1 /* Loop invariant motion.
2 Copyright (C) 2003-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
22 #include "coretypes.h"
26 #include "basic-block.h"
27 #include "gimple-pretty-print.h"
28 #include "tree-flow.h"
32 #include "tree-pass.h"
35 #include "tree-affine.h"
36 #include "pointer-set.h"
37 #include "tree-ssa-propagate.h"
39 /* TODO: Support for predicated code motion. I.e.
50 Where COND and INV are invariants, but evaluating INV may trap or be
51 invalid from some other reason if !COND. This may be transformed to
61 /* A type for the list of statements that have to be moved in order to be able
62 to hoist an invariant computation. */
70 /* The auxiliary data kept for each statement. */
74 struct loop
*max_loop
; /* The outermost loop in that the statement
77 struct loop
*tgt_loop
; /* The loop out of that we want to move the
80 struct loop
*always_executed_in
;
81 /* The outermost loop for that we are sure
82 the statement is executed if the loop
85 unsigned cost
; /* Cost of the computation performed by the
88 struct depend
*depends
; /* List of statements that must be also hoisted
89 out of the loop when this statement is
90 hoisted; i.e. those that define the operands
91 of the statement and are inside of the
95 /* Maps statements to their lim_aux_data. */
97 static struct pointer_map_t
*lim_aux_data_map
;
99 /* Description of a memory reference location. */
101 typedef struct mem_ref_loc
103 tree
*ref
; /* The reference itself. */
104 gimple stmt
; /* The statement in that it occurs. */
108 /* The list of memory reference locations in a loop. */
110 typedef struct mem_ref_locs
112 vec
<mem_ref_loc_p
> locs
;
116 /* Description of a memory reference. */
118 typedef struct mem_ref
120 tree mem
; /* The memory itself. */
121 unsigned id
; /* ID assigned to the memory reference
122 (its index in memory_accesses.refs_list) */
123 hashval_t hash
; /* Its hash value. */
124 bitmap stored
; /* The set of loops in that this memory location
126 vec
<mem_ref_locs_p
> accesses_in_loop
;
127 /* The locations of the accesses. Vector
128 indexed by the loop number. */
130 /* The following sets are computed on demand. We keep both set and
131 its complement, so that we know whether the information was
132 already computed or not. */
133 bitmap indep_loop
; /* The set of loops in that the memory
134 reference is independent, meaning:
135 If it is stored in the loop, this store
136 is independent on all other loads and
138 If it is only loaded, then it is independent
139 on all stores in the loop. */
140 bitmap dep_loop
; /* The complement of INDEP_LOOP. */
142 bitmap indep_ref
; /* The set of memory references on that
143 this reference is independent. */
144 bitmap dep_ref
; /* The complement of INDEP_REF. */
150 /* Description of memory accesses in loops. */
154 /* The hash table of memory references accessed in loops. */
157 /* The list of memory references. */
158 vec
<mem_ref_p
> refs_list
;
160 /* The set of memory references accessed in each loop. */
161 vec
<bitmap
> refs_in_loop
;
163 /* The set of memory references accessed in each loop, including
165 vec
<bitmap
> all_refs_in_loop
;
167 /* The set of memory references stored in each loop, including
169 vec
<bitmap
> all_refs_stored_in_loop
;
171 /* Cache for expanding memory addresses. */
172 struct pointer_map_t
*ttae_cache
;
175 /* Obstack for the bitmaps in the above data structures. */
176 static bitmap_obstack lim_bitmap_obstack
;
178 static bool ref_indep_loop_p (struct loop
*, mem_ref_p
);
180 /* Minimum cost of an expensive expression. */
181 #define LIM_EXPENSIVE ((unsigned) PARAM_VALUE (PARAM_LIM_EXPENSIVE))
183 /* The outermost loop for which execution of the header guarantees that the
184 block will be executed. */
185 #define ALWAYS_EXECUTED_IN(BB) ((struct loop *) (BB)->aux)
186 #define SET_ALWAYS_EXECUTED_IN(BB, VAL) ((BB)->aux = (void *) (VAL))
188 /* Whether the reference was analyzable. */
189 #define MEM_ANALYZABLE(REF) ((REF)->mem != error_mark_node)
191 static struct lim_aux_data
*
192 init_lim_data (gimple stmt
)
194 void **p
= pointer_map_insert (lim_aux_data_map
, stmt
);
196 *p
= XCNEW (struct lim_aux_data
);
197 return (struct lim_aux_data
*) *p
;
200 static struct lim_aux_data
*
201 get_lim_data (gimple stmt
)
203 void **p
= pointer_map_contains (lim_aux_data_map
, stmt
);
207 return (struct lim_aux_data
*) *p
;
210 /* Releases the memory occupied by DATA. */
213 free_lim_aux_data (struct lim_aux_data
*data
)
215 struct depend
*dep
, *next
;
217 for (dep
= data
->depends
; dep
; dep
= next
)
226 clear_lim_data (gimple stmt
)
228 void **p
= pointer_map_contains (lim_aux_data_map
, stmt
);
232 free_lim_aux_data ((struct lim_aux_data
*) *p
);
236 /* Calls CBCK for each index in memory reference ADDR_P. There are two
237 kinds situations handled; in each of these cases, the memory reference
238 and DATA are passed to the callback:
240 Access to an array: ARRAY_{RANGE_}REF (base, index). In this case we also
241 pass the pointer to the index to the callback.
243 Pointer dereference: INDIRECT_REF (addr). In this case we also pass the
244 pointer to addr to the callback.
246 If the callback returns false, the whole search stops and false is returned.
247 Otherwise the function returns true after traversing through the whole
248 reference *ADDR_P. */
251 for_each_index (tree
*addr_p
, bool (*cbck
) (tree
, tree
*, void *), void *data
)
255 for (; ; addr_p
= nxt
)
257 switch (TREE_CODE (*addr_p
))
260 return cbck (*addr_p
, addr_p
, data
);
263 nxt
= &TREE_OPERAND (*addr_p
, 0);
264 return cbck (*addr_p
, nxt
, data
);
267 case VIEW_CONVERT_EXPR
:
270 nxt
= &TREE_OPERAND (*addr_p
, 0);
274 /* If the component has varying offset, it behaves like index
276 idx
= &TREE_OPERAND (*addr_p
, 2);
278 && !cbck (*addr_p
, idx
, data
))
281 nxt
= &TREE_OPERAND (*addr_p
, 0);
285 case ARRAY_RANGE_REF
:
286 nxt
= &TREE_OPERAND (*addr_p
, 0);
287 if (!cbck (*addr_p
, &TREE_OPERAND (*addr_p
, 1), data
))
305 gcc_assert (is_gimple_min_invariant (*addr_p
));
309 idx
= &TMR_BASE (*addr_p
);
311 && !cbck (*addr_p
, idx
, data
))
313 idx
= &TMR_INDEX (*addr_p
);
315 && !cbck (*addr_p
, idx
, data
))
317 idx
= &TMR_INDEX2 (*addr_p
);
319 && !cbck (*addr_p
, idx
, data
))
329 /* If it is possible to hoist the statement STMT unconditionally,
330 returns MOVE_POSSIBLE.
331 If it is possible to hoist the statement STMT, but we must avoid making
332 it executed if it would not be executed in the original program (e.g.
333 because it may trap), return MOVE_PRESERVE_EXECUTION.
334 Otherwise return MOVE_IMPOSSIBLE. */
337 movement_possibility (gimple stmt
)
340 enum move_pos ret
= MOVE_POSSIBLE
;
342 if (flag_unswitch_loops
343 && gimple_code (stmt
) == GIMPLE_COND
)
345 /* If we perform unswitching, force the operands of the invariant
346 condition to be moved out of the loop. */
347 return MOVE_POSSIBLE
;
350 if (gimple_code (stmt
) == GIMPLE_PHI
351 && gimple_phi_num_args (stmt
) <= 2
352 && !virtual_operand_p (gimple_phi_result (stmt
))
353 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_phi_result (stmt
)))
354 return MOVE_POSSIBLE
;
356 if (gimple_get_lhs (stmt
) == NULL_TREE
)
357 return MOVE_IMPOSSIBLE
;
359 if (gimple_vdef (stmt
))
360 return MOVE_IMPOSSIBLE
;
362 if (stmt_ends_bb_p (stmt
)
363 || gimple_has_volatile_ops (stmt
)
364 || gimple_has_side_effects (stmt
)
365 || stmt_could_throw_p (stmt
))
366 return MOVE_IMPOSSIBLE
;
368 if (is_gimple_call (stmt
))
370 /* While pure or const call is guaranteed to have no side effects, we
371 cannot move it arbitrarily. Consider code like
373 char *s = something ();
383 Here the strlen call cannot be moved out of the loop, even though
384 s is invariant. In addition to possibly creating a call with
385 invalid arguments, moving out a function call that is not executed
386 may cause performance regressions in case the call is costly and
387 not executed at all. */
388 ret
= MOVE_PRESERVE_EXECUTION
;
389 lhs
= gimple_call_lhs (stmt
);
391 else if (is_gimple_assign (stmt
))
392 lhs
= gimple_assign_lhs (stmt
);
394 return MOVE_IMPOSSIBLE
;
396 if (TREE_CODE (lhs
) == SSA_NAME
397 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs
))
398 return MOVE_IMPOSSIBLE
;
400 if (TREE_CODE (lhs
) != SSA_NAME
401 || gimple_could_trap_p (stmt
))
402 return MOVE_PRESERVE_EXECUTION
;
404 /* Non local loads in a transaction cannot be hoisted out. Well,
405 unless the load happens on every path out of the loop, but we
406 don't take this into account yet. */
408 && gimple_in_transaction (stmt
)
409 && gimple_assign_single_p (stmt
))
411 tree rhs
= gimple_assign_rhs1 (stmt
);
412 if (DECL_P (rhs
) && is_global_var (rhs
))
416 fprintf (dump_file
, "Cannot hoist conditional load of ");
417 print_generic_expr (dump_file
, rhs
, TDF_SLIM
);
418 fprintf (dump_file
, " because it is in a transaction.\n");
420 return MOVE_IMPOSSIBLE
;
427 /* Suppose that operand DEF is used inside the LOOP. Returns the outermost
428 loop to that we could move the expression using DEF if it did not have
429 other operands, i.e. the outermost loop enclosing LOOP in that the value
430 of DEF is invariant. */
433 outermost_invariant_loop (tree def
, struct loop
*loop
)
437 struct loop
*max_loop
;
438 struct lim_aux_data
*lim_data
;
441 return superloop_at_depth (loop
, 1);
443 if (TREE_CODE (def
) != SSA_NAME
)
445 gcc_assert (is_gimple_min_invariant (def
));
446 return superloop_at_depth (loop
, 1);
449 def_stmt
= SSA_NAME_DEF_STMT (def
);
450 def_bb
= gimple_bb (def_stmt
);
452 return superloop_at_depth (loop
, 1);
454 max_loop
= find_common_loop (loop
, def_bb
->loop_father
);
456 lim_data
= get_lim_data (def_stmt
);
457 if (lim_data
!= NULL
&& lim_data
->max_loop
!= NULL
)
458 max_loop
= find_common_loop (max_loop
,
459 loop_outer (lim_data
->max_loop
));
460 if (max_loop
== loop
)
462 max_loop
= superloop_at_depth (loop
, loop_depth (max_loop
) + 1);
467 /* DATA is a structure containing information associated with a statement
468 inside LOOP. DEF is one of the operands of this statement.
470 Find the outermost loop enclosing LOOP in that value of DEF is invariant
471 and record this in DATA->max_loop field. If DEF itself is defined inside
472 this loop as well (i.e. we need to hoist it out of the loop if we want
473 to hoist the statement represented by DATA), record the statement in that
474 DEF is defined to the DATA->depends list. Additionally if ADD_COST is true,
475 add the cost of the computation of DEF to the DATA->cost.
477 If DEF is not invariant in LOOP, return false. Otherwise return TRUE. */
480 add_dependency (tree def
, struct lim_aux_data
*data
, struct loop
*loop
,
483 gimple def_stmt
= SSA_NAME_DEF_STMT (def
);
484 basic_block def_bb
= gimple_bb (def_stmt
);
485 struct loop
*max_loop
;
487 struct lim_aux_data
*def_data
;
492 max_loop
= outermost_invariant_loop (def
, loop
);
496 if (flow_loop_nested_p (data
->max_loop
, max_loop
))
497 data
->max_loop
= max_loop
;
499 def_data
= get_lim_data (def_stmt
);
504 /* Only add the cost if the statement defining DEF is inside LOOP,
505 i.e. if it is likely that by moving the invariants dependent
506 on it, we will be able to avoid creating a new register for
507 it (since it will be only used in these dependent invariants). */
508 && def_bb
->loop_father
== loop
)
509 data
->cost
+= def_data
->cost
;
511 dep
= XNEW (struct depend
);
512 dep
->stmt
= def_stmt
;
513 dep
->next
= data
->depends
;
519 /* Returns an estimate for a cost of statement STMT. The values here
520 are just ad-hoc constants, similar to costs for inlining. */
523 stmt_cost (gimple stmt
)
525 /* Always try to create possibilities for unswitching. */
526 if (gimple_code (stmt
) == GIMPLE_COND
527 || gimple_code (stmt
) == GIMPLE_PHI
)
528 return LIM_EXPENSIVE
;
530 /* We should be hoisting calls if possible. */
531 if (is_gimple_call (stmt
))
535 /* Unless the call is a builtin_constant_p; this always folds to a
536 constant, so moving it is useless. */
537 fndecl
= gimple_call_fndecl (stmt
);
539 && DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
540 && DECL_FUNCTION_CODE (fndecl
) == BUILT_IN_CONSTANT_P
)
543 return LIM_EXPENSIVE
;
546 /* Hoisting memory references out should almost surely be a win. */
547 if (gimple_references_memory_p (stmt
))
548 return LIM_EXPENSIVE
;
550 if (gimple_code (stmt
) != GIMPLE_ASSIGN
)
553 switch (gimple_assign_rhs_code (stmt
))
556 case WIDEN_MULT_EXPR
:
557 case WIDEN_MULT_PLUS_EXPR
:
558 case WIDEN_MULT_MINUS_EXPR
:
571 /* Division and multiplication are usually expensive. */
572 return LIM_EXPENSIVE
;
576 case WIDEN_LSHIFT_EXPR
:
579 /* Shifts and rotates are usually expensive. */
580 return LIM_EXPENSIVE
;
583 /* Make vector construction cost proportional to the number
585 return CONSTRUCTOR_NELTS (gimple_assign_rhs1 (stmt
));
589 /* Whether or not something is wrapped inside a PAREN_EXPR
590 should not change move cost. Nor should an intermediate
591 unpropagated SSA name copy. */
599 /* Finds the outermost loop between OUTER and LOOP in that the memory reference
600 REF is independent. If REF is not independent in LOOP, NULL is returned
604 outermost_indep_loop (struct loop
*outer
, struct loop
*loop
, mem_ref_p ref
)
608 if (bitmap_bit_p (ref
->stored
, loop
->num
))
613 aloop
= superloop_at_depth (loop
, loop_depth (aloop
) + 1))
614 if (!bitmap_bit_p (ref
->stored
, aloop
->num
)
615 && ref_indep_loop_p (aloop
, ref
))
618 if (ref_indep_loop_p (loop
, ref
))
624 /* If there is a simple load or store to a memory reference in STMT, returns
625 the location of the memory reference, and sets IS_STORE according to whether
626 it is a store or load. Otherwise, returns NULL. */
629 simple_mem_ref_in_stmt (gimple stmt
, bool *is_store
)
633 /* Recognize SSA_NAME = MEM and MEM = (SSA_NAME | invariant) patterns. */
634 if (!gimple_assign_single_p (stmt
))
637 lhs
= gimple_assign_lhs_ptr (stmt
);
638 rhs
= gimple_assign_rhs1_ptr (stmt
);
640 if (TREE_CODE (*lhs
) == SSA_NAME
&& gimple_vuse (stmt
))
645 else if (gimple_vdef (stmt
)
646 && (TREE_CODE (*rhs
) == SSA_NAME
|| is_gimple_min_invariant (*rhs
)))
655 /* Returns the memory reference contained in STMT. */
658 mem_ref_in_stmt (gimple stmt
)
661 tree
*mem
= simple_mem_ref_in_stmt (stmt
, &store
);
669 hash
= iterative_hash_expr (*mem
, 0);
670 ref
= (mem_ref_p
) htab_find_with_hash (memory_accesses
.refs
, *mem
, hash
);
672 gcc_assert (ref
!= NULL
);
676 /* From a controlling predicate in DOM determine the arguments from
677 the PHI node PHI that are chosen if the predicate evaluates to
678 true and false and store them to *TRUE_ARG_P and *FALSE_ARG_P if
679 they are non-NULL. Returns true if the arguments can be determined,
680 else return false. */
683 extract_true_false_args_from_phi (basic_block dom
, gimple phi
,
684 tree
*true_arg_p
, tree
*false_arg_p
)
686 basic_block bb
= gimple_bb (phi
);
687 edge true_edge
, false_edge
, tem
;
688 tree arg0
= NULL_TREE
, arg1
= NULL_TREE
;
690 /* We have to verify that one edge into the PHI node is dominated
691 by the true edge of the predicate block and the other edge
692 dominated by the false edge. This ensures that the PHI argument
693 we are going to take is completely determined by the path we
694 take from the predicate block.
695 We can only use BB dominance checks below if the destination of
696 the true/false edges are dominated by their edge, thus only
697 have a single predecessor. */
698 extract_true_false_edges_from_block (dom
, &true_edge
, &false_edge
);
699 tem
= EDGE_PRED (bb
, 0);
701 || (single_pred_p (true_edge
->dest
)
702 && (tem
->src
== true_edge
->dest
703 || dominated_by_p (CDI_DOMINATORS
,
704 tem
->src
, true_edge
->dest
))))
705 arg0
= PHI_ARG_DEF (phi
, tem
->dest_idx
);
706 else if (tem
== false_edge
707 || (single_pred_p (false_edge
->dest
)
708 && (tem
->src
== false_edge
->dest
709 || dominated_by_p (CDI_DOMINATORS
,
710 tem
->src
, false_edge
->dest
))))
711 arg1
= PHI_ARG_DEF (phi
, tem
->dest_idx
);
714 tem
= EDGE_PRED (bb
, 1);
716 || (single_pred_p (true_edge
->dest
)
717 && (tem
->src
== true_edge
->dest
718 || dominated_by_p (CDI_DOMINATORS
,
719 tem
->src
, true_edge
->dest
))))
720 arg0
= PHI_ARG_DEF (phi
, tem
->dest_idx
);
721 else if (tem
== false_edge
722 || (single_pred_p (false_edge
->dest
)
723 && (tem
->src
== false_edge
->dest
724 || dominated_by_p (CDI_DOMINATORS
,
725 tem
->src
, false_edge
->dest
))))
726 arg1
= PHI_ARG_DEF (phi
, tem
->dest_idx
);
740 /* Determine the outermost loop to that it is possible to hoist a statement
741 STMT and store it to LIM_DATA (STMT)->max_loop. To do this we determine
742 the outermost loop in that the value computed by STMT is invariant.
743 If MUST_PRESERVE_EXEC is true, additionally choose such a loop that
744 we preserve the fact whether STMT is executed. It also fills other related
745 information to LIM_DATA (STMT).
747 The function returns false if STMT cannot be hoisted outside of the loop it
748 is defined in, and true otherwise. */
751 determine_max_movement (gimple stmt
, bool must_preserve_exec
)
753 basic_block bb
= gimple_bb (stmt
);
754 struct loop
*loop
= bb
->loop_father
;
756 struct lim_aux_data
*lim_data
= get_lim_data (stmt
);
760 if (must_preserve_exec
)
761 level
= ALWAYS_EXECUTED_IN (bb
);
763 level
= superloop_at_depth (loop
, 1);
764 lim_data
->max_loop
= level
;
766 if (gimple_code (stmt
) == GIMPLE_PHI
)
769 unsigned min_cost
= UINT_MAX
;
770 unsigned total_cost
= 0;
771 struct lim_aux_data
*def_data
;
773 /* We will end up promoting dependencies to be unconditionally
774 evaluated. For this reason the PHI cost (and thus the
775 cost we remove from the loop by doing the invariant motion)
776 is that of the cheapest PHI argument dependency chain. */
777 FOR_EACH_PHI_ARG (use_p
, stmt
, iter
, SSA_OP_USE
)
779 val
= USE_FROM_PTR (use_p
);
780 if (TREE_CODE (val
) != SSA_NAME
)
782 if (!add_dependency (val
, lim_data
, loop
, false))
784 def_data
= get_lim_data (SSA_NAME_DEF_STMT (val
));
787 min_cost
= MIN (min_cost
, def_data
->cost
);
788 total_cost
+= def_data
->cost
;
792 lim_data
->cost
+= min_cost
;
794 if (gimple_phi_num_args (stmt
) > 1)
796 basic_block dom
= get_immediate_dominator (CDI_DOMINATORS
, bb
);
798 if (gsi_end_p (gsi_last_bb (dom
)))
800 cond
= gsi_stmt (gsi_last_bb (dom
));
801 if (gimple_code (cond
) != GIMPLE_COND
)
803 /* Verify that this is an extended form of a diamond and
804 the PHI arguments are completely controlled by the
806 if (!extract_true_false_args_from_phi (dom
, stmt
, NULL
, NULL
))
809 /* Fold in dependencies and cost of the condition. */
810 FOR_EACH_SSA_TREE_OPERAND (val
, cond
, iter
, SSA_OP_USE
)
812 if (!add_dependency (val
, lim_data
, loop
, false))
814 def_data
= get_lim_data (SSA_NAME_DEF_STMT (val
));
816 total_cost
+= def_data
->cost
;
819 /* We want to avoid unconditionally executing very expensive
820 operations. As costs for our dependencies cannot be
821 negative just claim we are not invariand for this case.
822 We also are not sure whether the control-flow inside the
824 if (total_cost
- min_cost
>= 2 * LIM_EXPENSIVE
826 && total_cost
/ min_cost
<= 2))
829 /* Assume that the control-flow in the loop will vanish.
830 ??? We should verify this and not artificially increase
831 the cost if that is not the case. */
832 lim_data
->cost
+= stmt_cost (stmt
);
838 FOR_EACH_SSA_TREE_OPERAND (val
, stmt
, iter
, SSA_OP_USE
)
839 if (!add_dependency (val
, lim_data
, loop
, true))
842 if (gimple_vuse (stmt
))
844 mem_ref_p ref
= mem_ref_in_stmt (stmt
);
849 = outermost_indep_loop (lim_data
->max_loop
, loop
, ref
);
850 if (!lim_data
->max_loop
)
855 if ((val
= gimple_vuse (stmt
)) != NULL_TREE
)
857 if (!add_dependency (val
, lim_data
, loop
, false))
863 lim_data
->cost
+= stmt_cost (stmt
);
868 /* Suppose that some statement in ORIG_LOOP is hoisted to the loop LEVEL,
869 and that one of the operands of this statement is computed by STMT.
870 Ensure that STMT (together with all the statements that define its
871 operands) is hoisted at least out of the loop LEVEL. */
874 set_level (gimple stmt
, struct loop
*orig_loop
, struct loop
*level
)
876 struct loop
*stmt_loop
= gimple_bb (stmt
)->loop_father
;
878 struct lim_aux_data
*lim_data
;
880 stmt_loop
= find_common_loop (orig_loop
, stmt_loop
);
881 lim_data
= get_lim_data (stmt
);
882 if (lim_data
!= NULL
&& lim_data
->tgt_loop
!= NULL
)
883 stmt_loop
= find_common_loop (stmt_loop
,
884 loop_outer (lim_data
->tgt_loop
));
885 if (flow_loop_nested_p (stmt_loop
, level
))
888 gcc_assert (level
== lim_data
->max_loop
889 || flow_loop_nested_p (lim_data
->max_loop
, level
));
891 lim_data
->tgt_loop
= level
;
892 for (dep
= lim_data
->depends
; dep
; dep
= dep
->next
)
893 set_level (dep
->stmt
, orig_loop
, level
);
896 /* Determines an outermost loop from that we want to hoist the statement STMT.
897 For now we chose the outermost possible loop. TODO -- use profiling
898 information to set it more sanely. */
901 set_profitable_level (gimple stmt
)
903 set_level (stmt
, gimple_bb (stmt
)->loop_father
, get_lim_data (stmt
)->max_loop
);
906 /* Returns true if STMT is a call that has side effects. */
909 nonpure_call_p (gimple stmt
)
911 if (gimple_code (stmt
) != GIMPLE_CALL
)
914 return gimple_has_side_effects (stmt
);
917 /* Rewrite a/b to a*(1/b). Return the invariant stmt to process. */
920 rewrite_reciprocal (gimple_stmt_iterator
*bsi
)
922 gimple stmt
, stmt1
, stmt2
;
923 tree name
, lhs
, type
;
925 gimple_stmt_iterator gsi
;
927 stmt
= gsi_stmt (*bsi
);
928 lhs
= gimple_assign_lhs (stmt
);
929 type
= TREE_TYPE (lhs
);
931 real_one
= build_one_cst (type
);
933 name
= make_temp_ssa_name (type
, NULL
, "reciptmp");
934 stmt1
= gimple_build_assign_with_ops (RDIV_EXPR
, name
, real_one
,
935 gimple_assign_rhs2 (stmt
));
937 stmt2
= gimple_build_assign_with_ops (MULT_EXPR
, lhs
, name
,
938 gimple_assign_rhs1 (stmt
));
940 /* Replace division stmt with reciprocal and multiply stmts.
941 The multiply stmt is not invariant, so update iterator
942 and avoid rescanning. */
944 gsi_insert_before (bsi
, stmt1
, GSI_NEW_STMT
);
945 gsi_replace (&gsi
, stmt2
, true);
947 /* Continue processing with invariant reciprocal statement. */
951 /* Check if the pattern at *BSI is a bittest of the form
952 (A >> B) & 1 != 0 and in this case rewrite it to A & (1 << B) != 0. */
955 rewrite_bittest (gimple_stmt_iterator
*bsi
)
957 gimple stmt
, use_stmt
, stmt1
, stmt2
;
958 tree lhs
, name
, t
, a
, b
;
961 stmt
= gsi_stmt (*bsi
);
962 lhs
= gimple_assign_lhs (stmt
);
964 /* Verify that the single use of lhs is a comparison against zero. */
965 if (TREE_CODE (lhs
) != SSA_NAME
966 || !single_imm_use (lhs
, &use
, &use_stmt
)
967 || gimple_code (use_stmt
) != GIMPLE_COND
)
969 if (gimple_cond_lhs (use_stmt
) != lhs
970 || (gimple_cond_code (use_stmt
) != NE_EXPR
971 && gimple_cond_code (use_stmt
) != EQ_EXPR
)
972 || !integer_zerop (gimple_cond_rhs (use_stmt
)))
975 /* Get at the operands of the shift. The rhs is TMP1 & 1. */
976 stmt1
= SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt
));
977 if (gimple_code (stmt1
) != GIMPLE_ASSIGN
)
980 /* There is a conversion in between possibly inserted by fold. */
981 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt1
)))
983 t
= gimple_assign_rhs1 (stmt1
);
984 if (TREE_CODE (t
) != SSA_NAME
985 || !has_single_use (t
))
987 stmt1
= SSA_NAME_DEF_STMT (t
);
988 if (gimple_code (stmt1
) != GIMPLE_ASSIGN
)
992 /* Verify that B is loop invariant but A is not. Verify that with
993 all the stmt walking we are still in the same loop. */
994 if (gimple_assign_rhs_code (stmt1
) != RSHIFT_EXPR
995 || loop_containing_stmt (stmt1
) != loop_containing_stmt (stmt
))
998 a
= gimple_assign_rhs1 (stmt1
);
999 b
= gimple_assign_rhs2 (stmt1
);
1001 if (outermost_invariant_loop (b
, loop_containing_stmt (stmt1
)) != NULL
1002 && outermost_invariant_loop (a
, loop_containing_stmt (stmt1
)) == NULL
)
1004 gimple_stmt_iterator rsi
;
1007 t
= fold_build2 (LSHIFT_EXPR
, TREE_TYPE (a
),
1008 build_int_cst (TREE_TYPE (a
), 1), b
);
1009 name
= make_temp_ssa_name (TREE_TYPE (a
), NULL
, "shifttmp");
1010 stmt1
= gimple_build_assign (name
, t
);
1013 t
= fold_build2 (BIT_AND_EXPR
, TREE_TYPE (a
), a
, name
);
1014 name
= make_temp_ssa_name (TREE_TYPE (a
), NULL
, "shifttmp");
1015 stmt2
= gimple_build_assign (name
, t
);
1017 /* Replace the SSA_NAME we compare against zero. Adjust
1018 the type of zero accordingly. */
1019 SET_USE (use
, name
);
1020 gimple_cond_set_rhs (use_stmt
, build_int_cst_type (TREE_TYPE (name
), 0));
1022 /* Don't use gsi_replace here, none of the new assignments sets
1023 the variable originally set in stmt. Move bsi to stmt1, and
1024 then remove the original stmt, so that we get a chance to
1025 retain debug info for it. */
1027 gsi_insert_before (bsi
, stmt1
, GSI_NEW_STMT
);
1028 gsi_insert_before (&rsi
, stmt2
, GSI_SAME_STMT
);
1029 gsi_remove (&rsi
, true);
1038 /* Determine the outermost loops in that statements in basic block BB are
1039 invariant, and record them to the LIM_DATA associated with the statements.
1040 Callback for walk_dominator_tree. */
1043 determine_invariantness_stmt (struct dom_walk_data
*dw_data ATTRIBUTE_UNUSED
,
1047 gimple_stmt_iterator bsi
;
1049 bool maybe_never
= ALWAYS_EXECUTED_IN (bb
) == NULL
;
1050 struct loop
*outermost
= ALWAYS_EXECUTED_IN (bb
);
1051 struct lim_aux_data
*lim_data
;
1053 if (!loop_outer (bb
->loop_father
))
1056 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1057 fprintf (dump_file
, "Basic block %d (loop %d -- depth %d):\n\n",
1058 bb
->index
, bb
->loop_father
->num
, loop_depth (bb
->loop_father
));
1060 /* Look at PHI nodes, but only if there is at most two.
1061 ??? We could relax this further by post-processing the inserted
1062 code and transforming adjacent cond-exprs with the same predicate
1063 to control flow again. */
1064 bsi
= gsi_start_phis (bb
);
1065 if (!gsi_end_p (bsi
)
1066 && ((gsi_next (&bsi
), gsi_end_p (bsi
))
1067 || (gsi_next (&bsi
), gsi_end_p (bsi
))))
1068 for (bsi
= gsi_start_phis (bb
); !gsi_end_p (bsi
); gsi_next (&bsi
))
1070 stmt
= gsi_stmt (bsi
);
1072 pos
= movement_possibility (stmt
);
1073 if (pos
== MOVE_IMPOSSIBLE
)
1076 lim_data
= init_lim_data (stmt
);
1077 lim_data
->always_executed_in
= outermost
;
1079 if (!determine_max_movement (stmt
, false))
1081 lim_data
->max_loop
= NULL
;
1085 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1087 print_gimple_stmt (dump_file
, stmt
, 2, 0);
1088 fprintf (dump_file
, " invariant up to level %d, cost %d.\n\n",
1089 loop_depth (lim_data
->max_loop
),
1093 if (lim_data
->cost
>= LIM_EXPENSIVE
)
1094 set_profitable_level (stmt
);
1097 for (bsi
= gsi_start_bb (bb
); !gsi_end_p (bsi
); gsi_next (&bsi
))
1099 stmt
= gsi_stmt (bsi
);
1101 pos
= movement_possibility (stmt
);
1102 if (pos
== MOVE_IMPOSSIBLE
)
1104 if (nonpure_call_p (stmt
))
1109 /* Make sure to note always_executed_in for stores to make
1110 store-motion work. */
1111 else if (stmt_makes_single_store (stmt
))
1113 struct lim_aux_data
*lim_data
= init_lim_data (stmt
);
1114 lim_data
->always_executed_in
= outermost
;
1119 if (is_gimple_assign (stmt
)
1120 && (get_gimple_rhs_class (gimple_assign_rhs_code (stmt
))
1121 == GIMPLE_BINARY_RHS
))
1123 tree op0
= gimple_assign_rhs1 (stmt
);
1124 tree op1
= gimple_assign_rhs2 (stmt
);
1125 struct loop
*ol1
= outermost_invariant_loop (op1
,
1126 loop_containing_stmt (stmt
));
1128 /* If divisor is invariant, convert a/b to a*(1/b), allowing reciprocal
1129 to be hoisted out of loop, saving expensive divide. */
1130 if (pos
== MOVE_POSSIBLE
1131 && gimple_assign_rhs_code (stmt
) == RDIV_EXPR
1132 && flag_unsafe_math_optimizations
1133 && !flag_trapping_math
1135 && outermost_invariant_loop (op0
, ol1
) == NULL
)
1136 stmt
= rewrite_reciprocal (&bsi
);
1138 /* If the shift count is invariant, convert (A >> B) & 1 to
1139 A & (1 << B) allowing the bit mask to be hoisted out of the loop
1140 saving an expensive shift. */
1141 if (pos
== MOVE_POSSIBLE
1142 && gimple_assign_rhs_code (stmt
) == BIT_AND_EXPR
1143 && integer_onep (op1
)
1144 && TREE_CODE (op0
) == SSA_NAME
1145 && has_single_use (op0
))
1146 stmt
= rewrite_bittest (&bsi
);
1149 lim_data
= init_lim_data (stmt
);
1150 lim_data
->always_executed_in
= outermost
;
1152 if (maybe_never
&& pos
== MOVE_PRESERVE_EXECUTION
)
1155 if (!determine_max_movement (stmt
, pos
== MOVE_PRESERVE_EXECUTION
))
1157 lim_data
->max_loop
= NULL
;
1161 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1163 print_gimple_stmt (dump_file
, stmt
, 2, 0);
1164 fprintf (dump_file
, " invariant up to level %d, cost %d.\n\n",
1165 loop_depth (lim_data
->max_loop
),
1169 if (lim_data
->cost
>= LIM_EXPENSIVE
)
1170 set_profitable_level (stmt
);
1174 /* For each statement determines the outermost loop in that it is invariant,
1175 statements on whose motion it depends and the cost of the computation.
1176 This information is stored to the LIM_DATA structure associated with
1180 determine_invariantness (void)
1182 struct dom_walk_data walk_data
;
1184 memset (&walk_data
, 0, sizeof (struct dom_walk_data
));
1185 walk_data
.dom_direction
= CDI_DOMINATORS
;
1186 walk_data
.before_dom_children
= determine_invariantness_stmt
;
1188 init_walk_dominator_tree (&walk_data
);
1189 walk_dominator_tree (&walk_data
, ENTRY_BLOCK_PTR
);
1190 fini_walk_dominator_tree (&walk_data
);
1193 /* Hoist the statements in basic block BB out of the loops prescribed by
1194 data stored in LIM_DATA structures associated with each statement. Callback
1195 for walk_dominator_tree. */
1198 move_computations_stmt (struct dom_walk_data
*dw_data
,
1202 gimple_stmt_iterator bsi
;
1205 struct lim_aux_data
*lim_data
;
1207 if (!loop_outer (bb
->loop_father
))
1210 for (bsi
= gsi_start_phis (bb
); !gsi_end_p (bsi
); )
1213 stmt
= gsi_stmt (bsi
);
1215 lim_data
= get_lim_data (stmt
);
1216 if (lim_data
== NULL
)
1222 cost
= lim_data
->cost
;
1223 level
= lim_data
->tgt_loop
;
1224 clear_lim_data (stmt
);
1232 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1234 fprintf (dump_file
, "Moving PHI node\n");
1235 print_gimple_stmt (dump_file
, stmt
, 0, 0);
1236 fprintf (dump_file
, "(cost %u) out of loop %d.\n\n",
1240 if (gimple_phi_num_args (stmt
) == 1)
1242 tree arg
= PHI_ARG_DEF (stmt
, 0);
1243 new_stmt
= gimple_build_assign_with_ops (TREE_CODE (arg
),
1244 gimple_phi_result (stmt
),
1246 SSA_NAME_DEF_STMT (gimple_phi_result (stmt
)) = new_stmt
;
1250 basic_block dom
= get_immediate_dominator (CDI_DOMINATORS
, bb
);
1251 gimple cond
= gsi_stmt (gsi_last_bb (dom
));
1252 tree arg0
= NULL_TREE
, arg1
= NULL_TREE
, t
;
1253 /* Get the PHI arguments corresponding to the true and false
1255 extract_true_false_args_from_phi (dom
, stmt
, &arg0
, &arg1
);
1256 gcc_assert (arg0
&& arg1
);
1257 t
= build2 (gimple_cond_code (cond
), boolean_type_node
,
1258 gimple_cond_lhs (cond
), gimple_cond_rhs (cond
));
1259 new_stmt
= gimple_build_assign_with_ops (COND_EXPR
,
1260 gimple_phi_result (stmt
),
1262 SSA_NAME_DEF_STMT (gimple_phi_result (stmt
)) = new_stmt
;
1263 *((unsigned int *)(dw_data
->global_data
)) |= TODO_cleanup_cfg
;
1265 gsi_insert_on_edge (loop_preheader_edge (level
), new_stmt
);
1266 remove_phi_node (&bsi
, false);
1269 for (bsi
= gsi_start_bb (bb
); !gsi_end_p (bsi
); )
1273 stmt
= gsi_stmt (bsi
);
1275 lim_data
= get_lim_data (stmt
);
1276 if (lim_data
== NULL
)
1282 cost
= lim_data
->cost
;
1283 level
= lim_data
->tgt_loop
;
1284 clear_lim_data (stmt
);
1292 /* We do not really want to move conditionals out of the loop; we just
1293 placed it here to force its operands to be moved if necessary. */
1294 if (gimple_code (stmt
) == GIMPLE_COND
)
1297 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1299 fprintf (dump_file
, "Moving statement\n");
1300 print_gimple_stmt (dump_file
, stmt
, 0, 0);
1301 fprintf (dump_file
, "(cost %u) out of loop %d.\n\n",
1305 e
= loop_preheader_edge (level
);
1306 gcc_assert (!gimple_vdef (stmt
));
1307 if (gimple_vuse (stmt
))
1309 /* The new VUSE is the one from the virtual PHI in the loop
1310 header or the one already present. */
1311 gimple_stmt_iterator gsi2
;
1312 for (gsi2
= gsi_start_phis (e
->dest
);
1313 !gsi_end_p (gsi2
); gsi_next (&gsi2
))
1315 gimple phi
= gsi_stmt (gsi2
);
1316 if (virtual_operand_p (gimple_phi_result (phi
)))
1318 gimple_set_vuse (stmt
, PHI_ARG_DEF_FROM_EDGE (phi
, e
));
1323 gsi_remove (&bsi
, false);
1324 gsi_insert_on_edge (e
, stmt
);
1328 /* Hoist the statements out of the loops prescribed by data stored in
1329 LIM_DATA structures associated with each statement.*/
1332 move_computations (void)
1334 struct dom_walk_data walk_data
;
1335 unsigned int todo
= 0;
1337 memset (&walk_data
, 0, sizeof (struct dom_walk_data
));
1338 walk_data
.global_data
= &todo
;
1339 walk_data
.dom_direction
= CDI_DOMINATORS
;
1340 walk_data
.before_dom_children
= move_computations_stmt
;
1342 init_walk_dominator_tree (&walk_data
);
1343 walk_dominator_tree (&walk_data
, ENTRY_BLOCK_PTR
);
1344 fini_walk_dominator_tree (&walk_data
);
1346 gsi_commit_edge_inserts ();
1347 if (need_ssa_update_p (cfun
))
1348 rewrite_into_loop_closed_ssa (NULL
, TODO_update_ssa
);
1353 /* Checks whether the statement defining variable *INDEX can be hoisted
1354 out of the loop passed in DATA. Callback for for_each_index. */
1357 may_move_till (tree ref
, tree
*index
, void *data
)
1359 struct loop
*loop
= (struct loop
*) data
, *max_loop
;
1361 /* If REF is an array reference, check also that the step and the lower
1362 bound is invariant in LOOP. */
1363 if (TREE_CODE (ref
) == ARRAY_REF
)
1365 tree step
= TREE_OPERAND (ref
, 3);
1366 tree lbound
= TREE_OPERAND (ref
, 2);
1368 max_loop
= outermost_invariant_loop (step
, loop
);
1372 max_loop
= outermost_invariant_loop (lbound
, loop
);
1377 max_loop
= outermost_invariant_loop (*index
, loop
);
1384 /* If OP is SSA NAME, force the statement that defines it to be
1385 moved out of the LOOP. ORIG_LOOP is the loop in that EXPR is used. */
1388 force_move_till_op (tree op
, struct loop
*orig_loop
, struct loop
*loop
)
1393 || is_gimple_min_invariant (op
))
1396 gcc_assert (TREE_CODE (op
) == SSA_NAME
);
1398 stmt
= SSA_NAME_DEF_STMT (op
);
1399 if (gimple_nop_p (stmt
))
1402 set_level (stmt
, orig_loop
, loop
);
1405 /* Forces statement defining invariants in REF (and *INDEX) to be moved out of
1406 the LOOP. The reference REF is used in the loop ORIG_LOOP. Callback for
1412 struct loop
*orig_loop
;
1416 force_move_till (tree ref
, tree
*index
, void *data
)
1418 struct fmt_data
*fmt_data
= (struct fmt_data
*) data
;
1420 if (TREE_CODE (ref
) == ARRAY_REF
)
1422 tree step
= TREE_OPERAND (ref
, 3);
1423 tree lbound
= TREE_OPERAND (ref
, 2);
1425 force_move_till_op (step
, fmt_data
->orig_loop
, fmt_data
->loop
);
1426 force_move_till_op (lbound
, fmt_data
->orig_loop
, fmt_data
->loop
);
1429 force_move_till_op (*index
, fmt_data
->orig_loop
, fmt_data
->loop
);
1434 /* A hash function for struct mem_ref object OBJ. */
1437 memref_hash (const void *obj
)
1439 const struct mem_ref
*const mem
= (const struct mem_ref
*) obj
;
1444 /* An equality function for struct mem_ref object OBJ1 with
1445 memory reference OBJ2. */
1448 memref_eq (const void *obj1
, const void *obj2
)
1450 const struct mem_ref
*const mem1
= (const struct mem_ref
*) obj1
;
1452 return operand_equal_p (mem1
->mem
, (const_tree
) obj2
, 0);
1455 /* Releases list of memory reference locations ACCS. */
1458 free_mem_ref_locs (mem_ref_locs_p accs
)
1466 FOR_EACH_VEC_ELT (accs
->locs
, i
, loc
)
1468 accs
->locs
.release ();
1472 /* A function to free the mem_ref object OBJ. */
1475 memref_free (struct mem_ref
*mem
)
1478 mem_ref_locs_p accs
;
1480 FOR_EACH_VEC_ELT (mem
->accesses_in_loop
, i
, accs
)
1481 free_mem_ref_locs (accs
);
1482 mem
->accesses_in_loop
.release ();
1487 /* Allocates and returns a memory reference description for MEM whose hash
1488 value is HASH and id is ID. */
1491 mem_ref_alloc (tree mem
, unsigned hash
, unsigned id
)
1493 mem_ref_p ref
= XNEW (struct mem_ref
);
1497 ref
->stored
= BITMAP_ALLOC (&lim_bitmap_obstack
);
1498 ref
->indep_loop
= BITMAP_ALLOC (&lim_bitmap_obstack
);
1499 ref
->dep_loop
= BITMAP_ALLOC (&lim_bitmap_obstack
);
1500 ref
->indep_ref
= BITMAP_ALLOC (&lim_bitmap_obstack
);
1501 ref
->dep_ref
= BITMAP_ALLOC (&lim_bitmap_obstack
);
1502 ref
->accesses_in_loop
.create (0);
1507 /* Allocates and returns the new list of locations. */
1509 static mem_ref_locs_p
1510 mem_ref_locs_alloc (void)
1512 mem_ref_locs_p accs
= XNEW (struct mem_ref_locs
);
1513 accs
->locs
.create (0);
1517 /* Records memory reference location *LOC in LOOP to the memory reference
1518 description REF. The reference occurs in statement STMT. */
1521 record_mem_ref_loc (mem_ref_p ref
, struct loop
*loop
, gimple stmt
, tree
*loc
)
1523 mem_ref_loc_p aref
= XNEW (struct mem_ref_loc
);
1524 mem_ref_locs_p accs
;
1525 bitmap ril
= memory_accesses
.refs_in_loop
[loop
->num
];
1527 if (ref
->accesses_in_loop
.length ()
1528 <= (unsigned) loop
->num
)
1529 ref
->accesses_in_loop
.safe_grow_cleared (loop
->num
+ 1);
1530 accs
= ref
->accesses_in_loop
[loop
->num
];
1533 accs
= mem_ref_locs_alloc ();
1534 ref
->accesses_in_loop
[loop
->num
] = accs
;
1540 accs
->locs
.safe_push (aref
);
1541 bitmap_set_bit (ril
, ref
->id
);
1544 /* Marks reference REF as stored in LOOP. */
1547 mark_ref_stored (mem_ref_p ref
, struct loop
*loop
)
1550 loop
!= current_loops
->tree_root
1551 && !bitmap_bit_p (ref
->stored
, loop
->num
);
1552 loop
= loop_outer (loop
))
1553 bitmap_set_bit (ref
->stored
, loop
->num
);
1556 /* Gathers memory references in statement STMT in LOOP, storing the
1557 information about them in the memory_accesses structure. Marks
1558 the vops accessed through unrecognized statements there as
1562 gather_mem_refs_stmt (struct loop
*loop
, gimple stmt
)
1571 if (!gimple_vuse (stmt
))
1574 mem
= simple_mem_ref_in_stmt (stmt
, &is_stored
);
1577 id
= memory_accesses
.refs_list
.length ();
1578 ref
= mem_ref_alloc (error_mark_node
, 0, id
);
1579 memory_accesses
.refs_list
.safe_push (ref
);
1580 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1582 fprintf (dump_file
, "Unanalyzed memory reference %u: ", id
);
1583 print_gimple_stmt (dump_file
, stmt
, 0, TDF_SLIM
);
1585 if (gimple_vdef (stmt
))
1586 mark_ref_stored (ref
, loop
);
1587 record_mem_ref_loc (ref
, loop
, stmt
, mem
);
1591 hash
= iterative_hash_expr (*mem
, 0);
1592 slot
= htab_find_slot_with_hash (memory_accesses
.refs
, *mem
, hash
, INSERT
);
1596 ref
= (mem_ref_p
) *slot
;
1601 id
= memory_accesses
.refs_list
.length ();
1602 ref
= mem_ref_alloc (*mem
, hash
, id
);
1603 memory_accesses
.refs_list
.safe_push (ref
);
1606 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1608 fprintf (dump_file
, "Memory reference %u: ", id
);
1609 print_generic_expr (dump_file
, ref
->mem
, TDF_SLIM
);
1610 fprintf (dump_file
, "\n");
1615 mark_ref_stored (ref
, loop
);
1617 record_mem_ref_loc (ref
, loop
, stmt
, mem
);
1621 /* Gathers memory references in loops. */
1624 gather_mem_refs_in_loops (void)
1626 gimple_stmt_iterator bsi
;
1630 bitmap lrefs
, alrefs
, alrefso
;
1634 loop
= bb
->loop_father
;
1635 if (loop
== current_loops
->tree_root
)
1638 for (bsi
= gsi_start_bb (bb
); !gsi_end_p (bsi
); gsi_next (&bsi
))
1639 gather_mem_refs_stmt (loop
, gsi_stmt (bsi
));
1642 /* Propagate the information about accessed memory references up
1643 the loop hierarchy. */
1644 FOR_EACH_LOOP (li
, loop
, LI_FROM_INNERMOST
)
1646 lrefs
= memory_accesses
.refs_in_loop
[loop
->num
];
1647 alrefs
= memory_accesses
.all_refs_in_loop
[loop
->num
];
1648 bitmap_ior_into (alrefs
, lrefs
);
1650 if (loop_outer (loop
) == current_loops
->tree_root
)
1653 alrefso
= memory_accesses
.all_refs_in_loop
[loop_outer (loop
)->num
];
1654 bitmap_ior_into (alrefso
, alrefs
);
1658 /* Create a mapping from virtual operands to references that touch them
1662 create_vop_ref_mapping_loop (struct loop
*loop
)
1664 bitmap refs
= memory_accesses
.refs_in_loop
[loop
->num
];
1670 EXECUTE_IF_SET_IN_BITMAP (refs
, 0, i
, bi
)
1672 ref
= memory_accesses
.refs_list
[i
];
1673 for (sloop
= loop
; sloop
!= current_loops
->tree_root
;
1674 sloop
= loop_outer (sloop
))
1675 if (bitmap_bit_p (ref
->stored
, loop
->num
))
1678 = memory_accesses
.all_refs_stored_in_loop
[sloop
->num
];
1679 bitmap_set_bit (refs_stored
, ref
->id
);
1684 /* For each non-clobbered virtual operand and each loop, record the memory
1685 references in this loop that touch the operand. */
1688 create_vop_ref_mapping (void)
1693 FOR_EACH_LOOP (li
, loop
, 0)
1695 create_vop_ref_mapping_loop (loop
);
1699 /* Gathers information about memory accesses in the loops. */
1702 analyze_memory_references (void)
1707 memory_accesses
.refs
= htab_create (100, memref_hash
, memref_eq
, NULL
);
1708 memory_accesses
.refs_list
.create (0);
1709 memory_accesses
.refs_in_loop
.create (number_of_loops ());
1710 memory_accesses
.all_refs_in_loop
.create (number_of_loops ());
1711 memory_accesses
.all_refs_stored_in_loop
.create (number_of_loops ());
1713 for (i
= 0; i
< number_of_loops (); i
++)
1715 empty
= BITMAP_ALLOC (&lim_bitmap_obstack
);
1716 memory_accesses
.refs_in_loop
.quick_push (empty
);
1717 empty
= BITMAP_ALLOC (&lim_bitmap_obstack
);
1718 memory_accesses
.all_refs_in_loop
.quick_push (empty
);
1719 empty
= BITMAP_ALLOC (&lim_bitmap_obstack
);
1720 memory_accesses
.all_refs_stored_in_loop
.quick_push (empty
);
1723 memory_accesses
.ttae_cache
= NULL
;
1725 gather_mem_refs_in_loops ();
1726 create_vop_ref_mapping ();
1729 /* Returns true if MEM1 and MEM2 may alias. TTAE_CACHE is used as a cache in
1730 tree_to_aff_combination_expand. */
1733 mem_refs_may_alias_p (tree mem1
, tree mem2
, struct pointer_map_t
**ttae_cache
)
1735 /* Perform BASE + OFFSET analysis -- if MEM1 and MEM2 are based on the same
1736 object and their offset differ in such a way that the locations cannot
1737 overlap, then they cannot alias. */
1738 double_int size1
, size2
;
1739 aff_tree off1
, off2
;
1741 /* Perform basic offset and type-based disambiguation. */
1742 if (!refs_may_alias_p (mem1
, mem2
))
1745 /* The expansion of addresses may be a bit expensive, thus we only do
1746 the check at -O2 and higher optimization levels. */
1750 get_inner_reference_aff (mem1
, &off1
, &size1
);
1751 get_inner_reference_aff (mem2
, &off2
, &size2
);
1752 aff_combination_expand (&off1
, ttae_cache
);
1753 aff_combination_expand (&off2
, ttae_cache
);
1754 aff_combination_scale (&off1
, double_int_minus_one
);
1755 aff_combination_add (&off2
, &off1
);
1757 if (aff_comb_cannot_overlap_p (&off2
, size1
, size2
))
1763 /* Rewrites location LOC by TMP_VAR. */
1766 rewrite_mem_ref_loc (mem_ref_loc_p loc
, tree tmp_var
)
1768 *loc
->ref
= tmp_var
;
1769 update_stmt (loc
->stmt
);
1772 /* Adds all locations of REF in LOOP and its subloops to LOCS. */
1775 get_all_locs_in_loop (struct loop
*loop
, mem_ref_p ref
,
1776 vec
<mem_ref_loc_p
> *locs
)
1778 mem_ref_locs_p accs
;
1781 bitmap refs
= memory_accesses
.all_refs_in_loop
[loop
->num
];
1782 struct loop
*subloop
;
1784 if (!bitmap_bit_p (refs
, ref
->id
))
1787 if (ref
->accesses_in_loop
.length ()
1788 > (unsigned) loop
->num
)
1790 accs
= ref
->accesses_in_loop
[loop
->num
];
1793 FOR_EACH_VEC_ELT (accs
->locs
, i
, loc
)
1794 locs
->safe_push (loc
);
1798 for (subloop
= loop
->inner
; subloop
!= NULL
; subloop
= subloop
->next
)
1799 get_all_locs_in_loop (subloop
, ref
, locs
);
1802 /* Rewrites all references to REF in LOOP by variable TMP_VAR. */
1805 rewrite_mem_refs (struct loop
*loop
, mem_ref_p ref
, tree tmp_var
)
1809 vec
<mem_ref_loc_p
> locs
= vNULL
;
1811 get_all_locs_in_loop (loop
, ref
, &locs
);
1812 FOR_EACH_VEC_ELT (locs
, i
, loc
)
1813 rewrite_mem_ref_loc (loc
, tmp_var
);
1817 /* The name and the length of the currently generated variable
1819 #define MAX_LSM_NAME_LENGTH 40
1820 static char lsm_tmp_name
[MAX_LSM_NAME_LENGTH
+ 1];
1821 static int lsm_tmp_name_length
;
1823 /* Adds S to lsm_tmp_name. */
1826 lsm_tmp_name_add (const char *s
)
1828 int l
= strlen (s
) + lsm_tmp_name_length
;
1829 if (l
> MAX_LSM_NAME_LENGTH
)
1832 strcpy (lsm_tmp_name
+ lsm_tmp_name_length
, s
);
1833 lsm_tmp_name_length
= l
;
1836 /* Stores the name for temporary variable that replaces REF to
1840 gen_lsm_tmp_name (tree ref
)
1844 switch (TREE_CODE (ref
))
1847 case TARGET_MEM_REF
:
1848 gen_lsm_tmp_name (TREE_OPERAND (ref
, 0));
1849 lsm_tmp_name_add ("_");
1853 gen_lsm_tmp_name (TREE_OPERAND (ref
, 0));
1857 case VIEW_CONVERT_EXPR
:
1858 case ARRAY_RANGE_REF
:
1859 gen_lsm_tmp_name (TREE_OPERAND (ref
, 0));
1863 gen_lsm_tmp_name (TREE_OPERAND (ref
, 0));
1864 lsm_tmp_name_add ("_RE");
1868 gen_lsm_tmp_name (TREE_OPERAND (ref
, 0));
1869 lsm_tmp_name_add ("_IM");
1873 gen_lsm_tmp_name (TREE_OPERAND (ref
, 0));
1874 lsm_tmp_name_add ("_");
1875 name
= get_name (TREE_OPERAND (ref
, 1));
1878 lsm_tmp_name_add (name
);
1882 gen_lsm_tmp_name (TREE_OPERAND (ref
, 0));
1883 lsm_tmp_name_add ("_I");
1889 name
= get_name (ref
);
1892 lsm_tmp_name_add (name
);
1896 lsm_tmp_name_add ("S");
1900 lsm_tmp_name_add ("R");
1912 /* Determines name for temporary variable that replaces REF.
1913 The name is accumulated into the lsm_tmp_name variable.
1914 N is added to the name of the temporary. */
1917 get_lsm_tmp_name (tree ref
, unsigned n
)
1921 lsm_tmp_name_length
= 0;
1922 gen_lsm_tmp_name (ref
);
1923 lsm_tmp_name_add ("_lsm");
1928 lsm_tmp_name_add (ns
);
1930 return lsm_tmp_name
;
1933 struct prev_flag_edges
{
1934 /* Edge to insert new flag comparison code. */
1935 edge append_cond_position
;
1937 /* Edge for fall through from previous flag comparison. */
1938 edge last_cond_fallthru
;
1941 /* Helper function for execute_sm. Emit code to store TMP_VAR into
1944 The store is only done if MEM has changed. We do this so no
1945 changes to MEM occur on code paths that did not originally store
1948 The common case for execute_sm will transform:
1968 This function will generate:
1987 execute_sm_if_changed (edge ex
, tree mem
, tree tmp_var
, tree flag
)
1989 basic_block new_bb
, then_bb
, old_dest
;
1990 bool loop_has_only_one_exit
;
1991 edge then_old_edge
, orig_ex
= ex
;
1992 gimple_stmt_iterator gsi
;
1994 struct prev_flag_edges
*prev_edges
= (struct prev_flag_edges
*) ex
->aux
;
1996 /* ?? Insert store after previous store if applicable. See note
1999 ex
= prev_edges
->append_cond_position
;
2001 loop_has_only_one_exit
= single_pred_p (ex
->dest
);
2003 if (loop_has_only_one_exit
)
2004 ex
= split_block_after_labels (ex
->dest
);
2006 old_dest
= ex
->dest
;
2007 new_bb
= split_edge (ex
);
2008 then_bb
= create_empty_bb (new_bb
);
2009 if (current_loops
&& new_bb
->loop_father
)
2010 add_bb_to_loop (then_bb
, new_bb
->loop_father
);
2012 gsi
= gsi_start_bb (new_bb
);
2013 stmt
= gimple_build_cond (NE_EXPR
, flag
, boolean_false_node
,
2014 NULL_TREE
, NULL_TREE
);
2015 gsi_insert_after (&gsi
, stmt
, GSI_CONTINUE_LINKING
);
2017 gsi
= gsi_start_bb (then_bb
);
2018 /* Insert actual store. */
2019 stmt
= gimple_build_assign (unshare_expr (mem
), tmp_var
);
2020 gsi_insert_after (&gsi
, stmt
, GSI_CONTINUE_LINKING
);
2022 make_edge (new_bb
, then_bb
, EDGE_TRUE_VALUE
);
2023 make_edge (new_bb
, old_dest
, EDGE_FALSE_VALUE
);
2024 then_old_edge
= make_edge (then_bb
, old_dest
, EDGE_FALLTHRU
);
2026 set_immediate_dominator (CDI_DOMINATORS
, then_bb
, new_bb
);
2030 basic_block prevbb
= prev_edges
->last_cond_fallthru
->src
;
2031 redirect_edge_succ (prev_edges
->last_cond_fallthru
, new_bb
);
2032 set_immediate_dominator (CDI_DOMINATORS
, new_bb
, prevbb
);
2033 set_immediate_dominator (CDI_DOMINATORS
, old_dest
,
2034 recompute_dominator (CDI_DOMINATORS
, old_dest
));
2037 /* ?? Because stores may alias, they must happen in the exact
2038 sequence they originally happened. Save the position right after
2039 the (_lsm) store we just created so we can continue appending after
2040 it and maintain the original order. */
2042 struct prev_flag_edges
*p
;
2045 orig_ex
->aux
= NULL
;
2046 alloc_aux_for_edge (orig_ex
, sizeof (struct prev_flag_edges
));
2047 p
= (struct prev_flag_edges
*) orig_ex
->aux
;
2048 p
->append_cond_position
= then_old_edge
;
2049 p
->last_cond_fallthru
= find_edge (new_bb
, old_dest
);
2050 orig_ex
->aux
= (void *) p
;
2053 if (!loop_has_only_one_exit
)
2054 for (gsi
= gsi_start_phis (old_dest
); !gsi_end_p (gsi
); gsi_next (&gsi
))
2056 gimple phi
= gsi_stmt (gsi
);
2059 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
2060 if (gimple_phi_arg_edge (phi
, i
)->src
== new_bb
)
2062 tree arg
= gimple_phi_arg_def (phi
, i
);
2063 add_phi_arg (phi
, arg
, then_old_edge
, UNKNOWN_LOCATION
);
2067 /* Remove the original fall through edge. This was the
2068 single_succ_edge (new_bb). */
2069 EDGE_SUCC (new_bb
, 0)->flags
&= ~EDGE_FALLTHRU
;
2072 /* Helper function for execute_sm. On every location where REF is
2073 set, set an appropriate flag indicating the store. */
2076 execute_sm_if_changed_flag_set (struct loop
*loop
, mem_ref_p ref
)
2081 vec
<mem_ref_loc_p
> locs
= vNULL
;
2082 char *str
= get_lsm_tmp_name (ref
->mem
, ~0);
2084 lsm_tmp_name_add ("_flag");
2085 flag
= create_tmp_reg (boolean_type_node
, str
);
2086 get_all_locs_in_loop (loop
, ref
, &locs
);
2087 FOR_EACH_VEC_ELT (locs
, i
, loc
)
2089 gimple_stmt_iterator gsi
;
2092 /* Only set the flag for writes. */
2093 if (is_gimple_assign (loc
->stmt
)
2094 && gimple_assign_lhs_ptr (loc
->stmt
) == loc
->ref
)
2096 gsi
= gsi_for_stmt (loc
->stmt
);
2097 stmt
= gimple_build_assign (flag
, boolean_true_node
);
2098 gsi_insert_after (&gsi
, stmt
, GSI_CONTINUE_LINKING
);
2105 /* Executes store motion of memory reference REF from LOOP.
2106 Exits from the LOOP are stored in EXITS. The initialization of the
2107 temporary variable is put to the preheader of the loop, and assignments
2108 to the reference from the temporary variable are emitted to exits. */
2111 execute_sm (struct loop
*loop
, vec
<edge
> exits
, mem_ref_p ref
)
2113 tree tmp_var
, store_flag
;
2116 struct fmt_data fmt_data
;
2117 edge ex
, latch_edge
;
2118 struct lim_aux_data
*lim_data
;
2119 bool multi_threaded_model_p
= false;
2121 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2123 fprintf (dump_file
, "Executing store motion of ");
2124 print_generic_expr (dump_file
, ref
->mem
, 0);
2125 fprintf (dump_file
, " from loop %d\n", loop
->num
);
2128 tmp_var
= create_tmp_reg (TREE_TYPE (ref
->mem
),
2129 get_lsm_tmp_name (ref
->mem
, ~0));
2131 fmt_data
.loop
= loop
;
2132 fmt_data
.orig_loop
= loop
;
2133 for_each_index (&ref
->mem
, force_move_till
, &fmt_data
);
2135 if (block_in_transaction (loop_preheader_edge (loop
)->src
)
2136 || !PARAM_VALUE (PARAM_ALLOW_STORE_DATA_RACES
))
2137 multi_threaded_model_p
= true;
2139 if (multi_threaded_model_p
)
2140 store_flag
= execute_sm_if_changed_flag_set (loop
, ref
);
2142 rewrite_mem_refs (loop
, ref
, tmp_var
);
2144 /* Emit the load code into the latch, so that we are sure it will
2145 be processed after all dependencies. */
2146 latch_edge
= loop_latch_edge (loop
);
2148 /* FIXME/TODO: For the multi-threaded variant, we could avoid this
2149 load altogether, since the store is predicated by a flag. We
2150 could, do the load only if it was originally in the loop. */
2151 load
= gimple_build_assign (tmp_var
, unshare_expr (ref
->mem
));
2152 lim_data
= init_lim_data (load
);
2153 lim_data
->max_loop
= loop
;
2154 lim_data
->tgt_loop
= loop
;
2155 gsi_insert_on_edge (latch_edge
, load
);
2157 if (multi_threaded_model_p
)
2159 load
= gimple_build_assign (store_flag
, boolean_false_node
);
2160 lim_data
= init_lim_data (load
);
2161 lim_data
->max_loop
= loop
;
2162 lim_data
->tgt_loop
= loop
;
2163 gsi_insert_on_edge (latch_edge
, load
);
2166 /* Sink the store to every exit from the loop. */
2167 FOR_EACH_VEC_ELT (exits
, i
, ex
)
2168 if (!multi_threaded_model_p
)
2171 store
= gimple_build_assign (unshare_expr (ref
->mem
), tmp_var
);
2172 gsi_insert_on_edge (ex
, store
);
2175 execute_sm_if_changed (ex
, ref
->mem
, tmp_var
, store_flag
);
2178 /* Hoists memory references MEM_REFS out of LOOP. EXITS is the list of exit
2179 edges of the LOOP. */
2182 hoist_memory_references (struct loop
*loop
, bitmap mem_refs
,
2189 EXECUTE_IF_SET_IN_BITMAP (mem_refs
, 0, i
, bi
)
2191 ref
= memory_accesses
.refs_list
[i
];
2192 execute_sm (loop
, exits
, ref
);
2196 /* Returns true if REF is always accessed in LOOP. If STORED_P is true
2197 make sure REF is always stored to in LOOP. */
2200 ref_always_accessed_p (struct loop
*loop
, mem_ref_p ref
, bool stored_p
)
2202 vec
<mem_ref_loc_p
> locs
= vNULL
;
2206 struct loop
*must_exec
;
2209 base
= get_base_address (ref
->mem
);
2210 if (INDIRECT_REF_P (base
)
2211 || TREE_CODE (base
) == MEM_REF
)
2212 base
= TREE_OPERAND (base
, 0);
2214 get_all_locs_in_loop (loop
, ref
, &locs
);
2215 FOR_EACH_VEC_ELT (locs
, i
, loc
)
2217 if (!get_lim_data (loc
->stmt
))
2220 /* If we require an always executed store make sure the statement
2221 stores to the reference. */
2225 if (!gimple_get_lhs (loc
->stmt
))
2227 lhs
= get_base_address (gimple_get_lhs (loc
->stmt
));
2230 if (INDIRECT_REF_P (lhs
)
2231 || TREE_CODE (lhs
) == MEM_REF
)
2232 lhs
= TREE_OPERAND (lhs
, 0);
2237 must_exec
= get_lim_data (loc
->stmt
)->always_executed_in
;
2241 if (must_exec
== loop
2242 || flow_loop_nested_p (must_exec
, loop
))
2253 /* Returns true if REF1 and REF2 are independent. */
2256 refs_independent_p (mem_ref_p ref1
, mem_ref_p ref2
)
2259 || bitmap_bit_p (ref1
->indep_ref
, ref2
->id
))
2261 if (bitmap_bit_p (ref1
->dep_ref
, ref2
->id
))
2263 if (!MEM_ANALYZABLE (ref1
)
2264 || !MEM_ANALYZABLE (ref2
))
2267 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2268 fprintf (dump_file
, "Querying dependency of refs %u and %u: ",
2269 ref1
->id
, ref2
->id
);
2271 if (mem_refs_may_alias_p (ref1
->mem
, ref2
->mem
,
2272 &memory_accesses
.ttae_cache
))
2274 bitmap_set_bit (ref1
->dep_ref
, ref2
->id
);
2275 bitmap_set_bit (ref2
->dep_ref
, ref1
->id
);
2276 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2277 fprintf (dump_file
, "dependent.\n");
2282 bitmap_set_bit (ref1
->indep_ref
, ref2
->id
);
2283 bitmap_set_bit (ref2
->indep_ref
, ref1
->id
);
2284 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2285 fprintf (dump_file
, "independent.\n");
2290 /* Records the information whether REF is independent in LOOP (according
2294 record_indep_loop (struct loop
*loop
, mem_ref_p ref
, bool indep
)
2297 bitmap_set_bit (ref
->indep_loop
, loop
->num
);
2299 bitmap_set_bit (ref
->dep_loop
, loop
->num
);
2302 /* Returns true if REF is independent on all other memory references in
2306 ref_indep_loop_p_1 (struct loop
*loop
, mem_ref_p ref
)
2308 bitmap refs_to_check
;
2311 bool ret
= true, stored
= bitmap_bit_p (ref
->stored
, loop
->num
);
2315 refs_to_check
= memory_accesses
.all_refs_in_loop
[loop
->num
];
2317 refs_to_check
= memory_accesses
.all_refs_stored_in_loop
[loop
->num
];
2319 EXECUTE_IF_SET_IN_BITMAP (refs_to_check
, 0, i
, bi
)
2321 aref
= memory_accesses
.refs_list
[i
];
2322 if (!MEM_ANALYZABLE (aref
)
2323 || !refs_independent_p (ref
, aref
))
2326 record_indep_loop (loop
, aref
, false);
2334 /* Returns true if REF is independent on all other memory references in
2335 LOOP. Wrapper over ref_indep_loop_p_1, caching its results. */
2338 ref_indep_loop_p (struct loop
*loop
, mem_ref_p ref
)
2342 if (bitmap_bit_p (ref
->indep_loop
, loop
->num
))
2344 if (bitmap_bit_p (ref
->dep_loop
, loop
->num
))
2347 ret
= ref_indep_loop_p_1 (loop
, ref
);
2349 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2350 fprintf (dump_file
, "Querying dependencies of ref %u in loop %d: %s\n",
2351 ref
->id
, loop
->num
, ret
? "independent" : "dependent");
2353 record_indep_loop (loop
, ref
, ret
);
2358 /* Returns true if we can perform store motion of REF from LOOP. */
2361 can_sm_ref_p (struct loop
*loop
, mem_ref_p ref
)
2365 /* Can't hoist unanalyzable refs. */
2366 if (!MEM_ANALYZABLE (ref
))
2369 /* Unless the reference is stored in the loop, there is nothing to do. */
2370 if (!bitmap_bit_p (ref
->stored
, loop
->num
))
2373 /* It should be movable. */
2374 if (!is_gimple_reg_type (TREE_TYPE (ref
->mem
))
2375 || TREE_THIS_VOLATILE (ref
->mem
)
2376 || !for_each_index (&ref
->mem
, may_move_till
, loop
))
2379 /* If it can throw fail, we do not properly update EH info. */
2380 if (tree_could_throw_p (ref
->mem
))
2383 /* If it can trap, it must be always executed in LOOP.
2384 Readonly memory locations may trap when storing to them, but
2385 tree_could_trap_p is a predicate for rvalues, so check that
2387 base
= get_base_address (ref
->mem
);
2388 if ((tree_could_trap_p (ref
->mem
)
2389 || (DECL_P (base
) && TREE_READONLY (base
)))
2390 && !ref_always_accessed_p (loop
, ref
, true))
2393 /* And it must be independent on all other memory references
2395 if (!ref_indep_loop_p (loop
, ref
))
2401 /* Marks the references in LOOP for that store motion should be performed
2402 in REFS_TO_SM. SM_EXECUTED is the set of references for that store
2403 motion was performed in one of the outer loops. */
2406 find_refs_for_sm (struct loop
*loop
, bitmap sm_executed
, bitmap refs_to_sm
)
2408 bitmap refs
= memory_accesses
.all_refs_in_loop
[loop
->num
];
2413 EXECUTE_IF_AND_COMPL_IN_BITMAP (refs
, sm_executed
, 0, i
, bi
)
2415 ref
= memory_accesses
.refs_list
[i
];
2416 if (can_sm_ref_p (loop
, ref
))
2417 bitmap_set_bit (refs_to_sm
, i
);
2421 /* Checks whether LOOP (with exits stored in EXITS array) is suitable
2422 for a store motion optimization (i.e. whether we can insert statement
2426 loop_suitable_for_sm (struct loop
*loop ATTRIBUTE_UNUSED
,
2432 FOR_EACH_VEC_ELT (exits
, i
, ex
)
2433 if (ex
->flags
& (EDGE_ABNORMAL
| EDGE_EH
))
2439 /* Try to perform store motion for all memory references modified inside
2440 LOOP. SM_EXECUTED is the bitmap of the memory references for that
2441 store motion was executed in one of the outer loops. */
2444 store_motion_loop (struct loop
*loop
, bitmap sm_executed
)
2446 vec
<edge
> exits
= get_loop_exit_edges (loop
);
2447 struct loop
*subloop
;
2448 bitmap sm_in_loop
= BITMAP_ALLOC (NULL
);
2450 if (loop_suitable_for_sm (loop
, exits
))
2452 find_refs_for_sm (loop
, sm_executed
, sm_in_loop
);
2453 hoist_memory_references (loop
, sm_in_loop
, exits
);
2457 bitmap_ior_into (sm_executed
, sm_in_loop
);
2458 for (subloop
= loop
->inner
; subloop
!= NULL
; subloop
= subloop
->next
)
2459 store_motion_loop (subloop
, sm_executed
);
2460 bitmap_and_compl_into (sm_executed
, sm_in_loop
);
2461 BITMAP_FREE (sm_in_loop
);
2464 /* Try to perform store motion for all memory references modified inside
2471 bitmap sm_executed
= BITMAP_ALLOC (NULL
);
2473 for (loop
= current_loops
->tree_root
->inner
; loop
!= NULL
; loop
= loop
->next
)
2474 store_motion_loop (loop
, sm_executed
);
2476 BITMAP_FREE (sm_executed
);
2477 gsi_commit_edge_inserts ();
2480 /* Fills ALWAYS_EXECUTED_IN information for basic blocks of LOOP, i.e.
2481 for each such basic block bb records the outermost loop for that execution
2482 of its header implies execution of bb. CONTAINS_CALL is the bitmap of
2483 blocks that contain a nonpure call. */
2486 fill_always_executed_in (struct loop
*loop
, sbitmap contains_call
)
2488 basic_block bb
= NULL
, *bbs
, last
= NULL
;
2491 struct loop
*inn_loop
= loop
;
2493 if (ALWAYS_EXECUTED_IN (loop
->header
) == NULL
)
2495 bbs
= get_loop_body_in_dom_order (loop
);
2497 for (i
= 0; i
< loop
->num_nodes
; i
++)
2502 if (dominated_by_p (CDI_DOMINATORS
, loop
->latch
, bb
))
2505 if (bitmap_bit_p (contains_call
, bb
->index
))
2508 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
2509 if (!flow_bb_inside_loop_p (loop
, e
->dest
))
2514 /* A loop might be infinite (TODO use simple loop analysis
2515 to disprove this if possible). */
2516 if (bb
->flags
& BB_IRREDUCIBLE_LOOP
)
2519 if (!flow_bb_inside_loop_p (inn_loop
, bb
))
2522 if (bb
->loop_father
->header
== bb
)
2524 if (!dominated_by_p (CDI_DOMINATORS
, loop
->latch
, bb
))
2527 /* In a loop that is always entered we may proceed anyway.
2528 But record that we entered it and stop once we leave it. */
2529 inn_loop
= bb
->loop_father
;
2535 SET_ALWAYS_EXECUTED_IN (last
, loop
);
2536 if (last
== loop
->header
)
2538 last
= get_immediate_dominator (CDI_DOMINATORS
, last
);
2544 for (loop
= loop
->inner
; loop
; loop
= loop
->next
)
2545 fill_always_executed_in (loop
, contains_call
);
2548 /* Compute the global information needed by the loop invariant motion pass. */
2551 tree_ssa_lim_initialize (void)
2553 sbitmap contains_call
= sbitmap_alloc (last_basic_block
);
2554 gimple_stmt_iterator bsi
;
2558 bitmap_obstack_initialize (&lim_bitmap_obstack
);
2560 bitmap_clear (contains_call
);
2563 for (bsi
= gsi_start_bb (bb
); !gsi_end_p (bsi
); gsi_next (&bsi
))
2565 if (nonpure_call_p (gsi_stmt (bsi
)))
2569 if (!gsi_end_p (bsi
))
2570 bitmap_set_bit (contains_call
, bb
->index
);
2573 for (loop
= current_loops
->tree_root
->inner
; loop
; loop
= loop
->next
)
2574 fill_always_executed_in (loop
, contains_call
);
2576 sbitmap_free (contains_call
);
2578 lim_aux_data_map
= pointer_map_create ();
2581 compute_transaction_bits ();
2583 alloc_aux_for_edges (0);
2586 /* Cleans up after the invariant motion pass. */
2589 tree_ssa_lim_finalize (void)
2595 free_aux_for_edges ();
2598 SET_ALWAYS_EXECUTED_IN (bb
, NULL
);
2600 bitmap_obstack_release (&lim_bitmap_obstack
);
2601 pointer_map_destroy (lim_aux_data_map
);
2603 htab_delete (memory_accesses
.refs
);
2605 FOR_EACH_VEC_ELT (memory_accesses
.refs_list
, i
, ref
)
2607 memory_accesses
.refs_list
.release ();
2609 memory_accesses
.refs_in_loop
.release ();
2610 memory_accesses
.all_refs_in_loop
.release ();
2611 memory_accesses
.all_refs_stored_in_loop
.release ();
2613 if (memory_accesses
.ttae_cache
)
2614 free_affine_expand_cache (&memory_accesses
.ttae_cache
);
2617 /* Moves invariants from loops. Only "expensive" invariants are moved out --
2618 i.e. those that are likely to be win regardless of the register pressure. */
2625 tree_ssa_lim_initialize ();
2627 /* Gathers information about memory accesses in the loops. */
2628 analyze_memory_references ();
2630 /* For each statement determine the outermost loop in that it is
2631 invariant and cost for computing the invariant. */
2632 determine_invariantness ();
2634 /* Execute store motion. Force the necessary invariants to be moved
2635 out of the loops as well. */
2638 /* Move the expressions that are expensive enough. */
2639 todo
= move_computations ();
2641 tree_ssa_lim_finalize ();