2014-07-16 Yvan Roux <yvan.roux@linaro.org>
[official-gcc.git] / gcc-4_8-branch / gcc / function.c
blobbc04dcb9d8d748abb6f2345cbdf4d61e28935013
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file handles the generation of rtl code from tree structure
21 at the level of the function as a whole.
22 It creates the rtl expressions for parameters and auto variables
23 and has full responsibility for allocating stack slots.
25 `expand_function_start' is called at the beginning of a function,
26 before the function body is parsed, and `expand_function_end' is
27 called after parsing the body.
29 Call `assign_stack_local' to allocate a stack slot for a local variable.
30 This is usually done during the RTL generation for the function body,
31 but it can also be done in the reload pass when a pseudo-register does
32 not get a hard register. */
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "tm.h"
38 #include "rtl-error.h"
39 #include "tree.h"
40 #include "flags.h"
41 #include "except.h"
42 #include "function.h"
43 #include "expr.h"
44 #include "optabs.h"
45 #include "libfuncs.h"
46 #include "regs.h"
47 #include "hard-reg-set.h"
48 #include "insn-config.h"
49 #include "recog.h"
50 #include "output.h"
51 #include "basic-block.h"
52 #include "hashtab.h"
53 #include "ggc.h"
54 #include "tm_p.h"
55 #include "langhooks.h"
56 #include "target.h"
57 #include "common/common-target.h"
58 #include "gimple.h"
59 #include "tree-pass.h"
60 #include "predict.h"
61 #include "df.h"
62 #include "params.h"
63 #include "bb-reorder.h"
65 /* So we can assign to cfun in this file. */
66 #undef cfun
68 #ifndef STACK_ALIGNMENT_NEEDED
69 #define STACK_ALIGNMENT_NEEDED 1
70 #endif
72 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
74 /* Some systems use __main in a way incompatible with its use in gcc, in these
75 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
76 give the same symbol without quotes for an alternative entry point. You
77 must define both, or neither. */
78 #ifndef NAME__MAIN
79 #define NAME__MAIN "__main"
80 #endif
82 /* Round a value to the lowest integer less than it that is a multiple of
83 the required alignment. Avoid using division in case the value is
84 negative. Assume the alignment is a power of two. */
85 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
87 /* Similar, but round to the next highest integer that meets the
88 alignment. */
89 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
91 /* Nonzero once virtual register instantiation has been done.
92 assign_stack_local uses frame_pointer_rtx when this is nonzero.
93 calls.c:emit_library_call_value_1 uses it to set up
94 post-instantiation libcalls. */
95 int virtuals_instantiated;
97 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
98 static GTY(()) int funcdef_no;
100 /* These variables hold pointers to functions to create and destroy
101 target specific, per-function data structures. */
102 struct machine_function * (*init_machine_status) (void);
104 /* The currently compiled function. */
105 struct function *cfun = 0;
107 /* These hashes record the prologue and epilogue insns. */
108 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
109 htab_t prologue_insn_hash;
110 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
111 htab_t epilogue_insn_hash;
114 htab_t types_used_by_vars_hash = NULL;
115 vec<tree, va_gc> *types_used_by_cur_var_decl;
117 /* Forward declarations. */
119 static struct temp_slot *find_temp_slot_from_address (rtx);
120 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
121 static void pad_below (struct args_size *, enum machine_mode, tree);
122 static void reorder_blocks_1 (rtx, tree, vec<tree> *);
123 static int all_blocks (tree, tree *);
124 static tree *get_block_vector (tree, int *);
125 extern tree debug_find_var_in_block_tree (tree, tree);
126 /* We always define `record_insns' even if it's not used so that we
127 can always export `prologue_epilogue_contains'. */
128 static void record_insns (rtx, rtx, htab_t *) ATTRIBUTE_UNUSED;
129 static bool contains (const_rtx, htab_t);
130 static void prepare_function_start (void);
131 static void do_clobber_return_reg (rtx, void *);
132 static void do_use_return_reg (rtx, void *);
133 static void set_insn_locations (rtx, int) ATTRIBUTE_UNUSED;
135 /* Stack of nested functions. */
136 /* Keep track of the cfun stack. */
138 typedef struct function *function_p;
140 static vec<function_p> function_context_stack;
142 /* Save the current context for compilation of a nested function.
143 This is called from language-specific code. */
145 void
146 push_function_context (void)
148 if (cfun == 0)
149 allocate_struct_function (NULL, false);
151 function_context_stack.safe_push (cfun);
152 set_cfun (NULL);
155 /* Restore the last saved context, at the end of a nested function.
156 This function is called from language-specific code. */
158 void
159 pop_function_context (void)
161 struct function *p = function_context_stack.pop ();
162 set_cfun (p);
163 current_function_decl = p->decl;
165 /* Reset variables that have known state during rtx generation. */
166 virtuals_instantiated = 0;
167 generating_concat_p = 1;
170 /* Clear out all parts of the state in F that can safely be discarded
171 after the function has been parsed, but not compiled, to let
172 garbage collection reclaim the memory. */
174 void
175 free_after_parsing (struct function *f)
177 f->language = 0;
180 /* Clear out all parts of the state in F that can safely be discarded
181 after the function has been compiled, to let garbage collection
182 reclaim the memory. */
184 void
185 free_after_compilation (struct function *f)
187 prologue_insn_hash = NULL;
188 epilogue_insn_hash = NULL;
190 free (crtl->emit.regno_pointer_align);
192 memset (crtl, 0, sizeof (struct rtl_data));
193 f->eh = NULL;
194 f->machine = NULL;
195 f->cfg = NULL;
197 regno_reg_rtx = NULL;
200 /* Return size needed for stack frame based on slots so far allocated.
201 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
202 the caller may have to do that. */
204 HOST_WIDE_INT
205 get_frame_size (void)
207 if (FRAME_GROWS_DOWNWARD)
208 return -frame_offset;
209 else
210 return frame_offset;
213 /* Issue an error message and return TRUE if frame OFFSET overflows in
214 the signed target pointer arithmetics for function FUNC. Otherwise
215 return FALSE. */
217 bool
218 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
220 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
222 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
223 /* Leave room for the fixed part of the frame. */
224 - 64 * UNITS_PER_WORD)
226 error_at (DECL_SOURCE_LOCATION (func),
227 "total size of local objects too large");
228 return TRUE;
231 return FALSE;
234 /* Return stack slot alignment in bits for TYPE and MODE. */
236 static unsigned int
237 get_stack_local_alignment (tree type, enum machine_mode mode)
239 unsigned int alignment;
241 if (mode == BLKmode)
242 alignment = BIGGEST_ALIGNMENT;
243 else
244 alignment = GET_MODE_ALIGNMENT (mode);
246 /* Allow the frond-end to (possibly) increase the alignment of this
247 stack slot. */
248 if (! type)
249 type = lang_hooks.types.type_for_mode (mode, 0);
251 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
254 /* Determine whether it is possible to fit a stack slot of size SIZE and
255 alignment ALIGNMENT into an area in the stack frame that starts at
256 frame offset START and has a length of LENGTH. If so, store the frame
257 offset to be used for the stack slot in *POFFSET and return true;
258 return false otherwise. This function will extend the frame size when
259 given a start/length pair that lies at the end of the frame. */
261 static bool
262 try_fit_stack_local (HOST_WIDE_INT start, HOST_WIDE_INT length,
263 HOST_WIDE_INT size, unsigned int alignment,
264 HOST_WIDE_INT *poffset)
266 HOST_WIDE_INT this_frame_offset;
267 int frame_off, frame_alignment, frame_phase;
269 /* Calculate how many bytes the start of local variables is off from
270 stack alignment. */
271 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
272 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
273 frame_phase = frame_off ? frame_alignment - frame_off : 0;
275 /* Round the frame offset to the specified alignment. */
277 /* We must be careful here, since FRAME_OFFSET might be negative and
278 division with a negative dividend isn't as well defined as we might
279 like. So we instead assume that ALIGNMENT is a power of two and
280 use logical operations which are unambiguous. */
281 if (FRAME_GROWS_DOWNWARD)
282 this_frame_offset
283 = (FLOOR_ROUND (start + length - size - frame_phase,
284 (unsigned HOST_WIDE_INT) alignment)
285 + frame_phase);
286 else
287 this_frame_offset
288 = (CEIL_ROUND (start - frame_phase,
289 (unsigned HOST_WIDE_INT) alignment)
290 + frame_phase);
292 /* See if it fits. If this space is at the edge of the frame,
293 consider extending the frame to make it fit. Our caller relies on
294 this when allocating a new slot. */
295 if (frame_offset == start && this_frame_offset < frame_offset)
296 frame_offset = this_frame_offset;
297 else if (this_frame_offset < start)
298 return false;
299 else if (start + length == frame_offset
300 && this_frame_offset + size > start + length)
301 frame_offset = this_frame_offset + size;
302 else if (this_frame_offset + size > start + length)
303 return false;
305 *poffset = this_frame_offset;
306 return true;
309 /* Create a new frame_space structure describing free space in the stack
310 frame beginning at START and ending at END, and chain it into the
311 function's frame_space_list. */
313 static void
314 add_frame_space (HOST_WIDE_INT start, HOST_WIDE_INT end)
316 struct frame_space *space = ggc_alloc_frame_space ();
317 space->next = crtl->frame_space_list;
318 crtl->frame_space_list = space;
319 space->start = start;
320 space->length = end - start;
323 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
324 with machine mode MODE.
326 ALIGN controls the amount of alignment for the address of the slot:
327 0 means according to MODE,
328 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
329 -2 means use BITS_PER_UNIT,
330 positive specifies alignment boundary in bits.
332 KIND has ASLK_REDUCE_ALIGN bit set if it is OK to reduce
333 alignment and ASLK_RECORD_PAD bit set if we should remember
334 extra space we allocated for alignment purposes. When we are
335 called from assign_stack_temp_for_type, it is not set so we don't
336 track the same stack slot in two independent lists.
338 We do not round to stack_boundary here. */
341 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size,
342 int align, int kind)
344 rtx x, addr;
345 int bigend_correction = 0;
346 HOST_WIDE_INT slot_offset = 0, old_frame_offset;
347 unsigned int alignment, alignment_in_bits;
349 if (align == 0)
351 alignment = get_stack_local_alignment (NULL, mode);
352 alignment /= BITS_PER_UNIT;
354 else if (align == -1)
356 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
357 size = CEIL_ROUND (size, alignment);
359 else if (align == -2)
360 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
361 else
362 alignment = align / BITS_PER_UNIT;
364 alignment_in_bits = alignment * BITS_PER_UNIT;
366 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
367 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
369 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
370 alignment = alignment_in_bits / BITS_PER_UNIT;
373 if (SUPPORTS_STACK_ALIGNMENT)
375 if (crtl->stack_alignment_estimated < alignment_in_bits)
377 if (!crtl->stack_realign_processed)
378 crtl->stack_alignment_estimated = alignment_in_bits;
379 else
381 /* If stack is realigned and stack alignment value
382 hasn't been finalized, it is OK not to increase
383 stack_alignment_estimated. The bigger alignment
384 requirement is recorded in stack_alignment_needed
385 below. */
386 gcc_assert (!crtl->stack_realign_finalized);
387 if (!crtl->stack_realign_needed)
389 /* It is OK to reduce the alignment as long as the
390 requested size is 0 or the estimated stack
391 alignment >= mode alignment. */
392 gcc_assert ((kind & ASLK_REDUCE_ALIGN)
393 || size == 0
394 || (crtl->stack_alignment_estimated
395 >= GET_MODE_ALIGNMENT (mode)));
396 alignment_in_bits = crtl->stack_alignment_estimated;
397 alignment = alignment_in_bits / BITS_PER_UNIT;
403 if (crtl->stack_alignment_needed < alignment_in_bits)
404 crtl->stack_alignment_needed = alignment_in_bits;
405 if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
406 crtl->max_used_stack_slot_alignment = alignment_in_bits;
408 if (mode != BLKmode || size != 0)
410 if (kind & ASLK_RECORD_PAD)
412 struct frame_space **psp;
414 for (psp = &crtl->frame_space_list; *psp; psp = &(*psp)->next)
416 struct frame_space *space = *psp;
417 if (!try_fit_stack_local (space->start, space->length, size,
418 alignment, &slot_offset))
419 continue;
420 *psp = space->next;
421 if (slot_offset > space->start)
422 add_frame_space (space->start, slot_offset);
423 if (slot_offset + size < space->start + space->length)
424 add_frame_space (slot_offset + size,
425 space->start + space->length);
426 goto found_space;
430 else if (!STACK_ALIGNMENT_NEEDED)
432 slot_offset = frame_offset;
433 goto found_space;
436 old_frame_offset = frame_offset;
438 if (FRAME_GROWS_DOWNWARD)
440 frame_offset -= size;
441 try_fit_stack_local (frame_offset, size, size, alignment, &slot_offset);
443 if (kind & ASLK_RECORD_PAD)
445 if (slot_offset > frame_offset)
446 add_frame_space (frame_offset, slot_offset);
447 if (slot_offset + size < old_frame_offset)
448 add_frame_space (slot_offset + size, old_frame_offset);
451 else
453 frame_offset += size;
454 try_fit_stack_local (old_frame_offset, size, size, alignment, &slot_offset);
456 if (kind & ASLK_RECORD_PAD)
458 if (slot_offset > old_frame_offset)
459 add_frame_space (old_frame_offset, slot_offset);
460 if (slot_offset + size < frame_offset)
461 add_frame_space (slot_offset + size, frame_offset);
465 found_space:
466 /* On a big-endian machine, if we are allocating more space than we will use,
467 use the least significant bytes of those that are allocated. */
468 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
469 bigend_correction = size - GET_MODE_SIZE (mode);
471 /* If we have already instantiated virtual registers, return the actual
472 address relative to the frame pointer. */
473 if (virtuals_instantiated)
474 addr = plus_constant (Pmode, frame_pointer_rtx,
475 trunc_int_for_mode
476 (slot_offset + bigend_correction
477 + STARTING_FRAME_OFFSET, Pmode));
478 else
479 addr = plus_constant (Pmode, virtual_stack_vars_rtx,
480 trunc_int_for_mode
481 (slot_offset + bigend_correction,
482 Pmode));
484 x = gen_rtx_MEM (mode, addr);
485 set_mem_align (x, alignment_in_bits);
486 MEM_NOTRAP_P (x) = 1;
488 stack_slot_list
489 = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list);
491 if (frame_offset_overflow (frame_offset, current_function_decl))
492 frame_offset = 0;
494 return x;
497 /* Wrap up assign_stack_local_1 with last parameter as false. */
500 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
502 return assign_stack_local_1 (mode, size, align, ASLK_RECORD_PAD);
505 /* In order to evaluate some expressions, such as function calls returning
506 structures in memory, we need to temporarily allocate stack locations.
507 We record each allocated temporary in the following structure.
509 Associated with each temporary slot is a nesting level. When we pop up
510 one level, all temporaries associated with the previous level are freed.
511 Normally, all temporaries are freed after the execution of the statement
512 in which they were created. However, if we are inside a ({...}) grouping,
513 the result may be in a temporary and hence must be preserved. If the
514 result could be in a temporary, we preserve it if we can determine which
515 one it is in. If we cannot determine which temporary may contain the
516 result, all temporaries are preserved. A temporary is preserved by
517 pretending it was allocated at the previous nesting level. */
519 struct GTY(()) temp_slot {
520 /* Points to next temporary slot. */
521 struct temp_slot *next;
522 /* Points to previous temporary slot. */
523 struct temp_slot *prev;
524 /* The rtx to used to reference the slot. */
525 rtx slot;
526 /* The size, in units, of the slot. */
527 HOST_WIDE_INT size;
528 /* The type of the object in the slot, or zero if it doesn't correspond
529 to a type. We use this to determine whether a slot can be reused.
530 It can be reused if objects of the type of the new slot will always
531 conflict with objects of the type of the old slot. */
532 tree type;
533 /* The alignment (in bits) of the slot. */
534 unsigned int align;
535 /* Nonzero if this temporary is currently in use. */
536 char in_use;
537 /* Nesting level at which this slot is being used. */
538 int level;
539 /* The offset of the slot from the frame_pointer, including extra space
540 for alignment. This info is for combine_temp_slots. */
541 HOST_WIDE_INT base_offset;
542 /* The size of the slot, including extra space for alignment. This
543 info is for combine_temp_slots. */
544 HOST_WIDE_INT full_size;
547 /* A table of addresses that represent a stack slot. The table is a mapping
548 from address RTXen to a temp slot. */
549 static GTY((param_is(struct temp_slot_address_entry))) htab_t temp_slot_address_table;
550 static size_t n_temp_slots_in_use;
552 /* Entry for the above hash table. */
553 struct GTY(()) temp_slot_address_entry {
554 hashval_t hash;
555 rtx address;
556 struct temp_slot *temp_slot;
559 /* Removes temporary slot TEMP from LIST. */
561 static void
562 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
564 if (temp->next)
565 temp->next->prev = temp->prev;
566 if (temp->prev)
567 temp->prev->next = temp->next;
568 else
569 *list = temp->next;
571 temp->prev = temp->next = NULL;
574 /* Inserts temporary slot TEMP to LIST. */
576 static void
577 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
579 temp->next = *list;
580 if (*list)
581 (*list)->prev = temp;
582 temp->prev = NULL;
583 *list = temp;
586 /* Returns the list of used temp slots at LEVEL. */
588 static struct temp_slot **
589 temp_slots_at_level (int level)
591 if (level >= (int) vec_safe_length (used_temp_slots))
592 vec_safe_grow_cleared (used_temp_slots, level + 1);
594 return &(*used_temp_slots)[level];
597 /* Returns the maximal temporary slot level. */
599 static int
600 max_slot_level (void)
602 if (!used_temp_slots)
603 return -1;
605 return used_temp_slots->length () - 1;
608 /* Moves temporary slot TEMP to LEVEL. */
610 static void
611 move_slot_to_level (struct temp_slot *temp, int level)
613 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
614 insert_slot_to_list (temp, temp_slots_at_level (level));
615 temp->level = level;
618 /* Make temporary slot TEMP available. */
620 static void
621 make_slot_available (struct temp_slot *temp)
623 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
624 insert_slot_to_list (temp, &avail_temp_slots);
625 temp->in_use = 0;
626 temp->level = -1;
627 n_temp_slots_in_use--;
630 /* Compute the hash value for an address -> temp slot mapping.
631 The value is cached on the mapping entry. */
632 static hashval_t
633 temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
635 int do_not_record = 0;
636 return hash_rtx (t->address, GET_MODE (t->address),
637 &do_not_record, NULL, false);
640 /* Return the hash value for an address -> temp slot mapping. */
641 static hashval_t
642 temp_slot_address_hash (const void *p)
644 const struct temp_slot_address_entry *t;
645 t = (const struct temp_slot_address_entry *) p;
646 return t->hash;
649 /* Compare two address -> temp slot mapping entries. */
650 static int
651 temp_slot_address_eq (const void *p1, const void *p2)
653 const struct temp_slot_address_entry *t1, *t2;
654 t1 = (const struct temp_slot_address_entry *) p1;
655 t2 = (const struct temp_slot_address_entry *) p2;
656 return exp_equiv_p (t1->address, t2->address, 0, true);
659 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
660 static void
661 insert_temp_slot_address (rtx address, struct temp_slot *temp_slot)
663 void **slot;
664 struct temp_slot_address_entry *t = ggc_alloc_temp_slot_address_entry ();
665 t->address = address;
666 t->temp_slot = temp_slot;
667 t->hash = temp_slot_address_compute_hash (t);
668 slot = htab_find_slot_with_hash (temp_slot_address_table, t, t->hash, INSERT);
669 *slot = t;
672 /* Remove an address -> temp slot mapping entry if the temp slot is
673 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
674 static int
675 remove_unused_temp_slot_addresses_1 (void **slot, void *data ATTRIBUTE_UNUSED)
677 const struct temp_slot_address_entry *t;
678 t = (const struct temp_slot_address_entry *) *slot;
679 if (! t->temp_slot->in_use)
680 htab_clear_slot (temp_slot_address_table, slot);
681 return 1;
684 /* Remove all mappings of addresses to unused temp slots. */
685 static void
686 remove_unused_temp_slot_addresses (void)
688 /* Use quicker clearing if there aren't any active temp slots. */
689 if (n_temp_slots_in_use)
690 htab_traverse (temp_slot_address_table,
691 remove_unused_temp_slot_addresses_1,
692 NULL);
693 else
694 htab_empty (temp_slot_address_table);
697 /* Find the temp slot corresponding to the object at address X. */
699 static struct temp_slot *
700 find_temp_slot_from_address (rtx x)
702 struct temp_slot *p;
703 struct temp_slot_address_entry tmp, *t;
705 /* First try the easy way:
706 See if X exists in the address -> temp slot mapping. */
707 tmp.address = x;
708 tmp.temp_slot = NULL;
709 tmp.hash = temp_slot_address_compute_hash (&tmp);
710 t = (struct temp_slot_address_entry *)
711 htab_find_with_hash (temp_slot_address_table, &tmp, tmp.hash);
712 if (t)
713 return t->temp_slot;
715 /* If we have a sum involving a register, see if it points to a temp
716 slot. */
717 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
718 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
719 return p;
720 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
721 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
722 return p;
724 /* Last resort: Address is a virtual stack var address. */
725 if (GET_CODE (x) == PLUS
726 && XEXP (x, 0) == virtual_stack_vars_rtx
727 && CONST_INT_P (XEXP (x, 1)))
729 int i;
730 for (i = max_slot_level (); i >= 0; i--)
731 for (p = *temp_slots_at_level (i); p; p = p->next)
733 if (INTVAL (XEXP (x, 1)) >= p->base_offset
734 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size)
735 return p;
739 return NULL;
742 /* Allocate a temporary stack slot and record it for possible later
743 reuse.
745 MODE is the machine mode to be given to the returned rtx.
747 SIZE is the size in units of the space required. We do no rounding here
748 since assign_stack_local will do any required rounding.
750 TYPE is the type that will be used for the stack slot. */
753 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
754 tree type)
756 unsigned int align;
757 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
758 rtx slot;
760 /* If SIZE is -1 it means that somebody tried to allocate a temporary
761 of a variable size. */
762 gcc_assert (size != -1);
764 align = get_stack_local_alignment (type, mode);
766 /* Try to find an available, already-allocated temporary of the proper
767 mode which meets the size and alignment requirements. Choose the
768 smallest one with the closest alignment.
770 If assign_stack_temp is called outside of the tree->rtl expansion,
771 we cannot reuse the stack slots (that may still refer to
772 VIRTUAL_STACK_VARS_REGNUM). */
773 if (!virtuals_instantiated)
775 for (p = avail_temp_slots; p; p = p->next)
777 if (p->align >= align && p->size >= size
778 && GET_MODE (p->slot) == mode
779 && objects_must_conflict_p (p->type, type)
780 && (best_p == 0 || best_p->size > p->size
781 || (best_p->size == p->size && best_p->align > p->align)))
783 if (p->align == align && p->size == size)
785 selected = p;
786 cut_slot_from_list (selected, &avail_temp_slots);
787 best_p = 0;
788 break;
790 best_p = p;
795 /* Make our best, if any, the one to use. */
796 if (best_p)
798 selected = best_p;
799 cut_slot_from_list (selected, &avail_temp_slots);
801 /* If there are enough aligned bytes left over, make them into a new
802 temp_slot so that the extra bytes don't get wasted. Do this only
803 for BLKmode slots, so that we can be sure of the alignment. */
804 if (GET_MODE (best_p->slot) == BLKmode)
806 int alignment = best_p->align / BITS_PER_UNIT;
807 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
809 if (best_p->size - rounded_size >= alignment)
811 p = ggc_alloc_temp_slot ();
812 p->in_use = 0;
813 p->size = best_p->size - rounded_size;
814 p->base_offset = best_p->base_offset + rounded_size;
815 p->full_size = best_p->full_size - rounded_size;
816 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
817 p->align = best_p->align;
818 p->type = best_p->type;
819 insert_slot_to_list (p, &avail_temp_slots);
821 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
822 stack_slot_list);
824 best_p->size = rounded_size;
825 best_p->full_size = rounded_size;
830 /* If we still didn't find one, make a new temporary. */
831 if (selected == 0)
833 HOST_WIDE_INT frame_offset_old = frame_offset;
835 p = ggc_alloc_temp_slot ();
837 /* We are passing an explicit alignment request to assign_stack_local.
838 One side effect of that is assign_stack_local will not round SIZE
839 to ensure the frame offset remains suitably aligned.
841 So for requests which depended on the rounding of SIZE, we go ahead
842 and round it now. We also make sure ALIGNMENT is at least
843 BIGGEST_ALIGNMENT. */
844 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
845 p->slot = assign_stack_local_1 (mode,
846 (mode == BLKmode
847 ? CEIL_ROUND (size,
848 (int) align
849 / BITS_PER_UNIT)
850 : size),
851 align, 0);
853 p->align = align;
855 /* The following slot size computation is necessary because we don't
856 know the actual size of the temporary slot until assign_stack_local
857 has performed all the frame alignment and size rounding for the
858 requested temporary. Note that extra space added for alignment
859 can be either above or below this stack slot depending on which
860 way the frame grows. We include the extra space if and only if it
861 is above this slot. */
862 if (FRAME_GROWS_DOWNWARD)
863 p->size = frame_offset_old - frame_offset;
864 else
865 p->size = size;
867 /* Now define the fields used by combine_temp_slots. */
868 if (FRAME_GROWS_DOWNWARD)
870 p->base_offset = frame_offset;
871 p->full_size = frame_offset_old - frame_offset;
873 else
875 p->base_offset = frame_offset_old;
876 p->full_size = frame_offset - frame_offset_old;
879 selected = p;
882 p = selected;
883 p->in_use = 1;
884 p->type = type;
885 p->level = temp_slot_level;
886 n_temp_slots_in_use++;
888 pp = temp_slots_at_level (p->level);
889 insert_slot_to_list (p, pp);
890 insert_temp_slot_address (XEXP (p->slot, 0), p);
892 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
893 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
894 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
896 /* If we know the alias set for the memory that will be used, use
897 it. If there's no TYPE, then we don't know anything about the
898 alias set for the memory. */
899 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
900 set_mem_align (slot, align);
902 /* If a type is specified, set the relevant flags. */
903 if (type != 0)
904 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
905 MEM_NOTRAP_P (slot) = 1;
907 return slot;
910 /* Allocate a temporary stack slot and record it for possible later
911 reuse. First two arguments are same as in preceding function. */
914 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size)
916 return assign_stack_temp_for_type (mode, size, NULL_TREE);
919 /* Assign a temporary.
920 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
921 and so that should be used in error messages. In either case, we
922 allocate of the given type.
923 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
924 it is 0 if a register is OK.
925 DONT_PROMOTE is 1 if we should not promote values in register
926 to wider modes. */
929 assign_temp (tree type_or_decl, int memory_required,
930 int dont_promote ATTRIBUTE_UNUSED)
932 tree type, decl;
933 enum machine_mode mode;
934 #ifdef PROMOTE_MODE
935 int unsignedp;
936 #endif
938 if (DECL_P (type_or_decl))
939 decl = type_or_decl, type = TREE_TYPE (decl);
940 else
941 decl = NULL, type = type_or_decl;
943 mode = TYPE_MODE (type);
944 #ifdef PROMOTE_MODE
945 unsignedp = TYPE_UNSIGNED (type);
946 #endif
948 if (mode == BLKmode || memory_required)
950 HOST_WIDE_INT size = int_size_in_bytes (type);
951 rtx tmp;
953 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
954 problems with allocating the stack space. */
955 if (size == 0)
956 size = 1;
958 /* Unfortunately, we don't yet know how to allocate variable-sized
959 temporaries. However, sometimes we can find a fixed upper limit on
960 the size, so try that instead. */
961 else if (size == -1)
962 size = max_int_size_in_bytes (type);
964 /* The size of the temporary may be too large to fit into an integer. */
965 /* ??? Not sure this should happen except for user silliness, so limit
966 this to things that aren't compiler-generated temporaries. The
967 rest of the time we'll die in assign_stack_temp_for_type. */
968 if (decl && size == -1
969 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
971 error ("size of variable %q+D is too large", decl);
972 size = 1;
975 tmp = assign_stack_temp_for_type (mode, size, type);
976 return tmp;
979 #ifdef PROMOTE_MODE
980 if (! dont_promote)
981 mode = promote_mode (type, mode, &unsignedp);
982 #endif
984 return gen_reg_rtx (mode);
987 /* Combine temporary stack slots which are adjacent on the stack.
989 This allows for better use of already allocated stack space. This is only
990 done for BLKmode slots because we can be sure that we won't have alignment
991 problems in this case. */
993 static void
994 combine_temp_slots (void)
996 struct temp_slot *p, *q, *next, *next_q;
997 int num_slots;
999 /* We can't combine slots, because the information about which slot
1000 is in which alias set will be lost. */
1001 if (flag_strict_aliasing)
1002 return;
1004 /* If there are a lot of temp slots, don't do anything unless
1005 high levels of optimization. */
1006 if (! flag_expensive_optimizations)
1007 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
1008 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
1009 return;
1011 for (p = avail_temp_slots; p; p = next)
1013 int delete_p = 0;
1015 next = p->next;
1017 if (GET_MODE (p->slot) != BLKmode)
1018 continue;
1020 for (q = p->next; q; q = next_q)
1022 int delete_q = 0;
1024 next_q = q->next;
1026 if (GET_MODE (q->slot) != BLKmode)
1027 continue;
1029 if (p->base_offset + p->full_size == q->base_offset)
1031 /* Q comes after P; combine Q into P. */
1032 p->size += q->size;
1033 p->full_size += q->full_size;
1034 delete_q = 1;
1036 else if (q->base_offset + q->full_size == p->base_offset)
1038 /* P comes after Q; combine P into Q. */
1039 q->size += p->size;
1040 q->full_size += p->full_size;
1041 delete_p = 1;
1042 break;
1044 if (delete_q)
1045 cut_slot_from_list (q, &avail_temp_slots);
1048 /* Either delete P or advance past it. */
1049 if (delete_p)
1050 cut_slot_from_list (p, &avail_temp_slots);
1054 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1055 slot that previously was known by OLD_RTX. */
1057 void
1058 update_temp_slot_address (rtx old_rtx, rtx new_rtx)
1060 struct temp_slot *p;
1062 if (rtx_equal_p (old_rtx, new_rtx))
1063 return;
1065 p = find_temp_slot_from_address (old_rtx);
1067 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1068 NEW_RTX is a register, see if one operand of the PLUS is a
1069 temporary location. If so, NEW_RTX points into it. Otherwise,
1070 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1071 in common between them. If so, try a recursive call on those
1072 values. */
1073 if (p == 0)
1075 if (GET_CODE (old_rtx) != PLUS)
1076 return;
1078 if (REG_P (new_rtx))
1080 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1081 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
1082 return;
1084 else if (GET_CODE (new_rtx) != PLUS)
1085 return;
1087 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1088 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1089 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1090 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1091 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1092 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1093 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1094 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
1096 return;
1099 /* Otherwise add an alias for the temp's address. */
1100 insert_temp_slot_address (new_rtx, p);
1103 /* If X could be a reference to a temporary slot, mark that slot as
1104 belonging to the to one level higher than the current level. If X
1105 matched one of our slots, just mark that one. Otherwise, we can't
1106 easily predict which it is, so upgrade all of them.
1108 This is called when an ({...}) construct occurs and a statement
1109 returns a value in memory. */
1111 void
1112 preserve_temp_slots (rtx x)
1114 struct temp_slot *p = 0, *next;
1116 if (x == 0)
1117 return;
1119 /* If X is a register that is being used as a pointer, see if we have
1120 a temporary slot we know it points to. */
1121 if (REG_P (x) && REG_POINTER (x))
1122 p = find_temp_slot_from_address (x);
1124 /* If X is not in memory or is at a constant address, it cannot be in
1125 a temporary slot. */
1126 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1127 return;
1129 /* First see if we can find a match. */
1130 if (p == 0)
1131 p = find_temp_slot_from_address (XEXP (x, 0));
1133 if (p != 0)
1135 if (p->level == temp_slot_level)
1136 move_slot_to_level (p, temp_slot_level - 1);
1137 return;
1140 /* Otherwise, preserve all non-kept slots at this level. */
1141 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1143 next = p->next;
1144 move_slot_to_level (p, temp_slot_level - 1);
1148 /* Free all temporaries used so far. This is normally called at the
1149 end of generating code for a statement. */
1151 void
1152 free_temp_slots (void)
1154 struct temp_slot *p, *next;
1155 bool some_available = false;
1157 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1159 next = p->next;
1160 make_slot_available (p);
1161 some_available = true;
1164 if (some_available)
1166 remove_unused_temp_slot_addresses ();
1167 combine_temp_slots ();
1171 /* Push deeper into the nesting level for stack temporaries. */
1173 void
1174 push_temp_slots (void)
1176 temp_slot_level++;
1179 /* Pop a temporary nesting level. All slots in use in the current level
1180 are freed. */
1182 void
1183 pop_temp_slots (void)
1185 free_temp_slots ();
1186 temp_slot_level--;
1189 /* Initialize temporary slots. */
1191 void
1192 init_temp_slots (void)
1194 /* We have not allocated any temporaries yet. */
1195 avail_temp_slots = 0;
1196 vec_alloc (used_temp_slots, 0);
1197 temp_slot_level = 0;
1198 n_temp_slots_in_use = 0;
1200 /* Set up the table to map addresses to temp slots. */
1201 if (! temp_slot_address_table)
1202 temp_slot_address_table = htab_create_ggc (32,
1203 temp_slot_address_hash,
1204 temp_slot_address_eq,
1205 NULL);
1206 else
1207 htab_empty (temp_slot_address_table);
1210 /* Functions and data structures to keep track of the values hard regs
1211 had at the start of the function. */
1213 /* Private type used by get_hard_reg_initial_reg, get_hard_reg_initial_val,
1214 and has_hard_reg_initial_val.. */
1215 typedef struct GTY(()) initial_value_pair {
1216 rtx hard_reg;
1217 rtx pseudo;
1218 } initial_value_pair;
1219 /* ??? This could be a VEC but there is currently no way to define an
1220 opaque VEC type. This could be worked around by defining struct
1221 initial_value_pair in function.h. */
1222 typedef struct GTY(()) initial_value_struct {
1223 int num_entries;
1224 int max_entries;
1225 initial_value_pair * GTY ((length ("%h.num_entries"))) entries;
1226 } initial_value_struct;
1228 /* If a pseudo represents an initial hard reg (or expression), return
1229 it, else return NULL_RTX. */
1232 get_hard_reg_initial_reg (rtx reg)
1234 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1235 int i;
1237 if (ivs == 0)
1238 return NULL_RTX;
1240 for (i = 0; i < ivs->num_entries; i++)
1241 if (rtx_equal_p (ivs->entries[i].pseudo, reg))
1242 return ivs->entries[i].hard_reg;
1244 return NULL_RTX;
1247 /* Make sure that there's a pseudo register of mode MODE that stores the
1248 initial value of hard register REGNO. Return an rtx for such a pseudo. */
1251 get_hard_reg_initial_val (enum machine_mode mode, unsigned int regno)
1253 struct initial_value_struct *ivs;
1254 rtx rv;
1256 rv = has_hard_reg_initial_val (mode, regno);
1257 if (rv)
1258 return rv;
1260 ivs = crtl->hard_reg_initial_vals;
1261 if (ivs == 0)
1263 ivs = ggc_alloc_initial_value_struct ();
1264 ivs->num_entries = 0;
1265 ivs->max_entries = 5;
1266 ivs->entries = ggc_alloc_vec_initial_value_pair (5);
1267 crtl->hard_reg_initial_vals = ivs;
1270 if (ivs->num_entries >= ivs->max_entries)
1272 ivs->max_entries += 5;
1273 ivs->entries = GGC_RESIZEVEC (initial_value_pair, ivs->entries,
1274 ivs->max_entries);
1277 ivs->entries[ivs->num_entries].hard_reg = gen_rtx_REG (mode, regno);
1278 ivs->entries[ivs->num_entries].pseudo = gen_reg_rtx (mode);
1280 return ivs->entries[ivs->num_entries++].pseudo;
1283 /* See if get_hard_reg_initial_val has been used to create a pseudo
1284 for the initial value of hard register REGNO in mode MODE. Return
1285 the associated pseudo if so, otherwise return NULL. */
1288 has_hard_reg_initial_val (enum machine_mode mode, unsigned int regno)
1290 struct initial_value_struct *ivs;
1291 int i;
1293 ivs = crtl->hard_reg_initial_vals;
1294 if (ivs != 0)
1295 for (i = 0; i < ivs->num_entries; i++)
1296 if (GET_MODE (ivs->entries[i].hard_reg) == mode
1297 && REGNO (ivs->entries[i].hard_reg) == regno)
1298 return ivs->entries[i].pseudo;
1300 return NULL_RTX;
1303 unsigned int
1304 emit_initial_value_sets (void)
1306 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1307 int i;
1308 rtx seq;
1310 if (ivs == 0)
1311 return 0;
1313 start_sequence ();
1314 for (i = 0; i < ivs->num_entries; i++)
1315 emit_move_insn (ivs->entries[i].pseudo, ivs->entries[i].hard_reg);
1316 seq = get_insns ();
1317 end_sequence ();
1319 emit_insn_at_entry (seq);
1320 return 0;
1323 /* Return the hardreg-pseudoreg initial values pair entry I and
1324 TRUE if I is a valid entry, or FALSE if I is not a valid entry. */
1325 bool
1326 initial_value_entry (int i, rtx *hreg, rtx *preg)
1328 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1329 if (!ivs || i >= ivs->num_entries)
1330 return false;
1332 *hreg = ivs->entries[i].hard_reg;
1333 *preg = ivs->entries[i].pseudo;
1334 return true;
1337 /* These routines are responsible for converting virtual register references
1338 to the actual hard register references once RTL generation is complete.
1340 The following four variables are used for communication between the
1341 routines. They contain the offsets of the virtual registers from their
1342 respective hard registers. */
1344 static int in_arg_offset;
1345 static int var_offset;
1346 static int dynamic_offset;
1347 static int out_arg_offset;
1348 static int cfa_offset;
1350 /* In most machines, the stack pointer register is equivalent to the bottom
1351 of the stack. */
1353 #ifndef STACK_POINTER_OFFSET
1354 #define STACK_POINTER_OFFSET 0
1355 #endif
1357 /* If not defined, pick an appropriate default for the offset of dynamically
1358 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1359 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1361 #ifndef STACK_DYNAMIC_OFFSET
1363 /* The bottom of the stack points to the actual arguments. If
1364 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1365 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1366 stack space for register parameters is not pushed by the caller, but
1367 rather part of the fixed stack areas and hence not included in
1368 `crtl->outgoing_args_size'. Nevertheless, we must allow
1369 for it when allocating stack dynamic objects. */
1371 #if defined(REG_PARM_STACK_SPACE)
1372 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1373 ((ACCUMULATE_OUTGOING_ARGS \
1374 ? (crtl->outgoing_args_size \
1375 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1376 : REG_PARM_STACK_SPACE (FNDECL))) \
1377 : 0) + (STACK_POINTER_OFFSET))
1378 #else
1379 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1380 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0) \
1381 + (STACK_POINTER_OFFSET))
1382 #endif
1383 #endif
1386 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1387 is a virtual register, return the equivalent hard register and set the
1388 offset indirectly through the pointer. Otherwise, return 0. */
1390 static rtx
1391 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1393 rtx new_rtx;
1394 HOST_WIDE_INT offset;
1396 if (x == virtual_incoming_args_rtx)
1398 if (stack_realign_drap)
1400 /* Replace virtual_incoming_args_rtx with internal arg
1401 pointer if DRAP is used to realign stack. */
1402 new_rtx = crtl->args.internal_arg_pointer;
1403 offset = 0;
1405 else
1406 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1408 else if (x == virtual_stack_vars_rtx)
1409 new_rtx = frame_pointer_rtx, offset = var_offset;
1410 else if (x == virtual_stack_dynamic_rtx)
1411 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1412 else if (x == virtual_outgoing_args_rtx)
1413 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1414 else if (x == virtual_cfa_rtx)
1416 #ifdef FRAME_POINTER_CFA_OFFSET
1417 new_rtx = frame_pointer_rtx;
1418 #else
1419 new_rtx = arg_pointer_rtx;
1420 #endif
1421 offset = cfa_offset;
1423 else if (x == virtual_preferred_stack_boundary_rtx)
1425 new_rtx = GEN_INT (crtl->preferred_stack_boundary / BITS_PER_UNIT);
1426 offset = 0;
1428 else
1429 return NULL_RTX;
1431 *poffset = offset;
1432 return new_rtx;
1435 /* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
1436 Instantiate any virtual registers present inside of *LOC. The expression
1437 is simplified, as much as possible, but is not to be considered "valid"
1438 in any sense implied by the target. If any change is made, set CHANGED
1439 to true. */
1441 static int
1442 instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
1444 HOST_WIDE_INT offset;
1445 bool *changed = (bool *) data;
1446 rtx x, new_rtx;
1448 x = *loc;
1449 if (x == 0)
1450 return 0;
1452 switch (GET_CODE (x))
1454 case REG:
1455 new_rtx = instantiate_new_reg (x, &offset);
1456 if (new_rtx)
1458 *loc = plus_constant (GET_MODE (x), new_rtx, offset);
1459 if (changed)
1460 *changed = true;
1462 return -1;
1464 case PLUS:
1465 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1466 if (new_rtx)
1468 new_rtx = plus_constant (GET_MODE (x), new_rtx, offset);
1469 *loc = simplify_gen_binary (PLUS, GET_MODE (x), new_rtx, XEXP (x, 1));
1470 if (changed)
1471 *changed = true;
1472 return -1;
1475 /* FIXME -- from old code */
1476 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1477 we can commute the PLUS and SUBREG because pointers into the
1478 frame are well-behaved. */
1479 break;
1481 default:
1482 break;
1485 return 0;
1488 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1489 matches the predicate for insn CODE operand OPERAND. */
1491 static int
1492 safe_insn_predicate (int code, int operand, rtx x)
1494 return code < 0 || insn_operand_matches ((enum insn_code) code, operand, x);
1497 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1498 registers present inside of insn. The result will be a valid insn. */
1500 static void
1501 instantiate_virtual_regs_in_insn (rtx insn)
1503 HOST_WIDE_INT offset;
1504 int insn_code, i;
1505 bool any_change = false;
1506 rtx set, new_rtx, x, seq;
1508 /* There are some special cases to be handled first. */
1509 set = single_set (insn);
1510 if (set)
1512 /* We're allowed to assign to a virtual register. This is interpreted
1513 to mean that the underlying register gets assigned the inverse
1514 transformation. This is used, for example, in the handling of
1515 non-local gotos. */
1516 new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1517 if (new_rtx)
1519 start_sequence ();
1521 for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
1522 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
1523 GEN_INT (-offset));
1524 x = force_operand (x, new_rtx);
1525 if (x != new_rtx)
1526 emit_move_insn (new_rtx, x);
1528 seq = get_insns ();
1529 end_sequence ();
1531 emit_insn_before (seq, insn);
1532 delete_insn (insn);
1533 return;
1536 /* Handle a straight copy from a virtual register by generating a
1537 new add insn. The difference between this and falling through
1538 to the generic case is avoiding a new pseudo and eliminating a
1539 move insn in the initial rtl stream. */
1540 new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1541 if (new_rtx && offset != 0
1542 && REG_P (SET_DEST (set))
1543 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1545 start_sequence ();
1547 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS,
1548 new_rtx, GEN_INT (offset), SET_DEST (set),
1549 1, OPTAB_LIB_WIDEN);
1550 if (x != SET_DEST (set))
1551 emit_move_insn (SET_DEST (set), x);
1553 seq = get_insns ();
1554 end_sequence ();
1556 emit_insn_before (seq, insn);
1557 delete_insn (insn);
1558 return;
1561 extract_insn (insn);
1562 insn_code = INSN_CODE (insn);
1564 /* Handle a plus involving a virtual register by determining if the
1565 operands remain valid if they're modified in place. */
1566 if (GET_CODE (SET_SRC (set)) == PLUS
1567 && recog_data.n_operands >= 3
1568 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1569 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1570 && CONST_INT_P (recog_data.operand[2])
1571 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
1573 offset += INTVAL (recog_data.operand[2]);
1575 /* If the sum is zero, then replace with a plain move. */
1576 if (offset == 0
1577 && REG_P (SET_DEST (set))
1578 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1580 start_sequence ();
1581 emit_move_insn (SET_DEST (set), new_rtx);
1582 seq = get_insns ();
1583 end_sequence ();
1585 emit_insn_before (seq, insn);
1586 delete_insn (insn);
1587 return;
1590 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1592 /* Using validate_change and apply_change_group here leaves
1593 recog_data in an invalid state. Since we know exactly what
1594 we want to check, do those two by hand. */
1595 if (safe_insn_predicate (insn_code, 1, new_rtx)
1596 && safe_insn_predicate (insn_code, 2, x))
1598 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1599 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1600 any_change = true;
1602 /* Fall through into the regular operand fixup loop in
1603 order to take care of operands other than 1 and 2. */
1607 else
1609 extract_insn (insn);
1610 insn_code = INSN_CODE (insn);
1613 /* In the general case, we expect virtual registers to appear only in
1614 operands, and then only as either bare registers or inside memories. */
1615 for (i = 0; i < recog_data.n_operands; ++i)
1617 x = recog_data.operand[i];
1618 switch (GET_CODE (x))
1620 case MEM:
1622 rtx addr = XEXP (x, 0);
1623 bool changed = false;
1625 for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
1626 if (!changed)
1627 continue;
1629 start_sequence ();
1630 x = replace_equiv_address (x, addr);
1631 /* It may happen that the address with the virtual reg
1632 was valid (e.g. based on the virtual stack reg, which might
1633 be acceptable to the predicates with all offsets), whereas
1634 the address now isn't anymore, for instance when the address
1635 is still offsetted, but the base reg isn't virtual-stack-reg
1636 anymore. Below we would do a force_reg on the whole operand,
1637 but this insn might actually only accept memory. Hence,
1638 before doing that last resort, try to reload the address into
1639 a register, so this operand stays a MEM. */
1640 if (!safe_insn_predicate (insn_code, i, x))
1642 addr = force_reg (GET_MODE (addr), addr);
1643 x = replace_equiv_address (x, addr);
1645 seq = get_insns ();
1646 end_sequence ();
1647 if (seq)
1648 emit_insn_before (seq, insn);
1650 break;
1652 case REG:
1653 new_rtx = instantiate_new_reg (x, &offset);
1654 if (new_rtx == NULL)
1655 continue;
1656 if (offset == 0)
1657 x = new_rtx;
1658 else
1660 start_sequence ();
1662 /* Careful, special mode predicates may have stuff in
1663 insn_data[insn_code].operand[i].mode that isn't useful
1664 to us for computing a new value. */
1665 /* ??? Recognize address_operand and/or "p" constraints
1666 to see if (plus new offset) is a valid before we put
1667 this through expand_simple_binop. */
1668 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1669 GEN_INT (offset), NULL_RTX,
1670 1, OPTAB_LIB_WIDEN);
1671 seq = get_insns ();
1672 end_sequence ();
1673 emit_insn_before (seq, insn);
1675 break;
1677 case SUBREG:
1678 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1679 if (new_rtx == NULL)
1680 continue;
1681 if (offset != 0)
1683 start_sequence ();
1684 new_rtx = expand_simple_binop (GET_MODE (new_rtx), PLUS, new_rtx,
1685 GEN_INT (offset), NULL_RTX,
1686 1, OPTAB_LIB_WIDEN);
1687 seq = get_insns ();
1688 end_sequence ();
1689 emit_insn_before (seq, insn);
1691 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1692 GET_MODE (new_rtx), SUBREG_BYTE (x));
1693 gcc_assert (x);
1694 break;
1696 default:
1697 continue;
1700 /* At this point, X contains the new value for the operand.
1701 Validate the new value vs the insn predicate. Note that
1702 asm insns will have insn_code -1 here. */
1703 if (!safe_insn_predicate (insn_code, i, x))
1705 start_sequence ();
1706 if (REG_P (x))
1708 gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER);
1709 x = copy_to_reg (x);
1711 else
1712 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1713 seq = get_insns ();
1714 end_sequence ();
1715 if (seq)
1716 emit_insn_before (seq, insn);
1719 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1720 any_change = true;
1723 if (any_change)
1725 /* Propagate operand changes into the duplicates. */
1726 for (i = 0; i < recog_data.n_dups; ++i)
1727 *recog_data.dup_loc[i]
1728 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1730 /* Force re-recognition of the instruction for validation. */
1731 INSN_CODE (insn) = -1;
1734 if (asm_noperands (PATTERN (insn)) >= 0)
1736 if (!check_asm_operands (PATTERN (insn)))
1738 error_for_asm (insn, "impossible constraint in %<asm%>");
1739 /* For asm goto, instead of fixing up all the edges
1740 just clear the template and clear input operands
1741 (asm goto doesn't have any output operands). */
1742 if (JUMP_P (insn))
1744 rtx asm_op = extract_asm_operands (PATTERN (insn));
1745 ASM_OPERANDS_TEMPLATE (asm_op) = ggc_strdup ("");
1746 ASM_OPERANDS_INPUT_VEC (asm_op) = rtvec_alloc (0);
1747 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (asm_op) = rtvec_alloc (0);
1749 else
1750 delete_insn (insn);
1753 else
1755 if (recog_memoized (insn) < 0)
1756 fatal_insn_not_found (insn);
1760 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1761 do any instantiation required. */
1763 void
1764 instantiate_decl_rtl (rtx x)
1766 rtx addr;
1768 if (x == 0)
1769 return;
1771 /* If this is a CONCAT, recurse for the pieces. */
1772 if (GET_CODE (x) == CONCAT)
1774 instantiate_decl_rtl (XEXP (x, 0));
1775 instantiate_decl_rtl (XEXP (x, 1));
1776 return;
1779 /* If this is not a MEM, no need to do anything. Similarly if the
1780 address is a constant or a register that is not a virtual register. */
1781 if (!MEM_P (x))
1782 return;
1784 addr = XEXP (x, 0);
1785 if (CONSTANT_P (addr)
1786 || (REG_P (addr)
1787 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1788 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1789 return;
1791 for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
1794 /* Helper for instantiate_decls called via walk_tree: Process all decls
1795 in the given DECL_VALUE_EXPR. */
1797 static tree
1798 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1800 tree t = *tp;
1801 if (! EXPR_P (t))
1803 *walk_subtrees = 0;
1804 if (DECL_P (t))
1806 if (DECL_RTL_SET_P (t))
1807 instantiate_decl_rtl (DECL_RTL (t));
1808 if (TREE_CODE (t) == PARM_DECL && DECL_NAMELESS (t)
1809 && DECL_INCOMING_RTL (t))
1810 instantiate_decl_rtl (DECL_INCOMING_RTL (t));
1811 if ((TREE_CODE (t) == VAR_DECL
1812 || TREE_CODE (t) == RESULT_DECL)
1813 && DECL_HAS_VALUE_EXPR_P (t))
1815 tree v = DECL_VALUE_EXPR (t);
1816 walk_tree (&v, instantiate_expr, NULL, NULL);
1820 return NULL;
1823 /* Subroutine of instantiate_decls: Process all decls in the given
1824 BLOCK node and all its subblocks. */
1826 static void
1827 instantiate_decls_1 (tree let)
1829 tree t;
1831 for (t = BLOCK_VARS (let); t; t = DECL_CHAIN (t))
1833 if (DECL_RTL_SET_P (t))
1834 instantiate_decl_rtl (DECL_RTL (t));
1835 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1837 tree v = DECL_VALUE_EXPR (t);
1838 walk_tree (&v, instantiate_expr, NULL, NULL);
1842 /* Process all subblocks. */
1843 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1844 instantiate_decls_1 (t);
1847 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1848 all virtual registers in their DECL_RTL's. */
1850 static void
1851 instantiate_decls (tree fndecl)
1853 tree decl;
1854 unsigned ix;
1856 /* Process all parameters of the function. */
1857 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = DECL_CHAIN (decl))
1859 instantiate_decl_rtl (DECL_RTL (decl));
1860 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1861 if (DECL_HAS_VALUE_EXPR_P (decl))
1863 tree v = DECL_VALUE_EXPR (decl);
1864 walk_tree (&v, instantiate_expr, NULL, NULL);
1868 if ((decl = DECL_RESULT (fndecl))
1869 && TREE_CODE (decl) == RESULT_DECL)
1871 if (DECL_RTL_SET_P (decl))
1872 instantiate_decl_rtl (DECL_RTL (decl));
1873 if (DECL_HAS_VALUE_EXPR_P (decl))
1875 tree v = DECL_VALUE_EXPR (decl);
1876 walk_tree (&v, instantiate_expr, NULL, NULL);
1880 /* Now process all variables defined in the function or its subblocks. */
1881 instantiate_decls_1 (DECL_INITIAL (fndecl));
1883 FOR_EACH_LOCAL_DECL (cfun, ix, decl)
1884 if (DECL_RTL_SET_P (decl))
1885 instantiate_decl_rtl (DECL_RTL (decl));
1886 vec_free (cfun->local_decls);
1889 /* Pass through the INSNS of function FNDECL and convert virtual register
1890 references to hard register references. */
1892 static unsigned int
1893 instantiate_virtual_regs (void)
1895 rtx insn;
1897 /* Compute the offsets to use for this function. */
1898 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1899 var_offset = STARTING_FRAME_OFFSET;
1900 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1901 out_arg_offset = STACK_POINTER_OFFSET;
1902 #ifdef FRAME_POINTER_CFA_OFFSET
1903 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1904 #else
1905 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1906 #endif
1908 /* Initialize recognition, indicating that volatile is OK. */
1909 init_recog ();
1911 /* Scan through all the insns, instantiating every virtual register still
1912 present. */
1913 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1914 if (INSN_P (insn))
1916 /* These patterns in the instruction stream can never be recognized.
1917 Fortunately, they shouldn't contain virtual registers either. */
1918 if (GET_CODE (PATTERN (insn)) == USE
1919 || GET_CODE (PATTERN (insn)) == CLOBBER
1920 || GET_CODE (PATTERN (insn)) == ADDR_VEC
1921 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
1922 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1923 continue;
1924 else if (DEBUG_INSN_P (insn))
1925 for_each_rtx (&INSN_VAR_LOCATION (insn),
1926 instantiate_virtual_regs_in_rtx, NULL);
1927 else
1928 instantiate_virtual_regs_in_insn (insn);
1930 if (INSN_DELETED_P (insn))
1931 continue;
1933 for_each_rtx (&REG_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
1935 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1936 if (CALL_P (insn))
1937 for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
1938 instantiate_virtual_regs_in_rtx, NULL);
1941 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1942 instantiate_decls (current_function_decl);
1944 targetm.instantiate_decls ();
1946 /* Indicate that, from now on, assign_stack_local should use
1947 frame_pointer_rtx. */
1948 virtuals_instantiated = 1;
1950 return 0;
1953 struct rtl_opt_pass pass_instantiate_virtual_regs =
1956 RTL_PASS,
1957 "vregs", /* name */
1958 OPTGROUP_NONE, /* optinfo_flags */
1959 NULL, /* gate */
1960 instantiate_virtual_regs, /* execute */
1961 NULL, /* sub */
1962 NULL, /* next */
1963 0, /* static_pass_number */
1964 TV_NONE, /* tv_id */
1965 0, /* properties_required */
1966 0, /* properties_provided */
1967 0, /* properties_destroyed */
1968 0, /* todo_flags_start */
1969 0 /* todo_flags_finish */
1974 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1975 This means a type for which function calls must pass an address to the
1976 function or get an address back from the function.
1977 EXP may be a type node or an expression (whose type is tested). */
1980 aggregate_value_p (const_tree exp, const_tree fntype)
1982 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1983 int i, regno, nregs;
1984 rtx reg;
1986 if (fntype)
1987 switch (TREE_CODE (fntype))
1989 case CALL_EXPR:
1991 tree fndecl = get_callee_fndecl (fntype);
1992 fntype = (fndecl
1993 ? TREE_TYPE (fndecl)
1994 : TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype))));
1996 break;
1997 case FUNCTION_DECL:
1998 fntype = TREE_TYPE (fntype);
1999 break;
2000 case FUNCTION_TYPE:
2001 case METHOD_TYPE:
2002 break;
2003 case IDENTIFIER_NODE:
2004 fntype = NULL_TREE;
2005 break;
2006 default:
2007 /* We don't expect other tree types here. */
2008 gcc_unreachable ();
2011 if (VOID_TYPE_P (type))
2012 return 0;
2014 /* If a record should be passed the same as its first (and only) member
2015 don't pass it as an aggregate. */
2016 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2017 return aggregate_value_p (first_field (type), fntype);
2019 /* If the front end has decided that this needs to be passed by
2020 reference, do so. */
2021 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
2022 && DECL_BY_REFERENCE (exp))
2023 return 1;
2025 /* Function types that are TREE_ADDRESSABLE force return in memory. */
2026 if (fntype && TREE_ADDRESSABLE (fntype))
2027 return 1;
2029 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
2030 and thus can't be returned in registers. */
2031 if (TREE_ADDRESSABLE (type))
2032 return 1;
2034 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
2035 return 1;
2037 if (targetm.calls.return_in_memory (type, fntype))
2038 return 1;
2040 /* Make sure we have suitable call-clobbered regs to return
2041 the value in; if not, we must return it in memory. */
2042 reg = hard_function_value (type, 0, fntype, 0);
2044 /* If we have something other than a REG (e.g. a PARALLEL), then assume
2045 it is OK. */
2046 if (!REG_P (reg))
2047 return 0;
2049 regno = REGNO (reg);
2050 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
2051 for (i = 0; i < nregs; i++)
2052 if (! call_used_regs[regno + i])
2053 return 1;
2055 return 0;
2058 /* Return true if we should assign DECL a pseudo register; false if it
2059 should live on the local stack. */
2061 bool
2062 use_register_for_decl (const_tree decl)
2064 if (!targetm.calls.allocate_stack_slots_for_args())
2065 return true;
2067 /* Honor volatile. */
2068 if (TREE_SIDE_EFFECTS (decl))
2069 return false;
2071 /* Honor addressability. */
2072 if (TREE_ADDRESSABLE (decl))
2073 return false;
2075 /* Only register-like things go in registers. */
2076 if (DECL_MODE (decl) == BLKmode)
2077 return false;
2079 /* If -ffloat-store specified, don't put explicit float variables
2080 into registers. */
2081 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
2082 propagates values across these stores, and it probably shouldn't. */
2083 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
2084 return false;
2086 /* If we're not interested in tracking debugging information for
2087 this decl, then we can certainly put it in a register. */
2088 if (DECL_IGNORED_P (decl))
2089 return true;
2091 if (optimize)
2092 return true;
2094 if (!DECL_REGISTER (decl))
2095 return false;
2097 switch (TREE_CODE (TREE_TYPE (decl)))
2099 case RECORD_TYPE:
2100 case UNION_TYPE:
2101 case QUAL_UNION_TYPE:
2102 /* When not optimizing, disregard register keyword for variables with
2103 types containing methods, otherwise the methods won't be callable
2104 from the debugger. */
2105 if (TYPE_METHODS (TREE_TYPE (decl)))
2106 return false;
2107 break;
2108 default:
2109 break;
2112 return true;
2115 /* Return true if TYPE should be passed by invisible reference. */
2117 bool
2118 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2119 tree type, bool named_arg)
2121 if (type)
2123 /* If this type contains non-trivial constructors, then it is
2124 forbidden for the middle-end to create any new copies. */
2125 if (TREE_ADDRESSABLE (type))
2126 return true;
2128 /* GCC post 3.4 passes *all* variable sized types by reference. */
2129 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
2130 return true;
2132 /* If a record type should be passed the same as its first (and only)
2133 member, use the type and mode of that member. */
2134 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2136 type = TREE_TYPE (first_field (type));
2137 mode = TYPE_MODE (type);
2141 return targetm.calls.pass_by_reference (pack_cumulative_args (ca), mode,
2142 type, named_arg);
2145 /* Return true if TYPE, which is passed by reference, should be callee
2146 copied instead of caller copied. */
2148 bool
2149 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2150 tree type, bool named_arg)
2152 if (type && TREE_ADDRESSABLE (type))
2153 return false;
2154 return targetm.calls.callee_copies (pack_cumulative_args (ca), mode, type,
2155 named_arg);
2158 /* Structures to communicate between the subroutines of assign_parms.
2159 The first holds data persistent across all parameters, the second
2160 is cleared out for each parameter. */
2162 struct assign_parm_data_all
2164 /* When INIT_CUMULATIVE_ARGS gets revamped, allocating CUMULATIVE_ARGS
2165 should become a job of the target or otherwise encapsulated. */
2166 CUMULATIVE_ARGS args_so_far_v;
2167 cumulative_args_t args_so_far;
2168 struct args_size stack_args_size;
2169 tree function_result_decl;
2170 tree orig_fnargs;
2171 rtx first_conversion_insn;
2172 rtx last_conversion_insn;
2173 HOST_WIDE_INT pretend_args_size;
2174 HOST_WIDE_INT extra_pretend_bytes;
2175 int reg_parm_stack_space;
2178 struct assign_parm_data_one
2180 tree nominal_type;
2181 tree passed_type;
2182 rtx entry_parm;
2183 rtx stack_parm;
2184 enum machine_mode nominal_mode;
2185 enum machine_mode passed_mode;
2186 enum machine_mode promoted_mode;
2187 struct locate_and_pad_arg_data locate;
2188 int partial;
2189 BOOL_BITFIELD named_arg : 1;
2190 BOOL_BITFIELD passed_pointer : 1;
2191 BOOL_BITFIELD on_stack : 1;
2192 BOOL_BITFIELD loaded_in_reg : 1;
2195 /* A subroutine of assign_parms. Initialize ALL. */
2197 static void
2198 assign_parms_initialize_all (struct assign_parm_data_all *all)
2200 tree fntype ATTRIBUTE_UNUSED;
2202 memset (all, 0, sizeof (*all));
2204 fntype = TREE_TYPE (current_function_decl);
2206 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2207 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far_v, fntype, NULL_RTX);
2208 #else
2209 INIT_CUMULATIVE_ARGS (all->args_so_far_v, fntype, NULL_RTX,
2210 current_function_decl, -1);
2211 #endif
2212 all->args_so_far = pack_cumulative_args (&all->args_so_far_v);
2214 #ifdef REG_PARM_STACK_SPACE
2215 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
2216 #endif
2219 /* If ARGS contains entries with complex types, split the entry into two
2220 entries of the component type. Return a new list of substitutions are
2221 needed, else the old list. */
2223 static void
2224 split_complex_args (vec<tree> *args)
2226 unsigned i;
2227 tree p;
2229 FOR_EACH_VEC_ELT (*args, i, p)
2231 tree type = TREE_TYPE (p);
2232 if (TREE_CODE (type) == COMPLEX_TYPE
2233 && targetm.calls.split_complex_arg (type))
2235 tree decl;
2236 tree subtype = TREE_TYPE (type);
2237 bool addressable = TREE_ADDRESSABLE (p);
2239 /* Rewrite the PARM_DECL's type with its component. */
2240 p = copy_node (p);
2241 TREE_TYPE (p) = subtype;
2242 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2243 DECL_MODE (p) = VOIDmode;
2244 DECL_SIZE (p) = NULL;
2245 DECL_SIZE_UNIT (p) = NULL;
2246 /* If this arg must go in memory, put it in a pseudo here.
2247 We can't allow it to go in memory as per normal parms,
2248 because the usual place might not have the imag part
2249 adjacent to the real part. */
2250 DECL_ARTIFICIAL (p) = addressable;
2251 DECL_IGNORED_P (p) = addressable;
2252 TREE_ADDRESSABLE (p) = 0;
2253 layout_decl (p, 0);
2254 (*args)[i] = p;
2256 /* Build a second synthetic decl. */
2257 decl = build_decl (EXPR_LOCATION (p),
2258 PARM_DECL, NULL_TREE, subtype);
2259 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2260 DECL_ARTIFICIAL (decl) = addressable;
2261 DECL_IGNORED_P (decl) = addressable;
2262 layout_decl (decl, 0);
2263 args->safe_insert (++i, decl);
2268 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2269 the hidden struct return argument, and (abi willing) complex args.
2270 Return the new parameter list. */
2272 static vec<tree>
2273 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2275 tree fndecl = current_function_decl;
2276 tree fntype = TREE_TYPE (fndecl);
2277 vec<tree> fnargs = vNULL;
2278 tree arg;
2280 for (arg = DECL_ARGUMENTS (fndecl); arg; arg = DECL_CHAIN (arg))
2281 fnargs.safe_push (arg);
2283 all->orig_fnargs = DECL_ARGUMENTS (fndecl);
2285 /* If struct value address is treated as the first argument, make it so. */
2286 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2287 && ! cfun->returns_pcc_struct
2288 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2290 tree type = build_pointer_type (TREE_TYPE (fntype));
2291 tree decl;
2293 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2294 PARM_DECL, get_identifier (".result_ptr"), type);
2295 DECL_ARG_TYPE (decl) = type;
2296 DECL_ARTIFICIAL (decl) = 1;
2297 DECL_NAMELESS (decl) = 1;
2298 TREE_CONSTANT (decl) = 1;
2300 DECL_CHAIN (decl) = all->orig_fnargs;
2301 all->orig_fnargs = decl;
2302 fnargs.safe_insert (0, decl);
2304 all->function_result_decl = decl;
2307 /* If the target wants to split complex arguments into scalars, do so. */
2308 if (targetm.calls.split_complex_arg)
2309 split_complex_args (&fnargs);
2311 return fnargs;
2314 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2315 data for the parameter. Incorporate ABI specifics such as pass-by-
2316 reference and type promotion. */
2318 static void
2319 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2320 struct assign_parm_data_one *data)
2322 tree nominal_type, passed_type;
2323 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2324 int unsignedp;
2326 memset (data, 0, sizeof (*data));
2328 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2329 if (!cfun->stdarg)
2330 data->named_arg = 1; /* No variadic parms. */
2331 else if (DECL_CHAIN (parm))
2332 data->named_arg = 1; /* Not the last non-variadic parm. */
2333 else if (targetm.calls.strict_argument_naming (all->args_so_far))
2334 data->named_arg = 1; /* Only variadic ones are unnamed. */
2335 else
2336 data->named_arg = 0; /* Treat as variadic. */
2338 nominal_type = TREE_TYPE (parm);
2339 passed_type = DECL_ARG_TYPE (parm);
2341 /* Look out for errors propagating this far. Also, if the parameter's
2342 type is void then its value doesn't matter. */
2343 if (TREE_TYPE (parm) == error_mark_node
2344 /* This can happen after weird syntax errors
2345 or if an enum type is defined among the parms. */
2346 || TREE_CODE (parm) != PARM_DECL
2347 || passed_type == NULL
2348 || VOID_TYPE_P (nominal_type))
2350 nominal_type = passed_type = void_type_node;
2351 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2352 goto egress;
2355 /* Find mode of arg as it is passed, and mode of arg as it should be
2356 during execution of this function. */
2357 passed_mode = TYPE_MODE (passed_type);
2358 nominal_mode = TYPE_MODE (nominal_type);
2360 /* If the parm is to be passed as a transparent union or record, use the
2361 type of the first field for the tests below. We have already verified
2362 that the modes are the same. */
2363 if ((TREE_CODE (passed_type) == UNION_TYPE
2364 || TREE_CODE (passed_type) == RECORD_TYPE)
2365 && TYPE_TRANSPARENT_AGGR (passed_type))
2366 passed_type = TREE_TYPE (first_field (passed_type));
2368 /* See if this arg was passed by invisible reference. */
2369 if (pass_by_reference (&all->args_so_far_v, passed_mode,
2370 passed_type, data->named_arg))
2372 passed_type = nominal_type = build_pointer_type (passed_type);
2373 data->passed_pointer = true;
2374 passed_mode = nominal_mode = Pmode;
2377 /* Find mode as it is passed by the ABI. */
2378 unsignedp = TYPE_UNSIGNED (passed_type);
2379 promoted_mode = promote_function_mode (passed_type, passed_mode, &unsignedp,
2380 TREE_TYPE (current_function_decl), 0);
2382 egress:
2383 data->nominal_type = nominal_type;
2384 data->passed_type = passed_type;
2385 data->nominal_mode = nominal_mode;
2386 data->passed_mode = passed_mode;
2387 data->promoted_mode = promoted_mode;
2390 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2392 static void
2393 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2394 struct assign_parm_data_one *data, bool no_rtl)
2396 int varargs_pretend_bytes = 0;
2398 targetm.calls.setup_incoming_varargs (all->args_so_far,
2399 data->promoted_mode,
2400 data->passed_type,
2401 &varargs_pretend_bytes, no_rtl);
2403 /* If the back-end has requested extra stack space, record how much is
2404 needed. Do not change pretend_args_size otherwise since it may be
2405 nonzero from an earlier partial argument. */
2406 if (varargs_pretend_bytes > 0)
2407 all->pretend_args_size = varargs_pretend_bytes;
2410 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2411 the incoming location of the current parameter. */
2413 static void
2414 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2415 struct assign_parm_data_one *data)
2417 HOST_WIDE_INT pretend_bytes = 0;
2418 rtx entry_parm;
2419 bool in_regs;
2421 if (data->promoted_mode == VOIDmode)
2423 data->entry_parm = data->stack_parm = const0_rtx;
2424 return;
2427 entry_parm = targetm.calls.function_incoming_arg (all->args_so_far,
2428 data->promoted_mode,
2429 data->passed_type,
2430 data->named_arg);
2432 if (entry_parm == 0)
2433 data->promoted_mode = data->passed_mode;
2435 /* Determine parm's home in the stack, in case it arrives in the stack
2436 or we should pretend it did. Compute the stack position and rtx where
2437 the argument arrives and its size.
2439 There is one complexity here: If this was a parameter that would
2440 have been passed in registers, but wasn't only because it is
2441 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2442 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2443 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2444 as it was the previous time. */
2445 in_regs = entry_parm != 0;
2446 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2447 in_regs = true;
2448 #endif
2449 if (!in_regs && !data->named_arg)
2451 if (targetm.calls.pretend_outgoing_varargs_named (all->args_so_far))
2453 rtx tem;
2454 tem = targetm.calls.function_incoming_arg (all->args_so_far,
2455 data->promoted_mode,
2456 data->passed_type, true);
2457 in_regs = tem != NULL;
2461 /* If this parameter was passed both in registers and in the stack, use
2462 the copy on the stack. */
2463 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2464 data->passed_type))
2465 entry_parm = 0;
2467 if (entry_parm)
2469 int partial;
2471 partial = targetm.calls.arg_partial_bytes (all->args_so_far,
2472 data->promoted_mode,
2473 data->passed_type,
2474 data->named_arg);
2475 data->partial = partial;
2477 /* The caller might already have allocated stack space for the
2478 register parameters. */
2479 if (partial != 0 && all->reg_parm_stack_space == 0)
2481 /* Part of this argument is passed in registers and part
2482 is passed on the stack. Ask the prologue code to extend
2483 the stack part so that we can recreate the full value.
2485 PRETEND_BYTES is the size of the registers we need to store.
2486 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2487 stack space that the prologue should allocate.
2489 Internally, gcc assumes that the argument pointer is aligned
2490 to STACK_BOUNDARY bits. This is used both for alignment
2491 optimizations (see init_emit) and to locate arguments that are
2492 aligned to more than PARM_BOUNDARY bits. We must preserve this
2493 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2494 a stack boundary. */
2496 /* We assume at most one partial arg, and it must be the first
2497 argument on the stack. */
2498 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2500 pretend_bytes = partial;
2501 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2503 /* We want to align relative to the actual stack pointer, so
2504 don't include this in the stack size until later. */
2505 all->extra_pretend_bytes = all->pretend_args_size;
2509 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2510 all->reg_parm_stack_space,
2511 entry_parm ? data->partial : 0, current_function_decl,
2512 &all->stack_args_size, &data->locate);
2514 /* Update parm_stack_boundary if this parameter is passed in the
2515 stack. */
2516 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2517 crtl->parm_stack_boundary = data->locate.boundary;
2519 /* Adjust offsets to include the pretend args. */
2520 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2521 data->locate.slot_offset.constant += pretend_bytes;
2522 data->locate.offset.constant += pretend_bytes;
2524 data->entry_parm = entry_parm;
2527 /* A subroutine of assign_parms. If there is actually space on the stack
2528 for this parm, count it in stack_args_size and return true. */
2530 static bool
2531 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2532 struct assign_parm_data_one *data)
2534 /* Trivially true if we've no incoming register. */
2535 if (data->entry_parm == NULL)
2537 /* Also true if we're partially in registers and partially not,
2538 since we've arranged to drop the entire argument on the stack. */
2539 else if (data->partial != 0)
2541 /* Also true if the target says that it's passed in both registers
2542 and on the stack. */
2543 else if (GET_CODE (data->entry_parm) == PARALLEL
2544 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2546 /* Also true if the target says that there's stack allocated for
2547 all register parameters. */
2548 else if (all->reg_parm_stack_space > 0)
2550 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2551 else
2552 return false;
2554 all->stack_args_size.constant += data->locate.size.constant;
2555 if (data->locate.size.var)
2556 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2558 return true;
2561 /* A subroutine of assign_parms. Given that this parameter is allocated
2562 stack space by the ABI, find it. */
2564 static void
2565 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2567 rtx offset_rtx, stack_parm;
2568 unsigned int align, boundary;
2570 /* If we're passing this arg using a reg, make its stack home the
2571 aligned stack slot. */
2572 if (data->entry_parm)
2573 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2574 else
2575 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2577 stack_parm = crtl->args.internal_arg_pointer;
2578 if (offset_rtx != const0_rtx)
2579 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2580 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2582 if (!data->passed_pointer)
2584 set_mem_attributes (stack_parm, parm, 1);
2585 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2586 while promoted mode's size is needed. */
2587 if (data->promoted_mode != BLKmode
2588 && data->promoted_mode != DECL_MODE (parm))
2590 set_mem_size (stack_parm, GET_MODE_SIZE (data->promoted_mode));
2591 if (MEM_EXPR (stack_parm) && MEM_OFFSET_KNOWN_P (stack_parm))
2593 int offset = subreg_lowpart_offset (DECL_MODE (parm),
2594 data->promoted_mode);
2595 if (offset)
2596 set_mem_offset (stack_parm, MEM_OFFSET (stack_parm) - offset);
2601 boundary = data->locate.boundary;
2602 align = BITS_PER_UNIT;
2604 /* If we're padding upward, we know that the alignment of the slot
2605 is TARGET_FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2606 intentionally forcing upward padding. Otherwise we have to come
2607 up with a guess at the alignment based on OFFSET_RTX. */
2608 if (data->locate.where_pad != downward || data->entry_parm)
2609 align = boundary;
2610 else if (CONST_INT_P (offset_rtx))
2612 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2613 align = align & -align;
2615 set_mem_align (stack_parm, align);
2617 if (data->entry_parm)
2618 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2620 data->stack_parm = stack_parm;
2623 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2624 always valid and contiguous. */
2626 static void
2627 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2629 rtx entry_parm = data->entry_parm;
2630 rtx stack_parm = data->stack_parm;
2632 /* If this parm was passed part in regs and part in memory, pretend it
2633 arrived entirely in memory by pushing the register-part onto the stack.
2634 In the special case of a DImode or DFmode that is split, we could put
2635 it together in a pseudoreg directly, but for now that's not worth
2636 bothering with. */
2637 if (data->partial != 0)
2639 /* Handle calls that pass values in multiple non-contiguous
2640 locations. The Irix 6 ABI has examples of this. */
2641 if (GET_CODE (entry_parm) == PARALLEL)
2642 emit_group_store (validize_mem (stack_parm), entry_parm,
2643 data->passed_type,
2644 int_size_in_bytes (data->passed_type));
2645 else
2647 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2648 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2649 data->partial / UNITS_PER_WORD);
2652 entry_parm = stack_parm;
2655 /* If we didn't decide this parm came in a register, by default it came
2656 on the stack. */
2657 else if (entry_parm == NULL)
2658 entry_parm = stack_parm;
2660 /* When an argument is passed in multiple locations, we can't make use
2661 of this information, but we can save some copying if the whole argument
2662 is passed in a single register. */
2663 else if (GET_CODE (entry_parm) == PARALLEL
2664 && data->nominal_mode != BLKmode
2665 && data->passed_mode != BLKmode)
2667 size_t i, len = XVECLEN (entry_parm, 0);
2669 for (i = 0; i < len; i++)
2670 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2671 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2672 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2673 == data->passed_mode)
2674 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2676 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2677 break;
2681 data->entry_parm = entry_parm;
2684 /* A subroutine of assign_parms. Reconstitute any values which were
2685 passed in multiple registers and would fit in a single register. */
2687 static void
2688 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2690 rtx entry_parm = data->entry_parm;
2692 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2693 This can be done with register operations rather than on the
2694 stack, even if we will store the reconstituted parameter on the
2695 stack later. */
2696 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2698 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2699 emit_group_store (parmreg, entry_parm, data->passed_type,
2700 GET_MODE_SIZE (GET_MODE (entry_parm)));
2701 entry_parm = parmreg;
2704 data->entry_parm = entry_parm;
2707 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2708 always valid and properly aligned. */
2710 static void
2711 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2713 rtx stack_parm = data->stack_parm;
2715 /* If we can't trust the parm stack slot to be aligned enough for its
2716 ultimate type, don't use that slot after entry. We'll make another
2717 stack slot, if we need one. */
2718 if (stack_parm
2719 && ((STRICT_ALIGNMENT
2720 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2721 || (data->nominal_type
2722 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2723 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2724 stack_parm = NULL;
2726 /* If parm was passed in memory, and we need to convert it on entry,
2727 don't store it back in that same slot. */
2728 else if (data->entry_parm == stack_parm
2729 && data->nominal_mode != BLKmode
2730 && data->nominal_mode != data->passed_mode)
2731 stack_parm = NULL;
2733 /* If stack protection is in effect for this function, don't leave any
2734 pointers in their passed stack slots. */
2735 else if (crtl->stack_protect_guard
2736 && (flag_stack_protect == 2
2737 || data->passed_pointer
2738 || POINTER_TYPE_P (data->nominal_type)))
2739 stack_parm = NULL;
2741 data->stack_parm = stack_parm;
2744 /* A subroutine of assign_parms. Return true if the current parameter
2745 should be stored as a BLKmode in the current frame. */
2747 static bool
2748 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2750 if (data->nominal_mode == BLKmode)
2751 return true;
2752 if (GET_MODE (data->entry_parm) == BLKmode)
2753 return true;
2755 #ifdef BLOCK_REG_PADDING
2756 /* Only assign_parm_setup_block knows how to deal with register arguments
2757 that are padded at the least significant end. */
2758 if (REG_P (data->entry_parm)
2759 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2760 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2761 == (BYTES_BIG_ENDIAN ? upward : downward)))
2762 return true;
2763 #endif
2765 return false;
2768 /* A subroutine of assign_parms. Arrange for the parameter to be
2769 present and valid in DATA->STACK_RTL. */
2771 static void
2772 assign_parm_setup_block (struct assign_parm_data_all *all,
2773 tree parm, struct assign_parm_data_one *data)
2775 rtx entry_parm = data->entry_parm;
2776 rtx stack_parm = data->stack_parm;
2777 HOST_WIDE_INT size;
2778 HOST_WIDE_INT size_stored;
2780 if (GET_CODE (entry_parm) == PARALLEL)
2781 entry_parm = emit_group_move_into_temps (entry_parm);
2783 size = int_size_in_bytes (data->passed_type);
2784 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2785 if (stack_parm == 0)
2787 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2788 stack_parm = assign_stack_local (BLKmode, size_stored,
2789 DECL_ALIGN (parm));
2790 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2791 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2792 set_mem_attributes (stack_parm, parm, 1);
2795 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2796 calls that pass values in multiple non-contiguous locations. */
2797 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2799 rtx mem;
2801 /* Note that we will be storing an integral number of words.
2802 So we have to be careful to ensure that we allocate an
2803 integral number of words. We do this above when we call
2804 assign_stack_local if space was not allocated in the argument
2805 list. If it was, this will not work if PARM_BOUNDARY is not
2806 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2807 if it becomes a problem. Exception is when BLKmode arrives
2808 with arguments not conforming to word_mode. */
2810 if (data->stack_parm == 0)
2812 else if (GET_CODE (entry_parm) == PARALLEL)
2814 else
2815 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2817 mem = validize_mem (stack_parm);
2819 /* Handle values in multiple non-contiguous locations. */
2820 if (GET_CODE (entry_parm) == PARALLEL)
2822 push_to_sequence2 (all->first_conversion_insn,
2823 all->last_conversion_insn);
2824 emit_group_store (mem, entry_parm, data->passed_type, size);
2825 all->first_conversion_insn = get_insns ();
2826 all->last_conversion_insn = get_last_insn ();
2827 end_sequence ();
2830 else if (size == 0)
2833 /* If SIZE is that of a mode no bigger than a word, just use
2834 that mode's store operation. */
2835 else if (size <= UNITS_PER_WORD)
2837 enum machine_mode mode
2838 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2840 if (mode != BLKmode
2841 #ifdef BLOCK_REG_PADDING
2842 && (size == UNITS_PER_WORD
2843 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2844 != (BYTES_BIG_ENDIAN ? upward : downward)))
2845 #endif
2848 rtx reg;
2850 /* We are really truncating a word_mode value containing
2851 SIZE bytes into a value of mode MODE. If such an
2852 operation requires no actual instructions, we can refer
2853 to the value directly in mode MODE, otherwise we must
2854 start with the register in word_mode and explicitly
2855 convert it. */
2856 if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
2857 reg = gen_rtx_REG (mode, REGNO (entry_parm));
2858 else
2860 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2861 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
2863 emit_move_insn (change_address (mem, mode, 0), reg);
2866 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2867 machine must be aligned to the left before storing
2868 to memory. Note that the previous test doesn't
2869 handle all cases (e.g. SIZE == 3). */
2870 else if (size != UNITS_PER_WORD
2871 #ifdef BLOCK_REG_PADDING
2872 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2873 == downward)
2874 #else
2875 && BYTES_BIG_ENDIAN
2876 #endif
2879 rtx tem, x;
2880 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2881 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2883 x = expand_shift (LSHIFT_EXPR, word_mode, reg, by, NULL_RTX, 1);
2884 tem = change_address (mem, word_mode, 0);
2885 emit_move_insn (tem, x);
2887 else
2888 move_block_from_reg (REGNO (entry_parm), mem,
2889 size_stored / UNITS_PER_WORD);
2891 else
2892 move_block_from_reg (REGNO (entry_parm), mem,
2893 size_stored / UNITS_PER_WORD);
2895 else if (data->stack_parm == 0)
2897 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2898 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2899 BLOCK_OP_NORMAL);
2900 all->first_conversion_insn = get_insns ();
2901 all->last_conversion_insn = get_last_insn ();
2902 end_sequence ();
2905 data->stack_parm = stack_parm;
2906 SET_DECL_RTL (parm, stack_parm);
2909 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2910 parameter. Get it there. Perform all ABI specified conversions. */
2912 static void
2913 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2914 struct assign_parm_data_one *data)
2916 rtx parmreg, validated_mem;
2917 rtx equiv_stack_parm;
2918 enum machine_mode promoted_nominal_mode;
2919 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2920 bool did_conversion = false;
2921 bool need_conversion, moved;
2923 /* Store the parm in a pseudoregister during the function, but we may
2924 need to do it in a wider mode. Using 2 here makes the result
2925 consistent with promote_decl_mode and thus expand_expr_real_1. */
2926 promoted_nominal_mode
2927 = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
2928 TREE_TYPE (current_function_decl), 2);
2930 parmreg = gen_reg_rtx (promoted_nominal_mode);
2932 if (!DECL_ARTIFICIAL (parm))
2933 mark_user_reg (parmreg);
2935 /* If this was an item that we received a pointer to,
2936 set DECL_RTL appropriately. */
2937 if (data->passed_pointer)
2939 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2940 set_mem_attributes (x, parm, 1);
2941 SET_DECL_RTL (parm, x);
2943 else
2944 SET_DECL_RTL (parm, parmreg);
2946 assign_parm_remove_parallels (data);
2948 /* Copy the value into the register, thus bridging between
2949 assign_parm_find_data_types and expand_expr_real_1. */
2951 equiv_stack_parm = data->stack_parm;
2952 validated_mem = validize_mem (data->entry_parm);
2954 need_conversion = (data->nominal_mode != data->passed_mode
2955 || promoted_nominal_mode != data->promoted_mode);
2956 moved = false;
2958 if (need_conversion
2959 && GET_MODE_CLASS (data->nominal_mode) == MODE_INT
2960 && data->nominal_mode == data->passed_mode
2961 && data->nominal_mode == GET_MODE (data->entry_parm))
2963 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2964 mode, by the caller. We now have to convert it to
2965 NOMINAL_MODE, if different. However, PARMREG may be in
2966 a different mode than NOMINAL_MODE if it is being stored
2967 promoted.
2969 If ENTRY_PARM is a hard register, it might be in a register
2970 not valid for operating in its mode (e.g., an odd-numbered
2971 register for a DFmode). In that case, moves are the only
2972 thing valid, so we can't do a convert from there. This
2973 occurs when the calling sequence allow such misaligned
2974 usages.
2976 In addition, the conversion may involve a call, which could
2977 clobber parameters which haven't been copied to pseudo
2978 registers yet.
2980 First, we try to emit an insn which performs the necessary
2981 conversion. We verify that this insn does not clobber any
2982 hard registers. */
2984 enum insn_code icode;
2985 rtx op0, op1;
2987 icode = can_extend_p (promoted_nominal_mode, data->passed_mode,
2988 unsignedp);
2990 op0 = parmreg;
2991 op1 = validated_mem;
2992 if (icode != CODE_FOR_nothing
2993 && insn_operand_matches (icode, 0, op0)
2994 && insn_operand_matches (icode, 1, op1))
2996 enum rtx_code code = unsignedp ? ZERO_EXTEND : SIGN_EXTEND;
2997 rtx insn, insns, t = op1;
2998 HARD_REG_SET hardregs;
3000 start_sequence ();
3001 /* If op1 is a hard register that is likely spilled, first
3002 force it into a pseudo, otherwise combiner might extend
3003 its lifetime too much. */
3004 if (GET_CODE (t) == SUBREG)
3005 t = SUBREG_REG (t);
3006 if (REG_P (t)
3007 && HARD_REGISTER_P (t)
3008 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (t))
3009 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (t))))
3011 t = gen_reg_rtx (GET_MODE (op1));
3012 emit_move_insn (t, op1);
3014 else
3015 t = op1;
3016 insn = gen_extend_insn (op0, t, promoted_nominal_mode,
3017 data->passed_mode, unsignedp);
3018 emit_insn (insn);
3019 insns = get_insns ();
3021 moved = true;
3022 CLEAR_HARD_REG_SET (hardregs);
3023 for (insn = insns; insn && moved; insn = NEXT_INSN (insn))
3025 if (INSN_P (insn))
3026 note_stores (PATTERN (insn), record_hard_reg_sets,
3027 &hardregs);
3028 if (!hard_reg_set_empty_p (hardregs))
3029 moved = false;
3032 end_sequence ();
3034 if (moved)
3036 emit_insn (insns);
3037 if (equiv_stack_parm != NULL_RTX)
3038 equiv_stack_parm = gen_rtx_fmt_e (code, GET_MODE (parmreg),
3039 equiv_stack_parm);
3044 if (moved)
3045 /* Nothing to do. */
3047 else if (need_conversion)
3049 /* We did not have an insn to convert directly, or the sequence
3050 generated appeared unsafe. We must first copy the parm to a
3051 pseudo reg, and save the conversion until after all
3052 parameters have been moved. */
3054 int save_tree_used;
3055 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3057 emit_move_insn (tempreg, validated_mem);
3059 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3060 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
3062 if (GET_CODE (tempreg) == SUBREG
3063 && GET_MODE (tempreg) == data->nominal_mode
3064 && REG_P (SUBREG_REG (tempreg))
3065 && data->nominal_mode == data->passed_mode
3066 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
3067 && GET_MODE_SIZE (GET_MODE (tempreg))
3068 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
3070 /* The argument is already sign/zero extended, so note it
3071 into the subreg. */
3072 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
3073 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
3076 /* TREE_USED gets set erroneously during expand_assignment. */
3077 save_tree_used = TREE_USED (parm);
3078 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
3079 TREE_USED (parm) = save_tree_used;
3080 all->first_conversion_insn = get_insns ();
3081 all->last_conversion_insn = get_last_insn ();
3082 end_sequence ();
3084 did_conversion = true;
3086 else
3087 emit_move_insn (parmreg, validated_mem);
3089 /* If we were passed a pointer but the actual value can safely live
3090 in a register, put it in one. */
3091 if (data->passed_pointer
3092 && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
3093 /* If by-reference argument was promoted, demote it. */
3094 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
3095 || use_register_for_decl (parm)))
3097 /* We can't use nominal_mode, because it will have been set to
3098 Pmode above. We must use the actual mode of the parm. */
3099 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
3100 mark_user_reg (parmreg);
3102 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
3104 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
3105 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
3107 push_to_sequence2 (all->first_conversion_insn,
3108 all->last_conversion_insn);
3109 emit_move_insn (tempreg, DECL_RTL (parm));
3110 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
3111 emit_move_insn (parmreg, tempreg);
3112 all->first_conversion_insn = get_insns ();
3113 all->last_conversion_insn = get_last_insn ();
3114 end_sequence ();
3116 did_conversion = true;
3118 else
3119 emit_move_insn (parmreg, DECL_RTL (parm));
3121 SET_DECL_RTL (parm, parmreg);
3123 /* STACK_PARM is the pointer, not the parm, and PARMREG is
3124 now the parm. */
3125 data->stack_parm = NULL;
3128 /* Mark the register as eliminable if we did no conversion and it was
3129 copied from memory at a fixed offset, and the arg pointer was not
3130 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
3131 offset formed an invalid address, such memory-equivalences as we
3132 make here would screw up life analysis for it. */
3133 if (data->nominal_mode == data->passed_mode
3134 && !did_conversion
3135 && data->stack_parm != 0
3136 && MEM_P (data->stack_parm)
3137 && data->locate.offset.var == 0
3138 && reg_mentioned_p (virtual_incoming_args_rtx,
3139 XEXP (data->stack_parm, 0)))
3141 rtx linsn = get_last_insn ();
3142 rtx sinsn, set;
3144 /* Mark complex types separately. */
3145 if (GET_CODE (parmreg) == CONCAT)
3147 enum machine_mode submode
3148 = GET_MODE_INNER (GET_MODE (parmreg));
3149 int regnor = REGNO (XEXP (parmreg, 0));
3150 int regnoi = REGNO (XEXP (parmreg, 1));
3151 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
3152 rtx stacki = adjust_address_nv (data->stack_parm, submode,
3153 GET_MODE_SIZE (submode));
3155 /* Scan backwards for the set of the real and
3156 imaginary parts. */
3157 for (sinsn = linsn; sinsn != 0;
3158 sinsn = prev_nonnote_insn (sinsn))
3160 set = single_set (sinsn);
3161 if (set == 0)
3162 continue;
3164 if (SET_DEST (set) == regno_reg_rtx [regnoi])
3165 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
3166 else if (SET_DEST (set) == regno_reg_rtx [regnor])
3167 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
3170 else
3171 set_dst_reg_note (linsn, REG_EQUIV, equiv_stack_parm, parmreg);
3174 /* For pointer data type, suggest pointer register. */
3175 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3176 mark_reg_pointer (parmreg,
3177 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
3180 /* A subroutine of assign_parms. Allocate stack space to hold the current
3181 parameter. Get it there. Perform all ABI specified conversions. */
3183 static void
3184 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
3185 struct assign_parm_data_one *data)
3187 /* Value must be stored in the stack slot STACK_PARM during function
3188 execution. */
3189 bool to_conversion = false;
3191 assign_parm_remove_parallels (data);
3193 if (data->promoted_mode != data->nominal_mode)
3195 /* Conversion is required. */
3196 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3198 emit_move_insn (tempreg, validize_mem (data->entry_parm));
3200 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3201 to_conversion = true;
3203 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
3204 TYPE_UNSIGNED (TREE_TYPE (parm)));
3206 if (data->stack_parm)
3208 int offset = subreg_lowpart_offset (data->nominal_mode,
3209 GET_MODE (data->stack_parm));
3210 /* ??? This may need a big-endian conversion on sparc64. */
3211 data->stack_parm
3212 = adjust_address (data->stack_parm, data->nominal_mode, 0);
3213 if (offset && MEM_OFFSET_KNOWN_P (data->stack_parm))
3214 set_mem_offset (data->stack_parm,
3215 MEM_OFFSET (data->stack_parm) + offset);
3219 if (data->entry_parm != data->stack_parm)
3221 rtx src, dest;
3223 if (data->stack_parm == 0)
3225 int align = STACK_SLOT_ALIGNMENT (data->passed_type,
3226 GET_MODE (data->entry_parm),
3227 TYPE_ALIGN (data->passed_type));
3228 data->stack_parm
3229 = assign_stack_local (GET_MODE (data->entry_parm),
3230 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
3231 align);
3232 set_mem_attributes (data->stack_parm, parm, 1);
3235 dest = validize_mem (data->stack_parm);
3236 src = validize_mem (data->entry_parm);
3238 if (MEM_P (src))
3240 /* Use a block move to handle potentially misaligned entry_parm. */
3241 if (!to_conversion)
3242 push_to_sequence2 (all->first_conversion_insn,
3243 all->last_conversion_insn);
3244 to_conversion = true;
3246 emit_block_move (dest, src,
3247 GEN_INT (int_size_in_bytes (data->passed_type)),
3248 BLOCK_OP_NORMAL);
3250 else
3251 emit_move_insn (dest, src);
3254 if (to_conversion)
3256 all->first_conversion_insn = get_insns ();
3257 all->last_conversion_insn = get_last_insn ();
3258 end_sequence ();
3261 SET_DECL_RTL (parm, data->stack_parm);
3264 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3265 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3267 static void
3268 assign_parms_unsplit_complex (struct assign_parm_data_all *all,
3269 vec<tree> fnargs)
3271 tree parm;
3272 tree orig_fnargs = all->orig_fnargs;
3273 unsigned i = 0;
3275 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm), ++i)
3277 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3278 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3280 rtx tmp, real, imag;
3281 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3283 real = DECL_RTL (fnargs[i]);
3284 imag = DECL_RTL (fnargs[i + 1]);
3285 if (inner != GET_MODE (real))
3287 real = gen_lowpart_SUBREG (inner, real);
3288 imag = gen_lowpart_SUBREG (inner, imag);
3291 if (TREE_ADDRESSABLE (parm))
3293 rtx rmem, imem;
3294 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3295 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3296 DECL_MODE (parm),
3297 TYPE_ALIGN (TREE_TYPE (parm)));
3299 /* split_complex_arg put the real and imag parts in
3300 pseudos. Move them to memory. */
3301 tmp = assign_stack_local (DECL_MODE (parm), size, align);
3302 set_mem_attributes (tmp, parm, 1);
3303 rmem = adjust_address_nv (tmp, inner, 0);
3304 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3305 push_to_sequence2 (all->first_conversion_insn,
3306 all->last_conversion_insn);
3307 emit_move_insn (rmem, real);
3308 emit_move_insn (imem, imag);
3309 all->first_conversion_insn = get_insns ();
3310 all->last_conversion_insn = get_last_insn ();
3311 end_sequence ();
3313 else
3314 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3315 SET_DECL_RTL (parm, tmp);
3317 real = DECL_INCOMING_RTL (fnargs[i]);
3318 imag = DECL_INCOMING_RTL (fnargs[i + 1]);
3319 if (inner != GET_MODE (real))
3321 real = gen_lowpart_SUBREG (inner, real);
3322 imag = gen_lowpart_SUBREG (inner, imag);
3324 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3325 set_decl_incoming_rtl (parm, tmp, false);
3326 i++;
3331 /* Assign RTL expressions to the function's parameters. This may involve
3332 copying them into registers and using those registers as the DECL_RTL. */
3334 static void
3335 assign_parms (tree fndecl)
3337 struct assign_parm_data_all all;
3338 tree parm;
3339 vec<tree> fnargs;
3340 unsigned i;
3342 crtl->args.internal_arg_pointer
3343 = targetm.calls.internal_arg_pointer ();
3345 assign_parms_initialize_all (&all);
3346 fnargs = assign_parms_augmented_arg_list (&all);
3348 FOR_EACH_VEC_ELT (fnargs, i, parm)
3350 struct assign_parm_data_one data;
3352 /* Extract the type of PARM; adjust it according to ABI. */
3353 assign_parm_find_data_types (&all, parm, &data);
3355 /* Early out for errors and void parameters. */
3356 if (data.passed_mode == VOIDmode)
3358 SET_DECL_RTL (parm, const0_rtx);
3359 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3360 continue;
3363 /* Estimate stack alignment from parameter alignment. */
3364 if (SUPPORTS_STACK_ALIGNMENT)
3366 unsigned int align
3367 = targetm.calls.function_arg_boundary (data.promoted_mode,
3368 data.passed_type);
3369 align = MINIMUM_ALIGNMENT (data.passed_type, data.promoted_mode,
3370 align);
3371 if (TYPE_ALIGN (data.nominal_type) > align)
3372 align = MINIMUM_ALIGNMENT (data.nominal_type,
3373 TYPE_MODE (data.nominal_type),
3374 TYPE_ALIGN (data.nominal_type));
3375 if (crtl->stack_alignment_estimated < align)
3377 gcc_assert (!crtl->stack_realign_processed);
3378 crtl->stack_alignment_estimated = align;
3382 if (cfun->stdarg && !DECL_CHAIN (parm))
3383 assign_parms_setup_varargs (&all, &data, false);
3385 /* Find out where the parameter arrives in this function. */
3386 assign_parm_find_entry_rtl (&all, &data);
3388 /* Find out where stack space for this parameter might be. */
3389 if (assign_parm_is_stack_parm (&all, &data))
3391 assign_parm_find_stack_rtl (parm, &data);
3392 assign_parm_adjust_entry_rtl (&data);
3395 /* Record permanently how this parm was passed. */
3396 if (data.passed_pointer)
3398 rtx incoming_rtl
3399 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data.passed_type)),
3400 data.entry_parm);
3401 set_decl_incoming_rtl (parm, incoming_rtl, true);
3403 else
3404 set_decl_incoming_rtl (parm, data.entry_parm, false);
3406 /* Update info on where next arg arrives in registers. */
3407 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3408 data.passed_type, data.named_arg);
3410 assign_parm_adjust_stack_rtl (&data);
3412 if (assign_parm_setup_block_p (&data))
3413 assign_parm_setup_block (&all, parm, &data);
3414 else if (data.passed_pointer || use_register_for_decl (parm))
3415 assign_parm_setup_reg (&all, parm, &data);
3416 else
3417 assign_parm_setup_stack (&all, parm, &data);
3420 if (targetm.calls.split_complex_arg)
3421 assign_parms_unsplit_complex (&all, fnargs);
3423 fnargs.release ();
3425 /* Output all parameter conversion instructions (possibly including calls)
3426 now that all parameters have been copied out of hard registers. */
3427 emit_insn (all.first_conversion_insn);
3429 /* Estimate reload stack alignment from scalar return mode. */
3430 if (SUPPORTS_STACK_ALIGNMENT)
3432 if (DECL_RESULT (fndecl))
3434 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3435 enum machine_mode mode = TYPE_MODE (type);
3437 if (mode != BLKmode
3438 && mode != VOIDmode
3439 && !AGGREGATE_TYPE_P (type))
3441 unsigned int align = GET_MODE_ALIGNMENT (mode);
3442 if (crtl->stack_alignment_estimated < align)
3444 gcc_assert (!crtl->stack_realign_processed);
3445 crtl->stack_alignment_estimated = align;
3451 /* If we are receiving a struct value address as the first argument, set up
3452 the RTL for the function result. As this might require code to convert
3453 the transmitted address to Pmode, we do this here to ensure that possible
3454 preliminary conversions of the address have been emitted already. */
3455 if (all.function_result_decl)
3457 tree result = DECL_RESULT (current_function_decl);
3458 rtx addr = DECL_RTL (all.function_result_decl);
3459 rtx x;
3461 if (DECL_BY_REFERENCE (result))
3463 SET_DECL_VALUE_EXPR (result, all.function_result_decl);
3464 x = addr;
3466 else
3468 SET_DECL_VALUE_EXPR (result,
3469 build1 (INDIRECT_REF, TREE_TYPE (result),
3470 all.function_result_decl));
3471 addr = convert_memory_address (Pmode, addr);
3472 x = gen_rtx_MEM (DECL_MODE (result), addr);
3473 set_mem_attributes (x, result, 1);
3476 DECL_HAS_VALUE_EXPR_P (result) = 1;
3478 SET_DECL_RTL (result, x);
3481 /* We have aligned all the args, so add space for the pretend args. */
3482 crtl->args.pretend_args_size = all.pretend_args_size;
3483 all.stack_args_size.constant += all.extra_pretend_bytes;
3484 crtl->args.size = all.stack_args_size.constant;
3486 /* Adjust function incoming argument size for alignment and
3487 minimum length. */
3489 crtl->args.size = MAX (crtl->args.size, all.reg_parm_stack_space);
3490 crtl->args.size = CEIL_ROUND (crtl->args.size,
3491 PARM_BOUNDARY / BITS_PER_UNIT);
3493 #ifdef ARGS_GROW_DOWNWARD
3494 crtl->args.arg_offset_rtx
3495 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3496 : expand_expr (size_diffop (all.stack_args_size.var,
3497 size_int (-all.stack_args_size.constant)),
3498 NULL_RTX, VOIDmode, EXPAND_NORMAL));
3499 #else
3500 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3501 #endif
3503 /* See how many bytes, if any, of its args a function should try to pop
3504 on return. */
3506 crtl->args.pops_args = targetm.calls.return_pops_args (fndecl,
3507 TREE_TYPE (fndecl),
3508 crtl->args.size);
3510 /* For stdarg.h function, save info about
3511 regs and stack space used by the named args. */
3513 crtl->args.info = all.args_so_far_v;
3515 /* Set the rtx used for the function return value. Put this in its
3516 own variable so any optimizers that need this information don't have
3517 to include tree.h. Do this here so it gets done when an inlined
3518 function gets output. */
3520 crtl->return_rtx
3521 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3522 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3524 /* If scalar return value was computed in a pseudo-reg, or was a named
3525 return value that got dumped to the stack, copy that to the hard
3526 return register. */
3527 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3529 tree decl_result = DECL_RESULT (fndecl);
3530 rtx decl_rtl = DECL_RTL (decl_result);
3532 if (REG_P (decl_rtl)
3533 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3534 : DECL_REGISTER (decl_result))
3536 rtx real_decl_rtl;
3538 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3539 fndecl, true);
3540 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3541 /* The delay slot scheduler assumes that crtl->return_rtx
3542 holds the hard register containing the return value, not a
3543 temporary pseudo. */
3544 crtl->return_rtx = real_decl_rtl;
3549 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3550 For all seen types, gimplify their sizes. */
3552 static tree
3553 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3555 tree t = *tp;
3557 *walk_subtrees = 0;
3558 if (TYPE_P (t))
3560 if (POINTER_TYPE_P (t))
3561 *walk_subtrees = 1;
3562 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3563 && !TYPE_SIZES_GIMPLIFIED (t))
3565 gimplify_type_sizes (t, (gimple_seq *) data);
3566 *walk_subtrees = 1;
3570 return NULL;
3573 /* Gimplify the parameter list for current_function_decl. This involves
3574 evaluating SAVE_EXPRs of variable sized parameters and generating code
3575 to implement callee-copies reference parameters. Returns a sequence of
3576 statements to add to the beginning of the function. */
3578 gimple_seq
3579 gimplify_parameters (void)
3581 struct assign_parm_data_all all;
3582 tree parm;
3583 gimple_seq stmts = NULL;
3584 vec<tree> fnargs;
3585 unsigned i;
3587 assign_parms_initialize_all (&all);
3588 fnargs = assign_parms_augmented_arg_list (&all);
3590 FOR_EACH_VEC_ELT (fnargs, i, parm)
3592 struct assign_parm_data_one data;
3594 /* Extract the type of PARM; adjust it according to ABI. */
3595 assign_parm_find_data_types (&all, parm, &data);
3597 /* Early out for errors and void parameters. */
3598 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3599 continue;
3601 /* Update info on where next arg arrives in registers. */
3602 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3603 data.passed_type, data.named_arg);
3605 /* ??? Once upon a time variable_size stuffed parameter list
3606 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3607 turned out to be less than manageable in the gimple world.
3608 Now we have to hunt them down ourselves. */
3609 walk_tree_without_duplicates (&data.passed_type,
3610 gimplify_parm_type, &stmts);
3612 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
3614 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3615 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3618 if (data.passed_pointer)
3620 tree type = TREE_TYPE (data.passed_type);
3621 if (reference_callee_copied (&all.args_so_far_v, TYPE_MODE (type),
3622 type, data.named_arg))
3624 tree local, t;
3626 /* For constant-sized objects, this is trivial; for
3627 variable-sized objects, we have to play games. */
3628 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
3629 && !(flag_stack_check == GENERIC_STACK_CHECK
3630 && compare_tree_int (DECL_SIZE_UNIT (parm),
3631 STACK_CHECK_MAX_VAR_SIZE) > 0))
3633 local = create_tmp_var (type, get_name (parm));
3634 DECL_IGNORED_P (local) = 0;
3635 /* If PARM was addressable, move that flag over
3636 to the local copy, as its address will be taken,
3637 not the PARMs. Keep the parms address taken
3638 as we'll query that flag during gimplification. */
3639 if (TREE_ADDRESSABLE (parm))
3640 TREE_ADDRESSABLE (local) = 1;
3641 else if (TREE_CODE (type) == COMPLEX_TYPE
3642 || TREE_CODE (type) == VECTOR_TYPE)
3643 DECL_GIMPLE_REG_P (local) = 1;
3645 else
3647 tree ptr_type, addr;
3649 ptr_type = build_pointer_type (type);
3650 addr = create_tmp_reg (ptr_type, get_name (parm));
3651 DECL_IGNORED_P (addr) = 0;
3652 local = build_fold_indirect_ref (addr);
3654 t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN);
3655 t = build_call_expr (t, 2, DECL_SIZE_UNIT (parm),
3656 size_int (DECL_ALIGN (parm)));
3658 /* The call has been built for a variable-sized object. */
3659 CALL_ALLOCA_FOR_VAR_P (t) = 1;
3660 t = fold_convert (ptr_type, t);
3661 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
3662 gimplify_and_add (t, &stmts);
3665 gimplify_assign (local, parm, &stmts);
3667 SET_DECL_VALUE_EXPR (parm, local);
3668 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3673 fnargs.release ();
3675 return stmts;
3678 /* Compute the size and offset from the start of the stacked arguments for a
3679 parm passed in mode PASSED_MODE and with type TYPE.
3681 INITIAL_OFFSET_PTR points to the current offset into the stacked
3682 arguments.
3684 The starting offset and size for this parm are returned in
3685 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3686 nonzero, the offset is that of stack slot, which is returned in
3687 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3688 padding required from the initial offset ptr to the stack slot.
3690 IN_REGS is nonzero if the argument will be passed in registers. It will
3691 never be set if REG_PARM_STACK_SPACE is not defined.
3693 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
3694 for arguments which are passed in registers.
3696 FNDECL is the function in which the argument was defined.
3698 There are two types of rounding that are done. The first, controlled by
3699 TARGET_FUNCTION_ARG_BOUNDARY, forces the offset from the start of the
3700 argument list to be aligned to the specific boundary (in bits). This
3701 rounding affects the initial and starting offsets, but not the argument
3702 size.
3704 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3705 optionally rounds the size of the parm to PARM_BOUNDARY. The
3706 initial offset is not affected by this rounding, while the size always
3707 is and the starting offset may be. */
3709 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3710 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3711 callers pass in the total size of args so far as
3712 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3714 void
3715 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3716 int reg_parm_stack_space, int partial,
3717 tree fndecl ATTRIBUTE_UNUSED,
3718 struct args_size *initial_offset_ptr,
3719 struct locate_and_pad_arg_data *locate)
3721 tree sizetree;
3722 enum direction where_pad;
3723 unsigned int boundary, round_boundary;
3724 int part_size_in_regs;
3726 /* If we have found a stack parm before we reach the end of the
3727 area reserved for registers, skip that area. */
3728 if (! in_regs)
3730 if (reg_parm_stack_space > 0)
3732 if (initial_offset_ptr->var)
3734 initial_offset_ptr->var
3735 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3736 ssize_int (reg_parm_stack_space));
3737 initial_offset_ptr->constant = 0;
3739 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3740 initial_offset_ptr->constant = reg_parm_stack_space;
3744 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3746 sizetree
3747 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3748 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3749 boundary = targetm.calls.function_arg_boundary (passed_mode, type);
3750 round_boundary = targetm.calls.function_arg_round_boundary (passed_mode,
3751 type);
3752 locate->where_pad = where_pad;
3754 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
3755 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
3756 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
3758 locate->boundary = boundary;
3760 if (SUPPORTS_STACK_ALIGNMENT)
3762 /* stack_alignment_estimated can't change after stack has been
3763 realigned. */
3764 if (crtl->stack_alignment_estimated < boundary)
3766 if (!crtl->stack_realign_processed)
3767 crtl->stack_alignment_estimated = boundary;
3768 else
3770 /* If stack is realigned and stack alignment value
3771 hasn't been finalized, it is OK not to increase
3772 stack_alignment_estimated. The bigger alignment
3773 requirement is recorded in stack_alignment_needed
3774 below. */
3775 gcc_assert (!crtl->stack_realign_finalized
3776 && crtl->stack_realign_needed);
3781 /* Remember if the outgoing parameter requires extra alignment on the
3782 calling function side. */
3783 if (crtl->stack_alignment_needed < boundary)
3784 crtl->stack_alignment_needed = boundary;
3785 if (crtl->preferred_stack_boundary < boundary)
3786 crtl->preferred_stack_boundary = boundary;
3788 #ifdef ARGS_GROW_DOWNWARD
3789 locate->slot_offset.constant = -initial_offset_ptr->constant;
3790 if (initial_offset_ptr->var)
3791 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3792 initial_offset_ptr->var);
3795 tree s2 = sizetree;
3796 if (where_pad != none
3797 && (!host_integerp (sizetree, 1)
3798 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % round_boundary))
3799 s2 = round_up (s2, round_boundary / BITS_PER_UNIT);
3800 SUB_PARM_SIZE (locate->slot_offset, s2);
3803 locate->slot_offset.constant += part_size_in_regs;
3805 if (!in_regs || reg_parm_stack_space > 0)
3806 pad_to_arg_alignment (&locate->slot_offset, boundary,
3807 &locate->alignment_pad);
3809 locate->size.constant = (-initial_offset_ptr->constant
3810 - locate->slot_offset.constant);
3811 if (initial_offset_ptr->var)
3812 locate->size.var = size_binop (MINUS_EXPR,
3813 size_binop (MINUS_EXPR,
3814 ssize_int (0),
3815 initial_offset_ptr->var),
3816 locate->slot_offset.var);
3818 /* Pad_below needs the pre-rounded size to know how much to pad
3819 below. */
3820 locate->offset = locate->slot_offset;
3821 if (where_pad == downward)
3822 pad_below (&locate->offset, passed_mode, sizetree);
3824 #else /* !ARGS_GROW_DOWNWARD */
3825 if (!in_regs || reg_parm_stack_space > 0)
3826 pad_to_arg_alignment (initial_offset_ptr, boundary,
3827 &locate->alignment_pad);
3828 locate->slot_offset = *initial_offset_ptr;
3830 #ifdef PUSH_ROUNDING
3831 if (passed_mode != BLKmode)
3832 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3833 #endif
3835 /* Pad_below needs the pre-rounded size to know how much to pad below
3836 so this must be done before rounding up. */
3837 locate->offset = locate->slot_offset;
3838 if (where_pad == downward)
3839 pad_below (&locate->offset, passed_mode, sizetree);
3841 if (where_pad != none
3842 && (!host_integerp (sizetree, 1)
3843 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % round_boundary))
3844 sizetree = round_up (sizetree, round_boundary / BITS_PER_UNIT);
3846 ADD_PARM_SIZE (locate->size, sizetree);
3848 locate->size.constant -= part_size_in_regs;
3849 #endif /* ARGS_GROW_DOWNWARD */
3851 #ifdef FUNCTION_ARG_OFFSET
3852 locate->offset.constant += FUNCTION_ARG_OFFSET (passed_mode, type);
3853 #endif
3856 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3857 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3859 static void
3860 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3861 struct args_size *alignment_pad)
3863 tree save_var = NULL_TREE;
3864 HOST_WIDE_INT save_constant = 0;
3865 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3866 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3868 #ifdef SPARC_STACK_BOUNDARY_HACK
3869 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
3870 the real alignment of %sp. However, when it does this, the
3871 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
3872 if (SPARC_STACK_BOUNDARY_HACK)
3873 sp_offset = 0;
3874 #endif
3876 if (boundary > PARM_BOUNDARY)
3878 save_var = offset_ptr->var;
3879 save_constant = offset_ptr->constant;
3882 alignment_pad->var = NULL_TREE;
3883 alignment_pad->constant = 0;
3885 if (boundary > BITS_PER_UNIT)
3887 if (offset_ptr->var)
3889 tree sp_offset_tree = ssize_int (sp_offset);
3890 tree offset = size_binop (PLUS_EXPR,
3891 ARGS_SIZE_TREE (*offset_ptr),
3892 sp_offset_tree);
3893 #ifdef ARGS_GROW_DOWNWARD
3894 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3895 #else
3896 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3897 #endif
3899 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3900 /* ARGS_SIZE_TREE includes constant term. */
3901 offset_ptr->constant = 0;
3902 if (boundary > PARM_BOUNDARY)
3903 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3904 save_var);
3906 else
3908 offset_ptr->constant = -sp_offset +
3909 #ifdef ARGS_GROW_DOWNWARD
3910 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3911 #else
3912 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3913 #endif
3914 if (boundary > PARM_BOUNDARY)
3915 alignment_pad->constant = offset_ptr->constant - save_constant;
3920 static void
3921 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3923 if (passed_mode != BLKmode)
3925 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3926 offset_ptr->constant
3927 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3928 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3929 - GET_MODE_SIZE (passed_mode));
3931 else
3933 if (TREE_CODE (sizetree) != INTEGER_CST
3934 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3936 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3937 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3938 /* Add it in. */
3939 ADD_PARM_SIZE (*offset_ptr, s2);
3940 SUB_PARM_SIZE (*offset_ptr, sizetree);
3946 /* True if register REGNO was alive at a place where `setjmp' was
3947 called and was set more than once or is an argument. Such regs may
3948 be clobbered by `longjmp'. */
3950 static bool
3951 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
3953 /* There appear to be cases where some local vars never reach the
3954 backend but have bogus regnos. */
3955 if (regno >= max_reg_num ())
3956 return false;
3958 return ((REG_N_SETS (regno) > 1
3959 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR), regno))
3960 && REGNO_REG_SET_P (setjmp_crosses, regno));
3963 /* Walk the tree of blocks describing the binding levels within a
3964 function and warn about variables the might be killed by setjmp or
3965 vfork. This is done after calling flow_analysis before register
3966 allocation since that will clobber the pseudo-regs to hard
3967 regs. */
3969 static void
3970 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
3972 tree decl, sub;
3974 for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl))
3976 if (TREE_CODE (decl) == VAR_DECL
3977 && DECL_RTL_SET_P (decl)
3978 && REG_P (DECL_RTL (decl))
3979 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3980 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
3981 " %<longjmp%> or %<vfork%>", decl);
3984 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
3985 setjmp_vars_warning (setjmp_crosses, sub);
3988 /* Do the appropriate part of setjmp_vars_warning
3989 but for arguments instead of local variables. */
3991 static void
3992 setjmp_args_warning (bitmap setjmp_crosses)
3994 tree decl;
3995 for (decl = DECL_ARGUMENTS (current_function_decl);
3996 decl; decl = DECL_CHAIN (decl))
3997 if (DECL_RTL (decl) != 0
3998 && REG_P (DECL_RTL (decl))
3999 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4000 warning (OPT_Wclobbered,
4001 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
4002 decl);
4005 /* Generate warning messages for variables live across setjmp. */
4007 void
4008 generate_setjmp_warnings (void)
4010 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
4012 if (n_basic_blocks == NUM_FIXED_BLOCKS
4013 || bitmap_empty_p (setjmp_crosses))
4014 return;
4016 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
4017 setjmp_args_warning (setjmp_crosses);
4021 /* Reverse the order of elements in the fragment chain T of blocks,
4022 and return the new head of the chain (old last element).
4023 In addition to that clear BLOCK_SAME_RANGE flags when needed
4024 and adjust BLOCK_SUPERCONTEXT from the super fragment to
4025 its super fragment origin. */
4027 static tree
4028 block_fragments_nreverse (tree t)
4030 tree prev = 0, block, next, prev_super = 0;
4031 tree super = BLOCK_SUPERCONTEXT (t);
4032 if (BLOCK_FRAGMENT_ORIGIN (super))
4033 super = BLOCK_FRAGMENT_ORIGIN (super);
4034 for (block = t; block; block = next)
4036 next = BLOCK_FRAGMENT_CHAIN (block);
4037 BLOCK_FRAGMENT_CHAIN (block) = prev;
4038 if ((prev && !BLOCK_SAME_RANGE (prev))
4039 || (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (block))
4040 != prev_super))
4041 BLOCK_SAME_RANGE (block) = 0;
4042 prev_super = BLOCK_SUPERCONTEXT (block);
4043 BLOCK_SUPERCONTEXT (block) = super;
4044 prev = block;
4046 t = BLOCK_FRAGMENT_ORIGIN (t);
4047 if (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (t))
4048 != prev_super)
4049 BLOCK_SAME_RANGE (t) = 0;
4050 BLOCK_SUPERCONTEXT (t) = super;
4051 return prev;
4054 /* Reverse the order of elements in the chain T of blocks,
4055 and return the new head of the chain (old last element).
4056 Also do the same on subblocks and reverse the order of elements
4057 in BLOCK_FRAGMENT_CHAIN as well. */
4059 static tree
4060 blocks_nreverse_all (tree t)
4062 tree prev = 0, block, next;
4063 for (block = t; block; block = next)
4065 next = BLOCK_CHAIN (block);
4066 BLOCK_CHAIN (block) = prev;
4067 if (BLOCK_FRAGMENT_CHAIN (block)
4068 && BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE)
4070 BLOCK_FRAGMENT_CHAIN (block)
4071 = block_fragments_nreverse (BLOCK_FRAGMENT_CHAIN (block));
4072 if (!BLOCK_SAME_RANGE (BLOCK_FRAGMENT_CHAIN (block)))
4073 BLOCK_SAME_RANGE (block) = 0;
4075 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4076 prev = block;
4078 return prev;
4082 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
4083 and create duplicate blocks. */
4084 /* ??? Need an option to either create block fragments or to create
4085 abstract origin duplicates of a source block. It really depends
4086 on what optimization has been performed. */
4088 void
4089 reorder_blocks (void)
4091 tree block = DECL_INITIAL (current_function_decl);
4092 vec<tree> block_stack;
4094 if (block == NULL_TREE)
4095 return;
4097 block_stack.create (10);
4099 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
4100 clear_block_marks (block);
4102 /* Prune the old trees away, so that they don't get in the way. */
4103 BLOCK_SUBBLOCKS (block) = NULL_TREE;
4104 BLOCK_CHAIN (block) = NULL_TREE;
4106 /* Recreate the block tree from the note nesting. */
4107 reorder_blocks_1 (get_insns (), block, &block_stack);
4108 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4110 block_stack.release ();
4113 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
4115 void
4116 clear_block_marks (tree block)
4118 while (block)
4120 TREE_ASM_WRITTEN (block) = 0;
4121 clear_block_marks (BLOCK_SUBBLOCKS (block));
4122 block = BLOCK_CHAIN (block);
4126 static void
4127 reorder_blocks_1 (rtx insns, tree current_block, vec<tree> *p_block_stack)
4129 rtx insn;
4130 tree prev_beg = NULL_TREE, prev_end = NULL_TREE;
4132 for (insn = insns; insn; insn = NEXT_INSN (insn))
4134 if (NOTE_P (insn))
4136 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
4138 tree block = NOTE_BLOCK (insn);
4139 tree origin;
4141 gcc_assert (BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE);
4142 origin = block;
4144 if (prev_end)
4145 BLOCK_SAME_RANGE (prev_end) = 0;
4146 prev_end = NULL_TREE;
4148 /* If we have seen this block before, that means it now
4149 spans multiple address regions. Create a new fragment. */
4150 if (TREE_ASM_WRITTEN (block))
4152 tree new_block = copy_node (block);
4154 BLOCK_SAME_RANGE (new_block) = 0;
4155 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
4156 BLOCK_FRAGMENT_CHAIN (new_block)
4157 = BLOCK_FRAGMENT_CHAIN (origin);
4158 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
4160 NOTE_BLOCK (insn) = new_block;
4161 block = new_block;
4164 if (prev_beg == current_block && prev_beg)
4165 BLOCK_SAME_RANGE (block) = 1;
4167 prev_beg = origin;
4169 BLOCK_SUBBLOCKS (block) = 0;
4170 TREE_ASM_WRITTEN (block) = 1;
4171 /* When there's only one block for the entire function,
4172 current_block == block and we mustn't do this, it
4173 will cause infinite recursion. */
4174 if (block != current_block)
4176 tree super;
4177 if (block != origin)
4178 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block
4179 || BLOCK_FRAGMENT_ORIGIN (BLOCK_SUPERCONTEXT
4180 (origin))
4181 == current_block);
4182 if (p_block_stack->is_empty ())
4183 super = current_block;
4184 else
4186 super = p_block_stack->last ();
4187 gcc_assert (super == current_block
4188 || BLOCK_FRAGMENT_ORIGIN (super)
4189 == current_block);
4191 BLOCK_SUPERCONTEXT (block) = super;
4192 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
4193 BLOCK_SUBBLOCKS (current_block) = block;
4194 current_block = origin;
4196 p_block_stack->safe_push (block);
4198 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
4200 NOTE_BLOCK (insn) = p_block_stack->pop ();
4201 current_block = BLOCK_SUPERCONTEXT (current_block);
4202 if (BLOCK_FRAGMENT_ORIGIN (current_block))
4203 current_block = BLOCK_FRAGMENT_ORIGIN (current_block);
4204 prev_beg = NULL_TREE;
4205 prev_end = BLOCK_SAME_RANGE (NOTE_BLOCK (insn))
4206 ? NOTE_BLOCK (insn) : NULL_TREE;
4209 else
4211 prev_beg = NULL_TREE;
4212 if (prev_end)
4213 BLOCK_SAME_RANGE (prev_end) = 0;
4214 prev_end = NULL_TREE;
4219 /* Reverse the order of elements in the chain T of blocks,
4220 and return the new head of the chain (old last element). */
4222 tree
4223 blocks_nreverse (tree t)
4225 tree prev = 0, block, next;
4226 for (block = t; block; block = next)
4228 next = BLOCK_CHAIN (block);
4229 BLOCK_CHAIN (block) = prev;
4230 prev = block;
4232 return prev;
4235 /* Concatenate two chains of blocks (chained through BLOCK_CHAIN)
4236 by modifying the last node in chain 1 to point to chain 2. */
4238 tree
4239 block_chainon (tree op1, tree op2)
4241 tree t1;
4243 if (!op1)
4244 return op2;
4245 if (!op2)
4246 return op1;
4248 for (t1 = op1; BLOCK_CHAIN (t1); t1 = BLOCK_CHAIN (t1))
4249 continue;
4250 BLOCK_CHAIN (t1) = op2;
4252 #ifdef ENABLE_TREE_CHECKING
4254 tree t2;
4255 for (t2 = op2; t2; t2 = BLOCK_CHAIN (t2))
4256 gcc_assert (t2 != t1);
4258 #endif
4260 return op1;
4263 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
4264 non-NULL, list them all into VECTOR, in a depth-first preorder
4265 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
4266 blocks. */
4268 static int
4269 all_blocks (tree block, tree *vector)
4271 int n_blocks = 0;
4273 while (block)
4275 TREE_ASM_WRITTEN (block) = 0;
4277 /* Record this block. */
4278 if (vector)
4279 vector[n_blocks] = block;
4281 ++n_blocks;
4283 /* Record the subblocks, and their subblocks... */
4284 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
4285 vector ? vector + n_blocks : 0);
4286 block = BLOCK_CHAIN (block);
4289 return n_blocks;
4292 /* Return a vector containing all the blocks rooted at BLOCK. The
4293 number of elements in the vector is stored in N_BLOCKS_P. The
4294 vector is dynamically allocated; it is the caller's responsibility
4295 to call `free' on the pointer returned. */
4297 static tree *
4298 get_block_vector (tree block, int *n_blocks_p)
4300 tree *block_vector;
4302 *n_blocks_p = all_blocks (block, NULL);
4303 block_vector = XNEWVEC (tree, *n_blocks_p);
4304 all_blocks (block, block_vector);
4306 return block_vector;
4309 static GTY(()) int next_block_index = 2;
4311 /* Set BLOCK_NUMBER for all the blocks in FN. */
4313 void
4314 number_blocks (tree fn)
4316 int i;
4317 int n_blocks;
4318 tree *block_vector;
4320 /* For SDB and XCOFF debugging output, we start numbering the blocks
4321 from 1 within each function, rather than keeping a running
4322 count. */
4323 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
4324 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
4325 next_block_index = 1;
4326 #endif
4328 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
4330 /* The top-level BLOCK isn't numbered at all. */
4331 for (i = 1; i < n_blocks; ++i)
4332 /* We number the blocks from two. */
4333 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
4335 free (block_vector);
4337 return;
4340 /* If VAR is present in a subblock of BLOCK, return the subblock. */
4342 DEBUG_FUNCTION tree
4343 debug_find_var_in_block_tree (tree var, tree block)
4345 tree t;
4347 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
4348 if (t == var)
4349 return block;
4351 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
4353 tree ret = debug_find_var_in_block_tree (var, t);
4354 if (ret)
4355 return ret;
4358 return NULL_TREE;
4361 /* Keep track of whether we're in a dummy function context. If we are,
4362 we don't want to invoke the set_current_function hook, because we'll
4363 get into trouble if the hook calls target_reinit () recursively or
4364 when the initial initialization is not yet complete. */
4366 static bool in_dummy_function;
4368 /* Invoke the target hook when setting cfun. Update the optimization options
4369 if the function uses different options than the default. */
4371 static void
4372 invoke_set_current_function_hook (tree fndecl)
4374 if (!in_dummy_function)
4376 tree opts = ((fndecl)
4377 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
4378 : optimization_default_node);
4380 if (!opts)
4381 opts = optimization_default_node;
4383 /* Change optimization options if needed. */
4384 if (optimization_current_node != opts)
4386 optimization_current_node = opts;
4387 cl_optimization_restore (&global_options, TREE_OPTIMIZATION (opts));
4390 targetm.set_current_function (fndecl);
4391 this_fn_optabs = this_target_optabs;
4393 if (opts != optimization_default_node)
4395 init_tree_optimization_optabs (opts);
4396 if (TREE_OPTIMIZATION_OPTABS (opts))
4397 this_fn_optabs = (struct target_optabs *)
4398 TREE_OPTIMIZATION_OPTABS (opts);
4403 /* cfun should never be set directly; use this function. */
4405 void
4406 set_cfun (struct function *new_cfun)
4408 if (cfun != new_cfun)
4410 cfun = new_cfun;
4411 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
4415 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4417 static vec<function_p> cfun_stack;
4419 /* Push the current cfun onto the stack, and set cfun to new_cfun. Also set
4420 current_function_decl accordingly. */
4422 void
4423 push_cfun (struct function *new_cfun)
4425 gcc_assert ((!cfun && !current_function_decl)
4426 || (cfun && current_function_decl == cfun->decl));
4427 cfun_stack.safe_push (cfun);
4428 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4429 set_cfun (new_cfun);
4432 /* Pop cfun from the stack. Also set current_function_decl accordingly. */
4434 void
4435 pop_cfun (void)
4437 struct function *new_cfun = cfun_stack.pop ();
4438 /* When in_dummy_function, we do have a cfun but current_function_decl is
4439 NULL. We also allow pushing NULL cfun and subsequently changing
4440 current_function_decl to something else and have both restored by
4441 pop_cfun. */
4442 gcc_checking_assert (in_dummy_function
4443 || !cfun
4444 || current_function_decl == cfun->decl);
4445 set_cfun (new_cfun);
4446 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4449 /* Return value of funcdef and increase it. */
4451 get_next_funcdef_no (void)
4453 return funcdef_no++;
4456 /* Return value of funcdef. */
4458 get_last_funcdef_no (void)
4460 return funcdef_no;
4463 /* Allocate a function structure for FNDECL and set its contents
4464 to the defaults. Set cfun to the newly-allocated object.
4465 Some of the helper functions invoked during initialization assume
4466 that cfun has already been set. Therefore, assign the new object
4467 directly into cfun and invoke the back end hook explicitly at the
4468 very end, rather than initializing a temporary and calling set_cfun
4469 on it.
4471 ABSTRACT_P is true if this is a function that will never be seen by
4472 the middle-end. Such functions are front-end concepts (like C++
4473 function templates) that do not correspond directly to functions
4474 placed in object files. */
4476 void
4477 allocate_struct_function (tree fndecl, bool abstract_p)
4479 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
4481 cfun = ggc_alloc_cleared_function ();
4483 init_eh_for_function ();
4485 if (init_machine_status)
4486 cfun->machine = (*init_machine_status) ();
4488 #ifdef OVERRIDE_ABI_FORMAT
4489 OVERRIDE_ABI_FORMAT (fndecl);
4490 #endif
4492 if (fndecl != NULL_TREE)
4494 DECL_STRUCT_FUNCTION (fndecl) = cfun;
4495 cfun->decl = fndecl;
4496 current_function_funcdef_no = get_next_funcdef_no ();
4499 invoke_set_current_function_hook (fndecl);
4501 if (fndecl != NULL_TREE)
4503 tree result = DECL_RESULT (fndecl);
4504 if (!abstract_p && aggregate_value_p (result, fndecl))
4506 #ifdef PCC_STATIC_STRUCT_RETURN
4507 cfun->returns_pcc_struct = 1;
4508 #endif
4509 cfun->returns_struct = 1;
4512 cfun->stdarg = stdarg_p (fntype);
4514 /* Assume all registers in stdarg functions need to be saved. */
4515 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
4516 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
4518 /* ??? This could be set on a per-function basis by the front-end
4519 but is this worth the hassle? */
4520 cfun->can_throw_non_call_exceptions = flag_non_call_exceptions;
4524 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4525 instead of just setting it. */
4527 void
4528 push_struct_function (tree fndecl)
4530 /* When in_dummy_function we might be in the middle of a pop_cfun and
4531 current_function_decl and cfun may not match. */
4532 gcc_assert (in_dummy_function
4533 || (!cfun && !current_function_decl)
4534 || (cfun && current_function_decl == cfun->decl));
4535 cfun_stack.safe_push (cfun);
4536 current_function_decl = fndecl;
4537 allocate_struct_function (fndecl, false);
4540 /* Reset crtl and other non-struct-function variables to defaults as
4541 appropriate for emitting rtl at the start of a function. */
4543 static void
4544 prepare_function_start (void)
4546 gcc_assert (!crtl->emit.x_last_insn);
4547 init_temp_slots ();
4548 init_emit ();
4549 init_varasm_status ();
4550 init_expr ();
4551 default_rtl_profile ();
4553 if (flag_stack_usage_info)
4555 cfun->su = ggc_alloc_cleared_stack_usage ();
4556 cfun->su->static_stack_size = -1;
4559 cse_not_expected = ! optimize;
4561 /* Caller save not needed yet. */
4562 caller_save_needed = 0;
4564 /* We haven't done register allocation yet. */
4565 reg_renumber = 0;
4567 /* Indicate that we have not instantiated virtual registers yet. */
4568 virtuals_instantiated = 0;
4570 /* Indicate that we want CONCATs now. */
4571 generating_concat_p = 1;
4573 /* Indicate we have no need of a frame pointer yet. */
4574 frame_pointer_needed = 0;
4577 /* Initialize the rtl expansion mechanism so that we can do simple things
4578 like generate sequences. This is used to provide a context during global
4579 initialization of some passes. You must call expand_dummy_function_end
4580 to exit this context. */
4582 void
4583 init_dummy_function_start (void)
4585 gcc_assert (!in_dummy_function);
4586 in_dummy_function = true;
4587 push_struct_function (NULL_TREE);
4588 prepare_function_start ();
4591 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4592 and initialize static variables for generating RTL for the statements
4593 of the function. */
4595 void
4596 init_function_start (tree subr)
4598 if (subr && DECL_STRUCT_FUNCTION (subr))
4599 set_cfun (DECL_STRUCT_FUNCTION (subr));
4600 else
4601 allocate_struct_function (subr, false);
4602 prepare_function_start ();
4603 decide_function_section (subr);
4605 /* Warn if this value is an aggregate type,
4606 regardless of which calling convention we are using for it. */
4607 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4608 warning (OPT_Waggregate_return, "function returns an aggregate");
4612 void
4613 expand_main_function (void)
4615 #if (defined(INVOKE__main) \
4616 || (!defined(HAS_INIT_SECTION) \
4617 && !defined(INIT_SECTION_ASM_OP) \
4618 && !defined(INIT_ARRAY_SECTION_ASM_OP)))
4619 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
4620 #endif
4623 /* Expand code to initialize the stack_protect_guard. This is invoked at
4624 the beginning of a function to be protected. */
4626 #ifndef HAVE_stack_protect_set
4627 # define HAVE_stack_protect_set 0
4628 # define gen_stack_protect_set(x,y) (gcc_unreachable (), NULL_RTX)
4629 #endif
4631 void
4632 stack_protect_prologue (void)
4634 tree guard_decl = targetm.stack_protect_guard ();
4635 rtx x, y;
4637 x = expand_normal (crtl->stack_protect_guard);
4638 y = expand_normal (guard_decl);
4640 /* Allow the target to copy from Y to X without leaking Y into a
4641 register. */
4642 if (HAVE_stack_protect_set)
4644 rtx insn = gen_stack_protect_set (x, y);
4645 if (insn)
4647 emit_insn (insn);
4648 return;
4652 /* Otherwise do a straight move. */
4653 emit_move_insn (x, y);
4656 /* Expand code to verify the stack_protect_guard. This is invoked at
4657 the end of a function to be protected. */
4659 #ifndef HAVE_stack_protect_test
4660 # define HAVE_stack_protect_test 0
4661 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
4662 #endif
4664 void
4665 stack_protect_epilogue (void)
4667 tree guard_decl = targetm.stack_protect_guard ();
4668 rtx label = gen_label_rtx ();
4669 rtx x, y, tmp;
4671 x = expand_normal (crtl->stack_protect_guard);
4672 y = expand_normal (guard_decl);
4674 /* Allow the target to compare Y with X without leaking either into
4675 a register. */
4676 switch (HAVE_stack_protect_test != 0)
4678 case 1:
4679 tmp = gen_stack_protect_test (x, y, label);
4680 if (tmp)
4682 emit_insn (tmp);
4683 break;
4685 /* FALLTHRU */
4687 default:
4688 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4689 break;
4692 /* The noreturn predictor has been moved to the tree level. The rtl-level
4693 predictors estimate this branch about 20%, which isn't enough to get
4694 things moved out of line. Since this is the only extant case of adding
4695 a noreturn function at the rtl level, it doesn't seem worth doing ought
4696 except adding the prediction by hand. */
4697 tmp = get_last_insn ();
4698 if (JUMP_P (tmp))
4699 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
4701 expand_call (targetm.stack_protect_fail (), NULL_RTX, /*ignore=*/true);
4702 free_temp_slots ();
4703 emit_label (label);
4706 /* Start the RTL for a new function, and set variables used for
4707 emitting RTL.
4708 SUBR is the FUNCTION_DECL node.
4709 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4710 the function's parameters, which must be run at any return statement. */
4712 void
4713 expand_function_start (tree subr)
4715 /* Make sure volatile mem refs aren't considered
4716 valid operands of arithmetic insns. */
4717 init_recog_no_volatile ();
4719 crtl->profile
4720 = (profile_flag
4721 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4723 crtl->limit_stack
4724 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4726 /* Make the label for return statements to jump to. Do not special
4727 case machines with special return instructions -- they will be
4728 handled later during jump, ifcvt, or epilogue creation. */
4729 return_label = gen_label_rtx ();
4731 /* Initialize rtx used to return the value. */
4732 /* Do this before assign_parms so that we copy the struct value address
4733 before any library calls that assign parms might generate. */
4735 /* Decide whether to return the value in memory or in a register. */
4736 if (aggregate_value_p (DECL_RESULT (subr), subr))
4738 /* Returning something that won't go in a register. */
4739 rtx value_address = 0;
4741 #ifdef PCC_STATIC_STRUCT_RETURN
4742 if (cfun->returns_pcc_struct)
4744 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4745 value_address = assemble_static_space (size);
4747 else
4748 #endif
4750 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
4751 /* Expect to be passed the address of a place to store the value.
4752 If it is passed as an argument, assign_parms will take care of
4753 it. */
4754 if (sv)
4756 value_address = gen_reg_rtx (Pmode);
4757 emit_move_insn (value_address, sv);
4760 if (value_address)
4762 rtx x = value_address;
4763 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4765 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4766 set_mem_attributes (x, DECL_RESULT (subr), 1);
4768 SET_DECL_RTL (DECL_RESULT (subr), x);
4771 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4772 /* If return mode is void, this decl rtl should not be used. */
4773 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4774 else
4776 /* Compute the return values into a pseudo reg, which we will copy
4777 into the true return register after the cleanups are done. */
4778 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4779 if (TYPE_MODE (return_type) != BLKmode
4780 && targetm.calls.return_in_msb (return_type))
4781 /* expand_function_end will insert the appropriate padding in
4782 this case. Use the return value's natural (unpadded) mode
4783 within the function proper. */
4784 SET_DECL_RTL (DECL_RESULT (subr),
4785 gen_reg_rtx (TYPE_MODE (return_type)));
4786 else
4788 /* In order to figure out what mode to use for the pseudo, we
4789 figure out what the mode of the eventual return register will
4790 actually be, and use that. */
4791 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
4793 /* Structures that are returned in registers are not
4794 aggregate_value_p, so we may see a PARALLEL or a REG. */
4795 if (REG_P (hard_reg))
4796 SET_DECL_RTL (DECL_RESULT (subr),
4797 gen_reg_rtx (GET_MODE (hard_reg)));
4798 else
4800 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4801 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4805 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4806 result to the real return register(s). */
4807 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4810 /* Initialize rtx for parameters and local variables.
4811 In some cases this requires emitting insns. */
4812 assign_parms (subr);
4814 /* If function gets a static chain arg, store it. */
4815 if (cfun->static_chain_decl)
4817 tree parm = cfun->static_chain_decl;
4818 rtx local, chain, insn;
4820 local = gen_reg_rtx (Pmode);
4821 chain = targetm.calls.static_chain (current_function_decl, true);
4823 set_decl_incoming_rtl (parm, chain, false);
4824 SET_DECL_RTL (parm, local);
4825 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4827 insn = emit_move_insn (local, chain);
4829 /* Mark the register as eliminable, similar to parameters. */
4830 if (MEM_P (chain)
4831 && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0)))
4832 set_dst_reg_note (insn, REG_EQUIV, chain, local);
4835 /* If the function receives a non-local goto, then store the
4836 bits we need to restore the frame pointer. */
4837 if (cfun->nonlocal_goto_save_area)
4839 tree t_save;
4840 rtx r_save;
4842 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
4843 gcc_assert (DECL_RTL_SET_P (var));
4845 t_save = build4 (ARRAY_REF,
4846 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
4847 cfun->nonlocal_goto_save_area,
4848 integer_zero_node, NULL_TREE, NULL_TREE);
4849 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4850 gcc_assert (GET_MODE (r_save) == Pmode);
4852 emit_move_insn (r_save, targetm.builtin_setjmp_frame_value ());
4853 update_nonlocal_goto_save_area ();
4856 /* The following was moved from init_function_start.
4857 The move is supposed to make sdb output more accurate. */
4858 /* Indicate the beginning of the function body,
4859 as opposed to parm setup. */
4860 emit_note (NOTE_INSN_FUNCTION_BEG);
4862 gcc_assert (NOTE_P (get_last_insn ()));
4864 parm_birth_insn = get_last_insn ();
4866 if (crtl->profile)
4868 #ifdef PROFILE_HOOK
4869 PROFILE_HOOK (current_function_funcdef_no);
4870 #endif
4873 /* If we are doing generic stack checking, the probe should go here. */
4874 if (flag_stack_check == GENERIC_STACK_CHECK)
4875 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
4878 /* Undo the effects of init_dummy_function_start. */
4879 void
4880 expand_dummy_function_end (void)
4882 gcc_assert (in_dummy_function);
4884 /* End any sequences that failed to be closed due to syntax errors. */
4885 while (in_sequence_p ())
4886 end_sequence ();
4888 /* Outside function body, can't compute type's actual size
4889 until next function's body starts. */
4891 free_after_parsing (cfun);
4892 free_after_compilation (cfun);
4893 pop_cfun ();
4894 in_dummy_function = false;
4897 /* Call DOIT for each hard register used as a return value from
4898 the current function. */
4900 void
4901 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4903 rtx outgoing = crtl->return_rtx;
4905 if (! outgoing)
4906 return;
4908 if (REG_P (outgoing))
4909 (*doit) (outgoing, arg);
4910 else if (GET_CODE (outgoing) == PARALLEL)
4912 int i;
4914 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4916 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4918 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4919 (*doit) (x, arg);
4924 static void
4925 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4927 emit_clobber (reg);
4930 void
4931 clobber_return_register (void)
4933 diddle_return_value (do_clobber_return_reg, NULL);
4935 /* In case we do use pseudo to return value, clobber it too. */
4936 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4938 tree decl_result = DECL_RESULT (current_function_decl);
4939 rtx decl_rtl = DECL_RTL (decl_result);
4940 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4942 do_clobber_return_reg (decl_rtl, NULL);
4947 static void
4948 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4950 emit_use (reg);
4953 static void
4954 use_return_register (void)
4956 diddle_return_value (do_use_return_reg, NULL);
4959 /* Possibly warn about unused parameters. */
4960 void
4961 do_warn_unused_parameter (tree fn)
4963 tree decl;
4965 for (decl = DECL_ARGUMENTS (fn);
4966 decl; decl = DECL_CHAIN (decl))
4967 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4968 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl)
4969 && !TREE_NO_WARNING (decl))
4970 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
4973 static GTY(()) rtx initial_trampoline;
4975 /* Generate RTL for the end of the current function. */
4977 void
4978 expand_function_end (void)
4980 rtx clobber_after;
4982 /* If arg_pointer_save_area was referenced only from a nested
4983 function, we will not have initialized it yet. Do that now. */
4984 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
4985 get_arg_pointer_save_area ();
4987 /* If we are doing generic stack checking and this function makes calls,
4988 do a stack probe at the start of the function to ensure we have enough
4989 space for another stack frame. */
4990 if (flag_stack_check == GENERIC_STACK_CHECK)
4992 rtx insn, seq;
4994 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4995 if (CALL_P (insn))
4997 rtx max_frame_size = GEN_INT (STACK_CHECK_MAX_FRAME_SIZE);
4998 start_sequence ();
4999 if (STACK_CHECK_MOVING_SP)
5000 anti_adjust_stack_and_probe (max_frame_size, true);
5001 else
5002 probe_stack_range (STACK_OLD_CHECK_PROTECT, max_frame_size);
5003 seq = get_insns ();
5004 end_sequence ();
5005 set_insn_locations (seq, prologue_location);
5006 emit_insn_before (seq, stack_check_probe_note);
5007 break;
5011 /* End any sequences that failed to be closed due to syntax errors. */
5012 while (in_sequence_p ())
5013 end_sequence ();
5015 clear_pending_stack_adjust ();
5016 do_pending_stack_adjust ();
5018 /* Output a linenumber for the end of the function.
5019 SDB depends on this. */
5020 set_curr_insn_location (input_location);
5022 /* Before the return label (if any), clobber the return
5023 registers so that they are not propagated live to the rest of
5024 the function. This can only happen with functions that drop
5025 through; if there had been a return statement, there would
5026 have either been a return rtx, or a jump to the return label.
5028 We delay actual code generation after the current_function_value_rtx
5029 is computed. */
5030 clobber_after = get_last_insn ();
5032 /* Output the label for the actual return from the function. */
5033 emit_label (return_label);
5035 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
5037 /* Let except.c know where it should emit the call to unregister
5038 the function context for sjlj exceptions. */
5039 if (flag_exceptions)
5040 sjlj_emit_function_exit_after (get_last_insn ());
5042 else
5044 /* We want to ensure that instructions that may trap are not
5045 moved into the epilogue by scheduling, because we don't
5046 always emit unwind information for the epilogue. */
5047 if (cfun->can_throw_non_call_exceptions)
5048 emit_insn (gen_blockage ());
5051 /* If this is an implementation of throw, do what's necessary to
5052 communicate between __builtin_eh_return and the epilogue. */
5053 expand_eh_return ();
5055 /* If scalar return value was computed in a pseudo-reg, or was a named
5056 return value that got dumped to the stack, copy that to the hard
5057 return register. */
5058 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5060 tree decl_result = DECL_RESULT (current_function_decl);
5061 rtx decl_rtl = DECL_RTL (decl_result);
5063 if (REG_P (decl_rtl)
5064 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
5065 : DECL_REGISTER (decl_result))
5067 rtx real_decl_rtl = crtl->return_rtx;
5069 /* This should be set in assign_parms. */
5070 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
5072 /* If this is a BLKmode structure being returned in registers,
5073 then use the mode computed in expand_return. Note that if
5074 decl_rtl is memory, then its mode may have been changed,
5075 but that crtl->return_rtx has not. */
5076 if (GET_MODE (real_decl_rtl) == BLKmode)
5077 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
5079 /* If a non-BLKmode return value should be padded at the least
5080 significant end of the register, shift it left by the appropriate
5081 amount. BLKmode results are handled using the group load/store
5082 machinery. */
5083 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
5084 && REG_P (real_decl_rtl)
5085 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
5087 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
5088 REGNO (real_decl_rtl)),
5089 decl_rtl);
5090 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
5092 /* If a named return value dumped decl_return to memory, then
5093 we may need to re-do the PROMOTE_MODE signed/unsigned
5094 extension. */
5095 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
5097 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
5098 promote_function_mode (TREE_TYPE (decl_result),
5099 GET_MODE (decl_rtl), &unsignedp,
5100 TREE_TYPE (current_function_decl), 1);
5102 convert_move (real_decl_rtl, decl_rtl, unsignedp);
5104 else if (GET_CODE (real_decl_rtl) == PARALLEL)
5106 /* If expand_function_start has created a PARALLEL for decl_rtl,
5107 move the result to the real return registers. Otherwise, do
5108 a group load from decl_rtl for a named return. */
5109 if (GET_CODE (decl_rtl) == PARALLEL)
5110 emit_group_move (real_decl_rtl, decl_rtl);
5111 else
5112 emit_group_load (real_decl_rtl, decl_rtl,
5113 TREE_TYPE (decl_result),
5114 int_size_in_bytes (TREE_TYPE (decl_result)));
5116 /* In the case of complex integer modes smaller than a word, we'll
5117 need to generate some non-trivial bitfield insertions. Do that
5118 on a pseudo and not the hard register. */
5119 else if (GET_CODE (decl_rtl) == CONCAT
5120 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
5121 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
5123 int old_generating_concat_p;
5124 rtx tmp;
5126 old_generating_concat_p = generating_concat_p;
5127 generating_concat_p = 0;
5128 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
5129 generating_concat_p = old_generating_concat_p;
5131 emit_move_insn (tmp, decl_rtl);
5132 emit_move_insn (real_decl_rtl, tmp);
5134 else
5135 emit_move_insn (real_decl_rtl, decl_rtl);
5139 /* If returning a structure, arrange to return the address of the value
5140 in a place where debuggers expect to find it.
5142 If returning a structure PCC style,
5143 the caller also depends on this value.
5144 And cfun->returns_pcc_struct is not necessarily set. */
5145 if (cfun->returns_struct
5146 || cfun->returns_pcc_struct)
5148 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
5149 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
5150 rtx outgoing;
5152 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
5153 type = TREE_TYPE (type);
5154 else
5155 value_address = XEXP (value_address, 0);
5157 outgoing = targetm.calls.function_value (build_pointer_type (type),
5158 current_function_decl, true);
5160 /* Mark this as a function return value so integrate will delete the
5161 assignment and USE below when inlining this function. */
5162 REG_FUNCTION_VALUE_P (outgoing) = 1;
5164 /* The address may be ptr_mode and OUTGOING may be Pmode. */
5165 value_address = convert_memory_address (GET_MODE (outgoing),
5166 value_address);
5168 emit_move_insn (outgoing, value_address);
5170 /* Show return register used to hold result (in this case the address
5171 of the result. */
5172 crtl->return_rtx = outgoing;
5175 /* Emit the actual code to clobber return register. */
5177 rtx seq;
5179 start_sequence ();
5180 clobber_return_register ();
5181 seq = get_insns ();
5182 end_sequence ();
5184 emit_insn_after (seq, clobber_after);
5187 /* Output the label for the naked return from the function. */
5188 if (naked_return_label)
5189 emit_label (naked_return_label);
5191 /* @@@ This is a kludge. We want to ensure that instructions that
5192 may trap are not moved into the epilogue by scheduling, because
5193 we don't always emit unwind information for the epilogue. */
5194 if (cfun->can_throw_non_call_exceptions
5195 && targetm_common.except_unwind_info (&global_options) != UI_SJLJ)
5196 emit_insn (gen_blockage ());
5198 /* If stack protection is enabled for this function, check the guard. */
5199 if (crtl->stack_protect_guard)
5200 stack_protect_epilogue ();
5202 /* If we had calls to alloca, and this machine needs
5203 an accurate stack pointer to exit the function,
5204 insert some code to save and restore the stack pointer. */
5205 if (! EXIT_IGNORE_STACK
5206 && cfun->calls_alloca)
5208 rtx tem = 0, seq;
5210 start_sequence ();
5211 emit_stack_save (SAVE_FUNCTION, &tem);
5212 seq = get_insns ();
5213 end_sequence ();
5214 emit_insn_before (seq, parm_birth_insn);
5216 emit_stack_restore (SAVE_FUNCTION, tem);
5219 /* ??? This should no longer be necessary since stupid is no longer with
5220 us, but there are some parts of the compiler (eg reload_combine, and
5221 sh mach_dep_reorg) that still try and compute their own lifetime info
5222 instead of using the general framework. */
5223 use_return_register ();
5227 get_arg_pointer_save_area (void)
5229 rtx ret = arg_pointer_save_area;
5231 if (! ret)
5233 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5234 arg_pointer_save_area = ret;
5237 if (! crtl->arg_pointer_save_area_init)
5239 rtx seq;
5241 /* Save the arg pointer at the beginning of the function. The
5242 generated stack slot may not be a valid memory address, so we
5243 have to check it and fix it if necessary. */
5244 start_sequence ();
5245 emit_move_insn (validize_mem (ret),
5246 crtl->args.internal_arg_pointer);
5247 seq = get_insns ();
5248 end_sequence ();
5250 push_topmost_sequence ();
5251 emit_insn_after (seq, entry_of_function ());
5252 pop_topmost_sequence ();
5254 crtl->arg_pointer_save_area_init = true;
5257 return ret;
5260 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
5261 for the first time. */
5263 static void
5264 record_insns (rtx insns, rtx end, htab_t *hashp)
5266 rtx tmp;
5267 htab_t hash = *hashp;
5269 if (hash == NULL)
5270 *hashp = hash
5271 = htab_create_ggc (17, htab_hash_pointer, htab_eq_pointer, NULL);
5273 for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
5275 void **slot = htab_find_slot (hash, tmp, INSERT);
5276 gcc_assert (*slot == NULL);
5277 *slot = tmp;
5281 /* INSN has been duplicated or replaced by as COPY, perhaps by duplicating a
5282 basic block, splitting or peepholes. If INSN is a prologue or epilogue
5283 insn, then record COPY as well. */
5285 void
5286 maybe_copy_prologue_epilogue_insn (rtx insn, rtx copy)
5288 htab_t hash;
5289 void **slot;
5291 hash = epilogue_insn_hash;
5292 if (!hash || !htab_find (hash, insn))
5294 hash = prologue_insn_hash;
5295 if (!hash || !htab_find (hash, insn))
5296 return;
5299 slot = htab_find_slot (hash, copy, INSERT);
5300 gcc_assert (*slot == NULL);
5301 *slot = copy;
5304 /* Set the location of the insn chain starting at INSN to LOC. */
5305 static void
5306 set_insn_locations (rtx insn, int loc)
5308 while (insn != NULL_RTX)
5310 if (INSN_P (insn))
5311 INSN_LOCATION (insn) = loc;
5312 insn = NEXT_INSN (insn);
5316 /* Determine if any INSNs in HASH are, or are part of, INSN. Because
5317 we can be running after reorg, SEQUENCE rtl is possible. */
5319 static bool
5320 contains (const_rtx insn, htab_t hash)
5322 if (hash == NULL)
5323 return false;
5325 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
5327 int i;
5328 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
5329 if (htab_find (hash, XVECEXP (PATTERN (insn), 0, i)))
5330 return true;
5331 return false;
5334 return htab_find (hash, insn) != NULL;
5338 prologue_epilogue_contains (const_rtx insn)
5340 if (contains (insn, prologue_insn_hash))
5341 return 1;
5342 if (contains (insn, epilogue_insn_hash))
5343 return 1;
5344 return 0;
5347 #ifdef HAVE_simple_return
5349 /* Return true if INSN requires the stack frame to be set up.
5350 PROLOGUE_USED contains the hard registers used in the function
5351 prologue. SET_UP_BY_PROLOGUE is the set of registers we expect the
5352 prologue to set up for the function. */
5353 bool
5354 requires_stack_frame_p (rtx insn, HARD_REG_SET prologue_used,
5355 HARD_REG_SET set_up_by_prologue)
5357 df_ref *df_rec;
5358 HARD_REG_SET hardregs;
5359 unsigned regno;
5361 if (CALL_P (insn))
5362 return !SIBLING_CALL_P (insn);
5364 /* We need a frame to get the unique CFA expected by the unwinder. */
5365 if (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
5366 return true;
5368 CLEAR_HARD_REG_SET (hardregs);
5369 for (df_rec = DF_INSN_DEFS (insn); *df_rec; df_rec++)
5371 rtx dreg = DF_REF_REG (*df_rec);
5373 if (!REG_P (dreg))
5374 continue;
5376 add_to_hard_reg_set (&hardregs, GET_MODE (dreg),
5377 REGNO (dreg));
5379 if (hard_reg_set_intersect_p (hardregs, prologue_used))
5380 return true;
5381 AND_COMPL_HARD_REG_SET (hardregs, call_used_reg_set);
5382 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5383 if (TEST_HARD_REG_BIT (hardregs, regno)
5384 && df_regs_ever_live_p (regno))
5385 return true;
5387 for (df_rec = DF_INSN_USES (insn); *df_rec; df_rec++)
5389 rtx reg = DF_REF_REG (*df_rec);
5391 if (!REG_P (reg))
5392 continue;
5394 add_to_hard_reg_set (&hardregs, GET_MODE (reg),
5395 REGNO (reg));
5397 if (hard_reg_set_intersect_p (hardregs, set_up_by_prologue))
5398 return true;
5400 return false;
5403 /* See whether BB has a single successor that uses [REGNO, END_REGNO),
5404 and if BB is its only predecessor. Return that block if so,
5405 otherwise return null. */
5407 static basic_block
5408 next_block_for_reg (basic_block bb, int regno, int end_regno)
5410 edge e, live_edge;
5411 edge_iterator ei;
5412 bitmap live;
5413 int i;
5415 live_edge = NULL;
5416 FOR_EACH_EDGE (e, ei, bb->succs)
5418 live = df_get_live_in (e->dest);
5419 for (i = regno; i < end_regno; i++)
5420 if (REGNO_REG_SET_P (live, i))
5422 if (live_edge && live_edge != e)
5423 return NULL;
5424 live_edge = e;
5428 /* We can sometimes encounter dead code. Don't try to move it
5429 into the exit block. */
5430 if (!live_edge || live_edge->dest == EXIT_BLOCK_PTR)
5431 return NULL;
5433 /* Reject targets of abnormal edges. This is needed for correctness
5434 on ports like Alpha and MIPS, whose pic_offset_table_rtx can die on
5435 exception edges even though it is generally treated as call-saved
5436 for the majority of the compilation. Moving across abnormal edges
5437 isn't going to be interesting for shrink-wrap usage anyway. */
5438 if (live_edge->flags & EDGE_ABNORMAL)
5439 return NULL;
5441 if (EDGE_COUNT (live_edge->dest->preds) > 1)
5442 return NULL;
5444 return live_edge->dest;
5447 /* Try to move INSN from BB to a successor. Return true on success.
5448 USES and DEFS are the set of registers that are used and defined
5449 after INSN in BB. */
5451 static bool
5452 move_insn_for_shrink_wrap (basic_block bb, rtx insn,
5453 const HARD_REG_SET uses,
5454 const HARD_REG_SET defs)
5456 rtx set, src, dest;
5457 bitmap live_out, live_in, bb_uses, bb_defs;
5458 unsigned int i, dregno, end_dregno, sregno, end_sregno;
5459 basic_block next_block;
5461 /* Look for a simple register copy. */
5462 set = single_set (insn);
5463 if (!set)
5464 return false;
5465 src = SET_SRC (set);
5466 dest = SET_DEST (set);
5467 if (!REG_P (dest) || !REG_P (src))
5468 return false;
5470 /* Make sure that the source register isn't defined later in BB. */
5471 sregno = REGNO (src);
5472 end_sregno = END_REGNO (src);
5473 if (overlaps_hard_reg_set_p (defs, GET_MODE (src), sregno))
5474 return false;
5476 /* Make sure that the destination register isn't referenced later in BB. */
5477 dregno = REGNO (dest);
5478 end_dregno = END_REGNO (dest);
5479 if (overlaps_hard_reg_set_p (uses, GET_MODE (dest), dregno)
5480 || overlaps_hard_reg_set_p (defs, GET_MODE (dest), dregno))
5481 return false;
5483 /* See whether there is a successor block to which we could move INSN. */
5484 next_block = next_block_for_reg (bb, dregno, end_dregno);
5485 if (!next_block)
5486 return false;
5488 /* At this point we are committed to moving INSN, but let's try to
5489 move it as far as we can. */
5492 live_out = df_get_live_out (bb);
5493 live_in = df_get_live_in (next_block);
5494 bb = next_block;
5496 /* Check whether BB uses DEST or clobbers DEST. We need to add
5497 INSN to BB if so. Either way, DEST is no longer live on entry,
5498 except for any part that overlaps SRC (next loop). */
5499 bb_uses = &DF_LR_BB_INFO (bb)->use;
5500 bb_defs = &DF_LR_BB_INFO (bb)->def;
5501 if (df_live)
5503 for (i = dregno; i < end_dregno; i++)
5505 if (REGNO_REG_SET_P (bb_uses, i) || REGNO_REG_SET_P (bb_defs, i)
5506 || REGNO_REG_SET_P (&DF_LIVE_BB_INFO (bb)->gen, i))
5507 next_block = NULL;
5508 CLEAR_REGNO_REG_SET (live_out, i);
5509 CLEAR_REGNO_REG_SET (live_in, i);
5512 /* Check whether BB clobbers SRC. We need to add INSN to BB if so.
5513 Either way, SRC is now live on entry. */
5514 for (i = sregno; i < end_sregno; i++)
5516 if (REGNO_REG_SET_P (bb_defs, i)
5517 || REGNO_REG_SET_P (&DF_LIVE_BB_INFO (bb)->gen, i))
5518 next_block = NULL;
5519 SET_REGNO_REG_SET (live_out, i);
5520 SET_REGNO_REG_SET (live_in, i);
5523 else
5525 /* DF_LR_BB_INFO (bb)->def does not comprise the DF_REF_PARTIAL and
5526 DF_REF_CONDITIONAL defs. So if DF_LIVE doesn't exist, i.e.
5527 at -O1, just give up searching NEXT_BLOCK. */
5528 next_block = NULL;
5529 for (i = dregno; i < end_dregno; i++)
5531 CLEAR_REGNO_REG_SET (live_out, i);
5532 CLEAR_REGNO_REG_SET (live_in, i);
5535 for (i = sregno; i < end_sregno; i++)
5537 SET_REGNO_REG_SET (live_out, i);
5538 SET_REGNO_REG_SET (live_in, i);
5542 /* If we don't need to add the move to BB, look for a single
5543 successor block. */
5544 if (next_block)
5545 next_block = next_block_for_reg (next_block, dregno, end_dregno);
5547 while (next_block);
5549 /* BB now defines DEST. It only uses the parts of DEST that overlap SRC
5550 (next loop). */
5551 for (i = dregno; i < end_dregno; i++)
5553 CLEAR_REGNO_REG_SET (bb_uses, i);
5554 SET_REGNO_REG_SET (bb_defs, i);
5557 /* BB now uses SRC. */
5558 for (i = sregno; i < end_sregno; i++)
5559 SET_REGNO_REG_SET (bb_uses, i);
5561 emit_insn_after (PATTERN (insn), bb_note (bb));
5562 delete_insn (insn);
5563 return true;
5566 /* Look for register copies in the first block of the function, and move
5567 them down into successor blocks if the register is used only on one
5568 path. This exposes more opportunities for shrink-wrapping. These
5569 kinds of sets often occur when incoming argument registers are moved
5570 to call-saved registers because their values are live across one or
5571 more calls during the function. */
5573 static void
5574 prepare_shrink_wrap (basic_block entry_block)
5576 rtx insn, curr, x;
5577 HARD_REG_SET uses, defs;
5578 df_ref *ref;
5580 CLEAR_HARD_REG_SET (uses);
5581 CLEAR_HARD_REG_SET (defs);
5582 FOR_BB_INSNS_REVERSE_SAFE (entry_block, insn, curr)
5583 if (NONDEBUG_INSN_P (insn)
5584 && !move_insn_for_shrink_wrap (entry_block, insn, uses, defs))
5586 /* Add all defined registers to DEFs. */
5587 for (ref = DF_INSN_DEFS (insn); *ref; ref++)
5589 x = DF_REF_REG (*ref);
5590 if (REG_P (x) && HARD_REGISTER_P (x))
5591 SET_HARD_REG_BIT (defs, REGNO (x));
5594 /* Add all used registers to USESs. */
5595 for (ref = DF_INSN_USES (insn); *ref; ref++)
5597 x = DF_REF_REG (*ref);
5598 if (REG_P (x) && HARD_REGISTER_P (x))
5599 SET_HARD_REG_BIT (uses, REGNO (x));
5604 #endif
5606 #ifdef HAVE_return
5607 /* Insert use of return register before the end of BB. */
5609 static void
5610 emit_use_return_register_into_block (basic_block bb)
5612 rtx seq;
5613 start_sequence ();
5614 use_return_register ();
5615 seq = get_insns ();
5616 end_sequence ();
5617 emit_insn_before (seq, BB_END (bb));
5621 /* Create a return pattern, either simple_return or return, depending on
5622 simple_p. */
5624 static rtx
5625 gen_return_pattern (bool simple_p)
5627 #ifdef HAVE_simple_return
5628 return simple_p ? gen_simple_return () : gen_return ();
5629 #else
5630 gcc_assert (!simple_p);
5631 return gen_return ();
5632 #endif
5635 /* Insert an appropriate return pattern at the end of block BB. This
5636 also means updating block_for_insn appropriately. SIMPLE_P is
5637 the same as in gen_return_pattern and passed to it. */
5639 static void
5640 emit_return_into_block (bool simple_p, basic_block bb)
5642 rtx jump, pat;
5643 jump = emit_jump_insn_after (gen_return_pattern (simple_p), BB_END (bb));
5644 pat = PATTERN (jump);
5645 if (GET_CODE (pat) == PARALLEL)
5646 pat = XVECEXP (pat, 0, 0);
5647 gcc_assert (ANY_RETURN_P (pat));
5648 JUMP_LABEL (jump) = pat;
5650 #endif
5652 /* Set JUMP_LABEL for a return insn. */
5654 void
5655 set_return_jump_label (rtx returnjump)
5657 rtx pat = PATTERN (returnjump);
5658 if (GET_CODE (pat) == PARALLEL)
5659 pat = XVECEXP (pat, 0, 0);
5660 if (ANY_RETURN_P (pat))
5661 JUMP_LABEL (returnjump) = pat;
5662 else
5663 JUMP_LABEL (returnjump) = ret_rtx;
5666 #ifdef HAVE_simple_return
5667 /* Create a copy of BB instructions and insert at BEFORE. Redirect
5668 preds of BB to COPY_BB if they don't appear in NEED_PROLOGUE. */
5669 static void
5670 dup_block_and_redirect (basic_block bb, basic_block copy_bb, rtx before,
5671 bitmap_head *need_prologue)
5673 edge_iterator ei;
5674 edge e;
5675 rtx insn = BB_END (bb);
5677 /* We know BB has a single successor, so there is no need to copy a
5678 simple jump at the end of BB. */
5679 if (simplejump_p (insn))
5680 insn = PREV_INSN (insn);
5682 start_sequence ();
5683 duplicate_insn_chain (BB_HEAD (bb), insn);
5684 if (dump_file)
5686 unsigned count = 0;
5687 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5688 if (active_insn_p (insn))
5689 ++count;
5690 fprintf (dump_file, "Duplicating bb %d to bb %d, %u active insns.\n",
5691 bb->index, copy_bb->index, count);
5693 insn = get_insns ();
5694 end_sequence ();
5695 emit_insn_before (insn, before);
5697 /* Redirect all the paths that need no prologue into copy_bb. */
5698 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
5699 if (!bitmap_bit_p (need_prologue, e->src->index))
5701 int freq = EDGE_FREQUENCY (e);
5702 copy_bb->count += e->count;
5703 copy_bb->frequency += EDGE_FREQUENCY (e);
5704 e->dest->count -= e->count;
5705 if (e->dest->count < 0)
5706 e->dest->count = 0;
5707 e->dest->frequency -= freq;
5708 if (e->dest->frequency < 0)
5709 e->dest->frequency = 0;
5710 redirect_edge_and_branch_force (e, copy_bb);
5711 continue;
5713 else
5714 ei_next (&ei);
5716 #endif
5718 #if defined (HAVE_return) || defined (HAVE_simple_return)
5719 /* Return true if there are any active insns between HEAD and TAIL. */
5720 static bool
5721 active_insn_between (rtx head, rtx tail)
5723 while (tail)
5725 if (active_insn_p (tail))
5726 return true;
5727 if (tail == head)
5728 return false;
5729 tail = PREV_INSN (tail);
5731 return false;
5734 /* LAST_BB is a block that exits, and empty of active instructions.
5735 Examine its predecessors for jumps that can be converted to
5736 (conditional) returns. */
5737 static vec<edge>
5738 convert_jumps_to_returns (basic_block last_bb, bool simple_p,
5739 vec<edge> unconverted ATTRIBUTE_UNUSED)
5741 int i;
5742 basic_block bb;
5743 rtx label;
5744 edge_iterator ei;
5745 edge e;
5746 vec<basic_block> src_bbs;
5748 src_bbs.create (EDGE_COUNT (last_bb->preds));
5749 FOR_EACH_EDGE (e, ei, last_bb->preds)
5750 if (e->src != ENTRY_BLOCK_PTR)
5751 src_bbs.quick_push (e->src);
5753 label = BB_HEAD (last_bb);
5755 FOR_EACH_VEC_ELT (src_bbs, i, bb)
5757 rtx jump = BB_END (bb);
5759 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5760 continue;
5762 e = find_edge (bb, last_bb);
5764 /* If we have an unconditional jump, we can replace that
5765 with a simple return instruction. */
5766 if (simplejump_p (jump))
5768 /* The use of the return register might be present in the exit
5769 fallthru block. Either:
5770 - removing the use is safe, and we should remove the use in
5771 the exit fallthru block, or
5772 - removing the use is not safe, and we should add it here.
5773 For now, we conservatively choose the latter. Either of the
5774 2 helps in crossjumping. */
5775 emit_use_return_register_into_block (bb);
5777 emit_return_into_block (simple_p, bb);
5778 delete_insn (jump);
5781 /* If we have a conditional jump branching to the last
5782 block, we can try to replace that with a conditional
5783 return instruction. */
5784 else if (condjump_p (jump))
5786 rtx dest;
5788 if (simple_p)
5789 dest = simple_return_rtx;
5790 else
5791 dest = ret_rtx;
5792 if (!redirect_jump (jump, dest, 0))
5794 #ifdef HAVE_simple_return
5795 if (simple_p)
5797 if (dump_file)
5798 fprintf (dump_file,
5799 "Failed to redirect bb %d branch.\n", bb->index);
5800 unconverted.safe_push (e);
5802 #endif
5803 continue;
5806 /* See comment in simplejump_p case above. */
5807 emit_use_return_register_into_block (bb);
5809 /* If this block has only one successor, it both jumps
5810 and falls through to the fallthru block, so we can't
5811 delete the edge. */
5812 if (single_succ_p (bb))
5813 continue;
5815 else
5817 #ifdef HAVE_simple_return
5818 if (simple_p)
5820 if (dump_file)
5821 fprintf (dump_file,
5822 "Failed to redirect bb %d branch.\n", bb->index);
5823 unconverted.safe_push (e);
5825 #endif
5826 continue;
5829 /* Fix up the CFG for the successful change we just made. */
5830 redirect_edge_succ (e, EXIT_BLOCK_PTR);
5831 e->flags &= ~EDGE_CROSSING;
5833 src_bbs.release ();
5834 return unconverted;
5837 /* Emit a return insn for the exit fallthru block. */
5838 static basic_block
5839 emit_return_for_exit (edge exit_fallthru_edge, bool simple_p)
5841 basic_block last_bb = exit_fallthru_edge->src;
5843 if (JUMP_P (BB_END (last_bb)))
5845 last_bb = split_edge (exit_fallthru_edge);
5846 exit_fallthru_edge = single_succ_edge (last_bb);
5848 emit_barrier_after (BB_END (last_bb));
5849 emit_return_into_block (simple_p, last_bb);
5850 exit_fallthru_edge->flags &= ~EDGE_FALLTHRU;
5851 return last_bb;
5853 #endif
5856 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5857 this into place with notes indicating where the prologue ends and where
5858 the epilogue begins. Update the basic block information when possible.
5860 Notes on epilogue placement:
5861 There are several kinds of edges to the exit block:
5862 * a single fallthru edge from LAST_BB
5863 * possibly, edges from blocks containing sibcalls
5864 * possibly, fake edges from infinite loops
5866 The epilogue is always emitted on the fallthru edge from the last basic
5867 block in the function, LAST_BB, into the exit block.
5869 If LAST_BB is empty except for a label, it is the target of every
5870 other basic block in the function that ends in a return. If a
5871 target has a return or simple_return pattern (possibly with
5872 conditional variants), these basic blocks can be changed so that a
5873 return insn is emitted into them, and their target is adjusted to
5874 the real exit block.
5876 Notes on shrink wrapping: We implement a fairly conservative
5877 version of shrink-wrapping rather than the textbook one. We only
5878 generate a single prologue and a single epilogue. This is
5879 sufficient to catch a number of interesting cases involving early
5880 exits.
5882 First, we identify the blocks that require the prologue to occur before
5883 them. These are the ones that modify a call-saved register, or reference
5884 any of the stack or frame pointer registers. To simplify things, we then
5885 mark everything reachable from these blocks as also requiring a prologue.
5886 This takes care of loops automatically, and avoids the need to examine
5887 whether MEMs reference the frame, since it is sufficient to check for
5888 occurrences of the stack or frame pointer.
5890 We then compute the set of blocks for which the need for a prologue
5891 is anticipatable (borrowing terminology from the shrink-wrapping
5892 description in Muchnick's book). These are the blocks which either
5893 require a prologue themselves, or those that have only successors
5894 where the prologue is anticipatable. The prologue needs to be
5895 inserted on all edges from BB1->BB2 where BB2 is in ANTIC and BB1
5896 is not. For the moment, we ensure that only one such edge exists.
5898 The epilogue is placed as described above, but we make a
5899 distinction between inserting return and simple_return patterns
5900 when modifying other blocks that end in a return. Blocks that end
5901 in a sibcall omit the sibcall_epilogue if the block is not in
5902 ANTIC. */
5904 static void
5905 thread_prologue_and_epilogue_insns (void)
5907 bool inserted;
5908 #ifdef HAVE_simple_return
5909 vec<edge> unconverted_simple_returns = vNULL;
5910 bool nonempty_prologue;
5911 bitmap_head bb_flags;
5912 unsigned max_grow_size;
5913 #endif
5914 rtx returnjump;
5915 rtx seq ATTRIBUTE_UNUSED, epilogue_end ATTRIBUTE_UNUSED;
5916 rtx prologue_seq ATTRIBUTE_UNUSED, split_prologue_seq ATTRIBUTE_UNUSED;
5917 edge e, entry_edge, orig_entry_edge, exit_fallthru_edge;
5918 edge_iterator ei;
5920 df_analyze ();
5922 rtl_profile_for_bb (ENTRY_BLOCK_PTR);
5924 inserted = false;
5925 seq = NULL_RTX;
5926 epilogue_end = NULL_RTX;
5927 returnjump = NULL_RTX;
5929 /* Can't deal with multiple successors of the entry block at the
5930 moment. Function should always have at least one entry
5931 point. */
5932 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR));
5933 entry_edge = single_succ_edge (ENTRY_BLOCK_PTR);
5934 orig_entry_edge = entry_edge;
5936 split_prologue_seq = NULL_RTX;
5937 if (flag_split_stack
5938 && (lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (cfun->decl))
5939 == NULL))
5941 #ifndef HAVE_split_stack_prologue
5942 gcc_unreachable ();
5943 #else
5944 gcc_assert (HAVE_split_stack_prologue);
5946 start_sequence ();
5947 emit_insn (gen_split_stack_prologue ());
5948 split_prologue_seq = get_insns ();
5949 end_sequence ();
5951 record_insns (split_prologue_seq, NULL, &prologue_insn_hash);
5952 set_insn_locations (split_prologue_seq, prologue_location);
5953 #endif
5956 prologue_seq = NULL_RTX;
5957 #ifdef HAVE_prologue
5958 if (HAVE_prologue)
5960 start_sequence ();
5961 seq = gen_prologue ();
5962 emit_insn (seq);
5964 /* Insert an explicit USE for the frame pointer
5965 if the profiling is on and the frame pointer is required. */
5966 if (crtl->profile && frame_pointer_needed)
5967 emit_use (hard_frame_pointer_rtx);
5969 /* Retain a map of the prologue insns. */
5970 record_insns (seq, NULL, &prologue_insn_hash);
5971 emit_note (NOTE_INSN_PROLOGUE_END);
5973 /* Ensure that instructions are not moved into the prologue when
5974 profiling is on. The call to the profiling routine can be
5975 emitted within the live range of a call-clobbered register. */
5976 if (!targetm.profile_before_prologue () && crtl->profile)
5977 emit_insn (gen_blockage ());
5979 prologue_seq = get_insns ();
5980 end_sequence ();
5981 set_insn_locations (prologue_seq, prologue_location);
5983 #endif
5985 #ifdef HAVE_simple_return
5986 bitmap_initialize (&bb_flags, &bitmap_default_obstack);
5988 /* Try to perform a kind of shrink-wrapping, making sure the
5989 prologue/epilogue is emitted only around those parts of the
5990 function that require it. */
5992 nonempty_prologue = false;
5993 for (seq = prologue_seq; seq; seq = NEXT_INSN (seq))
5994 if (!NOTE_P (seq) || NOTE_KIND (seq) != NOTE_INSN_PROLOGUE_END)
5996 nonempty_prologue = true;
5997 break;
6000 if (flag_shrink_wrap && HAVE_simple_return
6001 && (targetm.profile_before_prologue () || !crtl->profile)
6002 && nonempty_prologue && !crtl->calls_eh_return)
6004 HARD_REG_SET prologue_clobbered, prologue_used, live_on_edge;
6005 struct hard_reg_set_container set_up_by_prologue;
6006 rtx p_insn;
6007 vec<basic_block> vec;
6008 basic_block bb;
6009 bitmap_head bb_antic_flags;
6010 bitmap_head bb_on_list;
6011 bitmap_head bb_tail;
6013 if (dump_file)
6014 fprintf (dump_file, "Attempting shrink-wrapping optimization.\n");
6016 /* Compute the registers set and used in the prologue. */
6017 CLEAR_HARD_REG_SET (prologue_clobbered);
6018 CLEAR_HARD_REG_SET (prologue_used);
6019 for (p_insn = prologue_seq; p_insn; p_insn = NEXT_INSN (p_insn))
6021 HARD_REG_SET this_used;
6022 if (!NONDEBUG_INSN_P (p_insn))
6023 continue;
6025 CLEAR_HARD_REG_SET (this_used);
6026 note_uses (&PATTERN (p_insn), record_hard_reg_uses,
6027 &this_used);
6028 AND_COMPL_HARD_REG_SET (this_used, prologue_clobbered);
6029 IOR_HARD_REG_SET (prologue_used, this_used);
6030 note_stores (PATTERN (p_insn), record_hard_reg_sets,
6031 &prologue_clobbered);
6034 prepare_shrink_wrap (entry_edge->dest);
6036 bitmap_initialize (&bb_antic_flags, &bitmap_default_obstack);
6037 bitmap_initialize (&bb_on_list, &bitmap_default_obstack);
6038 bitmap_initialize (&bb_tail, &bitmap_default_obstack);
6040 /* Find the set of basic blocks that require a stack frame,
6041 and blocks that are too big to be duplicated. */
6043 vec.create (n_basic_blocks);
6045 CLEAR_HARD_REG_SET (set_up_by_prologue.set);
6046 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
6047 STACK_POINTER_REGNUM);
6048 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode, ARG_POINTER_REGNUM);
6049 if (frame_pointer_needed)
6050 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
6051 HARD_FRAME_POINTER_REGNUM);
6052 if (pic_offset_table_rtx)
6053 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
6054 PIC_OFFSET_TABLE_REGNUM);
6055 if (crtl->drap_reg)
6056 add_to_hard_reg_set (&set_up_by_prologue.set,
6057 GET_MODE (crtl->drap_reg),
6058 REGNO (crtl->drap_reg));
6059 if (targetm.set_up_by_prologue)
6060 targetm.set_up_by_prologue (&set_up_by_prologue);
6062 /* We don't use a different max size depending on
6063 optimize_bb_for_speed_p because increasing shrink-wrapping
6064 opportunities by duplicating tail blocks can actually result
6065 in an overall decrease in code size. */
6066 max_grow_size = get_uncond_jump_length ();
6067 max_grow_size *= PARAM_VALUE (PARAM_MAX_GROW_COPY_BB_INSNS);
6069 FOR_EACH_BB (bb)
6071 rtx insn;
6072 unsigned size = 0;
6074 FOR_BB_INSNS (bb, insn)
6075 if (NONDEBUG_INSN_P (insn))
6077 if (requires_stack_frame_p (insn, prologue_used,
6078 set_up_by_prologue.set))
6080 if (bb == entry_edge->dest)
6081 goto fail_shrinkwrap;
6082 bitmap_set_bit (&bb_flags, bb->index);
6083 vec.quick_push (bb);
6084 break;
6086 else if (size <= max_grow_size)
6088 size += get_attr_min_length (insn);
6089 if (size > max_grow_size)
6090 bitmap_set_bit (&bb_on_list, bb->index);
6095 /* Blocks that really need a prologue, or are too big for tails. */
6096 bitmap_ior_into (&bb_on_list, &bb_flags);
6098 /* For every basic block that needs a prologue, mark all blocks
6099 reachable from it, so as to ensure they are also seen as
6100 requiring a prologue. */
6101 while (!vec.is_empty ())
6103 basic_block tmp_bb = vec.pop ();
6105 FOR_EACH_EDGE (e, ei, tmp_bb->succs)
6106 if (e->dest != EXIT_BLOCK_PTR
6107 && bitmap_set_bit (&bb_flags, e->dest->index))
6108 vec.quick_push (e->dest);
6111 /* Find the set of basic blocks that need no prologue, have a
6112 single successor, can be duplicated, meet a max size
6113 requirement, and go to the exit via like blocks. */
6114 vec.quick_push (EXIT_BLOCK_PTR);
6115 while (!vec.is_empty ())
6117 basic_block tmp_bb = vec.pop ();
6119 FOR_EACH_EDGE (e, ei, tmp_bb->preds)
6120 if (single_succ_p (e->src)
6121 && !bitmap_bit_p (&bb_on_list, e->src->index)
6122 && can_duplicate_block_p (e->src))
6124 edge pe;
6125 edge_iterator pei;
6127 /* If there is predecessor of e->src which doesn't
6128 need prologue and the edge is complex,
6129 we might not be able to redirect the branch
6130 to a copy of e->src. */
6131 FOR_EACH_EDGE (pe, pei, e->src->preds)
6132 if ((pe->flags & EDGE_COMPLEX) != 0
6133 && !bitmap_bit_p (&bb_flags, pe->src->index))
6134 break;
6135 if (pe == NULL && bitmap_set_bit (&bb_tail, e->src->index))
6136 vec.quick_push (e->src);
6140 /* Now walk backwards from every block that is marked as needing
6141 a prologue to compute the bb_antic_flags bitmap. Exclude
6142 tail blocks; They can be duplicated to be used on paths not
6143 needing a prologue. */
6144 bitmap_clear (&bb_on_list);
6145 bitmap_and_compl (&bb_antic_flags, &bb_flags, &bb_tail);
6146 FOR_EACH_BB (bb)
6148 if (!bitmap_bit_p (&bb_antic_flags, bb->index))
6149 continue;
6150 FOR_EACH_EDGE (e, ei, bb->preds)
6151 if (!bitmap_bit_p (&bb_antic_flags, e->src->index)
6152 && bitmap_set_bit (&bb_on_list, e->src->index))
6153 vec.quick_push (e->src);
6155 while (!vec.is_empty ())
6157 basic_block tmp_bb = vec.pop ();
6158 bool all_set = true;
6160 bitmap_clear_bit (&bb_on_list, tmp_bb->index);
6161 FOR_EACH_EDGE (e, ei, tmp_bb->succs)
6162 if (!bitmap_bit_p (&bb_antic_flags, e->dest->index))
6164 all_set = false;
6165 break;
6168 if (all_set)
6170 bitmap_set_bit (&bb_antic_flags, tmp_bb->index);
6171 FOR_EACH_EDGE (e, ei, tmp_bb->preds)
6172 if (!bitmap_bit_p (&bb_antic_flags, e->src->index)
6173 && bitmap_set_bit (&bb_on_list, e->src->index))
6174 vec.quick_push (e->src);
6177 /* Find exactly one edge that leads to a block in ANTIC from
6178 a block that isn't. */
6179 if (!bitmap_bit_p (&bb_antic_flags, entry_edge->dest->index))
6180 FOR_EACH_BB (bb)
6182 if (!bitmap_bit_p (&bb_antic_flags, bb->index))
6183 continue;
6184 FOR_EACH_EDGE (e, ei, bb->preds)
6185 if (!bitmap_bit_p (&bb_antic_flags, e->src->index))
6187 if (entry_edge != orig_entry_edge)
6189 entry_edge = orig_entry_edge;
6190 if (dump_file)
6191 fprintf (dump_file, "More than one candidate edge.\n");
6192 goto fail_shrinkwrap;
6194 if (dump_file)
6195 fprintf (dump_file, "Found candidate edge for "
6196 "shrink-wrapping, %d->%d.\n", e->src->index,
6197 e->dest->index);
6198 entry_edge = e;
6202 if (entry_edge != orig_entry_edge)
6204 /* Test whether the prologue is known to clobber any register
6205 (other than FP or SP) which are live on the edge. */
6206 CLEAR_HARD_REG_BIT (prologue_clobbered, STACK_POINTER_REGNUM);
6207 if (frame_pointer_needed)
6208 CLEAR_HARD_REG_BIT (prologue_clobbered, HARD_FRAME_POINTER_REGNUM);
6209 REG_SET_TO_HARD_REG_SET (live_on_edge,
6210 df_get_live_in (entry_edge->dest));
6211 if (hard_reg_set_intersect_p (live_on_edge, prologue_clobbered))
6213 entry_edge = orig_entry_edge;
6214 if (dump_file)
6215 fprintf (dump_file,
6216 "Shrink-wrapping aborted due to clobber.\n");
6219 if (entry_edge != orig_entry_edge)
6221 crtl->shrink_wrapped = true;
6222 if (dump_file)
6223 fprintf (dump_file, "Performing shrink-wrapping.\n");
6225 /* Find tail blocks reachable from both blocks needing a
6226 prologue and blocks not needing a prologue. */
6227 if (!bitmap_empty_p (&bb_tail))
6228 FOR_EACH_BB (bb)
6230 bool some_pro, some_no_pro;
6231 if (!bitmap_bit_p (&bb_tail, bb->index))
6232 continue;
6233 some_pro = some_no_pro = false;
6234 FOR_EACH_EDGE (e, ei, bb->preds)
6236 if (bitmap_bit_p (&bb_flags, e->src->index))
6237 some_pro = true;
6238 else
6239 some_no_pro = true;
6241 if (some_pro && some_no_pro)
6242 vec.quick_push (bb);
6243 else
6244 bitmap_clear_bit (&bb_tail, bb->index);
6246 /* Find the head of each tail. */
6247 while (!vec.is_empty ())
6249 basic_block tbb = vec.pop ();
6251 if (!bitmap_bit_p (&bb_tail, tbb->index))
6252 continue;
6254 while (single_succ_p (tbb))
6256 tbb = single_succ (tbb);
6257 bitmap_clear_bit (&bb_tail, tbb->index);
6260 /* Now duplicate the tails. */
6261 if (!bitmap_empty_p (&bb_tail))
6262 FOR_EACH_BB_REVERSE (bb)
6264 basic_block copy_bb, tbb;
6265 rtx insert_point;
6266 int eflags;
6268 if (!bitmap_clear_bit (&bb_tail, bb->index))
6269 continue;
6271 /* Create a copy of BB, instructions and all, for
6272 use on paths that don't need a prologue.
6273 Ideal placement of the copy is on a fall-thru edge
6274 or after a block that would jump to the copy. */
6275 FOR_EACH_EDGE (e, ei, bb->preds)
6276 if (!bitmap_bit_p (&bb_flags, e->src->index)
6277 && single_succ_p (e->src))
6278 break;
6279 if (e)
6281 copy_bb = create_basic_block (NEXT_INSN (BB_END (e->src)),
6282 NULL_RTX, e->src);
6283 BB_COPY_PARTITION (copy_bb, e->src);
6285 else
6287 /* Otherwise put the copy at the end of the function. */
6288 copy_bb = create_basic_block (NULL_RTX, NULL_RTX,
6289 EXIT_BLOCK_PTR->prev_bb);
6290 BB_COPY_PARTITION (copy_bb, bb);
6293 insert_point = emit_note_after (NOTE_INSN_DELETED,
6294 BB_END (copy_bb));
6295 emit_barrier_after (BB_END (copy_bb));
6297 tbb = bb;
6298 while (1)
6300 dup_block_and_redirect (tbb, copy_bb, insert_point,
6301 &bb_flags);
6302 tbb = single_succ (tbb);
6303 if (tbb == EXIT_BLOCK_PTR)
6304 break;
6305 e = split_block (copy_bb, PREV_INSN (insert_point));
6306 copy_bb = e->dest;
6309 /* Quiet verify_flow_info by (ab)using EDGE_FAKE.
6310 We have yet to add a simple_return to the tails,
6311 as we'd like to first convert_jumps_to_returns in
6312 case the block is no longer used after that. */
6313 eflags = EDGE_FAKE;
6314 if (CALL_P (PREV_INSN (insert_point))
6315 && SIBLING_CALL_P (PREV_INSN (insert_point)))
6316 eflags = EDGE_SIBCALL | EDGE_ABNORMAL;
6317 make_single_succ_edge (copy_bb, EXIT_BLOCK_PTR, eflags);
6319 /* verify_flow_info doesn't like a note after a
6320 sibling call. */
6321 delete_insn (insert_point);
6322 if (bitmap_empty_p (&bb_tail))
6323 break;
6327 fail_shrinkwrap:
6328 bitmap_clear (&bb_tail);
6329 bitmap_clear (&bb_antic_flags);
6330 bitmap_clear (&bb_on_list);
6331 vec.release ();
6333 #endif
6335 if (split_prologue_seq != NULL_RTX)
6337 insert_insn_on_edge (split_prologue_seq, orig_entry_edge);
6338 inserted = true;
6340 if (prologue_seq != NULL_RTX)
6342 insert_insn_on_edge (prologue_seq, entry_edge);
6343 inserted = true;
6346 /* If the exit block has no non-fake predecessors, we don't need
6347 an epilogue. */
6348 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6349 if ((e->flags & EDGE_FAKE) == 0)
6350 break;
6351 if (e == NULL)
6352 goto epilogue_done;
6354 rtl_profile_for_bb (EXIT_BLOCK_PTR);
6356 exit_fallthru_edge = find_fallthru_edge (EXIT_BLOCK_PTR->preds);
6358 /* If we're allowed to generate a simple return instruction, then by
6359 definition we don't need a full epilogue. If the last basic
6360 block before the exit block does not contain active instructions,
6361 examine its predecessors and try to emit (conditional) return
6362 instructions. */
6363 #ifdef HAVE_simple_return
6364 if (entry_edge != orig_entry_edge)
6366 if (optimize)
6368 unsigned i, last;
6370 /* convert_jumps_to_returns may add to EXIT_BLOCK_PTR->preds
6371 (but won't remove). Stop at end of current preds. */
6372 last = EDGE_COUNT (EXIT_BLOCK_PTR->preds);
6373 for (i = 0; i < last; i++)
6375 e = EDGE_I (EXIT_BLOCK_PTR->preds, i);
6376 if (LABEL_P (BB_HEAD (e->src))
6377 && !bitmap_bit_p (&bb_flags, e->src->index)
6378 && !active_insn_between (BB_HEAD (e->src), BB_END (e->src)))
6379 unconverted_simple_returns
6380 = convert_jumps_to_returns (e->src, true,
6381 unconverted_simple_returns);
6385 if (exit_fallthru_edge != NULL
6386 && EDGE_COUNT (exit_fallthru_edge->src->preds) != 0
6387 && !bitmap_bit_p (&bb_flags, exit_fallthru_edge->src->index))
6389 basic_block last_bb;
6391 last_bb = emit_return_for_exit (exit_fallthru_edge, true);
6392 returnjump = BB_END (last_bb);
6393 exit_fallthru_edge = NULL;
6396 #endif
6397 #ifdef HAVE_return
6398 if (HAVE_return)
6400 if (exit_fallthru_edge == NULL)
6401 goto epilogue_done;
6403 if (optimize)
6405 basic_block last_bb = exit_fallthru_edge->src;
6407 if (LABEL_P (BB_HEAD (last_bb))
6408 && !active_insn_between (BB_HEAD (last_bb), BB_END (last_bb)))
6409 convert_jumps_to_returns (last_bb, false, vNULL);
6411 if (EDGE_COUNT (last_bb->preds) != 0
6412 && single_succ_p (last_bb))
6414 last_bb = emit_return_for_exit (exit_fallthru_edge, false);
6415 epilogue_end = returnjump = BB_END (last_bb);
6416 #ifdef HAVE_simple_return
6417 /* Emitting the return may add a basic block.
6418 Fix bb_flags for the added block. */
6419 if (last_bb != exit_fallthru_edge->src)
6420 bitmap_set_bit (&bb_flags, last_bb->index);
6421 #endif
6422 goto epilogue_done;
6426 #endif
6428 /* A small fib -- epilogue is not yet completed, but we wish to re-use
6429 this marker for the splits of EH_RETURN patterns, and nothing else
6430 uses the flag in the meantime. */
6431 epilogue_completed = 1;
6433 #ifdef HAVE_eh_return
6434 /* Find non-fallthru edges that end with EH_RETURN instructions. On
6435 some targets, these get split to a special version of the epilogue
6436 code. In order to be able to properly annotate these with unwind
6437 info, try to split them now. If we get a valid split, drop an
6438 EPILOGUE_BEG note and mark the insns as epilogue insns. */
6439 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6441 rtx prev, last, trial;
6443 if (e->flags & EDGE_FALLTHRU)
6444 continue;
6445 last = BB_END (e->src);
6446 if (!eh_returnjump_p (last))
6447 continue;
6449 prev = PREV_INSN (last);
6450 trial = try_split (PATTERN (last), last, 1);
6451 if (trial == last)
6452 continue;
6454 record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
6455 emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
6457 #endif
6459 /* If nothing falls through into the exit block, we don't need an
6460 epilogue. */
6462 if (exit_fallthru_edge == NULL)
6463 goto epilogue_done;
6465 #ifdef HAVE_epilogue
6466 if (HAVE_epilogue)
6468 start_sequence ();
6469 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
6470 seq = gen_epilogue ();
6471 if (seq)
6472 emit_jump_insn (seq);
6474 /* Retain a map of the epilogue insns. */
6475 record_insns (seq, NULL, &epilogue_insn_hash);
6476 set_insn_locations (seq, epilogue_location);
6478 seq = get_insns ();
6479 returnjump = get_last_insn ();
6480 end_sequence ();
6482 insert_insn_on_edge (seq, exit_fallthru_edge);
6483 inserted = true;
6485 if (JUMP_P (returnjump))
6486 set_return_jump_label (returnjump);
6488 else
6489 #endif
6491 basic_block cur_bb;
6493 if (! next_active_insn (BB_END (exit_fallthru_edge->src)))
6494 goto epilogue_done;
6495 /* We have a fall-through edge to the exit block, the source is not
6496 at the end of the function, and there will be an assembler epilogue
6497 at the end of the function.
6498 We can't use force_nonfallthru here, because that would try to
6499 use return. Inserting a jump 'by hand' is extremely messy, so
6500 we take advantage of cfg_layout_finalize using
6501 fixup_fallthru_exit_predecessor. */
6502 cfg_layout_initialize (0);
6503 FOR_EACH_BB (cur_bb)
6504 if (cur_bb->index >= NUM_FIXED_BLOCKS
6505 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
6506 cur_bb->aux = cur_bb->next_bb;
6507 cfg_layout_finalize ();
6510 epilogue_done:
6512 default_rtl_profile ();
6514 if (inserted)
6516 sbitmap blocks;
6518 commit_edge_insertions ();
6520 /* Look for basic blocks within the prologue insns. */
6521 blocks = sbitmap_alloc (last_basic_block);
6522 bitmap_clear (blocks);
6523 bitmap_set_bit (blocks, entry_edge->dest->index);
6524 bitmap_set_bit (blocks, orig_entry_edge->dest->index);
6525 find_many_sub_basic_blocks (blocks);
6526 sbitmap_free (blocks);
6528 /* The epilogue insns we inserted may cause the exit edge to no longer
6529 be fallthru. */
6530 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6532 if (((e->flags & EDGE_FALLTHRU) != 0)
6533 && returnjump_p (BB_END (e->src)))
6534 e->flags &= ~EDGE_FALLTHRU;
6538 #ifdef HAVE_simple_return
6539 /* If there were branches to an empty LAST_BB which we tried to
6540 convert to conditional simple_returns, but couldn't for some
6541 reason, create a block to hold a simple_return insn and redirect
6542 those remaining edges. */
6543 if (!unconverted_simple_returns.is_empty ())
6545 basic_block simple_return_block_hot = NULL;
6546 basic_block simple_return_block_cold = NULL;
6547 edge pending_edge_hot = NULL;
6548 edge pending_edge_cold = NULL;
6549 basic_block exit_pred = EXIT_BLOCK_PTR->prev_bb;
6550 int i;
6552 gcc_assert (entry_edge != orig_entry_edge);
6554 /* See if we can reuse the last insn that was emitted for the
6555 epilogue. */
6556 if (returnjump != NULL_RTX
6557 && JUMP_LABEL (returnjump) == simple_return_rtx)
6559 e = split_block (BLOCK_FOR_INSN (returnjump), PREV_INSN (returnjump));
6560 if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
6561 simple_return_block_hot = e->dest;
6562 else
6563 simple_return_block_cold = e->dest;
6566 /* Also check returns we might need to add to tail blocks. */
6567 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6568 if (EDGE_COUNT (e->src->preds) != 0
6569 && (e->flags & EDGE_FAKE) != 0
6570 && !bitmap_bit_p (&bb_flags, e->src->index))
6572 if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
6573 pending_edge_hot = e;
6574 else
6575 pending_edge_cold = e;
6578 FOR_EACH_VEC_ELT (unconverted_simple_returns, i, e)
6580 basic_block *pdest_bb;
6581 edge pending;
6583 if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
6585 pdest_bb = &simple_return_block_hot;
6586 pending = pending_edge_hot;
6588 else
6590 pdest_bb = &simple_return_block_cold;
6591 pending = pending_edge_cold;
6594 if (*pdest_bb == NULL && pending != NULL)
6596 emit_return_into_block (true, pending->src);
6597 pending->flags &= ~(EDGE_FALLTHRU | EDGE_FAKE);
6598 *pdest_bb = pending->src;
6600 else if (*pdest_bb == NULL)
6602 basic_block bb;
6603 rtx start;
6605 bb = create_basic_block (NULL, NULL, exit_pred);
6606 BB_COPY_PARTITION (bb, e->src);
6607 start = emit_jump_insn_after (gen_simple_return (),
6608 BB_END (bb));
6609 JUMP_LABEL (start) = simple_return_rtx;
6610 emit_barrier_after (start);
6612 *pdest_bb = bb;
6613 make_edge (bb, EXIT_BLOCK_PTR, 0);
6615 redirect_edge_and_branch_force (e, *pdest_bb);
6617 unconverted_simple_returns.release ();
6620 if (entry_edge != orig_entry_edge)
6622 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6623 if (EDGE_COUNT (e->src->preds) != 0
6624 && (e->flags & EDGE_FAKE) != 0
6625 && !bitmap_bit_p (&bb_flags, e->src->index))
6627 emit_return_into_block (true, e->src);
6628 e->flags &= ~(EDGE_FALLTHRU | EDGE_FAKE);
6631 #endif
6633 #ifdef HAVE_sibcall_epilogue
6634 /* Emit sibling epilogues before any sibling call sites. */
6635 for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
6637 basic_block bb = e->src;
6638 rtx insn = BB_END (bb);
6639 rtx ep_seq;
6641 if (!CALL_P (insn)
6642 || ! SIBLING_CALL_P (insn)
6643 #ifdef HAVE_simple_return
6644 || (entry_edge != orig_entry_edge
6645 && !bitmap_bit_p (&bb_flags, bb->index))
6646 #endif
6649 ei_next (&ei);
6650 continue;
6653 ep_seq = gen_sibcall_epilogue ();
6654 if (ep_seq)
6656 start_sequence ();
6657 emit_note (NOTE_INSN_EPILOGUE_BEG);
6658 emit_insn (ep_seq);
6659 seq = get_insns ();
6660 end_sequence ();
6662 /* Retain a map of the epilogue insns. Used in life analysis to
6663 avoid getting rid of sibcall epilogue insns. Do this before we
6664 actually emit the sequence. */
6665 record_insns (seq, NULL, &epilogue_insn_hash);
6666 set_insn_locations (seq, epilogue_location);
6668 emit_insn_before (seq, insn);
6670 ei_next (&ei);
6672 #endif
6674 #ifdef HAVE_epilogue
6675 if (epilogue_end)
6677 rtx insn, next;
6679 /* Similarly, move any line notes that appear after the epilogue.
6680 There is no need, however, to be quite so anal about the existence
6681 of such a note. Also possibly move
6682 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
6683 info generation. */
6684 for (insn = epilogue_end; insn; insn = next)
6686 next = NEXT_INSN (insn);
6687 if (NOTE_P (insn)
6688 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
6689 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
6692 #endif
6694 #ifdef HAVE_simple_return
6695 bitmap_clear (&bb_flags);
6696 #endif
6698 /* Threading the prologue and epilogue changes the artificial refs
6699 in the entry and exit blocks. */
6700 epilogue_completed = 1;
6701 df_update_entry_exit_and_calls ();
6704 /* Reposition the prologue-end and epilogue-begin notes after
6705 instruction scheduling. */
6707 void
6708 reposition_prologue_and_epilogue_notes (void)
6710 #if defined (HAVE_prologue) || defined (HAVE_epilogue) \
6711 || defined (HAVE_sibcall_epilogue)
6712 /* Since the hash table is created on demand, the fact that it is
6713 non-null is a signal that it is non-empty. */
6714 if (prologue_insn_hash != NULL)
6716 size_t len = htab_elements (prologue_insn_hash);
6717 rtx insn, last = NULL, note = NULL;
6719 /* Scan from the beginning until we reach the last prologue insn. */
6720 /* ??? While we do have the CFG intact, there are two problems:
6721 (1) The prologue can contain loops (typically probing the stack),
6722 which means that the end of the prologue isn't in the first bb.
6723 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
6724 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6726 if (NOTE_P (insn))
6728 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
6729 note = insn;
6731 else if (contains (insn, prologue_insn_hash))
6733 last = insn;
6734 if (--len == 0)
6735 break;
6739 if (last)
6741 if (note == NULL)
6743 /* Scan forward looking for the PROLOGUE_END note. It should
6744 be right at the beginning of the block, possibly with other
6745 insn notes that got moved there. */
6746 for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
6748 if (NOTE_P (note)
6749 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
6750 break;
6754 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
6755 if (LABEL_P (last))
6756 last = NEXT_INSN (last);
6757 reorder_insns (note, note, last);
6761 if (epilogue_insn_hash != NULL)
6763 edge_iterator ei;
6764 edge e;
6766 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6768 rtx insn, first = NULL, note = NULL;
6769 basic_block bb = e->src;
6771 /* Scan from the beginning until we reach the first epilogue insn. */
6772 FOR_BB_INSNS (bb, insn)
6774 if (NOTE_P (insn))
6776 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
6778 note = insn;
6779 if (first != NULL)
6780 break;
6783 else if (first == NULL && contains (insn, epilogue_insn_hash))
6785 first = insn;
6786 if (note != NULL)
6787 break;
6791 if (note)
6793 /* If the function has a single basic block, and no real
6794 epilogue insns (e.g. sibcall with no cleanup), the
6795 epilogue note can get scheduled before the prologue
6796 note. If we have frame related prologue insns, having
6797 them scanned during the epilogue will result in a crash.
6798 In this case re-order the epilogue note to just before
6799 the last insn in the block. */
6800 if (first == NULL)
6801 first = BB_END (bb);
6803 if (PREV_INSN (first) != note)
6804 reorder_insns (note, note, PREV_INSN (first));
6808 #endif /* HAVE_prologue or HAVE_epilogue */
6811 /* Returns the name of function declared by FNDECL. */
6812 const char *
6813 fndecl_name (tree fndecl)
6815 if (fndecl == NULL)
6816 return "(nofn)";
6817 return lang_hooks.decl_printable_name (fndecl, 2);
6820 /* Returns the name of function FN. */
6821 const char *
6822 function_name (struct function *fn)
6824 tree fndecl = (fn == NULL) ? NULL : fn->decl;
6825 return fndecl_name (fndecl);
6828 /* Returns the name of the current function. */
6829 const char *
6830 current_function_name (void)
6832 return function_name (cfun);
6836 static unsigned int
6837 rest_of_handle_check_leaf_regs (void)
6839 #ifdef LEAF_REGISTERS
6840 crtl->uses_only_leaf_regs
6841 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
6842 #endif
6843 return 0;
6846 /* Insert a TYPE into the used types hash table of CFUN. */
6848 static void
6849 used_types_insert_helper (tree type, struct function *func)
6851 if (type != NULL && func != NULL)
6853 void **slot;
6855 if (func->used_types_hash == NULL)
6856 func->used_types_hash = htab_create_ggc (37, htab_hash_pointer,
6857 htab_eq_pointer, NULL);
6858 slot = htab_find_slot (func->used_types_hash, type, INSERT);
6859 if (*slot == NULL)
6860 *slot = type;
6864 /* Given a type, insert it into the used hash table in cfun. */
6865 void
6866 used_types_insert (tree t)
6868 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
6869 if (TYPE_NAME (t))
6870 break;
6871 else
6872 t = TREE_TYPE (t);
6873 if (TREE_CODE (t) == ERROR_MARK)
6874 return;
6875 if (TYPE_NAME (t) == NULL_TREE
6876 || TYPE_NAME (t) == TYPE_NAME (TYPE_MAIN_VARIANT (t)))
6877 t = TYPE_MAIN_VARIANT (t);
6878 if (debug_info_level > DINFO_LEVEL_NONE)
6880 if (cfun)
6881 used_types_insert_helper (t, cfun);
6882 else
6884 /* So this might be a type referenced by a global variable.
6885 Record that type so that we can later decide to emit its
6886 debug information. */
6887 vec_safe_push (types_used_by_cur_var_decl, t);
6892 /* Helper to Hash a struct types_used_by_vars_entry. */
6894 static hashval_t
6895 hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry)
6897 gcc_assert (entry && entry->var_decl && entry->type);
6899 return iterative_hash_object (entry->type,
6900 iterative_hash_object (entry->var_decl, 0));
6903 /* Hash function of the types_used_by_vars_entry hash table. */
6905 hashval_t
6906 types_used_by_vars_do_hash (const void *x)
6908 const struct types_used_by_vars_entry *entry =
6909 (const struct types_used_by_vars_entry *) x;
6911 return hash_types_used_by_vars_entry (entry);
6914 /*Equality function of the types_used_by_vars_entry hash table. */
6917 types_used_by_vars_eq (const void *x1, const void *x2)
6919 const struct types_used_by_vars_entry *e1 =
6920 (const struct types_used_by_vars_entry *) x1;
6921 const struct types_used_by_vars_entry *e2 =
6922 (const struct types_used_by_vars_entry *)x2;
6924 return (e1->var_decl == e2->var_decl && e1->type == e2->type);
6927 /* Inserts an entry into the types_used_by_vars_hash hash table. */
6929 void
6930 types_used_by_var_decl_insert (tree type, tree var_decl)
6932 if (type != NULL && var_decl != NULL)
6934 void **slot;
6935 struct types_used_by_vars_entry e;
6936 e.var_decl = var_decl;
6937 e.type = type;
6938 if (types_used_by_vars_hash == NULL)
6939 types_used_by_vars_hash =
6940 htab_create_ggc (37, types_used_by_vars_do_hash,
6941 types_used_by_vars_eq, NULL);
6942 slot = htab_find_slot_with_hash (types_used_by_vars_hash, &e,
6943 hash_types_used_by_vars_entry (&e), INSERT);
6944 if (*slot == NULL)
6946 struct types_used_by_vars_entry *entry;
6947 entry = ggc_alloc_types_used_by_vars_entry ();
6948 entry->type = type;
6949 entry->var_decl = var_decl;
6950 *slot = entry;
6955 struct rtl_opt_pass pass_leaf_regs =
6958 RTL_PASS,
6959 "*leaf_regs", /* name */
6960 OPTGROUP_NONE, /* optinfo_flags */
6961 NULL, /* gate */
6962 rest_of_handle_check_leaf_regs, /* execute */
6963 NULL, /* sub */
6964 NULL, /* next */
6965 0, /* static_pass_number */
6966 TV_NONE, /* tv_id */
6967 0, /* properties_required */
6968 0, /* properties_provided */
6969 0, /* properties_destroyed */
6970 0, /* todo_flags_start */
6971 0 /* todo_flags_finish */
6975 static unsigned int
6976 rest_of_handle_thread_prologue_and_epilogue (void)
6978 if (optimize)
6979 cleanup_cfg (CLEANUP_EXPENSIVE);
6981 /* On some machines, the prologue and epilogue code, or parts thereof,
6982 can be represented as RTL. Doing so lets us schedule insns between
6983 it and the rest of the code and also allows delayed branch
6984 scheduling to operate in the epilogue. */
6985 thread_prologue_and_epilogue_insns ();
6987 /* The stack usage info is finalized during prologue expansion. */
6988 if (flag_stack_usage_info)
6989 output_stack_usage ();
6991 return 0;
6994 struct rtl_opt_pass pass_thread_prologue_and_epilogue =
6997 RTL_PASS,
6998 "pro_and_epilogue", /* name */
6999 OPTGROUP_NONE, /* optinfo_flags */
7000 NULL, /* gate */
7001 rest_of_handle_thread_prologue_and_epilogue, /* execute */
7002 NULL, /* sub */
7003 NULL, /* next */
7004 0, /* static_pass_number */
7005 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
7006 0, /* properties_required */
7007 0, /* properties_provided */
7008 0, /* properties_destroyed */
7009 TODO_verify_flow, /* todo_flags_start */
7010 TODO_df_verify |
7011 TODO_df_finish | TODO_verify_rtl_sharing |
7012 TODO_ggc_collect /* todo_flags_finish */
7017 /* This mini-pass fixes fall-out from SSA in asm statements that have
7018 in-out constraints. Say you start with
7020 orig = inout;
7021 asm ("": "+mr" (inout));
7022 use (orig);
7024 which is transformed very early to use explicit output and match operands:
7026 orig = inout;
7027 asm ("": "=mr" (inout) : "0" (inout));
7028 use (orig);
7030 Or, after SSA and copyprop,
7032 asm ("": "=mr" (inout_2) : "0" (inout_1));
7033 use (inout_1);
7035 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
7036 they represent two separate values, so they will get different pseudo
7037 registers during expansion. Then, since the two operands need to match
7038 per the constraints, but use different pseudo registers, reload can
7039 only register a reload for these operands. But reloads can only be
7040 satisfied by hardregs, not by memory, so we need a register for this
7041 reload, just because we are presented with non-matching operands.
7042 So, even though we allow memory for this operand, no memory can be
7043 used for it, just because the two operands don't match. This can
7044 cause reload failures on register-starved targets.
7046 So it's a symptom of reload not being able to use memory for reloads
7047 or, alternatively it's also a symptom of both operands not coming into
7048 reload as matching (in which case the pseudo could go to memory just
7049 fine, as the alternative allows it, and no reload would be necessary).
7050 We fix the latter problem here, by transforming
7052 asm ("": "=mr" (inout_2) : "0" (inout_1));
7054 back to
7056 inout_2 = inout_1;
7057 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
7059 static void
7060 match_asm_constraints_1 (rtx insn, rtx *p_sets, int noutputs)
7062 int i;
7063 bool changed = false;
7064 rtx op = SET_SRC (p_sets[0]);
7065 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
7066 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
7067 bool *output_matched = XALLOCAVEC (bool, noutputs);
7069 memset (output_matched, 0, noutputs * sizeof (bool));
7070 for (i = 0; i < ninputs; i++)
7072 rtx input, output, insns;
7073 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
7074 char *end;
7075 int match, j;
7077 if (*constraint == '%')
7078 constraint++;
7080 match = strtoul (constraint, &end, 10);
7081 if (end == constraint)
7082 continue;
7084 gcc_assert (match < noutputs);
7085 output = SET_DEST (p_sets[match]);
7086 input = RTVEC_ELT (inputs, i);
7087 /* Only do the transformation for pseudos. */
7088 if (! REG_P (output)
7089 || rtx_equal_p (output, input)
7090 || (GET_MODE (input) != VOIDmode
7091 && GET_MODE (input) != GET_MODE (output)))
7092 continue;
7094 /* We can't do anything if the output is also used as input,
7095 as we're going to overwrite it. */
7096 for (j = 0; j < ninputs; j++)
7097 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
7098 break;
7099 if (j != ninputs)
7100 continue;
7102 /* Avoid changing the same input several times. For
7103 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
7104 only change in once (to out1), rather than changing it
7105 first to out1 and afterwards to out2. */
7106 if (i > 0)
7108 for (j = 0; j < noutputs; j++)
7109 if (output_matched[j] && input == SET_DEST (p_sets[j]))
7110 break;
7111 if (j != noutputs)
7112 continue;
7114 output_matched[match] = true;
7116 start_sequence ();
7117 emit_move_insn (output, input);
7118 insns = get_insns ();
7119 end_sequence ();
7120 emit_insn_before (insns, insn);
7122 /* Now replace all mentions of the input with output. We can't
7123 just replace the occurrence in inputs[i], as the register might
7124 also be used in some other input (or even in an address of an
7125 output), which would mean possibly increasing the number of
7126 inputs by one (namely 'output' in addition), which might pose
7127 a too complicated problem for reload to solve. E.g. this situation:
7129 asm ("" : "=r" (output), "=m" (input) : "0" (input))
7131 Here 'input' is used in two occurrences as input (once for the
7132 input operand, once for the address in the second output operand).
7133 If we would replace only the occurrence of the input operand (to
7134 make the matching) we would be left with this:
7136 output = input
7137 asm ("" : "=r" (output), "=m" (input) : "0" (output))
7139 Now we suddenly have two different input values (containing the same
7140 value, but different pseudos) where we formerly had only one.
7141 With more complicated asms this might lead to reload failures
7142 which wouldn't have happen without this pass. So, iterate over
7143 all operands and replace all occurrences of the register used. */
7144 for (j = 0; j < noutputs; j++)
7145 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
7146 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
7147 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
7148 input, output);
7149 for (j = 0; j < ninputs; j++)
7150 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
7151 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
7152 input, output);
7154 changed = true;
7157 if (changed)
7158 df_insn_rescan (insn);
7161 static unsigned
7162 rest_of_match_asm_constraints (void)
7164 basic_block bb;
7165 rtx insn, pat, *p_sets;
7166 int noutputs;
7168 if (!crtl->has_asm_statement)
7169 return 0;
7171 df_set_flags (DF_DEFER_INSN_RESCAN);
7172 FOR_EACH_BB (bb)
7174 FOR_BB_INSNS (bb, insn)
7176 if (!INSN_P (insn))
7177 continue;
7179 pat = PATTERN (insn);
7180 if (GET_CODE (pat) == PARALLEL)
7181 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
7182 else if (GET_CODE (pat) == SET)
7183 p_sets = &PATTERN (insn), noutputs = 1;
7184 else
7185 continue;
7187 if (GET_CODE (*p_sets) == SET
7188 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
7189 match_asm_constraints_1 (insn, p_sets, noutputs);
7193 return TODO_df_finish;
7196 struct rtl_opt_pass pass_match_asm_constraints =
7199 RTL_PASS,
7200 "asmcons", /* name */
7201 OPTGROUP_NONE, /* optinfo_flags */
7202 NULL, /* gate */
7203 rest_of_match_asm_constraints, /* execute */
7204 NULL, /* sub */
7205 NULL, /* next */
7206 0, /* static_pass_number */
7207 TV_NONE, /* tv_id */
7208 0, /* properties_required */
7209 0, /* properties_provided */
7210 0, /* properties_destroyed */
7211 0, /* todo_flags_start */
7212 0 /* todo_flags_finish */
7217 #include "gt-function.h"