2015-01-13 Paolo Carlini <paolo.carlini@oracle.com>
[official-gcc.git] / gcc / stor-layout.c
blob8bcee591dc7831787a048c3c54542f0ffa4ba56b
1 /* C-compiler utilities for types and variables storage layout
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "hash-set.h"
26 #include "machmode.h"
27 #include "vec.h"
28 #include "double-int.h"
29 #include "input.h"
30 #include "alias.h"
31 #include "symtab.h"
32 #include "wide-int.h"
33 #include "inchash.h"
34 #include "tree.h"
35 #include "fold-const.h"
36 #include "stor-layout.h"
37 #include "stringpool.h"
38 #include "varasm.h"
39 #include "print-tree.h"
40 #include "rtl.h"
41 #include "tm_p.h"
42 #include "flags.h"
43 #include "hard-reg-set.h"
44 #include "input.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "diagnostic-core.h"
48 #include "target.h"
49 #include "langhooks.h"
50 #include "regs.h"
51 #include "params.h"
52 #include "hash-map.h"
53 #include "is-a.h"
54 #include "plugin-api.h"
55 #include "ipa-ref.h"
56 #include "cgraph.h"
57 #include "tree-inline.h"
58 #include "tree-dump.h"
59 #include "gimplify.h"
61 /* Data type for the expressions representing sizes of data types.
62 It is the first integer type laid out. */
63 tree sizetype_tab[(int) stk_type_kind_last];
65 /* If nonzero, this is an upper limit on alignment of structure fields.
66 The value is measured in bits. */
67 unsigned int maximum_field_alignment = TARGET_DEFAULT_PACK_STRUCT * BITS_PER_UNIT;
69 /* Nonzero if all REFERENCE_TYPEs are internal and hence should be allocated
70 in the address spaces' address_mode, not pointer_mode. Set only by
71 internal_reference_types called only by a front end. */
72 static int reference_types_internal = 0;
74 static tree self_referential_size (tree);
75 static void finalize_record_size (record_layout_info);
76 static void finalize_type_size (tree);
77 static void place_union_field (record_layout_info, tree);
78 #if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
79 static int excess_unit_span (HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT,
80 HOST_WIDE_INT, tree);
81 #endif
82 extern void debug_rli (record_layout_info);
84 /* Show that REFERENCE_TYPES are internal and should use address_mode.
85 Called only by front end. */
87 void
88 internal_reference_types (void)
90 reference_types_internal = 1;
93 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
94 to serve as the actual size-expression for a type or decl. */
96 tree
97 variable_size (tree size)
99 /* Obviously. */
100 if (TREE_CONSTANT (size))
101 return size;
103 /* If the size is self-referential, we can't make a SAVE_EXPR (see
104 save_expr for the rationale). But we can do something else. */
105 if (CONTAINS_PLACEHOLDER_P (size))
106 return self_referential_size (size);
108 /* If we are in the global binding level, we can't make a SAVE_EXPR
109 since it may end up being shared across functions, so it is up
110 to the front-end to deal with this case. */
111 if (lang_hooks.decls.global_bindings_p ())
112 return size;
114 return save_expr (size);
117 /* An array of functions used for self-referential size computation. */
118 static GTY(()) vec<tree, va_gc> *size_functions;
120 /* Similar to copy_tree_r but do not copy component references involving
121 PLACEHOLDER_EXPRs. These nodes are spotted in find_placeholder_in_expr
122 and substituted in substitute_in_expr. */
124 static tree
125 copy_self_referential_tree_r (tree *tp, int *walk_subtrees, void *data)
127 enum tree_code code = TREE_CODE (*tp);
129 /* Stop at types, decls, constants like copy_tree_r. */
130 if (TREE_CODE_CLASS (code) == tcc_type
131 || TREE_CODE_CLASS (code) == tcc_declaration
132 || TREE_CODE_CLASS (code) == tcc_constant)
134 *walk_subtrees = 0;
135 return NULL_TREE;
138 /* This is the pattern built in ada/make_aligning_type. */
139 else if (code == ADDR_EXPR
140 && TREE_CODE (TREE_OPERAND (*tp, 0)) == PLACEHOLDER_EXPR)
142 *walk_subtrees = 0;
143 return NULL_TREE;
146 /* Default case: the component reference. */
147 else if (code == COMPONENT_REF)
149 tree inner;
150 for (inner = TREE_OPERAND (*tp, 0);
151 REFERENCE_CLASS_P (inner);
152 inner = TREE_OPERAND (inner, 0))
155 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
157 *walk_subtrees = 0;
158 return NULL_TREE;
162 /* We're not supposed to have them in self-referential size trees
163 because we wouldn't properly control when they are evaluated.
164 However, not creating superfluous SAVE_EXPRs requires accurate
165 tracking of readonly-ness all the way down to here, which we
166 cannot always guarantee in practice. So punt in this case. */
167 else if (code == SAVE_EXPR)
168 return error_mark_node;
170 else if (code == STATEMENT_LIST)
171 gcc_unreachable ();
173 return copy_tree_r (tp, walk_subtrees, data);
176 /* Given a SIZE expression that is self-referential, return an equivalent
177 expression to serve as the actual size expression for a type. */
179 static tree
180 self_referential_size (tree size)
182 static unsigned HOST_WIDE_INT fnno = 0;
183 vec<tree> self_refs = vNULL;
184 tree param_type_list = NULL, param_decl_list = NULL;
185 tree t, ref, return_type, fntype, fnname, fndecl;
186 unsigned int i;
187 char buf[128];
188 vec<tree, va_gc> *args = NULL;
190 /* Do not factor out simple operations. */
191 t = skip_simple_constant_arithmetic (size);
192 if (TREE_CODE (t) == CALL_EXPR)
193 return size;
195 /* Collect the list of self-references in the expression. */
196 find_placeholder_in_expr (size, &self_refs);
197 gcc_assert (self_refs.length () > 0);
199 /* Obtain a private copy of the expression. */
200 t = size;
201 if (walk_tree (&t, copy_self_referential_tree_r, NULL, NULL) != NULL_TREE)
202 return size;
203 size = t;
205 /* Build the parameter and argument lists in parallel; also
206 substitute the former for the latter in the expression. */
207 vec_alloc (args, self_refs.length ());
208 FOR_EACH_VEC_ELT (self_refs, i, ref)
210 tree subst, param_name, param_type, param_decl;
212 if (DECL_P (ref))
214 /* We shouldn't have true variables here. */
215 gcc_assert (TREE_READONLY (ref));
216 subst = ref;
218 /* This is the pattern built in ada/make_aligning_type. */
219 else if (TREE_CODE (ref) == ADDR_EXPR)
220 subst = ref;
221 /* Default case: the component reference. */
222 else
223 subst = TREE_OPERAND (ref, 1);
225 sprintf (buf, "p%d", i);
226 param_name = get_identifier (buf);
227 param_type = TREE_TYPE (ref);
228 param_decl
229 = build_decl (input_location, PARM_DECL, param_name, param_type);
230 DECL_ARG_TYPE (param_decl) = param_type;
231 DECL_ARTIFICIAL (param_decl) = 1;
232 TREE_READONLY (param_decl) = 1;
234 size = substitute_in_expr (size, subst, param_decl);
236 param_type_list = tree_cons (NULL_TREE, param_type, param_type_list);
237 param_decl_list = chainon (param_decl, param_decl_list);
238 args->quick_push (ref);
241 self_refs.release ();
243 /* Append 'void' to indicate that the number of parameters is fixed. */
244 param_type_list = tree_cons (NULL_TREE, void_type_node, param_type_list);
246 /* The 3 lists have been created in reverse order. */
247 param_type_list = nreverse (param_type_list);
248 param_decl_list = nreverse (param_decl_list);
250 /* Build the function type. */
251 return_type = TREE_TYPE (size);
252 fntype = build_function_type (return_type, param_type_list);
254 /* Build the function declaration. */
255 sprintf (buf, "SZ"HOST_WIDE_INT_PRINT_UNSIGNED, fnno++);
256 fnname = get_file_function_name (buf);
257 fndecl = build_decl (input_location, FUNCTION_DECL, fnname, fntype);
258 for (t = param_decl_list; t; t = DECL_CHAIN (t))
259 DECL_CONTEXT (t) = fndecl;
260 DECL_ARGUMENTS (fndecl) = param_decl_list;
261 DECL_RESULT (fndecl)
262 = build_decl (input_location, RESULT_DECL, 0, return_type);
263 DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl;
265 /* The function has been created by the compiler and we don't
266 want to emit debug info for it. */
267 DECL_ARTIFICIAL (fndecl) = 1;
268 DECL_IGNORED_P (fndecl) = 1;
270 /* It is supposed to be "const" and never throw. */
271 TREE_READONLY (fndecl) = 1;
272 TREE_NOTHROW (fndecl) = 1;
274 /* We want it to be inlined when this is deemed profitable, as
275 well as discarded if every call has been integrated. */
276 DECL_DECLARED_INLINE_P (fndecl) = 1;
278 /* It is made up of a unique return statement. */
279 DECL_INITIAL (fndecl) = make_node (BLOCK);
280 BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl)) = fndecl;
281 t = build2 (MODIFY_EXPR, return_type, DECL_RESULT (fndecl), size);
282 DECL_SAVED_TREE (fndecl) = build1 (RETURN_EXPR, void_type_node, t);
283 TREE_STATIC (fndecl) = 1;
285 /* Put it onto the list of size functions. */
286 vec_safe_push (size_functions, fndecl);
288 /* Replace the original expression with a call to the size function. */
289 return build_call_expr_loc_vec (UNKNOWN_LOCATION, fndecl, args);
292 /* Take, queue and compile all the size functions. It is essential that
293 the size functions be gimplified at the very end of the compilation
294 in order to guarantee transparent handling of self-referential sizes.
295 Otherwise the GENERIC inliner would not be able to inline them back
296 at each of their call sites, thus creating artificial non-constant
297 size expressions which would trigger nasty problems later on. */
299 void
300 finalize_size_functions (void)
302 unsigned int i;
303 tree fndecl;
305 for (i = 0; size_functions && size_functions->iterate (i, &fndecl); i++)
307 allocate_struct_function (fndecl, false);
308 set_cfun (NULL);
309 dump_function (TDI_original, fndecl);
310 gimplify_function_tree (fndecl);
311 dump_function (TDI_generic, fndecl);
312 cgraph_node::finalize_function (fndecl, false);
315 vec_free (size_functions);
318 /* Return the machine mode to use for a nonscalar of SIZE bits. The
319 mode must be in class MCLASS, and have exactly that many value bits;
320 it may have padding as well. If LIMIT is nonzero, modes of wider
321 than MAX_FIXED_MODE_SIZE will not be used. */
323 machine_mode
324 mode_for_size (unsigned int size, enum mode_class mclass, int limit)
326 machine_mode mode;
327 int i;
329 if (limit && size > MAX_FIXED_MODE_SIZE)
330 return BLKmode;
332 /* Get the first mode which has this size, in the specified class. */
333 for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
334 mode = GET_MODE_WIDER_MODE (mode))
335 if (GET_MODE_PRECISION (mode) == size)
336 return mode;
338 if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
339 for (i = 0; i < NUM_INT_N_ENTS; i ++)
340 if (int_n_data[i].bitsize == size
341 && int_n_enabled_p[i])
342 return int_n_data[i].m;
344 return BLKmode;
347 /* Similar, except passed a tree node. */
349 machine_mode
350 mode_for_size_tree (const_tree size, enum mode_class mclass, int limit)
352 unsigned HOST_WIDE_INT uhwi;
353 unsigned int ui;
355 if (!tree_fits_uhwi_p (size))
356 return BLKmode;
357 uhwi = tree_to_uhwi (size);
358 ui = uhwi;
359 if (uhwi != ui)
360 return BLKmode;
361 return mode_for_size (ui, mclass, limit);
364 /* Similar, but never return BLKmode; return the narrowest mode that
365 contains at least the requested number of value bits. */
367 machine_mode
368 smallest_mode_for_size (unsigned int size, enum mode_class mclass)
370 machine_mode mode = VOIDmode;
371 int i;
373 /* Get the first mode which has at least this size, in the
374 specified class. */
375 for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
376 mode = GET_MODE_WIDER_MODE (mode))
377 if (GET_MODE_PRECISION (mode) >= size)
378 break;
380 if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
381 for (i = 0; i < NUM_INT_N_ENTS; i ++)
382 if (int_n_data[i].bitsize >= size
383 && int_n_data[i].bitsize < GET_MODE_PRECISION (mode)
384 && int_n_enabled_p[i])
385 mode = int_n_data[i].m;
387 if (mode == VOIDmode)
388 gcc_unreachable ();
390 return mode;
393 /* Find an integer mode of the exact same size, or BLKmode on failure. */
395 machine_mode
396 int_mode_for_mode (machine_mode mode)
398 switch (GET_MODE_CLASS (mode))
400 case MODE_INT:
401 case MODE_PARTIAL_INT:
402 break;
404 case MODE_COMPLEX_INT:
405 case MODE_COMPLEX_FLOAT:
406 case MODE_FLOAT:
407 case MODE_DECIMAL_FLOAT:
408 case MODE_VECTOR_INT:
409 case MODE_VECTOR_FLOAT:
410 case MODE_FRACT:
411 case MODE_ACCUM:
412 case MODE_UFRACT:
413 case MODE_UACCUM:
414 case MODE_VECTOR_FRACT:
415 case MODE_VECTOR_ACCUM:
416 case MODE_VECTOR_UFRACT:
417 case MODE_VECTOR_UACCUM:
418 case MODE_POINTER_BOUNDS:
419 mode = mode_for_size (GET_MODE_BITSIZE (mode), MODE_INT, 0);
420 break;
422 case MODE_RANDOM:
423 if (mode == BLKmode)
424 break;
426 /* ... fall through ... */
428 case MODE_CC:
429 default:
430 gcc_unreachable ();
433 return mode;
436 /* Find a mode that can be used for efficient bitwise operations on MODE.
437 Return BLKmode if no such mode exists. */
439 machine_mode
440 bitwise_mode_for_mode (machine_mode mode)
442 /* Quick exit if we already have a suitable mode. */
443 unsigned int bitsize = GET_MODE_BITSIZE (mode);
444 if (SCALAR_INT_MODE_P (mode) && bitsize <= MAX_FIXED_MODE_SIZE)
445 return mode;
447 /* Reuse the sanity checks from int_mode_for_mode. */
448 gcc_checking_assert ((int_mode_for_mode (mode), true));
450 /* Try to replace complex modes with complex modes. In general we
451 expect both components to be processed independently, so we only
452 care whether there is a register for the inner mode. */
453 if (COMPLEX_MODE_P (mode))
455 machine_mode trial = mode;
456 if (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT)
457 trial = mode_for_size (bitsize, MODE_COMPLEX_INT, false);
458 if (trial != BLKmode
459 && have_regs_of_mode[GET_MODE_INNER (trial)])
460 return trial;
463 /* Try to replace vector modes with vector modes. Also try using vector
464 modes if an integer mode would be too big. */
465 if (VECTOR_MODE_P (mode) || bitsize > MAX_FIXED_MODE_SIZE)
467 machine_mode trial = mode;
468 if (GET_MODE_CLASS (mode) != MODE_VECTOR_INT)
469 trial = mode_for_size (bitsize, MODE_VECTOR_INT, 0);
470 if (trial != BLKmode
471 && have_regs_of_mode[trial]
472 && targetm.vector_mode_supported_p (trial))
473 return trial;
476 /* Otherwise fall back on integers while honoring MAX_FIXED_MODE_SIZE. */
477 return mode_for_size (bitsize, MODE_INT, true);
480 /* Find a type that can be used for efficient bitwise operations on MODE.
481 Return null if no such mode exists. */
483 tree
484 bitwise_type_for_mode (machine_mode mode)
486 mode = bitwise_mode_for_mode (mode);
487 if (mode == BLKmode)
488 return NULL_TREE;
490 unsigned int inner_size = GET_MODE_UNIT_BITSIZE (mode);
491 tree inner_type = build_nonstandard_integer_type (inner_size, true);
493 if (VECTOR_MODE_P (mode))
494 return build_vector_type_for_mode (inner_type, mode);
496 if (COMPLEX_MODE_P (mode))
497 return build_complex_type (inner_type);
499 gcc_checking_assert (GET_MODE_INNER (mode) == VOIDmode);
500 return inner_type;
503 /* Find a mode that is suitable for representing a vector with
504 NUNITS elements of mode INNERMODE. Returns BLKmode if there
505 is no suitable mode. */
507 machine_mode
508 mode_for_vector (machine_mode innermode, unsigned nunits)
510 machine_mode mode;
512 /* First, look for a supported vector type. */
513 if (SCALAR_FLOAT_MODE_P (innermode))
514 mode = MIN_MODE_VECTOR_FLOAT;
515 else if (SCALAR_FRACT_MODE_P (innermode))
516 mode = MIN_MODE_VECTOR_FRACT;
517 else if (SCALAR_UFRACT_MODE_P (innermode))
518 mode = MIN_MODE_VECTOR_UFRACT;
519 else if (SCALAR_ACCUM_MODE_P (innermode))
520 mode = MIN_MODE_VECTOR_ACCUM;
521 else if (SCALAR_UACCUM_MODE_P (innermode))
522 mode = MIN_MODE_VECTOR_UACCUM;
523 else
524 mode = MIN_MODE_VECTOR_INT;
526 /* Do not check vector_mode_supported_p here. We'll do that
527 later in vector_type_mode. */
528 for (; mode != VOIDmode ; mode = GET_MODE_WIDER_MODE (mode))
529 if (GET_MODE_NUNITS (mode) == nunits
530 && GET_MODE_INNER (mode) == innermode)
531 break;
533 /* For integers, try mapping it to a same-sized scalar mode. */
534 if (mode == VOIDmode
535 && GET_MODE_CLASS (innermode) == MODE_INT)
536 mode = mode_for_size (nunits * GET_MODE_BITSIZE (innermode),
537 MODE_INT, 0);
539 if (mode == VOIDmode
540 || (GET_MODE_CLASS (mode) == MODE_INT
541 && !have_regs_of_mode[mode]))
542 return BLKmode;
544 return mode;
547 /* Return the alignment of MODE. This will be bounded by 1 and
548 BIGGEST_ALIGNMENT. */
550 unsigned int
551 get_mode_alignment (machine_mode mode)
553 return MIN (BIGGEST_ALIGNMENT, MAX (1, mode_base_align[mode]*BITS_PER_UNIT));
556 /* Return the precision of the mode, or for a complex or vector mode the
557 precision of the mode of its elements. */
559 unsigned int
560 element_precision (machine_mode mode)
562 if (COMPLEX_MODE_P (mode) || VECTOR_MODE_P (mode))
563 mode = GET_MODE_INNER (mode);
565 return GET_MODE_PRECISION (mode);
568 /* Return the natural mode of an array, given that it is SIZE bytes in
569 total and has elements of type ELEM_TYPE. */
571 static machine_mode
572 mode_for_array (tree elem_type, tree size)
574 tree elem_size;
575 unsigned HOST_WIDE_INT int_size, int_elem_size;
576 bool limit_p;
578 /* One-element arrays get the component type's mode. */
579 elem_size = TYPE_SIZE (elem_type);
580 if (simple_cst_equal (size, elem_size))
581 return TYPE_MODE (elem_type);
583 limit_p = true;
584 if (tree_fits_uhwi_p (size) && tree_fits_uhwi_p (elem_size))
586 int_size = tree_to_uhwi (size);
587 int_elem_size = tree_to_uhwi (elem_size);
588 if (int_elem_size > 0
589 && int_size % int_elem_size == 0
590 && targetm.array_mode_supported_p (TYPE_MODE (elem_type),
591 int_size / int_elem_size))
592 limit_p = false;
594 return mode_for_size_tree (size, MODE_INT, limit_p);
597 /* Subroutine of layout_decl: Force alignment required for the data type.
598 But if the decl itself wants greater alignment, don't override that. */
600 static inline void
601 do_type_align (tree type, tree decl)
603 if (TYPE_ALIGN (type) > DECL_ALIGN (decl))
605 DECL_ALIGN (decl) = TYPE_ALIGN (type);
606 if (TREE_CODE (decl) == FIELD_DECL)
607 DECL_USER_ALIGN (decl) = TYPE_USER_ALIGN (type);
611 /* Set the size, mode and alignment of a ..._DECL node.
612 TYPE_DECL does need this for C++.
613 Note that LABEL_DECL and CONST_DECL nodes do not need this,
614 and FUNCTION_DECL nodes have them set up in a special (and simple) way.
615 Don't call layout_decl for them.
617 KNOWN_ALIGN is the amount of alignment we can assume this
618 decl has with no special effort. It is relevant only for FIELD_DECLs
619 and depends on the previous fields.
620 All that matters about KNOWN_ALIGN is which powers of 2 divide it.
621 If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
622 the record will be aligned to suit. */
624 void
625 layout_decl (tree decl, unsigned int known_align)
627 tree type = TREE_TYPE (decl);
628 enum tree_code code = TREE_CODE (decl);
629 rtx rtl = NULL_RTX;
630 location_t loc = DECL_SOURCE_LOCATION (decl);
632 if (code == CONST_DECL)
633 return;
635 gcc_assert (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL
636 || code == TYPE_DECL ||code == FIELD_DECL);
638 rtl = DECL_RTL_IF_SET (decl);
640 if (type == error_mark_node)
641 type = void_type_node;
643 /* Usually the size and mode come from the data type without change,
644 however, the front-end may set the explicit width of the field, so its
645 size may not be the same as the size of its type. This happens with
646 bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
647 also happens with other fields. For example, the C++ front-end creates
648 zero-sized fields corresponding to empty base classes, and depends on
649 layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
650 size in bytes from the size in bits. If we have already set the mode,
651 don't set it again since we can be called twice for FIELD_DECLs. */
653 DECL_UNSIGNED (decl) = TYPE_UNSIGNED (type);
654 if (DECL_MODE (decl) == VOIDmode)
655 DECL_MODE (decl) = TYPE_MODE (type);
657 if (DECL_SIZE (decl) == 0)
659 DECL_SIZE (decl) = TYPE_SIZE (type);
660 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
662 else if (DECL_SIZE_UNIT (decl) == 0)
663 DECL_SIZE_UNIT (decl)
664 = fold_convert_loc (loc, sizetype,
665 size_binop_loc (loc, CEIL_DIV_EXPR, DECL_SIZE (decl),
666 bitsize_unit_node));
668 if (code != FIELD_DECL)
669 /* For non-fields, update the alignment from the type. */
670 do_type_align (type, decl);
671 else
672 /* For fields, it's a bit more complicated... */
674 bool old_user_align = DECL_USER_ALIGN (decl);
675 bool zero_bitfield = false;
676 bool packed_p = DECL_PACKED (decl);
677 unsigned int mfa;
679 if (DECL_BIT_FIELD (decl))
681 DECL_BIT_FIELD_TYPE (decl) = type;
683 /* A zero-length bit-field affects the alignment of the next
684 field. In essence such bit-fields are not influenced by
685 any packing due to #pragma pack or attribute packed. */
686 if (integer_zerop (DECL_SIZE (decl))
687 && ! targetm.ms_bitfield_layout_p (DECL_FIELD_CONTEXT (decl)))
689 zero_bitfield = true;
690 packed_p = false;
691 #ifdef PCC_BITFIELD_TYPE_MATTERS
692 if (PCC_BITFIELD_TYPE_MATTERS)
693 do_type_align (type, decl);
694 else
695 #endif
697 #ifdef EMPTY_FIELD_BOUNDARY
698 if (EMPTY_FIELD_BOUNDARY > DECL_ALIGN (decl))
700 DECL_ALIGN (decl) = EMPTY_FIELD_BOUNDARY;
701 DECL_USER_ALIGN (decl) = 0;
703 #endif
707 /* See if we can use an ordinary integer mode for a bit-field.
708 Conditions are: a fixed size that is correct for another mode,
709 occupying a complete byte or bytes on proper boundary. */
710 if (TYPE_SIZE (type) != 0
711 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
712 && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT)
714 machine_mode xmode
715 = mode_for_size_tree (DECL_SIZE (decl), MODE_INT, 1);
716 unsigned int xalign = GET_MODE_ALIGNMENT (xmode);
718 if (xmode != BLKmode
719 && !(xalign > BITS_PER_UNIT && DECL_PACKED (decl))
720 && (known_align == 0 || known_align >= xalign))
722 DECL_ALIGN (decl) = MAX (xalign, DECL_ALIGN (decl));
723 DECL_MODE (decl) = xmode;
724 DECL_BIT_FIELD (decl) = 0;
728 /* Turn off DECL_BIT_FIELD if we won't need it set. */
729 if (TYPE_MODE (type) == BLKmode && DECL_MODE (decl) == BLKmode
730 && known_align >= TYPE_ALIGN (type)
731 && DECL_ALIGN (decl) >= TYPE_ALIGN (type))
732 DECL_BIT_FIELD (decl) = 0;
734 else if (packed_p && DECL_USER_ALIGN (decl))
735 /* Don't touch DECL_ALIGN. For other packed fields, go ahead and
736 round up; we'll reduce it again below. We want packing to
737 supersede USER_ALIGN inherited from the type, but defer to
738 alignment explicitly specified on the field decl. */;
739 else
740 do_type_align (type, decl);
742 /* If the field is packed and not explicitly aligned, give it the
743 minimum alignment. Note that do_type_align may set
744 DECL_USER_ALIGN, so we need to check old_user_align instead. */
745 if (packed_p
746 && !old_user_align)
747 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), BITS_PER_UNIT);
749 if (! packed_p && ! DECL_USER_ALIGN (decl))
751 /* Some targets (i.e. i386, VMS) limit struct field alignment
752 to a lower boundary than alignment of variables unless
753 it was overridden by attribute aligned. */
754 #ifdef BIGGEST_FIELD_ALIGNMENT
755 DECL_ALIGN (decl)
756 = MIN (DECL_ALIGN (decl), (unsigned) BIGGEST_FIELD_ALIGNMENT);
757 #endif
758 #ifdef ADJUST_FIELD_ALIGN
759 DECL_ALIGN (decl) = ADJUST_FIELD_ALIGN (decl, DECL_ALIGN (decl));
760 #endif
763 if (zero_bitfield)
764 mfa = initial_max_fld_align * BITS_PER_UNIT;
765 else
766 mfa = maximum_field_alignment;
767 /* Should this be controlled by DECL_USER_ALIGN, too? */
768 if (mfa != 0)
769 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), mfa);
772 /* Evaluate nonconstant size only once, either now or as soon as safe. */
773 if (DECL_SIZE (decl) != 0 && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
774 DECL_SIZE (decl) = variable_size (DECL_SIZE (decl));
775 if (DECL_SIZE_UNIT (decl) != 0
776 && TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST)
777 DECL_SIZE_UNIT (decl) = variable_size (DECL_SIZE_UNIT (decl));
779 /* If requested, warn about definitions of large data objects. */
780 if (warn_larger_than
781 && (code == VAR_DECL || code == PARM_DECL)
782 && ! DECL_EXTERNAL (decl))
784 tree size = DECL_SIZE_UNIT (decl);
786 if (size != 0 && TREE_CODE (size) == INTEGER_CST
787 && compare_tree_int (size, larger_than_size) > 0)
789 int size_as_int = TREE_INT_CST_LOW (size);
791 if (compare_tree_int (size, size_as_int) == 0)
792 warning (OPT_Wlarger_than_, "size of %q+D is %d bytes", decl, size_as_int);
793 else
794 warning (OPT_Wlarger_than_, "size of %q+D is larger than %wd bytes",
795 decl, larger_than_size);
799 /* If the RTL was already set, update its mode and mem attributes. */
800 if (rtl)
802 PUT_MODE (rtl, DECL_MODE (decl));
803 SET_DECL_RTL (decl, 0);
804 set_mem_attributes (rtl, decl, 1);
805 SET_DECL_RTL (decl, rtl);
809 /* Given a VAR_DECL, PARM_DECL or RESULT_DECL, clears the results of
810 a previous call to layout_decl and calls it again. */
812 void
813 relayout_decl (tree decl)
815 DECL_SIZE (decl) = DECL_SIZE_UNIT (decl) = 0;
816 DECL_MODE (decl) = VOIDmode;
817 if (!DECL_USER_ALIGN (decl))
818 DECL_ALIGN (decl) = 0;
819 SET_DECL_RTL (decl, 0);
821 layout_decl (decl, 0);
824 /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
825 QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
826 is to be passed to all other layout functions for this record. It is the
827 responsibility of the caller to call `free' for the storage returned.
828 Note that garbage collection is not permitted until we finish laying
829 out the record. */
831 record_layout_info
832 start_record_layout (tree t)
834 record_layout_info rli = XNEW (struct record_layout_info_s);
836 rli->t = t;
838 /* If the type has a minimum specified alignment (via an attribute
839 declaration, for example) use it -- otherwise, start with a
840 one-byte alignment. */
841 rli->record_align = MAX (BITS_PER_UNIT, TYPE_ALIGN (t));
842 rli->unpacked_align = rli->record_align;
843 rli->offset_align = MAX (rli->record_align, BIGGEST_ALIGNMENT);
845 #ifdef STRUCTURE_SIZE_BOUNDARY
846 /* Packed structures don't need to have minimum size. */
847 if (! TYPE_PACKED (t))
849 unsigned tmp;
851 /* #pragma pack overrides STRUCTURE_SIZE_BOUNDARY. */
852 tmp = (unsigned) STRUCTURE_SIZE_BOUNDARY;
853 if (maximum_field_alignment != 0)
854 tmp = MIN (tmp, maximum_field_alignment);
855 rli->record_align = MAX (rli->record_align, tmp);
857 #endif
859 rli->offset = size_zero_node;
860 rli->bitpos = bitsize_zero_node;
861 rli->prev_field = 0;
862 rli->pending_statics = 0;
863 rli->packed_maybe_necessary = 0;
864 rli->remaining_in_alignment = 0;
866 return rli;
869 /* Return the combined bit position for the byte offset OFFSET and the
870 bit position BITPOS.
872 These functions operate on byte and bit positions present in FIELD_DECLs
873 and assume that these expressions result in no (intermediate) overflow.
874 This assumption is necessary to fold the expressions as much as possible,
875 so as to avoid creating artificially variable-sized types in languages
876 supporting variable-sized types like Ada. */
878 tree
879 bit_from_pos (tree offset, tree bitpos)
881 if (TREE_CODE (offset) == PLUS_EXPR)
882 offset = size_binop (PLUS_EXPR,
883 fold_convert (bitsizetype, TREE_OPERAND (offset, 0)),
884 fold_convert (bitsizetype, TREE_OPERAND (offset, 1)));
885 else
886 offset = fold_convert (bitsizetype, offset);
887 return size_binop (PLUS_EXPR, bitpos,
888 size_binop (MULT_EXPR, offset, bitsize_unit_node));
891 /* Return the combined truncated byte position for the byte offset OFFSET and
892 the bit position BITPOS. */
894 tree
895 byte_from_pos (tree offset, tree bitpos)
897 tree bytepos;
898 if (TREE_CODE (bitpos) == MULT_EXPR
899 && tree_int_cst_equal (TREE_OPERAND (bitpos, 1), bitsize_unit_node))
900 bytepos = TREE_OPERAND (bitpos, 0);
901 else
902 bytepos = size_binop (TRUNC_DIV_EXPR, bitpos, bitsize_unit_node);
903 return size_binop (PLUS_EXPR, offset, fold_convert (sizetype, bytepos));
906 /* Split the bit position POS into a byte offset *POFFSET and a bit
907 position *PBITPOS with the byte offset aligned to OFF_ALIGN bits. */
909 void
910 pos_from_bit (tree *poffset, tree *pbitpos, unsigned int off_align,
911 tree pos)
913 tree toff_align = bitsize_int (off_align);
914 if (TREE_CODE (pos) == MULT_EXPR
915 && tree_int_cst_equal (TREE_OPERAND (pos, 1), toff_align))
917 *poffset = size_binop (MULT_EXPR,
918 fold_convert (sizetype, TREE_OPERAND (pos, 0)),
919 size_int (off_align / BITS_PER_UNIT));
920 *pbitpos = bitsize_zero_node;
922 else
924 *poffset = size_binop (MULT_EXPR,
925 fold_convert (sizetype,
926 size_binop (FLOOR_DIV_EXPR, pos,
927 toff_align)),
928 size_int (off_align / BITS_PER_UNIT));
929 *pbitpos = size_binop (FLOOR_MOD_EXPR, pos, toff_align);
933 /* Given a pointer to bit and byte offsets and an offset alignment,
934 normalize the offsets so they are within the alignment. */
936 void
937 normalize_offset (tree *poffset, tree *pbitpos, unsigned int off_align)
939 /* If the bit position is now larger than it should be, adjust it
940 downwards. */
941 if (compare_tree_int (*pbitpos, off_align) >= 0)
943 tree offset, bitpos;
944 pos_from_bit (&offset, &bitpos, off_align, *pbitpos);
945 *poffset = size_binop (PLUS_EXPR, *poffset, offset);
946 *pbitpos = bitpos;
950 /* Print debugging information about the information in RLI. */
952 DEBUG_FUNCTION void
953 debug_rli (record_layout_info rli)
955 print_node_brief (stderr, "type", rli->t, 0);
956 print_node_brief (stderr, "\noffset", rli->offset, 0);
957 print_node_brief (stderr, " bitpos", rli->bitpos, 0);
959 fprintf (stderr, "\naligns: rec = %u, unpack = %u, off = %u\n",
960 rli->record_align, rli->unpacked_align,
961 rli->offset_align);
963 /* The ms_struct code is the only that uses this. */
964 if (targetm.ms_bitfield_layout_p (rli->t))
965 fprintf (stderr, "remaining in alignment = %u\n", rli->remaining_in_alignment);
967 if (rli->packed_maybe_necessary)
968 fprintf (stderr, "packed may be necessary\n");
970 if (!vec_safe_is_empty (rli->pending_statics))
972 fprintf (stderr, "pending statics:\n");
973 debug_vec_tree (rli->pending_statics);
977 /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
978 BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
980 void
981 normalize_rli (record_layout_info rli)
983 normalize_offset (&rli->offset, &rli->bitpos, rli->offset_align);
986 /* Returns the size in bytes allocated so far. */
988 tree
989 rli_size_unit_so_far (record_layout_info rli)
991 return byte_from_pos (rli->offset, rli->bitpos);
994 /* Returns the size in bits allocated so far. */
996 tree
997 rli_size_so_far (record_layout_info rli)
999 return bit_from_pos (rli->offset, rli->bitpos);
1002 /* FIELD is about to be added to RLI->T. The alignment (in bits) of
1003 the next available location within the record is given by KNOWN_ALIGN.
1004 Update the variable alignment fields in RLI, and return the alignment
1005 to give the FIELD. */
1007 unsigned int
1008 update_alignment_for_field (record_layout_info rli, tree field,
1009 unsigned int known_align)
1011 /* The alignment required for FIELD. */
1012 unsigned int desired_align;
1013 /* The type of this field. */
1014 tree type = TREE_TYPE (field);
1015 /* True if the field was explicitly aligned by the user. */
1016 bool user_align;
1017 bool is_bitfield;
1019 /* Do not attempt to align an ERROR_MARK node */
1020 if (TREE_CODE (type) == ERROR_MARK)
1021 return 0;
1023 /* Lay out the field so we know what alignment it needs. */
1024 layout_decl (field, known_align);
1025 desired_align = DECL_ALIGN (field);
1026 user_align = DECL_USER_ALIGN (field);
1028 is_bitfield = (type != error_mark_node
1029 && DECL_BIT_FIELD_TYPE (field)
1030 && ! integer_zerop (TYPE_SIZE (type)));
1032 /* Record must have at least as much alignment as any field.
1033 Otherwise, the alignment of the field within the record is
1034 meaningless. */
1035 if (targetm.ms_bitfield_layout_p (rli->t))
1037 /* Here, the alignment of the underlying type of a bitfield can
1038 affect the alignment of a record; even a zero-sized field
1039 can do this. The alignment should be to the alignment of
1040 the type, except that for zero-size bitfields this only
1041 applies if there was an immediately prior, nonzero-size
1042 bitfield. (That's the way it is, experimentally.) */
1043 if ((!is_bitfield && !DECL_PACKED (field))
1044 || ((DECL_SIZE (field) == NULL_TREE
1045 || !integer_zerop (DECL_SIZE (field)))
1046 ? !DECL_PACKED (field)
1047 : (rli->prev_field
1048 && DECL_BIT_FIELD_TYPE (rli->prev_field)
1049 && ! integer_zerop (DECL_SIZE (rli->prev_field)))))
1051 unsigned int type_align = TYPE_ALIGN (type);
1052 type_align = MAX (type_align, desired_align);
1053 if (maximum_field_alignment != 0)
1054 type_align = MIN (type_align, maximum_field_alignment);
1055 rli->record_align = MAX (rli->record_align, type_align);
1056 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1059 #ifdef PCC_BITFIELD_TYPE_MATTERS
1060 else if (is_bitfield && PCC_BITFIELD_TYPE_MATTERS)
1062 /* Named bit-fields cause the entire structure to have the
1063 alignment implied by their type. Some targets also apply the same
1064 rules to unnamed bitfields. */
1065 if (DECL_NAME (field) != 0
1066 || targetm.align_anon_bitfield ())
1068 unsigned int type_align = TYPE_ALIGN (type);
1070 #ifdef ADJUST_FIELD_ALIGN
1071 if (! TYPE_USER_ALIGN (type))
1072 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1073 #endif
1075 /* Targets might chose to handle unnamed and hence possibly
1076 zero-width bitfield. Those are not influenced by #pragmas
1077 or packed attributes. */
1078 if (integer_zerop (DECL_SIZE (field)))
1080 if (initial_max_fld_align)
1081 type_align = MIN (type_align,
1082 initial_max_fld_align * BITS_PER_UNIT);
1084 else if (maximum_field_alignment != 0)
1085 type_align = MIN (type_align, maximum_field_alignment);
1086 else if (DECL_PACKED (field))
1087 type_align = MIN (type_align, BITS_PER_UNIT);
1089 /* The alignment of the record is increased to the maximum
1090 of the current alignment, the alignment indicated on the
1091 field (i.e., the alignment specified by an __aligned__
1092 attribute), and the alignment indicated by the type of
1093 the field. */
1094 rli->record_align = MAX (rli->record_align, desired_align);
1095 rli->record_align = MAX (rli->record_align, type_align);
1097 if (warn_packed)
1098 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1099 user_align |= TYPE_USER_ALIGN (type);
1102 #endif
1103 else
1105 rli->record_align = MAX (rli->record_align, desired_align);
1106 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1109 TYPE_USER_ALIGN (rli->t) |= user_align;
1111 return desired_align;
1114 /* Called from place_field to handle unions. */
1116 static void
1117 place_union_field (record_layout_info rli, tree field)
1119 update_alignment_for_field (rli, field, /*known_align=*/0);
1121 DECL_FIELD_OFFSET (field) = size_zero_node;
1122 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
1123 SET_DECL_OFFSET_ALIGN (field, BIGGEST_ALIGNMENT);
1125 /* If this is an ERROR_MARK return *after* having set the
1126 field at the start of the union. This helps when parsing
1127 invalid fields. */
1128 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK)
1129 return;
1131 /* We assume the union's size will be a multiple of a byte so we don't
1132 bother with BITPOS. */
1133 if (TREE_CODE (rli->t) == UNION_TYPE)
1134 rli->offset = size_binop (MAX_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1135 else if (TREE_CODE (rli->t) == QUAL_UNION_TYPE)
1136 rli->offset = fold_build3 (COND_EXPR, sizetype, DECL_QUALIFIER (field),
1137 DECL_SIZE_UNIT (field), rli->offset);
1140 #if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
1141 /* A bitfield of SIZE with a required access alignment of ALIGN is allocated
1142 at BYTE_OFFSET / BIT_OFFSET. Return nonzero if the field would span more
1143 units of alignment than the underlying TYPE. */
1144 static int
1145 excess_unit_span (HOST_WIDE_INT byte_offset, HOST_WIDE_INT bit_offset,
1146 HOST_WIDE_INT size, HOST_WIDE_INT align, tree type)
1148 /* Note that the calculation of OFFSET might overflow; we calculate it so
1149 that we still get the right result as long as ALIGN is a power of two. */
1150 unsigned HOST_WIDE_INT offset = byte_offset * BITS_PER_UNIT + bit_offset;
1152 offset = offset % align;
1153 return ((offset + size + align - 1) / align
1154 > tree_to_uhwi (TYPE_SIZE (type)) / align);
1156 #endif
1158 /* RLI contains information about the layout of a RECORD_TYPE. FIELD
1159 is a FIELD_DECL to be added after those fields already present in
1160 T. (FIELD is not actually added to the TYPE_FIELDS list here;
1161 callers that desire that behavior must manually perform that step.) */
1163 void
1164 place_field (record_layout_info rli, tree field)
1166 /* The alignment required for FIELD. */
1167 unsigned int desired_align;
1168 /* The alignment FIELD would have if we just dropped it into the
1169 record as it presently stands. */
1170 unsigned int known_align;
1171 unsigned int actual_align;
1172 /* The type of this field. */
1173 tree type = TREE_TYPE (field);
1175 gcc_assert (TREE_CODE (field) != ERROR_MARK);
1177 /* If FIELD is static, then treat it like a separate variable, not
1178 really like a structure field. If it is a FUNCTION_DECL, it's a
1179 method. In both cases, all we do is lay out the decl, and we do
1180 it *after* the record is laid out. */
1181 if (TREE_CODE (field) == VAR_DECL)
1183 vec_safe_push (rli->pending_statics, field);
1184 return;
1187 /* Enumerators and enum types which are local to this class need not
1188 be laid out. Likewise for initialized constant fields. */
1189 else if (TREE_CODE (field) != FIELD_DECL)
1190 return;
1192 /* Unions are laid out very differently than records, so split
1193 that code off to another function. */
1194 else if (TREE_CODE (rli->t) != RECORD_TYPE)
1196 place_union_field (rli, field);
1197 return;
1200 else if (TREE_CODE (type) == ERROR_MARK)
1202 /* Place this field at the current allocation position, so we
1203 maintain monotonicity. */
1204 DECL_FIELD_OFFSET (field) = rli->offset;
1205 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1206 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1207 return;
1210 /* Work out the known alignment so far. Note that A & (-A) is the
1211 value of the least-significant bit in A that is one. */
1212 if (! integer_zerop (rli->bitpos))
1213 known_align = (tree_to_uhwi (rli->bitpos)
1214 & - tree_to_uhwi (rli->bitpos));
1215 else if (integer_zerop (rli->offset))
1216 known_align = 0;
1217 else if (tree_fits_uhwi_p (rli->offset))
1218 known_align = (BITS_PER_UNIT
1219 * (tree_to_uhwi (rli->offset)
1220 & - tree_to_uhwi (rli->offset)));
1221 else
1222 known_align = rli->offset_align;
1224 desired_align = update_alignment_for_field (rli, field, known_align);
1225 if (known_align == 0)
1226 known_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1228 if (warn_packed && DECL_PACKED (field))
1230 if (known_align >= TYPE_ALIGN (type))
1232 if (TYPE_ALIGN (type) > desired_align)
1234 if (STRICT_ALIGNMENT)
1235 warning (OPT_Wattributes, "packed attribute causes "
1236 "inefficient alignment for %q+D", field);
1237 /* Don't warn if DECL_PACKED was set by the type. */
1238 else if (!TYPE_PACKED (rli->t))
1239 warning (OPT_Wattributes, "packed attribute is "
1240 "unnecessary for %q+D", field);
1243 else
1244 rli->packed_maybe_necessary = 1;
1247 /* Does this field automatically have alignment it needs by virtue
1248 of the fields that precede it and the record's own alignment? */
1249 if (known_align < desired_align)
1251 /* No, we need to skip space before this field.
1252 Bump the cumulative size to multiple of field alignment. */
1254 if (!targetm.ms_bitfield_layout_p (rli->t)
1255 && DECL_SOURCE_LOCATION (field) != BUILTINS_LOCATION)
1256 warning (OPT_Wpadded, "padding struct to align %q+D", field);
1258 /* If the alignment is still within offset_align, just align
1259 the bit position. */
1260 if (desired_align < rli->offset_align)
1261 rli->bitpos = round_up (rli->bitpos, desired_align);
1262 else
1264 /* First adjust OFFSET by the partial bits, then align. */
1265 rli->offset
1266 = size_binop (PLUS_EXPR, rli->offset,
1267 fold_convert (sizetype,
1268 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1269 bitsize_unit_node)));
1270 rli->bitpos = bitsize_zero_node;
1272 rli->offset = round_up (rli->offset, desired_align / BITS_PER_UNIT);
1275 if (! TREE_CONSTANT (rli->offset))
1276 rli->offset_align = desired_align;
1277 if (targetm.ms_bitfield_layout_p (rli->t))
1278 rli->prev_field = NULL;
1281 /* Handle compatibility with PCC. Note that if the record has any
1282 variable-sized fields, we need not worry about compatibility. */
1283 #ifdef PCC_BITFIELD_TYPE_MATTERS
1284 if (PCC_BITFIELD_TYPE_MATTERS
1285 && ! targetm.ms_bitfield_layout_p (rli->t)
1286 && TREE_CODE (field) == FIELD_DECL
1287 && type != error_mark_node
1288 && DECL_BIT_FIELD (field)
1289 && (! DECL_PACKED (field)
1290 /* Enter for these packed fields only to issue a warning. */
1291 || TYPE_ALIGN (type) <= BITS_PER_UNIT)
1292 && maximum_field_alignment == 0
1293 && ! integer_zerop (DECL_SIZE (field))
1294 && tree_fits_uhwi_p (DECL_SIZE (field))
1295 && tree_fits_uhwi_p (rli->offset)
1296 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1298 unsigned int type_align = TYPE_ALIGN (type);
1299 tree dsize = DECL_SIZE (field);
1300 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1301 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1302 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1304 #ifdef ADJUST_FIELD_ALIGN
1305 if (! TYPE_USER_ALIGN (type))
1306 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1307 #endif
1309 /* A bit field may not span more units of alignment of its type
1310 than its type itself. Advance to next boundary if necessary. */
1311 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1313 if (DECL_PACKED (field))
1315 if (warn_packed_bitfield_compat == 1)
1316 inform
1317 (input_location,
1318 "offset of packed bit-field %qD has changed in GCC 4.4",
1319 field);
1321 else
1322 rli->bitpos = round_up (rli->bitpos, type_align);
1325 if (! DECL_PACKED (field))
1326 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1328 #endif
1330 #ifdef BITFIELD_NBYTES_LIMITED
1331 if (BITFIELD_NBYTES_LIMITED
1332 && ! targetm.ms_bitfield_layout_p (rli->t)
1333 && TREE_CODE (field) == FIELD_DECL
1334 && type != error_mark_node
1335 && DECL_BIT_FIELD_TYPE (field)
1336 && ! DECL_PACKED (field)
1337 && ! integer_zerop (DECL_SIZE (field))
1338 && tree_fits_uhwi_p (DECL_SIZE (field))
1339 && tree_fits_uhwi_p (rli->offset)
1340 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1342 unsigned int type_align = TYPE_ALIGN (type);
1343 tree dsize = DECL_SIZE (field);
1344 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1345 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1346 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1348 #ifdef ADJUST_FIELD_ALIGN
1349 if (! TYPE_USER_ALIGN (type))
1350 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1351 #endif
1353 if (maximum_field_alignment != 0)
1354 type_align = MIN (type_align, maximum_field_alignment);
1355 /* ??? This test is opposite the test in the containing if
1356 statement, so this code is unreachable currently. */
1357 else if (DECL_PACKED (field))
1358 type_align = MIN (type_align, BITS_PER_UNIT);
1360 /* A bit field may not span the unit of alignment of its type.
1361 Advance to next boundary if necessary. */
1362 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1363 rli->bitpos = round_up (rli->bitpos, type_align);
1365 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1367 #endif
1369 /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
1370 A subtlety:
1371 When a bit field is inserted into a packed record, the whole
1372 size of the underlying type is used by one or more same-size
1373 adjacent bitfields. (That is, if its long:3, 32 bits is
1374 used in the record, and any additional adjacent long bitfields are
1375 packed into the same chunk of 32 bits. However, if the size
1376 changes, a new field of that size is allocated.) In an unpacked
1377 record, this is the same as using alignment, but not equivalent
1378 when packing.
1380 Note: for compatibility, we use the type size, not the type alignment
1381 to determine alignment, since that matches the documentation */
1383 if (targetm.ms_bitfield_layout_p (rli->t))
1385 tree prev_saved = rli->prev_field;
1386 tree prev_type = prev_saved ? DECL_BIT_FIELD_TYPE (prev_saved) : NULL;
1388 /* This is a bitfield if it exists. */
1389 if (rli->prev_field)
1391 /* If both are bitfields, nonzero, and the same size, this is
1392 the middle of a run. Zero declared size fields are special
1393 and handled as "end of run". (Note: it's nonzero declared
1394 size, but equal type sizes!) (Since we know that both
1395 the current and previous fields are bitfields by the
1396 time we check it, DECL_SIZE must be present for both.) */
1397 if (DECL_BIT_FIELD_TYPE (field)
1398 && !integer_zerop (DECL_SIZE (field))
1399 && !integer_zerop (DECL_SIZE (rli->prev_field))
1400 && tree_fits_shwi_p (DECL_SIZE (rli->prev_field))
1401 && tree_fits_uhwi_p (TYPE_SIZE (type))
1402 && simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type)))
1404 /* We're in the middle of a run of equal type size fields; make
1405 sure we realign if we run out of bits. (Not decl size,
1406 type size!) */
1407 HOST_WIDE_INT bitsize = tree_to_uhwi (DECL_SIZE (field));
1409 if (rli->remaining_in_alignment < bitsize)
1411 HOST_WIDE_INT typesize = tree_to_uhwi (TYPE_SIZE (type));
1413 /* out of bits; bump up to next 'word'. */
1414 rli->bitpos
1415 = size_binop (PLUS_EXPR, rli->bitpos,
1416 bitsize_int (rli->remaining_in_alignment));
1417 rli->prev_field = field;
1418 if (typesize < bitsize)
1419 rli->remaining_in_alignment = 0;
1420 else
1421 rli->remaining_in_alignment = typesize - bitsize;
1423 else
1424 rli->remaining_in_alignment -= bitsize;
1426 else
1428 /* End of a run: if leaving a run of bitfields of the same type
1429 size, we have to "use up" the rest of the bits of the type
1430 size.
1432 Compute the new position as the sum of the size for the prior
1433 type and where we first started working on that type.
1434 Note: since the beginning of the field was aligned then
1435 of course the end will be too. No round needed. */
1437 if (!integer_zerop (DECL_SIZE (rli->prev_field)))
1439 rli->bitpos
1440 = size_binop (PLUS_EXPR, rli->bitpos,
1441 bitsize_int (rli->remaining_in_alignment));
1443 else
1444 /* We "use up" size zero fields; the code below should behave
1445 as if the prior field was not a bitfield. */
1446 prev_saved = NULL;
1448 /* Cause a new bitfield to be captured, either this time (if
1449 currently a bitfield) or next time we see one. */
1450 if (!DECL_BIT_FIELD_TYPE (field)
1451 || integer_zerop (DECL_SIZE (field)))
1452 rli->prev_field = NULL;
1455 normalize_rli (rli);
1458 /* If we're starting a new run of same type size bitfields
1459 (or a run of non-bitfields), set up the "first of the run"
1460 fields.
1462 That is, if the current field is not a bitfield, or if there
1463 was a prior bitfield the type sizes differ, or if there wasn't
1464 a prior bitfield the size of the current field is nonzero.
1466 Note: we must be sure to test ONLY the type size if there was
1467 a prior bitfield and ONLY for the current field being zero if
1468 there wasn't. */
1470 if (!DECL_BIT_FIELD_TYPE (field)
1471 || (prev_saved != NULL
1472 ? !simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type))
1473 : !integer_zerop (DECL_SIZE (field)) ))
1475 /* Never smaller than a byte for compatibility. */
1476 unsigned int type_align = BITS_PER_UNIT;
1478 /* (When not a bitfield), we could be seeing a flex array (with
1479 no DECL_SIZE). Since we won't be using remaining_in_alignment
1480 until we see a bitfield (and come by here again) we just skip
1481 calculating it. */
1482 if (DECL_SIZE (field) != NULL
1483 && tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (field)))
1484 && tree_fits_uhwi_p (DECL_SIZE (field)))
1486 unsigned HOST_WIDE_INT bitsize
1487 = tree_to_uhwi (DECL_SIZE (field));
1488 unsigned HOST_WIDE_INT typesize
1489 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (field)));
1491 if (typesize < bitsize)
1492 rli->remaining_in_alignment = 0;
1493 else
1494 rli->remaining_in_alignment = typesize - bitsize;
1497 /* Now align (conventionally) for the new type. */
1498 type_align = TYPE_ALIGN (TREE_TYPE (field));
1500 if (maximum_field_alignment != 0)
1501 type_align = MIN (type_align, maximum_field_alignment);
1503 rli->bitpos = round_up (rli->bitpos, type_align);
1505 /* If we really aligned, don't allow subsequent bitfields
1506 to undo that. */
1507 rli->prev_field = NULL;
1511 /* Offset so far becomes the position of this field after normalizing. */
1512 normalize_rli (rli);
1513 DECL_FIELD_OFFSET (field) = rli->offset;
1514 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1515 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1517 /* Evaluate nonconstant offsets only once, either now or as soon as safe. */
1518 if (TREE_CODE (DECL_FIELD_OFFSET (field)) != INTEGER_CST)
1519 DECL_FIELD_OFFSET (field) = variable_size (DECL_FIELD_OFFSET (field));
1521 /* If this field ended up more aligned than we thought it would be (we
1522 approximate this by seeing if its position changed), lay out the field
1523 again; perhaps we can use an integral mode for it now. */
1524 if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field)))
1525 actual_align = (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
1526 & - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field)));
1527 else if (integer_zerop (DECL_FIELD_OFFSET (field)))
1528 actual_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1529 else if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
1530 actual_align = (BITS_PER_UNIT
1531 * (tree_to_uhwi (DECL_FIELD_OFFSET (field))
1532 & - tree_to_uhwi (DECL_FIELD_OFFSET (field))));
1533 else
1534 actual_align = DECL_OFFSET_ALIGN (field);
1535 /* ACTUAL_ALIGN is still the actual alignment *within the record* .
1536 store / extract bit field operations will check the alignment of the
1537 record against the mode of bit fields. */
1539 if (known_align != actual_align)
1540 layout_decl (field, actual_align);
1542 if (rli->prev_field == NULL && DECL_BIT_FIELD_TYPE (field))
1543 rli->prev_field = field;
1545 /* Now add size of this field to the size of the record. If the size is
1546 not constant, treat the field as being a multiple of bytes and just
1547 adjust the offset, resetting the bit position. Otherwise, apportion the
1548 size amongst the bit position and offset. First handle the case of an
1549 unspecified size, which can happen when we have an invalid nested struct
1550 definition, such as struct j { struct j { int i; } }. The error message
1551 is printed in finish_struct. */
1552 if (DECL_SIZE (field) == 0)
1553 /* Do nothing. */;
1554 else if (TREE_CODE (DECL_SIZE (field)) != INTEGER_CST
1555 || TREE_OVERFLOW (DECL_SIZE (field)))
1557 rli->offset
1558 = size_binop (PLUS_EXPR, rli->offset,
1559 fold_convert (sizetype,
1560 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1561 bitsize_unit_node)));
1562 rli->offset
1563 = size_binop (PLUS_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1564 rli->bitpos = bitsize_zero_node;
1565 rli->offset_align = MIN (rli->offset_align, desired_align);
1567 else if (targetm.ms_bitfield_layout_p (rli->t))
1569 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1571 /* If we ended a bitfield before the full length of the type then
1572 pad the struct out to the full length of the last type. */
1573 if ((DECL_CHAIN (field) == NULL
1574 || TREE_CODE (DECL_CHAIN (field)) != FIELD_DECL)
1575 && DECL_BIT_FIELD_TYPE (field)
1576 && !integer_zerop (DECL_SIZE (field)))
1577 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos,
1578 bitsize_int (rli->remaining_in_alignment));
1580 normalize_rli (rli);
1582 else
1584 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1585 normalize_rli (rli);
1589 /* Assuming that all the fields have been laid out, this function uses
1590 RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1591 indicated by RLI. */
1593 static void
1594 finalize_record_size (record_layout_info rli)
1596 tree unpadded_size, unpadded_size_unit;
1598 /* Now we want just byte and bit offsets, so set the offset alignment
1599 to be a byte and then normalize. */
1600 rli->offset_align = BITS_PER_UNIT;
1601 normalize_rli (rli);
1603 /* Determine the desired alignment. */
1604 #ifdef ROUND_TYPE_ALIGN
1605 TYPE_ALIGN (rli->t) = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t),
1606 rli->record_align);
1607 #else
1608 TYPE_ALIGN (rli->t) = MAX (TYPE_ALIGN (rli->t), rli->record_align);
1609 #endif
1611 /* Compute the size so far. Be sure to allow for extra bits in the
1612 size in bytes. We have guaranteed above that it will be no more
1613 than a single byte. */
1614 unpadded_size = rli_size_so_far (rli);
1615 unpadded_size_unit = rli_size_unit_so_far (rli);
1616 if (! integer_zerop (rli->bitpos))
1617 unpadded_size_unit
1618 = size_binop (PLUS_EXPR, unpadded_size_unit, size_one_node);
1620 if (TREE_CODE (unpadded_size_unit) == INTEGER_CST
1621 && !TREE_OVERFLOW (unpadded_size_unit)
1622 && !valid_constant_size_p (unpadded_size_unit))
1623 error ("type %qT is too large", rli->t);
1625 /* Round the size up to be a multiple of the required alignment. */
1626 TYPE_SIZE (rli->t) = round_up (unpadded_size, TYPE_ALIGN (rli->t));
1627 TYPE_SIZE_UNIT (rli->t)
1628 = round_up (unpadded_size_unit, TYPE_ALIGN_UNIT (rli->t));
1630 if (TREE_CONSTANT (unpadded_size)
1631 && simple_cst_equal (unpadded_size, TYPE_SIZE (rli->t)) == 0
1632 && input_location != BUILTINS_LOCATION)
1633 warning (OPT_Wpadded, "padding struct size to alignment boundary");
1635 if (warn_packed && TREE_CODE (rli->t) == RECORD_TYPE
1636 && TYPE_PACKED (rli->t) && ! rli->packed_maybe_necessary
1637 && TREE_CONSTANT (unpadded_size))
1639 tree unpacked_size;
1641 #ifdef ROUND_TYPE_ALIGN
1642 rli->unpacked_align
1643 = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t), rli->unpacked_align);
1644 #else
1645 rli->unpacked_align = MAX (TYPE_ALIGN (rli->t), rli->unpacked_align);
1646 #endif
1648 unpacked_size = round_up (TYPE_SIZE (rli->t), rli->unpacked_align);
1649 if (simple_cst_equal (unpacked_size, TYPE_SIZE (rli->t)))
1651 if (TYPE_NAME (rli->t))
1653 tree name;
1655 if (TREE_CODE (TYPE_NAME (rli->t)) == IDENTIFIER_NODE)
1656 name = TYPE_NAME (rli->t);
1657 else
1658 name = DECL_NAME (TYPE_NAME (rli->t));
1660 if (STRICT_ALIGNMENT)
1661 warning (OPT_Wpacked, "packed attribute causes inefficient "
1662 "alignment for %qE", name);
1663 else
1664 warning (OPT_Wpacked,
1665 "packed attribute is unnecessary for %qE", name);
1667 else
1669 if (STRICT_ALIGNMENT)
1670 warning (OPT_Wpacked,
1671 "packed attribute causes inefficient alignment");
1672 else
1673 warning (OPT_Wpacked, "packed attribute is unnecessary");
1679 /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
1681 void
1682 compute_record_mode (tree type)
1684 tree field;
1685 machine_mode mode = VOIDmode;
1687 /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1688 However, if possible, we use a mode that fits in a register
1689 instead, in order to allow for better optimization down the
1690 line. */
1691 SET_TYPE_MODE (type, BLKmode);
1693 if (! tree_fits_uhwi_p (TYPE_SIZE (type)))
1694 return;
1696 /* A record which has any BLKmode members must itself be
1697 BLKmode; it can't go in a register. Unless the member is
1698 BLKmode only because it isn't aligned. */
1699 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
1701 if (TREE_CODE (field) != FIELD_DECL)
1702 continue;
1704 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK
1705 || (TYPE_MODE (TREE_TYPE (field)) == BLKmode
1706 && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field))
1707 && !(TYPE_SIZE (TREE_TYPE (field)) != 0
1708 && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))))
1709 || ! tree_fits_uhwi_p (bit_position (field))
1710 || DECL_SIZE (field) == 0
1711 || ! tree_fits_uhwi_p (DECL_SIZE (field)))
1712 return;
1714 /* If this field is the whole struct, remember its mode so
1715 that, say, we can put a double in a class into a DF
1716 register instead of forcing it to live in the stack. */
1717 if (simple_cst_equal (TYPE_SIZE (type), DECL_SIZE (field)))
1718 mode = DECL_MODE (field);
1720 /* With some targets, it is sub-optimal to access an aligned
1721 BLKmode structure as a scalar. */
1722 if (targetm.member_type_forces_blk (field, mode))
1723 return;
1726 /* If we only have one real field; use its mode if that mode's size
1727 matches the type's size. This only applies to RECORD_TYPE. This
1728 does not apply to unions. */
1729 if (TREE_CODE (type) == RECORD_TYPE && mode != VOIDmode
1730 && tree_fits_uhwi_p (TYPE_SIZE (type))
1731 && GET_MODE_BITSIZE (mode) == tree_to_uhwi (TYPE_SIZE (type)))
1732 SET_TYPE_MODE (type, mode);
1733 else
1734 SET_TYPE_MODE (type, mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1));
1736 /* If structure's known alignment is less than what the scalar
1737 mode would need, and it matters, then stick with BLKmode. */
1738 if (TYPE_MODE (type) != BLKmode
1739 && STRICT_ALIGNMENT
1740 && ! (TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
1741 || TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (TYPE_MODE (type))))
1743 /* If this is the only reason this type is BLKmode, then
1744 don't force containing types to be BLKmode. */
1745 TYPE_NO_FORCE_BLK (type) = 1;
1746 SET_TYPE_MODE (type, BLKmode);
1750 /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1751 out. */
1753 static void
1754 finalize_type_size (tree type)
1756 /* Normally, use the alignment corresponding to the mode chosen.
1757 However, where strict alignment is not required, avoid
1758 over-aligning structures, since most compilers do not do this
1759 alignment. */
1761 if (TYPE_MODE (type) != BLKmode && TYPE_MODE (type) != VOIDmode
1762 && (STRICT_ALIGNMENT
1763 || (TREE_CODE (type) != RECORD_TYPE && TREE_CODE (type) != UNION_TYPE
1764 && TREE_CODE (type) != QUAL_UNION_TYPE
1765 && TREE_CODE (type) != ARRAY_TYPE)))
1767 unsigned mode_align = GET_MODE_ALIGNMENT (TYPE_MODE (type));
1769 /* Don't override a larger alignment requirement coming from a user
1770 alignment of one of the fields. */
1771 if (mode_align >= TYPE_ALIGN (type))
1773 TYPE_ALIGN (type) = mode_align;
1774 TYPE_USER_ALIGN (type) = 0;
1778 /* Do machine-dependent extra alignment. */
1779 #ifdef ROUND_TYPE_ALIGN
1780 TYPE_ALIGN (type)
1781 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (type), BITS_PER_UNIT);
1782 #endif
1784 /* If we failed to find a simple way to calculate the unit size
1785 of the type, find it by division. */
1786 if (TYPE_SIZE_UNIT (type) == 0 && TYPE_SIZE (type) != 0)
1787 /* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
1788 result will fit in sizetype. We will get more efficient code using
1789 sizetype, so we force a conversion. */
1790 TYPE_SIZE_UNIT (type)
1791 = fold_convert (sizetype,
1792 size_binop (FLOOR_DIV_EXPR, TYPE_SIZE (type),
1793 bitsize_unit_node));
1795 if (TYPE_SIZE (type) != 0)
1797 TYPE_SIZE (type) = round_up (TYPE_SIZE (type), TYPE_ALIGN (type));
1798 TYPE_SIZE_UNIT (type)
1799 = round_up (TYPE_SIZE_UNIT (type), TYPE_ALIGN_UNIT (type));
1802 /* Evaluate nonconstant sizes only once, either now or as soon as safe. */
1803 if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1804 TYPE_SIZE (type) = variable_size (TYPE_SIZE (type));
1805 if (TYPE_SIZE_UNIT (type) != 0
1806 && TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)
1807 TYPE_SIZE_UNIT (type) = variable_size (TYPE_SIZE_UNIT (type));
1809 /* Also layout any other variants of the type. */
1810 if (TYPE_NEXT_VARIANT (type)
1811 || type != TYPE_MAIN_VARIANT (type))
1813 tree variant;
1814 /* Record layout info of this variant. */
1815 tree size = TYPE_SIZE (type);
1816 tree size_unit = TYPE_SIZE_UNIT (type);
1817 unsigned int align = TYPE_ALIGN (type);
1818 unsigned int precision = TYPE_PRECISION (type);
1819 unsigned int user_align = TYPE_USER_ALIGN (type);
1820 machine_mode mode = TYPE_MODE (type);
1822 /* Copy it into all variants. */
1823 for (variant = TYPE_MAIN_VARIANT (type);
1824 variant != 0;
1825 variant = TYPE_NEXT_VARIANT (variant))
1827 TYPE_SIZE (variant) = size;
1828 TYPE_SIZE_UNIT (variant) = size_unit;
1829 TYPE_ALIGN (variant) = align;
1830 TYPE_PRECISION (variant) = precision;
1831 TYPE_USER_ALIGN (variant) = user_align;
1832 SET_TYPE_MODE (variant, mode);
1837 /* Return a new underlying object for a bitfield started with FIELD. */
1839 static tree
1840 start_bitfield_representative (tree field)
1842 tree repr = make_node (FIELD_DECL);
1843 DECL_FIELD_OFFSET (repr) = DECL_FIELD_OFFSET (field);
1844 /* Force the representative to begin at a BITS_PER_UNIT aligned
1845 boundary - C++ may use tail-padding of a base object to
1846 continue packing bits so the bitfield region does not start
1847 at bit zero (see g++.dg/abi/bitfield5.C for example).
1848 Unallocated bits may happen for other reasons as well,
1849 for example Ada which allows explicit bit-granular structure layout. */
1850 DECL_FIELD_BIT_OFFSET (repr)
1851 = size_binop (BIT_AND_EXPR,
1852 DECL_FIELD_BIT_OFFSET (field),
1853 bitsize_int (~(BITS_PER_UNIT - 1)));
1854 SET_DECL_OFFSET_ALIGN (repr, DECL_OFFSET_ALIGN (field));
1855 DECL_SIZE (repr) = DECL_SIZE (field);
1856 DECL_SIZE_UNIT (repr) = DECL_SIZE_UNIT (field);
1857 DECL_PACKED (repr) = DECL_PACKED (field);
1858 DECL_CONTEXT (repr) = DECL_CONTEXT (field);
1859 return repr;
1862 /* Finish up a bitfield group that was started by creating the underlying
1863 object REPR with the last field in the bitfield group FIELD. */
1865 static void
1866 finish_bitfield_representative (tree repr, tree field)
1868 unsigned HOST_WIDE_INT bitsize, maxbitsize;
1869 machine_mode mode;
1870 tree nextf, size;
1872 size = size_diffop (DECL_FIELD_OFFSET (field),
1873 DECL_FIELD_OFFSET (repr));
1874 while (TREE_CODE (size) == COMPOUND_EXPR)
1875 size = TREE_OPERAND (size, 1);
1876 gcc_assert (tree_fits_uhwi_p (size));
1877 bitsize = (tree_to_uhwi (size) * BITS_PER_UNIT
1878 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
1879 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr))
1880 + tree_to_uhwi (DECL_SIZE (field)));
1882 /* Round up bitsize to multiples of BITS_PER_UNIT. */
1883 bitsize = (bitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
1885 /* Now nothing tells us how to pad out bitsize ... */
1886 nextf = DECL_CHAIN (field);
1887 while (nextf && TREE_CODE (nextf) != FIELD_DECL)
1888 nextf = DECL_CHAIN (nextf);
1889 if (nextf)
1891 tree maxsize;
1892 /* If there was an error, the field may be not laid out
1893 correctly. Don't bother to do anything. */
1894 if (TREE_TYPE (nextf) == error_mark_node)
1895 return;
1896 maxsize = size_diffop (DECL_FIELD_OFFSET (nextf),
1897 DECL_FIELD_OFFSET (repr));
1898 if (tree_fits_uhwi_p (maxsize))
1900 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
1901 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (nextf))
1902 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
1903 /* If the group ends within a bitfield nextf does not need to be
1904 aligned to BITS_PER_UNIT. Thus round up. */
1905 maxbitsize = (maxbitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
1907 else
1908 maxbitsize = bitsize;
1910 else
1912 /* ??? If you consider that tail-padding of this struct might be
1913 re-used when deriving from it we cannot really do the following
1914 and thus need to set maxsize to bitsize? Also we cannot
1915 generally rely on maxsize to fold to an integer constant, so
1916 use bitsize as fallback for this case. */
1917 tree maxsize = size_diffop (TYPE_SIZE_UNIT (DECL_CONTEXT (field)),
1918 DECL_FIELD_OFFSET (repr));
1919 if (tree_fits_uhwi_p (maxsize))
1920 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
1921 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
1922 else
1923 maxbitsize = bitsize;
1926 /* Only if we don't artificially break up the representative in
1927 the middle of a large bitfield with different possibly
1928 overlapping representatives. And all representatives start
1929 at byte offset. */
1930 gcc_assert (maxbitsize % BITS_PER_UNIT == 0);
1932 /* Find the smallest nice mode to use. */
1933 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1934 mode = GET_MODE_WIDER_MODE (mode))
1935 if (GET_MODE_BITSIZE (mode) >= bitsize)
1936 break;
1937 if (mode != VOIDmode
1938 && (GET_MODE_BITSIZE (mode) > maxbitsize
1939 || GET_MODE_BITSIZE (mode) > MAX_FIXED_MODE_SIZE))
1940 mode = VOIDmode;
1942 if (mode == VOIDmode)
1944 /* We really want a BLKmode representative only as a last resort,
1945 considering the member b in
1946 struct { int a : 7; int b : 17; int c; } __attribute__((packed));
1947 Otherwise we simply want to split the representative up
1948 allowing for overlaps within the bitfield region as required for
1949 struct { int a : 7; int b : 7;
1950 int c : 10; int d; } __attribute__((packed));
1951 [0, 15] HImode for a and b, [8, 23] HImode for c. */
1952 DECL_SIZE (repr) = bitsize_int (bitsize);
1953 DECL_SIZE_UNIT (repr) = size_int (bitsize / BITS_PER_UNIT);
1954 DECL_MODE (repr) = BLKmode;
1955 TREE_TYPE (repr) = build_array_type_nelts (unsigned_char_type_node,
1956 bitsize / BITS_PER_UNIT);
1958 else
1960 unsigned HOST_WIDE_INT modesize = GET_MODE_BITSIZE (mode);
1961 DECL_SIZE (repr) = bitsize_int (modesize);
1962 DECL_SIZE_UNIT (repr) = size_int (modesize / BITS_PER_UNIT);
1963 DECL_MODE (repr) = mode;
1964 TREE_TYPE (repr) = lang_hooks.types.type_for_mode (mode, 1);
1967 /* Remember whether the bitfield group is at the end of the
1968 structure or not. */
1969 DECL_CHAIN (repr) = nextf;
1972 /* Compute and set FIELD_DECLs for the underlying objects we should
1973 use for bitfield access for the structure T. */
1975 void
1976 finish_bitfield_layout (tree t)
1978 tree field, prev;
1979 tree repr = NULL_TREE;
1981 /* Unions would be special, for the ease of type-punning optimizations
1982 we could use the underlying type as hint for the representative
1983 if the bitfield would fit and the representative would not exceed
1984 the union in size. */
1985 if (TREE_CODE (t) != RECORD_TYPE)
1986 return;
1988 for (prev = NULL_TREE, field = TYPE_FIELDS (t);
1989 field; field = DECL_CHAIN (field))
1991 if (TREE_CODE (field) != FIELD_DECL)
1992 continue;
1994 /* In the C++ memory model, consecutive bit fields in a structure are
1995 considered one memory location and updating a memory location
1996 may not store into adjacent memory locations. */
1997 if (!repr
1998 && DECL_BIT_FIELD_TYPE (field))
2000 /* Start new representative. */
2001 repr = start_bitfield_representative (field);
2003 else if (repr
2004 && ! DECL_BIT_FIELD_TYPE (field))
2006 /* Finish off new representative. */
2007 finish_bitfield_representative (repr, prev);
2008 repr = NULL_TREE;
2010 else if (DECL_BIT_FIELD_TYPE (field))
2012 gcc_assert (repr != NULL_TREE);
2014 /* Zero-size bitfields finish off a representative and
2015 do not have a representative themselves. This is
2016 required by the C++ memory model. */
2017 if (integer_zerop (DECL_SIZE (field)))
2019 finish_bitfield_representative (repr, prev);
2020 repr = NULL_TREE;
2023 /* We assume that either DECL_FIELD_OFFSET of the representative
2024 and each bitfield member is a constant or they are equal.
2025 This is because we need to be able to compute the bit-offset
2026 of each field relative to the representative in get_bit_range
2027 during RTL expansion.
2028 If these constraints are not met, simply force a new
2029 representative to be generated. That will at most
2030 generate worse code but still maintain correctness with
2031 respect to the C++ memory model. */
2032 else if (!((tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr))
2033 && tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
2034 || operand_equal_p (DECL_FIELD_OFFSET (repr),
2035 DECL_FIELD_OFFSET (field), 0)))
2037 finish_bitfield_representative (repr, prev);
2038 repr = start_bitfield_representative (field);
2041 else
2042 continue;
2044 if (repr)
2045 DECL_BIT_FIELD_REPRESENTATIVE (field) = repr;
2047 prev = field;
2050 if (repr)
2051 finish_bitfield_representative (repr, prev);
2054 /* Do all of the work required to layout the type indicated by RLI,
2055 once the fields have been laid out. This function will call `free'
2056 for RLI, unless FREE_P is false. Passing a value other than false
2057 for FREE_P is bad practice; this option only exists to support the
2058 G++ 3.2 ABI. */
2060 void
2061 finish_record_layout (record_layout_info rli, int free_p)
2063 tree variant;
2065 /* Compute the final size. */
2066 finalize_record_size (rli);
2068 /* Compute the TYPE_MODE for the record. */
2069 compute_record_mode (rli->t);
2071 /* Perform any last tweaks to the TYPE_SIZE, etc. */
2072 finalize_type_size (rli->t);
2074 /* Compute bitfield representatives. */
2075 finish_bitfield_layout (rli->t);
2077 /* Propagate TYPE_PACKED to variants. With C++ templates,
2078 handle_packed_attribute is too early to do this. */
2079 for (variant = TYPE_NEXT_VARIANT (rli->t); variant;
2080 variant = TYPE_NEXT_VARIANT (variant))
2081 TYPE_PACKED (variant) = TYPE_PACKED (rli->t);
2083 /* Lay out any static members. This is done now because their type
2084 may use the record's type. */
2085 while (!vec_safe_is_empty (rli->pending_statics))
2086 layout_decl (rli->pending_statics->pop (), 0);
2088 /* Clean up. */
2089 if (free_p)
2091 vec_free (rli->pending_statics);
2092 free (rli);
2097 /* Finish processing a builtin RECORD_TYPE type TYPE. It's name is
2098 NAME, its fields are chained in reverse on FIELDS.
2100 If ALIGN_TYPE is non-null, it is given the same alignment as
2101 ALIGN_TYPE. */
2103 void
2104 finish_builtin_struct (tree type, const char *name, tree fields,
2105 tree align_type)
2107 tree tail, next;
2109 for (tail = NULL_TREE; fields; tail = fields, fields = next)
2111 DECL_FIELD_CONTEXT (fields) = type;
2112 next = DECL_CHAIN (fields);
2113 DECL_CHAIN (fields) = tail;
2115 TYPE_FIELDS (type) = tail;
2117 if (align_type)
2119 TYPE_ALIGN (type) = TYPE_ALIGN (align_type);
2120 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (align_type);
2123 layout_type (type);
2124 #if 0 /* not yet, should get fixed properly later */
2125 TYPE_NAME (type) = make_type_decl (get_identifier (name), type);
2126 #else
2127 TYPE_NAME (type) = build_decl (BUILTINS_LOCATION,
2128 TYPE_DECL, get_identifier (name), type);
2129 #endif
2130 TYPE_STUB_DECL (type) = TYPE_NAME (type);
2131 layout_decl (TYPE_NAME (type), 0);
2134 /* Calculate the mode, size, and alignment for TYPE.
2135 For an array type, calculate the element separation as well.
2136 Record TYPE on the chain of permanent or temporary types
2137 so that dbxout will find out about it.
2139 TYPE_SIZE of a type is nonzero if the type has been laid out already.
2140 layout_type does nothing on such a type.
2142 If the type is incomplete, its TYPE_SIZE remains zero. */
2144 void
2145 layout_type (tree type)
2147 gcc_assert (type);
2149 if (type == error_mark_node)
2150 return;
2152 /* Do nothing if type has been laid out before. */
2153 if (TYPE_SIZE (type))
2154 return;
2156 switch (TREE_CODE (type))
2158 case LANG_TYPE:
2159 /* This kind of type is the responsibility
2160 of the language-specific code. */
2161 gcc_unreachable ();
2163 case BOOLEAN_TYPE:
2164 case INTEGER_TYPE:
2165 case ENUMERAL_TYPE:
2166 SET_TYPE_MODE (type,
2167 smallest_mode_for_size (TYPE_PRECISION (type), MODE_INT));
2168 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2169 /* Don't set TYPE_PRECISION here, as it may be set by a bitfield. */
2170 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2171 break;
2173 case REAL_TYPE:
2174 SET_TYPE_MODE (type,
2175 mode_for_size (TYPE_PRECISION (type), MODE_FLOAT, 0));
2176 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2177 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2178 break;
2180 case FIXED_POINT_TYPE:
2181 /* TYPE_MODE (type) has been set already. */
2182 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2183 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2184 break;
2186 case COMPLEX_TYPE:
2187 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2188 SET_TYPE_MODE (type,
2189 mode_for_size (2 * TYPE_PRECISION (TREE_TYPE (type)),
2190 (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE
2191 ? MODE_COMPLEX_FLOAT : MODE_COMPLEX_INT),
2192 0));
2193 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2194 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2195 break;
2197 case VECTOR_TYPE:
2199 int nunits = TYPE_VECTOR_SUBPARTS (type);
2200 tree innertype = TREE_TYPE (type);
2202 gcc_assert (!(nunits & (nunits - 1)));
2204 /* Find an appropriate mode for the vector type. */
2205 if (TYPE_MODE (type) == VOIDmode)
2206 SET_TYPE_MODE (type,
2207 mode_for_vector (TYPE_MODE (innertype), nunits));
2209 TYPE_SATURATING (type) = TYPE_SATURATING (TREE_TYPE (type));
2210 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2211 TYPE_SIZE_UNIT (type) = int_const_binop (MULT_EXPR,
2212 TYPE_SIZE_UNIT (innertype),
2213 size_int (nunits));
2214 TYPE_SIZE (type) = int_const_binop (MULT_EXPR, TYPE_SIZE (innertype),
2215 bitsize_int (nunits));
2217 /* For vector types, we do not default to the mode's alignment.
2218 Instead, query a target hook, defaulting to natural alignment.
2219 This prevents ABI changes depending on whether or not native
2220 vector modes are supported. */
2221 TYPE_ALIGN (type) = targetm.vector_alignment (type);
2223 /* However, if the underlying mode requires a bigger alignment than
2224 what the target hook provides, we cannot use the mode. For now,
2225 simply reject that case. */
2226 gcc_assert (TYPE_ALIGN (type)
2227 >= GET_MODE_ALIGNMENT (TYPE_MODE (type)));
2228 break;
2231 case VOID_TYPE:
2232 /* This is an incomplete type and so doesn't have a size. */
2233 TYPE_ALIGN (type) = 1;
2234 TYPE_USER_ALIGN (type) = 0;
2235 SET_TYPE_MODE (type, VOIDmode);
2236 break;
2238 case POINTER_BOUNDS_TYPE:
2239 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2240 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2241 break;
2243 case OFFSET_TYPE:
2244 TYPE_SIZE (type) = bitsize_int (POINTER_SIZE);
2245 TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE_UNITS);
2246 /* A pointer might be MODE_PARTIAL_INT, but ptrdiff_t must be
2247 integral, which may be an __intN. */
2248 SET_TYPE_MODE (type, mode_for_size (POINTER_SIZE, MODE_INT, 0));
2249 TYPE_PRECISION (type) = POINTER_SIZE;
2250 break;
2252 case FUNCTION_TYPE:
2253 case METHOD_TYPE:
2254 /* It's hard to see what the mode and size of a function ought to
2255 be, but we do know the alignment is FUNCTION_BOUNDARY, so
2256 make it consistent with that. */
2257 SET_TYPE_MODE (type, mode_for_size (FUNCTION_BOUNDARY, MODE_INT, 0));
2258 TYPE_SIZE (type) = bitsize_int (FUNCTION_BOUNDARY);
2259 TYPE_SIZE_UNIT (type) = size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
2260 break;
2262 case POINTER_TYPE:
2263 case REFERENCE_TYPE:
2265 machine_mode mode = TYPE_MODE (type);
2266 if (TREE_CODE (type) == REFERENCE_TYPE && reference_types_internal)
2268 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (type));
2269 mode = targetm.addr_space.address_mode (as);
2272 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2273 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2274 TYPE_UNSIGNED (type) = 1;
2275 TYPE_PRECISION (type) = GET_MODE_PRECISION (mode);
2277 break;
2279 case ARRAY_TYPE:
2281 tree index = TYPE_DOMAIN (type);
2282 tree element = TREE_TYPE (type);
2284 build_pointer_type (element);
2286 /* We need to know both bounds in order to compute the size. */
2287 if (index && TYPE_MAX_VALUE (index) && TYPE_MIN_VALUE (index)
2288 && TYPE_SIZE (element))
2290 tree ub = TYPE_MAX_VALUE (index);
2291 tree lb = TYPE_MIN_VALUE (index);
2292 tree element_size = TYPE_SIZE (element);
2293 tree length;
2295 /* Make sure that an array of zero-sized element is zero-sized
2296 regardless of its extent. */
2297 if (integer_zerop (element_size))
2298 length = size_zero_node;
2300 /* The computation should happen in the original signedness so
2301 that (possible) negative values are handled appropriately
2302 when determining overflow. */
2303 else
2305 /* ??? When it is obvious that the range is signed
2306 represent it using ssizetype. */
2307 if (TREE_CODE (lb) == INTEGER_CST
2308 && TREE_CODE (ub) == INTEGER_CST
2309 && TYPE_UNSIGNED (TREE_TYPE (lb))
2310 && tree_int_cst_lt (ub, lb))
2312 lb = wide_int_to_tree (ssizetype,
2313 offset_int::from (lb, SIGNED));
2314 ub = wide_int_to_tree (ssizetype,
2315 offset_int::from (ub, SIGNED));
2317 length
2318 = fold_convert (sizetype,
2319 size_binop (PLUS_EXPR,
2320 build_int_cst (TREE_TYPE (lb), 1),
2321 size_binop (MINUS_EXPR, ub, lb)));
2324 /* ??? We have no way to distinguish a null-sized array from an
2325 array spanning the whole sizetype range, so we arbitrarily
2326 decide that [0, -1] is the only valid representation. */
2327 if (integer_zerop (length)
2328 && TREE_OVERFLOW (length)
2329 && integer_zerop (lb))
2330 length = size_zero_node;
2332 TYPE_SIZE (type) = size_binop (MULT_EXPR, element_size,
2333 fold_convert (bitsizetype,
2334 length));
2336 /* If we know the size of the element, calculate the total size
2337 directly, rather than do some division thing below. This
2338 optimization helps Fortran assumed-size arrays (where the
2339 size of the array is determined at runtime) substantially. */
2340 if (TYPE_SIZE_UNIT (element))
2341 TYPE_SIZE_UNIT (type)
2342 = size_binop (MULT_EXPR, TYPE_SIZE_UNIT (element), length);
2345 /* Now round the alignment and size,
2346 using machine-dependent criteria if any. */
2348 #ifdef ROUND_TYPE_ALIGN
2349 TYPE_ALIGN (type)
2350 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (element), BITS_PER_UNIT);
2351 #else
2352 TYPE_ALIGN (type) = MAX (TYPE_ALIGN (element), BITS_PER_UNIT);
2353 #endif
2354 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (element);
2355 SET_TYPE_MODE (type, BLKmode);
2356 if (TYPE_SIZE (type) != 0
2357 && ! targetm.member_type_forces_blk (type, VOIDmode)
2358 /* BLKmode elements force BLKmode aggregate;
2359 else extract/store fields may lose. */
2360 && (TYPE_MODE (TREE_TYPE (type)) != BLKmode
2361 || TYPE_NO_FORCE_BLK (TREE_TYPE (type))))
2363 SET_TYPE_MODE (type, mode_for_array (TREE_TYPE (type),
2364 TYPE_SIZE (type)));
2365 if (TYPE_MODE (type) != BLKmode
2366 && STRICT_ALIGNMENT && TYPE_ALIGN (type) < BIGGEST_ALIGNMENT
2367 && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
2369 TYPE_NO_FORCE_BLK (type) = 1;
2370 SET_TYPE_MODE (type, BLKmode);
2373 /* When the element size is constant, check that it is at least as
2374 large as the element alignment. */
2375 if (TYPE_SIZE_UNIT (element)
2376 && TREE_CODE (TYPE_SIZE_UNIT (element)) == INTEGER_CST
2377 /* If TYPE_SIZE_UNIT overflowed, then it is certainly larger than
2378 TYPE_ALIGN_UNIT. */
2379 && !TREE_OVERFLOW (TYPE_SIZE_UNIT (element))
2380 && !integer_zerop (TYPE_SIZE_UNIT (element))
2381 && compare_tree_int (TYPE_SIZE_UNIT (element),
2382 TYPE_ALIGN_UNIT (element)) < 0)
2383 error ("alignment of array elements is greater than element size");
2384 break;
2387 case RECORD_TYPE:
2388 case UNION_TYPE:
2389 case QUAL_UNION_TYPE:
2391 tree field;
2392 record_layout_info rli;
2394 /* Initialize the layout information. */
2395 rli = start_record_layout (type);
2397 /* If this is a QUAL_UNION_TYPE, we want to process the fields
2398 in the reverse order in building the COND_EXPR that denotes
2399 its size. We reverse them again later. */
2400 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2401 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2403 /* Place all the fields. */
2404 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2405 place_field (rli, field);
2407 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2408 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2410 /* Finish laying out the record. */
2411 finish_record_layout (rli, /*free_p=*/true);
2413 break;
2415 default:
2416 gcc_unreachable ();
2419 /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
2420 records and unions, finish_record_layout already called this
2421 function. */
2422 if (TREE_CODE (type) != RECORD_TYPE
2423 && TREE_CODE (type) != UNION_TYPE
2424 && TREE_CODE (type) != QUAL_UNION_TYPE)
2425 finalize_type_size (type);
2427 /* We should never see alias sets on incomplete aggregates. And we
2428 should not call layout_type on not incomplete aggregates. */
2429 if (AGGREGATE_TYPE_P (type))
2430 gcc_assert (!TYPE_ALIAS_SET_KNOWN_P (type));
2433 /* Return the least alignment required for type TYPE. */
2435 unsigned int
2436 min_align_of_type (tree type)
2438 unsigned int align = TYPE_ALIGN (type);
2439 if (!TYPE_USER_ALIGN (type))
2441 align = MIN (align, BIGGEST_ALIGNMENT);
2442 #ifdef BIGGEST_FIELD_ALIGNMENT
2443 align = MIN (align, BIGGEST_FIELD_ALIGNMENT);
2444 #endif
2445 unsigned int field_align = align;
2446 #ifdef ADJUST_FIELD_ALIGN
2447 tree field = build_decl (UNKNOWN_LOCATION, FIELD_DECL, NULL_TREE, type);
2448 field_align = ADJUST_FIELD_ALIGN (field, field_align);
2449 ggc_free (field);
2450 #endif
2451 align = MIN (align, field_align);
2453 return align / BITS_PER_UNIT;
2456 /* Vector types need to re-check the target flags each time we report
2457 the machine mode. We need to do this because attribute target can
2458 change the result of vector_mode_supported_p and have_regs_of_mode
2459 on a per-function basis. Thus the TYPE_MODE of a VECTOR_TYPE can
2460 change on a per-function basis. */
2461 /* ??? Possibly a better solution is to run through all the types
2462 referenced by a function and re-compute the TYPE_MODE once, rather
2463 than make the TYPE_MODE macro call a function. */
2465 machine_mode
2466 vector_type_mode (const_tree t)
2468 machine_mode mode;
2470 gcc_assert (TREE_CODE (t) == VECTOR_TYPE);
2472 mode = t->type_common.mode;
2473 if (VECTOR_MODE_P (mode)
2474 && (!targetm.vector_mode_supported_p (mode)
2475 || !have_regs_of_mode[mode]))
2477 machine_mode innermode = TREE_TYPE (t)->type_common.mode;
2479 /* For integers, try mapping it to a same-sized scalar mode. */
2480 if (GET_MODE_CLASS (innermode) == MODE_INT)
2482 mode = mode_for_size (TYPE_VECTOR_SUBPARTS (t)
2483 * GET_MODE_BITSIZE (innermode), MODE_INT, 0);
2485 if (mode != VOIDmode && have_regs_of_mode[mode])
2486 return mode;
2489 return BLKmode;
2492 return mode;
2495 /* Create and return a type for signed integers of PRECISION bits. */
2497 tree
2498 make_signed_type (int precision)
2500 tree type = make_node (INTEGER_TYPE);
2502 TYPE_PRECISION (type) = precision;
2504 fixup_signed_type (type);
2505 return type;
2508 /* Create and return a type for unsigned integers of PRECISION bits. */
2510 tree
2511 make_unsigned_type (int precision)
2513 tree type = make_node (INTEGER_TYPE);
2515 TYPE_PRECISION (type) = precision;
2517 fixup_unsigned_type (type);
2518 return type;
2521 /* Create and return a type for fract of PRECISION bits, UNSIGNEDP,
2522 and SATP. */
2524 tree
2525 make_fract_type (int precision, int unsignedp, int satp)
2527 tree type = make_node (FIXED_POINT_TYPE);
2529 TYPE_PRECISION (type) = precision;
2531 if (satp)
2532 TYPE_SATURATING (type) = 1;
2534 /* Lay out the type: set its alignment, size, etc. */
2535 if (unsignedp)
2537 TYPE_UNSIGNED (type) = 1;
2538 SET_TYPE_MODE (type, mode_for_size (precision, MODE_UFRACT, 0));
2540 else
2541 SET_TYPE_MODE (type, mode_for_size (precision, MODE_FRACT, 0));
2542 layout_type (type);
2544 return type;
2547 /* Create and return a type for accum of PRECISION bits, UNSIGNEDP,
2548 and SATP. */
2550 tree
2551 make_accum_type (int precision, int unsignedp, int satp)
2553 tree type = make_node (FIXED_POINT_TYPE);
2555 TYPE_PRECISION (type) = precision;
2557 if (satp)
2558 TYPE_SATURATING (type) = 1;
2560 /* Lay out the type: set its alignment, size, etc. */
2561 if (unsignedp)
2563 TYPE_UNSIGNED (type) = 1;
2564 SET_TYPE_MODE (type, mode_for_size (precision, MODE_UACCUM, 0));
2566 else
2567 SET_TYPE_MODE (type, mode_for_size (precision, MODE_ACCUM, 0));
2568 layout_type (type);
2570 return type;
2573 /* Initialize sizetypes so layout_type can use them. */
2575 void
2576 initialize_sizetypes (void)
2578 int precision, bprecision;
2580 /* Get sizetypes precision from the SIZE_TYPE target macro. */
2581 if (strcmp (SIZETYPE, "unsigned int") == 0)
2582 precision = INT_TYPE_SIZE;
2583 else if (strcmp (SIZETYPE, "long unsigned int") == 0)
2584 precision = LONG_TYPE_SIZE;
2585 else if (strcmp (SIZETYPE, "long long unsigned int") == 0)
2586 precision = LONG_LONG_TYPE_SIZE;
2587 else if (strcmp (SIZETYPE, "short unsigned int") == 0)
2588 precision = SHORT_TYPE_SIZE;
2589 else
2591 int i;
2593 precision = -1;
2594 for (i = 0; i < NUM_INT_N_ENTS; i++)
2595 if (int_n_enabled_p[i])
2597 char name[50];
2598 sprintf (name, "__int%d unsigned", int_n_data[i].bitsize);
2600 if (strcmp (name, SIZETYPE) == 0)
2602 precision = int_n_data[i].bitsize;
2605 if (precision == -1)
2606 gcc_unreachable ();
2609 bprecision
2610 = MIN (precision + BITS_PER_UNIT_LOG + 1, MAX_FIXED_MODE_SIZE);
2611 bprecision
2612 = GET_MODE_PRECISION (smallest_mode_for_size (bprecision, MODE_INT));
2613 if (bprecision > HOST_BITS_PER_DOUBLE_INT)
2614 bprecision = HOST_BITS_PER_DOUBLE_INT;
2616 /* Create stubs for sizetype and bitsizetype so we can create constants. */
2617 sizetype = make_node (INTEGER_TYPE);
2618 TYPE_NAME (sizetype) = get_identifier ("sizetype");
2619 TYPE_PRECISION (sizetype) = precision;
2620 TYPE_UNSIGNED (sizetype) = 1;
2621 bitsizetype = make_node (INTEGER_TYPE);
2622 TYPE_NAME (bitsizetype) = get_identifier ("bitsizetype");
2623 TYPE_PRECISION (bitsizetype) = bprecision;
2624 TYPE_UNSIGNED (bitsizetype) = 1;
2626 /* Now layout both types manually. */
2627 SET_TYPE_MODE (sizetype, smallest_mode_for_size (precision, MODE_INT));
2628 TYPE_ALIGN (sizetype) = GET_MODE_ALIGNMENT (TYPE_MODE (sizetype));
2629 TYPE_SIZE (sizetype) = bitsize_int (precision);
2630 TYPE_SIZE_UNIT (sizetype) = size_int (GET_MODE_SIZE (TYPE_MODE (sizetype)));
2631 set_min_and_max_values_for_integral_type (sizetype, precision, UNSIGNED);
2633 SET_TYPE_MODE (bitsizetype, smallest_mode_for_size (bprecision, MODE_INT));
2634 TYPE_ALIGN (bitsizetype) = GET_MODE_ALIGNMENT (TYPE_MODE (bitsizetype));
2635 TYPE_SIZE (bitsizetype) = bitsize_int (bprecision);
2636 TYPE_SIZE_UNIT (bitsizetype)
2637 = size_int (GET_MODE_SIZE (TYPE_MODE (bitsizetype)));
2638 set_min_and_max_values_for_integral_type (bitsizetype, bprecision, UNSIGNED);
2640 /* Create the signed variants of *sizetype. */
2641 ssizetype = make_signed_type (TYPE_PRECISION (sizetype));
2642 TYPE_NAME (ssizetype) = get_identifier ("ssizetype");
2643 sbitsizetype = make_signed_type (TYPE_PRECISION (bitsizetype));
2644 TYPE_NAME (sbitsizetype) = get_identifier ("sbitsizetype");
2647 /* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE
2648 or BOOLEAN_TYPE. Set TYPE_MIN_VALUE and TYPE_MAX_VALUE
2649 for TYPE, based on the PRECISION and whether or not the TYPE
2650 IS_UNSIGNED. PRECISION need not correspond to a width supported
2651 natively by the hardware; for example, on a machine with 8-bit,
2652 16-bit, and 32-bit register modes, PRECISION might be 7, 23, or
2653 61. */
2655 void
2656 set_min_and_max_values_for_integral_type (tree type,
2657 int precision,
2658 signop sgn)
2660 /* For bitfields with zero width we end up creating integer types
2661 with zero precision. Don't assign any minimum/maximum values
2662 to those types, they don't have any valid value. */
2663 if (precision < 1)
2664 return;
2666 TYPE_MIN_VALUE (type)
2667 = wide_int_to_tree (type, wi::min_value (precision, sgn));
2668 TYPE_MAX_VALUE (type)
2669 = wide_int_to_tree (type, wi::max_value (precision, sgn));
2672 /* Set the extreme values of TYPE based on its precision in bits,
2673 then lay it out. Used when make_signed_type won't do
2674 because the tree code is not INTEGER_TYPE.
2675 E.g. for Pascal, when the -fsigned-char option is given. */
2677 void
2678 fixup_signed_type (tree type)
2680 int precision = TYPE_PRECISION (type);
2682 set_min_and_max_values_for_integral_type (type, precision, SIGNED);
2684 /* Lay out the type: set its alignment, size, etc. */
2685 layout_type (type);
2688 /* Set the extreme values of TYPE based on its precision in bits,
2689 then lay it out. This is used both in `make_unsigned_type'
2690 and for enumeral types. */
2692 void
2693 fixup_unsigned_type (tree type)
2695 int precision = TYPE_PRECISION (type);
2697 TYPE_UNSIGNED (type) = 1;
2699 set_min_and_max_values_for_integral_type (type, precision, UNSIGNED);
2701 /* Lay out the type: set its alignment, size, etc. */
2702 layout_type (type);
2705 /* Construct an iterator for a bitfield that spans BITSIZE bits,
2706 starting at BITPOS.
2708 BITREGION_START is the bit position of the first bit in this
2709 sequence of bit fields. BITREGION_END is the last bit in this
2710 sequence. If these two fields are non-zero, we should restrict the
2711 memory access to that range. Otherwise, we are allowed to touch
2712 any adjacent non bit-fields.
2714 ALIGN is the alignment of the underlying object in bits.
2715 VOLATILEP says whether the bitfield is volatile. */
2717 bit_field_mode_iterator
2718 ::bit_field_mode_iterator (HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
2719 HOST_WIDE_INT bitregion_start,
2720 HOST_WIDE_INT bitregion_end,
2721 unsigned int align, bool volatilep)
2722 : m_mode (GET_CLASS_NARROWEST_MODE (MODE_INT)), m_bitsize (bitsize),
2723 m_bitpos (bitpos), m_bitregion_start (bitregion_start),
2724 m_bitregion_end (bitregion_end), m_align (align),
2725 m_volatilep (volatilep), m_count (0)
2727 if (!m_bitregion_end)
2729 /* We can assume that any aligned chunk of ALIGN bits that overlaps
2730 the bitfield is mapped and won't trap, provided that ALIGN isn't
2731 too large. The cap is the biggest required alignment for data,
2732 or at least the word size. And force one such chunk at least. */
2733 unsigned HOST_WIDE_INT units
2734 = MIN (align, MAX (BIGGEST_ALIGNMENT, BITS_PER_WORD));
2735 if (bitsize <= 0)
2736 bitsize = 1;
2737 m_bitregion_end = bitpos + bitsize + units - 1;
2738 m_bitregion_end -= m_bitregion_end % units + 1;
2742 /* Calls to this function return successively larger modes that can be used
2743 to represent the bitfield. Return true if another bitfield mode is
2744 available, storing it in *OUT_MODE if so. */
2746 bool
2747 bit_field_mode_iterator::next_mode (machine_mode *out_mode)
2749 for (; m_mode != VOIDmode; m_mode = GET_MODE_WIDER_MODE (m_mode))
2751 unsigned int unit = GET_MODE_BITSIZE (m_mode);
2753 /* Skip modes that don't have full precision. */
2754 if (unit != GET_MODE_PRECISION (m_mode))
2755 continue;
2757 /* Stop if the mode is too wide to handle efficiently. */
2758 if (unit > MAX_FIXED_MODE_SIZE)
2759 break;
2761 /* Don't deliver more than one multiword mode; the smallest one
2762 should be used. */
2763 if (m_count > 0 && unit > BITS_PER_WORD)
2764 break;
2766 /* Skip modes that are too small. */
2767 unsigned HOST_WIDE_INT substart = (unsigned HOST_WIDE_INT) m_bitpos % unit;
2768 unsigned HOST_WIDE_INT subend = substart + m_bitsize;
2769 if (subend > unit)
2770 continue;
2772 /* Stop if the mode goes outside the bitregion. */
2773 HOST_WIDE_INT start = m_bitpos - substart;
2774 if (m_bitregion_start && start < m_bitregion_start)
2775 break;
2776 HOST_WIDE_INT end = start + unit;
2777 if (end > m_bitregion_end + 1)
2778 break;
2780 /* Stop if the mode requires too much alignment. */
2781 if (GET_MODE_ALIGNMENT (m_mode) > m_align
2782 && SLOW_UNALIGNED_ACCESS (m_mode, m_align))
2783 break;
2785 *out_mode = m_mode;
2786 m_mode = GET_MODE_WIDER_MODE (m_mode);
2787 m_count++;
2788 return true;
2790 return false;
2793 /* Return true if smaller modes are generally preferred for this kind
2794 of bitfield. */
2796 bool
2797 bit_field_mode_iterator::prefer_smaller_modes ()
2799 return (m_volatilep
2800 ? targetm.narrow_volatile_bitfield ()
2801 : !SLOW_BYTE_ACCESS);
2804 /* Find the best machine mode to use when referencing a bit field of length
2805 BITSIZE bits starting at BITPOS.
2807 BITREGION_START is the bit position of the first bit in this
2808 sequence of bit fields. BITREGION_END is the last bit in this
2809 sequence. If these two fields are non-zero, we should restrict the
2810 memory access to that range. Otherwise, we are allowed to touch
2811 any adjacent non bit-fields.
2813 The underlying object is known to be aligned to a boundary of ALIGN bits.
2814 If LARGEST_MODE is not VOIDmode, it means that we should not use a mode
2815 larger than LARGEST_MODE (usually SImode).
2817 If no mode meets all these conditions, we return VOIDmode.
2819 If VOLATILEP is false and SLOW_BYTE_ACCESS is false, we return the
2820 smallest mode meeting these conditions.
2822 If VOLATILEP is false and SLOW_BYTE_ACCESS is true, we return the
2823 largest mode (but a mode no wider than UNITS_PER_WORD) that meets
2824 all the conditions.
2826 If VOLATILEP is true the narrow_volatile_bitfields target hook is used to
2827 decide which of the above modes should be used. */
2829 machine_mode
2830 get_best_mode (int bitsize, int bitpos,
2831 unsigned HOST_WIDE_INT bitregion_start,
2832 unsigned HOST_WIDE_INT bitregion_end,
2833 unsigned int align,
2834 machine_mode largest_mode, bool volatilep)
2836 bit_field_mode_iterator iter (bitsize, bitpos, bitregion_start,
2837 bitregion_end, align, volatilep);
2838 machine_mode widest_mode = VOIDmode;
2839 machine_mode mode;
2840 while (iter.next_mode (&mode)
2841 /* ??? For historical reasons, reject modes that would normally
2842 receive greater alignment, even if unaligned accesses are
2843 acceptable. This has both advantages and disadvantages.
2844 Removing this check means that something like:
2846 struct s { unsigned int x; unsigned int y; };
2847 int f (struct s *s) { return s->x == 0 && s->y == 0; }
2849 can be implemented using a single load and compare on
2850 64-bit machines that have no alignment restrictions.
2851 For example, on powerpc64-linux-gnu, we would generate:
2853 ld 3,0(3)
2854 cntlzd 3,3
2855 srdi 3,3,6
2858 rather than:
2860 lwz 9,0(3)
2861 cmpwi 7,9,0
2862 bne 7,.L3
2863 lwz 3,4(3)
2864 cntlzw 3,3
2865 srwi 3,3,5
2866 extsw 3,3
2868 .p2align 4,,15
2869 .L3:
2870 li 3,0
2873 However, accessing more than one field can make life harder
2874 for the gimple optimizers. For example, gcc.dg/vect/bb-slp-5.c
2875 has a series of unsigned short copies followed by a series of
2876 unsigned short comparisons. With this check, both the copies
2877 and comparisons remain 16-bit accesses and FRE is able
2878 to eliminate the latter. Without the check, the comparisons
2879 can be done using 2 64-bit operations, which FRE isn't able
2880 to handle in the same way.
2882 Either way, it would probably be worth disabling this check
2883 during expand. One particular example where removing the
2884 check would help is the get_best_mode call in store_bit_field.
2885 If we are given a memory bitregion of 128 bits that is aligned
2886 to a 64-bit boundary, and the bitfield we want to modify is
2887 in the second half of the bitregion, this check causes
2888 store_bitfield to turn the memory into a 64-bit reference
2889 to the _first_ half of the region. We later use
2890 adjust_bitfield_address to get a reference to the correct half,
2891 but doing so looks to adjust_bitfield_address as though we are
2892 moving past the end of the original object, so it drops the
2893 associated MEM_EXPR and MEM_OFFSET. Removing the check
2894 causes store_bit_field to keep a 128-bit memory reference,
2895 so that the final bitfield reference still has a MEM_EXPR
2896 and MEM_OFFSET. */
2897 && GET_MODE_ALIGNMENT (mode) <= align
2898 && (largest_mode == VOIDmode
2899 || GET_MODE_SIZE (mode) <= GET_MODE_SIZE (largest_mode)))
2901 widest_mode = mode;
2902 if (iter.prefer_smaller_modes ())
2903 break;
2905 return widest_mode;
2908 /* Gets minimal and maximal values for MODE (signed or unsigned depending on
2909 SIGN). The returned constants are made to be usable in TARGET_MODE. */
2911 void
2912 get_mode_bounds (machine_mode mode, int sign,
2913 machine_mode target_mode,
2914 rtx *mmin, rtx *mmax)
2916 unsigned size = GET_MODE_PRECISION (mode);
2917 unsigned HOST_WIDE_INT min_val, max_val;
2919 gcc_assert (size <= HOST_BITS_PER_WIDE_INT);
2921 /* Special case BImode, which has values 0 and STORE_FLAG_VALUE. */
2922 if (mode == BImode)
2924 if (STORE_FLAG_VALUE < 0)
2926 min_val = STORE_FLAG_VALUE;
2927 max_val = 0;
2929 else
2931 min_val = 0;
2932 max_val = STORE_FLAG_VALUE;
2935 else if (sign)
2937 min_val = -((unsigned HOST_WIDE_INT) 1 << (size - 1));
2938 max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1)) - 1;
2940 else
2942 min_val = 0;
2943 max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1) << 1) - 1;
2946 *mmin = gen_int_mode (min_val, target_mode);
2947 *mmax = gen_int_mode (max_val, target_mode);
2950 #include "gt-stor-layout.h"