rs6000: Fix gcc.target/powerpc testsuite target requirements.
[official-gcc.git] / gcc / tree-vectorizer.h
blobdfe88cc8af3590cb540cccee655d9f12ad020afa
1 /* Vectorizer
2 Copyright (C) 2003-2020 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #ifndef GCC_TREE_VECTORIZER_H
22 #define GCC_TREE_VECTORIZER_H
24 typedef class _stmt_vec_info *stmt_vec_info;
26 #include "tree-data-ref.h"
27 #include "tree-hash-traits.h"
28 #include "target.h"
31 /* Used for naming of new temporaries. */
32 enum vect_var_kind {
33 vect_simple_var,
34 vect_pointer_var,
35 vect_scalar_var,
36 vect_mask_var
39 /* Defines type of operation. */
40 enum operation_type {
41 unary_op = 1,
42 binary_op,
43 ternary_op
46 /* Define type of available alignment support. */
47 enum dr_alignment_support {
48 dr_unaligned_unsupported,
49 dr_unaligned_supported,
50 dr_explicit_realign,
51 dr_explicit_realign_optimized,
52 dr_aligned
55 /* Define type of def-use cross-iteration cycle. */
56 enum vect_def_type {
57 vect_uninitialized_def = 0,
58 vect_constant_def = 1,
59 vect_external_def,
60 vect_internal_def,
61 vect_induction_def,
62 vect_reduction_def,
63 vect_double_reduction_def,
64 vect_nested_cycle,
65 vect_unknown_def_type
68 /* Define type of reduction. */
69 enum vect_reduction_type {
70 TREE_CODE_REDUCTION,
71 COND_REDUCTION,
72 INTEGER_INDUC_COND_REDUCTION,
73 CONST_COND_REDUCTION,
75 /* Retain a scalar phi and use a FOLD_EXTRACT_LAST within the loop
76 to implement:
78 for (int i = 0; i < VF; ++i)
79 res = cond[i] ? val[i] : res; */
80 EXTRACT_LAST_REDUCTION,
82 /* Use a folding reduction within the loop to implement:
84 for (int i = 0; i < VF; ++i)
85 res = res OP val[i];
87 (with no reassocation). */
88 FOLD_LEFT_REDUCTION
91 #define VECTORIZABLE_CYCLE_DEF(D) (((D) == vect_reduction_def) \
92 || ((D) == vect_double_reduction_def) \
93 || ((D) == vect_nested_cycle))
95 /* Structure to encapsulate information about a group of like
96 instructions to be presented to the target cost model. */
97 struct stmt_info_for_cost {
98 int count;
99 enum vect_cost_for_stmt kind;
100 enum vect_cost_model_location where;
101 stmt_vec_info stmt_info;
102 tree vectype;
103 int misalign;
106 typedef vec<stmt_info_for_cost> stmt_vector_for_cost;
108 /* Maps base addresses to an innermost_loop_behavior that gives the maximum
109 known alignment for that base. */
110 typedef hash_map<tree_operand_hash,
111 innermost_loop_behavior *> vec_base_alignments;
113 /************************************************************************
115 ************************************************************************/
116 typedef struct _slp_tree *slp_tree;
118 /* A computation tree of an SLP instance. Each node corresponds to a group of
119 stmts to be packed in a SIMD stmt. */
120 struct _slp_tree {
121 _slp_tree ();
122 ~_slp_tree ();
124 /* Nodes that contain def-stmts of this node statements operands. */
125 vec<slp_tree> children;
127 /* A group of scalar stmts to be vectorized together. */
128 vec<stmt_vec_info> stmts;
129 /* A group of scalar operands to be vectorized together. */
130 vec<tree> ops;
131 /* The representative that should be used for analysis and
132 code generation. */
133 stmt_vec_info representative;
135 /* Load permutation relative to the stores, NULL if there is no
136 permutation. */
137 vec<unsigned> load_permutation;
138 /* Lane permutation of the operands scalar lanes encoded as pairs
139 of { operand number, lane number }. The number of elements
140 denotes the number of output lanes. */
141 vec<std::pair<unsigned, unsigned> > lane_permutation;
143 tree vectype;
144 /* Vectorized stmt/s. */
145 vec<gimple *> vec_stmts;
146 vec<tree> vec_defs;
147 /* Number of vector stmts that are created to replace the group of scalar
148 stmts. It is calculated during the transformation phase as the number of
149 scalar elements in one scalar iteration (GROUP_SIZE) multiplied by VF
150 divided by vector size. */
151 unsigned int vec_stmts_size;
153 /* Reference count in the SLP graph. */
154 unsigned int refcnt;
155 /* The maximum number of vector elements for the subtree rooted
156 at this node. */
157 poly_uint64 max_nunits;
158 /* The DEF type of this node. */
159 enum vect_def_type def_type;
160 /* The number of scalar lanes produced by this node. */
161 unsigned int lanes;
162 /* The operation of this node. */
163 enum tree_code code;
167 /* SLP instance is a sequence of stmts in a loop that can be packed into
168 SIMD stmts. */
169 typedef class _slp_instance {
170 public:
171 /* The root of SLP tree. */
172 slp_tree root;
174 /* For vector constructors, the constructor stmt that the SLP tree is built
175 from, NULL otherwise. */
176 stmt_vec_info root_stmt;
178 /* The unrolling factor required to vectorized this SLP instance. */
179 poly_uint64 unrolling_factor;
181 /* The group of nodes that contain loads of this SLP instance. */
182 vec<slp_tree> loads;
184 /* The SLP node containing the reduction PHIs. */
185 slp_tree reduc_phis;
186 } *slp_instance;
189 /* Access Functions. */
190 #define SLP_INSTANCE_TREE(S) (S)->root
191 #define SLP_INSTANCE_UNROLLING_FACTOR(S) (S)->unrolling_factor
192 #define SLP_INSTANCE_LOADS(S) (S)->loads
193 #define SLP_INSTANCE_ROOT_STMT(S) (S)->root_stmt
195 #define SLP_TREE_CHILDREN(S) (S)->children
196 #define SLP_TREE_SCALAR_STMTS(S) (S)->stmts
197 #define SLP_TREE_SCALAR_OPS(S) (S)->ops
198 #define SLP_TREE_VEC_STMTS(S) (S)->vec_stmts
199 #define SLP_TREE_VEC_DEFS(S) (S)->vec_defs
200 #define SLP_TREE_NUMBER_OF_VEC_STMTS(S) (S)->vec_stmts_size
201 #define SLP_TREE_LOAD_PERMUTATION(S) (S)->load_permutation
202 #define SLP_TREE_LANE_PERMUTATION(S) (S)->lane_permutation
203 #define SLP_TREE_DEF_TYPE(S) (S)->def_type
204 #define SLP_TREE_VECTYPE(S) (S)->vectype
205 #define SLP_TREE_REPRESENTATIVE(S) (S)->representative
206 #define SLP_TREE_LANES(S) (S)->lanes
207 #define SLP_TREE_CODE(S) (S)->code
209 /* Key for map that records association between
210 scalar conditions and corresponding loop mask, and
211 is populated by vect_record_loop_mask. */
213 struct scalar_cond_masked_key
215 scalar_cond_masked_key (tree t, unsigned ncopies_)
216 : ncopies (ncopies_)
218 get_cond_ops_from_tree (t);
221 void get_cond_ops_from_tree (tree);
223 unsigned ncopies;
224 tree_code code;
225 tree op0;
226 tree op1;
229 template<>
230 struct default_hash_traits<scalar_cond_masked_key>
232 typedef scalar_cond_masked_key compare_type;
233 typedef scalar_cond_masked_key value_type;
235 static inline hashval_t
236 hash (value_type v)
238 inchash::hash h;
239 h.add_int (v.code);
240 inchash::add_expr (v.op0, h, 0);
241 inchash::add_expr (v.op1, h, 0);
242 h.add_int (v.ncopies);
243 return h.end ();
246 static inline bool
247 equal (value_type existing, value_type candidate)
249 return (existing.ncopies == candidate.ncopies
250 && existing.code == candidate.code
251 && operand_equal_p (existing.op0, candidate.op0, 0)
252 && operand_equal_p (existing.op1, candidate.op1, 0));
255 static const bool empty_zero_p = true;
257 static inline void
258 mark_empty (value_type &v)
260 v.ncopies = 0;
263 static inline bool
264 is_empty (value_type v)
266 return v.ncopies == 0;
269 static inline void mark_deleted (value_type &) {}
271 static inline bool is_deleted (const value_type &)
273 return false;
276 static inline void remove (value_type &) {}
279 typedef hash_set<scalar_cond_masked_key> scalar_cond_masked_set_type;
281 /* Describes two objects whose addresses must be unequal for the vectorized
282 loop to be valid. */
283 typedef std::pair<tree, tree> vec_object_pair;
285 /* Records that vectorization is only possible if abs (EXPR) >= MIN_VALUE.
286 UNSIGNED_P is true if we can assume that abs (EXPR) == EXPR. */
287 class vec_lower_bound {
288 public:
289 vec_lower_bound () {}
290 vec_lower_bound (tree e, bool u, poly_uint64 m)
291 : expr (e), unsigned_p (u), min_value (m) {}
293 tree expr;
294 bool unsigned_p;
295 poly_uint64 min_value;
298 /* Vectorizer state shared between different analyses like vector sizes
299 of the same CFG region. */
300 class vec_info_shared {
301 public:
302 vec_info_shared();
303 ~vec_info_shared();
305 void save_datarefs();
306 void check_datarefs();
308 /* All data references. Freed by free_data_refs, so not an auto_vec. */
309 vec<data_reference_p> datarefs;
310 vec<data_reference> datarefs_copy;
312 /* The loop nest in which the data dependences are computed. */
313 auto_vec<loop_p> loop_nest;
315 /* All data dependences. Freed by free_dependence_relations, so not
316 an auto_vec. */
317 vec<ddr_p> ddrs;
320 /* Vectorizer state common between loop and basic-block vectorization. */
321 class vec_info {
322 public:
323 typedef hash_set<int_hash<machine_mode, E_VOIDmode, E_BLKmode> > mode_set;
324 enum vec_kind { bb, loop };
326 vec_info (vec_kind, void *, vec_info_shared *);
327 ~vec_info ();
329 stmt_vec_info add_stmt (gimple *);
330 stmt_vec_info lookup_stmt (gimple *);
331 stmt_vec_info lookup_def (tree);
332 stmt_vec_info lookup_single_use (tree);
333 class dr_vec_info *lookup_dr (data_reference *);
334 void move_dr (stmt_vec_info, stmt_vec_info);
335 void remove_stmt (stmt_vec_info);
336 void replace_stmt (gimple_stmt_iterator *, stmt_vec_info, gimple *);
338 /* The type of vectorization. */
339 vec_kind kind;
341 /* Shared vectorizer state. */
342 vec_info_shared *shared;
344 /* The mapping of GIMPLE UID to stmt_vec_info. */
345 vec<stmt_vec_info> stmt_vec_infos;
346 /* Whether the above mapping is complete. */
347 bool stmt_vec_info_ro;
349 /* The SLP graph. */
350 auto_vec<slp_instance> slp_instances;
351 auto_vec<slp_tree> slp_loads;
353 /* Maps base addresses to an innermost_loop_behavior that gives the maximum
354 known alignment for that base. */
355 vec_base_alignments base_alignments;
357 /* All interleaving chains of stores, represented by the first
358 stmt in the chain. */
359 auto_vec<stmt_vec_info> grouped_stores;
361 /* Cost data used by the target cost model. */
362 void *target_cost_data;
364 /* The set of vector modes used in the vectorized region. */
365 mode_set used_vector_modes;
367 /* The argument we should pass to related_vector_mode when looking up
368 the vector mode for a scalar mode, or VOIDmode if we haven't yet
369 made any decisions about which vector modes to use. */
370 machine_mode vector_mode;
372 private:
373 stmt_vec_info new_stmt_vec_info (gimple *stmt);
374 void set_vinfo_for_stmt (gimple *, stmt_vec_info);
375 void free_stmt_vec_infos ();
376 void free_stmt_vec_info (stmt_vec_info);
379 class _loop_vec_info;
380 class _bb_vec_info;
382 template<>
383 template<>
384 inline bool
385 is_a_helper <_loop_vec_info *>::test (vec_info *i)
387 return i->kind == vec_info::loop;
390 template<>
391 template<>
392 inline bool
393 is_a_helper <_bb_vec_info *>::test (vec_info *i)
395 return i->kind == vec_info::bb;
398 /* In general, we can divide the vector statements in a vectorized loop
399 into related groups ("rgroups") and say that for each rgroup there is
400 some nS such that the rgroup operates on nS values from one scalar
401 iteration followed by nS values from the next. That is, if VF is the
402 vectorization factor of the loop, the rgroup operates on a sequence:
404 (1,1) (1,2) ... (1,nS) (2,1) ... (2,nS) ... (VF,1) ... (VF,nS)
406 where (i,j) represents a scalar value with index j in a scalar
407 iteration with index i.
409 [ We use the term "rgroup" to emphasise that this grouping isn't
410 necessarily the same as the grouping of statements used elsewhere.
411 For example, if we implement a group of scalar loads using gather
412 loads, we'll use a separate gather load for each scalar load, and
413 thus each gather load will belong to its own rgroup. ]
415 In general this sequence will occupy nV vectors concatenated
416 together. If these vectors have nL lanes each, the total number
417 of scalar values N is given by:
419 N = nS * VF = nV * nL
421 None of nS, VF, nV and nL are required to be a power of 2. nS and nV
422 are compile-time constants but VF and nL can be variable (if the target
423 supports variable-length vectors).
425 In classical vectorization, each iteration of the vector loop would
426 handle exactly VF iterations of the original scalar loop. However,
427 in vector loops that are able to operate on partial vectors, a
428 particular iteration of the vector loop might handle fewer than VF
429 iterations of the scalar loop. The vector lanes that correspond to
430 iterations of the scalar loop are said to be "active" and the other
431 lanes are said to be "inactive".
433 In such vector loops, many rgroups need to be controlled to ensure
434 that they have no effect for the inactive lanes. Conceptually, each
435 such rgroup needs a sequence of booleans in the same order as above,
436 but with each (i,j) replaced by a boolean that indicates whether
437 iteration i is active. This sequence occupies nV vector controls
438 that again have nL lanes each. Thus the control sequence as a whole
439 consists of VF independent booleans that are each repeated nS times.
441 Taking mask-based approach as a partially-populated vectors example.
442 We make the simplifying assumption that if a sequence of nV masks is
443 suitable for one (nS,nL) pair, we can reuse it for (nS/2,nL/2) by
444 VIEW_CONVERTing it. This holds for all current targets that support
445 fully-masked loops. For example, suppose the scalar loop is:
447 float *f;
448 double *d;
449 for (int i = 0; i < n; ++i)
451 f[i * 2 + 0] += 1.0f;
452 f[i * 2 + 1] += 2.0f;
453 d[i] += 3.0;
456 and suppose that vectors have 256 bits. The vectorized f accesses
457 will belong to one rgroup and the vectorized d access to another:
459 f rgroup: nS = 2, nV = 1, nL = 8
460 d rgroup: nS = 1, nV = 1, nL = 4
461 VF = 4
463 [ In this simple example the rgroups do correspond to the normal
464 SLP grouping scheme. ]
466 If only the first three lanes are active, the masks we need are:
468 f rgroup: 1 1 | 1 1 | 1 1 | 0 0
469 d rgroup: 1 | 1 | 1 | 0
471 Here we can use a mask calculated for f's rgroup for d's, but not
472 vice versa.
474 Thus for each value of nV, it is enough to provide nV masks, with the
475 mask being calculated based on the highest nL (or, equivalently, based
476 on the highest nS) required by any rgroup with that nV. We therefore
477 represent the entire collection of masks as a two-level table, with the
478 first level being indexed by nV - 1 (since nV == 0 doesn't exist) and
479 the second being indexed by the mask index 0 <= i < nV. */
481 /* The controls (like masks) needed by rgroups with nV vectors,
482 according to the description above. */
483 struct rgroup_controls {
484 /* The largest nS for all rgroups that use these controls. */
485 unsigned int max_nscalars_per_iter;
487 /* The type of control to use, based on the highest nS recorded above.
488 For mask-based approach, it's used for mask_type. */
489 tree type;
491 /* A vector of nV controls, in iteration order. */
492 vec<tree> controls;
495 typedef auto_vec<rgroup_controls> vec_loop_masks;
497 typedef auto_vec<std::pair<data_reference*, tree> > drs_init_vec;
499 /*-----------------------------------------------------------------*/
500 /* Info on vectorized loops. */
501 /*-----------------------------------------------------------------*/
502 typedef class _loop_vec_info : public vec_info {
503 public:
504 _loop_vec_info (class loop *, vec_info_shared *);
505 ~_loop_vec_info ();
507 /* The loop to which this info struct refers to. */
508 class loop *loop;
510 /* The loop basic blocks. */
511 basic_block *bbs;
513 /* Number of latch executions. */
514 tree num_itersm1;
515 /* Number of iterations. */
516 tree num_iters;
517 /* Number of iterations of the original loop. */
518 tree num_iters_unchanged;
519 /* Condition under which this loop is analyzed and versioned. */
520 tree num_iters_assumptions;
522 /* Threshold of number of iterations below which vectorization will not be
523 performed. It is calculated from MIN_PROFITABLE_ITERS and
524 param_min_vect_loop_bound. */
525 unsigned int th;
527 /* When applying loop versioning, the vector form should only be used
528 if the number of scalar iterations is >= this value, on top of all
529 the other requirements. Ignored when loop versioning is not being
530 used. */
531 poly_uint64 versioning_threshold;
533 /* Unrolling factor */
534 poly_uint64 vectorization_factor;
536 /* Maximum runtime vectorization factor, or MAX_VECTORIZATION_FACTOR
537 if there is no particular limit. */
538 unsigned HOST_WIDE_INT max_vectorization_factor;
540 /* The masks that a fully-masked loop should use to avoid operating
541 on inactive scalars. */
542 vec_loop_masks masks;
544 /* Set of scalar conditions that have loop mask applied. */
545 scalar_cond_masked_set_type scalar_cond_masked_set;
547 /* If we are using a loop mask to align memory addresses, this variable
548 contains the number of vector elements that we should skip in the
549 first iteration of the vector loop (i.e. the number of leading
550 elements that should be false in the first mask). */
551 tree mask_skip_niters;
553 /* The type that the loop control IV should be converted to before
554 testing which of the VF scalars are active and inactive.
555 Only meaningful if LOOP_VINFO_USING_PARTIAL_VECTORS_P. */
556 tree rgroup_compare_type;
558 /* For #pragma omp simd if (x) loops the x expression. If constant 0,
559 the loop should not be vectorized, if constant non-zero, simd_if_cond
560 shouldn't be set and loop vectorized normally, if SSA_NAME, the loop
561 should be versioned on that condition, using scalar loop if the condition
562 is false and vectorized loop otherwise. */
563 tree simd_if_cond;
565 /* The type that the vector loop control IV should have when
566 LOOP_VINFO_USING_PARTIAL_VECTORS_P is true. */
567 tree rgroup_iv_type;
569 /* Unknown DRs according to which loop was peeled. */
570 class dr_vec_info *unaligned_dr;
572 /* peeling_for_alignment indicates whether peeling for alignment will take
573 place, and what the peeling factor should be:
574 peeling_for_alignment = X means:
575 If X=0: Peeling for alignment will not be applied.
576 If X>0: Peel first X iterations.
577 If X=-1: Generate a runtime test to calculate the number of iterations
578 to be peeled, using the dataref recorded in the field
579 unaligned_dr. */
580 int peeling_for_alignment;
582 /* The mask used to check the alignment of pointers or arrays. */
583 int ptr_mask;
585 /* Data Dependence Relations defining address ranges that are candidates
586 for a run-time aliasing check. */
587 auto_vec<ddr_p> may_alias_ddrs;
589 /* Data Dependence Relations defining address ranges together with segment
590 lengths from which the run-time aliasing check is built. */
591 auto_vec<dr_with_seg_len_pair_t> comp_alias_ddrs;
593 /* Check that the addresses of each pair of objects is unequal. */
594 auto_vec<vec_object_pair> check_unequal_addrs;
596 /* List of values that are required to be nonzero. This is used to check
597 whether things like "x[i * n] += 1;" are safe and eventually gets added
598 to the checks for lower bounds below. */
599 auto_vec<tree> check_nonzero;
601 /* List of values that need to be checked for a minimum value. */
602 auto_vec<vec_lower_bound> lower_bounds;
604 /* Statements in the loop that have data references that are candidates for a
605 runtime (loop versioning) misalignment check. */
606 auto_vec<stmt_vec_info> may_misalign_stmts;
608 /* Reduction cycles detected in the loop. Used in loop-aware SLP. */
609 auto_vec<stmt_vec_info> reductions;
611 /* All reduction chains in the loop, represented by the first
612 stmt in the chain. */
613 auto_vec<stmt_vec_info> reduction_chains;
615 /* Cost vector for a single scalar iteration. */
616 auto_vec<stmt_info_for_cost> scalar_cost_vec;
618 /* Map of IV base/step expressions to inserted name in the preheader. */
619 hash_map<tree_operand_hash, tree> *ivexpr_map;
621 /* Map of OpenMP "omp simd array" scan variables to corresponding
622 rhs of the store of the initializer. */
623 hash_map<tree, tree> *scan_map;
625 /* The unrolling factor needed to SLP the loop. In case of that pure SLP is
626 applied to the loop, i.e., no unrolling is needed, this is 1. */
627 poly_uint64 slp_unrolling_factor;
629 /* Cost of a single scalar iteration. */
630 int single_scalar_iteration_cost;
632 /* The cost of the vector prologue and epilogue, including peeled
633 iterations and set-up code. */
634 int vec_outside_cost;
636 /* The cost of the vector loop body. */
637 int vec_inside_cost;
639 /* Is the loop vectorizable? */
640 bool vectorizable;
642 /* Records whether we still have the option of vectorizing this loop
643 using partially-populated vectors; in other words, whether it is
644 still possible for one iteration of the vector loop to handle
645 fewer than VF scalars. */
646 bool can_use_partial_vectors_p;
648 /* True if we've decided to use partially-populated vectors, so that
649 the vector loop can handle fewer than VF scalars. */
650 bool using_partial_vectors_p;
652 /* When we have grouped data accesses with gaps, we may introduce invalid
653 memory accesses. We peel the last iteration of the loop to prevent
654 this. */
655 bool peeling_for_gaps;
657 /* When the number of iterations is not a multiple of the vector size
658 we need to peel off iterations at the end to form an epilogue loop. */
659 bool peeling_for_niter;
661 /* True if there are no loop carried data dependencies in the loop.
662 If loop->safelen <= 1, then this is always true, either the loop
663 didn't have any loop carried data dependencies, or the loop is being
664 vectorized guarded with some runtime alias checks, or couldn't
665 be vectorized at all, but then this field shouldn't be used.
666 For loop->safelen >= 2, the user has asserted that there are no
667 backward dependencies, but there still could be loop carried forward
668 dependencies in such loops. This flag will be false if normal
669 vectorizer data dependency analysis would fail or require versioning
670 for alias, but because of loop->safelen >= 2 it has been vectorized
671 even without versioning for alias. E.g. in:
672 #pragma omp simd
673 for (int i = 0; i < m; i++)
674 a[i] = a[i + k] * c;
675 (or #pragma simd or #pragma ivdep) we can vectorize this and it will
676 DTRT even for k > 0 && k < m, but without safelen we would not
677 vectorize this, so this field would be false. */
678 bool no_data_dependencies;
680 /* Mark loops having masked stores. */
681 bool has_mask_store;
683 /* Queued scaling factor for the scalar loop. */
684 profile_probability scalar_loop_scaling;
686 /* If if-conversion versioned this loop before conversion, this is the
687 loop version without if-conversion. */
688 class loop *scalar_loop;
690 /* For loops being epilogues of already vectorized loops
691 this points to the original vectorized loop. Otherwise NULL. */
692 _loop_vec_info *orig_loop_info;
694 /* Used to store loop_vec_infos of epilogues of this loop during
695 analysis. */
696 vec<_loop_vec_info *> epilogue_vinfos;
698 } *loop_vec_info;
700 /* Access Functions. */
701 #define LOOP_VINFO_LOOP(L) (L)->loop
702 #define LOOP_VINFO_BBS(L) (L)->bbs
703 #define LOOP_VINFO_NITERSM1(L) (L)->num_itersm1
704 #define LOOP_VINFO_NITERS(L) (L)->num_iters
705 /* Since LOOP_VINFO_NITERS and LOOP_VINFO_NITERSM1 can change after
706 prologue peeling retain total unchanged scalar loop iterations for
707 cost model. */
708 #define LOOP_VINFO_NITERS_UNCHANGED(L) (L)->num_iters_unchanged
709 #define LOOP_VINFO_NITERS_ASSUMPTIONS(L) (L)->num_iters_assumptions
710 #define LOOP_VINFO_COST_MODEL_THRESHOLD(L) (L)->th
711 #define LOOP_VINFO_VERSIONING_THRESHOLD(L) (L)->versioning_threshold
712 #define LOOP_VINFO_VECTORIZABLE_P(L) (L)->vectorizable
713 #define LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P(L) (L)->can_use_partial_vectors_p
714 #define LOOP_VINFO_USING_PARTIAL_VECTORS_P(L) (L)->using_partial_vectors_p
715 #define LOOP_VINFO_VECT_FACTOR(L) (L)->vectorization_factor
716 #define LOOP_VINFO_MAX_VECT_FACTOR(L) (L)->max_vectorization_factor
717 #define LOOP_VINFO_MASKS(L) (L)->masks
718 #define LOOP_VINFO_MASK_SKIP_NITERS(L) (L)->mask_skip_niters
719 #define LOOP_VINFO_RGROUP_COMPARE_TYPE(L) (L)->rgroup_compare_type
720 #define LOOP_VINFO_RGROUP_IV_TYPE(L) (L)->rgroup_iv_type
721 #define LOOP_VINFO_PTR_MASK(L) (L)->ptr_mask
722 #define LOOP_VINFO_LOOP_NEST(L) (L)->shared->loop_nest
723 #define LOOP_VINFO_DATAREFS(L) (L)->shared->datarefs
724 #define LOOP_VINFO_DDRS(L) (L)->shared->ddrs
725 #define LOOP_VINFO_INT_NITERS(L) (TREE_INT_CST_LOW ((L)->num_iters))
726 #define LOOP_VINFO_PEELING_FOR_ALIGNMENT(L) (L)->peeling_for_alignment
727 #define LOOP_VINFO_UNALIGNED_DR(L) (L)->unaligned_dr
728 #define LOOP_VINFO_MAY_MISALIGN_STMTS(L) (L)->may_misalign_stmts
729 #define LOOP_VINFO_MAY_ALIAS_DDRS(L) (L)->may_alias_ddrs
730 #define LOOP_VINFO_COMP_ALIAS_DDRS(L) (L)->comp_alias_ddrs
731 #define LOOP_VINFO_CHECK_UNEQUAL_ADDRS(L) (L)->check_unequal_addrs
732 #define LOOP_VINFO_CHECK_NONZERO(L) (L)->check_nonzero
733 #define LOOP_VINFO_LOWER_BOUNDS(L) (L)->lower_bounds
734 #define LOOP_VINFO_GROUPED_STORES(L) (L)->grouped_stores
735 #define LOOP_VINFO_SLP_INSTANCES(L) (L)->slp_instances
736 #define LOOP_VINFO_SLP_UNROLLING_FACTOR(L) (L)->slp_unrolling_factor
737 #define LOOP_VINFO_REDUCTIONS(L) (L)->reductions
738 #define LOOP_VINFO_REDUCTION_CHAINS(L) (L)->reduction_chains
739 #define LOOP_VINFO_TARGET_COST_DATA(L) (L)->target_cost_data
740 #define LOOP_VINFO_PEELING_FOR_GAPS(L) (L)->peeling_for_gaps
741 #define LOOP_VINFO_PEELING_FOR_NITER(L) (L)->peeling_for_niter
742 #define LOOP_VINFO_NO_DATA_DEPENDENCIES(L) (L)->no_data_dependencies
743 #define LOOP_VINFO_SCALAR_LOOP(L) (L)->scalar_loop
744 #define LOOP_VINFO_SCALAR_LOOP_SCALING(L) (L)->scalar_loop_scaling
745 #define LOOP_VINFO_HAS_MASK_STORE(L) (L)->has_mask_store
746 #define LOOP_VINFO_SCALAR_ITERATION_COST(L) (L)->scalar_cost_vec
747 #define LOOP_VINFO_SINGLE_SCALAR_ITERATION_COST(L) (L)->single_scalar_iteration_cost
748 #define LOOP_VINFO_ORIG_LOOP_INFO(L) (L)->orig_loop_info
749 #define LOOP_VINFO_SIMD_IF_COND(L) (L)->simd_if_cond
751 #define LOOP_VINFO_FULLY_MASKED_P(L) \
752 (LOOP_VINFO_USING_PARTIAL_VECTORS_P (L) \
753 && !LOOP_VINFO_MASKS (L).is_empty ())
755 #define LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT(L) \
756 ((L)->may_misalign_stmts.length () > 0)
757 #define LOOP_REQUIRES_VERSIONING_FOR_ALIAS(L) \
758 ((L)->comp_alias_ddrs.length () > 0 \
759 || (L)->check_unequal_addrs.length () > 0 \
760 || (L)->lower_bounds.length () > 0)
761 #define LOOP_REQUIRES_VERSIONING_FOR_NITERS(L) \
762 (LOOP_VINFO_NITERS_ASSUMPTIONS (L))
763 #define LOOP_REQUIRES_VERSIONING_FOR_SIMD_IF_COND(L) \
764 (LOOP_VINFO_SIMD_IF_COND (L))
765 #define LOOP_REQUIRES_VERSIONING(L) \
766 (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (L) \
767 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (L) \
768 || LOOP_REQUIRES_VERSIONING_FOR_NITERS (L) \
769 || LOOP_REQUIRES_VERSIONING_FOR_SIMD_IF_COND (L))
771 #define LOOP_VINFO_NITERS_KNOWN_P(L) \
772 (tree_fits_shwi_p ((L)->num_iters) && tree_to_shwi ((L)->num_iters) > 0)
774 #define LOOP_VINFO_EPILOGUE_P(L) \
775 (LOOP_VINFO_ORIG_LOOP_INFO (L) != NULL)
777 #define LOOP_VINFO_ORIG_MAX_VECT_FACTOR(L) \
778 (LOOP_VINFO_MAX_VECT_FACTOR (LOOP_VINFO_ORIG_LOOP_INFO (L)))
780 /* Wrapper for loop_vec_info, for tracking success/failure, where a non-NULL
781 value signifies success, and a NULL value signifies failure, supporting
782 propagating an opt_problem * describing the failure back up the call
783 stack. */
784 typedef opt_pointer_wrapper <loop_vec_info> opt_loop_vec_info;
786 static inline loop_vec_info
787 loop_vec_info_for_loop (class loop *loop)
789 return (loop_vec_info) loop->aux;
792 typedef class _bb_vec_info : public vec_info
794 public:
796 /* GIMPLE statement iterator going from region_begin to region_end. */
798 struct const_iterator
800 const_iterator (gimple_stmt_iterator _gsi) : gsi (_gsi) {}
802 const const_iterator &
803 operator++ ()
805 gsi_next (&gsi); return *this;
808 gimple *operator* () const { return gsi_stmt (gsi); }
810 bool
811 operator== (const const_iterator &other) const
813 return gsi_stmt (gsi) == gsi_stmt (other.gsi);
816 bool
817 operator!= (const const_iterator &other) const
819 return !(*this == other);
822 gimple_stmt_iterator gsi;
825 /* GIMPLE statement iterator going from region_end to region_begin. */
827 struct const_reverse_iterator
829 const_reverse_iterator (gimple_stmt_iterator _gsi) : gsi (_gsi) {}
831 const const_reverse_iterator &
832 operator++ ()
834 gsi_prev (&gsi); return *this;
837 gimple *operator* () const { return gsi_stmt (gsi); }
839 bool
840 operator== (const const_reverse_iterator &other) const
842 return gsi_stmt (gsi) == gsi_stmt (other.gsi);
845 bool
846 operator!= (const const_reverse_iterator &other) const
848 return !(*this == other);
851 gimple_stmt_iterator gsi;
854 _bb_vec_info (gimple_stmt_iterator, gimple_stmt_iterator, vec_info_shared *);
855 ~_bb_vec_info ();
857 /* Returns iterator_range for range-based loop. */
859 iterator_range<const_iterator>
860 region_stmts ()
862 return iterator_range<const_iterator> (region_begin, region_end);
865 /* Returns iterator_range for range-based loop in a reverse order. */
867 iterator_range<const_reverse_iterator>
868 reverse_region_stmts ()
870 const_reverse_iterator begin = region_end;
871 if (*begin == NULL)
872 begin = const_reverse_iterator (gsi_last_bb (gsi_bb (region_end)));
873 else
874 ++begin;
876 const_reverse_iterator end = region_begin;
877 return iterator_range<const_reverse_iterator> (begin, ++end);
880 basic_block bb;
881 gimple_stmt_iterator region_begin;
882 gimple_stmt_iterator region_end;
883 } *bb_vec_info;
885 #define BB_VINFO_BB(B) (B)->bb
886 #define BB_VINFO_GROUPED_STORES(B) (B)->grouped_stores
887 #define BB_VINFO_SLP_INSTANCES(B) (B)->slp_instances
888 #define BB_VINFO_DATAREFS(B) (B)->shared->datarefs
889 #define BB_VINFO_DDRS(B) (B)->shared->ddrs
890 #define BB_VINFO_TARGET_COST_DATA(B) (B)->target_cost_data
892 static inline bb_vec_info
893 vec_info_for_bb (basic_block bb)
895 return (bb_vec_info) bb->aux;
898 /*-----------------------------------------------------------------*/
899 /* Info on vectorized defs. */
900 /*-----------------------------------------------------------------*/
901 enum stmt_vec_info_type {
902 undef_vec_info_type = 0,
903 load_vec_info_type,
904 store_vec_info_type,
905 shift_vec_info_type,
906 op_vec_info_type,
907 call_vec_info_type,
908 call_simd_clone_vec_info_type,
909 assignment_vec_info_type,
910 condition_vec_info_type,
911 comparison_vec_info_type,
912 reduc_vec_info_type,
913 induc_vec_info_type,
914 type_promotion_vec_info_type,
915 type_demotion_vec_info_type,
916 type_conversion_vec_info_type,
917 cycle_phi_info_type,
918 lc_phi_info_type,
919 loop_exit_ctrl_vec_info_type
922 /* Indicates whether/how a variable is used in the scope of loop/basic
923 block. */
924 enum vect_relevant {
925 vect_unused_in_scope = 0,
927 /* The def is only used outside the loop. */
928 vect_used_only_live,
929 /* The def is in the inner loop, and the use is in the outer loop, and the
930 use is a reduction stmt. */
931 vect_used_in_outer_by_reduction,
932 /* The def is in the inner loop, and the use is in the outer loop (and is
933 not part of reduction). */
934 vect_used_in_outer,
936 /* defs that feed computations that end up (only) in a reduction. These
937 defs may be used by non-reduction stmts, but eventually, any
938 computations/values that are affected by these defs are used to compute
939 a reduction (i.e. don't get stored to memory, for example). We use this
940 to identify computations that we can change the order in which they are
941 computed. */
942 vect_used_by_reduction,
944 vect_used_in_scope
947 /* The type of vectorization that can be applied to the stmt: regular loop-based
948 vectorization; pure SLP - the stmt is a part of SLP instances and does not
949 have uses outside SLP instances; or hybrid SLP and loop-based - the stmt is
950 a part of SLP instance and also must be loop-based vectorized, since it has
951 uses outside SLP sequences.
953 In the loop context the meanings of pure and hybrid SLP are slightly
954 different. By saying that pure SLP is applied to the loop, we mean that we
955 exploit only intra-iteration parallelism in the loop; i.e., the loop can be
956 vectorized without doing any conceptual unrolling, cause we don't pack
957 together stmts from different iterations, only within a single iteration.
958 Loop hybrid SLP means that we exploit both intra-iteration and
959 inter-iteration parallelism (e.g., number of elements in the vector is 4
960 and the slp-group-size is 2, in which case we don't have enough parallelism
961 within an iteration, so we obtain the rest of the parallelism from subsequent
962 iterations by unrolling the loop by 2). */
963 enum slp_vect_type {
964 loop_vect = 0,
965 pure_slp,
966 hybrid
969 /* Says whether a statement is a load, a store of a vectorized statement
970 result, or a store of an invariant value. */
971 enum vec_load_store_type {
972 VLS_LOAD,
973 VLS_STORE,
974 VLS_STORE_INVARIANT
977 /* Describes how we're going to vectorize an individual load or store,
978 or a group of loads or stores. */
979 enum vect_memory_access_type {
980 /* An access to an invariant address. This is used only for loads. */
981 VMAT_INVARIANT,
983 /* A simple contiguous access. */
984 VMAT_CONTIGUOUS,
986 /* A contiguous access that goes down in memory rather than up,
987 with no additional permutation. This is used only for stores
988 of invariants. */
989 VMAT_CONTIGUOUS_DOWN,
991 /* A simple contiguous access in which the elements need to be permuted
992 after loading or before storing. Only used for loop vectorization;
993 SLP uses separate permutes. */
994 VMAT_CONTIGUOUS_PERMUTE,
996 /* A simple contiguous access in which the elements need to be reversed
997 after loading or before storing. */
998 VMAT_CONTIGUOUS_REVERSE,
1000 /* An access that uses IFN_LOAD_LANES or IFN_STORE_LANES. */
1001 VMAT_LOAD_STORE_LANES,
1003 /* An access in which each scalar element is loaded or stored
1004 individually. */
1005 VMAT_ELEMENTWISE,
1007 /* A hybrid of VMAT_CONTIGUOUS and VMAT_ELEMENTWISE, used for grouped
1008 SLP accesses. Each unrolled iteration uses a contiguous load
1009 or store for the whole group, but the groups from separate iterations
1010 are combined in the same way as for VMAT_ELEMENTWISE. */
1011 VMAT_STRIDED_SLP,
1013 /* The access uses gather loads or scatter stores. */
1014 VMAT_GATHER_SCATTER
1017 class dr_vec_info {
1018 public:
1019 /* The data reference itself. */
1020 data_reference *dr;
1021 /* The statement that contains the data reference. */
1022 stmt_vec_info stmt;
1023 /* The misalignment in bytes of the reference, or -1 if not known. */
1024 int misalignment;
1025 /* The byte alignment that we'd ideally like the reference to have,
1026 and the value that misalignment is measured against. */
1027 poly_uint64 target_alignment;
1028 /* If true the alignment of base_decl needs to be increased. */
1029 bool base_misaligned;
1030 tree base_decl;
1032 /* Stores current vectorized loop's offset. To be added to the DR's
1033 offset to calculate current offset of data reference. */
1034 tree offset;
1037 typedef struct data_reference *dr_p;
1039 class _stmt_vec_info {
1040 public:
1042 enum stmt_vec_info_type type;
1044 /* Indicates whether this stmts is part of a computation whose result is
1045 used outside the loop. */
1046 bool live;
1048 /* Stmt is part of some pattern (computation idiom) */
1049 bool in_pattern_p;
1051 /* True if the statement was created during pattern recognition as
1052 part of the replacement for RELATED_STMT. This implies that the
1053 statement isn't part of any basic block, although for convenience
1054 its gimple_bb is the same as for RELATED_STMT. */
1055 bool pattern_stmt_p;
1057 /* Is this statement vectorizable or should it be skipped in (partial)
1058 vectorization. */
1059 bool vectorizable;
1061 /* The stmt to which this info struct refers to. */
1062 gimple *stmt;
1064 /* The vector type to be used for the LHS of this statement. */
1065 tree vectype;
1067 /* The vectorized stmts. */
1068 vec<gimple *> vec_stmts;
1070 /* The following is relevant only for stmts that contain a non-scalar
1071 data-ref (array/pointer/struct access). A GIMPLE stmt is expected to have
1072 at most one such data-ref. */
1074 dr_vec_info dr_aux;
1076 /* Information about the data-ref relative to this loop
1077 nest (the loop that is being considered for vectorization). */
1078 innermost_loop_behavior dr_wrt_vec_loop;
1080 /* For loop PHI nodes, the base and evolution part of it. This makes sure
1081 this information is still available in vect_update_ivs_after_vectorizer
1082 where we may not be able to re-analyze the PHI nodes evolution as
1083 peeling for the prologue loop can make it unanalyzable. The evolution
1084 part is still correct after peeling, but the base may have changed from
1085 the version here. */
1086 tree loop_phi_evolution_base_unchanged;
1087 tree loop_phi_evolution_part;
1089 /* Used for various bookkeeping purposes, generally holding a pointer to
1090 some other stmt S that is in some way "related" to this stmt.
1091 Current use of this field is:
1092 If this stmt is part of a pattern (i.e. the field 'in_pattern_p' is
1093 true): S is the "pattern stmt" that represents (and replaces) the
1094 sequence of stmts that constitutes the pattern. Similarly, the
1095 related_stmt of the "pattern stmt" points back to this stmt (which is
1096 the last stmt in the original sequence of stmts that constitutes the
1097 pattern). */
1098 stmt_vec_info related_stmt;
1100 /* Used to keep a sequence of def stmts of a pattern stmt if such exists.
1101 The sequence is attached to the original statement rather than the
1102 pattern statement. */
1103 gimple_seq pattern_def_seq;
1105 /* List of datarefs that are known to have the same alignment as the dataref
1106 of this stmt. */
1107 vec<dr_p> same_align_refs;
1109 /* Selected SIMD clone's function info. First vector element
1110 is SIMD clone's function decl, followed by a pair of trees (base + step)
1111 for linear arguments (pair of NULLs for other arguments). */
1112 vec<tree> simd_clone_info;
1114 /* Classify the def of this stmt. */
1115 enum vect_def_type def_type;
1117 /* Whether the stmt is SLPed, loop-based vectorized, or both. */
1118 enum slp_vect_type slp_type;
1120 /* Interleaving and reduction chains info. */
1121 /* First element in the group. */
1122 stmt_vec_info first_element;
1123 /* Pointer to the next element in the group. */
1124 stmt_vec_info next_element;
1125 /* The size of the group. */
1126 unsigned int size;
1127 /* For stores, number of stores from this group seen. We vectorize the last
1128 one. */
1129 unsigned int store_count;
1130 /* For loads only, the gap from the previous load. For consecutive loads, GAP
1131 is 1. */
1132 unsigned int gap;
1134 /* The minimum negative dependence distance this stmt participates in
1135 or zero if none. */
1136 unsigned int min_neg_dist;
1138 /* Not all stmts in the loop need to be vectorized. e.g, the increment
1139 of the loop induction variable and computation of array indexes. relevant
1140 indicates whether the stmt needs to be vectorized. */
1141 enum vect_relevant relevant;
1143 /* For loads if this is a gather, for stores if this is a scatter. */
1144 bool gather_scatter_p;
1146 /* True if this is an access with loop-invariant stride. */
1147 bool strided_p;
1149 /* For both loads and stores. */
1150 unsigned simd_lane_access_p : 3;
1152 /* Classifies how the load or store is going to be implemented
1153 for loop vectorization. */
1154 vect_memory_access_type memory_access_type;
1156 /* For INTEGER_INDUC_COND_REDUCTION, the initial value to be used. */
1157 tree induc_cond_initial_val;
1159 /* If not NULL the value to be added to compute final reduction value. */
1160 tree reduc_epilogue_adjustment;
1162 /* On a reduction PHI the reduction type as detected by
1163 vect_is_simple_reduction and vectorizable_reduction. */
1164 enum vect_reduction_type reduc_type;
1166 /* The original reduction code, to be used in the epilogue. */
1167 enum tree_code reduc_code;
1168 /* An internal function we should use in the epilogue. */
1169 internal_fn reduc_fn;
1171 /* On a stmt participating in the reduction the index of the operand
1172 on the reduction SSA cycle. */
1173 int reduc_idx;
1175 /* On a reduction PHI the def returned by vect_force_simple_reduction.
1176 On the def returned by vect_force_simple_reduction the
1177 corresponding PHI. */
1178 stmt_vec_info reduc_def;
1180 /* The vector input type relevant for reduction vectorization. */
1181 tree reduc_vectype_in;
1183 /* The vector type for performing the actual reduction. */
1184 tree reduc_vectype;
1186 /* Whether we force a single cycle PHI during reduction vectorization. */
1187 bool force_single_cycle;
1189 /* Whether on this stmt reduction meta is recorded. */
1190 bool is_reduc_info;
1192 /* The number of scalar stmt references from active SLP instances. */
1193 unsigned int num_slp_uses;
1195 /* If nonzero, the lhs of the statement could be truncated to this
1196 many bits without affecting any users of the result. */
1197 unsigned int min_output_precision;
1199 /* If nonzero, all non-boolean input operands have the same precision,
1200 and they could each be truncated to this many bits without changing
1201 the result. */
1202 unsigned int min_input_precision;
1204 /* If OPERATION_BITS is nonzero, the statement could be performed on
1205 an integer with the sign and number of bits given by OPERATION_SIGN
1206 and OPERATION_BITS without changing the result. */
1207 unsigned int operation_precision;
1208 signop operation_sign;
1210 /* If the statement produces a boolean result, this value describes
1211 how we should choose the associated vector type. The possible
1212 values are:
1214 - an integer precision N if we should use the vector mask type
1215 associated with N-bit integers. This is only used if all relevant
1216 input booleans also want the vector mask type for N-bit integers,
1217 or if we can convert them into that form by pattern-matching.
1219 - ~0U if we considered choosing a vector mask type but decided
1220 to treat the boolean as a normal integer type instead.
1222 - 0 otherwise. This means either that the operation isn't one that
1223 could have a vector mask type (and so should have a normal vector
1224 type instead) or that we simply haven't made a choice either way. */
1225 unsigned int mask_precision;
1227 /* True if this is only suitable for SLP vectorization. */
1228 bool slp_vect_only_p;
1231 /* Information about a gather/scatter call. */
1232 struct gather_scatter_info {
1233 /* The internal function to use for the gather/scatter operation,
1234 or IFN_LAST if a built-in function should be used instead. */
1235 internal_fn ifn;
1237 /* The FUNCTION_DECL for the built-in gather/scatter function,
1238 or null if an internal function should be used instead. */
1239 tree decl;
1241 /* The loop-invariant base value. */
1242 tree base;
1244 /* The original scalar offset, which is a non-loop-invariant SSA_NAME. */
1245 tree offset;
1247 /* Each offset element should be multiplied by this amount before
1248 being added to the base. */
1249 int scale;
1251 /* The definition type for the vectorized offset. */
1252 enum vect_def_type offset_dt;
1254 /* The type of the vectorized offset. */
1255 tree offset_vectype;
1257 /* The type of the scalar elements after loading or before storing. */
1258 tree element_type;
1260 /* The type of the scalar elements being loaded or stored. */
1261 tree memory_type;
1264 /* Access Functions. */
1265 #define STMT_VINFO_TYPE(S) (S)->type
1266 #define STMT_VINFO_STMT(S) (S)->stmt
1267 #define STMT_VINFO_RELEVANT(S) (S)->relevant
1268 #define STMT_VINFO_LIVE_P(S) (S)->live
1269 #define STMT_VINFO_VECTYPE(S) (S)->vectype
1270 #define STMT_VINFO_VEC_STMTS(S) (S)->vec_stmts
1271 #define STMT_VINFO_VECTORIZABLE(S) (S)->vectorizable
1272 #define STMT_VINFO_DATA_REF(S) ((S)->dr_aux.dr + 0)
1273 #define STMT_VINFO_GATHER_SCATTER_P(S) (S)->gather_scatter_p
1274 #define STMT_VINFO_STRIDED_P(S) (S)->strided_p
1275 #define STMT_VINFO_MEMORY_ACCESS_TYPE(S) (S)->memory_access_type
1276 #define STMT_VINFO_SIMD_LANE_ACCESS_P(S) (S)->simd_lane_access_p
1277 #define STMT_VINFO_VEC_INDUC_COND_INITIAL_VAL(S) (S)->induc_cond_initial_val
1278 #define STMT_VINFO_REDUC_EPILOGUE_ADJUSTMENT(S) (S)->reduc_epilogue_adjustment
1279 #define STMT_VINFO_REDUC_IDX(S) (S)->reduc_idx
1280 #define STMT_VINFO_FORCE_SINGLE_CYCLE(S) (S)->force_single_cycle
1282 #define STMT_VINFO_DR_WRT_VEC_LOOP(S) (S)->dr_wrt_vec_loop
1283 #define STMT_VINFO_DR_BASE_ADDRESS(S) (S)->dr_wrt_vec_loop.base_address
1284 #define STMT_VINFO_DR_INIT(S) (S)->dr_wrt_vec_loop.init
1285 #define STMT_VINFO_DR_OFFSET(S) (S)->dr_wrt_vec_loop.offset
1286 #define STMT_VINFO_DR_STEP(S) (S)->dr_wrt_vec_loop.step
1287 #define STMT_VINFO_DR_BASE_ALIGNMENT(S) (S)->dr_wrt_vec_loop.base_alignment
1288 #define STMT_VINFO_DR_BASE_MISALIGNMENT(S) \
1289 (S)->dr_wrt_vec_loop.base_misalignment
1290 #define STMT_VINFO_DR_OFFSET_ALIGNMENT(S) \
1291 (S)->dr_wrt_vec_loop.offset_alignment
1292 #define STMT_VINFO_DR_STEP_ALIGNMENT(S) \
1293 (S)->dr_wrt_vec_loop.step_alignment
1295 #define STMT_VINFO_DR_INFO(S) \
1296 (gcc_checking_assert ((S)->dr_aux.stmt == (S)), &(S)->dr_aux)
1298 #define STMT_VINFO_IN_PATTERN_P(S) (S)->in_pattern_p
1299 #define STMT_VINFO_RELATED_STMT(S) (S)->related_stmt
1300 #define STMT_VINFO_PATTERN_DEF_SEQ(S) (S)->pattern_def_seq
1301 #define STMT_VINFO_SAME_ALIGN_REFS(S) (S)->same_align_refs
1302 #define STMT_VINFO_SIMD_CLONE_INFO(S) (S)->simd_clone_info
1303 #define STMT_VINFO_DEF_TYPE(S) (S)->def_type
1304 #define STMT_VINFO_GROUPED_ACCESS(S) \
1305 ((S)->dr_aux.dr && DR_GROUP_FIRST_ELEMENT(S))
1306 #define STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED(S) (S)->loop_phi_evolution_base_unchanged
1307 #define STMT_VINFO_LOOP_PHI_EVOLUTION_PART(S) (S)->loop_phi_evolution_part
1308 #define STMT_VINFO_MIN_NEG_DIST(S) (S)->min_neg_dist
1309 #define STMT_VINFO_NUM_SLP_USES(S) (S)->num_slp_uses
1310 #define STMT_VINFO_REDUC_TYPE(S) (S)->reduc_type
1311 #define STMT_VINFO_REDUC_CODE(S) (S)->reduc_code
1312 #define STMT_VINFO_REDUC_FN(S) (S)->reduc_fn
1313 #define STMT_VINFO_REDUC_DEF(S) (S)->reduc_def
1314 #define STMT_VINFO_REDUC_VECTYPE(S) (S)->reduc_vectype
1315 #define STMT_VINFO_REDUC_VECTYPE_IN(S) (S)->reduc_vectype_in
1316 #define STMT_VINFO_SLP_VECT_ONLY(S) (S)->slp_vect_only_p
1318 #define DR_GROUP_FIRST_ELEMENT(S) \
1319 (gcc_checking_assert ((S)->dr_aux.dr), (S)->first_element)
1320 #define DR_GROUP_NEXT_ELEMENT(S) \
1321 (gcc_checking_assert ((S)->dr_aux.dr), (S)->next_element)
1322 #define DR_GROUP_SIZE(S) \
1323 (gcc_checking_assert ((S)->dr_aux.dr), (S)->size)
1324 #define DR_GROUP_STORE_COUNT(S) \
1325 (gcc_checking_assert ((S)->dr_aux.dr), (S)->store_count)
1326 #define DR_GROUP_GAP(S) \
1327 (gcc_checking_assert ((S)->dr_aux.dr), (S)->gap)
1329 #define REDUC_GROUP_FIRST_ELEMENT(S) \
1330 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->first_element)
1331 #define REDUC_GROUP_NEXT_ELEMENT(S) \
1332 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->next_element)
1333 #define REDUC_GROUP_SIZE(S) \
1334 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->size)
1336 #define STMT_VINFO_RELEVANT_P(S) ((S)->relevant != vect_unused_in_scope)
1338 #define HYBRID_SLP_STMT(S) ((S)->slp_type == hybrid)
1339 #define PURE_SLP_STMT(S) ((S)->slp_type == pure_slp)
1340 #define STMT_SLP_TYPE(S) (S)->slp_type
1342 #define VECT_MAX_COST 1000
1344 /* The maximum number of intermediate steps required in multi-step type
1345 conversion. */
1346 #define MAX_INTERM_CVT_STEPS 3
1348 #define MAX_VECTORIZATION_FACTOR INT_MAX
1350 /* Nonzero if TYPE represents a (scalar) boolean type or type
1351 in the middle-end compatible with it (unsigned precision 1 integral
1352 types). Used to determine which types should be vectorized as
1353 VECTOR_BOOLEAN_TYPE_P. */
1355 #define VECT_SCALAR_BOOLEAN_TYPE_P(TYPE) \
1356 (TREE_CODE (TYPE) == BOOLEAN_TYPE \
1357 || ((TREE_CODE (TYPE) == INTEGER_TYPE \
1358 || TREE_CODE (TYPE) == ENUMERAL_TYPE) \
1359 && TYPE_PRECISION (TYPE) == 1 \
1360 && TYPE_UNSIGNED (TYPE)))
1362 static inline bool
1363 nested_in_vect_loop_p (class loop *loop, stmt_vec_info stmt_info)
1365 return (loop->inner
1366 && (loop->inner == (gimple_bb (stmt_info->stmt))->loop_father));
1369 /* Return true if STMT_INFO should produce a vector mask type rather than
1370 a normal nonmask type. */
1372 static inline bool
1373 vect_use_mask_type_p (stmt_vec_info stmt_info)
1375 return stmt_info->mask_precision && stmt_info->mask_precision != ~0U;
1378 /* Return TRUE if a statement represented by STMT_INFO is a part of a
1379 pattern. */
1381 static inline bool
1382 is_pattern_stmt_p (stmt_vec_info stmt_info)
1384 return stmt_info->pattern_stmt_p;
1387 /* If STMT_INFO is a pattern statement, return the statement that it
1388 replaces, otherwise return STMT_INFO itself. */
1390 inline stmt_vec_info
1391 vect_orig_stmt (stmt_vec_info stmt_info)
1393 if (is_pattern_stmt_p (stmt_info))
1394 return STMT_VINFO_RELATED_STMT (stmt_info);
1395 return stmt_info;
1398 /* Return the later statement between STMT1_INFO and STMT2_INFO. */
1400 static inline stmt_vec_info
1401 get_later_stmt (stmt_vec_info stmt1_info, stmt_vec_info stmt2_info)
1403 if (gimple_uid (vect_orig_stmt (stmt1_info)->stmt)
1404 > gimple_uid (vect_orig_stmt (stmt2_info)->stmt))
1405 return stmt1_info;
1406 else
1407 return stmt2_info;
1410 /* If STMT_INFO has been replaced by a pattern statement, return the
1411 replacement statement, otherwise return STMT_INFO itself. */
1413 inline stmt_vec_info
1414 vect_stmt_to_vectorize (stmt_vec_info stmt_info)
1416 if (STMT_VINFO_IN_PATTERN_P (stmt_info))
1417 return STMT_VINFO_RELATED_STMT (stmt_info);
1418 return stmt_info;
1421 /* Return true if BB is a loop header. */
1423 static inline bool
1424 is_loop_header_bb_p (basic_block bb)
1426 if (bb == (bb->loop_father)->header)
1427 return true;
1428 gcc_checking_assert (EDGE_COUNT (bb->preds) == 1);
1429 return false;
1432 /* Return pow2 (X). */
1434 static inline int
1435 vect_pow2 (int x)
1437 int i, res = 1;
1439 for (i = 0; i < x; i++)
1440 res *= 2;
1442 return res;
1445 /* Alias targetm.vectorize.builtin_vectorization_cost. */
1447 static inline int
1448 builtin_vectorization_cost (enum vect_cost_for_stmt type_of_cost,
1449 tree vectype, int misalign)
1451 return targetm.vectorize.builtin_vectorization_cost (type_of_cost,
1452 vectype, misalign);
1455 /* Get cost by calling cost target builtin. */
1457 static inline
1458 int vect_get_stmt_cost (enum vect_cost_for_stmt type_of_cost)
1460 return builtin_vectorization_cost (type_of_cost, NULL, 0);
1463 /* Alias targetm.vectorize.init_cost. */
1465 static inline void *
1466 init_cost (class loop *loop_info)
1468 return targetm.vectorize.init_cost (loop_info);
1471 extern void dump_stmt_cost (FILE *, void *, int, enum vect_cost_for_stmt,
1472 stmt_vec_info, tree, int, unsigned,
1473 enum vect_cost_model_location);
1475 /* Alias targetm.vectorize.add_stmt_cost. */
1477 static inline unsigned
1478 add_stmt_cost (vec_info *vinfo, void *data, int count,
1479 enum vect_cost_for_stmt kind,
1480 stmt_vec_info stmt_info, tree vectype, int misalign,
1481 enum vect_cost_model_location where)
1483 unsigned cost = targetm.vectorize.add_stmt_cost (vinfo, data, count, kind,
1484 stmt_info, vectype,
1485 misalign, where);
1486 if (dump_file && (dump_flags & TDF_DETAILS))
1487 dump_stmt_cost (dump_file, data, count, kind, stmt_info, vectype, misalign,
1488 cost, where);
1489 return cost;
1492 /* Alias targetm.vectorize.finish_cost. */
1494 static inline void
1495 finish_cost (void *data, unsigned *prologue_cost,
1496 unsigned *body_cost, unsigned *epilogue_cost)
1498 targetm.vectorize.finish_cost (data, prologue_cost, body_cost, epilogue_cost);
1501 /* Alias targetm.vectorize.destroy_cost_data. */
1503 static inline void
1504 destroy_cost_data (void *data)
1506 targetm.vectorize.destroy_cost_data (data);
1509 inline void
1510 add_stmt_costs (vec_info *vinfo, void *data, stmt_vector_for_cost *cost_vec)
1512 stmt_info_for_cost *cost;
1513 unsigned i;
1514 FOR_EACH_VEC_ELT (*cost_vec, i, cost)
1515 add_stmt_cost (vinfo, data, cost->count, cost->kind, cost->stmt_info,
1516 cost->vectype, cost->misalign, cost->where);
1519 /*-----------------------------------------------------------------*/
1520 /* Info on data references alignment. */
1521 /*-----------------------------------------------------------------*/
1522 #define DR_MISALIGNMENT_UNKNOWN (-1)
1523 #define DR_MISALIGNMENT_UNINITIALIZED (-2)
1525 inline void
1526 set_dr_misalignment (dr_vec_info *dr_info, int val)
1528 dr_info->misalignment = val;
1531 inline int
1532 dr_misalignment (dr_vec_info *dr_info)
1534 int misalign = dr_info->misalignment;
1535 gcc_assert (misalign != DR_MISALIGNMENT_UNINITIALIZED);
1536 return misalign;
1539 /* Reflects actual alignment of first access in the vectorized loop,
1540 taking into account peeling/versioning if applied. */
1541 #define DR_MISALIGNMENT(DR) dr_misalignment (DR)
1542 #define SET_DR_MISALIGNMENT(DR, VAL) set_dr_misalignment (DR, VAL)
1544 /* Only defined once DR_MISALIGNMENT is defined. */
1545 #define DR_TARGET_ALIGNMENT(DR) ((DR)->target_alignment)
1547 /* Return true if data access DR_INFO is aligned to its target alignment
1548 (which may be less than a full vector). */
1550 static inline bool
1551 aligned_access_p (dr_vec_info *dr_info)
1553 return (DR_MISALIGNMENT (dr_info) == 0);
1556 /* Return TRUE if the alignment of the data access is known, and FALSE
1557 otherwise. */
1559 static inline bool
1560 known_alignment_for_access_p (dr_vec_info *dr_info)
1562 return (DR_MISALIGNMENT (dr_info) != DR_MISALIGNMENT_UNKNOWN);
1565 /* Return the minimum alignment in bytes that the vectorized version
1566 of DR_INFO is guaranteed to have. */
1568 static inline unsigned int
1569 vect_known_alignment_in_bytes (dr_vec_info *dr_info)
1571 if (DR_MISALIGNMENT (dr_info) == DR_MISALIGNMENT_UNKNOWN)
1572 return TYPE_ALIGN_UNIT (TREE_TYPE (DR_REF (dr_info->dr)));
1573 if (DR_MISALIGNMENT (dr_info) == 0)
1574 return known_alignment (DR_TARGET_ALIGNMENT (dr_info));
1575 return DR_MISALIGNMENT (dr_info) & -DR_MISALIGNMENT (dr_info);
1578 /* Return the behavior of DR_INFO with respect to the vectorization context
1579 (which for outer loop vectorization might not be the behavior recorded
1580 in DR_INFO itself). */
1582 static inline innermost_loop_behavior *
1583 vect_dr_behavior (vec_info *vinfo, dr_vec_info *dr_info)
1585 stmt_vec_info stmt_info = dr_info->stmt;
1586 loop_vec_info loop_vinfo = dyn_cast<loop_vec_info> (vinfo);
1587 if (loop_vinfo == NULL
1588 || !nested_in_vect_loop_p (LOOP_VINFO_LOOP (loop_vinfo), stmt_info))
1589 return &DR_INNERMOST (dr_info->dr);
1590 else
1591 return &STMT_VINFO_DR_WRT_VEC_LOOP (stmt_info);
1594 /* Return the offset calculated by adding the offset of this DR_INFO to the
1595 corresponding data_reference's offset. If CHECK_OUTER then use
1596 vect_dr_behavior to select the appropriate data_reference to use. */
1598 inline tree
1599 get_dr_vinfo_offset (vec_info *vinfo,
1600 dr_vec_info *dr_info, bool check_outer = false)
1602 innermost_loop_behavior *base;
1603 if (check_outer)
1604 base = vect_dr_behavior (vinfo, dr_info);
1605 else
1606 base = &dr_info->dr->innermost;
1608 tree offset = base->offset;
1610 if (!dr_info->offset)
1611 return offset;
1613 offset = fold_convert (sizetype, offset);
1614 return fold_build2 (PLUS_EXPR, TREE_TYPE (dr_info->offset), offset,
1615 dr_info->offset);
1619 /* Return true if the vect cost model is unlimited. */
1620 static inline bool
1621 unlimited_cost_model (loop_p loop)
1623 if (loop != NULL && loop->force_vectorize
1624 && flag_simd_cost_model != VECT_COST_MODEL_DEFAULT)
1625 return flag_simd_cost_model == VECT_COST_MODEL_UNLIMITED;
1626 return (flag_vect_cost_model == VECT_COST_MODEL_UNLIMITED);
1629 /* Return true if the loop described by LOOP_VINFO is fully-masked and
1630 if the first iteration should use a partial mask in order to achieve
1631 alignment. */
1633 static inline bool
1634 vect_use_loop_mask_for_alignment_p (loop_vec_info loop_vinfo)
1636 return (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo)
1637 && LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo));
1640 /* Return the number of vectors of type VECTYPE that are needed to get
1641 NUNITS elements. NUNITS should be based on the vectorization factor,
1642 so it is always a known multiple of the number of elements in VECTYPE. */
1644 static inline unsigned int
1645 vect_get_num_vectors (poly_uint64 nunits, tree vectype)
1647 return exact_div (nunits, TYPE_VECTOR_SUBPARTS (vectype)).to_constant ();
1650 /* Return the number of copies needed for loop vectorization when
1651 a statement operates on vectors of type VECTYPE. This is the
1652 vectorization factor divided by the number of elements in
1653 VECTYPE and is always known at compile time. */
1655 static inline unsigned int
1656 vect_get_num_copies (loop_vec_info loop_vinfo, tree vectype)
1658 return vect_get_num_vectors (LOOP_VINFO_VECT_FACTOR (loop_vinfo), vectype);
1661 /* Update maximum unit count *MAX_NUNITS so that it accounts for
1662 NUNITS. *MAX_NUNITS can be 1 if we haven't yet recorded anything. */
1664 static inline void
1665 vect_update_max_nunits (poly_uint64 *max_nunits, poly_uint64 nunits)
1667 /* All unit counts have the form vec_info::vector_size * X for some
1668 rational X, so two unit sizes must have a common multiple.
1669 Everything is a multiple of the initial value of 1. */
1670 *max_nunits = force_common_multiple (*max_nunits, nunits);
1673 /* Update maximum unit count *MAX_NUNITS so that it accounts for
1674 the number of units in vector type VECTYPE. *MAX_NUNITS can be 1
1675 if we haven't yet recorded any vector types. */
1677 static inline void
1678 vect_update_max_nunits (poly_uint64 *max_nunits, tree vectype)
1680 vect_update_max_nunits (max_nunits, TYPE_VECTOR_SUBPARTS (vectype));
1683 /* Return the vectorization factor that should be used for costing
1684 purposes while vectorizing the loop described by LOOP_VINFO.
1685 Pick a reasonable estimate if the vectorization factor isn't
1686 known at compile time. */
1688 static inline unsigned int
1689 vect_vf_for_cost (loop_vec_info loop_vinfo)
1691 return estimated_poly_value (LOOP_VINFO_VECT_FACTOR (loop_vinfo));
1694 /* Estimate the number of elements in VEC_TYPE for costing purposes.
1695 Pick a reasonable estimate if the exact number isn't known at
1696 compile time. */
1698 static inline unsigned int
1699 vect_nunits_for_cost (tree vec_type)
1701 return estimated_poly_value (TYPE_VECTOR_SUBPARTS (vec_type));
1704 /* Return the maximum possible vectorization factor for LOOP_VINFO. */
1706 static inline unsigned HOST_WIDE_INT
1707 vect_max_vf (loop_vec_info loop_vinfo)
1709 unsigned HOST_WIDE_INT vf;
1710 if (LOOP_VINFO_VECT_FACTOR (loop_vinfo).is_constant (&vf))
1711 return vf;
1712 return MAX_VECTORIZATION_FACTOR;
1715 /* Return the size of the value accessed by unvectorized data reference
1716 DR_INFO. This is only valid once STMT_VINFO_VECTYPE has been calculated
1717 for the associated gimple statement, since that guarantees that DR_INFO
1718 accesses either a scalar or a scalar equivalent. ("Scalar equivalent"
1719 here includes things like V1SI, which can be vectorized in the same way
1720 as a plain SI.) */
1722 inline unsigned int
1723 vect_get_scalar_dr_size (dr_vec_info *dr_info)
1725 return tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr_info->dr))));
1728 /* Return true if LOOP_VINFO requires a runtime check for whether the
1729 vector loop is profitable. */
1731 inline bool
1732 vect_apply_runtime_profitability_check_p (loop_vec_info loop_vinfo)
1734 unsigned int th = LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo);
1735 return (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1736 && th >= vect_vf_for_cost (loop_vinfo));
1739 /* Source location + hotness information. */
1740 extern dump_user_location_t vect_location;
1742 /* A macro for calling:
1743 dump_begin_scope (MSG, vect_location);
1744 via an RAII object, thus printing "=== MSG ===\n" to the dumpfile etc,
1745 and then calling
1746 dump_end_scope ();
1747 once the object goes out of scope, thus capturing the nesting of
1748 the scopes.
1750 These scopes affect dump messages within them: dump messages at the
1751 top level implicitly default to MSG_PRIORITY_USER_FACING, whereas those
1752 in a nested scope implicitly default to MSG_PRIORITY_INTERNALS. */
1754 #define DUMP_VECT_SCOPE(MSG) \
1755 AUTO_DUMP_SCOPE (MSG, vect_location)
1757 /* A sentinel class for ensuring that the "vect_location" global gets
1758 reset at the end of a scope.
1760 The "vect_location" global is used during dumping and contains a
1761 location_t, which could contain references to a tree block via the
1762 ad-hoc data. This data is used for tracking inlining information,
1763 but it's not a GC root; it's simply assumed that such locations never
1764 get accessed if the blocks are optimized away.
1766 Hence we need to ensure that such locations are purged at the end
1767 of any operations using them (e.g. via this class). */
1769 class auto_purge_vect_location
1771 public:
1772 ~auto_purge_vect_location ();
1775 /*-----------------------------------------------------------------*/
1776 /* Function prototypes. */
1777 /*-----------------------------------------------------------------*/
1779 /* Simple loop peeling and versioning utilities for vectorizer's purposes -
1780 in tree-vect-loop-manip.c. */
1781 extern void vect_set_loop_condition (class loop *, loop_vec_info,
1782 tree, tree, tree, bool);
1783 extern bool slpeel_can_duplicate_loop_p (const class loop *, const_edge);
1784 class loop *slpeel_tree_duplicate_loop_to_edge_cfg (class loop *,
1785 class loop *, edge);
1786 class loop *vect_loop_versioning (loop_vec_info, gimple *);
1787 extern class loop *vect_do_peeling (loop_vec_info, tree, tree,
1788 tree *, tree *, tree *, int, bool, bool,
1789 tree *);
1790 extern void vect_prepare_for_masked_peels (loop_vec_info);
1791 extern dump_user_location_t find_loop_location (class loop *);
1792 extern bool vect_can_advance_ivs_p (loop_vec_info);
1793 extern void vect_update_inits_of_drs (loop_vec_info, tree, tree_code);
1795 /* In tree-vect-stmts.c. */
1796 extern tree get_related_vectype_for_scalar_type (machine_mode, tree,
1797 poly_uint64 = 0);
1798 extern tree get_vectype_for_scalar_type (vec_info *, tree, unsigned int = 0);
1799 extern tree get_vectype_for_scalar_type (vec_info *, tree, slp_tree);
1800 extern tree get_mask_type_for_scalar_type (vec_info *, tree, unsigned int = 0);
1801 extern tree get_same_sized_vectype (tree, tree);
1802 extern bool vect_chooses_same_modes_p (vec_info *, machine_mode);
1803 extern bool vect_get_loop_mask_type (loop_vec_info);
1804 extern bool vect_is_simple_use (tree, vec_info *, enum vect_def_type *,
1805 stmt_vec_info * = NULL, gimple ** = NULL);
1806 extern bool vect_is_simple_use (tree, vec_info *, enum vect_def_type *,
1807 tree *, stmt_vec_info * = NULL,
1808 gimple ** = NULL);
1809 extern bool vect_is_simple_use (vec_info *, stmt_vec_info, slp_tree,
1810 unsigned, tree *, slp_tree *,
1811 enum vect_def_type *,
1812 tree *, stmt_vec_info * = NULL);
1813 extern bool vect_maybe_update_slp_op_vectype (slp_tree, tree);
1814 extern bool supportable_widening_operation (vec_info *,
1815 enum tree_code, stmt_vec_info,
1816 tree, tree, enum tree_code *,
1817 enum tree_code *, int *,
1818 vec<tree> *);
1819 extern bool supportable_narrowing_operation (enum tree_code, tree, tree,
1820 enum tree_code *, int *,
1821 vec<tree> *);
1823 extern unsigned record_stmt_cost (stmt_vector_for_cost *, int,
1824 enum vect_cost_for_stmt, stmt_vec_info,
1825 tree, int, enum vect_cost_model_location);
1827 /* Overload of record_stmt_cost with VECTYPE derived from STMT_INFO. */
1829 static inline unsigned
1830 record_stmt_cost (stmt_vector_for_cost *body_cost_vec, int count,
1831 enum vect_cost_for_stmt kind, stmt_vec_info stmt_info,
1832 int misalign, enum vect_cost_model_location where)
1834 return record_stmt_cost (body_cost_vec, count, kind, stmt_info,
1835 STMT_VINFO_VECTYPE (stmt_info), misalign, where);
1838 extern void vect_finish_replace_stmt (vec_info *, stmt_vec_info, gimple *);
1839 extern void vect_finish_stmt_generation (vec_info *, stmt_vec_info, gimple *,
1840 gimple_stmt_iterator *);
1841 extern opt_result vect_mark_stmts_to_be_vectorized (loop_vec_info, bool *);
1842 extern tree vect_get_store_rhs (stmt_vec_info);
1843 void vect_get_vec_defs_for_operand (vec_info *vinfo, stmt_vec_info, unsigned,
1844 tree op, vec<tree> *, tree = NULL);
1845 void vect_get_vec_defs (vec_info *, stmt_vec_info, slp_tree, unsigned,
1846 tree, vec<tree> *,
1847 tree = NULL, vec<tree> * = NULL,
1848 tree = NULL, vec<tree> * = NULL,
1849 tree = NULL, vec<tree> * = NULL);
1850 void vect_get_vec_defs (vec_info *, stmt_vec_info, slp_tree, unsigned,
1851 tree, vec<tree> *, tree,
1852 tree = NULL, vec<tree> * = NULL, tree = NULL,
1853 tree = NULL, vec<tree> * = NULL, tree = NULL,
1854 tree = NULL, vec<tree> * = NULL, tree = NULL);
1855 extern tree vect_init_vector (vec_info *, stmt_vec_info, tree, tree,
1856 gimple_stmt_iterator *);
1857 extern tree vect_get_slp_vect_def (slp_tree, unsigned);
1858 extern bool vect_transform_stmt (vec_info *, stmt_vec_info,
1859 gimple_stmt_iterator *,
1860 slp_tree, slp_instance);
1861 extern void vect_remove_stores (vec_info *, stmt_vec_info);
1862 extern bool vect_nop_conversion_p (stmt_vec_info);
1863 extern opt_result vect_analyze_stmt (vec_info *, stmt_vec_info, bool *,
1864 slp_tree,
1865 slp_instance, stmt_vector_for_cost *);
1866 extern void vect_get_load_cost (vec_info *, stmt_vec_info, int, bool,
1867 unsigned int *, unsigned int *,
1868 stmt_vector_for_cost *,
1869 stmt_vector_for_cost *, bool);
1870 extern void vect_get_store_cost (vec_info *, stmt_vec_info, int,
1871 unsigned int *, stmt_vector_for_cost *);
1872 extern bool vect_supportable_shift (vec_info *, enum tree_code, tree);
1873 extern tree vect_gen_perm_mask_any (tree, const vec_perm_indices &);
1874 extern tree vect_gen_perm_mask_checked (tree, const vec_perm_indices &);
1875 extern void optimize_mask_stores (class loop*);
1876 extern gcall *vect_gen_while (tree, tree, tree);
1877 extern tree vect_gen_while_not (gimple_seq *, tree, tree, tree);
1878 extern opt_result vect_get_vector_types_for_stmt (vec_info *,
1879 stmt_vec_info, tree *,
1880 tree *, unsigned int = 0);
1881 extern opt_tree vect_get_mask_type_for_stmt (stmt_vec_info, unsigned int = 0);
1883 /* In tree-vect-data-refs.c. */
1884 extern bool vect_can_force_dr_alignment_p (const_tree, poly_uint64);
1885 extern enum dr_alignment_support vect_supportable_dr_alignment
1886 (vec_info *, dr_vec_info *, bool);
1887 extern tree vect_get_smallest_scalar_type (stmt_vec_info, HOST_WIDE_INT *,
1888 HOST_WIDE_INT *);
1889 extern opt_result vect_analyze_data_ref_dependences (loop_vec_info, unsigned int *);
1890 extern bool vect_slp_analyze_instance_dependence (vec_info *, slp_instance);
1891 extern opt_result vect_enhance_data_refs_alignment (loop_vec_info);
1892 extern opt_result vect_analyze_data_refs_alignment (loop_vec_info);
1893 extern opt_result vect_verify_datarefs_alignment (loop_vec_info);
1894 extern bool vect_slp_analyze_and_verify_instance_alignment (vec_info *,
1895 slp_instance);
1896 extern opt_result vect_analyze_data_ref_accesses (vec_info *);
1897 extern opt_result vect_prune_runtime_alias_test_list (loop_vec_info);
1898 extern bool vect_gather_scatter_fn_p (vec_info *, bool, bool, tree, tree,
1899 tree, int, internal_fn *, tree *);
1900 extern bool vect_check_gather_scatter (stmt_vec_info, loop_vec_info,
1901 gather_scatter_info *);
1902 extern opt_result vect_find_stmt_data_reference (loop_p, gimple *,
1903 vec<data_reference_p> *);
1904 extern opt_result vect_analyze_data_refs (vec_info *, poly_uint64 *, bool *);
1905 extern void vect_record_base_alignments (vec_info *);
1906 extern tree vect_create_data_ref_ptr (vec_info *,
1907 stmt_vec_info, tree, class loop *, tree,
1908 tree *, gimple_stmt_iterator *,
1909 gimple **, bool,
1910 tree = NULL_TREE, tree = NULL_TREE);
1911 extern tree bump_vector_ptr (vec_info *, tree, gimple *, gimple_stmt_iterator *,
1912 stmt_vec_info, tree);
1913 extern void vect_copy_ref_info (tree, tree);
1914 extern tree vect_create_destination_var (tree, tree);
1915 extern bool vect_grouped_store_supported (tree, unsigned HOST_WIDE_INT);
1916 extern bool vect_store_lanes_supported (tree, unsigned HOST_WIDE_INT, bool);
1917 extern bool vect_grouped_load_supported (tree, bool, unsigned HOST_WIDE_INT);
1918 extern bool vect_load_lanes_supported (tree, unsigned HOST_WIDE_INT, bool);
1919 extern void vect_permute_store_chain (vec_info *,
1920 vec<tree> ,unsigned int, stmt_vec_info,
1921 gimple_stmt_iterator *, vec<tree> *);
1922 extern tree vect_setup_realignment (vec_info *,
1923 stmt_vec_info, gimple_stmt_iterator *,
1924 tree *, enum dr_alignment_support, tree,
1925 class loop **);
1926 extern void vect_transform_grouped_load (vec_info *, stmt_vec_info, vec<tree>,
1927 int, gimple_stmt_iterator *);
1928 extern void vect_record_grouped_load_vectors (vec_info *,
1929 stmt_vec_info, vec<tree>);
1930 extern tree vect_get_new_vect_var (tree, enum vect_var_kind, const char *);
1931 extern tree vect_get_new_ssa_name (tree, enum vect_var_kind,
1932 const char * = NULL);
1933 extern tree vect_create_addr_base_for_vector_ref (vec_info *,
1934 stmt_vec_info, gimple_seq *,
1935 tree, tree = NULL_TREE);
1937 /* In tree-vect-loop.c. */
1938 extern widest_int vect_iv_limit_for_partial_vectors (loop_vec_info loop_vinfo);
1939 /* Used in tree-vect-loop-manip.c */
1940 extern void determine_peel_for_niter (loop_vec_info);
1941 /* Used in gimple-loop-interchange.c and tree-parloops.c. */
1942 extern bool check_reduction_path (dump_user_location_t, loop_p, gphi *, tree,
1943 enum tree_code);
1944 extern bool needs_fold_left_reduction_p (tree, tree_code);
1945 /* Drive for loop analysis stage. */
1946 extern opt_loop_vec_info vect_analyze_loop (class loop *, vec_info_shared *);
1947 extern tree vect_build_loop_niters (loop_vec_info, bool * = NULL);
1948 extern void vect_gen_vector_loop_niters (loop_vec_info, tree, tree *,
1949 tree *, bool);
1950 extern tree vect_halve_mask_nunits (tree, machine_mode);
1951 extern tree vect_double_mask_nunits (tree, machine_mode);
1952 extern void vect_record_loop_mask (loop_vec_info, vec_loop_masks *,
1953 unsigned int, tree, tree);
1954 extern tree vect_get_loop_mask (gimple_stmt_iterator *, vec_loop_masks *,
1955 unsigned int, tree, unsigned int);
1956 extern stmt_vec_info info_for_reduction (vec_info *, stmt_vec_info);
1958 /* Drive for loop transformation stage. */
1959 extern class loop *vect_transform_loop (loop_vec_info, gimple *);
1960 extern opt_loop_vec_info vect_analyze_loop_form (class loop *,
1961 vec_info_shared *);
1962 extern bool vectorizable_live_operation (loop_vec_info,
1963 stmt_vec_info, gimple_stmt_iterator *,
1964 slp_tree, slp_instance, int,
1965 bool, stmt_vector_for_cost *);
1966 extern bool vectorizable_reduction (loop_vec_info, stmt_vec_info,
1967 slp_tree, slp_instance,
1968 stmt_vector_for_cost *);
1969 extern bool vectorizable_induction (loop_vec_info, stmt_vec_info,
1970 gimple **, slp_tree,
1971 stmt_vector_for_cost *);
1972 extern bool vect_transform_reduction (loop_vec_info, stmt_vec_info,
1973 gimple_stmt_iterator *,
1974 gimple **, slp_tree);
1975 extern bool vect_transform_cycle_phi (loop_vec_info, stmt_vec_info,
1976 gimple **,
1977 slp_tree, slp_instance);
1978 extern bool vectorizable_lc_phi (loop_vec_info, stmt_vec_info,
1979 gimple **, slp_tree);
1980 extern bool vect_worthwhile_without_simd_p (vec_info *, tree_code);
1981 extern int vect_get_known_peeling_cost (loop_vec_info, int, int *,
1982 stmt_vector_for_cost *,
1983 stmt_vector_for_cost *,
1984 stmt_vector_for_cost *);
1985 extern tree cse_and_gimplify_to_preheader (loop_vec_info, tree);
1987 /* In tree-vect-slp.c. */
1988 extern void vect_free_slp_instance (slp_instance, bool);
1989 extern bool vect_transform_slp_perm_load (vec_info *, slp_tree, vec<tree>,
1990 gimple_stmt_iterator *, poly_uint64,
1991 bool, unsigned *);
1992 extern bool vect_slp_analyze_operations (vec_info *);
1993 extern void vect_schedule_slp (vec_info *);
1994 extern opt_result vect_analyze_slp (vec_info *, unsigned);
1995 extern bool vect_make_slp_decision (loop_vec_info);
1996 extern void vect_detect_hybrid_slp (loop_vec_info);
1997 extern void vect_optimize_slp (vec_info *);
1998 extern void vect_get_slp_defs (slp_tree, vec<tree> *);
1999 extern void vect_get_slp_defs (vec_info *, slp_tree, vec<vec<tree> > *,
2000 unsigned n = -1U);
2001 extern bool vect_slp_bb (basic_block);
2002 extern stmt_vec_info vect_find_last_scalar_stmt_in_slp (slp_tree);
2003 extern stmt_vec_info vect_find_first_scalar_stmt_in_slp (slp_tree);
2004 extern bool is_simple_and_all_uses_invariant (stmt_vec_info, loop_vec_info);
2005 extern bool can_duplicate_and_interleave_p (vec_info *, unsigned int, tree,
2006 unsigned int * = NULL,
2007 tree * = NULL, tree * = NULL);
2008 extern void duplicate_and_interleave (vec_info *, gimple_seq *, tree,
2009 vec<tree>, unsigned int, vec<tree> &);
2010 extern int vect_get_place_in_interleaving_chain (stmt_vec_info, stmt_vec_info);
2012 /* In tree-vect-patterns.c. */
2013 /* Pattern recognition functions.
2014 Additional pattern recognition functions can (and will) be added
2015 in the future. */
2016 void vect_pattern_recog (vec_info *);
2018 /* In tree-vectorizer.c. */
2019 unsigned vectorize_loops (void);
2020 void vect_free_loop_info_assumptions (class loop *);
2021 gimple *vect_loop_vectorized_call (class loop *, gcond **cond = NULL);
2022 bool vect_stmt_dominates_stmt_p (gimple *, gimple *);
2024 #endif /* GCC_TREE_VECTORIZER_H */