1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987-2020 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
31 #include "profile-count.h"
35 #include "diagnostic-core.h"
36 #include "stor-layout.h"
41 #include "stringpool.h"
42 #include "common/common-target.h"
45 static rtx
break_out_memory_refs (rtx
);
48 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
51 trunc_int_for_mode (HOST_WIDE_INT c
, machine_mode mode
)
53 /* Not scalar_int_mode because we also allow pointer bound modes. */
54 scalar_mode smode
= as_a
<scalar_mode
> (mode
);
55 int width
= GET_MODE_PRECISION (smode
);
57 /* You want to truncate to a _what_? */
58 gcc_assert (SCALAR_INT_MODE_P (mode
));
60 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
62 return c
& 1 ? STORE_FLAG_VALUE
: 0;
64 /* Sign-extend for the requested mode. */
66 if (width
< HOST_BITS_PER_WIDE_INT
)
68 HOST_WIDE_INT sign
= 1;
78 /* Likewise for polynomial values, using the sign-extended representation
79 for each individual coefficient. */
82 trunc_int_for_mode (poly_int64 x
, machine_mode mode
)
84 for (unsigned int i
= 0; i
< NUM_POLY_INT_COEFFS
; ++i
)
85 x
.coeffs
[i
] = trunc_int_for_mode (x
.coeffs
[i
], mode
);
89 /* Return an rtx for the sum of X and the integer C, given that X has
90 mode MODE. INPLACE is true if X can be modified inplace or false
91 if it must be treated as immutable. */
94 plus_constant (machine_mode mode
, rtx x
, poly_int64 c
, bool inplace
)
101 gcc_assert (GET_MODE (x
) == VOIDmode
|| GET_MODE (x
) == mode
);
113 CASE_CONST_SCALAR_INT
:
114 return immed_wide_int_const (wi::add (rtx_mode_t (x
, mode
), c
), mode
);
116 /* If this is a reference to the constant pool, try replacing it with
117 a reference to a new constant. If the resulting address isn't
118 valid, don't return it because we have no way to validize it. */
119 if (GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
120 && CONSTANT_POOL_ADDRESS_P (XEXP (x
, 0)))
122 rtx cst
= get_pool_constant (XEXP (x
, 0));
124 if (GET_CODE (cst
) == CONST_VECTOR
125 && GET_MODE_INNER (GET_MODE (cst
)) == mode
)
127 cst
= gen_lowpart (mode
, cst
);
130 else if (GET_MODE (cst
) == VOIDmode
131 && get_pool_mode (XEXP (x
, 0)) != mode
)
133 if (GET_MODE (cst
) == VOIDmode
|| GET_MODE (cst
) == mode
)
135 tem
= plus_constant (mode
, cst
, c
);
136 tem
= force_const_mem (GET_MODE (x
), tem
);
137 /* Targets may disallow some constants in the constant pool, thus
138 force_const_mem may return NULL_RTX. */
139 if (tem
&& memory_address_p (GET_MODE (tem
), XEXP (tem
, 0)))
146 /* If adding to something entirely constant, set a flag
147 so that we can add a CONST around the result. */
148 if (inplace
&& shared_const_p (x
))
160 /* The interesting case is adding the integer to a sum. Look
161 for constant term in the sum and combine with C. For an
162 integer constant term or a constant term that is not an
163 explicit integer, we combine or group them together anyway.
165 We may not immediately return from the recursive call here, lest
166 all_constant gets lost. */
168 if (CONSTANT_P (XEXP (x
, 1)))
170 rtx term
= plus_constant (mode
, XEXP (x
, 1), c
, inplace
);
171 if (term
== const0_rtx
)
176 x
= gen_rtx_PLUS (mode
, XEXP (x
, 0), term
);
179 else if (rtx
*const_loc
= find_constant_term_loc (&y
))
183 /* We need to be careful since X may be shared and we can't
184 modify it in place. */
186 const_loc
= find_constant_term_loc (&x
);
188 *const_loc
= plus_constant (mode
, *const_loc
, c
, true);
194 if (CONST_POLY_INT_P (x
))
195 return immed_wide_int_const (const_poly_int_value (x
) + c
, mode
);
200 x
= gen_rtx_PLUS (mode
, x
, gen_int_mode (c
, mode
));
202 if (GET_CODE (x
) == SYMBOL_REF
|| GET_CODE (x
) == LABEL_REF
)
204 else if (all_constant
)
205 return gen_rtx_CONST (mode
, x
);
210 /* If X is a sum, return a new sum like X but lacking any constant terms.
211 Add all the removed constant terms into *CONSTPTR.
212 X itself is not altered. The result != X if and only if
213 it is not isomorphic to X. */
216 eliminate_constant_term (rtx x
, rtx
*constptr
)
221 if (GET_CODE (x
) != PLUS
)
224 /* First handle constants appearing at this level explicitly. */
225 if (CONST_INT_P (XEXP (x
, 1))
226 && (tem
= simplify_binary_operation (PLUS
, GET_MODE (x
), *constptr
,
228 && CONST_INT_P (tem
))
231 return eliminate_constant_term (XEXP (x
, 0), constptr
);
235 x0
= eliminate_constant_term (XEXP (x
, 0), &tem
);
236 x1
= eliminate_constant_term (XEXP (x
, 1), &tem
);
237 if ((x1
!= XEXP (x
, 1) || x0
!= XEXP (x
, 0))
238 && (tem
= simplify_binary_operation (PLUS
, GET_MODE (x
),
239 *constptr
, tem
)) != 0
240 && CONST_INT_P (tem
))
243 return gen_rtx_PLUS (GET_MODE (x
), x0
, x1
);
250 /* Return a copy of X in which all memory references
251 and all constants that involve symbol refs
252 have been replaced with new temporary registers.
253 Also emit code to load the memory locations and constants
254 into those registers.
256 If X contains no such constants or memory references,
257 X itself (not a copy) is returned.
259 If a constant is found in the address that is not a legitimate constant
260 in an insn, it is left alone in the hope that it might be valid in the
263 X may contain no arithmetic except addition, subtraction and multiplication.
264 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
267 break_out_memory_refs (rtx x
)
270 || (CONSTANT_P (x
) && CONSTANT_ADDRESS_P (x
)
271 && GET_MODE (x
) != VOIDmode
))
272 x
= force_reg (GET_MODE (x
), x
);
273 else if (GET_CODE (x
) == PLUS
|| GET_CODE (x
) == MINUS
274 || GET_CODE (x
) == MULT
)
276 rtx op0
= break_out_memory_refs (XEXP (x
, 0));
277 rtx op1
= break_out_memory_refs (XEXP (x
, 1));
279 if (op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1))
280 x
= simplify_gen_binary (GET_CODE (x
), GET_MODE (x
), op0
, op1
);
286 /* Given X, a memory address in address space AS' pointer mode, convert it to
287 an address in the address space's address mode, or vice versa (TO_MODE says
288 which way). We take advantage of the fact that pointers are not allowed to
289 overflow by commuting arithmetic operations over conversions so that address
290 arithmetic insns can be used. IN_CONST is true if this conversion is inside
291 a CONST. NO_EMIT is true if no insns should be emitted, and instead
292 it should return NULL if it can't be simplified without emitting insns. */
295 convert_memory_address_addr_space_1 (scalar_int_mode to_mode ATTRIBUTE_UNUSED
,
296 rtx x
, addr_space_t as ATTRIBUTE_UNUSED
,
297 bool in_const ATTRIBUTE_UNUSED
,
298 bool no_emit ATTRIBUTE_UNUSED
)
300 #ifndef POINTERS_EXTEND_UNSIGNED
301 gcc_assert (GET_MODE (x
) == to_mode
|| GET_MODE (x
) == VOIDmode
);
303 #else /* defined(POINTERS_EXTEND_UNSIGNED) */
304 scalar_int_mode pointer_mode
, address_mode
, from_mode
;
308 /* If X already has the right mode, just return it. */
309 if (GET_MODE (x
) == to_mode
)
312 pointer_mode
= targetm
.addr_space
.pointer_mode (as
);
313 address_mode
= targetm
.addr_space
.address_mode (as
);
314 from_mode
= to_mode
== pointer_mode
? address_mode
: pointer_mode
;
316 /* Here we handle some special cases. If none of them apply, fall through
317 to the default case. */
318 switch (GET_CODE (x
))
320 CASE_CONST_SCALAR_INT
:
321 if (GET_MODE_SIZE (to_mode
) < GET_MODE_SIZE (from_mode
))
323 else if (POINTERS_EXTEND_UNSIGNED
< 0)
325 else if (POINTERS_EXTEND_UNSIGNED
> 0)
329 temp
= simplify_unary_operation (code
, to_mode
, x
, from_mode
);
335 if ((SUBREG_PROMOTED_VAR_P (x
) || REG_POINTER (SUBREG_REG (x
)))
336 && GET_MODE (SUBREG_REG (x
)) == to_mode
)
337 return SUBREG_REG (x
);
341 temp
= gen_rtx_LABEL_REF (to_mode
, label_ref_label (x
));
342 LABEL_REF_NONLOCAL_P (temp
) = LABEL_REF_NONLOCAL_P (x
);
346 temp
= shallow_copy_rtx (x
);
347 PUT_MODE (temp
, to_mode
);
351 temp
= convert_memory_address_addr_space_1 (to_mode
, XEXP (x
, 0), as
,
353 return temp
? gen_rtx_CONST (to_mode
, temp
) : temp
;
357 /* For addition we can safely permute the conversion and addition
358 operation if one operand is a constant and converting the constant
359 does not change it or if one operand is a constant and we are
360 using a ptr_extend instruction (POINTERS_EXTEND_UNSIGNED < 0).
361 We can always safely permute them if we are making the address
362 narrower. Inside a CONST RTL, this is safe for both pointers
363 zero or sign extended as pointers cannot wrap. */
364 if (GET_MODE_SIZE (to_mode
) < GET_MODE_SIZE (from_mode
)
365 || (GET_CODE (x
) == PLUS
366 && CONST_INT_P (XEXP (x
, 1))
367 && ((in_const
&& POINTERS_EXTEND_UNSIGNED
!= 0)
368 || XEXP (x
, 1) == convert_memory_address_addr_space_1
369 (to_mode
, XEXP (x
, 1), as
, in_const
,
371 || POINTERS_EXTEND_UNSIGNED
< 0)))
373 temp
= convert_memory_address_addr_space_1 (to_mode
, XEXP (x
, 0),
374 as
, in_const
, no_emit
);
375 return (temp
? gen_rtx_fmt_ee (GET_CODE (x
), to_mode
,
388 return convert_modes (to_mode
, from_mode
,
389 x
, POINTERS_EXTEND_UNSIGNED
);
390 #endif /* defined(POINTERS_EXTEND_UNSIGNED) */
393 /* Given X, a memory address in address space AS' pointer mode, convert it to
394 an address in the address space's address mode, or vice versa (TO_MODE says
395 which way). We take advantage of the fact that pointers are not allowed to
396 overflow by commuting arithmetic operations over conversions so that address
397 arithmetic insns can be used. */
400 convert_memory_address_addr_space (scalar_int_mode to_mode
, rtx x
,
403 return convert_memory_address_addr_space_1 (to_mode
, x
, as
, false, false);
407 /* Return something equivalent to X but valid as a memory address for something
408 of mode MODE in the named address space AS. When X is not itself valid,
409 this works by copying X or subexpressions of it into registers. */
412 memory_address_addr_space (machine_mode mode
, rtx x
, addr_space_t as
)
415 scalar_int_mode address_mode
= targetm
.addr_space
.address_mode (as
);
417 x
= convert_memory_address_addr_space (address_mode
, x
, as
);
419 /* By passing constant addresses through registers
420 we get a chance to cse them. */
421 if (! cse_not_expected
&& CONSTANT_P (x
) && CONSTANT_ADDRESS_P (x
))
422 x
= force_reg (address_mode
, x
);
424 /* We get better cse by rejecting indirect addressing at this stage.
425 Let the combiner create indirect addresses where appropriate.
426 For now, generate the code so that the subexpressions useful to share
427 are visible. But not if cse won't be done! */
430 if (! cse_not_expected
&& !REG_P (x
))
431 x
= break_out_memory_refs (x
);
433 /* At this point, any valid address is accepted. */
434 if (memory_address_addr_space_p (mode
, x
, as
))
437 /* If it was valid before but breaking out memory refs invalidated it,
438 use it the old way. */
439 if (memory_address_addr_space_p (mode
, oldx
, as
))
445 /* Perform machine-dependent transformations on X
446 in certain cases. This is not necessary since the code
447 below can handle all possible cases, but machine-dependent
448 transformations can make better code. */
451 x
= targetm
.addr_space
.legitimize_address (x
, oldx
, mode
, as
);
452 if (orig_x
!= x
&& memory_address_addr_space_p (mode
, x
, as
))
456 /* PLUS and MULT can appear in special ways
457 as the result of attempts to make an address usable for indexing.
458 Usually they are dealt with by calling force_operand, below.
459 But a sum containing constant terms is special
460 if removing them makes the sum a valid address:
461 then we generate that address in a register
462 and index off of it. We do this because it often makes
463 shorter code, and because the addresses thus generated
464 in registers often become common subexpressions. */
465 if (GET_CODE (x
) == PLUS
)
467 rtx constant_term
= const0_rtx
;
468 rtx y
= eliminate_constant_term (x
, &constant_term
);
469 if (constant_term
== const0_rtx
470 || ! memory_address_addr_space_p (mode
, y
, as
))
471 x
= force_operand (x
, NULL_RTX
);
474 y
= gen_rtx_PLUS (GET_MODE (x
), copy_to_reg (y
), constant_term
);
475 if (! memory_address_addr_space_p (mode
, y
, as
))
476 x
= force_operand (x
, NULL_RTX
);
482 else if (GET_CODE (x
) == MULT
|| GET_CODE (x
) == MINUS
)
483 x
= force_operand (x
, NULL_RTX
);
485 /* If we have a register that's an invalid address,
486 it must be a hard reg of the wrong class. Copy it to a pseudo. */
490 /* Last resort: copy the value to a register, since
491 the register is a valid address. */
493 x
= force_reg (address_mode
, x
);
498 gcc_assert (memory_address_addr_space_p (mode
, x
, as
));
499 /* If we didn't change the address, we are done. Otherwise, mark
500 a reg as a pointer if we have REG or REG + CONST_INT. */
504 mark_reg_pointer (x
, BITS_PER_UNIT
);
505 else if (GET_CODE (x
) == PLUS
506 && REG_P (XEXP (x
, 0))
507 && CONST_INT_P (XEXP (x
, 1)))
508 mark_reg_pointer (XEXP (x
, 0), BITS_PER_UNIT
);
510 /* OLDX may have been the address on a temporary. Update the address
511 to indicate that X is now used. */
512 update_temp_slot_address (oldx
, x
);
517 /* Convert a mem ref into one with a valid memory address.
518 Pass through anything else unchanged. */
521 validize_mem (rtx ref
)
525 ref
= use_anchored_address (ref
);
526 if (memory_address_addr_space_p (GET_MODE (ref
), XEXP (ref
, 0),
527 MEM_ADDR_SPACE (ref
)))
530 /* Don't alter REF itself, since that is probably a stack slot. */
531 return replace_equiv_address (ref
, XEXP (ref
, 0));
534 /* If X is a memory reference to a member of an object block, try rewriting
535 it to use an anchor instead. Return the new memory reference on success
536 and the old one on failure. */
539 use_anchored_address (rtx x
)
542 HOST_WIDE_INT offset
;
545 if (!flag_section_anchors
)
551 /* Split the address into a base and offset. */
554 if (GET_CODE (base
) == CONST
555 && GET_CODE (XEXP (base
, 0)) == PLUS
556 && CONST_INT_P (XEXP (XEXP (base
, 0), 1)))
558 offset
+= INTVAL (XEXP (XEXP (base
, 0), 1));
559 base
= XEXP (XEXP (base
, 0), 0);
562 /* Check whether BASE is suitable for anchors. */
563 if (GET_CODE (base
) != SYMBOL_REF
564 || !SYMBOL_REF_HAS_BLOCK_INFO_P (base
)
565 || SYMBOL_REF_ANCHOR_P (base
)
566 || SYMBOL_REF_BLOCK (base
) == NULL
567 || !targetm
.use_anchors_for_symbol_p (base
))
570 /* Decide where BASE is going to be. */
571 place_block_symbol (base
);
573 /* Get the anchor we need to use. */
574 offset
+= SYMBOL_REF_BLOCK_OFFSET (base
);
575 base
= get_section_anchor (SYMBOL_REF_BLOCK (base
), offset
,
576 SYMBOL_REF_TLS_MODEL (base
));
578 /* Work out the offset from the anchor. */
579 offset
-= SYMBOL_REF_BLOCK_OFFSET (base
);
581 /* If we're going to run a CSE pass, force the anchor into a register.
582 We will then be able to reuse registers for several accesses, if the
583 target costs say that that's worthwhile. */
584 mode
= GET_MODE (base
);
585 if (!cse_not_expected
)
586 base
= force_reg (mode
, base
);
588 return replace_equiv_address (x
, plus_constant (mode
, base
, offset
));
591 /* Copy the value or contents of X to a new temp reg and return that reg. */
596 rtx temp
= gen_reg_rtx (GET_MODE (x
));
598 /* If not an operand, must be an address with PLUS and MULT so
599 do the computation. */
600 if (! general_operand (x
, VOIDmode
))
601 x
= force_operand (x
, temp
);
604 emit_move_insn (temp
, x
);
609 /* Like copy_to_reg but always give the new register mode Pmode
610 in case X is a constant. */
613 copy_addr_to_reg (rtx x
)
615 return copy_to_mode_reg (Pmode
, x
);
618 /* Like copy_to_reg but always give the new register mode MODE
619 in case X is a constant. */
622 copy_to_mode_reg (machine_mode mode
, rtx x
)
624 rtx temp
= gen_reg_rtx (mode
);
626 /* If not an operand, must be an address with PLUS and MULT so
627 do the computation. */
628 if (! general_operand (x
, VOIDmode
))
629 x
= force_operand (x
, temp
);
631 gcc_assert (GET_MODE (x
) == mode
|| GET_MODE (x
) == VOIDmode
);
633 emit_move_insn (temp
, x
);
637 /* Load X into a register if it is not already one.
638 Use mode MODE for the register.
639 X should be valid for mode MODE, but it may be a constant which
640 is valid for all integer modes; that's why caller must specify MODE.
642 The caller must not alter the value in the register we return,
643 since we mark it as a "constant" register. */
646 force_reg (machine_mode mode
, rtx x
)
654 if (general_operand (x
, mode
))
656 temp
= gen_reg_rtx (mode
);
657 insn
= emit_move_insn (temp
, x
);
661 temp
= force_operand (x
, NULL_RTX
);
663 insn
= get_last_insn ();
666 rtx temp2
= gen_reg_rtx (mode
);
667 insn
= emit_move_insn (temp2
, temp
);
672 /* Let optimizers know that TEMP's value never changes
673 and that X can be substituted for it. Don't get confused
674 if INSN set something else (such as a SUBREG of TEMP). */
676 && (set
= single_set (insn
)) != 0
677 && SET_DEST (set
) == temp
678 && ! rtx_equal_p (x
, SET_SRC (set
)))
679 set_unique_reg_note (insn
, REG_EQUAL
, x
);
681 /* Let optimizers know that TEMP is a pointer, and if so, the
682 known alignment of that pointer. */
685 if (GET_CODE (x
) == SYMBOL_REF
)
687 align
= BITS_PER_UNIT
;
688 if (SYMBOL_REF_DECL (x
) && DECL_P (SYMBOL_REF_DECL (x
)))
689 align
= DECL_ALIGN (SYMBOL_REF_DECL (x
));
691 else if (GET_CODE (x
) == LABEL_REF
)
692 align
= BITS_PER_UNIT
;
693 else if (GET_CODE (x
) == CONST
694 && GET_CODE (XEXP (x
, 0)) == PLUS
695 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == SYMBOL_REF
696 && CONST_INT_P (XEXP (XEXP (x
, 0), 1)))
698 rtx s
= XEXP (XEXP (x
, 0), 0);
699 rtx c
= XEXP (XEXP (x
, 0), 1);
703 if (SYMBOL_REF_DECL (s
) && DECL_P (SYMBOL_REF_DECL (s
)))
704 sa
= DECL_ALIGN (SYMBOL_REF_DECL (s
));
710 ca
= ctz_hwi (INTVAL (c
)) * BITS_PER_UNIT
;
711 align
= MIN (sa
, ca
);
715 if (align
|| (MEM_P (x
) && MEM_POINTER (x
)))
716 mark_reg_pointer (temp
, align
);
722 /* If X is a memory ref, copy its contents to a new temp reg and return
723 that reg. Otherwise, return X. */
726 force_not_mem (rtx x
)
730 if (!MEM_P (x
) || GET_MODE (x
) == BLKmode
)
733 temp
= gen_reg_rtx (GET_MODE (x
));
736 REG_POINTER (temp
) = 1;
738 emit_move_insn (temp
, x
);
742 /* Copy X to TARGET (if it's nonzero and a reg)
743 or to a new temp reg and return that reg.
744 MODE is the mode to use for X in case it is a constant. */
747 copy_to_suggested_reg (rtx x
, rtx target
, machine_mode mode
)
751 if (target
&& REG_P (target
))
754 temp
= gen_reg_rtx (mode
);
756 emit_move_insn (temp
, x
);
760 /* Return the mode to use to pass or return a scalar of TYPE and MODE.
761 PUNSIGNEDP points to the signedness of the type and may be adjusted
762 to show what signedness to use on extension operations.
764 FOR_RETURN is nonzero if the caller is promoting the return value
765 of FNDECL, else it is for promoting args. */
768 promote_function_mode (const_tree type
, machine_mode mode
, int *punsignedp
,
769 const_tree funtype
, int for_return
)
771 /* Called without a type node for a libcall. */
772 if (type
== NULL_TREE
)
774 if (INTEGRAL_MODE_P (mode
))
775 return targetm
.calls
.promote_function_mode (NULL_TREE
, mode
,
782 switch (TREE_CODE (type
))
784 case INTEGER_TYPE
: case ENUMERAL_TYPE
: case BOOLEAN_TYPE
:
785 case REAL_TYPE
: case OFFSET_TYPE
: case FIXED_POINT_TYPE
:
786 case POINTER_TYPE
: case REFERENCE_TYPE
:
787 return targetm
.calls
.promote_function_mode (type
, mode
, punsignedp
, funtype
,
794 /* Return the mode to use to store a scalar of TYPE and MODE.
795 PUNSIGNEDP points to the signedness of the type and may be adjusted
796 to show what signedness to use on extension operations. */
799 promote_mode (const_tree type ATTRIBUTE_UNUSED
, machine_mode mode
,
800 int *punsignedp ATTRIBUTE_UNUSED
)
808 /* For libcalls this is invoked without TYPE from the backends
809 TARGET_PROMOTE_FUNCTION_MODE hooks. Don't do anything in that
811 if (type
== NULL_TREE
)
814 /* FIXME: this is the same logic that was there until GCC 4.4, but we
815 probably want to test POINTERS_EXTEND_UNSIGNED even if PROMOTE_MODE
816 is not defined. The affected targets are M32C, S390, SPARC. */
818 code
= TREE_CODE (type
);
819 unsignedp
= *punsignedp
;
823 case INTEGER_TYPE
: case ENUMERAL_TYPE
: case BOOLEAN_TYPE
:
824 case REAL_TYPE
: case OFFSET_TYPE
: case FIXED_POINT_TYPE
:
825 /* Values of these types always have scalar mode. */
826 smode
= as_a
<scalar_mode
> (mode
);
827 PROMOTE_MODE (smode
, unsignedp
, type
);
828 *punsignedp
= unsignedp
;
831 #ifdef POINTERS_EXTEND_UNSIGNED
834 *punsignedp
= POINTERS_EXTEND_UNSIGNED
;
835 return targetm
.addr_space
.address_mode
836 (TYPE_ADDR_SPACE (TREE_TYPE (type
)));
848 /* Use one of promote_mode or promote_function_mode to find the promoted
849 mode of DECL. If PUNSIGNEDP is not NULL, store there the unsignedness
850 of DECL after promotion. */
853 promote_decl_mode (const_tree decl
, int *punsignedp
)
855 tree type
= TREE_TYPE (decl
);
856 int unsignedp
= TYPE_UNSIGNED (type
);
857 machine_mode mode
= DECL_MODE (decl
);
860 if (TREE_CODE (decl
) == RESULT_DECL
&& !DECL_BY_REFERENCE (decl
))
861 pmode
= promote_function_mode (type
, mode
, &unsignedp
,
862 TREE_TYPE (current_function_decl
), 1);
863 else if (TREE_CODE (decl
) == RESULT_DECL
|| TREE_CODE (decl
) == PARM_DECL
)
864 pmode
= promote_function_mode (type
, mode
, &unsignedp
,
865 TREE_TYPE (current_function_decl
), 2);
867 pmode
= promote_mode (type
, mode
, &unsignedp
);
870 *punsignedp
= unsignedp
;
874 /* Return the promoted mode for name. If it is a named SSA_NAME, it
875 is the same as promote_decl_mode. Otherwise, it is the promoted
876 mode of a temp decl of same type as the SSA_NAME, if we had created
880 promote_ssa_mode (const_tree name
, int *punsignedp
)
882 gcc_assert (TREE_CODE (name
) == SSA_NAME
);
884 /* Partitions holding parms and results must be promoted as expected
886 if (SSA_NAME_VAR (name
)
887 && (TREE_CODE (SSA_NAME_VAR (name
)) == PARM_DECL
888 || TREE_CODE (SSA_NAME_VAR (name
)) == RESULT_DECL
))
890 machine_mode mode
= promote_decl_mode (SSA_NAME_VAR (name
), punsignedp
);
895 tree type
= TREE_TYPE (name
);
896 int unsignedp
= TYPE_UNSIGNED (type
);
897 machine_mode pmode
= promote_mode (type
, TYPE_MODE (type
), &unsignedp
);
899 *punsignedp
= unsignedp
;
906 /* Controls the behavior of {anti_,}adjust_stack. */
907 static bool suppress_reg_args_size
;
909 /* A helper for adjust_stack and anti_adjust_stack. */
912 adjust_stack_1 (rtx adjust
, bool anti_p
)
917 /* Hereafter anti_p means subtract_p. */
918 if (!STACK_GROWS_DOWNWARD
)
921 temp
= expand_binop (Pmode
,
922 anti_p
? sub_optab
: add_optab
,
923 stack_pointer_rtx
, adjust
, stack_pointer_rtx
, 0,
926 if (temp
!= stack_pointer_rtx
)
927 insn
= emit_move_insn (stack_pointer_rtx
, temp
);
930 insn
= get_last_insn ();
931 temp
= single_set (insn
);
932 gcc_assert (temp
!= NULL
&& SET_DEST (temp
) == stack_pointer_rtx
);
935 if (!suppress_reg_args_size
)
936 add_args_size_note (insn
, stack_pointer_delta
);
939 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
940 This pops when ADJUST is positive. ADJUST need not be constant. */
943 adjust_stack (rtx adjust
)
945 if (adjust
== const0_rtx
)
948 /* We expect all variable sized adjustments to be multiple of
949 PREFERRED_STACK_BOUNDARY. */
950 poly_int64 const_adjust
;
951 if (poly_int_rtx_p (adjust
, &const_adjust
))
952 stack_pointer_delta
-= const_adjust
;
954 adjust_stack_1 (adjust
, false);
957 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
958 This pushes when ADJUST is positive. ADJUST need not be constant. */
961 anti_adjust_stack (rtx adjust
)
963 if (adjust
== const0_rtx
)
966 /* We expect all variable sized adjustments to be multiple of
967 PREFERRED_STACK_BOUNDARY. */
968 poly_int64 const_adjust
;
969 if (poly_int_rtx_p (adjust
, &const_adjust
))
970 stack_pointer_delta
+= const_adjust
;
972 adjust_stack_1 (adjust
, true);
975 /* Round the size of a block to be pushed up to the boundary required
976 by this machine. SIZE is the desired size, which need not be constant. */
979 round_push (rtx size
)
981 rtx align_rtx
, alignm1_rtx
;
983 if (!SUPPORTS_STACK_ALIGNMENT
984 || crtl
->preferred_stack_boundary
== MAX_SUPPORTED_STACK_ALIGNMENT
)
986 int align
= crtl
->preferred_stack_boundary
/ BITS_PER_UNIT
;
991 if (CONST_INT_P (size
))
993 HOST_WIDE_INT new_size
= (INTVAL (size
) + align
- 1) / align
* align
;
995 if (INTVAL (size
) != new_size
)
996 size
= GEN_INT (new_size
);
1000 align_rtx
= GEN_INT (align
);
1001 alignm1_rtx
= GEN_INT (align
- 1);
1005 /* If crtl->preferred_stack_boundary might still grow, use
1006 virtual_preferred_stack_boundary_rtx instead. This will be
1007 substituted by the right value in vregs pass and optimized
1009 align_rtx
= virtual_preferred_stack_boundary_rtx
;
1010 alignm1_rtx
= force_operand (plus_constant (Pmode
, align_rtx
, -1),
1014 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1015 but we know it can't. So add ourselves and then do
1017 size
= expand_binop (Pmode
, add_optab
, size
, alignm1_rtx
,
1018 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1019 size
= expand_divmod (0, TRUNC_DIV_EXPR
, Pmode
, size
, align_rtx
,
1021 size
= expand_mult (Pmode
, size
, align_rtx
, NULL_RTX
, 1);
1026 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
1027 to a previously-created save area. If no save area has been allocated,
1028 this function will allocate one. If a save area is specified, it
1029 must be of the proper mode. */
1032 emit_stack_save (enum save_level save_level
, rtx
*psave
)
1035 /* The default is that we use a move insn and save in a Pmode object. */
1036 rtx_insn
*(*fcn
) (rtx
, rtx
) = gen_move_insn
;
1037 machine_mode mode
= STACK_SAVEAREA_MODE (save_level
);
1039 /* See if this machine has anything special to do for this kind of save. */
1043 if (targetm
.have_save_stack_block ())
1044 fcn
= targetm
.gen_save_stack_block
;
1047 if (targetm
.have_save_stack_function ())
1048 fcn
= targetm
.gen_save_stack_function
;
1051 if (targetm
.have_save_stack_nonlocal ())
1052 fcn
= targetm
.gen_save_stack_nonlocal
;
1058 /* If there is no save area and we have to allocate one, do so. Otherwise
1059 verify the save area is the proper mode. */
1063 if (mode
!= VOIDmode
)
1065 if (save_level
== SAVE_NONLOCAL
)
1066 *psave
= sa
= assign_stack_local (mode
, GET_MODE_SIZE (mode
), 0);
1068 *psave
= sa
= gen_reg_rtx (mode
);
1072 do_pending_stack_adjust ();
1074 sa
= validize_mem (sa
);
1075 emit_insn (fcn (sa
, stack_pointer_rtx
));
1078 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
1079 area made by emit_stack_save. If it is zero, we have nothing to do. */
1082 emit_stack_restore (enum save_level save_level
, rtx sa
)
1084 /* The default is that we use a move insn. */
1085 rtx_insn
*(*fcn
) (rtx
, rtx
) = gen_move_insn
;
1087 /* If stack_realign_drap, the x86 backend emits a prologue that aligns both
1088 STACK_POINTER and HARD_FRAME_POINTER.
1089 If stack_realign_fp, the x86 backend emits a prologue that aligns only
1090 STACK_POINTER. This renders the HARD_FRAME_POINTER unusable for accessing
1091 aligned variables, which is reflected in ix86_can_eliminate.
1092 We normally still have the realigned STACK_POINTER that we can use.
1093 But if there is a stack restore still present at reload, it can trigger
1094 mark_not_eliminable for the STACK_POINTER, leaving no way to eliminate
1095 FRAME_POINTER into a hard reg.
1096 To prevent this situation, we force need_drap if we emit a stack
1098 if (SUPPORTS_STACK_ALIGNMENT
)
1099 crtl
->need_drap
= true;
1101 /* See if this machine has anything special to do for this kind of save. */
1105 if (targetm
.have_restore_stack_block ())
1106 fcn
= targetm
.gen_restore_stack_block
;
1109 if (targetm
.have_restore_stack_function ())
1110 fcn
= targetm
.gen_restore_stack_function
;
1113 if (targetm
.have_restore_stack_nonlocal ())
1114 fcn
= targetm
.gen_restore_stack_nonlocal
;
1122 sa
= validize_mem (sa
);
1123 /* These clobbers prevent the scheduler from moving
1124 references to variable arrays below the code
1125 that deletes (pops) the arrays. */
1126 emit_clobber (gen_rtx_MEM (BLKmode
, gen_rtx_SCRATCH (VOIDmode
)));
1127 emit_clobber (gen_rtx_MEM (BLKmode
, stack_pointer_rtx
));
1130 discard_pending_stack_adjust ();
1132 emit_insn (fcn (stack_pointer_rtx
, sa
));
1135 /* Invoke emit_stack_save on the nonlocal_goto_save_area for the current
1136 function. This should be called whenever we allocate or deallocate
1137 dynamic stack space. */
1140 update_nonlocal_goto_save_area (void)
1145 /* The nonlocal_goto_save_area object is an array of N pointers. The
1146 first one is used for the frame pointer save; the rest are sized by
1147 STACK_SAVEAREA_MODE. Create a reference to array index 1, the first
1148 of the stack save area slots. */
1149 t_save
= build4 (ARRAY_REF
,
1150 TREE_TYPE (TREE_TYPE (cfun
->nonlocal_goto_save_area
)),
1151 cfun
->nonlocal_goto_save_area
,
1152 integer_one_node
, NULL_TREE
, NULL_TREE
);
1153 r_save
= expand_expr (t_save
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
1155 emit_stack_save (SAVE_NONLOCAL
, &r_save
);
1158 /* Record a new stack level for the current function. This should be called
1159 whenever we allocate or deallocate dynamic stack space. */
1162 record_new_stack_level (void)
1164 /* Record the new stack level for nonlocal gotos. */
1165 if (cfun
->nonlocal_goto_save_area
)
1166 update_nonlocal_goto_save_area ();
1168 /* Record the new stack level for SJLJ exceptions. */
1169 if (targetm_common
.except_unwind_info (&global_options
) == UI_SJLJ
)
1170 update_sjlj_context ();
1173 /* Return an rtx doing runtime alignment to REQUIRED_ALIGN on TARGET. */
1176 align_dynamic_address (rtx target
, unsigned required_align
)
1178 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1179 but we know it can't. So add ourselves and then do
1181 target
= expand_binop (Pmode
, add_optab
, target
,
1182 gen_int_mode (required_align
/ BITS_PER_UNIT
- 1,
1184 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1185 target
= expand_divmod (0, TRUNC_DIV_EXPR
, Pmode
, target
,
1186 gen_int_mode (required_align
/ BITS_PER_UNIT
,
1189 target
= expand_mult (Pmode
, target
,
1190 gen_int_mode (required_align
/ BITS_PER_UNIT
,
1197 /* Return an rtx through *PSIZE, representing the size of an area of memory to
1198 be dynamically pushed on the stack.
1200 *PSIZE is an rtx representing the size of the area.
1202 SIZE_ALIGN is the alignment (in bits) that we know SIZE has. This
1203 parameter may be zero. If so, a proper value will be extracted
1204 from SIZE if it is constant, otherwise BITS_PER_UNIT will be assumed.
1206 REQUIRED_ALIGN is the alignment (in bits) required for the region
1209 If PSTACK_USAGE_SIZE is not NULL it points to a value that is increased for
1210 the additional size returned. */
1212 get_dynamic_stack_size (rtx
*psize
, unsigned size_align
,
1213 unsigned required_align
,
1214 HOST_WIDE_INT
*pstack_usage_size
)
1218 /* Ensure the size is in the proper mode. */
1219 if (GET_MODE (size
) != VOIDmode
&& GET_MODE (size
) != Pmode
)
1220 size
= convert_to_mode (Pmode
, size
, 1);
1222 if (CONST_INT_P (size
))
1224 unsigned HOST_WIDE_INT lsb
;
1226 lsb
= INTVAL (size
);
1229 /* Watch out for overflow truncating to "unsigned". */
1230 if (lsb
> UINT_MAX
/ BITS_PER_UNIT
)
1231 size_align
= 1u << (HOST_BITS_PER_INT
- 1);
1233 size_align
= (unsigned)lsb
* BITS_PER_UNIT
;
1235 else if (size_align
< BITS_PER_UNIT
)
1236 size_align
= BITS_PER_UNIT
;
1238 /* We can't attempt to minimize alignment necessary, because we don't
1239 know the final value of preferred_stack_boundary yet while executing
1241 if (crtl
->preferred_stack_boundary
< PREFERRED_STACK_BOUNDARY
)
1242 crtl
->preferred_stack_boundary
= PREFERRED_STACK_BOUNDARY
;
1244 /* We will need to ensure that the address we return is aligned to
1245 REQUIRED_ALIGN. At this point in the compilation, we don't always
1246 know the final value of the STACK_DYNAMIC_OFFSET used in function.c
1247 (it might depend on the size of the outgoing parameter lists, for
1248 example), so we must preventively align the value. We leave space
1249 in SIZE for the hole that might result from the alignment operation. */
1251 unsigned known_align
= REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM
);
1252 if (known_align
== 0)
1253 known_align
= BITS_PER_UNIT
;
1254 if (required_align
> known_align
)
1256 unsigned extra
= (required_align
- known_align
) / BITS_PER_UNIT
;
1257 size
= plus_constant (Pmode
, size
, extra
);
1258 size
= force_operand (size
, NULL_RTX
);
1259 if (size_align
> known_align
)
1260 size_align
= known_align
;
1262 if (flag_stack_usage_info
&& pstack_usage_size
)
1263 *pstack_usage_size
+= extra
;
1266 /* Round the size to a multiple of the required stack alignment.
1267 Since the stack is presumed to be rounded before this allocation,
1268 this will maintain the required alignment.
1270 If the stack grows downward, we could save an insn by subtracting
1271 SIZE from the stack pointer and then aligning the stack pointer.
1272 The problem with this is that the stack pointer may be unaligned
1273 between the execution of the subtraction and alignment insns and
1274 some machines do not allow this. Even on those that do, some
1275 signal handlers malfunction if a signal should occur between those
1276 insns. Since this is an extremely rare event, we have no reliable
1277 way of knowing which systems have this problem. So we avoid even
1278 momentarily mis-aligning the stack. */
1279 if (size_align
% MAX_SUPPORTED_STACK_ALIGNMENT
!= 0)
1281 size
= round_push (size
);
1283 if (flag_stack_usage_info
&& pstack_usage_size
)
1285 int align
= crtl
->preferred_stack_boundary
/ BITS_PER_UNIT
;
1286 *pstack_usage_size
=
1287 (*pstack_usage_size
+ align
- 1) / align
* align
;
1294 /* Return the number of bytes to "protect" on the stack for -fstack-check.
1296 "protect" in the context of -fstack-check means how many bytes we
1297 should always ensure are available on the stack. More importantly
1298 this is how many bytes are skipped when probing the stack.
1300 On some targets we want to reuse the -fstack-check prologue support
1301 to give a degree of protection against stack clashing style attacks.
1303 In that scenario we do not want to skip bytes before probing as that
1304 would render the stack clash protections useless.
1306 So we never use STACK_CHECK_PROTECT directly. Instead we indirect though
1307 this helper which allows us to provide different values for
1308 -fstack-check and -fstack-clash-protection. */
1310 get_stack_check_protect (void)
1312 if (flag_stack_clash_protection
)
1314 return STACK_CHECK_PROTECT
;
1317 /* Return an rtx representing the address of an area of memory dynamically
1318 pushed on the stack.
1320 Any required stack pointer alignment is preserved.
1322 SIZE is an rtx representing the size of the area.
1324 SIZE_ALIGN is the alignment (in bits) that we know SIZE has. This
1325 parameter may be zero. If so, a proper value will be extracted
1326 from SIZE if it is constant, otherwise BITS_PER_UNIT will be assumed.
1328 REQUIRED_ALIGN is the alignment (in bits) required for the region
1331 MAX_SIZE is an upper bound for SIZE, if SIZE is not constant, or -1 if
1332 no such upper bound is known.
1334 If CANNOT_ACCUMULATE is set to TRUE, the caller guarantees that the
1335 stack space allocated by the generated code cannot be added with itself
1336 in the course of the execution of the function. It is always safe to
1337 pass FALSE here and the following criterion is sufficient in order to
1338 pass TRUE: every path in the CFG that starts at the allocation point and
1339 loops to it executes the associated deallocation code. */
1342 allocate_dynamic_stack_space (rtx size
, unsigned size_align
,
1343 unsigned required_align
,
1344 HOST_WIDE_INT max_size
,
1345 bool cannot_accumulate
)
1347 HOST_WIDE_INT stack_usage_size
= -1;
1348 rtx_code_label
*final_label
;
1349 rtx final_target
, target
;
1351 /* If we're asking for zero bytes, it doesn't matter what we point
1352 to since we can't dereference it. But return a reasonable
1354 if (size
== const0_rtx
)
1355 return virtual_stack_dynamic_rtx
;
1357 /* Otherwise, show we're calling alloca or equivalent. */
1358 cfun
->calls_alloca
= 1;
1360 /* If stack usage info is requested, look into the size we are passed.
1361 We need to do so this early to avoid the obfuscation that may be
1362 introduced later by the various alignment operations. */
1363 if (flag_stack_usage_info
)
1365 if (CONST_INT_P (size
))
1366 stack_usage_size
= INTVAL (size
);
1367 else if (REG_P (size
))
1369 /* Look into the last emitted insn and see if we can deduce
1370 something for the register. */
1373 insn
= get_last_insn ();
1374 if ((set
= single_set (insn
)) && rtx_equal_p (SET_DEST (set
), size
))
1376 if (CONST_INT_P (SET_SRC (set
)))
1377 stack_usage_size
= INTVAL (SET_SRC (set
));
1378 else if ((note
= find_reg_equal_equiv_note (insn
))
1379 && CONST_INT_P (XEXP (note
, 0)))
1380 stack_usage_size
= INTVAL (XEXP (note
, 0));
1384 /* If the size is not constant, try the maximum size. */
1385 if (stack_usage_size
< 0)
1386 stack_usage_size
= max_size
;
1388 /* If the size is still not constant, we can't say anything. */
1389 if (stack_usage_size
< 0)
1391 current_function_has_unbounded_dynamic_stack_size
= 1;
1392 stack_usage_size
= 0;
1396 get_dynamic_stack_size (&size
, size_align
, required_align
, &stack_usage_size
);
1398 target
= gen_reg_rtx (Pmode
);
1400 /* The size is supposed to be fully adjusted at this point so record it
1401 if stack usage info is requested. */
1402 if (flag_stack_usage_info
)
1404 current_function_dynamic_stack_size
+= stack_usage_size
;
1406 /* ??? This is gross but the only safe stance in the absence
1407 of stack usage oriented flow analysis. */
1408 if (!cannot_accumulate
)
1409 current_function_has_unbounded_dynamic_stack_size
= 1;
1412 do_pending_stack_adjust ();
1415 final_target
= NULL_RTX
;
1417 /* If we are splitting the stack, we need to ask the backend whether
1418 there is enough room on the current stack. If there isn't, or if
1419 the backend doesn't know how to tell is, then we need to call a
1420 function to allocate memory in some other way. This memory will
1421 be released when we release the current stack segment. The
1422 effect is that stack allocation becomes less efficient, but at
1423 least it doesn't cause a stack overflow. */
1424 if (flag_split_stack
)
1426 rtx_code_label
*available_label
;
1427 rtx ask
, space
, func
;
1429 available_label
= NULL
;
1431 if (targetm
.have_split_stack_space_check ())
1433 available_label
= gen_label_rtx ();
1435 /* This instruction will branch to AVAILABLE_LABEL if there
1436 are SIZE bytes available on the stack. */
1437 emit_insn (targetm
.gen_split_stack_space_check
1438 (size
, available_label
));
1441 /* The __morestack_allocate_stack_space function will allocate
1442 memory using malloc. If the alignment of the memory returned
1443 by malloc does not meet REQUIRED_ALIGN, we increase SIZE to
1444 make sure we allocate enough space. */
1445 if (MALLOC_ABI_ALIGNMENT
>= required_align
)
1448 ask
= expand_binop (Pmode
, add_optab
, size
,
1449 gen_int_mode (required_align
/ BITS_PER_UNIT
- 1,
1451 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1453 func
= init_one_libfunc ("__morestack_allocate_stack_space");
1455 space
= emit_library_call_value (func
, target
, LCT_NORMAL
, Pmode
,
1458 if (available_label
== NULL_RTX
)
1461 final_target
= gen_reg_rtx (Pmode
);
1463 emit_move_insn (final_target
, space
);
1465 final_label
= gen_label_rtx ();
1466 emit_jump (final_label
);
1468 emit_label (available_label
);
1471 /* We ought to be called always on the toplevel and stack ought to be aligned
1473 gcc_assert (multiple_p (stack_pointer_delta
,
1474 PREFERRED_STACK_BOUNDARY
/ BITS_PER_UNIT
));
1476 /* If needed, check that we have the required amount of stack. Take into
1477 account what has already been checked. */
1478 if (STACK_CHECK_MOVING_SP
)
1480 else if (flag_stack_check
== GENERIC_STACK_CHECK
)
1481 probe_stack_range (STACK_OLD_CHECK_PROTECT
+ STACK_CHECK_MAX_FRAME_SIZE
,
1483 else if (flag_stack_check
== STATIC_BUILTIN_STACK_CHECK
)
1484 probe_stack_range (get_stack_check_protect (), size
);
1486 /* Don't let anti_adjust_stack emit notes. */
1487 suppress_reg_args_size
= true;
1489 /* Perform the required allocation from the stack. Some systems do
1490 this differently than simply incrementing/decrementing from the
1491 stack pointer, such as acquiring the space by calling malloc(). */
1492 if (targetm
.have_allocate_stack ())
1494 class expand_operand ops
[2];
1495 /* We don't have to check against the predicate for operand 0 since
1496 TARGET is known to be a pseudo of the proper mode, which must
1497 be valid for the operand. */
1498 create_fixed_operand (&ops
[0], target
);
1499 create_convert_operand_to (&ops
[1], size
, STACK_SIZE_MODE
, true);
1500 expand_insn (targetm
.code_for_allocate_stack
, 2, ops
);
1504 poly_int64 saved_stack_pointer_delta
;
1506 if (!STACK_GROWS_DOWNWARD
)
1507 emit_move_insn (target
, virtual_stack_dynamic_rtx
);
1509 /* Check stack bounds if necessary. */
1510 if (crtl
->limit_stack
)
1513 rtx_code_label
*space_available
= gen_label_rtx ();
1514 if (STACK_GROWS_DOWNWARD
)
1515 available
= expand_binop (Pmode
, sub_optab
,
1516 stack_pointer_rtx
, stack_limit_rtx
,
1517 NULL_RTX
, 1, OPTAB_WIDEN
);
1519 available
= expand_binop (Pmode
, sub_optab
,
1520 stack_limit_rtx
, stack_pointer_rtx
,
1521 NULL_RTX
, 1, OPTAB_WIDEN
);
1523 emit_cmp_and_jump_insns (available
, size
, GEU
, NULL_RTX
, Pmode
, 1,
1525 if (targetm
.have_trap ())
1526 emit_insn (targetm
.gen_trap ());
1528 error ("stack limits not supported on this target");
1530 emit_label (space_available
);
1533 saved_stack_pointer_delta
= stack_pointer_delta
;
1535 if (flag_stack_check
&& STACK_CHECK_MOVING_SP
)
1536 anti_adjust_stack_and_probe (size
, false);
1537 else if (flag_stack_clash_protection
)
1538 anti_adjust_stack_and_probe_stack_clash (size
);
1540 anti_adjust_stack (size
);
1542 /* Even if size is constant, don't modify stack_pointer_delta.
1543 The constant size alloca should preserve
1544 crtl->preferred_stack_boundary alignment. */
1545 stack_pointer_delta
= saved_stack_pointer_delta
;
1547 if (STACK_GROWS_DOWNWARD
)
1548 emit_move_insn (target
, virtual_stack_dynamic_rtx
);
1551 suppress_reg_args_size
= false;
1553 /* Finish up the split stack handling. */
1554 if (final_label
!= NULL_RTX
)
1556 gcc_assert (flag_split_stack
);
1557 emit_move_insn (final_target
, target
);
1558 emit_label (final_label
);
1559 target
= final_target
;
1562 target
= align_dynamic_address (target
, required_align
);
1564 /* Now that we've committed to a return value, mark its alignment. */
1565 mark_reg_pointer (target
, required_align
);
1567 /* Record the new stack level. */
1568 record_new_stack_level ();
1573 /* Return an rtx representing the address of an area of memory already
1574 statically pushed onto the stack in the virtual stack vars area. (It is
1575 assumed that the area is allocated in the function prologue.)
1577 Any required stack pointer alignment is preserved.
1579 OFFSET is the offset of the area into the virtual stack vars area.
1581 REQUIRED_ALIGN is the alignment (in bits) required for the region
1585 get_dynamic_stack_base (poly_int64 offset
, unsigned required_align
)
1589 if (crtl
->preferred_stack_boundary
< PREFERRED_STACK_BOUNDARY
)
1590 crtl
->preferred_stack_boundary
= PREFERRED_STACK_BOUNDARY
;
1592 target
= gen_reg_rtx (Pmode
);
1593 emit_move_insn (target
, virtual_stack_vars_rtx
);
1594 target
= expand_binop (Pmode
, add_optab
, target
,
1595 gen_int_mode (offset
, Pmode
),
1596 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1597 target
= align_dynamic_address (target
, required_align
);
1599 /* Now that we've committed to a return value, mark its alignment. */
1600 mark_reg_pointer (target
, required_align
);
1605 /* A front end may want to override GCC's stack checking by providing a
1606 run-time routine to call to check the stack, so provide a mechanism for
1607 calling that routine. */
1609 static GTY(()) rtx stack_check_libfunc
;
1612 set_stack_check_libfunc (const char *libfunc_name
)
1614 gcc_assert (stack_check_libfunc
== NULL_RTX
);
1615 stack_check_libfunc
= gen_rtx_SYMBOL_REF (Pmode
, libfunc_name
);
1616 tree decl
= build_decl (UNKNOWN_LOCATION
, FUNCTION_DECL
,
1617 get_identifier (libfunc_name
), void_type_node
);
1618 DECL_EXTERNAL (decl
) = 1;
1619 SET_SYMBOL_REF_DECL (stack_check_libfunc
, decl
);
1622 /* Emit one stack probe at ADDRESS, an address within the stack. */
1625 emit_stack_probe (rtx address
)
1627 if (targetm
.have_probe_stack_address ())
1629 class expand_operand ops
[1];
1630 insn_code icode
= targetm
.code_for_probe_stack_address
;
1631 create_address_operand (ops
, address
);
1632 maybe_legitimize_operands (icode
, 0, 1, ops
);
1633 expand_insn (icode
, 1, ops
);
1637 rtx memref
= gen_rtx_MEM (word_mode
, address
);
1639 MEM_VOLATILE_P (memref
) = 1;
1640 memref
= validize_mem (memref
);
1642 /* See if we have an insn to probe the stack. */
1643 if (targetm
.have_probe_stack ())
1644 emit_insn (targetm
.gen_probe_stack (memref
));
1646 emit_move_insn (memref
, const0_rtx
);
1650 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1651 FIRST is a constant and size is a Pmode RTX. These are offsets from
1652 the current stack pointer. STACK_GROWS_DOWNWARD says whether to add
1653 or subtract them from the stack pointer. */
1655 #define PROBE_INTERVAL (1 << STACK_CHECK_PROBE_INTERVAL_EXP)
1657 #if STACK_GROWS_DOWNWARD
1658 #define STACK_GROW_OP MINUS
1659 #define STACK_GROW_OPTAB sub_optab
1660 #define STACK_GROW_OFF(off) -(off)
1662 #define STACK_GROW_OP PLUS
1663 #define STACK_GROW_OPTAB add_optab
1664 #define STACK_GROW_OFF(off) (off)
1668 probe_stack_range (HOST_WIDE_INT first
, rtx size
)
1670 /* First ensure SIZE is Pmode. */
1671 if (GET_MODE (size
) != VOIDmode
&& GET_MODE (size
) != Pmode
)
1672 size
= convert_to_mode (Pmode
, size
, 1);
1674 /* Next see if we have a function to check the stack. */
1675 if (stack_check_libfunc
)
1677 rtx addr
= memory_address (Pmode
,
1678 gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1680 plus_constant (Pmode
,
1682 emit_library_call (stack_check_libfunc
, LCT_THROW
, VOIDmode
,
1686 /* Next see if we have an insn to check the stack. */
1687 else if (targetm
.have_check_stack ())
1689 class expand_operand ops
[1];
1690 rtx addr
= memory_address (Pmode
,
1691 gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1693 plus_constant (Pmode
,
1696 create_input_operand (&ops
[0], addr
, Pmode
);
1697 success
= maybe_expand_insn (targetm
.code_for_check_stack
, 1, ops
);
1698 gcc_assert (success
);
1701 /* Otherwise we have to generate explicit probes. If we have a constant
1702 small number of them to generate, that's the easy case. */
1703 else if (CONST_INT_P (size
) && INTVAL (size
) < 7 * PROBE_INTERVAL
)
1705 HOST_WIDE_INT isize
= INTVAL (size
), i
;
1708 /* Probe at FIRST + N * PROBE_INTERVAL for values of N from 1 until
1709 it exceeds SIZE. If only one probe is needed, this will not
1710 generate any code. Then probe at FIRST + SIZE. */
1711 for (i
= PROBE_INTERVAL
; i
< isize
; i
+= PROBE_INTERVAL
)
1713 addr
= memory_address (Pmode
,
1714 plus_constant (Pmode
, stack_pointer_rtx
,
1715 STACK_GROW_OFF (first
+ i
)));
1716 emit_stack_probe (addr
);
1719 addr
= memory_address (Pmode
,
1720 plus_constant (Pmode
, stack_pointer_rtx
,
1721 STACK_GROW_OFF (first
+ isize
)));
1722 emit_stack_probe (addr
);
1725 /* In the variable case, do the same as above, but in a loop. Note that we
1726 must be extra careful with variables wrapping around because we might be
1727 at the very top (or the very bottom) of the address space and we have to
1728 be able to handle this case properly; in particular, we use an equality
1729 test for the loop condition. */
1732 rtx rounded_size
, rounded_size_op
, test_addr
, last_addr
, temp
;
1733 rtx_code_label
*loop_lab
= gen_label_rtx ();
1734 rtx_code_label
*end_lab
= gen_label_rtx ();
1736 /* Step 1: round SIZE to the previous multiple of the interval. */
1738 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
1740 = simplify_gen_binary (AND
, Pmode
, size
,
1741 gen_int_mode (-PROBE_INTERVAL
, Pmode
));
1742 rounded_size_op
= force_operand (rounded_size
, NULL_RTX
);
1745 /* Step 2: compute initial and final value of the loop counter. */
1747 /* TEST_ADDR = SP + FIRST. */
1748 test_addr
= force_operand (gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1750 gen_int_mode (first
, Pmode
)),
1753 /* LAST_ADDR = SP + FIRST + ROUNDED_SIZE. */
1754 last_addr
= force_operand (gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1756 rounded_size_op
), NULL_RTX
);
1761 while (TEST_ADDR != LAST_ADDR)
1763 TEST_ADDR = TEST_ADDR + PROBE_INTERVAL
1767 probes at FIRST + N * PROBE_INTERVAL for values of N from 1
1768 until it is equal to ROUNDED_SIZE. */
1770 emit_label (loop_lab
);
1772 /* Jump to END_LAB if TEST_ADDR == LAST_ADDR. */
1773 emit_cmp_and_jump_insns (test_addr
, last_addr
, EQ
, NULL_RTX
, Pmode
, 1,
1776 /* TEST_ADDR = TEST_ADDR + PROBE_INTERVAL. */
1777 temp
= expand_binop (Pmode
, STACK_GROW_OPTAB
, test_addr
,
1778 gen_int_mode (PROBE_INTERVAL
, Pmode
), test_addr
,
1781 gcc_assert (temp
== test_addr
);
1783 /* Probe at TEST_ADDR. */
1784 emit_stack_probe (test_addr
);
1786 emit_jump (loop_lab
);
1788 emit_label (end_lab
);
1791 /* Step 4: probe at FIRST + SIZE if we cannot assert at compile-time
1792 that SIZE is equal to ROUNDED_SIZE. */
1794 /* TEMP = SIZE - ROUNDED_SIZE. */
1795 temp
= simplify_gen_binary (MINUS
, Pmode
, size
, rounded_size
);
1796 if (temp
!= const0_rtx
)
1800 if (CONST_INT_P (temp
))
1802 /* Use [base + disp} addressing mode if supported. */
1803 HOST_WIDE_INT offset
= INTVAL (temp
);
1804 addr
= memory_address (Pmode
,
1805 plus_constant (Pmode
, last_addr
,
1806 STACK_GROW_OFF (offset
)));
1810 /* Manual CSE if the difference is not known at compile-time. */
1811 temp
= gen_rtx_MINUS (Pmode
, size
, rounded_size_op
);
1812 addr
= memory_address (Pmode
,
1813 gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1817 emit_stack_probe (addr
);
1821 /* Make sure nothing is scheduled before we are done. */
1822 emit_insn (gen_blockage ());
1825 /* Compute parameters for stack clash probing a dynamic stack
1826 allocation of SIZE bytes.
1828 We compute ROUNDED_SIZE, LAST_ADDR, RESIDUAL and PROBE_INTERVAL.
1830 Additionally we conditionally dump the type of probing that will
1831 be needed given the values computed. */
1834 compute_stack_clash_protection_loop_data (rtx
*rounded_size
, rtx
*last_addr
,
1836 HOST_WIDE_INT
*probe_interval
,
1839 /* Round SIZE down to STACK_CLASH_PROTECTION_PROBE_INTERVAL */
1841 = 1 << param_stack_clash_protection_probe_interval
;
1842 *rounded_size
= simplify_gen_binary (AND
, Pmode
, size
,
1843 GEN_INT (-*probe_interval
));
1845 /* Compute the value of the stack pointer for the last iteration.
1846 It's just SP + ROUNDED_SIZE. */
1847 rtx rounded_size_op
= force_operand (*rounded_size
, NULL_RTX
);
1848 *last_addr
= force_operand (gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1853 /* Compute any residuals not allocated by the loop above. Residuals
1854 are just the ROUNDED_SIZE - SIZE. */
1855 *residual
= simplify_gen_binary (MINUS
, Pmode
, size
, *rounded_size
);
1857 /* Dump key information to make writing tests easy. */
1860 if (*rounded_size
== CONST0_RTX (Pmode
))
1862 "Stack clash skipped dynamic allocation and probing loop.\n");
1863 else if (CONST_INT_P (*rounded_size
)
1864 && INTVAL (*rounded_size
) <= 4 * *probe_interval
)
1866 "Stack clash dynamic allocation and probing inline.\n");
1867 else if (CONST_INT_P (*rounded_size
))
1869 "Stack clash dynamic allocation and probing in "
1873 "Stack clash dynamic allocation and probing in loop.\n");
1875 if (*residual
!= CONST0_RTX (Pmode
))
1877 "Stack clash dynamic allocation and probing residuals.\n");
1880 "Stack clash skipped dynamic allocation and "
1881 "probing residuals.\n");
1885 /* Emit the start of an allocate/probe loop for stack
1888 LOOP_LAB and END_LAB are returned for use when we emit the
1891 LAST addr is the value for SP which stops the loop. */
1893 emit_stack_clash_protection_probe_loop_start (rtx
*loop_lab
,
1898 /* Essentially we want to emit any setup code, the top of loop
1899 label and the comparison at the top of the loop. */
1900 *loop_lab
= gen_label_rtx ();
1901 *end_lab
= gen_label_rtx ();
1903 emit_label (*loop_lab
);
1905 emit_cmp_and_jump_insns (stack_pointer_rtx
, last_addr
, EQ
, NULL_RTX
,
1906 Pmode
, 1, *end_lab
);
1909 /* Emit the end of a stack clash probing loop.
1911 This consists of just the jump back to LOOP_LAB and
1912 emitting END_LOOP after the loop. */
1915 emit_stack_clash_protection_probe_loop_end (rtx loop_lab
, rtx end_loop
,
1916 rtx last_addr
, bool rotated
)
1919 emit_cmp_and_jump_insns (stack_pointer_rtx
, last_addr
, NE
, NULL_RTX
,
1920 Pmode
, 1, loop_lab
);
1922 emit_jump (loop_lab
);
1924 emit_label (end_loop
);
1928 /* Adjust the stack pointer by minus SIZE (an rtx for a number of bytes)
1929 while probing it. This pushes when SIZE is positive. SIZE need not
1932 This is subtly different than anti_adjust_stack_and_probe to try and
1933 prevent stack-clash attacks
1935 1. It must assume no knowledge of the probing state, any allocation
1938 Consider the case of a 1 byte alloca in a loop. If the sum of the
1939 allocations is large, then this could be used to jump the guard if
1940 probes were not emitted.
1942 2. It never skips probes, whereas anti_adjust_stack_and_probe will
1943 skip probes on the first couple PROBE_INTERVALs on the assumption
1944 they're done elsewhere.
1946 3. It only allocates and probes SIZE bytes, it does not need to
1947 allocate/probe beyond that because this probing style does not
1948 guarantee signal handling capability if the guard is hit. */
1951 anti_adjust_stack_and_probe_stack_clash (rtx size
)
1953 /* First ensure SIZE is Pmode. */
1954 if (GET_MODE (size
) != VOIDmode
&& GET_MODE (size
) != Pmode
)
1955 size
= convert_to_mode (Pmode
, size
, 1);
1957 /* We can get here with a constant size on some targets. */
1958 rtx rounded_size
, last_addr
, residual
;
1959 HOST_WIDE_INT probe_interval
, probe_range
;
1960 bool target_probe_range_p
= false;
1961 compute_stack_clash_protection_loop_data (&rounded_size
, &last_addr
,
1962 &residual
, &probe_interval
, size
);
1964 /* Get the back-end specific probe ranges. */
1965 probe_range
= targetm
.stack_clash_protection_alloca_probe_range ();
1966 target_probe_range_p
= probe_range
!= 0;
1967 gcc_assert (probe_range
>= 0);
1969 /* If no back-end specific range defined, default to the top of the newly
1971 if (probe_range
== 0)
1972 probe_range
= probe_interval
- GET_MODE_SIZE (word_mode
);
1974 if (rounded_size
!= CONST0_RTX (Pmode
))
1976 if (CONST_INT_P (rounded_size
)
1977 && INTVAL (rounded_size
) <= 4 * probe_interval
)
1979 for (HOST_WIDE_INT i
= 0;
1980 i
< INTVAL (rounded_size
);
1981 i
+= probe_interval
)
1983 anti_adjust_stack (GEN_INT (probe_interval
));
1984 /* The prologue does not probe residuals. Thus the offset
1985 here to probe just beyond what the prologue had already
1987 emit_stack_probe (plus_constant (Pmode
, stack_pointer_rtx
,
1990 emit_insn (gen_blockage ());
1995 rtx loop_lab
, end_loop
;
1996 bool rotate_loop
= CONST_INT_P (rounded_size
);
1997 emit_stack_clash_protection_probe_loop_start (&loop_lab
, &end_loop
,
1998 last_addr
, rotate_loop
);
2000 anti_adjust_stack (GEN_INT (probe_interval
));
2002 /* The prologue does not probe residuals. Thus the offset here
2003 to probe just beyond what the prologue had already
2005 emit_stack_probe (plus_constant (Pmode
, stack_pointer_rtx
,
2008 emit_stack_clash_protection_probe_loop_end (loop_lab
, end_loop
,
2009 last_addr
, rotate_loop
);
2010 emit_insn (gen_blockage ());
2014 if (residual
!= CONST0_RTX (Pmode
))
2016 rtx label
= NULL_RTX
;
2017 /* RESIDUAL could be zero at runtime and in that case *sp could
2018 hold live data. Furthermore, we do not want to probe into the
2021 If TARGET_PROBE_RANGE_P then the target has promised it's safe to
2022 probe at offset 0. In which case we no longer have to check for
2023 RESIDUAL == 0. However we still need to probe at the right offset
2024 when RESIDUAL > PROBE_RANGE, in which case we probe at PROBE_RANGE.
2026 If !TARGET_PROBE_RANGE_P then go ahead and just guard the probe at *sp
2027 on RESIDUAL != 0 at runtime if RESIDUAL is not a compile time constant.
2029 anti_adjust_stack (residual
);
2031 if (!CONST_INT_P (residual
))
2033 label
= gen_label_rtx ();
2034 rtx_code op
= target_probe_range_p
? LT
: EQ
;
2035 rtx probe_cmp_value
= target_probe_range_p
2036 ? gen_rtx_CONST_INT (GET_MODE (residual
), probe_range
)
2037 : CONST0_RTX (GET_MODE (residual
));
2039 if (target_probe_range_p
)
2040 emit_stack_probe (stack_pointer_rtx
);
2042 emit_cmp_and_jump_insns (residual
, probe_cmp_value
,
2043 op
, NULL_RTX
, Pmode
, 1, label
);
2048 /* If RESIDUAL isn't a constant and TARGET_PROBE_RANGE_P then we probe up
2049 by the ABI defined safe value. */
2050 if (!CONST_INT_P (residual
) && target_probe_range_p
)
2051 x
= GEN_INT (probe_range
);
2052 /* If RESIDUAL is a constant but smaller than the ABI defined safe value,
2053 we still want to probe up, but the safest amount if a word. */
2054 else if (target_probe_range_p
)
2056 if (INTVAL (residual
) <= probe_range
)
2057 x
= GEN_INT (GET_MODE_SIZE (word_mode
));
2059 x
= GEN_INT (probe_range
);
2062 /* If nothing else, probe at the top of the new allocation. */
2063 x
= plus_constant (Pmode
, residual
, -GET_MODE_SIZE (word_mode
));
2065 emit_stack_probe (gen_rtx_PLUS (Pmode
, stack_pointer_rtx
, x
));
2067 emit_insn (gen_blockage ());
2068 if (!CONST_INT_P (residual
))
2074 /* Adjust the stack pointer by minus SIZE (an rtx for a number of bytes)
2075 while probing it. This pushes when SIZE is positive. SIZE need not
2076 be constant. If ADJUST_BACK is true, adjust back the stack pointer
2077 by plus SIZE at the end. */
2080 anti_adjust_stack_and_probe (rtx size
, bool adjust_back
)
2082 /* We skip the probe for the first interval + a small dope of 4 words and
2083 probe that many bytes past the specified size to maintain a protection
2084 area at the botton of the stack. */
2085 const int dope
= 4 * UNITS_PER_WORD
;
2087 /* First ensure SIZE is Pmode. */
2088 if (GET_MODE (size
) != VOIDmode
&& GET_MODE (size
) != Pmode
)
2089 size
= convert_to_mode (Pmode
, size
, 1);
2091 /* If we have a constant small number of probes to generate, that's the
2093 if (CONST_INT_P (size
) && INTVAL (size
) < 7 * PROBE_INTERVAL
)
2095 HOST_WIDE_INT isize
= INTVAL (size
), i
;
2096 bool first_probe
= true;
2098 /* Adjust SP and probe at PROBE_INTERVAL + N * PROBE_INTERVAL for
2099 values of N from 1 until it exceeds SIZE. If only one probe is
2100 needed, this will not generate any code. Then adjust and probe
2101 to PROBE_INTERVAL + SIZE. */
2102 for (i
= PROBE_INTERVAL
; i
< isize
; i
+= PROBE_INTERVAL
)
2106 anti_adjust_stack (GEN_INT (2 * PROBE_INTERVAL
+ dope
));
2107 first_probe
= false;
2110 anti_adjust_stack (GEN_INT (PROBE_INTERVAL
));
2111 emit_stack_probe (stack_pointer_rtx
);
2115 anti_adjust_stack (plus_constant (Pmode
, size
, PROBE_INTERVAL
+ dope
));
2117 anti_adjust_stack (plus_constant (Pmode
, size
, PROBE_INTERVAL
- i
));
2118 emit_stack_probe (stack_pointer_rtx
);
2121 /* In the variable case, do the same as above, but in a loop. Note that we
2122 must be extra careful with variables wrapping around because we might be
2123 at the very top (or the very bottom) of the address space and we have to
2124 be able to handle this case properly; in particular, we use an equality
2125 test for the loop condition. */
2128 rtx rounded_size
, rounded_size_op
, last_addr
, temp
;
2129 rtx_code_label
*loop_lab
= gen_label_rtx ();
2130 rtx_code_label
*end_lab
= gen_label_rtx ();
2133 /* Step 1: round SIZE to the previous multiple of the interval. */
2135 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
2137 = simplify_gen_binary (AND
, Pmode
, size
,
2138 gen_int_mode (-PROBE_INTERVAL
, Pmode
));
2139 rounded_size_op
= force_operand (rounded_size
, NULL_RTX
);
2142 /* Step 2: compute initial and final value of the loop counter. */
2144 /* SP = SP_0 + PROBE_INTERVAL. */
2145 anti_adjust_stack (GEN_INT (PROBE_INTERVAL
+ dope
));
2147 /* LAST_ADDR = SP_0 + PROBE_INTERVAL + ROUNDED_SIZE. */
2148 last_addr
= force_operand (gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
2150 rounded_size_op
), NULL_RTX
);
2155 while (SP != LAST_ADDR)
2157 SP = SP + PROBE_INTERVAL
2161 adjusts SP and probes at PROBE_INTERVAL + N * PROBE_INTERVAL for
2162 values of N from 1 until it is equal to ROUNDED_SIZE. */
2164 emit_label (loop_lab
);
2166 /* Jump to END_LAB if SP == LAST_ADDR. */
2167 emit_cmp_and_jump_insns (stack_pointer_rtx
, last_addr
, EQ
, NULL_RTX
,
2170 /* SP = SP + PROBE_INTERVAL and probe at SP. */
2171 anti_adjust_stack (GEN_INT (PROBE_INTERVAL
));
2172 emit_stack_probe (stack_pointer_rtx
);
2174 emit_jump (loop_lab
);
2176 emit_label (end_lab
);
2179 /* Step 4: adjust SP and probe at PROBE_INTERVAL + SIZE if we cannot
2180 assert at compile-time that SIZE is equal to ROUNDED_SIZE. */
2182 /* TEMP = SIZE - ROUNDED_SIZE. */
2183 temp
= simplify_gen_binary (MINUS
, Pmode
, size
, rounded_size
);
2184 if (temp
!= const0_rtx
)
2186 /* Manual CSE if the difference is not known at compile-time. */
2187 if (GET_CODE (temp
) != CONST_INT
)
2188 temp
= gen_rtx_MINUS (Pmode
, size
, rounded_size_op
);
2189 anti_adjust_stack (temp
);
2190 emit_stack_probe (stack_pointer_rtx
);
2194 /* Adjust back and account for the additional first interval. */
2196 adjust_stack (plus_constant (Pmode
, size
, PROBE_INTERVAL
+ dope
));
2198 adjust_stack (GEN_INT (PROBE_INTERVAL
+ dope
));
2201 /* Return an rtx representing the register or memory location
2202 in which a scalar value of data type VALTYPE
2203 was returned by a function call to function FUNC.
2204 FUNC is a FUNCTION_DECL, FNTYPE a FUNCTION_TYPE node if the precise
2205 function is known, otherwise 0.
2206 OUTGOING is 1 if on a machine with register windows this function
2207 should return the register in which the function will put its result
2211 hard_function_value (const_tree valtype
, const_tree func
, const_tree fntype
,
2212 int outgoing ATTRIBUTE_UNUSED
)
2216 val
= targetm
.calls
.function_value (valtype
, func
? func
: fntype
, outgoing
);
2219 && GET_MODE (val
) == BLKmode
)
2221 unsigned HOST_WIDE_INT bytes
= arg_int_size_in_bytes (valtype
);
2222 opt_scalar_int_mode tmpmode
;
2224 /* int_size_in_bytes can return -1. We don't need a check here
2225 since the value of bytes will then be large enough that no
2226 mode will match anyway. */
2228 FOR_EACH_MODE_IN_CLASS (tmpmode
, MODE_INT
)
2230 /* Have we found a large enough mode? */
2231 if (GET_MODE_SIZE (tmpmode
.require ()) >= bytes
)
2235 PUT_MODE (val
, tmpmode
.require ());
2240 /* Return an rtx representing the register or memory location
2241 in which a scalar value of mode MODE was returned by a library call. */
2244 hard_libcall_value (machine_mode mode
, rtx fun
)
2246 return targetm
.calls
.libcall_value (mode
, fun
);
2249 /* Look up the tree code for a given rtx code
2250 to provide the arithmetic operation for real_arithmetic.
2251 The function returns an int because the caller may not know
2252 what `enum tree_code' means. */
2255 rtx_to_tree_code (enum rtx_code code
)
2257 enum tree_code tcode
;
2280 tcode
= LAST_AND_UNUSED_TREE_CODE
;
2283 return ((int) tcode
);
2286 #include "gt-explow.h"