* configure.in: Add ${libgcj} to noconfigdirs for xtensa-*-* targets.
[official-gcc.git] / gcc / tree.c
blobb61a70b262fc825d9c135242f61f9a34476b948f
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
27 nodes of that code.
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c. */
32 #include "config.h"
33 #include "system.h"
34 #include "coretypes.h"
35 #include "tm.h"
36 #include "flags.h"
37 #include "tree.h"
38 #include "real.h"
39 #include "tm_p.h"
40 #include "function.h"
41 #include "obstack.h"
42 #include "toplev.h"
43 #include "ggc.h"
44 #include "hashtab.h"
45 #include "output.h"
46 #include "target.h"
47 #include "langhooks.h"
49 /* obstack.[ch] explicitly declined to prototype this. */
50 extern int _obstack_allocated_p (struct obstack *h, void *obj);
52 #ifdef GATHER_STATISTICS
53 /* Statistics-gathering stuff. */
54 typedef enum
56 d_kind,
57 t_kind,
58 b_kind,
59 s_kind,
60 r_kind,
61 e_kind,
62 c_kind,
63 id_kind,
64 perm_list_kind,
65 temp_list_kind,
66 vec_kind,
67 x_kind,
68 lang_decl,
69 lang_type,
70 all_kinds
71 } tree_node_kind;
73 int tree_node_counts[(int) all_kinds];
74 int tree_node_sizes[(int) all_kinds];
76 static const char * const tree_node_kind_names[] = {
77 "decls",
78 "types",
79 "blocks",
80 "stmts",
81 "refs",
82 "exprs",
83 "constants",
84 "identifiers",
85 "perm_tree_lists",
86 "temp_tree_lists",
87 "vecs",
88 "random kinds",
89 "lang_decl kinds",
90 "lang_type kinds"
92 #endif /* GATHER_STATISTICS */
94 /* Unique id for next decl created. */
95 static GTY(()) int next_decl_uid;
96 /* Unique id for next type created. */
97 static GTY(()) int next_type_uid = 1;
99 /* Since we cannot rehash a type after it is in the table, we have to
100 keep the hash code. */
102 struct type_hash GTY(())
104 unsigned long hash;
105 tree type;
108 /* Initial size of the hash table (rounded to next prime). */
109 #define TYPE_HASH_INITIAL_SIZE 1000
111 /* Now here is the hash table. When recording a type, it is added to
112 the slot whose index is the hash code. Note that the hash table is
113 used for several kinds of types (function types, array types and
114 array index range types, for now). While all these live in the
115 same table, they are completely independent, and the hash code is
116 computed differently for each of these. */
118 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
119 htab_t type_hash_table;
121 static void set_type_quals (tree, int);
122 static int type_hash_eq (const void *, const void *);
123 static hashval_t type_hash_hash (const void *);
124 static void print_type_hash_statistics (void);
125 static void finish_vector_type (tree);
126 static tree make_vector (enum machine_mode, tree, int);
127 static int type_hash_marked_p (const void *);
129 tree global_trees[TI_MAX];
130 tree integer_types[itk_none];
132 /* Init tree.c. */
134 void
135 init_ttree (void)
137 /* Initialize the hash table of types. */
138 type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
139 type_hash_eq, 0);
143 /* The name of the object as the assembler will see it (but before any
144 translations made by ASM_OUTPUT_LABELREF). Often this is the same
145 as DECL_NAME. It is an IDENTIFIER_NODE. */
146 tree
147 decl_assembler_name (tree decl)
149 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
150 (*lang_hooks.set_decl_assembler_name) (decl);
151 return DECL_CHECK (decl)->decl.assembler_name;
154 /* Compute the number of bytes occupied by 'node'. This routine only
155 looks at TREE_CODE and, if the code is TREE_VEC, TREE_VEC_LENGTH. */
156 size_t
157 tree_size (tree node)
159 enum tree_code code = TREE_CODE (node);
161 switch (TREE_CODE_CLASS (code))
163 case 'd': /* A decl node */
164 return sizeof (struct tree_decl);
166 case 't': /* a type node */
167 return sizeof (struct tree_type);
169 case 'b': /* a lexical block node */
170 return sizeof (struct tree_block);
172 case 'r': /* a reference */
173 case 'e': /* an expression */
174 case 's': /* an expression with side effects */
175 case '<': /* a comparison expression */
176 case '1': /* a unary arithmetic expression */
177 case '2': /* a binary arithmetic expression */
178 return (sizeof (struct tree_exp)
179 + TREE_CODE_LENGTH (code) * sizeof (char *) - sizeof (char *));
181 case 'c': /* a constant */
182 switch (code)
184 case INTEGER_CST: return sizeof (struct tree_int_cst);
185 case REAL_CST: return sizeof (struct tree_real_cst);
186 case COMPLEX_CST: return sizeof (struct tree_complex);
187 case VECTOR_CST: return sizeof (struct tree_vector);
188 case STRING_CST: return sizeof (struct tree_string);
189 default:
190 return (*lang_hooks.tree_size) (code);
193 case 'x': /* something random, like an identifier. */
194 switch (code)
196 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
197 case TREE_LIST: return sizeof (struct tree_list);
198 case TREE_VEC: return (sizeof (struct tree_vec)
199 + TREE_VEC_LENGTH(node) * sizeof(char *)
200 - sizeof (char *));
202 case ERROR_MARK:
203 case PLACEHOLDER_EXPR: return sizeof (struct tree_common);
205 default:
206 return (*lang_hooks.tree_size) (code);
209 default:
210 abort ();
214 /* Return a newly allocated node of code CODE.
215 For decl and type nodes, some other fields are initialized.
216 The rest of the node is initialized to zero.
218 Achoo! I got a code in the node. */
220 tree
221 make_node (enum tree_code code)
223 tree t;
224 int type = TREE_CODE_CLASS (code);
225 size_t length;
226 #ifdef GATHER_STATISTICS
227 tree_node_kind kind;
228 #endif
229 struct tree_common ttmp;
231 /* We can't allocate a TREE_VEC without knowing how many elements
232 it will have. */
233 if (code == TREE_VEC)
234 abort ();
236 TREE_SET_CODE ((tree)&ttmp, code);
237 length = tree_size ((tree)&ttmp);
239 #ifdef GATHER_STATISTICS
240 switch (type)
242 case 'd': /* A decl node */
243 kind = d_kind;
244 break;
246 case 't': /* a type node */
247 kind = t_kind;
248 break;
250 case 'b': /* a lexical block */
251 kind = b_kind;
252 break;
254 case 's': /* an expression with side effects */
255 kind = s_kind;
256 break;
258 case 'r': /* a reference */
259 kind = r_kind;
260 break;
262 case 'e': /* an expression */
263 case '<': /* a comparison expression */
264 case '1': /* a unary arithmetic expression */
265 case '2': /* a binary arithmetic expression */
266 kind = e_kind;
267 break;
269 case 'c': /* a constant */
270 kind = c_kind;
271 break;
273 case 'x': /* something random, like an identifier. */
274 if (code == IDENTIFIER_NODE)
275 kind = id_kind;
276 else if (code == TREE_VEC)
277 kind = vec_kind;
278 else
279 kind = x_kind;
280 break;
282 default:
283 abort ();
286 tree_node_counts[(int) kind]++;
287 tree_node_sizes[(int) kind] += length;
288 #endif
290 t = ggc_alloc_tree (length);
292 memset (t, 0, length);
294 TREE_SET_CODE (t, code);
296 switch (type)
298 case 's':
299 TREE_SIDE_EFFECTS (t) = 1;
300 break;
302 case 'd':
303 if (code != FUNCTION_DECL)
304 DECL_ALIGN (t) = 1;
305 DECL_USER_ALIGN (t) = 0;
306 DECL_IN_SYSTEM_HEADER (t) = in_system_header;
307 DECL_SOURCE_LOCATION (t) = input_location;
308 DECL_UID (t) = next_decl_uid++;
310 /* We have not yet computed the alias set for this declaration. */
311 DECL_POINTER_ALIAS_SET (t) = -1;
312 break;
314 case 't':
315 TYPE_UID (t) = next_type_uid++;
316 TYPE_ALIGN (t) = char_type_node ? TYPE_ALIGN (char_type_node) : 0;
317 TYPE_USER_ALIGN (t) = 0;
318 TYPE_MAIN_VARIANT (t) = t;
320 /* Default to no attributes for type, but let target change that. */
321 TYPE_ATTRIBUTES (t) = NULL_TREE;
322 (*targetm.set_default_type_attributes) (t);
324 /* We have not yet computed the alias set for this type. */
325 TYPE_ALIAS_SET (t) = -1;
326 break;
328 case 'c':
329 TREE_CONSTANT (t) = 1;
330 break;
332 case 'e':
333 switch (code)
335 case INIT_EXPR:
336 case MODIFY_EXPR:
337 case VA_ARG_EXPR:
338 case RTL_EXPR:
339 case PREDECREMENT_EXPR:
340 case PREINCREMENT_EXPR:
341 case POSTDECREMENT_EXPR:
342 case POSTINCREMENT_EXPR:
343 /* All of these have side-effects, no matter what their
344 operands are. */
345 TREE_SIDE_EFFECTS (t) = 1;
346 break;
348 default:
349 break;
351 break;
354 return t;
357 /* Return a new node with the same contents as NODE except that its
358 TREE_CHAIN is zero and it has a fresh uid. */
360 tree
361 copy_node (tree node)
363 tree t;
364 enum tree_code code = TREE_CODE (node);
365 size_t length;
367 length = tree_size (node);
368 t = ggc_alloc_tree (length);
369 memcpy (t, node, length);
371 TREE_CHAIN (t) = 0;
372 TREE_ASM_WRITTEN (t) = 0;
374 if (TREE_CODE_CLASS (code) == 'd')
375 DECL_UID (t) = next_decl_uid++;
376 else if (TREE_CODE_CLASS (code) == 't')
378 TYPE_UID (t) = next_type_uid++;
379 /* The following is so that the debug code for
380 the copy is different from the original type.
381 The two statements usually duplicate each other
382 (because they clear fields of the same union),
383 but the optimizer should catch that. */
384 TYPE_SYMTAB_POINTER (t) = 0;
385 TYPE_SYMTAB_ADDRESS (t) = 0;
388 return t;
391 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
392 For example, this can copy a list made of TREE_LIST nodes. */
394 tree
395 copy_list (tree list)
397 tree head;
398 tree prev, next;
400 if (list == 0)
401 return 0;
403 head = prev = copy_node (list);
404 next = TREE_CHAIN (list);
405 while (next)
407 TREE_CHAIN (prev) = copy_node (next);
408 prev = TREE_CHAIN (prev);
409 next = TREE_CHAIN (next);
411 return head;
415 /* Return a newly constructed INTEGER_CST node whose constant value
416 is specified by the two ints LOW and HI.
417 The TREE_TYPE is set to `int'.
419 This function should be used via the `build_int_2' macro. */
421 tree
422 build_int_2_wide (unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
424 tree t = make_node (INTEGER_CST);
426 TREE_INT_CST_LOW (t) = low;
427 TREE_INT_CST_HIGH (t) = hi;
428 TREE_TYPE (t) = integer_type_node;
429 return t;
432 /* Return a new VECTOR_CST node whose type is TYPE and whose values
433 are in a list pointed by VALS. */
435 tree
436 build_vector (tree type, tree vals)
438 tree v = make_node (VECTOR_CST);
439 int over1 = 0, over2 = 0;
440 tree link;
442 TREE_VECTOR_CST_ELTS (v) = vals;
443 TREE_TYPE (v) = type;
445 /* Iterate through elements and check for overflow. */
446 for (link = vals; link; link = TREE_CHAIN (link))
448 tree value = TREE_VALUE (link);
450 over1 |= TREE_OVERFLOW (value);
451 over2 |= TREE_CONSTANT_OVERFLOW (value);
454 TREE_OVERFLOW (v) = over1;
455 TREE_CONSTANT_OVERFLOW (v) = over2;
457 return v;
460 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
461 are in a list pointed to by VALS. */
462 tree
463 build_constructor (tree type, tree vals)
465 tree c = make_node (CONSTRUCTOR);
466 TREE_TYPE (c) = type;
467 CONSTRUCTOR_ELTS (c) = vals;
469 /* ??? May not be necessary. Mirrors what build does. */
470 if (vals)
472 TREE_SIDE_EFFECTS (c) = TREE_SIDE_EFFECTS (vals);
473 TREE_READONLY (c) = TREE_READONLY (vals);
474 TREE_CONSTANT (c) = TREE_CONSTANT (vals);
476 else
477 TREE_CONSTANT (c) = 0; /* safe side */
479 return c;
482 /* Return a new REAL_CST node whose type is TYPE and value is D. */
484 tree
485 build_real (tree type, REAL_VALUE_TYPE d)
487 tree v;
488 REAL_VALUE_TYPE *dp;
489 int overflow = 0;
491 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
492 Consider doing it via real_convert now. */
494 v = make_node (REAL_CST);
495 dp = ggc_alloc (sizeof (REAL_VALUE_TYPE));
496 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
498 TREE_TYPE (v) = type;
499 TREE_REAL_CST_PTR (v) = dp;
500 TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
501 return v;
504 /* Return a new REAL_CST node whose type is TYPE
505 and whose value is the integer value of the INTEGER_CST node I. */
507 REAL_VALUE_TYPE
508 real_value_from_int_cst (tree type ATTRIBUTE_UNUSED, tree i)
510 REAL_VALUE_TYPE d;
512 /* Clear all bits of the real value type so that we can later do
513 bitwise comparisons to see if two values are the same. */
514 memset ((char *) &d, 0, sizeof d);
516 if (! TREE_UNSIGNED (TREE_TYPE (i)))
517 REAL_VALUE_FROM_INT (d, TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
518 TYPE_MODE (type));
519 else
520 REAL_VALUE_FROM_UNSIGNED_INT (d, TREE_INT_CST_LOW (i),
521 TREE_INT_CST_HIGH (i), TYPE_MODE (type));
522 return d;
525 /* Given a tree representing an integer constant I, return a tree
526 representing the same value as a floating-point constant of type TYPE. */
528 tree
529 build_real_from_int_cst (tree type, tree i)
531 tree v;
532 int overflow = TREE_OVERFLOW (i);
534 v = build_real (type, real_value_from_int_cst (type, i));
536 TREE_OVERFLOW (v) |= overflow;
537 TREE_CONSTANT_OVERFLOW (v) |= overflow;
538 return v;
541 /* Return a newly constructed STRING_CST node whose value is
542 the LEN characters at STR.
543 The TREE_TYPE is not initialized. */
545 tree
546 build_string (int len, const char *str)
548 tree s = make_node (STRING_CST);
550 TREE_STRING_LENGTH (s) = len;
551 TREE_STRING_POINTER (s) = ggc_alloc_string (str, len);
553 return s;
556 /* Return a newly constructed COMPLEX_CST node whose value is
557 specified by the real and imaginary parts REAL and IMAG.
558 Both REAL and IMAG should be constant nodes. TYPE, if specified,
559 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
561 tree
562 build_complex (tree type, tree real, tree imag)
564 tree t = make_node (COMPLEX_CST);
566 TREE_REALPART (t) = real;
567 TREE_IMAGPART (t) = imag;
568 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
569 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
570 TREE_CONSTANT_OVERFLOW (t)
571 = TREE_CONSTANT_OVERFLOW (real) | TREE_CONSTANT_OVERFLOW (imag);
572 return t;
575 /* Build a newly constructed TREE_VEC node of length LEN. */
577 tree
578 make_tree_vec (int len)
580 tree t;
581 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
583 #ifdef GATHER_STATISTICS
584 tree_node_counts[(int) vec_kind]++;
585 tree_node_sizes[(int) vec_kind] += length;
586 #endif
588 t = ggc_alloc_tree (length);
590 memset (t, 0, length);
591 TREE_SET_CODE (t, TREE_VEC);
592 TREE_VEC_LENGTH (t) = len;
594 return t;
597 /* Return 1 if EXPR is the integer constant zero or a complex constant
598 of zero. */
601 integer_zerop (tree expr)
603 STRIP_NOPS (expr);
605 return ((TREE_CODE (expr) == INTEGER_CST
606 && ! TREE_CONSTANT_OVERFLOW (expr)
607 && TREE_INT_CST_LOW (expr) == 0
608 && TREE_INT_CST_HIGH (expr) == 0)
609 || (TREE_CODE (expr) == COMPLEX_CST
610 && integer_zerop (TREE_REALPART (expr))
611 && integer_zerop (TREE_IMAGPART (expr))));
614 /* Return 1 if EXPR is the integer constant one or the corresponding
615 complex constant. */
618 integer_onep (tree expr)
620 STRIP_NOPS (expr);
622 return ((TREE_CODE (expr) == INTEGER_CST
623 && ! TREE_CONSTANT_OVERFLOW (expr)
624 && TREE_INT_CST_LOW (expr) == 1
625 && TREE_INT_CST_HIGH (expr) == 0)
626 || (TREE_CODE (expr) == COMPLEX_CST
627 && integer_onep (TREE_REALPART (expr))
628 && integer_zerop (TREE_IMAGPART (expr))));
631 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
632 it contains. Likewise for the corresponding complex constant. */
635 integer_all_onesp (tree expr)
637 int prec;
638 int uns;
640 STRIP_NOPS (expr);
642 if (TREE_CODE (expr) == COMPLEX_CST
643 && integer_all_onesp (TREE_REALPART (expr))
644 && integer_zerop (TREE_IMAGPART (expr)))
645 return 1;
647 else if (TREE_CODE (expr) != INTEGER_CST
648 || TREE_CONSTANT_OVERFLOW (expr))
649 return 0;
651 uns = TREE_UNSIGNED (TREE_TYPE (expr));
652 if (!uns)
653 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
654 && TREE_INT_CST_HIGH (expr) == -1);
656 /* Note that using TYPE_PRECISION here is wrong. We care about the
657 actual bits, not the (arbitrary) range of the type. */
658 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
659 if (prec >= HOST_BITS_PER_WIDE_INT)
661 HOST_WIDE_INT high_value;
662 int shift_amount;
664 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
666 if (shift_amount > HOST_BITS_PER_WIDE_INT)
667 /* Can not handle precisions greater than twice the host int size. */
668 abort ();
669 else if (shift_amount == HOST_BITS_PER_WIDE_INT)
670 /* Shifting by the host word size is undefined according to the ANSI
671 standard, so we must handle this as a special case. */
672 high_value = -1;
673 else
674 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
676 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
677 && TREE_INT_CST_HIGH (expr) == high_value);
679 else
680 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
683 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
684 one bit on). */
687 integer_pow2p (tree expr)
689 int prec;
690 HOST_WIDE_INT high, low;
692 STRIP_NOPS (expr);
694 if (TREE_CODE (expr) == COMPLEX_CST
695 && integer_pow2p (TREE_REALPART (expr))
696 && integer_zerop (TREE_IMAGPART (expr)))
697 return 1;
699 if (TREE_CODE (expr) != INTEGER_CST || TREE_CONSTANT_OVERFLOW (expr))
700 return 0;
702 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
703 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
704 high = TREE_INT_CST_HIGH (expr);
705 low = TREE_INT_CST_LOW (expr);
707 /* First clear all bits that are beyond the type's precision in case
708 we've been sign extended. */
710 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
712 else if (prec > HOST_BITS_PER_WIDE_INT)
713 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
714 else
716 high = 0;
717 if (prec < HOST_BITS_PER_WIDE_INT)
718 low &= ~((HOST_WIDE_INT) (-1) << prec);
721 if (high == 0 && low == 0)
722 return 0;
724 return ((high == 0 && (low & (low - 1)) == 0)
725 || (low == 0 && (high & (high - 1)) == 0));
728 /* Return 1 if EXPR is an integer constant other than zero or a
729 complex constant other than zero. */
732 integer_nonzerop (tree expr)
734 STRIP_NOPS (expr);
736 return ((TREE_CODE (expr) == INTEGER_CST
737 && ! TREE_CONSTANT_OVERFLOW (expr)
738 && (TREE_INT_CST_LOW (expr) != 0
739 || TREE_INT_CST_HIGH (expr) != 0))
740 || (TREE_CODE (expr) == COMPLEX_CST
741 && (integer_nonzerop (TREE_REALPART (expr))
742 || integer_nonzerop (TREE_IMAGPART (expr)))));
745 /* Return the power of two represented by a tree node known to be a
746 power of two. */
749 tree_log2 (tree expr)
751 int prec;
752 HOST_WIDE_INT high, low;
754 STRIP_NOPS (expr);
756 if (TREE_CODE (expr) == COMPLEX_CST)
757 return tree_log2 (TREE_REALPART (expr));
759 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
760 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
762 high = TREE_INT_CST_HIGH (expr);
763 low = TREE_INT_CST_LOW (expr);
765 /* First clear all bits that are beyond the type's precision in case
766 we've been sign extended. */
768 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
770 else if (prec > HOST_BITS_PER_WIDE_INT)
771 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
772 else
774 high = 0;
775 if (prec < HOST_BITS_PER_WIDE_INT)
776 low &= ~((HOST_WIDE_INT) (-1) << prec);
779 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
780 : exact_log2 (low));
783 /* Similar, but return the largest integer Y such that 2 ** Y is less
784 than or equal to EXPR. */
787 tree_floor_log2 (tree expr)
789 int prec;
790 HOST_WIDE_INT high, low;
792 STRIP_NOPS (expr);
794 if (TREE_CODE (expr) == COMPLEX_CST)
795 return tree_log2 (TREE_REALPART (expr));
797 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
798 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
800 high = TREE_INT_CST_HIGH (expr);
801 low = TREE_INT_CST_LOW (expr);
803 /* First clear all bits that are beyond the type's precision in case
804 we've been sign extended. Ignore if type's precision hasn't been set
805 since what we are doing is setting it. */
807 if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
809 else if (prec > HOST_BITS_PER_WIDE_INT)
810 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
811 else
813 high = 0;
814 if (prec < HOST_BITS_PER_WIDE_INT)
815 low &= ~((HOST_WIDE_INT) (-1) << prec);
818 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
819 : floor_log2 (low));
822 /* Return 1 if EXPR is the real constant zero. */
825 real_zerop (tree expr)
827 STRIP_NOPS (expr);
829 return ((TREE_CODE (expr) == REAL_CST
830 && ! TREE_CONSTANT_OVERFLOW (expr)
831 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0))
832 || (TREE_CODE (expr) == COMPLEX_CST
833 && real_zerop (TREE_REALPART (expr))
834 && real_zerop (TREE_IMAGPART (expr))));
837 /* Return 1 if EXPR is the real constant one in real or complex form. */
840 real_onep (tree expr)
842 STRIP_NOPS (expr);
844 return ((TREE_CODE (expr) == REAL_CST
845 && ! TREE_CONSTANT_OVERFLOW (expr)
846 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1))
847 || (TREE_CODE (expr) == COMPLEX_CST
848 && real_onep (TREE_REALPART (expr))
849 && real_zerop (TREE_IMAGPART (expr))));
852 /* Return 1 if EXPR is the real constant two. */
855 real_twop (tree expr)
857 STRIP_NOPS (expr);
859 return ((TREE_CODE (expr) == REAL_CST
860 && ! TREE_CONSTANT_OVERFLOW (expr)
861 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2))
862 || (TREE_CODE (expr) == COMPLEX_CST
863 && real_twop (TREE_REALPART (expr))
864 && real_zerop (TREE_IMAGPART (expr))));
867 /* Return 1 if EXPR is the real constant minus one. */
870 real_minus_onep (tree expr)
872 STRIP_NOPS (expr);
874 return ((TREE_CODE (expr) == REAL_CST
875 && ! TREE_CONSTANT_OVERFLOW (expr)
876 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1))
877 || (TREE_CODE (expr) == COMPLEX_CST
878 && real_minus_onep (TREE_REALPART (expr))
879 && real_zerop (TREE_IMAGPART (expr))));
882 /* Nonzero if EXP is a constant or a cast of a constant. */
885 really_constant_p (tree exp)
887 /* This is not quite the same as STRIP_NOPS. It does more. */
888 while (TREE_CODE (exp) == NOP_EXPR
889 || TREE_CODE (exp) == CONVERT_EXPR
890 || TREE_CODE (exp) == NON_LVALUE_EXPR)
891 exp = TREE_OPERAND (exp, 0);
892 return TREE_CONSTANT (exp);
895 /* Return first list element whose TREE_VALUE is ELEM.
896 Return 0 if ELEM is not in LIST. */
898 tree
899 value_member (tree elem, tree list)
901 while (list)
903 if (elem == TREE_VALUE (list))
904 return list;
905 list = TREE_CHAIN (list);
907 return NULL_TREE;
910 /* Return first list element whose TREE_PURPOSE is ELEM.
911 Return 0 if ELEM is not in LIST. */
913 tree
914 purpose_member (tree elem, tree list)
916 while (list)
918 if (elem == TREE_PURPOSE (list))
919 return list;
920 list = TREE_CHAIN (list);
922 return NULL_TREE;
925 /* Return first list element whose BINFO_TYPE is ELEM.
926 Return 0 if ELEM is not in LIST. */
928 tree
929 binfo_member (tree elem, tree list)
931 while (list)
933 if (elem == BINFO_TYPE (list))
934 return list;
935 list = TREE_CHAIN (list);
937 return NULL_TREE;
940 /* Return nonzero if ELEM is part of the chain CHAIN. */
943 chain_member (tree elem, tree chain)
945 while (chain)
947 if (elem == chain)
948 return 1;
949 chain = TREE_CHAIN (chain);
952 return 0;
955 /* Return the length of a chain of nodes chained through TREE_CHAIN.
956 We expect a null pointer to mark the end of the chain.
957 This is the Lisp primitive `length'. */
960 list_length (tree t)
962 tree tail;
963 int len = 0;
965 for (tail = t; tail; tail = TREE_CHAIN (tail))
966 len++;
968 return len;
971 /* Returns the number of FIELD_DECLs in TYPE. */
974 fields_length (tree type)
976 tree t = TYPE_FIELDS (type);
977 int count = 0;
979 for (; t; t = TREE_CHAIN (t))
980 if (TREE_CODE (t) == FIELD_DECL)
981 ++count;
983 return count;
986 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
987 by modifying the last node in chain 1 to point to chain 2.
988 This is the Lisp primitive `nconc'. */
990 tree
991 chainon (tree op1, tree op2)
993 tree t1;
995 if (!op1)
996 return op2;
997 if (!op2)
998 return op1;
1000 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
1001 continue;
1002 TREE_CHAIN (t1) = op2;
1004 #ifdef ENABLE_TREE_CHECKING
1006 tree t2;
1007 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
1008 if (t2 == t1)
1009 abort (); /* Circularity created. */
1011 #endif
1013 return op1;
1016 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
1018 tree
1019 tree_last (tree chain)
1021 tree next;
1022 if (chain)
1023 while ((next = TREE_CHAIN (chain)))
1024 chain = next;
1025 return chain;
1028 /* Reverse the order of elements in the chain T,
1029 and return the new head of the chain (old last element). */
1031 tree
1032 nreverse (tree t)
1034 tree prev = 0, decl, next;
1035 for (decl = t; decl; decl = next)
1037 next = TREE_CHAIN (decl);
1038 TREE_CHAIN (decl) = prev;
1039 prev = decl;
1041 return prev;
1044 /* Return a newly created TREE_LIST node whose
1045 purpose and value fields are PARM and VALUE. */
1047 tree
1048 build_tree_list (tree parm, tree value)
1050 tree t = make_node (TREE_LIST);
1051 TREE_PURPOSE (t) = parm;
1052 TREE_VALUE (t) = value;
1053 return t;
1056 /* Return a newly created TREE_LIST node whose
1057 purpose and value fields are PURPOSE and VALUE
1058 and whose TREE_CHAIN is CHAIN. */
1060 tree
1061 tree_cons (tree purpose, tree value, tree chain)
1063 tree node;
1065 node = ggc_alloc_tree (sizeof (struct tree_list));
1067 memset (node, 0, sizeof (struct tree_common));
1069 #ifdef GATHER_STATISTICS
1070 tree_node_counts[(int) x_kind]++;
1071 tree_node_sizes[(int) x_kind] += sizeof (struct tree_list);
1072 #endif
1074 TREE_SET_CODE (node, TREE_LIST);
1075 TREE_CHAIN (node) = chain;
1076 TREE_PURPOSE (node) = purpose;
1077 TREE_VALUE (node) = value;
1078 return node;
1081 /* Return the first expression in a sequence of COMPOUND_EXPRs. */
1083 tree
1084 expr_first (tree expr)
1086 if (expr == NULL_TREE)
1087 return expr;
1088 while (TREE_CODE (expr) == COMPOUND_EXPR)
1089 expr = TREE_OPERAND (expr, 0);
1090 return expr;
1093 /* Return the last expression in a sequence of COMPOUND_EXPRs. */
1095 tree
1096 expr_last (tree expr)
1098 if (expr == NULL_TREE)
1099 return expr;
1100 while (TREE_CODE (expr) == COMPOUND_EXPR)
1101 expr = TREE_OPERAND (expr, 1);
1102 return expr;
1105 /* Return the number of subexpressions in a sequence of COMPOUND_EXPRs. */
1108 expr_length (tree expr)
1110 int len = 0;
1112 if (expr == NULL_TREE)
1113 return 0;
1114 for (; TREE_CODE (expr) == COMPOUND_EXPR; expr = TREE_OPERAND (expr, 1))
1115 len += expr_length (TREE_OPERAND (expr, 0));
1116 ++len;
1117 return len;
1120 /* Return the size nominally occupied by an object of type TYPE
1121 when it resides in memory. The value is measured in units of bytes,
1122 and its data type is that normally used for type sizes
1123 (which is the first type created by make_signed_type or
1124 make_unsigned_type). */
1126 tree
1127 size_in_bytes (tree type)
1129 tree t;
1131 if (type == error_mark_node)
1132 return integer_zero_node;
1134 type = TYPE_MAIN_VARIANT (type);
1135 t = TYPE_SIZE_UNIT (type);
1137 if (t == 0)
1139 (*lang_hooks.types.incomplete_type_error) (NULL_TREE, type);
1140 return size_zero_node;
1143 if (TREE_CODE (t) == INTEGER_CST)
1144 force_fit_type (t, 0);
1146 return t;
1149 /* Return the size of TYPE (in bytes) as a wide integer
1150 or return -1 if the size can vary or is larger than an integer. */
1152 HOST_WIDE_INT
1153 int_size_in_bytes (tree type)
1155 tree t;
1157 if (type == error_mark_node)
1158 return 0;
1160 type = TYPE_MAIN_VARIANT (type);
1161 t = TYPE_SIZE_UNIT (type);
1162 if (t == 0
1163 || TREE_CODE (t) != INTEGER_CST
1164 || TREE_OVERFLOW (t)
1165 || TREE_INT_CST_HIGH (t) != 0
1166 /* If the result would appear negative, it's too big to represent. */
1167 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
1168 return -1;
1170 return TREE_INT_CST_LOW (t);
1173 /* Return the bit position of FIELD, in bits from the start of the record.
1174 This is a tree of type bitsizetype. */
1176 tree
1177 bit_position (tree field)
1179 return bit_from_pos (DECL_FIELD_OFFSET (field),
1180 DECL_FIELD_BIT_OFFSET (field));
1183 /* Likewise, but return as an integer. Abort if it cannot be represented
1184 in that way (since it could be a signed value, we don't have the option
1185 of returning -1 like int_size_in_byte can. */
1187 HOST_WIDE_INT
1188 int_bit_position (tree field)
1190 return tree_low_cst (bit_position (field), 0);
1193 /* Return the byte position of FIELD, in bytes from the start of the record.
1194 This is a tree of type sizetype. */
1196 tree
1197 byte_position (tree field)
1199 return byte_from_pos (DECL_FIELD_OFFSET (field),
1200 DECL_FIELD_BIT_OFFSET (field));
1203 /* Likewise, but return as an integer. Abort if it cannot be represented
1204 in that way (since it could be a signed value, we don't have the option
1205 of returning -1 like int_size_in_byte can. */
1207 HOST_WIDE_INT
1208 int_byte_position (tree field)
1210 return tree_low_cst (byte_position (field), 0);
1213 /* Return the strictest alignment, in bits, that T is known to have. */
1215 unsigned int
1216 expr_align (tree t)
1218 unsigned int align0, align1;
1220 switch (TREE_CODE (t))
1222 case NOP_EXPR: case CONVERT_EXPR: case NON_LVALUE_EXPR:
1223 /* If we have conversions, we know that the alignment of the
1224 object must meet each of the alignments of the types. */
1225 align0 = expr_align (TREE_OPERAND (t, 0));
1226 align1 = TYPE_ALIGN (TREE_TYPE (t));
1227 return MAX (align0, align1);
1229 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
1230 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
1231 case WITH_RECORD_EXPR: case CLEANUP_POINT_EXPR: case UNSAVE_EXPR:
1232 /* These don't change the alignment of an object. */
1233 return expr_align (TREE_OPERAND (t, 0));
1235 case COND_EXPR:
1236 /* The best we can do is say that the alignment is the least aligned
1237 of the two arms. */
1238 align0 = expr_align (TREE_OPERAND (t, 1));
1239 align1 = expr_align (TREE_OPERAND (t, 2));
1240 return MIN (align0, align1);
1242 case LABEL_DECL: case CONST_DECL:
1243 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
1244 if (DECL_ALIGN (t) != 0)
1245 return DECL_ALIGN (t);
1246 break;
1248 case FUNCTION_DECL:
1249 return FUNCTION_BOUNDARY;
1251 default:
1252 break;
1255 /* Otherwise take the alignment from that of the type. */
1256 return TYPE_ALIGN (TREE_TYPE (t));
1259 /* Return, as a tree node, the number of elements for TYPE (which is an
1260 ARRAY_TYPE) minus one. This counts only elements of the top array. */
1262 tree
1263 array_type_nelts (tree type)
1265 tree index_type, min, max;
1267 /* If they did it with unspecified bounds, then we should have already
1268 given an error about it before we got here. */
1269 if (! TYPE_DOMAIN (type))
1270 return error_mark_node;
1272 index_type = TYPE_DOMAIN (type);
1273 min = TYPE_MIN_VALUE (index_type);
1274 max = TYPE_MAX_VALUE (index_type);
1276 return (integer_zerop (min)
1277 ? max
1278 : fold (build (MINUS_EXPR, TREE_TYPE (max), max, min)));
1281 /* Return nonzero if arg is static -- a reference to an object in
1282 static storage. This is not the same as the C meaning of `static'. */
1285 staticp (tree arg)
1287 switch (TREE_CODE (arg))
1289 case FUNCTION_DECL:
1290 /* Nested functions aren't static, since taking their address
1291 involves a trampoline. */
1292 return ((decl_function_context (arg) == 0 || DECL_NO_STATIC_CHAIN (arg))
1293 && ! DECL_NON_ADDR_CONST_P (arg));
1295 case VAR_DECL:
1296 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
1297 && ! DECL_THREAD_LOCAL (arg)
1298 && ! DECL_NON_ADDR_CONST_P (arg));
1300 case CONSTRUCTOR:
1301 return TREE_STATIC (arg);
1303 case LABEL_DECL:
1304 case STRING_CST:
1305 return 1;
1307 /* If we are referencing a bitfield, we can't evaluate an
1308 ADDR_EXPR at compile time and so it isn't a constant. */
1309 case COMPONENT_REF:
1310 return (! DECL_BIT_FIELD (TREE_OPERAND (arg, 1))
1311 && staticp (TREE_OPERAND (arg, 0)));
1313 case BIT_FIELD_REF:
1314 return 0;
1316 #if 0
1317 /* This case is technically correct, but results in setting
1318 TREE_CONSTANT on ADDR_EXPRs that cannot be evaluated at
1319 compile time. */
1320 case INDIRECT_REF:
1321 return TREE_CONSTANT (TREE_OPERAND (arg, 0));
1322 #endif
1324 case ARRAY_REF:
1325 case ARRAY_RANGE_REF:
1326 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
1327 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
1328 return staticp (TREE_OPERAND (arg, 0));
1330 default:
1331 if ((unsigned int) TREE_CODE (arg)
1332 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
1333 return (*lang_hooks.staticp) (arg);
1334 else
1335 return 0;
1339 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
1340 Do this to any expression which may be used in more than one place,
1341 but must be evaluated only once.
1343 Normally, expand_expr would reevaluate the expression each time.
1344 Calling save_expr produces something that is evaluated and recorded
1345 the first time expand_expr is called on it. Subsequent calls to
1346 expand_expr just reuse the recorded value.
1348 The call to expand_expr that generates code that actually computes
1349 the value is the first call *at compile time*. Subsequent calls
1350 *at compile time* generate code to use the saved value.
1351 This produces correct result provided that *at run time* control
1352 always flows through the insns made by the first expand_expr
1353 before reaching the other places where the save_expr was evaluated.
1354 You, the caller of save_expr, must make sure this is so.
1356 Constants, and certain read-only nodes, are returned with no
1357 SAVE_EXPR because that is safe. Expressions containing placeholders
1358 are not touched; see tree.def for an explanation of what these
1359 are used for. */
1361 tree
1362 save_expr (tree expr)
1364 tree t = fold (expr);
1365 tree inner;
1367 /* If the tree evaluates to a constant, then we don't want to hide that
1368 fact (i.e. this allows further folding, and direct checks for constants).
1369 However, a read-only object that has side effects cannot be bypassed.
1370 Since it is no problem to reevaluate literals, we just return the
1371 literal node. */
1372 inner = skip_simple_arithmetic (t);
1373 if (TREE_CONSTANT (inner)
1374 || (TREE_READONLY (inner) && ! TREE_SIDE_EFFECTS (inner))
1375 || TREE_CODE (inner) == SAVE_EXPR
1376 || TREE_CODE (inner) == ERROR_MARK)
1377 return t;
1379 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
1380 it means that the size or offset of some field of an object depends on
1381 the value within another field.
1383 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
1384 and some variable since it would then need to be both evaluated once and
1385 evaluated more than once. Front-ends must assure this case cannot
1386 happen by surrounding any such subexpressions in their own SAVE_EXPR
1387 and forcing evaluation at the proper time. */
1388 if (contains_placeholder_p (inner))
1389 return t;
1391 t = build (SAVE_EXPR, TREE_TYPE (expr), t, current_function_decl, NULL_TREE);
1393 /* This expression might be placed ahead of a jump to ensure that the
1394 value was computed on both sides of the jump. So make sure it isn't
1395 eliminated as dead. */
1396 TREE_SIDE_EFFECTS (t) = 1;
1397 TREE_READONLY (t) = 1;
1398 return t;
1401 /* Look inside EXPR and into any simple arithmetic operations. Return
1402 the innermost non-arithmetic node. */
1404 tree
1405 skip_simple_arithmetic (tree expr)
1407 tree inner;
1409 /* We don't care about whether this can be used as an lvalue in this
1410 context. */
1411 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
1412 expr = TREE_OPERAND (expr, 0);
1414 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
1415 a constant, it will be more efficient to not make another SAVE_EXPR since
1416 it will allow better simplification and GCSE will be able to merge the
1417 computations if they actually occur. */
1418 inner = expr;
1419 while (1)
1421 if (TREE_CODE_CLASS (TREE_CODE (inner)) == '1')
1422 inner = TREE_OPERAND (inner, 0);
1423 else if (TREE_CODE_CLASS (TREE_CODE (inner)) == '2')
1425 if (TREE_CONSTANT (TREE_OPERAND (inner, 1)))
1426 inner = TREE_OPERAND (inner, 0);
1427 else if (TREE_CONSTANT (TREE_OPERAND (inner, 0)))
1428 inner = TREE_OPERAND (inner, 1);
1429 else
1430 break;
1432 else
1433 break;
1436 return inner;
1439 /* Return TRUE if EXPR is a SAVE_EXPR or wraps simple arithmetic around a
1440 SAVE_EXPR. Return FALSE otherwise. */
1442 bool
1443 saved_expr_p (tree expr)
1445 return TREE_CODE (skip_simple_arithmetic (expr)) == SAVE_EXPR;
1448 /* Arrange for an expression to be expanded multiple independent
1449 times. This is useful for cleanup actions, as the backend can
1450 expand them multiple times in different places. */
1452 tree
1453 unsave_expr (tree expr)
1455 tree t;
1457 /* If this is already protected, no sense in protecting it again. */
1458 if (TREE_CODE (expr) == UNSAVE_EXPR)
1459 return expr;
1461 t = build1 (UNSAVE_EXPR, TREE_TYPE (expr), expr);
1462 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (expr);
1463 return t;
1466 /* Returns the index of the first non-tree operand for CODE, or the number
1467 of operands if all are trees. */
1470 first_rtl_op (enum tree_code code)
1472 switch (code)
1474 case SAVE_EXPR:
1475 return 2;
1476 case GOTO_SUBROUTINE_EXPR:
1477 case RTL_EXPR:
1478 return 0;
1479 case WITH_CLEANUP_EXPR:
1480 return 2;
1481 case METHOD_CALL_EXPR:
1482 return 3;
1483 default:
1484 return TREE_CODE_LENGTH (code);
1488 /* Return which tree structure is used by T. */
1490 enum tree_node_structure_enum
1491 tree_node_structure (tree t)
1493 enum tree_code code = TREE_CODE (t);
1495 switch (TREE_CODE_CLASS (code))
1497 case 'd': return TS_DECL;
1498 case 't': return TS_TYPE;
1499 case 'b': return TS_BLOCK;
1500 case 'r': case '<': case '1': case '2': case 'e': case 's':
1501 return TS_EXP;
1502 default: /* 'c' and 'x' */
1503 break;
1505 switch (code)
1507 /* 'c' cases. */
1508 case INTEGER_CST: return TS_INT_CST;
1509 case REAL_CST: return TS_REAL_CST;
1510 case COMPLEX_CST: return TS_COMPLEX;
1511 case VECTOR_CST: return TS_VECTOR;
1512 case STRING_CST: return TS_STRING;
1513 /* 'x' cases. */
1514 case ERROR_MARK: return TS_COMMON;
1515 case IDENTIFIER_NODE: return TS_IDENTIFIER;
1516 case TREE_LIST: return TS_LIST;
1517 case TREE_VEC: return TS_VEC;
1518 case PLACEHOLDER_EXPR: return TS_COMMON;
1520 default:
1521 abort ();
1525 /* Perform any modifications to EXPR required when it is unsaved. Does
1526 not recurse into EXPR's subtrees. */
1528 void
1529 unsave_expr_1 (tree expr)
1531 switch (TREE_CODE (expr))
1533 case SAVE_EXPR:
1534 if (! SAVE_EXPR_PERSISTENT_P (expr))
1535 SAVE_EXPR_RTL (expr) = 0;
1536 break;
1538 case TARGET_EXPR:
1539 /* Don't mess with a TARGET_EXPR that hasn't been expanded.
1540 It's OK for this to happen if it was part of a subtree that
1541 isn't immediately expanded, such as operand 2 of another
1542 TARGET_EXPR. */
1543 if (TREE_OPERAND (expr, 1))
1544 break;
1546 TREE_OPERAND (expr, 1) = TREE_OPERAND (expr, 3);
1547 TREE_OPERAND (expr, 3) = NULL_TREE;
1548 break;
1550 case RTL_EXPR:
1551 /* I don't yet know how to emit a sequence multiple times. */
1552 if (RTL_EXPR_SEQUENCE (expr) != 0)
1553 abort ();
1554 break;
1556 default:
1557 break;
1561 /* Default lang hook for "unsave_expr_now". */
1563 tree
1564 lhd_unsave_expr_now (tree expr)
1566 enum tree_code code;
1568 /* There's nothing to do for NULL_TREE. */
1569 if (expr == 0)
1570 return expr;
1572 unsave_expr_1 (expr);
1574 code = TREE_CODE (expr);
1575 switch (TREE_CODE_CLASS (code))
1577 case 'c': /* a constant */
1578 case 't': /* a type node */
1579 case 'd': /* A decl node */
1580 case 'b': /* A block node */
1581 break;
1583 case 'x': /* miscellaneous: e.g., identifier, TREE_LIST or ERROR_MARK. */
1584 if (code == TREE_LIST)
1586 lhd_unsave_expr_now (TREE_VALUE (expr));
1587 lhd_unsave_expr_now (TREE_CHAIN (expr));
1589 break;
1591 case 'e': /* an expression */
1592 case 'r': /* a reference */
1593 case 's': /* an expression with side effects */
1594 case '<': /* a comparison expression */
1595 case '2': /* a binary arithmetic expression */
1596 case '1': /* a unary arithmetic expression */
1598 int i;
1600 for (i = first_rtl_op (code) - 1; i >= 0; i--)
1601 lhd_unsave_expr_now (TREE_OPERAND (expr, i));
1603 break;
1605 default:
1606 abort ();
1609 return expr;
1612 /* Return 0 if it is safe to evaluate EXPR multiple times,
1613 return 1 if it is safe if EXPR is unsaved afterward, or
1614 return 2 if it is completely unsafe.
1616 This assumes that CALL_EXPRs and TARGET_EXPRs are never replicated in
1617 an expression tree, so that it safe to unsave them and the surrounding
1618 context will be correct.
1620 SAVE_EXPRs basically *only* appear replicated in an expression tree,
1621 occasionally across the whole of a function. It is therefore only
1622 safe to unsave a SAVE_EXPR if you know that all occurrences appear
1623 below the UNSAVE_EXPR.
1625 RTL_EXPRs consume their rtl during evaluation. It is therefore
1626 never possible to unsave them. */
1629 unsafe_for_reeval (tree expr)
1631 int unsafeness = 0;
1632 enum tree_code code;
1633 int i, tmp, tmp2;
1634 tree exp;
1635 int first_rtl;
1637 if (expr == NULL_TREE)
1638 return 1;
1640 code = TREE_CODE (expr);
1641 first_rtl = first_rtl_op (code);
1643 switch (code)
1645 case SAVE_EXPR:
1646 case RTL_EXPR:
1647 return 2;
1649 case TREE_LIST:
1650 for (exp = expr; exp != 0; exp = TREE_CHAIN (exp))
1652 tmp = unsafe_for_reeval (TREE_VALUE (exp));
1653 unsafeness = MAX (tmp, unsafeness);
1656 return unsafeness;
1658 case CALL_EXPR:
1659 tmp2 = unsafe_for_reeval (TREE_OPERAND (expr, 0));
1660 tmp = unsafe_for_reeval (TREE_OPERAND (expr, 1));
1661 return MAX (MAX (tmp, 1), tmp2);
1663 case TARGET_EXPR:
1664 unsafeness = 1;
1665 break;
1667 default:
1668 tmp = (*lang_hooks.unsafe_for_reeval) (expr);
1669 if (tmp >= 0)
1670 return tmp;
1671 break;
1674 switch (TREE_CODE_CLASS (code))
1676 case 'c': /* a constant */
1677 case 't': /* a type node */
1678 case 'x': /* something random, like an identifier or an ERROR_MARK. */
1679 case 'd': /* A decl node */
1680 case 'b': /* A block node */
1681 return 0;
1683 case 'e': /* an expression */
1684 case 'r': /* a reference */
1685 case 's': /* an expression with side effects */
1686 case '<': /* a comparison expression */
1687 case '2': /* a binary arithmetic expression */
1688 case '1': /* a unary arithmetic expression */
1689 for (i = first_rtl - 1; i >= 0; i--)
1691 tmp = unsafe_for_reeval (TREE_OPERAND (expr, i));
1692 unsafeness = MAX (tmp, unsafeness);
1695 return unsafeness;
1697 default:
1698 return 2;
1702 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
1703 or offset that depends on a field within a record. */
1705 bool
1706 contains_placeholder_p (tree exp)
1708 enum tree_code code;
1709 int result;
1711 if (!exp)
1712 return 0;
1714 /* If we have a WITH_RECORD_EXPR, it "cancels" any PLACEHOLDER_EXPR
1715 in it since it is supplying a value for it. */
1716 code = TREE_CODE (exp);
1717 if (code == WITH_RECORD_EXPR)
1718 return 0;
1719 else if (code == PLACEHOLDER_EXPR)
1720 return 1;
1722 switch (TREE_CODE_CLASS (code))
1724 case 'r':
1725 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
1726 position computations since they will be converted into a
1727 WITH_RECORD_EXPR involving the reference, which will assume
1728 here will be valid. */
1729 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
1731 case 'x':
1732 if (code == TREE_LIST)
1733 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
1734 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
1735 break;
1737 case '1':
1738 case '2': case '<':
1739 case 'e':
1740 switch (code)
1742 case COMPOUND_EXPR:
1743 /* Ignoring the first operand isn't quite right, but works best. */
1744 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
1746 case RTL_EXPR:
1747 case CONSTRUCTOR:
1748 return 0;
1750 case COND_EXPR:
1751 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
1752 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
1753 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
1755 case SAVE_EXPR:
1756 /* If we already know this doesn't have a placeholder, don't
1757 check again. */
1758 if (SAVE_EXPR_NOPLACEHOLDER (exp) || SAVE_EXPR_RTL (exp) != 0)
1759 return 0;
1761 SAVE_EXPR_NOPLACEHOLDER (exp) = 1;
1762 result = CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
1763 if (result)
1764 SAVE_EXPR_NOPLACEHOLDER (exp) = 0;
1766 return result;
1768 case CALL_EXPR:
1769 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
1771 default:
1772 break;
1775 switch (TREE_CODE_LENGTH (code))
1777 case 1:
1778 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
1779 case 2:
1780 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
1781 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
1782 default:
1783 return 0;
1786 default:
1787 return 0;
1789 return 0;
1792 /* Return 1 if any part of the computation of TYPE involves a PLACEHOLDER_EXPR.
1793 This includes size, bounds, qualifiers (for QUAL_UNION_TYPE) and field
1794 positions. */
1796 bool
1797 type_contains_placeholder_p (tree type)
1799 /* If the size contains a placeholder or the parent type (component type in
1800 the case of arrays) type involves a placeholder, this type does. */
1801 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
1802 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
1803 || (TREE_TYPE (type) != 0
1804 && type_contains_placeholder_p (TREE_TYPE (type))))
1805 return 1;
1807 /* Now do type-specific checks. Note that the last part of the check above
1808 greatly limits what we have to do below. */
1809 switch (TREE_CODE (type))
1811 case VOID_TYPE:
1812 case COMPLEX_TYPE:
1813 case VECTOR_TYPE:
1814 case ENUMERAL_TYPE:
1815 case BOOLEAN_TYPE:
1816 case CHAR_TYPE:
1817 case POINTER_TYPE:
1818 case OFFSET_TYPE:
1819 case REFERENCE_TYPE:
1820 case METHOD_TYPE:
1821 case FILE_TYPE:
1822 case FUNCTION_TYPE:
1823 return 0;
1825 case INTEGER_TYPE:
1826 case REAL_TYPE:
1827 /* Here we just check the bounds. */
1828 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
1829 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
1831 case ARRAY_TYPE:
1832 case SET_TYPE:
1833 /* We're already checked the component type (TREE_TYPE), so just check
1834 the index type. */
1835 return type_contains_placeholder_p (TYPE_DOMAIN (type));
1837 case RECORD_TYPE:
1838 case UNION_TYPE:
1839 case QUAL_UNION_TYPE:
1841 static tree seen_types = 0;
1842 tree field;
1843 bool ret = 0;
1845 /* We have to be careful here that we don't end up in infinite
1846 recursions due to a field of a type being a pointer to that type
1847 or to a mutually-recursive type. So we store a list of record
1848 types that we've seen and see if this type is in them. To save
1849 memory, we don't use a list for just one type. Here we check
1850 whether we've seen this type before and store it if not. */
1851 if (seen_types == 0)
1852 seen_types = type;
1853 else if (TREE_CODE (seen_types) != TREE_LIST)
1855 if (seen_types == type)
1856 return 0;
1858 seen_types = tree_cons (NULL_TREE, type,
1859 build_tree_list (NULL_TREE, seen_types));
1861 else
1863 if (value_member (type, seen_types) != 0)
1864 return 0;
1866 seen_types = tree_cons (NULL_TREE, type, seen_types);
1869 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1870 if (TREE_CODE (field) == FIELD_DECL
1871 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
1872 || (TREE_CODE (type) == QUAL_UNION_TYPE
1873 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
1874 || type_contains_placeholder_p (TREE_TYPE (field))))
1876 ret = true;
1877 break;
1880 /* Now remove us from seen_types and return the result. */
1881 if (seen_types == type)
1882 seen_types = 0;
1883 else
1884 seen_types = TREE_CHAIN (seen_types);
1886 return ret;
1889 default:
1890 abort ();
1894 /* Return 1 if EXP contains any expressions that produce cleanups for an
1895 outer scope to deal with. Used by fold. */
1898 has_cleanups (tree exp)
1900 int i, nops, cmp;
1902 if (! TREE_SIDE_EFFECTS (exp))
1903 return 0;
1905 switch (TREE_CODE (exp))
1907 case TARGET_EXPR:
1908 case GOTO_SUBROUTINE_EXPR:
1909 case WITH_CLEANUP_EXPR:
1910 return 1;
1912 case CLEANUP_POINT_EXPR:
1913 return 0;
1915 case CALL_EXPR:
1916 for (exp = TREE_OPERAND (exp, 1); exp; exp = TREE_CHAIN (exp))
1918 cmp = has_cleanups (TREE_VALUE (exp));
1919 if (cmp)
1920 return cmp;
1922 return 0;
1924 default:
1925 break;
1928 /* This general rule works for most tree codes. All exceptions should be
1929 handled above. If this is a language-specific tree code, we can't
1930 trust what might be in the operand, so say we don't know
1931 the situation. */
1932 if ((int) TREE_CODE (exp) >= (int) LAST_AND_UNUSED_TREE_CODE)
1933 return -1;
1935 nops = first_rtl_op (TREE_CODE (exp));
1936 for (i = 0; i < nops; i++)
1937 if (TREE_OPERAND (exp, i) != 0)
1939 int type = TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, i)));
1940 if (type == 'e' || type == '<' || type == '1' || type == '2'
1941 || type == 'r' || type == 's')
1943 cmp = has_cleanups (TREE_OPERAND (exp, i));
1944 if (cmp)
1945 return cmp;
1949 return 0;
1952 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
1953 return a tree with all occurrences of references to F in a
1954 PLACEHOLDER_EXPR replaced by R. Note that we assume here that EXP
1955 contains only arithmetic expressions or a CALL_EXPR with a
1956 PLACEHOLDER_EXPR occurring only in its arglist. */
1958 tree
1959 substitute_in_expr (tree exp, tree f, tree r)
1961 enum tree_code code = TREE_CODE (exp);
1962 tree op0, op1, op2;
1963 tree new;
1964 tree inner;
1966 switch (TREE_CODE_CLASS (code))
1968 case 'c':
1969 case 'd':
1970 return exp;
1972 case 'x':
1973 if (code == PLACEHOLDER_EXPR)
1974 return exp;
1975 else if (code == TREE_LIST)
1977 op0 = (TREE_CHAIN (exp) == 0
1978 ? 0 : substitute_in_expr (TREE_CHAIN (exp), f, r));
1979 op1 = substitute_in_expr (TREE_VALUE (exp), f, r);
1980 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
1981 return exp;
1983 return tree_cons (TREE_PURPOSE (exp), op1, op0);
1986 abort ();
1988 case '1':
1989 case '2':
1990 case '<':
1991 case 'e':
1992 switch (TREE_CODE_LENGTH (code))
1994 case 1:
1995 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
1996 if (op0 == TREE_OPERAND (exp, 0))
1997 return exp;
1999 if (code == NON_LVALUE_EXPR)
2000 return op0;
2002 new = fold (build1 (code, TREE_TYPE (exp), op0));
2003 break;
2005 case 2:
2006 /* An RTL_EXPR cannot contain a PLACEHOLDER_EXPR; a CONSTRUCTOR
2007 could, but we don't support it. */
2008 if (code == RTL_EXPR)
2009 return exp;
2010 else if (code == CONSTRUCTOR)
2011 abort ();
2013 op0 = TREE_OPERAND (exp, 0);
2014 op1 = TREE_OPERAND (exp, 1);
2015 if (CONTAINS_PLACEHOLDER_P (op0))
2016 op0 = substitute_in_expr (op0, f, r);
2017 if (CONTAINS_PLACEHOLDER_P (op1))
2018 op1 = substitute_in_expr (op1, f, r);
2020 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2021 return exp;
2023 new = fold (build (code, TREE_TYPE (exp), op0, op1));
2024 break;
2026 case 3:
2027 /* It cannot be that anything inside a SAVE_EXPR contains a
2028 PLACEHOLDER_EXPR. */
2029 if (code == SAVE_EXPR)
2030 return exp;
2032 else if (code == CALL_EXPR)
2034 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2035 if (op1 == TREE_OPERAND (exp, 1))
2036 return exp;
2038 return build (code, TREE_TYPE (exp),
2039 TREE_OPERAND (exp, 0), op1, NULL_TREE);
2042 else if (code != COND_EXPR)
2043 abort ();
2045 op0 = TREE_OPERAND (exp, 0);
2046 op1 = TREE_OPERAND (exp, 1);
2047 op2 = TREE_OPERAND (exp, 2);
2049 if (CONTAINS_PLACEHOLDER_P (op0))
2050 op0 = substitute_in_expr (op0, f, r);
2051 if (CONTAINS_PLACEHOLDER_P (op1))
2052 op1 = substitute_in_expr (op1, f, r);
2053 if (CONTAINS_PLACEHOLDER_P (op2))
2054 op2 = substitute_in_expr (op2, f, r);
2056 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2057 && op2 == TREE_OPERAND (exp, 2))
2058 return exp;
2060 new = fold (build (code, TREE_TYPE (exp), op0, op1, op2));
2061 break;
2063 default:
2064 abort ();
2067 break;
2069 case 'r':
2070 switch (code)
2072 case COMPONENT_REF:
2073 /* If this expression is getting a value from a PLACEHOLDER_EXPR
2074 and it is the right field, replace it with R. */
2075 for (inner = TREE_OPERAND (exp, 0);
2076 TREE_CODE_CLASS (TREE_CODE (inner)) == 'r';
2077 inner = TREE_OPERAND (inner, 0))
2079 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2080 && TREE_OPERAND (exp, 1) == f)
2081 return r;
2083 /* If this expression hasn't been completed let, leave it
2084 alone. */
2085 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2086 && TREE_TYPE (inner) == 0)
2087 return exp;
2089 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2090 if (op0 == TREE_OPERAND (exp, 0))
2091 return exp;
2093 new = fold (build (code, TREE_TYPE (exp), op0,
2094 TREE_OPERAND (exp, 1)));
2095 break;
2097 case BIT_FIELD_REF:
2098 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2099 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2100 op2 = substitute_in_expr (TREE_OPERAND (exp, 2), f, r);
2101 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2102 && op2 == TREE_OPERAND (exp, 2))
2103 return exp;
2105 new = fold (build (code, TREE_TYPE (exp), op0, op1, op2));
2106 break;
2108 case INDIRECT_REF:
2109 case BUFFER_REF:
2110 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2111 if (op0 == TREE_OPERAND (exp, 0))
2112 return exp;
2114 new = fold (build1 (code, TREE_TYPE (exp), op0));
2115 break;
2117 default:
2118 abort ();
2120 break;
2122 default:
2123 abort ();
2126 TREE_READONLY (new) = TREE_READONLY (exp);
2127 return new;
2130 /* Stabilize a reference so that we can use it any number of times
2131 without causing its operands to be evaluated more than once.
2132 Returns the stabilized reference. This works by means of save_expr,
2133 so see the caveats in the comments about save_expr.
2135 Also allows conversion expressions whose operands are references.
2136 Any other kind of expression is returned unchanged. */
2138 tree
2139 stabilize_reference (tree ref)
2141 tree result;
2142 enum tree_code code = TREE_CODE (ref);
2144 switch (code)
2146 case VAR_DECL:
2147 case PARM_DECL:
2148 case RESULT_DECL:
2149 /* No action is needed in this case. */
2150 return ref;
2152 case NOP_EXPR:
2153 case CONVERT_EXPR:
2154 case FLOAT_EXPR:
2155 case FIX_TRUNC_EXPR:
2156 case FIX_FLOOR_EXPR:
2157 case FIX_ROUND_EXPR:
2158 case FIX_CEIL_EXPR:
2159 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
2160 break;
2162 case INDIRECT_REF:
2163 result = build_nt (INDIRECT_REF,
2164 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
2165 break;
2167 case COMPONENT_REF:
2168 result = build_nt (COMPONENT_REF,
2169 stabilize_reference (TREE_OPERAND (ref, 0)),
2170 TREE_OPERAND (ref, 1));
2171 break;
2173 case BIT_FIELD_REF:
2174 result = build_nt (BIT_FIELD_REF,
2175 stabilize_reference (TREE_OPERAND (ref, 0)),
2176 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2177 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
2178 break;
2180 case ARRAY_REF:
2181 result = build_nt (ARRAY_REF,
2182 stabilize_reference (TREE_OPERAND (ref, 0)),
2183 stabilize_reference_1 (TREE_OPERAND (ref, 1)));
2184 break;
2186 case ARRAY_RANGE_REF:
2187 result = build_nt (ARRAY_RANGE_REF,
2188 stabilize_reference (TREE_OPERAND (ref, 0)),
2189 stabilize_reference_1 (TREE_OPERAND (ref, 1)));
2190 break;
2192 case COMPOUND_EXPR:
2193 /* We cannot wrap the first expression in a SAVE_EXPR, as then
2194 it wouldn't be ignored. This matters when dealing with
2195 volatiles. */
2196 return stabilize_reference_1 (ref);
2198 case RTL_EXPR:
2199 result = build1 (INDIRECT_REF, TREE_TYPE (ref),
2200 save_expr (build1 (ADDR_EXPR,
2201 build_pointer_type (TREE_TYPE (ref)),
2202 ref)));
2203 break;
2205 /* If arg isn't a kind of lvalue we recognize, make no change.
2206 Caller should recognize the error for an invalid lvalue. */
2207 default:
2208 return ref;
2210 case ERROR_MARK:
2211 return error_mark_node;
2214 TREE_TYPE (result) = TREE_TYPE (ref);
2215 TREE_READONLY (result) = TREE_READONLY (ref);
2216 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
2217 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
2219 return result;
2222 /* Subroutine of stabilize_reference; this is called for subtrees of
2223 references. Any expression with side-effects must be put in a SAVE_EXPR
2224 to ensure that it is only evaluated once.
2226 We don't put SAVE_EXPR nodes around everything, because assigning very
2227 simple expressions to temporaries causes us to miss good opportunities
2228 for optimizations. Among other things, the opportunity to fold in the
2229 addition of a constant into an addressing mode often gets lost, e.g.
2230 "y[i+1] += x;". In general, we take the approach that we should not make
2231 an assignment unless we are forced into it - i.e., that any non-side effect
2232 operator should be allowed, and that cse should take care of coalescing
2233 multiple utterances of the same expression should that prove fruitful. */
2235 tree
2236 stabilize_reference_1 (tree e)
2238 tree result;
2239 enum tree_code code = TREE_CODE (e);
2241 /* We cannot ignore const expressions because it might be a reference
2242 to a const array but whose index contains side-effects. But we can
2243 ignore things that are actual constant or that already have been
2244 handled by this function. */
2246 if (TREE_CONSTANT (e) || code == SAVE_EXPR)
2247 return e;
2249 switch (TREE_CODE_CLASS (code))
2251 case 'x':
2252 case 't':
2253 case 'd':
2254 case 'b':
2255 case '<':
2256 case 's':
2257 case 'e':
2258 case 'r':
2259 /* If the expression has side-effects, then encase it in a SAVE_EXPR
2260 so that it will only be evaluated once. */
2261 /* The reference (r) and comparison (<) classes could be handled as
2262 below, but it is generally faster to only evaluate them once. */
2263 if (TREE_SIDE_EFFECTS (e))
2264 return save_expr (e);
2265 return e;
2267 case 'c':
2268 /* Constants need no processing. In fact, we should never reach
2269 here. */
2270 return e;
2272 case '2':
2273 /* Division is slow and tends to be compiled with jumps,
2274 especially the division by powers of 2 that is often
2275 found inside of an array reference. So do it just once. */
2276 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
2277 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
2278 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
2279 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
2280 return save_expr (e);
2281 /* Recursively stabilize each operand. */
2282 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
2283 stabilize_reference_1 (TREE_OPERAND (e, 1)));
2284 break;
2286 case '1':
2287 /* Recursively stabilize each operand. */
2288 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
2289 break;
2291 default:
2292 abort ();
2295 TREE_TYPE (result) = TREE_TYPE (e);
2296 TREE_READONLY (result) = TREE_READONLY (e);
2297 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
2298 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
2300 return result;
2303 /* Low-level constructors for expressions. */
2305 /* Build an expression of code CODE, data type TYPE,
2306 and operands as specified by the arguments ARG1 and following arguments.
2307 Expressions and reference nodes can be created this way.
2308 Constants, decls, types and misc nodes cannot be. */
2310 tree
2311 build (enum tree_code code, tree tt, ...)
2313 tree t;
2314 int length;
2315 int i;
2316 int fro;
2317 int constant;
2318 va_list p;
2320 va_start (p, tt);
2322 t = make_node (code);
2323 length = TREE_CODE_LENGTH (code);
2324 TREE_TYPE (t) = tt;
2326 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
2327 result based on those same flags for the arguments. But if the
2328 arguments aren't really even `tree' expressions, we shouldn't be trying
2329 to do this. */
2330 fro = first_rtl_op (code);
2332 /* Expressions without side effects may be constant if their
2333 arguments are as well. */
2334 constant = (TREE_CODE_CLASS (code) == '<'
2335 || TREE_CODE_CLASS (code) == '1'
2336 || TREE_CODE_CLASS (code) == '2'
2337 || TREE_CODE_CLASS (code) == 'c');
2339 if (length == 2)
2341 /* This is equivalent to the loop below, but faster. */
2342 tree arg0 = va_arg (p, tree);
2343 tree arg1 = va_arg (p, tree);
2345 TREE_OPERAND (t, 0) = arg0;
2346 TREE_OPERAND (t, 1) = arg1;
2347 TREE_READONLY (t) = 1;
2348 if (arg0 && fro > 0)
2350 if (TREE_SIDE_EFFECTS (arg0))
2351 TREE_SIDE_EFFECTS (t) = 1;
2352 if (!TREE_READONLY (arg0))
2353 TREE_READONLY (t) = 0;
2354 if (!TREE_CONSTANT (arg0))
2355 constant = 0;
2358 if (arg1 && fro > 1)
2360 if (TREE_SIDE_EFFECTS (arg1))
2361 TREE_SIDE_EFFECTS (t) = 1;
2362 if (!TREE_READONLY (arg1))
2363 TREE_READONLY (t) = 0;
2364 if (!TREE_CONSTANT (arg1))
2365 constant = 0;
2368 else if (length == 1)
2370 tree arg0 = va_arg (p, tree);
2372 /* The only one-operand cases we handle here are those with side-effects.
2373 Others are handled with build1. So don't bother checked if the
2374 arg has side-effects since we'll already have set it.
2376 ??? This really should use build1 too. */
2377 if (TREE_CODE_CLASS (code) != 's')
2378 abort ();
2379 TREE_OPERAND (t, 0) = arg0;
2381 else
2383 for (i = 0; i < length; i++)
2385 tree operand = va_arg (p, tree);
2387 TREE_OPERAND (t, i) = operand;
2388 if (operand && fro > i)
2390 if (TREE_SIDE_EFFECTS (operand))
2391 TREE_SIDE_EFFECTS (t) = 1;
2392 if (!TREE_CONSTANT (operand))
2393 constant = 0;
2397 va_end (p);
2399 TREE_CONSTANT (t) = constant;
2400 return t;
2403 /* Same as above, but only builds for unary operators.
2404 Saves lions share of calls to `build'; cuts down use
2405 of varargs, which is expensive for RISC machines. */
2407 tree
2408 build1 (enum tree_code code, tree type, tree node)
2410 int length = sizeof (struct tree_exp);
2411 #ifdef GATHER_STATISTICS
2412 tree_node_kind kind;
2413 #endif
2414 tree t;
2416 #ifdef GATHER_STATISTICS
2417 switch (TREE_CODE_CLASS (code))
2419 case 's': /* an expression with side effects */
2420 kind = s_kind;
2421 break;
2422 case 'r': /* a reference */
2423 kind = r_kind;
2424 break;
2425 default:
2426 kind = e_kind;
2427 break;
2430 tree_node_counts[(int) kind]++;
2431 tree_node_sizes[(int) kind] += length;
2432 #endif
2434 #ifdef ENABLE_CHECKING
2435 if (TREE_CODE_CLASS (code) == '2'
2436 || TREE_CODE_CLASS (code) == '<'
2437 || TREE_CODE_LENGTH (code) != 1)
2438 abort ();
2439 #endif /* ENABLE_CHECKING */
2441 t = ggc_alloc_tree (length);
2443 memset (t, 0, sizeof (struct tree_common));
2445 TREE_SET_CODE (t, code);
2447 TREE_TYPE (t) = type;
2448 TREE_COMPLEXITY (t) = 0;
2449 TREE_OPERAND (t, 0) = node;
2450 if (node && first_rtl_op (code) != 0)
2452 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
2453 TREE_READONLY (t) = TREE_READONLY (node);
2456 if (TREE_CODE_CLASS (code) == 's')
2457 TREE_SIDE_EFFECTS (t) = 1;
2458 else switch (code)
2460 case INIT_EXPR:
2461 case MODIFY_EXPR:
2462 case VA_ARG_EXPR:
2463 case RTL_EXPR:
2464 case PREDECREMENT_EXPR:
2465 case PREINCREMENT_EXPR:
2466 case POSTDECREMENT_EXPR:
2467 case POSTINCREMENT_EXPR:
2468 /* All of these have side-effects, no matter what their
2469 operands are. */
2470 TREE_SIDE_EFFECTS (t) = 1;
2471 TREE_READONLY (t) = 0;
2472 break;
2474 case INDIRECT_REF:
2475 /* Whether a dereference is readonly has nothing to do with whether
2476 its operand is readonly. */
2477 TREE_READONLY (t) = 0;
2478 break;
2480 default:
2481 if (TREE_CODE_CLASS (code) == '1' && node && TREE_CONSTANT (node))
2482 TREE_CONSTANT (t) = 1;
2483 break;
2486 return t;
2489 /* Similar except don't specify the TREE_TYPE
2490 and leave the TREE_SIDE_EFFECTS as 0.
2491 It is permissible for arguments to be null,
2492 or even garbage if their values do not matter. */
2494 tree
2495 build_nt (enum tree_code code, ...)
2497 tree t;
2498 int length;
2499 int i;
2500 va_list p;
2502 va_start (p, code);
2504 t = make_node (code);
2505 length = TREE_CODE_LENGTH (code);
2507 for (i = 0; i < length; i++)
2508 TREE_OPERAND (t, i) = va_arg (p, tree);
2510 va_end (p);
2511 return t;
2514 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
2515 We do NOT enter this node in any sort of symbol table.
2517 layout_decl is used to set up the decl's storage layout.
2518 Other slots are initialized to 0 or null pointers. */
2520 tree
2521 build_decl (enum tree_code code, tree name, tree type)
2523 tree t;
2525 t = make_node (code);
2527 /* if (type == error_mark_node)
2528 type = integer_type_node; */
2529 /* That is not done, deliberately, so that having error_mark_node
2530 as the type can suppress useless errors in the use of this variable. */
2532 DECL_NAME (t) = name;
2533 TREE_TYPE (t) = type;
2535 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
2536 layout_decl (t, 0);
2537 else if (code == FUNCTION_DECL)
2538 DECL_MODE (t) = FUNCTION_MODE;
2540 return t;
2543 /* BLOCK nodes are used to represent the structure of binding contours
2544 and declarations, once those contours have been exited and their contents
2545 compiled. This information is used for outputting debugging info. */
2547 tree
2548 build_block (tree vars, tree tags ATTRIBUTE_UNUSED, tree subblocks,
2549 tree supercontext, tree chain)
2551 tree block = make_node (BLOCK);
2553 BLOCK_VARS (block) = vars;
2554 BLOCK_SUBBLOCKS (block) = subblocks;
2555 BLOCK_SUPERCONTEXT (block) = supercontext;
2556 BLOCK_CHAIN (block) = chain;
2557 return block;
2560 /* EXPR_WITH_FILE_LOCATION are used to keep track of the exact
2561 location where an expression or an identifier were encountered. It
2562 is necessary for languages where the frontend parser will handle
2563 recursively more than one file (Java is one of them). */
2565 tree
2566 build_expr_wfl (tree node, const char *file, int line, int col)
2568 static const char *last_file = 0;
2569 static tree last_filenode = NULL_TREE;
2570 tree wfl = make_node (EXPR_WITH_FILE_LOCATION);
2572 EXPR_WFL_NODE (wfl) = node;
2573 EXPR_WFL_SET_LINECOL (wfl, line, col);
2574 if (file != last_file)
2576 last_file = file;
2577 last_filenode = file ? get_identifier (file) : NULL_TREE;
2580 EXPR_WFL_FILENAME_NODE (wfl) = last_filenode;
2581 if (node)
2583 TREE_SIDE_EFFECTS (wfl) = TREE_SIDE_EFFECTS (node);
2584 TREE_TYPE (wfl) = TREE_TYPE (node);
2587 return wfl;
2590 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
2591 is ATTRIBUTE. */
2593 tree
2594 build_decl_attribute_variant (tree ddecl, tree attribute)
2596 DECL_ATTRIBUTES (ddecl) = attribute;
2597 return ddecl;
2600 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
2601 is ATTRIBUTE.
2603 Record such modified types already made so we don't make duplicates. */
2605 tree
2606 build_type_attribute_variant (tree ttype, tree attribute)
2608 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
2610 unsigned int hashcode;
2611 tree ntype;
2613 ntype = copy_node (ttype);
2615 TYPE_POINTER_TO (ntype) = 0;
2616 TYPE_REFERENCE_TO (ntype) = 0;
2617 TYPE_ATTRIBUTES (ntype) = attribute;
2619 /* Create a new main variant of TYPE. */
2620 TYPE_MAIN_VARIANT (ntype) = ntype;
2621 TYPE_NEXT_VARIANT (ntype) = 0;
2622 set_type_quals (ntype, TYPE_UNQUALIFIED);
2624 hashcode = (TYPE_HASH (TREE_CODE (ntype))
2625 + TYPE_HASH (TREE_TYPE (ntype))
2626 + attribute_hash_list (attribute));
2628 switch (TREE_CODE (ntype))
2630 case FUNCTION_TYPE:
2631 hashcode += TYPE_HASH (TYPE_ARG_TYPES (ntype));
2632 break;
2633 case ARRAY_TYPE:
2634 hashcode += TYPE_HASH (TYPE_DOMAIN (ntype));
2635 break;
2636 case INTEGER_TYPE:
2637 hashcode += TYPE_HASH (TYPE_MAX_VALUE (ntype));
2638 break;
2639 case REAL_TYPE:
2640 hashcode += TYPE_HASH (TYPE_PRECISION (ntype));
2641 break;
2642 default:
2643 break;
2646 ntype = type_hash_canon (hashcode, ntype);
2647 ttype = build_qualified_type (ntype, TYPE_QUALS (ttype));
2650 return ttype;
2653 /* Return nonzero if IDENT is a valid name for attribute ATTR,
2654 or zero if not.
2656 We try both `text' and `__text__', ATTR may be either one. */
2657 /* ??? It might be a reasonable simplification to require ATTR to be only
2658 `text'. One might then also require attribute lists to be stored in
2659 their canonicalized form. */
2662 is_attribute_p (const char *attr, tree ident)
2664 int ident_len, attr_len;
2665 const char *p;
2667 if (TREE_CODE (ident) != IDENTIFIER_NODE)
2668 return 0;
2670 if (strcmp (attr, IDENTIFIER_POINTER (ident)) == 0)
2671 return 1;
2673 p = IDENTIFIER_POINTER (ident);
2674 ident_len = strlen (p);
2675 attr_len = strlen (attr);
2677 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
2678 if (attr[0] == '_')
2680 if (attr[1] != '_'
2681 || attr[attr_len - 2] != '_'
2682 || attr[attr_len - 1] != '_')
2683 abort ();
2684 if (ident_len == attr_len - 4
2685 && strncmp (attr + 2, p, attr_len - 4) == 0)
2686 return 1;
2688 else
2690 if (ident_len == attr_len + 4
2691 && p[0] == '_' && p[1] == '_'
2692 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
2693 && strncmp (attr, p + 2, attr_len) == 0)
2694 return 1;
2697 return 0;
2700 /* Given an attribute name and a list of attributes, return a pointer to the
2701 attribute's list element if the attribute is part of the list, or NULL_TREE
2702 if not found. If the attribute appears more than once, this only
2703 returns the first occurrence; the TREE_CHAIN of the return value should
2704 be passed back in if further occurrences are wanted. */
2706 tree
2707 lookup_attribute (const char *attr_name, tree list)
2709 tree l;
2711 for (l = list; l; l = TREE_CHAIN (l))
2713 if (TREE_CODE (TREE_PURPOSE (l)) != IDENTIFIER_NODE)
2714 abort ();
2715 if (is_attribute_p (attr_name, TREE_PURPOSE (l)))
2716 return l;
2719 return NULL_TREE;
2722 /* Return an attribute list that is the union of a1 and a2. */
2724 tree
2725 merge_attributes (tree a1, tree a2)
2727 tree attributes;
2729 /* Either one unset? Take the set one. */
2731 if ((attributes = a1) == 0)
2732 attributes = a2;
2734 /* One that completely contains the other? Take it. */
2736 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
2738 if (attribute_list_contained (a2, a1))
2739 attributes = a2;
2740 else
2742 /* Pick the longest list, and hang on the other list. */
2744 if (list_length (a1) < list_length (a2))
2745 attributes = a2, a2 = a1;
2747 for (; a2 != 0; a2 = TREE_CHAIN (a2))
2749 tree a;
2750 for (a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
2751 attributes);
2752 a != NULL_TREE;
2753 a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
2754 TREE_CHAIN (a)))
2756 if (simple_cst_equal (TREE_VALUE (a), TREE_VALUE (a2)) == 1)
2757 break;
2759 if (a == NULL_TREE)
2761 a1 = copy_node (a2);
2762 TREE_CHAIN (a1) = attributes;
2763 attributes = a1;
2768 return attributes;
2771 /* Given types T1 and T2, merge their attributes and return
2772 the result. */
2774 tree
2775 merge_type_attributes (tree t1, tree t2)
2777 return merge_attributes (TYPE_ATTRIBUTES (t1),
2778 TYPE_ATTRIBUTES (t2));
2781 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
2782 the result. */
2784 tree
2785 merge_decl_attributes (tree olddecl, tree newdecl)
2787 return merge_attributes (DECL_ATTRIBUTES (olddecl),
2788 DECL_ATTRIBUTES (newdecl));
2791 #ifdef TARGET_DLLIMPORT_DECL_ATTRIBUTES
2793 /* Specialization of merge_decl_attributes for various Windows targets.
2795 This handles the following situation:
2797 __declspec (dllimport) int foo;
2798 int foo;
2800 The second instance of `foo' nullifies the dllimport. */
2802 tree
2803 merge_dllimport_decl_attributes (tree old, tree new)
2805 tree a;
2806 int delete_dllimport_p;
2808 old = DECL_ATTRIBUTES (old);
2809 new = DECL_ATTRIBUTES (new);
2811 /* What we need to do here is remove from `old' dllimport if it doesn't
2812 appear in `new'. dllimport behaves like extern: if a declaration is
2813 marked dllimport and a definition appears later, then the object
2814 is not dllimport'd. */
2815 if (lookup_attribute ("dllimport", old) != NULL_TREE
2816 && lookup_attribute ("dllimport", new) == NULL_TREE)
2817 delete_dllimport_p = 1;
2818 else
2819 delete_dllimport_p = 0;
2821 a = merge_attributes (old, new);
2823 if (delete_dllimport_p)
2825 tree prev, t;
2827 /* Scan the list for dllimport and delete it. */
2828 for (prev = NULL_TREE, t = a; t; prev = t, t = TREE_CHAIN (t))
2830 if (is_attribute_p ("dllimport", TREE_PURPOSE (t)))
2832 if (prev == NULL_TREE)
2833 a = TREE_CHAIN (a);
2834 else
2835 TREE_CHAIN (prev) = TREE_CHAIN (t);
2836 break;
2841 return a;
2844 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
2846 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
2847 of the various TYPE_QUAL values. */
2849 static void
2850 set_type_quals (tree type, int type_quals)
2852 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
2853 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
2854 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
2857 /* Return a version of the TYPE, qualified as indicated by the
2858 TYPE_QUALS, if one exists. If no qualified version exists yet,
2859 return NULL_TREE. */
2861 tree
2862 get_qualified_type (tree type, int type_quals)
2864 tree t;
2866 /* Search the chain of variants to see if there is already one there just
2867 like the one we need to have. If so, use that existing one. We must
2868 preserve the TYPE_NAME, since there is code that depends on this. */
2869 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
2870 if (TYPE_QUALS (t) == type_quals && TYPE_NAME (t) == TYPE_NAME (type)
2871 && TYPE_CONTEXT (t) == TYPE_CONTEXT (type))
2872 return t;
2874 return NULL_TREE;
2877 /* Like get_qualified_type, but creates the type if it does not
2878 exist. This function never returns NULL_TREE. */
2880 tree
2881 build_qualified_type (tree type, int type_quals)
2883 tree t;
2885 /* See if we already have the appropriate qualified variant. */
2886 t = get_qualified_type (type, type_quals);
2888 /* If not, build it. */
2889 if (!t)
2891 t = build_type_copy (type);
2892 set_type_quals (t, type_quals);
2895 return t;
2898 /* Create a new variant of TYPE, equivalent but distinct.
2899 This is so the caller can modify it. */
2901 tree
2902 build_type_copy (tree type)
2904 tree t, m = TYPE_MAIN_VARIANT (type);
2906 t = copy_node (type);
2908 TYPE_POINTER_TO (t) = 0;
2909 TYPE_REFERENCE_TO (t) = 0;
2911 /* Add this type to the chain of variants of TYPE. */
2912 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
2913 TYPE_NEXT_VARIANT (m) = t;
2915 return t;
2918 /* Hashing of types so that we don't make duplicates.
2919 The entry point is `type_hash_canon'. */
2921 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
2922 with types in the TREE_VALUE slots), by adding the hash codes
2923 of the individual types. */
2925 unsigned int
2926 type_hash_list (tree list)
2928 unsigned int hashcode;
2929 tree tail;
2931 for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
2932 hashcode += TYPE_HASH (TREE_VALUE (tail));
2934 return hashcode;
2937 /* These are the Hashtable callback functions. */
2939 /* Returns true if the types are equal. */
2941 static int
2942 type_hash_eq (const void *va, const void *vb)
2944 const struct type_hash *a = va, *b = vb;
2945 if (a->hash == b->hash
2946 && TREE_CODE (a->type) == TREE_CODE (b->type)
2947 && TREE_TYPE (a->type) == TREE_TYPE (b->type)
2948 && attribute_list_equal (TYPE_ATTRIBUTES (a->type),
2949 TYPE_ATTRIBUTES (b->type))
2950 && TYPE_ALIGN (a->type) == TYPE_ALIGN (b->type)
2951 && (TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
2952 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
2953 TYPE_MAX_VALUE (b->type)))
2954 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
2955 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
2956 TYPE_MIN_VALUE (b->type)))
2957 /* Note that TYPE_DOMAIN is TYPE_ARG_TYPES for FUNCTION_TYPE. */
2958 && (TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type)
2959 || (TYPE_DOMAIN (a->type)
2960 && TREE_CODE (TYPE_DOMAIN (a->type)) == TREE_LIST
2961 && TYPE_DOMAIN (b->type)
2962 && TREE_CODE (TYPE_DOMAIN (b->type)) == TREE_LIST
2963 && type_list_equal (TYPE_DOMAIN (a->type),
2964 TYPE_DOMAIN (b->type)))))
2965 return 1;
2966 return 0;
2969 /* Return the cached hash value. */
2971 static hashval_t
2972 type_hash_hash (const void *item)
2974 return ((const struct type_hash *) item)->hash;
2977 /* Look in the type hash table for a type isomorphic to TYPE.
2978 If one is found, return it. Otherwise return 0. */
2980 tree
2981 type_hash_lookup (unsigned int hashcode, tree type)
2983 struct type_hash *h, in;
2985 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
2986 must call that routine before comparing TYPE_ALIGNs. */
2987 layout_type (type);
2989 in.hash = hashcode;
2990 in.type = type;
2992 h = htab_find_with_hash (type_hash_table, &in, hashcode);
2993 if (h)
2994 return h->type;
2995 return NULL_TREE;
2998 /* Add an entry to the type-hash-table
2999 for a type TYPE whose hash code is HASHCODE. */
3001 void
3002 type_hash_add (unsigned int hashcode, tree type)
3004 struct type_hash *h;
3005 void **loc;
3007 h = (struct type_hash *) ggc_alloc (sizeof (struct type_hash));
3008 h->hash = hashcode;
3009 h->type = type;
3010 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
3011 *(struct type_hash **) loc = h;
3014 /* Given TYPE, and HASHCODE its hash code, return the canonical
3015 object for an identical type if one already exists.
3016 Otherwise, return TYPE, and record it as the canonical object
3017 if it is a permanent object.
3019 To use this function, first create a type of the sort you want.
3020 Then compute its hash code from the fields of the type that
3021 make it different from other similar types.
3022 Then call this function and use the value.
3023 This function frees the type you pass in if it is a duplicate. */
3025 /* Set to 1 to debug without canonicalization. Never set by program. */
3026 int debug_no_type_hash = 0;
3028 tree
3029 type_hash_canon (unsigned int hashcode, tree type)
3031 tree t1;
3033 if (debug_no_type_hash)
3034 return type;
3036 /* See if the type is in the hash table already. If so, return it.
3037 Otherwise, add the type. */
3038 t1 = type_hash_lookup (hashcode, type);
3039 if (t1 != 0)
3041 #ifdef GATHER_STATISTICS
3042 tree_node_counts[(int) t_kind]--;
3043 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type);
3044 #endif
3045 return t1;
3047 else
3049 type_hash_add (hashcode, type);
3050 return type;
3054 /* See if the data pointed to by the type hash table is marked. We consider
3055 it marked if the type is marked or if a debug type number or symbol
3056 table entry has been made for the type. This reduces the amount of
3057 debugging output and eliminates that dependency of the debug output on
3058 the number of garbage collections. */
3060 static int
3061 type_hash_marked_p (const void *p)
3063 tree type = ((struct type_hash *) p)->type;
3065 return ggc_marked_p (type) || TYPE_SYMTAB_POINTER (type);
3068 static void
3069 print_type_hash_statistics (void)
3071 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
3072 (long) htab_size (type_hash_table),
3073 (long) htab_elements (type_hash_table),
3074 htab_collisions (type_hash_table));
3077 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
3078 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
3079 by adding the hash codes of the individual attributes. */
3081 unsigned int
3082 attribute_hash_list (tree list)
3084 unsigned int hashcode;
3085 tree tail;
3087 for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
3088 /* ??? Do we want to add in TREE_VALUE too? */
3089 hashcode += TYPE_HASH (TREE_PURPOSE (tail));
3090 return hashcode;
3093 /* Given two lists of attributes, return true if list l2 is
3094 equivalent to l1. */
3097 attribute_list_equal (tree l1, tree l2)
3099 return attribute_list_contained (l1, l2)
3100 && attribute_list_contained (l2, l1);
3103 /* Given two lists of attributes, return true if list L2 is
3104 completely contained within L1. */
3105 /* ??? This would be faster if attribute names were stored in a canonicalized
3106 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
3107 must be used to show these elements are equivalent (which they are). */
3108 /* ??? It's not clear that attributes with arguments will always be handled
3109 correctly. */
3112 attribute_list_contained (tree l1, tree l2)
3114 tree t1, t2;
3116 /* First check the obvious, maybe the lists are identical. */
3117 if (l1 == l2)
3118 return 1;
3120 /* Maybe the lists are similar. */
3121 for (t1 = l1, t2 = l2;
3122 t1 != 0 && t2 != 0
3123 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
3124 && TREE_VALUE (t1) == TREE_VALUE (t2);
3125 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
3127 /* Maybe the lists are equal. */
3128 if (t1 == 0 && t2 == 0)
3129 return 1;
3131 for (; t2 != 0; t2 = TREE_CHAIN (t2))
3133 tree attr;
3134 for (attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)), l1);
3135 attr != NULL_TREE;
3136 attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
3137 TREE_CHAIN (attr)))
3139 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) == 1)
3140 break;
3143 if (attr == 0)
3144 return 0;
3146 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) != 1)
3147 return 0;
3150 return 1;
3153 /* Given two lists of types
3154 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
3155 return 1 if the lists contain the same types in the same order.
3156 Also, the TREE_PURPOSEs must match. */
3159 type_list_equal (tree l1, tree l2)
3161 tree t1, t2;
3163 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
3164 if (TREE_VALUE (t1) != TREE_VALUE (t2)
3165 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
3166 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
3167 && (TREE_TYPE (TREE_PURPOSE (t1))
3168 == TREE_TYPE (TREE_PURPOSE (t2))))))
3169 return 0;
3171 return t1 == t2;
3174 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
3175 given by TYPE. If the argument list accepts variable arguments,
3176 then this function counts only the ordinary arguments. */
3179 type_num_arguments (tree type)
3181 int i = 0;
3182 tree t;
3184 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
3185 /* If the function does not take a variable number of arguments,
3186 the last element in the list will have type `void'. */
3187 if (VOID_TYPE_P (TREE_VALUE (t)))
3188 break;
3189 else
3190 ++i;
3192 return i;
3195 /* Nonzero if integer constants T1 and T2
3196 represent the same constant value. */
3199 tree_int_cst_equal (tree t1, tree t2)
3201 if (t1 == t2)
3202 return 1;
3204 if (t1 == 0 || t2 == 0)
3205 return 0;
3207 if (TREE_CODE (t1) == INTEGER_CST
3208 && TREE_CODE (t2) == INTEGER_CST
3209 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3210 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
3211 return 1;
3213 return 0;
3216 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
3217 The precise way of comparison depends on their data type. */
3220 tree_int_cst_lt (tree t1, tree t2)
3222 if (t1 == t2)
3223 return 0;
3225 if (TREE_UNSIGNED (TREE_TYPE (t1)) != TREE_UNSIGNED (TREE_TYPE (t2)))
3227 int t1_sgn = tree_int_cst_sgn (t1);
3228 int t2_sgn = tree_int_cst_sgn (t2);
3230 if (t1_sgn < t2_sgn)
3231 return 1;
3232 else if (t1_sgn > t2_sgn)
3233 return 0;
3234 /* Otherwise, both are non-negative, so we compare them as
3235 unsigned just in case one of them would overflow a signed
3236 type. */
3238 else if (! TREE_UNSIGNED (TREE_TYPE (t1)))
3239 return INT_CST_LT (t1, t2);
3241 return INT_CST_LT_UNSIGNED (t1, t2);
3244 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
3247 tree_int_cst_compare (tree t1, tree t2)
3249 if (tree_int_cst_lt (t1, t2))
3250 return -1;
3251 else if (tree_int_cst_lt (t2, t1))
3252 return 1;
3253 else
3254 return 0;
3257 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
3258 the host. If POS is zero, the value can be represented in a single
3259 HOST_WIDE_INT. If POS is nonzero, the value must be positive and can
3260 be represented in a single unsigned HOST_WIDE_INT. */
3263 host_integerp (tree t, int pos)
3265 return (TREE_CODE (t) == INTEGER_CST
3266 && ! TREE_OVERFLOW (t)
3267 && ((TREE_INT_CST_HIGH (t) == 0
3268 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
3269 || (! pos && TREE_INT_CST_HIGH (t) == -1
3270 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
3271 && ! TREE_UNSIGNED (TREE_TYPE (t)))
3272 || (pos && TREE_INT_CST_HIGH (t) == 0)));
3275 /* Return the HOST_WIDE_INT least significant bits of T if it is an
3276 INTEGER_CST and there is no overflow. POS is nonzero if the result must
3277 be positive. Abort if we cannot satisfy the above conditions. */
3279 HOST_WIDE_INT
3280 tree_low_cst (tree t, int pos)
3282 if (host_integerp (t, pos))
3283 return TREE_INT_CST_LOW (t);
3284 else
3285 abort ();
3288 /* Return the most significant bit of the integer constant T. */
3291 tree_int_cst_msb (tree t)
3293 int prec;
3294 HOST_WIDE_INT h;
3295 unsigned HOST_WIDE_INT l;
3297 /* Note that using TYPE_PRECISION here is wrong. We care about the
3298 actual bits, not the (arbitrary) range of the type. */
3299 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
3300 rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
3301 2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
3302 return (l & 1) == 1;
3305 /* Return an indication of the sign of the integer constant T.
3306 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
3307 Note that -1 will never be returned it T's type is unsigned. */
3310 tree_int_cst_sgn (tree t)
3312 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
3313 return 0;
3314 else if (TREE_UNSIGNED (TREE_TYPE (t)))
3315 return 1;
3316 else if (TREE_INT_CST_HIGH (t) < 0)
3317 return -1;
3318 else
3319 return 1;
3322 /* Compare two constructor-element-type constants. Return 1 if the lists
3323 are known to be equal; otherwise return 0. */
3326 simple_cst_list_equal (tree l1, tree l2)
3328 while (l1 != NULL_TREE && l2 != NULL_TREE)
3330 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
3331 return 0;
3333 l1 = TREE_CHAIN (l1);
3334 l2 = TREE_CHAIN (l2);
3337 return l1 == l2;
3340 /* Return truthvalue of whether T1 is the same tree structure as T2.
3341 Return 1 if they are the same.
3342 Return 0 if they are understandably different.
3343 Return -1 if either contains tree structure not understood by
3344 this function. */
3347 simple_cst_equal (tree t1, tree t2)
3349 enum tree_code code1, code2;
3350 int cmp;
3351 int i;
3353 if (t1 == t2)
3354 return 1;
3355 if (t1 == 0 || t2 == 0)
3356 return 0;
3358 code1 = TREE_CODE (t1);
3359 code2 = TREE_CODE (t2);
3361 if (code1 == NOP_EXPR || code1 == CONVERT_EXPR || code1 == NON_LVALUE_EXPR)
3363 if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3364 || code2 == NON_LVALUE_EXPR)
3365 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3366 else
3367 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
3370 else if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3371 || code2 == NON_LVALUE_EXPR)
3372 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
3374 if (code1 != code2)
3375 return 0;
3377 switch (code1)
3379 case INTEGER_CST:
3380 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3381 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
3383 case REAL_CST:
3384 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
3386 case STRING_CST:
3387 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
3388 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
3389 TREE_STRING_LENGTH (t1)));
3391 case CONSTRUCTOR:
3392 if (CONSTRUCTOR_ELTS (t1) == CONSTRUCTOR_ELTS (t2))
3393 return 1;
3394 else
3395 abort ();
3397 case SAVE_EXPR:
3398 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3400 case CALL_EXPR:
3401 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3402 if (cmp <= 0)
3403 return cmp;
3404 return
3405 simple_cst_list_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3407 case TARGET_EXPR:
3408 /* Special case: if either target is an unallocated VAR_DECL,
3409 it means that it's going to be unified with whatever the
3410 TARGET_EXPR is really supposed to initialize, so treat it
3411 as being equivalent to anything. */
3412 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
3413 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
3414 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
3415 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
3416 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
3417 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
3418 cmp = 1;
3419 else
3420 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3422 if (cmp <= 0)
3423 return cmp;
3425 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3427 case WITH_CLEANUP_EXPR:
3428 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3429 if (cmp <= 0)
3430 return cmp;
3432 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
3434 case COMPONENT_REF:
3435 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
3436 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3438 return 0;
3440 case VAR_DECL:
3441 case PARM_DECL:
3442 case CONST_DECL:
3443 case FUNCTION_DECL:
3444 return 0;
3446 default:
3447 break;
3450 /* This general rule works for most tree codes. All exceptions should be
3451 handled above. If this is a language-specific tree code, we can't
3452 trust what might be in the operand, so say we don't know
3453 the situation. */
3454 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
3455 return -1;
3457 switch (TREE_CODE_CLASS (code1))
3459 case '1':
3460 case '2':
3461 case '<':
3462 case 'e':
3463 case 'r':
3464 case 's':
3465 cmp = 1;
3466 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
3468 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
3469 if (cmp <= 0)
3470 return cmp;
3473 return cmp;
3475 default:
3476 return -1;
3480 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
3481 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
3482 than U, respectively. */
3485 compare_tree_int (tree t, unsigned HOST_WIDE_INT u)
3487 if (tree_int_cst_sgn (t) < 0)
3488 return -1;
3489 else if (TREE_INT_CST_HIGH (t) != 0)
3490 return 1;
3491 else if (TREE_INT_CST_LOW (t) == u)
3492 return 0;
3493 else if (TREE_INT_CST_LOW (t) < u)
3494 return -1;
3495 else
3496 return 1;
3499 /* Generate a hash value for an expression. This can be used iteratively
3500 by passing a previous result as the "val" argument.
3502 This function is intended to produce the same hash for expressions which
3503 would compare equal using operand_equal_p. */
3505 hashval_t
3506 iterative_hash_expr (tree t, hashval_t val)
3508 int i;
3509 enum tree_code code;
3510 char class;
3512 if (t == NULL_TREE)
3513 return iterative_hash_object (t, val);
3515 code = TREE_CODE (t);
3516 class = TREE_CODE_CLASS (code);
3518 if (class == 'd')
3520 /* Decls we can just compare by pointer. */
3521 val = iterative_hash_object (t, val);
3523 else if (class == 'c')
3525 /* Alas, constants aren't shared, so we can't rely on pointer
3526 identity. */
3527 if (code == INTEGER_CST)
3529 val = iterative_hash_object (TREE_INT_CST_LOW (t), val);
3530 val = iterative_hash_object (TREE_INT_CST_HIGH (t), val);
3532 else if (code == REAL_CST)
3533 val = iterative_hash (TREE_REAL_CST_PTR (t),
3534 sizeof (REAL_VALUE_TYPE), val);
3535 else if (code == STRING_CST)
3536 val = iterative_hash (TREE_STRING_POINTER (t),
3537 TREE_STRING_LENGTH (t), val);
3538 else if (code == COMPLEX_CST)
3540 val = iterative_hash_expr (TREE_REALPART (t), val);
3541 val = iterative_hash_expr (TREE_IMAGPART (t), val);
3543 else if (code == VECTOR_CST)
3544 val = iterative_hash_expr (TREE_VECTOR_CST_ELTS (t), val);
3545 else
3546 abort ();
3548 else if (IS_EXPR_CODE_CLASS (class) || class == 'r')
3550 val = iterative_hash_object (code, val);
3552 if (code == NOP_EXPR || code == CONVERT_EXPR
3553 || code == NON_LVALUE_EXPR)
3554 val = iterative_hash_object (TREE_TYPE (t), val);
3556 if (code == PLUS_EXPR || code == MULT_EXPR || code == MIN_EXPR
3557 || code == MAX_EXPR || code == BIT_IOR_EXPR || code == BIT_XOR_EXPR
3558 || code == BIT_AND_EXPR || code == NE_EXPR || code == EQ_EXPR)
3560 /* It's a commutative expression. We want to hash it the same
3561 however it appears. We do this by first hashing both operands
3562 and then rehashing based on the order of their independent
3563 hashes. */
3564 hashval_t one = iterative_hash_expr (TREE_OPERAND (t, 0), 0);
3565 hashval_t two = iterative_hash_expr (TREE_OPERAND (t, 1), 0);
3566 hashval_t t;
3568 if (one > two)
3569 t = one, one = two, two = t;
3571 val = iterative_hash_object (one, val);
3572 val = iterative_hash_object (two, val);
3574 else
3575 for (i = first_rtl_op (code) - 1; i >= 0; --i)
3576 val = iterative_hash_expr (TREE_OPERAND (t, i), val);
3578 else if (code == TREE_LIST)
3580 /* A list of expressions, for a CALL_EXPR or as the elements of a
3581 VECTOR_CST. */
3582 for (; t; t = TREE_CHAIN (t))
3583 val = iterative_hash_expr (TREE_VALUE (t), val);
3585 else
3586 abort ();
3588 return val;
3591 /* Constructors for pointer, array and function types.
3592 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
3593 constructed by language-dependent code, not here.) */
3595 /* Construct, lay out and return the type of pointers to TO_TYPE
3596 with mode MODE. If such a type has already been constructed,
3597 reuse it. */
3599 tree
3600 build_pointer_type_for_mode (tree to_type, enum machine_mode mode)
3602 tree t = TYPE_POINTER_TO (to_type);
3604 /* First, if we already have a type for pointers to TO_TYPE, use it. */
3605 if (t != 0 && mode == ptr_mode)
3606 return t;
3608 t = make_node (POINTER_TYPE);
3610 TREE_TYPE (t) = to_type;
3611 TYPE_MODE (t) = mode;
3613 /* Record this type as the pointer to TO_TYPE. */
3614 if (mode == ptr_mode)
3615 TYPE_POINTER_TO (to_type) = t;
3617 /* Lay out the type. This function has many callers that are concerned
3618 with expression-construction, and this simplifies them all.
3619 Also, it guarantees the TYPE_SIZE is in the same obstack as the type. */
3620 layout_type (t);
3622 return t;
3625 /* By default build pointers in ptr_mode. */
3627 tree
3628 build_pointer_type (tree to_type)
3630 return build_pointer_type_for_mode (to_type, ptr_mode);
3633 /* Construct, lay out and return the type of references to TO_TYPE
3634 with mode MODE. If such a type has already been constructed,
3635 reuse it. */
3637 tree
3638 build_reference_type_for_mode (tree to_type, enum machine_mode mode)
3640 tree t = TYPE_REFERENCE_TO (to_type);
3642 /* First, if we already have a type for pointers to TO_TYPE, use it. */
3643 if (t != 0 && mode == ptr_mode)
3644 return t;
3646 t = make_node (REFERENCE_TYPE);
3648 TREE_TYPE (t) = to_type;
3649 TYPE_MODE (t) = mode;
3651 /* Record this type as the pointer to TO_TYPE. */
3652 if (mode == ptr_mode)
3653 TYPE_REFERENCE_TO (to_type) = t;
3655 layout_type (t);
3657 return t;
3661 /* Build the node for the type of references-to-TO_TYPE by default
3662 in ptr_mode. */
3664 tree
3665 build_reference_type (tree to_type)
3667 return build_reference_type_for_mode (to_type, ptr_mode);
3670 /* Build a type that is compatible with t but has no cv quals anywhere
3671 in its type, thus
3673 const char *const *const * -> char ***. */
3675 tree
3676 build_type_no_quals (tree t)
3678 switch (TREE_CODE (t))
3680 case POINTER_TYPE:
3681 return build_pointer_type (build_type_no_quals (TREE_TYPE (t)));
3682 case REFERENCE_TYPE:
3683 return build_reference_type (build_type_no_quals (TREE_TYPE (t)));
3684 default:
3685 return TYPE_MAIN_VARIANT (t);
3689 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
3690 MAXVAL should be the maximum value in the domain
3691 (one less than the length of the array).
3693 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
3694 We don't enforce this limit, that is up to caller (e.g. language front end).
3695 The limit exists because the result is a signed type and we don't handle
3696 sizes that use more than one HOST_WIDE_INT. */
3698 tree
3699 build_index_type (tree maxval)
3701 tree itype = make_node (INTEGER_TYPE);
3703 TREE_TYPE (itype) = sizetype;
3704 TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
3705 TYPE_MIN_VALUE (itype) = size_zero_node;
3706 TYPE_MAX_VALUE (itype) = convert (sizetype, maxval);
3707 TYPE_MODE (itype) = TYPE_MODE (sizetype);
3708 TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
3709 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (sizetype);
3710 TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
3711 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (sizetype);
3713 if (host_integerp (maxval, 1))
3714 return type_hash_canon (tree_low_cst (maxval, 1), itype);
3715 else
3716 return itype;
3719 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
3720 ENUMERAL_TYPE, BOOLEAN_TYPE, or CHAR_TYPE), with
3721 low bound LOWVAL and high bound HIGHVAL.
3722 if TYPE==NULL_TREE, sizetype is used. */
3724 tree
3725 build_range_type (tree type, tree lowval, tree highval)
3727 tree itype = make_node (INTEGER_TYPE);
3729 TREE_TYPE (itype) = type;
3730 if (type == NULL_TREE)
3731 type = sizetype;
3733 TYPE_MIN_VALUE (itype) = convert (type, lowval);
3734 TYPE_MAX_VALUE (itype) = highval ? convert (type, highval) : NULL;
3736 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
3737 TYPE_MODE (itype) = TYPE_MODE (type);
3738 TYPE_SIZE (itype) = TYPE_SIZE (type);
3739 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
3740 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
3741 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
3743 if (host_integerp (lowval, 0) && highval != 0 && host_integerp (highval, 0))
3744 return type_hash_canon (tree_low_cst (highval, 0)
3745 - tree_low_cst (lowval, 0),
3746 itype);
3747 else
3748 return itype;
3751 /* Just like build_index_type, but takes lowval and highval instead
3752 of just highval (maxval). */
3754 tree
3755 build_index_2_type (tree lowval, tree highval)
3757 return build_range_type (sizetype, lowval, highval);
3760 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
3761 and number of elements specified by the range of values of INDEX_TYPE.
3762 If such a type has already been constructed, reuse it. */
3764 tree
3765 build_array_type (tree elt_type, tree index_type)
3767 tree t;
3768 unsigned int hashcode;
3770 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
3772 error ("arrays of functions are not meaningful");
3773 elt_type = integer_type_node;
3776 /* Make sure TYPE_POINTER_TO (elt_type) is filled in. */
3777 build_pointer_type (elt_type);
3779 /* Allocate the array after the pointer type,
3780 in case we free it in type_hash_canon. */
3781 t = make_node (ARRAY_TYPE);
3782 TREE_TYPE (t) = elt_type;
3783 TYPE_DOMAIN (t) = index_type;
3785 if (index_type == 0)
3787 return t;
3790 hashcode = TYPE_HASH (elt_type) + TYPE_HASH (index_type);
3791 t = type_hash_canon (hashcode, t);
3793 if (!COMPLETE_TYPE_P (t))
3794 layout_type (t);
3795 return t;
3798 /* Return the TYPE of the elements comprising
3799 the innermost dimension of ARRAY. */
3801 tree
3802 get_inner_array_type (tree array)
3804 tree type = TREE_TYPE (array);
3806 while (TREE_CODE (type) == ARRAY_TYPE)
3807 type = TREE_TYPE (type);
3809 return type;
3812 /* Construct, lay out and return
3813 the type of functions returning type VALUE_TYPE
3814 given arguments of types ARG_TYPES.
3815 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
3816 are data type nodes for the arguments of the function.
3817 If such a type has already been constructed, reuse it. */
3819 tree
3820 build_function_type (tree value_type, tree arg_types)
3822 tree t;
3823 unsigned int hashcode;
3825 if (TREE_CODE (value_type) == FUNCTION_TYPE)
3827 error ("function return type cannot be function");
3828 value_type = integer_type_node;
3831 /* Make a node of the sort we want. */
3832 t = make_node (FUNCTION_TYPE);
3833 TREE_TYPE (t) = value_type;
3834 TYPE_ARG_TYPES (t) = arg_types;
3836 /* If we already have such a type, use the old one and free this one. */
3837 hashcode = TYPE_HASH (value_type) + type_hash_list (arg_types);
3838 t = type_hash_canon (hashcode, t);
3840 if (!COMPLETE_TYPE_P (t))
3841 layout_type (t);
3842 return t;
3845 /* Build a function type. The RETURN_TYPE is the type retured by the
3846 function. If additional arguments are provided, they are
3847 additional argument types. The list of argument types must always
3848 be terminated by NULL_TREE. */
3850 tree
3851 build_function_type_list (tree return_type, ...)
3853 tree t, args, last;
3854 va_list p;
3856 va_start (p, return_type);
3858 t = va_arg (p, tree);
3859 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (p, tree))
3860 args = tree_cons (NULL_TREE, t, args);
3862 last = args;
3863 args = nreverse (args);
3864 TREE_CHAIN (last) = void_list_node;
3865 args = build_function_type (return_type, args);
3867 va_end (p);
3868 return args;
3871 /* Construct, lay out and return the type of methods belonging to class
3872 BASETYPE and whose arguments and values are described by TYPE.
3873 If that type exists already, reuse it.
3874 TYPE must be a FUNCTION_TYPE node. */
3876 tree
3877 build_method_type (tree basetype, tree type)
3879 tree t;
3880 unsigned int hashcode;
3882 /* Make a node of the sort we want. */
3883 t = make_node (METHOD_TYPE);
3885 if (TREE_CODE (type) != FUNCTION_TYPE)
3886 abort ();
3888 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
3889 TREE_TYPE (t) = TREE_TYPE (type);
3891 /* The actual arglist for this function includes a "hidden" argument
3892 which is "this". Put it into the list of argument types. */
3894 TYPE_ARG_TYPES (t)
3895 = tree_cons (NULL_TREE,
3896 build_pointer_type (basetype), TYPE_ARG_TYPES (type));
3898 /* If we already have such a type, use the old one and free this one. */
3899 hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
3900 t = type_hash_canon (hashcode, t);
3902 if (!COMPLETE_TYPE_P (t))
3903 layout_type (t);
3905 return t;
3908 /* Construct, lay out and return the type of offsets to a value
3909 of type TYPE, within an object of type BASETYPE.
3910 If a suitable offset type exists already, reuse it. */
3912 tree
3913 build_offset_type (tree basetype, tree type)
3915 tree t;
3916 unsigned int hashcode;
3918 /* Make a node of the sort we want. */
3919 t = make_node (OFFSET_TYPE);
3921 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
3922 TREE_TYPE (t) = type;
3924 /* If we already have such a type, use the old one and free this one. */
3925 hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
3926 t = type_hash_canon (hashcode, t);
3928 if (!COMPLETE_TYPE_P (t))
3929 layout_type (t);
3931 return t;
3934 /* Create a complex type whose components are COMPONENT_TYPE. */
3936 tree
3937 build_complex_type (tree component_type)
3939 tree t;
3940 unsigned int hashcode;
3942 /* Make a node of the sort we want. */
3943 t = make_node (COMPLEX_TYPE);
3945 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
3946 set_type_quals (t, TYPE_QUALS (component_type));
3948 /* If we already have such a type, use the old one and free this one. */
3949 hashcode = TYPE_HASH (component_type);
3950 t = type_hash_canon (hashcode, t);
3952 if (!COMPLETE_TYPE_P (t))
3953 layout_type (t);
3955 /* If we are writing Dwarf2 output we need to create a name,
3956 since complex is a fundamental type. */
3957 if ((write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
3958 && ! TYPE_NAME (t))
3960 const char *name;
3961 if (component_type == char_type_node)
3962 name = "complex char";
3963 else if (component_type == signed_char_type_node)
3964 name = "complex signed char";
3965 else if (component_type == unsigned_char_type_node)
3966 name = "complex unsigned char";
3967 else if (component_type == short_integer_type_node)
3968 name = "complex short int";
3969 else if (component_type == short_unsigned_type_node)
3970 name = "complex short unsigned int";
3971 else if (component_type == integer_type_node)
3972 name = "complex int";
3973 else if (component_type == unsigned_type_node)
3974 name = "complex unsigned int";
3975 else if (component_type == long_integer_type_node)
3976 name = "complex long int";
3977 else if (component_type == long_unsigned_type_node)
3978 name = "complex long unsigned int";
3979 else if (component_type == long_long_integer_type_node)
3980 name = "complex long long int";
3981 else if (component_type == long_long_unsigned_type_node)
3982 name = "complex long long unsigned int";
3983 else
3984 name = 0;
3986 if (name != 0)
3987 TYPE_NAME (t) = get_identifier (name);
3990 return t;
3993 /* Return OP, stripped of any conversions to wider types as much as is safe.
3994 Converting the value back to OP's type makes a value equivalent to OP.
3996 If FOR_TYPE is nonzero, we return a value which, if converted to
3997 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
3999 If FOR_TYPE is nonzero, unaligned bit-field references may be changed to the
4000 narrowest type that can hold the value, even if they don't exactly fit.
4001 Otherwise, bit-field references are changed to a narrower type
4002 only if they can be fetched directly from memory in that type.
4004 OP must have integer, real or enumeral type. Pointers are not allowed!
4006 There are some cases where the obvious value we could return
4007 would regenerate to OP if converted to OP's type,
4008 but would not extend like OP to wider types.
4009 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
4010 For example, if OP is (unsigned short)(signed char)-1,
4011 we avoid returning (signed char)-1 if FOR_TYPE is int,
4012 even though extending that to an unsigned short would regenerate OP,
4013 since the result of extending (signed char)-1 to (int)
4014 is different from (int) OP. */
4016 tree
4017 get_unwidened (tree op, tree for_type)
4019 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
4020 tree type = TREE_TYPE (op);
4021 unsigned final_prec
4022 = TYPE_PRECISION (for_type != 0 ? for_type : type);
4023 int uns
4024 = (for_type != 0 && for_type != type
4025 && final_prec > TYPE_PRECISION (type)
4026 && TREE_UNSIGNED (type));
4027 tree win = op;
4029 while (TREE_CODE (op) == NOP_EXPR)
4031 int bitschange
4032 = TYPE_PRECISION (TREE_TYPE (op))
4033 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
4035 /* Truncations are many-one so cannot be removed.
4036 Unless we are later going to truncate down even farther. */
4037 if (bitschange < 0
4038 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
4039 break;
4041 /* See what's inside this conversion. If we decide to strip it,
4042 we will set WIN. */
4043 op = TREE_OPERAND (op, 0);
4045 /* If we have not stripped any zero-extensions (uns is 0),
4046 we can strip any kind of extension.
4047 If we have previously stripped a zero-extension,
4048 only zero-extensions can safely be stripped.
4049 Any extension can be stripped if the bits it would produce
4050 are all going to be discarded later by truncating to FOR_TYPE. */
4052 if (bitschange > 0)
4054 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
4055 win = op;
4056 /* TREE_UNSIGNED says whether this is a zero-extension.
4057 Let's avoid computing it if it does not affect WIN
4058 and if UNS will not be needed again. */
4059 if ((uns || TREE_CODE (op) == NOP_EXPR)
4060 && TREE_UNSIGNED (TREE_TYPE (op)))
4062 uns = 1;
4063 win = op;
4068 if (TREE_CODE (op) == COMPONENT_REF
4069 /* Since type_for_size always gives an integer type. */
4070 && TREE_CODE (type) != REAL_TYPE
4071 /* Don't crash if field not laid out yet. */
4072 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
4073 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
4075 unsigned int innerprec
4076 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
4077 int unsignedp = TREE_UNSIGNED (TREE_OPERAND (op, 1));
4078 type = (*lang_hooks.types.type_for_size) (innerprec, unsignedp);
4080 /* We can get this structure field in the narrowest type it fits in.
4081 If FOR_TYPE is 0, do this only for a field that matches the
4082 narrower type exactly and is aligned for it
4083 The resulting extension to its nominal type (a fullword type)
4084 must fit the same conditions as for other extensions. */
4086 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4087 && (for_type || ! DECL_BIT_FIELD (TREE_OPERAND (op, 1)))
4088 && (! uns || final_prec <= innerprec || unsignedp)
4089 && type != 0)
4091 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4092 TREE_OPERAND (op, 1));
4093 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4094 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4098 return win;
4101 /* Return OP or a simpler expression for a narrower value
4102 which can be sign-extended or zero-extended to give back OP.
4103 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
4104 or 0 if the value should be sign-extended. */
4106 tree
4107 get_narrower (tree op, int *unsignedp_ptr)
4109 int uns = 0;
4110 int first = 1;
4111 tree win = op;
4113 while (TREE_CODE (op) == NOP_EXPR)
4115 int bitschange
4116 = (TYPE_PRECISION (TREE_TYPE (op))
4117 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
4119 /* Truncations are many-one so cannot be removed. */
4120 if (bitschange < 0)
4121 break;
4123 /* See what's inside this conversion. If we decide to strip it,
4124 we will set WIN. */
4126 if (bitschange > 0)
4128 op = TREE_OPERAND (op, 0);
4129 /* An extension: the outermost one can be stripped,
4130 but remember whether it is zero or sign extension. */
4131 if (first)
4132 uns = TREE_UNSIGNED (TREE_TYPE (op));
4133 /* Otherwise, if a sign extension has been stripped,
4134 only sign extensions can now be stripped;
4135 if a zero extension has been stripped, only zero-extensions. */
4136 else if (uns != TREE_UNSIGNED (TREE_TYPE (op)))
4137 break;
4138 first = 0;
4140 else /* bitschange == 0 */
4142 /* A change in nominal type can always be stripped, but we must
4143 preserve the unsignedness. */
4144 if (first)
4145 uns = TREE_UNSIGNED (TREE_TYPE (op));
4146 first = 0;
4147 op = TREE_OPERAND (op, 0);
4150 win = op;
4153 if (TREE_CODE (op) == COMPONENT_REF
4154 /* Since type_for_size always gives an integer type. */
4155 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
4156 /* Ensure field is laid out already. */
4157 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0)
4159 unsigned HOST_WIDE_INT innerprec
4160 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
4161 tree type = (*lang_hooks.types.type_for_size) (innerprec,
4162 TREE_UNSIGNED (op));
4164 /* We can get this structure field in a narrower type that fits it,
4165 but the resulting extension to its nominal type (a fullword type)
4166 must satisfy the same conditions as for other extensions.
4168 Do this only for fields that are aligned (not bit-fields),
4169 because when bit-field insns will be used there is no
4170 advantage in doing this. */
4172 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4173 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
4174 && (first || uns == TREE_UNSIGNED (TREE_OPERAND (op, 1)))
4175 && type != 0)
4177 if (first)
4178 uns = TREE_UNSIGNED (TREE_OPERAND (op, 1));
4179 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4180 TREE_OPERAND (op, 1));
4181 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4182 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4185 *unsignedp_ptr = uns;
4186 return win;
4189 /* Nonzero if integer constant C has a value that is permissible
4190 for type TYPE (an INTEGER_TYPE). */
4193 int_fits_type_p (tree c, tree type)
4195 tree type_low_bound = TYPE_MIN_VALUE (type);
4196 tree type_high_bound = TYPE_MAX_VALUE (type);
4197 int ok_for_low_bound, ok_for_high_bound;
4199 /* Perform some generic filtering first, which may allow making a decision
4200 even if the bounds are not constant. First, negative integers never fit
4201 in unsigned types, */
4202 if ((TREE_UNSIGNED (type) && tree_int_cst_sgn (c) < 0)
4203 /* Also, unsigned integers with top bit set never fit signed types. */
4204 || (! TREE_UNSIGNED (type)
4205 && TREE_UNSIGNED (TREE_TYPE (c)) && tree_int_cst_msb (c)))
4206 return 0;
4208 /* If at least one bound of the type is a constant integer, we can check
4209 ourselves and maybe make a decision. If no such decision is possible, but
4210 this type is a subtype, try checking against that. Otherwise, use
4211 force_fit_type, which checks against the precision.
4213 Compute the status for each possibly constant bound, and return if we see
4214 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
4215 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
4216 for "constant known to fit". */
4218 ok_for_low_bound = -1;
4219 ok_for_high_bound = -1;
4221 /* Check if C >= type_low_bound. */
4222 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
4224 ok_for_low_bound = ! tree_int_cst_lt (c, type_low_bound);
4225 if (! ok_for_low_bound)
4226 return 0;
4229 /* Check if c <= type_high_bound. */
4230 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
4232 ok_for_high_bound = ! tree_int_cst_lt (type_high_bound, c);
4233 if (! ok_for_high_bound)
4234 return 0;
4237 /* If the constant fits both bounds, the result is known. */
4238 if (ok_for_low_bound == 1 && ok_for_high_bound == 1)
4239 return 1;
4241 /* If we haven't been able to decide at this point, there nothing more we
4242 can check ourselves here. Look at the base type if we have one. */
4243 else if (TREE_CODE (type) == INTEGER_TYPE && TREE_TYPE (type) != 0)
4244 return int_fits_type_p (c, TREE_TYPE (type));
4246 /* Or to force_fit_type, if nothing else. */
4247 else
4249 c = copy_node (c);
4250 TREE_TYPE (c) = type;
4251 return !force_fit_type (c, 0);
4255 /* Returns true if T is, contains, or refers to a type with variable
4256 size. This concept is more general than that of C99 'variably
4257 modified types': in C99, a struct type is never variably modified
4258 because a VLA may not appear as a structure member. However, in
4259 GNU C code like:
4261 struct S { int i[f()]; };
4263 is valid, and other languages may define similar constructs. */
4265 bool
4266 variably_modified_type_p (tree type)
4268 if (type == error_mark_node)
4269 return false;
4271 /* If TYPE itself has variable size, it is variably modified.
4273 We do not yet have a representation of the C99 '[*]' syntax.
4274 When a representation is chosen, this function should be modified
4275 to test for that case as well. */
4276 if (TYPE_SIZE (type)
4277 && TYPE_SIZE (type) != error_mark_node
4278 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4279 return true;
4281 /* If TYPE is a pointer or reference, it is variably modified if
4282 the type pointed to is variably modified. */
4283 if ((TREE_CODE (type) == POINTER_TYPE
4284 || TREE_CODE (type) == REFERENCE_TYPE)
4285 && variably_modified_type_p (TREE_TYPE (type)))
4286 return true;
4288 /* If TYPE is an array, it is variably modified if the array
4289 elements are. (Note that the VLA case has already been checked
4290 above.) */
4291 if (TREE_CODE (type) == ARRAY_TYPE
4292 && variably_modified_type_p (TREE_TYPE (type)))
4293 return true;
4295 /* If TYPE is a function type, it is variably modified if any of the
4296 parameters or the return type are variably modified. */
4297 if (TREE_CODE (type) == FUNCTION_TYPE
4298 || TREE_CODE (type) == METHOD_TYPE)
4300 tree parm;
4302 if (variably_modified_type_p (TREE_TYPE (type)))
4303 return true;
4304 for (parm = TYPE_ARG_TYPES (type);
4305 parm && parm != void_list_node;
4306 parm = TREE_CHAIN (parm))
4307 if (variably_modified_type_p (TREE_VALUE (parm)))
4308 return true;
4311 /* The current language may have other cases to check, but in general,
4312 all other types are not variably modified. */
4313 return (*lang_hooks.tree_inlining.var_mod_type_p) (type);
4316 /* Given a DECL or TYPE, return the scope in which it was declared, or
4317 NULL_TREE if there is no containing scope. */
4319 tree
4320 get_containing_scope (tree t)
4322 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
4325 /* Return the innermost context enclosing DECL that is
4326 a FUNCTION_DECL, or zero if none. */
4328 tree
4329 decl_function_context (tree decl)
4331 tree context;
4333 if (TREE_CODE (decl) == ERROR_MARK)
4334 return 0;
4336 if (TREE_CODE (decl) == SAVE_EXPR)
4337 context = SAVE_EXPR_CONTEXT (decl);
4339 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
4340 where we look up the function at runtime. Such functions always take
4341 a first argument of type 'pointer to real context'.
4343 C++ should really be fixed to use DECL_CONTEXT for the real context,
4344 and use something else for the "virtual context". */
4345 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
4346 context
4347 = TYPE_MAIN_VARIANT
4348 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4349 else
4350 context = DECL_CONTEXT (decl);
4352 while (context && TREE_CODE (context) != FUNCTION_DECL)
4354 if (TREE_CODE (context) == BLOCK)
4355 context = BLOCK_SUPERCONTEXT (context);
4356 else
4357 context = get_containing_scope (context);
4360 return context;
4363 /* Return the innermost context enclosing DECL that is
4364 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
4365 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
4367 tree
4368 decl_type_context (tree decl)
4370 tree context = DECL_CONTEXT (decl);
4372 while (context)
4374 if (TREE_CODE (context) == NAMESPACE_DECL)
4375 return NULL_TREE;
4377 if (TREE_CODE (context) == RECORD_TYPE
4378 || TREE_CODE (context) == UNION_TYPE
4379 || TREE_CODE (context) == QUAL_UNION_TYPE)
4380 return context;
4382 if (TREE_CODE (context) == TYPE_DECL
4383 || TREE_CODE (context) == FUNCTION_DECL)
4384 context = DECL_CONTEXT (context);
4386 else if (TREE_CODE (context) == BLOCK)
4387 context = BLOCK_SUPERCONTEXT (context);
4389 else
4390 /* Unhandled CONTEXT!? */
4391 abort ();
4393 return NULL_TREE;
4396 /* CALL is a CALL_EXPR. Return the declaration for the function
4397 called, or NULL_TREE if the called function cannot be
4398 determined. */
4400 tree
4401 get_callee_fndecl (tree call)
4403 tree addr;
4405 /* It's invalid to call this function with anything but a
4406 CALL_EXPR. */
4407 if (TREE_CODE (call) != CALL_EXPR)
4408 abort ();
4410 /* The first operand to the CALL is the address of the function
4411 called. */
4412 addr = TREE_OPERAND (call, 0);
4414 STRIP_NOPS (addr);
4416 /* If this is a readonly function pointer, extract its initial value. */
4417 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
4418 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
4419 && DECL_INITIAL (addr))
4420 addr = DECL_INITIAL (addr);
4422 /* If the address is just `&f' for some function `f', then we know
4423 that `f' is being called. */
4424 if (TREE_CODE (addr) == ADDR_EXPR
4425 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
4426 return TREE_OPERAND (addr, 0);
4428 /* We couldn't figure out what was being called. */
4429 return NULL_TREE;
4432 /* Print debugging information about tree nodes generated during the compile,
4433 and any language-specific information. */
4435 void
4436 dump_tree_statistics (void)
4438 #ifdef GATHER_STATISTICS
4439 int i;
4440 int total_nodes, total_bytes;
4441 #endif
4443 fprintf (stderr, "\n??? tree nodes created\n\n");
4444 #ifdef GATHER_STATISTICS
4445 fprintf (stderr, "Kind Nodes Bytes\n");
4446 fprintf (stderr, "-------------------------------------\n");
4447 total_nodes = total_bytes = 0;
4448 for (i = 0; i < (int) all_kinds; i++)
4450 fprintf (stderr, "%-20s %6d %9d\n", tree_node_kind_names[i],
4451 tree_node_counts[i], tree_node_sizes[i]);
4452 total_nodes += tree_node_counts[i];
4453 total_bytes += tree_node_sizes[i];
4455 fprintf (stderr, "-------------------------------------\n");
4456 fprintf (stderr, "%-20s %6d %9d\n", "Total", total_nodes, total_bytes);
4457 fprintf (stderr, "-------------------------------------\n");
4458 #else
4459 fprintf (stderr, "(No per-node statistics)\n");
4460 #endif
4461 print_type_hash_statistics ();
4462 (*lang_hooks.print_statistics) ();
4465 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
4467 /* Generate a crc32 of a string. */
4469 unsigned
4470 crc32_string (unsigned chksum, const char *string)
4474 unsigned value = *string << 24;
4475 unsigned ix;
4477 for (ix = 8; ix--; value <<= 1)
4479 unsigned feedback;
4481 feedback = (value ^ chksum) & 0x80000000 ? 0x04c11db7 : 0;
4482 chksum <<= 1;
4483 chksum ^= feedback;
4486 while (*string++);
4487 return chksum;
4490 /* P is a string that will be used in a symbol. Mask out any characters
4491 that are not valid in that context. */
4493 void
4494 clean_symbol_name (char *p)
4496 for (; *p; p++)
4497 if (! (ISALNUM (*p)
4498 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
4499 || *p == '$'
4500 #endif
4501 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
4502 || *p == '.'
4503 #endif
4505 *p = '_';
4508 /* Generate a name for a function unique to this translation unit.
4509 TYPE is some string to identify the purpose of this function to the
4510 linker or collect2. */
4512 tree
4513 get_file_function_name_long (const char *type)
4515 char *buf;
4516 const char *p;
4517 char *q;
4519 if (first_global_object_name)
4520 p = first_global_object_name;
4521 else
4523 /* We don't have anything that we know to be unique to this translation
4524 unit, so use what we do have and throw in some randomness. */
4525 unsigned len;
4526 const char *name = weak_global_object_name;
4527 const char *file = main_input_filename;
4529 if (! name)
4530 name = "";
4531 if (! file)
4532 file = input_filename;
4534 len = strlen (file);
4535 q = (char *) alloca (9 * 2 + len);
4536 memcpy (q, file, len + 1);
4537 clean_symbol_name (q);
4539 sprintf (q + len, "_%08X_%08X", crc32_string (0, name),
4540 crc32_string (0, flag_random_seed));
4542 p = q;
4545 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
4546 + strlen (type));
4548 /* Set up the name of the file-level functions we may need.
4549 Use a global object (which is already required to be unique over
4550 the program) rather than the file name (which imposes extra
4551 constraints). */
4552 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
4554 return get_identifier (buf);
4557 /* If KIND=='I', return a suitable global initializer (constructor) name.
4558 If KIND=='D', return a suitable global clean-up (destructor) name. */
4560 tree
4561 get_file_function_name (int kind)
4563 char p[2];
4565 p[0] = kind;
4566 p[1] = 0;
4568 return get_file_function_name_long (p);
4571 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4572 The result is placed in BUFFER (which has length BIT_SIZE),
4573 with one bit in each char ('\000' or '\001').
4575 If the constructor is constant, NULL_TREE is returned.
4576 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4578 tree
4579 get_set_constructor_bits (tree init, char *buffer, int bit_size)
4581 int i;
4582 tree vals;
4583 HOST_WIDE_INT domain_min
4584 = tree_low_cst (TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (init))), 0);
4585 tree non_const_bits = NULL_TREE;
4587 for (i = 0; i < bit_size; i++)
4588 buffer[i] = 0;
4590 for (vals = TREE_OPERAND (init, 1);
4591 vals != NULL_TREE; vals = TREE_CHAIN (vals))
4593 if (!host_integerp (TREE_VALUE (vals), 0)
4594 || (TREE_PURPOSE (vals) != NULL_TREE
4595 && !host_integerp (TREE_PURPOSE (vals), 0)))
4596 non_const_bits
4597 = tree_cons (TREE_PURPOSE (vals), TREE_VALUE (vals), non_const_bits);
4598 else if (TREE_PURPOSE (vals) != NULL_TREE)
4600 /* Set a range of bits to ones. */
4601 HOST_WIDE_INT lo_index
4602 = tree_low_cst (TREE_PURPOSE (vals), 0) - domain_min;
4603 HOST_WIDE_INT hi_index
4604 = tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
4606 if (lo_index < 0 || lo_index >= bit_size
4607 || hi_index < 0 || hi_index >= bit_size)
4608 abort ();
4609 for (; lo_index <= hi_index; lo_index++)
4610 buffer[lo_index] = 1;
4612 else
4614 /* Set a single bit to one. */
4615 HOST_WIDE_INT index
4616 = tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
4617 if (index < 0 || index >= bit_size)
4619 error ("invalid initializer for bit string");
4620 return NULL_TREE;
4622 buffer[index] = 1;
4625 return non_const_bits;
4628 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4629 The result is placed in BUFFER (which is an array of bytes).
4630 If the constructor is constant, NULL_TREE is returned.
4631 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4633 tree
4634 get_set_constructor_bytes (tree init, unsigned char *buffer, int wd_size)
4636 int i;
4637 int set_word_size = BITS_PER_UNIT;
4638 int bit_size = wd_size * set_word_size;
4639 int bit_pos = 0;
4640 unsigned char *bytep = buffer;
4641 char *bit_buffer = (char *) alloca (bit_size);
4642 tree non_const_bits = get_set_constructor_bits (init, bit_buffer, bit_size);
4644 for (i = 0; i < wd_size; i++)
4645 buffer[i] = 0;
4647 for (i = 0; i < bit_size; i++)
4649 if (bit_buffer[i])
4651 if (BYTES_BIG_ENDIAN)
4652 *bytep |= (1 << (set_word_size - 1 - bit_pos));
4653 else
4654 *bytep |= 1 << bit_pos;
4656 bit_pos++;
4657 if (bit_pos >= set_word_size)
4658 bit_pos = 0, bytep++;
4660 return non_const_bits;
4663 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
4664 /* Complain that the tree code of NODE does not match the expected CODE.
4665 FILE, LINE, and FUNCTION are of the caller. */
4667 void
4668 tree_check_failed (const tree node, enum tree_code code, const char *file,
4669 int line, const char *function)
4671 internal_error ("tree check: expected %s, have %s in %s, at %s:%d",
4672 tree_code_name[code], tree_code_name[TREE_CODE (node)],
4673 function, trim_filename (file), line);
4676 /* Similar to above, except that we check for a class of tree
4677 code, given in CL. */
4679 void
4680 tree_class_check_failed (const tree node, int cl, const char *file,
4681 int line, const char *function)
4683 internal_error
4684 ("tree check: expected class '%c', have '%c' (%s) in %s, at %s:%d",
4685 cl, TREE_CODE_CLASS (TREE_CODE (node)),
4686 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
4689 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
4690 (dynamically sized) vector. */
4692 void
4693 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
4694 const char *function)
4696 internal_error
4697 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
4698 idx + 1, len, function, trim_filename (file), line);
4701 /* Similar to above, except that the check is for the bounds of the operand
4702 vector of an expression node. */
4704 void
4705 tree_operand_check_failed (int idx, enum tree_code code, const char *file,
4706 int line, const char *function)
4708 internal_error
4709 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
4710 idx + 1, tree_code_name[code], TREE_CODE_LENGTH (code),
4711 function, trim_filename (file), line);
4713 #endif /* ENABLE_TREE_CHECKING */
4715 /* For a new vector type node T, build the information necessary for
4716 debugging output. */
4718 static void
4719 finish_vector_type (tree t)
4721 layout_type (t);
4724 tree index = build_int_2 (TYPE_VECTOR_SUBPARTS (t) - 1, 0);
4725 tree array = build_array_type (TREE_TYPE (t),
4726 build_index_type (index));
4727 tree rt = make_node (RECORD_TYPE);
4729 TYPE_FIELDS (rt) = build_decl (FIELD_DECL, get_identifier ("f"), array);
4730 DECL_CONTEXT (TYPE_FIELDS (rt)) = rt;
4731 layout_type (rt);
4732 TYPE_DEBUG_REPRESENTATION_TYPE (t) = rt;
4733 /* In dwarfout.c, type lookup uses TYPE_UID numbers. We want to output
4734 the representation type, and we want to find that die when looking up
4735 the vector type. This is most easily achieved by making the TYPE_UID
4736 numbers equal. */
4737 TYPE_UID (rt) = TYPE_UID (t);
4741 /* Create nodes for all integer types (and error_mark_node) using the sizes
4742 of C datatypes. The caller should call set_sizetype soon after calling
4743 this function to select one of the types as sizetype. */
4745 void
4746 build_common_tree_nodes (int signed_char)
4748 error_mark_node = make_node (ERROR_MARK);
4749 TREE_TYPE (error_mark_node) = error_mark_node;
4751 initialize_sizetypes ();
4753 /* Define both `signed char' and `unsigned char'. */
4754 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
4755 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
4757 /* Define `char', which is like either `signed char' or `unsigned char'
4758 but not the same as either. */
4759 char_type_node
4760 = (signed_char
4761 ? make_signed_type (CHAR_TYPE_SIZE)
4762 : make_unsigned_type (CHAR_TYPE_SIZE));
4764 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
4765 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
4766 integer_type_node = make_signed_type (INT_TYPE_SIZE);
4767 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
4768 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
4769 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
4770 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
4771 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
4773 intQI_type_node = make_signed_type (GET_MODE_BITSIZE (QImode));
4774 intHI_type_node = make_signed_type (GET_MODE_BITSIZE (HImode));
4775 intSI_type_node = make_signed_type (GET_MODE_BITSIZE (SImode));
4776 intDI_type_node = make_signed_type (GET_MODE_BITSIZE (DImode));
4777 intTI_type_node = make_signed_type (GET_MODE_BITSIZE (TImode));
4779 unsigned_intQI_type_node = make_unsigned_type (GET_MODE_BITSIZE (QImode));
4780 unsigned_intHI_type_node = make_unsigned_type (GET_MODE_BITSIZE (HImode));
4781 unsigned_intSI_type_node = make_unsigned_type (GET_MODE_BITSIZE (SImode));
4782 unsigned_intDI_type_node = make_unsigned_type (GET_MODE_BITSIZE (DImode));
4783 unsigned_intTI_type_node = make_unsigned_type (GET_MODE_BITSIZE (TImode));
4786 /* Call this function after calling build_common_tree_nodes and set_sizetype.
4787 It will create several other common tree nodes. */
4789 void
4790 build_common_tree_nodes_2 (int short_double)
4792 /* Define these next since types below may used them. */
4793 integer_zero_node = build_int_2 (0, 0);
4794 integer_one_node = build_int_2 (1, 0);
4795 integer_minus_one_node = build_int_2 (-1, -1);
4797 size_zero_node = size_int (0);
4798 size_one_node = size_int (1);
4799 bitsize_zero_node = bitsize_int (0);
4800 bitsize_one_node = bitsize_int (1);
4801 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
4803 void_type_node = make_node (VOID_TYPE);
4804 layout_type (void_type_node);
4806 /* We are not going to have real types in C with less than byte alignment,
4807 so we might as well not have any types that claim to have it. */
4808 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
4809 TYPE_USER_ALIGN (void_type_node) = 0;
4811 null_pointer_node = build_int_2 (0, 0);
4812 TREE_TYPE (null_pointer_node) = build_pointer_type (void_type_node);
4813 layout_type (TREE_TYPE (null_pointer_node));
4815 ptr_type_node = build_pointer_type (void_type_node);
4816 const_ptr_type_node
4817 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
4819 float_type_node = make_node (REAL_TYPE);
4820 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
4821 layout_type (float_type_node);
4823 double_type_node = make_node (REAL_TYPE);
4824 if (short_double)
4825 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
4826 else
4827 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
4828 layout_type (double_type_node);
4830 long_double_type_node = make_node (REAL_TYPE);
4831 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
4832 layout_type (long_double_type_node);
4834 complex_integer_type_node = make_node (COMPLEX_TYPE);
4835 TREE_TYPE (complex_integer_type_node) = integer_type_node;
4836 layout_type (complex_integer_type_node);
4838 complex_float_type_node = make_node (COMPLEX_TYPE);
4839 TREE_TYPE (complex_float_type_node) = float_type_node;
4840 layout_type (complex_float_type_node);
4842 complex_double_type_node = make_node (COMPLEX_TYPE);
4843 TREE_TYPE (complex_double_type_node) = double_type_node;
4844 layout_type (complex_double_type_node);
4846 complex_long_double_type_node = make_node (COMPLEX_TYPE);
4847 TREE_TYPE (complex_long_double_type_node) = long_double_type_node;
4848 layout_type (complex_long_double_type_node);
4851 tree t;
4852 BUILD_VA_LIST_TYPE (t);
4854 /* Many back-ends define record types without setting TYPE_NAME.
4855 If we copied the record type here, we'd keep the original
4856 record type without a name. This breaks name mangling. So,
4857 don't copy record types and let c_common_nodes_and_builtins()
4858 declare the type to be __builtin_va_list. */
4859 if (TREE_CODE (t) != RECORD_TYPE)
4860 t = build_type_copy (t);
4862 va_list_type_node = t;
4865 unsigned_V4SI_type_node
4866 = make_vector (V4SImode, unsigned_intSI_type_node, 1);
4867 unsigned_V2HI_type_node
4868 = make_vector (V2HImode, unsigned_intHI_type_node, 1);
4869 unsigned_V2SI_type_node
4870 = make_vector (V2SImode, unsigned_intSI_type_node, 1);
4871 unsigned_V2DI_type_node
4872 = make_vector (V2DImode, unsigned_intDI_type_node, 1);
4873 unsigned_V4HI_type_node
4874 = make_vector (V4HImode, unsigned_intHI_type_node, 1);
4875 unsigned_V8QI_type_node
4876 = make_vector (V8QImode, unsigned_intQI_type_node, 1);
4877 unsigned_V8HI_type_node
4878 = make_vector (V8HImode, unsigned_intHI_type_node, 1);
4879 unsigned_V16QI_type_node
4880 = make_vector (V16QImode, unsigned_intQI_type_node, 1);
4881 unsigned_V1DI_type_node
4882 = make_vector (V1DImode, unsigned_intDI_type_node, 1);
4884 V16SF_type_node = make_vector (V16SFmode, float_type_node, 0);
4885 V4SF_type_node = make_vector (V4SFmode, float_type_node, 0);
4886 V4SI_type_node = make_vector (V4SImode, intSI_type_node, 0);
4887 V2HI_type_node = make_vector (V2HImode, intHI_type_node, 0);
4888 V2SI_type_node = make_vector (V2SImode, intSI_type_node, 0);
4889 V2DI_type_node = make_vector (V2DImode, intDI_type_node, 0);
4890 V4HI_type_node = make_vector (V4HImode, intHI_type_node, 0);
4891 V8QI_type_node = make_vector (V8QImode, intQI_type_node, 0);
4892 V8HI_type_node = make_vector (V8HImode, intHI_type_node, 0);
4893 V2SF_type_node = make_vector (V2SFmode, float_type_node, 0);
4894 V2DF_type_node = make_vector (V2DFmode, double_type_node, 0);
4895 V16QI_type_node = make_vector (V16QImode, intQI_type_node, 0);
4896 V1DI_type_node = make_vector (V1DImode, intDI_type_node, 0);
4899 /* Returns a vector tree node given a vector mode, the inner type, and
4900 the signness. */
4902 static tree
4903 make_vector (enum machine_mode mode, tree innertype, int unsignedp)
4905 tree t;
4907 t = make_node (VECTOR_TYPE);
4908 TREE_TYPE (t) = innertype;
4909 TYPE_MODE (t) = mode;
4910 TREE_UNSIGNED (TREE_TYPE (t)) = unsignedp;
4911 finish_vector_type (t);
4913 return t;
4916 /* Given an initializer INIT, return TRUE if INIT is zero or some
4917 aggregate of zeros. Otherwise return FALSE. */
4919 bool
4920 initializer_zerop (tree init)
4922 STRIP_NOPS (init);
4924 switch (TREE_CODE (init))
4926 case INTEGER_CST:
4927 return integer_zerop (init);
4928 case REAL_CST:
4929 return real_zerop (init)
4930 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
4931 case COMPLEX_CST:
4932 return integer_zerop (init)
4933 || (real_zerop (init)
4934 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
4935 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
4936 case CONSTRUCTOR:
4938 if (AGGREGATE_TYPE_P (TREE_TYPE (init)))
4940 tree aggr_init = CONSTRUCTOR_ELTS (init);
4942 while (aggr_init)
4944 if (! initializer_zerop (TREE_VALUE (aggr_init)))
4945 return false;
4946 aggr_init = TREE_CHAIN (aggr_init);
4948 return true;
4950 return false;
4952 default:
4953 return false;
4957 #include "gt-tree.h"