2006-02-09 Kaz Kojima <kkojima@gcc.gnu.org>
[official-gcc.git] / gcc / tree-vrp.c
blob8734f514e5e6565d744d20442a8c0344ee5cc5f0
1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005, 2006 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "ggc.h"
27 #include "flags.h"
28 #include "tree.h"
29 #include "basic-block.h"
30 #include "tree-flow.h"
31 #include "tree-pass.h"
32 #include "tree-dump.h"
33 #include "timevar.h"
34 #include "diagnostic.h"
35 #include "cfgloop.h"
36 #include "tree-scalar-evolution.h"
37 #include "tree-ssa-propagate.h"
38 #include "tree-chrec.h"
40 /* Set of SSA names found during the dominator traversal of a
41 sub-graph in find_assert_locations. */
42 static sbitmap found_in_subgraph;
44 /* Local functions. */
45 static int compare_values (tree val1, tree val2);
47 /* Location information for ASSERT_EXPRs. Each instance of this
48 structure describes an ASSERT_EXPR for an SSA name. Since a single
49 SSA name may have more than one assertion associated with it, these
50 locations are kept in a linked list attached to the corresponding
51 SSA name. */
52 struct assert_locus_d
54 /* Basic block where the assertion would be inserted. */
55 basic_block bb;
57 /* Some assertions need to be inserted on an edge (e.g., assertions
58 generated by COND_EXPRs). In those cases, BB will be NULL. */
59 edge e;
61 /* Pointer to the statement that generated this assertion. */
62 block_stmt_iterator si;
64 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
65 enum tree_code comp_code;
67 /* Value being compared against. */
68 tree val;
70 /* Next node in the linked list. */
71 struct assert_locus_d *next;
74 typedef struct assert_locus_d *assert_locus_t;
76 /* If bit I is present, it means that SSA name N_i has a list of
77 assertions that should be inserted in the IL. */
78 static bitmap need_assert_for;
80 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
81 holds a list of ASSERT_LOCUS_T nodes that describe where
82 ASSERT_EXPRs for SSA name N_I should be inserted. */
83 static assert_locus_t *asserts_for;
85 /* Set of blocks visited in find_assert_locations. Used to avoid
86 visiting the same block more than once. */
87 static sbitmap blocks_visited;
89 /* Value range array. After propagation, VR_VALUE[I] holds the range
90 of values that SSA name N_I may take. */
91 static value_range_t **vr_value;
94 /* Return true if ARG is marked with the nonnull attribute in the
95 current function signature. */
97 static bool
98 nonnull_arg_p (tree arg)
100 tree t, attrs, fntype;
101 unsigned HOST_WIDE_INT arg_num;
103 gcc_assert (TREE_CODE (arg) == PARM_DECL && POINTER_TYPE_P (TREE_TYPE (arg)));
105 fntype = TREE_TYPE (current_function_decl);
106 attrs = lookup_attribute ("nonnull", TYPE_ATTRIBUTES (fntype));
108 /* If "nonnull" wasn't specified, we know nothing about the argument. */
109 if (attrs == NULL_TREE)
110 return false;
112 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
113 if (TREE_VALUE (attrs) == NULL_TREE)
114 return true;
116 /* Get the position number for ARG in the function signature. */
117 for (arg_num = 1, t = DECL_ARGUMENTS (current_function_decl);
119 t = TREE_CHAIN (t), arg_num++)
121 if (t == arg)
122 break;
125 gcc_assert (t == arg);
127 /* Now see if ARG_NUM is mentioned in the nonnull list. */
128 for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
130 if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
131 return true;
134 return false;
138 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
140 static void
141 set_value_range (value_range_t *vr, enum value_range_type t, tree min,
142 tree max, bitmap equiv)
144 #if defined ENABLE_CHECKING
145 /* Check the validity of the range. */
146 if (t == VR_RANGE || t == VR_ANTI_RANGE)
148 int cmp;
150 gcc_assert (min && max);
152 if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
153 gcc_assert (min != TYPE_MIN_VALUE (TREE_TYPE (min))
154 || max != TYPE_MAX_VALUE (TREE_TYPE (max)));
156 cmp = compare_values (min, max);
157 gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
160 if (t == VR_UNDEFINED || t == VR_VARYING)
161 gcc_assert (min == NULL_TREE && max == NULL_TREE);
163 if (t == VR_UNDEFINED || t == VR_VARYING)
164 gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
165 #endif
167 vr->type = t;
168 vr->min = min;
169 vr->max = max;
171 /* Since updating the equivalence set involves deep copying the
172 bitmaps, only do it if absolutely necessary. */
173 if (vr->equiv == NULL)
174 vr->equiv = BITMAP_ALLOC (NULL);
176 if (equiv != vr->equiv)
178 if (equiv && !bitmap_empty_p (equiv))
179 bitmap_copy (vr->equiv, equiv);
180 else
181 bitmap_clear (vr->equiv);
186 /* Copy value range FROM into value range TO. */
188 static inline void
189 copy_value_range (value_range_t *to, value_range_t *from)
191 set_value_range (to, from->type, from->min, from->max, from->equiv);
195 /* Set value range VR to a non-NULL range of type TYPE. */
197 static inline void
198 set_value_range_to_nonnull (value_range_t *vr, tree type)
200 tree zero = build_int_cst (type, 0);
201 set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
205 /* Set value range VR to a NULL range of type TYPE. */
207 static inline void
208 set_value_range_to_null (value_range_t *vr, tree type)
210 tree zero = build_int_cst (type, 0);
211 set_value_range (vr, VR_RANGE, zero, zero, vr->equiv);
215 /* Set value range VR to VR_VARYING. */
217 static inline void
218 set_value_range_to_varying (value_range_t *vr)
220 vr->type = VR_VARYING;
221 vr->min = vr->max = NULL_TREE;
222 if (vr->equiv)
223 bitmap_clear (vr->equiv);
227 /* Set value range VR to VR_UNDEFINED. */
229 static inline void
230 set_value_range_to_undefined (value_range_t *vr)
232 vr->type = VR_UNDEFINED;
233 vr->min = vr->max = NULL_TREE;
234 if (vr->equiv)
235 bitmap_clear (vr->equiv);
239 /* Return value range information for VAR. Create an empty range
240 if none existed. */
242 static value_range_t *
243 get_value_range (tree var)
245 value_range_t *vr;
246 tree sym;
247 unsigned ver = SSA_NAME_VERSION (var);
249 vr = vr_value[ver];
250 if (vr)
251 return vr;
253 /* Create a default value range. */
254 vr_value[ver] = vr = XNEW (value_range_t);
255 memset (vr, 0, sizeof (*vr));
257 /* Allocate an equivalence set. */
258 vr->equiv = BITMAP_ALLOC (NULL);
260 /* If VAR is a default definition, the variable can take any value
261 in VAR's type. */
262 sym = SSA_NAME_VAR (var);
263 if (var == default_def (sym))
265 /* Try to use the "nonnull" attribute to create ~[0, 0]
266 anti-ranges for pointers. Note that this is only valid with
267 default definitions of PARM_DECLs. */
268 if (TREE_CODE (sym) == PARM_DECL
269 && POINTER_TYPE_P (TREE_TYPE (sym))
270 && nonnull_arg_p (sym))
271 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
272 else
273 set_value_range_to_varying (vr);
276 return vr;
280 /* Update the value range and equivalence set for variable VAR to
281 NEW_VR. Return true if NEW_VR is different from VAR's previous
282 value.
284 NOTE: This function assumes that NEW_VR is a temporary value range
285 object created for the sole purpose of updating VAR's range. The
286 storage used by the equivalence set from NEW_VR will be freed by
287 this function. Do not call update_value_range when NEW_VR
288 is the range object associated with another SSA name. */
290 static inline bool
291 update_value_range (tree var, value_range_t *new_vr)
293 value_range_t *old_vr;
294 bool is_new;
296 /* Update the value range, if necessary. */
297 old_vr = get_value_range (var);
298 is_new = old_vr->type != new_vr->type
299 || old_vr->min != new_vr->min
300 || old_vr->max != new_vr->max
301 || (old_vr->equiv == NULL && new_vr->equiv)
302 || (old_vr->equiv && new_vr->equiv == NULL)
303 || (!bitmap_equal_p (old_vr->equiv, new_vr->equiv));
305 if (is_new)
306 set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
307 new_vr->equiv);
309 BITMAP_FREE (new_vr->equiv);
310 new_vr->equiv = NULL;
312 return is_new;
316 /* Add VAR and VAR's equivalence set to EQUIV. */
318 static void
319 add_equivalence (bitmap equiv, tree var)
321 unsigned ver = SSA_NAME_VERSION (var);
322 value_range_t *vr = vr_value[ver];
324 bitmap_set_bit (equiv, ver);
325 if (vr && vr->equiv)
326 bitmap_ior_into (equiv, vr->equiv);
330 /* Return true if VR is ~[0, 0]. */
332 static inline bool
333 range_is_nonnull (value_range_t *vr)
335 return vr->type == VR_ANTI_RANGE
336 && integer_zerop (vr->min)
337 && integer_zerop (vr->max);
341 /* Return true if VR is [0, 0]. */
343 static inline bool
344 range_is_null (value_range_t *vr)
346 return vr->type == VR_RANGE
347 && integer_zerop (vr->min)
348 && integer_zerop (vr->max);
352 /* Return true if value range VR involves at least one symbol. */
354 static inline bool
355 symbolic_range_p (value_range_t *vr)
357 return (!is_gimple_min_invariant (vr->min)
358 || !is_gimple_min_invariant (vr->max));
362 /* Like tree_expr_nonzero_p, but this function uses value ranges
363 obtained so far. */
365 static bool
366 vrp_expr_computes_nonzero (tree expr)
368 if (tree_expr_nonzero_p (expr))
369 return true;
371 /* If we have an expression of the form &X->a, then the expression
372 is nonnull if X is nonnull. */
373 if (TREE_CODE (expr) == ADDR_EXPR)
375 tree base = get_base_address (TREE_OPERAND (expr, 0));
377 if (base != NULL_TREE
378 && TREE_CODE (base) == INDIRECT_REF
379 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
381 value_range_t *vr = get_value_range (TREE_OPERAND (base, 0));
382 if (range_is_nonnull (vr))
383 return true;
387 return false;
391 /* Compare two values VAL1 and VAL2. Return
393 -2 if VAL1 and VAL2 cannot be compared at compile-time,
394 -1 if VAL1 < VAL2,
395 0 if VAL1 == VAL2,
396 +1 if VAL1 > VAL2, and
397 +2 if VAL1 != VAL2
399 This is similar to tree_int_cst_compare but supports pointer values
400 and values that cannot be compared at compile time. */
402 static int
403 compare_values (tree val1, tree val2)
405 if (val1 == val2)
406 return 0;
408 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
409 both integers. */
410 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
411 == POINTER_TYPE_P (TREE_TYPE (val2)));
413 /* Do some limited symbolic comparisons. */
414 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
416 /* We can determine some comparisons against +INF and -INF even
417 if the other value is an expression. */
418 if (val1 == TYPE_MAX_VALUE (TREE_TYPE (val1))
419 && TREE_CODE (val2) == MINUS_EXPR)
421 /* +INF > NAME - CST. */
422 return 1;
424 else if (val1 == TYPE_MIN_VALUE (TREE_TYPE (val1))
425 && TREE_CODE (val2) == PLUS_EXPR)
427 /* -INF < NAME + CST. */
428 return -1;
430 else if (TREE_CODE (val1) == MINUS_EXPR
431 && val2 == TYPE_MAX_VALUE (TREE_TYPE (val2)))
433 /* NAME - CST < +INF. */
434 return -1;
436 else if (TREE_CODE (val1) == PLUS_EXPR
437 && val2 == TYPE_MIN_VALUE (TREE_TYPE (val2)))
439 /* NAME + CST > -INF. */
440 return 1;
444 if ((TREE_CODE (val1) == SSA_NAME
445 || TREE_CODE (val1) == PLUS_EXPR
446 || TREE_CODE (val1) == MINUS_EXPR)
447 && (TREE_CODE (val2) == SSA_NAME
448 || TREE_CODE (val2) == PLUS_EXPR
449 || TREE_CODE (val2) == MINUS_EXPR))
451 tree n1, c1, n2, c2;
453 /* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
454 return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
455 same name, return -2. */
456 if (TREE_CODE (val1) == SSA_NAME)
458 n1 = val1;
459 c1 = NULL_TREE;
461 else
463 n1 = TREE_OPERAND (val1, 0);
464 c1 = TREE_OPERAND (val1, 1);
467 if (TREE_CODE (val2) == SSA_NAME)
469 n2 = val2;
470 c2 = NULL_TREE;
472 else
474 n2 = TREE_OPERAND (val2, 0);
475 c2 = TREE_OPERAND (val2, 1);
478 /* Both values must use the same name. */
479 if (n1 != n2)
480 return -2;
482 if (TREE_CODE (val1) == SSA_NAME)
484 if (TREE_CODE (val2) == SSA_NAME)
485 /* NAME == NAME */
486 return 0;
487 else if (TREE_CODE (val2) == PLUS_EXPR)
488 /* NAME < NAME + CST */
489 return -1;
490 else if (TREE_CODE (val2) == MINUS_EXPR)
491 /* NAME > NAME - CST */
492 return 1;
494 else if (TREE_CODE (val1) == PLUS_EXPR)
496 if (TREE_CODE (val2) == SSA_NAME)
497 /* NAME + CST > NAME */
498 return 1;
499 else if (TREE_CODE (val2) == PLUS_EXPR)
500 /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
501 return compare_values (c1, c2);
502 else if (TREE_CODE (val2) == MINUS_EXPR)
503 /* NAME + CST1 > NAME - CST2 */
504 return 1;
506 else if (TREE_CODE (val1) == MINUS_EXPR)
508 if (TREE_CODE (val2) == SSA_NAME)
509 /* NAME - CST < NAME */
510 return -1;
511 else if (TREE_CODE (val2) == PLUS_EXPR)
512 /* NAME - CST1 < NAME + CST2 */
513 return -1;
514 else if (TREE_CODE (val2) == MINUS_EXPR)
515 /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
516 C1 and C2 are swapped in the call to compare_values. */
517 return compare_values (c2, c1);
520 gcc_unreachable ();
523 /* We cannot compare non-constants. */
524 if (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2))
525 return -2;
527 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
529 /* We cannot compare overflowed values. */
530 if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
531 return -2;
533 return tree_int_cst_compare (val1, val2);
535 else
537 tree t;
539 /* First see if VAL1 and VAL2 are not the same. */
540 if (val1 == val2 || operand_equal_p (val1, val2, 0))
541 return 0;
543 /* If VAL1 is a lower address than VAL2, return -1. */
544 t = fold_binary (LT_EXPR, boolean_type_node, val1, val2);
545 if (t == boolean_true_node)
546 return -1;
548 /* If VAL1 is a higher address than VAL2, return +1. */
549 t = fold_binary (GT_EXPR, boolean_type_node, val1, val2);
550 if (t == boolean_true_node)
551 return 1;
553 /* If VAL1 is different than VAL2, return +2. */
554 t = fold_binary (NE_EXPR, boolean_type_node, val1, val2);
555 if (t == boolean_true_node)
556 return 2;
558 return -2;
563 /* Return 1 if VAL is inside value range VR (VR->MIN <= VAL <= VR->MAX),
564 0 if VAL is not inside VR,
565 -2 if we cannot tell either way.
567 FIXME, the current semantics of this functions are a bit quirky
568 when taken in the context of VRP. In here we do not care
569 about VR's type. If VR is the anti-range ~[3, 5] the call
570 value_inside_range (4, VR) will return 1.
572 This is counter-intuitive in a strict sense, but the callers
573 currently expect this. They are calling the function
574 merely to determine whether VR->MIN <= VAL <= VR->MAX. The
575 callers are applying the VR_RANGE/VR_ANTI_RANGE semantics
576 themselves.
578 This also applies to value_ranges_intersect_p and
579 range_includes_zero_p. The semantics of VR_RANGE and
580 VR_ANTI_RANGE should be encoded here, but that also means
581 adapting the users of these functions to the new semantics. */
583 static inline int
584 value_inside_range (tree val, value_range_t *vr)
586 int cmp1, cmp2;
588 cmp1 = compare_values (val, vr->min);
589 if (cmp1 == -2 || cmp1 == 2)
590 return -2;
592 cmp2 = compare_values (val, vr->max);
593 if (cmp2 == -2 || cmp2 == 2)
594 return -2;
596 return (cmp1 == 0 || cmp1 == 1) && (cmp2 == -1 || cmp2 == 0);
600 /* Return true if value ranges VR0 and VR1 have a non-empty
601 intersection. */
603 static inline bool
604 value_ranges_intersect_p (value_range_t *vr0, value_range_t *vr1)
606 return (value_inside_range (vr1->min, vr0) == 1
607 || value_inside_range (vr1->max, vr0) == 1
608 || value_inside_range (vr0->min, vr1) == 1
609 || value_inside_range (vr0->max, vr1) == 1);
613 /* Return true if VR includes the value zero, false otherwise. FIXME,
614 currently this will return false for an anti-range like ~[-4, 3].
615 This will be wrong when the semantics of value_inside_range are
616 modified (currently the users of this function expect these
617 semantics). */
619 static inline bool
620 range_includes_zero_p (value_range_t *vr)
622 tree zero;
624 gcc_assert (vr->type != VR_UNDEFINED
625 && vr->type != VR_VARYING
626 && !symbolic_range_p (vr));
628 zero = build_int_cst (TREE_TYPE (vr->min), 0);
629 return (value_inside_range (zero, vr) == 1);
633 /* When extracting ranges from X_i = ASSERT_EXPR <Y_j, pred>, we will
634 initially consider X_i and Y_j equivalent, so the equivalence set
635 of Y_j is added to the equivalence set of X_i. However, it is
636 possible to have a chain of ASSERT_EXPRs whose predicates are
637 actually incompatible. This is usually the result of nesting of
638 contradictory if-then-else statements. For instance, in PR 24670:
640 count_4 has range [-INF, 63]
642 if (count_4 != 0)
644 count_19 = ASSERT_EXPR <count_4, count_4 != 0>
645 if (count_19 > 63)
647 count_18 = ASSERT_EXPR <count_19, count_19 > 63>
648 if (count_18 <= 63)
653 Notice that 'if (count_19 > 63)' is trivially false and will be
654 folded out at the end. However, during propagation, the flowgraph
655 is not cleaned up and so, VRP will evaluate predicates more
656 predicates than necessary, so it must support these
657 inconsistencies. The problem here is that because of the chaining
658 of ASSERT_EXPRs, the equivalency set for count_18 includes count_4.
659 Since count_4 has an incompatible range, we ICE when evaluating the
660 ranges in the equivalency set. So, we need to remove count_4 from
661 it. */
663 static void
664 fix_equivalence_set (value_range_t *vr_p)
666 bitmap_iterator bi;
667 unsigned i;
668 bitmap e = vr_p->equiv;
669 bitmap to_remove = BITMAP_ALLOC (NULL);
671 /* Only detect inconsistencies on numeric ranges. */
672 if (vr_p->type == VR_VARYING
673 || vr_p->type == VR_UNDEFINED
674 || symbolic_range_p (vr_p))
675 return;
677 EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
679 value_range_t *equiv_vr = vr_value[i];
681 if (equiv_vr->type == VR_VARYING
682 || equiv_vr->type == VR_UNDEFINED
683 || symbolic_range_p (equiv_vr))
684 continue;
686 if (equiv_vr->type == VR_RANGE
687 && vr_p->type == VR_RANGE
688 && !value_ranges_intersect_p (vr_p, equiv_vr))
689 bitmap_set_bit (to_remove, i);
690 else if ((equiv_vr->type == VR_RANGE && vr_p->type == VR_ANTI_RANGE)
691 || (equiv_vr->type == VR_ANTI_RANGE && vr_p->type == VR_RANGE))
693 /* A range and an anti-range have an empty intersection if
694 their end points are the same. FIXME,
695 value_ranges_intersect_p should handle this
696 automatically. */
697 if (compare_values (equiv_vr->min, vr_p->min) == 0
698 && compare_values (equiv_vr->max, vr_p->max) == 0)
699 bitmap_set_bit (to_remove, i);
703 bitmap_and_compl_into (vr_p->equiv, to_remove);
704 BITMAP_FREE (to_remove);
708 /* Extract value range information from an ASSERT_EXPR EXPR and store
709 it in *VR_P. */
711 static void
712 extract_range_from_assert (value_range_t *vr_p, tree expr)
714 tree var, cond, limit, min, max, type;
715 value_range_t *var_vr, *limit_vr;
716 enum tree_code cond_code;
718 var = ASSERT_EXPR_VAR (expr);
719 cond = ASSERT_EXPR_COND (expr);
721 gcc_assert (COMPARISON_CLASS_P (cond));
723 /* Find VAR in the ASSERT_EXPR conditional. */
724 if (var == TREE_OPERAND (cond, 0))
726 /* If the predicate is of the form VAR COMP LIMIT, then we just
727 take LIMIT from the RHS and use the same comparison code. */
728 limit = TREE_OPERAND (cond, 1);
729 cond_code = TREE_CODE (cond);
731 else
733 /* If the predicate is of the form LIMIT COMP VAR, then we need
734 to flip around the comparison code to create the proper range
735 for VAR. */
736 limit = TREE_OPERAND (cond, 0);
737 cond_code = swap_tree_comparison (TREE_CODE (cond));
740 type = TREE_TYPE (limit);
741 gcc_assert (limit != var);
743 /* For pointer arithmetic, we only keep track of pointer equality
744 and inequality. */
745 if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
747 set_value_range_to_varying (vr_p);
748 return;
751 /* If LIMIT is another SSA name and LIMIT has a range of its own,
752 try to use LIMIT's range to avoid creating symbolic ranges
753 unnecessarily. */
754 limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
756 /* LIMIT's range is only interesting if it has any useful information. */
757 if (limit_vr
758 && (limit_vr->type == VR_UNDEFINED
759 || limit_vr->type == VR_VARYING
760 || symbolic_range_p (limit_vr)))
761 limit_vr = NULL;
763 /* Special handling for integral types with super-types. Some FEs
764 construct integral types derived from other types and restrict
765 the range of values these new types may take.
767 It may happen that LIMIT is actually smaller than TYPE's minimum
768 value. For instance, the Ada FE is generating code like this
769 during bootstrap:
771 D.1480_32 = nam_30 - 300000361;
772 if (D.1480_32 <= 1) goto <L112>; else goto <L52>;
773 <L112>:;
774 D.1480_94 = ASSERT_EXPR <D.1480_32, D.1480_32 <= 1>;
776 All the names are of type types__name_id___XDLU_300000000__399999999
777 which has min == 300000000 and max == 399999999. This means that
778 the ASSERT_EXPR would try to create the range [3000000, 1] which
779 is invalid.
781 The fact that the type specifies MIN and MAX values does not
782 automatically mean that every variable of that type will always
783 be within that range, so the predicate may well be true at run
784 time. If we had symbolic -INF and +INF values, we could
785 represent this range, but we currently represent -INF and +INF
786 using the type's min and max values.
788 So, the only sensible thing we can do for now is set the
789 resulting range to VR_VARYING. TODO, would having symbolic -INF
790 and +INF values be worth the trouble? */
791 if (TREE_CODE (limit) != SSA_NAME
792 && INTEGRAL_TYPE_P (type)
793 && TREE_TYPE (type))
795 if (cond_code == LE_EXPR || cond_code == LT_EXPR)
797 tree type_min = TYPE_MIN_VALUE (type);
798 int cmp = compare_values (limit, type_min);
800 /* For < or <= comparisons, if LIMIT is smaller than
801 TYPE_MIN, set the range to VR_VARYING. */
802 if (cmp == -1 || cmp == 0)
804 set_value_range_to_varying (vr_p);
805 return;
808 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
810 tree type_max = TYPE_MIN_VALUE (type);
811 int cmp = compare_values (limit, type_max);
813 /* For > or >= comparisons, if LIMIT is bigger than
814 TYPE_MAX, set the range to VR_VARYING. */
815 if (cmp == 1 || cmp == 0)
817 set_value_range_to_varying (vr_p);
818 return;
823 /* Initially, the new range has the same set of equivalences of
824 VAR's range. This will be revised before returning the final
825 value. Since assertions may be chained via mutually exclusive
826 predicates, we will need to trim the set of equivalences before
827 we are done. */
828 gcc_assert (vr_p->equiv == NULL);
829 vr_p->equiv = BITMAP_ALLOC (NULL);
830 add_equivalence (vr_p->equiv, var);
832 /* Extract a new range based on the asserted comparison for VAR and
833 LIMIT's value range. Notice that if LIMIT has an anti-range, we
834 will only use it for equality comparisons (EQ_EXPR). For any
835 other kind of assertion, we cannot derive a range from LIMIT's
836 anti-range that can be used to describe the new range. For
837 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
838 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
839 no single range for x_2 that could describe LE_EXPR, so we might
840 as well build the range [b_4, +INF] for it. */
841 if (cond_code == EQ_EXPR)
843 enum value_range_type range_type;
845 if (limit_vr)
847 range_type = limit_vr->type;
848 min = limit_vr->min;
849 max = limit_vr->max;
851 else
853 range_type = VR_RANGE;
854 min = limit;
855 max = limit;
858 set_value_range (vr_p, range_type, min, max, vr_p->equiv);
860 /* When asserting the equality VAR == LIMIT and LIMIT is another
861 SSA name, the new range will also inherit the equivalence set
862 from LIMIT. */
863 if (TREE_CODE (limit) == SSA_NAME)
864 add_equivalence (vr_p->equiv, limit);
866 else if (cond_code == NE_EXPR)
868 /* As described above, when LIMIT's range is an anti-range and
869 this assertion is an inequality (NE_EXPR), then we cannot
870 derive anything from the anti-range. For instance, if
871 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
872 not imply that VAR's range is [0, 0]. So, in the case of
873 anti-ranges, we just assert the inequality using LIMIT and
874 not its anti-range.
876 If LIMIT_VR is a range, we can only use it to build a new
877 anti-range if LIMIT_VR is a single-valued range. For
878 instance, if LIMIT_VR is [0, 1], the predicate
879 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
880 Rather, it means that for value 0 VAR should be ~[0, 0]
881 and for value 1, VAR should be ~[1, 1]. We cannot
882 represent these ranges.
884 The only situation in which we can build a valid
885 anti-range is when LIMIT_VR is a single-valued range
886 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
887 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
888 if (limit_vr
889 && limit_vr->type == VR_RANGE
890 && compare_values (limit_vr->min, limit_vr->max) == 0)
892 min = limit_vr->min;
893 max = limit_vr->max;
895 else
897 /* In any other case, we cannot use LIMIT's range to build a
898 valid anti-range. */
899 min = max = limit;
902 /* If MIN and MAX cover the whole range for their type, then
903 just use the original LIMIT. */
904 if (INTEGRAL_TYPE_P (type)
905 && min == TYPE_MIN_VALUE (type)
906 && max == TYPE_MAX_VALUE (type))
907 min = max = limit;
909 set_value_range (vr_p, VR_ANTI_RANGE, min, max, vr_p->equiv);
911 else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
913 min = TYPE_MIN_VALUE (type);
915 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
916 max = limit;
917 else
919 /* If LIMIT_VR is of the form [N1, N2], we need to build the
920 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
921 LT_EXPR. */
922 max = limit_vr->max;
925 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
926 if (cond_code == LT_EXPR)
928 tree one = build_int_cst (type, 1);
929 max = fold_build2 (MINUS_EXPR, type, max, one);
932 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
934 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
936 max = TYPE_MAX_VALUE (type);
938 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
939 min = limit;
940 else
942 /* If LIMIT_VR is of the form [N1, N2], we need to build the
943 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
944 GT_EXPR. */
945 min = limit_vr->min;
948 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
949 if (cond_code == GT_EXPR)
951 tree one = build_int_cst (type, 1);
952 min = fold_build2 (PLUS_EXPR, type, min, one);
955 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
957 else
958 gcc_unreachable ();
960 /* If VAR already had a known range, it may happen that the new
961 range we have computed and VAR's range are not compatible. For
962 instance,
964 if (p_5 == NULL)
965 p_6 = ASSERT_EXPR <p_5, p_5 == NULL>;
966 x_7 = p_6->fld;
967 p_8 = ASSERT_EXPR <p_6, p_6 != NULL>;
969 While the above comes from a faulty program, it will cause an ICE
970 later because p_8 and p_6 will have incompatible ranges and at
971 the same time will be considered equivalent. A similar situation
972 would arise from
974 if (i_5 > 10)
975 i_6 = ASSERT_EXPR <i_5, i_5 > 10>;
976 if (i_5 < 5)
977 i_7 = ASSERT_EXPR <i_6, i_6 < 5>;
979 Again i_6 and i_7 will have incompatible ranges. It would be
980 pointless to try and do anything with i_7's range because
981 anything dominated by 'if (i_5 < 5)' will be optimized away.
982 Note, due to the wa in which simulation proceeds, the statement
983 i_7 = ASSERT_EXPR <...> we would never be visited because the
984 conditional 'if (i_5 < 5)' always evaluates to false. However,
985 this extra check does not hurt and may protect against future
986 changes to VRP that may get into a situation similar to the
987 NULL pointer dereference example.
989 Note that these compatibility tests are only needed when dealing
990 with ranges or a mix of range and anti-range. If VAR_VR and VR_P
991 are both anti-ranges, they will always be compatible, because two
992 anti-ranges will always have a non-empty intersection. */
994 var_vr = get_value_range (var);
996 /* We may need to make adjustments when VR_P and VAR_VR are numeric
997 ranges or anti-ranges. */
998 if (vr_p->type == VR_VARYING
999 || vr_p->type == VR_UNDEFINED
1000 || var_vr->type == VR_VARYING
1001 || var_vr->type == VR_UNDEFINED
1002 || symbolic_range_p (vr_p)
1003 || symbolic_range_p (var_vr))
1004 goto done;
1006 if (var_vr->type == VR_RANGE && vr_p->type == VR_RANGE)
1008 /* If the two ranges have a non-empty intersection, we can
1009 refine the resulting range. Since the assert expression
1010 creates an equivalency and at the same time it asserts a
1011 predicate, we can take the intersection of the two ranges to
1012 get better precision. */
1013 if (value_ranges_intersect_p (var_vr, vr_p))
1015 /* Use the larger of the two minimums. */
1016 if (compare_values (vr_p->min, var_vr->min) == -1)
1017 min = var_vr->min;
1018 else
1019 min = vr_p->min;
1021 /* Use the smaller of the two maximums. */
1022 if (compare_values (vr_p->max, var_vr->max) == 1)
1023 max = var_vr->max;
1024 else
1025 max = vr_p->max;
1027 set_value_range (vr_p, vr_p->type, min, max, vr_p->equiv);
1029 else
1031 /* The two ranges do not intersect, set the new range to
1032 VARYING, because we will not be able to do anything
1033 meaningful with it. */
1034 set_value_range_to_varying (vr_p);
1037 else if ((var_vr->type == VR_RANGE && vr_p->type == VR_ANTI_RANGE)
1038 || (var_vr->type == VR_ANTI_RANGE && vr_p->type == VR_RANGE))
1040 /* A range and an anti-range will cancel each other only if
1041 their ends are the same. For instance, in the example above,
1042 p_8's range ~[0, 0] and p_6's range [0, 0] are incompatible,
1043 so VR_P should be set to VR_VARYING. */
1044 if (compare_values (var_vr->min, vr_p->min) == 0
1045 && compare_values (var_vr->max, vr_p->max) == 0)
1046 set_value_range_to_varying (vr_p);
1047 else
1049 tree min, max, anti_min, anti_max, real_min, real_max;
1051 /* We want to compute the logical AND of the two ranges;
1052 there are three cases to consider.
1055 1. The VR_ANTI_RANGE range is competely within the
1056 VR_RANGE and the endpoints of the ranges are
1057 different. In that case the resulting range
1058 should be whichever range is more precise.
1059 Typically that will be the VR_RANGE.
1061 2. The VR_ANTI_RANGE is completely disjoint from
1062 the VR_RANGE. In this case the resulting range
1063 should be the VR_RANGE.
1065 3. There is some overlap between the VR_ANTI_RANGE
1066 and the VR_RANGE.
1068 3a. If the high limit of the VR_ANTI_RANGE resides
1069 within the VR_RANGE, then the result is a new
1070 VR_RANGE starting at the high limit of the
1071 the VR_ANTI_RANGE + 1 and extending to the
1072 high limit of the original VR_RANGE.
1074 3b. If the low limit of the VR_ANTI_RANGE resides
1075 within the VR_RANGE, then the result is a new
1076 VR_RANGE starting at the low limit of the original
1077 VR_RANGE and extending to the low limit of the
1078 VR_ANTI_RANGE - 1. */
1079 if (vr_p->type == VR_ANTI_RANGE)
1081 anti_min = vr_p->min;
1082 anti_max = vr_p->max;
1083 real_min = var_vr->min;
1084 real_max = var_vr->max;
1086 else
1088 anti_min = var_vr->min;
1089 anti_max = var_vr->max;
1090 real_min = vr_p->min;
1091 real_max = vr_p->max;
1095 /* Case 1, VR_ANTI_RANGE completely within VR_RANGE,
1096 not including any endpoints. */
1097 if (compare_values (anti_max, real_max) == -1
1098 && compare_values (anti_min, real_min) == 1)
1100 set_value_range (vr_p, VR_RANGE, real_min,
1101 real_max, vr_p->equiv);
1103 /* Case 2, VR_ANTI_RANGE completely disjoint from
1104 VR_RANGE. */
1105 else if (compare_values (anti_min, real_max) == 1
1106 || compare_values (anti_max, real_min) == -1)
1108 set_value_range (vr_p, VR_RANGE, real_min,
1109 real_max, vr_p->equiv);
1111 /* Case 3a, the anti-range extends into the low
1112 part of the real range. Thus creating a new
1113 low for the real reange. */
1114 else if ((compare_values (anti_max, real_min) == 1
1115 || compare_values (anti_max, real_min) == 0)
1116 && compare_values (anti_max, real_max) == -1)
1118 min = fold_build2 (PLUS_EXPR, TREE_TYPE (var_vr->min),
1119 anti_max,
1120 build_int_cst (TREE_TYPE (var_vr->min), 1));
1121 max = real_max;
1122 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1124 /* Case 3b, the anti-range extends into the high
1125 part of the real range. Thus creating a new
1126 higher for the real reange. */
1127 else if (compare_values (anti_min, real_min) == 1
1128 && (compare_values (anti_min, real_max) == -1
1129 || compare_values (anti_min, real_max) == 0))
1131 max = fold_build2 (MINUS_EXPR, TREE_TYPE (var_vr->min),
1132 anti_min,
1133 build_int_cst (TREE_TYPE (var_vr->min), 1));
1134 min = real_min;
1135 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1140 /* Remove names from the equivalence set that have ranges
1141 incompatible with VR_P. */
1142 done:
1143 fix_equivalence_set (vr_p);
1147 /* Extract range information from SSA name VAR and store it in VR. If
1148 VAR has an interesting range, use it. Otherwise, create the
1149 range [VAR, VAR] and return it. This is useful in situations where
1150 we may have conditionals testing values of VARYING names. For
1151 instance,
1153 x_3 = y_5;
1154 if (x_3 > y_5)
1157 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1158 always false. */
1160 static void
1161 extract_range_from_ssa_name (value_range_t *vr, tree var)
1163 value_range_t *var_vr = get_value_range (var);
1165 if (var_vr->type != VR_UNDEFINED && var_vr->type != VR_VARYING)
1166 copy_value_range (vr, var_vr);
1167 else
1168 set_value_range (vr, VR_RANGE, var, var, NULL);
1170 add_equivalence (vr->equiv, var);
1174 /* Wrapper around int_const_binop. If the operation overflows and we
1175 are not using wrapping arithmetic, then adjust the result to be
1176 -INF or +INF depending on CODE, VAL1 and VAL2. */
1178 static inline tree
1179 vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
1181 tree res;
1183 if (flag_wrapv)
1184 return int_const_binop (code, val1, val2, 0);
1186 /* If we are not using wrapping arithmetic, operate symbolically
1187 on -INF and +INF. */
1188 res = int_const_binop (code, val1, val2, 0);
1190 if (TYPE_UNSIGNED (TREE_TYPE (val1)))
1192 int checkz = compare_values (res, val1);
1194 /* Ensure that res = val1 [+*] val2 >= val1
1195 or that res = val1 - val2 <= val1. */
1196 if (((code == PLUS_EXPR || code == MULT_EXPR)
1197 && !(checkz == 1 || checkz == 0))
1198 || (code == MINUS_EXPR
1199 && !(checkz == 0 || checkz == -1)))
1201 res = copy_node (res);
1202 TREE_OVERFLOW (res) = 1;
1205 else if (TREE_OVERFLOW (res)
1206 && !TREE_OVERFLOW (val1)
1207 && !TREE_OVERFLOW (val2))
1209 /* If the operation overflowed but neither VAL1 nor VAL2 are
1210 overflown, return -INF or +INF depending on the operation
1211 and the combination of signs of the operands. */
1212 int sgn1 = tree_int_cst_sgn (val1);
1213 int sgn2 = tree_int_cst_sgn (val2);
1215 /* Notice that we only need to handle the restricted set of
1216 operations handled by extract_range_from_binary_expr.
1217 Among them, only multiplication, addition and subtraction
1218 can yield overflow without overflown operands because we
1219 are working with integral types only... except in the
1220 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
1221 for division too. */
1223 /* For multiplication, the sign of the overflow is given
1224 by the comparison of the signs of the operands. */
1225 if ((code == MULT_EXPR && sgn1 == sgn2)
1226 /* For addition, the operands must be of the same sign
1227 to yield an overflow. Its sign is therefore that
1228 of one of the operands, for example the first. */
1229 || (code == PLUS_EXPR && sgn1 > 0)
1230 /* For subtraction, the operands must be of different
1231 signs to yield an overflow. Its sign is therefore
1232 that of the first operand or the opposite of that
1233 of the second operand. A first operand of 0 counts
1234 as positive here, for the corner case 0 - (-INF),
1235 which overflows, but must yield +INF. */
1236 || (code == MINUS_EXPR && sgn1 >= 0)
1237 /* For division, the only case is -INF / -1 = +INF. */
1238 || code == TRUNC_DIV_EXPR
1239 || code == FLOOR_DIV_EXPR
1240 || code == CEIL_DIV_EXPR
1241 || code == EXACT_DIV_EXPR
1242 || code == ROUND_DIV_EXPR)
1243 return TYPE_MAX_VALUE (TREE_TYPE (res));
1244 else
1245 return TYPE_MIN_VALUE (TREE_TYPE (res));
1248 return res;
1252 /* Extract range information from a binary expression EXPR based on
1253 the ranges of each of its operands and the expression code. */
1255 static void
1256 extract_range_from_binary_expr (value_range_t *vr, tree expr)
1258 enum tree_code code = TREE_CODE (expr);
1259 enum value_range_type type;
1260 tree op0, op1, min, max;
1261 int cmp;
1262 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1263 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1265 /* Not all binary expressions can be applied to ranges in a
1266 meaningful way. Handle only arithmetic operations. */
1267 if (code != PLUS_EXPR
1268 && code != MINUS_EXPR
1269 && code != MULT_EXPR
1270 && code != TRUNC_DIV_EXPR
1271 && code != FLOOR_DIV_EXPR
1272 && code != CEIL_DIV_EXPR
1273 && code != EXACT_DIV_EXPR
1274 && code != ROUND_DIV_EXPR
1275 && code != MIN_EXPR
1276 && code != MAX_EXPR
1277 && code != BIT_AND_EXPR
1278 && code != TRUTH_ANDIF_EXPR
1279 && code != TRUTH_ORIF_EXPR
1280 && code != TRUTH_AND_EXPR
1281 && code != TRUTH_OR_EXPR
1282 && code != TRUTH_XOR_EXPR)
1284 set_value_range_to_varying (vr);
1285 return;
1288 /* Get value ranges for each operand. For constant operands, create
1289 a new value range with the operand to simplify processing. */
1290 op0 = TREE_OPERAND (expr, 0);
1291 if (TREE_CODE (op0) == SSA_NAME)
1292 vr0 = *(get_value_range (op0));
1293 else if (is_gimple_min_invariant (op0))
1294 set_value_range (&vr0, VR_RANGE, op0, op0, NULL);
1295 else
1296 set_value_range_to_varying (&vr0);
1298 op1 = TREE_OPERAND (expr, 1);
1299 if (TREE_CODE (op1) == SSA_NAME)
1300 vr1 = *(get_value_range (op1));
1301 else if (is_gimple_min_invariant (op1))
1302 set_value_range (&vr1, VR_RANGE, op1, op1, NULL);
1303 else
1304 set_value_range_to_varying (&vr1);
1306 /* If either range is UNDEFINED, so is the result. */
1307 if (vr0.type == VR_UNDEFINED || vr1.type == VR_UNDEFINED)
1309 set_value_range_to_undefined (vr);
1310 return;
1313 /* The type of the resulting value range defaults to VR0.TYPE. */
1314 type = vr0.type;
1316 /* Refuse to operate on VARYING ranges, ranges of different kinds
1317 and symbolic ranges. As an exception, we allow BIT_AND_EXPR
1318 because we may be able to derive a useful range even if one of
1319 the operands is VR_VARYING or symbolic range. TODO, we may be
1320 able to derive anti-ranges in some cases. */
1321 if (code != BIT_AND_EXPR
1322 && code != TRUTH_AND_EXPR
1323 && code != TRUTH_OR_EXPR
1324 && (vr0.type == VR_VARYING
1325 || vr1.type == VR_VARYING
1326 || vr0.type != vr1.type
1327 || symbolic_range_p (&vr0)
1328 || symbolic_range_p (&vr1)))
1330 set_value_range_to_varying (vr);
1331 return;
1334 /* Now evaluate the expression to determine the new range. */
1335 if (POINTER_TYPE_P (TREE_TYPE (expr))
1336 || POINTER_TYPE_P (TREE_TYPE (op0))
1337 || POINTER_TYPE_P (TREE_TYPE (op1)))
1339 /* For pointer types, we are really only interested in asserting
1340 whether the expression evaluates to non-NULL. FIXME, we used
1341 to gcc_assert (code == PLUS_EXPR || code == MINUS_EXPR), but
1342 ivopts is generating expressions with pointer multiplication
1343 in them. */
1344 if (code == PLUS_EXPR)
1346 if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
1347 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
1348 else if (range_is_null (&vr0) && range_is_null (&vr1))
1349 set_value_range_to_null (vr, TREE_TYPE (expr));
1350 else
1351 set_value_range_to_varying (vr);
1353 else
1355 /* Subtracting from a pointer, may yield 0, so just drop the
1356 resulting range to varying. */
1357 set_value_range_to_varying (vr);
1360 return;
1363 /* For integer ranges, apply the operation to each end of the
1364 range and see what we end up with. */
1365 if (code == TRUTH_ANDIF_EXPR
1366 || code == TRUTH_ORIF_EXPR
1367 || code == TRUTH_AND_EXPR
1368 || code == TRUTH_OR_EXPR
1369 || code == TRUTH_XOR_EXPR)
1371 /* If one of the operands is zero, we know that the whole
1372 expression evaluates zero. */
1373 if (code == TRUTH_AND_EXPR
1374 && ((vr0.type == VR_RANGE
1375 && integer_zerop (vr0.min)
1376 && integer_zerop (vr0.max))
1377 || (vr1.type == VR_RANGE
1378 && integer_zerop (vr1.min)
1379 && integer_zerop (vr1.max))))
1381 type = VR_RANGE;
1382 min = max = build_int_cst (TREE_TYPE (expr), 0);
1384 /* If one of the operands is one, we know that the whole
1385 expression evaluates one. */
1386 else if (code == TRUTH_OR_EXPR
1387 && ((vr0.type == VR_RANGE
1388 && integer_onep (vr0.min)
1389 && integer_onep (vr0.max))
1390 || (vr1.type == VR_RANGE
1391 && integer_onep (vr1.min)
1392 && integer_onep (vr1.max))))
1394 type = VR_RANGE;
1395 min = max = build_int_cst (TREE_TYPE (expr), 1);
1397 else if (vr0.type != VR_VARYING
1398 && vr1.type != VR_VARYING
1399 && vr0.type == vr1.type
1400 && !symbolic_range_p (&vr0)
1401 && !symbolic_range_p (&vr1))
1403 /* Boolean expressions cannot be folded with int_const_binop. */
1404 min = fold_binary (code, TREE_TYPE (expr), vr0.min, vr1.min);
1405 max = fold_binary (code, TREE_TYPE (expr), vr0.max, vr1.max);
1407 else
1409 set_value_range_to_varying (vr);
1410 return;
1413 else if (code == PLUS_EXPR
1414 || code == MIN_EXPR
1415 || code == MAX_EXPR)
1417 /* If we have a PLUS_EXPR with two VR_ANTI_RANGEs, drop to
1418 VR_VARYING. It would take more effort to compute a precise
1419 range for such a case. For example, if we have op0 == 1 and
1420 op1 == -1 with their ranges both being ~[0,0], we would have
1421 op0 + op1 == 0, so we cannot claim that the sum is in ~[0,0].
1422 Note that we are guaranteed to have vr0.type == vr1.type at
1423 this point. */
1424 if (code == PLUS_EXPR && vr0.type == VR_ANTI_RANGE)
1426 set_value_range_to_varying (vr);
1427 return;
1430 /* For operations that make the resulting range directly
1431 proportional to the original ranges, apply the operation to
1432 the same end of each range. */
1433 min = vrp_int_const_binop (code, vr0.min, vr1.min);
1434 max = vrp_int_const_binop (code, vr0.max, vr1.max);
1436 else if (code == MULT_EXPR
1437 || code == TRUNC_DIV_EXPR
1438 || code == FLOOR_DIV_EXPR
1439 || code == CEIL_DIV_EXPR
1440 || code == EXACT_DIV_EXPR
1441 || code == ROUND_DIV_EXPR)
1443 tree val[4];
1444 size_t i;
1446 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
1447 drop to VR_VARYING. It would take more effort to compute a
1448 precise range for such a case. For example, if we have
1449 op0 == 65536 and op1 == 65536 with their ranges both being
1450 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
1451 we cannot claim that the product is in ~[0,0]. Note that we
1452 are guaranteed to have vr0.type == vr1.type at this
1453 point. */
1454 if (code == MULT_EXPR
1455 && vr0.type == VR_ANTI_RANGE
1456 && (flag_wrapv || TYPE_UNSIGNED (TREE_TYPE (op0))))
1458 set_value_range_to_varying (vr);
1459 return;
1462 /* Multiplications and divisions are a bit tricky to handle,
1463 depending on the mix of signs we have in the two ranges, we
1464 need to operate on different values to get the minimum and
1465 maximum values for the new range. One approach is to figure
1466 out all the variations of range combinations and do the
1467 operations.
1469 However, this involves several calls to compare_values and it
1470 is pretty convoluted. It's simpler to do the 4 operations
1471 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
1472 MAX1) and then figure the smallest and largest values to form
1473 the new range. */
1475 /* Divisions by zero result in a VARYING value. */
1476 if (code != MULT_EXPR
1477 && (vr0.type == VR_ANTI_RANGE || range_includes_zero_p (&vr1)))
1479 set_value_range_to_varying (vr);
1480 return;
1483 /* Compute the 4 cross operations. */
1484 val[0] = vrp_int_const_binop (code, vr0.min, vr1.min);
1486 val[1] = (vr1.max != vr1.min)
1487 ? vrp_int_const_binop (code, vr0.min, vr1.max)
1488 : NULL_TREE;
1490 val[2] = (vr0.max != vr0.min)
1491 ? vrp_int_const_binop (code, vr0.max, vr1.min)
1492 : NULL_TREE;
1494 val[3] = (vr0.min != vr0.max && vr1.min != vr1.max)
1495 ? vrp_int_const_binop (code, vr0.max, vr1.max)
1496 : NULL_TREE;
1498 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
1499 of VAL[i]. */
1500 min = val[0];
1501 max = val[0];
1502 for (i = 1; i < 4; i++)
1504 if (!is_gimple_min_invariant (min) || TREE_OVERFLOW (min)
1505 || !is_gimple_min_invariant (max) || TREE_OVERFLOW (max))
1506 break;
1508 if (val[i])
1510 if (!is_gimple_min_invariant (val[i]) || TREE_OVERFLOW (val[i]))
1512 /* If we found an overflowed value, set MIN and MAX
1513 to it so that we set the resulting range to
1514 VARYING. */
1515 min = max = val[i];
1516 break;
1519 if (compare_values (val[i], min) == -1)
1520 min = val[i];
1522 if (compare_values (val[i], max) == 1)
1523 max = val[i];
1527 else if (code == MINUS_EXPR)
1529 /* If we have a MINUS_EXPR with two VR_ANTI_RANGEs, drop to
1530 VR_VARYING. It would take more effort to compute a precise
1531 range for such a case. For example, if we have op0 == 1 and
1532 op1 == 1 with their ranges both being ~[0,0], we would have
1533 op0 - op1 == 0, so we cannot claim that the difference is in
1534 ~[0,0]. Note that we are guaranteed to have
1535 vr0.type == vr1.type at this point. */
1536 if (vr0.type == VR_ANTI_RANGE)
1538 set_value_range_to_varying (vr);
1539 return;
1542 /* For MINUS_EXPR, apply the operation to the opposite ends of
1543 each range. */
1544 min = vrp_int_const_binop (code, vr0.min, vr1.max);
1545 max = vrp_int_const_binop (code, vr0.max, vr1.min);
1547 else if (code == BIT_AND_EXPR)
1549 if (vr0.type == VR_RANGE
1550 && vr0.min == vr0.max
1551 && tree_expr_nonnegative_p (vr0.max)
1552 && TREE_CODE (vr0.max) == INTEGER_CST)
1554 min = build_int_cst (TREE_TYPE (expr), 0);
1555 max = vr0.max;
1557 else if (vr1.type == VR_RANGE
1558 && vr1.min == vr1.max
1559 && tree_expr_nonnegative_p (vr1.max)
1560 && TREE_CODE (vr1.max) == INTEGER_CST)
1562 type = VR_RANGE;
1563 min = build_int_cst (TREE_TYPE (expr), 0);
1564 max = vr1.max;
1566 else
1568 set_value_range_to_varying (vr);
1569 return;
1572 else
1573 gcc_unreachable ();
1575 /* If either MIN or MAX overflowed, then set the resulting range to
1576 VARYING. */
1577 if (!is_gimple_min_invariant (min) || TREE_OVERFLOW (min)
1578 || !is_gimple_min_invariant (max) || TREE_OVERFLOW (max))
1580 set_value_range_to_varying (vr);
1581 return;
1584 cmp = compare_values (min, max);
1585 if (cmp == -2 || cmp == 1)
1587 /* If the new range has its limits swapped around (MIN > MAX),
1588 then the operation caused one of them to wrap around, mark
1589 the new range VARYING. */
1590 set_value_range_to_varying (vr);
1592 else
1593 set_value_range (vr, type, min, max, NULL);
1597 /* Extract range information from a unary expression EXPR based on
1598 the range of its operand and the expression code. */
1600 static void
1601 extract_range_from_unary_expr (value_range_t *vr, tree expr)
1603 enum tree_code code = TREE_CODE (expr);
1604 tree min, max, op0;
1605 int cmp;
1606 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1608 /* Refuse to operate on certain unary expressions for which we
1609 cannot easily determine a resulting range. */
1610 if (code == FIX_TRUNC_EXPR
1611 || code == FIX_CEIL_EXPR
1612 || code == FIX_FLOOR_EXPR
1613 || code == FIX_ROUND_EXPR
1614 || code == FLOAT_EXPR
1615 || code == BIT_NOT_EXPR
1616 || code == NON_LVALUE_EXPR
1617 || code == CONJ_EXPR)
1619 set_value_range_to_varying (vr);
1620 return;
1623 /* Get value ranges for the operand. For constant operands, create
1624 a new value range with the operand to simplify processing. */
1625 op0 = TREE_OPERAND (expr, 0);
1626 if (TREE_CODE (op0) == SSA_NAME)
1627 vr0 = *(get_value_range (op0));
1628 else if (is_gimple_min_invariant (op0))
1629 set_value_range (&vr0, VR_RANGE, op0, op0, NULL);
1630 else
1631 set_value_range_to_varying (&vr0);
1633 /* If VR0 is UNDEFINED, so is the result. */
1634 if (vr0.type == VR_UNDEFINED)
1636 set_value_range_to_undefined (vr);
1637 return;
1640 /* Refuse to operate on varying and symbolic ranges. Also, if the
1641 operand is neither a pointer nor an integral type, set the
1642 resulting range to VARYING. TODO, in some cases we may be able
1643 to derive anti-ranges (like nonzero values). */
1644 if (vr0.type == VR_VARYING
1645 || (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
1646 && !POINTER_TYPE_P (TREE_TYPE (op0)))
1647 || symbolic_range_p (&vr0))
1649 set_value_range_to_varying (vr);
1650 return;
1653 /* If the expression involves pointers, we are only interested in
1654 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
1655 if (POINTER_TYPE_P (TREE_TYPE (expr)) || POINTER_TYPE_P (TREE_TYPE (op0)))
1657 if (range_is_nonnull (&vr0) || tree_expr_nonzero_p (expr))
1658 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
1659 else if (range_is_null (&vr0))
1660 set_value_range_to_null (vr, TREE_TYPE (expr));
1661 else
1662 set_value_range_to_varying (vr);
1664 return;
1667 /* Handle unary expressions on integer ranges. */
1668 if (code == NOP_EXPR || code == CONVERT_EXPR)
1670 tree inner_type = TREE_TYPE (op0);
1671 tree outer_type = TREE_TYPE (expr);
1673 /* If VR0 represents a simple range, then try to convert
1674 the min and max values for the range to the same type
1675 as OUTER_TYPE. If the results compare equal to VR0's
1676 min and max values and the new min is still less than
1677 or equal to the new max, then we can safely use the newly
1678 computed range for EXPR. This allows us to compute
1679 accurate ranges through many casts. */
1680 if (vr0.type == VR_RANGE)
1682 tree new_min, new_max;
1684 /* Convert VR0's min/max to OUTER_TYPE. */
1685 new_min = fold_convert (outer_type, vr0.min);
1686 new_max = fold_convert (outer_type, vr0.max);
1688 /* Verify the new min/max values are gimple values and
1689 that they compare equal to VR0's min/max values. */
1690 if (is_gimple_val (new_min)
1691 && is_gimple_val (new_max)
1692 && tree_int_cst_equal (new_min, vr0.min)
1693 && tree_int_cst_equal (new_max, vr0.max)
1694 && compare_values (new_min, new_max) <= 0
1695 && compare_values (new_min, new_max) >= -1)
1697 set_value_range (vr, VR_RANGE, new_min, new_max, vr->equiv);
1698 return;
1702 /* When converting types of different sizes, set the result to
1703 VARYING. Things like sign extensions and precision loss may
1704 change the range. For instance, if x_3 is of type 'long long
1705 int' and 'y_5 = (unsigned short) x_3', if x_3 is ~[0, 0], it
1706 is impossible to know at compile time whether y_5 will be
1707 ~[0, 0]. */
1708 if (TYPE_SIZE (inner_type) != TYPE_SIZE (outer_type)
1709 || TYPE_PRECISION (inner_type) != TYPE_PRECISION (outer_type))
1711 set_value_range_to_varying (vr);
1712 return;
1716 /* Apply the operation to each end of the range and see what we end
1717 up with. */
1718 if (code == NEGATE_EXPR
1719 && !TYPE_UNSIGNED (TREE_TYPE (expr)))
1721 /* NEGATE_EXPR flips the range around. */
1722 min = (vr0.max == TYPE_MAX_VALUE (TREE_TYPE (expr)) && !flag_wrapv)
1723 ? TYPE_MIN_VALUE (TREE_TYPE (expr))
1724 : fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
1726 max = (vr0.min == TYPE_MIN_VALUE (TREE_TYPE (expr)) && !flag_wrapv)
1727 ? TYPE_MAX_VALUE (TREE_TYPE (expr))
1728 : fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
1730 else if (code == ABS_EXPR
1731 && !TYPE_UNSIGNED (TREE_TYPE (expr)))
1733 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
1734 useful range. */
1735 if (flag_wrapv
1736 && ((vr0.type == VR_RANGE
1737 && vr0.min == TYPE_MIN_VALUE (TREE_TYPE (expr)))
1738 || (vr0.type == VR_ANTI_RANGE
1739 && vr0.min != TYPE_MIN_VALUE (TREE_TYPE (expr))
1740 && !range_includes_zero_p (&vr0))))
1742 set_value_range_to_varying (vr);
1743 return;
1746 /* ABS_EXPR may flip the range around, if the original range
1747 included negative values. */
1748 min = (vr0.min == TYPE_MIN_VALUE (TREE_TYPE (expr)))
1749 ? TYPE_MAX_VALUE (TREE_TYPE (expr))
1750 : fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
1752 max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
1754 cmp = compare_values (min, max);
1756 /* If a VR_ANTI_RANGEs contains zero, then we have
1757 ~[-INF, min(MIN, MAX)]. */
1758 if (vr0.type == VR_ANTI_RANGE)
1760 if (range_includes_zero_p (&vr0))
1762 tree type_min_value = TYPE_MIN_VALUE (TREE_TYPE (expr));
1764 /* Take the lower of the two values. */
1765 if (cmp != 1)
1766 max = min;
1768 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
1769 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
1770 flag_wrapv is set and the original anti-range doesn't include
1771 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
1772 min = (flag_wrapv && vr0.min != type_min_value
1773 ? int_const_binop (PLUS_EXPR,
1774 type_min_value,
1775 integer_one_node, 0)
1776 : type_min_value);
1778 else
1780 /* All else has failed, so create the range [0, INF], even for
1781 flag_wrapv since TYPE_MIN_VALUE is in the original
1782 anti-range. */
1783 vr0.type = VR_RANGE;
1784 min = build_int_cst (TREE_TYPE (expr), 0);
1785 max = TYPE_MAX_VALUE (TREE_TYPE (expr));
1789 /* If the range contains zero then we know that the minimum value in the
1790 range will be zero. */
1791 else if (range_includes_zero_p (&vr0))
1793 if (cmp == 1)
1794 max = min;
1795 min = build_int_cst (TREE_TYPE (expr), 0);
1797 else
1799 /* If the range was reversed, swap MIN and MAX. */
1800 if (cmp == 1)
1802 tree t = min;
1803 min = max;
1804 max = t;
1808 else
1810 /* Otherwise, operate on each end of the range. */
1811 min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
1812 max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
1815 cmp = compare_values (min, max);
1816 if (cmp == -2 || cmp == 1)
1818 /* If the new range has its limits swapped around (MIN > MAX),
1819 then the operation caused one of them to wrap around, mark
1820 the new range VARYING. */
1821 set_value_range_to_varying (vr);
1823 else
1824 set_value_range (vr, vr0.type, min, max, NULL);
1828 /* Extract range information from a comparison expression EXPR based
1829 on the range of its operand and the expression code. */
1831 static void
1832 extract_range_from_comparison (value_range_t *vr, tree expr)
1834 tree val = vrp_evaluate_conditional (expr, false);
1835 if (val)
1837 /* Since this expression was found on the RHS of an assignment,
1838 its type may be different from _Bool. Convert VAL to EXPR's
1839 type. */
1840 val = fold_convert (TREE_TYPE (expr), val);
1841 set_value_range (vr, VR_RANGE, val, val, vr->equiv);
1843 else
1844 set_value_range_to_varying (vr);
1848 /* Try to compute a useful range out of expression EXPR and store it
1849 in *VR. */
1851 static void
1852 extract_range_from_expr (value_range_t *vr, tree expr)
1854 enum tree_code code = TREE_CODE (expr);
1856 if (code == ASSERT_EXPR)
1857 extract_range_from_assert (vr, expr);
1858 else if (code == SSA_NAME)
1859 extract_range_from_ssa_name (vr, expr);
1860 else if (TREE_CODE_CLASS (code) == tcc_binary
1861 || code == TRUTH_ANDIF_EXPR
1862 || code == TRUTH_ORIF_EXPR
1863 || code == TRUTH_AND_EXPR
1864 || code == TRUTH_OR_EXPR
1865 || code == TRUTH_XOR_EXPR)
1866 extract_range_from_binary_expr (vr, expr);
1867 else if (TREE_CODE_CLASS (code) == tcc_unary)
1868 extract_range_from_unary_expr (vr, expr);
1869 else if (TREE_CODE_CLASS (code) == tcc_comparison)
1870 extract_range_from_comparison (vr, expr);
1871 else if (is_gimple_min_invariant (expr))
1872 set_value_range (vr, VR_RANGE, expr, expr, NULL);
1873 else if (vrp_expr_computes_nonzero (expr))
1874 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
1875 else
1876 set_value_range_to_varying (vr);
1879 /* Given a range VR, a LOOP and a variable VAR, determine whether it
1880 would be profitable to adjust VR using scalar evolution information
1881 for VAR. If so, update VR with the new limits. */
1883 static void
1884 adjust_range_with_scev (value_range_t *vr, struct loop *loop, tree stmt,
1885 tree var)
1887 tree init, step, chrec;
1888 bool init_is_max, unknown_max;
1890 /* TODO. Don't adjust anti-ranges. An anti-range may provide
1891 better opportunities than a regular range, but I'm not sure. */
1892 if (vr->type == VR_ANTI_RANGE)
1893 return;
1895 chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
1896 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
1897 return;
1899 init = initial_condition_in_loop_num (chrec, loop->num);
1900 step = evolution_part_in_loop_num (chrec, loop->num);
1902 /* If STEP is symbolic, we can't know whether INIT will be the
1903 minimum or maximum value in the range. */
1904 if (step == NULL_TREE
1905 || !is_gimple_min_invariant (step))
1906 return;
1908 /* Do not adjust ranges when chrec may wrap. */
1909 if (scev_probably_wraps_p (chrec_type (chrec), init, step, stmt,
1910 current_loops->parray[CHREC_VARIABLE (chrec)],
1911 &init_is_max, &unknown_max)
1912 || unknown_max)
1913 return;
1915 if (!POINTER_TYPE_P (TREE_TYPE (init))
1916 && (vr->type == VR_VARYING || vr->type == VR_UNDEFINED))
1918 /* For VARYING or UNDEFINED ranges, just about anything we get
1919 from scalar evolutions should be better. */
1920 tree min = TYPE_MIN_VALUE (TREE_TYPE (init));
1921 tree max = TYPE_MAX_VALUE (TREE_TYPE (init));
1923 if (init_is_max)
1924 max = init;
1925 else
1926 min = init;
1928 /* If we would create an invalid range, then just assume we
1929 know absolutely nothing. This may be over-conservative,
1930 but it's clearly safe. */
1931 if (compare_values (min, max) == 1)
1932 return;
1934 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
1936 else if (vr->type == VR_RANGE)
1938 tree min = vr->min;
1939 tree max = vr->max;
1941 if (init_is_max)
1943 /* INIT is the maximum value. If INIT is lower than VR->MAX
1944 but no smaller than VR->MIN, set VR->MAX to INIT. */
1945 if (compare_values (init, max) == -1)
1947 max = init;
1949 /* If we just created an invalid range with the minimum
1950 greater than the maximum, take the minimum all the
1951 way to -INF. */
1952 if (compare_values (min, max) == 1)
1953 min = TYPE_MIN_VALUE (TREE_TYPE (min));
1956 else
1958 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
1959 if (compare_values (init, min) == 1)
1961 min = init;
1963 /* If we just created an invalid range with the minimum
1964 greater than the maximum, take the maximum all the
1965 way to +INF. */
1966 if (compare_values (min, max) == 1)
1967 max = TYPE_MAX_VALUE (TREE_TYPE (max));
1971 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
1976 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
1978 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
1979 all the values in the ranges.
1981 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
1983 - Return NULL_TREE if it is not always possible to determine the
1984 value of the comparison. */
1987 static tree
1988 compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1)
1990 /* VARYING or UNDEFINED ranges cannot be compared. */
1991 if (vr0->type == VR_VARYING
1992 || vr0->type == VR_UNDEFINED
1993 || vr1->type == VR_VARYING
1994 || vr1->type == VR_UNDEFINED)
1995 return NULL_TREE;
1997 /* Anti-ranges need to be handled separately. */
1998 if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
2000 /* If both are anti-ranges, then we cannot compute any
2001 comparison. */
2002 if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
2003 return NULL_TREE;
2005 /* These comparisons are never statically computable. */
2006 if (comp == GT_EXPR
2007 || comp == GE_EXPR
2008 || comp == LT_EXPR
2009 || comp == LE_EXPR)
2010 return NULL_TREE;
2012 /* Equality can be computed only between a range and an
2013 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
2014 if (vr0->type == VR_RANGE)
2016 /* To simplify processing, make VR0 the anti-range. */
2017 value_range_t *tmp = vr0;
2018 vr0 = vr1;
2019 vr1 = tmp;
2022 gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
2024 if (compare_values (vr0->min, vr1->min) == 0
2025 && compare_values (vr0->max, vr1->max) == 0)
2026 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
2028 return NULL_TREE;
2031 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
2032 operands around and change the comparison code. */
2033 if (comp == GT_EXPR || comp == GE_EXPR)
2035 value_range_t *tmp;
2036 comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
2037 tmp = vr0;
2038 vr0 = vr1;
2039 vr1 = tmp;
2042 if (comp == EQ_EXPR)
2044 /* Equality may only be computed if both ranges represent
2045 exactly one value. */
2046 if (compare_values (vr0->min, vr0->max) == 0
2047 && compare_values (vr1->min, vr1->max) == 0)
2049 int cmp_min = compare_values (vr0->min, vr1->min);
2050 int cmp_max = compare_values (vr0->max, vr1->max);
2051 if (cmp_min == 0 && cmp_max == 0)
2052 return boolean_true_node;
2053 else if (cmp_min != -2 && cmp_max != -2)
2054 return boolean_false_node;
2056 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
2057 else if (compare_values (vr0->min, vr1->max) == 1
2058 || compare_values (vr1->min, vr0->max) == 1)
2059 return boolean_false_node;
2061 return NULL_TREE;
2063 else if (comp == NE_EXPR)
2065 int cmp1, cmp2;
2067 /* If VR0 is completely to the left or completely to the right
2068 of VR1, they are always different. Notice that we need to
2069 make sure that both comparisons yield similar results to
2070 avoid comparing values that cannot be compared at
2071 compile-time. */
2072 cmp1 = compare_values (vr0->max, vr1->min);
2073 cmp2 = compare_values (vr0->min, vr1->max);
2074 if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
2075 return boolean_true_node;
2077 /* If VR0 and VR1 represent a single value and are identical,
2078 return false. */
2079 else if (compare_values (vr0->min, vr0->max) == 0
2080 && compare_values (vr1->min, vr1->max) == 0
2081 && compare_values (vr0->min, vr1->min) == 0
2082 && compare_values (vr0->max, vr1->max) == 0)
2083 return boolean_false_node;
2085 /* Otherwise, they may or may not be different. */
2086 else
2087 return NULL_TREE;
2089 else if (comp == LT_EXPR || comp == LE_EXPR)
2091 int tst;
2093 /* If VR0 is to the left of VR1, return true. */
2094 tst = compare_values (vr0->max, vr1->min);
2095 if ((comp == LT_EXPR && tst == -1)
2096 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
2097 return boolean_true_node;
2099 /* If VR0 is to the right of VR1, return false. */
2100 tst = compare_values (vr0->min, vr1->max);
2101 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
2102 || (comp == LE_EXPR && tst == 1))
2103 return boolean_false_node;
2105 /* Otherwise, we don't know. */
2106 return NULL_TREE;
2109 gcc_unreachable ();
2113 /* Given a value range VR, a value VAL and a comparison code COMP, return
2114 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
2115 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
2116 always returns false. Return NULL_TREE if it is not always
2117 possible to determine the value of the comparison. */
2119 static tree
2120 compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val)
2122 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
2123 return NULL_TREE;
2125 /* Anti-ranges need to be handled separately. */
2126 if (vr->type == VR_ANTI_RANGE)
2128 /* For anti-ranges, the only predicates that we can compute at
2129 compile time are equality and inequality. */
2130 if (comp == GT_EXPR
2131 || comp == GE_EXPR
2132 || comp == LT_EXPR
2133 || comp == LE_EXPR)
2134 return NULL_TREE;
2136 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
2137 if (value_inside_range (val, vr) == 1)
2138 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
2140 return NULL_TREE;
2143 if (comp == EQ_EXPR)
2145 /* EQ_EXPR may only be computed if VR represents exactly
2146 one value. */
2147 if (compare_values (vr->min, vr->max) == 0)
2149 int cmp = compare_values (vr->min, val);
2150 if (cmp == 0)
2151 return boolean_true_node;
2152 else if (cmp == -1 || cmp == 1 || cmp == 2)
2153 return boolean_false_node;
2155 else if (compare_values (val, vr->min) == -1
2156 || compare_values (vr->max, val) == -1)
2157 return boolean_false_node;
2159 return NULL_TREE;
2161 else if (comp == NE_EXPR)
2163 /* If VAL is not inside VR, then they are always different. */
2164 if (compare_values (vr->max, val) == -1
2165 || compare_values (vr->min, val) == 1)
2166 return boolean_true_node;
2168 /* If VR represents exactly one value equal to VAL, then return
2169 false. */
2170 if (compare_values (vr->min, vr->max) == 0
2171 && compare_values (vr->min, val) == 0)
2172 return boolean_false_node;
2174 /* Otherwise, they may or may not be different. */
2175 return NULL_TREE;
2177 else if (comp == LT_EXPR || comp == LE_EXPR)
2179 int tst;
2181 /* If VR is to the left of VAL, return true. */
2182 tst = compare_values (vr->max, val);
2183 if ((comp == LT_EXPR && tst == -1)
2184 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
2185 return boolean_true_node;
2187 /* If VR is to the right of VAL, return false. */
2188 tst = compare_values (vr->min, val);
2189 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
2190 || (comp == LE_EXPR && tst == 1))
2191 return boolean_false_node;
2193 /* Otherwise, we don't know. */
2194 return NULL_TREE;
2196 else if (comp == GT_EXPR || comp == GE_EXPR)
2198 int tst;
2200 /* If VR is to the right of VAL, return true. */
2201 tst = compare_values (vr->min, val);
2202 if ((comp == GT_EXPR && tst == 1)
2203 || (comp == GE_EXPR && (tst == 0 || tst == 1)))
2204 return boolean_true_node;
2206 /* If VR is to the left of VAL, return false. */
2207 tst = compare_values (vr->max, val);
2208 if ((comp == GT_EXPR && (tst == -1 || tst == 0))
2209 || (comp == GE_EXPR && tst == -1))
2210 return boolean_false_node;
2212 /* Otherwise, we don't know. */
2213 return NULL_TREE;
2216 gcc_unreachable ();
2220 /* Debugging dumps. */
2222 void dump_value_range (FILE *, value_range_t *);
2223 void debug_value_range (value_range_t *);
2224 void dump_all_value_ranges (FILE *);
2225 void debug_all_value_ranges (void);
2226 void dump_vr_equiv (FILE *, bitmap);
2227 void debug_vr_equiv (bitmap);
2230 /* Dump value range VR to FILE. */
2232 void
2233 dump_value_range (FILE *file, value_range_t *vr)
2235 if (vr == NULL)
2236 fprintf (file, "[]");
2237 else if (vr->type == VR_UNDEFINED)
2238 fprintf (file, "UNDEFINED");
2239 else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
2241 tree type = TREE_TYPE (vr->min);
2243 fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
2245 if (INTEGRAL_TYPE_P (type)
2246 && !TYPE_UNSIGNED (type)
2247 && vr->min == TYPE_MIN_VALUE (type))
2248 fprintf (file, "-INF");
2249 else
2250 print_generic_expr (file, vr->min, 0);
2252 fprintf (file, ", ");
2254 if (INTEGRAL_TYPE_P (type)
2255 && vr->max == TYPE_MAX_VALUE (type))
2256 fprintf (file, "+INF");
2257 else
2258 print_generic_expr (file, vr->max, 0);
2260 fprintf (file, "]");
2262 if (vr->equiv)
2264 bitmap_iterator bi;
2265 unsigned i, c = 0;
2267 fprintf (file, " EQUIVALENCES: { ");
2269 EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
2271 print_generic_expr (file, ssa_name (i), 0);
2272 fprintf (file, " ");
2273 c++;
2276 fprintf (file, "} (%u elements)", c);
2279 else if (vr->type == VR_VARYING)
2280 fprintf (file, "VARYING");
2281 else
2282 fprintf (file, "INVALID RANGE");
2286 /* Dump value range VR to stderr. */
2288 void
2289 debug_value_range (value_range_t *vr)
2291 dump_value_range (stderr, vr);
2295 /* Dump value ranges of all SSA_NAMEs to FILE. */
2297 void
2298 dump_all_value_ranges (FILE *file)
2300 size_t i;
2302 for (i = 0; i < num_ssa_names; i++)
2304 if (vr_value[i])
2306 print_generic_expr (file, ssa_name (i), 0);
2307 fprintf (file, ": ");
2308 dump_value_range (file, vr_value[i]);
2309 fprintf (file, "\n");
2313 fprintf (file, "\n");
2317 /* Dump all value ranges to stderr. */
2319 void
2320 debug_all_value_ranges (void)
2322 dump_all_value_ranges (stderr);
2326 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
2327 create a new SSA name N and return the assertion assignment
2328 'V = ASSERT_EXPR <V, V OP W>'. */
2330 static tree
2331 build_assert_expr_for (tree cond, tree v)
2333 tree n, assertion;
2335 gcc_assert (TREE_CODE (v) == SSA_NAME);
2336 n = duplicate_ssa_name (v, NULL_TREE);
2338 if (COMPARISON_CLASS_P (cond))
2340 tree a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
2341 assertion = build2 (MODIFY_EXPR, TREE_TYPE (v), n, a);
2343 else if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
2345 /* Given !V, build the assignment N = false. */
2346 tree op0 = TREE_OPERAND (cond, 0);
2347 gcc_assert (op0 == v);
2348 assertion = build2 (MODIFY_EXPR, TREE_TYPE (v), n, boolean_false_node);
2350 else if (TREE_CODE (cond) == SSA_NAME)
2352 /* Given V, build the assignment N = true. */
2353 gcc_assert (v == cond);
2354 assertion = build2 (MODIFY_EXPR, TREE_TYPE (v), n, boolean_true_node);
2356 else
2357 gcc_unreachable ();
2359 SSA_NAME_DEF_STMT (n) = assertion;
2361 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
2362 operand of the ASSERT_EXPR. Register the new name and the old one
2363 in the replacement table so that we can fix the SSA web after
2364 adding all the ASSERT_EXPRs. */
2365 register_new_name_mapping (n, v);
2367 return assertion;
2371 /* Return false if EXPR is a predicate expression involving floating
2372 point values. */
2374 static inline bool
2375 fp_predicate (tree expr)
2377 return (COMPARISON_CLASS_P (expr)
2378 && FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0))));
2382 /* If the range of values taken by OP can be inferred after STMT executes,
2383 return the comparison code (COMP_CODE_P) and value (VAL_P) that
2384 describes the inferred range. Return true if a range could be
2385 inferred. */
2387 static bool
2388 infer_value_range (tree stmt, tree op, enum tree_code *comp_code_p, tree *val_p)
2390 *val_p = NULL_TREE;
2391 *comp_code_p = ERROR_MARK;
2393 /* Do not attempt to infer anything in names that flow through
2394 abnormal edges. */
2395 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
2396 return false;
2398 /* Similarly, don't infer anything from statements that may throw
2399 exceptions. */
2400 if (tree_could_throw_p (stmt))
2401 return false;
2403 /* If STMT is the last statement of a basic block with no
2404 successors, there is no point inferring anything about any of its
2405 operands. We would not be able to find a proper insertion point
2406 for the assertion, anyway. */
2407 if (stmt_ends_bb_p (stmt) && EDGE_COUNT (bb_for_stmt (stmt)->succs) == 0)
2408 return false;
2410 if (POINTER_TYPE_P (TREE_TYPE (op)))
2412 bool is_store;
2413 unsigned num_uses, num_derefs;
2415 count_uses_and_derefs (op, stmt, &num_uses, &num_derefs, &is_store);
2416 if (num_derefs > 0 && flag_delete_null_pointer_checks)
2418 /* We can only assume that a pointer dereference will yield
2419 non-NULL if -fdelete-null-pointer-checks is enabled. */
2420 *val_p = build_int_cst (TREE_TYPE (op), 0);
2421 *comp_code_p = NE_EXPR;
2422 return true;
2426 return false;
2430 void dump_asserts_for (FILE *, tree);
2431 void debug_asserts_for (tree);
2432 void dump_all_asserts (FILE *);
2433 void debug_all_asserts (void);
2435 /* Dump all the registered assertions for NAME to FILE. */
2437 void
2438 dump_asserts_for (FILE *file, tree name)
2440 assert_locus_t loc;
2442 fprintf (file, "Assertions to be inserted for ");
2443 print_generic_expr (file, name, 0);
2444 fprintf (file, "\n");
2446 loc = asserts_for[SSA_NAME_VERSION (name)];
2447 while (loc)
2449 fprintf (file, "\t");
2450 print_generic_expr (file, bsi_stmt (loc->si), 0);
2451 fprintf (file, "\n\tBB #%d", loc->bb->index);
2452 if (loc->e)
2454 fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
2455 loc->e->dest->index);
2456 dump_edge_info (file, loc->e, 0);
2458 fprintf (file, "\n\tPREDICATE: ");
2459 print_generic_expr (file, name, 0);
2460 fprintf (file, " %s ", tree_code_name[(int)loc->comp_code]);
2461 print_generic_expr (file, loc->val, 0);
2462 fprintf (file, "\n\n");
2463 loc = loc->next;
2466 fprintf (file, "\n");
2470 /* Dump all the registered assertions for NAME to stderr. */
2472 void
2473 debug_asserts_for (tree name)
2475 dump_asserts_for (stderr, name);
2479 /* Dump all the registered assertions for all the names to FILE. */
2481 void
2482 dump_all_asserts (FILE *file)
2484 unsigned i;
2485 bitmap_iterator bi;
2487 fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
2488 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
2489 dump_asserts_for (file, ssa_name (i));
2490 fprintf (file, "\n");
2494 /* Dump all the registered assertions for all the names to stderr. */
2496 void
2497 debug_all_asserts (void)
2499 dump_all_asserts (stderr);
2503 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
2504 'NAME COMP_CODE VAL' at a location that dominates block BB or
2505 E->DEST, then register this location as a possible insertion point
2506 for ASSERT_EXPR <NAME, NAME COMP_CODE VAL>.
2508 BB, E and SI provide the exact insertion point for the new
2509 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
2510 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
2511 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
2512 must not be NULL. */
2514 static void
2515 register_new_assert_for (tree name,
2516 enum tree_code comp_code,
2517 tree val,
2518 basic_block bb,
2519 edge e,
2520 block_stmt_iterator si)
2522 assert_locus_t n, loc, last_loc;
2523 bool found;
2524 basic_block dest_bb;
2526 #if defined ENABLE_CHECKING
2527 gcc_assert (bb == NULL || e == NULL);
2529 if (e == NULL)
2530 gcc_assert (TREE_CODE (bsi_stmt (si)) != COND_EXPR
2531 && TREE_CODE (bsi_stmt (si)) != SWITCH_EXPR);
2532 #endif
2534 /* The new assertion A will be inserted at BB or E. We need to
2535 determine if the new location is dominated by a previously
2536 registered location for A. If we are doing an edge insertion,
2537 assume that A will be inserted at E->DEST. Note that this is not
2538 necessarily true.
2540 If E is a critical edge, it will be split. But even if E is
2541 split, the new block will dominate the same set of blocks that
2542 E->DEST dominates.
2544 The reverse, however, is not true, blocks dominated by E->DEST
2545 will not be dominated by the new block created to split E. So,
2546 if the insertion location is on a critical edge, we will not use
2547 the new location to move another assertion previously registered
2548 at a block dominated by E->DEST. */
2549 dest_bb = (bb) ? bb : e->dest;
2551 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
2552 VAL at a block dominating DEST_BB, then we don't need to insert a new
2553 one. Similarly, if the same assertion already exists at a block
2554 dominated by DEST_BB and the new location is not on a critical
2555 edge, then update the existing location for the assertion (i.e.,
2556 move the assertion up in the dominance tree).
2558 Note, this is implemented as a simple linked list because there
2559 should not be more than a handful of assertions registered per
2560 name. If this becomes a performance problem, a table hashed by
2561 COMP_CODE and VAL could be implemented. */
2562 loc = asserts_for[SSA_NAME_VERSION (name)];
2563 last_loc = loc;
2564 found = false;
2565 while (loc)
2567 if (loc->comp_code == comp_code
2568 && (loc->val == val
2569 || operand_equal_p (loc->val, val, 0)))
2571 /* If the assertion NAME COMP_CODE VAL has already been
2572 registered at a basic block that dominates DEST_BB, then
2573 we don't need to insert the same assertion again. Note
2574 that we don't check strict dominance here to avoid
2575 replicating the same assertion inside the same basic
2576 block more than once (e.g., when a pointer is
2577 dereferenced several times inside a block).
2579 An exception to this rule are edge insertions. If the
2580 new assertion is to be inserted on edge E, then it will
2581 dominate all the other insertions that we may want to
2582 insert in DEST_BB. So, if we are doing an edge
2583 insertion, don't do this dominance check. */
2584 if (e == NULL
2585 && dominated_by_p (CDI_DOMINATORS, dest_bb, loc->bb))
2586 return;
2588 /* Otherwise, if E is not a critical edge and DEST_BB
2589 dominates the existing location for the assertion, move
2590 the assertion up in the dominance tree by updating its
2591 location information. */
2592 if ((e == NULL || !EDGE_CRITICAL_P (e))
2593 && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
2595 loc->bb = dest_bb;
2596 loc->e = e;
2597 loc->si = si;
2598 return;
2602 /* Update the last node of the list and move to the next one. */
2603 last_loc = loc;
2604 loc = loc->next;
2607 /* If we didn't find an assertion already registered for
2608 NAME COMP_CODE VAL, add a new one at the end of the list of
2609 assertions associated with NAME. */
2610 n = XNEW (struct assert_locus_d);
2611 n->bb = dest_bb;
2612 n->e = e;
2613 n->si = si;
2614 n->comp_code = comp_code;
2615 n->val = val;
2616 n->next = NULL;
2618 if (last_loc)
2619 last_loc->next = n;
2620 else
2621 asserts_for[SSA_NAME_VERSION (name)] = n;
2623 bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
2627 /* Try to register an edge assertion for SSA name NAME on edge E for
2628 the conditional jump pointed to by SI. Return true if an assertion
2629 for NAME could be registered. */
2631 static bool
2632 register_edge_assert_for (tree name, edge e, block_stmt_iterator si)
2634 tree val, stmt;
2635 enum tree_code comp_code;
2637 stmt = bsi_stmt (si);
2639 /* Do not attempt to infer anything in names that flow through
2640 abnormal edges. */
2641 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
2642 return false;
2644 /* If NAME was not found in the sub-graph reachable from E, then
2645 there's nothing to do. */
2646 if (!TEST_BIT (found_in_subgraph, SSA_NAME_VERSION (name)))
2647 return false;
2649 /* We found a use of NAME in the sub-graph rooted at E->DEST.
2650 Register an assertion for NAME according to the value that NAME
2651 takes on edge E. */
2652 if (TREE_CODE (stmt) == COND_EXPR)
2654 /* If BB ends in a COND_EXPR then NAME then we should insert
2655 the original predicate on EDGE_TRUE_VALUE and the
2656 opposite predicate on EDGE_FALSE_VALUE. */
2657 tree cond = COND_EXPR_COND (stmt);
2658 bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
2660 /* Predicates may be a single SSA name or NAME OP VAL. */
2661 if (cond == name)
2663 /* If the predicate is a name, it must be NAME, in which
2664 case we create the predicate NAME == true or
2665 NAME == false accordingly. */
2666 comp_code = EQ_EXPR;
2667 val = (is_else_edge) ? boolean_false_node : boolean_true_node;
2669 else
2671 /* Otherwise, we have a comparison of the form NAME COMP VAL
2672 or VAL COMP NAME. */
2673 if (name == TREE_OPERAND (cond, 1))
2675 /* If the predicate is of the form VAL COMP NAME, flip
2676 COMP around because we need to register NAME as the
2677 first operand in the predicate. */
2678 comp_code = swap_tree_comparison (TREE_CODE (cond));
2679 val = TREE_OPERAND (cond, 0);
2681 else
2683 /* The comparison is of the form NAME COMP VAL, so the
2684 comparison code remains unchanged. */
2685 comp_code = TREE_CODE (cond);
2686 val = TREE_OPERAND (cond, 1);
2689 /* If we are inserting the assertion on the ELSE edge, we
2690 need to invert the sign comparison. */
2691 if (is_else_edge)
2692 comp_code = invert_tree_comparison (comp_code, 0);
2694 /* Do not register always-false predicates. FIXME, this
2695 works around a limitation in fold() when dealing with
2696 enumerations. Given 'enum { N1, N2 } x;', fold will not
2697 fold 'if (x > N2)' to 'if (0)'. */
2698 if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
2699 && (INTEGRAL_TYPE_P (TREE_TYPE (val))
2700 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (val))))
2702 tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
2703 tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
2705 if (comp_code == GT_EXPR && compare_values (val, max) == 0)
2706 return false;
2708 if (comp_code == LT_EXPR && compare_values (val, min) == 0)
2709 return false;
2713 else
2715 /* FIXME. Handle SWITCH_EXPR. */
2716 gcc_unreachable ();
2719 register_new_assert_for (name, comp_code, val, NULL, e, si);
2720 return true;
2724 static bool find_assert_locations (basic_block bb);
2726 /* Determine whether the outgoing edges of BB should receive an
2727 ASSERT_EXPR for each of the operands of BB's last statement. The
2728 last statement of BB must be a COND_EXPR or a SWITCH_EXPR.
2730 If any of the sub-graphs rooted at BB have an interesting use of
2731 the predicate operands, an assert location node is added to the
2732 list of assertions for the corresponding operands. */
2734 static bool
2735 find_conditional_asserts (basic_block bb)
2737 bool need_assert;
2738 block_stmt_iterator last_si;
2739 tree op, last;
2740 edge_iterator ei;
2741 edge e;
2742 ssa_op_iter iter;
2744 need_assert = false;
2745 last_si = bsi_last (bb);
2746 last = bsi_stmt (last_si);
2748 /* Look for uses of the operands in each of the sub-graphs
2749 rooted at BB. We need to check each of the outgoing edges
2750 separately, so that we know what kind of ASSERT_EXPR to
2751 insert. */
2752 FOR_EACH_EDGE (e, ei, bb->succs)
2754 if (e->dest == bb)
2755 continue;
2757 /* Remove the COND_EXPR operands from the FOUND_IN_SUBGRAPH bitmap.
2758 Otherwise, when we finish traversing each of the sub-graphs, we
2759 won't know whether the variables were found in the sub-graphs or
2760 if they had been found in a block upstream from BB.
2762 This is actually a bad idea is some cases, particularly jump
2763 threading. Consider a CFG like the following:
2773 Assume that one or more operands in the conditional at the
2774 end of block 0 are used in a conditional in block 2, but not
2775 anywhere in block 1. In this case we will not insert any
2776 assert statements in block 1, which may cause us to miss
2777 opportunities to optimize, particularly for jump threading. */
2778 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
2779 RESET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
2781 /* Traverse the strictly dominated sub-graph rooted at E->DEST
2782 to determine if any of the operands in the conditional
2783 predicate are used. */
2784 if (e->dest != bb)
2785 need_assert |= find_assert_locations (e->dest);
2787 /* Register the necessary assertions for each operand in the
2788 conditional predicate. */
2789 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
2790 need_assert |= register_edge_assert_for (op, e, last_si);
2793 /* Finally, indicate that we have found the operands in the
2794 conditional. */
2795 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
2796 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
2798 return need_assert;
2802 /* Traverse all the statements in block BB looking for statements that
2803 may generate useful assertions for the SSA names in their operand.
2804 If a statement produces a useful assertion A for name N_i, then the
2805 list of assertions already generated for N_i is scanned to
2806 determine if A is actually needed.
2808 If N_i already had the assertion A at a location dominating the
2809 current location, then nothing needs to be done. Otherwise, the
2810 new location for A is recorded instead.
2812 1- For every statement S in BB, all the variables used by S are
2813 added to bitmap FOUND_IN_SUBGRAPH.
2815 2- If statement S uses an operand N in a way that exposes a known
2816 value range for N, then if N was not already generated by an
2817 ASSERT_EXPR, create a new assert location for N. For instance,
2818 if N is a pointer and the statement dereferences it, we can
2819 assume that N is not NULL.
2821 3- COND_EXPRs are a special case of #2. We can derive range
2822 information from the predicate but need to insert different
2823 ASSERT_EXPRs for each of the sub-graphs rooted at the
2824 conditional block. If the last statement of BB is a conditional
2825 expression of the form 'X op Y', then
2827 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
2829 b) If the conditional is the only entry point to the sub-graph
2830 corresponding to the THEN_CLAUSE, recurse into it. On
2831 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
2832 an ASSERT_EXPR is added for the corresponding variable.
2834 c) Repeat step (b) on the ELSE_CLAUSE.
2836 d) Mark X and Y in FOUND_IN_SUBGRAPH.
2838 For instance,
2840 if (a == 9)
2841 b = a;
2842 else
2843 b = c + 1;
2845 In this case, an assertion on the THEN clause is useful to
2846 determine that 'a' is always 9 on that edge. However, an assertion
2847 on the ELSE clause would be unnecessary.
2849 4- If BB does not end in a conditional expression, then we recurse
2850 into BB's dominator children.
2852 At the end of the recursive traversal, every SSA name will have a
2853 list of locations where ASSERT_EXPRs should be added. When a new
2854 location for name N is found, it is registered by calling
2855 register_new_assert_for. That function keeps track of all the
2856 registered assertions to prevent adding unnecessary assertions.
2857 For instance, if a pointer P_4 is dereferenced more than once in a
2858 dominator tree, only the location dominating all the dereference of
2859 P_4 will receive an ASSERT_EXPR.
2861 If this function returns true, then it means that there are names
2862 for which we need to generate ASSERT_EXPRs. Those assertions are
2863 inserted by process_assert_insertions.
2865 TODO. Handle SWITCH_EXPR. */
2867 static bool
2868 find_assert_locations (basic_block bb)
2870 block_stmt_iterator si;
2871 tree last, phi;
2872 bool need_assert;
2873 basic_block son;
2875 if (TEST_BIT (blocks_visited, bb->index))
2876 return false;
2878 SET_BIT (blocks_visited, bb->index);
2880 need_assert = false;
2882 /* Traverse all PHI nodes in BB marking used operands. */
2883 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
2885 use_operand_p arg_p;
2886 ssa_op_iter i;
2888 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
2890 tree arg = USE_FROM_PTR (arg_p);
2891 if (TREE_CODE (arg) == SSA_NAME)
2893 gcc_assert (is_gimple_reg (PHI_RESULT (phi)));
2894 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (arg));
2899 /* Traverse all the statements in BB marking used names and looking
2900 for statements that may infer assertions for their used operands. */
2901 last = NULL_TREE;
2902 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
2904 tree stmt, op;
2905 ssa_op_iter i;
2907 stmt = bsi_stmt (si);
2909 /* See if we can derive an assertion for any of STMT's operands. */
2910 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
2912 tree value;
2913 enum tree_code comp_code;
2915 /* Mark OP in bitmap FOUND_IN_SUBGRAPH. If STMT is inside
2916 the sub-graph of a conditional block, when we return from
2917 this recursive walk, our parent will use the
2918 FOUND_IN_SUBGRAPH bitset to determine if one of the
2919 operands it was looking for was present in the sub-graph. */
2920 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
2922 /* If OP is used only once, namely in this STMT, don't
2923 bother creating an ASSERT_EXPR for it. Such an
2924 ASSERT_EXPR would do nothing but increase compile time.
2925 Experiments show that with this simple check, we can save
2926 more than 20% of ASSERT_EXPRs. */
2927 if (has_single_use (op))
2928 continue;
2930 /* If OP is used in such a way that we can infer a value
2931 range for it, and we don't find a previous assertion for
2932 it, create a new assertion location node for OP. */
2933 if (infer_value_range (stmt, op, &comp_code, &value))
2935 register_new_assert_for (op, comp_code, value, bb, NULL, si);
2936 need_assert = true;
2940 /* Remember the last statement of the block. */
2941 last = stmt;
2944 /* If BB's last statement is a conditional expression
2945 involving integer operands, recurse into each of the sub-graphs
2946 rooted at BB to determine if we need to add ASSERT_EXPRs. */
2947 if (last
2948 && TREE_CODE (last) == COND_EXPR
2949 && !fp_predicate (COND_EXPR_COND (last))
2950 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
2951 need_assert |= find_conditional_asserts (bb);
2953 /* Recurse into the dominator children of BB. */
2954 for (son = first_dom_son (CDI_DOMINATORS, bb);
2955 son;
2956 son = next_dom_son (CDI_DOMINATORS, son))
2957 need_assert |= find_assert_locations (son);
2959 return need_assert;
2963 /* Create an ASSERT_EXPR for NAME and insert it in the location
2964 indicated by LOC. Return true if we made any edge insertions. */
2966 static bool
2967 process_assert_insertions_for (tree name, assert_locus_t loc)
2969 /* Build the comparison expression NAME_i COMP_CODE VAL. */
2970 tree stmt, cond, assert_expr;
2971 edge_iterator ei;
2972 edge e;
2974 cond = build2 (loc->comp_code, boolean_type_node, name, loc->val);
2975 assert_expr = build_assert_expr_for (cond, name);
2977 if (loc->e)
2979 /* We have been asked to insert the assertion on an edge. This
2980 is used only by COND_EXPR and SWITCH_EXPR assertions. */
2981 #if defined ENABLE_CHECKING
2982 gcc_assert (TREE_CODE (bsi_stmt (loc->si)) == COND_EXPR
2983 || TREE_CODE (bsi_stmt (loc->si)) == SWITCH_EXPR);
2984 #endif
2986 bsi_insert_on_edge (loc->e, assert_expr);
2987 return true;
2990 /* Otherwise, we can insert right after LOC->SI iff the
2991 statement must not be the last statement in the block. */
2992 stmt = bsi_stmt (loc->si);
2993 if (!stmt_ends_bb_p (stmt))
2995 bsi_insert_after (&loc->si, assert_expr, BSI_SAME_STMT);
2996 return false;
2999 /* If STMT must be the last statement in BB, we can only insert new
3000 assertions on the non-abnormal edge out of BB. Note that since
3001 STMT is not control flow, there may only be one non-abnormal edge
3002 out of BB. */
3003 FOR_EACH_EDGE (e, ei, loc->bb->succs)
3004 if (!(e->flags & EDGE_ABNORMAL))
3006 bsi_insert_on_edge (e, assert_expr);
3007 return true;
3010 gcc_unreachable ();
3014 /* Process all the insertions registered for every name N_i registered
3015 in NEED_ASSERT_FOR. The list of assertions to be inserted are
3016 found in ASSERTS_FOR[i]. */
3018 static void
3019 process_assert_insertions (void)
3021 unsigned i;
3022 bitmap_iterator bi;
3023 bool update_edges_p = false;
3024 int num_asserts = 0;
3026 if (dump_file && (dump_flags & TDF_DETAILS))
3027 dump_all_asserts (dump_file);
3029 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
3031 assert_locus_t loc = asserts_for[i];
3032 gcc_assert (loc);
3034 while (loc)
3036 assert_locus_t next = loc->next;
3037 update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
3038 free (loc);
3039 loc = next;
3040 num_asserts++;
3044 if (update_edges_p)
3045 bsi_commit_edge_inserts ();
3047 if (dump_file && (dump_flags & TDF_STATS))
3048 fprintf (dump_file, "\nNumber of ASSERT_EXPR expressions inserted: %d\n\n",
3049 num_asserts);
3053 /* Traverse the flowgraph looking for conditional jumps to insert range
3054 expressions. These range expressions are meant to provide information
3055 to optimizations that need to reason in terms of value ranges. They
3056 will not be expanded into RTL. For instance, given:
3058 x = ...
3059 y = ...
3060 if (x < y)
3061 y = x - 2;
3062 else
3063 x = y + 3;
3065 this pass will transform the code into:
3067 x = ...
3068 y = ...
3069 if (x < y)
3071 x = ASSERT_EXPR <x, x < y>
3072 y = x - 2
3074 else
3076 y = ASSERT_EXPR <y, x <= y>
3077 x = y + 3
3080 The idea is that once copy and constant propagation have run, other
3081 optimizations will be able to determine what ranges of values can 'x'
3082 take in different paths of the code, simply by checking the reaching
3083 definition of 'x'. */
3085 static void
3086 insert_range_assertions (void)
3088 edge e;
3089 edge_iterator ei;
3090 bool update_ssa_p;
3092 found_in_subgraph = sbitmap_alloc (num_ssa_names);
3093 sbitmap_zero (found_in_subgraph);
3095 blocks_visited = sbitmap_alloc (last_basic_block);
3096 sbitmap_zero (blocks_visited);
3098 need_assert_for = BITMAP_ALLOC (NULL);
3099 asserts_for = XNEWVEC (assert_locus_t, num_ssa_names);
3100 memset (asserts_for, 0, num_ssa_names * sizeof (assert_locus_t));
3102 calculate_dominance_info (CDI_DOMINATORS);
3104 update_ssa_p = false;
3105 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
3106 if (find_assert_locations (e->dest))
3107 update_ssa_p = true;
3109 if (update_ssa_p)
3111 process_assert_insertions ();
3112 update_ssa (TODO_update_ssa_no_phi);
3115 if (dump_file && (dump_flags & TDF_DETAILS))
3117 fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
3118 dump_function_to_file (current_function_decl, dump_file, dump_flags);
3121 sbitmap_free (found_in_subgraph);
3122 free (asserts_for);
3123 BITMAP_FREE (need_assert_for);
3127 /* Convert range assertion expressions into the implied copies and
3128 copy propagate away the copies. Doing the trivial copy propagation
3129 here avoids the need to run the full copy propagation pass after
3130 VRP.
3132 FIXME, this will eventually lead to copy propagation removing the
3133 names that had useful range information attached to them. For
3134 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
3135 then N_i will have the range [3, +INF].
3137 However, by converting the assertion into the implied copy
3138 operation N_i = N_j, we will then copy-propagate N_j into the uses
3139 of N_i and lose the range information. We may want to hold on to
3140 ASSERT_EXPRs a little while longer as the ranges could be used in
3141 things like jump threading.
3143 The problem with keeping ASSERT_EXPRs around is that passes after
3144 VRP need to handle them appropriately.
3146 Another approach would be to make the range information a first
3147 class property of the SSA_NAME so that it can be queried from
3148 any pass. This is made somewhat more complex by the need for
3149 multiple ranges to be associated with one SSA_NAME. */
3151 static void
3152 remove_range_assertions (void)
3154 basic_block bb;
3155 block_stmt_iterator si;
3157 /* Note that the BSI iterator bump happens at the bottom of the
3158 loop and no bump is necessary if we're removing the statement
3159 referenced by the current BSI. */
3160 FOR_EACH_BB (bb)
3161 for (si = bsi_start (bb); !bsi_end_p (si);)
3163 tree stmt = bsi_stmt (si);
3165 if (TREE_CODE (stmt) == MODIFY_EXPR
3166 && TREE_CODE (TREE_OPERAND (stmt, 1)) == ASSERT_EXPR)
3168 tree rhs = TREE_OPERAND (stmt, 1);
3169 tree cond = fold (ASSERT_EXPR_COND (rhs));
3170 use_operand_p use_p;
3171 imm_use_iterator iter;
3173 gcc_assert (cond != boolean_false_node);
3174 TREE_OPERAND (stmt, 1) = ASSERT_EXPR_VAR (rhs);
3175 update_stmt (stmt);
3177 /* The statement is now a copy. Propagate the RHS into
3178 every use of the LHS. */
3179 FOR_EACH_IMM_USE_SAFE (use_p, iter, TREE_OPERAND (stmt, 0))
3181 SET_USE (use_p, ASSERT_EXPR_VAR (rhs));
3182 update_stmt (USE_STMT (use_p));
3185 /* And finally, remove the copy, it is not needed. */
3186 bsi_remove (&si, true);
3188 else
3189 bsi_next (&si);
3192 sbitmap_free (blocks_visited);
3196 /* Return true if STMT is interesting for VRP. */
3198 static bool
3199 stmt_interesting_for_vrp (tree stmt)
3201 if (TREE_CODE (stmt) == PHI_NODE
3202 && is_gimple_reg (PHI_RESULT (stmt))
3203 && (INTEGRAL_TYPE_P (TREE_TYPE (PHI_RESULT (stmt)))
3204 || POINTER_TYPE_P (TREE_TYPE (PHI_RESULT (stmt)))))
3205 return true;
3206 else if (TREE_CODE (stmt) == MODIFY_EXPR)
3208 tree lhs = TREE_OPERAND (stmt, 0);
3210 if (TREE_CODE (lhs) == SSA_NAME
3211 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
3212 || POINTER_TYPE_P (TREE_TYPE (lhs)))
3213 && ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
3214 return true;
3216 else if (TREE_CODE (stmt) == COND_EXPR || TREE_CODE (stmt) == SWITCH_EXPR)
3217 return true;
3219 return false;
3223 /* Initialize local data structures for VRP. */
3225 static void
3226 vrp_initialize (void)
3228 basic_block bb;
3230 vr_value = XNEWVEC (value_range_t *, num_ssa_names);
3231 memset (vr_value, 0, num_ssa_names * sizeof (value_range_t *));
3233 FOR_EACH_BB (bb)
3235 block_stmt_iterator si;
3236 tree phi;
3238 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
3240 if (!stmt_interesting_for_vrp (phi))
3242 tree lhs = PHI_RESULT (phi);
3243 set_value_range_to_varying (get_value_range (lhs));
3244 DONT_SIMULATE_AGAIN (phi) = true;
3246 else
3247 DONT_SIMULATE_AGAIN (phi) = false;
3250 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
3252 tree stmt = bsi_stmt (si);
3254 if (!stmt_interesting_for_vrp (stmt))
3256 ssa_op_iter i;
3257 tree def;
3258 FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
3259 set_value_range_to_varying (get_value_range (def));
3260 DONT_SIMULATE_AGAIN (stmt) = true;
3262 else
3264 DONT_SIMULATE_AGAIN (stmt) = false;
3271 /* Visit assignment STMT. If it produces an interesting range, record
3272 the SSA name in *OUTPUT_P. */
3274 static enum ssa_prop_result
3275 vrp_visit_assignment (tree stmt, tree *output_p)
3277 tree lhs, rhs, def;
3278 ssa_op_iter iter;
3280 lhs = TREE_OPERAND (stmt, 0);
3281 rhs = TREE_OPERAND (stmt, 1);
3283 /* We only keep track of ranges in integral and pointer types. */
3284 if (TREE_CODE (lhs) == SSA_NAME
3285 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
3286 || POINTER_TYPE_P (TREE_TYPE (lhs))))
3288 struct loop *l;
3289 value_range_t new_vr = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3291 extract_range_from_expr (&new_vr, rhs);
3293 /* If STMT is inside a loop, we may be able to know something
3294 else about the range of LHS by examining scalar evolution
3295 information. */
3296 if (current_loops && (l = loop_containing_stmt (stmt)))
3297 adjust_range_with_scev (&new_vr, l, stmt, lhs);
3299 if (update_value_range (lhs, &new_vr))
3301 *output_p = lhs;
3303 if (dump_file && (dump_flags & TDF_DETAILS))
3305 fprintf (dump_file, "Found new range for ");
3306 print_generic_expr (dump_file, lhs, 0);
3307 fprintf (dump_file, ": ");
3308 dump_value_range (dump_file, &new_vr);
3309 fprintf (dump_file, "\n\n");
3312 if (new_vr.type == VR_VARYING)
3313 return SSA_PROP_VARYING;
3315 return SSA_PROP_INTERESTING;
3318 return SSA_PROP_NOT_INTERESTING;
3321 /* Every other statement produces no useful ranges. */
3322 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
3323 set_value_range_to_varying (get_value_range (def));
3325 return SSA_PROP_VARYING;
3329 /* Compare all the value ranges for names equivalent to VAR with VAL
3330 using comparison code COMP. Return the same value returned by
3331 compare_range_with_value. */
3333 static tree
3334 compare_name_with_value (enum tree_code comp, tree var, tree val)
3336 bitmap_iterator bi;
3337 unsigned i;
3338 bitmap e;
3339 tree retval, t;
3341 t = retval = NULL_TREE;
3343 /* Get the set of equivalences for VAR. */
3344 e = get_value_range (var)->equiv;
3346 /* Add VAR to its own set of equivalences so that VAR's value range
3347 is processed by this loop (otherwise, we would have to replicate
3348 the body of the loop just to check VAR's value range). */
3349 bitmap_set_bit (e, SSA_NAME_VERSION (var));
3351 EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
3353 value_range_t equiv_vr = *(vr_value[i]);
3355 /* If name N_i does not have a valid range, use N_i as its own
3356 range. This allows us to compare against names that may
3357 have N_i in their ranges. */
3358 if (equiv_vr.type == VR_VARYING || equiv_vr.type == VR_UNDEFINED)
3360 equiv_vr.type = VR_RANGE;
3361 equiv_vr.min = ssa_name (i);
3362 equiv_vr.max = ssa_name (i);
3365 t = compare_range_with_value (comp, &equiv_vr, val);
3366 if (t)
3368 /* All the ranges should compare the same against VAL. */
3369 gcc_assert (retval == NULL || t == retval);
3370 retval = t;
3374 /* Remove VAR from its own equivalence set. */
3375 bitmap_clear_bit (e, SSA_NAME_VERSION (var));
3377 if (retval)
3378 return retval;
3380 /* We couldn't find a non-NULL value for the predicate. */
3381 return NULL_TREE;
3385 /* Given a comparison code COMP and names N1 and N2, compare all the
3386 ranges equivalent to N1 against all the ranges equivalent to N2
3387 to determine the value of N1 COMP N2. Return the same value
3388 returned by compare_ranges. */
3390 static tree
3391 compare_names (enum tree_code comp, tree n1, tree n2)
3393 tree t, retval;
3394 bitmap e1, e2;
3395 bitmap_iterator bi1, bi2;
3396 unsigned i1, i2;
3398 /* Compare the ranges of every name equivalent to N1 against the
3399 ranges of every name equivalent to N2. */
3400 e1 = get_value_range (n1)->equiv;
3401 e2 = get_value_range (n2)->equiv;
3403 /* Add N1 and N2 to their own set of equivalences to avoid
3404 duplicating the body of the loop just to check N1 and N2
3405 ranges. */
3406 bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
3407 bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
3409 /* If the equivalence sets have a common intersection, then the two
3410 names can be compared without checking their ranges. */
3411 if (bitmap_intersect_p (e1, e2))
3413 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
3414 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
3416 return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
3417 ? boolean_true_node
3418 : boolean_false_node;
3421 /* Otherwise, compare all the equivalent ranges. First, add N1 and
3422 N2 to their own set of equivalences to avoid duplicating the body
3423 of the loop just to check N1 and N2 ranges. */
3424 EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
3426 value_range_t vr1 = *(vr_value[i1]);
3428 /* If the range is VARYING or UNDEFINED, use the name itself. */
3429 if (vr1.type == VR_VARYING || vr1.type == VR_UNDEFINED)
3431 vr1.type = VR_RANGE;
3432 vr1.min = ssa_name (i1);
3433 vr1.max = ssa_name (i1);
3436 t = retval = NULL_TREE;
3437 EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
3439 value_range_t vr2 = *(vr_value[i2]);
3441 if (vr2.type == VR_VARYING || vr2.type == VR_UNDEFINED)
3443 vr2.type = VR_RANGE;
3444 vr2.min = ssa_name (i2);
3445 vr2.max = ssa_name (i2);
3448 t = compare_ranges (comp, &vr1, &vr2);
3449 if (t)
3451 /* All the ranges in the equivalent sets should compare
3452 the same. */
3453 gcc_assert (retval == NULL || t == retval);
3454 retval = t;
3458 if (retval)
3460 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
3461 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
3462 return retval;
3466 /* None of the equivalent ranges are useful in computing this
3467 comparison. */
3468 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
3469 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
3470 return NULL_TREE;
3474 /* Given a conditional predicate COND, try to determine if COND yields
3475 true or false based on the value ranges of its operands. Return
3476 BOOLEAN_TRUE_NODE if the conditional always evaluates to true,
3477 BOOLEAN_FALSE_NODE if the conditional always evaluates to false, and,
3478 NULL if the conditional cannot be evaluated at compile time.
3480 If USE_EQUIV_P is true, the ranges of all the names equivalent with
3481 the operands in COND are used when trying to compute its value.
3482 This is only used during final substitution. During propagation,
3483 we only check the range of each variable and not its equivalents. */
3485 tree
3486 vrp_evaluate_conditional (tree cond, bool use_equiv_p)
3488 gcc_assert (TREE_CODE (cond) == SSA_NAME
3489 || TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison);
3491 if (TREE_CODE (cond) == SSA_NAME)
3493 value_range_t *vr;
3494 tree retval;
3496 if (use_equiv_p)
3497 retval = compare_name_with_value (NE_EXPR, cond, boolean_false_node);
3498 else
3500 value_range_t *vr = get_value_range (cond);
3501 retval = compare_range_with_value (NE_EXPR, vr, boolean_false_node);
3504 /* If COND has a known boolean range, return it. */
3505 if (retval)
3506 return retval;
3508 /* Otherwise, if COND has a symbolic range of exactly one value,
3509 return it. */
3510 vr = get_value_range (cond);
3511 if (vr->type == VR_RANGE && vr->min == vr->max)
3512 return vr->min;
3514 else
3516 tree op0 = TREE_OPERAND (cond, 0);
3517 tree op1 = TREE_OPERAND (cond, 1);
3519 /* We only deal with integral and pointer types. */
3520 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
3521 && !POINTER_TYPE_P (TREE_TYPE (op0)))
3522 return NULL_TREE;
3524 if (use_equiv_p)
3526 if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME)
3527 return compare_names (TREE_CODE (cond), op0, op1);
3528 else if (TREE_CODE (op0) == SSA_NAME)
3529 return compare_name_with_value (TREE_CODE (cond), op0, op1);
3530 else if (TREE_CODE (op1) == SSA_NAME)
3531 return compare_name_with_value (
3532 swap_tree_comparison (TREE_CODE (cond)), op1, op0);
3534 else
3536 value_range_t *vr0, *vr1;
3538 vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
3539 vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
3541 if (vr0 && vr1)
3542 return compare_ranges (TREE_CODE (cond), vr0, vr1);
3543 else if (vr0 && vr1 == NULL)
3544 return compare_range_with_value (TREE_CODE (cond), vr0, op1);
3545 else if (vr0 == NULL && vr1)
3546 return compare_range_with_value (
3547 swap_tree_comparison (TREE_CODE (cond)), vr1, op0);
3551 /* Anything else cannot be computed statically. */
3552 return NULL_TREE;
3556 /* Visit conditional statement STMT. If we can determine which edge
3557 will be taken out of STMT's basic block, record it in
3558 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
3559 SSA_PROP_VARYING. */
3561 static enum ssa_prop_result
3562 vrp_visit_cond_stmt (tree stmt, edge *taken_edge_p)
3564 tree cond, val;
3566 *taken_edge_p = NULL;
3568 /* FIXME. Handle SWITCH_EXPRs. But first, the assert pass needs to
3569 add ASSERT_EXPRs for them. */
3570 if (TREE_CODE (stmt) == SWITCH_EXPR)
3571 return SSA_PROP_VARYING;
3573 cond = COND_EXPR_COND (stmt);
3575 if (dump_file && (dump_flags & TDF_DETAILS))
3577 tree use;
3578 ssa_op_iter i;
3580 fprintf (dump_file, "\nVisiting conditional with predicate: ");
3581 print_generic_expr (dump_file, cond, 0);
3582 fprintf (dump_file, "\nWith known ranges\n");
3584 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
3586 fprintf (dump_file, "\t");
3587 print_generic_expr (dump_file, use, 0);
3588 fprintf (dump_file, ": ");
3589 dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
3592 fprintf (dump_file, "\n");
3595 /* Compute the value of the predicate COND by checking the known
3596 ranges of each of its operands.
3598 Note that we cannot evaluate all the equivalent ranges here
3599 because those ranges may not yet be final and with the current
3600 propagation strategy, we cannot determine when the value ranges
3601 of the names in the equivalence set have changed.
3603 For instance, given the following code fragment
3605 i_5 = PHI <8, i_13>
3607 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
3608 if (i_14 == 1)
3611 Assume that on the first visit to i_14, i_5 has the temporary
3612 range [8, 8] because the second argument to the PHI function is
3613 not yet executable. We derive the range ~[0, 0] for i_14 and the
3614 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
3615 the first time, since i_14 is equivalent to the range [8, 8], we
3616 determine that the predicate is always false.
3618 On the next round of propagation, i_13 is determined to be
3619 VARYING, which causes i_5 to drop down to VARYING. So, another
3620 visit to i_14 is scheduled. In this second visit, we compute the
3621 exact same range and equivalence set for i_14, namely ~[0, 0] and
3622 { i_5 }. But we did not have the previous range for i_5
3623 registered, so vrp_visit_assignment thinks that the range for
3624 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
3625 is not visited again, which stops propagation from visiting
3626 statements in the THEN clause of that if().
3628 To properly fix this we would need to keep the previous range
3629 value for the names in the equivalence set. This way we would've
3630 discovered that from one visit to the other i_5 changed from
3631 range [8, 8] to VR_VARYING.
3633 However, fixing this apparent limitation may not be worth the
3634 additional checking. Testing on several code bases (GCC, DLV,
3635 MICO, TRAMP3D and SPEC2000) showed that doing this results in
3636 4 more predicates folded in SPEC. */
3637 val = vrp_evaluate_conditional (cond, false);
3638 if (val)
3639 *taken_edge_p = find_taken_edge (bb_for_stmt (stmt), val);
3641 if (dump_file && (dump_flags & TDF_DETAILS))
3643 fprintf (dump_file, "\nPredicate evaluates to: ");
3644 if (val == NULL_TREE)
3645 fprintf (dump_file, "DON'T KNOW\n");
3646 else
3647 print_generic_stmt (dump_file, val, 0);
3650 return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
3654 /* Evaluate statement STMT. If the statement produces a useful range,
3655 return SSA_PROP_INTERESTING and record the SSA name with the
3656 interesting range into *OUTPUT_P.
3658 If STMT is a conditional branch and we can determine its truth
3659 value, the taken edge is recorded in *TAKEN_EDGE_P.
3661 If STMT produces a varying value, return SSA_PROP_VARYING. */
3663 static enum ssa_prop_result
3664 vrp_visit_stmt (tree stmt, edge *taken_edge_p, tree *output_p)
3666 tree def;
3667 ssa_op_iter iter;
3668 stmt_ann_t ann;
3670 if (dump_file && (dump_flags & TDF_DETAILS))
3672 fprintf (dump_file, "\nVisiting statement:\n");
3673 print_generic_stmt (dump_file, stmt, dump_flags);
3674 fprintf (dump_file, "\n");
3677 ann = stmt_ann (stmt);
3678 if (TREE_CODE (stmt) == MODIFY_EXPR
3679 && ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
3680 return vrp_visit_assignment (stmt, output_p);
3681 else if (TREE_CODE (stmt) == COND_EXPR || TREE_CODE (stmt) == SWITCH_EXPR)
3682 return vrp_visit_cond_stmt (stmt, taken_edge_p);
3684 /* All other statements produce nothing of interest for VRP, so mark
3685 their outputs varying and prevent further simulation. */
3686 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
3687 set_value_range_to_varying (get_value_range (def));
3689 return SSA_PROP_VARYING;
3693 /* Meet operation for value ranges. Given two value ranges VR0 and
3694 VR1, store in VR0 the result of meeting VR0 and VR1.
3696 The meeting rules are as follows:
3698 1- If VR0 and VR1 have an empty intersection, set VR0 to VR_VARYING.
3700 2- If VR0 and VR1 have a non-empty intersection, set VR0 to the
3701 union of VR0 and VR1. */
3703 static void
3704 vrp_meet (value_range_t *vr0, value_range_t *vr1)
3706 if (vr0->type == VR_UNDEFINED)
3708 copy_value_range (vr0, vr1);
3709 return;
3712 if (vr1->type == VR_UNDEFINED)
3714 /* Nothing to do. VR0 already has the resulting range. */
3715 return;
3718 if (vr0->type == VR_VARYING)
3720 /* Nothing to do. VR0 already has the resulting range. */
3721 return;
3724 if (vr1->type == VR_VARYING)
3726 set_value_range_to_varying (vr0);
3727 return;
3730 if (vr0->type == VR_RANGE && vr1->type == VR_RANGE)
3732 /* If VR0 and VR1 have a non-empty intersection, compute the
3733 union of both ranges. */
3734 if (value_ranges_intersect_p (vr0, vr1))
3736 int cmp;
3737 tree min, max;
3739 /* The lower limit of the new range is the minimum of the
3740 two ranges. If they cannot be compared, the result is
3741 VARYING. */
3742 cmp = compare_values (vr0->min, vr1->min);
3743 if (cmp == 0 || cmp == 1)
3744 min = vr1->min;
3745 else if (cmp == -1)
3746 min = vr0->min;
3747 else
3749 set_value_range_to_varying (vr0);
3750 return;
3753 /* Similarly, the upper limit of the new range is the
3754 maximum of the two ranges. If they cannot be compared,
3755 the result is VARYING. */
3756 cmp = compare_values (vr0->max, vr1->max);
3757 if (cmp == 0 || cmp == -1)
3758 max = vr1->max;
3759 else if (cmp == 1)
3760 max = vr0->max;
3761 else
3763 set_value_range_to_varying (vr0);
3764 return;
3767 /* The resulting set of equivalences is the intersection of
3768 the two sets. */
3769 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
3770 bitmap_and_into (vr0->equiv, vr1->equiv);
3771 else if (vr0->equiv && !vr1->equiv)
3772 bitmap_clear (vr0->equiv);
3774 set_value_range (vr0, vr0->type, min, max, vr0->equiv);
3776 else
3777 goto no_meet;
3779 else if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
3781 /* Two anti-ranges meet only if they are both identical. */
3782 if (compare_values (vr0->min, vr1->min) == 0
3783 && compare_values (vr0->max, vr1->max) == 0
3784 && compare_values (vr0->min, vr0->max) == 0)
3786 /* The resulting set of equivalences is the intersection of
3787 the two sets. */
3788 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
3789 bitmap_and_into (vr0->equiv, vr1->equiv);
3790 else if (vr0->equiv && !vr1->equiv)
3791 bitmap_clear (vr0->equiv);
3793 else
3794 goto no_meet;
3796 else if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
3798 /* A numeric range [VAL1, VAL2] and an anti-range ~[VAL3, VAL4]
3799 meet only if the ranges have an empty intersection. The
3800 result of the meet operation is the anti-range. */
3801 if (!symbolic_range_p (vr0)
3802 && !symbolic_range_p (vr1)
3803 && !value_ranges_intersect_p (vr0, vr1))
3805 /* Copy most of VR1 into VR0. Don't copy VR1's equivalence
3806 set. We need to compute the intersection of the two
3807 equivalence sets. */
3808 if (vr1->type == VR_ANTI_RANGE)
3809 set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr0->equiv);
3811 /* The resulting set of equivalences is the intersection of
3812 the two sets. */
3813 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
3814 bitmap_and_into (vr0->equiv, vr1->equiv);
3815 else if (vr0->equiv && !vr1->equiv)
3816 bitmap_clear (vr0->equiv);
3818 else
3819 goto no_meet;
3821 else
3822 gcc_unreachable ();
3824 return;
3826 no_meet:
3827 /* The two range VR0 and VR1 do not meet. Before giving up and
3828 setting the result to VARYING, see if we can at least derive a
3829 useful anti-range. FIXME, all this nonsense about distinguishing
3830 anti-ranges from ranges is necessary because of the odd
3831 semantics of range_includes_zero_p and friends. */
3832 if (!symbolic_range_p (vr0)
3833 && ((vr0->type == VR_RANGE && !range_includes_zero_p (vr0))
3834 || (vr0->type == VR_ANTI_RANGE && range_includes_zero_p (vr0)))
3835 && !symbolic_range_p (vr1)
3836 && ((vr1->type == VR_RANGE && !range_includes_zero_p (vr1))
3837 || (vr1->type == VR_ANTI_RANGE && range_includes_zero_p (vr1))))
3839 set_value_range_to_nonnull (vr0, TREE_TYPE (vr0->min));
3841 /* Since this meet operation did not result from the meeting of
3842 two equivalent names, VR0 cannot have any equivalences. */
3843 if (vr0->equiv)
3844 bitmap_clear (vr0->equiv);
3846 else
3847 set_value_range_to_varying (vr0);
3851 /* Visit all arguments for PHI node PHI that flow through executable
3852 edges. If a valid value range can be derived from all the incoming
3853 value ranges, set a new range for the LHS of PHI. */
3855 static enum ssa_prop_result
3856 vrp_visit_phi_node (tree phi)
3858 int i;
3859 tree lhs = PHI_RESULT (phi);
3860 value_range_t *lhs_vr = get_value_range (lhs);
3861 value_range_t vr_result = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3863 copy_value_range (&vr_result, lhs_vr);
3865 if (dump_file && (dump_flags & TDF_DETAILS))
3867 fprintf (dump_file, "\nVisiting PHI node: ");
3868 print_generic_expr (dump_file, phi, dump_flags);
3871 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
3873 edge e = PHI_ARG_EDGE (phi, i);
3875 if (dump_file && (dump_flags & TDF_DETAILS))
3877 fprintf (dump_file,
3878 "\n Argument #%d (%d -> %d %sexecutable)\n",
3879 i, e->src->index, e->dest->index,
3880 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
3883 if (e->flags & EDGE_EXECUTABLE)
3885 tree arg = PHI_ARG_DEF (phi, i);
3886 value_range_t vr_arg;
3888 if (TREE_CODE (arg) == SSA_NAME)
3889 vr_arg = *(get_value_range (arg));
3890 else
3892 vr_arg.type = VR_RANGE;
3893 vr_arg.min = arg;
3894 vr_arg.max = arg;
3895 vr_arg.equiv = NULL;
3898 if (dump_file && (dump_flags & TDF_DETAILS))
3900 fprintf (dump_file, "\t");
3901 print_generic_expr (dump_file, arg, dump_flags);
3902 fprintf (dump_file, "\n\tValue: ");
3903 dump_value_range (dump_file, &vr_arg);
3904 fprintf (dump_file, "\n");
3907 vrp_meet (&vr_result, &vr_arg);
3909 if (vr_result.type == VR_VARYING)
3910 break;
3914 if (vr_result.type == VR_VARYING)
3915 goto varying;
3917 /* To prevent infinite iterations in the algorithm, derive ranges
3918 when the new value is slightly bigger or smaller than the
3919 previous one. */
3920 if (lhs_vr->type == VR_RANGE && vr_result.type == VR_RANGE)
3922 if (!POINTER_TYPE_P (TREE_TYPE (lhs)))
3924 int cmp_min = compare_values (lhs_vr->min, vr_result.min);
3925 int cmp_max = compare_values (lhs_vr->max, vr_result.max);
3927 /* If the new minimum is smaller or larger than the previous
3928 one, go all the way to -INF. In the first case, to avoid
3929 iterating millions of times to reach -INF, and in the
3930 other case to avoid infinite bouncing between different
3931 minimums. */
3932 if (cmp_min > 0 || cmp_min < 0)
3933 vr_result.min = TYPE_MIN_VALUE (TREE_TYPE (vr_result.min));
3935 /* Similarly, if the new maximum is smaller or larger than
3936 the previous one, go all the way to +INF. */
3937 if (cmp_max < 0 || cmp_max > 0)
3938 vr_result.max = TYPE_MAX_VALUE (TREE_TYPE (vr_result.max));
3940 /* If we ended up with a (-INF, +INF) range, set it to
3941 VARYING. */
3942 if (vr_result.min == TYPE_MIN_VALUE (TREE_TYPE (vr_result.min))
3943 && vr_result.max == TYPE_MAX_VALUE (TREE_TYPE (vr_result.max)))
3944 goto varying;
3948 /* If the new range is different than the previous value, keep
3949 iterating. */
3950 if (update_value_range (lhs, &vr_result))
3951 return SSA_PROP_INTERESTING;
3953 /* Nothing changed, don't add outgoing edges. */
3954 return SSA_PROP_NOT_INTERESTING;
3956 /* No match found. Set the LHS to VARYING. */
3957 varying:
3958 set_value_range_to_varying (lhs_vr);
3959 return SSA_PROP_VARYING;
3962 /* Simplify a division or modulo operator to a right shift or
3963 bitwise and if the first operand is unsigned or is greater
3964 than zero and the second operand is an exact power of two. */
3966 static void
3967 simplify_div_or_mod_using_ranges (tree stmt, tree rhs, enum tree_code rhs_code)
3969 tree val = NULL;
3970 tree op = TREE_OPERAND (rhs, 0);
3971 value_range_t *vr = get_value_range (TREE_OPERAND (rhs, 0));
3973 if (TYPE_UNSIGNED (TREE_TYPE (op)))
3975 val = integer_one_node;
3977 else
3979 val = compare_range_with_value (GT_EXPR, vr, integer_zero_node);
3982 if (val && integer_onep (val))
3984 tree t;
3985 tree op0 = TREE_OPERAND (rhs, 0);
3986 tree op1 = TREE_OPERAND (rhs, 1);
3988 if (rhs_code == TRUNC_DIV_EXPR)
3990 t = build_int_cst (NULL_TREE, tree_log2 (op1));
3991 t = build2 (RSHIFT_EXPR, TREE_TYPE (op0), op0, t);
3993 else
3995 t = build_int_cst (TREE_TYPE (op1), 1);
3996 t = int_const_binop (MINUS_EXPR, op1, t, 0);
3997 t = fold_convert (TREE_TYPE (op0), t);
3998 t = build2 (BIT_AND_EXPR, TREE_TYPE (op0), op0, t);
4001 TREE_OPERAND (stmt, 1) = t;
4002 update_stmt (stmt);
4006 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
4007 ABS_EXPR. If the operand is <= 0, then simplify the
4008 ABS_EXPR into a NEGATE_EXPR. */
4010 static void
4011 simplify_abs_using_ranges (tree stmt, tree rhs)
4013 tree val = NULL;
4014 tree op = TREE_OPERAND (rhs, 0);
4015 tree type = TREE_TYPE (op);
4016 value_range_t *vr = get_value_range (TREE_OPERAND (rhs, 0));
4018 if (TYPE_UNSIGNED (type))
4020 val = integer_zero_node;
4022 else if (vr)
4024 val = compare_range_with_value (LE_EXPR, vr, integer_zero_node);
4025 if (!val)
4027 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node);
4029 if (val)
4031 if (integer_zerop (val))
4032 val = integer_one_node;
4033 else if (integer_onep (val))
4034 val = integer_zero_node;
4038 if (val
4039 && (integer_onep (val) || integer_zerop (val)))
4041 tree t;
4043 if (integer_onep (val))
4044 t = build1 (NEGATE_EXPR, TREE_TYPE (op), op);
4045 else
4046 t = op;
4048 TREE_OPERAND (stmt, 1) = t;
4049 update_stmt (stmt);
4054 /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
4055 a known value range VR.
4057 If there is one and only one value which will satisfy the
4058 conditional, then return that value. Else return NULL. */
4060 static tree
4061 test_for_singularity (enum tree_code cond_code, tree op0,
4062 tree op1, value_range_t *vr)
4064 tree min = NULL;
4065 tree max = NULL;
4067 /* Extract minimum/maximum values which satisfy the
4068 the conditional as it was written. */
4069 if (cond_code == LE_EXPR || cond_code == LT_EXPR)
4071 min = TYPE_MIN_VALUE (TREE_TYPE (op0));
4073 max = op1;
4074 if (cond_code == LT_EXPR)
4076 tree one = build_int_cst (TREE_TYPE (op0), 1);
4077 max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
4080 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
4082 max = TYPE_MAX_VALUE (TREE_TYPE (op0));
4084 min = op1;
4085 if (cond_code == GT_EXPR)
4087 tree one = build_int_cst (TREE_TYPE (op0), 1);
4088 min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one);
4092 /* Now refine the minimum and maximum values using any
4093 value range information we have for op0. */
4094 if (min && max)
4096 if (compare_values (vr->min, min) == -1)
4097 min = min;
4098 else
4099 min = vr->min;
4100 if (compare_values (vr->max, max) == 1)
4101 max = max;
4102 else
4103 max = vr->max;
4105 /* If the new min/max values have converged to a single value,
4106 then there is only one value which can satisfy the condition,
4107 return that value. */
4108 if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min))
4109 return min;
4111 return NULL;
4114 /* Simplify a conditional using a relational operator to an equality
4115 test if the range information indicates only one value can satisfy
4116 the original conditional. */
4118 static void
4119 simplify_cond_using_ranges (tree stmt)
4121 tree cond = COND_EXPR_COND (stmt);
4122 tree op0 = TREE_OPERAND (cond, 0);
4123 tree op1 = TREE_OPERAND (cond, 1);
4124 enum tree_code cond_code = TREE_CODE (cond);
4126 if (cond_code != NE_EXPR
4127 && cond_code != EQ_EXPR
4128 && TREE_CODE (op0) == SSA_NAME
4129 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
4130 && is_gimple_min_invariant (op1))
4132 value_range_t *vr = get_value_range (op0);
4134 /* If we have range information for OP0, then we might be
4135 able to simplify this conditional. */
4136 if (vr->type == VR_RANGE)
4138 tree new = test_for_singularity (cond_code, op0, op1, vr);
4140 if (new)
4142 if (dump_file)
4144 fprintf (dump_file, "Simplified relational ");
4145 print_generic_expr (dump_file, cond, 0);
4146 fprintf (dump_file, " into ");
4149 COND_EXPR_COND (stmt)
4150 = build2 (EQ_EXPR, boolean_type_node, op0, new);
4151 update_stmt (stmt);
4153 if (dump_file)
4155 print_generic_expr (dump_file, COND_EXPR_COND (stmt), 0);
4156 fprintf (dump_file, "\n");
4158 return;
4162 /* Try again after inverting the condition. We only deal
4163 with integral types here, so no need to worry about
4164 issues with inverting FP comparisons. */
4165 cond_code = invert_tree_comparison (cond_code, false);
4166 new = test_for_singularity (cond_code, op0, op1, vr);
4168 if (new)
4170 if (dump_file)
4172 fprintf (dump_file, "Simplified relational ");
4173 print_generic_expr (dump_file, cond, 0);
4174 fprintf (dump_file, " into ");
4177 COND_EXPR_COND (stmt)
4178 = build2 (NE_EXPR, boolean_type_node, op0, new);
4179 update_stmt (stmt);
4181 if (dump_file)
4183 print_generic_expr (dump_file, COND_EXPR_COND (stmt), 0);
4184 fprintf (dump_file, "\n");
4186 return;
4193 /* Simplify STMT using ranges if possible. */
4195 void
4196 simplify_stmt_using_ranges (tree stmt)
4198 if (TREE_CODE (stmt) == MODIFY_EXPR)
4200 tree rhs = TREE_OPERAND (stmt, 1);
4201 enum tree_code rhs_code = TREE_CODE (rhs);
4203 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
4204 and BIT_AND_EXPR respectively if the first operand is greater
4205 than zero and the second operand is an exact power of two. */
4206 if ((rhs_code == TRUNC_DIV_EXPR || rhs_code == TRUNC_MOD_EXPR)
4207 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0)))
4208 && integer_pow2p (TREE_OPERAND (rhs, 1)))
4209 simplify_div_or_mod_using_ranges (stmt, rhs, rhs_code);
4211 /* Transform ABS (X) into X or -X as appropriate. */
4212 if (rhs_code == ABS_EXPR
4213 && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME
4214 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0))))
4215 simplify_abs_using_ranges (stmt, rhs);
4217 else if (TREE_CODE (stmt) == COND_EXPR
4218 && COMPARISON_CLASS_P (COND_EXPR_COND (stmt)))
4220 simplify_cond_using_ranges (stmt);
4224 /* Stack of dest,src equivalency pairs that need to be restored after
4225 each attempt to thread a block's incoming edge to an outgoing edge.
4227 A NULL entry is used to mark the end of pairs which need to be
4228 restored. */
4229 static VEC(tree,heap) *stack;
4231 /* A trivial wrapper so that we can present the generic jump
4232 threading code with a simple API for simplifying statements. */
4233 static tree
4234 simplify_stmt_for_jump_threading (tree stmt)
4236 /* We only use VRP information to simplify conditionals. This is
4237 overly conservative, but it's unclear if doing more would be
4238 worth the compile time cost. */
4239 if (TREE_CODE (stmt) != COND_EXPR)
4240 return NULL;
4242 return vrp_evaluate_conditional (COND_EXPR_COND (stmt), true);
4245 /* Blocks which have more than one predecessor and more than
4246 one successor present jump threading opportunities. ie,
4247 when the block is reached from a specific predecessor, we
4248 may be able to determine which of the outgoing edges will
4249 be traversed. When this optimization applies, we are able
4250 to avoid conditionals at runtime and we may expose secondary
4251 optimization opportunities.
4253 This routine is effectively a driver for the generic jump
4254 threading code. It basically just presents the generic code
4255 with edges that may be suitable for jump threading.
4257 Unlike DOM, we do not iterate VRP if jump threading was successful.
4258 While iterating may expose new opportunities for VRP, it is expected
4259 those opportunities would be very limited and the compile time cost
4260 to expose those opportunities would be significant.
4262 As jump threading opportunities are discovered, they are registered
4263 for later realization. */
4265 static void
4266 identify_jump_threads (void)
4268 basic_block bb;
4269 tree dummy;
4271 /* Ugh. When substituting values earlier in this pass we can
4272 wipe the dominance information. So rebuild the dominator
4273 information as we need it within the jump threading code. */
4274 calculate_dominance_info (CDI_DOMINATORS);
4276 /* We do not allow VRP information to be used for jump threading
4277 across a back edge in the CFG. Otherwise it becomes too
4278 difficult to avoid eliminating loop exit tests. Of course
4279 EDGE_DFS_BACK is not accurate at this time so we have to
4280 recompute it. */
4281 mark_dfs_back_edges ();
4283 /* Allocate our unwinder stack to unwind any temporary equivalences
4284 that might be recorded. */
4285 stack = VEC_alloc (tree, heap, 20);
4287 /* To avoid lots of silly node creation, we create a single
4288 conditional and just modify it in-place when attempting to
4289 thread jumps. */
4290 dummy = build2 (EQ_EXPR, boolean_type_node, NULL, NULL);
4291 dummy = build3 (COND_EXPR, void_type_node, dummy, NULL, NULL);
4293 /* Walk through all the blocks finding those which present a
4294 potential jump threading opportunity. We could set this up
4295 as a dominator walker and record data during the walk, but
4296 I doubt it's worth the effort for the classes of jump
4297 threading opportunities we are trying to identify at this
4298 point in compilation. */
4299 FOR_EACH_BB (bb)
4301 tree last, cond;
4303 /* If the generic jump threading code does not find this block
4304 interesting, then there is nothing to do. */
4305 if (! potentially_threadable_block (bb))
4306 continue;
4308 /* We only care about blocks ending in a COND_EXPR. While there
4309 may be some value in handling SWITCH_EXPR here, I doubt it's
4310 terribly important. */
4311 last = bsi_stmt (bsi_last (bb));
4312 if (TREE_CODE (last) != COND_EXPR)
4313 continue;
4315 /* We're basically looking for any kind of conditional with
4316 integral type arguments. */
4317 cond = COND_EXPR_COND (last);
4318 if ((TREE_CODE (cond) == SSA_NAME
4319 && INTEGRAL_TYPE_P (TREE_TYPE (cond)))
4320 || (COMPARISON_CLASS_P (cond)
4321 && TREE_CODE (TREE_OPERAND (cond, 0)) == SSA_NAME
4322 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (cond, 0)))
4323 && (TREE_CODE (TREE_OPERAND (cond, 1)) == SSA_NAME
4324 || is_gimple_min_invariant (TREE_OPERAND (cond, 1)))
4325 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (cond, 1)))))
4327 edge_iterator ei;
4328 edge e;
4330 /* We've got a block with multiple predecessors and multiple
4331 successors which also ends in a suitable conditional. For
4332 each predecessor, see if we can thread it to a specific
4333 successor. */
4334 FOR_EACH_EDGE (e, ei, bb->preds)
4336 /* Do not thread across back edges or abnormal edges
4337 in the CFG. */
4338 if (e->flags & (EDGE_DFS_BACK | EDGE_COMPLEX))
4339 continue;
4341 thread_across_edge (dummy, e, true,
4342 &stack,
4343 simplify_stmt_for_jump_threading);
4348 /* We do not actually update the CFG or SSA graphs at this point as
4349 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
4350 handle ASSERT_EXPRs gracefully. */
4353 /* We identified all the jump threading opportunities earlier, but could
4354 not transform the CFG at that time. This routine transforms the
4355 CFG and arranges for the dominator tree to be rebuilt if necessary.
4357 Note the SSA graph update will occur during the normal TODO
4358 processing by the pass manager. */
4359 static void
4360 finalize_jump_threads (void)
4362 bool cfg_altered = false;
4363 cfg_altered = thread_through_all_blocks ();
4365 /* If we threaded jumps, then we need to recompute the dominance
4366 information, to safely do that we must clean up the CFG first. */
4367 if (cfg_altered)
4369 free_dominance_info (CDI_DOMINATORS);
4370 cleanup_tree_cfg ();
4371 calculate_dominance_info (CDI_DOMINATORS);
4373 VEC_free (tree, heap, stack);
4377 /* Traverse all the blocks folding conditionals with known ranges. */
4379 static void
4380 vrp_finalize (void)
4382 size_t i;
4383 prop_value_t *single_val_range;
4384 bool do_value_subst_p;
4386 if (dump_file)
4388 fprintf (dump_file, "\nValue ranges after VRP:\n\n");
4389 dump_all_value_ranges (dump_file);
4390 fprintf (dump_file, "\n");
4393 /* We may have ended with ranges that have exactly one value. Those
4394 values can be substituted as any other copy/const propagated
4395 value using substitute_and_fold. */
4396 single_val_range = XNEWVEC (prop_value_t, num_ssa_names);
4397 memset (single_val_range, 0, num_ssa_names * sizeof (*single_val_range));
4399 do_value_subst_p = false;
4400 for (i = 0; i < num_ssa_names; i++)
4401 if (vr_value[i]
4402 && vr_value[i]->type == VR_RANGE
4403 && vr_value[i]->min == vr_value[i]->max)
4405 single_val_range[i].value = vr_value[i]->min;
4406 do_value_subst_p = true;
4409 if (!do_value_subst_p)
4411 /* We found no single-valued ranges, don't waste time trying to
4412 do single value substitution in substitute_and_fold. */
4413 free (single_val_range);
4414 single_val_range = NULL;
4417 substitute_and_fold (single_val_range, true);
4419 /* We must identify jump threading opportunities before we release
4420 the datastructures built by VRP. */
4421 identify_jump_threads ();
4423 /* Free allocated memory. */
4424 for (i = 0; i < num_ssa_names; i++)
4425 if (vr_value[i])
4427 BITMAP_FREE (vr_value[i]->equiv);
4428 free (vr_value[i]);
4431 free (single_val_range);
4432 free (vr_value);
4436 /* Main entry point to VRP (Value Range Propagation). This pass is
4437 loosely based on J. R. C. Patterson, ``Accurate Static Branch
4438 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
4439 Programming Language Design and Implementation, pp. 67-78, 1995.
4440 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
4442 This is essentially an SSA-CCP pass modified to deal with ranges
4443 instead of constants.
4445 While propagating ranges, we may find that two or more SSA name
4446 have equivalent, though distinct ranges. For instance,
4448 1 x_9 = p_3->a;
4449 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
4450 3 if (p_4 == q_2)
4451 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
4452 5 endif
4453 6 if (q_2)
4455 In the code above, pointer p_5 has range [q_2, q_2], but from the
4456 code we can also determine that p_5 cannot be NULL and, if q_2 had
4457 a non-varying range, p_5's range should also be compatible with it.
4459 These equivalences are created by two expressions: ASSERT_EXPR and
4460 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
4461 result of another assertion, then we can use the fact that p_5 and
4462 p_4 are equivalent when evaluating p_5's range.
4464 Together with value ranges, we also propagate these equivalences
4465 between names so that we can take advantage of information from
4466 multiple ranges when doing final replacement. Note that this
4467 equivalency relation is transitive but not symmetric.
4469 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
4470 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
4471 in contexts where that assertion does not hold (e.g., in line 6).
4473 TODO, the main difference between this pass and Patterson's is that
4474 we do not propagate edge probabilities. We only compute whether
4475 edges can be taken or not. That is, instead of having a spectrum
4476 of jump probabilities between 0 and 1, we only deal with 0, 1 and
4477 DON'T KNOW. In the future, it may be worthwhile to propagate
4478 probabilities to aid branch prediction. */
4480 static void
4481 execute_vrp (void)
4483 insert_range_assertions ();
4485 current_loops = loop_optimizer_init (LOOPS_NORMAL);
4486 if (current_loops)
4487 scev_initialize (current_loops);
4489 vrp_initialize ();
4490 ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
4491 vrp_finalize ();
4493 if (current_loops)
4495 scev_finalize ();
4496 loop_optimizer_finalize (current_loops);
4497 current_loops = NULL;
4500 /* ASSERT_EXPRs must be removed before finalizing jump threads
4501 as finalizing jump threads calls the CFG cleanup code which
4502 does not properly handle ASSERT_EXPRs. */
4503 remove_range_assertions ();
4505 /* If we exposed any new variables, go ahead and put them into
4506 SSA form now, before we handle jump threading. This simplifies
4507 interactions between rewriting of _DECL nodes into SSA form
4508 and rewriting SSA_NAME nodes into SSA form after block
4509 duplication and CFG manipulation. */
4510 update_ssa (TODO_update_ssa);
4512 finalize_jump_threads ();
4516 static bool
4517 gate_vrp (void)
4519 return flag_tree_vrp != 0;
4522 struct tree_opt_pass pass_vrp =
4524 "vrp", /* name */
4525 gate_vrp, /* gate */
4526 execute_vrp, /* execute */
4527 NULL, /* sub */
4528 NULL, /* next */
4529 0, /* static_pass_number */
4530 TV_TREE_VRP, /* tv_id */
4531 PROP_ssa | PROP_alias, /* properties_required */
4532 0, /* properties_provided */
4533 0, /* properties_destroyed */
4534 0, /* todo_flags_start */
4535 TODO_cleanup_cfg
4536 | TODO_ggc_collect
4537 | TODO_verify_ssa
4538 | TODO_dump_func
4539 | TODO_update_ssa, /* todo_flags_finish */
4540 0 /* letter */