 -- This contract is used in the capture of global references within
1147 -- annotations.
1149 Create_Generic_Contract (N);
1151 Start_Generic;
1152 end if;
1154 Spec := Specification (N);
1156 -- Within the body of the generic, the subprogram is callable, and
1157 -- behaves like the corresponding non-generic unit.
1159 Body_Id := Defining_Entity (Spec);
1161 if Kind = E_Generic_Procedure
1162 and then Nkind (Spec) /= N_Procedure_Specification
1163 then
1164 Error_Msg_N ("invalid body for generic procedure ", Body_Id);
1165 return;
1167 elsif Kind = E_Generic_Function
1168 and then Nkind (Spec) /= N_Function_Specification
1169 then
1170 Error_Msg_N ("invalid body for generic function ", Body_Id);
1171 return;
1172 end if;
1174 Set_Corresponding_Body (Gen_Decl, Body_Id);
1176 if Has_Completion (Gen_Id)
1177 and then Nkind (Parent (N)) /= N_Subunit
1178 then
1179 Error_Msg_N ("duplicate generic body", N);
1180 return;
1181 else
1182 Set_Has_Completion (Gen_Id);
1183 end if;
1185 if Nkind (N) = N_Subprogram_Body_Stub then
1186 Set_Ekind (Defining_Entity (Specification (N)), Kind);
1187 else
1188 Set_Corresponding_Spec (N, Gen_Id);
1189 end if;
1191 if Nkind (Parent (N)) = N_Compilation_Unit then
1192 Set_Cunit_Entity (Current_Sem_Unit, Defining_Entity (N));
1193 end if;
1195 -- Make generic parameters immediately visible in the body. They are
1196 -- needed to process the formals declarations. Then make the formals
1197 -- visible in a separate step.
1199 Push_Scope (Gen_Id);
1201 declare
1202 E : Entity_Id;
1203 First_Ent : Entity_Id;
1205 begin
1206 First_Ent := First_Entity (Gen_Id);
1208 E := First_Ent;
1209 while Present (E) and then not Is_Formal (E) loop
1210 Install_Entity (E);
1211 Next_Entity (E);
1212 end loop;
1214 Set_Use (Generic_Formal_Declarations (Gen_Decl));
1216 -- Now generic formals are visible, and the specification can be
1217 -- analyzed, for subsequent conformance check.
1219 Body_Id := Analyze_Subprogram_Specification (Spec);
1221 -- Make formal parameters visible
1223 if Present (E) then
1225 -- E is the first formal parameter, we loop through the formals
1226 -- installing them so that they will be visible.
1228 Set_First_Entity (Gen_Id, E);
1229 while Present (E) loop
1230 Install_Entity (E);
1231 Next_Formal (E);
1232 end loop;
1233 end if;
1235 -- Visible generic entity is callable within its own body
1237 Set_Ekind (Gen_Id, Ekind (Body_Id));
1238 Set_Ekind (Body_Id, E_Subprogram_Body);
1239 Set_Convention (Body_Id, Convention (Gen_Id));
1240 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Gen_Id));
1241 Set_Scope (Body_Id, Scope (Gen_Id));
1243 -- Inherit the "ghostness" of the generic spec. Note that this
1244 -- property is not directly inherited as the body may be subject
1245 -- to a different Ghost assertion policy.
1247 if Ghost_Mode > None or else Is_Ghost_Entity (Gen_Id) then
1248 Set_Is_Ghost_Entity (Body_Id);
1250 -- The Ghost policy in effect at the point of declaration and at
1251 -- the point of completion must match (SPARK RM 6.9(14)).
1253 Check_Ghost_Completion (Gen_Id, Body_Id);
1254 end if;
1256 Check_Fully_Conformant (Body_Id, Gen_Id, Body_Id);
1258 if Nkind (N) = N_Subprogram_Body_Stub then
1260 -- No body to analyze, so restore state of generic unit
1262 Set_Ekind (Gen_Id, Kind);
1263 Set_Ekind (Body_Id, Kind);
1265 if Present (First_Ent) then
1266 Set_First_Entity (Gen_Id, First_Ent);
1267 end if;
1269 End_Scope;
1270 return;
1271 end if;
1273 -- If this is a compilation unit, it must be made visible explicitly,
1274 -- because the compilation of the declaration, unlike other library
1275 -- unit declarations, does not. If it is not a unit, the following
1276 -- is redundant but harmless.
1278 Set_Is_Immediately_Visible (Gen_Id);
1279 Reference_Body_Formals (Gen_Id, Body_Id);
1281 if Is_Child_Unit (Gen_Id) then
1282 Generate_Reference (Gen_Id, Scope (Gen_Id), 'k', False);
1283 end if;
1285 Set_Actual_Subtypes (N, Current_Scope);
1287 Set_SPARK_Pragma (Body_Id, SPARK_Mode_Pragma);
1288 Set_SPARK_Pragma_Inherited (Body_Id);
1290 -- Analyze any aspect specifications that appear on the generic
1291 -- subprogram body.
1293 if Has_Aspects (N) then
1294 Analyze_Aspect_Specifications_On_Body_Or_Stub (N);
1295 end if;
1297 Analyze_Declarations (Declarations (N));
1298 Check_Completion;
1300 -- Process the contract of the subprogram body after all declarations
1301 -- have been analyzed. This ensures that any contract-related pragmas
1302 -- are available through the N_Contract node of the body.
1304 Analyze_Entry_Or_Subprogram_Body_Contract (Body_Id);
1306 Analyze (Handled_Statement_Sequence (N));
1307 Save_Global_References (Original_Node (N));
1309 -- Prior to exiting the scope, include generic formals again (if any
1310 -- are present) in the set of local entities.
1312 if Present (First_Ent) then
1313 Set_First_Entity (Gen_Id, First_Ent);
1314 end if;
1316 Check_References (Gen_Id);
1317 end;
1319 Process_End_Label (Handled_Statement_Sequence (N), 't', Current_Scope);
1320 End_Scope;
1321 Check_Subprogram_Order (N);
1323 -- Outside of its body, unit is generic again
1325 Set_Ekind (Gen_Id, Kind);
1326 Generate_Reference (Gen_Id, Body_Id, 'b', Set_Ref => False);
1328 if Style_Check then
1329 Style.Check_Identifier (Body_Id, Gen_Id);
1330 end if;
1332 End_Generic;
1333 end Analyze_Generic_Subprogram_Body;
1335 ----------------------------
1336 -- Analyze_Null_Procedure --
1337 ----------------------------
1339 procedure Analyze_Null_Procedure
1340 (N : Node_Id;
1341 Is_Completion : out Boolean)
1343 Loc : constant Source_Ptr := Sloc (N);
1344 Spec : constant Node_Id := Specification (N);
1345 Designator : Entity_Id;
1346 Form : Node_Id;
1347 Null_Body : Node_Id := Empty;
1348 Prev : Entity_Id;
1350 begin
1351 -- Capture the profile of the null procedure before analysis, for
1352 -- expansion at the freeze point and at each point of call. The body is
1353 -- used if the procedure has preconditions, or if it is a completion. In
1354 -- the first case the body is analyzed at the freeze point, in the other
1355 -- it replaces the null procedure declaration.
1357 Null_Body :=
1358 Make_Subprogram_Body (Loc,
1359 Specification => New_Copy_Tree (Spec),
1360 Declarations => New_List,
1361 Handled_Statement_Sequence =>
1362 Make_Handled_Sequence_Of_Statements (Loc,
1363 Statements => New_List (Make_Null_Statement (Loc))));
1365 -- Create new entities for body and formals
1367 Set_Defining_Unit_Name (Specification (Null_Body),
1368 Make_Defining_Identifier
1369 (Sloc (Defining_Entity (N)),
1370 Chars (Defining_Entity (N))));
1372 Form := First (Parameter_Specifications (Specification (Null_Body)));
1373 while Present (Form) loop
1374 Set_Defining_Identifier (Form,
1375 Make_Defining_Identifier
1376 (Sloc (Defining_Identifier (Form)),
1377 Chars (Defining_Identifier (Form))));
1378 Next (Form);
1379 end loop;
1381 -- Determine whether the null procedure may be a completion of a generic
1382 -- suprogram, in which case we use the new null body as the completion
1383 -- and set minimal semantic information on the original declaration,
1384 -- which is rewritten as a null statement.
1386 Prev := Current_Entity_In_Scope (Defining_Entity (Spec));
1388 if Present (Prev) and then Is_Generic_Subprogram (Prev) then
1389 Insert_Before (N, Null_Body);
1390 Set_Ekind (Defining_Entity (N), Ekind (Prev));
1392 Rewrite (N, Make_Null_Statement (Loc));
1393 Analyze_Generic_Subprogram_Body (Null_Body, Prev);
1394 Is_Completion := True;
1395 return;
1397 else
1398 -- Resolve the types of the formals now, because the freeze point
1399 -- may appear in a different context, e.g. an instantiation.
1401 Form := First (Parameter_Specifications (Specification (Null_Body)));
1402 while Present (Form) loop
1403 if Nkind (Parameter_Type (Form)) /= N_Access_Definition then
1404 Find_Type (Parameter_Type (Form));
1406 elsif
1407 No (Access_To_Subprogram_Definition (Parameter_Type (Form)))
1408 then
1409 Find_Type (Subtype_Mark (Parameter_Type (Form)));
1411 else
1412 -- The case of a null procedure with a formal that is an
1413 -- access_to_subprogram type, and that is used as an actual
1414 -- in an instantiation is left to the enthusiastic reader.
1416 null;
1417 end if;
1419 Next (Form);
1420 end loop;
1421 end if;
1423 -- If there are previous overloadable entities with the same name,
1424 -- check whether any of them is completed by the null procedure.
1426 if Present (Prev) and then Is_Overloadable (Prev) then
1427 Designator := Analyze_Subprogram_Specification (Spec);
1428 Prev := Find_Corresponding_Spec (N);
1429 end if;
1431 if No (Prev) or else not Comes_From_Source (Prev) then
1432 Designator := Analyze_Subprogram_Specification (Spec);
1433 Set_Has_Completion (Designator);
1435 -- Signal to caller that this is a procedure declaration
1437 Is_Completion := False;
1439 -- Null procedures are always inlined, but generic formal subprograms
1440 -- which appear as such in the internal instance of formal packages,
1441 -- need no completion and are not marked Inline.
1443 if Expander_Active
1444 and then Nkind (N) /= N_Formal_Concrete_Subprogram_Declaration
1445 then
1446 Set_Corresponding_Body (N, Defining_Entity (Null_Body));
1447 Set_Body_To_Inline (N, Null_Body);
1448 Set_Is_Inlined (Designator);
1449 end if;
1451 else
1452 -- The null procedure is a completion. We unconditionally rewrite
1453 -- this as a null body (even if expansion is not active), because
1454 -- there are various error checks that are applied on this body
1455 -- when it is analyzed (e.g. correct aspect placement).
1457 if Has_Completion (Prev) then
1458 Error_Msg_Sloc := Sloc (Prev);
1459 Error_Msg_NE ("duplicate body for & declared#", N, Prev);
1460 end if;
1462 Is_Completion := True;
1463 Rewrite (N, Null_Body);
1464 Analyze (N);
1465 end if;
1466 end Analyze_Null_Procedure;
1468 -----------------------------
1469 -- Analyze_Operator_Symbol --
1470 -----------------------------
1472 -- An operator symbol such as "+" or "and" may appear in context where the
1473 -- literal denotes an entity name, such as "+"(x, y) or in context when it
1474 -- is just a string, as in (conjunction = "or"). In these cases the parser
1475 -- generates this node, and the semantics does the disambiguation. Other
1476 -- such case are actuals in an instantiation, the generic unit in an
1477 -- instantiation, and pragma arguments.
1479 procedure Analyze_Operator_Symbol (N : Node_Id) is
1480 Par : constant Node_Id := Parent (N);
1482 begin
1483 if (Nkind (Par) = N_Function_Call and then N = Name (Par))
1484 or else Nkind (Par) = N_Function_Instantiation
1485 or else (Nkind (Par) = N_Indexed_Component and then N = Prefix (Par))
1486 or else (Nkind (Par) = N_Pragma_Argument_Association
1487 and then not Is_Pragma_String_Literal (Par))
1488 or else Nkind (Par) = N_Subprogram_Renaming_Declaration
1489 or else (Nkind (Par) = N_Attribute_Reference
1490 and then Attribute_Name (Par) /= Name_Value)
1491 then
1492 Find_Direct_Name (N);
1494 else
1495 Change_Operator_Symbol_To_String_Literal (N);
1496 Analyze (N);
1497 end if;
1498 end Analyze_Operator_Symbol;
1500 -----------------------------------
1501 -- Analyze_Parameter_Association --
1502 -----------------------------------
1504 procedure Analyze_Parameter_Association (N : Node_Id) is
1505 begin
1506 Analyze (Explicit_Actual_Parameter (N));
1507 end Analyze_Parameter_Association;
1509 ----------------------------
1510 -- Analyze_Procedure_Call --
1511 ----------------------------
1513 procedure Analyze_Procedure_Call (N : Node_Id) is
1514 procedure Analyze_Call_And_Resolve;
1515 -- Do Analyze and Resolve calls for procedure call
1516 -- At end, check illegal order dependence.
1518 ------------------------------
1519 -- Analyze_Call_And_Resolve --
1520 ------------------------------
1522 procedure Analyze_Call_And_Resolve is
1523 begin
1524 if Nkind (N) = N_Procedure_Call_Statement then
1525 Analyze_Call (N);
1526 Resolve (N, Standard_Void_Type);
1527 else
1528 Analyze (N);
1529 end if;
1530 end Analyze_Call_And_Resolve;
1532 -- Local variables
1534 Actuals : constant List_Id := Parameter_Associations (N);
1535 Loc : constant Source_Ptr := Sloc (N);
1536 P : constant Node_Id := Name (N);
1537 Actual : Node_Id;
1538 New_N : Node_Id;
1540 Save_Ghost_Mode : constant Ghost_Mode_Type := Ghost_Mode;
1542 -- Start of processing for Analyze_Procedure_Call
1544 begin
1545 -- The syntactic construct: PREFIX ACTUAL_PARAMETER_PART can denote
1546 -- a procedure call or an entry call. The prefix may denote an access
1547 -- to subprogram type, in which case an implicit dereference applies.
1548 -- If the prefix is an indexed component (without implicit dereference)
1549 -- then the construct denotes a call to a member of an entire family.
1550 -- If the prefix is a simple name, it may still denote a call to a
1551 -- parameterless member of an entry family. Resolution of these various
1552 -- interpretations is delicate.
1554 -- Do not analyze machine code statements to avoid rejecting them in
1555 -- CodePeer mode.
1557 if CodePeer_Mode and then Nkind (P) = N_Qualified_Expression then
1558 Set_Etype (P, Standard_Void_Type);
1559 else
1560 Analyze (P);
1561 end if;
1563 -- If this is a call of the form Obj.Op, the call may have been analyzed
1564 -- and possibly rewritten into a block, in which case we are done.
1566 if Analyzed (N) then
1567 return;
1568 end if;
1570 -- If there is an error analyzing the name (which may have been
1571 -- rewritten if the original call was in prefix notation) then error
1572 -- has been emitted already, mark node and return.
1574 if Error_Posted (N) or else Etype (Name (N)) = Any_Type then
1575 Set_Etype (N, Any_Type);
1576 return;
1577 end if;
1579 -- A procedure call is Ghost when its name denotes a Ghost procedure.
1580 -- Set the mode now to ensure that any nodes generated during analysis
1581 -- and expansion are properly marked as Ghost.
1583 Set_Ghost_Mode (N);
1585 -- Otherwise analyze the parameters
1587 if Present (Actuals) then
1588 Actual := First (Actuals);
1590 while Present (Actual) loop
1591 Analyze (Actual);
1592 Check_Parameterless_Call (Actual);
1593 Next (Actual);
1594 end loop;
1595 end if;
1597 -- Special processing for Elab_Spec, Elab_Body and Elab_Subp_Body calls
1599 if Nkind (P) = N_Attribute_Reference
1600 and then Nam_In (Attribute_Name (P), Name_Elab_Spec,
1601 Name_Elab_Body,
1602 Name_Elab_Subp_Body)
1603 then
1604 if Present (Actuals) then
1605 Error_Msg_N
1606 ("no parameters allowed for this call", First (Actuals));
1607 return;
1608 end if;
1610 Set_Etype (N, Standard_Void_Type);
1611 Set_Analyzed (N);
1613 elsif Is_Entity_Name (P)
1614 and then Is_Record_Type (Etype (Entity (P)))
1615 and then Remote_AST_I_Dereference (P)
1616 then
1617 Ghost_Mode := Save_Ghost_Mode;
1618 return;
1620 elsif Is_Entity_Name (P)
1621 and then Ekind (Entity (P)) /= E_Entry_Family
1622 then
1623 if Is_Access_Type (Etype (P))
1624 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1625 and then No (Actuals)
1626 and then Comes_From_Source (N)
1627 then
1628 Error_Msg_N ("missing explicit dereference in call", N);
1629 end if;
1631 Analyze_Call_And_Resolve;
1633 -- If the prefix is the simple name of an entry family, this is a
1634 -- parameterless call from within the task body itself.
1636 elsif Is_Entity_Name (P)
1637 and then Nkind (P) = N_Identifier
1638 and then Ekind (Entity (P)) = E_Entry_Family
1639 and then Present (Actuals)
1640 and then No (Next (First (Actuals)))
1641 then
1642 -- Can be call to parameterless entry family. What appears to be the
1643 -- sole argument is in fact the entry index. Rewrite prefix of node
1644 -- accordingly. Source representation is unchanged by this
1645 -- transformation.
1647 New_N :=
1648 Make_Indexed_Component (Loc,
1649 Prefix =>
1650 Make_Selected_Component (Loc,
1651 Prefix => New_Occurrence_Of (Scope (Entity (P)), Loc),
1652 Selector_Name => New_Occurrence_Of (Entity (P), Loc)),
1653 Expressions => Actuals);
1654 Set_Name (N, New_N);
1655 Set_Etype (New_N, Standard_Void_Type);
1656 Set_Parameter_Associations (N, No_List);
1657 Analyze_Call_And_Resolve;
1659 elsif Nkind (P) = N_Explicit_Dereference then
1660 if Ekind (Etype (P)) = E_Subprogram_Type then
1661 Analyze_Call_And_Resolve;
1662 else
1663 Error_Msg_N ("expect access to procedure in call", P);
1664 end if;
1666 -- The name can be a selected component or an indexed component that
1667 -- yields an access to subprogram. Such a prefix is legal if the call
1668 -- has parameter associations.
1670 elsif Is_Access_Type (Etype (P))
1671 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1672 then
1673 if Present (Actuals) then
1674 Analyze_Call_And_Resolve;
1675 else
1676 Error_Msg_N ("missing explicit dereference in call ", N);
1677 end if;
1679 -- If not an access to subprogram, then the prefix must resolve to the
1680 -- name of an entry, entry family, or protected operation.
1682 -- For the case of a simple entry call, P is a selected component where
1683 -- the prefix is the task and the selector name is the entry. A call to
1684 -- a protected procedure will have the same syntax. If the protected
1685 -- object contains overloaded operations, the entity may appear as a
1686 -- function, the context will select the operation whose type is Void.
1688 elsif Nkind (P) = N_Selected_Component
1689 and then Ekind_In (Entity (Selector_Name (P)), E_Entry,
1690 E_Procedure,
1691 E_Function)
1692 then
1693 Analyze_Call_And_Resolve;
1695 elsif Nkind (P) = N_Selected_Component
1696 and then Ekind (Entity (Selector_Name (P))) = E_Entry_Family
1697 and then Present (Actuals)
1698 and then No (Next (First (Actuals)))
1699 then
1700 -- Can be call to parameterless entry family. What appears to be the
1701 -- sole argument is in fact the entry index. Rewrite prefix of node
1702 -- accordingly. Source representation is unchanged by this
1703 -- transformation.
1705 New_N :=
1706 Make_Indexed_Component (Loc,
1707 Prefix => New_Copy (P),
1708 Expressions => Actuals);
1709 Set_Name (N, New_N);
1710 Set_Etype (New_N, Standard_Void_Type);
1711 Set_Parameter_Associations (N, No_List);
1712 Analyze_Call_And_Resolve;
1714 -- For the case of a reference to an element of an entry family, P is
1715 -- an indexed component whose prefix is a selected component (task and
1716 -- entry family), and whose index is the entry family index.
1718 elsif Nkind (P) = N_Indexed_Component
1719 and then Nkind (Prefix (P)) = N_Selected_Component
1720 and then Ekind (Entity (Selector_Name (Prefix (P)))) = E_Entry_Family
1721 then
1722 Analyze_Call_And_Resolve;
1724 -- If the prefix is the name of an entry family, it is a call from
1725 -- within the task body itself.
1727 elsif Nkind (P) = N_Indexed_Component
1728 and then Nkind (Prefix (P)) = N_Identifier
1729 and then Ekind (Entity (Prefix (P))) = E_Entry_Family
1730 then
1731 New_N :=
1732 Make_Selected_Component (Loc,
1733 Prefix => New_Occurrence_Of (Scope (Entity (Prefix (P))), Loc),
1734 Selector_Name => New_Occurrence_Of (Entity (Prefix (P)), Loc));
1735 Rewrite (Prefix (P), New_N);
1736 Analyze (P);
1737 Analyze_Call_And_Resolve;
1739 -- In Ada 2012. a qualified expression is a name, but it cannot be a
1740 -- procedure name, so the construct can only be a qualified expression.
1742 elsif Nkind (P) = N_Qualified_Expression
1743 and then Ada_Version >= Ada_2012
1744 then
1745 Rewrite (N, Make_Code_Statement (Loc, Expression => P));
1746 Analyze (N);
1748 -- Anything else is an error
1750 else
1751 Error_Msg_N ("invalid procedure or entry call", N);
1752 end if;
1754 Ghost_Mode := Save_Ghost_Mode;
1755 end Analyze_Procedure_Call;
1757 ------------------------------
1758 -- Analyze_Return_Statement --
1759 ------------------------------
1761 procedure Analyze_Return_Statement (N : Node_Id) is
1763 pragma Assert (Nkind_In (N, N_Simple_Return_Statement,
1764 N_Extended_Return_Statement));
1766 Returns_Object : constant Boolean :=
1767 Nkind (N) = N_Extended_Return_Statement
1768 or else
1769 (Nkind (N) = N_Simple_Return_Statement
1770 and then Present (Expression (N)));
1771 -- True if we're returning something; that is, "return <expression>;"
1772 -- or "return Result : T [:= ...]". False for "return;". Used for error
1773 -- checking: If Returns_Object is True, N should apply to a function
1774 -- body; otherwise N should apply to a procedure body, entry body,
1775 -- accept statement, or extended return statement.
1777 function Find_What_It_Applies_To return Entity_Id;
1778 -- Find the entity representing the innermost enclosing body, accept
1779 -- statement, or extended return statement. If the result is a callable
1780 -- construct or extended return statement, then this will be the value
1781 -- of the Return_Applies_To attribute. Otherwise, the program is
1782 -- illegal. See RM-6.5(4/2).
1784 -----------------------------
1785 -- Find_What_It_Applies_To --
1786 -----------------------------
1788 function Find_What_It_Applies_To return Entity_Id is
1789 Result : Entity_Id := Empty;
1791 begin
1792 -- Loop outward through the Scope_Stack, skipping blocks, loops,
1793 -- and postconditions.
1795 for J in reverse 0 .. Scope_Stack.Last loop
1796 Result := Scope_Stack.Table (J).Entity;
1797 exit when not Ekind_In (Result, E_Block, E_Loop)
1798 and then Chars (Result) /= Name_uPostconditions;
1799 end loop;
1801 pragma Assert (Present (Result));
1802 return Result;
1803 end Find_What_It_Applies_To;
1805 -- Local declarations
1807 Scope_Id : constant Entity_Id := Find_What_It_Applies_To;
1808 Kind : constant Entity_Kind := Ekind (Scope_Id);
1809 Loc : constant Source_Ptr := Sloc (N);
1810 Stm_Entity : constant Entity_Id :=
1811 New_Internal_Entity
1812 (E_Return_Statement, Current_Scope, Loc, 'R');
1814 -- Start of processing for Analyze_Return_Statement
1816 begin
1817 Set_Return_Statement_Entity (N, Stm_Entity);
1819 Set_Etype (Stm_Entity, Standard_Void_Type);
1820 Set_Return_Applies_To (Stm_Entity, Scope_Id);
1822 -- Place Return entity on scope stack, to simplify enforcement of 6.5
1823 -- (4/2): an inner return statement will apply to this extended return.
1825 if Nkind (N) = N_Extended_Return_Statement then
1826 Push_Scope (Stm_Entity);
1827 end if;
1829 -- Check that pragma No_Return is obeyed. Don't complain about the
1830 -- implicitly-generated return that is placed at the end.
1832 if No_Return (Scope_Id) and then Comes_From_Source (N) then
1833 Error_Msg_N ("RETURN statement not allowed (No_Return)", N);
1834 end if;
1836 -- Warn on any unassigned OUT parameters if in procedure
1838 if Ekind (Scope_Id) = E_Procedure then
1839 Warn_On_Unassigned_Out_Parameter (N, Scope_Id);
1840 end if;
1842 -- Check that functions return objects, and other things do not
1844 if Kind = E_Function or else Kind = E_Generic_Function then
1845 if not Returns_Object then
1846 Error_Msg_N ("missing expression in return from function", N);
1847 end if;
1849 elsif Kind = E_Procedure or else Kind = E_Generic_Procedure then
1850 if Returns_Object then
1851 Error_Msg_N ("procedure cannot return value (use function)", N);
1852 end if;
1854 elsif Kind = E_Entry or else Kind = E_Entry_Family then
1855 if Returns_Object then
1856 if Is_Protected_Type (Scope (Scope_Id)) then
1857 Error_Msg_N ("entry body cannot return value", N);
1858 else
1859 Error_Msg_N ("accept statement cannot return value", N);
1860 end if;
1861 end if;
1863 elsif Kind = E_Return_Statement then
1865 -- We are nested within another return statement, which must be an
1866 -- extended_return_statement.
1868 if Returns_Object then
1869 if Nkind (N) = N_Extended_Return_Statement then
1870 Error_Msg_N
1871 ("extended return statement cannot be nested (use `RETURN;`)",
1874 -- Case of a simple return statement with a value inside extended
1875 -- return statement.
1877 else
1878 Error_Msg_N
1879 ("return nested in extended return statement cannot return "
1880 & "value (use `RETURN;`)", N);
1881 end if;
1882 end if;
1884 else
1885 Error_Msg_N ("illegal context for return statement", N);
1886 end if;
1888 if Ekind_In (Kind, E_Function, E_Generic_Function) then
1889 Analyze_Function_Return (N);
1891 elsif Ekind_In (Kind, E_Procedure, E_Generic_Procedure) then
1892 Set_Return_Present (Scope_Id);
1893 end if;
1895 if Nkind (N) = N_Extended_Return_Statement then
1896 End_Scope;
1897 end if;
1899 Kill_Current_Values (Last_Assignment_Only => True);
1900 Check_Unreachable_Code (N);
1902 Analyze_Dimension (N);
1903 end Analyze_Return_Statement;
1905 -------------------------------------
1906 -- Analyze_Simple_Return_Statement --
1907 -------------------------------------
1909 procedure Analyze_Simple_Return_Statement (N : Node_Id) is
1910 begin
1911 if Present (Expression (N)) then
1912 Mark_Coextensions (N, Expression (N));
1913 end if;
1915 Analyze_Return_Statement (N);
1916 end Analyze_Simple_Return_Statement;
1918 -------------------------
1919 -- Analyze_Return_Type --
1920 -------------------------
1922 procedure Analyze_Return_Type (N : Node_Id) is
1923 Designator : constant Entity_Id := Defining_Entity (N);
1924 Typ : Entity_Id := Empty;
1926 begin
1927 -- Normal case where result definition does not indicate an error
1929 if Result_Definition (N) /= Error then
1930 if Nkind (Result_Definition (N)) = N_Access_Definition then
1931 Check_SPARK_05_Restriction
1932 ("access result is not allowed", Result_Definition (N));
1934 -- Ada 2005 (AI-254): Handle anonymous access to subprograms
1936 declare
1937 AD : constant Node_Id :=
1938 Access_To_Subprogram_Definition (Result_Definition (N));
1939 begin
1940 if Present (AD) and then Protected_Present (AD) then
1941 Typ := Replace_Anonymous_Access_To_Protected_Subprogram (N);
1942 else
1943 Typ := Access_Definition (N, Result_Definition (N));
1944 end if;
1945 end;
1947 Set_Parent (Typ, Result_Definition (N));
1948 Set_Is_Local_Anonymous_Access (Typ);
1949 Set_Etype (Designator, Typ);
1951 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
1953 Null_Exclusion_Static_Checks (N);
1955 -- Subtype_Mark case
1957 else
1958 Find_Type (Result_Definition (N));
1959 Typ := Entity (Result_Definition (N));
1960 Set_Etype (Designator, Typ);
1962 -- Unconstrained array as result is not allowed in SPARK
1964 if Is_Array_Type (Typ) and then not Is_Constrained (Typ) then
1965 Check_SPARK_05_Restriction
1966 ("returning an unconstrained array is not allowed",
1967 Result_Definition (N));
1968 end if;
1970 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
1972 Null_Exclusion_Static_Checks (N);
1974 -- If a null exclusion is imposed on the result type, then create
1975 -- a null-excluding itype (an access subtype) and use it as the
1976 -- function's Etype. Note that the null exclusion checks are done
1977 -- right before this, because they don't get applied to types that
1978 -- do not come from source.
1980 if Is_Access_Type (Typ) and then Null_Exclusion_Present (N) then
1981 Set_Etype (Designator,
1982 Create_Null_Excluding_Itype
1983 (T => Typ,
1984 Related_Nod => N,
1985 Scope_Id => Scope (Current_Scope)));
1987 -- The new subtype must be elaborated before use because
1988 -- it is visible outside of the function. However its base
1989 -- type may not be frozen yet, so the reference that will
1990 -- force elaboration must be attached to the freezing of
1991 -- the base type.
1993 -- If the return specification appears on a proper body,
1994 -- the subtype will have been created already on the spec.
1996 if Is_Frozen (Typ) then
1997 if Nkind (Parent (N)) = N_Subprogram_Body
1998 and then Nkind (Parent (Parent (N))) = N_Subunit
1999 then
2000 null;
2001 else
2002 Build_Itype_Reference (Etype (Designator), Parent (N));
2003 end if;
2005 else
2006 Ensure_Freeze_Node (Typ);
2008 declare
2009 IR : constant Node_Id := Make_Itype_Reference (Sloc (N));
2010 begin
2011 Set_Itype (IR, Etype (Designator));
2012 Append_Freeze_Actions (Typ, New_List (IR));
2013 end;
2014 end if;
2016 else
2017 Set_Etype (Designator, Typ);
2018 end if;
2020 if Ekind (Typ) = E_Incomplete_Type
2021 or else (Is_Class_Wide_Type (Typ)
2022 and then Ekind (Root_Type (Typ)) = E_Incomplete_Type)
2023 then
2024 -- AI05-0151: Tagged incomplete types are allowed in all formal
2025 -- parts. Untagged incomplete types are not allowed in bodies.
2026 -- As a consequence, limited views cannot appear in a basic
2027 -- declaration that is itself within a body, because there is
2028 -- no point at which the non-limited view will become visible.
2030 if Ada_Version >= Ada_2012 then
2031 if From_Limited_With (Typ) and then In_Package_Body then
2032 Error_Msg_NE
2033 ("invalid use of incomplete type&",
2034 Result_Definition (N), Typ);
2036 -- The return type of a subprogram body cannot be of a
2037 -- formal incomplete type.
2039 elsif Is_Generic_Type (Typ)
2040 and then Nkind (Parent (N)) = N_Subprogram_Body
2041 then
2042 Error_Msg_N
2043 ("return type cannot be a formal incomplete type",
2044 Result_Definition (N));
2046 elsif Is_Class_Wide_Type (Typ)
2047 and then Is_Generic_Type (Root_Type (Typ))
2048 and then Nkind (Parent (N)) = N_Subprogram_Body
2049 then
2050 Error_Msg_N
2051 ("return type cannot be a formal incomplete type",
2052 Result_Definition (N));
2054 elsif Is_Tagged_Type (Typ) then
2055 null;
2057 -- Use is legal in a thunk generated for an operation
2058 -- inherited from a progenitor.
2060 elsif Is_Thunk (Designator)
2061 and then Present (Non_Limited_View (Typ))
2062 then
2063 null;
2065 elsif Nkind (Parent (N)) = N_Subprogram_Body
2066 or else Nkind_In (Parent (Parent (N)), N_Accept_Statement,
2067 N_Entry_Body)
2068 then
2069 Error_Msg_NE
2070 ("invalid use of untagged incomplete type&",
2071 Designator, Typ);
2072 end if;
2074 -- The type must be completed in the current package. This
2075 -- is checked at the end of the package declaration when
2076 -- Taft-amendment types are identified. If the return type
2077 -- is class-wide, there is no required check, the type can
2078 -- be a bona fide TAT.
2080 if Ekind (Scope (Current_Scope)) = E_Package
2081 and then In_Private_Part (Scope (Current_Scope))
2082 and then not Is_Class_Wide_Type (Typ)
2083 then
2084 Append_Elmt (Designator, Private_Dependents (Typ));
2085 end if;
2087 else
2088 Error_Msg_NE
2089 ("invalid use of incomplete type&", Designator, Typ);
2090 end if;
2091 end if;
2092 end if;
2094 -- Case where result definition does indicate an error
2096 else
2097 Set_Etype (Designator, Any_Type);
2098 end if;
2099 end Analyze_Return_Type;
2101 -----------------------------
2102 -- Analyze_Subprogram_Body --
2103 -----------------------------
2105 procedure Analyze_Subprogram_Body (N : Node_Id) is
2106 Loc : constant Source_Ptr := Sloc (N);
2107 Body_Spec : constant Node_Id := Specification (N);
2108 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
2110 begin
2111 if Debug_Flag_C then
2112 Write_Str ("==> subprogram body ");
2113 Write_Name (Chars (Body_Id));
2114 Write_Str (" from ");
2115 Write_Location (Loc);
2116 Write_Eol;
2117 Indent;
2118 end if;
2120 Trace_Scope (N, Body_Id, " Analyze subprogram: ");
2122 -- The real work is split out into the helper, so it can do "return;"
2123 -- without skipping the debug output:
2125 Analyze_Subprogram_Body_Helper (N);
2127 if Debug_Flag_C then
2128 Outdent;
2129 Write_Str ("<== subprogram body ");
2130 Write_Name (Chars (Body_Id));
2131 Write_Str (" from ");
2132 Write_Location (Loc);
2133 Write_Eol;
2134 end if;
2135 end Analyze_Subprogram_Body;
2137 ------------------------------------
2138 -- Analyze_Subprogram_Body_Helper --
2139 ------------------------------------
2141 -- This procedure is called for regular subprogram bodies, generic bodies,
2142 -- and for subprogram stubs of both kinds. In the case of stubs, only the
2143 -- specification matters, and is used to create a proper declaration for
2144 -- the subprogram, or to perform conformance checks.
2146 procedure Analyze_Subprogram_Body_Helper (N : Node_Id) is
2147 Loc : constant Source_Ptr := Sloc (N);
2148 Body_Spec : Node_Id := Specification (N);
2149 Body_Id : Entity_Id := Defining_Entity (Body_Spec);
2150 Prev_Id : constant Entity_Id := Current_Entity_In_Scope (Body_Id);
2151 Conformant : Boolean;
2152 HSS : Node_Id;
2153 Prot_Typ : Entity_Id := Empty;
2154 Spec_Id : Entity_Id;
2155 Spec_Decl : Node_Id := Empty;
2157 Last_Real_Spec_Entity : Entity_Id := Empty;
2158 -- When we analyze a separate spec, the entity chain ends up containing
2159 -- the formals, as well as any itypes generated during analysis of the
2160 -- default expressions for parameters, or the arguments of associated
2161 -- precondition/postcondition pragmas (which are analyzed in the context
2162 -- of the spec since they have visibility on formals).
2164 -- These entities belong with the spec and not the body. However we do
2165 -- the analysis of the body in the context of the spec (again to obtain
2166 -- visibility to the formals), and all the entities generated during
2167 -- this analysis end up also chained to the entity chain of the spec.
2168 -- But they really belong to the body, and there is circuitry to move
2169 -- them from the spec to the body.
2171 -- However, when we do this move, we don't want to move the real spec
2172 -- entities (first para above) to the body. The Last_Real_Spec_Entity
2173 -- variable points to the last real spec entity, so we only move those
2174 -- chained beyond that point. It is initialized to Empty to deal with
2175 -- the case where there is no separate spec.
2177 function Body_Has_Contract return Boolean;
2178 -- Check whether unanalyzed body has an aspect or pragma that may
2179 -- generate a SPARK contract.
2181 function Body_Has_SPARK_Mode_On return Boolean;
2182 -- Check whether SPARK_Mode On applies to the subprogram body, either
2183 -- because it is specified directly on the body, or because it is
2184 -- inherited from the enclosing subprogram or package.
2186 procedure Build_Subprogram_Declaration;
2187 -- Create a matching subprogram declaration for subprogram body N
2189 procedure Check_Anonymous_Return;
2190 -- Ada 2005: if a function returns an access type that denotes a task,
2191 -- or a type that contains tasks, we must create a master entity for
2192 -- the anonymous type, which typically will be used in an allocator
2193 -- in the body of the function.
2195 procedure Check_Inline_Pragma (Spec : in out Node_Id);
2196 -- Look ahead to recognize a pragma that may appear after the body.
2197 -- If there is a previous spec, check that it appears in the same
2198 -- declarative part. If the pragma is Inline_Always, perform inlining
2199 -- unconditionally, otherwise only if Front_End_Inlining is requested.
2200 -- If the body acts as a spec, and inlining is required, we create a
2201 -- subprogram declaration for it, in order to attach the body to inline.
2202 -- If pragma does not appear after the body, check whether there is
2203 -- an inline pragma before any local declarations.
2205 procedure Check_Missing_Return;
2206 -- Checks for a function with a no return statements, and also performs
2207 -- the warning checks implemented by Check_Returns. In formal mode, also
2208 -- verify that a function ends with a RETURN and that a procedure does
2209 -- not contain any RETURN.
2211 function Disambiguate_Spec return Entity_Id;
2212 -- When a primitive is declared between the private view and the full
2213 -- view of a concurrent type which implements an interface, a special
2214 -- mechanism is used to find the corresponding spec of the primitive
2215 -- body.
2217 procedure Exchange_Limited_Views (Subp_Id : Entity_Id);
2218 -- Ada 2012 (AI05-0151): Detect whether the profile of Subp_Id contains
2219 -- incomplete types coming from a limited context and swap their limited
2220 -- views with the non-limited ones.
2222 function Is_Private_Concurrent_Primitive
2223 (Subp_Id : Entity_Id) return Boolean;
2224 -- Determine whether subprogram Subp_Id is a primitive of a concurrent
2225 -- type that implements an interface and has a private view.
2227 procedure Set_Trivial_Subprogram (N : Node_Id);
2228 -- Sets the Is_Trivial_Subprogram flag in both spec and body of the
2229 -- subprogram whose body is being analyzed. N is the statement node
2230 -- causing the flag to be set, if the following statement is a return
2231 -- of an entity, we mark the entity as set in source to suppress any
2232 -- warning on the stylized use of function stubs with a dummy return.
2234 procedure Verify_Overriding_Indicator;
2235 -- If there was a previous spec, the entity has been entered in the
2236 -- current scope previously. If the body itself carries an overriding
2237 -- indicator, check that it is consistent with the known status of the
2238 -- entity.
2240 -----------------------
2241 -- Body_Has_Contract --
2242 -----------------------
2244 function Body_Has_Contract return Boolean is
2245 Decls : constant List_Id := Declarations (N);
2246 Item : Node_Id;
2248 begin
2249 -- Check for aspects that may generate a contract
2251 if Present (Aspect_Specifications (N)) then
2252 Item := First (Aspect_Specifications (N));
2253 while Present (Item) loop
2254 if Is_Subprogram_Contract_Annotation (Item) then
2255 return True;
2256 end if;
2258 Next (Item);
2259 end loop;
2260 end if;
2262 -- Check for pragmas that may generate a contract
2264 if Present (Decls) then
2265 Item := First (Decls);
2266 while Present (Item) loop
2267 if Nkind (Item) = N_Pragma
2268 and then Is_Subprogram_Contract_Annotation (Item)
2269 then
2270 return True;
2271 end if;
2273 Next (Item);
2274 end loop;
2275 end if;
2277 return False;
2278 end Body_Has_Contract;
2280 ----------------------------
2281 -- Body_Has_SPARK_Mode_On --
2282 ----------------------------
2284 function Body_Has_SPARK_Mode_On return Boolean is
2285 Decls : constant List_Id := Declarations (N);
2286 Item : Node_Id;
2288 begin
2289 -- Check for SPARK_Mode aspect
2291 if Present (Aspect_Specifications (N)) then
2292 Item := First (Aspect_Specifications (N));
2293 while Present (Item) loop
2294 if Get_Aspect_Id (Item) = Aspect_SPARK_Mode then
2295 return Get_SPARK_Mode_From_Annotation (Item) = On;
2296 end if;
2298 Next (Item);
2299 end loop;
2300 end if;
2302 -- Check for SPARK_Mode pragma
2304 if Present (Decls) then
2305 Item := First (Decls);
2306 while Present (Item) loop
2308 -- Pragmas that apply to a subprogram body are usually grouped
2309 -- together. Look for a potential pragma SPARK_Mode among them.
2311 if Nkind (Item) = N_Pragma then
2312 if Get_Pragma_Id (Item) = Pragma_SPARK_Mode then
2313 return Get_SPARK_Mode_From_Annotation (Item) = On;
2314 end if;
2316 -- Otherwise the first non-pragma declarative item terminates
2317 -- the region where pragma SPARK_Mode may appear.
2319 else
2320 exit;
2321 end if;
2323 Next (Item);
2324 end loop;
2325 end if;
2327 -- Otherwise, the applicable SPARK_Mode is inherited from the
2328 -- enclosing subprogram or package.
2330 return SPARK_Mode = On;
2331 end Body_Has_SPARK_Mode_On;
2333 ----------------------------------
2334 -- Build_Subprogram_Declaration --
2335 ----------------------------------
2337 procedure Build_Subprogram_Declaration is
2338 procedure Move_Pragmas (From : Node_Id; To : Node_Id);
2339 -- Relocate certain categorization pragmas from the declarative list
2340 -- of subprogram body From and insert them after node To. The pragmas
2341 -- in question are:
2342 -- Ghost
2343 -- SPARK_Mode
2344 -- Volatile_Function
2346 ------------------
2347 -- Move_Pragmas --
2348 ------------------
2350 procedure Move_Pragmas (From : Node_Id; To : Node_Id) is
2351 Decl : Node_Id;
2352 Next_Decl : Node_Id;
2354 begin
2355 pragma Assert (Nkind (From) = N_Subprogram_Body);
2357 -- The destination node must be part of a list, as the pragmas are
2358 -- inserted after it.
2360 pragma Assert (Is_List_Member (To));
2362 -- Inspect the declarations of the subprogram body looking for
2363 -- specific pragmas.
2365 Decl := First (Declarations (N));
2366 while Present (Decl) loop
2367 Next_Decl := Next (Decl);
2369 if Nkind (Decl) = N_Pragma
2370 and then Nam_In (Pragma_Name (Decl), Name_Ghost,
2371 Name_SPARK_Mode,
2372 Name_Volatile_Function)
2373 then
2374 Remove (Decl);
2375 Insert_After (To, Decl);
2376 end if;
2378 Decl := Next_Decl;
2379 end loop;
2380 end Move_Pragmas;
2382 -- Local variables
2384 Decl : Node_Id;
2385 Subp_Decl : Node_Id;
2387 -- Start of processing for Build_Subprogram_Declaration
2389 begin
2390 -- Create a matching subprogram spec using the profile of the body.
2391 -- The structure of the tree is identical, but has new entities for
2392 -- the defining unit name and formal parameters.
2394 Subp_Decl :=
2395 Make_Subprogram_Declaration (Loc,
2396 Specification => Copy_Subprogram_Spec (Body_Spec));
2397 Set_Comes_From_Source (Subp_Decl, True);
2399 -- Relocate the aspects and relevant pragmas from the subprogram body
2400 -- to the generated spec because it acts as the initial declaration.
2402 Insert_Before (N, Subp_Decl);
2403 Move_Aspects (N, To => Subp_Decl);
2404 Move_Pragmas (N, To => Subp_Decl);
2406 Analyze (Subp_Decl);
2408 -- Analyze any relocated source pragmas or pragmas created for aspect
2409 -- specifications.
2411 Decl := Next (Subp_Decl);
2412 while Present (Decl) loop
2414 -- Stop the search for pragmas once the body has been reached as
2415 -- this terminates the region where pragmas may appear.
2417 if Decl = N then
2418 exit;
2420 elsif Nkind (Decl) = N_Pragma then
2421 Analyze (Decl);
2422 end if;
2424 Next (Decl);
2425 end loop;
2427 Spec_Id := Defining_Entity (Subp_Decl);
2428 Set_Corresponding_Spec (N, Spec_Id);
2430 -- Mark the generated spec as a source construct to ensure that all
2431 -- calls to it are properly registered in ALI files for GNATprove.
2433 Set_Comes_From_Source (Spec_Id, True);
2435 -- Ensure that the specs of the subprogram declaration and its body
2436 -- are identical, otherwise they will appear non-conformant due to
2437 -- rewritings in the default values of formal parameters.
2439 Body_Spec := Copy_Subprogram_Spec (Body_Spec);
2440 Set_Specification (N, Body_Spec);
2441 Body_Id := Analyze_Subprogram_Specification (Body_Spec);
2443 -- Ensure that the generated corresponding spec and original body
2444 -- share the same Ghost and SPARK_Mode attributes.
2446 Set_Is_Checked_Ghost_Entity
2447 (Body_Id, Is_Checked_Ghost_Entity (Spec_Id));
2448 Set_Is_Ignored_Ghost_Entity
2449 (Body_Id, Is_Ignored_Ghost_Entity (Spec_Id));
2451 Set_SPARK_Pragma (Body_Id, SPARK_Pragma (Spec_Id));
2452 Set_SPARK_Pragma_Inherited
2453 (Body_Id, SPARK_Pragma_Inherited (Spec_Id));
2454 end Build_Subprogram_Declaration;
2456 ----------------------------
2457 -- Check_Anonymous_Return --
2458 ----------------------------
2460 procedure Check_Anonymous_Return is
2461 Decl : Node_Id;
2462 Par : Node_Id;
2463 Scop : Entity_Id;
2465 begin
2466 if Present (Spec_Id) then
2467 Scop := Spec_Id;
2468 else
2469 Scop := Body_Id;
2470 end if;
2472 if Ekind (Scop) = E_Function
2473 and then Ekind (Etype (Scop)) = E_Anonymous_Access_Type
2474 and then not Is_Thunk (Scop)
2476 -- Skip internally built functions which handle the case of
2477 -- a null access (see Expand_Interface_Conversion)
2479 and then not (Is_Interface (Designated_Type (Etype (Scop)))
2480 and then not Comes_From_Source (Parent (Scop)))
2482 and then (Has_Task (Designated_Type (Etype (Scop)))
2483 or else
2484 (Is_Class_Wide_Type (Designated_Type (Etype (Scop)))
2485 and then
2486 Is_Limited_Record (Designated_Type (Etype (Scop)))))
2487 and then Expander_Active
2489 -- Avoid cases with no tasking support
2491 and then RTE_Available (RE_Current_Master)
2492 and then not Restriction_Active (No_Task_Hierarchy)
2493 then
2494 Decl :=
2495 Make_Object_Declaration (Loc,
2496 Defining_Identifier =>
2497 Make_Defining_Identifier (Loc, Name_uMaster),
2498 Constant_Present => True,
2499 Object_Definition =>
2500 New_Occurrence_Of (RTE (RE_Master_Id), Loc),
2501 Expression =>
2502 Make_Explicit_Dereference (Loc,
2503 New_Occurrence_Of (RTE (RE_Current_Master), Loc)));
2505 if Present (Declarations (N)) then
2506 Prepend (Decl, Declarations (N));
2507 else
2508 Set_Declarations (N, New_List (Decl));
2509 end if;
2511 Set_Master_Id (Etype (Scop), Defining_Identifier (Decl));
2512 Set_Has_Master_Entity (Scop);
2514 -- Now mark the containing scope as a task master
2516 Par := N;
2517 while Nkind (Par) /= N_Compilation_Unit loop
2518 Par := Parent (Par);
2519 pragma Assert (Present (Par));
2521 -- If we fall off the top, we are at the outer level, and
2522 -- the environment task is our effective master, so nothing
2523 -- to mark.
2525 if Nkind_In
2526 (Par, N_Task_Body, N_Block_Statement, N_Subprogram_Body)
2527 then
2528 Set_Is_Task_Master (Par, True);
2529 exit;
2530 end if;
2531 end loop;
2532 end if;
2533 end Check_Anonymous_Return;
2535 -------------------------
2536 -- Check_Inline_Pragma --
2537 -------------------------
2539 procedure Check_Inline_Pragma (Spec : in out Node_Id) is
2540 Prag : Node_Id;
2541 Plist : List_Id;
2543 function Is_Inline_Pragma (N : Node_Id) return Boolean;
2544 -- True when N is a pragma Inline or Inline_Always that applies
2545 -- to this subprogram.
2547 -----------------------
2548 -- Is_Inline_Pragma --
2549 -----------------------
2551 function Is_Inline_Pragma (N : Node_Id) return Boolean is
2552 begin
2553 if Nkind (N) = N_Pragma
2554 and then
2555 (Pragma_Name (N) = Name_Inline_Always
2556 or else (Pragma_Name (N) = Name_Inline
2557 and then
2558 (Front_End_Inlining or else Optimization_Level > 0)))
2559 and then Present (Pragma_Argument_Associations (N))
2560 then
2561 declare
2562 Pragma_Arg : Node_Id :=
2563 Expression (First (Pragma_Argument_Associations (N)));
2564 begin
2565 if Nkind (Pragma_Arg) = N_Selected_Component then
2566 Pragma_Arg := Selector_Name (Pragma_Arg);
2567 end if;
2569 return Chars (Pragma_Arg) = Chars (Body_Id);
2570 end;
2572 else
2573 return False;
2574 end if;
2575 end Is_Inline_Pragma;
2577 -- Start of processing for Check_Inline_Pragma
2579 begin
2580 if not Expander_Active then
2581 return;
2582 end if;
2584 if Is_List_Member (N)
2585 and then Present (Next (N))
2586 and then Is_Inline_Pragma (Next (N))
2587 then
2588 Prag := Next (N);
2590 elsif Nkind (N) /= N_Subprogram_Body_Stub
2591 and then Present (Declarations (N))
2592 and then Is_Inline_Pragma (First (Declarations (N)))
2593 then
2594 Prag := First (Declarations (N));
2596 else
2597 Prag := Empty;
2598 end if;
2600 if Present (Prag) then
2601 if Present (Spec_Id) then
2602 if Is_List_Member (N)
2603 and then Is_List_Member (Unit_Declaration_Node (Spec_Id))
2604 and then In_Same_List (N, Unit_Declaration_Node (Spec_Id))
2605 then
2606 Analyze (Prag);
2607 end if;
2609 else
2610 -- Create a subprogram declaration, to make treatment uniform.
2611 -- Make the sloc of the subprogram name that of the entity in
2612 -- the body, so that style checks find identical strings.
2614 declare
2615 Subp : constant Entity_Id :=
2616 Make_Defining_Identifier
2617 (Sloc (Body_Id), Chars (Body_Id));
2618 Decl : constant Node_Id :=
2619 Make_Subprogram_Declaration (Loc,
2620 Specification =>
2621 New_Copy_Tree (Specification (N)));
2623 begin
2624 Set_Defining_Unit_Name (Specification (Decl), Subp);
2626 -- To ensure proper coverage when body is inlined, indicate
2627 -- whether the subprogram comes from source.
2629 Set_Comes_From_Source (Subp, Comes_From_Source (N));
2631 if Present (First_Formal (Body_Id)) then
2632 Plist := Copy_Parameter_List (Body_Id);
2633 Set_Parameter_Specifications
2634 (Specification (Decl), Plist);
2635 end if;
2637 Insert_Before (N, Decl);
2638 Analyze (Decl);
2639 Analyze (Prag);
2640 Set_Has_Pragma_Inline (Subp);
2642 if Pragma_Name (Prag) = Name_Inline_Always then
2643 Set_Is_Inlined (Subp);
2644 Set_Has_Pragma_Inline_Always (Subp);
2645 end if;
2647 -- Prior to copying the subprogram body to create a template
2648 -- for it for subsequent inlining, remove the pragma from
2649 -- the current body so that the copy that will produce the
2650 -- new body will start from a completely unanalyzed tree.
2652 if Nkind (Parent (Prag)) = N_Subprogram_Body then
2653 Rewrite (Prag, Make_Null_Statement (Sloc (Prag)));
2654 end if;
2656 Spec := Subp;
2657 end;
2658 end if;
2659 end if;
2660 end Check_Inline_Pragma;
2662 --------------------------
2663 -- Check_Missing_Return --
2664 --------------------------
2666 procedure Check_Missing_Return is
2667 Id : Entity_Id;
2668 Missing_Ret : Boolean;
2670 begin
2671 if Nkind (Body_Spec) = N_Function_Specification then
2672 if Present (Spec_Id) then
2673 Id := Spec_Id;
2674 else
2675 Id := Body_Id;
2676 end if;
2678 if Return_Present (Id) then
2679 Check_Returns (HSS, 'F', Missing_Ret);
2681 if Missing_Ret then
2682 Set_Has_Missing_Return (Id);
2683 end if;
2685 -- Within a premature instantiation of a package with no body, we
2686 -- build completions of the functions therein, with a Raise
2687 -- statement. No point in complaining about a missing return in
2688 -- this case.
2690 elsif Ekind (Id) = E_Function
2691 and then In_Instance
2692 and then Present (Statements (HSS))
2693 and then Nkind (First (Statements (HSS))) = N_Raise_Program_Error
2694 then
2695 null;
2697 elsif Is_Generic_Subprogram (Id)
2698 or else not Is_Machine_Code_Subprogram (Id)
2699 then
2700 Error_Msg_N ("missing RETURN statement in function body", N);
2701 end if;
2703 -- If procedure with No_Return, check returns
2705 elsif Nkind (Body_Spec) = N_Procedure_Specification
2706 and then Present (Spec_Id)
2707 and then No_Return (Spec_Id)
2708 then
2709 Check_Returns (HSS, 'P', Missing_Ret, Spec_Id);
2710 end if;
2712 -- Special checks in SPARK mode
2714 if Nkind (Body_Spec) = N_Function_Specification then
2716 -- In SPARK mode, last statement of a function should be a return
2718 declare
2719 Stat : constant Node_Id := Last_Source_Statement (HSS);
2720 begin
2721 if Present (Stat)
2722 and then not Nkind_In (Stat, N_Simple_Return_Statement,
2723 N_Extended_Return_Statement)
2724 then
2725 Check_SPARK_05_Restriction
2726 ("last statement in function should be RETURN", Stat);
2727 end if;
2728 end;
2730 -- In SPARK mode, verify that a procedure has no return
2732 elsif Nkind (Body_Spec) = N_Procedure_Specification then
2733 if Present (Spec_Id) then
2734 Id := Spec_Id;
2735 else
2736 Id := Body_Id;
2737 end if;
2739 -- Would be nice to point to return statement here, can we
2740 -- borrow the Check_Returns procedure here ???
2742 if Return_Present (Id) then
2743 Check_SPARK_05_Restriction
2744 ("procedure should not have RETURN", N);
2745 end if;
2746 end if;
2747 end Check_Missing_Return;
2749 -----------------------
2750 -- Disambiguate_Spec --
2751 -----------------------
2753 function Disambiguate_Spec return Entity_Id is
2754 Priv_Spec : Entity_Id;
2755 Spec_N : Entity_Id;
2757 procedure Replace_Types (To_Corresponding : Boolean);
2758 -- Depending on the flag, replace the type of formal parameters of
2759 -- Body_Id if it is a concurrent type implementing interfaces with
2760 -- the corresponding record type or the other way around.
2762 procedure Replace_Types (To_Corresponding : Boolean) is
2763 Formal : Entity_Id;
2764 Formal_Typ : Entity_Id;
2766 begin
2767 Formal := First_Formal (Body_Id);
2768 while Present (Formal) loop
2769 Formal_Typ := Etype (Formal);
2771 if Is_Class_Wide_Type (Formal_Typ) then
2772 Formal_Typ := Root_Type (Formal_Typ);
2773 end if;
2775 -- From concurrent type to corresponding record
2777 if To_Corresponding then
2778 if Is_Concurrent_Type (Formal_Typ)
2779 and then Present (Corresponding_Record_Type (Formal_Typ))
2780 and then
2781 Present (Interfaces
2782 (Corresponding_Record_Type (Formal_Typ)))
2783 then
2784 Set_Etype (Formal,
2785 Corresponding_Record_Type (Formal_Typ));
2786 end if;
2788 -- From corresponding record to concurrent type
2790 else
2791 if Is_Concurrent_Record_Type (Formal_Typ)
2792 and then Present (Interfaces (Formal_Typ))
2793 then
2794 Set_Etype (Formal,
2795 Corresponding_Concurrent_Type (Formal_Typ));
2796 end if;
2797 end if;
2799 Next_Formal (Formal);
2800 end loop;
2801 end Replace_Types;
2803 -- Start of processing for Disambiguate_Spec
2805 begin
2806 -- Try to retrieve the specification of the body as is. All error
2807 -- messages are suppressed because the body may not have a spec in
2808 -- its current state.
2810 Spec_N := Find_Corresponding_Spec (N, False);
2812 -- It is possible that this is the body of a primitive declared
2813 -- between a private and a full view of a concurrent type. The
2814 -- controlling parameter of the spec carries the concurrent type,
2815 -- not the corresponding record type as transformed by Analyze_
2816 -- Subprogram_Specification. In such cases, we undo the change
2817 -- made by the analysis of the specification and try to find the
2818 -- spec again.
2820 -- Note that wrappers already have their corresponding specs and
2821 -- bodies set during their creation, so if the candidate spec is
2822 -- a wrapper, then we definitely need to swap all types to their
2823 -- original concurrent status.
2825 if No (Spec_N)
2826 or else Is_Primitive_Wrapper (Spec_N)
2827 then
2828 -- Restore all references of corresponding record types to the
2829 -- original concurrent types.
2831 Replace_Types (To_Corresponding => False);
2832 Priv_Spec := Find_Corresponding_Spec (N, False);
2834 -- The current body truly belongs to a primitive declared between
2835 -- a private and a full view. We leave the modified body as is,
2836 -- and return the true spec.
2838 if Present (Priv_Spec)
2839 and then Is_Private_Primitive (Priv_Spec)
2840 then
2841 return Priv_Spec;
2842 end if;
2844 -- In case that this is some sort of error, restore the original
2845 -- state of the body.
2847 Replace_Types (To_Corresponding => True);
2848 end if;
2850 return Spec_N;
2851 end Disambiguate_Spec;
2853 ----------------------------
2854 -- Exchange_Limited_Views --
2855 ----------------------------
2857 procedure Exchange_Limited_Views (Subp_Id : Entity_Id) is
2858 procedure Detect_And_Exchange (Id : Entity_Id);
2859 -- Determine whether Id's type denotes an incomplete type associated
2860 -- with a limited with clause and exchange the limited view with the
2861 -- non-limited one when available. Note that the non-limited view
2862 -- may exist because of a with_clause in another unit in the context,
2863 -- but cannot be used because the current view of the enclosing unit
2864 -- is still a limited view.
2866 -------------------------
2867 -- Detect_And_Exchange --
2868 -------------------------
2870 procedure Detect_And_Exchange (Id : Entity_Id) is
2871 Typ : constant Entity_Id := Etype (Id);
2872 begin
2873 if From_Limited_With (Typ)
2874 and then Has_Non_Limited_View (Typ)
2875 and then not From_Limited_With (Scope (Typ))
2876 then
2877 Set_Etype (Id, Non_Limited_View (Typ));
2878 end if;
2879 end Detect_And_Exchange;
2881 -- Local variables
2883 Formal : Entity_Id;
2885 -- Start of processing for Exchange_Limited_Views
2887 begin
2888 if No (Subp_Id) then
2889 return;
2891 -- Do not process subprogram bodies as they already use the non-
2892 -- limited view of types.
2894 elsif not Ekind_In (Subp_Id, E_Function, E_Procedure) then
2895 return;
2896 end if;
2898 -- Examine all formals and swap views when applicable
2900 Formal := First_Formal (Subp_Id);
2901 while Present (Formal) loop
2902 Detect_And_Exchange (Formal);
2904 Next_Formal (Formal);
2905 end loop;
2907 -- Process the return type of a function
2909 if Ekind (Subp_Id) = E_Function then
2910 Detect_And_Exchange (Subp_Id);
2911 end if;
2912 end Exchange_Limited_Views;
2914 -------------------------------------
2915 -- Is_Private_Concurrent_Primitive --
2916 -------------------------------------
2918 function Is_Private_Concurrent_Primitive
2919 (Subp_Id : Entity_Id) return Boolean
2921 Formal_Typ : Entity_Id;
2923 begin
2924 if Present (First_Formal (Subp_Id)) then
2925 Formal_Typ := Etype (First_Formal (Subp_Id));
2927 if Is_Concurrent_Record_Type (Formal_Typ) then
2928 if Is_Class_Wide_Type (Formal_Typ) then
2929 Formal_Typ := Root_Type (Formal_Typ);
2930 end if;
2932 Formal_Typ := Corresponding_Concurrent_Type (Formal_Typ);
2933 end if;
2935 -- The type of the first formal is a concurrent tagged type with
2936 -- a private view.
2938 return
2939 Is_Concurrent_Type (Formal_Typ)
2940 and then Is_Tagged_Type (Formal_Typ)
2941 and then Has_Private_Declaration (Formal_Typ);
2942 end if;
2944 return False;
2945 end Is_Private_Concurrent_Primitive;
2947 ----------------------------
2948 -- Set_Trivial_Subprogram --
2949 ----------------------------
2951 procedure Set_Trivial_Subprogram (N : Node_Id) is
2952 Nxt : constant Node_Id := Next (N);
2954 begin
2955 Set_Is_Trivial_Subprogram (Body_Id);
2957 if Present (Spec_Id) then
2958 Set_Is_Trivial_Subprogram (Spec_Id);
2959 end if;
2961 if Present (Nxt)
2962 and then Nkind (Nxt) = N_Simple_Return_Statement
2963 and then No (Next (Nxt))
2964 and then Present (Expression (Nxt))
2965 and then Is_Entity_Name (Expression (Nxt))
2966 then
2967 Set_Never_Set_In_Source (Entity (Expression (Nxt)), False);
2968 end if;
2969 end Set_Trivial_Subprogram;
2971 ---------------------------------
2972 -- Verify_Overriding_Indicator --
2973 ---------------------------------
2975 procedure Verify_Overriding_Indicator is
2976 begin
2977 if Must_Override (Body_Spec) then
2978 if Nkind (Spec_Id) = N_Defining_Operator_Symbol
2979 and then Operator_Matches_Spec (Spec_Id, Spec_Id)
2980 then
2981 null;
2983 elsif not Present (Overridden_Operation (Spec_Id)) then
2984 Error_Msg_NE
2985 ("subprogram& is not overriding", Body_Spec, Spec_Id);
2987 -- Overriding indicators aren't allowed for protected subprogram
2988 -- bodies (see the Confirmation in Ada Comment AC95-00213). Change
2989 -- this to a warning if -gnatd.E is enabled.
2991 elsif Ekind (Scope (Spec_Id)) = E_Protected_Type then
2992 Error_Msg_Warn := Error_To_Warning;
2993 Error_Msg_N
2994 ("<<overriding indicator not allowed for protected "
2995 & "subprogram body", Body_Spec);
2996 end if;
2998 elsif Must_Not_Override (Body_Spec) then
2999 if Present (Overridden_Operation (Spec_Id)) then
3000 Error_Msg_NE
3001 ("subprogram& overrides inherited operation",
3002 Body_Spec, Spec_Id);
3004 elsif Nkind (Spec_Id) = N_Defining_Operator_Symbol
3005 and then Operator_Matches_Spec (Spec_Id, Spec_Id)
3006 then
3007 Error_Msg_NE
3008 ("subprogram& overrides predefined operator ",
3009 Body_Spec, Spec_Id);
3011 -- Overriding indicators aren't allowed for protected subprogram
3012 -- bodies (see the Confirmation in Ada Comment AC95-00213). Change
3013 -- this to a warning if -gnatd.E is enabled.
3015 elsif Ekind (Scope (Spec_Id)) = E_Protected_Type then
3016 Error_Msg_Warn := Error_To_Warning;
3018 Error_Msg_N
3019 ("<<overriding indicator not allowed "
3020 & "for protected subprogram body", Body_Spec);
3022 -- If this is not a primitive operation, then the overriding
3023 -- indicator is altogether illegal.
3025 elsif not Is_Primitive (Spec_Id) then
3026 Error_Msg_N
3027 ("overriding indicator only allowed "
3028 & "if subprogram is primitive", Body_Spec);
3029 end if;
3031 -- If checking the style rule and the operation overrides, then
3032 -- issue a warning about a missing overriding_indicator. Protected
3033 -- subprogram bodies are excluded from this style checking, since
3034 -- they aren't primitives (even though their declarations can
3035 -- override) and aren't allowed to have an overriding_indicator.
3037 elsif Style_Check
3038 and then Present (Overridden_Operation (Spec_Id))
3039 and then Ekind (Scope (Spec_Id)) /= E_Protected_Type
3040 then
3041 pragma Assert (Unit_Declaration_Node (Body_Id) = N);
3042 Style.Missing_Overriding (N, Body_Id);
3044 elsif Style_Check
3045 and then Can_Override_Operator (Spec_Id)
3046 and then not Is_Predefined_File_Name
3047 (Unit_File_Name (Get_Source_Unit (Spec_Id)))
3048 then
3049 pragma Assert (Unit_Declaration_Node (Body_Id) = N);
3050 Style.Missing_Overriding (N, Body_Id);
3051 end if;
3052 end Verify_Overriding_Indicator;
3054 -- Local variables
3056 Save_Ghost_Mode : constant Ghost_Mode_Type := Ghost_Mode;
3057 Cloned_Body_For_C : Node_Id := Empty;
3059 -- Start of processing for Analyze_Subprogram_Body_Helper
3061 begin
3062 -- A [generic] subprogram body "freezes" the contract of the nearest
3063 -- enclosing package body and all other contracts encountered in the
3064 -- same declarative part up to and excluding the subprogram body:
3066 -- package body Nearest_Enclosing_Package
3067 -- with Refined_State => (State => Constit)
3068 -- is
3069 -- Constit : ...;
3071 -- procedure Freezes_Enclosing_Package_Body
3072 -- with Refined_Depends => (Input => Constit) ...
3074 -- This ensures that any annotations referenced by the contract of the
3075 -- [generic] subprogram body are available. This form of "freezing" is
3076 -- decoupled from the usual Freeze_xxx mechanism because it must also
3077 -- work in the context of generics where normal freezing is disabled.
3079 -- Only bodies coming from source should cause this type of "freezing".
3080 -- Expression functions that act as bodies and complete an initial
3081 -- declaration must be included in this category, hence the use of
3082 -- Original_Node.
3084 if Comes_From_Source (Original_Node (N)) then
3085 Analyze_Previous_Contracts (N);
3086 end if;
3088 -- Generic subprograms are handled separately. They always have a
3089 -- generic specification. Determine whether current scope has a
3090 -- previous declaration.
3092 -- If the subprogram body is defined within an instance of the same
3093 -- name, the instance appears as a package renaming, and will be hidden
3094 -- within the subprogram.
3096 if Present (Prev_Id)
3097 and then not Is_Overloadable (Prev_Id)
3098 and then (Nkind (Parent (Prev_Id)) /= N_Package_Renaming_Declaration
3099 or else Comes_From_Source (Prev_Id))
3100 then
3101 if Is_Generic_Subprogram (Prev_Id) then
3102 Spec_Id := Prev_Id;
3104 -- A subprogram body is Ghost when it is stand alone and subject
3105 -- to pragma Ghost or when the corresponding spec is Ghost. Set
3106 -- the mode now to ensure that any nodes generated during analysis
3107 -- and expansion are properly marked as Ghost.
3109 Set_Ghost_Mode (N, Spec_Id);
3110 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
3111 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
3113 Analyze_Generic_Subprogram_Body (N, Spec_Id);
3115 if Nkind (N) = N_Subprogram_Body then
3116 HSS := Handled_Statement_Sequence (N);
3117 Check_Missing_Return;
3118 end if;
3120 Ghost_Mode := Save_Ghost_Mode;
3121 return;
3123 else
3124 -- Previous entity conflicts with subprogram name. Attempting to
3125 -- enter name will post error.
3127 Enter_Name (Body_Id);
3128 Ghost_Mode := Save_Ghost_Mode;
3129 return;
3130 end if;
3132 -- Non-generic case, find the subprogram declaration, if one was seen,
3133 -- or enter new overloaded entity in the current scope. If the
3134 -- Current_Entity is the Body_Id itself, the unit is being analyzed as
3135 -- part of the context of one of its subunits. No need to redo the
3136 -- analysis.
3138 elsif Prev_Id = Body_Id and then Has_Completion (Body_Id) then
3139 Ghost_Mode := Save_Ghost_Mode;
3140 return;
3142 else
3143 Body_Id := Analyze_Subprogram_Specification (Body_Spec);
3145 if Nkind (N) = N_Subprogram_Body_Stub
3146 or else No (Corresponding_Spec (N))
3147 then
3148 if Is_Private_Concurrent_Primitive (Body_Id) then
3149 Spec_Id := Disambiguate_Spec;
3151 -- A subprogram body is Ghost when it is stand alone and
3152 -- subject to pragma Ghost or when the corresponding spec is
3153 -- Ghost. Set the mode now to ensure that any nodes generated
3154 -- during analysis and expansion are properly marked as Ghost.
3156 Set_Ghost_Mode (N, Spec_Id);
3158 else
3159 Spec_Id := Find_Corresponding_Spec (N);
3161 -- A subprogram body is Ghost when it is stand alone and
3162 -- subject to pragma Ghost or when the corresponding spec is
3163 -- Ghost. Set the mode now to ensure that any nodes generated
3164 -- during analysis and expansion are properly marked as Ghost.
3166 Set_Ghost_Mode (N, Spec_Id);
3168 -- In GNATprove mode, if the body has no previous spec, create
3169 -- one so that the inlining machinery can operate properly.
3170 -- Transfer aspects, if any, to the new spec, so that they
3171 -- are legal and can be processed ahead of the body.
3172 -- We make two copies of the given spec, one for the new
3173 -- declaration, and one for the body.
3175 if No (Spec_Id) and then GNATprove_Mode
3177 -- Inlining does not apply during pre-analysis of code
3179 and then Full_Analysis
3181 -- Inlining only applies to full bodies, not stubs
3183 and then Nkind (N) /= N_Subprogram_Body_Stub
3185 -- Inlining only applies to bodies in the source code, not to
3186 -- those generated by the compiler. In particular, expression
3187 -- functions, whose body is generated by the compiler, are
3188 -- treated specially by GNATprove.
3190 and then Comes_From_Source (Body_Id)
3192 -- This cannot be done for a compilation unit, which is not
3193 -- in a context where we can insert a new spec.
3195 and then Is_List_Member (N)
3197 -- Inlining only applies to subprograms without contracts,
3198 -- as a contract is a sign that GNATprove should perform a
3199 -- modular analysis of the subprogram instead of a contextual
3200 -- analysis at each call site. The same test is performed in
3201 -- Inline.Can_Be_Inlined_In_GNATprove_Mode. It is repeated
3202 -- here in another form (because the contract has not
3203 -- been attached to the body) to avoid frontend errors in
3204 -- case pragmas are used instead of aspects, because the
3205 -- corresponding pragmas in the body would not be transferred
3206 -- to the spec, leading to legality errors.
3208 and then not Body_Has_Contract
3209 and then not Inside_A_Generic
3210 then
3211 Build_Subprogram_Declaration;
3213 -- If this is a function that returns a constrained array, and
3214 -- we are generating SPARK_For_C, create subprogram declaration
3215 -- to simplify subsequent C generation.
3217 elsif No (Spec_Id)
3218 and then Modify_Tree_For_C
3219 and then Nkind (Body_Spec) = N_Function_Specification
3220 and then Is_Array_Type (Etype (Body_Id))
3221 and then Is_Constrained (Etype (Body_Id))
3222 then
3223 Build_Subprogram_Declaration;
3224 end if;
3225 end if;
3227 -- If this is a duplicate body, no point in analyzing it
3229 if Error_Posted (N) then
3230 Ghost_Mode := Save_Ghost_Mode;
3231 return;
3232 end if;
3234 -- A subprogram body should cause freezing of its own declaration,
3235 -- but if there was no previous explicit declaration, then the
3236 -- subprogram will get frozen too late (there may be code within
3237 -- the body that depends on the subprogram having been frozen,
3238 -- such as uses of extra formals), so we force it to be frozen
3239 -- here. Same holds if the body and spec are compilation units.
3240 -- Finally, if the return type is an anonymous access to protected
3241 -- subprogram, it must be frozen before the body because its
3242 -- expansion has generated an equivalent type that is used when
3243 -- elaborating the body.
3245 -- An exception in the case of Ada 2012, AI05-177: The bodies
3246 -- created for expression functions do not freeze.
3248 if No (Spec_Id)
3249 and then Nkind (Original_Node (N)) /= N_Expression_Function
3250 then
3251 Freeze_Before (N, Body_Id);
3253 elsif Nkind (Parent (N)) = N_Compilation_Unit then
3254 Freeze_Before (N, Spec_Id);
3256 elsif Is_Access_Subprogram_Type (Etype (Body_Id)) then
3257 Freeze_Before (N, Etype (Body_Id));
3258 end if;
3260 else
3261 Spec_Id := Corresponding_Spec (N);
3263 -- A subprogram body is Ghost when it is stand alone and subject
3264 -- to pragma Ghost or when the corresponding spec is Ghost. Set
3265 -- the mode now to ensure that any nodes generated during analysis
3266 -- and expansion are properly marked as Ghost.
3268 Set_Ghost_Mode (N, Spec_Id);
3269 end if;
3270 end if;
3272 -- Previously we scanned the body to look for nested subprograms, and
3273 -- rejected an inline directive if nested subprograms were present,
3274 -- because the back-end would generate conflicting symbols for the
3275 -- nested bodies. This is now unnecessary.
3277 -- Look ahead to recognize a pragma Inline that appears after the body
3279 Check_Inline_Pragma (Spec_Id);
3281 -- Deal with special case of a fully private operation in the body of
3282 -- the protected type. We must create a declaration for the subprogram,
3283 -- in order to attach the protected subprogram that will be used in
3284 -- internal calls. We exclude compiler generated bodies from the
3285 -- expander since the issue does not arise for those cases.
3287 if No (Spec_Id)
3288 and then Comes_From_Source (N)
3289 and then Is_Protected_Type (Current_Scope)
3290 then
3291 Spec_Id := Build_Private_Protected_Declaration (N);
3292 end if;
3294 -- If a separate spec is present, then deal with freezing issues
3296 if Present (Spec_Id) then
3297 Spec_Decl := Unit_Declaration_Node (Spec_Id);
3298 Verify_Overriding_Indicator;
3300 -- In general, the spec will be frozen when we start analyzing the
3301 -- body. However, for internally generated operations, such as
3302 -- wrapper functions for inherited operations with controlling
3303 -- results, the spec may not have been frozen by the time we expand
3304 -- the freeze actions that include the bodies. In particular, extra
3305 -- formals for accessibility or for return-in-place may need to be
3306 -- generated. Freeze nodes, if any, are inserted before the current
3307 -- body. These freeze actions are also needed in ASIS mode and in
3308 -- Compile_Only mode to enable the proper back-end type annotations.
3309 -- They are necessary in any case to insure order of elaboration
3310 -- in gigi.
3312 if not Is_Frozen (Spec_Id)
3313 and then (Expander_Active
3314 or else ASIS_Mode
3315 or else (Operating_Mode = Check_Semantics
3316 and then Serious_Errors_Detected = 0))
3317 then
3318 Set_Has_Delayed_Freeze (Spec_Id);
3319 Freeze_Before (N, Spec_Id);
3320 end if;
3321 end if;
3323 -- Place subprogram on scope stack, and make formals visible. If there
3324 -- is a spec, the visible entity remains that of the spec.
3326 if Present (Spec_Id) then
3327 Generate_Reference (Spec_Id, Body_Id, 'b', Set_Ref => False);
3329 if Is_Child_Unit (Spec_Id) then
3330 Generate_Reference (Spec_Id, Scope (Spec_Id), 'k', False);
3331 end if;
3333 if Style_Check then
3334 Style.Check_Identifier (Body_Id, Spec_Id);
3335 end if;
3337 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
3338 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
3340 if Is_Abstract_Subprogram (Spec_Id) then
3341 Error_Msg_N ("an abstract subprogram cannot have a body", N);
3342 Ghost_Mode := Save_Ghost_Mode;
3343 return;
3345 else
3346 Set_Convention (Body_Id, Convention (Spec_Id));
3347 Set_Has_Completion (Spec_Id);
3349 -- Inherit the "ghostness" of the subprogram spec. Note that this
3350 -- property is not directly inherited as the body may be subject
3351 -- to a different Ghost assertion policy.
3353 if Ghost_Mode > None or else Is_Ghost_Entity (Spec_Id) then
3354 Set_Is_Ghost_Entity (Body_Id);
3356 -- The Ghost policy in effect at the point of declaration and
3357 -- at the point of completion must match (SPARK RM 6.9(14)).
3359 Check_Ghost_Completion (Spec_Id, Body_Id);
3360 end if;
3362 if Is_Protected_Type (Scope (Spec_Id)) then
3363 Prot_Typ := Scope (Spec_Id);
3364 end if;
3366 -- If this is a body generated for a renaming, do not check for
3367 -- full conformance. The check is redundant, because the spec of
3368 -- the body is a copy of the spec in the renaming declaration,
3369 -- and the test can lead to spurious errors on nested defaults.
3371 if Present (Spec_Decl)
3372 and then not Comes_From_Source (N)
3373 and then
3374 (Nkind (Original_Node (Spec_Decl)) =
3375 N_Subprogram_Renaming_Declaration
3376 or else (Present (Corresponding_Body (Spec_Decl))
3377 and then
3378 Nkind (Unit_Declaration_Node
3379 (Corresponding_Body (Spec_Decl))) =
3380 N_Subprogram_Renaming_Declaration))
3381 then
3382 Conformant := True;
3384 -- Conversely, the spec may have been generated for specless body
3385 -- with an inline pragma. The entity comes from source, which is
3386 -- both semantically correct and necessary for proper inlining.
3387 -- The subprogram declaration itself is not in the source.
3389 elsif Comes_From_Source (N)
3390 and then Present (Spec_Decl)
3391 and then not Comes_From_Source (Spec_Decl)
3392 and then Has_Pragma_Inline (Spec_Id)
3393 then
3394 Conformant := True;
3396 else
3397 Check_Conformance
3398 (Body_Id, Spec_Id,
3399 Fully_Conformant, True, Conformant, Body_Id);
3400 end if;
3402 -- If the body is not fully conformant, we have to decide if we
3403 -- should analyze it or not. If it has a really messed up profile
3404 -- then we probably should not analyze it, since we will get too
3405 -- many bogus messages.
3407 -- Our decision is to go ahead in the non-fully conformant case
3408 -- only if it is at least mode conformant with the spec. Note
3409 -- that the call to Check_Fully_Conformant has issued the proper
3410 -- error messages to complain about the lack of conformance.
3412 if not Conformant
3413 and then not Mode_Conformant (Body_Id, Spec_Id)
3414 then
3415 Ghost_Mode := Save_Ghost_Mode;
3416 return;
3417 end if;
3418 end if;
3420 if Spec_Id /= Body_Id then
3421 Reference_Body_Formals (Spec_Id, Body_Id);
3422 end if;
3424 Set_Ekind (Body_Id, E_Subprogram_Body);
3426 if Nkind (N) = N_Subprogram_Body_Stub then
3427 Set_Corresponding_Spec_Of_Stub (N, Spec_Id);
3429 -- Regular body
3431 else
3432 Set_Corresponding_Spec (N, Spec_Id);
3434 -- Ada 2005 (AI-345): If the operation is a primitive operation
3435 -- of a concurrent type, the type of the first parameter has been
3436 -- replaced with the corresponding record, which is the proper
3437 -- run-time structure to use. However, within the body there may
3438 -- be uses of the formals that depend on primitive operations
3439 -- of the type (in particular calls in prefixed form) for which
3440 -- we need the original concurrent type. The operation may have
3441 -- several controlling formals, so the replacement must be done
3442 -- for all of them.
3444 if Comes_From_Source (Spec_Id)
3445 and then Present (First_Entity (Spec_Id))
3446 and then Ekind (Etype (First_Entity (Spec_Id))) = E_Record_Type
3447 and then Is_Tagged_Type (Etype (First_Entity (Spec_Id)))
3448 and then Present (Interfaces (Etype (First_Entity (Spec_Id))))
3449 and then Present (Corresponding_Concurrent_Type
3450 (Etype (First_Entity (Spec_Id))))
3451 then
3452 declare
3453 Typ : constant Entity_Id := Etype (First_Entity (Spec_Id));
3454 Form : Entity_Id;
3456 begin
3457 Form := First_Formal (Spec_Id);
3458 while Present (Form) loop
3459 if Etype (Form) = Typ then
3460 Set_Etype (Form, Corresponding_Concurrent_Type (Typ));
3461 end if;
3463 Next_Formal (Form);
3464 end loop;
3465 end;
3466 end if;
3468 -- Make the formals visible, and place subprogram on scope stack.
3469 -- This is also the point at which we set Last_Real_Spec_Entity
3470 -- to mark the entities which will not be moved to the body.
3472 Install_Formals (Spec_Id);
3473 Last_Real_Spec_Entity := Last_Entity (Spec_Id);
3475 -- Within an instance, add local renaming declarations so that
3476 -- gdb can retrieve the values of actuals more easily. This is
3477 -- only relevant if generating code (and indeed we definitely
3478 -- do not want these definitions -gnatc mode, because that would
3479 -- confuse ASIS).
3481 if Is_Generic_Instance (Spec_Id)
3482 and then Is_Wrapper_Package (Current_Scope)
3483 and then Expander_Active
3484 then
3485 Build_Subprogram_Instance_Renamings (N, Current_Scope);
3486 end if;
3488 Push_Scope (Spec_Id);
3490 -- Make sure that the subprogram is immediately visible. For
3491 -- child units that have no separate spec this is indispensable.
3492 -- Otherwise it is safe albeit redundant.
3494 Set_Is_Immediately_Visible (Spec_Id);
3495 end if;
3497 Set_Corresponding_Body (Unit_Declaration_Node (Spec_Id), Body_Id);
3498 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Spec_Id));
3499 Set_Scope (Body_Id, Scope (Spec_Id));
3501 -- Case of subprogram body with no previous spec
3503 else
3504 -- Check for style warning required
3506 if Style_Check
3508 -- Only apply check for source level subprograms for which checks
3509 -- have not been suppressed.
3511 and then Comes_From_Source (Body_Id)
3512 and then not Suppress_Style_Checks (Body_Id)
3514 -- No warnings within an instance
3516 and then not In_Instance
3518 -- No warnings for expression functions
3520 and then Nkind (Original_Node (N)) /= N_Expression_Function
3521 then
3522 Style.Body_With_No_Spec (N);
3523 end if;
3525 New_Overloaded_Entity (Body_Id);
3527 -- A subprogram body declared within a Ghost region is automatically
3528 -- Ghost (SPARK RM 6.9(2)).
3530 if Ghost_Mode > None then
3531 Set_Is_Ghost_Entity (Body_Id);
3532 end if;
3534 if Nkind (N) /= N_Subprogram_Body_Stub then
3535 Set_Acts_As_Spec (N);
3536 Generate_Definition (Body_Id);
3537 Generate_Reference
3538 (Body_Id, Body_Id, 'b', Set_Ref => False, Force => True);
3539 Install_Formals (Body_Id);
3541 Push_Scope (Body_Id);
3542 end if;
3544 -- For stubs and bodies with no previous spec, generate references to
3545 -- formals.
3547 Generate_Reference_To_Formals (Body_Id);
3548 end if;
3550 -- Entry barrier functions are generated outside the protected type and
3551 -- should not carry the SPARK_Mode of the enclosing context.
3553 if Nkind (N) = N_Subprogram_Body
3554 and then Is_Entry_Barrier_Function (N)
3555 then
3556 null;
3558 -- The body is generated as part of expression function expansion. When
3559 -- the expression function appears in the visible declarations of a
3560 -- package, the body is added to the private declarations. Since both
3561 -- declarative lists may be subject to a different SPARK_Mode, inherit
3562 -- the mode of the spec.
3564 -- package P with SPARK_Mode is
3565 -- function Expr_Func ... is (...); -- original
3566 -- [function Expr_Func ...;] -- generated spec
3567 -- -- mode is ON
3568 -- private
3569 -- pragma SPARK_Mode (Off);
3570 -- [function Expr_Func ... is return ...;] -- generated body
3571 -- end P; -- mode is ON
3573 elsif not Comes_From_Source (N)
3574 and then Present (Prev_Id)
3575 and then Is_Expression_Function (Prev_Id)
3576 then
3577 Set_SPARK_Pragma (Body_Id, SPARK_Pragma (Prev_Id));
3578 Set_SPARK_Pragma_Inherited
3579 (Body_Id, SPARK_Pragma_Inherited (Prev_Id));
3581 -- Set the SPARK_Mode from the current context (may be overwritten later
3582 -- with explicit pragma). Exclude the case where the SPARK_Mode appears
3583 -- initially on a stand-alone subprogram body, but is then relocated to
3584 -- a generated corresponding spec. In this scenario the mode is shared
3585 -- between the spec and body.
3587 elsif No (SPARK_Pragma (Body_Id)) then
3588 Set_SPARK_Pragma (Body_Id, SPARK_Mode_Pragma);
3589 Set_SPARK_Pragma_Inherited (Body_Id);
3590 end if;
3592 -- If the return type is an anonymous access type whose designated type
3593 -- is the limited view of a class-wide type and the non-limited view is
3594 -- available, update the return type accordingly.
3596 if Ada_Version >= Ada_2005 and then Comes_From_Source (N) then
3597 declare
3598 Etyp : Entity_Id;
3599 Rtyp : Entity_Id;
3601 begin
3602 Rtyp := Etype (Current_Scope);
3604 if Ekind (Rtyp) = E_Anonymous_Access_Type then
3605 Etyp := Directly_Designated_Type (Rtyp);
3607 if Is_Class_Wide_Type (Etyp)
3608 and then From_Limited_With (Etyp)
3609 then
3610 Set_Directly_Designated_Type
3611 (Etype (Current_Scope), Available_View (Etyp));
3612 end if;
3613 end if;
3614 end;
3615 end if;
3617 -- If this is the proper body of a stub, we must verify that the stub
3618 -- conforms to the body, and to the previous spec if one was present.
3619 -- We know already that the body conforms to that spec. This test is
3620 -- only required for subprograms that come from source.
3622 if Nkind (Parent (N)) = N_Subunit
3623 and then Comes_From_Source (N)
3624 and then not Error_Posted (Body_Id)
3625 and then Nkind (Corresponding_Stub (Parent (N))) =
3626 N_Subprogram_Body_Stub
3627 then
3628 declare
3629 Old_Id : constant Entity_Id :=
3630 Defining_Entity
3631 (Specification (Corresponding_Stub (Parent (N))));
3633 Conformant : Boolean := False;
3635 begin
3636 if No (Spec_Id) then
3637 Check_Fully_Conformant (Body_Id, Old_Id);
3639 else
3640 Check_Conformance
3641 (Body_Id, Old_Id, Fully_Conformant, False, Conformant);
3643 if not Conformant then
3645 -- The stub was taken to be a new declaration. Indicate that
3646 -- it lacks a body.
3648 Set_Has_Completion (Old_Id, False);
3649 end if;
3650 end if;
3651 end;
3652 end if;
3654 Set_Has_Completion (Body_Id);
3655 Check_Eliminated (Body_Id);
3657 -- Analyze any aspect specifications that appear on the subprogram body
3658 -- stub. Stop the analysis now as the stub does not have a declarative
3659 -- or a statement part, and it cannot be inlined.
3661 if Nkind (N) = N_Subprogram_Body_Stub then
3662 if Has_Aspects (N) then
3663 Analyze_Aspect_Specifications_On_Body_Or_Stub (N);
3664 end if;
3666 Ghost_Mode := Save_Ghost_Mode;
3667 return;
3668 end if;
3670 -- If we are generating C and this is a function returning a constrained
3671 -- array type for which we must create a procedure with an extra out
3672 -- parameter then clone the body before it is analyzed. Needed to ensure
3673 -- that the body of the built procedure does not have any reference to
3674 -- the body of the function.
3676 if Expander_Active
3677 and then Modify_Tree_For_C
3678 and then Present (Spec_Id)
3679 and then Ekind (Spec_Id) = E_Function
3680 and then Rewritten_For_C (Spec_Id)
3681 then
3682 Cloned_Body_For_C := Copy_Separate_Tree (N);
3683 end if;
3685 -- Handle frontend inlining
3687 -- Note: Normally we don't do any inlining if expansion is off, since
3688 -- we won't generate code in any case. An exception arises in GNATprove
3689 -- mode where we want to expand some calls in place, even with expansion
3690 -- disabled, since the inlining eases formal verification.
3692 if not GNATprove_Mode
3693 and then Expander_Active
3694 and then Serious_Errors_Detected = 0
3695 and then Present (Spec_Id)
3696 and then Has_Pragma_Inline (Spec_Id)
3697 then
3698 -- Legacy implementation (relying on frontend inlining)
3700 if not Back_End_Inlining then
3701 if (Has_Pragma_Inline_Always (Spec_Id)
3702 and then not Opt.Disable_FE_Inline_Always)
3703 or else
3704 (Has_Pragma_Inline (Spec_Id) and then Front_End_Inlining
3705 and then not Opt.Disable_FE_Inline)
3706 then
3707 Build_Body_To_Inline (N, Spec_Id);
3708 end if;
3710 -- New implementation (relying on backend inlining)
3712 else
3713 if Has_Pragma_Inline_Always (Spec_Id)
3714 or else Optimization_Level > 0
3715 then
3716 -- Handle function returning an unconstrained type
3718 if Comes_From_Source (Body_Id)
3719 and then Ekind (Spec_Id) = E_Function
3720 and then Returns_Unconstrained_Type (Spec_Id)
3722 -- If function builds in place, i.e. returns a limited type,
3723 -- inlining cannot be done.
3725 and then not Is_Limited_Type (Etype (Spec_Id))
3726 then
3727 Check_And_Split_Unconstrained_Function (N, Spec_Id, Body_Id);
3729 else
3730 declare
3731 Subp_Body : constant Node_Id :=
3732 Unit_Declaration_Node (Body_Id);
3733 Subp_Decl : constant List_Id := Declarations (Subp_Body);
3735 begin
3736 -- Do not pass inlining to the backend if the subprogram
3737 -- has declarations or statements which cannot be inlined
3738 -- by the backend. This check is done here to emit an
3739 -- error instead of the generic warning message reported
3740 -- by the GCC backend (ie. "function might not be
3741 -- inlinable").
3743 if Present (Subp_Decl)
3744 and then Has_Excluded_Declaration (Spec_Id, Subp_Decl)
3745 then
3746 null;
3748 elsif Has_Excluded_Statement
3749 (Spec_Id,
3750 Statements
3751 (Handled_Statement_Sequence (Subp_Body)))
3752 then
3753 null;
3755 -- If the backend inlining is available then at this
3756 -- stage we only have to mark the subprogram as inlined.
3757 -- The expander will take care of registering it in the
3758 -- table of subprograms inlined by the backend a part of
3759 -- processing calls to it (cf. Expand_Call)
3761 else
3762 Set_Is_Inlined (Spec_Id);
3763 end if;
3764 end;
3765 end if;
3766 end if;
3767 end if;
3769 -- In GNATprove mode, inline only when there is a separate subprogram
3770 -- declaration for now, as inlining of subprogram bodies acting as
3771 -- declarations, or subprogram stubs, are not supported by frontend
3772 -- inlining. This inlining should occur after analysis of the body, so
3773 -- that it is known whether the value of SPARK_Mode, which can be
3774 -- defined by a pragma inside the body, is applicable to the body.
3776 elsif GNATprove_Mode
3777 and then Full_Analysis
3778 and then not Inside_A_Generic
3779 and then Present (Spec_Id)
3780 and then
3781 Nkind (Unit_Declaration_Node (Spec_Id)) = N_Subprogram_Declaration
3782 and then Body_Has_SPARK_Mode_On
3783 and then Can_Be_Inlined_In_GNATprove_Mode (Spec_Id, Body_Id)
3784 and then not Body_Has_Contract
3785 then
3786 Build_Body_To_Inline (N, Spec_Id);
3787 end if;
3789 -- When generating code, inherited pre/postconditions are handled when
3790 -- expanding the corresponding contract.
3792 -- Ada 2005 (AI-262): In library subprogram bodies, after the analysis
3793 -- of the specification we have to install the private withed units.
3794 -- This holds for child units as well.
3796 if Is_Compilation_Unit (Body_Id)
3797 or else Nkind (Parent (N)) = N_Compilation_Unit
3798 then
3799 Install_Private_With_Clauses (Body_Id);
3800 end if;
3802 Check_Anonymous_Return;
3804 -- Set the Protected_Formal field of each extra formal of the protected
3805 -- subprogram to reference the corresponding extra formal of the
3806 -- subprogram that implements it. For regular formals this occurs when
3807 -- the protected subprogram's declaration is expanded, but the extra
3808 -- formals don't get created until the subprogram is frozen. We need to
3809 -- do this before analyzing the protected subprogram's body so that any
3810 -- references to the original subprogram's extra formals will be changed
3811 -- refer to the implementing subprogram's formals (see Expand_Formal).
3813 if Present (Spec_Id)
3814 and then Is_Protected_Type (Scope (Spec_Id))
3815 and then Present (Protected_Body_Subprogram (Spec_Id))
3816 then
3817 declare
3818 Impl_Subp : constant Entity_Id :=
3819 Protected_Body_Subprogram (Spec_Id);
3820 Prot_Ext_Formal : Entity_Id := Extra_Formals (Spec_Id);
3821 Impl_Ext_Formal : Entity_Id := Extra_Formals (Impl_Subp);
3822 begin
3823 while Present (Prot_Ext_Formal) loop
3824 pragma Assert (Present (Impl_Ext_Formal));
3825 Set_Protected_Formal (Prot_Ext_Formal, Impl_Ext_Formal);
3826 Next_Formal_With_Extras (Prot_Ext_Formal);
3827 Next_Formal_With_Extras (Impl_Ext_Formal);
3828 end loop;
3829 end;
3830 end if;
3832 -- Now we can go on to analyze the body
3834 HSS := Handled_Statement_Sequence (N);
3835 Set_Actual_Subtypes (N, Current_Scope);
3837 -- Add a declaration for the Protection object, renaming declarations
3838 -- for discriminals and privals and finally a declaration for the entry
3839 -- family index (if applicable). This form of early expansion is done
3840 -- when the Expander is active because Install_Private_Data_Declarations
3841 -- references entities which were created during regular expansion. The
3842 -- subprogram entity must come from source, and not be an internally
3843 -- generated subprogram.
3845 if Expander_Active
3846 and then Present (Prot_Typ)
3847 and then Present (Spec_Id)
3848 and then Comes_From_Source (Spec_Id)
3849 and then not Is_Eliminated (Spec_Id)
3850 then
3851 Install_Private_Data_Declarations
3852 (Sloc (N), Spec_Id, Prot_Typ, N, Declarations (N));
3853 end if;
3855 -- Ada 2012 (AI05-0151): Incomplete types coming from a limited context
3856 -- may now appear in parameter and result profiles. Since the analysis
3857 -- of a subprogram body may use the parameter and result profile of the
3858 -- spec, swap any limited views with their non-limited counterpart.
3860 if Ada_Version >= Ada_2012 then
3861 Exchange_Limited_Views (Spec_Id);
3862 end if;
3864 -- Analyze any aspect specifications that appear on the subprogram body
3866 if Has_Aspects (N) then
3867 Analyze_Aspect_Specifications_On_Body_Or_Stub (N);
3868 end if;
3870 Analyze_Declarations (Declarations (N));
3872 -- Verify that the SPARK_Mode of the body agrees with that of its spec
3874 if Present (Spec_Id) and then Present (SPARK_Pragma (Body_Id)) then
3875 if Present (SPARK_Pragma (Spec_Id)) then
3876 if Get_SPARK_Mode_From_Annotation (SPARK_Pragma (Spec_Id)) = Off
3877 and then
3878 Get_SPARK_Mode_From_Annotation (SPARK_Pragma (Body_Id)) = On
3879 then
3880 Error_Msg_Sloc := Sloc (SPARK_Pragma (Body_Id));
3881 Error_Msg_N ("incorrect application of SPARK_Mode#", N);
3882 Error_Msg_Sloc := Sloc (SPARK_Pragma (Spec_Id));
3883 Error_Msg_NE
3884 ("\value Off was set for SPARK_Mode on & #", N, Spec_Id);
3885 end if;
3887 elsif Nkind (Parent (Parent (Spec_Id))) = N_Subprogram_Body_Stub then
3888 null;
3890 else
3891 Error_Msg_Sloc := Sloc (SPARK_Pragma (Body_Id));
3892 Error_Msg_N ("incorrect application of SPARK_Mode #", N);
3893 Error_Msg_Sloc := Sloc (Spec_Id);
3894 Error_Msg_NE
3895 ("\no value was set for SPARK_Mode on & #", N, Spec_Id);
3896 end if;
3897 end if;
3899 -- A subprogram body "freezes" its own contract. Analyze the contract
3900 -- after the declarations of the body have been processed as pragmas
3901 -- are now chained on the contract of the subprogram body.
3903 Analyze_Entry_Or_Subprogram_Body_Contract (Body_Id);
3905 -- Check completion, and analyze the statements
3907 Check_Completion;
3908 Inspect_Deferred_Constant_Completion (Declarations (N));
3909 Analyze (HSS);
3911 -- Deal with end of scope processing for the body
3913 Process_End_Label (HSS, 't', Current_Scope);
3914 End_Scope;
3915 Check_Subprogram_Order (N);
3916 Set_Analyzed (Body_Id);
3918 -- If we have a separate spec, then the analysis of the declarations
3919 -- caused the entities in the body to be chained to the spec id, but
3920 -- we want them chained to the body id. Only the formal parameters
3921 -- end up chained to the spec id in this case.
3923 if Present (Spec_Id) then
3925 -- We must conform to the categorization of our spec
3927 Validate_Categorization_Dependency (N, Spec_Id);
3929 -- And if this is a child unit, the parent units must conform
3931 if Is_Child_Unit (Spec_Id) then
3932 Validate_Categorization_Dependency
3933 (Unit_Declaration_Node (Spec_Id), Spec_Id);
3934 end if;
3936 -- Here is where we move entities from the spec to the body
3938 -- Case where there are entities that stay with the spec
3940 if Present (Last_Real_Spec_Entity) then
3942 -- No body entities (happens when the only real spec entities come
3943 -- from precondition and postcondition pragmas).
3945 if No (Last_Entity (Body_Id)) then
3946 Set_First_Entity (Body_Id, Next_Entity (Last_Real_Spec_Entity));
3948 -- Body entities present (formals), so chain stuff past them
3950 else
3951 Set_Next_Entity
3952 (Last_Entity (Body_Id), Next_Entity (Last_Real_Spec_Entity));
3953 end if;
3955 Set_Next_Entity (Last_Real_Spec_Entity, Empty);
3956 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
3957 Set_Last_Entity (Spec_Id, Last_Real_Spec_Entity);
3959 -- Case where there are no spec entities, in this case there can be
3960 -- no body entities either, so just move everything.
3962 -- If the body is generated for an expression function, it may have
3963 -- been preanalyzed already, if 'access was applied to it.
3965 else
3966 if Nkind (Original_Node (Unit_Declaration_Node (Spec_Id))) /=
3967 N_Expression_Function
3968 then
3969 pragma Assert (No (Last_Entity (Body_Id)));
3970 null;
3971 end if;
3973 Set_First_Entity (Body_Id, First_Entity (Spec_Id));
3974 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
3975 Set_First_Entity (Spec_Id, Empty);
3976 Set_Last_Entity (Spec_Id, Empty);
3977 end if;
3978 end if;
3980 Check_Missing_Return;
3982 -- Now we are going to check for variables that are never modified in
3983 -- the body of the procedure. But first we deal with a special case
3984 -- where we want to modify this check. If the body of the subprogram
3985 -- starts with a raise statement or its equivalent, or if the body
3986 -- consists entirely of a null statement, then it is pretty obvious that
3987 -- it is OK to not reference the parameters. For example, this might be
3988 -- the following common idiom for a stubbed function: statement of the
3989 -- procedure raises an exception. In particular this deals with the
3990 -- common idiom of a stubbed function, which appears something like:
3992 -- function F (A : Integer) return Some_Type;
3993 -- X : Some_Type;
3994 -- begin
3995 -- raise Program_Error;
3996 -- return X;
3997 -- end F;
3999 -- Here the purpose of X is simply to satisfy the annoying requirement
4000 -- in Ada that there be at least one return, and we certainly do not
4001 -- want to go posting warnings on X that it is not initialized. On
4002 -- the other hand, if X is entirely unreferenced that should still
4003 -- get a warning.
4005 -- What we do is to detect these cases, and if we find them, flag the
4006 -- subprogram as being Is_Trivial_Subprogram and then use that flag to
4007 -- suppress unwanted warnings. For the case of the function stub above
4008 -- we have a special test to set X as apparently assigned to suppress
4009 -- the warning.
4011 declare
4012 Stm : Node_Id;
4014 begin
4015 -- Skip initial labels (for one thing this occurs when we are in
4016 -- front end ZCX mode, but in any case it is irrelevant), and also
4017 -- initial Push_xxx_Error_Label nodes, which are also irrelevant.
4019 Stm := First (Statements (HSS));
4020 while Nkind (Stm) = N_Label
4021 or else Nkind (Stm) in N_Push_xxx_Label
4022 loop
4023 Next (Stm);
4024 end loop;
4026 -- Do the test on the original statement before expansion
4028 declare
4029 Ostm : constant Node_Id := Original_Node (Stm);
4031 begin
4032 -- If explicit raise statement, turn on flag
4034 if Nkind (Ostm) = N_Raise_Statement then
4035 Set_Trivial_Subprogram (Stm);
4037 -- If null statement, and no following statements, turn on flag
4039 elsif Nkind (Stm) = N_Null_Statement
4040 and then Comes_From_Source (Stm)
4041 and then No (Next (Stm))
4042 then
4043 Set_Trivial_Subprogram (Stm);
4045 -- Check for explicit call cases which likely raise an exception
4047 elsif Nkind (Ostm) = N_Procedure_Call_Statement then
4048 if Is_Entity_Name (Name (Ostm)) then
4049 declare
4050 Ent : constant Entity_Id := Entity (Name (Ostm));
4052 begin
4053 -- If the procedure is marked No_Return, then likely it
4054 -- raises an exception, but in any case it is not coming
4055 -- back here, so turn on the flag.
4057 if Present (Ent)
4058 and then Ekind (Ent) = E_Procedure
4059 and then No_Return (Ent)
4060 then
4061 Set_Trivial_Subprogram (Stm);
4062 end if;
4063 end;
4064 end if;
4065 end if;
4066 end;
4067 end;
4069 -- Check for variables that are never modified
4071 declare
4072 E1, E2 : Entity_Id;
4074 begin
4075 -- If there is a separate spec, then transfer Never_Set_In_Source
4076 -- flags from out parameters to the corresponding entities in the
4077 -- body. The reason we do that is we want to post error flags on
4078 -- the body entities, not the spec entities.
4080 if Present (Spec_Id) then
4081 E1 := First_Entity (Spec_Id);
4082 while Present (E1) loop
4083 if Ekind (E1) = E_Out_Parameter then
4084 E2 := First_Entity (Body_Id);
4085 while Present (E2) loop
4086 exit when Chars (E1) = Chars (E2);
4087 Next_Entity (E2);
4088 end loop;
4090 if Present (E2) then
4091 Set_Never_Set_In_Source (E2, Never_Set_In_Source (E1));
4092 end if;
4093 end if;
4095 Next_Entity (E1);
4096 end loop;
4097 end if;
4099 -- Check references in body
4101 Check_References (Body_Id);
4102 end;
4104 -- Check for nested subprogram, and mark outer level subprogram if so
4106 declare
4107 Ent : Entity_Id;
4109 begin
4110 if Present (Spec_Id) then
4111 Ent := Spec_Id;
4112 else
4113 Ent := Body_Id;
4114 end if;
4116 loop
4117 Ent := Enclosing_Subprogram (Ent);
4118 exit when No (Ent) or else Is_Subprogram (Ent);
4119 end loop;
4121 if Present (Ent) then
4122 Set_Has_Nested_Subprogram (Ent);
4123 end if;
4124 end;
4126 -- When generating C code, transform a function that returns a
4127 -- constrained array type into a procedure with an out parameter
4128 -- that carries the return value.
4130 if Present (Cloned_Body_For_C) then
4131 Rewrite (N,
4132 Build_Procedure_Body_Form (Spec_Id, Cloned_Body_For_C));
4133 Analyze (N);
4134 end if;
4136 Ghost_Mode := Save_Ghost_Mode;
4137 end Analyze_Subprogram_Body_Helper;
4139 ------------------------------------
4140 -- Analyze_Subprogram_Declaration --
4141 ------------------------------------
4143 procedure Analyze_Subprogram_Declaration (N : Node_Id) is
4144 Scop : constant Entity_Id := Current_Scope;
4145 Designator : Entity_Id;
4147 Is_Completion : Boolean;
4148 -- Indicates whether a null procedure declaration is a completion
4150 begin
4151 -- Null procedures are not allowed in SPARK
4153 if Nkind (Specification (N)) = N_Procedure_Specification
4154 and then Null_Present (Specification (N))
4155 then
4156 Check_SPARK_05_Restriction ("null procedure is not allowed", N);
4158 -- Null procedures are allowed in protected types, following the
4159 -- recent AI12-0147.
4161 if Is_Protected_Type (Current_Scope)
4162 and then Ada_Version < Ada_2012
4163 then
4164 Error_Msg_N ("protected operation cannot be a null procedure", N);
4165 end if;
4167 Analyze_Null_Procedure (N, Is_Completion);
4169 -- The null procedure acts as a body, nothing further is needed
4171 if Is_Completion then
4172 return;
4173 end if;
4174 end if;
4176 Designator := Analyze_Subprogram_Specification (Specification (N));
4178 -- A reference may already have been generated for the unit name, in
4179 -- which case the following call is redundant. However it is needed for
4180 -- declarations that are the rewriting of an expression function.
4182 Generate_Definition (Designator);
4184 -- Set the SPARK mode from the current context (may be overwritten later
4185 -- with explicit pragma). This is not done for entry barrier functions
4186 -- because they are generated outside the protected type and should not
4187 -- carry the mode of the enclosing context.
4189 if Nkind (N) = N_Subprogram_Declaration
4190 and then Is_Entry_Barrier_Function (N)
4191 then
4192 null;
4193 else
4194 Set_SPARK_Pragma (Designator, SPARK_Mode_Pragma);
4195 Set_SPARK_Pragma_Inherited (Designator);
4196 end if;
4198 -- A subprogram declared within a Ghost region is automatically Ghost
4199 -- (SPARK RM 6.9(2)).
4201 if Ghost_Mode > None then
4202 Set_Is_Ghost_Entity (Designator);
4203 end if;
4205 if Debug_Flag_C then
4206 Write_Str ("==> subprogram spec ");
4207 Write_Name (Chars (Designator));
4208 Write_Str (" from ");
4209 Write_Location (Sloc (N));
4210 Write_Eol;
4211 Indent;
4212 end if;
4214 Validate_RCI_Subprogram_Declaration (N);
4215 New_Overloaded_Entity (Designator);
4216 Check_Delayed_Subprogram (Designator);
4218 -- If the type of the first formal of the current subprogram is a non-
4219 -- generic tagged private type, mark the subprogram as being a private
4220 -- primitive. Ditto if this is a function with controlling result, and
4221 -- the return type is currently private. In both cases, the type of the
4222 -- controlling argument or result must be in the current scope for the
4223 -- operation to be primitive.
4225 if Has_Controlling_Result (Designator)
4226 and then Is_Private_Type (Etype (Designator))
4227 and then Scope (Etype (Designator)) = Current_Scope
4228 and then not Is_Generic_Actual_Type (Etype (Designator))
4229 then
4230 Set_Is_Private_Primitive (Designator);
4232 elsif Present (First_Formal (Designator)) then
4233 declare
4234 Formal_Typ : constant Entity_Id :=
4235 Etype (First_Formal (Designator));
4236 begin
4237 Set_Is_Private_Primitive (Designator,
4238 Is_Tagged_Type (Formal_Typ)
4239 and then Scope (Formal_Typ) = Current_Scope
4240 and then Is_Private_Type (Formal_Typ)
4241 and then not Is_Generic_Actual_Type (Formal_Typ));
4242 end;
4243 end if;
4245 -- Ada 2005 (AI-251): Abstract interface primitives must be abstract
4246 -- or null.
4248 if Ada_Version >= Ada_2005
4249 and then Comes_From_Source (N)
4250 and then Is_Dispatching_Operation (Designator)
4251 then
4252 declare
4253 E : Entity_Id;
4254 Etyp : Entity_Id;
4256 begin
4257 if Has_Controlling_Result (Designator) then
4258 Etyp := Etype (Designator);
4260 else
4261 E := First_Entity (Designator);
4262 while Present (E)
4263 and then Is_Formal (E)
4264 and then not Is_Controlling_Formal (E)
4265 loop
4266 Next_Entity (E);
4267 end loop;
4269 Etyp := Etype (E);
4270 end if;
4272 if Is_Access_Type (Etyp) then
4273 Etyp := Directly_Designated_Type (Etyp);
4274 end if;
4276 if Is_Interface (Etyp)
4277 and then not Is_Abstract_Subprogram (Designator)
4278 and then not (Ekind (Designator) = E_Procedure
4279 and then Null_Present (Specification (N)))
4280 then
4281 Error_Msg_Name_1 := Chars (Defining_Entity (N));
4283 -- Specialize error message based on procedures vs. functions,
4284 -- since functions can't be null subprograms.
4286 if Ekind (Designator) = E_Procedure then
4287 Error_Msg_N
4288 ("interface procedure % must be abstract or null", N);
4289 else
4290 Error_Msg_N
4291 ("interface function % must be abstract", N);
4292 end if;
4293 end if;
4294 end;
4295 end if;
4297 -- What is the following code for, it used to be
4299 -- ??? Set_Suppress_Elaboration_Checks
4300 -- ??? (Designator, Elaboration_Checks_Suppressed (Designator));
4302 -- The following seems equivalent, but a bit dubious
4304 if Elaboration_Checks_Suppressed (Designator) then
4305 Set_Kill_Elaboration_Checks (Designator);
4306 end if;
4308 if Scop /= Standard_Standard and then not Is_Child_Unit (Designator) then
4309 Set_Categorization_From_Scope (Designator, Scop);
4311 else
4312 -- For a compilation unit, check for library-unit pragmas
4314 Push_Scope (Designator);
4315 Set_Categorization_From_Pragmas (N);
4316 Validate_Categorization_Dependency (N, Designator);
4317 Pop_Scope;
4318 end if;
4320 -- For a compilation unit, set body required. This flag will only be
4321 -- reset if a valid Import or Interface pragma is processed later on.
4323 if Nkind (Parent (N)) = N_Compilation_Unit then
4324 Set_Body_Required (Parent (N), True);
4326 if Ada_Version >= Ada_2005
4327 and then Nkind (Specification (N)) = N_Procedure_Specification
4328 and then Null_Present (Specification (N))
4329 then
4330 Error_Msg_N
4331 ("null procedure cannot be declared at library level", N);
4332 end if;
4333 end if;
4335 Generate_Reference_To_Formals (Designator);
4336 Check_Eliminated (Designator);
4338 if Debug_Flag_C then
4339 Outdent;
4340 Write_Str ("<== subprogram spec ");
4341 Write_Name (Chars (Designator));
4342 Write_Str (" from ");
4343 Write_Location (Sloc (N));
4344 Write_Eol;
4345 end if;
4347 if Is_Protected_Type (Current_Scope) then
4349 -- Indicate that this is a protected operation, because it may be
4350 -- used in subsequent declarations within the protected type.
4352 Set_Convention (Designator, Convention_Protected);
4353 end if;
4355 List_Inherited_Pre_Post_Aspects (Designator);
4357 if Has_Aspects (N) then
4358 Analyze_Aspect_Specifications (N, Designator);
4359 end if;
4360 end Analyze_Subprogram_Declaration;
4362 --------------------------------------
4363 -- Analyze_Subprogram_Specification --
4364 --------------------------------------
4366 -- Reminder: N here really is a subprogram specification (not a subprogram
4367 -- declaration). This procedure is called to analyze the specification in
4368 -- both subprogram bodies and subprogram declarations (specs).
4370 function Analyze_Subprogram_Specification (N : Node_Id) return Entity_Id is
4371 Designator : constant Entity_Id := Defining_Entity (N);
4372 Formals : constant List_Id := Parameter_Specifications (N);
4374 -- Start of processing for Analyze_Subprogram_Specification
4376 begin
4377 -- User-defined operator is not allowed in SPARK, except as a renaming
4379 if Nkind (Defining_Unit_Name (N)) = N_Defining_Operator_Symbol
4380 and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
4381 then
4382 Check_SPARK_05_Restriction
4383 ("user-defined operator is not allowed", N);
4384 end if;
4386 -- Proceed with analysis. Do not emit a cross-reference entry if the
4387 -- specification comes from an expression function, because it may be
4388 -- the completion of a previous declaration. It is not, the cross-
4389 -- reference entry will be emitted for the new subprogram declaration.
4391 if Nkind (Parent (N)) /= N_Expression_Function then
4392 Generate_Definition (Designator);
4393 end if;
4395 if Nkind (N) = N_Function_Specification then
4396 Set_Ekind (Designator, E_Function);
4397 Set_Mechanism (Designator, Default_Mechanism);
4398 else
4399 Set_Ekind (Designator, E_Procedure);
4400 Set_Etype (Designator, Standard_Void_Type);
4401 end if;
4403 -- Flag Is_Inlined_Always is True by default, and reversed to False for
4404 -- those subprograms which could be inlined in GNATprove mode (because
4405 -- Body_To_Inline is non-Empty) but should not be inlined.
4407 if GNATprove_Mode then
4408 Set_Is_Inlined_Always (Designator);
4409 end if;
4411 -- Introduce new scope for analysis of the formals and the return type
4413 Set_Scope (Designator, Current_Scope);
4415 if Present (Formals) then
4416 Push_Scope (Designator);
4417 Process_Formals (Formals, N);
4419 -- Check dimensions in N for formals with default expression
4421 Analyze_Dimension_Formals (N, Formals);
4423 -- Ada 2005 (AI-345): If this is an overriding operation of an
4424 -- inherited interface operation, and the controlling type is
4425 -- a synchronized type, replace the type with its corresponding
4426 -- record, to match the proper signature of an overriding operation.
4427 -- Same processing for an access parameter whose designated type is
4428 -- derived from a synchronized interface.
4430 if Ada_Version >= Ada_2005 then
4431 declare
4432 Formal : Entity_Id;
4433 Formal_Typ : Entity_Id;
4434 Rec_Typ : Entity_Id;
4435 Desig_Typ : Entity_Id;
4437 begin
4438 Formal := First_Formal (Designator);
4439 while Present (Formal) loop
4440 Formal_Typ := Etype (Formal);
4442 if Is_Concurrent_Type (Formal_Typ)
4443 and then Present (Corresponding_Record_Type (Formal_Typ))
4444 then
4445 Rec_Typ := Corresponding_Record_Type (Formal_Typ);
4447 if Present (Interfaces (Rec_Typ)) then
4448 Set_Etype (Formal, Rec_Typ);
4449 end if;
4451 elsif Ekind (Formal_Typ) = E_Anonymous_Access_Type then
4452 Desig_Typ := Designated_Type (Formal_Typ);
4454 if Is_Concurrent_Type (Desig_Typ)
4455 and then Present (Corresponding_Record_Type (Desig_Typ))
4456 then
4457 Rec_Typ := Corresponding_Record_Type (Desig_Typ);
4459 if Present (Interfaces (Rec_Typ)) then
4460 Set_Directly_Designated_Type (Formal_Typ, Rec_Typ);
4461 end if;
4462 end if;
4463 end if;
4465 Next_Formal (Formal);
4466 end loop;
4467 end;
4468 end if;
4470 End_Scope;
4472 -- The subprogram scope is pushed and popped around the processing of
4473 -- the return type for consistency with call above to Process_Formals
4474 -- (which itself can call Analyze_Return_Type), and to ensure that any
4475 -- itype created for the return type will be associated with the proper
4476 -- scope.
4478 elsif Nkind (N) = N_Function_Specification then
4479 Push_Scope (Designator);
4480 Analyze_Return_Type (N);
4481 End_Scope;
4482 end if;
4484 -- Function case
4486 if Nkind (N) = N_Function_Specification then
4488 -- Deal with operator symbol case
4490 if Nkind (Designator) = N_Defining_Operator_Symbol then
4491 Valid_Operator_Definition (Designator);
4492 end if;
4494 May_Need_Actuals (Designator);
4496 -- Ada 2005 (AI-251): If the return type is abstract, verify that
4497 -- the subprogram is abstract also. This does not apply to renaming
4498 -- declarations, where abstractness is inherited, and to subprogram
4499 -- bodies generated for stream operations, which become renamings as
4500 -- bodies.
4502 -- In case of primitives associated with abstract interface types
4503 -- the check is applied later (see Analyze_Subprogram_Declaration).
4505 if not Nkind_In (Original_Node (Parent (N)),
4506 N_Abstract_Subprogram_Declaration,
4507 N_Formal_Abstract_Subprogram_Declaration,
4508 N_Subprogram_Renaming_Declaration)
4509 then
4510 if Is_Abstract_Type (Etype (Designator))
4511 and then not Is_Interface (Etype (Designator))
4512 then
4513 Error_Msg_N
4514 ("function that returns abstract type must be abstract", N);
4516 -- Ada 2012 (AI-0073): Extend this test to subprograms with an
4517 -- access result whose designated type is abstract.
4519 elsif Ada_Version >= Ada_2012
4520 and then Nkind (Result_Definition (N)) = N_Access_Definition
4521 and then
4522 not Is_Class_Wide_Type (Designated_Type (Etype (Designator)))
4523 and then Is_Abstract_Type (Designated_Type (Etype (Designator)))
4524 then
4525 Error_Msg_N
4526 ("function whose access result designates abstract type "
4527 & "must be abstract", N);
4528 end if;
4529 end if;
4530 end if;
4532 return Designator;
4533 end Analyze_Subprogram_Specification;
4535 -----------------------
4536 -- Check_Conformance --
4537 -----------------------
4539 procedure Check_Conformance
4540 (New_Id : Entity_Id;
4541 Old_Id : Entity_Id;
4542 Ctype : Conformance_Type;
4543 Errmsg : Boolean;
4544 Conforms : out Boolean;
4545 Err_Loc : Node_Id := Empty;
4546 Get_Inst : Boolean := False;
4547 Skip_Controlling_Formals : Boolean := False)
4549 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id);
4550 -- Sets Conforms to False. If Errmsg is False, then that's all it does.
4551 -- If Errmsg is True, then processing continues to post an error message
4552 -- for conformance error on given node. Two messages are output. The
4553 -- first message points to the previous declaration with a general "no
4554 -- conformance" message. The second is the detailed reason, supplied as
4555 -- Msg. The parameter N provide information for a possible & insertion
4556 -- in the message, and also provides the location for posting the
4557 -- message in the absence of a specified Err_Loc location.
4559 -----------------------
4560 -- Conformance_Error --
4561 -----------------------
4563 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id) is
4564 Enode : Node_Id;
4566 begin
4567 Conforms := False;
4569 if Errmsg then
4570 if No (Err_Loc) then
4571 Enode := N;
4572 else
4573 Enode := Err_Loc;
4574 end if;
4576 Error_Msg_Sloc := Sloc (Old_Id);
4578 case Ctype is
4579 when Type_Conformant =>
4580 Error_Msg_N -- CODEFIX
4581 ("not type conformant with declaration#!", Enode);
4583 when Mode_Conformant =>
4584 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
4585 Error_Msg_N
4586 ("not mode conformant with operation inherited#!",
4587 Enode);
4588 else
4589 Error_Msg_N
4590 ("not mode conformant with declaration#!", Enode);
4591 end if;
4593 when Subtype_Conformant =>
4594 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
4595 Error_Msg_N
4596 ("not subtype conformant with operation inherited#!",
4597 Enode);
4598 else
4599 Error_Msg_N
4600 ("not subtype conformant with declaration#!", Enode);
4601 end if;
4603 when Fully_Conformant =>
4604 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
4605 Error_Msg_N -- CODEFIX
4606 ("not fully conformant with operation inherited#!",
4607 Enode);
4608 else
4609 Error_Msg_N -- CODEFIX
4610 ("not fully conformant with declaration#!", Enode);
4611 end if;
4612 end case;
4614 Error_Msg_NE (Msg, Enode, N);
4615 end if;
4616 end Conformance_Error;
4618 -- Local Variables
4620 Old_Type : constant Entity_Id := Etype (Old_Id);
4621 New_Type : constant Entity_Id := Etype (New_Id);
4622 Old_Formal : Entity_Id;
4623 New_Formal : Entity_Id;
4624 Access_Types_Match : Boolean;
4625 Old_Formal_Base : Entity_Id;
4626 New_Formal_Base : Entity_Id;
4628 -- Start of processing for Check_Conformance
4630 begin
4631 Conforms := True;
4633 -- We need a special case for operators, since they don't appear
4634 -- explicitly.
4636 if Ctype = Type_Conformant then
4637 if Ekind (New_Id) = E_Operator
4638 and then Operator_Matches_Spec (New_Id, Old_Id)
4639 then
4640 return;
4641 end if;
4642 end if;
4644 -- If both are functions/operators, check return types conform
4646 if Old_Type /= Standard_Void_Type
4647 and then
4648 New_Type /= Standard_Void_Type
4649 then
4650 -- If we are checking interface conformance we omit controlling
4651 -- arguments and result, because we are only checking the conformance
4652 -- of the remaining parameters.
4654 if Has_Controlling_Result (Old_Id)
4655 and then Has_Controlling_Result (New_Id)
4656 and then Skip_Controlling_Formals
4657 then
4658 null;
4660 elsif not Conforming_Types (Old_Type, New_Type, Ctype, Get_Inst) then
4661 if Ctype >= Subtype_Conformant
4662 and then not Predicates_Match (Old_Type, New_Type)
4663 then
4664 Conformance_Error
4665 ("\predicate of return type does not match!", New_Id);
4666 else
4667 Conformance_Error
4668 ("\return type does not match!", New_Id);
4669 end if;
4671 return;
4672 end if;
4674 -- Ada 2005 (AI-231): In case of anonymous access types check the
4675 -- null-exclusion and access-to-constant attributes match.
4677 if Ada_Version >= Ada_2005
4678 and then Ekind (Etype (Old_Type)) = E_Anonymous_Access_Type
4679 and then
4680 (Can_Never_Be_Null (Old_Type) /= Can_Never_Be_Null (New_Type)
4681 or else Is_Access_Constant (Etype (Old_Type)) /=
4682 Is_Access_Constant (Etype (New_Type)))
4683 then
4684 Conformance_Error ("\return type does not match!", New_Id);
4685 return;
4686 end if;
4688 -- If either is a function/operator and the other isn't, error
4690 elsif Old_Type /= Standard_Void_Type
4691 or else New_Type /= Standard_Void_Type
4692 then
4693 Conformance_Error ("\functions can only match functions!", New_Id);
4694 return;
4695 end if;
4697 -- In subtype conformant case, conventions must match (RM 6.3.1(16)).
4698 -- If this is a renaming as body, refine error message to indicate that
4699 -- the conflict is with the original declaration. If the entity is not
4700 -- frozen, the conventions don't have to match, the one of the renamed
4701 -- entity is inherited.
4703 if Ctype >= Subtype_Conformant then
4704 if Convention (Old_Id) /= Convention (New_Id) then
4705 if not Is_Frozen (New_Id) then
4706 null;
4708 elsif Present (Err_Loc)
4709 and then Nkind (Err_Loc) = N_Subprogram_Renaming_Declaration
4710 and then Present (Corresponding_Spec (Err_Loc))
4711 then
4712 Error_Msg_Name_1 := Chars (New_Id);
4713 Error_Msg_Name_2 :=
4714 Name_Ada + Convention_Id'Pos (Convention (New_Id));
4715 Conformance_Error ("\prior declaration for% has convention %!");
4717 else
4718 Conformance_Error ("\calling conventions do not match!");
4719 end if;
4721 return;
4723 elsif Is_Formal_Subprogram (Old_Id)
4724 or else Is_Formal_Subprogram (New_Id)
4725 then
4726 Conformance_Error ("\formal subprograms not allowed!");
4727 return;
4728 end if;
4729 end if;
4731 -- Deal with parameters
4733 -- Note: we use the entity information, rather than going directly
4734 -- to the specification in the tree. This is not only simpler, but
4735 -- absolutely necessary for some cases of conformance tests between
4736 -- operators, where the declaration tree simply does not exist.
4738 Old_Formal := First_Formal (Old_Id);
4739 New_Formal := First_Formal (New_Id);
4740 while Present (Old_Formal) and then Present (New_Formal) loop
4741 if Is_Controlling_Formal (Old_Formal)
4742 and then Is_Controlling_Formal (New_Formal)
4743 and then Skip_Controlling_Formals
4744 then
4745 -- The controlling formals will have different types when
4746 -- comparing an interface operation with its match, but both
4747 -- or neither must be access parameters.
4749 if Is_Access_Type (Etype (Old_Formal))
4751 Is_Access_Type (Etype (New_Formal))
4752 then
4753 goto Skip_Controlling_Formal;
4754 else
4755 Conformance_Error
4756 ("\access parameter does not match!", New_Formal);
4757 end if;
4758 end if;
4760 -- Ada 2012: Mode conformance also requires that formal parameters
4761 -- be both aliased, or neither.
4763 if Ctype >= Mode_Conformant and then Ada_Version >= Ada_2012 then
4764 if Is_Aliased (Old_Formal) /= Is_Aliased (New_Formal) then
4765 Conformance_Error
4766 ("\aliased parameter mismatch!", New_Formal);
4767 end if;
4768 end if;
4770 if Ctype = Fully_Conformant then
4772 -- Names must match. Error message is more accurate if we do
4773 -- this before checking that the types of the formals match.
4775 if Chars (Old_Formal) /= Chars (New_Formal) then
4776 Conformance_Error ("\name& does not match!", New_Formal);
4778 -- Set error posted flag on new formal as well to stop
4779 -- junk cascaded messages in some cases.
4781 Set_Error_Posted (New_Formal);
4782 return;
4783 end if;
4785 -- Null exclusion must match
4787 if Null_Exclusion_Present (Parent (Old_Formal))
4789 Null_Exclusion_Present (Parent (New_Formal))
4790 then
4791 -- Only give error if both come from source. This should be
4792 -- investigated some time, since it should not be needed ???
4794 if Comes_From_Source (Old_Formal)
4795 and then
4796 Comes_From_Source (New_Formal)
4797 then
4798 Conformance_Error
4799 ("\null exclusion for& does not match", New_Formal);
4801 -- Mark error posted on the new formal to avoid duplicated
4802 -- complaint about types not matching.
4804 Set_Error_Posted (New_Formal);
4805 end if;
4806 end if;
4807 end if;
4809 -- Ada 2005 (AI-423): Possible access [sub]type and itype match. This
4810 -- case occurs whenever a subprogram is being renamed and one of its
4811 -- parameters imposes a null exclusion. For example:
4813 -- type T is null record;
4814 -- type Acc_T is access T;
4815 -- subtype Acc_T_Sub is Acc_T;
4817 -- procedure P (Obj : not null Acc_T_Sub); -- itype
4818 -- procedure Ren_P (Obj : Acc_T_Sub) -- subtype
4819 -- renames P;
4821 Old_Formal_Base := Etype (Old_Formal);
4822 New_Formal_Base := Etype (New_Formal);
4824 if Get_Inst then
4825 Old_Formal_Base := Get_Instance_Of (Old_Formal_Base);
4826 New_Formal_Base := Get_Instance_Of (New_Formal_Base);
4827 end if;
4829 Access_Types_Match := Ada_Version >= Ada_2005
4831 -- Ensure that this rule is only applied when New_Id is a
4832 -- renaming of Old_Id.
4834 and then Nkind (Parent (Parent (New_Id))) =
4835 N_Subprogram_Renaming_Declaration
4836 and then Nkind (Name (Parent (Parent (New_Id)))) in N_Has_Entity
4837 and then Present (Entity (Name (Parent (Parent (New_Id)))))
4838 and then Entity (Name (Parent (Parent (New_Id)))) = Old_Id
4840 -- Now handle the allowed access-type case
4842 and then Is_Access_Type (Old_Formal_Base)
4843 and then Is_Access_Type (New_Formal_Base)
4845 -- The type kinds must match. The only exception occurs with
4846 -- multiple generics of the form:
4848 -- generic generic
4849 -- type F is private; type A is private;
4850 -- type F_Ptr is access F; type A_Ptr is access A;
4851 -- with proc F_P (X : F_Ptr); with proc A_P (X : A_Ptr);
4852 -- package F_Pack is ... package A_Pack is
4853 -- package F_Inst is
4854 -- new F_Pack (A, A_Ptr, A_P);
4856 -- When checking for conformance between the parameters of A_P
4857 -- and F_P, the type kinds of F_Ptr and A_Ptr will not match
4858 -- because the compiler has transformed A_Ptr into a subtype of
4859 -- F_Ptr. We catch this case in the code below.
4861 and then (Ekind (Old_Formal_Base) = Ekind (New_Formal_Base)
4862 or else
4863 (Is_Generic_Type (Old_Formal_Base)
4864 and then Is_Generic_Type (New_Formal_Base)
4865 and then Is_Internal (New_Formal_Base)
4866 and then Etype (Etype (New_Formal_Base)) =
4867 Old_Formal_Base))
4868 and then Directly_Designated_Type (Old_Formal_Base) =
4869 Directly_Designated_Type (New_Formal_Base)
4870 and then ((Is_Itype (Old_Formal_Base)
4871 and then Can_Never_Be_Null (Old_Formal_Base))
4872 or else
4873 (Is_Itype (New_Formal_Base)
4874 and then Can_Never_Be_Null (New_Formal_Base)));
4876 -- Types must always match. In the visible part of an instance,
4877 -- usual overloading rules for dispatching operations apply, and
4878 -- we check base types (not the actual subtypes).
4880 if In_Instance_Visible_Part
4881 and then Is_Dispatching_Operation (New_Id)
4882 then
4883 if not Conforming_Types
4884 (T1 => Base_Type (Etype (Old_Formal)),
4885 T2 => Base_Type (Etype (New_Formal)),
4886 Ctype => Ctype,
4887 Get_Inst => Get_Inst)
4888 and then not Access_Types_Match
4889 then
4890 Conformance_Error ("\type of & does not match!", New_Formal);
4891 return;
4892 end if;
4894 elsif not Conforming_Types
4895 (T1 => Old_Formal_Base,
4896 T2 => New_Formal_Base,
4897 Ctype => Ctype,
4898 Get_Inst => Get_Inst)
4899 and then not Access_Types_Match
4900 then
4901 -- Don't give error message if old type is Any_Type. This test
4902 -- avoids some cascaded errors, e.g. in case of a bad spec.
4904 if Errmsg and then Old_Formal_Base = Any_Type then
4905 Conforms := False;
4906 else
4907 if Ctype >= Subtype_Conformant
4908 and then
4909 not Predicates_Match (Old_Formal_Base, New_Formal_Base)
4910 then
4911 Conformance_Error
4912 ("\predicate of & does not match!", New_Formal);
4913 else
4914 Conformance_Error
4915 ("\type of & does not match!", New_Formal);
4916 end if;
4917 end if;
4919 return;
4920 end if;
4922 -- For mode conformance, mode must match
4924 if Ctype >= Mode_Conformant then
4925 if Parameter_Mode (Old_Formal) /= Parameter_Mode (New_Formal) then
4926 if not Ekind_In (New_Id, E_Function, E_Procedure)
4927 or else not Is_Primitive_Wrapper (New_Id)
4928 then
4929 Conformance_Error ("\mode of & does not match!", New_Formal);
4931 else
4932 declare
4933 T : constant Entity_Id := Find_Dispatching_Type (New_Id);
4934 begin
4935 if Is_Protected_Type (Corresponding_Concurrent_Type (T))
4936 then
4937 Error_Msg_PT (New_Id, Ultimate_Alias (Old_Id));
4938 else
4939 Conformance_Error
4940 ("\mode of & does not match!", New_Formal);
4941 end if;
4942 end;
4943 end if;
4945 return;
4947 -- Part of mode conformance for access types is having the same
4948 -- constant modifier.
4950 elsif Access_Types_Match
4951 and then Is_Access_Constant (Old_Formal_Base) /=
4952 Is_Access_Constant (New_Formal_Base)
4953 then
4954 Conformance_Error
4955 ("\constant modifier does not match!", New_Formal);
4956 return;
4957 end if;
4958 end if;
4960 if Ctype >= Subtype_Conformant then
4962 -- Ada 2005 (AI-231): In case of anonymous access types check
4963 -- the null-exclusion and access-to-constant attributes must
4964 -- match. For null exclusion, we test the types rather than the
4965 -- formals themselves, since the attribute is only set reliably
4966 -- on the formals in the Ada 95 case, and we exclude the case
4967 -- where Old_Formal is marked as controlling, to avoid errors
4968 -- when matching completing bodies with dispatching declarations
4969 -- (access formals in the bodies aren't marked Can_Never_Be_Null).
4971 if Ada_Version >= Ada_2005
4972 and then Ekind (Etype (Old_Formal)) = E_Anonymous_Access_Type
4973 and then Ekind (Etype (New_Formal)) = E_Anonymous_Access_Type
4974 and then
4975 ((Can_Never_Be_Null (Etype (Old_Formal)) /=
4976 Can_Never_Be_Null (Etype (New_Formal))
4977 and then
4978 not Is_Controlling_Formal (Old_Formal))
4979 or else
4980 Is_Access_Constant (Etype (Old_Formal)) /=
4981 Is_Access_Constant (Etype (New_Formal)))
4983 -- Do not complain if error already posted on New_Formal. This
4984 -- avoids some redundant error messages.
4986 and then not Error_Posted (New_Formal)
4987 then
4988 -- It is allowed to omit the null-exclusion in case of stream
4989 -- attribute subprograms. We recognize stream subprograms
4990 -- through their TSS-generated suffix.
4992 declare
4993 TSS_Name : constant TSS_Name_Type := Get_TSS_Name (New_Id);
4995 begin
4996 if TSS_Name /= TSS_Stream_Read
4997 and then TSS_Name /= TSS_Stream_Write
4998 and then TSS_Name /= TSS_Stream_Input
4999 and then TSS_Name /= TSS_Stream_Output
5000 then
5001 -- Here we have a definite conformance error. It is worth
5002 -- special casing the error message for the case of a
5003 -- controlling formal (which excludes null).
5005 if Is_Controlling_Formal (New_Formal) then
5006 Error_Msg_Node_2 := Scope (New_Formal);
5007 Conformance_Error
5008 ("\controlling formal & of & excludes null, "
5009 & "declaration must exclude null as well",
5010 New_Formal);
5012 -- Normal case (couldn't we give more detail here???)
5014 else
5015 Conformance_Error
5016 ("\type of & does not match!", New_Formal);
5017 end if;
5019 return;
5020 end if;
5021 end;
5022 end if;
5023 end if;
5025 -- Full conformance checks
5027 if Ctype = Fully_Conformant then
5029 -- We have checked already that names match
5031 if Parameter_Mode (Old_Formal) = E_In_Parameter then
5033 -- Check default expressions for in parameters
5035 declare
5036 NewD : constant Boolean :=
5037 Present (Default_Value (New_Formal));
5038 OldD : constant Boolean :=
5039 Present (Default_Value (Old_Formal));
5040 begin
5041 if NewD or OldD then
5043 -- The old default value has been analyzed because the
5044 -- current full declaration will have frozen everything
5045 -- before. The new default value has not been analyzed,
5046 -- so analyze it now before we check for conformance.
5048 if NewD then
5049 Push_Scope (New_Id);
5050 Preanalyze_Spec_Expression
5051 (Default_Value (New_Formal), Etype (New_Formal));
5052 End_Scope;
5053 end if;
5055 if not (NewD and OldD)
5056 or else not Fully_Conformant_Expressions
5057 (Default_Value (Old_Formal),
5058 Default_Value (New_Formal))
5059 then
5060 Conformance_Error
5061 ("\default expression for & does not match!",
5062 New_Formal);
5063 return;
5064 end if;
5065 end if;
5066 end;
5067 end if;
5068 end if;
5070 -- A couple of special checks for Ada 83 mode. These checks are
5071 -- skipped if either entity is an operator in package Standard,
5072 -- or if either old or new instance is not from the source program.
5074 if Ada_Version = Ada_83
5075 and then Sloc (Old_Id) > Standard_Location
5076 and then Sloc (New_Id) > Standard_Location
5077 and then Comes_From_Source (Old_Id)
5078 and then Comes_From_Source (New_Id)
5079 then
5080 declare
5081 Old_Param : constant Node_Id := Declaration_Node (Old_Formal);
5082 New_Param : constant Node_Id := Declaration_Node (New_Formal);
5084 begin
5085 -- Explicit IN must be present or absent in both cases. This
5086 -- test is required only in the full conformance case.
5088 if In_Present (Old_Param) /= In_Present (New_Param)
5089 and then Ctype = Fully_Conformant
5090 then
5091 Conformance_Error
5092 ("\(Ada 83) IN must appear in both declarations",
5093 New_Formal);
5094 return;
5095 end if;
5097 -- Grouping (use of comma in param lists) must be the same
5098 -- This is where we catch a misconformance like:
5100 -- A, B : Integer
5101 -- A : Integer; B : Integer
5103 -- which are represented identically in the tree except
5104 -- for the setting of the flags More_Ids and Prev_Ids.
5106 if More_Ids (Old_Param) /= More_Ids (New_Param)
5107 or else Prev_Ids (Old_Param) /= Prev_Ids (New_Param)
5108 then
5109 Conformance_Error
5110 ("\grouping of & does not match!", New_Formal);
5111 return;
5112 end if;
5113 end;
5114 end if;
5116 -- This label is required when skipping controlling formals
5118 <<Skip_Controlling_Formal>>
5120 Next_Formal (Old_Formal);
5121 Next_Formal (New_Formal);
5122 end loop;
5124 if Present (Old_Formal) then
5125 Conformance_Error ("\too few parameters!");
5126 return;
5128 elsif Present (New_Formal) then
5129 Conformance_Error ("\too many parameters!", New_Formal);
5130 return;
5131 end if;
5132 end Check_Conformance;
5134 -----------------------
5135 -- Check_Conventions --
5136 -----------------------
5138 procedure Check_Conventions (Typ : Entity_Id) is
5139 Ifaces_List : Elist_Id;
5141 procedure Check_Convention (Op : Entity_Id);
5142 -- Verify that the convention of inherited dispatching operation Op is
5143 -- consistent among all subprograms it overrides. In order to minimize
5144 -- the search, Search_From is utilized to designate a specific point in
5145 -- the list rather than iterating over the whole list once more.
5147 ----------------------
5148 -- Check_Convention --
5149 ----------------------
5151 procedure Check_Convention (Op : Entity_Id) is
5152 Op_Conv : constant Convention_Id := Convention (Op);
5153 Iface_Conv : Convention_Id;
5154 Iface_Elmt : Elmt_Id;
5155 Iface_Prim_Elmt : Elmt_Id;
5156 Iface_Prim : Entity_Id;
5158 begin
5159 Iface_Elmt := First_Elmt (Ifaces_List);
5160 while Present (Iface_Elmt) loop
5161 Iface_Prim_Elmt :=
5162 First_Elmt (Primitive_Operations (Node (Iface_Elmt)));
5163 while Present (Iface_Prim_Elmt) loop
5164 Iface_Prim := Node (Iface_Prim_Elmt);
5165 Iface_Conv := Convention (Iface_Prim);
5167 if Is_Interface_Conformant (Typ, Iface_Prim, Op)
5168 and then Iface_Conv /= Op_Conv
5169 then
5170 Error_Msg_N
5171 ("inconsistent conventions in primitive operations", Typ);
5173 Error_Msg_Name_1 := Chars (Op);
5174 Error_Msg_Name_2 := Get_Convention_Name (Op_Conv);
5175 Error_Msg_Sloc := Sloc (Op);
5177 if Comes_From_Source (Op) or else No (Alias (Op)) then
5178 if not Present (Overridden_Operation (Op)) then
5179 Error_Msg_N ("\\primitive % defined #", Typ);
5180 else
5181 Error_Msg_N
5182 ("\\overriding operation % with "
5183 & "convention % defined #", Typ);
5184 end if;
5186 else pragma Assert (Present (Alias (Op)));
5187 Error_Msg_Sloc := Sloc (Alias (Op));
5188 Error_Msg_N ("\\inherited operation % with "
5189 & "convention % defined #", Typ);
5190 end if;
5192 Error_Msg_Name_1 := Chars (Op);
5193 Error_Msg_Name_2 := Get_Convention_Name (Iface_Conv);
5194 Error_Msg_Sloc := Sloc (Iface_Prim);
5195 Error_Msg_N ("\\overridden operation % with "
5196 & "convention % defined #", Typ);
5198 -- Avoid cascading errors
5200 return;
5201 end if;
5203 Next_Elmt (Iface_Prim_Elmt);
5204 end loop;
5206 Next_Elmt (Iface_Elmt);
5207 end loop;
5208 end Check_Convention;
5210 -- Local variables
5212 Prim_Op : Entity_Id;
5213 Prim_Op_Elmt : Elmt_Id;
5215 -- Start of processing for Check_Conventions
5217 begin
5218 if not Has_Interfaces (Typ) then
5219 return;
5220 end if;
5222 Collect_Interfaces (Typ, Ifaces_List);
5224 -- The algorithm checks every overriding dispatching operation against
5225 -- all the corresponding overridden dispatching operations, detecting
5226 -- differences in conventions.
5228 Prim_Op_Elmt := First_Elmt (Primitive_Operations (Typ));
5229 while Present (Prim_Op_Elmt) loop
5230 Prim_Op := Node (Prim_Op_Elmt);
5232 -- A small optimization: skip the predefined dispatching operations
5233 -- since they always have the same convention.
5235 if not Is_Predefined_Dispatching_Operation (Prim_Op) then
5236 Check_Convention (Prim_Op);
5237 end if;
5239 Next_Elmt (Prim_Op_Elmt);
5240 end loop;
5241 end Check_Conventions;
5243 ------------------------------
5244 -- Check_Delayed_Subprogram --
5245 ------------------------------
5247 procedure Check_Delayed_Subprogram (Designator : Entity_Id) is
5248 F : Entity_Id;
5250 procedure Possible_Freeze (T : Entity_Id);
5251 -- T is the type of either a formal parameter or of the return type.
5252 -- If T is not yet frozen and needs a delayed freeze, then the
5253 -- subprogram itself must be delayed. If T is the limited view of an
5254 -- incomplete type (or of a CW type thereof) the subprogram must be
5255 -- frozen as well, because T may depend on local types that have not
5256 -- been frozen yet.
5258 ---------------------
5259 -- Possible_Freeze --
5260 ---------------------
5262 procedure Possible_Freeze (T : Entity_Id) is
5263 begin
5264 if Has_Delayed_Freeze (T) and then not Is_Frozen (T) then
5265 Set_Has_Delayed_Freeze (Designator);
5267 elsif Is_Access_Type (T)
5268 and then Has_Delayed_Freeze (Designated_Type (T))
5269 and then not Is_Frozen (Designated_Type (T))
5270 then
5271 Set_Has_Delayed_Freeze (Designator);
5273 elsif (Ekind (T) = E_Incomplete_Type
5274 or else Ekind (T) = E_Class_Wide_Type)
5275 and then From_Limited_With (T)
5276 then
5277 Set_Has_Delayed_Freeze (Designator);
5279 -- AI05-0151: In Ada 2012, Incomplete types can appear in the profile
5280 -- of a subprogram or entry declaration.
5282 elsif Ekind (T) = E_Incomplete_Type
5283 and then Ada_Version >= Ada_2012
5284 then
5285 Set_Has_Delayed_Freeze (Designator);
5286 end if;
5288 end Possible_Freeze;
5290 -- Start of processing for Check_Delayed_Subprogram
5292 begin
5293 -- All subprograms, including abstract subprograms, may need a freeze
5294 -- node if some formal type or the return type needs one.
5296 Possible_Freeze (Etype (Designator));
5297 Possible_Freeze (Base_Type (Etype (Designator))); -- needed ???
5299 -- Need delayed freeze if any of the formal types themselves need
5300 -- a delayed freeze and are not yet frozen.
5302 F := First_Formal (Designator);
5303 while Present (F) loop
5304 Possible_Freeze (Etype (F));
5305 Possible_Freeze (Base_Type (Etype (F))); -- needed ???
5306 Next_Formal (F);
5307 end loop;
5309 -- Mark functions that return by reference. Note that it cannot be
5310 -- done for delayed_freeze subprograms because the underlying
5311 -- returned type may not be known yet (for private types)
5313 if not Has_Delayed_Freeze (Designator) and then Expander_Active then
5314 declare
5315 Typ : constant Entity_Id := Etype (Designator);
5316 Utyp : constant Entity_Id := Underlying_Type (Typ);
5317 begin
5318 if Is_Limited_View (Typ) then
5319 Set_Returns_By_Ref (Designator);
5320 elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
5321 Set_Returns_By_Ref (Designator);
5322 end if;
5323 end;
5324 end if;
5325 end Check_Delayed_Subprogram;
5327 ------------------------------------
5328 -- Check_Discriminant_Conformance --
5329 ------------------------------------
5331 procedure Check_Discriminant_Conformance
5332 (N : Node_Id;
5333 Prev : Entity_Id;
5334 Prev_Loc : Node_Id)
5336 Old_Discr : Entity_Id := First_Discriminant (Prev);
5337 New_Discr : Node_Id := First (Discriminant_Specifications (N));
5338 New_Discr_Id : Entity_Id;
5339 New_Discr_Type : Entity_Id;
5341 procedure Conformance_Error (Msg : String; N : Node_Id);
5342 -- Post error message for conformance error on given node. Two messages
5343 -- are output. The first points to the previous declaration with a
5344 -- general "no conformance" message. The second is the detailed reason,
5345 -- supplied as Msg. The parameter N provide information for a possible
5346 -- & insertion in the message.
5348 -----------------------
5349 -- Conformance_Error --
5350 -----------------------
5352 procedure Conformance_Error (Msg : String; N : Node_Id) is
5353 begin
5354 Error_Msg_Sloc := Sloc (Prev_Loc);
5355 Error_Msg_N -- CODEFIX
5356 ("not fully conformant with declaration#!", N);
5357 Error_Msg_NE (Msg, N, N);
5358 end Conformance_Error;
5360 -- Start of processing for Check_Discriminant_Conformance
5362 begin
5363 while Present (Old_Discr) and then Present (New_Discr) loop
5364 New_Discr_Id := Defining_Identifier (New_Discr);
5366 -- The subtype mark of the discriminant on the full type has not
5367 -- been analyzed so we do it here. For an access discriminant a new
5368 -- type is created.
5370 if Nkind (Discriminant_Type (New_Discr)) = N_Access_Definition then
5371 New_Discr_Type :=
5372 Access_Definition (N, Discriminant_Type (New_Discr));
5374 else
5375 Analyze (Discriminant_Type (New_Discr));
5376 New_Discr_Type := Etype (Discriminant_Type (New_Discr));
5378 -- Ada 2005: if the discriminant definition carries a null
5379 -- exclusion, create an itype to check properly for consistency
5380 -- with partial declaration.
5382 if Is_Access_Type (New_Discr_Type)
5383 and then Null_Exclusion_Present (New_Discr)
5384 then
5385 New_Discr_Type :=
5386 Create_Null_Excluding_Itype
5387 (T => New_Discr_Type,
5388 Related_Nod => New_Discr,
5389 Scope_Id => Current_Scope);
5390 end if;
5391 end if;
5393 if not Conforming_Types
5394 (Etype (Old_Discr), New_Discr_Type, Fully_Conformant)
5395 then
5396 Conformance_Error ("type of & does not match!", New_Discr_Id);
5397 return;
5398 else
5399 -- Treat the new discriminant as an occurrence of the old one,
5400 -- for navigation purposes, and fill in some semantic
5401 -- information, for completeness.
5403 Generate_Reference (Old_Discr, New_Discr_Id, 'r');
5404 Set_Etype (New_Discr_Id, Etype (Old_Discr));
5405 Set_Scope (New_Discr_Id, Scope (Old_Discr));
5406 end if;
5408 -- Names must match
5410 if Chars (Old_Discr) /= Chars (Defining_Identifier (New_Discr)) then
5411 Conformance_Error ("name & does not match!", New_Discr_Id);
5412 return;
5413 end if;
5415 -- Default expressions must match
5417 declare
5418 NewD : constant Boolean :=
5419 Present (Expression (New_Discr));
5420 OldD : constant Boolean :=
5421 Present (Expression (Parent (Old_Discr)));
5423 begin
5424 if NewD or OldD then
5426 -- The old default value has been analyzed and expanded,
5427 -- because the current full declaration will have frozen
5428 -- everything before. The new default values have not been
5429 -- expanded, so expand now to check conformance.
5431 if NewD then
5432 Preanalyze_Spec_Expression
5433 (Expression (New_Discr), New_Discr_Type);
5434 end if;
5436 if not (NewD and OldD)
5437 or else not Fully_Conformant_Expressions
5438 (Expression (Parent (Old_Discr)),
5439 Expression (New_Discr))
5441 then
5442 Conformance_Error
5443 ("default expression for & does not match!",
5444 New_Discr_Id);
5445 return;
5446 end if;
5447 end if;
5448 end;
5450 -- In Ada 83 case, grouping must match: (A,B : X) /= (A : X; B : X)
5452 if Ada_Version = Ada_83 then
5453 declare
5454 Old_Disc : constant Node_Id := Declaration_Node (Old_Discr);
5456 begin
5457 -- Grouping (use of comma in param lists) must be the same
5458 -- This is where we catch a misconformance like:
5460 -- A, B : Integer
5461 -- A : Integer; B : Integer
5463 -- which are represented identically in the tree except
5464 -- for the setting of the flags More_Ids and Prev_Ids.
5466 if More_Ids (Old_Disc) /= More_Ids (New_Discr)
5467 or else Prev_Ids (Old_Disc) /= Prev_Ids (New_Discr)
5468 then
5469 Conformance_Error
5470 ("grouping of & does not match!", New_Discr_Id);
5471 return;
5472 end if;
5473 end;
5474 end if;
5476 Next_Discriminant (Old_Discr);
5477 Next (New_Discr);
5478 end loop;
5480 if Present (Old_Discr) then
5481 Conformance_Error ("too few discriminants!", Defining_Identifier (N));
5482 return;
5484 elsif Present (New_Discr) then
5485 Conformance_Error
5486 ("too many discriminants!", Defining_Identifier (New_Discr));
5487 return;
5488 end if;
5489 end Check_Discriminant_Conformance;
5491 ----------------------------
5492 -- Check_Fully_Conformant --
5493 ----------------------------
5495 procedure Check_Fully_Conformant
5496 (New_Id : Entity_Id;
5497 Old_Id : Entity_Id;
5498 Err_Loc : Node_Id := Empty)
5500 Result : Boolean;
5501 pragma Warnings (Off, Result);
5502 begin
5503 Check_Conformance
5504 (New_Id, Old_Id, Fully_Conformant, True, Result, Err_Loc);
5505 end Check_Fully_Conformant;
5507 --------------------------
5508 -- Check_Limited_Return --
5509 --------------------------
5511 procedure Check_Limited_Return
5512 (N : Node_Id;
5513 Expr : Node_Id;
5514 R_Type : Entity_Id)
5516 begin
5517 -- Ada 2005 (AI-318-02): Return-by-reference types have been removed and
5518 -- replaced by anonymous access results. This is an incompatibility with
5519 -- Ada 95. Not clear whether this should be enforced yet or perhaps
5520 -- controllable with special switch. ???
5522 -- A limited interface that is not immutably limited is OK
5524 if Is_Limited_Interface (R_Type)
5525 and then
5526 not (Is_Task_Interface (R_Type)
5527 or else Is_Protected_Interface (R_Type)
5528 or else Is_Synchronized_Interface (R_Type))
5529 then
5530 null;
5532 elsif Is_Limited_Type (R_Type)
5533 and then not Is_Interface (R_Type)
5534 and then Comes_From_Source (N)
5535 and then not In_Instance_Body
5536 and then not OK_For_Limited_Init_In_05 (R_Type, Expr)
5537 then
5538 -- Error in Ada 2005
5540 if Ada_Version >= Ada_2005
5541 and then not Debug_Flag_Dot_L
5542 and then not GNAT_Mode
5543 then
5544 Error_Msg_N
5545 ("(Ada 2005) cannot copy object of a limited type "
5546 & "(RM-2005 6.5(5.5/2))", Expr);
5548 if Is_Limited_View (R_Type) then
5549 Error_Msg_N
5550 ("\return by reference not permitted in Ada 2005", Expr);
5551 end if;
5553 -- Warn in Ada 95 mode, to give folks a heads up about this
5554 -- incompatibility.
5556 -- In GNAT mode, this is just a warning, to allow it to be evilly
5557 -- turned off. Otherwise it is a real error.
5559 -- In a generic context, simplify the warning because it makes no
5560 -- sense to discuss pass-by-reference or copy.
5562 elsif Warn_On_Ada_2005_Compatibility or GNAT_Mode then
5563 if Inside_A_Generic then
5564 Error_Msg_N
5565 ("return of limited object not permitted in Ada 2005 "
5566 & "(RM-2005 6.5(5.5/2))?y?", Expr);
5568 elsif Is_Limited_View (R_Type) then
5569 Error_Msg_N
5570 ("return by reference not permitted in Ada 2005 "
5571 & "(RM-2005 6.5(5.5/2))?y?", Expr);
5572 else
5573 Error_Msg_N
5574 ("cannot copy object of a limited type in Ada 2005 "
5575 & "(RM-2005 6.5(5.5/2))?y?", Expr);
5576 end if;
5578 -- Ada 95 mode, compatibility warnings disabled
5580 else
5581 return; -- skip continuation messages below
5582 end if;
5584 if not Inside_A_Generic then
5585 Error_Msg_N
5586 ("\consider switching to return of access type", Expr);
5587 Explain_Limited_Type (R_Type, Expr);
5588 end if;
5589 end if;
5590 end Check_Limited_Return;
5592 ---------------------------
5593 -- Check_Mode_Conformant --
5594 ---------------------------
5596 procedure Check_Mode_Conformant
5597 (New_Id : Entity_Id;
5598 Old_Id : Entity_Id;
5599 Err_Loc : Node_Id := Empty;
5600 Get_Inst : Boolean := False)
5602 Result : Boolean;
5603 pragma Warnings (Off, Result);
5604 begin
5605 Check_Conformance
5606 (New_Id, Old_Id, Mode_Conformant, True, Result, Err_Loc, Get_Inst);
5607 end Check_Mode_Conformant;
5609 --------------------------------
5610 -- Check_Overriding_Indicator --
5611 --------------------------------
5613 procedure Check_Overriding_Indicator
5614 (Subp : Entity_Id;
5615 Overridden_Subp : Entity_Id;
5616 Is_Primitive : Boolean)
5618 Decl : Node_Id;
5619 Spec : Node_Id;
5621 begin
5622 -- No overriding indicator for literals
5624 if Ekind (Subp) = E_Enumeration_Literal then
5625 return;
5627 elsif Ekind (Subp) = E_Entry then
5628 Decl := Parent (Subp);
5630 -- No point in analyzing a malformed operator
5632 elsif Nkind (Subp) = N_Defining_Operator_Symbol
5633 and then Error_Posted (Subp)
5634 then
5635 return;
5637 else
5638 Decl := Unit_Declaration_Node (Subp);
5639 end if;
5641 if Nkind_In (Decl, N_Subprogram_Body,
5642 N_Subprogram_Body_Stub,
5643 N_Subprogram_Declaration,
5644 N_Abstract_Subprogram_Declaration,
5645 N_Subprogram_Renaming_Declaration)
5646 then
5647 Spec := Specification (Decl);
5649 elsif Nkind (Decl) = N_Entry_Declaration then
5650 Spec := Decl;
5652 else
5653 return;
5654 end if;
5656 -- The overriding operation is type conformant with the overridden one,
5657 -- but the names of the formals are not required to match. If the names
5658 -- appear permuted in the overriding operation, this is a possible
5659 -- source of confusion that is worth diagnosing. Controlling formals
5660 -- often carry names that reflect the type, and it is not worthwhile
5661 -- requiring that their names match.
5663 if Present (Overridden_Subp)
5664 and then Nkind (Subp) /= N_Defining_Operator_Symbol
5665 then
5666 declare
5667 Form1 : Entity_Id;
5668 Form2 : Entity_Id;
5670 begin
5671 Form1 := First_Formal (Subp);
5672 Form2 := First_Formal (Overridden_Subp);
5674 -- If the overriding operation is a synchronized operation, skip
5675 -- the first parameter of the overridden operation, which is
5676 -- implicit in the new one. If the operation is declared in the
5677 -- body it is not primitive and all formals must match.
5679 if Is_Concurrent_Type (Scope (Subp))
5680 and then Is_Tagged_Type (Scope (Subp))
5681 and then not Has_Completion (Scope (Subp))
5682 then
5683 Form2 := Next_Formal (Form2);
5684 end if;
5686 if Present (Form1) then
5687 Form1 := Next_Formal (Form1);
5688 Form2 := Next_Formal (Form2);
5689 end if;
5691 while Present (Form1) loop
5692 if not Is_Controlling_Formal (Form1)
5693 and then Present (Next_Formal (Form2))
5694 and then Chars (Form1) = Chars (Next_Formal (Form2))
5695 then
5696 Error_Msg_Node_2 := Alias (Overridden_Subp);
5697 Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
5698 Error_Msg_NE
5699 ("& does not match corresponding formal of&#",
5700 Form1, Form1);
5701 exit;
5702 end if;
5704 Next_Formal (Form1);
5705 Next_Formal (Form2);
5706 end loop;
5707 end;
5708 end if;
5710 -- If there is an overridden subprogram, then check that there is no
5711 -- "not overriding" indicator, and mark the subprogram as overriding.
5712 -- This is not done if the overridden subprogram is marked as hidden,
5713 -- which can occur for the case of inherited controlled operations
5714 -- (see Derive_Subprogram), unless the inherited subprogram's parent
5715 -- subprogram is not itself hidden. (Note: This condition could probably
5716 -- be simplified, leaving out the testing for the specific controlled
5717 -- cases, but it seems safer and clearer this way, and echoes similar
5718 -- special-case tests of this kind in other places.)
5720 if Present (Overridden_Subp)
5721 and then (not Is_Hidden (Overridden_Subp)
5722 or else
5723 (Nam_In (Chars (Overridden_Subp), Name_Initialize,
5724 Name_Adjust,
5725 Name_Finalize)
5726 and then Present (Alias (Overridden_Subp))
5727 and then not Is_Hidden (Alias (Overridden_Subp))))
5728 then
5729 if Must_Not_Override (Spec) then
5730 Error_Msg_Sloc := Sloc (Overridden_Subp);
5732 if Ekind (Subp) = E_Entry then
5733 Error_Msg_NE
5734 ("entry & overrides inherited operation #", Spec, Subp);
5735 else
5736 Error_Msg_NE
5737 ("subprogram & overrides inherited operation #", Spec, Subp);
5738 end if;
5740 -- Special-case to fix a GNAT oddity: Limited_Controlled is declared
5741 -- as an extension of Root_Controlled, and thus has a useless Adjust
5742 -- operation. This operation should not be inherited by other limited
5743 -- controlled types. An explicit Adjust for them is not overriding.
5745 elsif Must_Override (Spec)
5746 and then Chars (Overridden_Subp) = Name_Adjust
5747 and then Is_Limited_Type (Etype (First_Formal (Subp)))
5748 and then Present (Alias (Overridden_Subp))
5749 and then
5750 Is_Predefined_File_Name
5751 (Unit_File_Name (Get_Source_Unit (Alias (Overridden_Subp))))
5752 then
5753 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
5755 elsif Is_Subprogram (Subp) then
5756 if Is_Init_Proc (Subp) then
5757 null;
5759 elsif No (Overridden_Operation (Subp)) then
5761 -- For entities generated by Derive_Subprograms the overridden
5762 -- operation is the inherited primitive (which is available
5763 -- through the attribute alias)
5765 if (Is_Dispatching_Operation (Subp)
5766 or else Is_Dispatching_Operation (Overridden_Subp))
5767 and then not Comes_From_Source (Overridden_Subp)
5768 and then Find_Dispatching_Type (Overridden_Subp) =
5769 Find_Dispatching_Type (Subp)
5770 and then Present (Alias (Overridden_Subp))
5771 and then Comes_From_Source (Alias (Overridden_Subp))
5772 then
5773 Set_Overridden_Operation (Subp, Alias (Overridden_Subp));
5774 Inherit_Subprogram_Contract (Subp, Alias (Overridden_Subp));
5776 else
5777 Set_Overridden_Operation (Subp, Overridden_Subp);
5778 Inherit_Subprogram_Contract (Subp, Overridden_Subp);
5779 end if;
5780 end if;
5781 end if;
5783 -- If primitive flag is set or this is a protected operation, then
5784 -- the operation is overriding at the point of its declaration, so
5785 -- warn if necessary. Otherwise it may have been declared before the
5786 -- operation it overrides and no check is required.
5788 if Style_Check
5789 and then not Must_Override (Spec)
5790 and then (Is_Primitive
5791 or else Ekind (Scope (Subp)) = E_Protected_Type)
5792 then
5793 Style.Missing_Overriding (Decl, Subp);
5794 end if;
5796 -- If Subp is an operator, it may override a predefined operation, if
5797 -- it is defined in the same scope as the type to which it applies.
5798 -- In that case Overridden_Subp is empty because of our implicit
5799 -- representation for predefined operators. We have to check whether the
5800 -- signature of Subp matches that of a predefined operator. Note that
5801 -- first argument provides the name of the operator, and the second
5802 -- argument the signature that may match that of a standard operation.
5803 -- If the indicator is overriding, then the operator must match a
5804 -- predefined signature, because we know already that there is no
5805 -- explicit overridden operation.
5807 elsif Nkind (Subp) = N_Defining_Operator_Symbol then
5808 if Must_Not_Override (Spec) then
5810 -- If this is not a primitive or a protected subprogram, then
5811 -- "not overriding" is illegal.
5813 if not Is_Primitive
5814 and then Ekind (Scope (Subp)) /= E_Protected_Type
5815 then
5816 Error_Msg_N ("overriding indicator only allowed "
5817 & "if subprogram is primitive", Subp);
5819 elsif Can_Override_Operator (Subp) then
5820 Error_Msg_NE
5821 ("subprogram& overrides predefined operator ", Spec, Subp);
5822 end if;
5824 elsif Must_Override (Spec) then
5825 if No (Overridden_Operation (Subp))
5826 and then not Can_Override_Operator (Subp)
5827 then
5828 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
5829 end if;
5831 elsif not Error_Posted (Subp)
5832 and then Style_Check
5833 and then Can_Override_Operator (Subp)
5834 and then
5835 not Is_Predefined_File_Name
5836 (Unit_File_Name (Get_Source_Unit (Subp)))
5837 then
5838 -- If style checks are enabled, indicate that the indicator is
5839 -- missing. However, at the point of declaration, the type of
5840 -- which this is a primitive operation may be private, in which
5841 -- case the indicator would be premature.
5843 if Has_Private_Declaration (Etype (Subp))
5844 or else Has_Private_Declaration (Etype (First_Formal (Subp)))
5845 then
5846 null;
5847 else
5848 Style.Missing_Overriding (Decl, Subp);
5849 end if;
5850 end if;
5852 elsif Must_Override (Spec) then
5853 if Ekind (Subp) = E_Entry then
5854 Error_Msg_NE ("entry & is not overriding", Spec, Subp);
5855 else
5856 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
5857 end if;
5859 -- If the operation is marked "not overriding" and it's not primitive
5860 -- then an error is issued, unless this is an operation of a task or
5861 -- protected type (RM05-8.3.1(3/2-4/2)). Error cases where "overriding"
5862 -- has been specified have already been checked above.
5864 elsif Must_Not_Override (Spec)
5865 and then not Is_Primitive
5866 and then Ekind (Subp) /= E_Entry
5867 and then Ekind (Scope (Subp)) /= E_Protected_Type
5868 then
5869 Error_Msg_N
5870 ("overriding indicator only allowed if subprogram is primitive",
5871 Subp);
5872 return;
5873 end if;
5874 end Check_Overriding_Indicator;
5876 -------------------
5877 -- Check_Returns --
5878 -------------------
5880 -- Note: this procedure needs to know far too much about how the expander
5881 -- messes with exceptions. The use of the flag Exception_Junk and the
5882 -- incorporation of knowledge of Exp_Ch11.Expand_Local_Exception_Handlers
5883 -- works, but is not very clean. It would be better if the expansion
5884 -- routines would leave Original_Node working nicely, and we could use
5885 -- Original_Node here to ignore all the peculiar expander messing ???
5887 procedure Check_Returns
5888 (HSS : Node_Id;
5889 Mode : Character;
5890 Err : out Boolean;
5891 Proc : Entity_Id := Empty)
5893 Handler : Node_Id;
5895 procedure Check_Statement_Sequence (L : List_Id);
5896 -- Internal recursive procedure to check a list of statements for proper
5897 -- termination by a return statement (or a transfer of control or a
5898 -- compound statement that is itself internally properly terminated).
5900 ------------------------------
5901 -- Check_Statement_Sequence --
5902 ------------------------------
5904 procedure Check_Statement_Sequence (L : List_Id) is
5905 Last_Stm : Node_Id;
5906 Stm : Node_Id;
5907 Kind : Node_Kind;
5909 function Assert_False return Boolean;
5910 -- Returns True if Last_Stm is a pragma Assert (False) that has been
5911 -- rewritten as a null statement when assertions are off. The assert
5912 -- is not active, but it is still enough to kill the warning.
5914 ------------------
5915 -- Assert_False --
5916 ------------------
5918 function Assert_False return Boolean is
5919 Orig : constant Node_Id := Original_Node (Last_Stm);
5921 begin
5922 if Nkind (Orig) = N_Pragma
5923 and then Pragma_Name (Orig) = Name_Assert
5924 and then not Error_Posted (Orig)
5925 then
5926 declare
5927 Arg : constant Node_Id :=
5928 First (Pragma_Argument_Associations (Orig));
5929 Exp : constant Node_Id := Expression (Arg);
5930 begin
5931 return Nkind (Exp) = N_Identifier
5932 and then Chars (Exp) = Name_False;
5933 end;
5935 else
5936 return False;
5937 end if;
5938 end Assert_False;
5940 -- Local variables
5942 Raise_Exception_Call : Boolean;
5943 -- Set True if statement sequence terminated by Raise_Exception call
5944 -- or a Reraise_Occurrence call.
5946 -- Start of processing for Check_Statement_Sequence
5948 begin
5949 Raise_Exception_Call := False;
5951 -- Get last real statement
5953 Last_Stm := Last (L);
5955 -- Deal with digging out exception handler statement sequences that
5956 -- have been transformed by the local raise to goto optimization.
5957 -- See Exp_Ch11.Expand_Local_Exception_Handlers for details. If this
5958 -- optimization has occurred, we are looking at something like:
5960 -- begin
5961 -- original stmts in block
5963 -- exception \
5964 -- when excep1 => |
5965 -- goto L1; | omitted if No_Exception_Propagation
5966 -- when excep2 => |
5967 -- goto L2; /
5968 -- end;
5970 -- goto L3; -- skip handler when exception not raised
5972 -- <<L1>> -- target label for local exception
5973 -- begin
5974 -- estmts1
5975 -- end;
5977 -- goto L3;
5979 -- <<L2>>
5980 -- begin
5981 -- estmts2
5982 -- end;
5984 -- <<L3>>
5986 -- and what we have to do is to dig out the estmts1 and estmts2
5987 -- sequences (which were the original sequences of statements in
5988 -- the exception handlers) and check them.
5990 if Nkind (Last_Stm) = N_Label and then Exception_Junk (Last_Stm) then
5991 Stm := Last_Stm;
5992 loop
5993 Prev (Stm);
5994 exit when No (Stm);
5995 exit when Nkind (Stm) /= N_Block_Statement;
5996 exit when not Exception_Junk (Stm);
5997 Prev (Stm);
5998 exit when No (Stm);
5999 exit when Nkind (Stm) /= N_Label;
6000 exit when not Exception_Junk (Stm);
6001 Check_Statement_Sequence
6002 (Statements (Handled_Statement_Sequence (Next (Stm))));
6004 Prev (Stm);
6005 Last_Stm := Stm;
6006 exit when No (Stm);
6007 exit when Nkind (Stm) /= N_Goto_Statement;
6008 exit when not Exception_Junk (Stm);
6009 end loop;
6010 end if;
6012 -- Don't count pragmas
6014 while Nkind (Last_Stm) = N_Pragma
6016 -- Don't count call to SS_Release (can happen after Raise_Exception)
6018 or else
6019 (Nkind (Last_Stm) = N_Procedure_Call_Statement
6020 and then
6021 Nkind (Name (Last_Stm)) = N_Identifier
6022 and then
6023 Is_RTE (Entity (Name (Last_Stm)), RE_SS_Release))
6025 -- Don't count exception junk
6027 or else
6028 (Nkind_In (Last_Stm, N_Goto_Statement,
6029 N_Label,
6030 N_Object_Declaration)
6031 and then Exception_Junk (Last_Stm))
6032 or else Nkind (Last_Stm) in N_Push_xxx_Label
6033 or else Nkind (Last_Stm) in N_Pop_xxx_Label
6035 -- Inserted code, such as finalization calls, is irrelevant: we only
6036 -- need to check original source.
6038 or else Is_Rewrite_Insertion (Last_Stm)
6039 loop
6040 Prev (Last_Stm);
6041 end loop;
6043 -- Here we have the "real" last statement
6045 Kind := Nkind (Last_Stm);
6047 -- Transfer of control, OK. Note that in the No_Return procedure
6048 -- case, we already diagnosed any explicit return statements, so
6049 -- we can treat them as OK in this context.
6051 if Is_Transfer (Last_Stm) then
6052 return;
6054 -- Check cases of explicit non-indirect procedure calls
6056 elsif Kind = N_Procedure_Call_Statement
6057 and then Is_Entity_Name (Name (Last_Stm))
6058 then
6059 -- Check call to Raise_Exception procedure which is treated
6060 -- specially, as is a call to Reraise_Occurrence.
6062 -- We suppress the warning in these cases since it is likely that
6063 -- the programmer really does not expect to deal with the case
6064 -- of Null_Occurrence, and thus would find a warning about a
6065 -- missing return curious, and raising Program_Error does not
6066 -- seem such a bad behavior if this does occur.
6068 -- Note that in the Ada 2005 case for Raise_Exception, the actual
6069 -- behavior will be to raise Constraint_Error (see AI-329).
6071 if Is_RTE (Entity (Name (Last_Stm)), RE_Raise_Exception)
6072 or else
6073 Is_RTE (Entity (Name (Last_Stm)), RE_Reraise_Occurrence)
6074 then
6075 Raise_Exception_Call := True;
6077 -- For Raise_Exception call, test first argument, if it is
6078 -- an attribute reference for a 'Identity call, then we know
6079 -- that the call cannot possibly return.
6081 declare
6082 Arg : constant Node_Id :=
6083 Original_Node (First_Actual (Last_Stm));
6084 begin
6085 if Nkind (Arg) = N_Attribute_Reference
6086 and then Attribute_Name (Arg) = Name_Identity
6087 then
6088 return;
6089 end if;
6090 end;
6091 end if;
6093 -- If statement, need to look inside if there is an else and check
6094 -- each constituent statement sequence for proper termination.
6096 elsif Kind = N_If_Statement
6097 and then Present (Else_Statements (Last_Stm))
6098 then
6099 Check_Statement_Sequence (Then_Statements (Last_Stm));
6100 Check_Statement_Sequence (Else_Statements (Last_Stm));
6102 if Present (Elsif_Parts (Last_Stm)) then
6103 declare
6104 Elsif_Part : Node_Id := First (Elsif_Parts (Last_Stm));
6106 begin
6107 while Present (Elsif_Part) loop
6108 Check_Statement_Sequence (Then_Statements (Elsif_Part));
6109 Next (Elsif_Part);
6110 end loop;
6111 end;
6112 end if;
6114 return;
6116 -- Case statement, check each case for proper termination
6118 elsif Kind = N_Case_Statement then
6119 declare
6120 Case_Alt : Node_Id;
6121 begin
6122 Case_Alt := First_Non_Pragma (Alternatives (Last_Stm));
6123 while Present (Case_Alt) loop
6124 Check_Statement_Sequence (Statements (Case_Alt));
6125 Next_Non_Pragma (Case_Alt);
6126 end loop;
6127 end;
6129 return;
6131 -- Block statement, check its handled sequence of statements
6133 elsif Kind = N_Block_Statement then
6134 declare
6135 Err1 : Boolean;
6137 begin
6138 Check_Returns
6139 (Handled_Statement_Sequence (Last_Stm), Mode, Err1);
6141 if Err1 then
6142 Err := True;
6143 end if;
6145 return;
6146 end;
6148 -- Loop statement. If there is an iteration scheme, we can definitely
6149 -- fall out of the loop. Similarly if there is an exit statement, we
6150 -- can fall out. In either case we need a following return.
6152 elsif Kind = N_Loop_Statement then
6153 if Present (Iteration_Scheme (Last_Stm))
6154 or else Has_Exit (Entity (Identifier (Last_Stm)))
6155 then
6156 null;
6158 -- A loop with no exit statement or iteration scheme is either
6159 -- an infinite loop, or it has some other exit (raise/return).
6160 -- In either case, no warning is required.
6162 else
6163 return;
6164 end if;
6166 -- Timed entry call, check entry call and delay alternatives
6168 -- Note: in expanded code, the timed entry call has been converted
6169 -- to a set of expanded statements on which the check will work
6170 -- correctly in any case.
6172 elsif Kind = N_Timed_Entry_Call then
6173 declare
6174 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
6175 DCA : constant Node_Id := Delay_Alternative (Last_Stm);
6177 begin
6178 -- If statement sequence of entry call alternative is missing,
6179 -- then we can definitely fall through, and we post the error
6180 -- message on the entry call alternative itself.
6182 if No (Statements (ECA)) then
6183 Last_Stm := ECA;
6185 -- If statement sequence of delay alternative is missing, then
6186 -- we can definitely fall through, and we post the error
6187 -- message on the delay alternative itself.
6189 -- Note: if both ECA and DCA are missing the return, then we
6190 -- post only one message, should be enough to fix the bugs.
6191 -- If not we will get a message next time on the DCA when the
6192 -- ECA is fixed.
6194 elsif No (Statements (DCA)) then
6195 Last_Stm := DCA;
6197 -- Else check both statement sequences
6199 else
6200 Check_Statement_Sequence (Statements (ECA));
6201 Check_Statement_Sequence (Statements (DCA));
6202 return;
6203 end if;
6204 end;
6206 -- Conditional entry call, check entry call and else part
6208 -- Note: in expanded code, the conditional entry call has been
6209 -- converted to a set of expanded statements on which the check
6210 -- will work correctly in any case.
6212 elsif Kind = N_Conditional_Entry_Call then
6213 declare
6214 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
6216 begin
6217 -- If statement sequence of entry call alternative is missing,
6218 -- then we can definitely fall through, and we post the error
6219 -- message on the entry call alternative itself.
6221 if No (Statements (ECA)) then
6222 Last_Stm := ECA;
6224 -- Else check statement sequence and else part
6226 else
6227 Check_Statement_Sequence (Statements (ECA));
6228 Check_Statement_Sequence (Else_Statements (Last_Stm));
6229 return;
6230 end if;
6231 end;
6232 end if;
6234 -- If we fall through, issue appropriate message
6236 if Mode = 'F' then
6238 -- Kill warning if last statement is a raise exception call,
6239 -- or a pragma Assert (False). Note that with assertions enabled,
6240 -- such a pragma has been converted into a raise exception call
6241 -- already, so the Assert_False is for the assertions off case.
6243 if not Raise_Exception_Call and then not Assert_False then
6245 -- In GNATprove mode, it is an error to have a missing return
6247 Error_Msg_Warn := SPARK_Mode /= On;
6249 -- Issue error message or warning
6251 Error_Msg_N
6252 ("RETURN statement missing following this statement<<!",
6253 Last_Stm);
6254 Error_Msg_N
6255 ("\Program_Error ]<<!", Last_Stm);
6256 end if;
6258 -- Note: we set Err even though we have not issued a warning
6259 -- because we still have a case of a missing return. This is
6260 -- an extremely marginal case, probably will never be noticed
6261 -- but we might as well get it right.
6263 Err := True;
6265 -- Otherwise we have the case of a procedure marked No_Return
6267 else
6268 if not Raise_Exception_Call then
6269 if GNATprove_Mode then
6270 Error_Msg_N
6271 ("implied return after this statement "
6272 & "would have raised Program_Error", Last_Stm);
6273 else
6274 Error_Msg_N
6275 ("implied return after this statement "
6276 & "will raise Program_Error??", Last_Stm);
6277 end if;
6279 Error_Msg_Warn := SPARK_Mode /= On;
6280 Error_Msg_NE
6281 ("\procedure & is marked as No_Return<<!", Last_Stm, Proc);
6282 end if;
6284 declare
6285 RE : constant Node_Id :=
6286 Make_Raise_Program_Error (Sloc (Last_Stm),
6287 Reason => PE_Implicit_Return);
6288 begin
6289 Insert_After (Last_Stm, RE);
6290 Analyze (RE);
6291 end;
6292 end if;
6293 end Check_Statement_Sequence;
6295 -- Start of processing for Check_Returns
6297 begin
6298 Err := False;
6299 Check_Statement_Sequence (Statements (HSS));
6301 if Present (Exception_Handlers (HSS)) then
6302 Handler := First_Non_Pragma (Exception_Handlers (HSS));
6303 while Present (Handler) loop
6304 Check_Statement_Sequence (Statements (Handler));
6305 Next_Non_Pragma (Handler);
6306 end loop;
6307 end if;
6308 end Check_Returns;
6310 ----------------------------
6311 -- Check_Subprogram_Order --
6312 ----------------------------
6314 procedure Check_Subprogram_Order (N : Node_Id) is
6316 function Subprogram_Name_Greater (S1, S2 : String) return Boolean;
6317 -- This is used to check if S1 > S2 in the sense required by this test,
6318 -- for example nameab < namec, but name2 < name10.
6320 -----------------------------
6321 -- Subprogram_Name_Greater --
6322 -----------------------------
6324 function Subprogram_Name_Greater (S1, S2 : String) return Boolean is
6325 L1, L2 : Positive;
6326 N1, N2 : Natural;
6328 begin
6329 -- Deal with special case where names are identical except for a
6330 -- numerical suffix. These are handled specially, taking the numeric
6331 -- ordering from the suffix into account.
6333 L1 := S1'Last;
6334 while S1 (L1) in '0' .. '9' loop
6335 L1 := L1 - 1;
6336 end loop;
6338 L2 := S2'Last;
6339 while S2 (L2) in '0' .. '9' loop
6340 L2 := L2 - 1;
6341 end loop;
6343 -- If non-numeric parts non-equal, do straight compare
6345 if S1 (S1'First .. L1) /= S2 (S2'First .. L2) then
6346 return S1 > S2;
6348 -- If non-numeric parts equal, compare suffixed numeric parts. Note
6349 -- that a missing suffix is treated as numeric zero in this test.
6351 else
6352 N1 := 0;
6353 while L1 < S1'Last loop
6354 L1 := L1 + 1;
6355 N1 := N1 * 10 + Character'Pos (S1 (L1)) - Character'Pos ('0');
6356 end loop;
6358 N2 := 0;
6359 while L2 < S2'Last loop
6360 L2 := L2 + 1;
6361 N2 := N2 * 10 + Character'Pos (S2 (L2)) - Character'Pos ('0');
6362 end loop;
6364 return N1 > N2;
6365 end if;
6366 end Subprogram_Name_Greater;
6368 -- Start of processing for Check_Subprogram_Order
6370 begin
6371 -- Check body in alpha order if this is option
6373 if Style_Check
6374 and then Style_Check_Order_Subprograms
6375 and then Nkind (N) = N_Subprogram_Body
6376 and then Comes_From_Source (N)
6377 and then In_Extended_Main_Source_Unit (N)
6378 then
6379 declare
6380 LSN : String_Ptr
6381 renames Scope_Stack.Table
6382 (Scope_Stack.Last).Last_Subprogram_Name;
6384 Body_Id : constant Entity_Id :=
6385 Defining_Entity (Specification (N));
6387 begin
6388 Get_Decoded_Name_String (Chars (Body_Id));
6390 if LSN /= null then
6391 if Subprogram_Name_Greater
6392 (LSN.all, Name_Buffer (1 .. Name_Len))
6393 then
6394 Style.Subprogram_Not_In_Alpha_Order (Body_Id);
6395 end if;
6397 Free (LSN);
6398 end if;
6400 LSN := new String'(Name_Buffer (1 .. Name_Len));
6401 end;
6402 end if;
6403 end Check_Subprogram_Order;
6405 ------------------------------
6406 -- Check_Subtype_Conformant --
6407 ------------------------------
6409 procedure Check_Subtype_Conformant
6410 (New_Id : Entity_Id;
6411 Old_Id : Entity_Id;
6412 Err_Loc : Node_Id := Empty;
6413 Skip_Controlling_Formals : Boolean := False;
6414 Get_Inst : Boolean := False)
6416 Result : Boolean;
6417 pragma Warnings (Off, Result);
6418 begin
6419 Check_Conformance
6420 (New_Id, Old_Id, Subtype_Conformant, True, Result, Err_Loc,
6421 Skip_Controlling_Formals => Skip_Controlling_Formals,
6422 Get_Inst => Get_Inst);
6423 end Check_Subtype_Conformant;
6425 ---------------------------
6426 -- Check_Type_Conformant --
6427 ---------------------------
6429 procedure Check_Type_Conformant
6430 (New_Id : Entity_Id;
6431 Old_Id : Entity_Id;
6432 Err_Loc : Node_Id := Empty)
6434 Result : Boolean;
6435 pragma Warnings (Off, Result);
6436 begin
6437 Check_Conformance
6438 (New_Id, Old_Id, Type_Conformant, True, Result, Err_Loc);
6439 end Check_Type_Conformant;
6441 ---------------------------
6442 -- Can_Override_Operator --
6443 ---------------------------
6445 function Can_Override_Operator (Subp : Entity_Id) return Boolean is
6446 Typ : Entity_Id;
6448 begin
6449 if Nkind (Subp) /= N_Defining_Operator_Symbol then
6450 return False;
6452 else
6453 Typ := Base_Type (Etype (First_Formal (Subp)));
6455 -- Check explicitly that the operation is a primitive of the type
6457 return Operator_Matches_Spec (Subp, Subp)
6458 and then not Is_Generic_Type (Typ)
6459 and then Scope (Subp) = Scope (Typ)
6460 and then not Is_Class_Wide_Type (Typ);
6461 end if;
6462 end Can_Override_Operator;
6464 ----------------------
6465 -- Conforming_Types --
6466 ----------------------
6468 function Conforming_Types
6469 (T1 : Entity_Id;
6470 T2 : Entity_Id;
6471 Ctype : Conformance_Type;
6472 Get_Inst : Boolean := False) return Boolean
6474 Type_1 : Entity_Id := T1;
6475 Type_2 : Entity_Id := T2;
6476 Are_Anonymous_Access_To_Subprogram_Types : Boolean := False;
6478 function Base_Types_Match (T1, T2 : Entity_Id) return Boolean;
6479 -- If neither T1 nor T2 are generic actual types, or if they are in
6480 -- different scopes (e.g. parent and child instances), then verify that
6481 -- the base types are equal. Otherwise T1 and T2 must be on the same
6482 -- subtype chain. The whole purpose of this procedure is to prevent
6483 -- spurious ambiguities in an instantiation that may arise if two
6484 -- distinct generic types are instantiated with the same actual.
6486 function Find_Designated_Type (T : Entity_Id) return Entity_Id;
6487 -- An access parameter can designate an incomplete type. If the
6488 -- incomplete type is the limited view of a type from a limited_
6489 -- with_clause, check whether the non-limited view is available. If
6490 -- it is a (non-limited) incomplete type, get the full view.
6492 function Matches_Limited_With_View (T1, T2 : Entity_Id) return Boolean;
6493 -- Returns True if and only if either T1 denotes a limited view of T2
6494 -- or T2 denotes a limited view of T1. This can arise when the limited
6495 -- with view of a type is used in a subprogram declaration and the
6496 -- subprogram body is in the scope of a regular with clause for the
6497 -- same unit. In such a case, the two type entities can be considered
6498 -- identical for purposes of conformance checking.
6500 ----------------------
6501 -- Base_Types_Match --
6502 ----------------------
6504 function Base_Types_Match (T1, T2 : Entity_Id) return Boolean is
6505 BT1 : constant Entity_Id := Base_Type (T1);
6506 BT2 : constant Entity_Id := Base_Type (T2);
6508 begin
6509 if T1 = T2 then
6510 return True;
6512 elsif BT1 = BT2 then
6514 -- The following is too permissive. A more precise test should
6515 -- check that the generic actual is an ancestor subtype of the
6516 -- other ???.
6518 -- See code in Find_Corresponding_Spec that applies an additional
6519 -- filter to handle accidental amiguities in instances.
6521 return not Is_Generic_Actual_Type (T1)
6522 or else not Is_Generic_Actual_Type (T2)
6523 or else Scope (T1) /= Scope (T2);
6525 -- If T2 is a generic actual type it is declared as the subtype of
6526 -- the actual. If that actual is itself a subtype we need to use its
6527 -- own base type to check for compatibility.
6529 elsif Ekind (BT2) = Ekind (T2) and then BT1 = Base_Type (BT2) then
6530 return True;
6532 elsif Ekind (BT1) = Ekind (T1) and then BT2 = Base_Type (BT1) then
6533 return True;
6535 else
6536 return False;
6537 end if;
6538 end Base_Types_Match;
6540 --------------------------
6541 -- Find_Designated_Type --
6542 --------------------------
6544 function Find_Designated_Type (T : Entity_Id) return Entity_Id is
6545 Desig : Entity_Id;
6547 begin
6548 Desig := Directly_Designated_Type (T);
6550 if Ekind (Desig) = E_Incomplete_Type then
6552 -- If regular incomplete type, get full view if available
6554 if Present (Full_View (Desig)) then
6555 Desig := Full_View (Desig);
6557 -- If limited view of a type, get non-limited view if available,
6558 -- and check again for a regular incomplete type.
6560 elsif Present (Non_Limited_View (Desig)) then
6561 Desig := Get_Full_View (Non_Limited_View (Desig));
6562 end if;
6563 end if;
6565 return Desig;
6566 end Find_Designated_Type;
6568 -------------------------------
6569 -- Matches_Limited_With_View --
6570 -------------------------------
6572 function Matches_Limited_With_View (T1, T2 : Entity_Id) return Boolean is
6573 begin
6574 -- In some cases a type imported through a limited_with clause, and
6575 -- its nonlimited view are both visible, for example in an anonymous
6576 -- access-to-class-wide type in a formal, or when building the body
6577 -- for a subprogram renaming after the subprogram has been frozen.
6578 -- In these cases Both entities designate the same type. In addition,
6579 -- if one of them is an actual in an instance, it may be a subtype of
6580 -- the non-limited view of the other.
6582 if From_Limited_With (T1)
6583 and then (T2 = Available_View (T1)
6584 or else Is_Subtype_Of (T2, Available_View (T1)))
6585 then
6586 return True;
6588 elsif From_Limited_With (T2)
6589 and then (T1 = Available_View (T2)
6590 or else Is_Subtype_Of (T1, Available_View (T2)))
6591 then
6592 return True;
6594 elsif From_Limited_With (T1)
6595 and then From_Limited_With (T2)
6596 and then Available_View (T1) = Available_View (T2)
6597 then
6598 return True;
6600 else
6601 return False;
6602 end if;
6603 end Matches_Limited_With_View;
6605 -- Start of processing for Conforming_Types
6607 begin
6608 -- The context is an instance association for a formal access-to-
6609 -- subprogram type; the formal parameter types require mapping because
6610 -- they may denote other formal parameters of the generic unit.
6612 if Get_Inst then
6613 Type_1 := Get_Instance_Of (T1);
6614 Type_2 := Get_Instance_Of (T2);
6615 end if;
6617 -- If one of the types is a view of the other introduced by a limited
6618 -- with clause, treat these as conforming for all purposes.
6620 if Matches_Limited_With_View (T1, T2) then
6621 return True;
6623 elsif Base_Types_Match (Type_1, Type_2) then
6624 return Ctype <= Mode_Conformant
6625 or else Subtypes_Statically_Match (Type_1, Type_2);
6627 elsif Is_Incomplete_Or_Private_Type (Type_1)
6628 and then Present (Full_View (Type_1))
6629 and then Base_Types_Match (Full_View (Type_1), Type_2)
6630 then
6631 return Ctype <= Mode_Conformant
6632 or else Subtypes_Statically_Match (Full_View (Type_1), Type_2);
6634 elsif Ekind (Type_2) = E_Incomplete_Type
6635 and then Present (Full_View (Type_2))
6636 and then Base_Types_Match (Type_1, Full_View (Type_2))
6637 then
6638 return Ctype <= Mode_Conformant
6639 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
6641 elsif Is_Private_Type (Type_2)
6642 and then In_Instance
6643 and then Present (Full_View (Type_2))
6644 and then Base_Types_Match (Type_1, Full_View (Type_2))
6645 then
6646 return Ctype <= Mode_Conformant
6647 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
6649 -- In Ada 2012, incomplete types (including limited views) can appear
6650 -- as actuals in instantiations.
6652 elsif Is_Incomplete_Type (Type_1)
6653 and then Is_Incomplete_Type (Type_2)
6654 and then (Used_As_Generic_Actual (Type_1)
6655 or else Used_As_Generic_Actual (Type_2))
6656 then
6657 return True;
6658 end if;
6660 -- Ada 2005 (AI-254): Anonymous access-to-subprogram types must be
6661 -- treated recursively because they carry a signature. As far as
6662 -- conformance is concerned, convention plays no role, and either
6663 -- or both could be access to protected subprograms.
6665 Are_Anonymous_Access_To_Subprogram_Types :=
6666 Ekind_In (Type_1, E_Anonymous_Access_Subprogram_Type,
6667 E_Anonymous_Access_Protected_Subprogram_Type)
6668 and then
6669 Ekind_In (Type_2, E_Anonymous_Access_Subprogram_Type,
6670 E_Anonymous_Access_Protected_Subprogram_Type);
6672 -- Test anonymous access type case. For this case, static subtype
6673 -- matching is required for mode conformance (RM 6.3.1(15)). We check
6674 -- the base types because we may have built internal subtype entities
6675 -- to handle null-excluding types (see Process_Formals).
6677 if (Ekind (Base_Type (Type_1)) = E_Anonymous_Access_Type
6678 and then
6679 Ekind (Base_Type (Type_2)) = E_Anonymous_Access_Type)
6681 -- Ada 2005 (AI-254)
6683 or else Are_Anonymous_Access_To_Subprogram_Types
6684 then
6685 declare
6686 Desig_1 : Entity_Id;
6687 Desig_2 : Entity_Id;
6689 begin
6690 -- In Ada 2005, access constant indicators must match for
6691 -- subtype conformance.
6693 if Ada_Version >= Ada_2005
6694 and then Ctype >= Subtype_Conformant
6695 and then
6696 Is_Access_Constant (Type_1) /= Is_Access_Constant (Type_2)
6697 then
6698 return False;
6699 end if;
6701 Desig_1 := Find_Designated_Type (Type_1);
6702 Desig_2 := Find_Designated_Type (Type_2);
6704 -- If the context is an instance association for a formal
6705 -- access-to-subprogram type; formal access parameter designated
6706 -- types require mapping because they may denote other formal
6707 -- parameters of the generic unit.
6709 if Get_Inst then
6710 Desig_1 := Get_Instance_Of (Desig_1);
6711 Desig_2 := Get_Instance_Of (Desig_2);
6712 end if;
6714 -- It is possible for a Class_Wide_Type to be introduced for an
6715 -- incomplete type, in which case there is a separate class_ wide
6716 -- type for the full view. The types conform if their Etypes
6717 -- conform, i.e. one may be the full view of the other. This can
6718 -- only happen in the context of an access parameter, other uses
6719 -- of an incomplete Class_Wide_Type are illegal.
6721 if Is_Class_Wide_Type (Desig_1)
6722 and then
6723 Is_Class_Wide_Type (Desig_2)
6724 then
6725 return
6726 Conforming_Types
6727 (Etype (Base_Type (Desig_1)),
6728 Etype (Base_Type (Desig_2)), Ctype);
6730 elsif Are_Anonymous_Access_To_Subprogram_Types then
6731 if Ada_Version < Ada_2005 then
6732 return Ctype = Type_Conformant
6733 or else
6734 Subtypes_Statically_Match (Desig_1, Desig_2);
6736 -- We must check the conformance of the signatures themselves
6738 else
6739 declare
6740 Conformant : Boolean;
6741 begin
6742 Check_Conformance
6743 (Desig_1, Desig_2, Ctype, False, Conformant);
6744 return Conformant;
6745 end;
6746 end if;
6748 -- A limited view of an actual matches the corresponding
6749 -- incomplete formal.
6751 elsif Ekind (Desig_2) = E_Incomplete_Subtype
6752 and then From_Limited_With (Desig_2)
6753 and then Used_As_Generic_Actual (Etype (Desig_2))
6754 then
6755 return True;
6757 else
6758 return Base_Type (Desig_1) = Base_Type (Desig_2)
6759 and then (Ctype = Type_Conformant
6760 or else
6761 Subtypes_Statically_Match (Desig_1, Desig_2));
6762 end if;
6763 end;
6765 -- Otherwise definitely no match
6767 else
6768 if ((Ekind (Type_1) = E_Anonymous_Access_Type
6769 and then Is_Access_Type (Type_2))
6770 or else (Ekind (Type_2) = E_Anonymous_Access_Type
6771 and then Is_Access_Type (Type_1)))
6772 and then
6773 Conforming_Types
6774 (Designated_Type (Type_1), Designated_Type (Type_2), Ctype)
6775 then
6776 May_Hide_Profile := True;
6777 end if;
6779 return False;
6780 end if;
6781 end Conforming_Types;
6783 --------------------------
6784 -- Create_Extra_Formals --
6785 --------------------------
6787 procedure Create_Extra_Formals (E : Entity_Id) is
6788 Formal : Entity_Id;
6789 First_Extra : Entity_Id := Empty;
6790 Last_Extra : Entity_Id;
6791 Formal_Type : Entity_Id;
6792 P_Formal : Entity_Id := Empty;
6794 function Add_Extra_Formal
6795 (Assoc_Entity : Entity_Id;
6796 Typ : Entity_Id;
6797 Scope : Entity_Id;
6798 Suffix : String) return Entity_Id;
6799 -- Add an extra formal to the current list of formals and extra formals.
6800 -- The extra formal is added to the end of the list of extra formals,
6801 -- and also returned as the result. These formals are always of mode IN.
6802 -- The new formal has the type Typ, is declared in Scope, and its name
6803 -- is given by a concatenation of the name of Assoc_Entity and Suffix.
6804 -- The following suffixes are currently used. They should not be changed
6805 -- without coordinating with CodePeer, which makes use of these to
6806 -- provide better messages.
6808 -- O denotes the Constrained bit.
6809 -- L denotes the accessibility level.
6810 -- BIP_xxx denotes an extra formal for a build-in-place function. See
6811 -- the full list in exp_ch6.BIP_Formal_Kind.
6813 ----------------------
6814 -- Add_Extra_Formal --
6815 ----------------------
6817 function Add_Extra_Formal
6818 (Assoc_Entity : Entity_Id;
6819 Typ : Entity_Id;
6820 Scope : Entity_Id;
6821 Suffix : String) return Entity_Id
6823 EF : constant Entity_Id :=
6824 Make_Defining_Identifier (Sloc (Assoc_Entity),
6825 Chars => New_External_Name (Chars (Assoc_Entity),
6826 Suffix => Suffix));
6828 begin
6829 -- A little optimization. Never generate an extra formal for the
6830 -- _init operand of an initialization procedure, since it could
6831 -- never be used.
6833 if Chars (Formal) = Name_uInit then
6834 return Empty;
6835 end if;
6837 Set_Ekind (EF, E_In_Parameter);
6838 Set_Actual_Subtype (EF, Typ);
6839 Set_Etype (EF, Typ);
6840 Set_Scope (EF, Scope);
6841 Set_Mechanism (EF, Default_Mechanism);
6842 Set_Formal_Validity (EF);
6844 if No (First_Extra) then
6845 First_Extra := EF;
6846 Set_Extra_Formals (Scope, First_Extra);
6847 end if;
6849 if Present (Last_Extra) then
6850 Set_Extra_Formal (Last_Extra, EF);
6851 end if;
6853 Last_Extra := EF;
6855 return EF;
6856 end Add_Extra_Formal;
6858 -- Start of processing for Create_Extra_Formals
6860 begin
6861 -- We never generate extra formals if expansion is not active because we
6862 -- don't need them unless we are generating code.
6864 if not Expander_Active then
6865 return;
6866 end if;
6868 -- No need to generate extra formals in interface thunks whose target
6869 -- primitive has no extra formals.
6871 if Is_Thunk (E) and then No (Extra_Formals (Thunk_Entity (E))) then
6872 return;
6873 end if;
6875 -- If this is a derived subprogram then the subtypes of the parent
6876 -- subprogram's formal parameters will be used to determine the need
6877 -- for extra formals.
6879 if Is_Overloadable (E) and then Present (Alias (E)) then
6880 P_Formal := First_Formal (Alias (E));
6881 end if;
6883 Last_Extra := Empty;
6884 Formal := First_Formal (E);
6885 while Present (Formal) loop
6886 Last_Extra := Formal;
6887 Next_Formal (Formal);
6888 end loop;
6890 -- If Extra_Formals were already created, don't do it again. This
6891 -- situation may arise for subprogram types created as part of
6892 -- dispatching calls (see Expand_Dispatching_Call)
6894 if Present (Last_Extra) and then Present (Extra_Formal (Last_Extra)) then
6895 return;
6896 end if;
6898 -- If the subprogram is a predefined dispatching subprogram then don't
6899 -- generate any extra constrained or accessibility level formals. In
6900 -- general we suppress these for internal subprograms (by not calling
6901 -- Freeze_Subprogram and Create_Extra_Formals at all), but internally
6902 -- generated stream attributes do get passed through because extra
6903 -- build-in-place formals are needed in some cases (limited 'Input).
6905 if Is_Predefined_Internal_Operation (E) then
6906 goto Test_For_Func_Result_Extras;
6907 end if;
6909 Formal := First_Formal (E);
6910 while Present (Formal) loop
6912 -- Create extra formal for supporting the attribute 'Constrained.
6913 -- The case of a private type view without discriminants also
6914 -- requires the extra formal if the underlying type has defaulted
6915 -- discriminants.
6917 if Ekind (Formal) /= E_In_Parameter then
6918 if Present (P_Formal) then
6919 Formal_Type := Etype (P_Formal);
6920 else
6921 Formal_Type := Etype (Formal);
6922 end if;
6924 -- Do not produce extra formals for Unchecked_Union parameters.
6925 -- Jump directly to the end of the loop.
6927 if Is_Unchecked_Union (Base_Type (Formal_Type)) then
6928 goto Skip_Extra_Formal_Generation;
6929 end if;
6931 if not Has_Discriminants (Formal_Type)
6932 and then Ekind (Formal_Type) in Private_Kind
6933 and then Present (Underlying_Type (Formal_Type))
6934 then
6935 Formal_Type := Underlying_Type (Formal_Type);
6936 end if;
6938 -- Suppress the extra formal if formal's subtype is constrained or
6939 -- indefinite, or we're compiling for Ada 2012 and the underlying
6940 -- type is tagged and limited. In Ada 2012, a limited tagged type
6941 -- can have defaulted discriminants, but 'Constrained is required
6942 -- to return True, so the formal is never needed (see AI05-0214).
6943 -- Note that this ensures consistency of calling sequences for
6944 -- dispatching operations when some types in a class have defaults
6945 -- on discriminants and others do not (and requiring the extra
6946 -- formal would introduce distributed overhead).
6948 -- If the type does not have a completion yet, treat as prior to
6949 -- Ada 2012 for consistency.
6951 if Has_Discriminants (Formal_Type)
6952 and then not Is_Constrained (Formal_Type)
6953 and then Is_Definite_Subtype (Formal_Type)
6954 and then (Ada_Version < Ada_2012
6955 or else No (Underlying_Type (Formal_Type))
6956 or else not
6957 (Is_Limited_Type (Formal_Type)
6958 and then
6959 (Is_Tagged_Type
6960 (Underlying_Type (Formal_Type)))))
6961 then
6962 Set_Extra_Constrained
6963 (Formal, Add_Extra_Formal (Formal, Standard_Boolean, E, "O"));
6964 end if;
6965 end if;
6967 -- Create extra formal for supporting accessibility checking. This
6968 -- is done for both anonymous access formals and formals of named
6969 -- access types that are marked as controlling formals. The latter
6970 -- case can occur when Expand_Dispatching_Call creates a subprogram
6971 -- type and substitutes the types of access-to-class-wide actuals
6972 -- for the anonymous access-to-specific-type of controlling formals.
6973 -- Base_Type is applied because in cases where there is a null
6974 -- exclusion the formal may have an access subtype.
6976 -- This is suppressed if we specifically suppress accessibility
6977 -- checks at the package level for either the subprogram, or the
6978 -- package in which it resides. However, we do not suppress it
6979 -- simply if the scope has accessibility checks suppressed, since
6980 -- this could cause trouble when clients are compiled with a
6981 -- different suppression setting. The explicit checks at the
6982 -- package level are safe from this point of view.
6984 if (Ekind (Base_Type (Etype (Formal))) = E_Anonymous_Access_Type
6985 or else (Is_Controlling_Formal (Formal)
6986 and then Is_Access_Type (Base_Type (Etype (Formal)))))
6987 and then not
6988 (Explicit_Suppress (E, Accessibility_Check)
6989 or else
6990 Explicit_Suppress (Scope (E), Accessibility_Check))
6991 and then
6992 (No (P_Formal)
6993 or else Present (Extra_Accessibility (P_Formal)))
6994 then
6995 Set_Extra_Accessibility
6996 (Formal, Add_Extra_Formal (Formal, Standard_Natural, E, "L"));
6997 end if;
6999 -- This label is required when skipping extra formal generation for
7000 -- Unchecked_Union parameters.
7002 <<Skip_Extra_Formal_Generation>>
7004 if Present (P_Formal) then
7005 Next_Formal (P_Formal);
7006 end if;
7008 Next_Formal (Formal);
7009 end loop;
7011 <<Test_For_Func_Result_Extras>>
7013 -- Ada 2012 (AI05-234): "the accessibility level of the result of a
7014 -- function call is ... determined by the point of call ...".
7016 if Needs_Result_Accessibility_Level (E) then
7017 Set_Extra_Accessibility_Of_Result
7018 (E, Add_Extra_Formal (E, Standard_Natural, E, "L"));
7019 end if;
7021 -- Ada 2005 (AI-318-02): In the case of build-in-place functions, add
7022 -- appropriate extra formals. See type Exp_Ch6.BIP_Formal_Kind.
7024 if Ada_Version >= Ada_2005 and then Is_Build_In_Place_Function (E) then
7025 declare
7026 Result_Subt : constant Entity_Id := Etype (E);
7027 Full_Subt : constant Entity_Id := Available_View (Result_Subt);
7028 Formal_Typ : Entity_Id;
7030 Discard : Entity_Id;
7031 pragma Warnings (Off, Discard);
7033 begin
7034 -- In the case of functions with unconstrained result subtypes,
7035 -- add a 4-state formal indicating whether the return object is
7036 -- allocated by the caller (1), or should be allocated by the
7037 -- callee on the secondary stack (2), in the global heap (3), or
7038 -- in a user-defined storage pool (4). For the moment we just use
7039 -- Natural for the type of this formal. Note that this formal
7040 -- isn't usually needed in the case where the result subtype is
7041 -- constrained, but it is needed when the function has a tagged
7042 -- result, because generally such functions can be called in a
7043 -- dispatching context and such calls must be handled like calls
7044 -- to a class-wide function.
7046 if Needs_BIP_Alloc_Form (E) then
7047 Discard :=
7048 Add_Extra_Formal
7049 (E, Standard_Natural,
7050 E, BIP_Formal_Suffix (BIP_Alloc_Form));
7052 -- Add BIP_Storage_Pool, in case BIP_Alloc_Form indicates to
7053 -- use a user-defined pool. This formal is not added on
7054 -- ZFP as those targets do not support pools.
7056 if RTE_Available (RE_Root_Storage_Pool_Ptr) then
7057 Discard :=
7058 Add_Extra_Formal
7059 (E, RTE (RE_Root_Storage_Pool_Ptr),
7060 E, BIP_Formal_Suffix (BIP_Storage_Pool));
7061 end if;
7062 end if;
7064 -- In the case of functions whose result type needs finalization,
7065 -- add an extra formal which represents the finalization master.
7067 if Needs_BIP_Finalization_Master (E) then
7068 Discard :=
7069 Add_Extra_Formal
7070 (E, RTE (RE_Finalization_Master_Ptr),
7071 E, BIP_Formal_Suffix (BIP_Finalization_Master));
7072 end if;
7074 -- When the result type contains tasks, add two extra formals: the
7075 -- master of the tasks to be created, and the caller's activation
7076 -- chain.
7078 if Has_Task (Full_Subt) then
7079 Discard :=
7080 Add_Extra_Formal
7081 (E, RTE (RE_Master_Id),
7082 E, BIP_Formal_Suffix (BIP_Task_Master));
7083 Discard :=
7084 Add_Extra_Formal
7085 (E, RTE (RE_Activation_Chain_Access),
7086 E, BIP_Formal_Suffix (BIP_Activation_Chain));
7087 end if;
7089 -- All build-in-place functions get an extra formal that will be
7090 -- passed the address of the return object within the caller.
7092 Formal_Typ :=
7093 Create_Itype (E_Anonymous_Access_Type, E, Scope_Id => Scope (E));
7095 Set_Directly_Designated_Type (Formal_Typ, Result_Subt);
7096 Set_Etype (Formal_Typ, Formal_Typ);
7097 Set_Depends_On_Private
7098 (Formal_Typ, Has_Private_Component (Formal_Typ));
7099 Set_Is_Public (Formal_Typ, Is_Public (Scope (Formal_Typ)));
7100 Set_Is_Access_Constant (Formal_Typ, False);
7102 -- Ada 2005 (AI-50217): Propagate the attribute that indicates
7103 -- the designated type comes from the limited view (for back-end
7104 -- purposes).
7106 Set_From_Limited_With
7107 (Formal_Typ, From_Limited_With (Result_Subt));
7109 Layout_Type (Formal_Typ);
7111 Discard :=
7112 Add_Extra_Formal
7113 (E, Formal_Typ, E, BIP_Formal_Suffix (BIP_Object_Access));
7114 end;
7115 end if;
7116 end Create_Extra_Formals;
7118 -----------------------------
7119 -- Enter_Overloaded_Entity --
7120 -----------------------------
7122 procedure Enter_Overloaded_Entity (S : Entity_Id) is
7123 E : Entity_Id := Current_Entity_In_Scope (S);
7124 C_E : Entity_Id := Current_Entity (S);
7126 begin
7127 if Present (E) then
7128 Set_Has_Homonym (E);
7129 Set_Has_Homonym (S);
7130 end if;
7132 Set_Is_Immediately_Visible (S);
7133 Set_Scope (S, Current_Scope);
7135 -- Chain new entity if front of homonym in current scope, so that
7136 -- homonyms are contiguous.
7138 if Present (E) and then E /= C_E then
7139 while Homonym (C_E) /= E loop
7140 C_E := Homonym (C_E);
7141 end loop;
7143 Set_Homonym (C_E, S);
7145 else
7146 E := C_E;
7147 Set_Current_Entity (S);
7148 end if;
7150 Set_Homonym (S, E);
7152 if Is_Inherited_Operation (S) then
7153 Append_Inherited_Subprogram (S);
7154 else
7155 Append_Entity (S, Current_Scope);
7156 end if;
7158 Set_Public_Status (S);
7160 if Debug_Flag_E then
7161 Write_Str ("New overloaded entity chain: ");
7162 Write_Name (Chars (S));
7164 E := S;
7165 while Present (E) loop
7166 Write_Str (" "); Write_Int (Int (E));
7167 E := Homonym (E);
7168 end loop;
7170 Write_Eol;
7171 end if;
7173 -- Generate warning for hiding
7175 if Warn_On_Hiding
7176 and then Comes_From_Source (S)
7177 and then In_Extended_Main_Source_Unit (S)
7178 then
7179 E := S;
7180 loop
7181 E := Homonym (E);
7182 exit when No (E);
7184 -- Warn unless genuine overloading. Do not emit warning on
7185 -- hiding predefined operators in Standard (these are either an
7186 -- (artifact of our implicit declarations, or simple noise) but
7187 -- keep warning on a operator defined on a local subtype, because
7188 -- of the real danger that different operators may be applied in
7189 -- various parts of the program.
7191 -- Note that if E and S have the same scope, there is never any
7192 -- hiding. Either the two conflict, and the program is illegal,
7193 -- or S is overriding an implicit inherited subprogram.
7195 if Scope (E) /= Scope (S)
7196 and then (not Is_Overloadable (E)
7197 or else Subtype_Conformant (E, S))
7198 and then (Is_Immediately_Visible (E)
7199 or else
7200 Is_Potentially_Use_Visible (S))
7201 then
7202 if Scope (E) /= Standard_Standard then
7203 Error_Msg_Sloc := Sloc (E);
7204 Error_Msg_N ("declaration of & hides one #?h?", S);
7206 elsif Nkind (S) = N_Defining_Operator_Symbol
7207 and then
7208 Scope (Base_Type (Etype (First_Formal (S)))) /= Scope (S)
7209 then
7210 Error_Msg_N
7211 ("declaration of & hides predefined operator?h?", S);
7212 end if;
7213 end if;
7214 end loop;
7215 end if;
7216 end Enter_Overloaded_Entity;
7218 -----------------------------
7219 -- Check_Untagged_Equality --
7220 -----------------------------
7222 procedure Check_Untagged_Equality (Eq_Op : Entity_Id) is
7223 Typ : constant Entity_Id := Etype (First_Formal (Eq_Op));
7224 Decl : constant Node_Id := Unit_Declaration_Node (Eq_Op);
7225 Obj_Decl : Node_Id;
7227 begin
7228 -- This check applies only if we have a subprogram declaration with an
7229 -- untagged record type.
7231 if Nkind (Decl) /= N_Subprogram_Declaration
7232 or else not Is_Record_Type (Typ)
7233 or else Is_Tagged_Type (Typ)
7234 then
7235 return;
7236 end if;
7238 -- In Ada 2012 case, we will output errors or warnings depending on
7239 -- the setting of debug flag -gnatd.E.
7241 if Ada_Version >= Ada_2012 then
7242 Error_Msg_Warn := Debug_Flag_Dot_EE;
7244 -- In earlier versions of Ada, nothing to do unless we are warning on
7245 -- Ada 2012 incompatibilities (Warn_On_Ada_2012_Incompatibility set).
7247 else
7248 if not Warn_On_Ada_2012_Compatibility then
7249 return;
7250 end if;
7251 end if;
7253 -- Cases where the type has already been frozen
7255 if Is_Frozen (Typ) then
7257 -- If the type is not declared in a package, or if we are in the body
7258 -- of the package or in some other scope, the new operation is not
7259 -- primitive, and therefore legal, though suspicious. Should we
7260 -- generate a warning in this case ???
7262 if Ekind (Scope (Typ)) /= E_Package
7263 or else Scope (Typ) /= Current_Scope
7264 then
7265 return;
7267 -- If the type is a generic actual (sub)type, the operation is not
7268 -- primitive either because the base type is declared elsewhere.
7270 elsif Is_Generic_Actual_Type (Typ) then
7271 return;
7273 -- Here we have a definite error of declaration after freezing
7275 else
7276 if Ada_Version >= Ada_2012 then
7277 Error_Msg_NE
7278 ("equality operator must be declared before type & is "
7279 & "frozen (RM 4.5.2 (9.8)) (Ada 2012)<<", Eq_Op, Typ);
7281 -- In Ada 2012 mode with error turned to warning, output one
7282 -- more warning to warn that the equality operation may not
7283 -- compose. This is the consequence of ignoring the error.
7285 if Error_Msg_Warn then
7286 Error_Msg_N ("\equality operation may not compose??", Eq_Op);
7287 end if;
7289 else
7290 Error_Msg_NE
7291 ("equality operator must be declared before type& is "
7292 & "frozen (RM 4.5.2 (9.8)) (Ada 2012)?y?", Eq_Op, Typ);
7293 end if;
7295 -- If we are in the package body, we could just move the
7296 -- declaration to the package spec, so add a message saying that.
7298 if In_Package_Body (Scope (Typ)) then
7299 if Ada_Version >= Ada_2012 then
7300 Error_Msg_N
7301 ("\move declaration to package spec<<", Eq_Op);
7302 else
7303 Error_Msg_N
7304 ("\move declaration to package spec (Ada 2012)?y?", Eq_Op);
7305 end if;
7307 -- Otherwise try to find the freezing point
7309 else
7310 Obj_Decl := Next (Parent (Typ));
7311 while Present (Obj_Decl) and then Obj_Decl /= Decl loop
7312 if Nkind (Obj_Decl) = N_Object_Declaration
7313 and then Etype (Defining_Identifier (Obj_Decl)) = Typ
7314 then
7315 -- Freezing point, output warnings
7317 if Ada_Version >= Ada_2012 then
7318 Error_Msg_NE
7319 ("type& is frozen by declaration??", Obj_Decl, Typ);
7320 Error_Msg_N
7321 ("\an equality operator cannot be declared after "
7322 & "this point??",
7323 Obj_Decl);
7324 else
7325 Error_Msg_NE
7326 ("type& is frozen by declaration (Ada 2012)?y?",
7327 Obj_Decl, Typ);
7328 Error_Msg_N
7329 ("\an equality operator cannot be declared after "
7330 & "this point (Ada 2012)?y?",
7331 Obj_Decl);
7332 end if;
7334 exit;
7335 end if;
7337 Next (Obj_Decl);
7338 end loop;
7339 end if;
7340 end if;
7342 -- Here if type is not frozen yet. It is illegal to have a primitive
7343 -- equality declared in the private part if the type is visible.
7345 elsif not In_Same_List (Parent (Typ), Decl)
7346 and then not Is_Limited_Type (Typ)
7347 then
7348 -- Shouldn't we give an RM reference here???
7350 if Ada_Version >= Ada_2012 then
7351 Error_Msg_N
7352 ("equality operator appears too late<<", Eq_Op);
7353 else
7354 Error_Msg_N
7355 ("equality operator appears too late (Ada 2012)?y?", Eq_Op);
7356 end if;
7358 -- No error detected
7360 else
7361 return;
7362 end if;
7363 end Check_Untagged_Equality;
7365 -----------------------------
7366 -- Find_Corresponding_Spec --
7367 -----------------------------
7369 function Find_Corresponding_Spec
7370 (N : Node_Id;
7371 Post_Error : Boolean := True) return Entity_Id
7373 Spec : constant Node_Id := Specification (N);
7374 Designator : constant Entity_Id := Defining_Entity (Spec);
7376 E : Entity_Id;
7378 function Different_Generic_Profile (E : Entity_Id) return Boolean;
7379 -- Even if fully conformant, a body may depend on a generic actual when
7380 -- the spec does not, or vice versa, in which case they were distinct
7381 -- entities in the generic.
7383 -------------------------------
7384 -- Different_Generic_Profile --
7385 -------------------------------
7387 function Different_Generic_Profile (E : Entity_Id) return Boolean is
7388 F1, F2 : Entity_Id;
7390 function Same_Generic_Actual (T1, T2 : Entity_Id) return Boolean;
7391 -- Check that the types of corresponding formals have the same
7392 -- generic actual if any. We have to account for subtypes of a
7393 -- generic formal, declared between a spec and a body, which may
7394 -- appear distinct in an instance but matched in the generic, and
7395 -- the subtype may be used either in the spec or the body of the
7396 -- subprogram being checked.
7398 -------------------------
7399 -- Same_Generic_Actual --
7400 -------------------------
7402 function Same_Generic_Actual (T1, T2 : Entity_Id) return Boolean is
7404 function Is_Declared_Subtype (S1, S2 : Entity_Id) return Boolean;
7405 -- Predicate to check whether S1 is a subtype of S2 in the source
7406 -- of the instance.
7408 -------------------------
7409 -- Is_Declared_Subtype --
7410 -------------------------
7412 function Is_Declared_Subtype (S1, S2 : Entity_Id) return Boolean is
7413 begin
7414 return Comes_From_Source (Parent (S1))
7415 and then Nkind (Parent (S1)) = N_Subtype_Declaration
7416 and then Is_Entity_Name (Subtype_Indication (Parent (S1)))
7417 and then Entity (Subtype_Indication (Parent (S1))) = S2;
7418 end Is_Declared_Subtype;
7420 -- Start of processing for Same_Generic_Actual
7422 begin
7423 return Is_Generic_Actual_Type (T1) = Is_Generic_Actual_Type (T2)
7424 or else Is_Declared_Subtype (T1, T2)
7425 or else Is_Declared_Subtype (T2, T1);
7426 end Same_Generic_Actual;
7428 -- Start of processing for Different_Generic_Profile
7430 begin
7431 if not In_Instance then
7432 return False;
7434 elsif Ekind (E) = E_Function
7435 and then not Same_Generic_Actual (Etype (E), Etype (Designator))
7436 then
7437 return True;
7438 end if;
7440 F1 := First_Formal (Designator);
7441 F2 := First_Formal (E);
7442 while Present (F1) loop
7443 if not Same_Generic_Actual (Etype (F1), Etype (F2)) then
7444 return True;
7445 end if;
7447 Next_Formal (F1);
7448 Next_Formal (F2);
7449 end loop;
7451 return False;
7452 end Different_Generic_Profile;
7454 -- Start of processing for Find_Corresponding_Spec
7456 begin
7457 E := Current_Entity (Designator);
7458 while Present (E) loop
7460 -- We are looking for a matching spec. It must have the same scope,
7461 -- and the same name, and either be type conformant, or be the case
7462 -- of a library procedure spec and its body (which belong to one
7463 -- another regardless of whether they are type conformant or not).
7465 if Scope (E) = Current_Scope then
7466 if Current_Scope = Standard_Standard
7467 or else (Ekind (E) = Ekind (Designator)
7468 and then Type_Conformant (E, Designator))
7469 then
7470 -- Within an instantiation, we know that spec and body are
7471 -- subtype conformant, because they were subtype conformant in
7472 -- the generic. We choose the subtype-conformant entity here as
7473 -- well, to resolve spurious ambiguities in the instance that
7474 -- were not present in the generic (i.e. when two different
7475 -- types are given the same actual). If we are looking for a
7476 -- spec to match a body, full conformance is expected.
7478 if In_Instance then
7480 -- Inherit the convention and "ghostness" of the matching
7481 -- spec to ensure proper full and subtype conformance.
7483 Set_Convention (Designator, Convention (E));
7485 if Is_Ghost_Entity (E) then
7486 Set_Is_Ghost_Entity (Designator);
7487 end if;
7489 -- Skip past subprogram bodies and subprogram renamings that
7490 -- may appear to have a matching spec, but that aren't fully
7491 -- conformant with it. That can occur in cases where an
7492 -- actual type causes unrelated homographs in the instance.
7494 if Nkind_In (N, N_Subprogram_Body,
7495 N_Subprogram_Renaming_Declaration)
7496 and then Present (Homonym (E))
7497 and then not Fully_Conformant (Designator, E)
7498 then
7499 goto Next_Entity;
7501 elsif not Subtype_Conformant (Designator, E) then
7502 goto Next_Entity;
7504 elsif Different_Generic_Profile (E) then
7505 goto Next_Entity;
7506 end if;
7507 end if;
7509 -- Ada 2012 (AI05-0165): For internally generated bodies of
7510 -- null procedures locate the internally generated spec. We
7511 -- enforce mode conformance since a tagged type may inherit
7512 -- from interfaces several null primitives which differ only
7513 -- in the mode of the formals.
7515 if not (Comes_From_Source (E))
7516 and then Is_Null_Procedure (E)
7517 and then not Mode_Conformant (Designator, E)
7518 then
7519 null;
7521 -- For null procedures coming from source that are completions,
7522 -- analysis of the generated body will establish the link.
7524 elsif Comes_From_Source (E)
7525 and then Nkind (Spec) = N_Procedure_Specification
7526 and then Null_Present (Spec)
7527 then
7528 return E;
7530 -- Expression functions can be completions, but cannot be
7531 -- completed by an explicit body.
7533 elsif Comes_From_Source (E)
7534 and then Comes_From_Source (N)
7535 and then Nkind (N) = N_Subprogram_Body
7536 and then Nkind (Original_Node (Unit_Declaration_Node (E))) =
7537 N_Expression_Function
7538 then
7539 Error_Msg_Sloc := Sloc (E);
7540 Error_Msg_N ("body conflicts with expression function#", N);
7541 return Empty;
7543 elsif not Has_Completion (E) then
7544 if Nkind (N) /= N_Subprogram_Body_Stub then
7545 Set_Corresponding_Spec (N, E);
7546 end if;
7548 Set_Has_Completion (E);
7549 return E;
7551 elsif Nkind (Parent (N)) = N_Subunit then
7553 -- If this is the proper body of a subunit, the completion
7554 -- flag is set when analyzing the stub.
7556 return E;
7558 -- If E is an internal function with a controlling result that
7559 -- was created for an operation inherited by a null extension,
7560 -- it may be overridden by a body without a previous spec (one
7561 -- more reason why these should be shunned). In that case we
7562 -- remove the generated body if present, because the current
7563 -- one is the explicit overriding.
7565 elsif Ekind (E) = E_Function
7566 and then Ada_Version >= Ada_2005
7567 and then not Comes_From_Source (E)
7568 and then Has_Controlling_Result (E)
7569 and then Is_Null_Extension (Etype (E))
7570 and then Comes_From_Source (Spec)
7571 then
7572 Set_Has_Completion (E, False);
7574 if Expander_Active
7575 and then Nkind (Parent (E)) = N_Function_Specification
7576 then
7577 Remove
7578 (Unit_Declaration_Node
7579 (Corresponding_Body (Unit_Declaration_Node (E))));
7581 return E;
7583 -- If expansion is disabled, or if the wrapper function has
7584 -- not been generated yet, this a late body overriding an
7585 -- inherited operation, or it is an overriding by some other
7586 -- declaration before the controlling result is frozen. In
7587 -- either case this is a declaration of a new entity.
7589 else
7590 return Empty;
7591 end if;
7593 -- If the body already exists, then this is an error unless
7594 -- the previous declaration is the implicit declaration of a
7595 -- derived subprogram. It is also legal for an instance to
7596 -- contain type conformant overloadable declarations (but the
7597 -- generic declaration may not), per 8.3(26/2).
7599 elsif No (Alias (E))
7600 and then not Is_Intrinsic_Subprogram (E)
7601 and then not In_Instance
7602 and then Post_Error
7603 then
7604 Error_Msg_Sloc := Sloc (E);
7606 if Is_Imported (E) then
7607 Error_Msg_NE
7608 ("body not allowed for imported subprogram & declared#",
7609 N, E);
7610 else
7611 Error_Msg_NE ("duplicate body for & declared#", N, E);
7612 end if;
7613 end if;
7615 -- Child units cannot be overloaded, so a conformance mismatch
7616 -- between body and a previous spec is an error.
7618 elsif Is_Child_Unit (E)
7619 and then
7620 Nkind (Unit_Declaration_Node (Designator)) = N_Subprogram_Body
7621 and then
7622 Nkind (Parent (Unit_Declaration_Node (Designator))) =
7623 N_Compilation_Unit
7624 and then Post_Error
7625 then
7626 Error_Msg_N
7627 ("body of child unit does not match previous declaration", N);
7628 end if;
7629 end if;
7631 <<Next_Entity>>
7632 E := Homonym (E);
7633 end loop;
7635 -- On exit, we know that no previous declaration of subprogram exists
7637 return Empty;
7638 end Find_Corresponding_Spec;
7640 ----------------------
7641 -- Fully_Conformant --
7642 ----------------------
7644 function Fully_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
7645 Result : Boolean;
7646 begin
7647 Check_Conformance (New_Id, Old_Id, Fully_Conformant, False, Result);
7648 return Result;
7649 end Fully_Conformant;
7651 ----------------------------------
7652 -- Fully_Conformant_Expressions --
7653 ----------------------------------
7655 function Fully_Conformant_Expressions
7656 (Given_E1 : Node_Id;
7657 Given_E2 : Node_Id) return Boolean
7659 E1 : constant Node_Id := Original_Node (Given_E1);
7660 E2 : constant Node_Id := Original_Node (Given_E2);
7661 -- We always test conformance on original nodes, since it is possible
7662 -- for analysis and/or expansion to make things look as though they
7663 -- conform when they do not, e.g. by converting 1+2 into 3.
7665 function FCE (Given_E1, Given_E2 : Node_Id) return Boolean
7666 renames Fully_Conformant_Expressions;
7668 function FCL (L1, L2 : List_Id) return Boolean;
7669 -- Compare elements of two lists for conformance. Elements have to be
7670 -- conformant, and actuals inserted as default parameters do not match
7671 -- explicit actuals with the same value.
7673 function FCO (Op_Node, Call_Node : Node_Id) return Boolean;
7674 -- Compare an operator node with a function call
7676 ---------
7677 -- FCL --
7678 ---------
7680 function FCL (L1, L2 : List_Id) return Boolean is
7681 N1, N2 : Node_Id;
7683 begin
7684 if L1 = No_List then
7685 N1 := Empty;
7686 else
7687 N1 := First (L1);
7688 end if;
7690 if L2 = No_List then
7691 N2 := Empty;
7692 else
7693 N2 := First (L2);
7694 end if;
7696 -- Compare two lists, skipping rewrite insertions (we want to compare
7697 -- the original trees, not the expanded versions).
7699 loop
7700 if Is_Rewrite_Insertion (N1) then
7701 Next (N1);
7702 elsif Is_Rewrite_Insertion (N2) then
7703 Next (N2);
7704 elsif No (N1) then
7705 return No (N2);
7706 elsif No (N2) then
7707 return False;
7708 elsif not FCE (N1, N2) then
7709 return False;
7710 else
7711 Next (N1);
7712 Next (N2);
7713 end if;
7714 end loop;
7715 end FCL;
7717 ---------
7718 -- FCO --
7719 ---------
7721 function FCO (Op_Node, Call_Node : Node_Id) return Boolean is
7722 Actuals : constant List_Id := Parameter_Associations (Call_Node);
7723 Act : Node_Id;
7725 begin
7726 if No (Actuals)
7727 or else Entity (Op_Node) /= Entity (Name (Call_Node))
7728 then
7729 return False;
7731 else
7732 Act := First (Actuals);
7734 if Nkind (Op_Node) in N_Binary_Op then
7735 if not FCE (Left_Opnd (Op_Node), Act) then
7736 return False;
7737 end if;
7739 Next (Act);
7740 end if;
7742 return Present (Act)
7743 and then FCE (Right_Opnd (Op_Node), Act)
7744 and then No (Next (Act));
7745 end if;
7746 end FCO;
7748 -- Start of processing for Fully_Conformant_Expressions
7750 begin
7751 -- Non-conformant if paren count does not match. Note: if some idiot
7752 -- complains that we don't do this right for more than 3 levels of
7753 -- parentheses, they will be treated with the respect they deserve.
7755 if Paren_Count (E1) /= Paren_Count (E2) then
7756 return False;
7758 -- If same entities are referenced, then they are conformant even if
7759 -- they have different forms (RM 8.3.1(19-20)).
7761 elsif Is_Entity_Name (E1) and then Is_Entity_Name (E2) then
7762 if Present (Entity (E1)) then
7763 return Entity (E1) = Entity (E2)
7764 or else (Chars (Entity (E1)) = Chars (Entity (E2))
7765 and then Ekind (Entity (E1)) = E_Discriminant
7766 and then Ekind (Entity (E2)) = E_In_Parameter);
7768 elsif Nkind (E1) = N_Expanded_Name
7769 and then Nkind (E2) = N_Expanded_Name
7770 and then Nkind (Selector_Name (E1)) = N_Character_Literal
7771 and then Nkind (Selector_Name (E2)) = N_Character_Literal
7772 then
7773 return Chars (Selector_Name (E1)) = Chars (Selector_Name (E2));
7775 else
7776 -- Identifiers in component associations don't always have
7777 -- entities, but their names must conform.
7779 return Nkind (E1) = N_Identifier
7780 and then Nkind (E2) = N_Identifier
7781 and then Chars (E1) = Chars (E2);
7782 end if;
7784 elsif Nkind (E1) = N_Character_Literal
7785 and then Nkind (E2) = N_Expanded_Name
7786 then
7787 return Nkind (Selector_Name (E2)) = N_Character_Literal
7788 and then Chars (E1) = Chars (Selector_Name (E2));
7790 elsif Nkind (E2) = N_Character_Literal
7791 and then Nkind (E1) = N_Expanded_Name
7792 then
7793 return Nkind (Selector_Name (E1)) = N_Character_Literal
7794 and then Chars (E2) = Chars (Selector_Name (E1));
7796 elsif Nkind (E1) in N_Op and then Nkind (E2) = N_Function_Call then
7797 return FCO (E1, E2);
7799 elsif Nkind (E2) in N_Op and then Nkind (E1) = N_Function_Call then
7800 return FCO (E2, E1);
7802 -- Otherwise we must have the same syntactic entity
7804 elsif Nkind (E1) /= Nkind (E2) then
7805 return False;
7807 -- At this point, we specialize by node type
7809 else
7810 case Nkind (E1) is
7812 when N_Aggregate =>
7813 return
7814 FCL (Expressions (E1), Expressions (E2))
7815 and then
7816 FCL (Component_Associations (E1),
7817 Component_Associations (E2));
7819 when N_Allocator =>
7820 if Nkind (Expression (E1)) = N_Qualified_Expression
7821 or else
7822 Nkind (Expression (E2)) = N_Qualified_Expression
7823 then
7824 return FCE (Expression (E1), Expression (E2));
7826 -- Check that the subtype marks and any constraints
7827 -- are conformant
7829 else
7830 declare
7831 Indic1 : constant Node_Id := Expression (E1);
7832 Indic2 : constant Node_Id := Expression (E2);
7833 Elt1 : Node_Id;
7834 Elt2 : Node_Id;
7836 begin
7837 if Nkind (Indic1) /= N_Subtype_Indication then
7838 return
7839 Nkind (Indic2) /= N_Subtype_Indication
7840 and then Entity (Indic1) = Entity (Indic2);
7842 elsif Nkind (Indic2) /= N_Subtype_Indication then
7843 return
7844 Nkind (Indic1) /= N_Subtype_Indication
7845 and then Entity (Indic1) = Entity (Indic2);
7847 else
7848 if Entity (Subtype_Mark (Indic1)) /=
7849 Entity (Subtype_Mark (Indic2))
7850 then
7851 return False;
7852 end if;
7854 Elt1 := First (Constraints (Constraint (Indic1)));
7855 Elt2 := First (Constraints (Constraint (Indic2)));
7856 while Present (Elt1) and then Present (Elt2) loop
7857 if not FCE (Elt1, Elt2) then
7858 return False;
7859 end if;
7861 Next (Elt1);
7862 Next (Elt2);
7863 end loop;
7865 return True;
7866 end if;
7867 end;
7868 end if;
7870 when N_Attribute_Reference =>
7871 return
7872 Attribute_Name (E1) = Attribute_Name (E2)
7873 and then FCL (Expressions (E1), Expressions (E2));
7875 when N_Binary_Op =>
7876 return
7877 Entity (E1) = Entity (E2)
7878 and then FCE (Left_Opnd (E1), Left_Opnd (E2))
7879 and then FCE (Right_Opnd (E1), Right_Opnd (E2));
7881 when N_Short_Circuit | N_Membership_Test =>
7882 return
7883 FCE (Left_Opnd (E1), Left_Opnd (E2))
7884 and then
7885 FCE (Right_Opnd (E1), Right_Opnd (E2));
7887 when N_Case_Expression =>
7888 declare
7889 Alt1 : Node_Id;
7890 Alt2 : Node_Id;
7892 begin
7893 if not FCE (Expression (E1), Expression (E2)) then
7894 return False;
7896 else
7897 Alt1 := First (Alternatives (E1));
7898 Alt2 := First (Alternatives (E2));
7899 loop
7900 if Present (Alt1) /= Present (Alt2) then
7901 return False;
7902 elsif No (Alt1) then
7903 return True;
7904 end if;
7906 if not FCE (Expression (Alt1), Expression (Alt2))
7907 or else not FCL (Discrete_Choices (Alt1),
7908 Discrete_Choices (Alt2))
7909 then
7910 return False;
7911 end if;
7913 Next (Alt1);
7914 Next (Alt2);
7915 end loop;
7916 end if;
7917 end;
7919 when N_Character_Literal =>
7920 return
7921 Char_Literal_Value (E1) = Char_Literal_Value (E2);
7923 when N_Component_Association =>
7924 return
7925 FCL (Choices (E1), Choices (E2))
7926 and then
7927 FCE (Expression (E1), Expression (E2));
7929 when N_Explicit_Dereference =>
7930 return
7931 FCE (Prefix (E1), Prefix (E2));
7933 when N_Extension_Aggregate =>
7934 return
7935 FCL (Expressions (E1), Expressions (E2))
7936 and then Null_Record_Present (E1) =
7937 Null_Record_Present (E2)
7938 and then FCL (Component_Associations (E1),
7939 Component_Associations (E2));
7941 when N_Function_Call =>
7942 return
7943 FCE (Name (E1), Name (E2))
7944 and then
7945 FCL (Parameter_Associations (E1),
7946 Parameter_Associations (E2));
7948 when N_If_Expression =>
7949 return
7950 FCL (Expressions (E1), Expressions (E2));
7952 when N_Indexed_Component =>
7953 return
7954 FCE (Prefix (E1), Prefix (E2))
7955 and then
7956 FCL (Expressions (E1), Expressions (E2));
7958 when N_Integer_Literal =>
7959 return (Intval (E1) = Intval (E2));
7961 when N_Null =>
7962 return True;
7964 when N_Operator_Symbol =>
7965 return
7966 Chars (E1) = Chars (E2);
7968 when N_Others_Choice =>
7969 return True;
7971 when N_Parameter_Association =>
7972 return
7973 Chars (Selector_Name (E1)) = Chars (Selector_Name (E2))
7974 and then FCE (Explicit_Actual_Parameter (E1),
7975 Explicit_Actual_Parameter (E2));
7977 when N_Qualified_Expression =>
7978 return
7979 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
7980 and then
7981 FCE (Expression (E1), Expression (E2));
7983 when N_Quantified_Expression =>
7984 if not FCE (Condition (E1), Condition (E2)) then
7985 return False;
7986 end if;
7988 if Present (Loop_Parameter_Specification (E1))
7989 and then Present (Loop_Parameter_Specification (E2))
7990 then
7991 declare
7992 L1 : constant Node_Id :=
7993 Loop_Parameter_Specification (E1);
7994 L2 : constant Node_Id :=
7995 Loop_Parameter_Specification (E2);
7997 begin
7998 return
7999 Reverse_Present (L1) = Reverse_Present (L2)
8000 and then
8001 FCE (Defining_Identifier (L1),
8002 Defining_Identifier (L2))
8003 and then
8004 FCE (Discrete_Subtype_Definition (L1),
8005 Discrete_Subtype_Definition (L2));
8006 end;
8008 elsif Present (Iterator_Specification (E1))
8009 and then Present (Iterator_Specification (E2))
8010 then
8011 declare
8012 I1 : constant Node_Id := Iterator_Specification (E1);
8013 I2 : constant Node_Id := Iterator_Specification (E2);
8015 begin
8016 return
8017 FCE (Defining_Identifier (I1),
8018 Defining_Identifier (I2))
8019 and then
8020 Of_Present (I1) = Of_Present (I2)
8021 and then
8022 Reverse_Present (I1) = Reverse_Present (I2)
8023 and then FCE (Name (I1), Name (I2))
8024 and then FCE (Subtype_Indication (I1),
8025 Subtype_Indication (I2));
8026 end;
8028 -- The quantified expressions used different specifications to
8029 -- walk their respective ranges.
8031 else
8032 return False;
8033 end if;
8035 when N_Range =>
8036 return
8037 FCE (Low_Bound (E1), Low_Bound (E2))
8038 and then
8039 FCE (High_Bound (E1), High_Bound (E2));
8041 when N_Real_Literal =>
8042 return (Realval (E1) = Realval (E2));
8044 when N_Selected_Component =>
8045 return
8046 FCE (Prefix (E1), Prefix (E2))
8047 and then
8048 FCE (Selector_Name (E1), Selector_Name (E2));
8050 when N_Slice =>
8051 return
8052 FCE (Prefix (E1), Prefix (E2))
8053 and then
8054 FCE (Discrete_Range (E1), Discrete_Range (E2));
8056 when N_String_Literal =>
8057 declare
8058 S1 : constant String_Id := Strval (E1);
8059 S2 : constant String_Id := Strval (E2);
8060 L1 : constant Nat := String_Length (S1);
8061 L2 : constant Nat := String_Length (S2);
8063 begin
8064 if L1 /= L2 then
8065 return False;
8067 else
8068 for J in 1 .. L1 loop
8069 if Get_String_Char (S1, J) /=
8070 Get_String_Char (S2, J)
8071 then
8072 return False;
8073 end if;
8074 end loop;
8076 return True;
8077 end if;
8078 end;
8080 when N_Type_Conversion =>
8081 return
8082 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
8083 and then
8084 FCE (Expression (E1), Expression (E2));
8086 when N_Unary_Op =>
8087 return
8088 Entity (E1) = Entity (E2)
8089 and then
8090 FCE (Right_Opnd (E1), Right_Opnd (E2));
8092 when N_Unchecked_Type_Conversion =>
8093 return
8094 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
8095 and then
8096 FCE (Expression (E1), Expression (E2));
8098 -- All other node types cannot appear in this context. Strictly
8099 -- we should raise a fatal internal error. Instead we just ignore
8100 -- the nodes. This means that if anyone makes a mistake in the
8101 -- expander and mucks an expression tree irretrievably, the result
8102 -- will be a failure to detect a (probably very obscure) case
8103 -- of non-conformance, which is better than bombing on some
8104 -- case where two expressions do in fact conform.
8106 when others =>
8107 return True;
8109 end case;
8110 end if;
8111 end Fully_Conformant_Expressions;
8113 ----------------------------------------
8114 -- Fully_Conformant_Discrete_Subtypes --
8115 ----------------------------------------
8117 function Fully_Conformant_Discrete_Subtypes
8118 (Given_S1 : Node_Id;
8119 Given_S2 : Node_Id) return Boolean
8121 S1 : constant Node_Id := Original_Node (Given_S1);
8122 S2 : constant Node_Id := Original_Node (Given_S2);
8124 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean;
8125 -- Special-case for a bound given by a discriminant, which in the body
8126 -- is replaced with the discriminal of the enclosing type.
8128 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean;
8129 -- Check both bounds
8131 -----------------------
8132 -- Conforming_Bounds --
8133 -----------------------
8135 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean is
8136 begin
8137 if Is_Entity_Name (B1)
8138 and then Is_Entity_Name (B2)
8139 and then Ekind (Entity (B1)) = E_Discriminant
8140 then
8141 return Chars (B1) = Chars (B2);
8143 else
8144 return Fully_Conformant_Expressions (B1, B2);
8145 end if;
8146 end Conforming_Bounds;
8148 -----------------------
8149 -- Conforming_Ranges --
8150 -----------------------
8152 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean is
8153 begin
8154 return
8155 Conforming_Bounds (Low_Bound (R1), Low_Bound (R2))
8156 and then
8157 Conforming_Bounds (High_Bound (R1), High_Bound (R2));
8158 end Conforming_Ranges;
8160 -- Start of processing for Fully_Conformant_Discrete_Subtypes
8162 begin
8163 if Nkind (S1) /= Nkind (S2) then
8164 return False;
8166 elsif Is_Entity_Name (S1) then
8167 return Entity (S1) = Entity (S2);
8169 elsif Nkind (S1) = N_Range then
8170 return Conforming_Ranges (S1, S2);
8172 elsif Nkind (S1) = N_Subtype_Indication then
8173 return
8174 Entity (Subtype_Mark (S1)) = Entity (Subtype_Mark (S2))
8175 and then
8176 Conforming_Ranges
8177 (Range_Expression (Constraint (S1)),
8178 Range_Expression (Constraint (S2)));
8179 else
8180 return True;
8181 end if;
8182 end Fully_Conformant_Discrete_Subtypes;
8184 --------------------
8185 -- Install_Entity --
8186 --------------------
8188 procedure Install_Entity (E : Entity_Id) is
8189 Prev : constant Entity_Id := Current_Entity (E);
8190 begin
8191 Set_Is_Immediately_Visible (E);
8192 Set_Current_Entity (E);
8193 Set_Homonym (E, Prev);
8194 end Install_Entity;
8196 ---------------------
8197 -- Install_Formals --
8198 ---------------------
8200 procedure Install_Formals (Id : Entity_Id) is
8201 F : Entity_Id;
8202 begin
8203 F := First_Formal (Id);
8204 while Present (F) loop
8205 Install_Entity (F);
8206 Next_Formal (F);
8207 end loop;
8208 end Install_Formals;
8210 -----------------------------
8211 -- Is_Interface_Conformant --
8212 -----------------------------
8214 function Is_Interface_Conformant
8215 (Tagged_Type : Entity_Id;
8216 Iface_Prim : Entity_Id;
8217 Prim : Entity_Id) return Boolean
8219 -- The operation may in fact be an inherited (implicit) operation
8220 -- rather than the original interface primitive, so retrieve the
8221 -- ultimate ancestor.
8223 Iface : constant Entity_Id :=
8224 Find_Dispatching_Type (Ultimate_Alias (Iface_Prim));
8225 Typ : constant Entity_Id := Find_Dispatching_Type (Prim);
8227 function Controlling_Formal (Prim : Entity_Id) return Entity_Id;
8228 -- Return the controlling formal of Prim
8230 ------------------------
8231 -- Controlling_Formal --
8232 ------------------------
8234 function Controlling_Formal (Prim : Entity_Id) return Entity_Id is
8235 E : Entity_Id;
8237 begin
8238 E := First_Entity (Prim);
8239 while Present (E) loop
8240 if Is_Formal (E) and then Is_Controlling_Formal (E) then
8241 return E;
8242 end if;
8244 Next_Entity (E);
8245 end loop;
8247 return Empty;
8248 end Controlling_Formal;
8250 -- Local variables
8252 Iface_Ctrl_F : constant Entity_Id := Controlling_Formal (Iface_Prim);
8253 Prim_Ctrl_F : constant Entity_Id := Controlling_Formal (Prim);
8255 -- Start of processing for Is_Interface_Conformant
8257 begin
8258 pragma Assert (Is_Subprogram (Iface_Prim)
8259 and then Is_Subprogram (Prim)
8260 and then Is_Dispatching_Operation (Iface_Prim)
8261 and then Is_Dispatching_Operation (Prim));
8263 pragma Assert (Is_Interface (Iface)
8264 or else (Present (Alias (Iface_Prim))
8265 and then
8266 Is_Interface
8267 (Find_Dispatching_Type (Ultimate_Alias (Iface_Prim)))));
8269 if Prim = Iface_Prim
8270 or else not Is_Subprogram (Prim)
8271 or else Ekind (Prim) /= Ekind (Iface_Prim)
8272 or else not Is_Dispatching_Operation (Prim)
8273 or else Scope (Prim) /= Scope (Tagged_Type)
8274 or else No (Typ)
8275 or else Base_Type (Typ) /= Base_Type (Tagged_Type)
8276 or else not Primitive_Names_Match (Iface_Prim, Prim)
8277 then
8278 return False;
8280 -- The mode of the controlling formals must match
8282 elsif Present (Iface_Ctrl_F)
8283 and then Present (Prim_Ctrl_F)
8284 and then Ekind (Iface_Ctrl_F) /= Ekind (Prim_Ctrl_F)
8285 then
8286 return False;
8288 -- Case of a procedure, or a function whose result type matches the
8289 -- result type of the interface primitive, or a function that has no
8290 -- controlling result (I or access I).
8292 elsif Ekind (Iface_Prim) = E_Procedure
8293 or else Etype (Prim) = Etype (Iface_Prim)
8294 or else not Has_Controlling_Result (Prim)
8295 then
8296 return Type_Conformant
8297 (Iface_Prim, Prim, Skip_Controlling_Formals => True);
8299 -- Case of a function returning an interface, or an access to one. Check
8300 -- that the return types correspond.
8302 elsif Implements_Interface (Typ, Iface) then
8303 if (Ekind (Etype (Prim)) = E_Anonymous_Access_Type)
8305 (Ekind (Etype (Iface_Prim)) = E_Anonymous_Access_Type)
8306 then
8307 return False;
8308 else
8309 return
8310 Type_Conformant (Prim, Ultimate_Alias (Iface_Prim),
8311 Skip_Controlling_Formals => True);
8312 end if;
8314 else
8315 return False;
8316 end if;
8317 end Is_Interface_Conformant;
8319 ---------------------------------
8320 -- Is_Non_Overriding_Operation --
8321 ---------------------------------
8323 function Is_Non_Overriding_Operation
8324 (Prev_E : Entity_Id;
8325 New_E : Entity_Id) return Boolean
8327 Formal : Entity_Id;
8328 F_Typ : Entity_Id;
8329 G_Typ : Entity_Id := Empty;
8331 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id;
8332 -- If F_Type is a derived type associated with a generic actual subtype,
8333 -- then return its Generic_Parent_Type attribute, else return Empty.
8335 function Types_Correspond
8336 (P_Type : Entity_Id;
8337 N_Type : Entity_Id) return Boolean;
8338 -- Returns true if and only if the types (or designated types in the
8339 -- case of anonymous access types) are the same or N_Type is derived
8340 -- directly or indirectly from P_Type.
8342 -----------------------------
8343 -- Get_Generic_Parent_Type --
8344 -----------------------------
8346 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id is
8347 G_Typ : Entity_Id;
8348 Defn : Node_Id;
8349 Indic : Node_Id;
8351 begin
8352 if Is_Derived_Type (F_Typ)
8353 and then Nkind (Parent (F_Typ)) = N_Full_Type_Declaration
8354 then
8355 -- The tree must be traversed to determine the parent subtype in
8356 -- the generic unit, which unfortunately isn't always available
8357 -- via semantic attributes. ??? (Note: The use of Original_Node
8358 -- is needed for cases where a full derived type has been
8359 -- rewritten.)
8361 -- If the parent type is a scalar type, the derivation creates
8362 -- an anonymous base type for it, and the source type is its
8363 -- first subtype.
8365 if Is_Scalar_Type (F_Typ)
8366 and then not Comes_From_Source (F_Typ)
8367 then
8368 Defn :=
8369 Type_Definition
8370 (Original_Node (Parent (First_Subtype (F_Typ))));
8371 else
8372 Defn := Type_Definition (Original_Node (Parent (F_Typ)));
8373 end if;
8374 if Nkind (Defn) = N_Derived_Type_Definition then
8375 Indic := Subtype_Indication (Defn);
8377 if Nkind (Indic) = N_Subtype_Indication then
8378 G_Typ := Entity (Subtype_Mark (Indic));
8379 else
8380 G_Typ := Entity (Indic);
8381 end if;
8383 if Nkind (Parent (G_Typ)) = N_Subtype_Declaration
8384 and then Present (Generic_Parent_Type (Parent (G_Typ)))
8385 then
8386 return Generic_Parent_Type (Parent (G_Typ));
8387 end if;
8388 end if;
8389 end if;
8391 return Empty;
8392 end Get_Generic_Parent_Type;
8394 ----------------------
8395 -- Types_Correspond --
8396 ----------------------
8398 function Types_Correspond
8399 (P_Type : Entity_Id;
8400 N_Type : Entity_Id) return Boolean
8402 Prev_Type : Entity_Id := Base_Type (P_Type);
8403 New_Type : Entity_Id := Base_Type (N_Type);
8405 begin
8406 if Ekind (Prev_Type) = E_Anonymous_Access_Type then
8407 Prev_Type := Designated_Type (Prev_Type);
8408 end if;
8410 if Ekind (New_Type) = E_Anonymous_Access_Type then
8411 New_Type := Designated_Type (New_Type);
8412 end if;
8414 if Prev_Type = New_Type then
8415 return True;
8417 elsif not Is_Class_Wide_Type (New_Type) then
8418 while Etype (New_Type) /= New_Type loop
8419 New_Type := Etype (New_Type);
8421 if New_Type = Prev_Type then
8422 return True;
8423 end if;
8424 end loop;
8425 end if;
8426 return False;
8427 end Types_Correspond;
8429 -- Start of processing for Is_Non_Overriding_Operation
8431 begin
8432 -- In the case where both operations are implicit derived subprograms
8433 -- then neither overrides the other. This can only occur in certain
8434 -- obscure cases (e.g., derivation from homographs created in a generic
8435 -- instantiation).
8437 if Present (Alias (Prev_E)) and then Present (Alias (New_E)) then
8438 return True;
8440 elsif Ekind (Current_Scope) = E_Package
8441 and then Is_Generic_Instance (Current_Scope)
8442 and then In_Private_Part (Current_Scope)
8443 and then Comes_From_Source (New_E)
8444 then
8445 -- We examine the formals and result type of the inherited operation,
8446 -- to determine whether their type is derived from (the instance of)
8447 -- a generic type. The first such formal or result type is the one
8448 -- tested.
8450 Formal := First_Formal (Prev_E);
8451 while Present (Formal) loop
8452 F_Typ := Base_Type (Etype (Formal));
8454 if Ekind (F_Typ) = E_Anonymous_Access_Type then
8455 F_Typ := Designated_Type (F_Typ);
8456 end if;
8458 G_Typ := Get_Generic_Parent_Type (F_Typ);
8459 exit when Present (G_Typ);
8461 Next_Formal (Formal);
8462 end loop;
8464 if No (G_Typ) and then Ekind (Prev_E) = E_Function then
8465 G_Typ := Get_Generic_Parent_Type (Base_Type (Etype (Prev_E)));
8466 end if;
8468 if No (G_Typ) then
8469 return False;
8470 end if;
8472 -- If the generic type is a private type, then the original operation
8473 -- was not overriding in the generic, because there was no primitive
8474 -- operation to override.
8476 if Nkind (Parent (G_Typ)) = N_Formal_Type_Declaration
8477 and then Nkind (Formal_Type_Definition (Parent (G_Typ))) =
8478 N_Formal_Private_Type_Definition
8479 then
8480 return True;
8482 -- The generic parent type is the ancestor of a formal derived
8483 -- type declaration. We need to check whether it has a primitive
8484 -- operation that should be overridden by New_E in the generic.
8486 else
8487 declare
8488 P_Formal : Entity_Id;
8489 N_Formal : Entity_Id;
8490 P_Typ : Entity_Id;
8491 N_Typ : Entity_Id;
8492 P_Prim : Entity_Id;
8493 Prim_Elt : Elmt_Id := First_Elmt (Primitive_Operations (G_Typ));
8495 begin
8496 while Present (Prim_Elt) loop
8497 P_Prim := Node (Prim_Elt);
8499 if Chars (P_Prim) = Chars (New_E)
8500 and then Ekind (P_Prim) = Ekind (New_E)
8501 then
8502 P_Formal := First_Formal (P_Prim);
8503 N_Formal := First_Formal (New_E);
8504 while Present (P_Formal) and then Present (N_Formal) loop
8505 P_Typ := Etype (P_Formal);
8506 N_Typ := Etype (N_Formal);
8508 if not Types_Correspond (P_Typ, N_Typ) then
8509 exit;
8510 end if;
8512 Next_Entity (P_Formal);
8513 Next_Entity (N_Formal);
8514 end loop;
8516 -- Found a matching primitive operation belonging to the
8517 -- formal ancestor type, so the new subprogram is
8518 -- overriding.
8520 if No (P_Formal)
8521 and then No (N_Formal)
8522 and then (Ekind (New_E) /= E_Function
8523 or else
8524 Types_Correspond
8525 (Etype (P_Prim), Etype (New_E)))
8526 then
8527 return False;
8528 end if;
8529 end if;
8531 Next_Elmt (Prim_Elt);
8532 end loop;
8534 -- If no match found, then the new subprogram does not override
8535 -- in the generic (nor in the instance).
8537 -- If the type in question is not abstract, and the subprogram
8538 -- is, this will be an error if the new operation is in the
8539 -- private part of the instance. Emit a warning now, which will
8540 -- make the subsequent error message easier to understand.
8542 if not Is_Abstract_Type (F_Typ)
8543 and then Is_Abstract_Subprogram (Prev_E)
8544 and then In_Private_Part (Current_Scope)
8545 then
8546 Error_Msg_Node_2 := F_Typ;
8547 Error_Msg_NE
8548 ("private operation& in generic unit does not override "
8549 & "any primitive operation of& (RM 12.3 (18))??",
8550 New_E, New_E);
8551 end if;
8553 return True;
8554 end;
8555 end if;
8556 else
8557 return False;
8558 end if;
8559 end Is_Non_Overriding_Operation;
8561 -------------------------------------
8562 -- List_Inherited_Pre_Post_Aspects --
8563 -------------------------------------
8565 procedure List_Inherited_Pre_Post_Aspects (E : Entity_Id) is
8566 begin
8567 if Opt.List_Inherited_Aspects
8568 and then Is_Subprogram_Or_Generic_Subprogram (E)
8569 then
8570 declare
8571 Subps : constant Subprogram_List := Inherited_Subprograms (E);
8572 Items : Node_Id;
8573 Prag : Node_Id;
8575 begin
8576 for Index in Subps'Range loop
8577 Items := Contract (Subps (Index));
8579 if Present (Items) then
8580 Prag := Pre_Post_Conditions (Items);
8581 while Present (Prag) loop
8582 Error_Msg_Sloc := Sloc (Prag);
8584 if Class_Present (Prag)
8585 and then not Split_PPC (Prag)
8586 then
8587 if Pragma_Name (Prag) = Name_Precondition then
8588 Error_Msg_N
8589 ("info: & inherits `Pre''Class` aspect from "
8590 & "#?L?", E);
8591 else
8592 Error_Msg_N
8593 ("info: & inherits `Post''Class` aspect from "
8594 & "#?L?", E);
8595 end if;
8596 end if;
8598 Prag := Next_Pragma (Prag);
8599 end loop;
8600 end if;
8601 end loop;
8602 end;
8603 end if;
8604 end List_Inherited_Pre_Post_Aspects;
8606 ------------------------------
8607 -- Make_Inequality_Operator --
8608 ------------------------------
8610 -- S is the defining identifier of an equality operator. We build a
8611 -- subprogram declaration with the right signature. This operation is
8612 -- intrinsic, because it is always expanded as the negation of the
8613 -- call to the equality function.
8615 procedure Make_Inequality_Operator (S : Entity_Id) is
8616 Loc : constant Source_Ptr := Sloc (S);
8617 Decl : Node_Id;
8618 Formals : List_Id;
8619 Op_Name : Entity_Id;
8621 FF : constant Entity_Id := First_Formal (S);
8622 NF : constant Entity_Id := Next_Formal (FF);
8624 begin
8625 -- Check that equality was properly defined, ignore call if not
8627 if No (NF) then
8628 return;
8629 end if;
8631 declare
8632 A : constant Entity_Id :=
8633 Make_Defining_Identifier (Sloc (FF),
8634 Chars => Chars (FF));
8636 B : constant Entity_Id :=
8637 Make_Defining_Identifier (Sloc (NF),
8638 Chars => Chars (NF));
8640 begin
8641 Op_Name := Make_Defining_Operator_Symbol (Loc, Name_Op_Ne);
8643 Formals := New_List (
8644 Make_Parameter_Specification (Loc,
8645 Defining_Identifier => A,
8646 Parameter_Type =>
8647 New_Occurrence_Of (Etype (First_Formal (S)),
8648 Sloc (Etype (First_Formal (S))))),
8650 Make_Parameter_Specification (Loc,
8651 Defining_Identifier => B,
8652 Parameter_Type =>
8653 New_Occurrence_Of (Etype (Next_Formal (First_Formal (S))),
8654 Sloc (Etype (Next_Formal (First_Formal (S)))))));
8656 Decl :=
8657 Make_Subprogram_Declaration (Loc,
8658 Specification =>
8659 Make_Function_Specification (Loc,
8660 Defining_Unit_Name => Op_Name,
8661 Parameter_Specifications => Formals,
8662 Result_Definition =>
8663 New_Occurrence_Of (Standard_Boolean, Loc)));
8665 -- Insert inequality right after equality if it is explicit or after
8666 -- the derived type when implicit. These entities are created only
8667 -- for visibility purposes, and eventually replaced in the course
8668 -- of expansion, so they do not need to be attached to the tree and
8669 -- seen by the back-end. Keeping them internal also avoids spurious
8670 -- freezing problems. The declaration is inserted in the tree for
8671 -- analysis, and removed afterwards. If the equality operator comes
8672 -- from an explicit declaration, attach the inequality immediately
8673 -- after. Else the equality is inherited from a derived type
8674 -- declaration, so insert inequality after that declaration.
8676 if No (Alias (S)) then
8677 Insert_After (Unit_Declaration_Node (S), Decl);
8678 elsif Is_List_Member (Parent (S)) then
8679 Insert_After (Parent (S), Decl);
8680 else
8681 Insert_After (Parent (Etype (First_Formal (S))), Decl);
8682 end if;
8684 Mark_Rewrite_Insertion (Decl);
8685 Set_Is_Intrinsic_Subprogram (Op_Name);
8686 Analyze (Decl);
8687 Remove (Decl);
8688 Set_Has_Completion (Op_Name);
8689 Set_Corresponding_Equality (Op_Name, S);
8690 Set_Is_Abstract_Subprogram (Op_Name, Is_Abstract_Subprogram (S));
8691 end;
8692 end Make_Inequality_Operator;
8694 ----------------------
8695 -- May_Need_Actuals --
8696 ----------------------
8698 procedure May_Need_Actuals (Fun : Entity_Id) is
8699 F : Entity_Id;
8700 B : Boolean;
8702 begin
8703 F := First_Formal (Fun);
8704 B := True;
8705 while Present (F) loop
8706 if No (Default_Value (F)) then
8707 B := False;
8708 exit;
8709 end if;
8711 Next_Formal (F);
8712 end loop;
8714 Set_Needs_No_Actuals (Fun, B);
8715 end May_Need_Actuals;
8717 ---------------------
8718 -- Mode_Conformant --
8719 ---------------------
8721 function Mode_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
8722 Result : Boolean;
8723 begin
8724 Check_Conformance (New_Id, Old_Id, Mode_Conformant, False, Result);
8725 return Result;
8726 end Mode_Conformant;
8728 ---------------------------
8729 -- New_Overloaded_Entity --
8730 ---------------------------
8732 procedure New_Overloaded_Entity
8733 (S : Entity_Id;
8734 Derived_Type : Entity_Id := Empty)
8736 Overridden_Subp : Entity_Id := Empty;
8737 -- Set if the current scope has an operation that is type-conformant
8738 -- with S, and becomes hidden by S.
8740 Is_Primitive_Subp : Boolean;
8741 -- Set to True if the new subprogram is primitive
8743 E : Entity_Id;
8744 -- Entity that S overrides
8746 Prev_Vis : Entity_Id := Empty;
8747 -- Predecessor of E in Homonym chain
8749 procedure Check_For_Primitive_Subprogram
8750 (Is_Primitive : out Boolean;
8751 Is_Overriding : Boolean := False);
8752 -- If the subprogram being analyzed is a primitive operation of the type
8753 -- of a formal or result, set the Has_Primitive_Operations flag on the
8754 -- type, and set Is_Primitive to True (otherwise set to False). Set the
8755 -- corresponding flag on the entity itself for later use.
8757 procedure Check_Synchronized_Overriding
8758 (Def_Id : Entity_Id;
8759 Overridden_Subp : out Entity_Id);
8760 -- First determine if Def_Id is an entry or a subprogram either defined
8761 -- in the scope of a task or protected type, or is a primitive of such
8762 -- a type. Check whether Def_Id overrides a subprogram of an interface
8763 -- implemented by the synchronized type, return the overridden entity
8764 -- or Empty.
8766 function Is_Private_Declaration (E : Entity_Id) return Boolean;
8767 -- Check that E is declared in the private part of the current package,
8768 -- or in the package body, where it may hide a previous declaration.
8769 -- We can't use In_Private_Part by itself because this flag is also
8770 -- set when freezing entities, so we must examine the place of the
8771 -- declaration in the tree, and recognize wrapper packages as well.
8773 function Is_Overriding_Alias
8774 (Old_E : Entity_Id;
8775 New_E : Entity_Id) return Boolean;
8776 -- Check whether new subprogram and old subprogram are both inherited
8777 -- from subprograms that have distinct dispatch table entries. This can
8778 -- occur with derivations from instances with accidental homonyms. The
8779 -- function is conservative given that the converse is only true within
8780 -- instances that contain accidental overloadings.
8782 ------------------------------------
8783 -- Check_For_Primitive_Subprogram --
8784 ------------------------------------
8786 procedure Check_For_Primitive_Subprogram
8787 (Is_Primitive : out Boolean;
8788 Is_Overriding : Boolean := False)
8790 Formal : Entity_Id;
8791 F_Typ : Entity_Id;
8792 B_Typ : Entity_Id;
8794 function Visible_Part_Type (T : Entity_Id) return Boolean;
8795 -- Returns true if T is declared in the visible part of the current
8796 -- package scope; otherwise returns false. Assumes that T is declared
8797 -- in a package.
8799 procedure Check_Private_Overriding (T : Entity_Id);
8800 -- Checks that if a primitive abstract subprogram of a visible
8801 -- abstract type is declared in a private part, then it must override
8802 -- an abstract subprogram declared in the visible part. Also checks
8803 -- that if a primitive function with a controlling result is declared
8804 -- in a private part, then it must override a function declared in
8805 -- the visible part.
8807 ------------------------------
8808 -- Check_Private_Overriding --
8809 ------------------------------
8811 procedure Check_Private_Overriding (T : Entity_Id) is
8812 function Overrides_Private_Part_Op return Boolean;
8813 -- This detects the special case where the overriding subprogram
8814 -- is overriding a subprogram that was declared in the same
8815 -- private part. That case is illegal by 3.9.3(10).
8817 function Overrides_Visible_Function
8818 (Partial_View : Entity_Id) return Boolean;
8819 -- True if S overrides a function in the visible part. The
8820 -- overridden function could be explicitly or implicitly declared.
8822 -------------------------------
8823 -- Overrides_Private_Part_Op --
8824 -------------------------------
8826 function Overrides_Private_Part_Op return Boolean is
8827 Over_Decl : constant Node_Id :=
8828 Unit_Declaration_Node (Overridden_Operation (S));
8829 Subp_Decl : constant Node_Id := Unit_Declaration_Node (S);
8831 begin
8832 pragma Assert (Is_Overriding);
8833 pragma Assert
8834 (Nkind (Over_Decl) = N_Abstract_Subprogram_Declaration);
8835 pragma Assert
8836 (Nkind (Subp_Decl) = N_Abstract_Subprogram_Declaration);
8838 return In_Same_List (Over_Decl, Subp_Decl);
8839 end Overrides_Private_Part_Op;
8841 --------------------------------
8842 -- Overrides_Visible_Function --
8843 --------------------------------
8845 function Overrides_Visible_Function
8846 (Partial_View : Entity_Id) return Boolean
8848 begin
8849 if not Is_Overriding or else not Has_Homonym (S) then
8850 return False;
8851 end if;
8853 if not Present (Partial_View) then
8854 return True;
8855 end if;
8857 -- Search through all the homonyms H of S in the current
8858 -- package spec, and return True if we find one that matches.
8859 -- Note that Parent (H) will be the declaration of the
8860 -- partial view of T for a match.
8862 declare
8863 H : Entity_Id := S;
8864 begin
8865 loop
8866 H := Homonym (H);
8867 exit when not Present (H) or else Scope (H) /= Scope (S);
8869 if Nkind_In
8870 (Parent (H),
8871 N_Private_Extension_Declaration,
8872 N_Private_Type_Declaration)
8873 and then Defining_Identifier (Parent (H)) = Partial_View
8874 then
8875 return True;
8876 end if;
8877 end loop;
8878 end;
8880 return False;
8881 end Overrides_Visible_Function;
8883 -- Start of processing for Check_Private_Overriding
8885 begin
8886 if Is_Package_Or_Generic_Package (Current_Scope)
8887 and then In_Private_Part (Current_Scope)
8888 and then Visible_Part_Type (T)
8889 and then not In_Instance
8890 then
8891 if Is_Abstract_Type (T)
8892 and then Is_Abstract_Subprogram (S)
8893 and then (not Is_Overriding
8894 or else not Is_Abstract_Subprogram (E)
8895 or else Overrides_Private_Part_Op)
8896 then
8897 Error_Msg_N
8898 ("abstract subprograms must be visible (RM 3.9.3(10))!",
8901 elsif Ekind (S) = E_Function then
8902 declare
8903 Partial_View : constant Entity_Id :=
8904 Incomplete_Or_Partial_View (T);
8906 begin
8907 if not Overrides_Visible_Function (Partial_View) then
8909 -- Here, S is "function ... return T;" declared in
8910 -- the private part, not overriding some visible
8911 -- operation. That's illegal in the tagged case
8912 -- (but not if the private type is untagged).
8914 if ((Present (Partial_View)
8915 and then Is_Tagged_Type (Partial_View))
8916 or else (not Present (Partial_View)
8917 and then Is_Tagged_Type (T)))
8918 and then T = Base_Type (Etype (S))
8919 then
8920 Error_Msg_N
8921 ("private function with tagged result must"
8922 & " override visible-part function", S);
8923 Error_Msg_N
8924 ("\move subprogram to the visible part"
8925 & " (RM 3.9.3(10))", S);
8927 -- AI05-0073: extend this test to the case of a
8928 -- function with a controlling access result.
8930 elsif Ekind (Etype (S)) = E_Anonymous_Access_Type
8931 and then Is_Tagged_Type (Designated_Type (Etype (S)))
8932 and then
8933 not Is_Class_Wide_Type
8934 (Designated_Type (Etype (S)))
8935 and then Ada_Version >= Ada_2012
8936 then
8937 Error_Msg_N
8938 ("private function with controlling access "
8939 & "result must override visible-part function",
8941 Error_Msg_N
8942 ("\move subprogram to the visible part"
8943 & " (RM 3.9.3(10))", S);
8944 end if;
8945 end if;
8946 end;
8947 end if;
8948 end if;
8949 end Check_Private_Overriding;
8951 -----------------------
8952 -- Visible_Part_Type --
8953 -----------------------
8955 function Visible_Part_Type (T : Entity_Id) return Boolean is
8956 P : constant Node_Id := Unit_Declaration_Node (Scope (T));
8957 N : Node_Id;
8959 begin
8960 -- If the entity is a private type, then it must be declared in a
8961 -- visible part.
8963 if Ekind (T) in Private_Kind then
8964 return True;
8965 end if;
8967 -- Otherwise, we traverse the visible part looking for its
8968 -- corresponding declaration. We cannot use the declaration
8969 -- node directly because in the private part the entity of a
8970 -- private type is the one in the full view, which does not
8971 -- indicate that it is the completion of something visible.
8973 N := First (Visible_Declarations (Specification (P)));
8974 while Present (N) loop
8975 if Nkind (N) = N_Full_Type_Declaration
8976 and then Present (Defining_Identifier (N))
8977 and then T = Defining_Identifier (N)
8978 then
8979 return True;
8981 elsif Nkind_In (N, N_Private_Type_Declaration,
8982 N_Private_Extension_Declaration)
8983 and then Present (Defining_Identifier (N))
8984 and then T = Full_View (Defining_Identifier (N))
8985 then
8986 return True;
8987 end if;
8989 Next (N);
8990 end loop;
8992 return False;
8993 end Visible_Part_Type;
8995 -- Start of processing for Check_For_Primitive_Subprogram
8997 begin
8998 Is_Primitive := False;
9000 if not Comes_From_Source (S) then
9001 null;
9003 -- If subprogram is at library level, it is not primitive operation
9005 elsif Current_Scope = Standard_Standard then
9006 null;
9008 elsif (Is_Package_Or_Generic_Package (Current_Scope)
9009 and then not In_Package_Body (Current_Scope))
9010 or else Is_Overriding
9011 then
9012 -- For function, check return type
9014 if Ekind (S) = E_Function then
9015 if Ekind (Etype (S)) = E_Anonymous_Access_Type then
9016 F_Typ := Designated_Type (Etype (S));
9017 else
9018 F_Typ := Etype (S);
9019 end if;
9021 B_Typ := Base_Type (F_Typ);
9023 if Scope (B_Typ) = Current_Scope
9024 and then not Is_Class_Wide_Type (B_Typ)
9025 and then not Is_Generic_Type (B_Typ)
9026 then
9027 Is_Primitive := True;
9028 Set_Has_Primitive_Operations (B_Typ);
9029 Set_Is_Primitive (S);
9030 Check_Private_Overriding (B_Typ);
9032 -- The Ghost policy in effect at the point of declaration of
9033 -- a tagged type and a primitive operation must match
9034 -- (SPARK RM 6.9(16)).
9036 Check_Ghost_Primitive (S, B_Typ);
9037 end if;
9038 end if;
9040 -- For all subprograms, check formals
9042 Formal := First_Formal (S);
9043 while Present (Formal) loop
9044 if Ekind (Etype (Formal)) = E_Anonymous_Access_Type then
9045 F_Typ := Designated_Type (Etype (Formal));
9046 else
9047 F_Typ := Etype (Formal);
9048 end if;
9050 B_Typ := Base_Type (F_Typ);
9052 if Ekind (B_Typ) = E_Access_Subtype then
9053 B_Typ := Base_Type (B_Typ);
9054 end if;
9056 if Scope (B_Typ) = Current_Scope
9057 and then not Is_Class_Wide_Type (B_Typ)
9058 and then not Is_Generic_Type (B_Typ)
9059 then
9060 Is_Primitive := True;
9061 Set_Is_Primitive (S);
9062 Set_Has_Primitive_Operations (B_Typ);
9063 Check_Private_Overriding (B_Typ);
9065 -- The Ghost policy in effect at the point of declaration of
9066 -- a tagged type and a primitive operation must match
9067 -- (SPARK RM 6.9(16)).
9069 Check_Ghost_Primitive (S, B_Typ);
9070 end if;
9072 Next_Formal (Formal);
9073 end loop;
9075 -- Special case: An equality function can be redefined for a type
9076 -- occurring in a declarative part, and won't otherwise be treated as
9077 -- a primitive because it doesn't occur in a package spec and doesn't
9078 -- override an inherited subprogram. It's important that we mark it
9079 -- primitive so it can be returned by Collect_Primitive_Operations
9080 -- and be used in composing the equality operation of later types
9081 -- that have a component of the type.
9083 elsif Chars (S) = Name_Op_Eq
9084 and then Etype (S) = Standard_Boolean
9085 then
9086 B_Typ := Base_Type (Etype (First_Formal (S)));
9088 if Scope (B_Typ) = Current_Scope
9089 and then
9090 Base_Type (Etype (Next_Formal (First_Formal (S)))) = B_Typ
9091 and then not Is_Limited_Type (B_Typ)
9092 then
9093 Is_Primitive := True;
9094 Set_Is_Primitive (S);
9095 Set_Has_Primitive_Operations (B_Typ);
9096 Check_Private_Overriding (B_Typ);
9098 -- The Ghost policy in effect at the point of declaration of a
9099 -- tagged type and a primitive operation must match
9100 -- (SPARK RM 6.9(16)).
9102 Check_Ghost_Primitive (S, B_Typ);
9103 end if;
9104 end if;
9105 end Check_For_Primitive_Subprogram;
9107 -----------------------------------
9108 -- Check_Synchronized_Overriding --
9109 -----------------------------------
9111 procedure Check_Synchronized_Overriding
9112 (Def_Id : Entity_Id;
9113 Overridden_Subp : out Entity_Id)
9115 Ifaces_List : Elist_Id;
9116 In_Scope : Boolean;
9117 Typ : Entity_Id;
9119 function Matches_Prefixed_View_Profile
9120 (Prim_Params : List_Id;
9121 Iface_Params : List_Id) return Boolean;
9122 -- Determine whether a subprogram's parameter profile Prim_Params
9123 -- matches that of a potentially overridden interface subprogram
9124 -- Iface_Params. Also determine if the type of first parameter of
9125 -- Iface_Params is an implemented interface.
9127 -----------------------------------
9128 -- Matches_Prefixed_View_Profile --
9129 -----------------------------------
9131 function Matches_Prefixed_View_Profile
9132 (Prim_Params : List_Id;
9133 Iface_Params : List_Id) return Boolean
9135 Iface_Id : Entity_Id;
9136 Iface_Param : Node_Id;
9137 Iface_Typ : Entity_Id;
9138 Prim_Id : Entity_Id;
9139 Prim_Param : Node_Id;
9140 Prim_Typ : Entity_Id;
9142 function Is_Implemented
9143 (Ifaces_List : Elist_Id;
9144 Iface : Entity_Id) return Boolean;
9145 -- Determine if Iface is implemented by the current task or
9146 -- protected type.
9148 --------------------
9149 -- Is_Implemented --
9150 --------------------
9152 function Is_Implemented
9153 (Ifaces_List : Elist_Id;
9154 Iface : Entity_Id) return Boolean
9156 Iface_Elmt : Elmt_Id;
9158 begin
9159 Iface_Elmt := First_Elmt (Ifaces_List);
9160 while Present (Iface_Elmt) loop
9161 if Node (Iface_Elmt) = Iface then
9162 return True;
9163 end if;
9165 Next_Elmt (Iface_Elmt);
9166 end loop;
9168 return False;
9169 end Is_Implemented;
9171 -- Start of processing for Matches_Prefixed_View_Profile
9173 begin
9174 Iface_Param := First (Iface_Params);
9175 Iface_Typ := Etype (Defining_Identifier (Iface_Param));
9177 if Is_Access_Type (Iface_Typ) then
9178 Iface_Typ := Designated_Type (Iface_Typ);
9179 end if;
9181 Prim_Param := First (Prim_Params);
9183 -- The first parameter of the potentially overridden subprogram
9184 -- must be an interface implemented by Prim.
9186 if not Is_Interface (Iface_Typ)
9187 or else not Is_Implemented (Ifaces_List, Iface_Typ)
9188 then
9189 return False;
9190 end if;
9192 -- The checks on the object parameters are done, move onto the
9193 -- rest of the parameters.
9195 if not In_Scope then
9196 Prim_Param := Next (Prim_Param);
9197 end if;
9199 Iface_Param := Next (Iface_Param);
9200 while Present (Iface_Param) and then Present (Prim_Param) loop
9201 Iface_Id := Defining_Identifier (Iface_Param);
9202 Iface_Typ := Find_Parameter_Type (Iface_Param);
9204 Prim_Id := Defining_Identifier (Prim_Param);
9205 Prim_Typ := Find_Parameter_Type (Prim_Param);
9207 if Ekind (Iface_Typ) = E_Anonymous_Access_Type
9208 and then Ekind (Prim_Typ) = E_Anonymous_Access_Type
9209 and then Is_Concurrent_Type (Designated_Type (Prim_Typ))
9210 then
9211 Iface_Typ := Designated_Type (Iface_Typ);
9212 Prim_Typ := Designated_Type (Prim_Typ);
9213 end if;
9215 -- Case of multiple interface types inside a parameter profile
9217 -- (Obj_Param : in out Iface; ...; Param : Iface)
9219 -- If the interface type is implemented, then the matching type
9220 -- in the primitive should be the implementing record type.
9222 if Ekind (Iface_Typ) = E_Record_Type
9223 and then Is_Interface (Iface_Typ)
9224 and then Is_Implemented (Ifaces_List, Iface_Typ)
9225 then
9226 if Prim_Typ /= Typ then
9227 return False;
9228 end if;
9230 -- The two parameters must be both mode and subtype conformant
9232 elsif Ekind (Iface_Id) /= Ekind (Prim_Id)
9233 or else not
9234 Conforming_Types (Iface_Typ, Prim_Typ, Subtype_Conformant)
9235 then
9236 return False;
9237 end if;
9239 Next (Iface_Param);
9240 Next (Prim_Param);
9241 end loop;
9243 -- One of the two lists contains more parameters than the other
9245 if Present (Iface_Param) or else Present (Prim_Param) then
9246 return False;
9247 end if;
9249 return True;
9250 end Matches_Prefixed_View_Profile;
9252 -- Start of processing for Check_Synchronized_Overriding
9254 begin
9255 Overridden_Subp := Empty;
9257 -- Def_Id must be an entry or a subprogram. We should skip predefined
9258 -- primitives internally generated by the frontend; however at this
9259 -- stage predefined primitives are still not fully decorated. As a
9260 -- minor optimization we skip here internally generated subprograms.
9262 if (Ekind (Def_Id) /= E_Entry
9263 and then Ekind (Def_Id) /= E_Function
9264 and then Ekind (Def_Id) /= E_Procedure)
9265 or else not Comes_From_Source (Def_Id)
9266 then
9267 return;
9268 end if;
9270 -- Search for the concurrent declaration since it contains the list
9271 -- of all implemented interfaces. In this case, the subprogram is
9272 -- declared within the scope of a protected or a task type.
9274 if Present (Scope (Def_Id))
9275 and then Is_Concurrent_Type (Scope (Def_Id))
9276 and then not Is_Generic_Actual_Type (Scope (Def_Id))
9277 then
9278 Typ := Scope (Def_Id);
9279 In_Scope := True;
9281 -- The enclosing scope is not a synchronized type and the subprogram
9282 -- has no formals.
9284 elsif No (First_Formal (Def_Id)) then
9285 return;
9287 -- The subprogram has formals and hence it may be a primitive of a
9288 -- concurrent type.
9290 else
9291 Typ := Etype (First_Formal (Def_Id));
9293 if Is_Access_Type (Typ) then
9294 Typ := Directly_Designated_Type (Typ);
9295 end if;
9297 if Is_Concurrent_Type (Typ)
9298 and then not Is_Generic_Actual_Type (Typ)
9299 then
9300 In_Scope := False;
9302 -- This case occurs when the concurrent type is declared within
9303 -- a generic unit. As a result the corresponding record has been
9304 -- built and used as the type of the first formal, we just have
9305 -- to retrieve the corresponding concurrent type.
9307 elsif Is_Concurrent_Record_Type (Typ)
9308 and then not Is_Class_Wide_Type (Typ)
9309 and then Present (Corresponding_Concurrent_Type (Typ))
9310 then
9311 Typ := Corresponding_Concurrent_Type (Typ);
9312 In_Scope := False;
9314 else
9315 return;
9316 end if;
9317 end if;
9319 -- There is no overriding to check if is an inherited operation in a
9320 -- type derivation on for a generic actual.
9322 Collect_Interfaces (Typ, Ifaces_List);
9324 if Is_Empty_Elmt_List (Ifaces_List) then
9325 return;
9326 end if;
9328 -- Determine whether entry or subprogram Def_Id overrides a primitive
9329 -- operation that belongs to one of the interfaces in Ifaces_List.
9331 declare
9332 Candidate : Entity_Id := Empty;
9333 Hom : Entity_Id := Empty;
9334 Subp : Entity_Id := Empty;
9336 begin
9337 -- Traverse the homonym chain, looking for a potentially
9338 -- overridden subprogram that belongs to an implemented
9339 -- interface.
9341 Hom := Current_Entity_In_Scope (Def_Id);
9342 while Present (Hom) loop
9343 Subp := Hom;
9345 if Subp = Def_Id
9346 or else not Is_Overloadable (Subp)
9347 or else not Is_Primitive (Subp)
9348 or else not Is_Dispatching_Operation (Subp)
9349 or else not Present (Find_Dispatching_Type (Subp))
9350 or else not Is_Interface (Find_Dispatching_Type (Subp))
9351 then
9352 null;
9354 -- Entries and procedures can override abstract or null
9355 -- interface procedures.
9357 elsif (Ekind (Def_Id) = E_Procedure
9358 or else Ekind (Def_Id) = E_Entry)
9359 and then Ekind (Subp) = E_Procedure
9360 and then Matches_Prefixed_View_Profile
9361 (Parameter_Specifications (Parent (Def_Id)),
9362 Parameter_Specifications (Parent (Subp)))
9363 then
9364 Candidate := Subp;
9366 -- For an overridden subprogram Subp, check whether the mode
9367 -- of its first parameter is correct depending on the kind
9368 -- of synchronized type.
9370 declare
9371 Formal : constant Node_Id := First_Formal (Candidate);
9373 begin
9374 -- In order for an entry or a protected procedure to
9375 -- override, the first parameter of the overridden
9376 -- routine must be of mode "out", "in out" or
9377 -- access-to-variable.
9379 if Ekind_In (Candidate, E_Entry, E_Procedure)
9380 and then Is_Protected_Type (Typ)
9381 and then Ekind (Formal) /= E_In_Out_Parameter
9382 and then Ekind (Formal) /= E_Out_Parameter
9383 and then Nkind (Parameter_Type (Parent (Formal))) /=
9384 N_Access_Definition
9385 then
9386 null;
9388 -- All other cases are OK since a task entry or routine
9389 -- does not have a restriction on the mode of the first
9390 -- parameter of the overridden interface routine.
9392 else
9393 Overridden_Subp := Candidate;
9394 return;
9395 end if;
9396 end;
9398 -- Functions can override abstract interface functions
9400 elsif Ekind (Def_Id) = E_Function
9401 and then Ekind (Subp) = E_Function
9402 and then Matches_Prefixed_View_Profile
9403 (Parameter_Specifications (Parent (Def_Id)),
9404 Parameter_Specifications (Parent (Subp)))
9405 and then Etype (Result_Definition (Parent (Def_Id))) =
9406 Etype (Result_Definition (Parent (Subp)))
9407 then
9408 Candidate := Subp;
9410 -- If an inherited subprogram is implemented by a protected
9411 -- function, then the first parameter of the inherited
9412 -- subprogram shall be of mode in, but not an
9413 -- access-to-variable parameter (RM 9.4(11/9)
9415 if Present (First_Formal (Subp))
9416 and then Ekind (First_Formal (Subp)) = E_In_Parameter
9417 and then
9418 (not Is_Access_Type (Etype (First_Formal (Subp)))
9419 or else
9420 Is_Access_Constant (Etype (First_Formal (Subp))))
9421 then
9422 Overridden_Subp := Subp;
9423 return;
9424 end if;
9425 end if;
9427 Hom := Homonym (Hom);
9428 end loop;
9430 -- After examining all candidates for overriding, we are left with
9431 -- the best match which is a mode incompatible interface routine.
9433 if In_Scope and then Present (Candidate) then
9434 Error_Msg_PT (Def_Id, Candidate);
9435 end if;
9437 Overridden_Subp := Candidate;
9438 return;
9439 end;
9440 end Check_Synchronized_Overriding;
9442 ----------------------------
9443 -- Is_Private_Declaration --
9444 ----------------------------
9446 function Is_Private_Declaration (E : Entity_Id) return Boolean is
9447 Priv_Decls : List_Id;
9448 Decl : constant Node_Id := Unit_Declaration_Node (E);
9450 begin
9451 if Is_Package_Or_Generic_Package (Current_Scope)
9452 and then In_Private_Part (Current_Scope)
9453 then
9454 Priv_Decls :=
9455 Private_Declarations (Package_Specification (Current_Scope));
9457 return In_Package_Body (Current_Scope)
9458 or else
9459 (Is_List_Member (Decl)
9460 and then List_Containing (Decl) = Priv_Decls)
9461 or else (Nkind (Parent (Decl)) = N_Package_Specification
9462 and then not
9463 Is_Compilation_Unit
9464 (Defining_Entity (Parent (Decl)))
9465 and then List_Containing (Parent (Parent (Decl))) =
9466 Priv_Decls);
9467 else
9468 return False;
9469 end if;
9470 end Is_Private_Declaration;
9472 --------------------------
9473 -- Is_Overriding_Alias --
9474 --------------------------
9476 function Is_Overriding_Alias
9477 (Old_E : Entity_Id;
9478 New_E : Entity_Id) return Boolean
9480 AO : constant Entity_Id := Alias (Old_E);
9481 AN : constant Entity_Id := Alias (New_E);
9482 begin
9483 return Scope (AO) /= Scope (AN)
9484 or else No (DTC_Entity (AO))
9485 or else No (DTC_Entity (AN))
9486 or else DT_Position (AO) = DT_Position (AN);
9487 end Is_Overriding_Alias;
9489 -- Start of processing for New_Overloaded_Entity
9491 begin
9492 -- We need to look for an entity that S may override. This must be a
9493 -- homonym in the current scope, so we look for the first homonym of
9494 -- S in the current scope as the starting point for the search.
9496 E := Current_Entity_In_Scope (S);
9498 -- Ada 2005 (AI-251): Derivation of abstract interface primitives.
9499 -- They are directly added to the list of primitive operations of
9500 -- Derived_Type, unless this is a rederivation in the private part
9501 -- of an operation that was already derived in the visible part of
9502 -- the current package.
9504 if Ada_Version >= Ada_2005
9505 and then Present (Derived_Type)
9506 and then Present (Alias (S))
9507 and then Is_Dispatching_Operation (Alias (S))
9508 and then Present (Find_Dispatching_Type (Alias (S)))
9509 and then Is_Interface (Find_Dispatching_Type (Alias (S)))
9510 then
9511 -- For private types, when the full-view is processed we propagate to
9512 -- the full view the non-overridden entities whose attribute "alias"
9513 -- references an interface primitive. These entities were added by
9514 -- Derive_Subprograms to ensure that interface primitives are
9515 -- covered.
9517 -- Inside_Freeze_Actions is non zero when S corresponds with an
9518 -- internal entity that links an interface primitive with its
9519 -- covering primitive through attribute Interface_Alias (see
9520 -- Add_Internal_Interface_Entities).
9522 if Inside_Freezing_Actions = 0
9523 and then Is_Package_Or_Generic_Package (Current_Scope)
9524 and then In_Private_Part (Current_Scope)
9525 and then Nkind (Parent (E)) = N_Private_Extension_Declaration
9526 and then Nkind (Parent (S)) = N_Full_Type_Declaration
9527 and then Full_View (Defining_Identifier (Parent (E)))
9528 = Defining_Identifier (Parent (S))
9529 and then Alias (E) = Alias (S)
9530 then
9531 Check_Operation_From_Private_View (S, E);
9532 Set_Is_Dispatching_Operation (S);
9534 -- Common case
9536 else
9537 Enter_Overloaded_Entity (S);
9538 Check_Dispatching_Operation (S, Empty);
9539 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
9540 end if;
9542 return;
9543 end if;
9545 -- If there is no homonym then this is definitely not overriding
9547 if No (E) then
9548 Enter_Overloaded_Entity (S);
9549 Check_Dispatching_Operation (S, Empty);
9550 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
9552 -- If subprogram has an explicit declaration, check whether it has an
9553 -- overriding indicator.
9555 if Comes_From_Source (S) then
9556 Check_Synchronized_Overriding (S, Overridden_Subp);
9558 -- (Ada 2012: AI05-0125-1): If S is a dispatching operation then
9559 -- it may have overridden some hidden inherited primitive. Update
9560 -- Overridden_Subp to avoid spurious errors when checking the
9561 -- overriding indicator.
9563 if Ada_Version >= Ada_2012
9564 and then No (Overridden_Subp)
9565 and then Is_Dispatching_Operation (S)
9566 and then Present (Overridden_Operation (S))
9567 then
9568 Overridden_Subp := Overridden_Operation (S);
9569 end if;
9571 Check_Overriding_Indicator
9572 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
9574 -- The Ghost policy in effect at the point of declaration of a
9575 -- parent subprogram and an overriding subprogram must match
9576 -- (SPARK RM 6.9(17)).
9578 Check_Ghost_Overriding (S, Overridden_Subp);
9579 end if;
9581 -- If there is a homonym that is not overloadable, then we have an
9582 -- error, except for the special cases checked explicitly below.
9584 elsif not Is_Overloadable (E) then
9586 -- Check for spurious conflict produced by a subprogram that has the
9587 -- same name as that of the enclosing generic package. The conflict
9588 -- occurs within an instance, between the subprogram and the renaming
9589 -- declaration for the package. After the subprogram, the package
9590 -- renaming declaration becomes hidden.
9592 if Ekind (E) = E_Package
9593 and then Present (Renamed_Object (E))
9594 and then Renamed_Object (E) = Current_Scope
9595 and then Nkind (Parent (Renamed_Object (E))) =
9596 N_Package_Specification
9597 and then Present (Generic_Parent (Parent (Renamed_Object (E))))
9598 then
9599 Set_Is_Hidden (E);
9600 Set_Is_Immediately_Visible (E, False);
9601 Enter_Overloaded_Entity (S);
9602 Set_Homonym (S, Homonym (E));
9603 Check_Dispatching_Operation (S, Empty);
9604 Check_Overriding_Indicator (S, Empty, Is_Primitive => False);
9606 -- If the subprogram is implicit it is hidden by the previous
9607 -- declaration. However if it is dispatching, it must appear in the
9608 -- dispatch table anyway, because it can be dispatched to even if it
9609 -- cannot be called directly.
9611 elsif Present (Alias (S)) and then not Comes_From_Source (S) then
9612 Set_Scope (S, Current_Scope);
9614 if Is_Dispatching_Operation (Alias (S)) then
9615 Check_Dispatching_Operation (S, Empty);
9616 end if;
9618 return;
9620 else
9621 Error_Msg_Sloc := Sloc (E);
9623 -- Generate message, with useful additional warning if in generic
9625 if Is_Generic_Unit (E) then
9626 Error_Msg_N ("previous generic unit cannot be overloaded", S);
9627 Error_Msg_N ("\& conflicts with declaration#", S);
9628 else
9629 Error_Msg_N ("& conflicts with declaration#", S);
9630 end if;
9632 return;
9633 end if;
9635 -- E exists and is overloadable
9637 else
9638 Check_Synchronized_Overriding (S, Overridden_Subp);
9640 -- Loop through E and its homonyms to determine if any of them is
9641 -- the candidate for overriding by S.
9643 while Present (E) loop
9645 -- Definitely not interesting if not in the current scope
9647 if Scope (E) /= Current_Scope then
9648 null;
9650 -- A function can overload the name of an abstract state. The
9651 -- state can be viewed as a function with a profile that cannot
9652 -- be matched by anything.
9654 elsif Ekind (S) = E_Function
9655 and then Ekind (E) = E_Abstract_State
9656 then
9657 Enter_Overloaded_Entity (S);
9658 return;
9660 -- Ada 2012 (AI05-0165): For internally generated bodies of null
9661 -- procedures locate the internally generated spec. We enforce
9662 -- mode conformance since a tagged type may inherit from
9663 -- interfaces several null primitives which differ only in
9664 -- the mode of the formals.
9666 elsif not Comes_From_Source (S)
9667 and then Is_Null_Procedure (S)
9668 and then not Mode_Conformant (E, S)
9669 then
9670 null;
9672 -- Check if we have type conformance
9674 elsif Type_Conformant (E, S) then
9676 -- If the old and new entities have the same profile and one
9677 -- is not the body of the other, then this is an error, unless
9678 -- one of them is implicitly declared.
9680 -- There are some cases when both can be implicit, for example
9681 -- when both a literal and a function that overrides it are
9682 -- inherited in a derivation, or when an inherited operation
9683 -- of a tagged full type overrides the inherited operation of
9684 -- a private extension. Ada 83 had a special rule for the
9685 -- literal case. In Ada 95, the later implicit operation hides
9686 -- the former, and the literal is always the former. In the
9687 -- odd case where both are derived operations declared at the
9688 -- same point, both operations should be declared, and in that
9689 -- case we bypass the following test and proceed to the next
9690 -- part. This can only occur for certain obscure cases in
9691 -- instances, when an operation on a type derived from a formal
9692 -- private type does not override a homograph inherited from
9693 -- the actual. In subsequent derivations of such a type, the
9694 -- DT positions of these operations remain distinct, if they
9695 -- have been set.
9697 if Present (Alias (S))
9698 and then (No (Alias (E))
9699 or else Comes_From_Source (E)
9700 or else Is_Abstract_Subprogram (S)
9701 or else
9702 (Is_Dispatching_Operation (E)
9703 and then Is_Overriding_Alias (E, S)))
9704 and then Ekind (E) /= E_Enumeration_Literal
9705 then
9706 -- When an derived operation is overloaded it may be due to
9707 -- the fact that the full view of a private extension
9708 -- re-inherits. It has to be dealt with.
9710 if Is_Package_Or_Generic_Package (Current_Scope)
9711 and then In_Private_Part (Current_Scope)
9712 then
9713 Check_Operation_From_Private_View (S, E);
9714 end if;
9716 -- In any case the implicit operation remains hidden by the
9717 -- existing declaration, which is overriding. Indicate that
9718 -- E overrides the operation from which S is inherited.
9720 if Present (Alias (S)) then
9721 Set_Overridden_Operation (E, Alias (S));
9722 Inherit_Subprogram_Contract (E, Alias (S));
9724 else
9725 Set_Overridden_Operation (E, S);
9726 Inherit_Subprogram_Contract (E, S);
9727 end if;
9729 if Comes_From_Source (E) then
9730 Check_Overriding_Indicator (E, S, Is_Primitive => False);
9732 -- The Ghost policy in effect at the point of declaration
9733 -- of a parent subprogram and an overriding subprogram
9734 -- must match (SPARK RM 6.9(17)).
9736 Check_Ghost_Overriding (E, S);
9737 end if;
9739 return;
9741 -- Within an instance, the renaming declarations for actual
9742 -- subprograms may become ambiguous, but they do not hide each
9743 -- other.
9745 elsif Ekind (E) /= E_Entry
9746 and then not Comes_From_Source (E)
9747 and then not Is_Generic_Instance (E)
9748 and then (Present (Alias (E))
9749 or else Is_Intrinsic_Subprogram (E))
9750 and then (not In_Instance
9751 or else No (Parent (E))
9752 or else Nkind (Unit_Declaration_Node (E)) /=
9753 N_Subprogram_Renaming_Declaration)
9754 then
9755 -- A subprogram child unit is not allowed to override an
9756 -- inherited subprogram (10.1.1(20)).
9758 if Is_Child_Unit (S) then
9759 Error_Msg_N
9760 ("child unit overrides inherited subprogram in parent",
9762 return;
9763 end if;
9765 if Is_Non_Overriding_Operation (E, S) then
9766 Enter_Overloaded_Entity (S);
9768 if No (Derived_Type)
9769 or else Is_Tagged_Type (Derived_Type)
9770 then
9771 Check_Dispatching_Operation (S, Empty);
9772 end if;
9774 return;
9775 end if;
9777 -- E is a derived operation or an internal operator which
9778 -- is being overridden. Remove E from further visibility.
9779 -- Furthermore, if E is a dispatching operation, it must be
9780 -- replaced in the list of primitive operations of its type
9781 -- (see Override_Dispatching_Operation).
9783 Overridden_Subp := E;
9785 declare
9786 Prev : Entity_Id;
9788 begin
9789 Prev := First_Entity (Current_Scope);
9790 while Present (Prev) and then Next_Entity (Prev) /= E loop
9791 Next_Entity (Prev);
9792 end loop;
9794 -- It is possible for E to be in the current scope and
9795 -- yet not in the entity chain. This can only occur in a
9796 -- generic context where E is an implicit concatenation
9797 -- in the formal part, because in a generic body the
9798 -- entity chain starts with the formals.
9800 -- In GNATprove mode, a wrapper for an operation with
9801 -- axiomatization may be a homonym of another declaration
9802 -- for an actual subprogram (needs refinement ???).
9804 if No (Prev) then
9805 if In_Instance
9806 and then GNATprove_Mode
9807 and then
9808 Nkind (Original_Node (Unit_Declaration_Node (S))) =
9809 N_Subprogram_Renaming_Declaration
9810 then
9811 return;
9812 else
9813 pragma Assert (Chars (E) = Name_Op_Concat);
9814 null;
9815 end if;
9816 end if;
9818 -- E must be removed both from the entity_list of the
9819 -- current scope, and from the visibility chain.
9821 if Debug_Flag_E then
9822 Write_Str ("Override implicit operation ");
9823 Write_Int (Int (E));
9824 Write_Eol;
9825 end if;
9827 -- If E is a predefined concatenation, it stands for four
9828 -- different operations. As a result, a single explicit
9829 -- declaration does not hide it. In a possible ambiguous
9830 -- situation, Disambiguate chooses the user-defined op,
9831 -- so it is correct to retain the previous internal one.
9833 if Chars (E) /= Name_Op_Concat
9834 or else Ekind (E) /= E_Operator
9835 then
9836 -- For nondispatching derived operations that are
9837 -- overridden by a subprogram declared in the private
9838 -- part of a package, we retain the derived subprogram
9839 -- but mark it as not immediately visible. If the
9840 -- derived operation was declared in the visible part
9841 -- then this ensures that it will still be visible
9842 -- outside the package with the proper signature
9843 -- (calls from outside must also be directed to this
9844 -- version rather than the overriding one, unlike the
9845 -- dispatching case). Calls from inside the package
9846 -- will still resolve to the overriding subprogram
9847 -- since the derived one is marked as not visible
9848 -- within the package.
9850 -- If the private operation is dispatching, we achieve
9851 -- the overriding by keeping the implicit operation
9852 -- but setting its alias to be the overriding one. In
9853 -- this fashion the proper body is executed in all
9854 -- cases, but the original signature is used outside
9855 -- of the package.
9857 -- If the overriding is not in the private part, we
9858 -- remove the implicit operation altogether.
9860 if Is_Private_Declaration (S) then
9861 if not Is_Dispatching_Operation (E) then
9862 Set_Is_Immediately_Visible (E, False);
9863 else
9864 -- Work done in Override_Dispatching_Operation,
9865 -- so nothing else needs to be done here.
9867 null;
9868 end if;
9870 else
9871 -- Find predecessor of E in Homonym chain
9873 if E = Current_Entity (E) then
9874 Prev_Vis := Empty;
9875 else
9876 Prev_Vis := Current_Entity (E);
9877 while Homonym (Prev_Vis) /= E loop
9878 Prev_Vis := Homonym (Prev_Vis);
9879 end loop;
9880 end if;
9882 if Prev_Vis /= Empty then
9884 -- Skip E in the visibility chain
9886 Set_Homonym (Prev_Vis, Homonym (E));
9888 else
9889 Set_Name_Entity_Id (Chars (E), Homonym (E));
9890 end if;
9892 Set_Next_Entity (Prev, Next_Entity (E));
9894 if No (Next_Entity (Prev)) then
9895 Set_Last_Entity (Current_Scope, Prev);
9896 end if;
9897 end if;
9898 end if;
9900 Enter_Overloaded_Entity (S);
9902 -- For entities generated by Derive_Subprograms the
9903 -- overridden operation is the inherited primitive
9904 -- (which is available through the attribute alias).
9906 if not (Comes_From_Source (E))
9907 and then Is_Dispatching_Operation (E)
9908 and then Find_Dispatching_Type (E) =
9909 Find_Dispatching_Type (S)
9910 and then Present (Alias (E))
9911 and then Comes_From_Source (Alias (E))
9912 then
9913 Set_Overridden_Operation (S, Alias (E));
9914 Inherit_Subprogram_Contract (S, Alias (E));
9916 -- Normal case of setting entity as overridden
9918 -- Note: Static_Initialization and Overridden_Operation
9919 -- attributes use the same field in subprogram entities.
9920 -- Static_Initialization is only defined for internal
9921 -- initialization procedures, where Overridden_Operation
9922 -- is irrelevant. Therefore the setting of this attribute
9923 -- must check whether the target is an init_proc.
9925 elsif not Is_Init_Proc (S) then
9926 Set_Overridden_Operation (S, E);
9927 Inherit_Subprogram_Contract (S, E);
9928 end if;
9930 Check_Overriding_Indicator (S, E, Is_Primitive => True);
9932 -- The Ghost policy in effect at the point of declaration
9933 -- of a parent subprogram and an overriding subprogram
9934 -- must match (SPARK RM 6.9(17)).
9936 Check_Ghost_Overriding (S, E);
9938 -- If S is a user-defined subprogram or a null procedure
9939 -- expanded to override an inherited null procedure, or a
9940 -- predefined dispatching primitive then indicate that E
9941 -- overrides the operation from which S is inherited.
9943 if Comes_From_Source (S)
9944 or else
9945 (Present (Parent (S))
9946 and then
9947 Nkind (Parent (S)) = N_Procedure_Specification
9948 and then
9949 Null_Present (Parent (S)))
9950 or else
9951 (Present (Alias (E))
9952 and then
9953 Is_Predefined_Dispatching_Operation (Alias (E)))
9954 then
9955 if Present (Alias (E)) then
9956 Set_Overridden_Operation (S, Alias (E));
9957 Inherit_Subprogram_Contract (S, Alias (E));
9958 end if;
9959 end if;
9961 if Is_Dispatching_Operation (E) then
9963 -- An overriding dispatching subprogram inherits the
9964 -- convention of the overridden subprogram (AI-117).
9966 Set_Convention (S, Convention (E));
9967 Check_Dispatching_Operation (S, E);
9969 -- In GNATprove_Mode, create the pragmas corresponding
9970 -- to inherited class-wide conditions.
9972 if GNATprove_Mode then
9973 Collect_Inherited_Class_Wide_Conditions (S);
9974 end if;
9976 else
9977 Check_Dispatching_Operation (S, Empty);
9978 end if;
9980 Check_For_Primitive_Subprogram
9981 (Is_Primitive_Subp, Is_Overriding => True);
9982 goto Check_Inequality;
9983 end;
9985 -- Apparent redeclarations in instances can occur when two
9986 -- formal types get the same actual type. The subprograms in
9987 -- in the instance are legal, even if not callable from the
9988 -- outside. Calls from within are disambiguated elsewhere.
9989 -- For dispatching operations in the visible part, the usual
9990 -- rules apply, and operations with the same profile are not
9991 -- legal (B830001).
9993 elsif (In_Instance_Visible_Part
9994 and then not Is_Dispatching_Operation (E))
9995 or else In_Instance_Not_Visible
9996 then
9997 null;
9999 -- Here we have a real error (identical profile)
10001 else
10002 Error_Msg_Sloc := Sloc (E);
10004 -- Avoid cascaded errors if the entity appears in
10005 -- subsequent calls.
10007 Set_Scope (S, Current_Scope);
10009 -- Generate error, with extra useful warning for the case
10010 -- of a generic instance with no completion.
10012 if Is_Generic_Instance (S)
10013 and then not Has_Completion (E)
10014 then
10015 Error_Msg_N
10016 ("instantiation cannot provide body for&", S);
10017 Error_Msg_N ("\& conflicts with declaration#", S);
10018 else
10019 Error_Msg_N ("& conflicts with declaration#", S);
10020 end if;
10022 return;
10023 end if;
10025 else
10026 -- If one subprogram has an access parameter and the other
10027 -- a parameter of an access type, calls to either might be
10028 -- ambiguous. Verify that parameters match except for the
10029 -- access parameter.
10031 if May_Hide_Profile then
10032 declare
10033 F1 : Entity_Id;
10034 F2 : Entity_Id;
10036 begin
10037 F1 := First_Formal (S);
10038 F2 := First_Formal (E);
10039 while Present (F1) and then Present (F2) loop
10040 if Is_Access_Type (Etype (F1)) then
10041 if not Is_Access_Type (Etype (F2))
10042 or else not Conforming_Types
10043 (Designated_Type (Etype (F1)),
10044 Designated_Type (Etype (F2)),
10045 Type_Conformant)
10046 then
10047 May_Hide_Profile := False;
10048 end if;
10050 elsif
10051 not Conforming_Types
10052 (Etype (F1), Etype (F2), Type_Conformant)
10053 then
10054 May_Hide_Profile := False;
10055 end if;
10057 Next_Formal (F1);
10058 Next_Formal (F2);
10059 end loop;
10061 if May_Hide_Profile
10062 and then No (F1)
10063 and then No (F2)
10064 then
10065 Error_Msg_NE ("calls to& may be ambiguous??", S, S);
10066 end if;
10067 end;
10068 end if;
10069 end if;
10071 E := Homonym (E);
10072 end loop;
10074 -- On exit, we know that S is a new entity
10076 Enter_Overloaded_Entity (S);
10077 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
10078 Check_Overriding_Indicator
10079 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
10081 -- The Ghost policy in effect at the point of declaration of a parent
10082 -- subprogram and an overriding subprogram must match
10083 -- (SPARK RM 6.9(17)).
10085 Check_Ghost_Overriding (S, Overridden_Subp);
10087 -- Overloading is not allowed in SPARK, except for operators
10089 if Nkind (S) /= N_Defining_Operator_Symbol then
10090 Error_Msg_Sloc := Sloc (Homonym (S));
10091 Check_SPARK_05_Restriction
10092 ("overloading not allowed with entity#", S);
10093 end if;
10095 -- If S is a derived operation for an untagged type then by
10096 -- definition it's not a dispatching operation (even if the parent
10097 -- operation was dispatching), so Check_Dispatching_Operation is not
10098 -- called in that case.
10100 if No (Derived_Type)
10101 or else Is_Tagged_Type (Derived_Type)
10102 then
10103 Check_Dispatching_Operation (S, Empty);
10104 end if;
10105 end if;
10107 -- If this is a user-defined equality operator that is not a derived
10108 -- subprogram, create the corresponding inequality. If the operation is
10109 -- dispatching, the expansion is done elsewhere, and we do not create
10110 -- an explicit inequality operation.
10112 <<Check_Inequality>>
10113 if Chars (S) = Name_Op_Eq
10114 and then Etype (S) = Standard_Boolean
10115 and then Present (Parent (S))
10116 and then not Is_Dispatching_Operation (S)
10117 then
10118 Make_Inequality_Operator (S);
10119 Check_Untagged_Equality (S);
10120 end if;
10121 end New_Overloaded_Entity;
10123 ---------------------
10124 -- Process_Formals --
10125 ---------------------
10127 procedure Process_Formals
10128 (T : List_Id;
10129 Related_Nod : Node_Id)
10131 function Designates_From_Limited_With (Typ : Entity_Id) return Boolean;
10132 -- Determine whether an access type designates a type coming from a
10133 -- limited view.
10135 function Is_Class_Wide_Default (D : Node_Id) return Boolean;
10136 -- Check whether the default has a class-wide type. After analysis the
10137 -- default has the type of the formal, so we must also check explicitly
10138 -- for an access attribute.
10140 ----------------------------------
10141 -- Designates_From_Limited_With --
10142 ----------------------------------
10144 function Designates_From_Limited_With (Typ : Entity_Id) return Boolean is
10145 Desig : Entity_Id := Typ;
10147 begin
10148 if Is_Access_Type (Desig) then
10149 Desig := Directly_Designated_Type (Desig);
10150 end if;
10152 if Is_Class_Wide_Type (Desig) then
10153 Desig := Root_Type (Desig);
10154 end if;
10156 return
10157 Ekind (Desig) = E_Incomplete_Type
10158 and then From_Limited_With (Desig);
10159 end Designates_From_Limited_With;
10161 ---------------------------
10162 -- Is_Class_Wide_Default --
10163 ---------------------------
10165 function Is_Class_Wide_Default (D : Node_Id) return Boolean is
10166 begin
10167 return Is_Class_Wide_Type (Designated_Type (Etype (D)))
10168 or else (Nkind (D) = N_Attribute_Reference
10169 and then Attribute_Name (D) = Name_Access
10170 and then Is_Class_Wide_Type (Etype (Prefix (D))));
10171 end Is_Class_Wide_Default;
10173 -- Local variables
10175 Context : constant Node_Id := Parent (Parent (T));
10176 Default : Node_Id;
10177 Formal : Entity_Id;
10178 Formal_Type : Entity_Id;
10179 Param_Spec : Node_Id;
10180 Ptype : Entity_Id;
10182 Num_Out_Params : Nat := 0;
10183 First_Out_Param : Entity_Id := Empty;
10184 -- Used for setting Is_Only_Out_Parameter
10186 -- Start of processing for Process_Formals
10188 begin
10189 -- In order to prevent premature use of the formals in the same formal
10190 -- part, the Ekind is left undefined until all default expressions are
10191 -- analyzed. The Ekind is established in a separate loop at the end.
10193 Param_Spec := First (T);
10194 while Present (Param_Spec) loop
10195 Formal := Defining_Identifier (Param_Spec);
10196 Set_Never_Set_In_Source (Formal, True);
10197 Enter_Name (Formal);
10199 -- Case of ordinary parameters
10201 if Nkind (Parameter_Type (Param_Spec)) /= N_Access_Definition then
10202 Find_Type (Parameter_Type (Param_Spec));
10203 Ptype := Parameter_Type (Param_Spec);
10205 if Ptype = Error then
10206 goto Continue;
10207 end if;
10209 Formal_Type := Entity (Ptype);
10211 if Is_Incomplete_Type (Formal_Type)
10212 or else
10213 (Is_Class_Wide_Type (Formal_Type)
10214 and then Is_Incomplete_Type (Root_Type (Formal_Type)))
10215 then
10216 -- Ada 2005 (AI-326): Tagged incomplete types allowed in
10217 -- primitive operations, as long as their completion is
10218 -- in the same declarative part. If in the private part
10219 -- this means that the type cannot be a Taft-amendment type.
10220 -- Check is done on package exit. For access to subprograms,
10221 -- the use is legal for Taft-amendment types.
10223 -- Ada 2012: tagged incomplete types are allowed as generic
10224 -- formal types. They do not introduce dependencies and the
10225 -- corresponding generic subprogram does not have a delayed
10226 -- freeze, because it does not need a freeze node. However,
10227 -- it is still the case that untagged incomplete types cannot
10228 -- be Taft-amendment types and must be completed in private
10229 -- part, so the subprogram must appear in the list of private
10230 -- dependents of the type. If the type is class-wide, it is
10231 -- not a primitive, but the freezing of the subprogram must
10232 -- also be delayed to force the creation of a freeze node.
10234 if Is_Tagged_Type (Formal_Type)
10235 or else (Ada_Version >= Ada_2012
10236 and then not From_Limited_With (Formal_Type)
10237 and then not Is_Generic_Type (Formal_Type))
10238 then
10239 if Ekind (Scope (Current_Scope)) = E_Package
10240 and then not Is_Generic_Type (Formal_Type)
10241 then
10242 if not Nkind_In
10243 (Parent (T), N_Access_Function_Definition,
10244 N_Access_Procedure_Definition)
10245 then
10246 -- A limited view has no private dependents
10248 if not Is_Class_Wide_Type (Formal_Type)
10249 and then not From_Limited_With (Formal_Type)
10250 then
10251 Append_Elmt (Current_Scope,
10252 Private_Dependents (Base_Type (Formal_Type)));
10253 end if;
10255 -- Freezing is delayed to ensure that Register_Prim
10256 -- will get called for this operation, which is needed
10257 -- in cases where static dispatch tables aren't built.
10258 -- (Note that the same is done for controlling access
10259 -- parameter cases in function Access_Definition.)
10261 if not Is_Thunk (Current_Scope) then
10262 Set_Has_Delayed_Freeze (Current_Scope);
10263 end if;
10264 end if;
10265 end if;
10267 elsif not Nkind_In (Parent (T), N_Access_Function_Definition,
10268 N_Access_Procedure_Definition)
10269 then
10270 -- AI05-0151: Tagged incomplete types are allowed in all
10271 -- formal parts. Untagged incomplete types are not allowed
10272 -- in bodies. Limited views of either kind are not allowed
10273 -- if there is no place at which the non-limited view can
10274 -- become available.
10276 -- Incomplete formal untagged types are not allowed in
10277 -- subprogram bodies (but are legal in their declarations).
10278 -- This excludes bodies created for null procedures, which
10279 -- are basic declarations.
10281 if Is_Generic_Type (Formal_Type)
10282 and then not Is_Tagged_Type (Formal_Type)
10283 and then Nkind (Parent (Related_Nod)) = N_Subprogram_Body
10284 then
10285 Error_Msg_N
10286 ("invalid use of formal incomplete type", Param_Spec);
10288 elsif Ada_Version >= Ada_2012 then
10289 if Is_Tagged_Type (Formal_Type)
10290 and then (not From_Limited_With (Formal_Type)
10291 or else not In_Package_Body)
10292 then
10293 null;
10295 elsif Nkind_In (Context, N_Accept_Statement,
10296 N_Accept_Alternative,
10297 N_Entry_Body)
10298 or else (Nkind (Context) = N_Subprogram_Body
10299 and then Comes_From_Source (Context))
10300 then
10301 Error_Msg_NE
10302 ("invalid use of untagged incomplete type &",
10303 Ptype, Formal_Type);
10304 end if;
10306 else
10307 Error_Msg_NE
10308 ("invalid use of incomplete type&",
10309 Param_Spec, Formal_Type);
10311 -- Further checks on the legality of incomplete types
10312 -- in formal parts are delayed until the freeze point
10313 -- of the enclosing subprogram or access to subprogram.
10314 end if;
10315 end if;
10317 elsif Ekind (Formal_Type) = E_Void then
10318 Error_Msg_NE
10319 ("premature use of&",
10320 Parameter_Type (Param_Spec), Formal_Type);
10321 end if;
10323 -- Ada 2012 (AI-142): Handle aliased parameters
10325 if Ada_Version >= Ada_2012
10326 and then Aliased_Present (Param_Spec)
10327 then
10328 Set_Is_Aliased (Formal);
10329 end if;
10331 -- Ada 2005 (AI-231): Create and decorate an internal subtype
10332 -- declaration corresponding to the null-excluding type of the
10333 -- formal in the enclosing scope. Finally, replace the parameter
10334 -- type of the formal with the internal subtype.
10336 if Ada_Version >= Ada_2005
10337 and then Null_Exclusion_Present (Param_Spec)
10338 then
10339 if not Is_Access_Type (Formal_Type) then
10340 Error_Msg_N
10341 ("`NOT NULL` allowed only for an access type", Param_Spec);
10343 else
10344 if Can_Never_Be_Null (Formal_Type)
10345 and then Comes_From_Source (Related_Nod)
10346 then
10347 Error_Msg_NE
10348 ("`NOT NULL` not allowed (& already excludes null)",
10349 Param_Spec, Formal_Type);
10350 end if;
10352 Formal_Type :=
10353 Create_Null_Excluding_Itype
10354 (T => Formal_Type,
10355 Related_Nod => Related_Nod,
10356 Scope_Id => Scope (Current_Scope));
10358 -- If the designated type of the itype is an itype that is
10359 -- not frozen yet, we set the Has_Delayed_Freeze attribute
10360 -- on the access subtype, to prevent order-of-elaboration
10361 -- issues in the backend.
10363 -- Example:
10364 -- type T is access procedure;
10365 -- procedure Op (O : not null T);
10367 if Is_Itype (Directly_Designated_Type (Formal_Type))
10368 and then
10369 not Is_Frozen (Directly_Designated_Type (Formal_Type))
10370 then
10371 Set_Has_Delayed_Freeze (Formal_Type);
10372 end if;
10373 end if;
10374 end if;
10376 -- An access formal type
10378 else
10379 Formal_Type :=
10380 Access_Definition (Related_Nod, Parameter_Type (Param_Spec));
10382 -- No need to continue if we already notified errors
10384 if not Present (Formal_Type) then
10385 return;
10386 end if;
10388 -- Ada 2005 (AI-254)
10390 declare
10391 AD : constant Node_Id :=
10392 Access_To_Subprogram_Definition
10393 (Parameter_Type (Param_Spec));
10394 begin
10395 if Present (AD) and then Protected_Present (AD) then
10396 Formal_Type :=
10397 Replace_Anonymous_Access_To_Protected_Subprogram
10398 (Param_Spec);
10399 end if;
10400 end;
10401 end if;
10403 Set_Etype (Formal, Formal_Type);
10405 -- Deal with default expression if present
10407 Default := Expression (Param_Spec);
10409 if Present (Default) then
10410 Check_SPARK_05_Restriction
10411 ("default expression is not allowed", Default);
10413 if Out_Present (Param_Spec) then
10414 Error_Msg_N
10415 ("default initialization only allowed for IN parameters",
10416 Param_Spec);
10417 end if;
10419 -- Do the special preanalysis of the expression (see section on
10420 -- "Handling of Default Expressions" in the spec of package Sem).
10422 Preanalyze_Spec_Expression (Default, Formal_Type);
10424 -- An access to constant cannot be the default for
10425 -- an access parameter that is an access to variable.
10427 if Ekind (Formal_Type) = E_Anonymous_Access_Type
10428 and then not Is_Access_Constant (Formal_Type)
10429 and then Is_Access_Type (Etype (Default))
10430 and then Is_Access_Constant (Etype (Default))
10431 then
10432 Error_Msg_N
10433 ("formal that is access to variable cannot be initialized "
10434 & "with an access-to-constant expression", Default);
10435 end if;
10437 -- Check that the designated type of an access parameter's default
10438 -- is not a class-wide type unless the parameter's designated type
10439 -- is also class-wide.
10441 if Ekind (Formal_Type) = E_Anonymous_Access_Type
10442 and then not Designates_From_Limited_With (Formal_Type)
10443 and then Is_Class_Wide_Default (Default)
10444 and then not Is_Class_Wide_Type (Designated_Type (Formal_Type))
10445 then
10446 Error_Msg_N
10447 ("access to class-wide expression not allowed here", Default);
10448 end if;
10450 -- Check incorrect use of dynamically tagged expressions
10452 if Is_Tagged_Type (Formal_Type) then
10453 Check_Dynamically_Tagged_Expression
10454 (Expr => Default,
10455 Typ => Formal_Type,
10456 Related_Nod => Default);
10457 end if;
10458 end if;
10460 -- Ada 2005 (AI-231): Static checks
10462 if Ada_Version >= Ada_2005
10463 and then Is_Access_Type (Etype (Formal))
10464 and then Can_Never_Be_Null (Etype (Formal))
10465 then
10466 Null_Exclusion_Static_Checks (Param_Spec);
10467 end if;
10469 -- The following checks are relevant only when SPARK_Mode is on as
10470 -- these are not standard Ada legality rules.
10472 if SPARK_Mode = On then
10473 if Ekind_In (Scope (Formal), E_Function, E_Generic_Function) then
10475 -- A function cannot have a parameter of mode IN OUT or OUT
10476 -- (SPARK RM 6.1).
10478 if Ekind_In (Formal, E_In_Out_Parameter, E_Out_Parameter) then
10479 Error_Msg_N
10480 ("function cannot have parameter of mode `OUT` or "
10481 & "`IN OUT`", Formal);
10482 end if;
10484 -- A procedure cannot have an effectively volatile formal
10485 -- parameter of mode IN because it behaves as a constant
10486 -- (SPARK RM 7.1.3(6)).
10488 elsif Ekind (Scope (Formal)) = E_Procedure
10489 and then Ekind (Formal) = E_In_Parameter
10490 and then Is_Effectively_Volatile (Formal)
10491 then
10492 Error_Msg_N
10493 ("formal parameter of mode `IN` cannot be volatile", Formal);
10494 end if;
10495 end if;
10497 <<Continue>>
10498 Next (Param_Spec);
10499 end loop;
10501 -- If this is the formal part of a function specification, analyze the
10502 -- subtype mark in the context where the formals are visible but not
10503 -- yet usable, and may hide outer homographs.
10505 if Nkind (Related_Nod) = N_Function_Specification then
10506 Analyze_Return_Type (Related_Nod);
10508 -- If return type is class-wide, subprogram freezing may be
10509 -- delayed as well, unless the declaration is a compilation unit
10510 -- in which case the freeze node would appear too late.
10512 if Is_Class_Wide_Type (Etype (Current_Scope))
10513 and then not Is_Thunk (Current_Scope)
10514 and then not Is_Compilation_Unit (Current_Scope)
10515 and then Nkind (Unit_Declaration_Node (Current_Scope)) =
10516 N_Subprogram_Declaration
10517 then
10518 Set_Has_Delayed_Freeze (Current_Scope);
10519 end if;
10520 end if;
10522 -- Now set the kind (mode) of each formal
10524 Param_Spec := First (T);
10525 while Present (Param_Spec) loop
10526 Formal := Defining_Identifier (Param_Spec);
10527 Set_Formal_Mode (Formal);
10529 if Ekind (Formal) = E_In_Parameter then
10530 Set_Default_Value (Formal, Expression (Param_Spec));
10532 if Present (Expression (Param_Spec)) then
10533 Default := Expression (Param_Spec);
10535 if Is_Scalar_Type (Etype (Default)) then
10536 if Nkind (Parameter_Type (Param_Spec)) /=
10537 N_Access_Definition
10538 then
10539 Formal_Type := Entity (Parameter_Type (Param_Spec));
10540 else
10541 Formal_Type :=
10542 Access_Definition
10543 (Related_Nod, Parameter_Type (Param_Spec));
10544 end if;
10546 Apply_Scalar_Range_Check (Default, Formal_Type);
10547 end if;
10548 end if;
10550 elsif Ekind (Formal) = E_Out_Parameter then
10551 Num_Out_Params := Num_Out_Params + 1;
10553 if Num_Out_Params = 1 then
10554 First_Out_Param := Formal;
10555 end if;
10557 elsif Ekind (Formal) = E_In_Out_Parameter then
10558 Num_Out_Params := Num_Out_Params + 1;
10559 end if;
10561 -- Skip remaining processing if formal type was in error
10563 if Etype (Formal) = Any_Type or else Error_Posted (Formal) then
10564 goto Next_Parameter;
10565 end if;
10567 -- Force call by reference if aliased
10569 if Is_Aliased (Formal) then
10570 Set_Mechanism (Formal, By_Reference);
10572 -- Warn if user asked this to be passed by copy
10574 if Convention (Formal_Type) = Convention_Ada_Pass_By_Copy then
10575 Error_Msg_N
10576 ("cannot pass aliased parameter & by copy??", Formal);
10577 end if;
10579 -- Force mechanism if type has Convention Ada_Pass_By_Ref/Copy
10581 elsif Convention (Formal_Type) = Convention_Ada_Pass_By_Copy then
10582 Set_Mechanism (Formal, By_Copy);
10584 elsif Convention (Formal_Type) = Convention_Ada_Pass_By_Reference then
10585 Set_Mechanism (Formal, By_Reference);
10586 end if;
10588 <<Next_Parameter>>
10589 Next (Param_Spec);
10590 end loop;
10592 if Present (First_Out_Param) and then Num_Out_Params = 1 then
10593 Set_Is_Only_Out_Parameter (First_Out_Param);
10594 end if;
10595 end Process_Formals;
10597 ----------------------------
10598 -- Reference_Body_Formals --
10599 ----------------------------
10601 procedure Reference_Body_Formals (Spec : Entity_Id; Bod : Entity_Id) is
10602 Fs : Entity_Id;
10603 Fb : Entity_Id;
10605 begin
10606 if Error_Posted (Spec) then
10607 return;
10608 end if;
10610 -- Iterate over both lists. They may be of different lengths if the two
10611 -- specs are not conformant.
10613 Fs := First_Formal (Spec);
10614 Fb := First_Formal (Bod);
10615 while Present (Fs) and then Present (Fb) loop
10616 Generate_Reference (Fs, Fb, 'b');
10618 if Style_Check then
10619 Style.Check_Identifier (Fb, Fs);
10620 end if;
10622 Set_Spec_Entity (Fb, Fs);
10623 Set_Referenced (Fs, False);
10624 Next_Formal (Fs);
10625 Next_Formal (Fb);
10626 end loop;
10627 end Reference_Body_Formals;
10629 -------------------------
10630 -- Set_Actual_Subtypes --
10631 -------------------------
10633 procedure Set_Actual_Subtypes (N : Node_Id; Subp : Entity_Id) is
10634 Decl : Node_Id;
10635 Formal : Entity_Id;
10636 T : Entity_Id;
10637 First_Stmt : Node_Id := Empty;
10638 AS_Needed : Boolean;
10640 begin
10641 -- If this is an empty initialization procedure, no need to create
10642 -- actual subtypes (small optimization).
10644 if Ekind (Subp) = E_Procedure and then Is_Null_Init_Proc (Subp) then
10645 return;
10646 end if;
10648 Formal := First_Formal (Subp);
10649 while Present (Formal) loop
10650 T := Etype (Formal);
10652 -- We never need an actual subtype for a constrained formal
10654 if Is_Constrained (T) then
10655 AS_Needed := False;
10657 -- If we have unknown discriminants, then we do not need an actual
10658 -- subtype, or more accurately we cannot figure it out. Note that
10659 -- all class-wide types have unknown discriminants.
10661 elsif Has_Unknown_Discriminants (T) then
10662 AS_Needed := False;
10664 -- At this stage we have an unconstrained type that may need an
10665 -- actual subtype. For sure the actual subtype is needed if we have
10666 -- an unconstrained array type.
10668 elsif Is_Array_Type (T) then
10669 AS_Needed := True;
10671 -- The only other case needing an actual subtype is an unconstrained
10672 -- record type which is an IN parameter (we cannot generate actual
10673 -- subtypes for the OUT or IN OUT case, since an assignment can
10674 -- change the discriminant values. However we exclude the case of
10675 -- initialization procedures, since discriminants are handled very
10676 -- specially in this context, see the section entitled "Handling of
10677 -- Discriminants" in Einfo.
10679 -- We also exclude the case of Discrim_SO_Functions (functions used
10680 -- in front end layout mode for size/offset values), since in such
10681 -- functions only discriminants are referenced, and not only are such
10682 -- subtypes not needed, but they cannot always be generated, because
10683 -- of order of elaboration issues.
10685 elsif Is_Record_Type (T)
10686 and then Ekind (Formal) = E_In_Parameter
10687 and then Chars (Formal) /= Name_uInit
10688 and then not Is_Unchecked_Union (T)
10689 and then not Is_Discrim_SO_Function (Subp)
10690 then
10691 AS_Needed := True;
10693 -- All other cases do not need an actual subtype
10695 else
10696 AS_Needed := False;
10697 end if;
10699 -- Generate actual subtypes for unconstrained arrays and
10700 -- unconstrained discriminated records.
10702 if AS_Needed then
10703 if Nkind (N) = N_Accept_Statement then
10705 -- If expansion is active, the formal is replaced by a local
10706 -- variable that renames the corresponding entry of the
10707 -- parameter block, and it is this local variable that may
10708 -- require an actual subtype.
10710 if Expander_Active then
10711 Decl := Build_Actual_Subtype (T, Renamed_Object (Formal));
10712 else
10713 Decl := Build_Actual_Subtype (T, Formal);
10714 end if;
10716 if Present (Handled_Statement_Sequence (N)) then
10717 First_Stmt :=
10718 First (Statements (Handled_Statement_Sequence (N)));
10719 Prepend (Decl, Statements (Handled_Statement_Sequence (N)));
10720 Mark_Rewrite_Insertion (Decl);
10721 else
10722 -- If the accept statement has no body, there will be no
10723 -- reference to the actuals, so no need to compute actual
10724 -- subtypes.
10726 return;
10727 end if;
10729 else
10730 Decl := Build_Actual_Subtype (T, Formal);
10731 Prepend (Decl, Declarations (N));
10732 Mark_Rewrite_Insertion (Decl);
10733 end if;
10735 -- The declaration uses the bounds of an existing object, and
10736 -- therefore needs no constraint checks.
10738 Analyze (Decl, Suppress => All_Checks);
10740 -- We need to freeze manually the generated type when it is
10741 -- inserted anywhere else than in a declarative part.
10743 if Present (First_Stmt) then
10744 Insert_List_Before_And_Analyze (First_Stmt,
10745 Freeze_Entity (Defining_Identifier (Decl), N));
10747 -- Ditto if the type has a dynamic predicate, because the
10748 -- generated function will mention the actual subtype.
10750 elsif Has_Dynamic_Predicate_Aspect (T) then
10751 Insert_List_Before_And_Analyze (Decl,
10752 Freeze_Entity (Defining_Identifier (Decl), N));
10753 end if;
10755 if Nkind (N) = N_Accept_Statement
10756 and then Expander_Active
10757 then
10758 Set_Actual_Subtype (Renamed_Object (Formal),
10759 Defining_Identifier (Decl));
10760 else
10761 Set_Actual_Subtype (Formal, Defining_Identifier (Decl));
10762 end if;
10763 end if;
10765 Next_Formal (Formal);
10766 end loop;
10767 end Set_Actual_Subtypes;
10769 ---------------------
10770 -- Set_Formal_Mode --
10771 ---------------------
10773 procedure Set_Formal_Mode (Formal_Id : Entity_Id) is
10774 Spec : constant Node_Id := Parent (Formal_Id);
10775 Id : constant Entity_Id := Scope (Formal_Id);
10777 begin
10778 -- Note: we set Is_Known_Valid for IN parameters and IN OUT parameters
10779 -- since we ensure that corresponding actuals are always valid at the
10780 -- point of the call.
10782 if Out_Present (Spec) then
10783 if Ekind_In (Id, E_Entry, E_Entry_Family)
10784 or else Is_Subprogram_Or_Generic_Subprogram (Id)
10785 then
10786 Set_Has_Out_Or_In_Out_Parameter (Id, True);
10787 end if;
10789 if Ekind_In (Id, E_Function, E_Generic_Function) then
10791 -- [IN] OUT parameters allowed for functions in Ada 2012
10793 if Ada_Version >= Ada_2012 then
10795 -- Even in Ada 2012 operators can only have IN parameters
10797 if Is_Operator_Symbol_Name (Chars (Scope (Formal_Id))) then
10798 Error_Msg_N ("operators can only have IN parameters", Spec);
10799 end if;
10801 if In_Present (Spec) then
10802 Set_Ekind (Formal_Id, E_In_Out_Parameter);
10803 else
10804 Set_Ekind (Formal_Id, E_Out_Parameter);
10805 end if;
10807 -- But not in earlier versions of Ada
10809 else
10810 Error_Msg_N ("functions can only have IN parameters", Spec);
10811 Set_Ekind (Formal_Id, E_In_Parameter);
10812 end if;
10814 elsif In_Present (Spec) then
10815 Set_Ekind (Formal_Id, E_In_Out_Parameter);
10817 else
10818 Set_Ekind (Formal_Id, E_Out_Parameter);
10819 Set_Never_Set_In_Source (Formal_Id, True);
10820 Set_Is_True_Constant (Formal_Id, False);
10821 Set_Current_Value (Formal_Id, Empty);
10822 end if;
10824 else
10825 Set_Ekind (Formal_Id, E_In_Parameter);
10826 end if;
10828 -- Set Is_Known_Non_Null for access parameters since the language
10829 -- guarantees that access parameters are always non-null. We also set
10830 -- Can_Never_Be_Null, since there is no way to change the value.
10832 if Nkind (Parameter_Type (Spec)) = N_Access_Definition then
10834 -- Ada 2005 (AI-231): In Ada 95, access parameters are always non-
10835 -- null; In Ada 2005, only if then null_exclusion is explicit.
10837 if Ada_Version < Ada_2005
10838 or else Can_Never_Be_Null (Etype (Formal_Id))
10839 then
10840 Set_Is_Known_Non_Null (Formal_Id);
10841 Set_Can_Never_Be_Null (Formal_Id);
10842 end if;
10844 -- Ada 2005 (AI-231): Null-exclusion access subtype
10846 elsif Is_Access_Type (Etype (Formal_Id))
10847 and then Can_Never_Be_Null (Etype (Formal_Id))
10848 then
10849 Set_Is_Known_Non_Null (Formal_Id);
10851 -- We can also set Can_Never_Be_Null (thus preventing some junk
10852 -- access checks) for the case of an IN parameter, which cannot
10853 -- be changed, or for an IN OUT parameter, which can be changed but
10854 -- not to a null value. But for an OUT parameter, the initial value
10855 -- passed in can be null, so we can't set this flag in that case.
10857 if Ekind (Formal_Id) /= E_Out_Parameter then
10858 Set_Can_Never_Be_Null (Formal_Id);
10859 end if;
10860 end if;
10862 Set_Mechanism (Formal_Id, Default_Mechanism);
10863 Set_Formal_Validity (Formal_Id);
10864 end Set_Formal_Mode;
10866 -------------------------
10867 -- Set_Formal_Validity --
10868 -------------------------
10870 procedure Set_Formal_Validity (Formal_Id : Entity_Id) is
10871 begin
10872 -- If no validity checking, then we cannot assume anything about the
10873 -- validity of parameters, since we do not know there is any checking
10874 -- of the validity on the call side.
10876 if not Validity_Checks_On then
10877 return;
10879 -- If validity checking for parameters is enabled, this means we are
10880 -- not supposed to make any assumptions about argument values.
10882 elsif Validity_Check_Parameters then
10883 return;
10885 -- If we are checking in parameters, we will assume that the caller is
10886 -- also checking parameters, so we can assume the parameter is valid.
10888 elsif Ekind (Formal_Id) = E_In_Parameter
10889 and then Validity_Check_In_Params
10890 then
10891 Set_Is_Known_Valid (Formal_Id, True);
10893 -- Similar treatment for IN OUT parameters
10895 elsif Ekind (Formal_Id) = E_In_Out_Parameter
10896 and then Validity_Check_In_Out_Params
10897 then
10898 Set_Is_Known_Valid (Formal_Id, True);
10899 end if;
10900 end Set_Formal_Validity;
10902 ------------------------
10903 -- Subtype_Conformant --
10904 ------------------------
10906 function Subtype_Conformant
10907 (New_Id : Entity_Id;
10908 Old_Id : Entity_Id;
10909 Skip_Controlling_Formals : Boolean := False) return Boolean
10911 Result : Boolean;
10912 begin
10913 Check_Conformance (New_Id, Old_Id, Subtype_Conformant, False, Result,
10914 Skip_Controlling_Formals => Skip_Controlling_Formals);
10915 return Result;
10916 end Subtype_Conformant;
10918 ---------------------
10919 -- Type_Conformant --
10920 ---------------------
10922 function Type_Conformant
10923 (New_Id : Entity_Id;
10924 Old_Id : Entity_Id;
10925 Skip_Controlling_Formals : Boolean := False) return Boolean
10927 Result : Boolean;
10928 begin
10929 May_Hide_Profile := False;
10930 Check_Conformance
10931 (New_Id, Old_Id, Type_Conformant, False, Result,
10932 Skip_Controlling_Formals => Skip_Controlling_Formals);
10933 return Result;
10934 end Type_Conformant;
10936 -------------------------------
10937 -- Valid_Operator_Definition --
10938 -------------------------------
10940 procedure Valid_Operator_Definition (Designator : Entity_Id) is
10941 N : Integer := 0;
10942 F : Entity_Id;
10943 Id : constant Name_Id := Chars (Designator);
10944 N_OK : Boolean;
10946 begin
10947 F := First_Formal (Designator);
10948 while Present (F) loop
10949 N := N + 1;
10951 if Present (Default_Value (F)) then
10952 Error_Msg_N
10953 ("default values not allowed for operator parameters",
10954 Parent (F));
10956 -- For function instantiations that are operators, we must check
10957 -- separately that the corresponding generic only has in-parameters.
10958 -- For subprogram declarations this is done in Set_Formal_Mode. Such
10959 -- an error could not arise in earlier versions of the language.
10961 elsif Ekind (F) /= E_In_Parameter then
10962 Error_Msg_N ("operators can only have IN parameters", F);
10963 end if;
10965 Next_Formal (F);
10966 end loop;
10968 -- Verify that user-defined operators have proper number of arguments
10969 -- First case of operators which can only be unary
10971 if Nam_In (Id, Name_Op_Not, Name_Op_Abs) then
10972 N_OK := (N = 1);
10974 -- Case of operators which can be unary or binary
10976 elsif Nam_In (Id, Name_Op_Add, Name_Op_Subtract) then
10977 N_OK := (N in 1 .. 2);
10979 -- All other operators can only be binary
10981 else
10982 N_OK := (N = 2);
10983 end if;
10985 if not N_OK then
10986 Error_Msg_N
10987 ("incorrect number of arguments for operator", Designator);
10988 end if;
10990 if Id = Name_Op_Ne
10991 and then Base_Type (Etype (Designator)) = Standard_Boolean
10992 and then not Is_Intrinsic_Subprogram (Designator)
10993 then
10994 Error_Msg_N
10995 ("explicit definition of inequality not allowed", Designator);
10996 end if;
10997 end Valid_Operator_Definition;
10999 end Sem_Ch6;