1 /* Conditional constant propagation pass for the GNU compiler.
2 Copyright (C) 2000-2013 Free Software Foundation, Inc.
3 Adapted from original RTL SSA-CCP by Daniel Berlin <dberlin@dberlin.org>
4 Adapted to GIMPLE trees by Diego Novillo <dnovillo@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by the
10 Free Software Foundation; either version 3, or (at your option) any
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* Conditional constant propagation (CCP) is based on the SSA
23 propagation engine (tree-ssa-propagate.c). Constant assignments of
24 the form VAR = CST are propagated from the assignments into uses of
25 VAR, which in turn may generate new constants. The simulation uses
26 a four level lattice to keep track of constant values associated
27 with SSA names. Given an SSA name V_i, it may take one of the
30 UNINITIALIZED -> the initial state of the value. This value
31 is replaced with a correct initial value
32 the first time the value is used, so the
33 rest of the pass does not need to care about
34 it. Using this value simplifies initialization
35 of the pass, and prevents us from needlessly
36 scanning statements that are never reached.
38 UNDEFINED -> V_i is a local variable whose definition
39 has not been processed yet. Therefore we
40 don't yet know if its value is a constant
43 CONSTANT -> V_i has been found to hold a constant
46 VARYING -> V_i cannot take a constant value, or if it
47 does, it is not possible to determine it
50 The core of SSA-CCP is in ccp_visit_stmt and ccp_visit_phi_node:
52 1- In ccp_visit_stmt, we are interested in assignments whose RHS
53 evaluates into a constant and conditional jumps whose predicate
54 evaluates into a boolean true or false. When an assignment of
55 the form V_i = CONST is found, V_i's lattice value is set to
56 CONSTANT and CONST is associated with it. This causes the
57 propagation engine to add all the SSA edges coming out the
58 assignment into the worklists, so that statements that use V_i
61 If the statement is a conditional with a constant predicate, we
62 mark the outgoing edges as executable or not executable
63 depending on the predicate's value. This is then used when
64 visiting PHI nodes to know when a PHI argument can be ignored.
67 2- In ccp_visit_phi_node, if all the PHI arguments evaluate to the
68 same constant C, then the LHS of the PHI is set to C. This
69 evaluation is known as the "meet operation". Since one of the
70 goals of this evaluation is to optimistically return constant
71 values as often as possible, it uses two main short cuts:
73 - If an argument is flowing in through a non-executable edge, it
74 is ignored. This is useful in cases like this:
80 a_11 = PHI (a_9, a_10)
82 If PRED is known to always evaluate to false, then we can
83 assume that a_11 will always take its value from a_10, meaning
84 that instead of consider it VARYING (a_9 and a_10 have
85 different values), we can consider it CONSTANT 100.
87 - If an argument has an UNDEFINED value, then it does not affect
88 the outcome of the meet operation. If a variable V_i has an
89 UNDEFINED value, it means that either its defining statement
90 hasn't been visited yet or V_i has no defining statement, in
91 which case the original symbol 'V' is being used
92 uninitialized. Since 'V' is a local variable, the compiler
93 may assume any initial value for it.
96 After propagation, every variable V_i that ends up with a lattice
97 value of CONSTANT will have the associated constant value in the
98 array CONST_VAL[i].VALUE. That is fed into substitute_and_fold for
99 final substitution and folding.
103 Constant propagation with conditional branches,
104 Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
106 Building an Optimizing Compiler,
107 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
109 Advanced Compiler Design and Implementation,
110 Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
114 #include "coretypes.h"
119 #include "basic-block.h"
120 #include "function.h"
121 #include "gimple-pretty-print.h"
122 #include "tree-flow.h"
123 #include "tree-pass.h"
124 #include "tree-ssa-propagate.h"
125 #include "value-prof.h"
126 #include "langhooks.h"
128 #include "diagnostic-core.h"
130 #include "gimple-fold.h"
132 #include "hash-table.h"
135 /* Possible lattice values. */
144 struct prop_value_d
{
146 ccp_lattice_t lattice_val
;
148 /* Propagated value. */
151 /* Mask that applies to the propagated value during CCP. For
152 X with a CONSTANT lattice value X & ~mask == value & ~mask. */
156 typedef struct prop_value_d prop_value_t
;
158 /* Array of propagated constant values. After propagation,
159 CONST_VAL[I].VALUE holds the constant value for SSA_NAME(I). If
160 the constant is held in an SSA name representing a memory store
161 (i.e., a VDEF), CONST_VAL[I].MEM_REF will contain the actual
162 memory reference used to store (i.e., the LHS of the assignment
164 static prop_value_t
*const_val
;
166 static void canonicalize_float_value (prop_value_t
*);
167 static bool ccp_fold_stmt (gimple_stmt_iterator
*);
169 /* Dump constant propagation value VAL to file OUTF prefixed by PREFIX. */
172 dump_lattice_value (FILE *outf
, const char *prefix
, prop_value_t val
)
174 switch (val
.lattice_val
)
177 fprintf (outf
, "%sUNINITIALIZED", prefix
);
180 fprintf (outf
, "%sUNDEFINED", prefix
);
183 fprintf (outf
, "%sVARYING", prefix
);
186 if (TREE_CODE (val
.value
) != INTEGER_CST
187 || val
.mask
.is_zero ())
189 fprintf (outf
, "%sCONSTANT ", prefix
);
190 print_generic_expr (outf
, val
.value
, dump_flags
);
194 double_int cval
= tree_to_double_int (val
.value
).and_not (val
.mask
);
195 fprintf (outf
, "%sCONSTANT " HOST_WIDE_INT_PRINT_DOUBLE_HEX
,
196 prefix
, cval
.high
, cval
.low
);
197 fprintf (outf
, " (" HOST_WIDE_INT_PRINT_DOUBLE_HEX
")",
198 val
.mask
.high
, val
.mask
.low
);
207 /* Print lattice value VAL to stderr. */
209 void debug_lattice_value (prop_value_t val
);
212 debug_lattice_value (prop_value_t val
)
214 dump_lattice_value (stderr
, "", val
);
215 fprintf (stderr
, "\n");
219 /* Compute a default value for variable VAR and store it in the
220 CONST_VAL array. The following rules are used to get default
223 1- Global and static variables that are declared constant are
226 2- Any other value is considered UNDEFINED. This is useful when
227 considering PHI nodes. PHI arguments that are undefined do not
228 change the constant value of the PHI node, which allows for more
229 constants to be propagated.
231 3- Variables defined by statements other than assignments and PHI
232 nodes are considered VARYING.
234 4- Initial values of variables that are not GIMPLE registers are
235 considered VARYING. */
238 get_default_value (tree var
)
240 prop_value_t val
= { UNINITIALIZED
, NULL_TREE
, { 0, 0 } };
243 stmt
= SSA_NAME_DEF_STMT (var
);
245 if (gimple_nop_p (stmt
))
247 /* Variables defined by an empty statement are those used
248 before being initialized. If VAR is a local variable, we
249 can assume initially that it is UNDEFINED, otherwise we must
250 consider it VARYING. */
251 if (!virtual_operand_p (var
)
252 && TREE_CODE (SSA_NAME_VAR (var
)) == VAR_DECL
)
253 val
.lattice_val
= UNDEFINED
;
256 val
.lattice_val
= VARYING
;
257 val
.mask
= double_int_minus_one
;
260 else if (is_gimple_assign (stmt
)
261 /* Value-returning GIMPLE_CALL statements assign to
262 a variable, and are treated similarly to GIMPLE_ASSIGN. */
263 || (is_gimple_call (stmt
)
264 && gimple_call_lhs (stmt
) != NULL_TREE
)
265 || gimple_code (stmt
) == GIMPLE_PHI
)
268 if (gimple_assign_single_p (stmt
)
269 && DECL_P (gimple_assign_rhs1 (stmt
))
270 && (cst
= get_symbol_constant_value (gimple_assign_rhs1 (stmt
))))
272 val
.lattice_val
= CONSTANT
;
276 /* Any other variable defined by an assignment or a PHI node
277 is considered UNDEFINED. */
278 val
.lattice_val
= UNDEFINED
;
282 /* Otherwise, VAR will never take on a constant value. */
283 val
.lattice_val
= VARYING
;
284 val
.mask
= double_int_minus_one
;
291 /* Get the constant value associated with variable VAR. */
293 static inline prop_value_t
*
298 if (const_val
== NULL
)
301 val
= &const_val
[SSA_NAME_VERSION (var
)];
302 if (val
->lattice_val
== UNINITIALIZED
)
303 *val
= get_default_value (var
);
305 canonicalize_float_value (val
);
310 /* Return the constant tree value associated with VAR. */
313 get_constant_value (tree var
)
316 if (TREE_CODE (var
) != SSA_NAME
)
318 if (is_gimple_min_invariant (var
))
322 val
= get_value (var
);
324 && val
->lattice_val
== CONSTANT
325 && (TREE_CODE (val
->value
) != INTEGER_CST
326 || val
->mask
.is_zero ()))
331 /* Sets the value associated with VAR to VARYING. */
334 set_value_varying (tree var
)
336 prop_value_t
*val
= &const_val
[SSA_NAME_VERSION (var
)];
338 val
->lattice_val
= VARYING
;
339 val
->value
= NULL_TREE
;
340 val
->mask
= double_int_minus_one
;
343 /* For float types, modify the value of VAL to make ccp work correctly
344 for non-standard values (-0, NaN):
346 If HONOR_SIGNED_ZEROS is false, and VAL = -0, we canonicalize it to 0.
347 If HONOR_NANS is false, and VAL is NaN, we canonicalize it to UNDEFINED.
348 This is to fix the following problem (see PR 29921): Suppose we have
352 and we set value of y to NaN. This causes value of x to be set to NaN.
353 When we later determine that y is in fact VARYING, fold uses the fact
354 that HONOR_NANS is false, and we try to change the value of x to 0,
355 causing an ICE. With HONOR_NANS being false, the real appearance of
356 NaN would cause undefined behavior, though, so claiming that y (and x)
357 are UNDEFINED initially is correct. */
360 canonicalize_float_value (prop_value_t
*val
)
362 enum machine_mode mode
;
366 if (val
->lattice_val
!= CONSTANT
367 || TREE_CODE (val
->value
) != REAL_CST
)
370 d
= TREE_REAL_CST (val
->value
);
371 type
= TREE_TYPE (val
->value
);
372 mode
= TYPE_MODE (type
);
374 if (!HONOR_SIGNED_ZEROS (mode
)
375 && REAL_VALUE_MINUS_ZERO (d
))
377 val
->value
= build_real (type
, dconst0
);
381 if (!HONOR_NANS (mode
)
382 && REAL_VALUE_ISNAN (d
))
384 val
->lattice_val
= UNDEFINED
;
390 /* Return whether the lattice transition is valid. */
393 valid_lattice_transition (prop_value_t old_val
, prop_value_t new_val
)
395 /* Lattice transitions must always be monotonically increasing in
397 if (old_val
.lattice_val
< new_val
.lattice_val
)
400 if (old_val
.lattice_val
!= new_val
.lattice_val
)
403 if (!old_val
.value
&& !new_val
.value
)
406 /* Now both lattice values are CONSTANT. */
408 /* Allow transitioning from PHI <&x, not executable> == &x
409 to PHI <&x, &y> == common alignment. */
410 if (TREE_CODE (old_val
.value
) != INTEGER_CST
411 && TREE_CODE (new_val
.value
) == INTEGER_CST
)
414 /* Bit-lattices have to agree in the still valid bits. */
415 if (TREE_CODE (old_val
.value
) == INTEGER_CST
416 && TREE_CODE (new_val
.value
) == INTEGER_CST
)
417 return tree_to_double_int (old_val
.value
).and_not (new_val
.mask
)
418 == tree_to_double_int (new_val
.value
).and_not (new_val
.mask
);
420 /* Otherwise constant values have to agree. */
421 return operand_equal_p (old_val
.value
, new_val
.value
, 0);
424 /* Set the value for variable VAR to NEW_VAL. Return true if the new
425 value is different from VAR's previous value. */
428 set_lattice_value (tree var
, prop_value_t new_val
)
430 /* We can deal with old UNINITIALIZED values just fine here. */
431 prop_value_t
*old_val
= &const_val
[SSA_NAME_VERSION (var
)];
433 canonicalize_float_value (&new_val
);
435 /* We have to be careful to not go up the bitwise lattice
436 represented by the mask.
437 ??? This doesn't seem to be the best place to enforce this. */
438 if (new_val
.lattice_val
== CONSTANT
439 && old_val
->lattice_val
== CONSTANT
440 && TREE_CODE (new_val
.value
) == INTEGER_CST
441 && TREE_CODE (old_val
->value
) == INTEGER_CST
)
444 diff
= tree_to_double_int (new_val
.value
)
445 ^ tree_to_double_int (old_val
->value
);
446 new_val
.mask
= new_val
.mask
| old_val
->mask
| diff
;
449 gcc_assert (valid_lattice_transition (*old_val
, new_val
));
451 /* If *OLD_VAL and NEW_VAL are the same, return false to inform the
452 caller that this was a non-transition. */
453 if (old_val
->lattice_val
!= new_val
.lattice_val
454 || (new_val
.lattice_val
== CONSTANT
455 && TREE_CODE (new_val
.value
) == INTEGER_CST
456 && (TREE_CODE (old_val
->value
) != INTEGER_CST
457 || new_val
.mask
!= old_val
->mask
)))
459 /* ??? We would like to delay creation of INTEGER_CSTs from
460 partially constants here. */
462 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
464 dump_lattice_value (dump_file
, "Lattice value changed to ", new_val
);
465 fprintf (dump_file
, ". Adding SSA edges to worklist.\n");
470 gcc_assert (new_val
.lattice_val
!= UNINITIALIZED
);
477 static prop_value_t
get_value_for_expr (tree
, bool);
478 static prop_value_t
bit_value_binop (enum tree_code
, tree
, tree
, tree
);
479 static void bit_value_binop_1 (enum tree_code
, tree
, double_int
*, double_int
*,
480 tree
, double_int
, double_int
,
481 tree
, double_int
, double_int
);
483 /* Return a double_int that can be used for bitwise simplifications
487 value_to_double_int (prop_value_t val
)
490 && TREE_CODE (val
.value
) == INTEGER_CST
)
491 return tree_to_double_int (val
.value
);
493 return double_int_zero
;
496 /* Return the value for the address expression EXPR based on alignment
500 get_value_from_alignment (tree expr
)
502 tree type
= TREE_TYPE (expr
);
504 unsigned HOST_WIDE_INT bitpos
;
507 gcc_assert (TREE_CODE (expr
) == ADDR_EXPR
);
509 get_pointer_alignment_1 (expr
, &align
, &bitpos
);
510 val
.mask
= (POINTER_TYPE_P (type
) || TYPE_UNSIGNED (type
)
511 ? double_int::mask (TYPE_PRECISION (type
))
512 : double_int_minus_one
)
513 .and_not (double_int::from_uhwi (align
/ BITS_PER_UNIT
- 1));
514 val
.lattice_val
= val
.mask
.is_minus_one () ? VARYING
: CONSTANT
;
515 if (val
.lattice_val
== CONSTANT
)
517 = double_int_to_tree (type
,
518 double_int::from_uhwi (bitpos
/ BITS_PER_UNIT
));
520 val
.value
= NULL_TREE
;
525 /* Return the value for the tree operand EXPR. If FOR_BITS_P is true
526 return constant bits extracted from alignment information for
527 invariant addresses. */
530 get_value_for_expr (tree expr
, bool for_bits_p
)
534 if (TREE_CODE (expr
) == SSA_NAME
)
536 val
= *get_value (expr
);
538 && val
.lattice_val
== CONSTANT
539 && TREE_CODE (val
.value
) == ADDR_EXPR
)
540 val
= get_value_from_alignment (val
.value
);
542 else if (is_gimple_min_invariant (expr
)
543 && (!for_bits_p
|| TREE_CODE (expr
) != ADDR_EXPR
))
545 val
.lattice_val
= CONSTANT
;
547 val
.mask
= double_int_zero
;
548 canonicalize_float_value (&val
);
550 else if (TREE_CODE (expr
) == ADDR_EXPR
)
551 val
= get_value_from_alignment (expr
);
554 val
.lattice_val
= VARYING
;
555 val
.mask
= double_int_minus_one
;
556 val
.value
= NULL_TREE
;
561 /* Return the likely CCP lattice value for STMT.
563 If STMT has no operands, then return CONSTANT.
565 Else if undefinedness of operands of STMT cause its value to be
566 undefined, then return UNDEFINED.
568 Else if any operands of STMT are constants, then return CONSTANT.
570 Else return VARYING. */
573 likely_value (gimple stmt
)
575 bool has_constant_operand
, has_undefined_operand
, all_undefined_operands
;
580 enum gimple_code code
= gimple_code (stmt
);
582 /* This function appears to be called only for assignments, calls,
583 conditionals, and switches, due to the logic in visit_stmt. */
584 gcc_assert (code
== GIMPLE_ASSIGN
585 || code
== GIMPLE_CALL
586 || code
== GIMPLE_COND
587 || code
== GIMPLE_SWITCH
);
589 /* If the statement has volatile operands, it won't fold to a
591 if (gimple_has_volatile_ops (stmt
))
594 /* Arrive here for more complex cases. */
595 has_constant_operand
= false;
596 has_undefined_operand
= false;
597 all_undefined_operands
= true;
598 FOR_EACH_SSA_TREE_OPERAND (use
, stmt
, iter
, SSA_OP_USE
)
600 prop_value_t
*val
= get_value (use
);
602 if (val
->lattice_val
== UNDEFINED
)
603 has_undefined_operand
= true;
605 all_undefined_operands
= false;
607 if (val
->lattice_val
== CONSTANT
)
608 has_constant_operand
= true;
611 /* There may be constants in regular rhs operands. For calls we
612 have to ignore lhs, fndecl and static chain, otherwise only
614 for (i
= (is_gimple_call (stmt
) ? 2 : 0) + gimple_has_lhs (stmt
);
615 i
< gimple_num_ops (stmt
); ++i
)
617 tree op
= gimple_op (stmt
, i
);
618 if (!op
|| TREE_CODE (op
) == SSA_NAME
)
620 if (is_gimple_min_invariant (op
))
621 has_constant_operand
= true;
624 if (has_constant_operand
)
625 all_undefined_operands
= false;
627 /* If the operation combines operands like COMPLEX_EXPR make sure to
628 not mark the result UNDEFINED if only one part of the result is
630 if (has_undefined_operand
&& all_undefined_operands
)
632 else if (code
== GIMPLE_ASSIGN
&& has_undefined_operand
)
634 switch (gimple_assign_rhs_code (stmt
))
636 /* Unary operators are handled with all_undefined_operands. */
639 case POINTER_PLUS_EXPR
:
640 /* Not MIN_EXPR, MAX_EXPR. One VARYING operand may be selected.
641 Not bitwise operators, one VARYING operand may specify the
642 result completely. Not logical operators for the same reason.
643 Not COMPLEX_EXPR as one VARYING operand makes the result partly
644 not UNDEFINED. Not *DIV_EXPR, comparisons and shifts because
645 the undefined operand may be promoted. */
649 /* If any part of an address is UNDEFINED, like the index
650 of an ARRAY_EXPR, then treat the result as UNDEFINED. */
657 /* If there was an UNDEFINED operand but the result may be not UNDEFINED
658 fall back to CONSTANT. During iteration UNDEFINED may still drop
660 if (has_undefined_operand
)
663 /* We do not consider virtual operands here -- load from read-only
664 memory may have only VARYING virtual operands, but still be
666 if (has_constant_operand
667 || gimple_references_memory_p (stmt
))
673 /* Returns true if STMT cannot be constant. */
676 surely_varying_stmt_p (gimple stmt
)
678 /* If the statement has operands that we cannot handle, it cannot be
680 if (gimple_has_volatile_ops (stmt
))
683 /* If it is a call and does not return a value or is not a
684 builtin and not an indirect call, it is varying. */
685 if (is_gimple_call (stmt
))
688 if (!gimple_call_lhs (stmt
)
689 || ((fndecl
= gimple_call_fndecl (stmt
)) != NULL_TREE
690 && !DECL_BUILT_IN (fndecl
)))
694 /* Any other store operation is not interesting. */
695 else if (gimple_vdef (stmt
))
698 /* Anything other than assignments and conditional jumps are not
699 interesting for CCP. */
700 if (gimple_code (stmt
) != GIMPLE_ASSIGN
701 && gimple_code (stmt
) != GIMPLE_COND
702 && gimple_code (stmt
) != GIMPLE_SWITCH
703 && gimple_code (stmt
) != GIMPLE_CALL
)
709 /* Initialize local data structures for CCP. */
712 ccp_initialize (void)
716 const_val
= XCNEWVEC (prop_value_t
, num_ssa_names
);
718 /* Initialize simulation flags for PHI nodes and statements. */
721 gimple_stmt_iterator i
;
723 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); gsi_next (&i
))
725 gimple stmt
= gsi_stmt (i
);
728 /* If the statement is a control insn, then we do not
729 want to avoid simulating the statement once. Failure
730 to do so means that those edges will never get added. */
731 if (stmt_ends_bb_p (stmt
))
734 is_varying
= surely_varying_stmt_p (stmt
);
741 /* If the statement will not produce a constant, mark
742 all its outputs VARYING. */
743 FOR_EACH_SSA_TREE_OPERAND (def
, stmt
, iter
, SSA_OP_ALL_DEFS
)
744 set_value_varying (def
);
746 prop_set_simulate_again (stmt
, !is_varying
);
750 /* Now process PHI nodes. We never clear the simulate_again flag on
751 phi nodes, since we do not know which edges are executable yet,
752 except for phi nodes for virtual operands when we do not do store ccp. */
755 gimple_stmt_iterator i
;
757 for (i
= gsi_start_phis (bb
); !gsi_end_p (i
); gsi_next (&i
))
759 gimple phi
= gsi_stmt (i
);
761 if (virtual_operand_p (gimple_phi_result (phi
)))
762 prop_set_simulate_again (phi
, false);
764 prop_set_simulate_again (phi
, true);
769 /* Debug count support. Reset the values of ssa names
770 VARYING when the total number ssa names analyzed is
771 beyond the debug count specified. */
777 for (i
= 0; i
< num_ssa_names
; i
++)
781 const_val
[i
].lattice_val
= VARYING
;
782 const_val
[i
].mask
= double_int_minus_one
;
783 const_val
[i
].value
= NULL_TREE
;
789 /* Do final substitution of propagated values, cleanup the flowgraph and
790 free allocated storage.
792 Return TRUE when something was optimized. */
797 bool something_changed
;
802 /* Derive alignment and misalignment information from partially
803 constant pointers in the lattice. */
804 for (i
= 1; i
< num_ssa_names
; ++i
)
806 tree name
= ssa_name (i
);
808 unsigned int tem
, align
;
811 || !POINTER_TYPE_P (TREE_TYPE (name
)))
814 val
= get_value (name
);
815 if (val
->lattice_val
!= CONSTANT
816 || TREE_CODE (val
->value
) != INTEGER_CST
)
819 /* Trailing constant bits specify the alignment, trailing value
820 bits the misalignment. */
822 align
= (tem
& -tem
);
824 set_ptr_info_alignment (get_ptr_info (name
), align
,
825 TREE_INT_CST_LOW (val
->value
) & (align
- 1));
828 /* Perform substitutions based on the known constant values. */
829 something_changed
= substitute_and_fold (get_constant_value
,
830 ccp_fold_stmt
, true);
834 return something_changed
;;
838 /* Compute the meet operator between *VAL1 and *VAL2. Store the result
841 any M UNDEFINED = any
842 any M VARYING = VARYING
843 Ci M Cj = Ci if (i == j)
844 Ci M Cj = VARYING if (i != j)
848 ccp_lattice_meet (prop_value_t
*val1
, prop_value_t
*val2
)
850 if (val1
->lattice_val
== UNDEFINED
)
852 /* UNDEFINED M any = any */
855 else if (val2
->lattice_val
== UNDEFINED
)
857 /* any M UNDEFINED = any
858 Nothing to do. VAL1 already contains the value we want. */
861 else if (val1
->lattice_val
== VARYING
862 || val2
->lattice_val
== VARYING
)
864 /* any M VARYING = VARYING. */
865 val1
->lattice_val
= VARYING
;
866 val1
->mask
= double_int_minus_one
;
867 val1
->value
= NULL_TREE
;
869 else if (val1
->lattice_val
== CONSTANT
870 && val2
->lattice_val
== CONSTANT
871 && TREE_CODE (val1
->value
) == INTEGER_CST
872 && TREE_CODE (val2
->value
) == INTEGER_CST
)
874 /* Ci M Cj = Ci if (i == j)
875 Ci M Cj = VARYING if (i != j)
877 For INTEGER_CSTs mask unequal bits. If no equal bits remain,
879 val1
->mask
= val1
->mask
| val2
->mask
880 | (tree_to_double_int (val1
->value
)
881 ^ tree_to_double_int (val2
->value
));
882 if (val1
->mask
.is_minus_one ())
884 val1
->lattice_val
= VARYING
;
885 val1
->value
= NULL_TREE
;
888 else if (val1
->lattice_val
== CONSTANT
889 && val2
->lattice_val
== CONSTANT
890 && simple_cst_equal (val1
->value
, val2
->value
) == 1)
892 /* Ci M Cj = Ci if (i == j)
893 Ci M Cj = VARYING if (i != j)
895 VAL1 already contains the value we want for equivalent values. */
897 else if (val1
->lattice_val
== CONSTANT
898 && val2
->lattice_val
== CONSTANT
899 && (TREE_CODE (val1
->value
) == ADDR_EXPR
900 || TREE_CODE (val2
->value
) == ADDR_EXPR
))
902 /* When not equal addresses are involved try meeting for
904 prop_value_t tem
= *val2
;
905 if (TREE_CODE (val1
->value
) == ADDR_EXPR
)
906 *val1
= get_value_for_expr (val1
->value
, true);
907 if (TREE_CODE (val2
->value
) == ADDR_EXPR
)
908 tem
= get_value_for_expr (val2
->value
, true);
909 ccp_lattice_meet (val1
, &tem
);
913 /* Any other combination is VARYING. */
914 val1
->lattice_val
= VARYING
;
915 val1
->mask
= double_int_minus_one
;
916 val1
->value
= NULL_TREE
;
921 /* Loop through the PHI_NODE's parameters for BLOCK and compare their
922 lattice values to determine PHI_NODE's lattice value. The value of a
923 PHI node is determined calling ccp_lattice_meet with all the arguments
924 of the PHI node that are incoming via executable edges. */
926 static enum ssa_prop_result
927 ccp_visit_phi_node (gimple phi
)
930 prop_value_t
*old_val
, new_val
;
932 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
934 fprintf (dump_file
, "\nVisiting PHI node: ");
935 print_gimple_stmt (dump_file
, phi
, 0, dump_flags
);
938 old_val
= get_value (gimple_phi_result (phi
));
939 switch (old_val
->lattice_val
)
942 return SSA_PROP_VARYING
;
949 new_val
.lattice_val
= UNDEFINED
;
950 new_val
.value
= NULL_TREE
;
957 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
959 /* Compute the meet operator over all the PHI arguments flowing
960 through executable edges. */
961 edge e
= gimple_phi_arg_edge (phi
, i
);
963 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
966 "\n Argument #%d (%d -> %d %sexecutable)\n",
967 i
, e
->src
->index
, e
->dest
->index
,
968 (e
->flags
& EDGE_EXECUTABLE
) ? "" : "not ");
971 /* If the incoming edge is executable, Compute the meet operator for
972 the existing value of the PHI node and the current PHI argument. */
973 if (e
->flags
& EDGE_EXECUTABLE
)
975 tree arg
= gimple_phi_arg (phi
, i
)->def
;
976 prop_value_t arg_val
= get_value_for_expr (arg
, false);
978 ccp_lattice_meet (&new_val
, &arg_val
);
980 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
982 fprintf (dump_file
, "\t");
983 print_generic_expr (dump_file
, arg
, dump_flags
);
984 dump_lattice_value (dump_file
, "\tValue: ", arg_val
);
985 fprintf (dump_file
, "\n");
988 if (new_val
.lattice_val
== VARYING
)
993 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
995 dump_lattice_value (dump_file
, "\n PHI node value: ", new_val
);
996 fprintf (dump_file
, "\n\n");
999 /* Make the transition to the new value. */
1000 if (set_lattice_value (gimple_phi_result (phi
), new_val
))
1002 if (new_val
.lattice_val
== VARYING
)
1003 return SSA_PROP_VARYING
;
1005 return SSA_PROP_INTERESTING
;
1008 return SSA_PROP_NOT_INTERESTING
;
1011 /* Return the constant value for OP or OP otherwise. */
1014 valueize_op (tree op
)
1016 if (TREE_CODE (op
) == SSA_NAME
)
1018 tree tem
= get_constant_value (op
);
1025 /* CCP specific front-end to the non-destructive constant folding
1028 Attempt to simplify the RHS of STMT knowing that one or more
1029 operands are constants.
1031 If simplification is possible, return the simplified RHS,
1032 otherwise return the original RHS or NULL_TREE. */
1035 ccp_fold (gimple stmt
)
1037 location_t loc
= gimple_location (stmt
);
1038 switch (gimple_code (stmt
))
1042 /* Handle comparison operators that can appear in GIMPLE form. */
1043 tree op0
= valueize_op (gimple_cond_lhs (stmt
));
1044 tree op1
= valueize_op (gimple_cond_rhs (stmt
));
1045 enum tree_code code
= gimple_cond_code (stmt
);
1046 return fold_binary_loc (loc
, code
, boolean_type_node
, op0
, op1
);
1051 /* Return the constant switch index. */
1052 return valueize_op (gimple_switch_index (stmt
));
1057 return gimple_fold_stmt_to_constant_1 (stmt
, valueize_op
);
1064 /* Apply the operation CODE in type TYPE to the value, mask pair
1065 RVAL and RMASK representing a value of type RTYPE and set
1066 the value, mask pair *VAL and *MASK to the result. */
1069 bit_value_unop_1 (enum tree_code code
, tree type
,
1070 double_int
*val
, double_int
*mask
,
1071 tree rtype
, double_int rval
, double_int rmask
)
1082 double_int temv
, temm
;
1083 /* Return ~rval + 1. */
1084 bit_value_unop_1 (BIT_NOT_EXPR
, type
, &temv
, &temm
, type
, rval
, rmask
);
1085 bit_value_binop_1 (PLUS_EXPR
, type
, val
, mask
,
1087 type
, double_int_one
, double_int_zero
);
1095 /* First extend mask and value according to the original type. */
1096 uns
= TYPE_UNSIGNED (rtype
);
1097 *mask
= rmask
.ext (TYPE_PRECISION (rtype
), uns
);
1098 *val
= rval
.ext (TYPE_PRECISION (rtype
), uns
);
1100 /* Then extend mask and value according to the target type. */
1101 uns
= TYPE_UNSIGNED (type
);
1102 *mask
= (*mask
).ext (TYPE_PRECISION (type
), uns
);
1103 *val
= (*val
).ext (TYPE_PRECISION (type
), uns
);
1108 *mask
= double_int_minus_one
;
1113 /* Apply the operation CODE in type TYPE to the value, mask pairs
1114 R1VAL, R1MASK and R2VAL, R2MASK representing a values of type R1TYPE
1115 and R2TYPE and set the value, mask pair *VAL and *MASK to the result. */
1118 bit_value_binop_1 (enum tree_code code
, tree type
,
1119 double_int
*val
, double_int
*mask
,
1120 tree r1type
, double_int r1val
, double_int r1mask
,
1121 tree r2type
, double_int r2val
, double_int r2mask
)
1123 bool uns
= TYPE_UNSIGNED (type
);
1124 /* Assume we'll get a constant result. Use an initial varying value,
1125 we fall back to varying in the end if necessary. */
1126 *mask
= double_int_minus_one
;
1130 /* The mask is constant where there is a known not
1131 set bit, (m1 | m2) & ((v1 | m1) & (v2 | m2)) */
1132 *mask
= (r1mask
| r2mask
) & (r1val
| r1mask
) & (r2val
| r2mask
);
1133 *val
= r1val
& r2val
;
1137 /* The mask is constant where there is a known
1138 set bit, (m1 | m2) & ~((v1 & ~m1) | (v2 & ~m2)). */
1139 *mask
= (r1mask
| r2mask
)
1140 .and_not (r1val
.and_not (r1mask
) | r2val
.and_not (r2mask
));
1141 *val
= r1val
| r2val
;
1146 *mask
= r1mask
| r2mask
;
1147 *val
= r1val
^ r2val
;
1152 if (r2mask
.is_zero ())
1154 HOST_WIDE_INT shift
= r2val
.low
;
1155 if (code
== RROTATE_EXPR
)
1157 *mask
= r1mask
.lrotate (shift
, TYPE_PRECISION (type
));
1158 *val
= r1val
.lrotate (shift
, TYPE_PRECISION (type
));
1164 /* ??? We can handle partially known shift counts if we know
1165 its sign. That way we can tell that (x << (y | 8)) & 255
1167 if (r2mask
.is_zero ())
1169 HOST_WIDE_INT shift
= r2val
.low
;
1170 if (code
== RSHIFT_EXPR
)
1172 /* We need to know if we are doing a left or a right shift
1173 to properly shift in zeros for left shift and unsigned
1174 right shifts and the sign bit for signed right shifts.
1175 For signed right shifts we shift in varying in case
1176 the sign bit was varying. */
1179 *mask
= r1mask
.llshift (shift
, TYPE_PRECISION (type
));
1180 *val
= r1val
.llshift (shift
, TYPE_PRECISION (type
));
1185 *mask
= r1mask
.rshift (shift
, TYPE_PRECISION (type
), !uns
);
1186 *val
= r1val
.rshift (shift
, TYPE_PRECISION (type
), !uns
);
1197 case POINTER_PLUS_EXPR
:
1200 /* Do the addition with unknown bits set to zero, to give carry-ins of
1201 zero wherever possible. */
1202 lo
= r1val
.and_not (r1mask
) + r2val
.and_not (r2mask
);
1203 lo
= lo
.ext (TYPE_PRECISION (type
), uns
);
1204 /* Do the addition with unknown bits set to one, to give carry-ins of
1205 one wherever possible. */
1206 hi
= (r1val
| r1mask
) + (r2val
| r2mask
);
1207 hi
= hi
.ext (TYPE_PRECISION (type
), uns
);
1208 /* Each bit in the result is known if (a) the corresponding bits in
1209 both inputs are known, and (b) the carry-in to that bit position
1210 is known. We can check condition (b) by seeing if we got the same
1211 result with minimised carries as with maximised carries. */
1212 *mask
= r1mask
| r2mask
| (lo
^ hi
);
1213 *mask
= (*mask
).ext (TYPE_PRECISION (type
), uns
);
1214 /* It shouldn't matter whether we choose lo or hi here. */
1221 double_int temv
, temm
;
1222 bit_value_unop_1 (NEGATE_EXPR
, r2type
, &temv
, &temm
,
1223 r2type
, r2val
, r2mask
);
1224 bit_value_binop_1 (PLUS_EXPR
, type
, val
, mask
,
1225 r1type
, r1val
, r1mask
,
1226 r2type
, temv
, temm
);
1232 /* Just track trailing zeros in both operands and transfer
1233 them to the other. */
1234 int r1tz
= (r1val
| r1mask
).trailing_zeros ();
1235 int r2tz
= (r2val
| r2mask
).trailing_zeros ();
1236 if (r1tz
+ r2tz
>= HOST_BITS_PER_DOUBLE_INT
)
1238 *mask
= double_int_zero
;
1239 *val
= double_int_zero
;
1241 else if (r1tz
+ r2tz
> 0)
1243 *mask
= ~double_int::mask (r1tz
+ r2tz
);
1244 *mask
= (*mask
).ext (TYPE_PRECISION (type
), uns
);
1245 *val
= double_int_zero
;
1253 double_int m
= r1mask
| r2mask
;
1254 if (r1val
.and_not (m
) != r2val
.and_not (m
))
1256 *mask
= double_int_zero
;
1257 *val
= ((code
== EQ_EXPR
) ? double_int_zero
: double_int_one
);
1261 /* We know the result of a comparison is always one or zero. */
1262 *mask
= double_int_one
;
1263 *val
= double_int_zero
;
1271 double_int tem
= r1val
;
1277 code
= swap_tree_comparison (code
);
1284 /* If the most significant bits are not known we know nothing. */
1285 if (r1mask
.is_negative () || r2mask
.is_negative ())
1288 /* For comparisons the signedness is in the comparison operands. */
1289 uns
= TYPE_UNSIGNED (r1type
);
1291 /* If we know the most significant bits we know the values
1292 value ranges by means of treating varying bits as zero
1293 or one. Do a cross comparison of the max/min pairs. */
1294 maxmin
= (r1val
| r1mask
).cmp (r2val
.and_not (r2mask
), uns
);
1295 minmax
= r1val
.and_not (r1mask
).cmp (r2val
| r2mask
, uns
);
1296 if (maxmin
< 0) /* r1 is less than r2. */
1298 *mask
= double_int_zero
;
1299 *val
= double_int_one
;
1301 else if (minmax
> 0) /* r1 is not less or equal to r2. */
1303 *mask
= double_int_zero
;
1304 *val
= double_int_zero
;
1306 else if (maxmin
== minmax
) /* r1 and r2 are equal. */
1308 /* This probably should never happen as we'd have
1309 folded the thing during fully constant value folding. */
1310 *mask
= double_int_zero
;
1311 *val
= (code
== LE_EXPR
? double_int_one
: double_int_zero
);
1315 /* We know the result of a comparison is always one or zero. */
1316 *mask
= double_int_one
;
1317 *val
= double_int_zero
;
1326 /* Return the propagation value when applying the operation CODE to
1327 the value RHS yielding type TYPE. */
1330 bit_value_unop (enum tree_code code
, tree type
, tree rhs
)
1332 prop_value_t rval
= get_value_for_expr (rhs
, true);
1333 double_int value
, mask
;
1336 if (rval
.lattice_val
== UNDEFINED
)
1339 gcc_assert ((rval
.lattice_val
== CONSTANT
1340 && TREE_CODE (rval
.value
) == INTEGER_CST
)
1341 || rval
.mask
.is_minus_one ());
1342 bit_value_unop_1 (code
, type
, &value
, &mask
,
1343 TREE_TYPE (rhs
), value_to_double_int (rval
), rval
.mask
);
1344 if (!mask
.is_minus_one ())
1346 val
.lattice_val
= CONSTANT
;
1348 /* ??? Delay building trees here. */
1349 val
.value
= double_int_to_tree (type
, value
);
1353 val
.lattice_val
= VARYING
;
1354 val
.value
= NULL_TREE
;
1355 val
.mask
= double_int_minus_one
;
1360 /* Return the propagation value when applying the operation CODE to
1361 the values RHS1 and RHS2 yielding type TYPE. */
1364 bit_value_binop (enum tree_code code
, tree type
, tree rhs1
, tree rhs2
)
1366 prop_value_t r1val
= get_value_for_expr (rhs1
, true);
1367 prop_value_t r2val
= get_value_for_expr (rhs2
, true);
1368 double_int value
, mask
;
1371 if (r1val
.lattice_val
== UNDEFINED
1372 || r2val
.lattice_val
== UNDEFINED
)
1374 val
.lattice_val
= VARYING
;
1375 val
.value
= NULL_TREE
;
1376 val
.mask
= double_int_minus_one
;
1380 gcc_assert ((r1val
.lattice_val
== CONSTANT
1381 && TREE_CODE (r1val
.value
) == INTEGER_CST
)
1382 || r1val
.mask
.is_minus_one ());
1383 gcc_assert ((r2val
.lattice_val
== CONSTANT
1384 && TREE_CODE (r2val
.value
) == INTEGER_CST
)
1385 || r2val
.mask
.is_minus_one ());
1386 bit_value_binop_1 (code
, type
, &value
, &mask
,
1387 TREE_TYPE (rhs1
), value_to_double_int (r1val
), r1val
.mask
,
1388 TREE_TYPE (rhs2
), value_to_double_int (r2val
), r2val
.mask
);
1389 if (!mask
.is_minus_one ())
1391 val
.lattice_val
= CONSTANT
;
1393 /* ??? Delay building trees here. */
1394 val
.value
= double_int_to_tree (type
, value
);
1398 val
.lattice_val
= VARYING
;
1399 val
.value
= NULL_TREE
;
1400 val
.mask
= double_int_minus_one
;
1405 /* Return the propagation value when applying __builtin_assume_aligned to
1409 bit_value_assume_aligned (gimple stmt
)
1411 tree ptr
= gimple_call_arg (stmt
, 0), align
, misalign
= NULL_TREE
;
1412 tree type
= TREE_TYPE (ptr
);
1413 unsigned HOST_WIDE_INT aligni
, misaligni
= 0;
1414 prop_value_t ptrval
= get_value_for_expr (ptr
, true);
1415 prop_value_t alignval
;
1416 double_int value
, mask
;
1418 if (ptrval
.lattice_val
== UNDEFINED
)
1420 gcc_assert ((ptrval
.lattice_val
== CONSTANT
1421 && TREE_CODE (ptrval
.value
) == INTEGER_CST
)
1422 || ptrval
.mask
.is_minus_one ());
1423 align
= gimple_call_arg (stmt
, 1);
1424 if (!host_integerp (align
, 1))
1426 aligni
= tree_low_cst (align
, 1);
1428 || (aligni
& (aligni
- 1)) != 0)
1430 if (gimple_call_num_args (stmt
) > 2)
1432 misalign
= gimple_call_arg (stmt
, 2);
1433 if (!host_integerp (misalign
, 1))
1435 misaligni
= tree_low_cst (misalign
, 1);
1436 if (misaligni
>= aligni
)
1439 align
= build_int_cst_type (type
, -aligni
);
1440 alignval
= get_value_for_expr (align
, true);
1441 bit_value_binop_1 (BIT_AND_EXPR
, type
, &value
, &mask
,
1442 type
, value_to_double_int (ptrval
), ptrval
.mask
,
1443 type
, value_to_double_int (alignval
), alignval
.mask
);
1444 if (!mask
.is_minus_one ())
1446 val
.lattice_val
= CONSTANT
;
1448 gcc_assert ((mask
.low
& (aligni
- 1)) == 0);
1449 gcc_assert ((value
.low
& (aligni
- 1)) == 0);
1450 value
.low
|= misaligni
;
1451 /* ??? Delay building trees here. */
1452 val
.value
= double_int_to_tree (type
, value
);
1456 val
.lattice_val
= VARYING
;
1457 val
.value
= NULL_TREE
;
1458 val
.mask
= double_int_minus_one
;
1463 /* Evaluate statement STMT.
1464 Valid only for assignments, calls, conditionals, and switches. */
1467 evaluate_stmt (gimple stmt
)
1470 tree simplified
= NULL_TREE
;
1471 ccp_lattice_t likelyvalue
= likely_value (stmt
);
1472 bool is_constant
= false;
1475 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1477 fprintf (dump_file
, "which is likely ");
1478 switch (likelyvalue
)
1481 fprintf (dump_file
, "CONSTANT");
1484 fprintf (dump_file
, "UNDEFINED");
1487 fprintf (dump_file
, "VARYING");
1491 fprintf (dump_file
, "\n");
1494 /* If the statement is likely to have a CONSTANT result, then try
1495 to fold the statement to determine the constant value. */
1496 /* FIXME. This is the only place that we call ccp_fold.
1497 Since likely_value never returns CONSTANT for calls, we will
1498 not attempt to fold them, including builtins that may profit. */
1499 if (likelyvalue
== CONSTANT
)
1501 fold_defer_overflow_warnings ();
1502 simplified
= ccp_fold (stmt
);
1503 is_constant
= simplified
&& is_gimple_min_invariant (simplified
);
1504 fold_undefer_overflow_warnings (is_constant
, stmt
, 0);
1507 /* The statement produced a constant value. */
1508 val
.lattice_val
= CONSTANT
;
1509 val
.value
= simplified
;
1510 val
.mask
= double_int_zero
;
1513 /* If the statement is likely to have a VARYING result, then do not
1514 bother folding the statement. */
1515 else if (likelyvalue
== VARYING
)
1517 enum gimple_code code
= gimple_code (stmt
);
1518 if (code
== GIMPLE_ASSIGN
)
1520 enum tree_code subcode
= gimple_assign_rhs_code (stmt
);
1522 /* Other cases cannot satisfy is_gimple_min_invariant
1524 if (get_gimple_rhs_class (subcode
) == GIMPLE_SINGLE_RHS
)
1525 simplified
= gimple_assign_rhs1 (stmt
);
1527 else if (code
== GIMPLE_SWITCH
)
1528 simplified
= gimple_switch_index (stmt
);
1530 /* These cannot satisfy is_gimple_min_invariant without folding. */
1531 gcc_assert (code
== GIMPLE_CALL
|| code
== GIMPLE_COND
);
1532 is_constant
= simplified
&& is_gimple_min_invariant (simplified
);
1535 /* The statement produced a constant value. */
1536 val
.lattice_val
= CONSTANT
;
1537 val
.value
= simplified
;
1538 val
.mask
= double_int_zero
;
1542 /* Resort to simplification for bitwise tracking. */
1543 if (flag_tree_bit_ccp
1544 && (likelyvalue
== CONSTANT
|| is_gimple_call (stmt
))
1547 enum gimple_code code
= gimple_code (stmt
);
1548 val
.lattice_val
= VARYING
;
1549 val
.value
= NULL_TREE
;
1550 val
.mask
= double_int_minus_one
;
1551 if (code
== GIMPLE_ASSIGN
)
1553 enum tree_code subcode
= gimple_assign_rhs_code (stmt
);
1554 tree rhs1
= gimple_assign_rhs1 (stmt
);
1555 switch (get_gimple_rhs_class (subcode
))
1557 case GIMPLE_SINGLE_RHS
:
1558 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1
))
1559 || POINTER_TYPE_P (TREE_TYPE (rhs1
)))
1560 val
= get_value_for_expr (rhs1
, true);
1563 case GIMPLE_UNARY_RHS
:
1564 if ((INTEGRAL_TYPE_P (TREE_TYPE (rhs1
))
1565 || POINTER_TYPE_P (TREE_TYPE (rhs1
)))
1566 && (INTEGRAL_TYPE_P (gimple_expr_type (stmt
))
1567 || POINTER_TYPE_P (gimple_expr_type (stmt
))))
1568 val
= bit_value_unop (subcode
, gimple_expr_type (stmt
), rhs1
);
1571 case GIMPLE_BINARY_RHS
:
1572 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1
))
1573 || POINTER_TYPE_P (TREE_TYPE (rhs1
)))
1575 tree lhs
= gimple_assign_lhs (stmt
);
1576 tree rhs2
= gimple_assign_rhs2 (stmt
);
1577 val
= bit_value_binop (subcode
,
1578 TREE_TYPE (lhs
), rhs1
, rhs2
);
1585 else if (code
== GIMPLE_COND
)
1587 enum tree_code code
= gimple_cond_code (stmt
);
1588 tree rhs1
= gimple_cond_lhs (stmt
);
1589 tree rhs2
= gimple_cond_rhs (stmt
);
1590 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1
))
1591 || POINTER_TYPE_P (TREE_TYPE (rhs1
)))
1592 val
= bit_value_binop (code
, TREE_TYPE (rhs1
), rhs1
, rhs2
);
1594 else if (gimple_call_builtin_p (stmt
, BUILT_IN_NORMAL
))
1596 tree fndecl
= gimple_call_fndecl (stmt
);
1597 switch (DECL_FUNCTION_CODE (fndecl
))
1599 case BUILT_IN_MALLOC
:
1600 case BUILT_IN_REALLOC
:
1601 case BUILT_IN_CALLOC
:
1602 case BUILT_IN_STRDUP
:
1603 case BUILT_IN_STRNDUP
:
1604 val
.lattice_val
= CONSTANT
;
1605 val
.value
= build_int_cst (TREE_TYPE (gimple_get_lhs (stmt
)), 0);
1606 val
.mask
= double_int::from_shwi
1607 (~(((HOST_WIDE_INT
) MALLOC_ABI_ALIGNMENT
)
1608 / BITS_PER_UNIT
- 1));
1611 case BUILT_IN_ALLOCA
:
1612 case BUILT_IN_ALLOCA_WITH_ALIGN
:
1613 align
= (DECL_FUNCTION_CODE (fndecl
) == BUILT_IN_ALLOCA_WITH_ALIGN
1614 ? TREE_INT_CST_LOW (gimple_call_arg (stmt
, 1))
1615 : BIGGEST_ALIGNMENT
);
1616 val
.lattice_val
= CONSTANT
;
1617 val
.value
= build_int_cst (TREE_TYPE (gimple_get_lhs (stmt
)), 0);
1618 val
.mask
= double_int::from_shwi (~(((HOST_WIDE_INT
) align
)
1619 / BITS_PER_UNIT
- 1));
1622 /* These builtins return their first argument, unmodified. */
1623 case BUILT_IN_MEMCPY
:
1624 case BUILT_IN_MEMMOVE
:
1625 case BUILT_IN_MEMSET
:
1626 case BUILT_IN_STRCPY
:
1627 case BUILT_IN_STRNCPY
:
1628 case BUILT_IN_MEMCPY_CHK
:
1629 case BUILT_IN_MEMMOVE_CHK
:
1630 case BUILT_IN_MEMSET_CHK
:
1631 case BUILT_IN_STRCPY_CHK
:
1632 case BUILT_IN_STRNCPY_CHK
:
1633 val
= get_value_for_expr (gimple_call_arg (stmt
, 0), true);
1636 case BUILT_IN_ASSUME_ALIGNED
:
1637 val
= bit_value_assume_aligned (stmt
);
1643 is_constant
= (val
.lattice_val
== CONSTANT
);
1648 /* The statement produced a nonconstant value. If the statement
1649 had UNDEFINED operands, then the result of the statement
1650 should be UNDEFINED. Otherwise, the statement is VARYING. */
1651 if (likelyvalue
== UNDEFINED
)
1653 val
.lattice_val
= likelyvalue
;
1654 val
.mask
= double_int_zero
;
1658 val
.lattice_val
= VARYING
;
1659 val
.mask
= double_int_minus_one
;
1662 val
.value
= NULL_TREE
;
1668 typedef hash_table
<pointer_hash
<gimple_statement_d
> > gimple_htab
;
1670 /* Given a BUILT_IN_STACK_SAVE value SAVED_VAL, insert a clobber of VAR before
1671 each matching BUILT_IN_STACK_RESTORE. Mark visited phis in VISITED. */
1674 insert_clobber_before_stack_restore (tree saved_val
, tree var
,
1675 gimple_htab
*visited
)
1677 gimple stmt
, clobber_stmt
;
1679 imm_use_iterator iter
;
1680 gimple_stmt_iterator i
;
1683 FOR_EACH_IMM_USE_STMT (stmt
, iter
, saved_val
)
1684 if (gimple_call_builtin_p (stmt
, BUILT_IN_STACK_RESTORE
))
1686 clobber
= build_constructor (TREE_TYPE (var
),
1688 TREE_THIS_VOLATILE (clobber
) = 1;
1689 clobber_stmt
= gimple_build_assign (var
, clobber
);
1691 i
= gsi_for_stmt (stmt
);
1692 gsi_insert_before (&i
, clobber_stmt
, GSI_SAME_STMT
);
1694 else if (gimple_code (stmt
) == GIMPLE_PHI
)
1696 if (!visited
->is_created ())
1697 visited
->create (10);
1699 slot
= visited
->find_slot (stmt
, INSERT
);
1704 insert_clobber_before_stack_restore (gimple_phi_result (stmt
), var
,
1708 gcc_assert (is_gimple_debug (stmt
));
1711 /* Advance the iterator to the previous non-debug gimple statement in the same
1712 or dominating basic block. */
1715 gsi_prev_dom_bb_nondebug (gimple_stmt_iterator
*i
)
1719 gsi_prev_nondebug (i
);
1720 while (gsi_end_p (*i
))
1722 dom
= get_immediate_dominator (CDI_DOMINATORS
, i
->bb
);
1723 if (dom
== NULL
|| dom
== ENTRY_BLOCK_PTR
)
1726 *i
= gsi_last_bb (dom
);
1730 /* Find a BUILT_IN_STACK_SAVE dominating gsi_stmt (I), and insert
1731 a clobber of VAR before each matching BUILT_IN_STACK_RESTORE.
1733 It is possible that BUILT_IN_STACK_SAVE cannot be find in a dominator when a
1734 previous pass (such as DOM) duplicated it along multiple paths to a BB. In
1735 that case the function gives up without inserting the clobbers. */
1738 insert_clobbers_for_var (gimple_stmt_iterator i
, tree var
)
1742 gimple_htab visited
;
1744 for (; !gsi_end_p (i
); gsi_prev_dom_bb_nondebug (&i
))
1746 stmt
= gsi_stmt (i
);
1748 if (!gimple_call_builtin_p (stmt
, BUILT_IN_STACK_SAVE
))
1751 saved_val
= gimple_call_lhs (stmt
);
1752 if (saved_val
== NULL_TREE
)
1755 insert_clobber_before_stack_restore (saved_val
, var
, &visited
);
1759 if (visited
.is_created ())
1763 /* Detects a __builtin_alloca_with_align with constant size argument. Declares
1764 fixed-size array and returns the address, if found, otherwise returns
1768 fold_builtin_alloca_with_align (gimple stmt
)
1770 unsigned HOST_WIDE_INT size
, threshold
, n_elem
;
1771 tree lhs
, arg
, block
, var
, elem_type
, array_type
;
1774 lhs
= gimple_call_lhs (stmt
);
1775 if (lhs
== NULL_TREE
)
1778 /* Detect constant argument. */
1779 arg
= get_constant_value (gimple_call_arg (stmt
, 0));
1780 if (arg
== NULL_TREE
1781 || TREE_CODE (arg
) != INTEGER_CST
1782 || !host_integerp (arg
, 1))
1785 size
= TREE_INT_CST_LOW (arg
);
1787 /* Heuristic: don't fold large allocas. */
1788 threshold
= (unsigned HOST_WIDE_INT
)PARAM_VALUE (PARAM_LARGE_STACK_FRAME
);
1789 /* In case the alloca is located at function entry, it has the same lifetime
1790 as a declared array, so we allow a larger size. */
1791 block
= gimple_block (stmt
);
1792 if (!(cfun
->after_inlining
1793 && TREE_CODE (BLOCK_SUPERCONTEXT (block
)) == FUNCTION_DECL
))
1795 if (size
> threshold
)
1798 /* Declare array. */
1799 elem_type
= build_nonstandard_integer_type (BITS_PER_UNIT
, 1);
1800 n_elem
= size
* 8 / BITS_PER_UNIT
;
1801 array_type
= build_array_type_nelts (elem_type
, n_elem
);
1802 var
= create_tmp_var (array_type
, NULL
);
1803 DECL_ALIGN (var
) = TREE_INT_CST_LOW (gimple_call_arg (stmt
, 1));
1805 struct ptr_info_def
*pi
= SSA_NAME_PTR_INFO (lhs
);
1806 if (pi
!= NULL
&& !pi
->pt
.anything
)
1810 singleton_p
= pt_solution_singleton_p (&pi
->pt
, &uid
);
1811 gcc_assert (singleton_p
);
1812 SET_DECL_PT_UID (var
, uid
);
1816 /* Fold alloca to the address of the array. */
1817 return fold_convert (TREE_TYPE (lhs
), build_fold_addr_expr (var
));
1820 /* Fold the stmt at *GSI with CCP specific information that propagating
1821 and regular folding does not catch. */
1824 ccp_fold_stmt (gimple_stmt_iterator
*gsi
)
1826 gimple stmt
= gsi_stmt (*gsi
);
1828 switch (gimple_code (stmt
))
1833 /* Statement evaluation will handle type mismatches in constants
1834 more gracefully than the final propagation. This allows us to
1835 fold more conditionals here. */
1836 val
= evaluate_stmt (stmt
);
1837 if (val
.lattice_val
!= CONSTANT
1838 || !val
.mask
.is_zero ())
1843 fprintf (dump_file
, "Folding predicate ");
1844 print_gimple_expr (dump_file
, stmt
, 0, 0);
1845 fprintf (dump_file
, " to ");
1846 print_generic_expr (dump_file
, val
.value
, 0);
1847 fprintf (dump_file
, "\n");
1850 if (integer_zerop (val
.value
))
1851 gimple_cond_make_false (stmt
);
1853 gimple_cond_make_true (stmt
);
1860 tree lhs
= gimple_call_lhs (stmt
);
1861 int flags
= gimple_call_flags (stmt
);
1864 bool changed
= false;
1867 /* If the call was folded into a constant make sure it goes
1868 away even if we cannot propagate into all uses because of
1871 && TREE_CODE (lhs
) == SSA_NAME
1872 && (val
= get_constant_value (lhs
))
1873 /* Don't optimize away calls that have side-effects. */
1874 && (flags
& (ECF_CONST
|ECF_PURE
)) != 0
1875 && (flags
& ECF_LOOPING_CONST_OR_PURE
) == 0)
1877 tree new_rhs
= unshare_expr (val
);
1879 if (!useless_type_conversion_p (TREE_TYPE (lhs
),
1880 TREE_TYPE (new_rhs
)))
1881 new_rhs
= fold_convert (TREE_TYPE (lhs
), new_rhs
);
1882 res
= update_call_from_tree (gsi
, new_rhs
);
1887 /* Internal calls provide no argument types, so the extra laxity
1888 for normal calls does not apply. */
1889 if (gimple_call_internal_p (stmt
))
1892 /* The heuristic of fold_builtin_alloca_with_align differs before and
1893 after inlining, so we don't require the arg to be changed into a
1894 constant for folding, but just to be constant. */
1895 if (gimple_call_builtin_p (stmt
, BUILT_IN_ALLOCA_WITH_ALIGN
))
1897 tree new_rhs
= fold_builtin_alloca_with_align (stmt
);
1900 bool res
= update_call_from_tree (gsi
, new_rhs
);
1901 tree var
= TREE_OPERAND (TREE_OPERAND (new_rhs
, 0),0);
1903 insert_clobbers_for_var (*gsi
, var
);
1908 /* Propagate into the call arguments. Compared to replace_uses_in
1909 this can use the argument slot types for type verification
1910 instead of the current argument type. We also can safely
1911 drop qualifiers here as we are dealing with constants anyway. */
1912 argt
= TYPE_ARG_TYPES (gimple_call_fntype (stmt
));
1913 for (i
= 0; i
< gimple_call_num_args (stmt
) && argt
;
1914 ++i
, argt
= TREE_CHAIN (argt
))
1916 tree arg
= gimple_call_arg (stmt
, i
);
1917 if (TREE_CODE (arg
) == SSA_NAME
1918 && (val
= get_constant_value (arg
))
1919 && useless_type_conversion_p
1920 (TYPE_MAIN_VARIANT (TREE_VALUE (argt
)),
1921 TYPE_MAIN_VARIANT (TREE_TYPE (val
))))
1923 gimple_call_set_arg (stmt
, i
, unshare_expr (val
));
1933 tree lhs
= gimple_assign_lhs (stmt
);
1936 /* If we have a load that turned out to be constant replace it
1937 as we cannot propagate into all uses in all cases. */
1938 if (gimple_assign_single_p (stmt
)
1939 && TREE_CODE (lhs
) == SSA_NAME
1940 && (val
= get_constant_value (lhs
)))
1942 tree rhs
= unshare_expr (val
);
1943 if (!useless_type_conversion_p (TREE_TYPE (lhs
), TREE_TYPE (rhs
)))
1944 rhs
= fold_build1 (VIEW_CONVERT_EXPR
, TREE_TYPE (lhs
), rhs
);
1945 gimple_assign_set_rhs_from_tree (gsi
, rhs
);
1957 /* Visit the assignment statement STMT. Set the value of its LHS to the
1958 value computed by the RHS and store LHS in *OUTPUT_P. If STMT
1959 creates virtual definitions, set the value of each new name to that
1960 of the RHS (if we can derive a constant out of the RHS).
1961 Value-returning call statements also perform an assignment, and
1962 are handled here. */
1964 static enum ssa_prop_result
1965 visit_assignment (gimple stmt
, tree
*output_p
)
1968 enum ssa_prop_result retval
;
1970 tree lhs
= gimple_get_lhs (stmt
);
1972 gcc_assert (gimple_code (stmt
) != GIMPLE_CALL
1973 || gimple_call_lhs (stmt
) != NULL_TREE
);
1975 if (gimple_assign_single_p (stmt
)
1976 && gimple_assign_rhs_code (stmt
) == SSA_NAME
)
1977 /* For a simple copy operation, we copy the lattice values. */
1978 val
= *get_value (gimple_assign_rhs1 (stmt
));
1980 /* Evaluate the statement, which could be
1981 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
1982 val
= evaluate_stmt (stmt
);
1984 retval
= SSA_PROP_NOT_INTERESTING
;
1986 /* Set the lattice value of the statement's output. */
1987 if (TREE_CODE (lhs
) == SSA_NAME
)
1989 /* If STMT is an assignment to an SSA_NAME, we only have one
1991 if (set_lattice_value (lhs
, val
))
1994 if (val
.lattice_val
== VARYING
)
1995 retval
= SSA_PROP_VARYING
;
1997 retval
= SSA_PROP_INTERESTING
;
2005 /* Visit the conditional statement STMT. Return SSA_PROP_INTERESTING
2006 if it can determine which edge will be taken. Otherwise, return
2007 SSA_PROP_VARYING. */
2009 static enum ssa_prop_result
2010 visit_cond_stmt (gimple stmt
, edge
*taken_edge_p
)
2015 block
= gimple_bb (stmt
);
2016 val
= evaluate_stmt (stmt
);
2017 if (val
.lattice_val
!= CONSTANT
2018 || !val
.mask
.is_zero ())
2019 return SSA_PROP_VARYING
;
2021 /* Find which edge out of the conditional block will be taken and add it
2022 to the worklist. If no single edge can be determined statically,
2023 return SSA_PROP_VARYING to feed all the outgoing edges to the
2024 propagation engine. */
2025 *taken_edge_p
= find_taken_edge (block
, val
.value
);
2027 return SSA_PROP_INTERESTING
;
2029 return SSA_PROP_VARYING
;
2033 /* Evaluate statement STMT. If the statement produces an output value and
2034 its evaluation changes the lattice value of its output, return
2035 SSA_PROP_INTERESTING and set *OUTPUT_P to the SSA_NAME holding the
2038 If STMT is a conditional branch and we can determine its truth
2039 value, set *TAKEN_EDGE_P accordingly. If STMT produces a varying
2040 value, return SSA_PROP_VARYING. */
2042 static enum ssa_prop_result
2043 ccp_visit_stmt (gimple stmt
, edge
*taken_edge_p
, tree
*output_p
)
2048 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2050 fprintf (dump_file
, "\nVisiting statement:\n");
2051 print_gimple_stmt (dump_file
, stmt
, 0, dump_flags
);
2054 switch (gimple_code (stmt
))
2057 /* If the statement is an assignment that produces a single
2058 output value, evaluate its RHS to see if the lattice value of
2059 its output has changed. */
2060 return visit_assignment (stmt
, output_p
);
2063 /* A value-returning call also performs an assignment. */
2064 if (gimple_call_lhs (stmt
) != NULL_TREE
)
2065 return visit_assignment (stmt
, output_p
);
2070 /* If STMT is a conditional branch, see if we can determine
2071 which branch will be taken. */
2072 /* FIXME. It appears that we should be able to optimize
2073 computed GOTOs here as well. */
2074 return visit_cond_stmt (stmt
, taken_edge_p
);
2080 /* Any other kind of statement is not interesting for constant
2081 propagation and, therefore, not worth simulating. */
2082 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2083 fprintf (dump_file
, "No interesting values produced. Marked VARYING.\n");
2085 /* Definitions made by statements other than assignments to
2086 SSA_NAMEs represent unknown modifications to their outputs.
2087 Mark them VARYING. */
2088 FOR_EACH_SSA_TREE_OPERAND (def
, stmt
, iter
, SSA_OP_ALL_DEFS
)
2090 prop_value_t v
= { VARYING
, NULL_TREE
, { -1, (HOST_WIDE_INT
) -1 } };
2091 set_lattice_value (def
, v
);
2094 return SSA_PROP_VARYING
;
2098 /* Main entry point for SSA Conditional Constant Propagation. */
2103 unsigned int todo
= 0;
2104 calculate_dominance_info (CDI_DOMINATORS
);
2106 ssa_propagate (ccp_visit_stmt
, ccp_visit_phi_node
);
2107 if (ccp_finalize ())
2108 todo
= (TODO_cleanup_cfg
| TODO_update_ssa
| TODO_remove_unused_locals
);
2109 free_dominance_info (CDI_DOMINATORS
);
2117 return flag_tree_ccp
!= 0;
2121 struct gimple_opt_pass pass_ccp
=
2126 OPTGROUP_NONE
, /* optinfo_flags */
2127 gate_ccp
, /* gate */
2128 do_ssa_ccp
, /* execute */
2131 0, /* static_pass_number */
2132 TV_TREE_CCP
, /* tv_id */
2133 PROP_cfg
| PROP_ssa
, /* properties_required */
2134 0, /* properties_provided */
2135 0, /* properties_destroyed */
2136 0, /* todo_flags_start */
2138 | TODO_update_address_taken
2139 | TODO_verify_stmts
| TODO_ggc_collect
/* todo_flags_finish */
2145 /* Try to optimize out __builtin_stack_restore. Optimize it out
2146 if there is another __builtin_stack_restore in the same basic
2147 block and no calls or ASM_EXPRs are in between, or if this block's
2148 only outgoing edge is to EXIT_BLOCK and there are no calls or
2149 ASM_EXPRs after this __builtin_stack_restore. */
2152 optimize_stack_restore (gimple_stmt_iterator i
)
2157 basic_block bb
= gsi_bb (i
);
2158 gimple call
= gsi_stmt (i
);
2160 if (gimple_code (call
) != GIMPLE_CALL
2161 || gimple_call_num_args (call
) != 1
2162 || TREE_CODE (gimple_call_arg (call
, 0)) != SSA_NAME
2163 || !POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (call
, 0))))
2166 for (gsi_next (&i
); !gsi_end_p (i
); gsi_next (&i
))
2168 stmt
= gsi_stmt (i
);
2169 if (gimple_code (stmt
) == GIMPLE_ASM
)
2171 if (gimple_code (stmt
) != GIMPLE_CALL
)
2174 callee
= gimple_call_fndecl (stmt
);
2176 || DECL_BUILT_IN_CLASS (callee
) != BUILT_IN_NORMAL
2177 /* All regular builtins are ok, just obviously not alloca. */
2178 || DECL_FUNCTION_CODE (callee
) == BUILT_IN_ALLOCA
2179 || DECL_FUNCTION_CODE (callee
) == BUILT_IN_ALLOCA_WITH_ALIGN
)
2182 if (DECL_FUNCTION_CODE (callee
) == BUILT_IN_STACK_RESTORE
)
2183 goto second_stack_restore
;
2189 /* Allow one successor of the exit block, or zero successors. */
2190 switch (EDGE_COUNT (bb
->succs
))
2195 if (single_succ_edge (bb
)->dest
!= EXIT_BLOCK_PTR
)
2201 second_stack_restore
:
2203 /* If there's exactly one use, then zap the call to __builtin_stack_save.
2204 If there are multiple uses, then the last one should remove the call.
2205 In any case, whether the call to __builtin_stack_save can be removed
2206 or not is irrelevant to removing the call to __builtin_stack_restore. */
2207 if (has_single_use (gimple_call_arg (call
, 0)))
2209 gimple stack_save
= SSA_NAME_DEF_STMT (gimple_call_arg (call
, 0));
2210 if (is_gimple_call (stack_save
))
2212 callee
= gimple_call_fndecl (stack_save
);
2214 && DECL_BUILT_IN_CLASS (callee
) == BUILT_IN_NORMAL
2215 && DECL_FUNCTION_CODE (callee
) == BUILT_IN_STACK_SAVE
)
2217 gimple_stmt_iterator stack_save_gsi
;
2220 stack_save_gsi
= gsi_for_stmt (stack_save
);
2221 rhs
= build_int_cst (TREE_TYPE (gimple_call_arg (call
, 0)), 0);
2222 update_call_from_tree (&stack_save_gsi
, rhs
);
2227 /* No effect, so the statement will be deleted. */
2228 return integer_zero_node
;
2231 /* If va_list type is a simple pointer and nothing special is needed,
2232 optimize __builtin_va_start (&ap, 0) into ap = __builtin_next_arg (0),
2233 __builtin_va_end (&ap) out as NOP and __builtin_va_copy into a simple
2234 pointer assignment. */
2237 optimize_stdarg_builtin (gimple call
)
2239 tree callee
, lhs
, rhs
, cfun_va_list
;
2240 bool va_list_simple_ptr
;
2241 location_t loc
= gimple_location (call
);
2243 if (gimple_code (call
) != GIMPLE_CALL
)
2246 callee
= gimple_call_fndecl (call
);
2248 cfun_va_list
= targetm
.fn_abi_va_list (callee
);
2249 va_list_simple_ptr
= POINTER_TYPE_P (cfun_va_list
)
2250 && (TREE_TYPE (cfun_va_list
) == void_type_node
2251 || TREE_TYPE (cfun_va_list
) == char_type_node
);
2253 switch (DECL_FUNCTION_CODE (callee
))
2255 case BUILT_IN_VA_START
:
2256 if (!va_list_simple_ptr
2257 || targetm
.expand_builtin_va_start
!= NULL
2258 || !builtin_decl_explicit_p (BUILT_IN_NEXT_ARG
))
2261 if (gimple_call_num_args (call
) != 2)
2264 lhs
= gimple_call_arg (call
, 0);
2265 if (!POINTER_TYPE_P (TREE_TYPE (lhs
))
2266 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs
)))
2267 != TYPE_MAIN_VARIANT (cfun_va_list
))
2270 lhs
= build_fold_indirect_ref_loc (loc
, lhs
);
2271 rhs
= build_call_expr_loc (loc
, builtin_decl_explicit (BUILT_IN_NEXT_ARG
),
2272 1, integer_zero_node
);
2273 rhs
= fold_convert_loc (loc
, TREE_TYPE (lhs
), rhs
);
2274 return build2 (MODIFY_EXPR
, TREE_TYPE (lhs
), lhs
, rhs
);
2276 case BUILT_IN_VA_COPY
:
2277 if (!va_list_simple_ptr
)
2280 if (gimple_call_num_args (call
) != 2)
2283 lhs
= gimple_call_arg (call
, 0);
2284 if (!POINTER_TYPE_P (TREE_TYPE (lhs
))
2285 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs
)))
2286 != TYPE_MAIN_VARIANT (cfun_va_list
))
2289 lhs
= build_fold_indirect_ref_loc (loc
, lhs
);
2290 rhs
= gimple_call_arg (call
, 1);
2291 if (TYPE_MAIN_VARIANT (TREE_TYPE (rhs
))
2292 != TYPE_MAIN_VARIANT (cfun_va_list
))
2295 rhs
= fold_convert_loc (loc
, TREE_TYPE (lhs
), rhs
);
2296 return build2 (MODIFY_EXPR
, TREE_TYPE (lhs
), lhs
, rhs
);
2298 case BUILT_IN_VA_END
:
2299 /* No effect, so the statement will be deleted. */
2300 return integer_zero_node
;
2307 /* Attemp to make the block of __builtin_unreachable I unreachable by changing
2308 the incoming jumps. Return true if at least one jump was changed. */
2311 optimize_unreachable (gimple_stmt_iterator i
)
2313 basic_block bb
= gsi_bb (i
);
2314 gimple_stmt_iterator gsi
;
2320 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
2322 stmt
= gsi_stmt (gsi
);
2324 if (is_gimple_debug (stmt
))
2327 if (gimple_code (stmt
) == GIMPLE_LABEL
)
2329 /* Verify we do not need to preserve the label. */
2330 if (FORCED_LABEL (gimple_label_label (stmt
)))
2336 /* Only handle the case that __builtin_unreachable is the first statement
2337 in the block. We rely on DCE to remove stmts without side-effects
2338 before __builtin_unreachable. */
2339 if (gsi_stmt (gsi
) != gsi_stmt (i
))
2344 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
2346 gsi
= gsi_last_bb (e
->src
);
2347 if (gsi_end_p (gsi
))
2350 stmt
= gsi_stmt (gsi
);
2351 if (gimple_code (stmt
) == GIMPLE_COND
)
2353 if (e
->flags
& EDGE_TRUE_VALUE
)
2354 gimple_cond_make_false (stmt
);
2355 else if (e
->flags
& EDGE_FALSE_VALUE
)
2356 gimple_cond_make_true (stmt
);
2363 /* Todo: handle other cases, f.i. switch statement. */
2373 /* A simple pass that attempts to fold all builtin functions. This pass
2374 is run after we've propagated as many constants as we can. */
2377 execute_fold_all_builtins (void)
2379 bool cfg_changed
= false;
2381 unsigned int todoflags
= 0;
2385 gimple_stmt_iterator i
;
2386 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); )
2388 gimple stmt
, old_stmt
;
2389 tree callee
, result
;
2390 enum built_in_function fcode
;
2392 stmt
= gsi_stmt (i
);
2394 if (gimple_code (stmt
) != GIMPLE_CALL
)
2399 callee
= gimple_call_fndecl (stmt
);
2400 if (!callee
|| DECL_BUILT_IN_CLASS (callee
) != BUILT_IN_NORMAL
)
2405 fcode
= DECL_FUNCTION_CODE (callee
);
2407 result
= gimple_fold_builtin (stmt
);
2410 gimple_remove_stmt_histograms (cfun
, stmt
);
2413 switch (DECL_FUNCTION_CODE (callee
))
2415 case BUILT_IN_CONSTANT_P
:
2416 /* Resolve __builtin_constant_p. If it hasn't been
2417 folded to integer_one_node by now, it's fairly
2418 certain that the value simply isn't constant. */
2419 result
= integer_zero_node
;
2422 case BUILT_IN_ASSUME_ALIGNED
:
2423 /* Remove __builtin_assume_aligned. */
2424 result
= gimple_call_arg (stmt
, 0);
2427 case BUILT_IN_STACK_RESTORE
:
2428 result
= optimize_stack_restore (i
);
2434 case BUILT_IN_UNREACHABLE
:
2435 if (optimize_unreachable (i
))
2439 case BUILT_IN_VA_START
:
2440 case BUILT_IN_VA_END
:
2441 case BUILT_IN_VA_COPY
:
2442 /* These shouldn't be folded before pass_stdarg. */
2443 result
= optimize_stdarg_builtin (stmt
);
2453 if (result
== NULL_TREE
)
2456 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2458 fprintf (dump_file
, "Simplified\n ");
2459 print_gimple_stmt (dump_file
, stmt
, 0, dump_flags
);
2463 if (!update_call_from_tree (&i
, result
))
2465 gimplify_and_update_call_from_tree (&i
, result
);
2466 todoflags
|= TODO_update_address_taken
;
2469 stmt
= gsi_stmt (i
);
2472 if (maybe_clean_or_replace_eh_stmt (old_stmt
, stmt
)
2473 && gimple_purge_dead_eh_edges (bb
))
2476 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2478 fprintf (dump_file
, "to\n ");
2479 print_gimple_stmt (dump_file
, stmt
, 0, dump_flags
);
2480 fprintf (dump_file
, "\n");
2483 /* Retry the same statement if it changed into another
2484 builtin, there might be new opportunities now. */
2485 if (gimple_code (stmt
) != GIMPLE_CALL
)
2490 callee
= gimple_call_fndecl (stmt
);
2492 || DECL_BUILT_IN_CLASS (callee
) != BUILT_IN_NORMAL
2493 || DECL_FUNCTION_CODE (callee
) == fcode
)
2498 /* Delete unreachable blocks. */
2500 todoflags
|= TODO_cleanup_cfg
;
2506 struct gimple_opt_pass pass_fold_builtins
=
2511 OPTGROUP_NONE
, /* optinfo_flags */
2513 execute_fold_all_builtins
, /* execute */
2516 0, /* static_pass_number */
2517 TV_NONE
, /* tv_id */
2518 PROP_cfg
| PROP_ssa
, /* properties_required */
2519 0, /* properties_provided */
2520 0, /* properties_destroyed */
2521 0, /* todo_flags_start */
2523 | TODO_update_ssa
/* todo_flags_finish */