1 /* Generate code from machine description to recognize rtl as insns.
2 Copyright (C) 1987-2020 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 /* This program is used to produce insn-recog.c, which contains a
22 function called `recog' plus its subroutines. These functions
23 contain a decision tree that recognizes whether an rtx, the
24 argument given to recog, is a valid instruction.
26 recog returns -1 if the rtx is not valid. If the rtx is valid,
27 recog returns a nonnegative number which is the insn code number
28 for the pattern that matched. This is the same as the order in the
29 machine description of the entry that matched. This number can be
30 used as an index into various insn_* tables, such as insn_template,
31 insn_outfun, and insn_n_operands (found in insn-output.c).
33 The third argument to recog is an optional pointer to an int. If
34 present, recog will accept a pattern if it matches except for
35 missing CLOBBER expressions at the end. In that case, the value
36 pointed to by the optional pointer will be set to the number of
37 CLOBBERs that need to be added (it should be initialized to zero by
38 the caller). If it is set nonzero, the caller should allocate a
39 PARALLEL of the appropriate size, copy the initial entries, and
40 call add_clobbers (found in insn-emit.c) to fill in the CLOBBERs.
42 This program also generates the function `split_insns', which
43 returns 0 if the rtl could not be split, or it returns the split
46 This program also generates the function `peephole2_insns', which
47 returns 0 if the rtl could not be matched. If there was a match,
48 the new rtl is returned in an INSN list, and LAST_INSN will point
49 to the last recognized insn in the old sequence.
52 At a high level, the algorithm used in this file is as follows:
54 1. Build up a decision tree for each routine, using the following
55 approach to matching an rtx:
57 - First determine the "shape" of the rtx, based on GET_CODE,
58 XVECLEN and XINT. This phase examines SET_SRCs before SET_DESTs
59 since SET_SRCs tend to be more distinctive. It examines other
60 operands in numerical order, since the canonicalization rules
61 prefer putting complex operands of commutative operators first.
63 - Next check modes and predicates. This phase examines all
64 operands in numerical order, even for SETs, since the mode of a
65 SET_DEST is exact while the mode of a SET_SRC can be VOIDmode
66 for constant integers.
68 - Next check match_dups.
70 - Finally check the C condition and (where appropriate) pnum_clobbers.
72 2. Try to optimize the tree by removing redundant tests, CSEing tests,
73 folding tests together, etc.
75 3. Look for common subtrees and split them out into "pattern" routines.
76 These common subtrees can be identical or they can differ in mode,
77 code, or integer (usually an UNSPEC or UNSPEC_VOLATILE code).
78 In the latter case the users of the pattern routine pass the
79 appropriate mode, etc., as argument. For example, if two patterns
82 (plus:SI (match_operand:SI 1 "register_operand")
83 (match_operand:SI 2 "register_operand"))
85 we can split the associated matching code out into a subroutine.
86 If a pattern contains:
88 (minus:DI (match_operand:DI 1 "register_operand")
89 (match_operand:DI 2 "register_operand"))
91 then we can consider using the same matching routine for both
92 the plus and minus expressions, passing PLUS and SImode in the
93 former case and MINUS and DImode in the latter case.
95 The main aim of this phase is to reduce the compile time of the
96 insn-recog.c code and to reduce the amount of object code in
99 4. Split the matching trees into functions, trying to limit the
100 size of each function to a sensible amount.
102 Again, the main aim of this phase is to reduce the compile time
103 of insn-recog.c. (It doesn't help with the size of insn-recog.o.)
105 5. Write out C++ code for each function. */
108 #define INCLUDE_ALGORITHM
110 #include "coretypes.h"
115 #include "gensupport.h"
117 #undef GENERATOR_FILE
119 #define DEF_RTL_EXPR(ENUM, NAME, FORMAT, CLASS) TRUE_##ENUM,
122 FIRST_GENERATOR_RTX_CODE
124 #define NUM_TRUE_RTX_CODE ((int) FIRST_GENERATOR_RTX_CODE)
125 #define GENERATOR_FILE 1
127 /* Debugging variables to control which optimizations are performed.
128 Note that disabling merge_states_p leads to very large output. */
129 static const bool merge_states_p
= true;
130 static const bool collapse_optional_decisions_p
= true;
131 static const bool cse_tests_p
= true;
132 static const bool simplify_tests_p
= true;
133 static const bool use_operand_variables_p
= true;
134 static const bool use_subroutines_p
= true;
135 static const bool use_pattern_routines_p
= true;
137 /* Whether to add comments for optional tests that we decided to keep.
138 Can be useful when debugging the generator itself but is noise when
139 debugging the generated code. */
140 static const bool mark_optional_transitions_p
= false;
142 /* Whether pattern routines should calculate positions relative to their
143 rtx parameter rather than use absolute positions. This e.g. allows
144 a pattern routine to be shared between a plain SET and a PARALLEL
147 In principle it sounds like this should be useful, especially for
148 recog_for_combine, where the plain SET form is generated automatically
149 from a PARALLEL of a single SET and some CLOBBERs. In practice it doesn't
150 seem to help much and leads to slightly bigger object files. */
151 static const bool relative_patterns_p
= false;
153 /* Whether pattern routines should be allowed to test whether pnum_clobbers
154 is null. This requires passing pnum_clobbers around as a parameter. */
155 static const bool pattern_have_num_clobbers_p
= true;
157 /* Whether pattern routines should be allowed to test .md file C conditions.
158 This requires passing insn around as a parameter, in case the C
159 condition refers to it. In practice this tends to lead to bigger
161 static const bool pattern_c_test_p
= false;
163 /* Whether to require each parameter passed to a pattern routine to be
164 unique. Disabling this check for example allows unary operators with
165 matching modes (like NEG) and unary operators with mismatched modes
166 (like ZERO_EXTEND) to be matched by a single pattern. However, we then
167 often have cases where the same value is passed too many times. */
168 static const bool force_unique_params_p
= true;
170 /* The maximum (approximate) depth of block nesting that an individual
171 routine or subroutine should have. This limit is about keeping the
172 output readable rather than reducing compile time. */
173 static const unsigned int MAX_DEPTH
= 6;
175 /* The minimum number of pseudo-statements that a state must have before
176 we split it out into a subroutine. */
177 static const unsigned int MIN_NUM_STATEMENTS
= 5;
179 /* The number of pseudo-statements a state can have before we consider
180 splitting out substates into subroutines. This limit is about avoiding
181 compile-time problems with very big functions (and also about keeping
182 functions within --param optimization limits, etc.). */
183 static const unsigned int MAX_NUM_STATEMENTS
= 200;
185 /* The minimum number of pseudo-statements that can be used in a pattern
187 static const unsigned int MIN_COMBINE_COST
= 4;
189 /* The maximum number of arguments that a pattern routine can have.
190 The idea is to prevent one pattern getting a ridiculous number of
191 arguments when it would be more beneficial to have a separate pattern
193 static const unsigned int MAX_PATTERN_PARAMS
= 5;
195 /* The maximum operand number plus one. */
198 /* Ways of obtaining an rtx to be tested. */
200 /* PATTERN (peep2_next_insn (ARG)). */
203 /* XEXP (BASE, ARG). */
206 /* XVECEXP (BASE, 0, ARG). */
210 /* The position of an rtx relative to X0. Each useful position is
211 represented by exactly one instance of this structure. */
214 /* The parent rtx. This is the root position for POS_PEEP2_INSNs. */
215 struct position
*base
;
217 /* A position with the same BASE and TYPE, but with the next value
219 struct position
*next
;
221 /* A list of all POS_XEXP positions that use this one as their base,
222 chained by NEXT fields. The first entry represents XEXP (this, 0),
223 the second represents XEXP (this, 1), and so on. */
224 struct position
*xexps
;
226 /* A list of POS_XVECEXP0 positions that use this one as their base,
227 chained by NEXT fields. The first entry represents XVECEXP (this, 0, 0),
228 the second represents XVECEXP (this, 0, 1), and so on. */
229 struct position
*xvecexp0s
;
231 /* The type of position. */
232 enum position_type type
;
234 /* The argument to TYPE (shown as ARG in the position_type comments). */
237 /* The instruction to which the position belongs. */
238 unsigned int insn_id
;
240 /* The depth of this position relative to the instruction pattern.
241 E.g. if the instruction pattern is a SET, the SET itself has a
242 depth of 0 while the SET_DEST and SET_SRC have depths of 1. */
245 /* A unique identifier for this position. */
250 SUBPATTERN
, RECOG
, SPLIT
, PEEPHOLE2
253 /* The root position (x0). */
254 static struct position root_pos
;
256 /* The number of positions created. Also one higher than the maximum
258 static unsigned int num_positions
= 1;
260 /* A list of all POS_PEEP2_INSNs. The entry for insn 0 is the root position,
261 since we are given that instruction's pattern as x0. */
262 static struct position
*peep2_insn_pos_list
= &root_pos
;
264 /* Return a position with the given BASE, TYPE and ARG. NEXT_PTR
265 points to where the unique object that represents the position
266 should be stored. Create the object if it doesn't already exist,
267 otherwise reuse the object that is already there. */
269 static struct position
*
270 next_position (struct position
**next_ptr
, struct position
*base
,
271 enum position_type type
, int arg
)
273 struct position
*pos
;
278 pos
= XCNEW (struct position
);
281 if (type
== POS_PEEP2_INSN
)
285 pos
->depth
= base
->depth
;
290 pos
->insn_id
= base
->insn_id
;
291 pos
->depth
= base
->depth
+ 1;
293 pos
->id
= num_positions
++;
299 /* Compare positions POS1 and POS2 lexicographically. */
302 compare_positions (struct position
*pos1
, struct position
*pos2
)
306 diff
= pos1
->depth
- pos2
->depth
;
310 while (pos1
->depth
!= pos2
->depth
);
314 while (pos1
->depth
!= pos2
->depth
);
317 diff
= (int) pos1
->type
- (int) pos2
->type
;
319 diff
= pos1
->arg
- pos2
->arg
;
326 /* Return the most deeply-nested position that is common to both
327 POS1 and POS2. If the positions are from different instructions,
328 return the one with the lowest insn_id. */
330 static struct position
*
331 common_position (struct position
*pos1
, struct position
*pos2
)
333 if (pos1
->insn_id
!= pos2
->insn_id
)
334 return pos1
->insn_id
< pos2
->insn_id
? pos1
: pos2
;
335 if (pos1
->depth
> pos2
->depth
)
336 std::swap (pos1
, pos2
);
337 while (pos1
->depth
!= pos2
->depth
)
347 /* Search for and return operand N, stop when reaching node STOP. */
350 find_operand (rtx pattern
, int n
, rtx stop
)
360 code
= GET_CODE (pattern
);
361 if ((code
== MATCH_SCRATCH
362 || code
== MATCH_OPERAND
363 || code
== MATCH_OPERATOR
364 || code
== MATCH_PARALLEL
)
365 && XINT (pattern
, 0) == n
)
368 fmt
= GET_RTX_FORMAT (code
);
369 len
= GET_RTX_LENGTH (code
);
370 for (i
= 0; i
< len
; i
++)
375 if ((r
= find_operand (XEXP (pattern
, i
), n
, stop
)) != NULL_RTX
)
380 if (! XVEC (pattern
, i
))
385 for (j
= 0; j
< XVECLEN (pattern
, i
); j
++)
386 if ((r
= find_operand (XVECEXP (pattern
, i
, j
), n
, stop
))
391 case 'r': case 'p': case 'i': case 'w': case '0': case 's':
402 /* Search for and return operand M, such that it has a matching
403 constraint for operand N. */
406 find_matching_operand (rtx pattern
, int n
)
413 code
= GET_CODE (pattern
);
414 if (code
== MATCH_OPERAND
415 && (XSTR (pattern
, 2)[0] == '0' + n
416 || (XSTR (pattern
, 2)[0] == '%'
417 && XSTR (pattern
, 2)[1] == '0' + n
)))
420 fmt
= GET_RTX_FORMAT (code
);
421 len
= GET_RTX_LENGTH (code
);
422 for (i
= 0; i
< len
; i
++)
427 if ((r
= find_matching_operand (XEXP (pattern
, i
), n
)))
432 if (! XVEC (pattern
, i
))
437 for (j
= 0; j
< XVECLEN (pattern
, i
); j
++)
438 if ((r
= find_matching_operand (XVECEXP (pattern
, i
, j
), n
)))
442 case 'r': case 'p': case 'i': case 'w': case '0': case 's':
453 /* In DEFINE_EXPAND, DEFINE_SPLIT, and DEFINE_PEEPHOLE2, we
454 don't use the MATCH_OPERAND constraint, only the predicate.
455 This is confusing to folks doing new ports, so help them
456 not make the mistake. */
459 constraints_supported_in_insn_p (rtx insn
)
461 return !(GET_CODE (insn
) == DEFINE_EXPAND
462 || GET_CODE (insn
) == DEFINE_SPLIT
463 || GET_CODE (insn
) == DEFINE_PEEPHOLE2
);
466 /* Return the name of the predicate matched by MATCH_RTX. */
469 predicate_name (rtx match_rtx
)
471 if (GET_CODE (match_rtx
) == MATCH_SCRATCH
)
472 return "scratch_operand";
474 return XSTR (match_rtx
, 1);
477 /* Return true if OPERAND is a MATCH_OPERAND using a special predicate
481 special_predicate_operand_p (rtx operand
)
483 if (GET_CODE (operand
) == MATCH_OPERAND
)
485 const char *pred_name
= predicate_name (operand
);
486 if (pred_name
[0] != 0)
488 const struct pred_data
*pred
;
490 pred
= lookup_predicate (pred_name
);
491 return pred
!= NULL
&& pred
->special
;
498 /* Check for various errors in PATTERN, which is part of INFO.
499 SET is nonnull for a destination, and is the complete set pattern.
500 SET_CODE is '=' for normal sets, and '+' within a context that
501 requires in-out constraints. */
504 validate_pattern (rtx pattern
, md_rtx_info
*info
, rtx set
, int set_code
)
511 code
= GET_CODE (pattern
);
516 const char constraints0
= XSTR (pattern
, 1)[0];
518 if (!constraints_supported_in_insn_p (info
->def
))
522 error_at (info
->loc
, "constraints not supported in %s",
523 GET_RTX_NAME (GET_CODE (info
->def
)));
528 /* If a MATCH_SCRATCH is used in a context requiring an write-only
529 or read/write register, validate that. */
532 && constraints0
!= '='
533 && constraints0
!= '+')
535 error_at (info
->loc
, "operand %d missing output reload",
543 if (find_operand (info
->def
, XINT (pattern
, 0), pattern
) == pattern
)
544 error_at (info
->loc
, "operand %i duplicated before defined",
550 const char *pred_name
= XSTR (pattern
, 1);
551 const struct pred_data
*pred
;
554 c_test
= get_c_test (info
->def
);
556 if (pred_name
[0] != 0)
558 pred
= lookup_predicate (pred_name
);
560 error_at (info
->loc
, "unknown predicate '%s'", pred_name
);
565 if (code
== MATCH_OPERAND
)
567 const char *constraints
= XSTR (pattern
, 2);
568 const char constraints0
= constraints
[0];
570 if (!constraints_supported_in_insn_p (info
->def
))
574 error_at (info
->loc
, "constraints not supported in %s",
575 GET_RTX_NAME (GET_CODE (info
->def
)));
579 /* A MATCH_OPERAND that is a SET should have an output reload. */
580 else if (set
&& constraints0
)
584 if (constraints0
== '+')
586 /* If we've only got an output reload for this operand,
587 we'd better have a matching input operand. */
588 else if (constraints0
== '='
589 && find_matching_operand (info
->def
,
593 error_at (info
->loc
, "operand %d missing in-out reload",
596 else if (constraints0
!= '=' && constraints0
!= '+')
597 error_at (info
->loc
, "operand %d missing output reload",
601 /* For matching constraint in MATCH_OPERAND, the digit must be a
602 smaller number than the number of the operand that uses it in the
606 while (constraints
[0]
607 && (constraints
[0] == ' ' || constraints
[0] == ','))
612 if (constraints
[0] >= '0' && constraints
[0] <= '9')
616 sscanf (constraints
, "%d", &val
);
617 if (val
>= XINT (pattern
, 0))
618 error_at (info
->loc
, "constraint digit %d is not"
619 " smaller than operand %d",
620 val
, XINT (pattern
, 0));
623 while (constraints
[0] && constraints
[0] != ',')
628 /* Allowing non-lvalues in destinations -- particularly CONST_INT --
629 while not likely to occur at runtime, results in less efficient
630 code from insn-recog.c. */
631 if (set
&& pred
&& pred
->allows_non_lvalue
)
632 error_at (info
->loc
, "destination operand %d allows non-lvalue",
635 /* A modeless MATCH_OPERAND can be handy when we can check for
636 multiple modes in the c_test. In most other cases, it is a
637 mistake. Only DEFINE_INSN is eligible, since SPLIT and
638 PEEP2 can FAIL within the output pattern. Exclude special
639 predicates, which check the mode themselves. Also exclude
640 predicates that allow only constants. Exclude the SET_DEST
641 of a call instruction, as that is a common idiom. */
643 if (GET_MODE (pattern
) == VOIDmode
644 && code
== MATCH_OPERAND
645 && GET_CODE (info
->def
) == DEFINE_INSN
648 && pred
->allows_non_const
649 && strstr (c_test
, "operands") == NULL
651 && GET_CODE (set
) == SET
652 && GET_CODE (SET_SRC (set
)) == CALL
))
653 message_at (info
->loc
, "warning: operand %d missing mode?",
660 machine_mode dmode
, smode
;
663 dest
= SET_DEST (pattern
);
664 src
= SET_SRC (pattern
);
666 /* STRICT_LOW_PART is a wrapper. Its argument is the real
667 destination, and it's mode should match the source. */
668 if (GET_CODE (dest
) == STRICT_LOW_PART
)
669 dest
= XEXP (dest
, 0);
671 /* Find the referent for a DUP. */
673 if (GET_CODE (dest
) == MATCH_DUP
674 || GET_CODE (dest
) == MATCH_OP_DUP
675 || GET_CODE (dest
) == MATCH_PAR_DUP
)
676 dest
= find_operand (info
->def
, XINT (dest
, 0), NULL
);
678 if (GET_CODE (src
) == MATCH_DUP
679 || GET_CODE (src
) == MATCH_OP_DUP
680 || GET_CODE (src
) == MATCH_PAR_DUP
)
681 src
= find_operand (info
->def
, XINT (src
, 0), NULL
);
683 dmode
= GET_MODE (dest
);
684 smode
= GET_MODE (src
);
686 /* Mode checking is not performed for special predicates. */
687 if (special_predicate_operand_p (src
)
688 || special_predicate_operand_p (dest
))
691 /* The operands of a SET must have the same mode unless one
693 else if (dmode
!= VOIDmode
&& smode
!= VOIDmode
&& dmode
!= smode
)
694 error_at (info
->loc
, "mode mismatch in set: %smode vs %smode",
695 GET_MODE_NAME (dmode
), GET_MODE_NAME (smode
));
697 /* If only one of the operands is VOIDmode, and PC or CC0 is
698 not involved, it's probably a mistake. */
699 else if (dmode
!= smode
700 && GET_CODE (dest
) != PC
701 && GET_CODE (dest
) != CC0
702 && GET_CODE (src
) != PC
703 && GET_CODE (src
) != CC0
704 && !CONST_INT_P (src
)
705 && !CONST_WIDE_INT_P (src
)
706 && GET_CODE (src
) != CALL
)
709 which
= (dmode
== VOIDmode
? "destination" : "source");
710 message_at (info
->loc
, "warning: %s missing a mode?", which
);
713 if (dest
!= SET_DEST (pattern
))
714 validate_pattern (dest
, info
, pattern
, '=');
715 validate_pattern (SET_DEST (pattern
), info
, pattern
, '=');
716 validate_pattern (SET_SRC (pattern
), info
, NULL_RTX
, 0);
721 validate_pattern (SET_DEST (pattern
), info
, pattern
, '=');
725 validate_pattern (XEXP (pattern
, 0), info
, set
, set
? '+' : 0);
726 validate_pattern (XEXP (pattern
, 1), info
, NULL_RTX
, 0);
727 validate_pattern (XEXP (pattern
, 2), info
, NULL_RTX
, 0);
730 case STRICT_LOW_PART
:
731 validate_pattern (XEXP (pattern
, 0), info
, set
, set
? '+' : 0);
735 if (GET_MODE (XEXP (pattern
, 0)) != VOIDmode
)
736 error_at (info
->loc
, "operand to label_ref %smode not VOIDmode",
737 GET_MODE_NAME (GET_MODE (XEXP (pattern
, 0))));
741 if (GET_MODE (pattern
) != VOIDmode
)
743 machine_mode mode
= GET_MODE (pattern
);
744 machine_mode imode
= GET_MODE (XEXP (pattern
, 0));
746 = VECTOR_MODE_P (mode
) ? GET_MODE_INNER (mode
) : mode
;
747 if (GET_CODE (XEXP (pattern
, 1)) == PARALLEL
)
751 if (VECTOR_MODE_P (mode
)
752 && !GET_MODE_NUNITS (mode
).is_constant (&expected
))
754 "vec_select with variable-sized mode %s",
755 GET_MODE_NAME (mode
));
756 else if (XVECLEN (XEXP (pattern
, 1), 0) != expected
)
758 "vec_select parallel with %d elements, expected %d",
759 XVECLEN (XEXP (pattern
, 1), 0), expected
);
760 else if (VECTOR_MODE_P (imode
)
761 && GET_MODE_NUNITS (imode
).is_constant (&nelems
))
764 for (i
= 0; i
< expected
; ++i
)
765 if (CONST_INT_P (XVECEXP (XEXP (pattern
, 1), 0, i
))
766 && (UINTVAL (XVECEXP (XEXP (pattern
, 1), 0, i
))
769 "out of bounds selector %u in vec_select, "
770 "expected at most %u",
772 UINTVAL (XVECEXP (XEXP (pattern
, 1), 0, i
)),
776 if (imode
!= VOIDmode
&& !VECTOR_MODE_P (imode
))
777 error_at (info
->loc
, "%smode of first vec_select operand is not a "
778 "vector mode", GET_MODE_NAME (imode
));
779 else if (imode
!= VOIDmode
&& GET_MODE_INNER (imode
) != emode
)
780 error_at (info
->loc
, "element mode mismatch between vec_select "
781 "%smode and its operand %smode",
782 GET_MODE_NAME (emode
),
783 GET_MODE_NAME (GET_MODE_INNER (imode
)));
791 fmt
= GET_RTX_FORMAT (code
);
792 len
= GET_RTX_LENGTH (code
);
793 for (i
= 0; i
< len
; i
++)
798 validate_pattern (XEXP (pattern
, i
), info
, NULL_RTX
, 0);
802 for (j
= 0; j
< XVECLEN (pattern
, i
); j
++)
803 validate_pattern (XVECEXP (pattern
, i
, j
), info
, NULL_RTX
, 0);
806 case 'r': case 'p': case 'i': case 'w': case '0': case 's':
815 /* Simple list structure for items of type T, for use when being part
816 of a list is an inherent property of T. T must have members equivalent
817 to "T *prev, *next;" and a function "void set_parent (list_head <T> *)"
818 to set the parent list. */
819 template <typename T
>
823 /* A range of linked items. */
831 void set_parent (list_head
*);
836 void push_back (range
);
837 range
remove (range
);
838 void replace (range
, range
);
839 T
*singleton () const;
844 /* Create a range [START_IN, START_IN]. */
846 template <typename T
>
847 list_head
<T
>::range::range (T
*start_in
) : start (start_in
), end (start_in
) {}
849 /* Create a range [START_IN, END_IN], linked by next and prev fields. */
851 template <typename T
>
852 list_head
<T
>::range::range (T
*start_in
, T
*end_in
)
853 : start (start_in
), end (end_in
) {}
855 template <typename T
>
857 list_head
<T
>::range::set_parent (list_head
<T
> *owner
)
859 for (T
*item
= start
; item
!= end
; item
= item
->next
)
860 item
->set_parent (owner
);
861 end
->set_parent (owner
);
864 template <typename T
>
865 list_head
<T
>::list_head () : first (0), last (0) {}
867 /* Add R to the end of the list. */
869 template <typename T
>
871 list_head
<T
>::push_back (range r
)
874 last
->next
= r
.start
;
877 r
.start
->prev
= last
;
882 /* Remove R from the list. R remains valid and can be inserted into
885 template <typename T
>
886 typename list_head
<T
>::range
887 list_head
<T
>::remove (range r
)
890 r
.start
->prev
->next
= r
.end
->next
;
894 r
.end
->next
->prev
= r
.start
->prev
;
896 last
= r
.start
->prev
;
903 /* Replace OLDR with NEWR. OLDR remains valid and can be inserted into
906 template <typename T
>
908 list_head
<T
>::replace (range oldr
, range newr
)
910 newr
.start
->prev
= oldr
.start
->prev
;
911 newr
.end
->next
= oldr
.end
->next
;
913 oldr
.start
->prev
= 0;
917 if (newr
.start
->prev
)
918 newr
.start
->prev
->next
= newr
.start
;
922 newr
.end
->next
->prev
= newr
.end
;
925 newr
.set_parent (this);
928 /* Empty the list and return the previous contents as a range that can
929 be inserted into other lists. */
931 template <typename T
>
932 typename list_head
<T
>::range
933 list_head
<T
>::release ()
935 range
r (first
, last
);
942 /* If the list contains a single item, return that item, otherwise return
945 template <typename T
>
947 list_head
<T
>::singleton () const
949 return first
== last
? first
: 0;
954 /* Describes a possible successful return from a routine. */
955 struct acceptance_type
957 /* The type of routine we're returning from. */
958 routine_type type
: 16;
960 /* True if this structure only really represents a partial match,
961 and if we must call a subroutine of type TYPE to complete the match.
962 In this case we'll call the subroutine and, if it succeeds, return
963 whatever the subroutine returned.
965 False if this structure presents a full match. */
966 unsigned int partial_p
: 1;
970 /* If PARTIAL_P, this is the number of the subroutine to call. */
973 /* Valid if !PARTIAL_P. */
976 /* The identifier of the matching pattern. For SUBPATTERNs this
977 value belongs to an ad-hoc routine-specific enum. For the
978 others it's the number of an .md file pattern. */
982 /* For RECOG, the number of clobbers that must be added to the
983 pattern in order for it to match CODE. */
986 /* For PEEPHOLE2, the number of additional instructions that were
987 included in the optimization. */
995 operator == (const acceptance_type
&a
, const acceptance_type
&b
)
997 if (a
.partial_p
!= b
.partial_p
)
1000 return a
.u
.subroutine_id
== b
.u
.subroutine_id
;
1002 return a
.u
.full
.code
== b
.u
.full
.code
;
1006 operator != (const acceptance_type
&a
, const acceptance_type
&b
)
1008 return !operator == (a
, b
);
1011 /* Represents a parameter to a pattern routine. */
1015 /* The C type of parameter. */
1017 /* Represents an invalid parameter. */
1020 /* A machine_mode parameter. */
1023 /* An rtx_code parameter. */
1026 /* An int parameter. */
1029 /* An unsigned int parameter. */
1032 /* A HOST_WIDE_INT parameter. */
1037 parameter (type_enum
, bool, uint64_t);
1039 /* The type of the parameter. */
1042 /* True if the value passed is variable, false if it is constant. */
1045 /* If IS_PARAM, this is the number of the variable passed, for an "i%d"
1046 format string. If !IS_PARAM, this is the constant value passed. */
1050 parameter::parameter ()
1051 : type (UNSET
), is_param (false), value (0) {}
1053 parameter::parameter (type_enum type_in
, bool is_param_in
, uint64_t value_in
)
1054 : type (type_in
), is_param (is_param_in
), value (value_in
) {}
1057 operator == (const parameter
¶m1
, const parameter
¶m2
)
1059 return (param1
.type
== param2
.type
1060 && param1
.is_param
== param2
.is_param
1061 && param1
.value
== param2
.value
);
1065 operator != (const parameter
¶m1
, const parameter
¶m2
)
1067 return !operator == (param1
, param2
);
1070 /* Represents a routine that matches a partial rtx pattern, returning
1071 an ad-hoc enum value on success and -1 on failure. The routine can
1072 be used by any subroutine type. The match can be parameterized by
1073 things like mode, code and UNSPEC number. */
1074 class pattern_routine
1077 /* The state that implements the pattern. */
1080 /* The deepest root position from which S can access all the rtxes it needs.
1081 This is NULL if the pattern doesn't need an rtx input, usually because
1082 all matching is done on operands[] instead. */
1085 /* A unique identifier for the routine. */
1086 unsigned int pattern_id
;
1088 /* True if the routine takes pnum_clobbers as argument. */
1089 bool pnum_clobbers_p
;
1091 /* True if the routine takes the enclosing instruction as argument. */
1094 /* The types of the other parameters to the routine, if any. */
1095 auto_vec
<parameter::type_enum
, MAX_PATTERN_PARAMS
> param_types
;
1098 /* All defined patterns. */
1099 static vec
<pattern_routine
*> patterns
;
1101 /* Represents one use of a pattern routine. */
1105 /* The pattern routine to use. */
1106 pattern_routine
*routine
;
1108 /* The values to pass as parameters. This vector has the same length
1109 as ROUTINE->PARAM_TYPES. */
1110 auto_vec
<parameter
, MAX_PATTERN_PARAMS
> params
;
1113 /* Represents a test performed by a decision. */
1119 /* The types of test that can be performed. Most of them take as input
1120 an rtx X. Some also take as input a transition label LABEL; the others
1121 are booleans for which the transition label is always "true".
1123 The order of the enum isn't important. */
1125 /* Check GET_CODE (X) == LABEL. */
1128 /* Check GET_MODE (X) == LABEL. */
1131 /* Check REGNO (X) == LABEL. */
1134 /* Check known_eq (SUBREG_BYTE (X), LABEL). */
1137 /* Check XINT (X, u.opno) == LABEL. */
1140 /* Check XWINT (X, u.opno) == LABEL. */
1143 /* Check XVECLEN (X, 0) == LABEL. */
1146 /* Check peep2_current_count >= u.min_len. */
1149 /* Check XVECLEN (X, 0) >= u.min_len. */
1152 /* Check whether X is a cached const_int with value u.integer. */
1155 /* Check u.predicate.data (X, u.predicate.mode). */
1158 /* Check rtx_equal_p (X, operands[u.opno]). */
1161 /* Check whether X matches pattern u.pattern. */
1164 /* Check whether pnum_clobbers is nonnull (RECOG only). */
1167 /* Check whether general C test u.string holds. In general the condition
1168 needs access to "insn" and the full operand list. */
1171 /* Execute operands[u.opno] = X. (Always succeeds.) */
1174 /* Accept u.acceptance. Always succeeds for SUBPATTERN, RECOG and SPLIT.
1175 May fail for PEEPHOLE2 if the define_peephole2 C code executes FAIL. */
1179 /* The position of rtx X in the above description, relative to the
1180 incoming instruction "insn". The position is null if the test
1181 doesn't take an X as input. */
1184 /* Which element of operands[] already contains POS, or -1 if no element
1185 is known to hold POS. */
1188 /* The type of test and its parameters, as described above. */
1201 const struct pred_data
*data
;
1202 /* True if the mode is taken from a machine_mode parameter
1203 to the routine rather than a constant machine_mode. If true,
1204 MODE is the number of the parameter (for an "i%d" format string),
1205 otherwise it is the mode itself. */
1209 pattern_use
*pattern
;
1211 acceptance_type acceptance
;
1214 static rtx_test
code (position
*);
1215 static rtx_test
mode (position
*);
1216 static rtx_test
regno_field (position
*);
1217 static rtx_test
subreg_field (position
*);
1218 static rtx_test
int_field (position
*, int);
1219 static rtx_test
wide_int_field (position
*, int);
1220 static rtx_test
veclen (position
*);
1221 static rtx_test
peep2_count (int);
1222 static rtx_test
veclen_ge (position
*, int);
1223 static rtx_test
predicate (position
*, const pred_data
*, machine_mode
);
1224 static rtx_test
duplicate (position
*, int);
1225 static rtx_test
pattern (position
*, pattern_use
*);
1226 static rtx_test
have_num_clobbers ();
1227 static rtx_test
c_test (const char *);
1228 static rtx_test
set_op (position
*, int);
1229 static rtx_test
accept (const acceptance_type
&);
1231 bool terminal_p () const;
1232 bool single_outcome_p () const;
1235 rtx_test (position
*, kind_enum
);
1238 rtx_test::rtx_test () {}
1240 rtx_test::rtx_test (position
*pos_in
, kind_enum kind_in
)
1241 : pos (pos_in
), pos_operand (-1), kind (kind_in
) {}
1244 rtx_test::code (position
*pos
)
1246 return rtx_test (pos
, rtx_test::CODE
);
1250 rtx_test::mode (position
*pos
)
1252 return rtx_test (pos
, rtx_test::MODE
);
1256 rtx_test::regno_field (position
*pos
)
1258 rtx_test
res (pos
, rtx_test::REGNO_FIELD
);
1263 rtx_test::subreg_field (position
*pos
)
1265 rtx_test
res (pos
, rtx_test::SUBREG_FIELD
);
1270 rtx_test::int_field (position
*pos
, int opno
)
1272 rtx_test
res (pos
, rtx_test::INT_FIELD
);
1278 rtx_test::wide_int_field (position
*pos
, int opno
)
1280 rtx_test
res (pos
, rtx_test::WIDE_INT_FIELD
);
1286 rtx_test::veclen (position
*pos
)
1288 return rtx_test (pos
, rtx_test::VECLEN
);
1292 rtx_test::peep2_count (int min_len
)
1294 rtx_test
res (0, rtx_test::PEEP2_COUNT
);
1295 res
.u
.min_len
= min_len
;
1300 rtx_test::veclen_ge (position
*pos
, int min_len
)
1302 rtx_test
res (pos
, rtx_test::VECLEN_GE
);
1303 res
.u
.min_len
= min_len
;
1308 rtx_test::predicate (position
*pos
, const struct pred_data
*data
,
1311 rtx_test
res (pos
, rtx_test::PREDICATE
);
1312 res
.u
.predicate
.data
= data
;
1313 res
.u
.predicate
.mode_is_param
= false;
1314 res
.u
.predicate
.mode
= mode
;
1319 rtx_test::duplicate (position
*pos
, int opno
)
1321 rtx_test
res (pos
, rtx_test::DUPLICATE
);
1327 rtx_test::pattern (position
*pos
, pattern_use
*pattern
)
1329 rtx_test
res (pos
, rtx_test::PATTERN
);
1330 res
.u
.pattern
= pattern
;
1335 rtx_test::have_num_clobbers ()
1337 return rtx_test (0, rtx_test::HAVE_NUM_CLOBBERS
);
1341 rtx_test::c_test (const char *string
)
1343 rtx_test
res (0, rtx_test::C_TEST
);
1344 res
.u
.string
= string
;
1349 rtx_test::set_op (position
*pos
, int opno
)
1351 rtx_test
res (pos
, rtx_test::SET_OP
);
1357 rtx_test::accept (const acceptance_type
&acceptance
)
1359 rtx_test
res (0, rtx_test::ACCEPT
);
1360 res
.u
.acceptance
= acceptance
;
1364 /* Return true if the test represents an unconditionally successful match. */
1367 rtx_test::terminal_p () const
1369 return kind
== rtx_test::ACCEPT
&& u
.acceptance
.type
!= PEEPHOLE2
;
1372 /* Return true if the test is a boolean that is always true. */
1375 rtx_test::single_outcome_p () const
1377 return terminal_p () || kind
== rtx_test::SET_OP
;
1381 operator == (const rtx_test
&a
, const rtx_test
&b
)
1383 if (a
.pos
!= b
.pos
|| a
.kind
!= b
.kind
)
1387 case rtx_test::CODE
:
1388 case rtx_test::MODE
:
1389 case rtx_test::REGNO_FIELD
:
1390 case rtx_test::SUBREG_FIELD
:
1391 case rtx_test::VECLEN
:
1392 case rtx_test::HAVE_NUM_CLOBBERS
:
1395 case rtx_test::PEEP2_COUNT
:
1396 case rtx_test::VECLEN_GE
:
1397 return a
.u
.min_len
== b
.u
.min_len
;
1399 case rtx_test::INT_FIELD
:
1400 case rtx_test::WIDE_INT_FIELD
:
1401 case rtx_test::DUPLICATE
:
1402 case rtx_test::SET_OP
:
1403 return a
.u
.opno
== b
.u
.opno
;
1405 case rtx_test::SAVED_CONST_INT
:
1406 return (a
.u
.integer
.is_param
== b
.u
.integer
.is_param
1407 && a
.u
.integer
.value
== b
.u
.integer
.value
);
1409 case rtx_test::PREDICATE
:
1410 return (a
.u
.predicate
.data
== b
.u
.predicate
.data
1411 && a
.u
.predicate
.mode_is_param
== b
.u
.predicate
.mode_is_param
1412 && a
.u
.predicate
.mode
== b
.u
.predicate
.mode
);
1414 case rtx_test::PATTERN
:
1415 return (a
.u
.pattern
->routine
== b
.u
.pattern
->routine
1416 && a
.u
.pattern
->params
== b
.u
.pattern
->params
);
1418 case rtx_test::C_TEST
:
1419 return strcmp (a
.u
.string
, b
.u
.string
) == 0;
1421 case rtx_test::ACCEPT
:
1422 return a
.u
.acceptance
== b
.u
.acceptance
;
1428 operator != (const rtx_test
&a
, const rtx_test
&b
)
1430 return !operator == (a
, b
);
1433 /* A simple set of transition labels. Most transitions have a singleton
1434 label, so try to make that case as efficient as possible. */
1435 class int_set
: public auto_vec
<uint64_t, 1>
1438 typedef uint64_t *iterator
;
1442 int_set (const int_set
&);
1444 int_set
&operator = (const int_set
&);
1450 int_set::int_set () : auto_vec
<uint64_t, 1> () {}
1452 int_set::int_set (uint64_t label
) :
1453 auto_vec
<uint64_t, 1> ()
1458 int_set::int_set (const int_set
&other
) :
1459 auto_vec
<uint64_t, 1> ()
1461 safe_splice (other
);
1465 int_set::operator = (const int_set
&other
)
1468 safe_splice (other
);
1481 return address () + length ();
1485 operator == (const int_set
&a
, const int_set
&b
)
1487 if (a
.length () != b
.length ())
1489 for (unsigned int i
= 0; i
< a
.length (); ++i
)
1496 operator != (const int_set
&a
, const int_set
&b
)
1498 return !operator == (a
, b
);
1503 /* Represents a transition between states, dependent on the result of
1508 transition (const int_set
&, state
*, bool);
1510 void set_parent (list_head
<transition
> *);
1512 /* Links to other transitions for T. Always null for boolean tests. */
1513 transition
*prev
, *next
;
1515 /* The transition should be taken when T has one of these values.
1516 E.g. for rtx_test::CODE this is a set of codes, while for booleans like
1517 rtx_test::PREDICATE it is always a singleton "true". The labels are
1518 sorted in ascending order. */
1521 /* The source decision. */
1524 /* The target state. */
1527 /* True if TO would function correctly even if TEST wasn't performed.
1528 E.g. it isn't necessary to check whether GET_MODE (x1) is SImode
1529 before calling register_operand (x1, SImode), since register_operand
1530 performs its own mode check. However, checking GET_MODE can be a cheap
1531 way of disambiguating SImode and DImode register operands. */
1534 /* True if LABELS contains parameter numbers rather than constants.
1535 E.g. if this is true for a rtx_test::CODE, the label is the number
1536 of an rtx_code parameter rather than an rtx_code itself.
1537 LABELS is always a singleton when this variable is true. */
1541 /* Represents a test and the action that should be taken on the result.
1542 If a transition exists for the test outcome, the machine switches
1543 to the transition's target state. If no suitable transition exists,
1544 the machine either falls through to the next decision or, if there are no
1545 more decisions to try, fails the match. */
1546 class decision
: public list_head
<transition
>
1549 decision (const rtx_test
&);
1551 void set_parent (list_head
<decision
> *s
);
1552 bool if_statement_p (uint64_t * = 0) const;
1554 /* The state to which this decision belongs. */
1557 /* Links to other decisions in the same state. */
1558 decision
*prev
, *next
;
1560 /* The test to perform. */
1564 /* Represents one machine state. For each state the machine tries a list
1565 of decisions, in order, and acts on the first match. It fails without
1566 further backtracking if no decisions match. */
1567 class state
: public list_head
<decision
>
1570 void set_parent (list_head
<state
> *) {}
1573 transition::transition (const int_set
&labels_in
, state
*to_in
,
1575 : prev (0), next (0), labels (labels_in
), from (0), to (to_in
),
1576 optional (optional_in
), is_param (false) {}
1578 /* Set the source decision of the transition. */
1581 transition::set_parent (list_head
<transition
> *from_in
)
1583 from
= static_cast <decision
*> (from_in
);
1586 decision::decision (const rtx_test
&test_in
)
1587 : prev (0), next (0), test (test_in
) {}
1589 /* Set the state to which this decision belongs. */
1592 decision::set_parent (list_head
<decision
> *s_in
)
1594 s
= static_cast <state
*> (s_in
);
1597 /* Return true if the decision has a single transition with a single label.
1598 If so, return the label in *LABEL if nonnull. */
1601 decision::if_statement_p (uint64_t *label
) const
1603 if (singleton () && first
->labels
.length () == 1)
1606 *label
= first
->labels
[0];
1612 /* Add to FROM a decision that performs TEST and has a single transition
1616 add_decision (state
*from
, const rtx_test
&test
, transition
*trans
)
1618 decision
*d
= new decision (test
);
1619 from
->push_back (d
);
1620 d
->push_back (trans
);
1623 /* Add a transition from FROM to a new, empty state that is taken
1624 when TEST == LABELS. OPTIONAL says whether the new transition
1625 should be optional. Return the new state. */
1628 add_decision (state
*from
, const rtx_test
&test
, int_set labels
, bool optional
)
1630 state
*to
= new state
;
1631 add_decision (from
, test
, new transition (labels
, to
, optional
));
1635 /* Insert a decision before decisions R to make them dependent on
1636 TEST == LABELS. OPTIONAL says whether the new transition should be
1640 insert_decision_before (state::range r
, const rtx_test
&test
,
1641 const int_set
&labels
, bool optional
)
1643 decision
*newd
= new decision (test
);
1644 state
*news
= new state
;
1645 newd
->push_back (new transition (labels
, news
, optional
));
1646 r
.start
->s
->replace (r
, newd
);
1647 news
->push_back (r
);
1651 /* Remove any optional transitions from S that turned out not to be useful. */
1654 collapse_optional_decisions (state
*s
)
1656 decision
*d
= s
->first
;
1659 decision
*next
= d
->next
;
1660 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
1661 collapse_optional_decisions (trans
->to
);
1662 /* A decision with a single optional transition doesn't help
1663 partition the potential matches and so is unlikely to be
1664 worthwhile. In particular, if the decision that performs the
1665 test is the last in the state, the best it could do is reject
1666 an invalid pattern slightly earlier. If instead the decision
1667 is not the last in the state, the condition it tests could hold
1668 even for the later decisions in the state. The best it can do
1669 is save work in some cases where only the later decisions can
1672 In both cases the optional transition would add extra work to
1673 successful matches when the tested condition holds. */
1674 if (transition
*trans
= d
->singleton ())
1675 if (trans
->optional
)
1676 s
->replace (d
, trans
->to
->release ());
1681 /* Try to squash several separate tests into simpler ones. */
1684 simplify_tests (state
*s
)
1686 for (decision
*d
= s
->first
; d
; d
= d
->next
)
1689 /* Convert checks for GET_CODE (x) == CONST_INT and XWINT (x, 0) == N
1690 into checks for const_int_rtx[N'], if N is suitably small. */
1691 if (d
->test
.kind
== rtx_test::CODE
1692 && d
->if_statement_p (&label
)
1693 && label
== CONST_INT
)
1694 if (decision
*second
= d
->first
->to
->singleton ())
1695 if (d
->test
.pos
== second
->test
.pos
1696 && second
->test
.kind
== rtx_test::WIDE_INT_FIELD
1697 && second
->test
.u
.opno
== 0
1698 && second
->if_statement_p (&label
)
1699 && IN_RANGE (int64_t (label
),
1700 -MAX_SAVED_CONST_INT
, MAX_SAVED_CONST_INT
))
1702 d
->test
.kind
= rtx_test::SAVED_CONST_INT
;
1703 d
->test
.u
.integer
.is_param
= false;
1704 d
->test
.u
.integer
.value
= label
;
1705 d
->replace (d
->first
, second
->release ());
1706 d
->first
->labels
[0] = true;
1708 /* If we have a CODE test followed by a PREDICATE test, rely on
1709 the predicate to test the code.
1711 This case exists for match_operators. We initially treat the
1712 CODE test for a match_operator as non-optional so that we can
1713 safely move down to its operands. It may turn out that all
1714 paths that reach that code test require the same predicate
1715 to be true. cse_tests will then put the predicate test in
1716 series with the code test. */
1717 if (d
->test
.kind
== rtx_test::CODE
)
1718 if (transition
*trans
= d
->singleton ())
1720 state
*s
= trans
->to
;
1721 while (decision
*d2
= s
->singleton ())
1723 if (d
->test
.pos
!= d2
->test
.pos
)
1725 transition
*trans2
= d2
->singleton ();
1728 if (d2
->test
.kind
== rtx_test::PREDICATE
)
1731 trans
->labels
= int_set (true);
1732 s
->replace (d2
, trans2
->to
->release ());
1738 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
1739 simplify_tests (trans
->to
);
1743 /* Return true if all successful returns passing through D require the
1744 condition tested by COMMON to be true.
1746 When returning true, add all transitions like COMMON in D to WHERE.
1747 WHERE may contain a partial result on failure. */
1750 common_test_p (decision
*d
, transition
*common
, vec
<transition
*> *where
)
1752 if (d
->test
.kind
== rtx_test::ACCEPT
)
1753 /* We found a successful return that didn't require COMMON. */
1755 if (d
->test
== common
->from
->test
)
1757 transition
*trans
= d
->singleton ();
1759 || trans
->optional
!= common
->optional
1760 || trans
->labels
!= common
->labels
)
1762 where
->safe_push (trans
);
1765 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
1766 for (decision
*subd
= trans
->to
->first
; subd
; subd
= subd
->next
)
1767 if (!common_test_p (subd
, common
, where
))
1772 /* Indicates that we have tested GET_CODE (X) for a particular rtx X. */
1773 const unsigned char TESTED_CODE
= 1;
1775 /* Indicates that we have tested XVECLEN (X, 0) for a particular rtx X. */
1776 const unsigned char TESTED_VECLEN
= 2;
1778 /* Represents a set of conditions that are known to hold. */
1779 class known_conditions
1782 /* A mask of TESTED_ values for each position, indexed by the position's
1784 auto_vec
<unsigned char> position_tests
;
1786 /* Index N says whether operands[N] has been set. */
1787 auto_vec
<bool> set_operands
;
1789 /* A guranteed lower bound on the value of peep2_current_count. */
1793 /* Return true if TEST can safely be performed at D, where
1794 the conditions in KC hold. TEST is known to occur along the
1795 first path from D (i.e. always following the first transition
1796 of the first decision). Any intervening tests can be used as
1797 negative proof that hoisting isn't safe, but only KC can be used
1798 as positive proof. */
1801 safe_to_hoist_p (decision
*d
, const rtx_test
&test
, known_conditions
*kc
)
1805 case rtx_test::C_TEST
:
1806 /* In general, C tests require everything else to have been
1807 verified and all operands to have been set up. */
1810 case rtx_test::ACCEPT
:
1811 /* Don't accept something before all conditions have been tested. */
1814 case rtx_test::PREDICATE
:
1815 /* Don't move a predicate over a test for VECLEN_GE, since the
1816 predicate used in a match_parallel can legitimately expect the
1817 length to be checked first. */
1818 for (decision
*subd
= d
;
1820 subd
= subd
->first
->to
->first
)
1821 if (subd
->test
.pos
== test
.pos
1822 && subd
->test
.kind
== rtx_test::VECLEN_GE
)
1826 case rtx_test::DUPLICATE
:
1827 /* Don't test for a match_dup until the associated operand has
1829 if (!kc
->set_operands
[test
.u
.opno
])
1833 case rtx_test::CODE
:
1834 case rtx_test::MODE
:
1835 case rtx_test::SAVED_CONST_INT
:
1836 case rtx_test::SET_OP
:
1838 /* Check whether it is safe to access the rtx under test. */
1839 switch (test
.pos
->type
)
1841 case POS_PEEP2_INSN
:
1842 return test
.pos
->arg
< kc
->peep2_count
;
1845 return kc
->position_tests
[test
.pos
->base
->id
] & TESTED_CODE
;
1848 return kc
->position_tests
[test
.pos
->base
->id
] & TESTED_VECLEN
;
1852 case rtx_test::REGNO_FIELD
:
1853 case rtx_test::SUBREG_FIELD
:
1854 case rtx_test::INT_FIELD
:
1855 case rtx_test::WIDE_INT_FIELD
:
1856 case rtx_test::VECLEN
:
1857 case rtx_test::VECLEN_GE
:
1858 /* These tests access a specific part of an rtx, so are only safe
1859 once we know what the rtx is. */
1860 return kc
->position_tests
[test
.pos
->id
] & TESTED_CODE
;
1862 case rtx_test::PEEP2_COUNT
:
1863 case rtx_test::HAVE_NUM_CLOBBERS
:
1864 /* These tests can be performed anywhere. */
1867 case rtx_test::PATTERN
:
1873 /* Look for a transition that is taken by all successful returns from a range
1874 of decisions starting at OUTER and that would be better performed by
1875 OUTER's state instead. On success, store all instances of that transition
1876 in WHERE and return the last decision in the range. The range could
1877 just be OUTER, or it could include later decisions as well.
1879 WITH_POSITION_P is true if only tests with position POS should be tried,
1880 false if any test should be tried. WORTHWHILE_SINGLE_P is true if the
1881 result is useful even when the range contains just a single decision
1882 with a single transition. KC are the conditions that are known to
1886 find_common_test (decision
*outer
, bool with_position_p
,
1887 position
*pos
, bool worthwhile_single_p
,
1888 known_conditions
*kc
, vec
<transition
*> *where
)
1890 /* After this, WORTHWHILE_SINGLE_P indicates whether a range that contains
1891 just a single decision is useful, regardless of the number of
1892 transitions it has. */
1893 if (!outer
->singleton ())
1894 worthwhile_single_p
= true;
1895 /* Quick exit if we don't have enough decisions to form a worthwhile
1897 if (!worthwhile_single_p
&& !outer
->next
)
1899 /* Follow the first chain down, as one example of a path that needs
1900 to contain the common test. */
1901 for (decision
*d
= outer
; d
; d
= d
->first
->to
->first
)
1903 transition
*trans
= d
->singleton ();
1905 && (!with_position_p
|| d
->test
.pos
== pos
)
1906 && safe_to_hoist_p (outer
, d
->test
, kc
))
1908 if (common_test_p (outer
, trans
, where
))
1911 /* We checked above whether the move is worthwhile. */
1913 /* See how many decisions in OUTER's chain could reuse
1915 decision
*outer_end
= outer
;
1918 unsigned int length
= where
->length ();
1919 if (!common_test_p (outer_end
->next
, trans
, where
))
1921 where
->truncate (length
);
1924 outer_end
= outer_end
->next
;
1926 while (outer_end
->next
);
1927 /* It is worth moving TRANS if it can be shared by more than
1929 if (outer_end
!= outer
|| worthwhile_single_p
)
1932 where
->truncate (0);
1938 /* Try to promote common subtests in S to a single, shared decision.
1939 Also try to bunch tests for the same position together. POS is the
1940 position of the rtx tested before reaching S. KC are the conditions
1941 that are known to hold on entry to S. */
1944 cse_tests (position
*pos
, state
*s
, known_conditions
*kc
)
1946 for (decision
*d
= s
->first
; d
; d
= d
->next
)
1948 auto_vec
<transition
*, 16> where
;
1951 /* Try to find conditions that don't depend on a particular rtx,
1952 such as pnum_clobbers != NULL or peep2_current_count >= X.
1953 It's usually better to check these conditions as soon as
1954 possible, so the change is worthwhile even if there is
1955 only one copy of the test. */
1956 decision
*endd
= find_common_test (d
, true, 0, true, kc
, &where
);
1957 if (!endd
&& d
->test
.pos
!= pos
)
1958 /* Try to find other conditions related to position POS
1959 before moving to the new position. Again, this is
1960 worthwhile even if there is only one copy of the test,
1961 since it means that fewer position variables are live
1963 endd
= find_common_test (d
, true, pos
, true, kc
, &where
);
1965 /* Try to find any condition that is used more than once. */
1966 endd
= find_common_test (d
, false, 0, false, kc
, &where
);
1969 transition
*common
= where
[0];
1970 /* Replace [D, ENDD] with a test like COMMON. We'll recurse
1971 on the common test and see the original D again next time. */
1972 d
= insert_decision_before (state::range (d
, endd
),
1976 /* Remove the old tests. */
1977 while (!where
.is_empty ())
1979 transition
*trans
= where
.pop ();
1980 trans
->from
->s
->replace (trans
->from
, trans
->to
->release ());
1985 /* Make sure that safe_to_hoist_p isn't being overly conservative.
1986 It should realize that D's test is safe in the current
1988 gcc_assert (d
->test
.kind
== rtx_test::C_TEST
1989 || d
->test
.kind
== rtx_test::ACCEPT
1990 || safe_to_hoist_p (d
, d
->test
, kc
));
1992 /* D won't be changed any further by the current optimization.
1993 Recurse with the state temporarily updated to include D. */
1995 switch (d
->test
.kind
)
1997 case rtx_test::CODE
:
1998 prev
= kc
->position_tests
[d
->test
.pos
->id
];
1999 kc
->position_tests
[d
->test
.pos
->id
] |= TESTED_CODE
;
2002 case rtx_test::VECLEN
:
2003 case rtx_test::VECLEN_GE
:
2004 prev
= kc
->position_tests
[d
->test
.pos
->id
];
2005 kc
->position_tests
[d
->test
.pos
->id
] |= TESTED_VECLEN
;
2008 case rtx_test::SET_OP
:
2009 prev
= kc
->set_operands
[d
->test
.u
.opno
];
2011 kc
->set_operands
[d
->test
.u
.opno
] = true;
2014 case rtx_test::PEEP2_COUNT
:
2015 prev
= kc
->peep2_count
;
2016 kc
->peep2_count
= MAX (prev
, d
->test
.u
.min_len
);
2022 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
2023 cse_tests (d
->test
.pos
? d
->test
.pos
: pos
, trans
->to
, kc
);
2024 switch (d
->test
.kind
)
2026 case rtx_test::CODE
:
2027 case rtx_test::VECLEN
:
2028 case rtx_test::VECLEN_GE
:
2029 kc
->position_tests
[d
->test
.pos
->id
] = prev
;
2032 case rtx_test::SET_OP
:
2033 kc
->set_operands
[d
->test
.u
.opno
] = prev
;
2036 case rtx_test::PEEP2_COUNT
:
2037 kc
->peep2_count
= prev
;
2046 /* Return the type of value that can be used to parameterize test KIND,
2047 or parameter::UNSET if none. */
2049 parameter::type_enum
2050 transition_parameter_type (rtx_test::kind_enum kind
)
2054 case rtx_test::CODE
:
2055 return parameter::CODE
;
2057 case rtx_test::MODE
:
2058 return parameter::MODE
;
2060 case rtx_test::REGNO_FIELD
:
2061 case rtx_test::SUBREG_FIELD
:
2062 return parameter::UINT
;
2064 case rtx_test::INT_FIELD
:
2065 case rtx_test::VECLEN
:
2066 case rtx_test::PATTERN
:
2067 return parameter::INT
;
2069 case rtx_test::WIDE_INT_FIELD
:
2070 return parameter::WIDE_INT
;
2072 case rtx_test::PEEP2_COUNT
:
2073 case rtx_test::VECLEN_GE
:
2074 case rtx_test::SAVED_CONST_INT
:
2075 case rtx_test::PREDICATE
:
2076 case rtx_test::DUPLICATE
:
2077 case rtx_test::HAVE_NUM_CLOBBERS
:
2078 case rtx_test::C_TEST
:
2079 case rtx_test::SET_OP
:
2080 case rtx_test::ACCEPT
:
2081 return parameter::UNSET
;
2086 /* Initialize the pos_operand fields of each state reachable from S.
2087 If OPERAND_POS[ID] >= 0, the position with id ID is stored in
2088 operands[OPERAND_POS[ID]] on entry to S. */
2091 find_operand_positions (state
*s
, vec
<int> &operand_pos
)
2093 for (decision
*d
= s
->first
; d
; d
= d
->next
)
2095 int this_operand
= (d
->test
.pos
? operand_pos
[d
->test
.pos
->id
] : -1);
2096 if (this_operand
>= 0)
2097 d
->test
.pos_operand
= this_operand
;
2098 if (d
->test
.kind
== rtx_test::SET_OP
)
2099 operand_pos
[d
->test
.pos
->id
] = d
->test
.u
.opno
;
2100 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
2101 find_operand_positions (trans
->to
, operand_pos
);
2102 if (d
->test
.kind
== rtx_test::SET_OP
)
2103 operand_pos
[d
->test
.pos
->id
] = this_operand
;
2107 /* Statistics about a matching routine. */
2113 /* The total number of decisions in the routine, excluding trivial
2114 ones that never fail. */
2115 unsigned int num_decisions
;
2117 /* The number of non-trivial decisions on the longest path through
2118 the routine, and the return value that contributes most to that
2120 unsigned int longest_path
;
2121 int longest_path_code
;
2123 /* The maximum number of times that a single call to the routine
2124 can backtrack, and the value returned at the end of that path.
2125 "Backtracking" here means failing one decision in state and
2126 going onto to the next. */
2127 unsigned int longest_backtrack
;
2128 int longest_backtrack_code
;
2132 : num_decisions (0), longest_path (0), longest_path_code (-1),
2133 longest_backtrack (0), longest_backtrack_code (-1) {}
2135 /* Return statistics about S. */
2138 get_stats (state
*s
)
2141 unsigned int longest_path
= 0;
2142 for (decision
*d
= s
->first
; d
; d
= d
->next
)
2144 /* Work out the statistics for D. */
2146 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
2148 stats for_trans
= get_stats (trans
->to
);
2149 for_d
.num_decisions
+= for_trans
.num_decisions
;
2150 /* Each transition is mutually-exclusive, so just pick the
2151 longest of the individual paths. */
2152 if (for_d
.longest_path
<= for_trans
.longest_path
)
2154 for_d
.longest_path
= for_trans
.longest_path
;
2155 for_d
.longest_path_code
= for_trans
.longest_path_code
;
2157 /* Likewise for backtracking. */
2158 if (for_d
.longest_backtrack
<= for_trans
.longest_backtrack
)
2160 for_d
.longest_backtrack
= for_trans
.longest_backtrack
;
2161 for_d
.longest_backtrack_code
= for_trans
.longest_backtrack_code
;
2165 /* Account for D's test in its statistics. */
2166 if (!d
->test
.single_outcome_p ())
2168 for_d
.num_decisions
+= 1;
2169 for_d
.longest_path
+= 1;
2171 if (d
->test
.kind
== rtx_test::ACCEPT
)
2173 for_d
.longest_path_code
= d
->test
.u
.acceptance
.u
.full
.code
;
2174 for_d
.longest_backtrack_code
= d
->test
.u
.acceptance
.u
.full
.code
;
2177 /* Keep a running count of the number of backtracks. */
2179 for_s
.longest_backtrack
+= 1;
2181 /* Accumulate D's statistics into S's. */
2182 for_s
.num_decisions
+= for_d
.num_decisions
;
2183 for_s
.longest_path
+= for_d
.longest_path
;
2184 for_s
.longest_backtrack
+= for_d
.longest_backtrack
;
2186 /* Use the code from the decision with the longest individual path,
2187 since that's more likely to be useful if trying to make the
2188 path shorter. In the event of a tie, pick the later decision,
2189 since that's closer to the end of the path. */
2190 if (longest_path
<= for_d
.longest_path
)
2192 longest_path
= for_d
.longest_path
;
2193 for_s
.longest_path_code
= for_d
.longest_path_code
;
2196 /* Later decisions in a state are necessarily in a longer backtrack
2197 than earlier decisions. */
2198 for_s
.longest_backtrack_code
= for_d
.longest_backtrack_code
;
2203 /* Optimize ROOT. Use TYPE to describe ROOT in status messages. */
2206 optimize_subroutine_group (const char *type
, state
*root
)
2208 /* Remove optional transitions that turned out not to be worthwhile. */
2209 if (collapse_optional_decisions_p
)
2210 collapse_optional_decisions (root
);
2212 /* Try to remove duplicated tests and to rearrange tests into a more
2216 known_conditions kc
;
2217 kc
.position_tests
.safe_grow_cleared (num_positions
);
2218 kc
.set_operands
.safe_grow_cleared (num_operands
);
2220 cse_tests (&root_pos
, root
, &kc
);
2223 /* Try to simplify two or more tests into one. */
2224 if (simplify_tests_p
)
2225 simplify_tests (root
);
2227 /* Try to use operands[] instead of xN variables. */
2228 if (use_operand_variables_p
)
2230 auto_vec
<int> operand_pos (num_positions
);
2231 for (unsigned int i
= 0; i
< num_positions
; ++i
)
2232 operand_pos
.quick_push (-1);
2233 find_operand_positions (root
, operand_pos
);
2236 /* Print a summary of the new state. */
2237 stats st
= get_stats (root
);
2238 fprintf (stderr
, "Statistics for %s:\n", type
);
2239 fprintf (stderr
, " Number of decisions: %6d\n", st
.num_decisions
);
2240 fprintf (stderr
, " longest path: %6d (code: %6d)\n",
2241 st
.longest_path
, st
.longest_path_code
);
2242 fprintf (stderr
, " longest backtrack: %6d (code: %6d)\n",
2243 st
.longest_backtrack
, st
.longest_backtrack_code
);
2246 class merge_pattern_info
;
2248 /* Represents a transition from one pattern to another. */
2249 class merge_pattern_transition
2252 merge_pattern_transition (merge_pattern_info
*);
2254 /* The target pattern. */
2255 merge_pattern_info
*to
;
2257 /* The parameters that the source pattern passes to the target pattern.
2258 "parameter (TYPE, true, I)" represents parameter I of the source
2260 auto_vec
<parameter
, MAX_PATTERN_PARAMS
> params
;
2263 merge_pattern_transition::merge_pattern_transition (merge_pattern_info
*to_in
)
2268 /* Represents a pattern that can might match several states. The pattern
2269 may replace parts of the test with a parameter value. It may also
2270 replace transition labels with parameters. */
2271 class merge_pattern_info
2274 merge_pattern_info (unsigned int);
2276 /* If PARAM_TEST_P, the state's singleton test should be generalized
2277 to use the runtime value of PARAMS[PARAM_TEST]. */
2278 unsigned int param_test
: 8;
2280 /* If PARAM_TRANSITION_P, the state's single transition label should
2281 be replaced by the runtime value of PARAMS[PARAM_TRANSITION]. */
2282 unsigned int param_transition
: 8;
2284 /* True if we have decided to generalize the root decision's test,
2285 as per PARAM_TEST. */
2286 unsigned int param_test_p
: 1;
2288 /* Likewise for the root decision's transition, as per PARAM_TRANSITION. */
2289 unsigned int param_transition_p
: 1;
2291 /* True if the contents of the structure are completely filled in. */
2292 unsigned int complete_p
: 1;
2294 /* The number of pseudo-statements in the pattern. Used to decide
2295 whether it's big enough to break out into a subroutine. */
2296 unsigned int num_statements
;
2298 /* The number of states that use this pattern. */
2299 unsigned int num_users
;
2301 /* The number of distinct success values that the pattern returns. */
2302 unsigned int num_results
;
2304 /* This array has one element for each runtime parameter to the pattern.
2305 PARAMS[I] gives the default value of parameter I, which is always
2308 These default parameters are used in cases where we match the
2309 pattern against some state S1, then add more parameters while
2310 matching against some state S2. S1 is then left passing fewer
2311 parameters than S2. The array gives us enough informatino to
2312 construct a full parameter list for S1 (see update_parameters).
2314 If we decide to create a subroutine for this pattern,
2315 PARAMS[I].type determines the C type of parameter I. */
2316 auto_vec
<parameter
, MAX_PATTERN_PARAMS
> params
;
2318 /* All states that match this pattern must have the same number of
2319 transitions. TRANSITIONS[I] describes the subpattern for transition
2320 number I; it is null if transition I represents a successful return
2321 from the pattern. */
2322 auto_vec
<merge_pattern_transition
*, 1> transitions
;
2324 /* The routine associated with the pattern, or null if we haven't generated
2326 pattern_routine
*routine
;
2329 merge_pattern_info::merge_pattern_info (unsigned int num_transitions
)
2331 param_transition (0),
2332 param_test_p (false),
2333 param_transition_p (false),
2340 transitions
.safe_grow_cleared (num_transitions
);
2343 /* Describes one way of matching a particular state to a particular
2345 class merge_state_result
2348 merge_state_result (merge_pattern_info
*, position
*, merge_state_result
*);
2350 /* A pattern that matches the state. */
2351 merge_pattern_info
*pattern
;
2353 /* If we decide to use this match and create a subroutine for PATTERN,
2354 the state should pass the rtx at position ROOT to the pattern's
2355 rtx parameter. A null root means that the pattern doesn't need
2356 an rtx parameter; all the rtxes it matches come from elsewhere. */
2359 /* The parameters that should be passed to PATTERN for this state.
2360 If the array is shorter than PATTERN->params, the missing entries
2361 should be taken from the corresponding element of PATTERN->params. */
2362 auto_vec
<parameter
, MAX_PATTERN_PARAMS
> params
;
2364 /* An earlier match for the same state, or null if none. Patterns
2365 matched by earlier entries are smaller than PATTERN. */
2366 merge_state_result
*prev
;
2369 merge_state_result::merge_state_result (merge_pattern_info
*pattern_in
,
2371 merge_state_result
*prev_in
)
2372 : pattern (pattern_in
), root (root_in
), prev (prev_in
)
2375 /* Information about a state, used while trying to match it against
2377 class merge_state_info
2380 merge_state_info (state
*);
2382 /* The state itself. */
2385 /* Index I gives information about the target of transition I. */
2386 merge_state_info
*to_states
;
2388 /* The number of transitions in S. */
2389 unsigned int num_transitions
;
2391 /* True if the state has been deleted in favor of a call to a
2395 /* The previous state that might be a merge candidate for S, or null
2396 if no previous states could be merged with S. */
2397 merge_state_info
*prev_same_test
;
2399 /* A list of pattern matches for this state. */
2400 merge_state_result
*res
;
2403 merge_state_info::merge_state_info (state
*s_in
)
2406 num_transitions (0),
2411 /* True if PAT would be useful as a subroutine. */
2414 useful_pattern_p (merge_pattern_info
*pat
)
2416 return pat
->num_statements
>= MIN_COMBINE_COST
;
2419 /* PAT2 is a subpattern of PAT1. Return true if PAT2 should be inlined
2420 into PAT1's C routine. */
2423 same_pattern_p (merge_pattern_info
*pat1
, merge_pattern_info
*pat2
)
2425 return pat1
->num_users
== pat2
->num_users
|| !useful_pattern_p (pat2
);
2428 /* PAT was previously matched against SINFO based on tentative matches
2429 for the target states of SINFO's state. Return true if the match
2430 still holds; that is, if the target states of SINFO's state still
2431 match the corresponding transitions of PAT. */
2434 valid_result_p (merge_pattern_info
*pat
, merge_state_info
*sinfo
)
2436 for (unsigned int j
= 0; j
< sinfo
->num_transitions
; ++j
)
2437 if (merge_pattern_transition
*ptrans
= pat
->transitions
[j
])
2439 merge_state_result
*to_res
= sinfo
->to_states
[j
].res
;
2440 if (!to_res
|| to_res
->pattern
!= ptrans
->to
)
2446 /* Remove any matches that are no longer valid from the head of SINFO's
2450 prune_invalid_results (merge_state_info
*sinfo
)
2452 while (sinfo
->res
&& !valid_result_p (sinfo
->res
->pattern
, sinfo
))
2454 sinfo
->res
= sinfo
->res
->prev
;
2455 gcc_assert (sinfo
->res
);
2459 /* Return true if PAT represents the biggest posssible match for SINFO;
2460 that is, if the next action of SINFO's state on return from PAT will
2461 be something that cannot be merged with any other state. */
2464 complete_result_p (merge_pattern_info
*pat
, merge_state_info
*sinfo
)
2466 for (unsigned int j
= 0; j
< sinfo
->num_transitions
; ++j
)
2467 if (sinfo
->to_states
[j
].res
&& !pat
->transitions
[j
])
2472 /* Update TO for any parameters that have been added to FROM since TO
2473 was last set. The extra parameters in FROM will be constants or
2474 instructions to duplicate earlier parameters. */
2477 update_parameters (vec
<parameter
> &to
, const vec
<parameter
> &from
)
2479 for (unsigned int i
= to
.length (); i
< from
.length (); ++i
)
2480 to
.quick_push (from
[i
]);
2483 /* Return true if A and B can be tested by a single test. If the test
2484 can be parameterised, store the parameter value for A in *PARAMA and
2485 the parameter value for B in *PARAMB, otherwise leave PARAMA and
2489 compatible_tests_p (const rtx_test
&a
, const rtx_test
&b
,
2490 parameter
*parama
, parameter
*paramb
)
2492 if (a
.kind
!= b
.kind
)
2496 case rtx_test::PREDICATE
:
2497 if (a
.u
.predicate
.data
!= b
.u
.predicate
.data
)
2499 *parama
= parameter (parameter::MODE
, false, a
.u
.predicate
.mode
);
2500 *paramb
= parameter (parameter::MODE
, false, b
.u
.predicate
.mode
);
2503 case rtx_test::SAVED_CONST_INT
:
2504 *parama
= parameter (parameter::INT
, false, a
.u
.integer
.value
);
2505 *paramb
= parameter (parameter::INT
, false, b
.u
.integer
.value
);
2513 /* PARAMS is an array of the parameters that a state is going to pass
2514 to a pattern routine. It is still incomplete; index I has a kind of
2515 parameter::UNSET if we don't yet know what the state will pass
2516 as parameter I. Try to make parameter ID equal VALUE, returning
2520 set_parameter (vec
<parameter
> ¶ms
, unsigned int id
,
2521 const parameter
&value
)
2523 if (params
[id
].type
== parameter::UNSET
)
2525 if (force_unique_params_p
)
2526 for (unsigned int i
= 0; i
< params
.length (); ++i
)
2527 if (params
[i
] == value
)
2532 return params
[id
] == value
;
2535 /* PARAMS2 is the "params" array for a pattern and PARAMS1 is the
2536 set of parameters that a particular state is going to pass to
2539 Try to extend PARAMS1 and PARAMS2 so that there is a parameter
2540 that is equal to PARAM1 for the state and has a default value of
2541 PARAM2. Parameters beginning at START were added as part of the
2542 same match and so may be reused. */
2545 add_parameter (vec
<parameter
> ¶ms1
, vec
<parameter
> ¶ms2
,
2546 const parameter
¶m1
, const parameter
¶m2
,
2547 unsigned int start
, unsigned int *res
)
2549 gcc_assert (params1
.length () == params2
.length ());
2550 gcc_assert (!param1
.is_param
&& !param2
.is_param
);
2552 for (unsigned int i
= start
; i
< params2
.length (); ++i
)
2553 if (params1
[i
] == param1
&& params2
[i
] == param2
)
2559 if (force_unique_params_p
)
2560 for (unsigned int i
= 0; i
< params2
.length (); ++i
)
2561 if (params1
[i
] == param1
|| params2
[i
] == param2
)
2564 if (params2
.length () >= MAX_PATTERN_PARAMS
)
2567 *res
= params2
.length ();
2568 params1
.quick_push (param1
);
2569 params2
.quick_push (param2
);
2573 /* If *ROOTA is nonnull, return true if the same sequence of steps are
2574 required to reach A from *ROOTA as to reach B from ROOTB. If *ROOTA
2575 is null, update it if necessary in order to make the condition hold. */
2578 merge_relative_positions (position
**roota
, position
*a
,
2579 position
*rootb
, position
*b
)
2581 if (!relative_patterns_p
)
2590 return *roota
== rootb
;
2592 /* If B does not belong to the same instruction as ROOTB, we don't
2593 start with ROOTB but instead start with a call to peep2_next_insn.
2594 In that case the sequences for B and A are identical iff B and A
2595 are themselves identical. */
2596 if (rootb
->insn_id
!= b
->insn_id
)
2600 if (!a
|| b
->type
!= a
->type
|| b
->arg
!= a
->arg
)
2610 /* A hasher of states that treats two states as "equal" if they might be
2611 merged (but trying to be more discriminating than "return true"). */
2612 struct test_pattern_hasher
: nofree_ptr_hash
<merge_state_info
>
2614 static inline hashval_t
hash (const value_type
&);
2615 static inline bool equal (const value_type
&, const compare_type
&);
2619 test_pattern_hasher::hash (merge_state_info
*const &sinfo
)
2622 decision
*d
= sinfo
->s
->singleton ();
2623 h
.add_int (d
->test
.pos_operand
+ 1);
2624 if (!relative_patterns_p
)
2625 h
.add_int (d
->test
.pos
? d
->test
.pos
->id
+ 1 : 0);
2626 h
.add_int (d
->test
.kind
);
2627 h
.add_int (sinfo
->num_transitions
);
2632 test_pattern_hasher::equal (merge_state_info
*const &sinfo1
,
2633 merge_state_info
*const &sinfo2
)
2635 decision
*d1
= sinfo1
->s
->singleton ();
2636 decision
*d2
= sinfo2
->s
->singleton ();
2637 gcc_assert (d1
&& d2
);
2639 parameter new_param1
, new_param2
;
2640 return (d1
->test
.pos_operand
== d2
->test
.pos_operand
2641 && (relative_patterns_p
|| d1
->test
.pos
== d2
->test
.pos
)
2642 && compatible_tests_p (d1
->test
, d2
->test
, &new_param1
, &new_param2
)
2643 && sinfo1
->num_transitions
== sinfo2
->num_transitions
);
2646 /* Try to make the state described by SINFO1 use the same pattern as the
2647 state described by SINFO2. Return true on success.
2649 SINFO1 and SINFO2 are known to have the same hash value. */
2652 merge_patterns (merge_state_info
*sinfo1
, merge_state_info
*sinfo2
)
2654 merge_state_result
*res2
= sinfo2
->res
;
2655 merge_pattern_info
*pat
= res2
->pattern
;
2657 /* Write to temporary arrays while matching, in case we have to abort
2658 half way through. */
2659 auto_vec
<parameter
, MAX_PATTERN_PARAMS
> params1
;
2660 auto_vec
<parameter
, MAX_PATTERN_PARAMS
> params2
;
2661 params1
.quick_grow_cleared (pat
->params
.length ());
2662 params2
.splice (pat
->params
);
2663 unsigned int start_param
= params2
.length ();
2665 /* An array for recording changes to PAT->transitions[?].params.
2666 All changes involve replacing a constant parameter with some
2667 PAT->params[N], where N is the second element of the pending_param. */
2668 typedef std::pair
<parameter
*, unsigned int> pending_param
;
2669 auto_vec
<pending_param
, 32> pending_params
;
2671 decision
*d1
= sinfo1
->s
->singleton ();
2672 decision
*d2
= sinfo2
->s
->singleton ();
2673 gcc_assert (d1
&& d2
);
2675 /* If D2 tests a position, SINFO1's root relative to D1 is the same
2676 as SINFO2's root relative to D2. */
2677 position
*root1
= 0;
2678 position
*root2
= res2
->root
;
2679 if (d2
->test
.pos_operand
< 0
2681 && !merge_relative_positions (&root1
, d1
->test
.pos
,
2682 root2
, d2
->test
.pos
))
2685 /* Check whether the patterns have the same shape. */
2686 unsigned int num_transitions
= sinfo1
->num_transitions
;
2687 gcc_assert (num_transitions
== sinfo2
->num_transitions
);
2688 for (unsigned int i
= 0; i
< num_transitions
; ++i
)
2689 if (merge_pattern_transition
*ptrans
= pat
->transitions
[i
])
2691 merge_state_result
*to1_res
= sinfo1
->to_states
[i
].res
;
2692 merge_state_result
*to2_res
= sinfo2
->to_states
[i
].res
;
2693 merge_pattern_info
*to_pat
= ptrans
->to
;
2694 gcc_assert (to2_res
&& to2_res
->pattern
== to_pat
);
2695 if (!to1_res
|| to1_res
->pattern
!= to_pat
)
2698 && !merge_relative_positions (&root1
, to1_res
->root
,
2699 root2
, to2_res
->root
))
2701 /* Match the parameters that TO1_RES passes to TO_PAT with the
2702 parameters that PAT passes to TO_PAT. */
2703 update_parameters (to1_res
->params
, to_pat
->params
);
2704 for (unsigned int j
= 0; j
< to1_res
->params
.length (); ++j
)
2706 const parameter
¶m1
= to1_res
->params
[j
];
2707 const parameter
¶m2
= ptrans
->params
[j
];
2708 gcc_assert (!param1
.is_param
);
2709 if (param2
.is_param
)
2711 if (!set_parameter (params1
, param2
.value
, param1
))
2714 else if (param1
!= param2
)
2717 if (!add_parameter (params1
, params2
,
2718 param1
, param2
, start_param
, &id
))
2720 /* Record that PAT should now pass parameter ID to TO_PAT,
2721 instead of the current contents of *PARAM2. We only
2722 make the change if the rest of the match succeeds. */
2723 pending_params
.safe_push
2724 (pending_param (&ptrans
->params
[j
], id
));
2729 unsigned int param_test
= pat
->param_test
;
2730 unsigned int param_transition
= pat
->param_transition
;
2731 bool param_test_p
= pat
->param_test_p
;
2732 bool param_transition_p
= pat
->param_transition_p
;
2734 /* If the tests don't match exactly, try to parameterize them. */
2735 parameter new_param1
, new_param2
;
2736 if (!compatible_tests_p (d1
->test
, d2
->test
, &new_param1
, &new_param2
))
2738 if (new_param1
.type
!= parameter::UNSET
)
2740 /* If the test has not already been parameterized, all existing
2741 matches use constant NEW_PARAM2. */
2744 if (!set_parameter (params1
, param_test
, new_param1
))
2747 else if (new_param1
!= new_param2
)
2749 if (!add_parameter (params1
, params2
, new_param1
, new_param2
,
2750 start_param
, ¶m_test
))
2752 param_test_p
= true;
2756 /* Match the transitions. */
2757 transition
*trans1
= d1
->first
;
2758 transition
*trans2
= d2
->first
;
2759 for (unsigned int i
= 0; i
< num_transitions
; ++i
)
2761 if (param_transition_p
|| trans1
->labels
!= trans2
->labels
)
2763 /* We can only generalize a single transition with a single
2765 if (num_transitions
!= 1
2766 || trans1
->labels
.length () != 1
2767 || trans2
->labels
.length () != 1)
2770 /* Although we can match wide-int fields, in practice it leads
2771 to some odd results for const_vectors. We end up
2772 parameterizing the first N const_ints of the vector
2773 and then (once we reach the maximum number of parameters)
2774 we go on to match the other elements exactly. */
2775 if (d1
->test
.kind
== rtx_test::WIDE_INT_FIELD
)
2778 /* See whether the label has a generalizable type. */
2779 parameter::type_enum param_type
2780 = transition_parameter_type (d1
->test
.kind
);
2781 if (param_type
== parameter::UNSET
)
2784 /* Match the labels using parameters. */
2785 new_param1
= parameter (param_type
, false, trans1
->labels
[0]);
2786 if (param_transition_p
)
2788 if (!set_parameter (params1
, param_transition
, new_param1
))
2793 new_param2
= parameter (param_type
, false, trans2
->labels
[0]);
2794 if (!add_parameter (params1
, params2
, new_param1
, new_param2
,
2795 start_param
, ¶m_transition
))
2797 param_transition_p
= true;
2800 trans1
= trans1
->next
;
2801 trans2
= trans2
->next
;
2804 /* Set any unset parameters to their default values. This occurs if some
2805 other state needed something to be parameterized in order to match SINFO2,
2806 but SINFO1 on its own does not. */
2807 for (unsigned int i
= 0; i
< params1
.length (); ++i
)
2808 if (params1
[i
].type
== parameter::UNSET
)
2809 params1
[i
] = params2
[i
];
2811 /* The match was successful. Commit all pending changes to PAT. */
2812 update_parameters (pat
->params
, params2
);
2816 FOR_EACH_VEC_ELT (pending_params
, i
, pp
)
2817 *pp
->first
= parameter (pp
->first
->type
, true, pp
->second
);
2819 pat
->param_test
= param_test
;
2820 pat
->param_transition
= param_transition
;
2821 pat
->param_test_p
= param_test_p
;
2822 pat
->param_transition_p
= param_transition_p
;
2824 /* Record the match of SINFO1. */
2825 merge_state_result
*new_res1
= new merge_state_result (pat
, root1
,
2827 new_res1
->params
.splice (params1
);
2828 sinfo1
->res
= new_res1
;
2832 /* The number of states that were removed by calling pattern routines. */
2833 static unsigned int pattern_use_states
;
2835 /* The number of states used while defining pattern routines. */
2836 static unsigned int pattern_def_states
;
2838 /* Information used while constructing a use or definition of a pattern
2840 struct create_pattern_info
2842 /* The routine itself. */
2843 pattern_routine
*routine
;
2845 /* The first unclaimed return value for this particular use or definition.
2846 We walk the substates of uses and definitions in the same order
2847 so each return value always refers to the same position within
2849 unsigned int next_result
;
2852 static void populate_pattern_routine (create_pattern_info
*,
2853 merge_state_info
*, state
*,
2854 const vec
<parameter
> &);
2856 /* SINFO matches a pattern for which we've decided to create a C routine.
2857 Return a decision that performs a call to the pattern routine,
2858 but leave the caller to add the transitions to it. Initialize CPI
2859 for this purpose. Also create a definition for the pattern routine,
2860 if it doesn't already have one.
2862 PARAMS are the parameters that SINFO passes to its pattern. */
2865 init_pattern_use (create_pattern_info
*cpi
, merge_state_info
*sinfo
,
2866 const vec
<parameter
> ¶ms
)
2868 state
*s
= sinfo
->s
;
2869 merge_state_result
*res
= sinfo
->res
;
2870 merge_pattern_info
*pat
= res
->pattern
;
2871 cpi
->routine
= pat
->routine
;
2874 /* We haven't defined the pattern routine yet, so create
2875 a definition now. */
2876 pattern_routine
*routine
= new pattern_routine
;
2877 pat
->routine
= routine
;
2878 cpi
->routine
= routine
;
2879 routine
->s
= new state
;
2880 routine
->insn_p
= false;
2881 routine
->pnum_clobbers_p
= false;
2883 /* Create an "idempotent" mapping of parameter I to parameter I.
2884 Also record the C type of each parameter to the routine. */
2885 auto_vec
<parameter
, MAX_PATTERN_PARAMS
> def_params
;
2886 for (unsigned int i
= 0; i
< pat
->params
.length (); ++i
)
2888 def_params
.quick_push (parameter (pat
->params
[i
].type
, true, i
));
2889 routine
->param_types
.quick_push (pat
->params
[i
].type
);
2892 /* Any of the states that match the pattern could be used to
2893 create the routine definition. We might as well use SINFO
2894 since it's already to hand. This means that all positions
2895 in the definition will be relative to RES->root. */
2896 routine
->pos
= res
->root
;
2897 cpi
->next_result
= 0;
2898 populate_pattern_routine (cpi
, sinfo
, routine
->s
, def_params
);
2899 gcc_assert (cpi
->next_result
== pat
->num_results
);
2901 /* Add the routine to the global list, after the subroutines
2903 routine
->pattern_id
= patterns
.length ();
2904 patterns
.safe_push (routine
);
2907 /* Create a decision to call the routine, passing PARAMS to it. */
2908 pattern_use
*use
= new pattern_use
;
2909 use
->routine
= pat
->routine
;
2910 use
->params
.splice (params
);
2911 decision
*d
= new decision (rtx_test::pattern (res
->root
, use
));
2913 /* If the original decision could use an element of operands[] instead
2914 of an rtx variable, try to transfer it to the new decision. */
2915 if (s
->first
->test
.pos
&& res
->root
== s
->first
->test
.pos
)
2916 d
->test
.pos_operand
= s
->first
->test
.pos_operand
;
2918 cpi
->next_result
= 0;
2922 /* Make S return the next unclaimed pattern routine result for CPI. */
2925 add_pattern_acceptance (create_pattern_info
*cpi
, state
*s
)
2927 acceptance_type acceptance
;
2928 acceptance
.type
= SUBPATTERN
;
2929 acceptance
.partial_p
= false;
2930 acceptance
.u
.full
.code
= cpi
->next_result
;
2931 add_decision (s
, rtx_test::accept (acceptance
), true, false);
2932 cpi
->next_result
+= 1;
2935 /* Initialize new empty state NEWS so that it implements SINFO's pattern
2936 (here referred to as "P"). P may be the top level of a pattern routine
2937 or a subpattern that should be inlined into its parent pattern's routine
2938 (as per same_pattern_p). The choice of SINFO for a top-level pattern is
2939 arbitrary; it could be any of the states that use P. The choice for
2940 subpatterns follows the choice for the parent pattern.
2942 PARAMS gives the value of each parameter to P in terms of the parameters
2943 to the top-level pattern. If P itself is the top level pattern, PARAMS[I]
2944 is always "parameter (TYPE, true, I)". */
2947 populate_pattern_routine (create_pattern_info
*cpi
, merge_state_info
*sinfo
,
2948 state
*news
, const vec
<parameter
> ¶ms
)
2950 pattern_def_states
+= 1;
2952 decision
*d
= sinfo
->s
->singleton ();
2953 merge_pattern_info
*pat
= sinfo
->res
->pattern
;
2954 pattern_routine
*routine
= cpi
->routine
;
2956 /* Create a copy of D's test for the pattern routine and generalize it
2958 decision
*newd
= new decision (d
->test
);
2959 gcc_assert (newd
->test
.pos_operand
>= 0
2961 || common_position (newd
->test
.pos
,
2962 routine
->pos
) == routine
->pos
);
2963 if (pat
->param_test_p
)
2965 const parameter
¶m
= params
[pat
->param_test
];
2966 switch (newd
->test
.kind
)
2968 case rtx_test::PREDICATE
:
2969 newd
->test
.u
.predicate
.mode_is_param
= param
.is_param
;
2970 newd
->test
.u
.predicate
.mode
= param
.value
;
2973 case rtx_test::SAVED_CONST_INT
:
2974 newd
->test
.u
.integer
.is_param
= param
.is_param
;
2975 newd
->test
.u
.integer
.value
= param
.value
;
2983 if (d
->test
.kind
== rtx_test::C_TEST
)
2984 routine
->insn_p
= true;
2985 else if (d
->test
.kind
== rtx_test::HAVE_NUM_CLOBBERS
)
2986 routine
->pnum_clobbers_p
= true;
2987 news
->push_back (newd
);
2989 /* Fill in the transitions of NEWD. */
2991 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
2993 /* Create a new state to act as the target of the new transition. */
2994 state
*to_news
= new state
;
2995 if (merge_pattern_transition
*ptrans
= pat
->transitions
[i
])
2997 /* The pattern hasn't finished matching yet. Get the target
2998 pattern and the corresponding target state of SINFO. */
2999 merge_pattern_info
*to_pat
= ptrans
->to
;
3000 merge_state_info
*to
= sinfo
->to_states
+ i
;
3001 gcc_assert (to
->res
->pattern
== to_pat
);
3002 gcc_assert (ptrans
->params
.length () == to_pat
->params
.length ());
3004 /* Express the parameters to TO_PAT in terms of the parameters
3005 to the top-level pattern. */
3006 auto_vec
<parameter
, MAX_PATTERN_PARAMS
> to_params
;
3007 for (unsigned int j
= 0; j
< ptrans
->params
.length (); ++j
)
3009 const parameter
¶m
= ptrans
->params
[j
];
3010 to_params
.quick_push (param
.is_param
3011 ? params
[param
.value
]
3015 if (same_pattern_p (pat
, to_pat
))
3016 /* TO_PAT is part of the current routine, so just recurse. */
3017 populate_pattern_routine (cpi
, to
, to_news
, to_params
);
3020 /* TO_PAT should be matched by calling a separate routine. */
3021 create_pattern_info sub_cpi
;
3022 decision
*subd
= init_pattern_use (&sub_cpi
, to
, to_params
);
3023 routine
->insn_p
|= sub_cpi
.routine
->insn_p
;
3024 routine
->pnum_clobbers_p
|= sub_cpi
.routine
->pnum_clobbers_p
;
3026 /* Add the pattern routine call to the new target state. */
3027 to_news
->push_back (subd
);
3029 /* Add a transition for each successful call result. */
3030 for (unsigned int j
= 0; j
< to_pat
->num_results
; ++j
)
3032 state
*res
= new state
;
3033 add_pattern_acceptance (cpi
, res
);
3034 subd
->push_back (new transition (j
, res
, false));
3039 /* This transition corresponds to a successful match. */
3040 add_pattern_acceptance (cpi
, to_news
);
3042 /* Create the transition itself, generalizing as necessary. */
3043 transition
*new_trans
= new transition (trans
->labels
, to_news
,
3045 if (pat
->param_transition_p
)
3047 const parameter
¶m
= params
[pat
->param_transition
];
3048 new_trans
->is_param
= param
.is_param
;
3049 new_trans
->labels
[0] = param
.value
;
3051 newd
->push_back (new_trans
);
3056 /* USE is a decision that calls a pattern routine and SINFO is part of the
3057 original state tree that the call is supposed to replace. Add the
3058 transitions for SINFO and its substates to USE. */
3061 populate_pattern_use (create_pattern_info
*cpi
, decision
*use
,
3062 merge_state_info
*sinfo
)
3064 pattern_use_states
+= 1;
3065 gcc_assert (!sinfo
->merged_p
);
3066 sinfo
->merged_p
= true;
3067 merge_state_result
*res
= sinfo
->res
;
3068 merge_pattern_info
*pat
= res
->pattern
;
3069 decision
*d
= sinfo
->s
->singleton ();
3071 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
3073 if (pat
->transitions
[i
])
3074 /* The target state is also part of the pattern. */
3075 populate_pattern_use (cpi
, use
, sinfo
->to_states
+ i
);
3078 /* The transition corresponds to a successful return from the
3080 use
->push_back (new transition (cpi
->next_result
, trans
->to
, false));
3081 cpi
->next_result
+= 1;
3087 /* We have decided to replace SINFO's state with a call to a pattern
3088 routine. Make the change, creating a definition of the pattern routine
3089 if it doesn't have one already. */
3092 use_pattern (merge_state_info
*sinfo
)
3094 merge_state_result
*res
= sinfo
->res
;
3095 merge_pattern_info
*pat
= res
->pattern
;
3096 state
*s
= sinfo
->s
;
3098 /* The pattern may have acquired new parameters after it was matched
3099 against SINFO. Update the parameters that SINFO passes accordingly. */
3100 update_parameters (res
->params
, pat
->params
);
3102 create_pattern_info cpi
;
3103 decision
*d
= init_pattern_use (&cpi
, sinfo
, res
->params
);
3104 populate_pattern_use (&cpi
, d
, sinfo
);
3109 /* Look through the state trees in STATES for common patterns and
3110 split them into subroutines. */
3113 split_out_patterns (vec
<merge_state_info
> &states
)
3115 unsigned int first_transition
= states
.length ();
3116 hash_table
<test_pattern_hasher
> hashtab (128);
3117 /* Stage 1: Create an order in which parent states come before their child
3118 states and in which sibling states are at consecutive locations.
3119 Having consecutive sibling states allows merge_state_info to have
3120 a single to_states pointer. */
3121 for (unsigned int i
= 0; i
< states
.length (); ++i
)
3122 for (decision
*d
= states
[i
].s
->first
; d
; d
= d
->next
)
3123 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
3125 states
.safe_push (trans
->to
);
3126 states
[i
].num_transitions
+= 1;
3128 /* Stage 2: Now that the addresses are stable, set up the to_states
3129 pointers. Look for states that might be merged and enter them
3130 into the hash table. */
3131 for (unsigned int i
= 0; i
< states
.length (); ++i
)
3133 merge_state_info
*sinfo
= &states
[i
];
3134 if (sinfo
->num_transitions
)
3136 sinfo
->to_states
= &states
[first_transition
];
3137 first_transition
+= sinfo
->num_transitions
;
3139 /* For simplicity, we only try to merge states that have a single
3140 decision. This is in any case the best we can do for peephole2,
3141 since whether a peephole2 ACCEPT succeeds or not depends on the
3142 specific peephole2 pattern (which is unique to each ACCEPT
3143 and so couldn't be shared between states). */
3144 if (decision
*d
= sinfo
->s
->singleton ())
3145 /* ACCEPT states are unique, so don't even try to merge them. */
3146 if (d
->test
.kind
!= rtx_test::ACCEPT
3147 && (pattern_have_num_clobbers_p
3148 || d
->test
.kind
!= rtx_test::HAVE_NUM_CLOBBERS
)
3149 && (pattern_c_test_p
3150 || d
->test
.kind
!= rtx_test::C_TEST
))
3152 merge_state_info
**slot
= hashtab
.find_slot (sinfo
, INSERT
);
3153 sinfo
->prev_same_test
= *slot
;
3157 /* Stage 3: Walk backwards through the list of states and try to merge
3158 them. This is a greedy, bottom-up match; parent nodes can only start
3159 a new leaf pattern if they fail to match when combined with all child
3160 nodes that have matching patterns.
3162 For each state we keep a list of potential matches, with each
3163 potential match being larger (and deeper) than the next match in
3164 the list. The final element in the list is a leaf pattern that
3165 matches just a single state.
3167 Each candidate pattern created in this loop is unique -- it won't
3168 have been seen by an earlier iteration. We try to match each pattern
3169 with every state that appears earlier in STATES.
3171 Because the patterns created in the loop are unique, any state
3172 that already has a match must have a final potential match that
3173 is different from any new leaf pattern. Therefore, when matching
3174 leaf patterns, we need only consider states whose list of matches
3177 The non-leaf patterns that we try are as deep as possible
3178 and are an extension of the state's previous best candidate match (PB).
3179 We need only consider states whose current potential match is also PB;
3180 any states that don't match as much as PB cannnot match the new pattern,
3181 while any states that already match more than PB must be different from
3183 for (unsigned int i2
= states
.length (); i2
-- > 0; )
3185 merge_state_info
*sinfo2
= &states
[i2
];
3187 /* Enforce the bottom-upness of the match: remove matches with later
3188 states if SINFO2's child states ended up finding a better match. */
3189 prune_invalid_results (sinfo2
);
3191 /* Do nothing if the state doesn't match a later one and if there are
3192 no earlier states it could match. */
3193 if (!sinfo2
->res
&& !sinfo2
->prev_same_test
)
3196 merge_state_result
*res2
= sinfo2
->res
;
3197 decision
*d2
= sinfo2
->s
->singleton ();
3198 position
*root2
= (d2
->test
.pos_operand
< 0 ? d2
->test
.pos
: 0);
3199 unsigned int num_transitions
= sinfo2
->num_transitions
;
3201 /* If RES2 is null then SINFO2's test in isolation has not been seen
3202 before. First try matching that on its own. */
3205 merge_pattern_info
*new_pat
3206 = new merge_pattern_info (num_transitions
);
3207 merge_state_result
*new_res2
3208 = new merge_state_result (new_pat
, root2
, res2
);
3209 sinfo2
->res
= new_res2
;
3211 new_pat
->num_statements
= !d2
->test
.single_outcome_p ();
3212 new_pat
->num_results
= num_transitions
;
3213 bool matched_p
= false;
3214 /* Look for states that don't currently match anything but
3215 can be made to match SINFO2 on its own. */
3216 for (merge_state_info
*sinfo1
= sinfo2
->prev_same_test
; sinfo1
;
3217 sinfo1
= sinfo1
->prev_same_test
)
3218 if (!sinfo1
->res
&& merge_patterns (sinfo1
, sinfo2
))
3222 /* No other states match. */
3232 /* Keep the existing pattern if it's as good as anything we'd
3233 create for SINFO2. */
3234 if (complete_result_p (res2
->pattern
, sinfo2
))
3236 res2
->pattern
->num_users
+= 1;
3240 /* Create a new pattern for SINFO2. */
3241 merge_pattern_info
*new_pat
= new merge_pattern_info (num_transitions
);
3242 merge_state_result
*new_res2
3243 = new merge_state_result (new_pat
, root2
, res2
);
3244 sinfo2
->res
= new_res2
;
3246 /* Fill in details about the pattern. */
3247 new_pat
->num_statements
= !d2
->test
.single_outcome_p ();
3248 new_pat
->num_results
= 0;
3249 for (unsigned int j
= 0; j
< num_transitions
; ++j
)
3250 if (merge_state_result
*to_res
= sinfo2
->to_states
[j
].res
)
3252 /* Count the target state as part of this pattern.
3253 First update the root position so that it can reach
3254 the target state's root. */
3258 new_res2
->root
= common_position (new_res2
->root
,
3261 new_res2
->root
= to_res
->root
;
3263 merge_pattern_info
*to_pat
= to_res
->pattern
;
3264 merge_pattern_transition
*ptrans
3265 = new merge_pattern_transition (to_pat
);
3267 /* TO_PAT may have acquired more parameters when matching
3268 states earlier in STATES than TO_RES's, but the list is
3269 now final. Make sure that TO_RES is up to date. */
3270 update_parameters (to_res
->params
, to_pat
->params
);
3272 /* Start out by assuming that every user of NEW_PAT will
3273 want to pass the same (constant) parameters as TO_RES. */
3274 update_parameters (ptrans
->params
, to_res
->params
);
3276 new_pat
->transitions
[j
] = ptrans
;
3277 new_pat
->num_statements
+= to_pat
->num_statements
;
3278 new_pat
->num_results
+= to_pat
->num_results
;
3281 /* The target state doesn't match anything and so is not part
3283 new_pat
->num_results
+= 1;
3285 /* See if any earlier states that match RES2's pattern also match
3287 bool matched_p
= false;
3288 for (merge_state_info
*sinfo1
= sinfo2
->prev_same_test
; sinfo1
;
3289 sinfo1
= sinfo1
->prev_same_test
)
3291 prune_invalid_results (sinfo1
);
3293 && sinfo1
->res
->pattern
== res2
->pattern
3294 && merge_patterns (sinfo1
, sinfo2
))
3299 /* Nothing else matches NEW_PAT, so go back to the previous
3300 pattern (possibly just a single-state one). */
3305 /* Assume that SINFO2 will use RES. At this point we don't know
3306 whether earlier states that match the same pattern will use
3307 that match or a different one. */
3308 sinfo2
->res
->pattern
->num_users
+= 1;
3310 /* Step 4: Finalize the choice of pattern for each state, ignoring
3311 patterns that were only used once. Update each pattern's size
3312 so that it doesn't include subpatterns that are going to be split
3313 out into subroutines. */
3314 for (unsigned int i
= 0; i
< states
.length (); ++i
)
3316 merge_state_info
*sinfo
= &states
[i
];
3317 merge_state_result
*res
= sinfo
->res
;
3318 /* Wind past patterns that are only used by SINFO. */
3319 while (res
&& res
->pattern
->num_users
== 1)
3324 res
->pattern
->num_users
+= 1;
3329 /* We have a shared pattern and are now committed to the match. */
3330 merge_pattern_info
*pat
= res
->pattern
;
3331 gcc_assert (valid_result_p (pat
, sinfo
));
3333 if (!pat
->complete_p
)
3335 /* Look for subpatterns that are going to be split out and remove
3336 them from the number of statements. */
3337 for (unsigned int j
= 0; j
< sinfo
->num_transitions
; ++j
)
3338 if (merge_pattern_transition
*ptrans
= pat
->transitions
[j
])
3340 merge_pattern_info
*to_pat
= ptrans
->to
;
3341 if (!same_pattern_p (pat
, to_pat
))
3342 pat
->num_statements
-= to_pat
->num_statements
;
3344 pat
->complete_p
= true;
3347 /* Step 5: Split out the patterns. */
3348 for (unsigned int i
= 0; i
< states
.length (); ++i
)
3350 merge_state_info
*sinfo
= &states
[i
];
3351 merge_state_result
*res
= sinfo
->res
;
3352 if (!sinfo
->merged_p
&& res
&& useful_pattern_p (res
->pattern
))
3353 use_pattern (sinfo
);
3355 fprintf (stderr
, "Shared %d out of %d states by creating %d new states,"
3357 pattern_use_states
, states
.length (), pattern_def_states
,
3358 pattern_use_states
- pattern_def_states
);
3361 /* Information about a state tree that we're considering splitting into a
3365 /* The number of pseudo-statements in the state tree. */
3366 unsigned int num_statements
;
3368 /* The approximate number of nested "if" and "switch" statements that
3369 would be required if control could fall through to a later state. */
3373 /* Pairs a transition with information about its target state. */
3374 typedef std::pair
<transition
*, state_size
> subroutine_candidate
;
3376 /* Sort two subroutine_candidates so that the one with the largest
3377 number of statements comes last. */
3380 subroutine_candidate_cmp (const void *a
, const void *b
)
3382 return int (((const subroutine_candidate
*) a
)->second
.num_statements
3383 - ((const subroutine_candidate
*) b
)->second
.num_statements
);
3386 /* Turn S into a subroutine of type TYPE and add it to PROCS. Return a new
3387 state that performs a subroutine call to S. */
3390 create_subroutine (routine_type type
, state
*s
, vec
<state
*> &procs
)
3392 procs
.safe_push (s
);
3393 acceptance_type acceptance
;
3394 acceptance
.type
= type
;
3395 acceptance
.partial_p
= true;
3396 acceptance
.u
.subroutine_id
= procs
.length ();
3397 state
*news
= new state
;
3398 add_decision (news
, rtx_test::accept (acceptance
), true, false);
3402 /* Walk state tree S, of type TYPE, and look for subtrees that would be
3403 better split into subroutines. Accumulate all such subroutines in PROCS.
3404 Return the size of the new state tree (excluding subroutines). */
3407 find_subroutines (routine_type type
, state
*s
, vec
<state
*> &procs
)
3409 auto_vec
<subroutine_candidate
, 16> candidates
;
3411 size
.num_statements
= 0;
3413 for (decision
*d
= s
->first
; d
; d
= d
->next
)
3415 if (!d
->test
.single_outcome_p ())
3416 size
.num_statements
+= 1;
3417 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
3419 /* Keep chains of simple decisions together if we know that no
3420 change of position is required. We'll output this chain as a
3421 single "if" statement, so it counts as a single nesting level. */
3422 if (d
->test
.pos
&& d
->if_statement_p ())
3425 decision
*newd
= trans
->to
->singleton ();
3428 && newd
->test
.pos_operand
< 0
3429 && newd
->test
.pos
!= d
->test
.pos
)
3430 || !newd
->if_statement_p ())
3432 if (!newd
->test
.single_outcome_p ())
3433 size
.num_statements
+= 1;
3434 trans
= newd
->singleton ();
3435 if (newd
->test
.kind
== rtx_test::SET_OP
3436 || newd
->test
.kind
== rtx_test::ACCEPT
)
3439 /* The target of TRANS is a subroutine candidate. First recurse
3440 on it to see how big it is after subroutines have been
3442 state_size to_size
= find_subroutines (type
, trans
->to
, procs
);
3443 if (d
->next
&& to_size
.depth
> MAX_DEPTH
)
3444 /* Keeping the target state in the same routine would lead
3445 to an excessive nesting of "if" and "switch" statements.
3446 Split it out into a subroutine so that it can use
3447 inverted tests that return early on failure. */
3448 trans
->to
= create_subroutine (type
, trans
->to
, procs
);
3451 size
.num_statements
+= to_size
.num_statements
;
3452 if (to_size
.num_statements
< MIN_NUM_STATEMENTS
)
3453 /* The target state is too small to be worth splitting.
3454 Keep it in the same routine as S. */
3455 size
.depth
= MAX (size
.depth
, to_size
.depth
);
3457 /* Assume for now that we'll keep the target state in the
3458 same routine as S, but record it as a subroutine candidate
3459 if S grows too big. */
3460 candidates
.safe_push (subroutine_candidate (trans
, to_size
));
3464 if (size
.num_statements
> MAX_NUM_STATEMENTS
)
3466 /* S is too big. Sort the subroutine candidates so that bigger ones
3467 are nearer the end. */
3468 candidates
.qsort (subroutine_candidate_cmp
);
3469 while (!candidates
.is_empty ()
3470 && size
.num_statements
> MAX_NUM_STATEMENTS
)
3472 /* Peel off a candidate and force it into a subroutine. */
3473 subroutine_candidate cand
= candidates
.pop ();
3474 size
.num_statements
-= cand
.second
.num_statements
;
3475 cand
.first
->to
= create_subroutine (type
, cand
.first
->to
, procs
);
3478 /* Update the depth for subroutine candidates that we decided not to
3480 for (unsigned int i
= 0; i
< candidates
.length (); ++i
)
3481 size
.depth
= MAX (size
.depth
, candidates
[i
].second
.depth
);
3486 /* Return true if, for all X, PRED (X, MODE) implies that X has mode MODE. */
3489 safe_predicate_mode (const struct pred_data
*pred
, machine_mode mode
)
3491 /* Scalar integer constants have VOIDmode. */
3492 if (GET_MODE_CLASS (mode
) == MODE_INT
3493 && (pred
->codes
[CONST_INT
]
3494 || pred
->codes
[CONST_DOUBLE
]
3495 || pred
->codes
[CONST_WIDE_INT
]
3496 || pred
->codes
[LABEL_REF
]))
3499 return !pred
->special
&& mode
!= VOIDmode
;
3502 /* Fill CODES with the set of codes that could be matched by PRED. */
3505 get_predicate_codes (const struct pred_data
*pred
, int_set
*codes
)
3507 for (int i
= 0; i
< NUM_TRUE_RTX_CODE
; ++i
)
3508 if (!pred
|| pred
->codes
[i
])
3509 codes
->safe_push (i
);
3512 /* Return true if the first path through D1 tests the same thing as D2. */
3515 has_same_test_p (decision
*d1
, decision
*d2
)
3519 if (d1
->test
== d2
->test
)
3521 d1
= d1
->first
->to
->first
;
3527 /* Return true if D1 and D2 cannot match the same rtx. All states reachable
3528 from D2 have single decisions and all those decisions have single
3532 mutually_exclusive_p (decision
*d1
, decision
*d2
)
3534 /* If one path through D1 fails to test the same thing as D2, assume
3535 that D2's test could be true for D1 and look for a later, more useful,
3536 test. This isn't as expensive as it looks in practice. */
3537 while (!has_same_test_p (d1
, d2
))
3539 d2
= d2
->singleton ()->to
->singleton ();
3543 if (d1
->test
== d2
->test
)
3545 /* Look for any transitions from D1 that have the same labels as
3546 the transition from D2. */
3547 transition
*trans2
= d2
->singleton ();
3548 for (transition
*trans1
= d1
->first
; trans1
; trans1
= trans1
->next
)
3550 int_set::iterator i1
= trans1
->labels
.begin ();
3551 int_set::iterator end1
= trans1
->labels
.end ();
3552 int_set::iterator i2
= trans2
->labels
.begin ();
3553 int_set::iterator end2
= trans2
->labels
.end ();
3554 while (i1
!= end1
&& i2
!= end2
)
3561 /* TRANS1 has some labels in common with TRANS2. Assume
3562 that D1 and D2 could match the same rtx if the target
3563 of TRANS1 could match the same rtx as D2. */
3564 for (decision
*subd1
= trans1
->to
->first
;
3565 subd1
; subd1
= subd1
->next
)
3566 if (!mutually_exclusive_p (subd1
, d2
))
3573 for (transition
*trans1
= d1
->first
; trans1
; trans1
= trans1
->next
)
3574 for (decision
*subd1
= trans1
->to
->first
; subd1
; subd1
= subd1
->next
)
3575 if (!mutually_exclusive_p (subd1
, d2
))
3580 /* Try to merge S2's decision into D1, given that they have the same test.
3581 Fail only if EXCLUDE is nonnull and the new transition would have the
3582 same labels as *EXCLUDE. When returning true, set *NEXT_S1, *NEXT_S2
3583 and *NEXT_EXCLUDE as for merge_into_state_1, or set *NEXT_S2 to null
3584 if the merge is complete. */
3587 merge_into_decision (decision
*d1
, state
*s2
, const int_set
*exclude
,
3588 state
**next_s1
, state
**next_s2
,
3589 const int_set
**next_exclude
)
3591 decision
*d2
= s2
->singleton ();
3592 transition
*trans2
= d2
->singleton ();
3594 /* Get a list of the transitions that intersect TRANS2. */
3595 auto_vec
<transition
*, 32> intersecting
;
3596 for (transition
*trans1
= d1
->first
; trans1
; trans1
= trans1
->next
)
3598 int_set::iterator i1
= trans1
->labels
.begin ();
3599 int_set::iterator end1
= trans1
->labels
.end ();
3600 int_set::iterator i2
= trans2
->labels
.begin ();
3601 int_set::iterator end2
= trans2
->labels
.end ();
3602 bool trans1_is_subset
= true;
3603 bool trans2_is_subset
= true;
3604 bool intersect_p
= false;
3605 while (i1
!= end1
&& i2
!= end2
)
3608 trans1_is_subset
= false;
3613 trans2_is_subset
= false;
3623 trans1_is_subset
= false;
3625 trans2_is_subset
= false;
3626 if (trans1_is_subset
&& trans2_is_subset
)
3628 /* There's already a transition that matches exactly.
3629 Merge the target states. */
3630 trans1
->optional
&= trans2
->optional
;
3631 *next_s1
= trans1
->to
;
3632 *next_s2
= trans2
->to
;
3636 if (trans2_is_subset
)
3638 /* TRANS1 has all the labels that TRANS2 needs. Merge S2 into
3639 the target of TRANS1, but (to avoid infinite recursion)
3640 make sure that we don't end up creating another transition
3642 *next_s1
= trans1
->to
;
3644 *next_exclude
= &trans1
->labels
;
3648 intersecting
.safe_push (trans1
);
3651 if (intersecting
.is_empty ())
3653 /* No existing labels intersect the new ones. We can just add
3655 d1
->push_back (d2
->release ());
3662 /* Take the union of the labels in INTERSECTING and TRANS2. Store the
3663 result in COMBINED and use NEXT as a temporary. */
3664 int_set tmp1
= trans2
->labels
, tmp2
;
3665 int_set
*combined
= &tmp1
, *next
= &tmp2
;
3666 for (unsigned int i
= 0; i
< intersecting
.length (); ++i
)
3668 transition
*trans1
= intersecting
[i
];
3670 next
->safe_grow (trans1
->labels
.length () + combined
->length ());
3671 int_set::iterator end
3672 = std::set_union (trans1
->labels
.begin (), trans1
->labels
.end (),
3673 combined
->begin (), combined
->end (),
3675 next
->truncate (end
- next
->begin ());
3676 std::swap (next
, combined
);
3679 /* Stop now if we've been told not to create a transition with these
3681 if (exclude
&& *combined
== *exclude
)
3684 /* Get the transition that should carry the new labels. */
3685 transition
*new_trans
= intersecting
[0];
3686 if (intersecting
.length () == 1)
3688 /* We're merging with one existing transition whose labels are a
3689 subset of those required. If both transitions are optional,
3690 we can just expand the set of labels so that it's suitable
3691 for both transitions. It isn't worth preserving the original
3692 transitions since we know that they can't be merged; we would
3693 need to backtrack to S2 if TRANS1->to fails. In contrast,
3694 we might be able to merge the targets of the transitions
3695 without any backtracking.
3697 If instead the existing transition is not optional, ensure that
3698 all target decisions are suitably protected. Some decisions
3699 might already have a more specific requirement than NEW_TRANS,
3700 in which case there's no point testing NEW_TRANS as well. E.g. this
3701 would have happened if a test for an (eq ...) rtx had been
3702 added to a decision that tested whether the code is suitable
3703 for comparison_operator. The original comparison_operator
3704 transition would have been non-optional and the (eq ...) test
3705 would be performed by a second decision in the target of that
3708 The remaining case -- keeping the original optional transition
3709 when adding a non-optional TRANS2 -- is a wash. Preserving
3710 the optional transition only helps if we later merge another
3711 state S3 that is mutually exclusive with S2 and whose labels
3712 belong to *COMBINED - TRANS1->labels. We can then test the
3713 original NEW_TRANS and S3 in the same decision. We keep the
3714 optional transition around for that case, but it occurs very
3716 gcc_assert (new_trans
->labels
!= *combined
);
3717 if (!new_trans
->optional
|| !trans2
->optional
)
3719 decision
*start
= 0;
3720 for (decision
*end
= new_trans
->to
->first
; end
; end
= end
->next
)
3722 if (!start
&& end
->test
!= d1
->test
)
3723 /* END belongs to a range of decisions that need to be
3724 protected by NEW_TRANS. */
3726 if (start
&& (!end
->next
|| end
->next
->test
== d1
->test
))
3728 /* Protect [START, END] with NEW_TRANS. The decisions
3729 move to NEW_S and NEW_D becomes part of NEW_TRANS->to. */
3730 state
*new_s
= new state
;
3731 decision
*new_d
= new decision (d1
->test
);
3732 new_d
->push_back (new transition (new_trans
->labels
, new_s
,
3733 new_trans
->optional
));
3734 state::range
r (start
, end
);
3735 new_trans
->to
->replace (r
, new_d
);
3736 new_s
->push_back (r
);
3738 /* Continue with an empty range. */
3741 /* Continue from the decision after NEW_D. */
3746 new_trans
->optional
= true;
3747 new_trans
->labels
= *combined
;
3751 /* We're merging more than one existing transition together.
3752 Those transitions are successfully dividing the matching space
3753 and so we want to preserve them, even if they're optional.
3755 Create a new transition with the union set of labels and make
3756 it go to a state that has the original transitions. */
3757 decision
*new_d
= new decision (d1
->test
);
3758 for (unsigned int i
= 0; i
< intersecting
.length (); ++i
)
3759 new_d
->push_back (d1
->remove (intersecting
[i
]));
3761 state
*new_s
= new state
;
3762 new_s
->push_back (new_d
);
3764 new_trans
= new transition (*combined
, new_s
, true);
3765 d1
->push_back (new_trans
);
3768 /* We now have an optional transition with labels *COMBINED. Decide
3769 whether we can use it as TRANS2 or whether we need to merge S2
3770 into the target of NEW_TRANS. */
3771 gcc_assert (new_trans
->optional
);
3772 if (new_trans
->labels
== trans2
->labels
)
3774 /* NEW_TRANS matches TRANS2. Just merge the target states. */
3775 new_trans
->optional
= trans2
->optional
;
3776 *next_s1
= new_trans
->to
;
3777 *next_s2
= trans2
->to
;
3782 /* Try to merge TRANS2 into the target of the overlapping transition,
3783 but (to prevent infinite recursion or excessive redundancy) without
3784 creating another transition of the same type. */
3785 *next_s1
= new_trans
->to
;
3787 *next_exclude
= &new_trans
->labels
;
3792 /* Make progress in merging S2 into S1, given that each state in S2
3793 has a single decision. If EXCLUDE is nonnull, avoid creating a new
3794 transition with the same test as S2's decision and with the labels
3797 Return true if there is still work to do. When returning true,
3798 set *NEXT_S1, *NEXT_S2 and *NEXT_EXCLUDE to the values that
3799 S1, S2 and EXCLUDE should have next time round.
3801 If S1 and S2 both match a particular rtx, give priority to S1. */
3804 merge_into_state_1 (state
*s1
, state
*s2
, const int_set
*exclude
,
3805 state
**next_s1
, state
**next_s2
,
3806 const int_set
**next_exclude
)
3808 decision
*d2
= s2
->singleton ();
3809 if (decision
*d1
= s1
->last
)
3811 if (d1
->test
.terminal_p ())
3812 /* D1 is an unconditional return, so S2 can never match. This can
3813 sometimes be a bug in the .md description, but might also happen
3814 if genconditions forces some conditions to true for certain
3818 /* Go backwards through the decisions in S1, stopping once we find one
3819 that could match the same thing as S2. */
3820 while (d1
->prev
&& mutually_exclusive_p (d1
, d2
))
3823 /* Search forwards from that point, merging D2 into the first
3825 for (; d1
; d1
= d1
->next
)
3827 /* If S2 performs some optional tests before testing the same thing
3828 as D1, those tests do not help to distinguish D1 and S2, so it's
3829 better to drop them. Search through such optional decisions
3830 until we find something that tests the same thing as D1. */
3834 decision
*sub_d2
= sub_s2
->singleton ();
3835 if (d1
->test
== sub_d2
->test
)
3837 /* Only apply EXCLUDE if we're testing the same thing
3839 const int_set
*sub_exclude
= (d2
== sub_d2
? exclude
: 0);
3841 /* Try to merge SUB_S2 into D1. This can only fail if
3842 it would involve creating a new transition with
3843 labels SUB_EXCLUDE. */
3844 if (merge_into_decision (d1
, sub_s2
, sub_exclude
,
3845 next_s1
, next_s2
, next_exclude
))
3846 return *next_s2
!= 0;
3848 /* Can't merge with D1; try a later decision. */
3851 transition
*sub_trans2
= sub_d2
->singleton ();
3852 if (!sub_trans2
->optional
)
3853 /* Can't merge with D1; try a later decision. */
3855 sub_s2
= sub_trans2
->to
;
3860 /* We can't merge D2 with any existing decision. Just add it to the end. */
3861 s1
->push_back (s2
->release ());
3865 /* Merge S2 into S1. If they both match a particular rtx, give
3866 priority to S1. Each state in S2 has a single decision. */
3869 merge_into_state (state
*s1
, state
*s2
)
3871 const int_set
*exclude
= 0;
3872 while (s2
&& merge_into_state_1 (s1
, s2
, exclude
, &s1
, &s2
, &exclude
))
3876 /* Pairs a pattern that needs to be matched with the rtx position at
3877 which the pattern should occur. */
3881 pattern_pos (rtx
, position
*);
3887 pattern_pos::pattern_pos (rtx pattern_in
, position
*pos_in
)
3888 : pattern (pattern_in
), pos (pos_in
)
3891 /* Compare entries according to their depth-first order. There shouldn't
3892 be two entries at the same position. */
3895 operator < (const pattern_pos
&e1
, const pattern_pos
&e2
)
3897 int diff
= compare_positions (e1
.pos
, e2
.pos
);
3898 gcc_assert (diff
!= 0 || e1
.pattern
== e2
.pattern
);
3902 /* Add new decisions to S that check whether the rtx at position POS
3903 matches PATTERN. Return the state that is reached in that case.
3904 TOP_PATTERN is the overall pattern, as passed to match_pattern_1. */
3907 match_pattern_2 (state
*s
, md_rtx_info
*info
, position
*pos
, rtx pattern
)
3909 auto_vec
<pattern_pos
, 32> worklist
;
3910 auto_vec
<pattern_pos
, 32> pred_and_mode_tests
;
3911 auto_vec
<pattern_pos
, 32> dup_tests
;
3913 worklist
.safe_push (pattern_pos (pattern
, pos
));
3914 while (!worklist
.is_empty ())
3916 pattern_pos next
= worklist
.pop ();
3917 pattern
= next
.pattern
;
3919 unsigned int reverse_s
= worklist
.length ();
3921 enum rtx_code code
= GET_CODE (pattern
);
3927 /* Add a test that the rtx matches the earlier one, but only
3928 after the structure and predicates have been checked. */
3929 dup_tests
.safe_push (pattern_pos (pattern
, pos
));
3931 /* Use the same code check as the original operand. */
3932 pattern
= find_operand (info
->def
, XINT (pattern
, 0), NULL_RTX
);
3935 case MATCH_PARALLEL
:
3938 case MATCH_OPERATOR
:
3940 const char *pred_name
= predicate_name (pattern
);
3941 const struct pred_data
*pred
= 0;
3942 if (pred_name
[0] != 0)
3944 pred
= lookup_predicate (pred_name
);
3945 /* Only report errors once per rtx. */
3946 if (code
== GET_CODE (pattern
))
3949 error_at (info
->loc
, "unknown predicate '%s' used in %s",
3950 pred_name
, GET_RTX_NAME (code
));
3951 else if (code
== MATCH_PARALLEL
3952 && pred
->singleton
!= PARALLEL
)
3953 error_at (info
->loc
, "predicate '%s' used in"
3954 " match_parallel does not allow only PARALLEL",
3959 if (code
== MATCH_PARALLEL
|| code
== MATCH_PAR_DUP
)
3961 /* Check that we have a parallel with enough elements. */
3962 s
= add_decision (s
, rtx_test::code (pos
), PARALLEL
, false);
3963 int min_len
= XVECLEN (pattern
, 2);
3964 s
= add_decision (s
, rtx_test::veclen_ge (pos
, min_len
),
3969 /* Check that the rtx has one of codes accepted by the
3970 predicate. This is necessary when matching suboperands
3971 of a MATCH_OPERATOR or MATCH_OP_DUP, since we can't
3972 call XEXP (X, N) without checking that X has at least
3975 get_predicate_codes (pred
, &codes
);
3976 bool need_codes
= (pred
3977 && (code
== MATCH_OPERATOR
3978 || code
== MATCH_OP_DUP
));
3979 s
= add_decision (s
, rtx_test::code (pos
), codes
, !need_codes
);
3982 /* Postpone the predicate check until we've checked the rest
3983 of the rtx structure. */
3984 if (code
== GET_CODE (pattern
))
3985 pred_and_mode_tests
.safe_push (pattern_pos (pattern
, pos
));
3987 /* If we need to match suboperands, add them to the worklist. */
3988 if (code
== MATCH_OPERATOR
|| code
== MATCH_PARALLEL
)
3990 position
**subpos_ptr
;
3991 enum position_type pos_type
;
3993 if (code
== MATCH_OPERATOR
|| code
== MATCH_OP_DUP
)
3995 pos_type
= POS_XEXP
;
3996 subpos_ptr
= &pos
->xexps
;
3997 i
= (code
== MATCH_OPERATOR
? 2 : 1);
4001 pos_type
= POS_XVECEXP0
;
4002 subpos_ptr
= &pos
->xvecexp0s
;
4005 for (int j
= 0; j
< XVECLEN (pattern
, i
); ++j
)
4007 position
*subpos
= next_position (subpos_ptr
, pos
,
4009 worklist
.safe_push (pattern_pos (XVECEXP (pattern
, i
, j
),
4011 subpos_ptr
= &subpos
->next
;
4019 /* Check that the rtx has the right code. */
4020 s
= add_decision (s
, rtx_test::code (pos
), code
, false);
4022 /* Queue a test for the mode if one is specified. */
4023 if (GET_MODE (pattern
) != VOIDmode
)
4024 pred_and_mode_tests
.safe_push (pattern_pos (pattern
, pos
));
4026 /* Push subrtxes onto the worklist. Match nonrtx operands now. */
4027 const char *fmt
= GET_RTX_FORMAT (code
);
4028 position
**subpos_ptr
= &pos
->xexps
;
4029 for (size_t i
= 0; fmt
[i
]; ++i
)
4031 position
*subpos
= next_position (subpos_ptr
, pos
,
4036 worklist
.safe_push (pattern_pos (XEXP (pattern
, i
),
4042 /* Make sure the vector has the right number of
4044 int length
= XVECLEN (pattern
, i
);
4045 s
= add_decision (s
, rtx_test::veclen (pos
),
4048 position
**subpos2_ptr
= &pos
->xvecexp0s
;
4049 for (int j
= 0; j
< length
; j
++)
4051 position
*subpos2
= next_position (subpos2_ptr
, pos
,
4053 rtx x
= XVECEXP (pattern
, i
, j
);
4054 worklist
.safe_push (pattern_pos (x
, subpos2
));
4055 subpos2_ptr
= &subpos2
->next
;
4061 /* Make sure that XINT (X, I) has the right value. */
4062 s
= add_decision (s
, rtx_test::int_field (pos
, i
),
4063 XINT (pattern
, i
), false);
4067 /* Make sure that REGNO (X) has the right value. */
4068 gcc_assert (i
== 0);
4069 s
= add_decision (s
, rtx_test::regno_field (pos
),
4070 REGNO (pattern
), false);
4074 /* Make sure that XWINT (X, I) has the right value. */
4075 s
= add_decision (s
, rtx_test::wide_int_field (pos
, i
),
4076 XWINT (pattern
, 0), false);
4080 /* We don't have a way of parsing polynomial offsets yet,
4081 and hopefully never will. */
4082 s
= add_decision (s
, rtx_test::subreg_field (pos
),
4083 SUBREG_BYTE (pattern
).to_constant (),
4093 subpos_ptr
= &subpos
->next
;
4098 /* Operands are pushed onto the worklist so that later indices are
4099 nearer the top. That's what we want for SETs, since a SET_SRC
4100 is a better discriminator than a SET_DEST. In other cases it's
4101 usually better to match earlier indices first. This is especially
4102 true of PARALLELs, where the first element tends to be the most
4103 individual. It's also true for commutative operators, where the
4104 canonicalization rules say that the more complex operand should
4106 if (code
!= SET
&& worklist
.length () > reverse_s
)
4107 std::reverse (&worklist
[0] + reverse_s
,
4108 &worklist
[0] + worklist
.length ());
4111 /* Sort the predicate and mode tests so that they're in depth-first order.
4112 The main goal of this is to put SET_SRC match_operands after SET_DEST
4113 match_operands and after mode checks for the enclosing SET_SRC operators
4114 (such as the mode of a PLUS in an addition instruction). The latter
4115 two types of test can determine the mode exactly, whereas a SET_SRC
4116 match_operand often has to cope with the possibility of the operand
4117 being a modeless constant integer. E.g. something that matches
4118 register_operand (x, SImode) never matches register_operand (x, DImode),
4119 but a const_int that matches immediate_operand (x, SImode) also matches
4120 immediate_operand (x, DImode). The register_operand cases can therefore
4121 be distinguished by a switch on the mode, but the immediate_operand
4123 if (pred_and_mode_tests
.length () > 1)
4124 std::sort (&pred_and_mode_tests
[0],
4125 &pred_and_mode_tests
[0] + pred_and_mode_tests
.length ());
4127 /* Add the mode and predicate tests. */
4130 FOR_EACH_VEC_ELT (pred_and_mode_tests
, i
, e
)
4132 switch (GET_CODE (e
->pattern
))
4134 case MATCH_PARALLEL
:
4137 case MATCH_OPERATOR
:
4139 int opno
= XINT (e
->pattern
, 0);
4140 num_operands
= MAX (num_operands
, opno
+ 1);
4141 const char *pred_name
= predicate_name (e
->pattern
);
4144 const struct pred_data
*pred
= lookup_predicate (pred_name
);
4145 /* Check the mode first, to distinguish things like SImode
4146 and DImode register_operands, as described above. */
4147 machine_mode mode
= GET_MODE (e
->pattern
);
4148 if (pred
&& safe_predicate_mode (pred
, mode
))
4149 s
= add_decision (s
, rtx_test::mode (e
->pos
), mode
, true);
4151 /* Assign to operands[] first, so that the rtx usually doesn't
4152 need to be live across the call to the predicate.
4154 This shouldn't cause a problem with dirtying the page,
4155 since we fully expect to assign to operands[] at some point,
4156 and since the caller usually writes to other parts of
4157 recog_data anyway. */
4158 s
= add_decision (s
, rtx_test::set_op (e
->pos
, opno
),
4160 s
= add_decision (s
, rtx_test::predicate (e
->pos
, pred
, mode
),
4164 /* Historically we've ignored the mode when there's no
4165 predicate. Just set up operands[] unconditionally. */
4166 s
= add_decision (s
, rtx_test::set_op (e
->pos
, opno
),
4172 s
= add_decision (s
, rtx_test::mode (e
->pos
),
4173 GET_MODE (e
->pattern
), false);
4178 /* Finally add rtx_equal_p checks for duplicated operands. */
4179 FOR_EACH_VEC_ELT (dup_tests
, i
, e
)
4180 s
= add_decision (s
, rtx_test::duplicate (e
->pos
, XINT (e
->pattern
, 0)),
4185 /* Add new decisions to S that make it return ACCEPTANCE if:
4187 (1) the rtx doesn't match anything already matched by S
4188 (2) the rtx matches TOP_PATTERN and
4189 (3) the C test required by INFO->def is true
4191 For peephole2, TOP_PATTERN is a SEQUENCE of the instruction patterns
4192 to match, otherwise it is a single instruction pattern. */
4195 match_pattern_1 (state
*s
, md_rtx_info
*info
, rtx pattern
,
4196 acceptance_type acceptance
)
4198 if (acceptance
.type
== PEEPHOLE2
)
4200 /* Match each individual instruction. */
4201 position
**subpos_ptr
= &peep2_insn_pos_list
;
4203 for (int i
= 0; i
< XVECLEN (pattern
, 0); ++i
)
4205 rtx x
= XVECEXP (pattern
, 0, i
);
4206 position
*subpos
= next_position (subpos_ptr
, &root_pos
,
4207 POS_PEEP2_INSN
, count
);
4209 s
= add_decision (s
, rtx_test::peep2_count (count
+ 1),
4211 s
= match_pattern_2 (s
, info
, subpos
, x
);
4212 subpos_ptr
= &subpos
->next
;
4215 acceptance
.u
.full
.u
.match_len
= count
- 1;
4219 /* Make the rtx itself. */
4220 s
= match_pattern_2 (s
, info
, &root_pos
, pattern
);
4222 /* If the match is only valid when extra clobbers are added,
4223 make sure we're able to pass that information to the caller. */
4224 if (acceptance
.type
== RECOG
&& acceptance
.u
.full
.u
.num_clobbers
)
4225 s
= add_decision (s
, rtx_test::have_num_clobbers (), true, false);
4228 /* Make sure that the C test is true. */
4229 const char *c_test
= get_c_test (info
->def
);
4230 if (maybe_eval_c_test (c_test
) != 1)
4231 s
= add_decision (s
, rtx_test::c_test (c_test
), true, false);
4233 /* Accept the pattern. */
4234 add_decision (s
, rtx_test::accept (acceptance
), true, false);
4237 /* Like match_pattern_1, but (if merge_states_p) try to merge the
4238 decisions with what's already in S, to reduce the amount of
4242 match_pattern (state
*s
, md_rtx_info
*info
, rtx pattern
,
4243 acceptance_type acceptance
)
4248 /* Add the decisions to a fresh state and then merge the full tree
4249 into the existing one. */
4250 match_pattern_1 (&root
, info
, pattern
, acceptance
);
4251 merge_into_state (s
, &root
);
4254 match_pattern_1 (s
, info
, pattern
, acceptance
);
4257 /* Begin the output file. */
4263 /* Generated automatically by the program `genrecog' from the target\n\
4264 machine description file. */\n\
4266 #define IN_TARGET_CODE 1\n\
4268 #include \"config.h\"\n\
4269 #include \"system.h\"\n\
4270 #include \"coretypes.h\"\n\
4271 #include \"backend.h\"\n\
4272 #include \"predict.h\"\n\
4273 #include \"rtl.h\"\n\
4274 #include \"memmodel.h\"\n\
4275 #include \"tm_p.h\"\n\
4276 #include \"emit-rtl.h\"\n\
4277 #include \"insn-config.h\"\n\
4278 #include \"recog.h\"\n\
4279 #include \"output.h\"\n\
4280 #include \"flags.h\"\n\
4281 #include \"df.h\"\n\
4282 #include \"resource.h\"\n\
4283 #include \"diagnostic-core.h\"\n\
4284 #include \"reload.h\"\n\
4285 #include \"regs.h\"\n\
4286 #include \"tm-constrs.h\"\n\
4290 /* `recog' contains a decision tree that recognizes whether the rtx\n\
4291 X0 is a valid instruction.\n\
4293 recog returns -1 if the rtx is not valid. If the rtx is valid, recog\n\
4294 returns a nonnegative number which is the insn code number for the\n\
4295 pattern that matched. This is the same as the order in the machine\n\
4296 description of the entry that matched. This number can be used as an\n\
4297 index into `insn_data' and other tables.\n");
4299 The third parameter to recog is an optional pointer to an int. If\n\
4300 present, recog will accept a pattern if it matches except for missing\n\
4301 CLOBBER expressions at the end. In that case, the value pointed to by\n\
4302 the optional pointer will be set to the number of CLOBBERs that need\n\
4303 to be added (it should be initialized to zero by the caller). If it");
4305 is set nonzero, the caller should allocate a PARALLEL of the\n\
4306 appropriate size, copy the initial entries, and call add_clobbers\n\
4307 (found in insn-emit.c) to fill in the CLOBBERs.\n\
4311 The function split_insns returns 0 if the rtl could not\n\
4312 be split or the split rtl as an INSN list if it can be.\n\
4314 The function peephole2_insns returns 0 if the rtl could not\n\
4315 be matched. If there was a match, the new rtl is returned in an INSN list,\n\
4316 and LAST_INSN will point to the last recognized insn in the old sequence.\n\
4320 /* Return the C type of a parameter with type TYPE. */
4323 parameter_type_string (parameter::type_enum type
)
4327 case parameter::UNSET
:
4330 case parameter::CODE
:
4333 case parameter::MODE
:
4334 return "machine_mode";
4336 case parameter::INT
:
4339 case parameter::UINT
:
4340 return "unsigned int";
4342 case parameter::WIDE_INT
:
4343 return "HOST_WIDE_INT";
4348 /* Return true if ACCEPTANCE requires only a single C statement even in
4349 a backtracking context. */
4352 single_statement_p (const acceptance_type
&acceptance
)
4354 if (acceptance
.partial_p
)
4355 /* We need to handle failures of the subroutine. */
4357 switch (acceptance
.type
)
4364 /* False if we need to assign to pnum_clobbers. */
4365 return acceptance
.u
.full
.u
.num_clobbers
== 0;
4368 /* We need to assign to pmatch_len_ and handle null returns from the
4369 peephole2 routine. */
4375 /* Return the C failure value for a routine of type TYPE. */
4378 get_failure_return (routine_type type
)
4393 /* Indicates whether a block of code always returns or whether it can fall
4401 /* Information used while writing out code. */
4406 /* The type of routine that we're generating. */
4409 /* Maps position ids to xN variable numbers. The entry is only valid if
4410 it is less than the length of VAR_TO_ID, but this holds for every position
4411 tested by a state when writing out that state. */
4412 auto_vec
<unsigned int> id_to_var
;
4414 /* Maps xN variable numbers to position ids. */
4415 auto_vec
<unsigned int> var_to_id
;
4417 /* Index N is true if variable xN has already been set. */
4418 auto_vec
<bool> seen_vars
;
4421 /* Return true if D is a call to a pattern routine and if there is some X
4422 such that the transition for pattern result N goes to a successful return
4423 with code X+N. When returning true, set *BASE_OUT to this X and *COUNT_OUT
4424 to the number of return values. (We know that every PATTERN decision has
4425 a transition for every successful return.) */
4428 terminal_pattern_p (decision
*d
, unsigned int *base_out
,
4429 unsigned int *count_out
)
4431 if (d
->test
.kind
!= rtx_test::PATTERN
)
4433 unsigned int base
= 0;
4434 unsigned int count
= 0;
4435 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
4437 if (trans
->is_param
|| trans
->labels
.length () != 1)
4439 decision
*subd
= trans
->to
->singleton ();
4440 if (!subd
|| subd
->test
.kind
!= rtx_test::ACCEPT
)
4442 unsigned int this_base
= (subd
->test
.u
.acceptance
.u
.full
.code
4443 - trans
->labels
[0]);
4444 if (trans
== d
->first
)
4446 else if (base
!= this_base
)
4455 /* Return true if TEST doesn't test an rtx or if the rtx it tests is
4456 already available in state OS. */
4459 test_position_available_p (output_state
*os
, const rtx_test
&test
)
4462 || test
.pos_operand
>= 0
4463 || os
->seen_vars
[os
->id_to_var
[test
.pos
->id
]]);
4466 /* Like printf, but print INDENT spaces at the beginning. */
4468 static void ATTRIBUTE_PRINTF_2
4469 printf_indent (unsigned int indent
, const char *format
, ...)
4472 va_start (ap
, format
);
4473 printf ("%*s", indent
, "");
4474 vprintf (format
, ap
);
4478 /* Emit code to initialize the variable associated with POS, if it isn't
4479 already valid in state OS. Indent each line by INDENT spaces. Update
4480 OS with the new state. */
4483 change_state (output_state
*os
, position
*pos
, unsigned int indent
)
4485 unsigned int var
= os
->id_to_var
[pos
->id
];
4486 gcc_assert (var
< os
->var_to_id
.length () && os
->var_to_id
[var
] == pos
->id
);
4487 if (os
->seen_vars
[var
])
4491 case POS_PEEP2_INSN
:
4492 printf_indent (indent
, "x%d = PATTERN (peep2_next_insn (%d));\n",
4497 change_state (os
, pos
->base
, indent
);
4498 printf_indent (indent
, "x%d = XEXP (x%d, %d);\n",
4499 var
, os
->id_to_var
[pos
->base
->id
], pos
->arg
);
4503 change_state (os
, pos
->base
, indent
);
4504 printf_indent (indent
, "x%d = XVECEXP (x%d, 0, %d);\n",
4505 var
, os
->id_to_var
[pos
->base
->id
], pos
->arg
);
4508 os
->seen_vars
[var
] = true;
4511 /* Print the enumerator constant for CODE -- the upcase version of
4515 print_code (enum rtx_code code
)
4518 for (p
= GET_RTX_NAME (code
); *p
; p
++)
4519 putchar (TOUPPER (*p
));
4522 /* Emit a uint64_t as an integer constant expression. We need to take
4523 special care to avoid "decimal constant is so large that it is unsigned"
4524 warnings in the resulting code. */
4527 print_host_wide_int (uint64_t val
)
4529 uint64_t min
= uint64_t (1) << (HOST_BITS_PER_WIDE_INT
- 1);
4531 printf ("(" HOST_WIDE_INT_PRINT_DEC_C
" - 1)", val
+ 1);
4533 printf (HOST_WIDE_INT_PRINT_DEC_C
, val
);
4536 /* Print the C expression for actual parameter PARAM. */
4539 print_parameter_value (const parameter
¶m
)
4542 printf ("i%d", (int) param
.value
+ 1);
4546 case parameter::UNSET
:
4550 case parameter::CODE
:
4551 print_code ((enum rtx_code
) param
.value
);
4554 case parameter::MODE
:
4555 printf ("E_%smode", GET_MODE_NAME ((machine_mode
) param
.value
));
4558 case parameter::INT
:
4559 printf ("%d", (int) param
.value
);
4562 case parameter::UINT
:
4563 printf ("%u", (unsigned int) param
.value
);
4566 case parameter::WIDE_INT
:
4567 print_host_wide_int (param
.value
);
4572 /* Print the C expression for the rtx tested by TEST. */
4575 print_test_rtx (output_state
*os
, const rtx_test
&test
)
4577 if (test
.pos_operand
>= 0)
4578 printf ("operands[%d]", test
.pos_operand
);
4580 printf ("x%d", os
->id_to_var
[test
.pos
->id
]);
4583 /* Print the C expression for non-boolean test TEST. */
4586 print_nonbool_test (output_state
*os
, const rtx_test
&test
)
4590 case rtx_test::CODE
:
4591 printf ("GET_CODE (");
4592 print_test_rtx (os
, test
);
4596 case rtx_test::MODE
:
4597 printf ("GET_MODE (");
4598 print_test_rtx (os
, test
);
4602 case rtx_test::VECLEN
:
4603 printf ("XVECLEN (");
4604 print_test_rtx (os
, test
);
4608 case rtx_test::INT_FIELD
:
4610 print_test_rtx (os
, test
);
4611 printf (", %d)", test
.u
.opno
);
4614 case rtx_test::REGNO_FIELD
:
4616 print_test_rtx (os
, test
);
4620 case rtx_test::SUBREG_FIELD
:
4621 printf ("SUBREG_BYTE (");
4622 print_test_rtx (os
, test
);
4626 case rtx_test::WIDE_INT_FIELD
:
4628 print_test_rtx (os
, test
);
4629 printf (", %d)", test
.u
.opno
);
4632 case rtx_test::PATTERN
:
4634 pattern_routine
*routine
= test
.u
.pattern
->routine
;
4635 printf ("pattern%d (", routine
->pattern_id
);
4636 const char *sep
= "";
4639 print_test_rtx (os
, test
);
4642 if (routine
->insn_p
)
4644 printf ("%sinsn", sep
);
4647 if (routine
->pnum_clobbers_p
)
4649 printf ("%spnum_clobbers", sep
);
4652 for (unsigned int i
= 0; i
< test
.u
.pattern
->params
.length (); ++i
)
4654 fputs (sep
, stdout
);
4655 print_parameter_value (test
.u
.pattern
->params
[i
]);
4662 case rtx_test::PEEP2_COUNT
:
4663 case rtx_test::VECLEN_GE
:
4664 case rtx_test::SAVED_CONST_INT
:
4665 case rtx_test::DUPLICATE
:
4666 case rtx_test::PREDICATE
:
4667 case rtx_test::SET_OP
:
4668 case rtx_test::HAVE_NUM_CLOBBERS
:
4669 case rtx_test::C_TEST
:
4670 case rtx_test::ACCEPT
:
4675 /* IS_PARAM and LABEL are taken from a transition whose source
4676 decision performs TEST. Print the C code for the label. */
4679 print_label_value (const rtx_test
&test
, bool is_param
, uint64_t value
)
4681 print_parameter_value (parameter (transition_parameter_type (test
.kind
),
4685 /* If IS_PARAM, print code to compare TEST with the C variable i<VALUE+1>.
4686 If !IS_PARAM, print code to compare TEST with the C constant VALUE.
4687 Test for inequality if INVERT_P, otherwise test for equality. */
4690 print_test (output_state
*os
, const rtx_test
&test
, bool is_param
,
4691 uint64_t value
, bool invert_p
)
4695 /* Handle the non-boolean TESTs. */
4696 case rtx_test::CODE
:
4697 case rtx_test::MODE
:
4698 case rtx_test::VECLEN
:
4699 case rtx_test::REGNO_FIELD
:
4700 case rtx_test::INT_FIELD
:
4701 case rtx_test::WIDE_INT_FIELD
:
4702 case rtx_test::PATTERN
:
4703 print_nonbool_test (os
, test
);
4704 printf (" %s ", invert_p
? "!=" : "==");
4705 print_label_value (test
, is_param
, value
);
4708 case rtx_test::SUBREG_FIELD
:
4709 printf ("%s (", invert_p
? "maybe_ne" : "known_eq");
4710 print_nonbool_test (os
, test
);
4712 print_label_value (test
, is_param
, value
);
4716 case rtx_test::SAVED_CONST_INT
:
4717 gcc_assert (!is_param
&& value
== 1);
4718 print_test_rtx (os
, test
);
4719 printf (" %s const_int_rtx[MAX_SAVED_CONST_INT + ",
4720 invert_p
? "!=" : "==");
4721 print_parameter_value (parameter (parameter::INT
,
4722 test
.u
.integer
.is_param
,
4723 test
.u
.integer
.value
));
4727 case rtx_test::PEEP2_COUNT
:
4728 gcc_assert (!is_param
&& value
== 1);
4729 printf ("peep2_current_count %s %d", invert_p
? "<" : ">=",
4733 case rtx_test::VECLEN_GE
:
4734 gcc_assert (!is_param
&& value
== 1);
4735 printf ("XVECLEN (");
4736 print_test_rtx (os
, test
);
4737 printf (", 0) %s %d", invert_p
? "<" : ">=", test
.u
.min_len
);
4740 case rtx_test::PREDICATE
:
4741 gcc_assert (!is_param
&& value
== 1);
4742 printf ("%s%s (", invert_p
? "!" : "", test
.u
.predicate
.data
->name
);
4743 print_test_rtx (os
, test
);
4745 print_parameter_value (parameter (parameter::MODE
,
4746 test
.u
.predicate
.mode_is_param
,
4747 test
.u
.predicate
.mode
));
4751 case rtx_test::DUPLICATE
:
4752 gcc_assert (!is_param
&& value
== 1);
4753 printf ("%srtx_equal_p (", invert_p
? "!" : "");
4754 print_test_rtx (os
, test
);
4755 printf (", operands[%d])", test
.u
.opno
);
4758 case rtx_test::HAVE_NUM_CLOBBERS
:
4759 gcc_assert (!is_param
&& value
== 1);
4760 printf ("pnum_clobbers %s NULL", invert_p
? "==" : "!=");
4763 case rtx_test::C_TEST
:
4764 gcc_assert (!is_param
&& value
== 1);
4767 rtx_reader_ptr
->print_c_condition (test
.u
.string
);
4770 case rtx_test::ACCEPT
:
4771 case rtx_test::SET_OP
:
4776 static exit_state
print_decision (output_state
*, decision
*,
4777 unsigned int, bool);
4779 /* Print code to perform S, indent each line by INDENT spaces.
4780 IS_FINAL is true if there are no fallback decisions to test on failure;
4781 if the state fails then the entire routine fails. */
4784 print_state (output_state
*os
, state
*s
, unsigned int indent
, bool is_final
)
4786 exit_state es
= ES_FALLTHROUGH
;
4787 for (decision
*d
= s
->first
; d
; d
= d
->next
)
4788 es
= print_decision (os
, d
, indent
, is_final
&& !d
->next
);
4789 if (es
!= ES_RETURNED
&& is_final
)
4791 printf_indent (indent
, "return %s;\n", get_failure_return (os
->type
));
4797 /* Print the code for subroutine call ACCEPTANCE (for which partial_p
4798 is known to be true). Return the C condition that indicates a successful
4802 print_subroutine_call (const acceptance_type
&acceptance
)
4804 switch (acceptance
.type
)
4810 printf ("recog_%d (x1, insn, pnum_clobbers)",
4811 acceptance
.u
.subroutine_id
);
4815 printf ("split_%d (x1, insn)", acceptance
.u
.subroutine_id
);
4816 return "!= NULL_RTX";
4819 printf ("peephole2_%d (x1, insn, pmatch_len_)",
4820 acceptance
.u
.subroutine_id
);
4821 return "!= NULL_RTX";
4826 /* Print code for the successful match described by ACCEPTANCE.
4827 INDENT and IS_FINAL are as for print_state. */
4830 print_acceptance (const acceptance_type
&acceptance
, unsigned int indent
,
4833 if (acceptance
.partial_p
)
4835 /* Defer the rest of the match to a subroutine. */
4838 printf_indent (indent
, "return ");
4839 print_subroutine_call (acceptance
);
4845 printf_indent (indent
, "res = ");
4846 const char *res_test
= print_subroutine_call (acceptance
);
4848 printf_indent (indent
, "if (res %s)\n", res_test
);
4849 printf_indent (indent
+ 2, "return res;\n");
4850 return ES_FALLTHROUGH
;
4853 switch (acceptance
.type
)
4856 printf_indent (indent
, "return %d;\n", acceptance
.u
.full
.code
);
4860 if (acceptance
.u
.full
.u
.num_clobbers
!= 0)
4861 printf_indent (indent
, "*pnum_clobbers = %d;\n",
4862 acceptance
.u
.full
.u
.num_clobbers
);
4863 printf_indent (indent
, "return %d; /* %s */\n", acceptance
.u
.full
.code
,
4864 get_insn_name (acceptance
.u
.full
.code
));
4868 printf_indent (indent
, "return gen_split_%d (insn, operands);\n",
4869 acceptance
.u
.full
.code
);
4873 printf_indent (indent
, "*pmatch_len_ = %d;\n",
4874 acceptance
.u
.full
.u
.match_len
);
4877 printf_indent (indent
, "return gen_peephole2_%d (insn, operands);\n",
4878 acceptance
.u
.full
.code
);
4883 printf_indent (indent
, "res = gen_peephole2_%d (insn, operands);\n",
4884 acceptance
.u
.full
.code
);
4885 printf_indent (indent
, "if (res != NULL_RTX)\n");
4886 printf_indent (indent
+ 2, "return res;\n");
4887 return ES_FALLTHROUGH
;
4893 /* Print code to perform D. INDENT and IS_FINAL are as for print_state. */
4896 print_decision (output_state
*os
, decision
*d
, unsigned int indent
,
4900 unsigned int base
, count
;
4902 /* Make sure the rtx under test is available either in operands[] or
4903 in an xN variable. */
4904 if (d
->test
.pos
&& d
->test
.pos_operand
< 0)
4905 change_state (os
, d
->test
.pos
, indent
);
4907 /* Look for cases where a pattern routine P1 calls another pattern routine
4908 P2 and where P1 returns X + BASE whenever P2 returns X. If IS_FINAL
4909 is true and BASE is zero we can simply use:
4911 return patternN (...);
4913 Otherwise we can use:
4915 res = patternN (...);
4919 However, if BASE is nonzero and patternN only returns 0 or -1,
4920 the usual "return BASE;" is better than "return res + BASE;".
4921 If BASE is zero, "return res;" should be better than "return 0;",
4922 since no assignment to the return register is required. */
4923 if (os
->type
== SUBPATTERN
4924 && terminal_pattern_p (d
, &base
, &count
)
4925 && (base
== 0 || count
> 1))
4927 if (is_final
&& base
== 0)
4929 printf_indent (indent
, "return ");
4930 print_nonbool_test (os
, d
->test
);
4931 printf ("; /* [-1, %d] */\n", count
- 1);
4936 printf_indent (indent
, "res = ");
4937 print_nonbool_test (os
, d
->test
);
4939 printf_indent (indent
, "if (res >= 0)\n");
4940 printf_indent (indent
+ 2, "return res");
4942 printf (" + %d", base
);
4943 printf ("; /* [%d, %d] */\n", base
, base
+ count
- 1);
4944 return ES_FALLTHROUGH
;
4947 else if (d
->test
.kind
== rtx_test::ACCEPT
)
4948 return print_acceptance (d
->test
.u
.acceptance
, indent
, is_final
);
4949 else if (d
->test
.kind
== rtx_test::SET_OP
)
4951 printf_indent (indent
, "operands[%d] = ", d
->test
.u
.opno
);
4952 print_test_rtx (os
, d
->test
);
4954 return print_state (os
, d
->singleton ()->to
, indent
, is_final
);
4956 /* Handle decisions with a single transition and a single transition
4958 else if (d
->if_statement_p (&label
))
4960 transition
*trans
= d
->singleton ();
4961 if (mark_optional_transitions_p
&& trans
->optional
)
4962 printf_indent (indent
, "/* OPTIONAL IF */\n");
4964 /* Print the condition associated with TRANS. Invert it if IS_FINAL,
4965 so that we return immediately on failure and fall through on
4967 printf_indent (indent
, "if (");
4968 print_test (os
, d
->test
, trans
->is_param
, label
, is_final
);
4970 /* Look for following states that would be handled by this code
4971 on recursion. If they don't need any preparatory statements,
4972 include them in the current "if" statement rather than creating
4976 d
= trans
->to
->singleton ();
4978 || d
->test
.kind
== rtx_test::ACCEPT
4979 || d
->test
.kind
== rtx_test::SET_OP
4980 || !d
->if_statement_p (&label
)
4981 || !test_position_available_p (os
, d
->test
))
4985 if (mark_optional_transitions_p
&& trans
->optional
)
4986 printf_indent (indent
+ 4, "/* OPTIONAL IF */\n");
4987 printf_indent (indent
+ 4, "%s ", is_final
? "||" : "&&");
4988 print_test (os
, d
->test
, trans
->is_param
, label
, is_final
);
4992 /* Print the conditional code with INDENT + 2 and the fallthrough
4993 code with indent INDENT. */
4994 state
*to
= trans
->to
;
4997 /* We inverted the condition above, so return failure in the
4998 "if" body and fall through to the target of the transition. */
4999 printf_indent (indent
+ 2, "return %s;\n",
5000 get_failure_return (os
->type
));
5001 return print_state (os
, to
, indent
, is_final
);
5003 else if (to
->singleton ()
5004 && to
->first
->test
.kind
== rtx_test::ACCEPT
5005 && single_statement_p (to
->first
->test
.u
.acceptance
))
5007 /* The target of the transition is a simple "return" statement.
5008 It doesn't need any braces and doesn't fall through. */
5009 if (print_acceptance (to
->first
->test
.u
.acceptance
,
5010 indent
+ 2, true) != ES_RETURNED
)
5012 return ES_FALLTHROUGH
;
5016 /* The general case. Output code for the target of the transition
5017 in braces. This will not invalidate any of the xN variables
5018 that are already valid, but we mustn't rely on any that are
5019 set by the "if" body. */
5020 auto_vec
<bool, 32> old_seen
;
5021 old_seen
.safe_splice (os
->seen_vars
);
5023 printf_indent (indent
+ 2, "{\n");
5024 print_state (os
, trans
->to
, indent
+ 4, is_final
);
5025 printf_indent (indent
+ 2, "}\n");
5027 os
->seen_vars
.truncate (0);
5028 os
->seen_vars
.splice (old_seen
);
5029 return ES_FALLTHROUGH
;
5034 /* Output the decision as a switch statement. */
5035 printf_indent (indent
, "switch (");
5036 print_nonbool_test (os
, d
->test
);
5039 /* Each case statement starts with the same set of valid variables.
5040 These are also the only variables will be valid on fallthrough. */
5041 auto_vec
<bool, 32> old_seen
;
5042 old_seen
.safe_splice (os
->seen_vars
);
5044 printf_indent (indent
+ 2, "{\n");
5045 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
5047 gcc_assert (!trans
->is_param
);
5048 if (mark_optional_transitions_p
&& trans
->optional
)
5049 printf_indent (indent
+ 2, "/* OPTIONAL CASE */\n");
5050 for (int_set::iterator j
= trans
->labels
.begin ();
5051 j
!= trans
->labels
.end (); ++j
)
5053 printf_indent (indent
+ 2, "case ");
5054 print_label_value (d
->test
, trans
->is_param
, *j
);
5057 if (print_state (os
, trans
->to
, indent
+ 4, is_final
))
5059 /* The state can fall through. Add an explicit break. */
5060 gcc_assert (!is_final
);
5061 printf_indent (indent
+ 4, "break;\n");
5065 /* Restore the original set of valid variables. */
5066 os
->seen_vars
.truncate (0);
5067 os
->seen_vars
.splice (old_seen
);
5069 /* Add a default case. */
5070 printf_indent (indent
+ 2, "default:\n");
5072 printf_indent (indent
+ 4, "return %s;\n",
5073 get_failure_return (os
->type
));
5075 printf_indent (indent
+ 4, "break;\n");
5076 printf_indent (indent
+ 2, "}\n");
5077 return is_final
? ES_RETURNED
: ES_FALLTHROUGH
;
5081 /* Make sure that OS has a position variable for POS. ROOT_P is true if
5082 POS is the root position for the routine. */
5085 assign_position_var (output_state
*os
, position
*pos
, bool root_p
)
5087 unsigned int idx
= os
->id_to_var
[pos
->id
];
5088 if (idx
< os
->var_to_id
.length () && os
->var_to_id
[idx
] == pos
->id
)
5090 if (!root_p
&& pos
->type
!= POS_PEEP2_INSN
)
5091 assign_position_var (os
, pos
->base
, false);
5092 os
->id_to_var
[pos
->id
] = os
->var_to_id
.length ();
5093 os
->var_to_id
.safe_push (pos
->id
);
5096 /* Make sure that OS has the position variables required by S. */
5099 assign_position_vars (output_state
*os
, state
*s
)
5101 for (decision
*d
= s
->first
; d
; d
= d
->next
)
5103 /* Positions associated with operands can be read from the
5104 operands[] array. */
5105 if (d
->test
.pos
&& d
->test
.pos_operand
< 0)
5106 assign_position_var (os
, d
->test
.pos
, false);
5107 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
5108 assign_position_vars (os
, trans
->to
);
5112 /* Print the open brace and variable definitions for a routine that
5113 implements S. ROOT is the deepest rtx from which S can access all
5114 relevant parts of the first instruction it matches. Initialize OS
5115 so that every relevant position has an rtx variable xN and so that
5116 only ROOT's variable has a valid value. */
5119 print_subroutine_start (output_state
*os
, state
*s
, position
*root
)
5121 printf ("{\n rtx * const operands ATTRIBUTE_UNUSED"
5122 " = &recog_data.operand[0];\n");
5123 os
->var_to_id
.truncate (0);
5124 os
->seen_vars
.truncate (0);
5127 /* Create a fake entry for position 0 so that an id_to_var of 0
5128 is always invalid. This also makes the xN variables naturally
5129 1-based rather than 0-based. */
5130 os
->var_to_id
.safe_push (num_positions
);
5132 /* Associate ROOT with x1. */
5133 assign_position_var (os
, root
, true);
5135 /* Assign xN variables to all other relevant positions. */
5136 assign_position_vars (os
, s
);
5138 /* Output the variable declarations (except for ROOT's, which is
5139 passed in as a parameter). */
5140 unsigned int num_vars
= os
->var_to_id
.length ();
5143 for (unsigned int i
= 2; i
< num_vars
; ++i
)
5144 /* Print 8 rtx variables to a line. */
5146 i
== 2 ? " rtx" : (i
- 2) % 8 == 0 ? ";\n rtx" : ",", i
);
5150 /* Say that x1 is valid and the rest aren't. */
5151 os
->seen_vars
.safe_grow_cleared (num_vars
);
5152 os
->seen_vars
[1] = true;
5154 if (os
->type
== SUBPATTERN
|| os
->type
== RECOG
)
5155 printf (" int res ATTRIBUTE_UNUSED;\n");
5157 printf (" rtx_insn *res ATTRIBUTE_UNUSED;\n");
5160 /* Output the definition of pattern routine ROUTINE. */
5163 print_pattern (output_state
*os
, pattern_routine
*routine
)
5165 printf ("\nstatic int\npattern%d (", routine
->pattern_id
);
5166 const char *sep
= "";
5167 /* Add the top-level rtx parameter, if any. */
5170 printf ("%srtx x1", sep
);
5173 /* Add the optional parameters. */
5174 if (routine
->insn_p
)
5176 /* We can't easily tell whether a C condition actually reads INSN,
5177 so add an ATTRIBUTE_UNUSED just in case. */
5178 printf ("%srtx_insn *insn ATTRIBUTE_UNUSED", sep
);
5181 if (routine
->pnum_clobbers_p
)
5183 printf ("%sint *pnum_clobbers", sep
);
5186 /* Add the "i" parameters. */
5187 for (unsigned int i
= 0; i
< routine
->param_types
.length (); ++i
)
5189 printf ("%s%s i%d", sep
,
5190 parameter_type_string (routine
->param_types
[i
]), i
+ 1);
5194 os
->type
= SUBPATTERN
;
5195 print_subroutine_start (os
, routine
->s
, routine
->pos
);
5196 print_state (os
, routine
->s
, 2, true);
5200 /* Output a routine of type TYPE that implements S. PROC_ID is the
5201 number of the subroutine associated with S, or 0 if S is the main
5205 print_subroutine (output_state
*os
, state
*s
, int proc_id
)
5215 printf ("static int\nrecog_%d", proc_id
);
5217 printf ("int\nrecog");
5218 printf (" (rtx x1 ATTRIBUTE_UNUSED,\n"
5219 "\trtx_insn *insn ATTRIBUTE_UNUSED,\n"
5220 "\tint *pnum_clobbers ATTRIBUTE_UNUSED)\n");
5225 printf ("static rtx_insn *\nsplit_%d", proc_id
);
5227 printf ("rtx_insn *\nsplit_insns");
5228 printf (" (rtx x1 ATTRIBUTE_UNUSED, rtx_insn *insn ATTRIBUTE_UNUSED)\n");
5233 printf ("static rtx_insn *\npeephole2_%d", proc_id
);
5235 printf ("rtx_insn *\npeephole2_insns");
5236 printf (" (rtx x1 ATTRIBUTE_UNUSED,\n"
5237 "\trtx_insn *insn ATTRIBUTE_UNUSED,\n"
5238 "\tint *pmatch_len_ ATTRIBUTE_UNUSED)\n");
5241 print_subroutine_start (os
, s
, &root_pos
);
5244 printf (" recog_data.insn = NULL;\n");
5246 print_state (os
, s
, 2, true);
5250 /* Print out a routine of type TYPE that performs ROOT. */
5253 print_subroutine_group (output_state
*os
, routine_type type
, state
*root
)
5256 if (use_subroutines_p
)
5258 /* Split ROOT up into smaller pieces, both for readability and to
5259 help the compiler. */
5260 auto_vec
<state
*> subroutines
;
5261 find_subroutines (type
, root
, subroutines
);
5263 /* Output the subroutines (but not ROOT itself). */
5266 FOR_EACH_VEC_ELT (subroutines
, i
, s
)
5267 print_subroutine (os
, s
, i
+ 1);
5269 /* Output the main routine. */
5270 print_subroutine (os
, root
, 0);
5273 /* Return the rtx pattern for the list of rtxes in a define_peephole2. */
5276 get_peephole2_pattern (md_rtx_info
*info
)
5279 rtvec vec
= XVEC (info
->def
, 0);
5280 rtx pattern
= rtx_alloc (SEQUENCE
);
5281 XVEC (pattern
, 0) = rtvec_alloc (GET_NUM_ELEM (vec
));
5282 for (i
= j
= 0; i
< GET_NUM_ELEM (vec
); i
++)
5284 rtx x
= RTVEC_ELT (vec
, i
);
5285 /* Ignore scratch register requirements. */
5286 if (GET_CODE (x
) != MATCH_SCRATCH
&& GET_CODE (x
) != MATCH_DUP
)
5288 XVECEXP (pattern
, 0, j
) = x
;
5292 XVECLEN (pattern
, 0) = j
;
5294 error_at (info
->loc
, "empty define_peephole2");
5298 /* Return true if *PATTERN_PTR is a PARALLEL in which at least one trailing
5299 rtx can be added automatically by add_clobbers. If so, update
5300 *ACCEPTANCE_PTR so that its num_clobbers field contains the number
5301 of such trailing rtxes and update *PATTERN_PTR so that it contains
5302 the pattern without those rtxes. */
5305 remove_clobbers (acceptance_type
*acceptance_ptr
, rtx
*pattern_ptr
)
5310 /* Find the last non-clobber in the parallel. */
5311 rtx pattern
= *pattern_ptr
;
5312 for (i
= XVECLEN (pattern
, 0); i
> 0; i
--)
5314 rtx x
= XVECEXP (pattern
, 0, i
- 1);
5315 if (GET_CODE (x
) != CLOBBER
5316 || (!REG_P (XEXP (x
, 0))
5317 && GET_CODE (XEXP (x
, 0)) != MATCH_SCRATCH
))
5321 if (i
== XVECLEN (pattern
, 0))
5324 /* Build a similar insn without the clobbers. */
5326 new_pattern
= XVECEXP (pattern
, 0, 0);
5329 new_pattern
= rtx_alloc (PARALLEL
);
5330 XVEC (new_pattern
, 0) = rtvec_alloc (i
);
5331 for (int j
= 0; j
< i
; ++j
)
5332 XVECEXP (new_pattern
, 0, j
) = XVECEXP (pattern
, 0, j
);
5336 acceptance_ptr
->u
.full
.u
.num_clobbers
= XVECLEN (pattern
, 0) - i
;
5337 *pattern_ptr
= new_pattern
;
5342 main (int argc
, const char **argv
)
5344 state insn_root
, split_root
, peephole2_root
;
5346 progname
= "genrecog";
5348 if (!init_rtx_reader_args (argc
, argv
))
5349 return (FATAL_EXIT_CODE
);
5353 /* Read the machine description. */
5356 while (read_md_rtx (&info
))
5360 acceptance_type acceptance
;
5361 acceptance
.partial_p
= false;
5362 acceptance
.u
.full
.code
= info
.index
;
5365 switch (GET_CODE (def
))
5369 /* Match the instruction in the original .md form. */
5370 acceptance
.type
= RECOG
;
5371 acceptance
.u
.full
.u
.num_clobbers
= 0;
5372 pattern
= add_implicit_parallel (XVEC (def
, 1));
5373 validate_pattern (pattern
, &info
, NULL_RTX
, 0);
5374 match_pattern (&insn_root
, &info
, pattern
, acceptance
);
5376 /* If the pattern is a PARALLEL with trailing CLOBBERs,
5377 allow recog_for_combine to match without the clobbers. */
5378 if (GET_CODE (pattern
) == PARALLEL
5379 && remove_clobbers (&acceptance
, &pattern
))
5380 match_pattern (&insn_root
, &info
, pattern
, acceptance
);
5385 acceptance
.type
= SPLIT
;
5386 pattern
= add_implicit_parallel (XVEC (def
, 0));
5387 validate_pattern (pattern
, &info
, NULL_RTX
, 0);
5388 match_pattern (&split_root
, &info
, pattern
, acceptance
);
5390 /* Declare the gen_split routine that we'll call if the
5391 pattern matches. The definition comes from insn-emit.c. */
5392 printf ("extern rtx_insn *gen_split_%d (rtx_insn *, rtx *);\n",
5396 case DEFINE_PEEPHOLE2
:
5397 acceptance
.type
= PEEPHOLE2
;
5398 pattern
= get_peephole2_pattern (&info
);
5399 validate_pattern (pattern
, &info
, NULL_RTX
, 0);
5400 match_pattern (&peephole2_root
, &info
, pattern
, acceptance
);
5402 /* Declare the gen_peephole2 routine that we'll call if the
5403 pattern matches. The definition comes from insn-emit.c. */
5404 printf ("extern rtx_insn *gen_peephole2_%d (rtx_insn *, rtx *);\n",
5414 return FATAL_EXIT_CODE
;
5418 /* Optimize each routine in turn. */
5419 optimize_subroutine_group ("recog", &insn_root
);
5420 optimize_subroutine_group ("split_insns", &split_root
);
5421 optimize_subroutine_group ("peephole2_insns", &peephole2_root
);
5424 os
.id_to_var
.safe_grow_cleared (num_positions
);
5426 if (use_pattern_routines_p
)
5428 /* Look for common patterns and split them out into subroutines. */
5429 auto_vec
<merge_state_info
> states
;
5430 states
.safe_push (&insn_root
);
5431 states
.safe_push (&split_root
);
5432 states
.safe_push (&peephole2_root
);
5433 split_out_patterns (states
);
5435 /* Print out the routines that we just created. */
5437 pattern_routine
*routine
;
5438 FOR_EACH_VEC_ELT (patterns
, i
, routine
)
5439 print_pattern (&os
, routine
);
5442 /* Print out the matching routines. */
5443 print_subroutine_group (&os
, RECOG
, &insn_root
);
5444 print_subroutine_group (&os
, SPLIT
, &split_root
);
5445 print_subroutine_group (&os
, PEEPHOLE2
, &peephole2_root
);
5448 return (ferror (stdout
) != 0 ? FATAL_EXIT_CODE
: SUCCESS_EXIT_CODE
);