* configure.in: Add ${libgcj} to noconfigdirs for xtensa-*-* targets.
[official-gcc.git] / gcc / function.c
blob742ad2f7340b079f1356932e7475d63e9fa69fa7
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register.
36 Call `put_var_into_stack' when you learn, belatedly, that a variable
37 previously given a pseudo-register must in fact go in the stack.
38 This function changes the DECL_RTL to be a stack slot instead of a reg
39 then scans all the RTL instructions so far generated to correct them. */
41 #include "config.h"
42 #include "system.h"
43 #include "coretypes.h"
44 #include "tm.h"
45 #include "rtl.h"
46 #include "tree.h"
47 #include "flags.h"
48 #include "except.h"
49 #include "function.h"
50 #include "expr.h"
51 #include "optabs.h"
52 #include "libfuncs.h"
53 #include "regs.h"
54 #include "hard-reg-set.h"
55 #include "insn-config.h"
56 #include "recog.h"
57 #include "output.h"
58 #include "basic-block.h"
59 #include "toplev.h"
60 #include "hashtab.h"
61 #include "ggc.h"
62 #include "tm_p.h"
63 #include "integrate.h"
64 #include "langhooks.h"
66 #ifndef TRAMPOLINE_ALIGNMENT
67 #define TRAMPOLINE_ALIGNMENT FUNCTION_BOUNDARY
68 #endif
70 #ifndef LOCAL_ALIGNMENT
71 #define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
72 #endif
74 #ifndef STACK_ALIGNMENT_NEEDED
75 #define STACK_ALIGNMENT_NEEDED 1
76 #endif
78 /* Some systems use __main in a way incompatible with its use in gcc, in these
79 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
80 give the same symbol without quotes for an alternative entry point. You
81 must define both, or neither. */
82 #ifndef NAME__MAIN
83 #define NAME__MAIN "__main"
84 #endif
86 /* Round a value to the lowest integer less than it that is a multiple of
87 the required alignment. Avoid using division in case the value is
88 negative. Assume the alignment is a power of two. */
89 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
91 /* Similar, but round to the next highest integer that meets the
92 alignment. */
93 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
95 /* NEED_SEPARATE_AP means that we cannot derive ap from the value of fp
96 during rtl generation. If they are different register numbers, this is
97 always true. It may also be true if
98 FIRST_PARM_OFFSET - STARTING_FRAME_OFFSET is not a constant during rtl
99 generation. See fix_lexical_addr for details. */
101 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
102 #define NEED_SEPARATE_AP
103 #endif
105 /* Nonzero if function being compiled doesn't contain any calls
106 (ignoring the prologue and epilogue). This is set prior to
107 local register allocation and is valid for the remaining
108 compiler passes. */
109 int current_function_is_leaf;
111 /* Nonzero if function being compiled doesn't contain any instructions
112 that can throw an exception. This is set prior to final. */
114 int current_function_nothrow;
116 /* Nonzero if function being compiled doesn't modify the stack pointer
117 (ignoring the prologue and epilogue). This is only valid after
118 life_analysis has run. */
119 int current_function_sp_is_unchanging;
121 /* Nonzero if the function being compiled is a leaf function which only
122 uses leaf registers. This is valid after reload (specifically after
123 sched2) and is useful only if the port defines LEAF_REGISTERS. */
124 int current_function_uses_only_leaf_regs;
126 /* Nonzero once virtual register instantiation has been done.
127 assign_stack_local uses frame_pointer_rtx when this is nonzero.
128 calls.c:emit_library_call_value_1 uses it to set up
129 post-instantiation libcalls. */
130 int virtuals_instantiated;
132 /* Nonzero if at least one trampoline has been created. */
133 int trampolines_created;
135 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
136 static GTY(()) int funcdef_no;
138 /* These variables hold pointers to functions to create and destroy
139 target specific, per-function data structures. */
140 struct machine_function * (*init_machine_status) (void);
142 /* The FUNCTION_DECL for an inline function currently being expanded. */
143 tree inline_function_decl;
145 /* The currently compiled function. */
146 struct function *cfun = 0;
148 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
149 static GTY(()) varray_type prologue;
150 static GTY(()) varray_type epilogue;
152 /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
153 in this function. */
154 static GTY(()) varray_type sibcall_epilogue;
156 /* In order to evaluate some expressions, such as function calls returning
157 structures in memory, we need to temporarily allocate stack locations.
158 We record each allocated temporary in the following structure.
160 Associated with each temporary slot is a nesting level. When we pop up
161 one level, all temporaries associated with the previous level are freed.
162 Normally, all temporaries are freed after the execution of the statement
163 in which they were created. However, if we are inside a ({...}) grouping,
164 the result may be in a temporary and hence must be preserved. If the
165 result could be in a temporary, we preserve it if we can determine which
166 one it is in. If we cannot determine which temporary may contain the
167 result, all temporaries are preserved. A temporary is preserved by
168 pretending it was allocated at the previous nesting level.
170 Automatic variables are also assigned temporary slots, at the nesting
171 level where they are defined. They are marked a "kept" so that
172 free_temp_slots will not free them. */
174 struct temp_slot GTY(())
176 /* Points to next temporary slot. */
177 struct temp_slot *next;
178 /* The rtx to used to reference the slot. */
179 rtx slot;
180 /* The rtx used to represent the address if not the address of the
181 slot above. May be an EXPR_LIST if multiple addresses exist. */
182 rtx address;
183 /* The alignment (in bits) of the slot. */
184 unsigned int align;
185 /* The size, in units, of the slot. */
186 HOST_WIDE_INT size;
187 /* The type of the object in the slot, or zero if it doesn't correspond
188 to a type. We use this to determine whether a slot can be reused.
189 It can be reused if objects of the type of the new slot will always
190 conflict with objects of the type of the old slot. */
191 tree type;
192 /* The value of `sequence_rtl_expr' when this temporary is allocated. */
193 tree rtl_expr;
194 /* Nonzero if this temporary is currently in use. */
195 char in_use;
196 /* Nonzero if this temporary has its address taken. */
197 char addr_taken;
198 /* Nesting level at which this slot is being used. */
199 int level;
200 /* Nonzero if this should survive a call to free_temp_slots. */
201 int keep;
202 /* The offset of the slot from the frame_pointer, including extra space
203 for alignment. This info is for combine_temp_slots. */
204 HOST_WIDE_INT base_offset;
205 /* The size of the slot, including extra space for alignment. This
206 info is for combine_temp_slots. */
207 HOST_WIDE_INT full_size;
210 /* This structure is used to record MEMs or pseudos used to replace VAR, any
211 SUBREGs of VAR, and any MEMs containing VAR as an address. We need to
212 maintain this list in case two operands of an insn were required to match;
213 in that case we must ensure we use the same replacement. */
215 struct fixup_replacement GTY(())
217 rtx old;
218 rtx new;
219 struct fixup_replacement *next;
222 struct insns_for_mem_entry
224 /* A MEM. */
225 rtx key;
226 /* These are the INSNs which reference the MEM. */
227 rtx insns;
230 /* Forward declarations. */
232 static rtx assign_stack_local_1 (enum machine_mode, HOST_WIDE_INT, int,
233 struct function *);
234 static struct temp_slot *find_temp_slot_from_address (rtx);
235 static void put_reg_into_stack (struct function *, rtx, tree, enum machine_mode,
236 enum machine_mode, int, unsigned int, int, htab_t);
237 static void schedule_fixup_var_refs (struct function *, rtx, tree, enum machine_mode,
238 htab_t);
239 static void fixup_var_refs (rtx, enum machine_mode, int, rtx, htab_t);
240 static struct fixup_replacement
241 *find_fixup_replacement (struct fixup_replacement **, rtx);
242 static void fixup_var_refs_insns (rtx, rtx, enum machine_mode, int, int, rtx);
243 static void fixup_var_refs_insns_with_hash (htab_t, rtx, enum machine_mode, int, rtx);
244 static void fixup_var_refs_insn (rtx, rtx, enum machine_mode, int, int, rtx);
245 static void fixup_var_refs_1 (rtx, enum machine_mode, rtx *, rtx,
246 struct fixup_replacement **, rtx);
247 static rtx fixup_memory_subreg (rtx, rtx, enum machine_mode, int);
248 static rtx walk_fixup_memory_subreg (rtx, rtx, enum machine_mode, int);
249 static rtx fixup_stack_1 (rtx, rtx);
250 static void optimize_bit_field (rtx, rtx, rtx *);
251 static void instantiate_decls (tree, int);
252 static void instantiate_decls_1 (tree, int);
253 static void instantiate_decl (rtx, HOST_WIDE_INT, int);
254 static rtx instantiate_new_reg (rtx, HOST_WIDE_INT *);
255 static int instantiate_virtual_regs_1 (rtx *, rtx, int);
256 static void delete_handlers (void);
257 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
258 static void pad_below (struct args_size *, enum machine_mode, tree);
259 static rtx round_trampoline_addr (rtx);
260 static rtx adjust_trampoline_addr (rtx);
261 static tree *identify_blocks_1 (rtx, tree *, tree *, tree *);
262 static void reorder_blocks_0 (tree);
263 static void reorder_blocks_1 (rtx, tree, varray_type *);
264 static void reorder_fix_fragments (tree);
265 static tree blocks_nreverse (tree);
266 static int all_blocks (tree, tree *);
267 static tree *get_block_vector (tree, int *);
268 extern tree debug_find_var_in_block_tree (tree, tree);
269 /* We always define `record_insns' even if its not used so that we
270 can always export `prologue_epilogue_contains'. */
271 static void record_insns (rtx, varray_type *) ATTRIBUTE_UNUSED;
272 static int contains (rtx, varray_type);
273 #ifdef HAVE_return
274 static void emit_return_into_block (basic_block, rtx);
275 #endif
276 static void put_addressof_into_stack (rtx, htab_t);
277 static bool purge_addressof_1 (rtx *, rtx, int, int, int, htab_t);
278 static void purge_single_hard_subreg_set (rtx);
279 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
280 static rtx keep_stack_depressed (rtx);
281 #endif
282 static int is_addressof (rtx *, void *);
283 static hashval_t insns_for_mem_hash (const void *);
284 static int insns_for_mem_comp (const void *, const void *);
285 static int insns_for_mem_walk (rtx *, void *);
286 static void compute_insns_for_mem (rtx, rtx, htab_t);
287 static void prepare_function_start (void);
288 static void do_clobber_return_reg (rtx, void *);
289 static void do_use_return_reg (rtx, void *);
290 static void instantiate_virtual_regs_lossage (rtx);
291 static tree split_complex_args (tree);
292 static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
294 /* Pointer to chain of `struct function' for containing functions. */
295 static GTY(()) struct function *outer_function_chain;
297 /* List of insns that were postponed by purge_addressof_1. */
298 static rtx postponed_insns;
300 /* Given a function decl for a containing function,
301 return the `struct function' for it. */
303 struct function *
304 find_function_data (tree decl)
306 struct function *p;
308 for (p = outer_function_chain; p; p = p->outer)
309 if (p->decl == decl)
310 return p;
312 abort ();
315 /* Save the current context for compilation of a nested function.
316 This is called from language-specific code. The caller should use
317 the enter_nested langhook to save any language-specific state,
318 since this function knows only about language-independent
319 variables. */
321 void
322 push_function_context_to (tree context)
324 struct function *p;
326 if (context)
328 if (context == current_function_decl)
329 cfun->contains_functions = 1;
330 else
332 struct function *containing = find_function_data (context);
333 containing->contains_functions = 1;
337 if (cfun == 0)
338 init_dummy_function_start ();
339 p = cfun;
341 p->outer = outer_function_chain;
342 outer_function_chain = p;
343 p->fixup_var_refs_queue = 0;
345 (*lang_hooks.function.enter_nested) (p);
347 cfun = 0;
350 void
351 push_function_context (void)
353 push_function_context_to (current_function_decl);
356 /* Restore the last saved context, at the end of a nested function.
357 This function is called from language-specific code. */
359 void
360 pop_function_context_from (tree context ATTRIBUTE_UNUSED)
362 struct function *p = outer_function_chain;
363 struct var_refs_queue *queue;
365 cfun = p;
366 outer_function_chain = p->outer;
368 current_function_decl = p->decl;
369 reg_renumber = 0;
371 restore_emit_status (p);
373 (*lang_hooks.function.leave_nested) (p);
375 /* Finish doing put_var_into_stack for any of our variables which became
376 addressable during the nested function. If only one entry has to be
377 fixed up, just do that one. Otherwise, first make a list of MEMs that
378 are not to be unshared. */
379 if (p->fixup_var_refs_queue == 0)
381 else if (p->fixup_var_refs_queue->next == 0)
382 fixup_var_refs (p->fixup_var_refs_queue->modified,
383 p->fixup_var_refs_queue->promoted_mode,
384 p->fixup_var_refs_queue->unsignedp,
385 p->fixup_var_refs_queue->modified, 0);
386 else
388 rtx list = 0;
390 for (queue = p->fixup_var_refs_queue; queue; queue = queue->next)
391 list = gen_rtx_EXPR_LIST (VOIDmode, queue->modified, list);
393 for (queue = p->fixup_var_refs_queue; queue; queue = queue->next)
394 fixup_var_refs (queue->modified, queue->promoted_mode,
395 queue->unsignedp, list, 0);
399 p->fixup_var_refs_queue = 0;
401 /* Reset variables that have known state during rtx generation. */
402 rtx_equal_function_value_matters = 1;
403 virtuals_instantiated = 0;
404 generating_concat_p = 1;
407 void
408 pop_function_context (void)
410 pop_function_context_from (current_function_decl);
413 /* Clear out all parts of the state in F that can safely be discarded
414 after the function has been parsed, but not compiled, to let
415 garbage collection reclaim the memory. */
417 void
418 free_after_parsing (struct function *f)
420 /* f->expr->forced_labels is used by code generation. */
421 /* f->emit->regno_reg_rtx is used by code generation. */
422 /* f->varasm is used by code generation. */
423 /* f->eh->eh_return_stub_label is used by code generation. */
425 (*lang_hooks.function.final) (f);
426 f->stmt = NULL;
429 /* Clear out all parts of the state in F that can safely be discarded
430 after the function has been compiled, to let garbage collection
431 reclaim the memory. */
433 void
434 free_after_compilation (struct function *f)
436 f->eh = NULL;
437 f->expr = NULL;
438 f->emit = NULL;
439 f->varasm = NULL;
440 f->machine = NULL;
442 f->x_temp_slots = NULL;
443 f->arg_offset_rtx = NULL;
444 f->return_rtx = NULL;
445 f->internal_arg_pointer = NULL;
446 f->x_nonlocal_labels = NULL;
447 f->x_nonlocal_goto_handler_slots = NULL;
448 f->x_nonlocal_goto_handler_labels = NULL;
449 f->x_nonlocal_goto_stack_level = NULL;
450 f->x_cleanup_label = NULL;
451 f->x_return_label = NULL;
452 f->computed_goto_common_label = NULL;
453 f->computed_goto_common_reg = NULL;
454 f->x_save_expr_regs = NULL;
455 f->x_stack_slot_list = NULL;
456 f->x_rtl_expr_chain = NULL;
457 f->x_tail_recursion_label = NULL;
458 f->x_tail_recursion_reentry = NULL;
459 f->x_arg_pointer_save_area = NULL;
460 f->x_clobber_return_insn = NULL;
461 f->x_context_display = NULL;
462 f->x_trampoline_list = NULL;
463 f->x_parm_birth_insn = NULL;
464 f->x_last_parm_insn = NULL;
465 f->x_parm_reg_stack_loc = NULL;
466 f->fixup_var_refs_queue = NULL;
467 f->original_arg_vector = NULL;
468 f->original_decl_initial = NULL;
469 f->inl_last_parm_insn = NULL;
470 f->epilogue_delay_list = NULL;
473 /* Allocate fixed slots in the stack frame of the current function. */
475 /* Return size needed for stack frame based on slots so far allocated in
476 function F.
477 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
478 the caller may have to do that. */
480 HOST_WIDE_INT
481 get_func_frame_size (struct function *f)
483 #ifdef FRAME_GROWS_DOWNWARD
484 return -f->x_frame_offset;
485 #else
486 return f->x_frame_offset;
487 #endif
490 /* Return size needed for stack frame based on slots so far allocated.
491 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
492 the caller may have to do that. */
493 HOST_WIDE_INT
494 get_frame_size (void)
496 return get_func_frame_size (cfun);
499 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
500 with machine mode MODE.
502 ALIGN controls the amount of alignment for the address of the slot:
503 0 means according to MODE,
504 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
505 positive specifies alignment boundary in bits.
507 We do not round to stack_boundary here.
509 FUNCTION specifies the function to allocate in. */
511 static rtx
512 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size, int align,
513 struct function *function)
515 rtx x, addr;
516 int bigend_correction = 0;
517 int alignment;
518 int frame_off, frame_alignment, frame_phase;
520 if (align == 0)
522 tree type;
524 if (mode == BLKmode)
525 alignment = BIGGEST_ALIGNMENT;
526 else
527 alignment = GET_MODE_ALIGNMENT (mode);
529 /* Allow the target to (possibly) increase the alignment of this
530 stack slot. */
531 type = (*lang_hooks.types.type_for_mode) (mode, 0);
532 if (type)
533 alignment = LOCAL_ALIGNMENT (type, alignment);
535 alignment /= BITS_PER_UNIT;
537 else if (align == -1)
539 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
540 size = CEIL_ROUND (size, alignment);
542 else
543 alignment = align / BITS_PER_UNIT;
545 #ifdef FRAME_GROWS_DOWNWARD
546 function->x_frame_offset -= size;
547 #endif
549 /* Ignore alignment we can't do with expected alignment of the boundary. */
550 if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
551 alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
553 if (function->stack_alignment_needed < alignment * BITS_PER_UNIT)
554 function->stack_alignment_needed = alignment * BITS_PER_UNIT;
556 /* Calculate how many bytes the start of local variables is off from
557 stack alignment. */
558 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
559 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
560 frame_phase = frame_off ? frame_alignment - frame_off : 0;
562 /* Round the frame offset to the specified alignment. The default is
563 to always honor requests to align the stack but a port may choose to
564 do its own stack alignment by defining STACK_ALIGNMENT_NEEDED. */
565 if (STACK_ALIGNMENT_NEEDED
566 || mode != BLKmode
567 || size != 0)
569 /* We must be careful here, since FRAME_OFFSET might be negative and
570 division with a negative dividend isn't as well defined as we might
571 like. So we instead assume that ALIGNMENT is a power of two and
572 use logical operations which are unambiguous. */
573 #ifdef FRAME_GROWS_DOWNWARD
574 function->x_frame_offset
575 = (FLOOR_ROUND (function->x_frame_offset - frame_phase, alignment)
576 + frame_phase);
577 #else
578 function->x_frame_offset
579 = (CEIL_ROUND (function->x_frame_offset - frame_phase, alignment)
580 + frame_phase);
581 #endif
584 /* On a big-endian machine, if we are allocating more space than we will use,
585 use the least significant bytes of those that are allocated. */
586 if (BYTES_BIG_ENDIAN && mode != BLKmode)
587 bigend_correction = size - GET_MODE_SIZE (mode);
589 /* If we have already instantiated virtual registers, return the actual
590 address relative to the frame pointer. */
591 if (function == cfun && virtuals_instantiated)
592 addr = plus_constant (frame_pointer_rtx,
593 trunc_int_for_mode
594 (frame_offset + bigend_correction
595 + STARTING_FRAME_OFFSET, Pmode));
596 else
597 addr = plus_constant (virtual_stack_vars_rtx,
598 trunc_int_for_mode
599 (function->x_frame_offset + bigend_correction,
600 Pmode));
602 #ifndef FRAME_GROWS_DOWNWARD
603 function->x_frame_offset += size;
604 #endif
606 x = gen_rtx_MEM (mode, addr);
608 function->x_stack_slot_list
609 = gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list);
611 return x;
614 /* Wrapper around assign_stack_local_1; assign a local stack slot for the
615 current function. */
618 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
620 return assign_stack_local_1 (mode, size, align, cfun);
623 /* Allocate a temporary stack slot and record it for possible later
624 reuse.
626 MODE is the machine mode to be given to the returned rtx.
628 SIZE is the size in units of the space required. We do no rounding here
629 since assign_stack_local will do any required rounding.
631 KEEP is 1 if this slot is to be retained after a call to
632 free_temp_slots. Automatic variables for a block are allocated
633 with this flag. KEEP is 2 if we allocate a longer term temporary,
634 whose lifetime is controlled by CLEANUP_POINT_EXPRs. KEEP is 3
635 if we are to allocate something at an inner level to be treated as
636 a variable in the block (e.g., a SAVE_EXPR).
638 TYPE is the type that will be used for the stack slot. */
641 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size, int keep,
642 tree type)
644 unsigned int align;
645 struct temp_slot *p, *best_p = 0;
646 rtx slot;
648 /* If SIZE is -1 it means that somebody tried to allocate a temporary
649 of a variable size. */
650 if (size == -1)
651 abort ();
653 if (mode == BLKmode)
654 align = BIGGEST_ALIGNMENT;
655 else
656 align = GET_MODE_ALIGNMENT (mode);
658 if (! type)
659 type = (*lang_hooks.types.type_for_mode) (mode, 0);
661 if (type)
662 align = LOCAL_ALIGNMENT (type, align);
664 /* Try to find an available, already-allocated temporary of the proper
665 mode which meets the size and alignment requirements. Choose the
666 smallest one with the closest alignment. */
667 for (p = temp_slots; p; p = p->next)
668 if (p->align >= align && p->size >= size && GET_MODE (p->slot) == mode
669 && ! p->in_use
670 && objects_must_conflict_p (p->type, type)
671 && (best_p == 0 || best_p->size > p->size
672 || (best_p->size == p->size && best_p->align > p->align)))
674 if (p->align == align && p->size == size)
676 best_p = 0;
677 break;
679 best_p = p;
682 /* Make our best, if any, the one to use. */
683 if (best_p)
685 /* If there are enough aligned bytes left over, make them into a new
686 temp_slot so that the extra bytes don't get wasted. Do this only
687 for BLKmode slots, so that we can be sure of the alignment. */
688 if (GET_MODE (best_p->slot) == BLKmode)
690 int alignment = best_p->align / BITS_PER_UNIT;
691 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
693 if (best_p->size - rounded_size >= alignment)
695 p = (struct temp_slot *) ggc_alloc (sizeof (struct temp_slot));
696 p->in_use = p->addr_taken = 0;
697 p->size = best_p->size - rounded_size;
698 p->base_offset = best_p->base_offset + rounded_size;
699 p->full_size = best_p->full_size - rounded_size;
700 p->slot = gen_rtx_MEM (BLKmode,
701 plus_constant (XEXP (best_p->slot, 0),
702 rounded_size));
703 p->align = best_p->align;
704 p->address = 0;
705 p->rtl_expr = 0;
706 p->type = best_p->type;
707 p->next = temp_slots;
708 temp_slots = p;
710 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
711 stack_slot_list);
713 best_p->size = rounded_size;
714 best_p->full_size = rounded_size;
718 p = best_p;
721 /* If we still didn't find one, make a new temporary. */
722 if (p == 0)
724 HOST_WIDE_INT frame_offset_old = frame_offset;
726 p = (struct temp_slot *) ggc_alloc (sizeof (struct temp_slot));
728 /* We are passing an explicit alignment request to assign_stack_local.
729 One side effect of that is assign_stack_local will not round SIZE
730 to ensure the frame offset remains suitably aligned.
732 So for requests which depended on the rounding of SIZE, we go ahead
733 and round it now. We also make sure ALIGNMENT is at least
734 BIGGEST_ALIGNMENT. */
735 if (mode == BLKmode && align < BIGGEST_ALIGNMENT)
736 abort ();
737 p->slot = assign_stack_local (mode,
738 (mode == BLKmode
739 ? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
740 : size),
741 align);
743 p->align = align;
745 /* The following slot size computation is necessary because we don't
746 know the actual size of the temporary slot until assign_stack_local
747 has performed all the frame alignment and size rounding for the
748 requested temporary. Note that extra space added for alignment
749 can be either above or below this stack slot depending on which
750 way the frame grows. We include the extra space if and only if it
751 is above this slot. */
752 #ifdef FRAME_GROWS_DOWNWARD
753 p->size = frame_offset_old - frame_offset;
754 #else
755 p->size = size;
756 #endif
758 /* Now define the fields used by combine_temp_slots. */
759 #ifdef FRAME_GROWS_DOWNWARD
760 p->base_offset = frame_offset;
761 p->full_size = frame_offset_old - frame_offset;
762 #else
763 p->base_offset = frame_offset_old;
764 p->full_size = frame_offset - frame_offset_old;
765 #endif
766 p->address = 0;
767 p->next = temp_slots;
768 temp_slots = p;
771 p->in_use = 1;
772 p->addr_taken = 0;
773 p->rtl_expr = seq_rtl_expr;
774 p->type = type;
776 if (keep == 2)
778 p->level = target_temp_slot_level;
779 p->keep = 0;
781 else if (keep == 3)
783 p->level = var_temp_slot_level;
784 p->keep = 0;
786 else
788 p->level = temp_slot_level;
789 p->keep = keep;
793 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
794 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
795 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
797 /* If we know the alias set for the memory that will be used, use
798 it. If there's no TYPE, then we don't know anything about the
799 alias set for the memory. */
800 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
801 set_mem_align (slot, align);
803 /* If a type is specified, set the relevant flags. */
804 if (type != 0)
806 RTX_UNCHANGING_P (slot) = (lang_hooks.honor_readonly
807 && TYPE_READONLY (type));
808 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
809 MEM_SET_IN_STRUCT_P (slot, AGGREGATE_TYPE_P (type));
812 return slot;
815 /* Allocate a temporary stack slot and record it for possible later
816 reuse. First three arguments are same as in preceding function. */
819 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
821 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
824 /* Assign a temporary.
825 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
826 and so that should be used in error messages. In either case, we
827 allocate of the given type.
828 KEEP is as for assign_stack_temp.
829 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
830 it is 0 if a register is OK.
831 DONT_PROMOTE is 1 if we should not promote values in register
832 to wider modes. */
835 assign_temp (tree type_or_decl, int keep, int memory_required,
836 int dont_promote ATTRIBUTE_UNUSED)
838 tree type, decl;
839 enum machine_mode mode;
840 #ifndef PROMOTE_FOR_CALL_ONLY
841 int unsignedp;
842 #endif
844 if (DECL_P (type_or_decl))
845 decl = type_or_decl, type = TREE_TYPE (decl);
846 else
847 decl = NULL, type = type_or_decl;
849 mode = TYPE_MODE (type);
850 #ifndef PROMOTE_FOR_CALL_ONLY
851 unsignedp = TREE_UNSIGNED (type);
852 #endif
854 if (mode == BLKmode || memory_required)
856 HOST_WIDE_INT size = int_size_in_bytes (type);
857 rtx tmp;
859 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
860 problems with allocating the stack space. */
861 if (size == 0)
862 size = 1;
864 /* Unfortunately, we don't yet know how to allocate variable-sized
865 temporaries. However, sometimes we have a fixed upper limit on
866 the size (which is stored in TYPE_ARRAY_MAX_SIZE) and can use that
867 instead. This is the case for Chill variable-sized strings. */
868 if (size == -1 && TREE_CODE (type) == ARRAY_TYPE
869 && TYPE_ARRAY_MAX_SIZE (type) != NULL_TREE
870 && host_integerp (TYPE_ARRAY_MAX_SIZE (type), 1))
871 size = tree_low_cst (TYPE_ARRAY_MAX_SIZE (type), 1);
873 /* The size of the temporary may be too large to fit into an integer. */
874 /* ??? Not sure this should happen except for user silliness, so limit
875 this to things that aren't compiler-generated temporaries. The
876 rest of the time we'll abort in assign_stack_temp_for_type. */
877 if (decl && size == -1
878 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
880 error_with_decl (decl, "size of variable `%s' is too large");
881 size = 1;
884 tmp = assign_stack_temp_for_type (mode, size, keep, type);
885 return tmp;
888 #ifndef PROMOTE_FOR_CALL_ONLY
889 if (! dont_promote)
890 mode = promote_mode (type, mode, &unsignedp, 0);
891 #endif
893 return gen_reg_rtx (mode);
896 /* Combine temporary stack slots which are adjacent on the stack.
898 This allows for better use of already allocated stack space. This is only
899 done for BLKmode slots because we can be sure that we won't have alignment
900 problems in this case. */
902 void
903 combine_temp_slots (void)
905 struct temp_slot *p, *q;
906 struct temp_slot *prev_p, *prev_q;
907 int num_slots;
909 /* We can't combine slots, because the information about which slot
910 is in which alias set will be lost. */
911 if (flag_strict_aliasing)
912 return;
914 /* If there are a lot of temp slots, don't do anything unless
915 high levels of optimization. */
916 if (! flag_expensive_optimizations)
917 for (p = temp_slots, num_slots = 0; p; p = p->next, num_slots++)
918 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
919 return;
921 for (p = temp_slots, prev_p = 0; p; p = prev_p ? prev_p->next : temp_slots)
923 int delete_p = 0;
925 if (! p->in_use && GET_MODE (p->slot) == BLKmode)
926 for (q = p->next, prev_q = p; q; q = prev_q->next)
928 int delete_q = 0;
929 if (! q->in_use && GET_MODE (q->slot) == BLKmode)
931 if (p->base_offset + p->full_size == q->base_offset)
933 /* Q comes after P; combine Q into P. */
934 p->size += q->size;
935 p->full_size += q->full_size;
936 delete_q = 1;
938 else if (q->base_offset + q->full_size == p->base_offset)
940 /* P comes after Q; combine P into Q. */
941 q->size += p->size;
942 q->full_size += p->full_size;
943 delete_p = 1;
944 break;
947 /* Either delete Q or advance past it. */
948 if (delete_q)
949 prev_q->next = q->next;
950 else
951 prev_q = q;
953 /* Either delete P or advance past it. */
954 if (delete_p)
956 if (prev_p)
957 prev_p->next = p->next;
958 else
959 temp_slots = p->next;
961 else
962 prev_p = p;
966 /* Find the temp slot corresponding to the object at address X. */
968 static struct temp_slot *
969 find_temp_slot_from_address (rtx x)
971 struct temp_slot *p;
972 rtx next;
974 for (p = temp_slots; p; p = p->next)
976 if (! p->in_use)
977 continue;
979 else if (XEXP (p->slot, 0) == x
980 || p->address == x
981 || (GET_CODE (x) == PLUS
982 && XEXP (x, 0) == virtual_stack_vars_rtx
983 && GET_CODE (XEXP (x, 1)) == CONST_INT
984 && INTVAL (XEXP (x, 1)) >= p->base_offset
985 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
986 return p;
988 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
989 for (next = p->address; next; next = XEXP (next, 1))
990 if (XEXP (next, 0) == x)
991 return p;
994 /* If we have a sum involving a register, see if it points to a temp
995 slot. */
996 if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == REG
997 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
998 return p;
999 else if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == REG
1000 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
1001 return p;
1003 return 0;
1006 /* Indicate that NEW is an alternate way of referring to the temp slot
1007 that previously was known by OLD. */
1009 void
1010 update_temp_slot_address (rtx old, rtx new)
1012 struct temp_slot *p;
1014 if (rtx_equal_p (old, new))
1015 return;
1017 p = find_temp_slot_from_address (old);
1019 /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
1020 is a register, see if one operand of the PLUS is a temporary
1021 location. If so, NEW points into it. Otherwise, if both OLD and
1022 NEW are a PLUS and if there is a register in common between them.
1023 If so, try a recursive call on those values. */
1024 if (p == 0)
1026 if (GET_CODE (old) != PLUS)
1027 return;
1029 if (GET_CODE (new) == REG)
1031 update_temp_slot_address (XEXP (old, 0), new);
1032 update_temp_slot_address (XEXP (old, 1), new);
1033 return;
1035 else if (GET_CODE (new) != PLUS)
1036 return;
1038 if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
1039 update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
1040 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
1041 update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
1042 else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
1043 update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
1044 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
1045 update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
1047 return;
1050 /* Otherwise add an alias for the temp's address. */
1051 else if (p->address == 0)
1052 p->address = new;
1053 else
1055 if (GET_CODE (p->address) != EXPR_LIST)
1056 p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
1058 p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
1062 /* If X could be a reference to a temporary slot, mark the fact that its
1063 address was taken. */
1065 void
1066 mark_temp_addr_taken (rtx x)
1068 struct temp_slot *p;
1070 if (x == 0)
1071 return;
1073 /* If X is not in memory or is at a constant address, it cannot be in
1074 a temporary slot. */
1075 if (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
1076 return;
1078 p = find_temp_slot_from_address (XEXP (x, 0));
1079 if (p != 0)
1080 p->addr_taken = 1;
1083 /* If X could be a reference to a temporary slot, mark that slot as
1084 belonging to the to one level higher than the current level. If X
1085 matched one of our slots, just mark that one. Otherwise, we can't
1086 easily predict which it is, so upgrade all of them. Kept slots
1087 need not be touched.
1089 This is called when an ({...}) construct occurs and a statement
1090 returns a value in memory. */
1092 void
1093 preserve_temp_slots (rtx x)
1095 struct temp_slot *p = 0;
1097 /* If there is no result, we still might have some objects whose address
1098 were taken, so we need to make sure they stay around. */
1099 if (x == 0)
1101 for (p = temp_slots; p; p = p->next)
1102 if (p->in_use && p->level == temp_slot_level && p->addr_taken)
1103 p->level--;
1105 return;
1108 /* If X is a register that is being used as a pointer, see if we have
1109 a temporary slot we know it points to. To be consistent with
1110 the code below, we really should preserve all non-kept slots
1111 if we can't find a match, but that seems to be much too costly. */
1112 if (GET_CODE (x) == REG && REG_POINTER (x))
1113 p = find_temp_slot_from_address (x);
1115 /* If X is not in memory or is at a constant address, it cannot be in
1116 a temporary slot, but it can contain something whose address was
1117 taken. */
1118 if (p == 0 && (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0))))
1120 for (p = temp_slots; p; p = p->next)
1121 if (p->in_use && p->level == temp_slot_level && p->addr_taken)
1122 p->level--;
1124 return;
1127 /* First see if we can find a match. */
1128 if (p == 0)
1129 p = find_temp_slot_from_address (XEXP (x, 0));
1131 if (p != 0)
1133 /* Move everything at our level whose address was taken to our new
1134 level in case we used its address. */
1135 struct temp_slot *q;
1137 if (p->level == temp_slot_level)
1139 for (q = temp_slots; q; q = q->next)
1140 if (q != p && q->addr_taken && q->level == p->level)
1141 q->level--;
1143 p->level--;
1144 p->addr_taken = 0;
1146 return;
1149 /* Otherwise, preserve all non-kept slots at this level. */
1150 for (p = temp_slots; p; p = p->next)
1151 if (p->in_use && p->level == temp_slot_level && ! p->keep)
1152 p->level--;
1155 /* X is the result of an RTL_EXPR. If it is a temporary slot associated
1156 with that RTL_EXPR, promote it into a temporary slot at the present
1157 level so it will not be freed when we free slots made in the
1158 RTL_EXPR. */
1160 void
1161 preserve_rtl_expr_result (rtx x)
1163 struct temp_slot *p;
1165 /* If X is not in memory or is at a constant address, it cannot be in
1166 a temporary slot. */
1167 if (x == 0 || GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
1168 return;
1170 /* If we can find a match, move it to our level unless it is already at
1171 an upper level. */
1172 p = find_temp_slot_from_address (XEXP (x, 0));
1173 if (p != 0)
1175 p->level = MIN (p->level, temp_slot_level);
1176 p->rtl_expr = 0;
1179 return;
1182 /* Free all temporaries used so far. This is normally called at the end
1183 of generating code for a statement. Don't free any temporaries
1184 currently in use for an RTL_EXPR that hasn't yet been emitted.
1185 We could eventually do better than this since it can be reused while
1186 generating the same RTL_EXPR, but this is complex and probably not
1187 worthwhile. */
1189 void
1190 free_temp_slots (void)
1192 struct temp_slot *p;
1194 for (p = temp_slots; p; p = p->next)
1195 if (p->in_use && p->level == temp_slot_level && ! p->keep
1196 && p->rtl_expr == 0)
1197 p->in_use = 0;
1199 combine_temp_slots ();
1202 /* Free all temporary slots used in T, an RTL_EXPR node. */
1204 void
1205 free_temps_for_rtl_expr (tree t)
1207 struct temp_slot *p;
1209 for (p = temp_slots; p; p = p->next)
1210 if (p->rtl_expr == t)
1212 /* If this slot is below the current TEMP_SLOT_LEVEL, then it
1213 needs to be preserved. This can happen if a temporary in
1214 the RTL_EXPR was addressed; preserve_temp_slots will move
1215 the temporary into a higher level. */
1216 if (temp_slot_level <= p->level)
1217 p->in_use = 0;
1218 else
1219 p->rtl_expr = NULL_TREE;
1222 combine_temp_slots ();
1225 /* Mark all temporaries ever allocated in this function as not suitable
1226 for reuse until the current level is exited. */
1228 void
1229 mark_all_temps_used (void)
1231 struct temp_slot *p;
1233 for (p = temp_slots; p; p = p->next)
1235 p->in_use = p->keep = 1;
1236 p->level = MIN (p->level, temp_slot_level);
1240 /* Push deeper into the nesting level for stack temporaries. */
1242 void
1243 push_temp_slots (void)
1245 temp_slot_level++;
1248 /* Pop a temporary nesting level. All slots in use in the current level
1249 are freed. */
1251 void
1252 pop_temp_slots (void)
1254 struct temp_slot *p;
1256 for (p = temp_slots; p; p = p->next)
1257 if (p->in_use && p->level == temp_slot_level && p->rtl_expr == 0)
1258 p->in_use = 0;
1260 combine_temp_slots ();
1262 temp_slot_level--;
1265 /* Initialize temporary slots. */
1267 void
1268 init_temp_slots (void)
1270 /* We have not allocated any temporaries yet. */
1271 temp_slots = 0;
1272 temp_slot_level = 0;
1273 var_temp_slot_level = 0;
1274 target_temp_slot_level = 0;
1277 /* Retroactively move an auto variable from a register to a stack
1278 slot. This is done when an address-reference to the variable is
1279 seen. If RESCAN is true, all previously emitted instructions are
1280 examined and modified to handle the fact that DECL is now
1281 addressable. */
1283 void
1284 put_var_into_stack (tree decl, int rescan)
1286 rtx reg;
1287 enum machine_mode promoted_mode, decl_mode;
1288 struct function *function = 0;
1289 tree context;
1290 int can_use_addressof;
1291 int volatilep = TREE_CODE (decl) != SAVE_EXPR && TREE_THIS_VOLATILE (decl);
1292 int usedp = (TREE_USED (decl)
1293 || (TREE_CODE (decl) != SAVE_EXPR && DECL_INITIAL (decl) != 0));
1295 context = decl_function_context (decl);
1297 /* Get the current rtl used for this object and its original mode. */
1298 reg = (TREE_CODE (decl) == SAVE_EXPR
1299 ? SAVE_EXPR_RTL (decl)
1300 : DECL_RTL_IF_SET (decl));
1302 /* No need to do anything if decl has no rtx yet
1303 since in that case caller is setting TREE_ADDRESSABLE
1304 and a stack slot will be assigned when the rtl is made. */
1305 if (reg == 0)
1306 return;
1308 /* Get the declared mode for this object. */
1309 decl_mode = (TREE_CODE (decl) == SAVE_EXPR ? TYPE_MODE (TREE_TYPE (decl))
1310 : DECL_MODE (decl));
1311 /* Get the mode it's actually stored in. */
1312 promoted_mode = GET_MODE (reg);
1314 /* If this variable comes from an outer function, find that
1315 function's saved context. Don't use find_function_data here,
1316 because it might not be in any active function.
1317 FIXME: Is that really supposed to happen?
1318 It does in ObjC at least. */
1319 if (context != current_function_decl && context != inline_function_decl)
1320 for (function = outer_function_chain; function; function = function->outer)
1321 if (function->decl == context)
1322 break;
1324 /* If this is a variable-size object with a pseudo to address it,
1325 put that pseudo into the stack, if the var is nonlocal. */
1326 if (TREE_CODE (decl) != SAVE_EXPR && DECL_NONLOCAL (decl)
1327 && GET_CODE (reg) == MEM
1328 && GET_CODE (XEXP (reg, 0)) == REG
1329 && REGNO (XEXP (reg, 0)) > LAST_VIRTUAL_REGISTER)
1331 reg = XEXP (reg, 0);
1332 decl_mode = promoted_mode = GET_MODE (reg);
1335 can_use_addressof
1336 = (function == 0
1337 && optimize > 0
1338 /* FIXME make it work for promoted modes too */
1339 && decl_mode == promoted_mode
1340 #ifdef NON_SAVING_SETJMP
1341 && ! (NON_SAVING_SETJMP && current_function_calls_setjmp)
1342 #endif
1345 /* If we can't use ADDRESSOF, make sure we see through one we already
1346 generated. */
1347 if (! can_use_addressof && GET_CODE (reg) == MEM
1348 && GET_CODE (XEXP (reg, 0)) == ADDRESSOF)
1349 reg = XEXP (XEXP (reg, 0), 0);
1351 /* Now we should have a value that resides in one or more pseudo regs. */
1353 if (GET_CODE (reg) == REG)
1355 /* If this variable lives in the current function and we don't need
1356 to put things in the stack for the sake of setjmp, try to keep it
1357 in a register until we know we actually need the address. */
1358 if (can_use_addressof)
1359 gen_mem_addressof (reg, decl, rescan);
1360 else
1361 put_reg_into_stack (function, reg, TREE_TYPE (decl), promoted_mode,
1362 decl_mode, volatilep, 0, usedp, 0);
1364 else if (GET_CODE (reg) == CONCAT)
1366 /* A CONCAT contains two pseudos; put them both in the stack.
1367 We do it so they end up consecutive.
1368 We fixup references to the parts only after we fixup references
1369 to the whole CONCAT, lest we do double fixups for the latter
1370 references. */
1371 enum machine_mode part_mode = GET_MODE (XEXP (reg, 0));
1372 tree part_type = (*lang_hooks.types.type_for_mode) (part_mode, 0);
1373 rtx lopart = XEXP (reg, 0);
1374 rtx hipart = XEXP (reg, 1);
1375 #ifdef FRAME_GROWS_DOWNWARD
1376 /* Since part 0 should have a lower address, do it second. */
1377 put_reg_into_stack (function, hipart, part_type, part_mode,
1378 part_mode, volatilep, 0, 0, 0);
1379 put_reg_into_stack (function, lopart, part_type, part_mode,
1380 part_mode, volatilep, 0, 0, 0);
1381 #else
1382 put_reg_into_stack (function, lopart, part_type, part_mode,
1383 part_mode, volatilep, 0, 0, 0);
1384 put_reg_into_stack (function, hipart, part_type, part_mode,
1385 part_mode, volatilep, 0, 0, 0);
1386 #endif
1388 /* Change the CONCAT into a combined MEM for both parts. */
1389 PUT_CODE (reg, MEM);
1390 MEM_ATTRS (reg) = 0;
1392 /* set_mem_attributes uses DECL_RTL to avoid re-generating of
1393 already computed alias sets. Here we want to re-generate. */
1394 if (DECL_P (decl))
1395 SET_DECL_RTL (decl, NULL);
1396 set_mem_attributes (reg, decl, 1);
1397 if (DECL_P (decl))
1398 SET_DECL_RTL (decl, reg);
1400 /* The two parts are in memory order already.
1401 Use the lower parts address as ours. */
1402 XEXP (reg, 0) = XEXP (XEXP (reg, 0), 0);
1403 /* Prevent sharing of rtl that might lose. */
1404 if (GET_CODE (XEXP (reg, 0)) == PLUS)
1405 XEXP (reg, 0) = copy_rtx (XEXP (reg, 0));
1406 if (usedp && rescan)
1408 schedule_fixup_var_refs (function, reg, TREE_TYPE (decl),
1409 promoted_mode, 0);
1410 schedule_fixup_var_refs (function, lopart, part_type, part_mode, 0);
1411 schedule_fixup_var_refs (function, hipart, part_type, part_mode, 0);
1414 else
1415 return;
1418 /* Subroutine of put_var_into_stack. This puts a single pseudo reg REG
1419 into the stack frame of FUNCTION (0 means the current function).
1420 DECL_MODE is the machine mode of the user-level data type.
1421 PROMOTED_MODE is the machine mode of the register.
1422 VOLATILE_P is nonzero if this is for a "volatile" decl.
1423 USED_P is nonzero if this reg might have already been used in an insn. */
1425 static void
1426 put_reg_into_stack (struct function *function, rtx reg, tree type,
1427 enum machine_mode promoted_mode, enum machine_mode decl_mode,
1428 int volatile_p, unsigned int original_regno, int used_p, htab_t ht)
1430 struct function *func = function ? function : cfun;
1431 rtx new = 0;
1432 unsigned int regno = original_regno;
1434 if (regno == 0)
1435 regno = REGNO (reg);
1437 if (regno < func->x_max_parm_reg)
1438 new = func->x_parm_reg_stack_loc[regno];
1440 if (new == 0)
1441 new = assign_stack_local_1 (decl_mode, GET_MODE_SIZE (decl_mode), 0, func);
1443 PUT_CODE (reg, MEM);
1444 PUT_MODE (reg, decl_mode);
1445 XEXP (reg, 0) = XEXP (new, 0);
1446 MEM_ATTRS (reg) = 0;
1447 /* `volatil' bit means one thing for MEMs, another entirely for REGs. */
1448 MEM_VOLATILE_P (reg) = volatile_p;
1450 /* If this is a memory ref that contains aggregate components,
1451 mark it as such for cse and loop optimize. If we are reusing a
1452 previously generated stack slot, then we need to copy the bit in
1453 case it was set for other reasons. For instance, it is set for
1454 __builtin_va_alist. */
1455 if (type)
1457 MEM_SET_IN_STRUCT_P (reg,
1458 AGGREGATE_TYPE_P (type) || MEM_IN_STRUCT_P (new));
1459 set_mem_alias_set (reg, get_alias_set (type));
1462 if (used_p)
1463 schedule_fixup_var_refs (function, reg, type, promoted_mode, ht);
1466 /* Make sure that all refs to the variable, previously made
1467 when it was a register, are fixed up to be valid again.
1468 See function above for meaning of arguments. */
1470 static void
1471 schedule_fixup_var_refs (struct function *function, rtx reg, tree type,
1472 enum machine_mode promoted_mode, htab_t ht)
1474 int unsigned_p = type ? TREE_UNSIGNED (type) : 0;
1476 if (function != 0)
1478 struct var_refs_queue *temp;
1480 temp
1481 = (struct var_refs_queue *) ggc_alloc (sizeof (struct var_refs_queue));
1482 temp->modified = reg;
1483 temp->promoted_mode = promoted_mode;
1484 temp->unsignedp = unsigned_p;
1485 temp->next = function->fixup_var_refs_queue;
1486 function->fixup_var_refs_queue = temp;
1488 else
1489 /* Variable is local; fix it up now. */
1490 fixup_var_refs (reg, promoted_mode, unsigned_p, reg, ht);
1493 static void
1494 fixup_var_refs (rtx var, enum machine_mode promoted_mode, int unsignedp,
1495 rtx may_share, htab_t ht)
1497 tree pending;
1498 rtx first_insn = get_insns ();
1499 struct sequence_stack *stack = seq_stack;
1500 tree rtl_exps = rtl_expr_chain;
1502 /* If there's a hash table, it must record all uses of VAR. */
1503 if (ht)
1505 if (stack != 0)
1506 abort ();
1507 fixup_var_refs_insns_with_hash (ht, var, promoted_mode, unsignedp,
1508 may_share);
1509 return;
1512 fixup_var_refs_insns (first_insn, var, promoted_mode, unsignedp,
1513 stack == 0, may_share);
1515 /* Scan all pending sequences too. */
1516 for (; stack; stack = stack->next)
1518 push_to_full_sequence (stack->first, stack->last);
1519 fixup_var_refs_insns (stack->first, var, promoted_mode, unsignedp,
1520 stack->next != 0, may_share);
1521 /* Update remembered end of sequence
1522 in case we added an insn at the end. */
1523 stack->last = get_last_insn ();
1524 end_sequence ();
1527 /* Scan all waiting RTL_EXPRs too. */
1528 for (pending = rtl_exps; pending; pending = TREE_CHAIN (pending))
1530 rtx seq = RTL_EXPR_SEQUENCE (TREE_VALUE (pending));
1531 if (seq != const0_rtx && seq != 0)
1533 push_to_sequence (seq);
1534 fixup_var_refs_insns (seq, var, promoted_mode, unsignedp, 0,
1535 may_share);
1536 end_sequence ();
1541 /* REPLACEMENTS is a pointer to a list of the struct fixup_replacement and X is
1542 some part of an insn. Return a struct fixup_replacement whose OLD
1543 value is equal to X. Allocate a new structure if no such entry exists. */
1545 static struct fixup_replacement *
1546 find_fixup_replacement (struct fixup_replacement **replacements, rtx x)
1548 struct fixup_replacement *p;
1550 /* See if we have already replaced this. */
1551 for (p = *replacements; p != 0 && ! rtx_equal_p (p->old, x); p = p->next)
1554 if (p == 0)
1556 p = (struct fixup_replacement *) xmalloc (sizeof (struct fixup_replacement));
1557 p->old = x;
1558 p->new = 0;
1559 p->next = *replacements;
1560 *replacements = p;
1563 return p;
1566 /* Scan the insn-chain starting with INSN for refs to VAR and fix them
1567 up. TOPLEVEL is nonzero if this chain is the main chain of insns
1568 for the current function. MAY_SHARE is either a MEM that is not
1569 to be unshared or a list of them. */
1571 static void
1572 fixup_var_refs_insns (rtx insn, rtx var, enum machine_mode promoted_mode,
1573 int unsignedp, int toplevel, rtx may_share)
1575 while (insn)
1577 /* fixup_var_refs_insn might modify insn, so save its next
1578 pointer now. */
1579 rtx next = NEXT_INSN (insn);
1581 /* CALL_PLACEHOLDERs are special; we have to switch into each of
1582 the three sequences they (potentially) contain, and process
1583 them recursively. The CALL_INSN itself is not interesting. */
1585 if (GET_CODE (insn) == CALL_INSN
1586 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
1588 int i;
1590 /* Look at the Normal call, sibling call and tail recursion
1591 sequences attached to the CALL_PLACEHOLDER. */
1592 for (i = 0; i < 3; i++)
1594 rtx seq = XEXP (PATTERN (insn), i);
1595 if (seq)
1597 push_to_sequence (seq);
1598 fixup_var_refs_insns (seq, var, promoted_mode, unsignedp, 0,
1599 may_share);
1600 XEXP (PATTERN (insn), i) = get_insns ();
1601 end_sequence ();
1606 else if (INSN_P (insn))
1607 fixup_var_refs_insn (insn, var, promoted_mode, unsignedp, toplevel,
1608 may_share);
1610 insn = next;
1614 /* Look up the insns which reference VAR in HT and fix them up. Other
1615 arguments are the same as fixup_var_refs_insns.
1617 N.B. No need for special processing of CALL_PLACEHOLDERs here,
1618 because the hash table will point straight to the interesting insn
1619 (inside the CALL_PLACEHOLDER). */
1621 static void
1622 fixup_var_refs_insns_with_hash (htab_t ht, rtx var, enum machine_mode promoted_mode,
1623 int unsignedp, rtx may_share)
1625 struct insns_for_mem_entry tmp;
1626 struct insns_for_mem_entry *ime;
1627 rtx insn_list;
1629 tmp.key = var;
1630 ime = (struct insns_for_mem_entry *) htab_find (ht, &tmp);
1631 for (insn_list = ime->insns; insn_list != 0; insn_list = XEXP (insn_list, 1))
1632 if (INSN_P (XEXP (insn_list, 0)))
1633 fixup_var_refs_insn (XEXP (insn_list, 0), var, promoted_mode,
1634 unsignedp, 1, may_share);
1638 /* Per-insn processing by fixup_var_refs_insns(_with_hash). INSN is
1639 the insn under examination, VAR is the variable to fix up
1640 references to, PROMOTED_MODE and UNSIGNEDP describe VAR, and
1641 TOPLEVEL is nonzero if this is the main insn chain for this
1642 function. */
1644 static void
1645 fixup_var_refs_insn (rtx insn, rtx var, enum machine_mode promoted_mode,
1646 int unsignedp, int toplevel, rtx no_share)
1648 rtx call_dest = 0;
1649 rtx set, prev, prev_set;
1650 rtx note;
1652 /* Remember the notes in case we delete the insn. */
1653 note = REG_NOTES (insn);
1655 /* If this is a CLOBBER of VAR, delete it.
1657 If it has a REG_LIBCALL note, delete the REG_LIBCALL
1658 and REG_RETVAL notes too. */
1659 if (GET_CODE (PATTERN (insn)) == CLOBBER
1660 && (XEXP (PATTERN (insn), 0) == var
1661 || (GET_CODE (XEXP (PATTERN (insn), 0)) == CONCAT
1662 && (XEXP (XEXP (PATTERN (insn), 0), 0) == var
1663 || XEXP (XEXP (PATTERN (insn), 0), 1) == var))))
1665 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0)
1666 /* The REG_LIBCALL note will go away since we are going to
1667 turn INSN into a NOTE, so just delete the
1668 corresponding REG_RETVAL note. */
1669 remove_note (XEXP (note, 0),
1670 find_reg_note (XEXP (note, 0), REG_RETVAL,
1671 NULL_RTX));
1673 delete_insn (insn);
1676 /* The insn to load VAR from a home in the arglist
1677 is now a no-op. When we see it, just delete it.
1678 Similarly if this is storing VAR from a register from which
1679 it was loaded in the previous insn. This will occur
1680 when an ADDRESSOF was made for an arglist slot. */
1681 else if (toplevel
1682 && (set = single_set (insn)) != 0
1683 && SET_DEST (set) == var
1684 /* If this represents the result of an insn group,
1685 don't delete the insn. */
1686 && find_reg_note (insn, REG_RETVAL, NULL_RTX) == 0
1687 && (rtx_equal_p (SET_SRC (set), var)
1688 || (GET_CODE (SET_SRC (set)) == REG
1689 && (prev = prev_nonnote_insn (insn)) != 0
1690 && (prev_set = single_set (prev)) != 0
1691 && SET_DEST (prev_set) == SET_SRC (set)
1692 && rtx_equal_p (SET_SRC (prev_set), var))))
1694 delete_insn (insn);
1696 else
1698 struct fixup_replacement *replacements = 0;
1699 rtx next_insn = NEXT_INSN (insn);
1701 if (SMALL_REGISTER_CLASSES)
1703 /* If the insn that copies the results of a CALL_INSN
1704 into a pseudo now references VAR, we have to use an
1705 intermediate pseudo since we want the life of the
1706 return value register to be only a single insn.
1708 If we don't use an intermediate pseudo, such things as
1709 address computations to make the address of VAR valid
1710 if it is not can be placed between the CALL_INSN and INSN.
1712 To make sure this doesn't happen, we record the destination
1713 of the CALL_INSN and see if the next insn uses both that
1714 and VAR. */
1716 if (call_dest != 0 && GET_CODE (insn) == INSN
1717 && reg_mentioned_p (var, PATTERN (insn))
1718 && reg_mentioned_p (call_dest, PATTERN (insn)))
1720 rtx temp = gen_reg_rtx (GET_MODE (call_dest));
1722 emit_insn_before (gen_move_insn (temp, call_dest), insn);
1724 PATTERN (insn) = replace_rtx (PATTERN (insn),
1725 call_dest, temp);
1728 if (GET_CODE (insn) == CALL_INSN
1729 && GET_CODE (PATTERN (insn)) == SET)
1730 call_dest = SET_DEST (PATTERN (insn));
1731 else if (GET_CODE (insn) == CALL_INSN
1732 && GET_CODE (PATTERN (insn)) == PARALLEL
1733 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1734 call_dest = SET_DEST (XVECEXP (PATTERN (insn), 0, 0));
1735 else
1736 call_dest = 0;
1739 /* See if we have to do anything to INSN now that VAR is in
1740 memory. If it needs to be loaded into a pseudo, use a single
1741 pseudo for the entire insn in case there is a MATCH_DUP
1742 between two operands. We pass a pointer to the head of
1743 a list of struct fixup_replacements. If fixup_var_refs_1
1744 needs to allocate pseudos or replacement MEMs (for SUBREGs),
1745 it will record them in this list.
1747 If it allocated a pseudo for any replacement, we copy into
1748 it here. */
1750 fixup_var_refs_1 (var, promoted_mode, &PATTERN (insn), insn,
1751 &replacements, no_share);
1753 /* If this is last_parm_insn, and any instructions were output
1754 after it to fix it up, then we must set last_parm_insn to
1755 the last such instruction emitted. */
1756 if (insn == last_parm_insn)
1757 last_parm_insn = PREV_INSN (next_insn);
1759 while (replacements)
1761 struct fixup_replacement *next;
1763 if (GET_CODE (replacements->new) == REG)
1765 rtx insert_before;
1766 rtx seq;
1768 /* OLD might be a (subreg (mem)). */
1769 if (GET_CODE (replacements->old) == SUBREG)
1770 replacements->old
1771 = fixup_memory_subreg (replacements->old, insn,
1772 promoted_mode, 0);
1773 else
1774 replacements->old
1775 = fixup_stack_1 (replacements->old, insn);
1777 insert_before = insn;
1779 /* If we are changing the mode, do a conversion.
1780 This might be wasteful, but combine.c will
1781 eliminate much of the waste. */
1783 if (GET_MODE (replacements->new)
1784 != GET_MODE (replacements->old))
1786 start_sequence ();
1787 convert_move (replacements->new,
1788 replacements->old, unsignedp);
1789 seq = get_insns ();
1790 end_sequence ();
1792 else
1793 seq = gen_move_insn (replacements->new,
1794 replacements->old);
1796 emit_insn_before (seq, insert_before);
1799 next = replacements->next;
1800 free (replacements);
1801 replacements = next;
1805 /* Also fix up any invalid exprs in the REG_NOTES of this insn.
1806 But don't touch other insns referred to by reg-notes;
1807 we will get them elsewhere. */
1808 while (note)
1810 if (GET_CODE (note) != INSN_LIST)
1811 XEXP (note, 0)
1812 = walk_fixup_memory_subreg (XEXP (note, 0), insn,
1813 promoted_mode, 1);
1814 note = XEXP (note, 1);
1818 /* VAR is a MEM that used to be a pseudo register with mode PROMOTED_MODE.
1819 See if the rtx expression at *LOC in INSN needs to be changed.
1821 REPLACEMENTS is a pointer to a list head that starts out zero, but may
1822 contain a list of original rtx's and replacements. If we find that we need
1823 to modify this insn by replacing a memory reference with a pseudo or by
1824 making a new MEM to implement a SUBREG, we consult that list to see if
1825 we have already chosen a replacement. If none has already been allocated,
1826 we allocate it and update the list. fixup_var_refs_insn will copy VAR
1827 or the SUBREG, as appropriate, to the pseudo. */
1829 static void
1830 fixup_var_refs_1 (rtx var, enum machine_mode promoted_mode, rtx *loc, rtx insn,
1831 struct fixup_replacement **replacements, rtx no_share)
1833 int i;
1834 rtx x = *loc;
1835 RTX_CODE code = GET_CODE (x);
1836 const char *fmt;
1837 rtx tem, tem1;
1838 struct fixup_replacement *replacement;
1840 switch (code)
1842 case ADDRESSOF:
1843 if (XEXP (x, 0) == var)
1845 /* Prevent sharing of rtl that might lose. */
1846 rtx sub = copy_rtx (XEXP (var, 0));
1848 if (! validate_change (insn, loc, sub, 0))
1850 rtx y = gen_reg_rtx (GET_MODE (sub));
1851 rtx seq, new_insn;
1853 /* We should be able to replace with a register or all is lost.
1854 Note that we can't use validate_change to verify this, since
1855 we're not caring for replacing all dups simultaneously. */
1856 if (! validate_replace_rtx (*loc, y, insn))
1857 abort ();
1859 /* Careful! First try to recognize a direct move of the
1860 value, mimicking how things are done in gen_reload wrt
1861 PLUS. Consider what happens when insn is a conditional
1862 move instruction and addsi3 clobbers flags. */
1864 start_sequence ();
1865 new_insn = emit_insn (gen_rtx_SET (VOIDmode, y, sub));
1866 seq = get_insns ();
1867 end_sequence ();
1869 if (recog_memoized (new_insn) < 0)
1871 /* That failed. Fall back on force_operand and hope. */
1873 start_sequence ();
1874 sub = force_operand (sub, y);
1875 if (sub != y)
1876 emit_insn (gen_move_insn (y, sub));
1877 seq = get_insns ();
1878 end_sequence ();
1881 #ifdef HAVE_cc0
1882 /* Don't separate setter from user. */
1883 if (PREV_INSN (insn) && sets_cc0_p (PREV_INSN (insn)))
1884 insn = PREV_INSN (insn);
1885 #endif
1887 emit_insn_before (seq, insn);
1890 return;
1892 case MEM:
1893 if (var == x)
1895 /* If we already have a replacement, use it. Otherwise,
1896 try to fix up this address in case it is invalid. */
1898 replacement = find_fixup_replacement (replacements, var);
1899 if (replacement->new)
1901 *loc = replacement->new;
1902 return;
1905 *loc = replacement->new = x = fixup_stack_1 (x, insn);
1907 /* Unless we are forcing memory to register or we changed the mode,
1908 we can leave things the way they are if the insn is valid. */
1910 INSN_CODE (insn) = -1;
1911 if (! flag_force_mem && GET_MODE (x) == promoted_mode
1912 && recog_memoized (insn) >= 0)
1913 return;
1915 *loc = replacement->new = gen_reg_rtx (promoted_mode);
1916 return;
1919 /* If X contains VAR, we need to unshare it here so that we update
1920 each occurrence separately. But all identical MEMs in one insn
1921 must be replaced with the same rtx because of the possibility of
1922 MATCH_DUPs. */
1924 if (reg_mentioned_p (var, x))
1926 replacement = find_fixup_replacement (replacements, x);
1927 if (replacement->new == 0)
1928 replacement->new = copy_most_rtx (x, no_share);
1930 *loc = x = replacement->new;
1931 code = GET_CODE (x);
1933 break;
1935 case REG:
1936 case CC0:
1937 case PC:
1938 case CONST_INT:
1939 case CONST:
1940 case SYMBOL_REF:
1941 case LABEL_REF:
1942 case CONST_DOUBLE:
1943 case CONST_VECTOR:
1944 return;
1946 case SIGN_EXTRACT:
1947 case ZERO_EXTRACT:
1948 /* Note that in some cases those types of expressions are altered
1949 by optimize_bit_field, and do not survive to get here. */
1950 if (XEXP (x, 0) == var
1951 || (GET_CODE (XEXP (x, 0)) == SUBREG
1952 && SUBREG_REG (XEXP (x, 0)) == var))
1954 /* Get TEM as a valid MEM in the mode presently in the insn.
1956 We don't worry about the possibility of MATCH_DUP here; it
1957 is highly unlikely and would be tricky to handle. */
1959 tem = XEXP (x, 0);
1960 if (GET_CODE (tem) == SUBREG)
1962 if (GET_MODE_BITSIZE (GET_MODE (tem))
1963 > GET_MODE_BITSIZE (GET_MODE (var)))
1965 replacement = find_fixup_replacement (replacements, var);
1966 if (replacement->new == 0)
1967 replacement->new = gen_reg_rtx (GET_MODE (var));
1968 SUBREG_REG (tem) = replacement->new;
1970 /* The following code works only if we have a MEM, so we
1971 need to handle the subreg here. We directly substitute
1972 it assuming that a subreg must be OK here. We already
1973 scheduled a replacement to copy the mem into the
1974 subreg. */
1975 XEXP (x, 0) = tem;
1976 return;
1978 else
1979 tem = fixup_memory_subreg (tem, insn, promoted_mode, 0);
1981 else
1982 tem = fixup_stack_1 (tem, insn);
1984 /* Unless we want to load from memory, get TEM into the proper mode
1985 for an extract from memory. This can only be done if the
1986 extract is at a constant position and length. */
1988 if (! flag_force_mem && GET_CODE (XEXP (x, 1)) == CONST_INT
1989 && GET_CODE (XEXP (x, 2)) == CONST_INT
1990 && ! mode_dependent_address_p (XEXP (tem, 0))
1991 && ! MEM_VOLATILE_P (tem))
1993 enum machine_mode wanted_mode = VOIDmode;
1994 enum machine_mode is_mode = GET_MODE (tem);
1995 HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
1997 if (GET_CODE (x) == ZERO_EXTRACT)
1999 enum machine_mode new_mode
2000 = mode_for_extraction (EP_extzv, 1);
2001 if (new_mode != MAX_MACHINE_MODE)
2002 wanted_mode = new_mode;
2004 else if (GET_CODE (x) == SIGN_EXTRACT)
2006 enum machine_mode new_mode
2007 = mode_for_extraction (EP_extv, 1);
2008 if (new_mode != MAX_MACHINE_MODE)
2009 wanted_mode = new_mode;
2012 /* If we have a narrower mode, we can do something. */
2013 if (wanted_mode != VOIDmode
2014 && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
2016 HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
2017 rtx old_pos = XEXP (x, 2);
2018 rtx newmem;
2020 /* If the bytes and bits are counted differently, we
2021 must adjust the offset. */
2022 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
2023 offset = (GET_MODE_SIZE (is_mode)
2024 - GET_MODE_SIZE (wanted_mode) - offset);
2026 pos %= GET_MODE_BITSIZE (wanted_mode);
2028 newmem = adjust_address_nv (tem, wanted_mode, offset);
2030 /* Make the change and see if the insn remains valid. */
2031 INSN_CODE (insn) = -1;
2032 XEXP (x, 0) = newmem;
2033 XEXP (x, 2) = GEN_INT (pos);
2035 if (recog_memoized (insn) >= 0)
2036 return;
2038 /* Otherwise, restore old position. XEXP (x, 0) will be
2039 restored later. */
2040 XEXP (x, 2) = old_pos;
2044 /* If we get here, the bitfield extract insn can't accept a memory
2045 reference. Copy the input into a register. */
2047 tem1 = gen_reg_rtx (GET_MODE (tem));
2048 emit_insn_before (gen_move_insn (tem1, tem), insn);
2049 XEXP (x, 0) = tem1;
2050 return;
2052 break;
2054 case SUBREG:
2055 if (SUBREG_REG (x) == var)
2057 /* If this is a special SUBREG made because VAR was promoted
2058 from a wider mode, replace it with VAR and call ourself
2059 recursively, this time saying that the object previously
2060 had its current mode (by virtue of the SUBREG). */
2062 if (SUBREG_PROMOTED_VAR_P (x))
2064 *loc = var;
2065 fixup_var_refs_1 (var, GET_MODE (var), loc, insn, replacements,
2066 no_share);
2067 return;
2070 /* If this SUBREG makes VAR wider, it has become a paradoxical
2071 SUBREG with VAR in memory, but these aren't allowed at this
2072 stage of the compilation. So load VAR into a pseudo and take
2073 a SUBREG of that pseudo. */
2074 if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (var)))
2076 replacement = find_fixup_replacement (replacements, var);
2077 if (replacement->new == 0)
2078 replacement->new = gen_reg_rtx (promoted_mode);
2079 SUBREG_REG (x) = replacement->new;
2080 return;
2083 /* See if we have already found a replacement for this SUBREG.
2084 If so, use it. Otherwise, make a MEM and see if the insn
2085 is recognized. If not, or if we should force MEM into a register,
2086 make a pseudo for this SUBREG. */
2087 replacement = find_fixup_replacement (replacements, x);
2088 if (replacement->new)
2090 *loc = replacement->new;
2091 return;
2094 replacement->new = *loc = fixup_memory_subreg (x, insn,
2095 promoted_mode, 0);
2097 INSN_CODE (insn) = -1;
2098 if (! flag_force_mem && recog_memoized (insn) >= 0)
2099 return;
2101 *loc = replacement->new = gen_reg_rtx (GET_MODE (x));
2102 return;
2104 break;
2106 case SET:
2107 /* First do special simplification of bit-field references. */
2108 if (GET_CODE (SET_DEST (x)) == SIGN_EXTRACT
2109 || GET_CODE (SET_DEST (x)) == ZERO_EXTRACT)
2110 optimize_bit_field (x, insn, 0);
2111 if (GET_CODE (SET_SRC (x)) == SIGN_EXTRACT
2112 || GET_CODE (SET_SRC (x)) == ZERO_EXTRACT)
2113 optimize_bit_field (x, insn, 0);
2115 /* For a paradoxical SUBREG inside a ZERO_EXTRACT, load the object
2116 into a register and then store it back out. */
2117 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
2118 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG
2119 && SUBREG_REG (XEXP (SET_DEST (x), 0)) == var
2120 && (GET_MODE_SIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
2121 > GET_MODE_SIZE (GET_MODE (var))))
2123 replacement = find_fixup_replacement (replacements, var);
2124 if (replacement->new == 0)
2125 replacement->new = gen_reg_rtx (GET_MODE (var));
2127 SUBREG_REG (XEXP (SET_DEST (x), 0)) = replacement->new;
2128 emit_insn_after (gen_move_insn (var, replacement->new), insn);
2131 /* If SET_DEST is now a paradoxical SUBREG, put the result of this
2132 insn into a pseudo and store the low part of the pseudo into VAR. */
2133 if (GET_CODE (SET_DEST (x)) == SUBREG
2134 && SUBREG_REG (SET_DEST (x)) == var
2135 && (GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
2136 > GET_MODE_SIZE (GET_MODE (var))))
2138 SET_DEST (x) = tem = gen_reg_rtx (GET_MODE (SET_DEST (x)));
2139 emit_insn_after (gen_move_insn (var, gen_lowpart (GET_MODE (var),
2140 tem)),
2141 insn);
2142 break;
2146 rtx dest = SET_DEST (x);
2147 rtx src = SET_SRC (x);
2148 rtx outerdest = dest;
2150 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2151 || GET_CODE (dest) == SIGN_EXTRACT
2152 || GET_CODE (dest) == ZERO_EXTRACT)
2153 dest = XEXP (dest, 0);
2155 if (GET_CODE (src) == SUBREG)
2156 src = SUBREG_REG (src);
2158 /* If VAR does not appear at the top level of the SET
2159 just scan the lower levels of the tree. */
2161 if (src != var && dest != var)
2162 break;
2164 /* We will need to rerecognize this insn. */
2165 INSN_CODE (insn) = -1;
2167 if (GET_CODE (outerdest) == ZERO_EXTRACT && dest == var
2168 && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
2170 /* Since this case will return, ensure we fixup all the
2171 operands here. */
2172 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 1),
2173 insn, replacements, no_share);
2174 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 2),
2175 insn, replacements, no_share);
2176 fixup_var_refs_1 (var, promoted_mode, &SET_SRC (x),
2177 insn, replacements, no_share);
2179 tem = XEXP (outerdest, 0);
2181 /* Clean up (SUBREG:SI (MEM:mode ...) 0)
2182 that may appear inside a ZERO_EXTRACT.
2183 This was legitimate when the MEM was a REG. */
2184 if (GET_CODE (tem) == SUBREG
2185 && SUBREG_REG (tem) == var)
2186 tem = fixup_memory_subreg (tem, insn, promoted_mode, 0);
2187 else
2188 tem = fixup_stack_1 (tem, insn);
2190 if (GET_CODE (XEXP (outerdest, 1)) == CONST_INT
2191 && GET_CODE (XEXP (outerdest, 2)) == CONST_INT
2192 && ! mode_dependent_address_p (XEXP (tem, 0))
2193 && ! MEM_VOLATILE_P (tem))
2195 enum machine_mode wanted_mode;
2196 enum machine_mode is_mode = GET_MODE (tem);
2197 HOST_WIDE_INT pos = INTVAL (XEXP (outerdest, 2));
2199 wanted_mode = mode_for_extraction (EP_insv, 0);
2201 /* If we have a narrower mode, we can do something. */
2202 if (GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
2204 HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
2205 rtx old_pos = XEXP (outerdest, 2);
2206 rtx newmem;
2208 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
2209 offset = (GET_MODE_SIZE (is_mode)
2210 - GET_MODE_SIZE (wanted_mode) - offset);
2212 pos %= GET_MODE_BITSIZE (wanted_mode);
2214 newmem = adjust_address_nv (tem, wanted_mode, offset);
2216 /* Make the change and see if the insn remains valid. */
2217 INSN_CODE (insn) = -1;
2218 XEXP (outerdest, 0) = newmem;
2219 XEXP (outerdest, 2) = GEN_INT (pos);
2221 if (recog_memoized (insn) >= 0)
2222 return;
2224 /* Otherwise, restore old position. XEXP (x, 0) will be
2225 restored later. */
2226 XEXP (outerdest, 2) = old_pos;
2230 /* If we get here, the bit-field store doesn't allow memory
2231 or isn't located at a constant position. Load the value into
2232 a register, do the store, and put it back into memory. */
2234 tem1 = gen_reg_rtx (GET_MODE (tem));
2235 emit_insn_before (gen_move_insn (tem1, tem), insn);
2236 emit_insn_after (gen_move_insn (tem, tem1), insn);
2237 XEXP (outerdest, 0) = tem1;
2238 return;
2241 /* STRICT_LOW_PART is a no-op on memory references
2242 and it can cause combinations to be unrecognizable,
2243 so eliminate it. */
2245 if (dest == var && GET_CODE (SET_DEST (x)) == STRICT_LOW_PART)
2246 SET_DEST (x) = XEXP (SET_DEST (x), 0);
2248 /* A valid insn to copy VAR into or out of a register
2249 must be left alone, to avoid an infinite loop here.
2250 If the reference to VAR is by a subreg, fix that up,
2251 since SUBREG is not valid for a memref.
2252 Also fix up the address of the stack slot.
2254 Note that we must not try to recognize the insn until
2255 after we know that we have valid addresses and no
2256 (subreg (mem ...) ...) constructs, since these interfere
2257 with determining the validity of the insn. */
2259 if ((SET_SRC (x) == var
2260 || (GET_CODE (SET_SRC (x)) == SUBREG
2261 && SUBREG_REG (SET_SRC (x)) == var))
2262 && (GET_CODE (SET_DEST (x)) == REG
2263 || (GET_CODE (SET_DEST (x)) == SUBREG
2264 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG))
2265 && GET_MODE (var) == promoted_mode
2266 && x == single_set (insn))
2268 rtx pat, last;
2270 if (GET_CODE (SET_SRC (x)) == SUBREG
2271 && (GET_MODE_SIZE (GET_MODE (SET_SRC (x)))
2272 > GET_MODE_SIZE (GET_MODE (var))))
2274 /* This (subreg VAR) is now a paradoxical subreg. We need
2275 to replace VAR instead of the subreg. */
2276 replacement = find_fixup_replacement (replacements, var);
2277 if (replacement->new == NULL_RTX)
2278 replacement->new = gen_reg_rtx (GET_MODE (var));
2279 SUBREG_REG (SET_SRC (x)) = replacement->new;
2281 else
2283 replacement = find_fixup_replacement (replacements, SET_SRC (x));
2284 if (replacement->new)
2285 SET_SRC (x) = replacement->new;
2286 else if (GET_CODE (SET_SRC (x)) == SUBREG)
2287 SET_SRC (x) = replacement->new
2288 = fixup_memory_subreg (SET_SRC (x), insn, promoted_mode,
2290 else
2291 SET_SRC (x) = replacement->new
2292 = fixup_stack_1 (SET_SRC (x), insn);
2295 if (recog_memoized (insn) >= 0)
2296 return;
2298 /* INSN is not valid, but we know that we want to
2299 copy SET_SRC (x) to SET_DEST (x) in some way. So
2300 we generate the move and see whether it requires more
2301 than one insn. If it does, we emit those insns and
2302 delete INSN. Otherwise, we can just replace the pattern
2303 of INSN; we have already verified above that INSN has
2304 no other function that to do X. */
2306 pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2307 if (NEXT_INSN (pat) != NULL_RTX)
2309 last = emit_insn_before (pat, insn);
2311 /* INSN might have REG_RETVAL or other important notes, so
2312 we need to store the pattern of the last insn in the
2313 sequence into INSN similarly to the normal case. LAST
2314 should not have REG_NOTES, but we allow them if INSN has
2315 no REG_NOTES. */
2316 if (REG_NOTES (last) && REG_NOTES (insn))
2317 abort ();
2318 if (REG_NOTES (last))
2319 REG_NOTES (insn) = REG_NOTES (last);
2320 PATTERN (insn) = PATTERN (last);
2322 delete_insn (last);
2324 else
2325 PATTERN (insn) = PATTERN (pat);
2327 return;
2330 if ((SET_DEST (x) == var
2331 || (GET_CODE (SET_DEST (x)) == SUBREG
2332 && SUBREG_REG (SET_DEST (x)) == var))
2333 && (GET_CODE (SET_SRC (x)) == REG
2334 || (GET_CODE (SET_SRC (x)) == SUBREG
2335 && GET_CODE (SUBREG_REG (SET_SRC (x))) == REG))
2336 && GET_MODE (var) == promoted_mode
2337 && x == single_set (insn))
2339 rtx pat, last;
2341 if (GET_CODE (SET_DEST (x)) == SUBREG)
2342 SET_DEST (x) = fixup_memory_subreg (SET_DEST (x), insn,
2343 promoted_mode, 0);
2344 else
2345 SET_DEST (x) = fixup_stack_1 (SET_DEST (x), insn);
2347 if (recog_memoized (insn) >= 0)
2348 return;
2350 pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2351 if (NEXT_INSN (pat) != NULL_RTX)
2353 last = emit_insn_before (pat, insn);
2355 /* INSN might have REG_RETVAL or other important notes, so
2356 we need to store the pattern of the last insn in the
2357 sequence into INSN similarly to the normal case. LAST
2358 should not have REG_NOTES, but we allow them if INSN has
2359 no REG_NOTES. */
2360 if (REG_NOTES (last) && REG_NOTES (insn))
2361 abort ();
2362 if (REG_NOTES (last))
2363 REG_NOTES (insn) = REG_NOTES (last);
2364 PATTERN (insn) = PATTERN (last);
2366 delete_insn (last);
2368 else
2369 PATTERN (insn) = PATTERN (pat);
2371 return;
2374 /* Otherwise, storing into VAR must be handled specially
2375 by storing into a temporary and copying that into VAR
2376 with a new insn after this one. Note that this case
2377 will be used when storing into a promoted scalar since
2378 the insn will now have different modes on the input
2379 and output and hence will be invalid (except for the case
2380 of setting it to a constant, which does not need any
2381 change if it is valid). We generate extra code in that case,
2382 but combine.c will eliminate it. */
2384 if (dest == var)
2386 rtx temp;
2387 rtx fixeddest = SET_DEST (x);
2388 enum machine_mode temp_mode;
2390 /* STRICT_LOW_PART can be discarded, around a MEM. */
2391 if (GET_CODE (fixeddest) == STRICT_LOW_PART)
2392 fixeddest = XEXP (fixeddest, 0);
2393 /* Convert (SUBREG (MEM)) to a MEM in a changed mode. */
2394 if (GET_CODE (fixeddest) == SUBREG)
2396 fixeddest = fixup_memory_subreg (fixeddest, insn,
2397 promoted_mode, 0);
2398 temp_mode = GET_MODE (fixeddest);
2400 else
2402 fixeddest = fixup_stack_1 (fixeddest, insn);
2403 temp_mode = promoted_mode;
2406 temp = gen_reg_rtx (temp_mode);
2408 emit_insn_after (gen_move_insn (fixeddest,
2409 gen_lowpart (GET_MODE (fixeddest),
2410 temp)),
2411 insn);
2413 SET_DEST (x) = temp;
2417 default:
2418 break;
2421 /* Nothing special about this RTX; fix its operands. */
2423 fmt = GET_RTX_FORMAT (code);
2424 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2426 if (fmt[i] == 'e')
2427 fixup_var_refs_1 (var, promoted_mode, &XEXP (x, i), insn, replacements,
2428 no_share);
2429 else if (fmt[i] == 'E')
2431 int j;
2432 for (j = 0; j < XVECLEN (x, i); j++)
2433 fixup_var_refs_1 (var, promoted_mode, &XVECEXP (x, i, j),
2434 insn, replacements, no_share);
2439 /* Previously, X had the form (SUBREG:m1 (REG:PROMOTED_MODE ...)).
2440 The REG was placed on the stack, so X now has the form (SUBREG:m1
2441 (MEM:m2 ...)).
2443 Return an rtx (MEM:m1 newaddr) which is equivalent. If any insns
2444 must be emitted to compute NEWADDR, put them before INSN.
2446 UNCRITICAL nonzero means accept paradoxical subregs.
2447 This is used for subregs found inside REG_NOTES. */
2449 static rtx
2450 fixup_memory_subreg (rtx x, rtx insn, enum machine_mode promoted_mode, int uncritical)
2452 int offset;
2453 rtx mem = SUBREG_REG (x);
2454 rtx addr = XEXP (mem, 0);
2455 enum machine_mode mode = GET_MODE (x);
2456 rtx result, seq;
2458 /* Paradoxical SUBREGs are usually invalid during RTL generation. */
2459 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (mem)) && ! uncritical)
2460 abort ();
2462 offset = SUBREG_BYTE (x);
2463 if (BYTES_BIG_ENDIAN)
2464 /* If the PROMOTED_MODE is wider than the mode of the MEM, adjust
2465 the offset so that it points to the right location within the
2466 MEM. */
2467 offset -= (GET_MODE_SIZE (promoted_mode) - GET_MODE_SIZE (GET_MODE (mem)));
2469 if (!flag_force_addr
2470 && memory_address_p (mode, plus_constant (addr, offset)))
2471 /* Shortcut if no insns need be emitted. */
2472 return adjust_address (mem, mode, offset);
2474 start_sequence ();
2475 result = adjust_address (mem, mode, offset);
2476 seq = get_insns ();
2477 end_sequence ();
2479 emit_insn_before (seq, insn);
2480 return result;
2483 /* Do fixup_memory_subreg on all (SUBREG (MEM ...) ...) contained in X.
2484 Replace subexpressions of X in place.
2485 If X itself is a (SUBREG (MEM ...) ...), return the replacement expression.
2486 Otherwise return X, with its contents possibly altered.
2488 INSN, PROMOTED_MODE and UNCRITICAL are as for
2489 fixup_memory_subreg. */
2491 static rtx
2492 walk_fixup_memory_subreg (rtx x, rtx insn, enum machine_mode promoted_mode,
2493 int uncritical)
2495 enum rtx_code code;
2496 const char *fmt;
2497 int i;
2499 if (x == 0)
2500 return 0;
2502 code = GET_CODE (x);
2504 if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
2505 return fixup_memory_subreg (x, insn, promoted_mode, uncritical);
2507 /* Nothing special about this RTX; fix its operands. */
2509 fmt = GET_RTX_FORMAT (code);
2510 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2512 if (fmt[i] == 'e')
2513 XEXP (x, i) = walk_fixup_memory_subreg (XEXP (x, i), insn,
2514 promoted_mode, uncritical);
2515 else if (fmt[i] == 'E')
2517 int j;
2518 for (j = 0; j < XVECLEN (x, i); j++)
2519 XVECEXP (x, i, j)
2520 = walk_fixup_memory_subreg (XVECEXP (x, i, j), insn,
2521 promoted_mode, uncritical);
2524 return x;
2527 /* For each memory ref within X, if it refers to a stack slot
2528 with an out of range displacement, put the address in a temp register
2529 (emitting new insns before INSN to load these registers)
2530 and alter the memory ref to use that register.
2531 Replace each such MEM rtx with a copy, to avoid clobberage. */
2533 static rtx
2534 fixup_stack_1 (rtx x, rtx insn)
2536 int i;
2537 RTX_CODE code = GET_CODE (x);
2538 const char *fmt;
2540 if (code == MEM)
2542 rtx ad = XEXP (x, 0);
2543 /* If we have address of a stack slot but it's not valid
2544 (displacement is too large), compute the sum in a register. */
2545 if (GET_CODE (ad) == PLUS
2546 && GET_CODE (XEXP (ad, 0)) == REG
2547 && ((REGNO (XEXP (ad, 0)) >= FIRST_VIRTUAL_REGISTER
2548 && REGNO (XEXP (ad, 0)) <= LAST_VIRTUAL_REGISTER)
2549 || REGNO (XEXP (ad, 0)) == FRAME_POINTER_REGNUM
2550 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2551 || REGNO (XEXP (ad, 0)) == HARD_FRAME_POINTER_REGNUM
2552 #endif
2553 || REGNO (XEXP (ad, 0)) == STACK_POINTER_REGNUM
2554 || REGNO (XEXP (ad, 0)) == ARG_POINTER_REGNUM
2555 || XEXP (ad, 0) == current_function_internal_arg_pointer)
2556 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
2558 rtx temp, seq;
2559 if (memory_address_p (GET_MODE (x), ad))
2560 return x;
2562 start_sequence ();
2563 temp = copy_to_reg (ad);
2564 seq = get_insns ();
2565 end_sequence ();
2566 emit_insn_before (seq, insn);
2567 return replace_equiv_address (x, temp);
2569 return x;
2572 fmt = GET_RTX_FORMAT (code);
2573 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2575 if (fmt[i] == 'e')
2576 XEXP (x, i) = fixup_stack_1 (XEXP (x, i), insn);
2577 else if (fmt[i] == 'E')
2579 int j;
2580 for (j = 0; j < XVECLEN (x, i); j++)
2581 XVECEXP (x, i, j) = fixup_stack_1 (XVECEXP (x, i, j), insn);
2584 return x;
2587 /* Optimization: a bit-field instruction whose field
2588 happens to be a byte or halfword in memory
2589 can be changed to a move instruction.
2591 We call here when INSN is an insn to examine or store into a bit-field.
2592 BODY is the SET-rtx to be altered.
2594 EQUIV_MEM is the table `reg_equiv_mem' if that is available; else 0.
2595 (Currently this is called only from function.c, and EQUIV_MEM
2596 is always 0.) */
2598 static void
2599 optimize_bit_field (rtx body, rtx insn, rtx *equiv_mem)
2601 rtx bitfield;
2602 int destflag;
2603 rtx seq = 0;
2604 enum machine_mode mode;
2606 if (GET_CODE (SET_DEST (body)) == SIGN_EXTRACT
2607 || GET_CODE (SET_DEST (body)) == ZERO_EXTRACT)
2608 bitfield = SET_DEST (body), destflag = 1;
2609 else
2610 bitfield = SET_SRC (body), destflag = 0;
2612 /* First check that the field being stored has constant size and position
2613 and is in fact a byte or halfword suitably aligned. */
2615 if (GET_CODE (XEXP (bitfield, 1)) == CONST_INT
2616 && GET_CODE (XEXP (bitfield, 2)) == CONST_INT
2617 && ((mode = mode_for_size (INTVAL (XEXP (bitfield, 1)), MODE_INT, 1))
2618 != BLKmode)
2619 && INTVAL (XEXP (bitfield, 2)) % INTVAL (XEXP (bitfield, 1)) == 0)
2621 rtx memref = 0;
2623 /* Now check that the containing word is memory, not a register,
2624 and that it is safe to change the machine mode. */
2626 if (GET_CODE (XEXP (bitfield, 0)) == MEM)
2627 memref = XEXP (bitfield, 0);
2628 else if (GET_CODE (XEXP (bitfield, 0)) == REG
2629 && equiv_mem != 0)
2630 memref = equiv_mem[REGNO (XEXP (bitfield, 0))];
2631 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
2632 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == MEM)
2633 memref = SUBREG_REG (XEXP (bitfield, 0));
2634 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
2635 && equiv_mem != 0
2636 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == REG)
2637 memref = equiv_mem[REGNO (SUBREG_REG (XEXP (bitfield, 0)))];
2639 if (memref
2640 && ! mode_dependent_address_p (XEXP (memref, 0))
2641 && ! MEM_VOLATILE_P (memref))
2643 /* Now adjust the address, first for any subreg'ing
2644 that we are now getting rid of,
2645 and then for which byte of the word is wanted. */
2647 HOST_WIDE_INT offset = INTVAL (XEXP (bitfield, 2));
2648 rtx insns;
2650 /* Adjust OFFSET to count bits from low-address byte. */
2651 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
2652 offset = (GET_MODE_BITSIZE (GET_MODE (XEXP (bitfield, 0)))
2653 - offset - INTVAL (XEXP (bitfield, 1)));
2655 /* Adjust OFFSET to count bytes from low-address byte. */
2656 offset /= BITS_PER_UNIT;
2657 if (GET_CODE (XEXP (bitfield, 0)) == SUBREG)
2659 offset += (SUBREG_BYTE (XEXP (bitfield, 0))
2660 / UNITS_PER_WORD) * UNITS_PER_WORD;
2661 if (BYTES_BIG_ENDIAN)
2662 offset -= (MIN (UNITS_PER_WORD,
2663 GET_MODE_SIZE (GET_MODE (XEXP (bitfield, 0))))
2664 - MIN (UNITS_PER_WORD,
2665 GET_MODE_SIZE (GET_MODE (memref))));
2668 start_sequence ();
2669 memref = adjust_address (memref, mode, offset);
2670 insns = get_insns ();
2671 end_sequence ();
2672 emit_insn_before (insns, insn);
2674 /* Store this memory reference where
2675 we found the bit field reference. */
2677 if (destflag)
2679 validate_change (insn, &SET_DEST (body), memref, 1);
2680 if (! CONSTANT_ADDRESS_P (SET_SRC (body)))
2682 rtx src = SET_SRC (body);
2683 while (GET_CODE (src) == SUBREG
2684 && SUBREG_BYTE (src) == 0)
2685 src = SUBREG_REG (src);
2686 if (GET_MODE (src) != GET_MODE (memref))
2687 src = gen_lowpart (GET_MODE (memref), SET_SRC (body));
2688 validate_change (insn, &SET_SRC (body), src, 1);
2690 else if (GET_MODE (SET_SRC (body)) != VOIDmode
2691 && GET_MODE (SET_SRC (body)) != GET_MODE (memref))
2692 /* This shouldn't happen because anything that didn't have
2693 one of these modes should have got converted explicitly
2694 and then referenced through a subreg.
2695 This is so because the original bit-field was
2696 handled by agg_mode and so its tree structure had
2697 the same mode that memref now has. */
2698 abort ();
2700 else
2702 rtx dest = SET_DEST (body);
2704 while (GET_CODE (dest) == SUBREG
2705 && SUBREG_BYTE (dest) == 0
2706 && (GET_MODE_CLASS (GET_MODE (dest))
2707 == GET_MODE_CLASS (GET_MODE (SUBREG_REG (dest))))
2708 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
2709 <= UNITS_PER_WORD))
2710 dest = SUBREG_REG (dest);
2712 validate_change (insn, &SET_DEST (body), dest, 1);
2714 if (GET_MODE (dest) == GET_MODE (memref))
2715 validate_change (insn, &SET_SRC (body), memref, 1);
2716 else
2718 /* Convert the mem ref to the destination mode. */
2719 rtx newreg = gen_reg_rtx (GET_MODE (dest));
2721 start_sequence ();
2722 convert_move (newreg, memref,
2723 GET_CODE (SET_SRC (body)) == ZERO_EXTRACT);
2724 seq = get_insns ();
2725 end_sequence ();
2727 validate_change (insn, &SET_SRC (body), newreg, 1);
2731 /* See if we can convert this extraction or insertion into
2732 a simple move insn. We might not be able to do so if this
2733 was, for example, part of a PARALLEL.
2735 If we succeed, write out any needed conversions. If we fail,
2736 it is hard to guess why we failed, so don't do anything
2737 special; just let the optimization be suppressed. */
2739 if (apply_change_group () && seq)
2740 emit_insn_before (seq, insn);
2745 /* These routines are responsible for converting virtual register references
2746 to the actual hard register references once RTL generation is complete.
2748 The following four variables are used for communication between the
2749 routines. They contain the offsets of the virtual registers from their
2750 respective hard registers. */
2752 static int in_arg_offset;
2753 static int var_offset;
2754 static int dynamic_offset;
2755 static int out_arg_offset;
2756 static int cfa_offset;
2758 /* In most machines, the stack pointer register is equivalent to the bottom
2759 of the stack. */
2761 #ifndef STACK_POINTER_OFFSET
2762 #define STACK_POINTER_OFFSET 0
2763 #endif
2765 /* If not defined, pick an appropriate default for the offset of dynamically
2766 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
2767 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
2769 #ifndef STACK_DYNAMIC_OFFSET
2771 /* The bottom of the stack points to the actual arguments. If
2772 REG_PARM_STACK_SPACE is defined, this includes the space for the register
2773 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
2774 stack space for register parameters is not pushed by the caller, but
2775 rather part of the fixed stack areas and hence not included in
2776 `current_function_outgoing_args_size'. Nevertheless, we must allow
2777 for it when allocating stack dynamic objects. */
2779 #if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
2780 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2781 ((ACCUMULATE_OUTGOING_ARGS \
2782 ? (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (FNDECL)) : 0)\
2783 + (STACK_POINTER_OFFSET)) \
2785 #else
2786 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2787 ((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0) \
2788 + (STACK_POINTER_OFFSET))
2789 #endif
2790 #endif
2792 /* On most machines, the CFA coincides with the first incoming parm. */
2794 #ifndef ARG_POINTER_CFA_OFFSET
2795 #define ARG_POINTER_CFA_OFFSET(FNDECL) FIRST_PARM_OFFSET (FNDECL)
2796 #endif
2798 /* Build up a (MEM (ADDRESSOF (REG))) rtx for a register REG that just
2799 had its address taken. DECL is the decl or SAVE_EXPR for the
2800 object stored in the register, for later use if we do need to force
2801 REG into the stack. REG is overwritten by the MEM like in
2802 put_reg_into_stack. RESCAN is true if previously emitted
2803 instructions must be rescanned and modified now that the REG has
2804 been transformed. */
2807 gen_mem_addressof (rtx reg, tree decl, int rescan)
2809 rtx r = gen_rtx_ADDRESSOF (Pmode, gen_reg_rtx (GET_MODE (reg)),
2810 REGNO (reg), decl);
2812 /* Calculate this before we start messing with decl's RTL. */
2813 HOST_WIDE_INT set = decl ? get_alias_set (decl) : 0;
2815 /* If the original REG was a user-variable, then so is the REG whose
2816 address is being taken. Likewise for unchanging. */
2817 REG_USERVAR_P (XEXP (r, 0)) = REG_USERVAR_P (reg);
2818 RTX_UNCHANGING_P (XEXP (r, 0)) = RTX_UNCHANGING_P (reg);
2820 PUT_CODE (reg, MEM);
2821 MEM_ATTRS (reg) = 0;
2822 XEXP (reg, 0) = r;
2824 if (decl)
2826 tree type = TREE_TYPE (decl);
2827 enum machine_mode decl_mode
2828 = (DECL_P (decl) ? DECL_MODE (decl) : TYPE_MODE (TREE_TYPE (decl)));
2829 rtx decl_rtl = (TREE_CODE (decl) == SAVE_EXPR ? SAVE_EXPR_RTL (decl)
2830 : DECL_RTL_IF_SET (decl));
2832 PUT_MODE (reg, decl_mode);
2834 /* Clear DECL_RTL momentarily so functions below will work
2835 properly, then set it again. */
2836 if (DECL_P (decl) && decl_rtl == reg)
2837 SET_DECL_RTL (decl, 0);
2839 set_mem_attributes (reg, decl, 1);
2840 set_mem_alias_set (reg, set);
2842 if (DECL_P (decl) && decl_rtl == reg)
2843 SET_DECL_RTL (decl, reg);
2845 if (rescan
2846 && (TREE_USED (decl) || (DECL_P (decl) && DECL_INITIAL (decl) != 0)))
2847 fixup_var_refs (reg, GET_MODE (reg), TREE_UNSIGNED (type), reg, 0);
2849 else if (rescan)
2850 fixup_var_refs (reg, GET_MODE (reg), 0, reg, 0);
2852 return reg;
2855 /* If DECL has an RTL that is an ADDRESSOF rtx, put it into the stack. */
2857 void
2858 flush_addressof (tree decl)
2860 if ((TREE_CODE (decl) == PARM_DECL || TREE_CODE (decl) == VAR_DECL)
2861 && DECL_RTL (decl) != 0
2862 && GET_CODE (DECL_RTL (decl)) == MEM
2863 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF
2864 && GET_CODE (XEXP (XEXP (DECL_RTL (decl), 0), 0)) == REG)
2865 put_addressof_into_stack (XEXP (DECL_RTL (decl), 0), 0);
2868 /* Force the register pointed to by R, an ADDRESSOF rtx, into the stack. */
2870 static void
2871 put_addressof_into_stack (rtx r, htab_t ht)
2873 tree decl, type;
2874 int volatile_p, used_p;
2876 rtx reg = XEXP (r, 0);
2878 if (GET_CODE (reg) != REG)
2879 abort ();
2881 decl = ADDRESSOF_DECL (r);
2882 if (decl)
2884 type = TREE_TYPE (decl);
2885 volatile_p = (TREE_CODE (decl) != SAVE_EXPR
2886 && TREE_THIS_VOLATILE (decl));
2887 used_p = (TREE_USED (decl)
2888 || (DECL_P (decl) && DECL_INITIAL (decl) != 0));
2890 else
2892 type = NULL_TREE;
2893 volatile_p = 0;
2894 used_p = 1;
2897 put_reg_into_stack (0, reg, type, GET_MODE (reg), GET_MODE (reg),
2898 volatile_p, ADDRESSOF_REGNO (r), used_p, ht);
2901 /* List of replacements made below in purge_addressof_1 when creating
2902 bitfield insertions. */
2903 static rtx purge_bitfield_addressof_replacements;
2905 /* List of replacements made below in purge_addressof_1 for patterns
2906 (MEM (ADDRESSOF (REG ...))). The key of the list entry is the
2907 corresponding (ADDRESSOF (REG ...)) and value is a substitution for
2908 the all pattern. List PURGE_BITFIELD_ADDRESSOF_REPLACEMENTS is not
2909 enough in complex cases, e.g. when some field values can be
2910 extracted by usage MEM with narrower mode. */
2911 static rtx purge_addressof_replacements;
2913 /* Helper function for purge_addressof. See if the rtx expression at *LOC
2914 in INSN needs to be changed. If FORCE, always put any ADDRESSOFs into
2915 the stack. If the function returns FALSE then the replacement could not
2916 be made. If MAY_POSTPONE is true and we would not put the addressof
2917 to stack, postpone processing of the insn. */
2919 static bool
2920 purge_addressof_1 (rtx *loc, rtx insn, int force, int store, int may_postpone,
2921 htab_t ht)
2923 rtx x;
2924 RTX_CODE code;
2925 int i, j;
2926 const char *fmt;
2927 bool result = true;
2929 /* Re-start here to avoid recursion in common cases. */
2930 restart:
2932 x = *loc;
2933 if (x == 0)
2934 return true;
2936 code = GET_CODE (x);
2938 /* If we don't return in any of the cases below, we will recurse inside
2939 the RTX, which will normally result in any ADDRESSOF being forced into
2940 memory. */
2941 if (code == SET)
2943 result = purge_addressof_1 (&SET_DEST (x), insn, force, 1,
2944 may_postpone, ht);
2945 result &= purge_addressof_1 (&SET_SRC (x), insn, force, 0,
2946 may_postpone, ht);
2947 return result;
2949 else if (code == ADDRESSOF)
2951 rtx sub, insns;
2953 if (GET_CODE (XEXP (x, 0)) != MEM)
2954 put_addressof_into_stack (x, ht);
2956 /* We must create a copy of the rtx because it was created by
2957 overwriting a REG rtx which is always shared. */
2958 sub = copy_rtx (XEXP (XEXP (x, 0), 0));
2959 if (validate_change (insn, loc, sub, 0)
2960 || validate_replace_rtx (x, sub, insn))
2961 return true;
2963 start_sequence ();
2965 /* If SUB is a hard or virtual register, try it as a pseudo-register.
2966 Otherwise, perhaps SUB is an expression, so generate code to compute
2967 it. */
2968 if (GET_CODE (sub) == REG && REGNO (sub) <= LAST_VIRTUAL_REGISTER)
2969 sub = copy_to_reg (sub);
2970 else
2971 sub = force_operand (sub, NULL_RTX);
2973 if (! validate_change (insn, loc, sub, 0)
2974 && ! validate_replace_rtx (x, sub, insn))
2975 abort ();
2977 insns = get_insns ();
2978 end_sequence ();
2979 emit_insn_before (insns, insn);
2980 return true;
2983 else if (code == MEM && GET_CODE (XEXP (x, 0)) == ADDRESSOF && ! force)
2985 rtx sub = XEXP (XEXP (x, 0), 0);
2987 if (GET_CODE (sub) == MEM)
2988 sub = adjust_address_nv (sub, GET_MODE (x), 0);
2989 else if (GET_CODE (sub) == REG
2990 && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
2992 else if (GET_CODE (sub) == REG && GET_MODE (x) != GET_MODE (sub))
2994 int size_x, size_sub;
2996 if (may_postpone)
2998 /* Postpone for now, so that we do not emit bitfield arithmetics
2999 unless there is some benefit from it. */
3000 if (!postponed_insns || XEXP (postponed_insns, 0) != insn)
3001 postponed_insns = alloc_INSN_LIST (insn, postponed_insns);
3002 return true;
3005 if (!insn)
3007 /* When processing REG_NOTES look at the list of
3008 replacements done on the insn to find the register that X
3009 was replaced by. */
3010 rtx tem;
3012 for (tem = purge_bitfield_addressof_replacements;
3013 tem != NULL_RTX;
3014 tem = XEXP (XEXP (tem, 1), 1))
3015 if (rtx_equal_p (x, XEXP (tem, 0)))
3017 *loc = XEXP (XEXP (tem, 1), 0);
3018 return true;
3021 /* See comment for purge_addressof_replacements. */
3022 for (tem = purge_addressof_replacements;
3023 tem != NULL_RTX;
3024 tem = XEXP (XEXP (tem, 1), 1))
3025 if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0)))
3027 rtx z = XEXP (XEXP (tem, 1), 0);
3029 if (GET_MODE (x) == GET_MODE (z)
3030 || (GET_CODE (XEXP (XEXP (tem, 1), 0)) != REG
3031 && GET_CODE (XEXP (XEXP (tem, 1), 0)) != SUBREG))
3032 abort ();
3034 /* It can happen that the note may speak of things
3035 in a wider (or just different) mode than the
3036 code did. This is especially true of
3037 REG_RETVAL. */
3039 if (GET_CODE (z) == SUBREG && SUBREG_BYTE (z) == 0)
3040 z = SUBREG_REG (z);
3042 if (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
3043 && (GET_MODE_SIZE (GET_MODE (x))
3044 > GET_MODE_SIZE (GET_MODE (z))))
3046 /* This can occur as a result in invalid
3047 pointer casts, e.g. float f; ...
3048 *(long long int *)&f.
3049 ??? We could emit a warning here, but
3050 without a line number that wouldn't be
3051 very helpful. */
3052 z = gen_rtx_SUBREG (GET_MODE (x), z, 0);
3054 else
3055 z = gen_lowpart (GET_MODE (x), z);
3057 *loc = z;
3058 return true;
3061 /* When we are processing the REG_NOTES of the last instruction
3062 of a libcall, there will be typically no replacements
3063 for that insn; the replacements happened before, piecemeal
3064 fashion. OTOH we are not interested in the details of
3065 this for the REG_EQUAL note, we want to know the big picture,
3066 which can be succinctly described with a simple SUBREG.
3067 Note that removing the REG_EQUAL note is not an option
3068 on the last insn of a libcall, so we must do a replacement. */
3069 if (! purge_addressof_replacements
3070 && ! purge_bitfield_addressof_replacements)
3072 /* In compile/990107-1.c:7 compiled at -O1 -m1 for sh-elf,
3073 we got
3074 (mem:DI (addressof:SI (reg/v:DF 160) 159 0x401c8510)
3075 [0 S8 A32]), which can be expressed with a simple
3076 same-size subreg */
3077 if ((GET_MODE_SIZE (GET_MODE (x))
3078 == GET_MODE_SIZE (GET_MODE (sub)))
3079 /* Again, invalid pointer casts (as in
3080 compile/990203-1.c) can require paradoxical
3081 subregs. */
3082 || (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
3083 && (GET_MODE_SIZE (GET_MODE (x))
3084 > GET_MODE_SIZE (GET_MODE (sub)))))
3086 *loc = gen_rtx_SUBREG (GET_MODE (x), sub, 0);
3087 return true;
3089 /* ??? Are there other cases we should handle? */
3091 /* Sometimes we may not be able to find the replacement. For
3092 example when the original insn was a MEM in a wider mode,
3093 and the note is part of a sign extension of a narrowed
3094 version of that MEM. Gcc testcase compile/990829-1.c can
3095 generate an example of this situation. Rather than complain
3096 we return false, which will prompt our caller to remove the
3097 offending note. */
3098 return false;
3101 size_x = GET_MODE_BITSIZE (GET_MODE (x));
3102 size_sub = GET_MODE_BITSIZE (GET_MODE (sub));
3104 /* Do not frob unchanging MEMs. If a later reference forces the
3105 pseudo to the stack, we can wind up with multiple writes to
3106 an unchanging memory, which is invalid. */
3107 if (RTX_UNCHANGING_P (x) && size_x != size_sub)
3110 /* Don't even consider working with paradoxical subregs,
3111 or the moral equivalent seen here. */
3112 else if (size_x <= size_sub
3113 && int_mode_for_mode (GET_MODE (sub)) != BLKmode)
3115 /* Do a bitfield insertion to mirror what would happen
3116 in memory. */
3118 rtx val, seq;
3120 if (store)
3122 rtx p = PREV_INSN (insn);
3124 start_sequence ();
3125 val = gen_reg_rtx (GET_MODE (x));
3126 if (! validate_change (insn, loc, val, 0))
3128 /* Discard the current sequence and put the
3129 ADDRESSOF on stack. */
3130 end_sequence ();
3131 goto give_up;
3133 seq = get_insns ();
3134 end_sequence ();
3135 emit_insn_before (seq, insn);
3136 compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (),
3137 insn, ht);
3139 start_sequence ();
3140 store_bit_field (sub, size_x, 0, GET_MODE (x),
3141 val, GET_MODE_SIZE (GET_MODE (sub)));
3143 /* Make sure to unshare any shared rtl that store_bit_field
3144 might have created. */
3145 unshare_all_rtl_again (get_insns ());
3147 seq = get_insns ();
3148 end_sequence ();
3149 p = emit_insn_after (seq, insn);
3150 if (NEXT_INSN (insn))
3151 compute_insns_for_mem (NEXT_INSN (insn),
3152 p ? NEXT_INSN (p) : NULL_RTX,
3153 ht);
3155 else
3157 rtx p = PREV_INSN (insn);
3159 start_sequence ();
3160 val = extract_bit_field (sub, size_x, 0, 1, NULL_RTX,
3161 GET_MODE (x), GET_MODE (x),
3162 GET_MODE_SIZE (GET_MODE (sub)));
3164 if (! validate_change (insn, loc, val, 0))
3166 /* Discard the current sequence and put the
3167 ADDRESSOF on stack. */
3168 end_sequence ();
3169 goto give_up;
3172 seq = get_insns ();
3173 end_sequence ();
3174 emit_insn_before (seq, insn);
3175 compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (),
3176 insn, ht);
3179 /* Remember the replacement so that the same one can be done
3180 on the REG_NOTES. */
3181 purge_bitfield_addressof_replacements
3182 = gen_rtx_EXPR_LIST (VOIDmode, x,
3183 gen_rtx_EXPR_LIST
3184 (VOIDmode, val,
3185 purge_bitfield_addressof_replacements));
3187 /* We replaced with a reg -- all done. */
3188 return true;
3192 else if (validate_change (insn, loc, sub, 0))
3194 /* Remember the replacement so that the same one can be done
3195 on the REG_NOTES. */
3196 if (GET_CODE (sub) == REG || GET_CODE (sub) == SUBREG)
3198 rtx tem;
3200 for (tem = purge_addressof_replacements;
3201 tem != NULL_RTX;
3202 tem = XEXP (XEXP (tem, 1), 1))
3203 if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0)))
3205 XEXP (XEXP (tem, 1), 0) = sub;
3206 return true;
3208 purge_addressof_replacements
3209 = gen_rtx (EXPR_LIST, VOIDmode, XEXP (x, 0),
3210 gen_rtx_EXPR_LIST (VOIDmode, sub,
3211 purge_addressof_replacements));
3212 return true;
3214 goto restart;
3218 give_up:
3219 /* Scan all subexpressions. */
3220 fmt = GET_RTX_FORMAT (code);
3221 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3223 if (*fmt == 'e')
3224 result &= purge_addressof_1 (&XEXP (x, i), insn, force, 0,
3225 may_postpone, ht);
3226 else if (*fmt == 'E')
3227 for (j = 0; j < XVECLEN (x, i); j++)
3228 result &= purge_addressof_1 (&XVECEXP (x, i, j), insn, force, 0,
3229 may_postpone, ht);
3232 return result;
3235 /* Return a hash value for K, a REG. */
3237 static hashval_t
3238 insns_for_mem_hash (const void *k)
3240 /* Use the address of the key for the hash value. */
3241 struct insns_for_mem_entry *m = (struct insns_for_mem_entry *) k;
3242 return htab_hash_pointer (m->key);
3245 /* Return nonzero if K1 and K2 (two REGs) are the same. */
3247 static int
3248 insns_for_mem_comp (const void *k1, const void *k2)
3250 struct insns_for_mem_entry *m1 = (struct insns_for_mem_entry *) k1;
3251 struct insns_for_mem_entry *m2 = (struct insns_for_mem_entry *) k2;
3252 return m1->key == m2->key;
3255 struct insns_for_mem_walk_info
3257 /* The hash table that we are using to record which INSNs use which
3258 MEMs. */
3259 htab_t ht;
3261 /* The INSN we are currently processing. */
3262 rtx insn;
3264 /* Zero if we are walking to find ADDRESSOFs, one if we are walking
3265 to find the insns that use the REGs in the ADDRESSOFs. */
3266 int pass;
3269 /* Called from compute_insns_for_mem via for_each_rtx. If R is a REG
3270 that might be used in an ADDRESSOF expression, record this INSN in
3271 the hash table given by DATA (which is really a pointer to an
3272 insns_for_mem_walk_info structure). */
3274 static int
3275 insns_for_mem_walk (rtx *r, void *data)
3277 struct insns_for_mem_walk_info *ifmwi
3278 = (struct insns_for_mem_walk_info *) data;
3279 struct insns_for_mem_entry tmp;
3280 tmp.insns = NULL_RTX;
3282 if (ifmwi->pass == 0 && *r && GET_CODE (*r) == ADDRESSOF
3283 && GET_CODE (XEXP (*r, 0)) == REG)
3285 void **e;
3286 tmp.key = XEXP (*r, 0);
3287 e = htab_find_slot (ifmwi->ht, &tmp, INSERT);
3288 if (*e == NULL)
3290 *e = ggc_alloc (sizeof (tmp));
3291 memcpy (*e, &tmp, sizeof (tmp));
3294 else if (ifmwi->pass == 1 && *r && GET_CODE (*r) == REG)
3296 struct insns_for_mem_entry *ifme;
3297 tmp.key = *r;
3298 ifme = (struct insns_for_mem_entry *) htab_find (ifmwi->ht, &tmp);
3300 /* If we have not already recorded this INSN, do so now. Since
3301 we process the INSNs in order, we know that if we have
3302 recorded it it must be at the front of the list. */
3303 if (ifme && (!ifme->insns || XEXP (ifme->insns, 0) != ifmwi->insn))
3304 ifme->insns = gen_rtx_EXPR_LIST (VOIDmode, ifmwi->insn,
3305 ifme->insns);
3308 return 0;
3311 /* Walk the INSNS, until we reach LAST_INSN, recording which INSNs use
3312 which REGs in HT. */
3314 static void
3315 compute_insns_for_mem (rtx insns, rtx last_insn, htab_t ht)
3317 rtx insn;
3318 struct insns_for_mem_walk_info ifmwi;
3319 ifmwi.ht = ht;
3321 for (ifmwi.pass = 0; ifmwi.pass < 2; ++ifmwi.pass)
3322 for (insn = insns; insn != last_insn; insn = NEXT_INSN (insn))
3323 if (INSN_P (insn))
3325 ifmwi.insn = insn;
3326 for_each_rtx (&insn, insns_for_mem_walk, &ifmwi);
3330 /* Helper function for purge_addressof called through for_each_rtx.
3331 Returns true iff the rtl is an ADDRESSOF. */
3333 static int
3334 is_addressof (rtx *rtl, void *data ATTRIBUTE_UNUSED)
3336 return GET_CODE (*rtl) == ADDRESSOF;
3339 /* Eliminate all occurrences of ADDRESSOF from INSNS. Elide any remaining
3340 (MEM (ADDRESSOF)) patterns, and force any needed registers into the
3341 stack. */
3343 void
3344 purge_addressof (rtx insns)
3346 rtx insn, tmp;
3347 htab_t ht;
3349 /* When we actually purge ADDRESSOFs, we turn REGs into MEMs. That
3350 requires a fixup pass over the instruction stream to correct
3351 INSNs that depended on the REG being a REG, and not a MEM. But,
3352 these fixup passes are slow. Furthermore, most MEMs are not
3353 mentioned in very many instructions. So, we speed up the process
3354 by pre-calculating which REGs occur in which INSNs; that allows
3355 us to perform the fixup passes much more quickly. */
3356 ht = htab_create_ggc (1000, insns_for_mem_hash, insns_for_mem_comp, NULL);
3357 compute_insns_for_mem (insns, NULL_RTX, ht);
3359 postponed_insns = NULL;
3361 for (insn = insns; insn; insn = NEXT_INSN (insn))
3362 if (INSN_P (insn))
3364 if (! purge_addressof_1 (&PATTERN (insn), insn,
3365 asm_noperands (PATTERN (insn)) > 0, 0, 1, ht))
3366 /* If we could not replace the ADDRESSOFs in the insn,
3367 something is wrong. */
3368 abort ();
3370 if (! purge_addressof_1 (&REG_NOTES (insn), NULL_RTX, 0, 0, 0, ht))
3372 /* If we could not replace the ADDRESSOFs in the insn's notes,
3373 we can just remove the offending notes instead. */
3374 rtx note;
3376 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3378 /* If we find a REG_RETVAL note then the insn is a libcall.
3379 Such insns must have REG_EQUAL notes as well, in order
3380 for later passes of the compiler to work. So it is not
3381 safe to delete the notes here, and instead we abort. */
3382 if (REG_NOTE_KIND (note) == REG_RETVAL)
3383 abort ();
3384 if (for_each_rtx (&note, is_addressof, NULL))
3385 remove_note (insn, note);
3390 /* Process the postponed insns. */
3391 while (postponed_insns)
3393 insn = XEXP (postponed_insns, 0);
3394 tmp = postponed_insns;
3395 postponed_insns = XEXP (postponed_insns, 1);
3396 free_INSN_LIST_node (tmp);
3398 if (! purge_addressof_1 (&PATTERN (insn), insn,
3399 asm_noperands (PATTERN (insn)) > 0, 0, 0, ht))
3400 abort ();
3403 /* Clean up. */
3404 purge_bitfield_addressof_replacements = 0;
3405 purge_addressof_replacements = 0;
3407 /* REGs are shared. purge_addressof will destructively replace a REG
3408 with a MEM, which creates shared MEMs.
3410 Unfortunately, the children of put_reg_into_stack assume that MEMs
3411 referring to the same stack slot are shared (fixup_var_refs and
3412 the associated hash table code).
3414 So, we have to do another unsharing pass after we have flushed any
3415 REGs that had their address taken into the stack.
3417 It may be worth tracking whether or not we converted any REGs into
3418 MEMs to avoid this overhead when it is not needed. */
3419 unshare_all_rtl_again (get_insns ());
3422 /* Convert a SET of a hard subreg to a set of the appropriate hard
3423 register. A subroutine of purge_hard_subreg_sets. */
3425 static void
3426 purge_single_hard_subreg_set (rtx pattern)
3428 rtx reg = SET_DEST (pattern);
3429 enum machine_mode mode = GET_MODE (SET_DEST (pattern));
3430 int offset = 0;
3432 if (GET_CODE (reg) == SUBREG && GET_CODE (SUBREG_REG (reg)) == REG
3433 && REGNO (SUBREG_REG (reg)) < FIRST_PSEUDO_REGISTER)
3435 offset = subreg_regno_offset (REGNO (SUBREG_REG (reg)),
3436 GET_MODE (SUBREG_REG (reg)),
3437 SUBREG_BYTE (reg),
3438 GET_MODE (reg));
3439 reg = SUBREG_REG (reg);
3443 if (GET_CODE (reg) == REG && REGNO (reg) < FIRST_PSEUDO_REGISTER)
3445 reg = gen_rtx_REG (mode, REGNO (reg) + offset);
3446 SET_DEST (pattern) = reg;
3450 /* Eliminate all occurrences of SETs of hard subregs from INSNS. The
3451 only such SETs that we expect to see are those left in because
3452 integrate can't handle sets of parts of a return value register.
3454 We don't use alter_subreg because we only want to eliminate subregs
3455 of hard registers. */
3457 void
3458 purge_hard_subreg_sets (rtx insn)
3460 for (; insn; insn = NEXT_INSN (insn))
3462 if (INSN_P (insn))
3464 rtx pattern = PATTERN (insn);
3465 switch (GET_CODE (pattern))
3467 case SET:
3468 if (GET_CODE (SET_DEST (pattern)) == SUBREG)
3469 purge_single_hard_subreg_set (pattern);
3470 break;
3471 case PARALLEL:
3473 int j;
3474 for (j = XVECLEN (pattern, 0) - 1; j >= 0; j--)
3476 rtx inner_pattern = XVECEXP (pattern, 0, j);
3477 if (GET_CODE (inner_pattern) == SET
3478 && GET_CODE (SET_DEST (inner_pattern)) == SUBREG)
3479 purge_single_hard_subreg_set (inner_pattern);
3482 break;
3483 default:
3484 break;
3490 /* Pass through the INSNS of function FNDECL and convert virtual register
3491 references to hard register references. */
3493 void
3494 instantiate_virtual_regs (tree fndecl, rtx insns)
3496 rtx insn;
3497 unsigned int i;
3499 /* Compute the offsets to use for this function. */
3500 in_arg_offset = FIRST_PARM_OFFSET (fndecl);
3501 var_offset = STARTING_FRAME_OFFSET;
3502 dynamic_offset = STACK_DYNAMIC_OFFSET (fndecl);
3503 out_arg_offset = STACK_POINTER_OFFSET;
3504 cfa_offset = ARG_POINTER_CFA_OFFSET (fndecl);
3506 /* Scan all variables and parameters of this function. For each that is
3507 in memory, instantiate all virtual registers if the result is a valid
3508 address. If not, we do it later. That will handle most uses of virtual
3509 regs on many machines. */
3510 instantiate_decls (fndecl, 1);
3512 /* Initialize recognition, indicating that volatile is OK. */
3513 init_recog ();
3515 /* Scan through all the insns, instantiating every virtual register still
3516 present. */
3517 for (insn = insns; insn; insn = NEXT_INSN (insn))
3518 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
3519 || GET_CODE (insn) == CALL_INSN)
3521 instantiate_virtual_regs_1 (&PATTERN (insn), insn, 1);
3522 if (INSN_DELETED_P (insn))
3523 continue;
3524 instantiate_virtual_regs_1 (&REG_NOTES (insn), NULL_RTX, 0);
3525 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
3526 if (GET_CODE (insn) == CALL_INSN)
3527 instantiate_virtual_regs_1 (&CALL_INSN_FUNCTION_USAGE (insn),
3528 NULL_RTX, 0);
3530 /* Past this point all ASM statements should match. Verify that
3531 to avoid failures later in the compilation process. */
3532 if (asm_noperands (PATTERN (insn)) >= 0
3533 && ! check_asm_operands (PATTERN (insn)))
3534 instantiate_virtual_regs_lossage (insn);
3537 /* Instantiate the stack slots for the parm registers, for later use in
3538 addressof elimination. */
3539 for (i = 0; i < max_parm_reg; ++i)
3540 if (parm_reg_stack_loc[i])
3541 instantiate_virtual_regs_1 (&parm_reg_stack_loc[i], NULL_RTX, 0);
3543 /* Now instantiate the remaining register equivalences for debugging info.
3544 These will not be valid addresses. */
3545 instantiate_decls (fndecl, 0);
3547 /* Indicate that, from now on, assign_stack_local should use
3548 frame_pointer_rtx. */
3549 virtuals_instantiated = 1;
3552 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
3553 all virtual registers in their DECL_RTL's.
3555 If VALID_ONLY, do this only if the resulting address is still valid.
3556 Otherwise, always do it. */
3558 static void
3559 instantiate_decls (tree fndecl, int valid_only)
3561 tree decl;
3563 /* Process all parameters of the function. */
3564 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
3566 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (decl));
3567 HOST_WIDE_INT size_rtl;
3569 instantiate_decl (DECL_RTL (decl), size, valid_only);
3571 /* If the parameter was promoted, then the incoming RTL mode may be
3572 larger than the declared type size. We must use the larger of
3573 the two sizes. */
3574 size_rtl = GET_MODE_SIZE (GET_MODE (DECL_INCOMING_RTL (decl)));
3575 size = MAX (size_rtl, size);
3576 instantiate_decl (DECL_INCOMING_RTL (decl), size, valid_only);
3579 /* Now process all variables defined in the function or its subblocks. */
3580 instantiate_decls_1 (DECL_INITIAL (fndecl), valid_only);
3583 /* Subroutine of instantiate_decls: Process all decls in the given
3584 BLOCK node and all its subblocks. */
3586 static void
3587 instantiate_decls_1 (tree let, int valid_only)
3589 tree t;
3591 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
3592 if (DECL_RTL_SET_P (t))
3593 instantiate_decl (DECL_RTL (t),
3594 int_size_in_bytes (TREE_TYPE (t)),
3595 valid_only);
3597 /* Process all subblocks. */
3598 for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
3599 instantiate_decls_1 (t, valid_only);
3602 /* Subroutine of the preceding procedures: Given RTL representing a
3603 decl and the size of the object, do any instantiation required.
3605 If VALID_ONLY is nonzero, it means that the RTL should only be
3606 changed if the new address is valid. */
3608 static void
3609 instantiate_decl (rtx x, HOST_WIDE_INT size, int valid_only)
3611 enum machine_mode mode;
3612 rtx addr;
3614 /* If this is not a MEM, no need to do anything. Similarly if the
3615 address is a constant or a register that is not a virtual register. */
3617 if (x == 0 || GET_CODE (x) != MEM)
3618 return;
3620 addr = XEXP (x, 0);
3621 if (CONSTANT_P (addr)
3622 || (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == REG)
3623 || (GET_CODE (addr) == REG
3624 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
3625 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
3626 return;
3628 /* If we should only do this if the address is valid, copy the address.
3629 We need to do this so we can undo any changes that might make the
3630 address invalid. This copy is unfortunate, but probably can't be
3631 avoided. */
3633 if (valid_only)
3634 addr = copy_rtx (addr);
3636 instantiate_virtual_regs_1 (&addr, NULL_RTX, 0);
3638 if (valid_only && size >= 0)
3640 unsigned HOST_WIDE_INT decl_size = size;
3642 /* Now verify that the resulting address is valid for every integer or
3643 floating-point mode up to and including SIZE bytes long. We do this
3644 since the object might be accessed in any mode and frame addresses
3645 are shared. */
3647 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
3648 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
3649 mode = GET_MODE_WIDER_MODE (mode))
3650 if (! memory_address_p (mode, addr))
3651 return;
3653 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
3654 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
3655 mode = GET_MODE_WIDER_MODE (mode))
3656 if (! memory_address_p (mode, addr))
3657 return;
3660 /* Put back the address now that we have updated it and we either know
3661 it is valid or we don't care whether it is valid. */
3663 XEXP (x, 0) = addr;
3666 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
3667 is a virtual register, return the equivalent hard register and set the
3668 offset indirectly through the pointer. Otherwise, return 0. */
3670 static rtx
3671 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
3673 rtx new;
3674 HOST_WIDE_INT offset;
3676 if (x == virtual_incoming_args_rtx)
3677 new = arg_pointer_rtx, offset = in_arg_offset;
3678 else if (x == virtual_stack_vars_rtx)
3679 new = frame_pointer_rtx, offset = var_offset;
3680 else if (x == virtual_stack_dynamic_rtx)
3681 new = stack_pointer_rtx, offset = dynamic_offset;
3682 else if (x == virtual_outgoing_args_rtx)
3683 new = stack_pointer_rtx, offset = out_arg_offset;
3684 else if (x == virtual_cfa_rtx)
3685 new = arg_pointer_rtx, offset = cfa_offset;
3686 else
3687 return 0;
3689 *poffset = offset;
3690 return new;
3694 /* Called when instantiate_virtual_regs has failed to update the instruction.
3695 Usually this means that non-matching instruction has been emit, however for
3696 asm statements it may be the problem in the constraints. */
3697 static void
3698 instantiate_virtual_regs_lossage (rtx insn)
3700 if (asm_noperands (PATTERN (insn)) >= 0)
3702 error_for_asm (insn, "impossible constraint in `asm'");
3703 delete_insn (insn);
3705 else
3706 abort ();
3708 /* Given a pointer to a piece of rtx and an optional pointer to the
3709 containing object, instantiate any virtual registers present in it.
3711 If EXTRA_INSNS, we always do the replacement and generate
3712 any extra insns before OBJECT. If it zero, we do nothing if replacement
3713 is not valid.
3715 Return 1 if we either had nothing to do or if we were able to do the
3716 needed replacement. Return 0 otherwise; we only return zero if
3717 EXTRA_INSNS is zero.
3719 We first try some simple transformations to avoid the creation of extra
3720 pseudos. */
3722 static int
3723 instantiate_virtual_regs_1 (rtx *loc, rtx object, int extra_insns)
3725 rtx x;
3726 RTX_CODE code;
3727 rtx new = 0;
3728 HOST_WIDE_INT offset = 0;
3729 rtx temp;
3730 rtx seq;
3731 int i, j;
3732 const char *fmt;
3734 /* Re-start here to avoid recursion in common cases. */
3735 restart:
3737 x = *loc;
3738 if (x == 0)
3739 return 1;
3741 /* We may have detected and deleted invalid asm statements. */
3742 if (object && INSN_P (object) && INSN_DELETED_P (object))
3743 return 1;
3745 code = GET_CODE (x);
3747 /* Check for some special cases. */
3748 switch (code)
3750 case CONST_INT:
3751 case CONST_DOUBLE:
3752 case CONST_VECTOR:
3753 case CONST:
3754 case SYMBOL_REF:
3755 case CODE_LABEL:
3756 case PC:
3757 case CC0:
3758 case ASM_INPUT:
3759 case ADDR_VEC:
3760 case ADDR_DIFF_VEC:
3761 case RETURN:
3762 return 1;
3764 case SET:
3765 /* We are allowed to set the virtual registers. This means that
3766 the actual register should receive the source minus the
3767 appropriate offset. This is used, for example, in the handling
3768 of non-local gotos. */
3769 if ((new = instantiate_new_reg (SET_DEST (x), &offset)) != 0)
3771 rtx src = SET_SRC (x);
3773 /* We are setting the register, not using it, so the relevant
3774 offset is the negative of the offset to use were we using
3775 the register. */
3776 offset = - offset;
3777 instantiate_virtual_regs_1 (&src, NULL_RTX, 0);
3779 /* The only valid sources here are PLUS or REG. Just do
3780 the simplest possible thing to handle them. */
3781 if (GET_CODE (src) != REG && GET_CODE (src) != PLUS)
3783 instantiate_virtual_regs_lossage (object);
3784 return 1;
3787 start_sequence ();
3788 if (GET_CODE (src) != REG)
3789 temp = force_operand (src, NULL_RTX);
3790 else
3791 temp = src;
3792 temp = force_operand (plus_constant (temp, offset), NULL_RTX);
3793 seq = get_insns ();
3794 end_sequence ();
3796 emit_insn_before (seq, object);
3797 SET_DEST (x) = new;
3799 if (! validate_change (object, &SET_SRC (x), temp, 0)
3800 || ! extra_insns)
3801 instantiate_virtual_regs_lossage (object);
3803 return 1;
3806 instantiate_virtual_regs_1 (&SET_DEST (x), object, extra_insns);
3807 loc = &SET_SRC (x);
3808 goto restart;
3810 case PLUS:
3811 /* Handle special case of virtual register plus constant. */
3812 if (CONSTANT_P (XEXP (x, 1)))
3814 rtx old, new_offset;
3816 /* Check for (plus (plus VIRT foo) (const_int)) first. */
3817 if (GET_CODE (XEXP (x, 0)) == PLUS)
3819 if ((new = instantiate_new_reg (XEXP (XEXP (x, 0), 0), &offset)))
3821 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 1), object,
3822 extra_insns);
3823 new = gen_rtx_PLUS (Pmode, new, XEXP (XEXP (x, 0), 1));
3825 else
3827 loc = &XEXP (x, 0);
3828 goto restart;
3832 #ifdef POINTERS_EXTEND_UNSIGNED
3833 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
3834 we can commute the PLUS and SUBREG because pointers into the
3835 frame are well-behaved. */
3836 else if (GET_CODE (XEXP (x, 0)) == SUBREG && GET_MODE (x) == ptr_mode
3837 && GET_CODE (XEXP (x, 1)) == CONST_INT
3838 && 0 != (new
3839 = instantiate_new_reg (SUBREG_REG (XEXP (x, 0)),
3840 &offset))
3841 && validate_change (object, loc,
3842 plus_constant (gen_lowpart (ptr_mode,
3843 new),
3844 offset
3845 + INTVAL (XEXP (x, 1))),
3847 return 1;
3848 #endif
3849 else if ((new = instantiate_new_reg (XEXP (x, 0), &offset)) == 0)
3851 /* We know the second operand is a constant. Unless the
3852 first operand is a REG (which has been already checked),
3853 it needs to be checked. */
3854 if (GET_CODE (XEXP (x, 0)) != REG)
3856 loc = &XEXP (x, 0);
3857 goto restart;
3859 return 1;
3862 new_offset = plus_constant (XEXP (x, 1), offset);
3864 /* If the new constant is zero, try to replace the sum with just
3865 the register. */
3866 if (new_offset == const0_rtx
3867 && validate_change (object, loc, new, 0))
3868 return 1;
3870 /* Next try to replace the register and new offset.
3871 There are two changes to validate here and we can't assume that
3872 in the case of old offset equals new just changing the register
3873 will yield a valid insn. In the interests of a little efficiency,
3874 however, we only call validate change once (we don't queue up the
3875 changes and then call apply_change_group). */
3877 old = XEXP (x, 0);
3878 if (offset == 0
3879 ? ! validate_change (object, &XEXP (x, 0), new, 0)
3880 : (XEXP (x, 0) = new,
3881 ! validate_change (object, &XEXP (x, 1), new_offset, 0)))
3883 if (! extra_insns)
3885 XEXP (x, 0) = old;
3886 return 0;
3889 /* Otherwise copy the new constant into a register and replace
3890 constant with that register. */
3891 temp = gen_reg_rtx (Pmode);
3892 XEXP (x, 0) = new;
3893 if (validate_change (object, &XEXP (x, 1), temp, 0))
3894 emit_insn_before (gen_move_insn (temp, new_offset), object);
3895 else
3897 /* If that didn't work, replace this expression with a
3898 register containing the sum. */
3900 XEXP (x, 0) = old;
3901 new = gen_rtx_PLUS (Pmode, new, new_offset);
3903 start_sequence ();
3904 temp = force_operand (new, NULL_RTX);
3905 seq = get_insns ();
3906 end_sequence ();
3908 emit_insn_before (seq, object);
3909 if (! validate_change (object, loc, temp, 0)
3910 && ! validate_replace_rtx (x, temp, object))
3912 instantiate_virtual_regs_lossage (object);
3913 return 1;
3918 return 1;
3921 /* Fall through to generic two-operand expression case. */
3922 case EXPR_LIST:
3923 case CALL:
3924 case COMPARE:
3925 case MINUS:
3926 case MULT:
3927 case DIV: case UDIV:
3928 case MOD: case UMOD:
3929 case AND: case IOR: case XOR:
3930 case ROTATERT: case ROTATE:
3931 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
3932 case NE: case EQ:
3933 case GE: case GT: case GEU: case GTU:
3934 case LE: case LT: case LEU: case LTU:
3935 if (XEXP (x, 1) && ! CONSTANT_P (XEXP (x, 1)))
3936 instantiate_virtual_regs_1 (&XEXP (x, 1), object, extra_insns);
3937 loc = &XEXP (x, 0);
3938 goto restart;
3940 case MEM:
3941 /* Most cases of MEM that convert to valid addresses have already been
3942 handled by our scan of decls. The only special handling we
3943 need here is to make a copy of the rtx to ensure it isn't being
3944 shared if we have to change it to a pseudo.
3946 If the rtx is a simple reference to an address via a virtual register,
3947 it can potentially be shared. In such cases, first try to make it
3948 a valid address, which can also be shared. Otherwise, copy it and
3949 proceed normally.
3951 First check for common cases that need no processing. These are
3952 usually due to instantiation already being done on a previous instance
3953 of a shared rtx. */
3955 temp = XEXP (x, 0);
3956 if (CONSTANT_ADDRESS_P (temp)
3957 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3958 || temp == arg_pointer_rtx
3959 #endif
3960 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3961 || temp == hard_frame_pointer_rtx
3962 #endif
3963 || temp == frame_pointer_rtx)
3964 return 1;
3966 if (GET_CODE (temp) == PLUS
3967 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
3968 && (XEXP (temp, 0) == frame_pointer_rtx
3969 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3970 || XEXP (temp, 0) == hard_frame_pointer_rtx
3971 #endif
3972 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3973 || XEXP (temp, 0) == arg_pointer_rtx
3974 #endif
3976 return 1;
3978 if (temp == virtual_stack_vars_rtx
3979 || temp == virtual_incoming_args_rtx
3980 || (GET_CODE (temp) == PLUS
3981 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
3982 && (XEXP (temp, 0) == virtual_stack_vars_rtx
3983 || XEXP (temp, 0) == virtual_incoming_args_rtx)))
3985 /* This MEM may be shared. If the substitution can be done without
3986 the need to generate new pseudos, we want to do it in place
3987 so all copies of the shared rtx benefit. The call below will
3988 only make substitutions if the resulting address is still
3989 valid.
3991 Note that we cannot pass X as the object in the recursive call
3992 since the insn being processed may not allow all valid
3993 addresses. However, if we were not passed on object, we can
3994 only modify X without copying it if X will have a valid
3995 address.
3997 ??? Also note that this can still lose if OBJECT is an insn that
3998 has less restrictions on an address that some other insn.
3999 In that case, we will modify the shared address. This case
4000 doesn't seem very likely, though. One case where this could
4001 happen is in the case of a USE or CLOBBER reference, but we
4002 take care of that below. */
4004 if (instantiate_virtual_regs_1 (&XEXP (x, 0),
4005 object ? object : x, 0))
4006 return 1;
4008 /* Otherwise make a copy and process that copy. We copy the entire
4009 RTL expression since it might be a PLUS which could also be
4010 shared. */
4011 *loc = x = copy_rtx (x);
4014 /* Fall through to generic unary operation case. */
4015 case PREFETCH:
4016 case SUBREG:
4017 case STRICT_LOW_PART:
4018 case NEG: case NOT:
4019 case PRE_DEC: case PRE_INC: case POST_DEC: case POST_INC:
4020 case SIGN_EXTEND: case ZERO_EXTEND:
4021 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
4022 case FLOAT: case FIX:
4023 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
4024 case ABS:
4025 case SQRT:
4026 case FFS:
4027 case CLZ: case CTZ:
4028 case POPCOUNT: case PARITY:
4029 /* These case either have just one operand or we know that we need not
4030 check the rest of the operands. */
4031 loc = &XEXP (x, 0);
4032 goto restart;
4034 case USE:
4035 case CLOBBER:
4036 /* If the operand is a MEM, see if the change is a valid MEM. If not,
4037 go ahead and make the invalid one, but do it to a copy. For a REG,
4038 just make the recursive call, since there's no chance of a problem. */
4040 if ((GET_CODE (XEXP (x, 0)) == MEM
4041 && instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), XEXP (x, 0),
4043 || (GET_CODE (XEXP (x, 0)) == REG
4044 && instantiate_virtual_regs_1 (&XEXP (x, 0), object, 0)))
4045 return 1;
4047 XEXP (x, 0) = copy_rtx (XEXP (x, 0));
4048 loc = &XEXP (x, 0);
4049 goto restart;
4051 case REG:
4052 /* Try to replace with a PLUS. If that doesn't work, compute the sum
4053 in front of this insn and substitute the temporary. */
4054 if ((new = instantiate_new_reg (x, &offset)) != 0)
4056 temp = plus_constant (new, offset);
4057 if (!validate_change (object, loc, temp, 0))
4059 if (! extra_insns)
4060 return 0;
4062 start_sequence ();
4063 temp = force_operand (temp, NULL_RTX);
4064 seq = get_insns ();
4065 end_sequence ();
4067 emit_insn_before (seq, object);
4068 if (! validate_change (object, loc, temp, 0)
4069 && ! validate_replace_rtx (x, temp, object))
4070 instantiate_virtual_regs_lossage (object);
4074 return 1;
4076 case ADDRESSOF:
4077 if (GET_CODE (XEXP (x, 0)) == REG)
4078 return 1;
4080 else if (GET_CODE (XEXP (x, 0)) == MEM)
4082 /* If we have a (addressof (mem ..)), do any instantiation inside
4083 since we know we'll be making the inside valid when we finally
4084 remove the ADDRESSOF. */
4085 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), NULL_RTX, 0);
4086 return 1;
4088 break;
4090 default:
4091 break;
4094 /* Scan all subexpressions. */
4095 fmt = GET_RTX_FORMAT (code);
4096 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
4097 if (*fmt == 'e')
4099 if (!instantiate_virtual_regs_1 (&XEXP (x, i), object, extra_insns))
4100 return 0;
4102 else if (*fmt == 'E')
4103 for (j = 0; j < XVECLEN (x, i); j++)
4104 if (! instantiate_virtual_regs_1 (&XVECEXP (x, i, j), object,
4105 extra_insns))
4106 return 0;
4108 return 1;
4111 /* Optimization: assuming this function does not receive nonlocal gotos,
4112 delete the handlers for such, as well as the insns to establish
4113 and disestablish them. */
4115 static void
4116 delete_handlers (void)
4118 rtx insn;
4119 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4121 /* Delete the handler by turning off the flag that would
4122 prevent jump_optimize from deleting it.
4123 Also permit deletion of the nonlocal labels themselves
4124 if nothing local refers to them. */
4125 if (GET_CODE (insn) == CODE_LABEL)
4127 tree t, last_t;
4129 LABEL_PRESERVE_P (insn) = 0;
4131 /* Remove it from the nonlocal_label list, to avoid confusing
4132 flow. */
4133 for (t = nonlocal_labels, last_t = 0; t;
4134 last_t = t, t = TREE_CHAIN (t))
4135 if (DECL_RTL (TREE_VALUE (t)) == insn)
4136 break;
4137 if (t)
4139 if (! last_t)
4140 nonlocal_labels = TREE_CHAIN (nonlocal_labels);
4141 else
4142 TREE_CHAIN (last_t) = TREE_CHAIN (t);
4145 if (GET_CODE (insn) == INSN)
4147 int can_delete = 0;
4148 rtx t;
4149 for (t = nonlocal_goto_handler_slots; t != 0; t = XEXP (t, 1))
4150 if (reg_mentioned_p (t, PATTERN (insn)))
4152 can_delete = 1;
4153 break;
4155 if (can_delete
4156 || (nonlocal_goto_stack_level != 0
4157 && reg_mentioned_p (nonlocal_goto_stack_level,
4158 PATTERN (insn))))
4159 delete_related_insns (insn);
4164 /* Return the first insn following those generated by `assign_parms'. */
4167 get_first_nonparm_insn (void)
4169 if (last_parm_insn)
4170 return NEXT_INSN (last_parm_insn);
4171 return get_insns ();
4174 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
4175 This means a type for which function calls must pass an address to the
4176 function or get an address back from the function.
4177 EXP may be a type node or an expression (whose type is tested). */
4180 aggregate_value_p (tree exp)
4182 int i, regno, nregs;
4183 rtx reg;
4185 tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
4187 if (TREE_CODE (type) == VOID_TYPE)
4188 return 0;
4189 if (RETURN_IN_MEMORY (type))
4190 return 1;
4191 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
4192 and thus can't be returned in registers. */
4193 if (TREE_ADDRESSABLE (type))
4194 return 1;
4195 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
4196 return 1;
4197 /* Make sure we have suitable call-clobbered regs to return
4198 the value in; if not, we must return it in memory. */
4199 reg = hard_function_value (type, 0, 0);
4201 /* If we have something other than a REG (e.g. a PARALLEL), then assume
4202 it is OK. */
4203 if (GET_CODE (reg) != REG)
4204 return 0;
4206 regno = REGNO (reg);
4207 nregs = HARD_REGNO_NREGS (regno, TYPE_MODE (type));
4208 for (i = 0; i < nregs; i++)
4209 if (! call_used_regs[regno + i])
4210 return 1;
4211 return 0;
4214 /* Assign RTL expressions to the function's parameters.
4215 This may involve copying them into registers and using
4216 those registers as the RTL for them. */
4218 void
4219 assign_parms (tree fndecl)
4221 tree parm;
4222 CUMULATIVE_ARGS args_so_far;
4223 /* Total space needed so far for args on the stack,
4224 given as a constant and a tree-expression. */
4225 struct args_size stack_args_size;
4226 tree fntype = TREE_TYPE (fndecl);
4227 tree fnargs = DECL_ARGUMENTS (fndecl), orig_fnargs;
4228 /* This is used for the arg pointer when referring to stack args. */
4229 rtx internal_arg_pointer;
4230 /* This is a dummy PARM_DECL that we used for the function result if
4231 the function returns a structure. */
4232 tree function_result_decl = 0;
4233 #ifdef SETUP_INCOMING_VARARGS
4234 int varargs_setup = 0;
4235 #endif
4236 int reg_parm_stack_space = 0;
4237 rtx conversion_insns = 0;
4239 /* Nonzero if function takes extra anonymous args.
4240 This means the last named arg must be on the stack
4241 right before the anonymous ones. */
4242 int stdarg
4243 = (TYPE_ARG_TYPES (fntype) != 0
4244 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
4245 != void_type_node));
4247 current_function_stdarg = stdarg;
4249 /* If the reg that the virtual arg pointer will be translated into is
4250 not a fixed reg or is the stack pointer, make a copy of the virtual
4251 arg pointer, and address parms via the copy. The frame pointer is
4252 considered fixed even though it is not marked as such.
4254 The second time through, simply use ap to avoid generating rtx. */
4256 if ((ARG_POINTER_REGNUM == STACK_POINTER_REGNUM
4257 || ! (fixed_regs[ARG_POINTER_REGNUM]
4258 || ARG_POINTER_REGNUM == FRAME_POINTER_REGNUM)))
4259 internal_arg_pointer = copy_to_reg (virtual_incoming_args_rtx);
4260 else
4261 internal_arg_pointer = virtual_incoming_args_rtx;
4262 current_function_internal_arg_pointer = internal_arg_pointer;
4264 stack_args_size.constant = 0;
4265 stack_args_size.var = 0;
4267 /* If struct value address is treated as the first argument, make it so. */
4268 if (aggregate_value_p (DECL_RESULT (fndecl))
4269 && ! current_function_returns_pcc_struct
4270 && struct_value_incoming_rtx == 0)
4272 tree type = build_pointer_type (TREE_TYPE (fntype));
4274 function_result_decl = build_decl (PARM_DECL, NULL_TREE, type);
4276 DECL_ARG_TYPE (function_result_decl) = type;
4277 TREE_CHAIN (function_result_decl) = fnargs;
4278 fnargs = function_result_decl;
4281 orig_fnargs = fnargs;
4283 max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
4284 parm_reg_stack_loc = (rtx *) ggc_alloc_cleared (max_parm_reg * sizeof (rtx));
4286 if (SPLIT_COMPLEX_ARGS)
4287 fnargs = split_complex_args (fnargs);
4289 #ifdef REG_PARM_STACK_SPACE
4290 #ifdef MAYBE_REG_PARM_STACK_SPACE
4291 reg_parm_stack_space = MAYBE_REG_PARM_STACK_SPACE;
4292 #else
4293 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
4294 #endif
4295 #endif
4297 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
4298 INIT_CUMULATIVE_INCOMING_ARGS (args_so_far, fntype, NULL_RTX);
4299 #else
4300 INIT_CUMULATIVE_ARGS (args_so_far, fntype, NULL_RTX, fndecl);
4301 #endif
4303 /* We haven't yet found an argument that we must push and pretend the
4304 caller did. */
4305 current_function_pretend_args_size = 0;
4307 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
4309 rtx entry_parm;
4310 rtx stack_parm;
4311 enum machine_mode promoted_mode, passed_mode;
4312 enum machine_mode nominal_mode, promoted_nominal_mode;
4313 int unsignedp;
4314 struct locate_and_pad_arg_data locate;
4315 int passed_pointer = 0;
4316 int did_conversion = 0;
4317 tree passed_type = DECL_ARG_TYPE (parm);
4318 tree nominal_type = TREE_TYPE (parm);
4319 int last_named = 0, named_arg;
4320 int in_regs;
4321 int partial = 0;
4323 /* Set LAST_NAMED if this is last named arg before last
4324 anonymous args. */
4325 if (stdarg)
4327 tree tem;
4329 for (tem = TREE_CHAIN (parm); tem; tem = TREE_CHAIN (tem))
4330 if (DECL_NAME (tem))
4331 break;
4333 if (tem == 0)
4334 last_named = 1;
4336 /* Set NAMED_ARG if this arg should be treated as a named arg. For
4337 most machines, if this is a varargs/stdarg function, then we treat
4338 the last named arg as if it were anonymous too. */
4339 named_arg = STRICT_ARGUMENT_NAMING ? 1 : ! last_named;
4341 if (TREE_TYPE (parm) == error_mark_node
4342 /* This can happen after weird syntax errors
4343 or if an enum type is defined among the parms. */
4344 || TREE_CODE (parm) != PARM_DECL
4345 || passed_type == NULL)
4347 SET_DECL_RTL (parm, gen_rtx_MEM (BLKmode, const0_rtx));
4348 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
4349 TREE_USED (parm) = 1;
4350 continue;
4353 /* Find mode of arg as it is passed, and mode of arg
4354 as it should be during execution of this function. */
4355 passed_mode = TYPE_MODE (passed_type);
4356 nominal_mode = TYPE_MODE (nominal_type);
4358 /* If the parm's mode is VOID, its value doesn't matter,
4359 and avoid the usual things like emit_move_insn that could crash. */
4360 if (nominal_mode == VOIDmode)
4362 SET_DECL_RTL (parm, const0_rtx);
4363 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
4364 continue;
4367 /* If the parm is to be passed as a transparent union, use the
4368 type of the first field for the tests below. We have already
4369 verified that the modes are the same. */
4370 if (DECL_TRANSPARENT_UNION (parm)
4371 || (TREE_CODE (passed_type) == UNION_TYPE
4372 && TYPE_TRANSPARENT_UNION (passed_type)))
4373 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
4375 /* See if this arg was passed by invisible reference. It is if
4376 it is an object whose size depends on the contents of the
4377 object itself or if the machine requires these objects be passed
4378 that way. */
4380 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (passed_type))
4381 || TREE_ADDRESSABLE (passed_type)
4382 #ifdef FUNCTION_ARG_PASS_BY_REFERENCE
4383 || FUNCTION_ARG_PASS_BY_REFERENCE (args_so_far, passed_mode,
4384 passed_type, named_arg)
4385 #endif
4388 passed_type = nominal_type = build_pointer_type (passed_type);
4389 passed_pointer = 1;
4390 passed_mode = nominal_mode = Pmode;
4392 /* See if the frontend wants to pass this by invisible reference. */
4393 else if (passed_type != nominal_type
4394 && POINTER_TYPE_P (passed_type)
4395 && TREE_TYPE (passed_type) == nominal_type)
4397 nominal_type = passed_type;
4398 passed_pointer = 1;
4399 passed_mode = nominal_mode = Pmode;
4402 promoted_mode = passed_mode;
4404 #ifdef PROMOTE_FUNCTION_ARGS
4405 /* Compute the mode in which the arg is actually extended to. */
4406 unsignedp = TREE_UNSIGNED (passed_type);
4407 promoted_mode = promote_mode (passed_type, promoted_mode, &unsignedp, 1);
4408 #endif
4410 /* Let machine desc say which reg (if any) the parm arrives in.
4411 0 means it arrives on the stack. */
4412 #ifdef FUNCTION_INCOMING_ARG
4413 entry_parm = FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
4414 passed_type, named_arg);
4415 #else
4416 entry_parm = FUNCTION_ARG (args_so_far, promoted_mode,
4417 passed_type, named_arg);
4418 #endif
4420 if (entry_parm == 0)
4421 promoted_mode = passed_mode;
4423 #ifdef SETUP_INCOMING_VARARGS
4424 /* If this is the last named parameter, do any required setup for
4425 varargs or stdargs. We need to know about the case of this being an
4426 addressable type, in which case we skip the registers it
4427 would have arrived in.
4429 For stdargs, LAST_NAMED will be set for two parameters, the one that
4430 is actually the last named, and the dummy parameter. We only
4431 want to do this action once.
4433 Also, indicate when RTL generation is to be suppressed. */
4434 if (last_named && !varargs_setup)
4436 SETUP_INCOMING_VARARGS (args_so_far, promoted_mode, passed_type,
4437 current_function_pretend_args_size, 0);
4438 varargs_setup = 1;
4440 #endif
4442 /* Determine parm's home in the stack,
4443 in case it arrives in the stack or we should pretend it did.
4445 Compute the stack position and rtx where the argument arrives
4446 and its size.
4448 There is one complexity here: If this was a parameter that would
4449 have been passed in registers, but wasn't only because it is
4450 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
4451 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
4452 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of
4453 0 as it was the previous time. */
4454 in_regs = entry_parm != 0;
4455 #ifdef STACK_PARMS_IN_REG_PARM_AREA
4456 in_regs = 1;
4457 #endif
4458 if (!in_regs && !named_arg)
4460 int pretend_named = PRETEND_OUTGOING_VARARGS_NAMED;
4461 if (pretend_named)
4463 #ifdef FUNCTION_INCOMING_ARG
4464 in_regs = FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
4465 passed_type,
4466 pretend_named) != 0;
4467 #else
4468 in_regs = FUNCTION_ARG (args_so_far, promoted_mode,
4469 passed_type,
4470 pretend_named) != 0;
4471 #endif
4475 /* If this parameter was passed both in registers and in the stack,
4476 use the copy on the stack. */
4477 if (MUST_PASS_IN_STACK (promoted_mode, passed_type))
4478 entry_parm = 0;
4480 #ifdef FUNCTION_ARG_PARTIAL_NREGS
4481 if (entry_parm)
4482 partial = FUNCTION_ARG_PARTIAL_NREGS (args_so_far, promoted_mode,
4483 passed_type, named_arg);
4484 #endif
4486 memset (&locate, 0, sizeof (locate));
4487 locate_and_pad_parm (promoted_mode, passed_type, in_regs,
4488 entry_parm ? partial : 0, fndecl,
4489 &stack_args_size, &locate);
4492 rtx offset_rtx;
4494 /* If we're passing this arg using a reg, make its stack home
4495 the aligned stack slot. */
4496 if (entry_parm)
4497 offset_rtx = ARGS_SIZE_RTX (locate.slot_offset);
4498 else
4499 offset_rtx = ARGS_SIZE_RTX (locate.offset);
4501 if (offset_rtx == const0_rtx)
4502 stack_parm = gen_rtx_MEM (promoted_mode, internal_arg_pointer);
4503 else
4504 stack_parm = gen_rtx_MEM (promoted_mode,
4505 gen_rtx_PLUS (Pmode,
4506 internal_arg_pointer,
4507 offset_rtx));
4509 set_mem_attributes (stack_parm, parm, 1);
4511 /* Set also REG_ATTRS if parameter was passed in a register. */
4512 if (entry_parm)
4513 set_reg_attrs_for_parm (entry_parm, stack_parm);
4516 /* If this parm was passed part in regs and part in memory,
4517 pretend it arrived entirely in memory
4518 by pushing the register-part onto the stack.
4520 In the special case of a DImode or DFmode that is split,
4521 we could put it together in a pseudoreg directly,
4522 but for now that's not worth bothering with. */
4524 if (partial)
4526 #ifndef MAYBE_REG_PARM_STACK_SPACE
4527 /* When REG_PARM_STACK_SPACE is nonzero, stack space for
4528 split parameters was allocated by our caller, so we
4529 won't be pushing it in the prolog. */
4530 if (reg_parm_stack_space == 0)
4531 #endif
4532 current_function_pretend_args_size
4533 = (((partial * UNITS_PER_WORD) + (PARM_BOUNDARY / BITS_PER_UNIT) - 1)
4534 / (PARM_BOUNDARY / BITS_PER_UNIT)
4535 * (PARM_BOUNDARY / BITS_PER_UNIT));
4537 /* Handle calls that pass values in multiple non-contiguous
4538 locations. The Irix 6 ABI has examples of this. */
4539 if (GET_CODE (entry_parm) == PARALLEL)
4540 emit_group_store (validize_mem (stack_parm), entry_parm,
4541 int_size_in_bytes (TREE_TYPE (parm)));
4543 else
4544 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
4545 partial);
4547 entry_parm = stack_parm;
4550 /* If we didn't decide this parm came in a register,
4551 by default it came on the stack. */
4552 if (entry_parm == 0)
4553 entry_parm = stack_parm;
4555 /* Record permanently how this parm was passed. */
4556 DECL_INCOMING_RTL (parm) = entry_parm;
4558 /* If there is actually space on the stack for this parm,
4559 count it in stack_args_size; otherwise set stack_parm to 0
4560 to indicate there is no preallocated stack slot for the parm. */
4562 if (entry_parm == stack_parm
4563 || (GET_CODE (entry_parm) == PARALLEL
4564 && XEXP (XVECEXP (entry_parm, 0, 0), 0) == NULL_RTX)
4565 #if defined (REG_PARM_STACK_SPACE) && ! defined (MAYBE_REG_PARM_STACK_SPACE)
4566 /* On some machines, even if a parm value arrives in a register
4567 there is still an (uninitialized) stack slot allocated for it.
4569 ??? When MAYBE_REG_PARM_STACK_SPACE is defined, we can't tell
4570 whether this parameter already has a stack slot allocated,
4571 because an arg block exists only if current_function_args_size
4572 is larger than some threshold, and we haven't calculated that
4573 yet. So, for now, we just assume that stack slots never exist
4574 in this case. */
4575 || REG_PARM_STACK_SPACE (fndecl) > 0
4576 #endif
4579 stack_args_size.constant += locate.size.constant;
4580 /* locate.size doesn't include the part in regs. */
4581 if (partial)
4582 stack_args_size.constant += current_function_pretend_args_size;
4583 if (locate.size.var)
4584 ADD_PARM_SIZE (stack_args_size, locate.size.var);
4586 else
4587 /* No stack slot was pushed for this parm. */
4588 stack_parm = 0;
4590 /* Update info on where next arg arrives in registers. */
4592 FUNCTION_ARG_ADVANCE (args_so_far, promoted_mode,
4593 passed_type, named_arg);
4595 /* If we can't trust the parm stack slot to be aligned enough
4596 for its ultimate type, don't use that slot after entry.
4597 We'll make another stack slot, if we need one. */
4599 unsigned int thisparm_boundary
4600 = FUNCTION_ARG_BOUNDARY (promoted_mode, passed_type);
4602 if (GET_MODE_ALIGNMENT (nominal_mode) > thisparm_boundary)
4603 stack_parm = 0;
4606 /* If parm was passed in memory, and we need to convert it on entry,
4607 don't store it back in that same slot. */
4608 if (entry_parm == stack_parm
4609 && nominal_mode != BLKmode && nominal_mode != passed_mode)
4610 stack_parm = 0;
4612 /* When an argument is passed in multiple locations, we can't
4613 make use of this information, but we can save some copying if
4614 the whole argument is passed in a single register. */
4615 if (GET_CODE (entry_parm) == PARALLEL
4616 && nominal_mode != BLKmode && passed_mode != BLKmode)
4618 int i, len = XVECLEN (entry_parm, 0);
4620 for (i = 0; i < len; i++)
4621 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
4622 && GET_CODE (XEXP (XVECEXP (entry_parm, 0, i), 0)) == REG
4623 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
4624 == passed_mode)
4625 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
4627 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
4628 DECL_INCOMING_RTL (parm) = entry_parm;
4629 break;
4633 /* ENTRY_PARM is an RTX for the parameter as it arrives,
4634 in the mode in which it arrives.
4635 STACK_PARM is an RTX for a stack slot where the parameter can live
4636 during the function (in case we want to put it there).
4637 STACK_PARM is 0 if no stack slot was pushed for it.
4639 Now output code if necessary to convert ENTRY_PARM to
4640 the type in which this function declares it,
4641 and store that result in an appropriate place,
4642 which may be a pseudo reg, may be STACK_PARM,
4643 or may be a local stack slot if STACK_PARM is 0.
4645 Set DECL_RTL to that place. */
4647 if (nominal_mode == BLKmode || GET_CODE (entry_parm) == PARALLEL)
4649 /* If a BLKmode arrives in registers, copy it to a stack slot.
4650 Handle calls that pass values in multiple non-contiguous
4651 locations. The Irix 6 ABI has examples of this. */
4652 if (GET_CODE (entry_parm) == REG
4653 || GET_CODE (entry_parm) == PARALLEL)
4655 int size = int_size_in_bytes (TREE_TYPE (parm));
4656 int size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
4657 rtx mem;
4659 /* Note that we will be storing an integral number of words.
4660 So we have to be careful to ensure that we allocate an
4661 integral number of words. We do this below in the
4662 assign_stack_local if space was not allocated in the argument
4663 list. If it was, this will not work if PARM_BOUNDARY is not
4664 a multiple of BITS_PER_WORD. It isn't clear how to fix this
4665 if it becomes a problem. */
4667 if (stack_parm == 0)
4669 stack_parm
4670 = assign_stack_local (GET_MODE (entry_parm),
4671 size_stored, 0);
4672 set_mem_attributes (stack_parm, parm, 1);
4675 else if (PARM_BOUNDARY % BITS_PER_WORD != 0)
4676 abort ();
4678 mem = validize_mem (stack_parm);
4680 /* Handle calls that pass values in multiple non-contiguous
4681 locations. The Irix 6 ABI has examples of this. */
4682 if (GET_CODE (entry_parm) == PARALLEL)
4683 emit_group_store (mem, entry_parm, size);
4685 else if (size == 0)
4688 /* If SIZE is that of a mode no bigger than a word, just use
4689 that mode's store operation. */
4690 else if (size <= UNITS_PER_WORD)
4692 enum machine_mode mode
4693 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
4695 if (mode != BLKmode)
4697 rtx reg = gen_rtx_REG (mode, REGNO (entry_parm));
4698 emit_move_insn (change_address (mem, mode, 0), reg);
4701 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
4702 machine must be aligned to the left before storing
4703 to memory. Note that the previous test doesn't
4704 handle all cases (e.g. SIZE == 3). */
4705 else if (size != UNITS_PER_WORD
4706 && BYTES_BIG_ENDIAN)
4708 rtx tem, x;
4709 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
4710 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
4712 x = expand_binop (word_mode, ashl_optab, reg,
4713 GEN_INT (by), 0, 1, OPTAB_WIDEN);
4714 tem = change_address (mem, word_mode, 0);
4715 emit_move_insn (tem, x);
4717 else
4718 move_block_from_reg (REGNO (entry_parm), mem,
4719 size_stored / UNITS_PER_WORD);
4721 else
4722 move_block_from_reg (REGNO (entry_parm), mem,
4723 size_stored / UNITS_PER_WORD);
4725 SET_DECL_RTL (parm, stack_parm);
4727 else if (! ((! optimize
4728 && ! DECL_REGISTER (parm))
4729 || TREE_SIDE_EFFECTS (parm)
4730 /* If -ffloat-store specified, don't put explicit
4731 float variables into registers. */
4732 || (flag_float_store
4733 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE))
4734 /* Always assign pseudo to structure return or item passed
4735 by invisible reference. */
4736 || passed_pointer || parm == function_result_decl)
4738 /* Store the parm in a pseudoregister during the function, but we
4739 may need to do it in a wider mode. */
4741 rtx parmreg;
4742 unsigned int regno, regnoi = 0, regnor = 0;
4744 unsignedp = TREE_UNSIGNED (TREE_TYPE (parm));
4746 promoted_nominal_mode
4747 = promote_mode (TREE_TYPE (parm), nominal_mode, &unsignedp, 0);
4749 parmreg = gen_reg_rtx (promoted_nominal_mode);
4750 mark_user_reg (parmreg);
4752 /* If this was an item that we received a pointer to, set DECL_RTL
4753 appropriately. */
4754 if (passed_pointer)
4756 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (passed_type)),
4757 parmreg);
4758 set_mem_attributes (x, parm, 1);
4759 SET_DECL_RTL (parm, x);
4761 else
4763 SET_DECL_RTL (parm, parmreg);
4764 maybe_set_unchanging (DECL_RTL (parm), parm);
4767 /* Copy the value into the register. */
4768 if (nominal_mode != passed_mode
4769 || promoted_nominal_mode != promoted_mode)
4771 int save_tree_used;
4772 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
4773 mode, by the caller. We now have to convert it to
4774 NOMINAL_MODE, if different. However, PARMREG may be in
4775 a different mode than NOMINAL_MODE if it is being stored
4776 promoted.
4778 If ENTRY_PARM is a hard register, it might be in a register
4779 not valid for operating in its mode (e.g., an odd-numbered
4780 register for a DFmode). In that case, moves are the only
4781 thing valid, so we can't do a convert from there. This
4782 occurs when the calling sequence allow such misaligned
4783 usages.
4785 In addition, the conversion may involve a call, which could
4786 clobber parameters which haven't been copied to pseudo
4787 registers yet. Therefore, we must first copy the parm to
4788 a pseudo reg here, and save the conversion until after all
4789 parameters have been moved. */
4791 rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
4793 emit_move_insn (tempreg, validize_mem (entry_parm));
4795 push_to_sequence (conversion_insns);
4796 tempreg = convert_to_mode (nominal_mode, tempreg, unsignedp);
4798 if (GET_CODE (tempreg) == SUBREG
4799 && GET_MODE (tempreg) == nominal_mode
4800 && GET_CODE (SUBREG_REG (tempreg)) == REG
4801 && nominal_mode == passed_mode
4802 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (entry_parm)
4803 && GET_MODE_SIZE (GET_MODE (tempreg))
4804 < GET_MODE_SIZE (GET_MODE (entry_parm)))
4806 /* The argument is already sign/zero extended, so note it
4807 into the subreg. */
4808 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
4809 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
4812 /* TREE_USED gets set erroneously during expand_assignment. */
4813 save_tree_used = TREE_USED (parm);
4814 expand_assignment (parm,
4815 make_tree (nominal_type, tempreg), 0, 0);
4816 TREE_USED (parm) = save_tree_used;
4817 conversion_insns = get_insns ();
4818 did_conversion = 1;
4819 end_sequence ();
4821 else
4822 emit_move_insn (parmreg, validize_mem (entry_parm));
4824 /* If we were passed a pointer but the actual value
4825 can safely live in a register, put it in one. */
4826 if (passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
4827 /* If by-reference argument was promoted, demote it. */
4828 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
4829 || ! ((! optimize
4830 && ! DECL_REGISTER (parm))
4831 || TREE_SIDE_EFFECTS (parm)
4832 /* If -ffloat-store specified, don't put explicit
4833 float variables into registers. */
4834 || (flag_float_store
4835 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE))))
4837 /* We can't use nominal_mode, because it will have been set to
4838 Pmode above. We must use the actual mode of the parm. */
4839 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
4840 mark_user_reg (parmreg);
4841 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
4843 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
4844 int unsigned_p = TREE_UNSIGNED (TREE_TYPE (parm));
4845 push_to_sequence (conversion_insns);
4846 emit_move_insn (tempreg, DECL_RTL (parm));
4847 SET_DECL_RTL (parm,
4848 convert_to_mode (GET_MODE (parmreg),
4849 tempreg,
4850 unsigned_p));
4851 emit_move_insn (parmreg, DECL_RTL (parm));
4852 conversion_insns = get_insns();
4853 did_conversion = 1;
4854 end_sequence ();
4856 else
4857 emit_move_insn (parmreg, DECL_RTL (parm));
4858 SET_DECL_RTL (parm, parmreg);
4859 /* STACK_PARM is the pointer, not the parm, and PARMREG is
4860 now the parm. */
4861 stack_parm = 0;
4863 #ifdef FUNCTION_ARG_CALLEE_COPIES
4864 /* If we are passed an arg by reference and it is our responsibility
4865 to make a copy, do it now.
4866 PASSED_TYPE and PASSED mode now refer to the pointer, not the
4867 original argument, so we must recreate them in the call to
4868 FUNCTION_ARG_CALLEE_COPIES. */
4869 /* ??? Later add code to handle the case that if the argument isn't
4870 modified, don't do the copy. */
4872 else if (passed_pointer
4873 && FUNCTION_ARG_CALLEE_COPIES (args_so_far,
4874 TYPE_MODE (DECL_ARG_TYPE (parm)),
4875 DECL_ARG_TYPE (parm),
4876 named_arg)
4877 && ! TREE_ADDRESSABLE (DECL_ARG_TYPE (parm)))
4879 rtx copy;
4880 tree type = DECL_ARG_TYPE (parm);
4882 /* This sequence may involve a library call perhaps clobbering
4883 registers that haven't been copied to pseudos yet. */
4885 push_to_sequence (conversion_insns);
4887 if (!COMPLETE_TYPE_P (type)
4888 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4889 /* This is a variable sized object. */
4890 copy = gen_rtx_MEM (BLKmode,
4891 allocate_dynamic_stack_space
4892 (expr_size (parm), NULL_RTX,
4893 TYPE_ALIGN (type)));
4894 else
4895 copy = assign_stack_temp (TYPE_MODE (type),
4896 int_size_in_bytes (type), 1);
4897 set_mem_attributes (copy, parm, 1);
4899 store_expr (parm, copy, 0);
4900 emit_move_insn (parmreg, XEXP (copy, 0));
4901 conversion_insns = get_insns ();
4902 did_conversion = 1;
4903 end_sequence ();
4905 #endif /* FUNCTION_ARG_CALLEE_COPIES */
4907 /* In any case, record the parm's desired stack location
4908 in case we later discover it must live in the stack.
4910 If it is a COMPLEX value, store the stack location for both
4911 halves. */
4913 if (GET_CODE (parmreg) == CONCAT)
4914 regno = MAX (REGNO (XEXP (parmreg, 0)), REGNO (XEXP (parmreg, 1)));
4915 else
4916 regno = REGNO (parmreg);
4918 if (regno >= max_parm_reg)
4920 rtx *new;
4921 int old_max_parm_reg = max_parm_reg;
4923 /* It's slow to expand this one register at a time,
4924 but it's also rare and we need max_parm_reg to be
4925 precisely correct. */
4926 max_parm_reg = regno + 1;
4927 new = (rtx *) ggc_realloc (parm_reg_stack_loc,
4928 max_parm_reg * sizeof (rtx));
4929 memset ((char *) (new + old_max_parm_reg), 0,
4930 (max_parm_reg - old_max_parm_reg) * sizeof (rtx));
4931 parm_reg_stack_loc = new;
4934 if (GET_CODE (parmreg) == CONCAT)
4936 enum machine_mode submode = GET_MODE (XEXP (parmreg, 0));
4938 regnor = REGNO (gen_realpart (submode, parmreg));
4939 regnoi = REGNO (gen_imagpart (submode, parmreg));
4941 if (stack_parm != 0)
4943 parm_reg_stack_loc[regnor]
4944 = gen_realpart (submode, stack_parm);
4945 parm_reg_stack_loc[regnoi]
4946 = gen_imagpart (submode, stack_parm);
4948 else
4950 parm_reg_stack_loc[regnor] = 0;
4951 parm_reg_stack_loc[regnoi] = 0;
4954 else
4955 parm_reg_stack_loc[REGNO (parmreg)] = stack_parm;
4957 /* Mark the register as eliminable if we did no conversion
4958 and it was copied from memory at a fixed offset,
4959 and the arg pointer was not copied to a pseudo-reg.
4960 If the arg pointer is a pseudo reg or the offset formed
4961 an invalid address, such memory-equivalences
4962 as we make here would screw up life analysis for it. */
4963 if (nominal_mode == passed_mode
4964 && ! did_conversion
4965 && stack_parm != 0
4966 && GET_CODE (stack_parm) == MEM
4967 && locate.offset.var == 0
4968 && reg_mentioned_p (virtual_incoming_args_rtx,
4969 XEXP (stack_parm, 0)))
4971 rtx linsn = get_last_insn ();
4972 rtx sinsn, set;
4974 /* Mark complex types separately. */
4975 if (GET_CODE (parmreg) == CONCAT)
4976 /* Scan backwards for the set of the real and
4977 imaginary parts. */
4978 for (sinsn = linsn; sinsn != 0;
4979 sinsn = prev_nonnote_insn (sinsn))
4981 set = single_set (sinsn);
4982 if (set != 0
4983 && SET_DEST (set) == regno_reg_rtx [regnoi])
4984 REG_NOTES (sinsn)
4985 = gen_rtx_EXPR_LIST (REG_EQUIV,
4986 parm_reg_stack_loc[regnoi],
4987 REG_NOTES (sinsn));
4988 else if (set != 0
4989 && SET_DEST (set) == regno_reg_rtx [regnor])
4990 REG_NOTES (sinsn)
4991 = gen_rtx_EXPR_LIST (REG_EQUIV,
4992 parm_reg_stack_loc[regnor],
4993 REG_NOTES (sinsn));
4995 else if ((set = single_set (linsn)) != 0
4996 && SET_DEST (set) == parmreg)
4997 REG_NOTES (linsn)
4998 = gen_rtx_EXPR_LIST (REG_EQUIV,
4999 stack_parm, REG_NOTES (linsn));
5002 /* For pointer data type, suggest pointer register. */
5003 if (POINTER_TYPE_P (TREE_TYPE (parm)))
5004 mark_reg_pointer (parmreg,
5005 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
5007 /* If something wants our address, try to use ADDRESSOF. */
5008 if (TREE_ADDRESSABLE (parm))
5010 /* If we end up putting something into the stack,
5011 fixup_var_refs_insns will need to make a pass over
5012 all the instructions. It looks through the pending
5013 sequences -- but it can't see the ones in the
5014 CONVERSION_INSNS, if they're not on the sequence
5015 stack. So, we go back to that sequence, just so that
5016 the fixups will happen. */
5017 push_to_sequence (conversion_insns);
5018 put_var_into_stack (parm, /*rescan=*/true);
5019 conversion_insns = get_insns ();
5020 end_sequence ();
5023 else
5025 /* Value must be stored in the stack slot STACK_PARM
5026 during function execution. */
5028 if (promoted_mode != nominal_mode)
5030 /* Conversion is required. */
5031 rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
5033 emit_move_insn (tempreg, validize_mem (entry_parm));
5035 push_to_sequence (conversion_insns);
5036 entry_parm = convert_to_mode (nominal_mode, tempreg,
5037 TREE_UNSIGNED (TREE_TYPE (parm)));
5038 if (stack_parm)
5039 /* ??? This may need a big-endian conversion on sparc64. */
5040 stack_parm = adjust_address (stack_parm, nominal_mode, 0);
5042 conversion_insns = get_insns ();
5043 did_conversion = 1;
5044 end_sequence ();
5047 if (entry_parm != stack_parm)
5049 if (stack_parm == 0)
5051 stack_parm
5052 = assign_stack_local (GET_MODE (entry_parm),
5053 GET_MODE_SIZE (GET_MODE (entry_parm)),
5055 set_mem_attributes (stack_parm, parm, 1);
5058 if (promoted_mode != nominal_mode)
5060 push_to_sequence (conversion_insns);
5061 emit_move_insn (validize_mem (stack_parm),
5062 validize_mem (entry_parm));
5063 conversion_insns = get_insns ();
5064 end_sequence ();
5066 else
5067 emit_move_insn (validize_mem (stack_parm),
5068 validize_mem (entry_parm));
5071 SET_DECL_RTL (parm, stack_parm);
5075 if (SPLIT_COMPLEX_ARGS)
5077 parm = orig_fnargs;
5079 for (; parm; parm = TREE_CHAIN (parm))
5081 tree type = TREE_TYPE (parm);
5083 if (TREE_CODE (type) == COMPLEX_TYPE)
5085 SET_DECL_RTL (parm,
5086 gen_rtx_CONCAT (DECL_MODE (parm),
5087 DECL_RTL (fnargs),
5088 DECL_RTL (TREE_CHAIN (fnargs))));
5089 DECL_INCOMING_RTL (parm)
5090 = gen_rtx_CONCAT (DECL_MODE (parm),
5091 DECL_INCOMING_RTL (fnargs),
5092 DECL_INCOMING_RTL (TREE_CHAIN (fnargs)));
5093 fnargs = TREE_CHAIN (fnargs);
5095 else
5097 SET_DECL_RTL (parm, DECL_RTL (fnargs));
5098 DECL_INCOMING_RTL (parm) = DECL_INCOMING_RTL (fnargs);
5100 fnargs = TREE_CHAIN (fnargs);
5104 /* Output all parameter conversion instructions (possibly including calls)
5105 now that all parameters have been copied out of hard registers. */
5106 emit_insn (conversion_insns);
5108 /* If we are receiving a struct value address as the first argument, set up
5109 the RTL for the function result. As this might require code to convert
5110 the transmitted address to Pmode, we do this here to ensure that possible
5111 preliminary conversions of the address have been emitted already. */
5112 if (function_result_decl)
5114 tree result = DECL_RESULT (fndecl);
5115 rtx addr = DECL_RTL (function_result_decl);
5116 rtx x;
5118 #ifdef POINTERS_EXTEND_UNSIGNED
5119 if (GET_MODE (addr) != Pmode)
5120 addr = convert_memory_address (Pmode, addr);
5121 #endif
5123 x = gen_rtx_MEM (DECL_MODE (result), addr);
5124 set_mem_attributes (x, result, 1);
5125 SET_DECL_RTL (result, x);
5128 last_parm_insn = get_last_insn ();
5130 current_function_args_size = stack_args_size.constant;
5132 /* Adjust function incoming argument size for alignment and
5133 minimum length. */
5135 #ifdef REG_PARM_STACK_SPACE
5136 #ifndef MAYBE_REG_PARM_STACK_SPACE
5137 current_function_args_size = MAX (current_function_args_size,
5138 REG_PARM_STACK_SPACE (fndecl));
5139 #endif
5140 #endif
5142 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
5144 current_function_args_size
5145 = ((current_function_args_size + STACK_BYTES - 1)
5146 / STACK_BYTES) * STACK_BYTES;
5148 #ifdef ARGS_GROW_DOWNWARD
5149 current_function_arg_offset_rtx
5150 = (stack_args_size.var == 0 ? GEN_INT (-stack_args_size.constant)
5151 : expand_expr (size_diffop (stack_args_size.var,
5152 size_int (-stack_args_size.constant)),
5153 NULL_RTX, VOIDmode, 0));
5154 #else
5155 current_function_arg_offset_rtx = ARGS_SIZE_RTX (stack_args_size);
5156 #endif
5158 /* See how many bytes, if any, of its args a function should try to pop
5159 on return. */
5161 current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
5162 current_function_args_size);
5164 /* For stdarg.h function, save info about
5165 regs and stack space used by the named args. */
5167 current_function_args_info = args_so_far;
5169 /* Set the rtx used for the function return value. Put this in its
5170 own variable so any optimizers that need this information don't have
5171 to include tree.h. Do this here so it gets done when an inlined
5172 function gets output. */
5174 current_function_return_rtx
5175 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
5176 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
5178 /* If scalar return value was computed in a pseudo-reg, or was a named
5179 return value that got dumped to the stack, copy that to the hard
5180 return register. */
5181 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
5183 tree decl_result = DECL_RESULT (fndecl);
5184 rtx decl_rtl = DECL_RTL (decl_result);
5186 if (REG_P (decl_rtl)
5187 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
5188 : DECL_REGISTER (decl_result))
5190 rtx real_decl_rtl;
5192 #ifdef FUNCTION_OUTGOING_VALUE
5193 real_decl_rtl = FUNCTION_OUTGOING_VALUE (TREE_TYPE (decl_result),
5194 fndecl);
5195 #else
5196 real_decl_rtl = FUNCTION_VALUE (TREE_TYPE (decl_result),
5197 fndecl);
5198 #endif
5199 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
5200 /* The delay slot scheduler assumes that current_function_return_rtx
5201 holds the hard register containing the return value, not a
5202 temporary pseudo. */
5203 current_function_return_rtx = real_decl_rtl;
5208 static tree
5209 split_complex_args (tree args)
5211 tree p;
5213 args = copy_list (args);
5215 for (p = args; p; p = TREE_CHAIN (p))
5217 tree complex_type = TREE_TYPE (p);
5219 if (TREE_CODE (complex_type) == COMPLEX_TYPE)
5221 tree decl;
5222 tree subtype = TREE_TYPE (complex_type);
5224 /* Rewrite the PARM_DECL's type with its component. */
5225 TREE_TYPE (p) = subtype;
5226 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
5228 decl = build_decl (PARM_DECL, NULL_TREE, subtype);
5229 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
5230 TREE_CHAIN (decl) = TREE_CHAIN (p);
5231 TREE_CHAIN (p) = decl;
5235 return args;
5238 /* Indicate whether REGNO is an incoming argument to the current function
5239 that was promoted to a wider mode. If so, return the RTX for the
5240 register (to get its mode). PMODE and PUNSIGNEDP are set to the mode
5241 that REGNO is promoted from and whether the promotion was signed or
5242 unsigned. */
5244 #ifdef PROMOTE_FUNCTION_ARGS
5247 promoted_input_arg (unsigned int regno, enum machine_mode *pmode, int *punsignedp)
5249 tree arg;
5251 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
5252 arg = TREE_CHAIN (arg))
5253 if (GET_CODE (DECL_INCOMING_RTL (arg)) == REG
5254 && REGNO (DECL_INCOMING_RTL (arg)) == regno
5255 && TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg)))
5257 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
5258 int unsignedp = TREE_UNSIGNED (TREE_TYPE (arg));
5260 mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1);
5261 if (mode == GET_MODE (DECL_INCOMING_RTL (arg))
5262 && mode != DECL_MODE (arg))
5264 *pmode = DECL_MODE (arg);
5265 *punsignedp = unsignedp;
5266 return DECL_INCOMING_RTL (arg);
5270 return 0;
5273 #endif
5275 /* Compute the size and offset from the start of the stacked arguments for a
5276 parm passed in mode PASSED_MODE and with type TYPE.
5278 INITIAL_OFFSET_PTR points to the current offset into the stacked
5279 arguments.
5281 The starting offset and size for this parm are returned in
5282 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
5283 nonzero, the offset is that of stack slot, which is returned in
5284 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
5285 padding required from the initial offset ptr to the stack slot.
5287 IN_REGS is nonzero if the argument will be passed in registers. It will
5288 never be set if REG_PARM_STACK_SPACE is not defined.
5290 FNDECL is the function in which the argument was defined.
5292 There are two types of rounding that are done. The first, controlled by
5293 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
5294 list to be aligned to the specific boundary (in bits). This rounding
5295 affects the initial and starting offsets, but not the argument size.
5297 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
5298 optionally rounds the size of the parm to PARM_BOUNDARY. The
5299 initial offset is not affected by this rounding, while the size always
5300 is and the starting offset may be. */
5302 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
5303 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
5304 callers pass in the total size of args so far as
5305 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
5307 void
5308 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
5309 int partial, tree fndecl ATTRIBUTE_UNUSED,
5310 struct args_size *initial_offset_ptr,
5311 struct locate_and_pad_arg_data *locate)
5313 tree sizetree;
5314 enum direction where_pad;
5315 int boundary;
5316 int reg_parm_stack_space = 0;
5317 int part_size_in_regs;
5319 #ifdef REG_PARM_STACK_SPACE
5320 #ifdef MAYBE_REG_PARM_STACK_SPACE
5321 reg_parm_stack_space = MAYBE_REG_PARM_STACK_SPACE;
5322 #else
5323 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
5324 #endif
5326 /* If we have found a stack parm before we reach the end of the
5327 area reserved for registers, skip that area. */
5328 if (! in_regs)
5330 if (reg_parm_stack_space > 0)
5332 if (initial_offset_ptr->var)
5334 initial_offset_ptr->var
5335 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
5336 ssize_int (reg_parm_stack_space));
5337 initial_offset_ptr->constant = 0;
5339 else if (initial_offset_ptr->constant < reg_parm_stack_space)
5340 initial_offset_ptr->constant = reg_parm_stack_space;
5343 #endif /* REG_PARM_STACK_SPACE */
5345 part_size_in_regs = 0;
5346 if (reg_parm_stack_space == 0)
5347 part_size_in_regs = ((partial * UNITS_PER_WORD)
5348 / (PARM_BOUNDARY / BITS_PER_UNIT)
5349 * (PARM_BOUNDARY / BITS_PER_UNIT));
5351 sizetree
5352 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
5353 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
5354 boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
5356 #ifdef ARGS_GROW_DOWNWARD
5357 locate->slot_offset.constant = -initial_offset_ptr->constant;
5358 if (initial_offset_ptr->var)
5359 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
5360 initial_offset_ptr->var);
5363 tree s2 = sizetree;
5364 if (where_pad != none
5365 && (!host_integerp (sizetree, 1)
5366 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
5367 s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
5368 SUB_PARM_SIZE (locate->slot_offset, s2);
5371 locate->slot_offset.constant += part_size_in_regs;
5373 if (!in_regs
5374 #ifdef REG_PARM_STACK_SPACE
5375 || REG_PARM_STACK_SPACE (fndecl) > 0
5376 #endif
5378 pad_to_arg_alignment (&locate->slot_offset, boundary,
5379 &locate->alignment_pad);
5381 locate->size.constant = (-initial_offset_ptr->constant
5382 - locate->slot_offset.constant);
5383 if (initial_offset_ptr->var)
5384 locate->size.var = size_binop (MINUS_EXPR,
5385 size_binop (MINUS_EXPR,
5386 ssize_int (0),
5387 initial_offset_ptr->var),
5388 locate->slot_offset.var);
5390 /* Pad_below needs the pre-rounded size to know how much to pad
5391 below. */
5392 locate->offset = locate->slot_offset;
5393 if (where_pad == downward)
5394 pad_below (&locate->offset, passed_mode, sizetree);
5396 #else /* !ARGS_GROW_DOWNWARD */
5397 if (!in_regs
5398 #ifdef REG_PARM_STACK_SPACE
5399 || REG_PARM_STACK_SPACE (fndecl) > 0
5400 #endif
5402 pad_to_arg_alignment (initial_offset_ptr, boundary,
5403 &locate->alignment_pad);
5404 locate->slot_offset = *initial_offset_ptr;
5406 #ifdef PUSH_ROUNDING
5407 if (passed_mode != BLKmode)
5408 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
5409 #endif
5411 /* Pad_below needs the pre-rounded size to know how much to pad below
5412 so this must be done before rounding up. */
5413 locate->offset = locate->slot_offset;
5414 if (where_pad == downward)
5415 pad_below (&locate->offset, passed_mode, sizetree);
5417 if (where_pad != none
5418 && (!host_integerp (sizetree, 1)
5419 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
5420 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5422 ADD_PARM_SIZE (locate->size, sizetree);
5424 locate->size.constant -= part_size_in_regs;
5425 #endif /* ARGS_GROW_DOWNWARD */
5428 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
5429 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
5431 static void
5432 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
5433 struct args_size *alignment_pad)
5435 tree save_var = NULL_TREE;
5436 HOST_WIDE_INT save_constant = 0;
5438 int boundary_in_bytes = boundary / BITS_PER_UNIT;
5440 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5442 save_var = offset_ptr->var;
5443 save_constant = offset_ptr->constant;
5446 alignment_pad->var = NULL_TREE;
5447 alignment_pad->constant = 0;
5449 if (boundary > BITS_PER_UNIT)
5451 if (offset_ptr->var)
5453 offset_ptr->var =
5454 #ifdef ARGS_GROW_DOWNWARD
5455 round_down
5456 #else
5457 round_up
5458 #endif
5459 (ARGS_SIZE_TREE (*offset_ptr),
5460 boundary / BITS_PER_UNIT);
5461 /* ARGS_SIZE_TREE includes constant term. */
5462 offset_ptr->constant = 0;
5463 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5464 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
5465 save_var);
5467 else
5469 offset_ptr->constant =
5470 #ifdef ARGS_GROW_DOWNWARD
5471 FLOOR_ROUND (offset_ptr->constant, boundary_in_bytes);
5472 #else
5473 CEIL_ROUND (offset_ptr->constant, boundary_in_bytes);
5474 #endif
5475 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5476 alignment_pad->constant = offset_ptr->constant - save_constant;
5481 static void
5482 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
5484 if (passed_mode != BLKmode)
5486 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
5487 offset_ptr->constant
5488 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
5489 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
5490 - GET_MODE_SIZE (passed_mode));
5492 else
5494 if (TREE_CODE (sizetree) != INTEGER_CST
5495 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
5497 /* Round the size up to multiple of PARM_BOUNDARY bits. */
5498 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5499 /* Add it in. */
5500 ADD_PARM_SIZE (*offset_ptr, s2);
5501 SUB_PARM_SIZE (*offset_ptr, sizetree);
5506 /* Walk the tree of blocks describing the binding levels within a function
5507 and warn about uninitialized variables.
5508 This is done after calling flow_analysis and before global_alloc
5509 clobbers the pseudo-regs to hard regs. */
5511 void
5512 uninitialized_vars_warning (tree block)
5514 tree decl, sub;
5515 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
5517 if (warn_uninitialized
5518 && TREE_CODE (decl) == VAR_DECL
5519 /* These warnings are unreliable for and aggregates
5520 because assigning the fields one by one can fail to convince
5521 flow.c that the entire aggregate was initialized.
5522 Unions are troublesome because members may be shorter. */
5523 && ! AGGREGATE_TYPE_P (TREE_TYPE (decl))
5524 && DECL_RTL (decl) != 0
5525 && GET_CODE (DECL_RTL (decl)) == REG
5526 /* Global optimizations can make it difficult to determine if a
5527 particular variable has been initialized. However, a VAR_DECL
5528 with a nonzero DECL_INITIAL had an initializer, so do not
5529 claim it is potentially uninitialized.
5531 We do not care about the actual value in DECL_INITIAL, so we do
5532 not worry that it may be a dangling pointer. */
5533 && DECL_INITIAL (decl) == NULL_TREE
5534 && regno_uninitialized (REGNO (DECL_RTL (decl))))
5535 warning_with_decl (decl,
5536 "`%s' might be used uninitialized in this function");
5537 if (extra_warnings
5538 && TREE_CODE (decl) == VAR_DECL
5539 && DECL_RTL (decl) != 0
5540 && GET_CODE (DECL_RTL (decl)) == REG
5541 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
5542 warning_with_decl (decl,
5543 "variable `%s' might be clobbered by `longjmp' or `vfork'");
5545 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
5546 uninitialized_vars_warning (sub);
5549 /* Do the appropriate part of uninitialized_vars_warning
5550 but for arguments instead of local variables. */
5552 void
5553 setjmp_args_warning (void)
5555 tree decl;
5556 for (decl = DECL_ARGUMENTS (current_function_decl);
5557 decl; decl = TREE_CHAIN (decl))
5558 if (DECL_RTL (decl) != 0
5559 && GET_CODE (DECL_RTL (decl)) == REG
5560 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
5561 warning_with_decl (decl,
5562 "argument `%s' might be clobbered by `longjmp' or `vfork'");
5565 /* If this function call setjmp, put all vars into the stack
5566 unless they were declared `register'. */
5568 void
5569 setjmp_protect (tree block)
5571 tree decl, sub;
5572 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
5573 if ((TREE_CODE (decl) == VAR_DECL
5574 || TREE_CODE (decl) == PARM_DECL)
5575 && DECL_RTL (decl) != 0
5576 && (GET_CODE (DECL_RTL (decl)) == REG
5577 || (GET_CODE (DECL_RTL (decl)) == MEM
5578 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
5579 /* If this variable came from an inline function, it must be
5580 that its life doesn't overlap the setjmp. If there was a
5581 setjmp in the function, it would already be in memory. We
5582 must exclude such variable because their DECL_RTL might be
5583 set to strange things such as virtual_stack_vars_rtx. */
5584 && ! DECL_FROM_INLINE (decl)
5585 && (
5586 #ifdef NON_SAVING_SETJMP
5587 /* If longjmp doesn't restore the registers,
5588 don't put anything in them. */
5589 NON_SAVING_SETJMP
5591 #endif
5592 ! DECL_REGISTER (decl)))
5593 put_var_into_stack (decl, /*rescan=*/true);
5594 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
5595 setjmp_protect (sub);
5598 /* Like the previous function, but for args instead of local variables. */
5600 void
5601 setjmp_protect_args (void)
5603 tree decl;
5604 for (decl = DECL_ARGUMENTS (current_function_decl);
5605 decl; decl = TREE_CHAIN (decl))
5606 if ((TREE_CODE (decl) == VAR_DECL
5607 || TREE_CODE (decl) == PARM_DECL)
5608 && DECL_RTL (decl) != 0
5609 && (GET_CODE (DECL_RTL (decl)) == REG
5610 || (GET_CODE (DECL_RTL (decl)) == MEM
5611 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
5612 && (
5613 /* If longjmp doesn't restore the registers,
5614 don't put anything in them. */
5615 #ifdef NON_SAVING_SETJMP
5616 NON_SAVING_SETJMP
5618 #endif
5619 ! DECL_REGISTER (decl)))
5620 put_var_into_stack (decl, /*rescan=*/true);
5623 /* Return the context-pointer register corresponding to DECL,
5624 or 0 if it does not need one. */
5627 lookup_static_chain (tree decl)
5629 tree context = decl_function_context (decl);
5630 tree link;
5632 if (context == 0
5633 || (TREE_CODE (decl) == FUNCTION_DECL && DECL_NO_STATIC_CHAIN (decl)))
5634 return 0;
5636 /* We treat inline_function_decl as an alias for the current function
5637 because that is the inline function whose vars, types, etc.
5638 are being merged into the current function.
5639 See expand_inline_function. */
5640 if (context == current_function_decl || context == inline_function_decl)
5641 return virtual_stack_vars_rtx;
5643 for (link = context_display; link; link = TREE_CHAIN (link))
5644 if (TREE_PURPOSE (link) == context)
5645 return RTL_EXPR_RTL (TREE_VALUE (link));
5647 abort ();
5650 /* Convert a stack slot address ADDR for variable VAR
5651 (from a containing function)
5652 into an address valid in this function (using a static chain). */
5655 fix_lexical_addr (rtx addr, tree var)
5657 rtx basereg;
5658 HOST_WIDE_INT displacement;
5659 tree context = decl_function_context (var);
5660 struct function *fp;
5661 rtx base = 0;
5663 /* If this is the present function, we need not do anything. */
5664 if (context == current_function_decl || context == inline_function_decl)
5665 return addr;
5667 fp = find_function_data (context);
5669 if (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == MEM)
5670 addr = XEXP (XEXP (addr, 0), 0);
5672 /* Decode given address as base reg plus displacement. */
5673 if (GET_CODE (addr) == REG)
5674 basereg = addr, displacement = 0;
5675 else if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
5676 basereg = XEXP (addr, 0), displacement = INTVAL (XEXP (addr, 1));
5677 else
5678 abort ();
5680 /* We accept vars reached via the containing function's
5681 incoming arg pointer and via its stack variables pointer. */
5682 if (basereg == fp->internal_arg_pointer)
5684 /* If reached via arg pointer, get the arg pointer value
5685 out of that function's stack frame.
5687 There are two cases: If a separate ap is needed, allocate a
5688 slot in the outer function for it and dereference it that way.
5689 This is correct even if the real ap is actually a pseudo.
5690 Otherwise, just adjust the offset from the frame pointer to
5691 compensate. */
5693 #ifdef NEED_SEPARATE_AP
5694 rtx addr;
5696 addr = get_arg_pointer_save_area (fp);
5697 addr = fix_lexical_addr (XEXP (addr, 0), var);
5698 addr = memory_address (Pmode, addr);
5700 base = gen_rtx_MEM (Pmode, addr);
5701 set_mem_alias_set (base, get_frame_alias_set ());
5702 base = copy_to_reg (base);
5703 #else
5704 displacement += (FIRST_PARM_OFFSET (context) - STARTING_FRAME_OFFSET);
5705 base = lookup_static_chain (var);
5706 #endif
5709 else if (basereg == virtual_stack_vars_rtx)
5711 /* This is the same code as lookup_static_chain, duplicated here to
5712 avoid an extra call to decl_function_context. */
5713 tree link;
5715 for (link = context_display; link; link = TREE_CHAIN (link))
5716 if (TREE_PURPOSE (link) == context)
5718 base = RTL_EXPR_RTL (TREE_VALUE (link));
5719 break;
5723 if (base == 0)
5724 abort ();
5726 /* Use same offset, relative to appropriate static chain or argument
5727 pointer. */
5728 return plus_constant (base, displacement);
5731 /* Return the address of the trampoline for entering nested fn FUNCTION.
5732 If necessary, allocate a trampoline (in the stack frame)
5733 and emit rtl to initialize its contents (at entry to this function). */
5736 trampoline_address (tree function)
5738 tree link;
5739 tree rtlexp;
5740 rtx tramp;
5741 struct function *fp;
5742 tree fn_context;
5744 /* Find an existing trampoline and return it. */
5745 for (link = trampoline_list; link; link = TREE_CHAIN (link))
5746 if (TREE_PURPOSE (link) == function)
5747 return
5748 adjust_trampoline_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0));
5750 for (fp = outer_function_chain; fp; fp = fp->outer)
5751 for (link = fp->x_trampoline_list; link; link = TREE_CHAIN (link))
5752 if (TREE_PURPOSE (link) == function)
5754 tramp = fix_lexical_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0),
5755 function);
5756 return adjust_trampoline_addr (tramp);
5759 /* None exists; we must make one. */
5761 /* Find the `struct function' for the function containing FUNCTION. */
5762 fp = 0;
5763 fn_context = decl_function_context (function);
5764 if (fn_context != current_function_decl
5765 && fn_context != inline_function_decl)
5766 fp = find_function_data (fn_context);
5768 /* Allocate run-time space for this trampoline. */
5769 /* If rounding needed, allocate extra space
5770 to ensure we have TRAMPOLINE_SIZE bytes left after rounding up. */
5771 #define TRAMPOLINE_REAL_SIZE \
5772 (TRAMPOLINE_SIZE + (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT) - 1)
5773 tramp = assign_stack_local_1 (BLKmode, TRAMPOLINE_REAL_SIZE, 0,
5774 fp ? fp : cfun);
5775 /* Record the trampoline for reuse and note it for later initialization
5776 by expand_function_end. */
5777 if (fp != 0)
5779 rtlexp = make_node (RTL_EXPR);
5780 RTL_EXPR_RTL (rtlexp) = tramp;
5781 fp->x_trampoline_list = tree_cons (function, rtlexp,
5782 fp->x_trampoline_list);
5784 else
5786 /* Make the RTL_EXPR node temporary, not momentary, so that the
5787 trampoline_list doesn't become garbage. */
5788 rtlexp = make_node (RTL_EXPR);
5790 RTL_EXPR_RTL (rtlexp) = tramp;
5791 trampoline_list = tree_cons (function, rtlexp, trampoline_list);
5794 tramp = fix_lexical_addr (XEXP (tramp, 0), function);
5795 return adjust_trampoline_addr (tramp);
5798 /* Given a trampoline address,
5799 round it to multiple of TRAMPOLINE_ALIGNMENT. */
5801 static rtx
5802 round_trampoline_addr (rtx tramp)
5804 /* Round address up to desired boundary. */
5805 rtx temp = gen_reg_rtx (Pmode);
5806 rtx addend = GEN_INT (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT - 1);
5807 rtx mask = GEN_INT (-TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT);
5809 temp = expand_simple_binop (Pmode, PLUS, tramp, addend,
5810 temp, 0, OPTAB_LIB_WIDEN);
5811 tramp = expand_simple_binop (Pmode, AND, temp, mask,
5812 temp, 0, OPTAB_LIB_WIDEN);
5814 return tramp;
5817 /* Given a trampoline address, round it then apply any
5818 platform-specific adjustments so that the result can be used for a
5819 function call . */
5821 static rtx
5822 adjust_trampoline_addr (rtx tramp)
5824 tramp = round_trampoline_addr (tramp);
5825 #ifdef TRAMPOLINE_ADJUST_ADDRESS
5826 TRAMPOLINE_ADJUST_ADDRESS (tramp);
5827 #endif
5828 return tramp;
5831 /* Put all this function's BLOCK nodes including those that are chained
5832 onto the first block into a vector, and return it.
5833 Also store in each NOTE for the beginning or end of a block
5834 the index of that block in the vector.
5835 The arguments are BLOCK, the chain of top-level blocks of the function,
5836 and INSNS, the insn chain of the function. */
5838 void
5839 identify_blocks (void)
5841 int n_blocks;
5842 tree *block_vector, *last_block_vector;
5843 tree *block_stack;
5844 tree block = DECL_INITIAL (current_function_decl);
5846 if (block == 0)
5847 return;
5849 /* Fill the BLOCK_VECTOR with all of the BLOCKs in this function, in
5850 depth-first order. */
5851 block_vector = get_block_vector (block, &n_blocks);
5852 block_stack = (tree *) xmalloc (n_blocks * sizeof (tree));
5854 last_block_vector = identify_blocks_1 (get_insns (),
5855 block_vector + 1,
5856 block_vector + n_blocks,
5857 block_stack);
5859 /* If we didn't use all of the subblocks, we've misplaced block notes. */
5860 /* ??? This appears to happen all the time. Latent bugs elsewhere? */
5861 if (0 && last_block_vector != block_vector + n_blocks)
5862 abort ();
5864 free (block_vector);
5865 free (block_stack);
5868 /* Subroutine of identify_blocks. Do the block substitution on the
5869 insn chain beginning with INSNS. Recurse for CALL_PLACEHOLDER chains.
5871 BLOCK_STACK is pushed and popped for each BLOCK_BEGIN/BLOCK_END pair.
5872 BLOCK_VECTOR is incremented for each block seen. */
5874 static tree *
5875 identify_blocks_1 (rtx insns, tree *block_vector, tree *end_block_vector,
5876 tree *orig_block_stack)
5878 rtx insn;
5879 tree *block_stack = orig_block_stack;
5881 for (insn = insns; insn; insn = NEXT_INSN (insn))
5883 if (GET_CODE (insn) == NOTE)
5885 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
5887 tree b;
5889 /* If there are more block notes than BLOCKs, something
5890 is badly wrong. */
5891 if (block_vector == end_block_vector)
5892 abort ();
5894 b = *block_vector++;
5895 NOTE_BLOCK (insn) = b;
5896 *block_stack++ = b;
5898 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
5900 /* If there are more NOTE_INSN_BLOCK_ENDs than
5901 NOTE_INSN_BLOCK_BEGs, something is badly wrong. */
5902 if (block_stack == orig_block_stack)
5903 abort ();
5905 NOTE_BLOCK (insn) = *--block_stack;
5908 else if (GET_CODE (insn) == CALL_INSN
5909 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
5911 rtx cp = PATTERN (insn);
5913 block_vector = identify_blocks_1 (XEXP (cp, 0), block_vector,
5914 end_block_vector, block_stack);
5915 if (XEXP (cp, 1))
5916 block_vector = identify_blocks_1 (XEXP (cp, 1), block_vector,
5917 end_block_vector, block_stack);
5918 if (XEXP (cp, 2))
5919 block_vector = identify_blocks_1 (XEXP (cp, 2), block_vector,
5920 end_block_vector, block_stack);
5924 /* If there are more NOTE_INSN_BLOCK_BEGINs than NOTE_INSN_BLOCK_ENDs,
5925 something is badly wrong. */
5926 if (block_stack != orig_block_stack)
5927 abort ();
5929 return block_vector;
5932 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
5933 and create duplicate blocks. */
5934 /* ??? Need an option to either create block fragments or to create
5935 abstract origin duplicates of a source block. It really depends
5936 on what optimization has been performed. */
5938 void
5939 reorder_blocks (void)
5941 tree block = DECL_INITIAL (current_function_decl);
5942 varray_type block_stack;
5944 if (block == NULL_TREE)
5945 return;
5947 VARRAY_TREE_INIT (block_stack, 10, "block_stack");
5949 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
5950 reorder_blocks_0 (block);
5952 /* Prune the old trees away, so that they don't get in the way. */
5953 BLOCK_SUBBLOCKS (block) = NULL_TREE;
5954 BLOCK_CHAIN (block) = NULL_TREE;
5956 /* Recreate the block tree from the note nesting. */
5957 reorder_blocks_1 (get_insns (), block, &block_stack);
5958 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
5960 /* Remove deleted blocks from the block fragment chains. */
5961 reorder_fix_fragments (block);
5964 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
5966 static void
5967 reorder_blocks_0 (tree block)
5969 while (block)
5971 TREE_ASM_WRITTEN (block) = 0;
5972 reorder_blocks_0 (BLOCK_SUBBLOCKS (block));
5973 block = BLOCK_CHAIN (block);
5977 static void
5978 reorder_blocks_1 (rtx insns, tree current_block, varray_type *p_block_stack)
5980 rtx insn;
5982 for (insn = insns; insn; insn = NEXT_INSN (insn))
5984 if (GET_CODE (insn) == NOTE)
5986 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
5988 tree block = NOTE_BLOCK (insn);
5990 /* If we have seen this block before, that means it now
5991 spans multiple address regions. Create a new fragment. */
5992 if (TREE_ASM_WRITTEN (block))
5994 tree new_block = copy_node (block);
5995 tree origin;
5997 origin = (BLOCK_FRAGMENT_ORIGIN (block)
5998 ? BLOCK_FRAGMENT_ORIGIN (block)
5999 : block);
6000 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
6001 BLOCK_FRAGMENT_CHAIN (new_block)
6002 = BLOCK_FRAGMENT_CHAIN (origin);
6003 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
6005 NOTE_BLOCK (insn) = new_block;
6006 block = new_block;
6009 BLOCK_SUBBLOCKS (block) = 0;
6010 TREE_ASM_WRITTEN (block) = 1;
6011 /* When there's only one block for the entire function,
6012 current_block == block and we mustn't do this, it
6013 will cause infinite recursion. */
6014 if (block != current_block)
6016 BLOCK_SUPERCONTEXT (block) = current_block;
6017 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
6018 BLOCK_SUBBLOCKS (current_block) = block;
6019 current_block = block;
6021 VARRAY_PUSH_TREE (*p_block_stack, block);
6023 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
6025 NOTE_BLOCK (insn) = VARRAY_TOP_TREE (*p_block_stack);
6026 VARRAY_POP (*p_block_stack);
6027 BLOCK_SUBBLOCKS (current_block)
6028 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
6029 current_block = BLOCK_SUPERCONTEXT (current_block);
6032 else if (GET_CODE (insn) == CALL_INSN
6033 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
6035 rtx cp = PATTERN (insn);
6036 reorder_blocks_1 (XEXP (cp, 0), current_block, p_block_stack);
6037 if (XEXP (cp, 1))
6038 reorder_blocks_1 (XEXP (cp, 1), current_block, p_block_stack);
6039 if (XEXP (cp, 2))
6040 reorder_blocks_1 (XEXP (cp, 2), current_block, p_block_stack);
6045 /* Rationalize BLOCK_FRAGMENT_ORIGIN. If an origin block no longer
6046 appears in the block tree, select one of the fragments to become
6047 the new origin block. */
6049 static void
6050 reorder_fix_fragments (tree block)
6052 while (block)
6054 tree dup_origin = BLOCK_FRAGMENT_ORIGIN (block);
6055 tree new_origin = NULL_TREE;
6057 if (dup_origin)
6059 if (! TREE_ASM_WRITTEN (dup_origin))
6061 new_origin = BLOCK_FRAGMENT_CHAIN (dup_origin);
6063 /* Find the first of the remaining fragments. There must
6064 be at least one -- the current block. */
6065 while (! TREE_ASM_WRITTEN (new_origin))
6066 new_origin = BLOCK_FRAGMENT_CHAIN (new_origin);
6067 BLOCK_FRAGMENT_ORIGIN (new_origin) = NULL_TREE;
6070 else if (! dup_origin)
6071 new_origin = block;
6073 /* Re-root the rest of the fragments to the new origin. In the
6074 case that DUP_ORIGIN was null, that means BLOCK was the origin
6075 of a chain of fragments and we want to remove those fragments
6076 that didn't make it to the output. */
6077 if (new_origin)
6079 tree *pp = &BLOCK_FRAGMENT_CHAIN (new_origin);
6080 tree chain = *pp;
6082 while (chain)
6084 if (TREE_ASM_WRITTEN (chain))
6086 BLOCK_FRAGMENT_ORIGIN (chain) = new_origin;
6087 *pp = chain;
6088 pp = &BLOCK_FRAGMENT_CHAIN (chain);
6090 chain = BLOCK_FRAGMENT_CHAIN (chain);
6092 *pp = NULL_TREE;
6095 reorder_fix_fragments (BLOCK_SUBBLOCKS (block));
6096 block = BLOCK_CHAIN (block);
6100 /* Reverse the order of elements in the chain T of blocks,
6101 and return the new head of the chain (old last element). */
6103 static tree
6104 blocks_nreverse (tree t)
6106 tree prev = 0, decl, next;
6107 for (decl = t; decl; decl = next)
6109 next = BLOCK_CHAIN (decl);
6110 BLOCK_CHAIN (decl) = prev;
6111 prev = decl;
6113 return prev;
6116 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
6117 non-NULL, list them all into VECTOR, in a depth-first preorder
6118 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
6119 blocks. */
6121 static int
6122 all_blocks (tree block, tree *vector)
6124 int n_blocks = 0;
6126 while (block)
6128 TREE_ASM_WRITTEN (block) = 0;
6130 /* Record this block. */
6131 if (vector)
6132 vector[n_blocks] = block;
6134 ++n_blocks;
6136 /* Record the subblocks, and their subblocks... */
6137 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
6138 vector ? vector + n_blocks : 0);
6139 block = BLOCK_CHAIN (block);
6142 return n_blocks;
6145 /* Return a vector containing all the blocks rooted at BLOCK. The
6146 number of elements in the vector is stored in N_BLOCKS_P. The
6147 vector is dynamically allocated; it is the caller's responsibility
6148 to call `free' on the pointer returned. */
6150 static tree *
6151 get_block_vector (tree block, int *n_blocks_p)
6153 tree *block_vector;
6155 *n_blocks_p = all_blocks (block, NULL);
6156 block_vector = (tree *) xmalloc (*n_blocks_p * sizeof (tree));
6157 all_blocks (block, block_vector);
6159 return block_vector;
6162 static GTY(()) int next_block_index = 2;
6164 /* Set BLOCK_NUMBER for all the blocks in FN. */
6166 void
6167 number_blocks (tree fn)
6169 int i;
6170 int n_blocks;
6171 tree *block_vector;
6173 /* For SDB and XCOFF debugging output, we start numbering the blocks
6174 from 1 within each function, rather than keeping a running
6175 count. */
6176 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
6177 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
6178 next_block_index = 1;
6179 #endif
6181 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
6183 /* The top-level BLOCK isn't numbered at all. */
6184 for (i = 1; i < n_blocks; ++i)
6185 /* We number the blocks from two. */
6186 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
6188 free (block_vector);
6190 return;
6193 /* If VAR is present in a subblock of BLOCK, return the subblock. */
6195 tree
6196 debug_find_var_in_block_tree (tree var, tree block)
6198 tree t;
6200 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
6201 if (t == var)
6202 return block;
6204 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
6206 tree ret = debug_find_var_in_block_tree (var, t);
6207 if (ret)
6208 return ret;
6211 return NULL_TREE;
6214 /* Allocate a function structure and reset its contents to the defaults. */
6216 static void
6217 prepare_function_start (void)
6219 cfun = (struct function *) ggc_alloc_cleared (sizeof (struct function));
6221 init_stmt_for_function ();
6222 init_eh_for_function ();
6224 cse_not_expected = ! optimize;
6226 /* Caller save not needed yet. */
6227 caller_save_needed = 0;
6229 /* No stack slots have been made yet. */
6230 stack_slot_list = 0;
6232 current_function_has_nonlocal_label = 0;
6233 current_function_has_nonlocal_goto = 0;
6235 /* There is no stack slot for handling nonlocal gotos. */
6236 nonlocal_goto_handler_slots = 0;
6237 nonlocal_goto_stack_level = 0;
6239 /* No labels have been declared for nonlocal use. */
6240 nonlocal_labels = 0;
6241 nonlocal_goto_handler_labels = 0;
6243 /* No function calls so far in this function. */
6244 function_call_count = 0;
6246 /* No parm regs have been allocated.
6247 (This is important for output_inline_function.) */
6248 max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
6250 /* Initialize the RTL mechanism. */
6251 init_emit ();
6253 /* Initialize the queue of pending postincrement and postdecrements,
6254 and some other info in expr.c. */
6255 init_expr ();
6257 /* We haven't done register allocation yet. */
6258 reg_renumber = 0;
6260 init_varasm_status (cfun);
6262 /* Clear out data used for inlining. */
6263 cfun->inlinable = 0;
6264 cfun->original_decl_initial = 0;
6265 cfun->original_arg_vector = 0;
6267 cfun->stack_alignment_needed = STACK_BOUNDARY;
6268 cfun->preferred_stack_boundary = STACK_BOUNDARY;
6270 /* Set if a call to setjmp is seen. */
6271 current_function_calls_setjmp = 0;
6273 /* Set if a call to longjmp is seen. */
6274 current_function_calls_longjmp = 0;
6276 current_function_calls_alloca = 0;
6277 current_function_calls_eh_return = 0;
6278 current_function_calls_constant_p = 0;
6279 current_function_contains_functions = 0;
6280 current_function_is_leaf = 0;
6281 current_function_nothrow = 0;
6282 current_function_sp_is_unchanging = 0;
6283 current_function_uses_only_leaf_regs = 0;
6284 current_function_has_computed_jump = 0;
6285 current_function_is_thunk = 0;
6287 current_function_returns_pcc_struct = 0;
6288 current_function_returns_struct = 0;
6289 current_function_epilogue_delay_list = 0;
6290 current_function_uses_const_pool = 0;
6291 current_function_uses_pic_offset_table = 0;
6292 current_function_cannot_inline = 0;
6294 /* We have not yet needed to make a label to jump to for tail-recursion. */
6295 tail_recursion_label = 0;
6297 /* We haven't had a need to make a save area for ap yet. */
6298 arg_pointer_save_area = 0;
6300 /* No stack slots allocated yet. */
6301 frame_offset = 0;
6303 /* No SAVE_EXPRs in this function yet. */
6304 save_expr_regs = 0;
6306 /* No RTL_EXPRs in this function yet. */
6307 rtl_expr_chain = 0;
6309 /* Set up to allocate temporaries. */
6310 init_temp_slots ();
6312 /* Indicate that we need to distinguish between the return value of the
6313 present function and the return value of a function being called. */
6314 rtx_equal_function_value_matters = 1;
6316 /* Indicate that we have not instantiated virtual registers yet. */
6317 virtuals_instantiated = 0;
6319 /* Indicate that we want CONCATs now. */
6320 generating_concat_p = 1;
6322 /* Indicate we have no need of a frame pointer yet. */
6323 frame_pointer_needed = 0;
6325 /* By default assume not stdarg. */
6326 current_function_stdarg = 0;
6328 /* We haven't made any trampolines for this function yet. */
6329 trampoline_list = 0;
6331 init_pending_stack_adjust ();
6332 inhibit_defer_pop = 0;
6334 current_function_outgoing_args_size = 0;
6336 current_function_funcdef_no = funcdef_no++;
6338 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
6340 cfun->max_jumptable_ents = 0;
6342 (*lang_hooks.function.init) (cfun);
6343 if (init_machine_status)
6344 cfun->machine = (*init_machine_status) ();
6347 /* Initialize the rtl expansion mechanism so that we can do simple things
6348 like generate sequences. This is used to provide a context during global
6349 initialization of some passes. */
6350 void
6351 init_dummy_function_start (void)
6353 prepare_function_start ();
6356 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
6357 and initialize static variables for generating RTL for the statements
6358 of the function. */
6360 void
6361 init_function_start (tree subr)
6363 prepare_function_start ();
6365 current_function_name = (*lang_hooks.decl_printable_name) (subr, 2);
6366 cfun->decl = subr;
6368 /* Nonzero if this is a nested function that uses a static chain. */
6370 current_function_needs_context
6371 = (decl_function_context (current_function_decl) != 0
6372 && ! DECL_NO_STATIC_CHAIN (current_function_decl));
6374 /* Within function body, compute a type's size as soon it is laid out. */
6375 immediate_size_expand++;
6377 /* Prevent ever trying to delete the first instruction of a
6378 function. Also tell final how to output a linenum before the
6379 function prologue. Note linenums could be missing, e.g. when
6380 compiling a Java .class file. */
6381 if (DECL_SOURCE_LINE (subr))
6382 emit_line_note (DECL_SOURCE_LOCATION (subr));
6384 /* Make sure first insn is a note even if we don't want linenums.
6385 This makes sure the first insn will never be deleted.
6386 Also, final expects a note to appear there. */
6387 emit_note (NOTE_INSN_DELETED);
6389 /* Set flags used by final.c. */
6390 if (aggregate_value_p (DECL_RESULT (subr)))
6392 #ifdef PCC_STATIC_STRUCT_RETURN
6393 current_function_returns_pcc_struct = 1;
6394 #endif
6395 current_function_returns_struct = 1;
6398 /* Warn if this value is an aggregate type,
6399 regardless of which calling convention we are using for it. */
6400 if (warn_aggregate_return
6401 && AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
6402 warning ("function returns an aggregate");
6404 current_function_returns_pointer
6405 = POINTER_TYPE_P (TREE_TYPE (DECL_RESULT (subr)));
6408 /* Make sure all values used by the optimization passes have sane
6409 defaults. */
6410 void
6411 init_function_for_compilation (void)
6413 reg_renumber = 0;
6415 /* No prologue/epilogue insns yet. */
6416 VARRAY_GROW (prologue, 0);
6417 VARRAY_GROW (epilogue, 0);
6418 VARRAY_GROW (sibcall_epilogue, 0);
6421 /* Expand a call to __main at the beginning of a possible main function. */
6423 #if defined(INIT_SECTION_ASM_OP) && !defined(INVOKE__main)
6424 #undef HAS_INIT_SECTION
6425 #define HAS_INIT_SECTION
6426 #endif
6428 void
6429 expand_main_function (void)
6431 #ifdef FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN
6432 if (FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN)
6434 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
6435 rtx tmp, seq;
6437 start_sequence ();
6438 /* Forcibly align the stack. */
6439 #ifdef STACK_GROWS_DOWNWARD
6440 tmp = expand_simple_binop (Pmode, AND, stack_pointer_rtx, GEN_INT(-align),
6441 stack_pointer_rtx, 1, OPTAB_WIDEN);
6442 #else
6443 tmp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
6444 GEN_INT (align - 1), NULL_RTX, 1, OPTAB_WIDEN);
6445 tmp = expand_simple_binop (Pmode, AND, tmp, GEN_INT (-align),
6446 stack_pointer_rtx, 1, OPTAB_WIDEN);
6447 #endif
6448 if (tmp != stack_pointer_rtx)
6449 emit_move_insn (stack_pointer_rtx, tmp);
6451 /* Enlist allocate_dynamic_stack_space to pick up the pieces. */
6452 tmp = force_reg (Pmode, const0_rtx);
6453 allocate_dynamic_stack_space (tmp, NULL_RTX, BIGGEST_ALIGNMENT);
6454 seq = get_insns ();
6455 end_sequence ();
6457 for (tmp = get_last_insn (); tmp; tmp = PREV_INSN (tmp))
6458 if (NOTE_P (tmp) && NOTE_LINE_NUMBER (tmp) == NOTE_INSN_FUNCTION_BEG)
6459 break;
6460 if (tmp)
6461 emit_insn_before (seq, tmp);
6462 else
6463 emit_insn (seq);
6465 #endif
6467 #ifndef HAS_INIT_SECTION
6468 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
6469 #endif
6472 /* The PENDING_SIZES represent the sizes of variable-sized types.
6473 Create RTL for the various sizes now (using temporary variables),
6474 so that we can refer to the sizes from the RTL we are generating
6475 for the current function. The PENDING_SIZES are a TREE_LIST. The
6476 TREE_VALUE of each node is a SAVE_EXPR. */
6478 void
6479 expand_pending_sizes (tree pending_sizes)
6481 tree tem;
6483 /* Evaluate now the sizes of any types declared among the arguments. */
6484 for (tem = pending_sizes; tem; tem = TREE_CHAIN (tem))
6486 expand_expr (TREE_VALUE (tem), const0_rtx, VOIDmode, 0);
6487 /* Flush the queue in case this parameter declaration has
6488 side-effects. */
6489 emit_queue ();
6493 /* Start the RTL for a new function, and set variables used for
6494 emitting RTL.
6495 SUBR is the FUNCTION_DECL node.
6496 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
6497 the function's parameters, which must be run at any return statement. */
6499 void
6500 expand_function_start (tree subr, int parms_have_cleanups)
6502 tree tem;
6503 rtx last_ptr = NULL_RTX;
6505 /* Make sure volatile mem refs aren't considered
6506 valid operands of arithmetic insns. */
6507 init_recog_no_volatile ();
6509 current_function_instrument_entry_exit
6510 = (flag_instrument_function_entry_exit
6511 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
6513 current_function_profile
6514 = (profile_flag
6515 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
6517 current_function_limit_stack
6518 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
6520 /* If function gets a static chain arg, store it in the stack frame.
6521 Do this first, so it gets the first stack slot offset. */
6522 if (current_function_needs_context)
6524 last_ptr = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
6526 /* Delay copying static chain if it is not a register to avoid
6527 conflicts with regs used for parameters. */
6528 if (! SMALL_REGISTER_CLASSES
6529 || GET_CODE (static_chain_incoming_rtx) == REG)
6530 emit_move_insn (last_ptr, static_chain_incoming_rtx);
6533 /* If the parameters of this function need cleaning up, get a label
6534 for the beginning of the code which executes those cleanups. This must
6535 be done before doing anything with return_label. */
6536 if (parms_have_cleanups)
6537 cleanup_label = gen_label_rtx ();
6538 else
6539 cleanup_label = 0;
6541 /* Make the label for return statements to jump to. Do not special
6542 case machines with special return instructions -- they will be
6543 handled later during jump, ifcvt, or epilogue creation. */
6544 return_label = gen_label_rtx ();
6546 /* Initialize rtx used to return the value. */
6547 /* Do this before assign_parms so that we copy the struct value address
6548 before any library calls that assign parms might generate. */
6550 /* Decide whether to return the value in memory or in a register. */
6551 if (aggregate_value_p (DECL_RESULT (subr)))
6553 /* Returning something that won't go in a register. */
6554 rtx value_address = 0;
6556 #ifdef PCC_STATIC_STRUCT_RETURN
6557 if (current_function_returns_pcc_struct)
6559 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
6560 value_address = assemble_static_space (size);
6562 else
6563 #endif
6565 /* Expect to be passed the address of a place to store the value.
6566 If it is passed as an argument, assign_parms will take care of
6567 it. */
6568 if (struct_value_incoming_rtx)
6570 value_address = gen_reg_rtx (Pmode);
6571 emit_move_insn (value_address, struct_value_incoming_rtx);
6574 if (value_address)
6576 rtx x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), value_address);
6577 set_mem_attributes (x, DECL_RESULT (subr), 1);
6578 SET_DECL_RTL (DECL_RESULT (subr), x);
6581 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
6582 /* If return mode is void, this decl rtl should not be used. */
6583 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
6584 else
6586 /* Compute the return values into a pseudo reg, which we will copy
6587 into the true return register after the cleanups are done. */
6589 /* In order to figure out what mode to use for the pseudo, we
6590 figure out what the mode of the eventual return register will
6591 actually be, and use that. */
6592 rtx hard_reg
6593 = hard_function_value (TREE_TYPE (DECL_RESULT (subr)),
6594 subr, 1);
6596 /* Structures that are returned in registers are not aggregate_value_p,
6597 so we may see a PARALLEL or a REG. */
6598 if (REG_P (hard_reg))
6599 SET_DECL_RTL (DECL_RESULT (subr), gen_reg_rtx (GET_MODE (hard_reg)));
6600 else if (GET_CODE (hard_reg) == PARALLEL)
6601 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
6602 else
6603 abort ();
6605 /* Set DECL_REGISTER flag so that expand_function_end will copy the
6606 result to the real return register(s). */
6607 DECL_REGISTER (DECL_RESULT (subr)) = 1;
6610 /* Initialize rtx for parameters and local variables.
6611 In some cases this requires emitting insns. */
6613 assign_parms (subr);
6615 /* Copy the static chain now if it wasn't a register. The delay is to
6616 avoid conflicts with the parameter passing registers. */
6618 if (SMALL_REGISTER_CLASSES && current_function_needs_context)
6619 if (GET_CODE (static_chain_incoming_rtx) != REG)
6620 emit_move_insn (last_ptr, static_chain_incoming_rtx);
6622 /* The following was moved from init_function_start.
6623 The move is supposed to make sdb output more accurate. */
6624 /* Indicate the beginning of the function body,
6625 as opposed to parm setup. */
6626 emit_note (NOTE_INSN_FUNCTION_BEG);
6628 if (GET_CODE (get_last_insn ()) != NOTE)
6629 emit_note (NOTE_INSN_DELETED);
6630 parm_birth_insn = get_last_insn ();
6632 context_display = 0;
6633 if (current_function_needs_context)
6635 /* Fetch static chain values for containing functions. */
6636 tem = decl_function_context (current_function_decl);
6637 /* Copy the static chain pointer into a pseudo. If we have
6638 small register classes, copy the value from memory if
6639 static_chain_incoming_rtx is a REG. */
6640 if (tem)
6642 /* If the static chain originally came in a register, put it back
6643 there, then move it out in the next insn. The reason for
6644 this peculiar code is to satisfy function integration. */
6645 if (SMALL_REGISTER_CLASSES
6646 && GET_CODE (static_chain_incoming_rtx) == REG)
6647 emit_move_insn (static_chain_incoming_rtx, last_ptr);
6648 last_ptr = copy_to_reg (static_chain_incoming_rtx);
6651 while (tem)
6653 tree rtlexp = make_node (RTL_EXPR);
6655 RTL_EXPR_RTL (rtlexp) = last_ptr;
6656 context_display = tree_cons (tem, rtlexp, context_display);
6657 tem = decl_function_context (tem);
6658 if (tem == 0)
6659 break;
6660 /* Chain thru stack frames, assuming pointer to next lexical frame
6661 is found at the place we always store it. */
6662 #ifdef FRAME_GROWS_DOWNWARD
6663 last_ptr = plus_constant (last_ptr,
6664 -(HOST_WIDE_INT) GET_MODE_SIZE (Pmode));
6665 #endif
6666 last_ptr = gen_rtx_MEM (Pmode, memory_address (Pmode, last_ptr));
6667 set_mem_alias_set (last_ptr, get_frame_alias_set ());
6668 last_ptr = copy_to_reg (last_ptr);
6670 /* If we are not optimizing, ensure that we know that this
6671 piece of context is live over the entire function. */
6672 if (! optimize)
6673 save_expr_regs = gen_rtx_EXPR_LIST (VOIDmode, last_ptr,
6674 save_expr_regs);
6678 if (current_function_instrument_entry_exit)
6680 rtx fun = DECL_RTL (current_function_decl);
6681 if (GET_CODE (fun) == MEM)
6682 fun = XEXP (fun, 0);
6683 else
6684 abort ();
6685 emit_library_call (profile_function_entry_libfunc, LCT_NORMAL, VOIDmode,
6686 2, fun, Pmode,
6687 expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
6689 hard_frame_pointer_rtx),
6690 Pmode);
6693 if (current_function_profile)
6695 #ifdef PROFILE_HOOK
6696 PROFILE_HOOK (current_function_funcdef_no);
6697 #endif
6700 /* After the display initializations is where the tail-recursion label
6701 should go, if we end up needing one. Ensure we have a NOTE here
6702 since some things (like trampolines) get placed before this. */
6703 tail_recursion_reentry = emit_note (NOTE_INSN_DELETED);
6705 /* Evaluate now the sizes of any types declared among the arguments. */
6706 expand_pending_sizes (nreverse (get_pending_sizes ()));
6708 /* Make sure there is a line number after the function entry setup code. */
6709 force_next_line_note ();
6712 /* Undo the effects of init_dummy_function_start. */
6713 void
6714 expand_dummy_function_end (void)
6716 /* End any sequences that failed to be closed due to syntax errors. */
6717 while (in_sequence_p ())
6718 end_sequence ();
6720 /* Outside function body, can't compute type's actual size
6721 until next function's body starts. */
6723 free_after_parsing (cfun);
6724 free_after_compilation (cfun);
6725 cfun = 0;
6728 /* Call DOIT for each hard register used as a return value from
6729 the current function. */
6731 void
6732 diddle_return_value (void (*doit) (rtx, void *), void *arg)
6734 rtx outgoing = current_function_return_rtx;
6736 if (! outgoing)
6737 return;
6739 if (GET_CODE (outgoing) == REG)
6740 (*doit) (outgoing, arg);
6741 else if (GET_CODE (outgoing) == PARALLEL)
6743 int i;
6745 for (i = 0; i < XVECLEN (outgoing, 0); i++)
6747 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
6749 if (GET_CODE (x) == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
6750 (*doit) (x, arg);
6755 static void
6756 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
6758 emit_insn (gen_rtx_CLOBBER (VOIDmode, reg));
6761 void
6762 clobber_return_register (void)
6764 diddle_return_value (do_clobber_return_reg, NULL);
6766 /* In case we do use pseudo to return value, clobber it too. */
6767 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
6769 tree decl_result = DECL_RESULT (current_function_decl);
6770 rtx decl_rtl = DECL_RTL (decl_result);
6771 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
6773 do_clobber_return_reg (decl_rtl, NULL);
6778 static void
6779 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
6781 emit_insn (gen_rtx_USE (VOIDmode, reg));
6784 void
6785 use_return_register (void)
6787 diddle_return_value (do_use_return_reg, NULL);
6790 static GTY(()) rtx initial_trampoline;
6792 /* Generate RTL for the end of the current function. */
6794 void
6795 expand_function_end (void)
6797 tree link;
6798 rtx clobber_after;
6800 finish_expr_for_function ();
6802 /* If arg_pointer_save_area was referenced only from a nested
6803 function, we will not have initialized it yet. Do that now. */
6804 if (arg_pointer_save_area && ! cfun->arg_pointer_save_area_init)
6805 get_arg_pointer_save_area (cfun);
6807 #ifdef NON_SAVING_SETJMP
6808 /* Don't put any variables in registers if we call setjmp
6809 on a machine that fails to restore the registers. */
6810 if (NON_SAVING_SETJMP && current_function_calls_setjmp)
6812 if (DECL_INITIAL (current_function_decl) != error_mark_node)
6813 setjmp_protect (DECL_INITIAL (current_function_decl));
6815 setjmp_protect_args ();
6817 #endif
6819 /* Initialize any trampolines required by this function. */
6820 for (link = trampoline_list; link; link = TREE_CHAIN (link))
6822 tree function = TREE_PURPOSE (link);
6823 rtx context ATTRIBUTE_UNUSED = lookup_static_chain (function);
6824 rtx tramp = RTL_EXPR_RTL (TREE_VALUE (link));
6825 #ifdef TRAMPOLINE_TEMPLATE
6826 rtx blktramp;
6827 #endif
6828 rtx seq;
6830 #ifdef TRAMPOLINE_TEMPLATE
6831 /* First make sure this compilation has a template for
6832 initializing trampolines. */
6833 if (initial_trampoline == 0)
6835 initial_trampoline
6836 = gen_rtx_MEM (BLKmode, assemble_trampoline_template ());
6837 set_mem_align (initial_trampoline, TRAMPOLINE_ALIGNMENT);
6839 #endif
6841 /* Generate insns to initialize the trampoline. */
6842 start_sequence ();
6843 tramp = round_trampoline_addr (XEXP (tramp, 0));
6844 #ifdef TRAMPOLINE_TEMPLATE
6845 blktramp = replace_equiv_address (initial_trampoline, tramp);
6846 emit_block_move (blktramp, initial_trampoline,
6847 GEN_INT (TRAMPOLINE_SIZE), BLOCK_OP_NORMAL);
6848 #endif
6849 trampolines_created = 1;
6850 INITIALIZE_TRAMPOLINE (tramp, XEXP (DECL_RTL (function), 0), context);
6851 seq = get_insns ();
6852 end_sequence ();
6854 /* Put those insns at entry to the containing function (this one). */
6855 emit_insn_before (seq, tail_recursion_reentry);
6858 /* If we are doing stack checking and this function makes calls,
6859 do a stack probe at the start of the function to ensure we have enough
6860 space for another stack frame. */
6861 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
6863 rtx insn, seq;
6865 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6866 if (GET_CODE (insn) == CALL_INSN)
6868 start_sequence ();
6869 probe_stack_range (STACK_CHECK_PROTECT,
6870 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
6871 seq = get_insns ();
6872 end_sequence ();
6873 emit_insn_before (seq, tail_recursion_reentry);
6874 break;
6878 /* Possibly warn about unused parameters. */
6879 if (warn_unused_parameter)
6881 tree decl;
6883 for (decl = DECL_ARGUMENTS (current_function_decl);
6884 decl; decl = TREE_CHAIN (decl))
6885 if (! TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
6886 && DECL_NAME (decl) && ! DECL_ARTIFICIAL (decl))
6887 warning_with_decl (decl, "unused parameter `%s'");
6890 /* Delete handlers for nonlocal gotos if nothing uses them. */
6891 if (nonlocal_goto_handler_slots != 0
6892 && ! current_function_has_nonlocal_label)
6893 delete_handlers ();
6895 /* End any sequences that failed to be closed due to syntax errors. */
6896 while (in_sequence_p ())
6897 end_sequence ();
6899 /* Outside function body, can't compute type's actual size
6900 until next function's body starts. */
6901 immediate_size_expand--;
6903 clear_pending_stack_adjust ();
6904 do_pending_stack_adjust ();
6906 /* Mark the end of the function body.
6907 If control reaches this insn, the function can drop through
6908 without returning a value. */
6909 emit_note (NOTE_INSN_FUNCTION_END);
6911 /* Must mark the last line number note in the function, so that the test
6912 coverage code can avoid counting the last line twice. This just tells
6913 the code to ignore the immediately following line note, since there
6914 already exists a copy of this note somewhere above. This line number
6915 note is still needed for debugging though, so we can't delete it. */
6916 if (flag_test_coverage)
6917 emit_note (NOTE_INSN_REPEATED_LINE_NUMBER);
6919 /* Output a linenumber for the end of the function.
6920 SDB depends on this. */
6921 force_next_line_note ();
6922 emit_line_note (input_location);
6924 /* Before the return label (if any), clobber the return
6925 registers so that they are not propagated live to the rest of
6926 the function. This can only happen with functions that drop
6927 through; if there had been a return statement, there would
6928 have either been a return rtx, or a jump to the return label.
6930 We delay actual code generation after the current_function_value_rtx
6931 is computed. */
6932 clobber_after = get_last_insn ();
6934 /* Output the label for the actual return from the function,
6935 if one is expected. This happens either because a function epilogue
6936 is used instead of a return instruction, or because a return was done
6937 with a goto in order to run local cleanups, or because of pcc-style
6938 structure returning. */
6939 if (return_label)
6940 emit_label (return_label);
6942 if (current_function_instrument_entry_exit)
6944 rtx fun = DECL_RTL (current_function_decl);
6945 if (GET_CODE (fun) == MEM)
6946 fun = XEXP (fun, 0);
6947 else
6948 abort ();
6949 emit_library_call (profile_function_exit_libfunc, LCT_NORMAL, VOIDmode,
6950 2, fun, Pmode,
6951 expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
6953 hard_frame_pointer_rtx),
6954 Pmode);
6957 /* Let except.c know where it should emit the call to unregister
6958 the function context for sjlj exceptions. */
6959 if (flag_exceptions && USING_SJLJ_EXCEPTIONS)
6960 sjlj_emit_function_exit_after (get_last_insn ());
6962 /* If we had calls to alloca, and this machine needs
6963 an accurate stack pointer to exit the function,
6964 insert some code to save and restore the stack pointer. */
6965 #ifdef EXIT_IGNORE_STACK
6966 if (! EXIT_IGNORE_STACK)
6967 #endif
6968 if (current_function_calls_alloca)
6970 rtx tem = 0;
6972 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
6973 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
6976 /* If scalar return value was computed in a pseudo-reg, or was a named
6977 return value that got dumped to the stack, copy that to the hard
6978 return register. */
6979 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
6981 tree decl_result = DECL_RESULT (current_function_decl);
6982 rtx decl_rtl = DECL_RTL (decl_result);
6984 if (REG_P (decl_rtl)
6985 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
6986 : DECL_REGISTER (decl_result))
6988 rtx real_decl_rtl = current_function_return_rtx;
6990 /* This should be set in assign_parms. */
6991 if (! REG_FUNCTION_VALUE_P (real_decl_rtl))
6992 abort ();
6994 /* If this is a BLKmode structure being returned in registers,
6995 then use the mode computed in expand_return. Note that if
6996 decl_rtl is memory, then its mode may have been changed,
6997 but that current_function_return_rtx has not. */
6998 if (GET_MODE (real_decl_rtl) == BLKmode)
6999 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
7001 /* If a named return value dumped decl_return to memory, then
7002 we may need to re-do the PROMOTE_MODE signed/unsigned
7003 extension. */
7004 if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
7006 int unsignedp = TREE_UNSIGNED (TREE_TYPE (decl_result));
7008 #ifdef PROMOTE_FUNCTION_RETURN
7009 promote_mode (TREE_TYPE (decl_result), GET_MODE (decl_rtl),
7010 &unsignedp, 1);
7011 #endif
7013 convert_move (real_decl_rtl, decl_rtl, unsignedp);
7015 else if (GET_CODE (real_decl_rtl) == PARALLEL)
7017 /* If expand_function_start has created a PARALLEL for decl_rtl,
7018 move the result to the real return registers. Otherwise, do
7019 a group load from decl_rtl for a named return. */
7020 if (GET_CODE (decl_rtl) == PARALLEL)
7021 emit_group_move (real_decl_rtl, decl_rtl);
7022 else
7023 emit_group_load (real_decl_rtl, decl_rtl,
7024 int_size_in_bytes (TREE_TYPE (decl_result)));
7026 else
7027 emit_move_insn (real_decl_rtl, decl_rtl);
7031 /* If returning a structure, arrange to return the address of the value
7032 in a place where debuggers expect to find it.
7034 If returning a structure PCC style,
7035 the caller also depends on this value.
7036 And current_function_returns_pcc_struct is not necessarily set. */
7037 if (current_function_returns_struct
7038 || current_function_returns_pcc_struct)
7040 rtx value_address
7041 = XEXP (DECL_RTL (DECL_RESULT (current_function_decl)), 0);
7042 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
7043 #ifdef FUNCTION_OUTGOING_VALUE
7044 rtx outgoing
7045 = FUNCTION_OUTGOING_VALUE (build_pointer_type (type),
7046 current_function_decl);
7047 #else
7048 rtx outgoing
7049 = FUNCTION_VALUE (build_pointer_type (type), current_function_decl);
7050 #endif
7052 /* Mark this as a function return value so integrate will delete the
7053 assignment and USE below when inlining this function. */
7054 REG_FUNCTION_VALUE_P (outgoing) = 1;
7056 #ifdef POINTERS_EXTEND_UNSIGNED
7057 /* The address may be ptr_mode and OUTGOING may be Pmode. */
7058 if (GET_MODE (outgoing) != GET_MODE (value_address))
7059 value_address = convert_memory_address (GET_MODE (outgoing),
7060 value_address);
7061 #endif
7063 emit_move_insn (outgoing, value_address);
7065 /* Show return register used to hold result (in this case the address
7066 of the result. */
7067 current_function_return_rtx = outgoing;
7070 /* If this is an implementation of throw, do what's necessary to
7071 communicate between __builtin_eh_return and the epilogue. */
7072 expand_eh_return ();
7074 /* Emit the actual code to clobber return register. */
7076 rtx seq, after;
7078 start_sequence ();
7079 clobber_return_register ();
7080 seq = get_insns ();
7081 end_sequence ();
7083 after = emit_insn_after (seq, clobber_after);
7085 if (clobber_after != after)
7086 cfun->x_clobber_return_insn = after;
7089 /* ??? This should no longer be necessary since stupid is no longer with
7090 us, but there are some parts of the compiler (eg reload_combine, and
7091 sh mach_dep_reorg) that still try and compute their own lifetime info
7092 instead of using the general framework. */
7093 use_return_register ();
7095 /* Fix up any gotos that jumped out to the outermost
7096 binding level of the function.
7097 Must follow emitting RETURN_LABEL. */
7099 /* If you have any cleanups to do at this point,
7100 and they need to create temporary variables,
7101 then you will lose. */
7102 expand_fixups (get_insns ());
7106 get_arg_pointer_save_area (struct function *f)
7108 rtx ret = f->x_arg_pointer_save_area;
7110 if (! ret)
7112 ret = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, f);
7113 f->x_arg_pointer_save_area = ret;
7116 if (f == cfun && ! f->arg_pointer_save_area_init)
7118 rtx seq;
7120 /* Save the arg pointer at the beginning of the function. The
7121 generated stack slot may not be a valid memory address, so we
7122 have to check it and fix it if necessary. */
7123 start_sequence ();
7124 emit_move_insn (validize_mem (ret), virtual_incoming_args_rtx);
7125 seq = get_insns ();
7126 end_sequence ();
7128 push_topmost_sequence ();
7129 emit_insn_after (seq, get_insns ());
7130 pop_topmost_sequence ();
7133 return ret;
7136 /* Extend a vector that records the INSN_UIDs of INSNS
7137 (a list of one or more insns). */
7139 static void
7140 record_insns (rtx insns, varray_type *vecp)
7142 int i, len;
7143 rtx tmp;
7145 tmp = insns;
7146 len = 0;
7147 while (tmp != NULL_RTX)
7149 len++;
7150 tmp = NEXT_INSN (tmp);
7153 i = VARRAY_SIZE (*vecp);
7154 VARRAY_GROW (*vecp, i + len);
7155 tmp = insns;
7156 while (tmp != NULL_RTX)
7158 VARRAY_INT (*vecp, i) = INSN_UID (tmp);
7159 i++;
7160 tmp = NEXT_INSN (tmp);
7164 /* Set the specified locator to the insn chain. */
7165 static void
7166 set_insn_locators (rtx insn, int loc)
7168 while (insn != NULL_RTX)
7170 if (INSN_P (insn))
7171 INSN_LOCATOR (insn) = loc;
7172 insn = NEXT_INSN (insn);
7176 /* Determine how many INSN_UIDs in VEC are part of INSN. Because we can
7177 be running after reorg, SEQUENCE rtl is possible. */
7179 static int
7180 contains (rtx insn, varray_type vec)
7182 int i, j;
7184 if (GET_CODE (insn) == INSN
7185 && GET_CODE (PATTERN (insn)) == SEQUENCE)
7187 int count = 0;
7188 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
7189 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
7190 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i)) == VARRAY_INT (vec, j))
7191 count++;
7192 return count;
7194 else
7196 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
7197 if (INSN_UID (insn) == VARRAY_INT (vec, j))
7198 return 1;
7200 return 0;
7204 prologue_epilogue_contains (rtx insn)
7206 if (contains (insn, prologue))
7207 return 1;
7208 if (contains (insn, epilogue))
7209 return 1;
7210 return 0;
7214 sibcall_epilogue_contains (rtx insn)
7216 if (sibcall_epilogue)
7217 return contains (insn, sibcall_epilogue);
7218 return 0;
7221 #ifdef HAVE_return
7222 /* Insert gen_return at the end of block BB. This also means updating
7223 block_for_insn appropriately. */
7225 static void
7226 emit_return_into_block (basic_block bb, rtx line_note)
7228 emit_jump_insn_after (gen_return (), bb->end);
7229 if (line_note)
7230 emit_note_copy_after (line_note, PREV_INSN (bb->end));
7232 #endif /* HAVE_return */
7234 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
7236 /* These functions convert the epilogue into a variant that does not modify the
7237 stack pointer. This is used in cases where a function returns an object
7238 whose size is not known until it is computed. The called function leaves the
7239 object on the stack, leaves the stack depressed, and returns a pointer to
7240 the object.
7242 What we need to do is track all modifications and references to the stack
7243 pointer, deleting the modifications and changing the references to point to
7244 the location the stack pointer would have pointed to had the modifications
7245 taken place.
7247 These functions need to be portable so we need to make as few assumptions
7248 about the epilogue as we can. However, the epilogue basically contains
7249 three things: instructions to reset the stack pointer, instructions to
7250 reload registers, possibly including the frame pointer, and an
7251 instruction to return to the caller.
7253 If we can't be sure of what a relevant epilogue insn is doing, we abort.
7254 We also make no attempt to validate the insns we make since if they are
7255 invalid, we probably can't do anything valid. The intent is that these
7256 routines get "smarter" as more and more machines start to use them and
7257 they try operating on different epilogues.
7259 We use the following structure to track what the part of the epilogue that
7260 we've already processed has done. We keep two copies of the SP equivalence,
7261 one for use during the insn we are processing and one for use in the next
7262 insn. The difference is because one part of a PARALLEL may adjust SP
7263 and the other may use it. */
7265 struct epi_info
7267 rtx sp_equiv_reg; /* REG that SP is set from, perhaps SP. */
7268 HOST_WIDE_INT sp_offset; /* Offset from SP_EQUIV_REG of present SP. */
7269 rtx new_sp_equiv_reg; /* REG to be used at end of insn. */
7270 HOST_WIDE_INT new_sp_offset; /* Offset to be used at end of insn. */
7271 rtx equiv_reg_src; /* If nonzero, the value that SP_EQUIV_REG
7272 should be set to once we no longer need
7273 its value. */
7276 static void handle_epilogue_set (rtx, struct epi_info *);
7277 static void emit_equiv_load (struct epi_info *);
7279 /* Modify INSN, a list of one or more insns that is part of the epilogue, to
7280 no modifications to the stack pointer. Return the new list of insns. */
7282 static rtx
7283 keep_stack_depressed (rtx insns)
7285 int j;
7286 struct epi_info info;
7287 rtx insn, next;
7289 /* If the epilogue is just a single instruction, it ust be OK as is. */
7291 if (NEXT_INSN (insns) == NULL_RTX)
7292 return insns;
7294 /* Otherwise, start a sequence, initialize the information we have, and
7295 process all the insns we were given. */
7296 start_sequence ();
7298 info.sp_equiv_reg = stack_pointer_rtx;
7299 info.sp_offset = 0;
7300 info.equiv_reg_src = 0;
7302 insn = insns;
7303 next = NULL_RTX;
7304 while (insn != NULL_RTX)
7306 next = NEXT_INSN (insn);
7308 if (!INSN_P (insn))
7310 add_insn (insn);
7311 insn = next;
7312 continue;
7315 /* If this insn references the register that SP is equivalent to and
7316 we have a pending load to that register, we must force out the load
7317 first and then indicate we no longer know what SP's equivalent is. */
7318 if (info.equiv_reg_src != 0
7319 && reg_referenced_p (info.sp_equiv_reg, PATTERN (insn)))
7321 emit_equiv_load (&info);
7322 info.sp_equiv_reg = 0;
7325 info.new_sp_equiv_reg = info.sp_equiv_reg;
7326 info.new_sp_offset = info.sp_offset;
7328 /* If this is a (RETURN) and the return address is on the stack,
7329 update the address and change to an indirect jump. */
7330 if (GET_CODE (PATTERN (insn)) == RETURN
7331 || (GET_CODE (PATTERN (insn)) == PARALLEL
7332 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == RETURN))
7334 rtx retaddr = INCOMING_RETURN_ADDR_RTX;
7335 rtx base = 0;
7336 HOST_WIDE_INT offset = 0;
7337 rtx jump_insn, jump_set;
7339 /* If the return address is in a register, we can emit the insn
7340 unchanged. Otherwise, it must be a MEM and we see what the
7341 base register and offset are. In any case, we have to emit any
7342 pending load to the equivalent reg of SP, if any. */
7343 if (GET_CODE (retaddr) == REG)
7345 emit_equiv_load (&info);
7346 add_insn (insn);
7347 insn = next;
7348 continue;
7350 else if (GET_CODE (retaddr) == MEM
7351 && GET_CODE (XEXP (retaddr, 0)) == REG)
7352 base = gen_rtx_REG (Pmode, REGNO (XEXP (retaddr, 0))), offset = 0;
7353 else if (GET_CODE (retaddr) == MEM
7354 && GET_CODE (XEXP (retaddr, 0)) == PLUS
7355 && GET_CODE (XEXP (XEXP (retaddr, 0), 0)) == REG
7356 && GET_CODE (XEXP (XEXP (retaddr, 0), 1)) == CONST_INT)
7358 base = gen_rtx_REG (Pmode, REGNO (XEXP (XEXP (retaddr, 0), 0)));
7359 offset = INTVAL (XEXP (XEXP (retaddr, 0), 1));
7361 else
7362 abort ();
7364 /* If the base of the location containing the return pointer
7365 is SP, we must update it with the replacement address. Otherwise,
7366 just build the necessary MEM. */
7367 retaddr = plus_constant (base, offset);
7368 if (base == stack_pointer_rtx)
7369 retaddr = simplify_replace_rtx (retaddr, stack_pointer_rtx,
7370 plus_constant (info.sp_equiv_reg,
7371 info.sp_offset));
7373 retaddr = gen_rtx_MEM (Pmode, retaddr);
7375 /* If there is a pending load to the equivalent register for SP
7376 and we reference that register, we must load our address into
7377 a scratch register and then do that load. */
7378 if (info.equiv_reg_src
7379 && reg_overlap_mentioned_p (info.equiv_reg_src, retaddr))
7381 unsigned int regno;
7382 rtx reg;
7384 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
7385 if (HARD_REGNO_MODE_OK (regno, Pmode)
7386 && !fixed_regs[regno]
7387 && TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)
7388 && !REGNO_REG_SET_P (EXIT_BLOCK_PTR->global_live_at_start,
7389 regno)
7390 && !refers_to_regno_p (regno,
7391 regno + HARD_REGNO_NREGS (regno,
7392 Pmode),
7393 info.equiv_reg_src, NULL))
7394 break;
7396 if (regno == FIRST_PSEUDO_REGISTER)
7397 abort ();
7399 reg = gen_rtx_REG (Pmode, regno);
7400 emit_move_insn (reg, retaddr);
7401 retaddr = reg;
7404 emit_equiv_load (&info);
7405 jump_insn = emit_jump_insn (gen_indirect_jump (retaddr));
7407 /* Show the SET in the above insn is a RETURN. */
7408 jump_set = single_set (jump_insn);
7409 if (jump_set == 0)
7410 abort ();
7411 else
7412 SET_IS_RETURN_P (jump_set) = 1;
7415 /* If SP is not mentioned in the pattern and its equivalent register, if
7416 any, is not modified, just emit it. Otherwise, if neither is set,
7417 replace the reference to SP and emit the insn. If none of those are
7418 true, handle each SET individually. */
7419 else if (!reg_mentioned_p (stack_pointer_rtx, PATTERN (insn))
7420 && (info.sp_equiv_reg == stack_pointer_rtx
7421 || !reg_set_p (info.sp_equiv_reg, insn)))
7422 add_insn (insn);
7423 else if (! reg_set_p (stack_pointer_rtx, insn)
7424 && (info.sp_equiv_reg == stack_pointer_rtx
7425 || !reg_set_p (info.sp_equiv_reg, insn)))
7427 if (! validate_replace_rtx (stack_pointer_rtx,
7428 plus_constant (info.sp_equiv_reg,
7429 info.sp_offset),
7430 insn))
7431 abort ();
7433 add_insn (insn);
7435 else if (GET_CODE (PATTERN (insn)) == SET)
7436 handle_epilogue_set (PATTERN (insn), &info);
7437 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
7439 for (j = 0; j < XVECLEN (PATTERN (insn), 0); j++)
7440 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET)
7441 handle_epilogue_set (XVECEXP (PATTERN (insn), 0, j), &info);
7443 else
7444 add_insn (insn);
7446 info.sp_equiv_reg = info.new_sp_equiv_reg;
7447 info.sp_offset = info.new_sp_offset;
7449 insn = next;
7452 insns = get_insns ();
7453 end_sequence ();
7454 return insns;
7457 /* SET is a SET from an insn in the epilogue. P is a pointer to the epi_info
7458 structure that contains information about what we've seen so far. We
7459 process this SET by either updating that data or by emitting one or
7460 more insns. */
7462 static void
7463 handle_epilogue_set (rtx set, struct epi_info *p)
7465 /* First handle the case where we are setting SP. Record what it is being
7466 set from. If unknown, abort. */
7467 if (reg_set_p (stack_pointer_rtx, set))
7469 if (SET_DEST (set) != stack_pointer_rtx)
7470 abort ();
7472 if (GET_CODE (SET_SRC (set)) == PLUS
7473 && GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
7475 p->new_sp_equiv_reg = XEXP (SET_SRC (set), 0);
7476 p->new_sp_offset = INTVAL (XEXP (SET_SRC (set), 1));
7478 else
7479 p->new_sp_equiv_reg = SET_SRC (set), p->new_sp_offset = 0;
7481 /* If we are adjusting SP, we adjust from the old data. */
7482 if (p->new_sp_equiv_reg == stack_pointer_rtx)
7484 p->new_sp_equiv_reg = p->sp_equiv_reg;
7485 p->new_sp_offset += p->sp_offset;
7488 if (p->new_sp_equiv_reg == 0 || GET_CODE (p->new_sp_equiv_reg) != REG)
7489 abort ();
7491 return;
7494 /* Next handle the case where we are setting SP's equivalent register.
7495 If we already have a value to set it to, abort. We could update, but
7496 there seems little point in handling that case. Note that we have
7497 to allow for the case where we are setting the register set in
7498 the previous part of a PARALLEL inside a single insn. But use the
7499 old offset for any updates within this insn. */
7500 else if (p->new_sp_equiv_reg != 0 && reg_set_p (p->new_sp_equiv_reg, set))
7502 if (!rtx_equal_p (p->new_sp_equiv_reg, SET_DEST (set))
7503 || p->equiv_reg_src != 0)
7504 abort ();
7505 else
7506 p->equiv_reg_src
7507 = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
7508 plus_constant (p->sp_equiv_reg,
7509 p->sp_offset));
7512 /* Otherwise, replace any references to SP in the insn to its new value
7513 and emit the insn. */
7514 else
7516 SET_SRC (set) = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
7517 plus_constant (p->sp_equiv_reg,
7518 p->sp_offset));
7519 SET_DEST (set) = simplify_replace_rtx (SET_DEST (set), stack_pointer_rtx,
7520 plus_constant (p->sp_equiv_reg,
7521 p->sp_offset));
7522 emit_insn (set);
7526 /* Emit an insn to do the load shown in p->equiv_reg_src, if needed. */
7528 static void
7529 emit_equiv_load (struct epi_info *p)
7531 if (p->equiv_reg_src != 0)
7532 emit_move_insn (p->sp_equiv_reg, p->equiv_reg_src);
7534 p->equiv_reg_src = 0;
7536 #endif
7538 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
7539 this into place with notes indicating where the prologue ends and where
7540 the epilogue begins. Update the basic block information when possible. */
7542 void
7543 thread_prologue_and_epilogue_insns (rtx f ATTRIBUTE_UNUSED)
7545 int inserted = 0;
7546 edge e;
7547 #if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
7548 rtx seq;
7549 #endif
7550 #ifdef HAVE_prologue
7551 rtx prologue_end = NULL_RTX;
7552 #endif
7553 #if defined (HAVE_epilogue) || defined(HAVE_return)
7554 rtx epilogue_end = NULL_RTX;
7555 #endif
7557 #ifdef HAVE_prologue
7558 if (HAVE_prologue)
7560 start_sequence ();
7561 seq = gen_prologue ();
7562 emit_insn (seq);
7564 /* Retain a map of the prologue insns. */
7565 record_insns (seq, &prologue);
7566 prologue_end = emit_note (NOTE_INSN_PROLOGUE_END);
7568 seq = get_insns ();
7569 end_sequence ();
7570 set_insn_locators (seq, prologue_locator);
7572 /* Can't deal with multiple successors of the entry block
7573 at the moment. Function should always have at least one
7574 entry point. */
7575 if (!ENTRY_BLOCK_PTR->succ || ENTRY_BLOCK_PTR->succ->succ_next)
7576 abort ();
7578 insert_insn_on_edge (seq, ENTRY_BLOCK_PTR->succ);
7579 inserted = 1;
7581 #endif
7583 /* If the exit block has no non-fake predecessors, we don't need
7584 an epilogue. */
7585 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7586 if ((e->flags & EDGE_FAKE) == 0)
7587 break;
7588 if (e == NULL)
7589 goto epilogue_done;
7591 #ifdef HAVE_return
7592 if (optimize && HAVE_return)
7594 /* If we're allowed to generate a simple return instruction,
7595 then by definition we don't need a full epilogue. Examine
7596 the block that falls through to EXIT. If it does not
7597 contain any code, examine its predecessors and try to
7598 emit (conditional) return instructions. */
7600 basic_block last;
7601 edge e_next;
7602 rtx label;
7604 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7605 if (e->flags & EDGE_FALLTHRU)
7606 break;
7607 if (e == NULL)
7608 goto epilogue_done;
7609 last = e->src;
7611 /* Verify that there are no active instructions in the last block. */
7612 label = last->end;
7613 while (label && GET_CODE (label) != CODE_LABEL)
7615 if (active_insn_p (label))
7616 break;
7617 label = PREV_INSN (label);
7620 if (last->head == label && GET_CODE (label) == CODE_LABEL)
7622 rtx epilogue_line_note = NULL_RTX;
7624 /* Locate the line number associated with the closing brace,
7625 if we can find one. */
7626 for (seq = get_last_insn ();
7627 seq && ! active_insn_p (seq);
7628 seq = PREV_INSN (seq))
7629 if (GET_CODE (seq) == NOTE && NOTE_LINE_NUMBER (seq) > 0)
7631 epilogue_line_note = seq;
7632 break;
7635 for (e = last->pred; e; e = e_next)
7637 basic_block bb = e->src;
7638 rtx jump;
7640 e_next = e->pred_next;
7641 if (bb == ENTRY_BLOCK_PTR)
7642 continue;
7644 jump = bb->end;
7645 if ((GET_CODE (jump) != JUMP_INSN) || JUMP_LABEL (jump) != label)
7646 continue;
7648 /* If we have an unconditional jump, we can replace that
7649 with a simple return instruction. */
7650 if (simplejump_p (jump))
7652 emit_return_into_block (bb, epilogue_line_note);
7653 delete_insn (jump);
7656 /* If we have a conditional jump, we can try to replace
7657 that with a conditional return instruction. */
7658 else if (condjump_p (jump))
7660 if (! redirect_jump (jump, 0, 0))
7661 continue;
7663 /* If this block has only one successor, it both jumps
7664 and falls through to the fallthru block, so we can't
7665 delete the edge. */
7666 if (bb->succ->succ_next == NULL)
7667 continue;
7669 else
7670 continue;
7672 /* Fix up the CFG for the successful change we just made. */
7673 redirect_edge_succ (e, EXIT_BLOCK_PTR);
7676 /* Emit a return insn for the exit fallthru block. Whether
7677 this is still reachable will be determined later. */
7679 emit_barrier_after (last->end);
7680 emit_return_into_block (last, epilogue_line_note);
7681 epilogue_end = last->end;
7682 last->succ->flags &= ~EDGE_FALLTHRU;
7683 goto epilogue_done;
7686 #endif
7687 #ifdef HAVE_epilogue
7688 if (HAVE_epilogue)
7690 /* Find the edge that falls through to EXIT. Other edges may exist
7691 due to RETURN instructions, but those don't need epilogues.
7692 There really shouldn't be a mixture -- either all should have
7693 been converted or none, however... */
7695 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7696 if (e->flags & EDGE_FALLTHRU)
7697 break;
7698 if (e == NULL)
7699 goto epilogue_done;
7701 start_sequence ();
7702 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
7704 seq = gen_epilogue ();
7706 #ifdef INCOMING_RETURN_ADDR_RTX
7707 /* If this function returns with the stack depressed and we can support
7708 it, massage the epilogue to actually do that. */
7709 if (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
7710 && TYPE_RETURNS_STACK_DEPRESSED (TREE_TYPE (current_function_decl)))
7711 seq = keep_stack_depressed (seq);
7712 #endif
7714 emit_jump_insn (seq);
7716 /* Retain a map of the epilogue insns. */
7717 record_insns (seq, &epilogue);
7718 set_insn_locators (seq, epilogue_locator);
7720 seq = get_insns ();
7721 end_sequence ();
7723 insert_insn_on_edge (seq, e);
7724 inserted = 1;
7726 #endif
7727 epilogue_done:
7729 if (inserted)
7730 commit_edge_insertions ();
7732 #ifdef HAVE_sibcall_epilogue
7733 /* Emit sibling epilogues before any sibling call sites. */
7734 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7736 basic_block bb = e->src;
7737 rtx insn = bb->end;
7738 rtx i;
7739 rtx newinsn;
7741 if (GET_CODE (insn) != CALL_INSN
7742 || ! SIBLING_CALL_P (insn))
7743 continue;
7745 start_sequence ();
7746 emit_insn (gen_sibcall_epilogue ());
7747 seq = get_insns ();
7748 end_sequence ();
7750 /* Retain a map of the epilogue insns. Used in life analysis to
7751 avoid getting rid of sibcall epilogue insns. Do this before we
7752 actually emit the sequence. */
7753 record_insns (seq, &sibcall_epilogue);
7754 set_insn_locators (seq, epilogue_locator);
7756 i = PREV_INSN (insn);
7757 newinsn = emit_insn_before (seq, insn);
7759 #endif
7761 #ifdef HAVE_prologue
7762 if (prologue_end)
7764 rtx insn, prev;
7766 /* GDB handles `break f' by setting a breakpoint on the first
7767 line note after the prologue. Which means (1) that if
7768 there are line number notes before where we inserted the
7769 prologue we should move them, and (2) we should generate a
7770 note before the end of the first basic block, if there isn't
7771 one already there.
7773 ??? This behavior is completely broken when dealing with
7774 multiple entry functions. We simply place the note always
7775 into first basic block and let alternate entry points
7776 to be missed.
7779 for (insn = prologue_end; insn; insn = prev)
7781 prev = PREV_INSN (insn);
7782 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7784 /* Note that we cannot reorder the first insn in the
7785 chain, since rest_of_compilation relies on that
7786 remaining constant. */
7787 if (prev == NULL)
7788 break;
7789 reorder_insns (insn, insn, prologue_end);
7793 /* Find the last line number note in the first block. */
7794 for (insn = ENTRY_BLOCK_PTR->next_bb->end;
7795 insn != prologue_end && insn;
7796 insn = PREV_INSN (insn))
7797 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7798 break;
7800 /* If we didn't find one, make a copy of the first line number
7801 we run across. */
7802 if (! insn)
7804 for (insn = next_active_insn (prologue_end);
7805 insn;
7806 insn = PREV_INSN (insn))
7807 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7809 emit_note_copy_after (insn, prologue_end);
7810 break;
7814 #endif
7815 #ifdef HAVE_epilogue
7816 if (epilogue_end)
7818 rtx insn, next;
7820 /* Similarly, move any line notes that appear after the epilogue.
7821 There is no need, however, to be quite so anal about the existence
7822 of such a note. */
7823 for (insn = epilogue_end; insn; insn = next)
7825 next = NEXT_INSN (insn);
7826 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7827 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
7830 #endif
7833 /* Reposition the prologue-end and epilogue-begin notes after instruction
7834 scheduling and delayed branch scheduling. */
7836 void
7837 reposition_prologue_and_epilogue_notes (rtx f ATTRIBUTE_UNUSED)
7839 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
7840 rtx insn, last, note;
7841 int len;
7843 if ((len = VARRAY_SIZE (prologue)) > 0)
7845 last = 0, note = 0;
7847 /* Scan from the beginning until we reach the last prologue insn.
7848 We apparently can't depend on basic_block_{head,end} after
7849 reorg has run. */
7850 for (insn = f; insn; insn = NEXT_INSN (insn))
7852 if (GET_CODE (insn) == NOTE)
7854 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
7855 note = insn;
7857 else if (contains (insn, prologue))
7859 last = insn;
7860 if (--len == 0)
7861 break;
7865 if (last)
7867 /* Find the prologue-end note if we haven't already, and
7868 move it to just after the last prologue insn. */
7869 if (note == 0)
7871 for (note = last; (note = NEXT_INSN (note));)
7872 if (GET_CODE (note) == NOTE
7873 && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
7874 break;
7877 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
7878 if (GET_CODE (last) == CODE_LABEL)
7879 last = NEXT_INSN (last);
7880 reorder_insns (note, note, last);
7884 if ((len = VARRAY_SIZE (epilogue)) > 0)
7886 last = 0, note = 0;
7888 /* Scan from the end until we reach the first epilogue insn.
7889 We apparently can't depend on basic_block_{head,end} after
7890 reorg has run. */
7891 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
7893 if (GET_CODE (insn) == NOTE)
7895 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
7896 note = insn;
7898 else if (contains (insn, epilogue))
7900 last = insn;
7901 if (--len == 0)
7902 break;
7906 if (last)
7908 /* Find the epilogue-begin note if we haven't already, and
7909 move it to just before the first epilogue insn. */
7910 if (note == 0)
7912 for (note = insn; (note = PREV_INSN (note));)
7913 if (GET_CODE (note) == NOTE
7914 && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
7915 break;
7918 if (PREV_INSN (last) != note)
7919 reorder_insns (note, note, PREV_INSN (last));
7922 #endif /* HAVE_prologue or HAVE_epilogue */
7925 /* Called once, at initialization, to initialize function.c. */
7927 void
7928 init_function_once (void)
7930 VARRAY_INT_INIT (prologue, 0, "prologue");
7931 VARRAY_INT_INIT (epilogue, 0, "epilogue");
7932 VARRAY_INT_INIT (sibcall_epilogue, 0, "sibcall_epilogue");
7935 #include "gt-function.h"