1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2019, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Atree
; use Atree
;
27 with Checks
; use Checks
;
28 with Debug
; use Debug
;
29 with Einfo
; use Einfo
;
30 with Elists
; use Elists
;
31 with Errout
; use Errout
;
32 with Exp_Aggr
; use Exp_Aggr
;
33 with Exp_Atag
; use Exp_Atag
;
34 with Exp_Ch2
; use Exp_Ch2
;
35 with Exp_Ch3
; use Exp_Ch3
;
36 with Exp_Ch6
; use Exp_Ch6
;
37 with Exp_Ch7
; use Exp_Ch7
;
38 with Exp_Ch9
; use Exp_Ch9
;
39 with Exp_Disp
; use Exp_Disp
;
40 with Exp_Fixd
; use Exp_Fixd
;
41 with Exp_Intr
; use Exp_Intr
;
42 with Exp_Pakd
; use Exp_Pakd
;
43 with Exp_Tss
; use Exp_Tss
;
44 with Exp_Util
; use Exp_Util
;
45 with Freeze
; use Freeze
;
46 with Inline
; use Inline
;
47 with Namet
; use Namet
;
48 with Nlists
; use Nlists
;
49 with Nmake
; use Nmake
;
51 with Par_SCO
; use Par_SCO
;
52 with Restrict
; use Restrict
;
53 with Rident
; use Rident
;
54 with Rtsfind
; use Rtsfind
;
56 with Sem_Aux
; use Sem_Aux
;
57 with Sem_Cat
; use Sem_Cat
;
58 with Sem_Ch3
; use Sem_Ch3
;
59 with Sem_Ch13
; use Sem_Ch13
;
60 with Sem_Eval
; use Sem_Eval
;
61 with Sem_Res
; use Sem_Res
;
62 with Sem_Type
; use Sem_Type
;
63 with Sem_Util
; use Sem_Util
;
64 with Sem_Warn
; use Sem_Warn
;
65 with Sinfo
; use Sinfo
;
66 with Snames
; use Snames
;
67 with Stand
; use Stand
;
68 with SCIL_LL
; use SCIL_LL
;
69 with Targparm
; use Targparm
;
70 with Tbuild
; use Tbuild
;
71 with Ttypes
; use Ttypes
;
72 with Uintp
; use Uintp
;
73 with Urealp
; use Urealp
;
74 with Validsw
; use Validsw
;
75 with Warnsw
; use Warnsw
;
77 package body Exp_Ch4
is
79 -----------------------
80 -- Local Subprograms --
81 -----------------------
83 procedure Binary_Op_Validity_Checks
(N
: Node_Id
);
84 pragma Inline
(Binary_Op_Validity_Checks
);
85 -- Performs validity checks for a binary operator
87 procedure Build_Boolean_Array_Proc_Call
91 -- If a boolean array assignment can be done in place, build call to
92 -- corresponding library procedure.
94 procedure Displace_Allocator_Pointer
(N
: Node_Id
);
95 -- Ada 2005 (AI-251): Subsidiary procedure to Expand_N_Allocator and
96 -- Expand_Allocator_Expression. Allocating class-wide interface objects
97 -- this routine displaces the pointer to the allocated object to reference
98 -- the component referencing the corresponding secondary dispatch table.
100 procedure Expand_Allocator_Expression
(N
: Node_Id
);
101 -- Subsidiary to Expand_N_Allocator, for the case when the expression
102 -- is a qualified expression or an aggregate.
104 procedure Expand_Array_Comparison
(N
: Node_Id
);
105 -- This routine handles expansion of the comparison operators (N_Op_Lt,
106 -- N_Op_Le, N_Op_Gt, N_Op_Ge) when operating on an array type. The basic
107 -- code for these operators is similar, differing only in the details of
108 -- the actual comparison call that is made. Special processing (call a
111 function Expand_Array_Equality
116 Typ
: Entity_Id
) return Node_Id
;
117 -- Expand an array equality into a call to a function implementing this
118 -- equality, and a call to it. Loc is the location for the generated nodes.
119 -- Lhs and Rhs are the array expressions to be compared. Bodies is a list
120 -- on which to attach bodies of local functions that are created in the
121 -- process. It is the responsibility of the caller to insert those bodies
122 -- at the right place. Nod provides the Sloc value for the generated code.
123 -- Normally the types used for the generated equality routine are taken
124 -- from Lhs and Rhs. However, in some situations of generated code, the
125 -- Etype fields of Lhs and Rhs are not set yet. In such cases, Typ supplies
126 -- the type to be used for the formal parameters.
128 procedure Expand_Boolean_Operator
(N
: Node_Id
);
129 -- Common expansion processing for Boolean operators (And, Or, Xor) for the
130 -- case of array type arguments.
132 procedure Expand_Nonbinary_Modular_Op
(N
: Node_Id
);
133 -- When generating C code, convert nonbinary modular arithmetic operations
134 -- into code that relies on the front-end expansion of operator Mod. No
135 -- expansion is performed if N is not a nonbinary modular operand.
137 procedure Expand_Short_Circuit_Operator
(N
: Node_Id
);
138 -- Common expansion processing for short-circuit boolean operators
140 procedure Expand_Compare_Minimize_Eliminate_Overflow
(N
: Node_Id
);
141 -- Deal with comparison in MINIMIZED/ELIMINATED overflow mode. This is
142 -- where we allow comparison of "out of range" values.
144 function Expand_Composite_Equality
149 Bodies
: List_Id
) return Node_Id
;
150 -- Local recursive function used to expand equality for nested composite
151 -- types. Used by Expand_Record/Array_Equality, Bodies is a list on which
152 -- to attach bodies of local functions that are created in the process. It
153 -- is the responsibility of the caller to insert those bodies at the right
154 -- place. Nod provides the Sloc value for generated code. Lhs and Rhs are
155 -- the left and right sides for the comparison, and Typ is the type of the
156 -- objects to compare.
158 procedure Expand_Concatenate
(Cnode
: Node_Id
; Opnds
: List_Id
);
159 -- Routine to expand concatenation of a sequence of two or more operands
160 -- (in the list Operands) and replace node Cnode with the result of the
161 -- concatenation. The operands can be of any appropriate type, and can
162 -- include both arrays and singleton elements.
164 procedure Expand_Membership_Minimize_Eliminate_Overflow
(N
: Node_Id
);
165 -- N is an N_In membership test mode, with the overflow check mode set to
166 -- MINIMIZED or ELIMINATED, and the type of the left operand is a signed
167 -- integer type. This is a case where top level processing is required to
168 -- handle overflow checks in subtrees.
170 procedure Fixup_Universal_Fixed_Operation
(N
: Node_Id
);
171 -- N is a N_Op_Divide or N_Op_Multiply node whose result is universal
172 -- fixed. We do not have such a type at runtime, so the purpose of this
173 -- routine is to find the real type by looking up the tree. We also
174 -- determine if the operation must be rounded.
176 function Has_Inferable_Discriminants
(N
: Node_Id
) return Boolean;
177 -- Ada 2005 (AI-216): A view of an Unchecked_Union object has inferable
178 -- discriminants if it has a constrained nominal type, unless the object
179 -- is a component of an enclosing Unchecked_Union object that is subject
180 -- to a per-object constraint and the enclosing object lacks inferable
183 -- An expression of an Unchecked_Union type has inferable discriminants
184 -- if it is either a name of an object with inferable discriminants or a
185 -- qualified expression whose subtype mark denotes a constrained subtype.
187 procedure Insert_Dereference_Action
(N
: Node_Id
);
188 -- N is an expression whose type is an access. When the type of the
189 -- associated storage pool is derived from Checked_Pool, generate a
190 -- call to the 'Dereference' primitive operation.
192 function Make_Array_Comparison_Op
194 Nod
: Node_Id
) return Node_Id
;
195 -- Comparisons between arrays are expanded in line. This function produces
196 -- the body of the implementation of (a > b), where a and b are one-
197 -- dimensional arrays of some discrete type. The original node is then
198 -- expanded into the appropriate call to this function. Nod provides the
199 -- Sloc value for the generated code.
201 function Make_Boolean_Array_Op
203 N
: Node_Id
) return Node_Id
;
204 -- Boolean operations on boolean arrays are expanded in line. This function
205 -- produce the body for the node N, which is (a and b), (a or b), or (a xor
206 -- b). It is used only the normal case and not the packed case. The type
207 -- involved, Typ, is the Boolean array type, and the logical operations in
208 -- the body are simple boolean operations. Note that Typ is always a
209 -- constrained type (the caller has ensured this by using
210 -- Convert_To_Actual_Subtype if necessary).
212 function Minimized_Eliminated_Overflow_Check
(N
: Node_Id
) return Boolean;
213 -- For signed arithmetic operations when the current overflow mode is
214 -- MINIMIZED or ELIMINATED, we must call Apply_Arithmetic_Overflow_Checks
215 -- as the first thing we do. We then return. We count on the recursive
216 -- apparatus for overflow checks to call us back with an equivalent
217 -- operation that is in CHECKED mode, avoiding a recursive entry into this
218 -- routine, and that is when we will proceed with the expansion of the
219 -- operator (e.g. converting X+0 to X, or X**2 to X*X). We cannot do
220 -- these optimizations without first making this check, since there may be
221 -- operands further down the tree that are relying on the recursive calls
222 -- triggered by the top level nodes to properly process overflow checking
223 -- and remaining expansion on these nodes. Note that this call back may be
224 -- skipped if the operation is done in Bignum mode but that's fine, since
225 -- the Bignum call takes care of everything.
227 procedure Optimize_Length_Comparison
(N
: Node_Id
);
228 -- Given an expression, if it is of the form X'Length op N (or the other
229 -- way round), where N is known at compile time to be 0 or 1, and X is a
230 -- simple entity, and op is a comparison operator, optimizes it into a
231 -- comparison of First and Last.
233 procedure Process_If_Case_Statements
(N
: Node_Id
; Stmts
: List_Id
);
234 -- Inspect and process statement list Stmt of if or case expression N for
235 -- transient objects. If such objects are found, the routine generates code
236 -- to clean them up when the context of the expression is evaluated.
238 procedure Process_Transient_In_Expression
242 -- Subsidiary routine to the expansion of expression_with_actions, if and
243 -- case expressions. Generate all necessary code to finalize a transient
244 -- object when the enclosing context is elaborated or evaluated. Obj_Decl
245 -- denotes the declaration of the transient object, which is usually the
246 -- result of a controlled function call. Expr denotes the expression with
247 -- actions, if expression, or case expression node. Stmts denotes the
248 -- statement list which contains Decl, either at the top level or within a
251 procedure Rewrite_Comparison
(N
: Node_Id
);
252 -- If N is the node for a comparison whose outcome can be determined at
253 -- compile time, then the node N can be rewritten with True or False. If
254 -- the outcome cannot be determined at compile time, the call has no
255 -- effect. If N is a type conversion, then this processing is applied to
256 -- its expression. If N is neither comparison nor a type conversion, the
257 -- call has no effect.
259 procedure Tagged_Membership
261 SCIL_Node
: out Node_Id
;
262 Result
: out Node_Id
);
263 -- Construct the expression corresponding to the tagged membership test.
264 -- Deals with a second operand being (or not) a class-wide type.
266 function Safe_In_Place_Array_Op
269 Op2
: Node_Id
) return Boolean;
270 -- In the context of an assignment, where the right-hand side is a boolean
271 -- operation on arrays, check whether operation can be performed in place.
273 procedure Unary_Op_Validity_Checks
(N
: Node_Id
);
274 pragma Inline
(Unary_Op_Validity_Checks
);
275 -- Performs validity checks for a unary operator
277 -------------------------------
278 -- Binary_Op_Validity_Checks --
279 -------------------------------
281 procedure Binary_Op_Validity_Checks
(N
: Node_Id
) is
283 if Validity_Checks_On
and Validity_Check_Operands
then
284 Ensure_Valid
(Left_Opnd
(N
));
285 Ensure_Valid
(Right_Opnd
(N
));
287 end Binary_Op_Validity_Checks
;
289 ------------------------------------
290 -- Build_Boolean_Array_Proc_Call --
291 ------------------------------------
293 procedure Build_Boolean_Array_Proc_Call
298 Loc
: constant Source_Ptr
:= Sloc
(N
);
299 Kind
: constant Node_Kind
:= Nkind
(Expression
(N
));
300 Target
: constant Node_Id
:=
301 Make_Attribute_Reference
(Loc
,
303 Attribute_Name
=> Name_Address
);
305 Arg1
: Node_Id
:= Op1
;
306 Arg2
: Node_Id
:= Op2
;
308 Proc_Name
: Entity_Id
;
311 if Kind
= N_Op_Not
then
312 if Nkind
(Op1
) in N_Binary_Op
then
314 -- Use negated version of the binary operators
316 if Nkind
(Op1
) = N_Op_And
then
317 Proc_Name
:= RTE
(RE_Vector_Nand
);
319 elsif Nkind
(Op1
) = N_Op_Or
then
320 Proc_Name
:= RTE
(RE_Vector_Nor
);
322 else pragma Assert
(Nkind
(Op1
) = N_Op_Xor
);
323 Proc_Name
:= RTE
(RE_Vector_Xor
);
327 Make_Procedure_Call_Statement
(Loc
,
328 Name
=> New_Occurrence_Of
(Proc_Name
, Loc
),
330 Parameter_Associations
=> New_List
(
332 Make_Attribute_Reference
(Loc
,
333 Prefix
=> Left_Opnd
(Op1
),
334 Attribute_Name
=> Name_Address
),
336 Make_Attribute_Reference
(Loc
,
337 Prefix
=> Right_Opnd
(Op1
),
338 Attribute_Name
=> Name_Address
),
340 Make_Attribute_Reference
(Loc
,
341 Prefix
=> Left_Opnd
(Op1
),
342 Attribute_Name
=> Name_Length
)));
345 Proc_Name
:= RTE
(RE_Vector_Not
);
348 Make_Procedure_Call_Statement
(Loc
,
349 Name
=> New_Occurrence_Of
(Proc_Name
, Loc
),
350 Parameter_Associations
=> New_List
(
353 Make_Attribute_Reference
(Loc
,
355 Attribute_Name
=> Name_Address
),
357 Make_Attribute_Reference
(Loc
,
359 Attribute_Name
=> Name_Length
)));
363 -- We use the following equivalences:
365 -- (not X) or (not Y) = not (X and Y) = Nand (X, Y)
366 -- (not X) and (not Y) = not (X or Y) = Nor (X, Y)
367 -- (not X) xor (not Y) = X xor Y
368 -- X xor (not Y) = not (X xor Y) = Nxor (X, Y)
370 if Nkind
(Op1
) = N_Op_Not
then
371 Arg1
:= Right_Opnd
(Op1
);
372 Arg2
:= Right_Opnd
(Op2
);
374 if Kind
= N_Op_And
then
375 Proc_Name
:= RTE
(RE_Vector_Nor
);
376 elsif Kind
= N_Op_Or
then
377 Proc_Name
:= RTE
(RE_Vector_Nand
);
379 Proc_Name
:= RTE
(RE_Vector_Xor
);
383 if Kind
= N_Op_And
then
384 Proc_Name
:= RTE
(RE_Vector_And
);
385 elsif Kind
= N_Op_Or
then
386 Proc_Name
:= RTE
(RE_Vector_Or
);
387 elsif Nkind
(Op2
) = N_Op_Not
then
388 Proc_Name
:= RTE
(RE_Vector_Nxor
);
389 Arg2
:= Right_Opnd
(Op2
);
391 Proc_Name
:= RTE
(RE_Vector_Xor
);
396 Make_Procedure_Call_Statement
(Loc
,
397 Name
=> New_Occurrence_Of
(Proc_Name
, Loc
),
398 Parameter_Associations
=> New_List
(
400 Make_Attribute_Reference
(Loc
,
402 Attribute_Name
=> Name_Address
),
403 Make_Attribute_Reference
(Loc
,
405 Attribute_Name
=> Name_Address
),
406 Make_Attribute_Reference
(Loc
,
408 Attribute_Name
=> Name_Length
)));
411 Rewrite
(N
, Call_Node
);
415 when RE_Not_Available
=>
417 end Build_Boolean_Array_Proc_Call
;
419 -----------------------
421 -----------------------
423 function Build_Eq_Call
427 Rhs
: Node_Id
) return Node_Id
433 Prim_E
:= First_Elmt
(Collect_Primitive_Operations
(Typ
));
434 while Present
(Prim_E
) loop
435 Prim
:= Node
(Prim_E
);
437 -- Locate primitive equality with the right signature
439 if Chars
(Prim
) = Name_Op_Eq
440 and then Etype
(First_Formal
(Prim
)) =
441 Etype
(Next_Formal
(First_Formal
(Prim
)))
442 and then Etype
(Prim
) = Standard_Boolean
444 if Is_Abstract_Subprogram
(Prim
) then
446 Make_Raise_Program_Error
(Loc
,
447 Reason
=> PE_Explicit_Raise
);
451 Make_Function_Call
(Loc
,
452 Name
=> New_Occurrence_Of
(Prim
, Loc
),
453 Parameter_Associations
=> New_List
(Lhs
, Rhs
));
460 -- If not found, predefined operation will be used
465 --------------------------------
466 -- Displace_Allocator_Pointer --
467 --------------------------------
469 procedure Displace_Allocator_Pointer
(N
: Node_Id
) is
470 Loc
: constant Source_Ptr
:= Sloc
(N
);
471 Orig_Node
: constant Node_Id
:= Original_Node
(N
);
477 -- Do nothing in case of VM targets: the virtual machine will handle
478 -- interfaces directly.
480 if not Tagged_Type_Expansion
then
484 pragma Assert
(Nkind
(N
) = N_Identifier
485 and then Nkind
(Orig_Node
) = N_Allocator
);
487 PtrT
:= Etype
(Orig_Node
);
488 Dtyp
:= Available_View
(Designated_Type
(PtrT
));
489 Etyp
:= Etype
(Expression
(Orig_Node
));
491 if Is_Class_Wide_Type
(Dtyp
) and then Is_Interface
(Dtyp
) then
493 -- If the type of the allocator expression is not an interface type
494 -- we can generate code to reference the record component containing
495 -- the pointer to the secondary dispatch table.
497 if not Is_Interface
(Etyp
) then
499 Saved_Typ
: constant Entity_Id
:= Etype
(Orig_Node
);
502 -- 1) Get access to the allocated object
505 Make_Explicit_Dereference
(Loc
, Relocate_Node
(N
)));
509 -- 2) Add the conversion to displace the pointer to reference
510 -- the secondary dispatch table.
512 Rewrite
(N
, Convert_To
(Dtyp
, Relocate_Node
(N
)));
513 Analyze_And_Resolve
(N
, Dtyp
);
515 -- 3) The 'access to the secondary dispatch table will be used
516 -- as the value returned by the allocator.
519 Make_Attribute_Reference
(Loc
,
520 Prefix
=> Relocate_Node
(N
),
521 Attribute_Name
=> Name_Access
));
522 Set_Etype
(N
, Saved_Typ
);
526 -- If the type of the allocator expression is an interface type we
527 -- generate a run-time call to displace "this" to reference the
528 -- component containing the pointer to the secondary dispatch table
529 -- or else raise Constraint_Error if the actual object does not
530 -- implement the target interface. This case corresponds to the
531 -- following example:
533 -- function Op (Obj : Iface_1'Class) return access Iface_2'Class is
535 -- return new Iface_2'Class'(Obj);
540 Unchecked_Convert_To
(PtrT
,
541 Make_Function_Call
(Loc
,
542 Name
=> New_Occurrence_Of
(RTE
(RE_Displace
), Loc
),
543 Parameter_Associations
=> New_List
(
544 Unchecked_Convert_To
(RTE
(RE_Address
),
550 (Access_Disp_Table
(Etype
(Base_Type
(Dtyp
))))),
552 Analyze_And_Resolve
(N
, PtrT
);
555 end Displace_Allocator_Pointer
;
557 ---------------------------------
558 -- Expand_Allocator_Expression --
559 ---------------------------------
561 procedure Expand_Allocator_Expression
(N
: Node_Id
) is
562 Loc
: constant Source_Ptr
:= Sloc
(N
);
563 Exp
: constant Node_Id
:= Expression
(Expression
(N
));
564 PtrT
: constant Entity_Id
:= Etype
(N
);
565 DesigT
: constant Entity_Id
:= Designated_Type
(PtrT
);
567 procedure Apply_Accessibility_Check
569 Built_In_Place
: Boolean := False);
570 -- Ada 2005 (AI-344): For an allocator with a class-wide designated
571 -- type, generate an accessibility check to verify that the level of the
572 -- type of the created object is not deeper than the level of the access
573 -- type. If the type of the qualified expression is class-wide, then
574 -- always generate the check (except in the case where it is known to be
575 -- unnecessary, see comment below). Otherwise, only generate the check
576 -- if the level of the qualified expression type is statically deeper
577 -- than the access type.
579 -- Although the static accessibility will generally have been performed
580 -- as a legality check, it won't have been done in cases where the
581 -- allocator appears in generic body, so a run-time check is needed in
582 -- general. One special case is when the access type is declared in the
583 -- same scope as the class-wide allocator, in which case the check can
584 -- never fail, so it need not be generated.
586 -- As an open issue, there seem to be cases where the static level
587 -- associated with the class-wide object's underlying type is not
588 -- sufficient to perform the proper accessibility check, such as for
589 -- allocators in nested subprograms or accept statements initialized by
590 -- class-wide formals when the actual originates outside at a deeper
591 -- static level. The nested subprogram case might require passing
592 -- accessibility levels along with class-wide parameters, and the task
593 -- case seems to be an actual gap in the language rules that needs to
594 -- be fixed by the ARG. ???
596 -------------------------------
597 -- Apply_Accessibility_Check --
598 -------------------------------
600 procedure Apply_Accessibility_Check
602 Built_In_Place
: Boolean := False)
604 Pool_Id
: constant Entity_Id
:= Associated_Storage_Pool
(PtrT
);
612 if Ada_Version
>= Ada_2005
613 and then Is_Class_Wide_Type
(DesigT
)
614 and then Tagged_Type_Expansion
615 and then not Scope_Suppress
.Suppress
(Accessibility_Check
)
617 (Type_Access_Level
(Etype
(Exp
)) > Type_Access_Level
(PtrT
)
619 (Is_Class_Wide_Type
(Etype
(Exp
))
620 and then Scope
(PtrT
) /= Current_Scope
))
622 -- If the allocator was built in place, Ref is already a reference
623 -- to the access object initialized to the result of the allocator
624 -- (see Exp_Ch6.Make_Build_In_Place_Call_In_Allocator). We call
625 -- Remove_Side_Effects for cases where the build-in-place call may
626 -- still be the prefix of the reference (to avoid generating
627 -- duplicate calls). Otherwise, it is the entity associated with
628 -- the object containing the address of the allocated object.
630 if Built_In_Place
then
631 Remove_Side_Effects
(Ref
);
632 Obj_Ref
:= New_Copy_Tree
(Ref
);
634 Obj_Ref
:= New_Occurrence_Of
(Ref
, Loc
);
637 -- For access to interface types we must generate code to displace
638 -- the pointer to the base of the object since the subsequent code
639 -- references components located in the TSD of the object (which
640 -- is associated with the primary dispatch table --see a-tags.ads)
641 -- and also generates code invoking Free, which requires also a
642 -- reference to the base of the unallocated object.
644 if Is_Interface
(DesigT
) and then Tagged_Type_Expansion
then
646 Unchecked_Convert_To
(Etype
(Obj_Ref
),
647 Make_Function_Call
(Loc
,
649 New_Occurrence_Of
(RTE
(RE_Base_Address
), Loc
),
650 Parameter_Associations
=> New_List
(
651 Unchecked_Convert_To
(RTE
(RE_Address
),
652 New_Copy_Tree
(Obj_Ref
)))));
655 -- Step 1: Create the object clean up code
659 -- Deallocate the object if the accessibility check fails. This
660 -- is done only on targets or profiles that support deallocation.
664 if RTE_Available
(RE_Free
) then
665 Free_Stmt
:= Make_Free_Statement
(Loc
, New_Copy_Tree
(Obj_Ref
));
666 Set_Storage_Pool
(Free_Stmt
, Pool_Id
);
668 Append_To
(Stmts
, Free_Stmt
);
670 -- The target or profile cannot deallocate objects
676 -- Finalize the object if applicable. Generate:
678 -- [Deep_]Finalize (Obj_Ref.all);
680 if Needs_Finalization
(DesigT
)
681 and then not No_Heap_Finalization
(PtrT
)
686 Make_Explicit_Dereference
(Loc
, New_Copy
(Obj_Ref
)),
689 -- Guard against a missing [Deep_]Finalize when the designated
690 -- type was not properly frozen.
692 if No
(Fin_Call
) then
693 Fin_Call
:= Make_Null_Statement
(Loc
);
696 -- When the target or profile supports deallocation, wrap the
697 -- finalization call in a block to ensure proper deallocation
698 -- even if finalization fails. Generate:
708 if Present
(Free_Stmt
) then
710 Make_Block_Statement
(Loc
,
711 Handled_Statement_Sequence
=>
712 Make_Handled_Sequence_Of_Statements
(Loc
,
713 Statements
=> New_List
(Fin_Call
),
715 Exception_Handlers
=> New_List
(
716 Make_Exception_Handler
(Loc
,
717 Exception_Choices
=> New_List
(
718 Make_Others_Choice
(Loc
)),
719 Statements
=> New_List
(
720 New_Copy_Tree
(Free_Stmt
),
721 Make_Raise_Statement
(Loc
))))));
724 Prepend_To
(Stmts
, Fin_Call
);
727 -- Signal the accessibility failure through a Program_Error
730 Make_Raise_Program_Error
(Loc
,
731 Condition
=> New_Occurrence_Of
(Standard_True
, Loc
),
732 Reason
=> PE_Accessibility_Check_Failed
));
734 -- Step 2: Create the accessibility comparison
740 Make_Attribute_Reference
(Loc
,
742 Attribute_Name
=> Name_Tag
);
744 -- For tagged types, determine the accessibility level by looking
745 -- at the type specific data of the dispatch table. Generate:
747 -- Type_Specific_Data (Address (Ref'Tag)).Access_Level
749 if Tagged_Type_Expansion
then
750 Cond
:= Build_Get_Access_Level
(Loc
, Obj_Ref
);
752 -- Use a runtime call to determine the accessibility level when
753 -- compiling on virtual machine targets. Generate:
755 -- Get_Access_Level (Ref'Tag)
759 Make_Function_Call
(Loc
,
761 New_Occurrence_Of
(RTE
(RE_Get_Access_Level
), Loc
),
762 Parameter_Associations
=> New_List
(Obj_Ref
));
769 Make_Integer_Literal
(Loc
, Type_Access_Level
(PtrT
)));
771 -- Due to the complexity and side effects of the check, utilize an
772 -- if statement instead of the regular Program_Error circuitry.
775 Make_Implicit_If_Statement
(N
,
777 Then_Statements
=> Stmts
));
779 end Apply_Accessibility_Check
;
783 Aggr_In_Place
: constant Boolean := Is_Delayed_Aggregate
(Exp
);
784 Indic
: constant Node_Id
:= Subtype_Mark
(Expression
(N
));
785 T
: constant Entity_Id
:= Entity
(Indic
);
788 Tag_Assign
: Node_Id
;
792 TagT
: Entity_Id
:= Empty
;
793 -- Type used as source for tag assignment
795 TagR
: Node_Id
:= Empty
;
796 -- Target reference for tag assignment
798 -- Start of processing for Expand_Allocator_Expression
801 -- Handle call to C++ constructor
803 if Is_CPP_Constructor_Call
(Exp
) then
804 Make_CPP_Constructor_Call_In_Allocator
806 Function_Call
=> Exp
);
810 -- In the case of an Ada 2012 allocator whose initial value comes from a
811 -- function call, pass "the accessibility level determined by the point
812 -- of call" (AI05-0234) to the function. Conceptually, this belongs in
813 -- Expand_Call but it couldn't be done there (because the Etype of the
814 -- allocator wasn't set then) so we generate the parameter here. See
815 -- the Boolean variable Defer in (a block within) Expand_Call.
817 if Ada_Version
>= Ada_2012
and then Nkind
(Exp
) = N_Function_Call
then
822 if Nkind
(Name
(Exp
)) = N_Explicit_Dereference
then
823 Subp
:= Designated_Type
(Etype
(Prefix
(Name
(Exp
))));
825 Subp
:= Entity
(Name
(Exp
));
828 Subp
:= Ultimate_Alias
(Subp
);
830 if Present
(Extra_Accessibility_Of_Result
(Subp
)) then
831 Add_Extra_Actual_To_Call
832 (Subprogram_Call
=> Exp
,
833 Extra_Formal
=> Extra_Accessibility_Of_Result
(Subp
),
834 Extra_Actual
=> Dynamic_Accessibility_Level
(PtrT
));
839 -- Case of tagged type or type requiring finalization
841 if Is_Tagged_Type
(T
) or else Needs_Finalization
(T
) then
843 -- Ada 2005 (AI-318-02): If the initialization expression is a call
844 -- to a build-in-place function, then access to the allocated object
845 -- must be passed to the function.
847 if Is_Build_In_Place_Function_Call
(Exp
) then
848 Make_Build_In_Place_Call_In_Allocator
(N
, Exp
);
849 Apply_Accessibility_Check
(N
, Built_In_Place
=> True);
852 -- Ada 2005 (AI-318-02): Specialization of the previous case for
853 -- expressions containing a build-in-place function call whose
854 -- returned object covers interface types, and Expr has calls to
855 -- Ada.Tags.Displace to displace the pointer to the returned build-
856 -- in-place object to reference the secondary dispatch table of a
857 -- covered interface type.
859 elsif Present
(Unqual_BIP_Iface_Function_Call
(Exp
)) then
860 Make_Build_In_Place_Iface_Call_In_Allocator
(N
, Exp
);
861 Apply_Accessibility_Check
(N
, Built_In_Place
=> True);
865 -- Actions inserted before:
866 -- Temp : constant ptr_T := new T'(Expression);
867 -- Temp._tag = T'tag; -- when not class-wide
868 -- [Deep_]Adjust (Temp.all);
870 -- We analyze by hand the new internal allocator to avoid any
871 -- recursion and inappropriate call to Initialize.
873 -- We don't want to remove side effects when the expression must be
874 -- built in place. In the case of a build-in-place function call,
875 -- that could lead to a duplication of the call, which was already
876 -- substituted for the allocator.
878 if not Aggr_In_Place
then
879 Remove_Side_Effects
(Exp
);
882 Temp
:= Make_Temporary
(Loc
, 'P', N
);
884 -- For a class wide allocation generate the following code:
886 -- type Equiv_Record is record ... end record;
887 -- implicit subtype CW is <Class_Wide_Subytpe>;
888 -- temp : PtrT := new CW'(CW!(expr));
890 if Is_Class_Wide_Type
(T
) then
891 Expand_Subtype_From_Expr
(Empty
, T
, Indic
, Exp
);
893 -- Ada 2005 (AI-251): If the expression is a class-wide interface
894 -- object we generate code to move up "this" to reference the
895 -- base of the object before allocating the new object.
897 -- Note that Exp'Address is recursively expanded into a call
898 -- to Base_Address (Exp.Tag)
900 if Is_Class_Wide_Type
(Etype
(Exp
))
901 and then Is_Interface
(Etype
(Exp
))
902 and then Tagged_Type_Expansion
906 Unchecked_Convert_To
(Entity
(Indic
),
907 Make_Explicit_Dereference
(Loc
,
908 Unchecked_Convert_To
(RTE
(RE_Tag_Ptr
),
909 Make_Attribute_Reference
(Loc
,
911 Attribute_Name
=> Name_Address
)))));
915 Unchecked_Convert_To
(Entity
(Indic
), Exp
));
918 Analyze_And_Resolve
(Expression
(N
), Entity
(Indic
));
921 -- Processing for allocators returning non-interface types
923 if not Is_Interface
(Directly_Designated_Type
(PtrT
)) then
924 if Aggr_In_Place
then
926 Make_Object_Declaration
(Loc
,
927 Defining_Identifier
=> Temp
,
928 Object_Definition
=> New_Occurrence_Of
(PtrT
, Loc
),
932 New_Occurrence_Of
(Etype
(Exp
), Loc
)));
934 -- Copy the Comes_From_Source flag for the allocator we just
935 -- built, since logically this allocator is a replacement of
936 -- the original allocator node. This is for proper handling of
937 -- restriction No_Implicit_Heap_Allocations.
939 Set_Comes_From_Source
940 (Expression
(Temp_Decl
), Comes_From_Source
(N
));
942 Set_No_Initialization
(Expression
(Temp_Decl
));
943 Insert_Action
(N
, Temp_Decl
);
945 Build_Allocate_Deallocate_Proc
(Temp_Decl
, True);
946 Convert_Aggr_In_Allocator
(N
, Temp_Decl
, Exp
);
949 Node
:= Relocate_Node
(N
);
953 Make_Object_Declaration
(Loc
,
954 Defining_Identifier
=> Temp
,
955 Constant_Present
=> True,
956 Object_Definition
=> New_Occurrence_Of
(PtrT
, Loc
),
959 Insert_Action
(N
, Temp_Decl
);
960 Build_Allocate_Deallocate_Proc
(Temp_Decl
, True);
963 -- Ada 2005 (AI-251): Handle allocators whose designated type is an
964 -- interface type. In this case we use the type of the qualified
965 -- expression to allocate the object.
969 Def_Id
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T');
974 Make_Full_Type_Declaration
(Loc
,
975 Defining_Identifier
=> Def_Id
,
977 Make_Access_To_Object_Definition
(Loc
,
979 Null_Exclusion_Present
=> False,
981 Is_Access_Constant
(Etype
(N
)),
982 Subtype_Indication
=>
983 New_Occurrence_Of
(Etype
(Exp
), Loc
)));
985 Insert_Action
(N
, New_Decl
);
987 -- Inherit the allocation-related attributes from the original
990 Set_Finalization_Master
991 (Def_Id
, Finalization_Master
(PtrT
));
993 Set_Associated_Storage_Pool
994 (Def_Id
, Associated_Storage_Pool
(PtrT
));
996 -- Declare the object using the previous type declaration
998 if Aggr_In_Place
then
1000 Make_Object_Declaration
(Loc
,
1001 Defining_Identifier
=> Temp
,
1002 Object_Definition
=> New_Occurrence_Of
(Def_Id
, Loc
),
1004 Make_Allocator
(Loc
,
1005 New_Occurrence_Of
(Etype
(Exp
), Loc
)));
1007 -- Copy the Comes_From_Source flag for the allocator we just
1008 -- built, since logically this allocator is a replacement of
1009 -- the original allocator node. This is for proper handling
1010 -- of restriction No_Implicit_Heap_Allocations.
1012 Set_Comes_From_Source
1013 (Expression
(Temp_Decl
), Comes_From_Source
(N
));
1015 Set_No_Initialization
(Expression
(Temp_Decl
));
1016 Insert_Action
(N
, Temp_Decl
);
1018 Build_Allocate_Deallocate_Proc
(Temp_Decl
, True);
1019 Convert_Aggr_In_Allocator
(N
, Temp_Decl
, Exp
);
1022 Node
:= Relocate_Node
(N
);
1023 Set_Analyzed
(Node
);
1026 Make_Object_Declaration
(Loc
,
1027 Defining_Identifier
=> Temp
,
1028 Constant_Present
=> True,
1029 Object_Definition
=> New_Occurrence_Of
(Def_Id
, Loc
),
1030 Expression
=> Node
);
1032 Insert_Action
(N
, Temp_Decl
);
1033 Build_Allocate_Deallocate_Proc
(Temp_Decl
, True);
1036 -- Generate an additional object containing the address of the
1037 -- returned object. The type of this second object declaration
1038 -- is the correct type required for the common processing that
1039 -- is still performed by this subprogram. The displacement of
1040 -- this pointer to reference the component associated with the
1041 -- interface type will be done at the end of common processing.
1044 Make_Object_Declaration
(Loc
,
1045 Defining_Identifier
=> Make_Temporary
(Loc
, 'P'),
1046 Object_Definition
=> New_Occurrence_Of
(PtrT
, Loc
),
1048 Unchecked_Convert_To
(PtrT
,
1049 New_Occurrence_Of
(Temp
, Loc
)));
1051 Insert_Action
(N
, New_Decl
);
1053 Temp_Decl
:= New_Decl
;
1054 Temp
:= Defining_Identifier
(New_Decl
);
1058 -- Generate the tag assignment
1060 -- Suppress the tag assignment for VM targets because VM tags are
1061 -- represented implicitly in objects.
1063 if not Tagged_Type_Expansion
then
1066 -- Ada 2005 (AI-251): Suppress the tag assignment with class-wide
1067 -- interface objects because in this case the tag does not change.
1069 elsif Is_Interface
(Directly_Designated_Type
(Etype
(N
))) then
1070 pragma Assert
(Is_Class_Wide_Type
1071 (Directly_Designated_Type
(Etype
(N
))));
1074 elsif Is_Tagged_Type
(T
) and then not Is_Class_Wide_Type
(T
) then
1076 TagR
:= New_Occurrence_Of
(Temp
, Loc
);
1078 elsif Is_Private_Type
(T
)
1079 and then Is_Tagged_Type
(Underlying_Type
(T
))
1081 TagT
:= Underlying_Type
(T
);
1083 Unchecked_Convert_To
(Underlying_Type
(T
),
1084 Make_Explicit_Dereference
(Loc
,
1085 Prefix
=> New_Occurrence_Of
(Temp
, Loc
)));
1088 if Present
(TagT
) then
1090 Full_T
: constant Entity_Id
:= Underlying_Type
(TagT
);
1094 Make_Assignment_Statement
(Loc
,
1096 Make_Selected_Component
(Loc
,
1100 (First_Tag_Component
(Full_T
), Loc
)),
1103 Unchecked_Convert_To
(RTE
(RE_Tag
),
1106 (First_Elmt
(Access_Disp_Table
(Full_T
))), Loc
)));
1109 -- The previous assignment has to be done in any case
1111 Set_Assignment_OK
(Name
(Tag_Assign
));
1112 Insert_Action
(N
, Tag_Assign
);
1115 -- Generate an Adjust call if the object will be moved. In Ada 2005,
1116 -- the object may be inherently limited, in which case there is no
1117 -- Adjust procedure, and the object is built in place. In Ada 95, the
1118 -- object can be limited but not inherently limited if this allocator
1119 -- came from a return statement (we're allocating the result on the
1120 -- secondary stack). In that case, the object will be moved, so we do
1121 -- want to Adjust. However, if it's a nonlimited build-in-place
1122 -- function call, Adjust is not wanted.
1124 if Needs_Finalization
(DesigT
)
1125 and then Needs_Finalization
(T
)
1126 and then not Aggr_In_Place
1127 and then not Is_Limited_View
(T
)
1128 and then not Alloc_For_BIP_Return
(N
)
1129 and then not Is_Build_In_Place_Function_Call
(Expression
(N
))
1131 -- An unchecked conversion is needed in the classwide case because
1132 -- the designated type can be an ancestor of the subtype mark of
1138 Unchecked_Convert_To
(T
,
1139 Make_Explicit_Dereference
(Loc
,
1140 Prefix
=> New_Occurrence_Of
(Temp
, Loc
))),
1143 if Present
(Adj_Call
) then
1144 Insert_Action
(N
, Adj_Call
);
1148 -- Note: the accessibility check must be inserted after the call to
1149 -- [Deep_]Adjust to ensure proper completion of the assignment.
1151 Apply_Accessibility_Check
(Temp
);
1153 Rewrite
(N
, New_Occurrence_Of
(Temp
, Loc
));
1154 Analyze_And_Resolve
(N
, PtrT
);
1156 -- Ada 2005 (AI-251): Displace the pointer to reference the record
1157 -- component containing the secondary dispatch table of the interface
1160 if Is_Interface
(Directly_Designated_Type
(PtrT
)) then
1161 Displace_Allocator_Pointer
(N
);
1164 -- Always force the generation of a temporary for aggregates when
1165 -- generating C code, to simplify the work in the code generator.
1168 or else (Modify_Tree_For_C
and then Nkind
(Exp
) = N_Aggregate
)
1170 Temp
:= Make_Temporary
(Loc
, 'P', N
);
1172 Make_Object_Declaration
(Loc
,
1173 Defining_Identifier
=> Temp
,
1174 Object_Definition
=> New_Occurrence_Of
(PtrT
, Loc
),
1176 Make_Allocator
(Loc
,
1177 Expression
=> New_Occurrence_Of
(Etype
(Exp
), Loc
)));
1179 -- Copy the Comes_From_Source flag for the allocator we just built,
1180 -- since logically this allocator is a replacement of the original
1181 -- allocator node. This is for proper handling of restriction
1182 -- No_Implicit_Heap_Allocations.
1184 Set_Comes_From_Source
1185 (Expression
(Temp_Decl
), Comes_From_Source
(N
));
1187 Set_No_Initialization
(Expression
(Temp_Decl
));
1188 Insert_Action
(N
, Temp_Decl
);
1190 Build_Allocate_Deallocate_Proc
(Temp_Decl
, True);
1191 Convert_Aggr_In_Allocator
(N
, Temp_Decl
, Exp
);
1193 Rewrite
(N
, New_Occurrence_Of
(Temp
, Loc
));
1194 Analyze_And_Resolve
(N
, PtrT
);
1196 elsif Is_Access_Type
(T
) and then Can_Never_Be_Null
(T
) then
1197 Install_Null_Excluding_Check
(Exp
);
1199 elsif Is_Access_Type
(DesigT
)
1200 and then Nkind
(Exp
) = N_Allocator
1201 and then Nkind
(Expression
(Exp
)) /= N_Qualified_Expression
1203 -- Apply constraint to designated subtype indication
1205 Apply_Constraint_Check
1206 (Expression
(Exp
), Designated_Type
(DesigT
), No_Sliding
=> True);
1208 if Nkind
(Expression
(Exp
)) = N_Raise_Constraint_Error
then
1210 -- Propagate constraint_error to enclosing allocator
1212 Rewrite
(Exp
, New_Copy
(Expression
(Exp
)));
1216 Build_Allocate_Deallocate_Proc
(N
, True);
1219 -- type A is access T1;
1220 -- X : A := new T2'(...);
1221 -- T1 and T2 can be different subtypes, and we might need to check
1222 -- both constraints. First check against the type of the qualified
1225 Apply_Constraint_Check
(Exp
, T
, No_Sliding
=> True);
1227 if Do_Range_Check
(Exp
) then
1228 Generate_Range_Check
(Exp
, DesigT
, CE_Range_Check_Failed
);
1231 -- A check is also needed in cases where the designated subtype is
1232 -- constrained and differs from the subtype given in the qualified
1233 -- expression. Note that the check on the qualified expression does
1234 -- not allow sliding, but this check does (a relaxation from Ada 83).
1236 if Is_Constrained
(DesigT
)
1237 and then not Subtypes_Statically_Match
(T
, DesigT
)
1239 Apply_Constraint_Check
1240 (Exp
, DesigT
, No_Sliding
=> False);
1242 if Do_Range_Check
(Exp
) then
1243 Generate_Range_Check
(Exp
, DesigT
, CE_Range_Check_Failed
);
1247 -- For an access to unconstrained packed array, GIGI needs to see an
1248 -- expression with a constrained subtype in order to compute the
1249 -- proper size for the allocator.
1251 if Is_Array_Type
(T
)
1252 and then not Is_Constrained
(T
)
1253 and then Is_Packed
(T
)
1256 ConstrT
: constant Entity_Id
:= Make_Temporary
(Loc
, 'A');
1257 Internal_Exp
: constant Node_Id
:= Relocate_Node
(Exp
);
1260 Make_Subtype_Declaration
(Loc
,
1261 Defining_Identifier
=> ConstrT
,
1262 Subtype_Indication
=>
1263 Make_Subtype_From_Expr
(Internal_Exp
, T
)));
1264 Freeze_Itype
(ConstrT
, Exp
);
1265 Rewrite
(Exp
, OK_Convert_To
(ConstrT
, Internal_Exp
));
1269 -- Ada 2005 (AI-318-02): If the initialization expression is a call
1270 -- to a build-in-place function, then access to the allocated object
1271 -- must be passed to the function.
1273 if Is_Build_In_Place_Function_Call
(Exp
) then
1274 Make_Build_In_Place_Call_In_Allocator
(N
, Exp
);
1279 when RE_Not_Available
=>
1281 end Expand_Allocator_Expression
;
1283 -----------------------------
1284 -- Expand_Array_Comparison --
1285 -----------------------------
1287 -- Expansion is only required in the case of array types. For the unpacked
1288 -- case, an appropriate runtime routine is called. For packed cases, and
1289 -- also in some other cases where a runtime routine cannot be called, the
1290 -- form of the expansion is:
1292 -- [body for greater_nn; boolean_expression]
1294 -- The body is built by Make_Array_Comparison_Op, and the form of the
1295 -- Boolean expression depends on the operator involved.
1297 procedure Expand_Array_Comparison
(N
: Node_Id
) is
1298 Loc
: constant Source_Ptr
:= Sloc
(N
);
1299 Op1
: Node_Id
:= Left_Opnd
(N
);
1300 Op2
: Node_Id
:= Right_Opnd
(N
);
1301 Typ1
: constant Entity_Id
:= Base_Type
(Etype
(Op1
));
1302 Ctyp
: constant Entity_Id
:= Component_Type
(Typ1
);
1305 Func_Body
: Node_Id
;
1306 Func_Name
: Entity_Id
;
1310 Byte_Addressable
: constant Boolean := System_Storage_Unit
= Byte
'Size;
1311 -- True for byte addressable target
1313 function Length_Less_Than_4
(Opnd
: Node_Id
) return Boolean;
1314 -- Returns True if the length of the given operand is known to be less
1315 -- than 4. Returns False if this length is known to be four or greater
1316 -- or is not known at compile time.
1318 ------------------------
1319 -- Length_Less_Than_4 --
1320 ------------------------
1322 function Length_Less_Than_4
(Opnd
: Node_Id
) return Boolean is
1323 Otyp
: constant Entity_Id
:= Etype
(Opnd
);
1326 if Ekind
(Otyp
) = E_String_Literal_Subtype
then
1327 return String_Literal_Length
(Otyp
) < 4;
1331 Ityp
: constant Entity_Id
:= Etype
(First_Index
(Otyp
));
1332 Lo
: constant Node_Id
:= Type_Low_Bound
(Ityp
);
1333 Hi
: constant Node_Id
:= Type_High_Bound
(Ityp
);
1338 if Compile_Time_Known_Value
(Lo
) then
1339 Lov
:= Expr_Value
(Lo
);
1344 if Compile_Time_Known_Value
(Hi
) then
1345 Hiv
:= Expr_Value
(Hi
);
1350 return Hiv
< Lov
+ 3;
1353 end Length_Less_Than_4
;
1355 -- Start of processing for Expand_Array_Comparison
1358 -- Deal first with unpacked case, where we can call a runtime routine
1359 -- except that we avoid this for targets for which are not addressable
1362 if not Is_Bit_Packed_Array
(Typ1
)
1363 and then Byte_Addressable
1365 -- The call we generate is:
1367 -- Compare_Array_xn[_Unaligned]
1368 -- (left'address, right'address, left'length, right'length) <op> 0
1370 -- x = U for unsigned, S for signed
1371 -- n = 8,16,32,64 for component size
1372 -- Add _Unaligned if length < 4 and component size is 8.
1373 -- <op> is the standard comparison operator
1375 if Component_Size
(Typ1
) = 8 then
1376 if Length_Less_Than_4
(Op1
)
1378 Length_Less_Than_4
(Op2
)
1380 if Is_Unsigned_Type
(Ctyp
) then
1381 Comp
:= RE_Compare_Array_U8_Unaligned
;
1383 Comp
:= RE_Compare_Array_S8_Unaligned
;
1387 if Is_Unsigned_Type
(Ctyp
) then
1388 Comp
:= RE_Compare_Array_U8
;
1390 Comp
:= RE_Compare_Array_S8
;
1394 elsif Component_Size
(Typ1
) = 16 then
1395 if Is_Unsigned_Type
(Ctyp
) then
1396 Comp
:= RE_Compare_Array_U16
;
1398 Comp
:= RE_Compare_Array_S16
;
1401 elsif Component_Size
(Typ1
) = 32 then
1402 if Is_Unsigned_Type
(Ctyp
) then
1403 Comp
:= RE_Compare_Array_U32
;
1405 Comp
:= RE_Compare_Array_S32
;
1408 else pragma Assert
(Component_Size
(Typ1
) = 64);
1409 if Is_Unsigned_Type
(Ctyp
) then
1410 Comp
:= RE_Compare_Array_U64
;
1412 Comp
:= RE_Compare_Array_S64
;
1416 if RTE_Available
(Comp
) then
1418 -- Expand to a call only if the runtime function is available,
1419 -- otherwise fall back to inline code.
1421 Remove_Side_Effects
(Op1
, Name_Req
=> True);
1422 Remove_Side_Effects
(Op2
, Name_Req
=> True);
1425 Make_Function_Call
(Sloc
(Op1
),
1426 Name
=> New_Occurrence_Of
(RTE
(Comp
), Loc
),
1428 Parameter_Associations
=> New_List
(
1429 Make_Attribute_Reference
(Loc
,
1430 Prefix
=> Relocate_Node
(Op1
),
1431 Attribute_Name
=> Name_Address
),
1433 Make_Attribute_Reference
(Loc
,
1434 Prefix
=> Relocate_Node
(Op2
),
1435 Attribute_Name
=> Name_Address
),
1437 Make_Attribute_Reference
(Loc
,
1438 Prefix
=> Relocate_Node
(Op1
),
1439 Attribute_Name
=> Name_Length
),
1441 Make_Attribute_Reference
(Loc
,
1442 Prefix
=> Relocate_Node
(Op2
),
1443 Attribute_Name
=> Name_Length
))));
1446 Make_Integer_Literal
(Sloc
(Op2
),
1449 Analyze_And_Resolve
(Op1
, Standard_Integer
);
1450 Analyze_And_Resolve
(Op2
, Standard_Integer
);
1455 -- Cases where we cannot make runtime call
1457 -- For (a <= b) we convert to not (a > b)
1459 if Chars
(N
) = Name_Op_Le
then
1465 Right_Opnd
=> Op2
)));
1466 Analyze_And_Resolve
(N
, Standard_Boolean
);
1469 -- For < the Boolean expression is
1470 -- greater__nn (op2, op1)
1472 elsif Chars
(N
) = Name_Op_Lt
then
1473 Func_Body
:= Make_Array_Comparison_Op
(Typ1
, N
);
1477 Op1
:= Right_Opnd
(N
);
1478 Op2
:= Left_Opnd
(N
);
1480 -- For (a >= b) we convert to not (a < b)
1482 elsif Chars
(N
) = Name_Op_Ge
then
1488 Right_Opnd
=> Op2
)));
1489 Analyze_And_Resolve
(N
, Standard_Boolean
);
1492 -- For > the Boolean expression is
1493 -- greater__nn (op1, op2)
1496 pragma Assert
(Chars
(N
) = Name_Op_Gt
);
1497 Func_Body
:= Make_Array_Comparison_Op
(Typ1
, N
);
1500 Func_Name
:= Defining_Unit_Name
(Specification
(Func_Body
));
1502 Make_Function_Call
(Loc
,
1503 Name
=> New_Occurrence_Of
(Func_Name
, Loc
),
1504 Parameter_Associations
=> New_List
(Op1
, Op2
));
1506 Insert_Action
(N
, Func_Body
);
1508 Analyze_And_Resolve
(N
, Standard_Boolean
);
1509 end Expand_Array_Comparison
;
1511 ---------------------------
1512 -- Expand_Array_Equality --
1513 ---------------------------
1515 -- Expand an equality function for multi-dimensional arrays. Here is an
1516 -- example of such a function for Nb_Dimension = 2
1518 -- function Enn (A : atyp; B : btyp) return boolean is
1520 -- if (A'length (1) = 0 or else A'length (2) = 0)
1522 -- (B'length (1) = 0 or else B'length (2) = 0)
1524 -- return True; -- RM 4.5.2(22)
1527 -- if A'length (1) /= B'length (1)
1529 -- A'length (2) /= B'length (2)
1531 -- return False; -- RM 4.5.2(23)
1535 -- A1 : Index_T1 := A'first (1);
1536 -- B1 : Index_T1 := B'first (1);
1540 -- A2 : Index_T2 := A'first (2);
1541 -- B2 : Index_T2 := B'first (2);
1544 -- if A (A1, A2) /= B (B1, B2) then
1548 -- exit when A2 = A'last (2);
1549 -- A2 := Index_T2'succ (A2);
1550 -- B2 := Index_T2'succ (B2);
1554 -- exit when A1 = A'last (1);
1555 -- A1 := Index_T1'succ (A1);
1556 -- B1 := Index_T1'succ (B1);
1563 -- Note on the formal types used (atyp and btyp). If either of the arrays
1564 -- is of a private type, we use the underlying type, and do an unchecked
1565 -- conversion of the actual. If either of the arrays has a bound depending
1566 -- on a discriminant, then we use the base type since otherwise we have an
1567 -- escaped discriminant in the function.
1569 -- If both arrays are constrained and have the same bounds, we can generate
1570 -- a loop with an explicit iteration scheme using a 'Range attribute over
1573 function Expand_Array_Equality
1578 Typ
: Entity_Id
) return Node_Id
1580 Loc
: constant Source_Ptr
:= Sloc
(Nod
);
1581 Decls
: constant List_Id
:= New_List
;
1582 Index_List1
: constant List_Id
:= New_List
;
1583 Index_List2
: constant List_Id
:= New_List
;
1587 Func_Name
: Entity_Id
;
1588 Func_Body
: Node_Id
;
1590 A
: constant Entity_Id
:= Make_Defining_Identifier
(Loc
, Name_uA
);
1591 B
: constant Entity_Id
:= Make_Defining_Identifier
(Loc
, Name_uB
);
1595 -- The parameter types to be used for the formals
1600 Num
: Int
) return Node_Id
;
1601 -- This builds the attribute reference Arr'Nam (Expr)
1603 function Component_Equality
(Typ
: Entity_Id
) return Node_Id
;
1604 -- Create one statement to compare corresponding components, designated
1605 -- by a full set of indexes.
1607 function Get_Arg_Type
(N
: Node_Id
) return Entity_Id
;
1608 -- Given one of the arguments, computes the appropriate type to be used
1609 -- for that argument in the corresponding function formal
1611 function Handle_One_Dimension
1613 Index
: Node_Id
) return Node_Id
;
1614 -- This procedure returns the following code
1617 -- Bn : Index_T := B'First (N);
1621 -- exit when An = A'Last (N);
1622 -- An := Index_T'Succ (An)
1623 -- Bn := Index_T'Succ (Bn)
1627 -- If both indexes are constrained and identical, the procedure
1628 -- returns a simpler loop:
1630 -- for An in A'Range (N) loop
1634 -- N is the dimension for which we are generating a loop. Index is the
1635 -- N'th index node, whose Etype is Index_Type_n in the above code. The
1636 -- xxx statement is either the loop or declare for the next dimension
1637 -- or if this is the last dimension the comparison of corresponding
1638 -- components of the arrays.
1640 -- The actual way the code works is to return the comparison of
1641 -- corresponding components for the N+1 call. That's neater.
1643 function Test_Empty_Arrays
return Node_Id
;
1644 -- This function constructs the test for both arrays being empty
1645 -- (A'length (1) = 0 or else A'length (2) = 0 or else ...)
1647 -- (B'length (1) = 0 or else B'length (2) = 0 or else ...)
1649 function Test_Lengths_Correspond
return Node_Id
;
1650 -- This function constructs the test for arrays having different lengths
1651 -- in at least one index position, in which case the resulting code is:
1653 -- A'length (1) /= B'length (1)
1655 -- A'length (2) /= B'length (2)
1666 Num
: Int
) return Node_Id
1670 Make_Attribute_Reference
(Loc
,
1671 Attribute_Name
=> Nam
,
1672 Prefix
=> New_Occurrence_Of
(Arr
, Loc
),
1673 Expressions
=> New_List
(Make_Integer_Literal
(Loc
, Num
)));
1676 ------------------------
1677 -- Component_Equality --
1678 ------------------------
1680 function Component_Equality
(Typ
: Entity_Id
) return Node_Id
is
1685 -- if a(i1...) /= b(j1...) then return false; end if;
1688 Make_Indexed_Component
(Loc
,
1689 Prefix
=> Make_Identifier
(Loc
, Chars
(A
)),
1690 Expressions
=> Index_List1
);
1693 Make_Indexed_Component
(Loc
,
1694 Prefix
=> Make_Identifier
(Loc
, Chars
(B
)),
1695 Expressions
=> Index_List2
);
1697 Test
:= Expand_Composite_Equality
1698 (Nod
, Component_Type
(Typ
), L
, R
, Decls
);
1700 -- If some (sub)component is an unchecked_union, the whole operation
1701 -- will raise program error.
1703 if Nkind
(Test
) = N_Raise_Program_Error
then
1705 -- This node is going to be inserted at a location where a
1706 -- statement is expected: clear its Etype so analysis will set
1707 -- it to the expected Standard_Void_Type.
1709 Set_Etype
(Test
, Empty
);
1714 Make_Implicit_If_Statement
(Nod
,
1715 Condition
=> Make_Op_Not
(Loc
, Right_Opnd
=> Test
),
1716 Then_Statements
=> New_List
(
1717 Make_Simple_Return_Statement
(Loc
,
1718 Expression
=> New_Occurrence_Of
(Standard_False
, Loc
))));
1720 end Component_Equality
;
1726 function Get_Arg_Type
(N
: Node_Id
) return Entity_Id
is
1737 T
:= Underlying_Type
(T
);
1739 X
:= First_Index
(T
);
1740 while Present
(X
) loop
1741 if Denotes_Discriminant
(Type_Low_Bound
(Etype
(X
)))
1743 Denotes_Discriminant
(Type_High_Bound
(Etype
(X
)))
1756 --------------------------
1757 -- Handle_One_Dimension --
1758 ---------------------------
1760 function Handle_One_Dimension
1762 Index
: Node_Id
) return Node_Id
1764 Need_Separate_Indexes
: constant Boolean :=
1765 Ltyp
/= Rtyp
or else not Is_Constrained
(Ltyp
);
1766 -- If the index types are identical, and we are working with
1767 -- constrained types, then we can use the same index for both
1770 An
: constant Entity_Id
:= Make_Temporary
(Loc
, 'A');
1773 Index_T
: Entity_Id
;
1778 if N
> Number_Dimensions
(Ltyp
) then
1779 return Component_Equality
(Ltyp
);
1782 -- Case where we generate a loop
1784 Index_T
:= Base_Type
(Etype
(Index
));
1786 if Need_Separate_Indexes
then
1787 Bn
:= Make_Temporary
(Loc
, 'B');
1792 Append
(New_Occurrence_Of
(An
, Loc
), Index_List1
);
1793 Append
(New_Occurrence_Of
(Bn
, Loc
), Index_List2
);
1795 Stm_List
:= New_List
(
1796 Handle_One_Dimension
(N
+ 1, Next_Index
(Index
)));
1798 if Need_Separate_Indexes
then
1800 -- Generate guard for loop, followed by increments of indexes
1802 Append_To
(Stm_List
,
1803 Make_Exit_Statement
(Loc
,
1806 Left_Opnd
=> New_Occurrence_Of
(An
, Loc
),
1807 Right_Opnd
=> Arr_Attr
(A
, Name_Last
, N
))));
1809 Append_To
(Stm_List
,
1810 Make_Assignment_Statement
(Loc
,
1811 Name
=> New_Occurrence_Of
(An
, Loc
),
1813 Make_Attribute_Reference
(Loc
,
1814 Prefix
=> New_Occurrence_Of
(Index_T
, Loc
),
1815 Attribute_Name
=> Name_Succ
,
1816 Expressions
=> New_List
(
1817 New_Occurrence_Of
(An
, Loc
)))));
1819 Append_To
(Stm_List
,
1820 Make_Assignment_Statement
(Loc
,
1821 Name
=> New_Occurrence_Of
(Bn
, Loc
),
1823 Make_Attribute_Reference
(Loc
,
1824 Prefix
=> New_Occurrence_Of
(Index_T
, Loc
),
1825 Attribute_Name
=> Name_Succ
,
1826 Expressions
=> New_List
(
1827 New_Occurrence_Of
(Bn
, Loc
)))));
1830 -- If separate indexes, we need a declare block for An and Bn, and a
1831 -- loop without an iteration scheme.
1833 if Need_Separate_Indexes
then
1835 Make_Implicit_Loop_Statement
(Nod
, Statements
=> Stm_List
);
1838 Make_Block_Statement
(Loc
,
1839 Declarations
=> New_List
(
1840 Make_Object_Declaration
(Loc
,
1841 Defining_Identifier
=> An
,
1842 Object_Definition
=> New_Occurrence_Of
(Index_T
, Loc
),
1843 Expression
=> Arr_Attr
(A
, Name_First
, N
)),
1845 Make_Object_Declaration
(Loc
,
1846 Defining_Identifier
=> Bn
,
1847 Object_Definition
=> New_Occurrence_Of
(Index_T
, Loc
),
1848 Expression
=> Arr_Attr
(B
, Name_First
, N
))),
1850 Handled_Statement_Sequence
=>
1851 Make_Handled_Sequence_Of_Statements
(Loc
,
1852 Statements
=> New_List
(Loop_Stm
)));
1854 -- If no separate indexes, return loop statement with explicit
1855 -- iteration scheme on its own
1859 Make_Implicit_Loop_Statement
(Nod
,
1860 Statements
=> Stm_List
,
1862 Make_Iteration_Scheme
(Loc
,
1863 Loop_Parameter_Specification
=>
1864 Make_Loop_Parameter_Specification
(Loc
,
1865 Defining_Identifier
=> An
,
1866 Discrete_Subtype_Definition
=>
1867 Arr_Attr
(A
, Name_Range
, N
))));
1870 end Handle_One_Dimension
;
1872 -----------------------
1873 -- Test_Empty_Arrays --
1874 -----------------------
1876 function Test_Empty_Arrays
return Node_Id
is
1886 for J
in 1 .. Number_Dimensions
(Ltyp
) loop
1889 Left_Opnd
=> Arr_Attr
(A
, Name_Length
, J
),
1890 Right_Opnd
=> Make_Integer_Literal
(Loc
, 0));
1894 Left_Opnd
=> Arr_Attr
(B
, Name_Length
, J
),
1895 Right_Opnd
=> Make_Integer_Literal
(Loc
, 0));
1904 Left_Opnd
=> Relocate_Node
(Alist
),
1905 Right_Opnd
=> Atest
);
1909 Left_Opnd
=> Relocate_Node
(Blist
),
1910 Right_Opnd
=> Btest
);
1917 Right_Opnd
=> Blist
);
1918 end Test_Empty_Arrays
;
1920 -----------------------------
1921 -- Test_Lengths_Correspond --
1922 -----------------------------
1924 function Test_Lengths_Correspond
return Node_Id
is
1930 for J
in 1 .. Number_Dimensions
(Ltyp
) loop
1933 Left_Opnd
=> Arr_Attr
(A
, Name_Length
, J
),
1934 Right_Opnd
=> Arr_Attr
(B
, Name_Length
, J
));
1941 Left_Opnd
=> Relocate_Node
(Result
),
1942 Right_Opnd
=> Rtest
);
1947 end Test_Lengths_Correspond
;
1949 -- Start of processing for Expand_Array_Equality
1952 Ltyp
:= Get_Arg_Type
(Lhs
);
1953 Rtyp
:= Get_Arg_Type
(Rhs
);
1955 -- For now, if the argument types are not the same, go to the base type,
1956 -- since the code assumes that the formals have the same type. This is
1957 -- fixable in future ???
1959 if Ltyp
/= Rtyp
then
1960 Ltyp
:= Base_Type
(Ltyp
);
1961 Rtyp
:= Base_Type
(Rtyp
);
1962 pragma Assert
(Ltyp
= Rtyp
);
1965 -- Build list of formals for function
1967 Formals
:= New_List
(
1968 Make_Parameter_Specification
(Loc
,
1969 Defining_Identifier
=> A
,
1970 Parameter_Type
=> New_Occurrence_Of
(Ltyp
, Loc
)),
1972 Make_Parameter_Specification
(Loc
,
1973 Defining_Identifier
=> B
,
1974 Parameter_Type
=> New_Occurrence_Of
(Rtyp
, Loc
)));
1976 Func_Name
:= Make_Temporary
(Loc
, 'E');
1978 -- Build statement sequence for function
1981 Make_Subprogram_Body
(Loc
,
1983 Make_Function_Specification
(Loc
,
1984 Defining_Unit_Name
=> Func_Name
,
1985 Parameter_Specifications
=> Formals
,
1986 Result_Definition
=> New_Occurrence_Of
(Standard_Boolean
, Loc
)),
1988 Declarations
=> Decls
,
1990 Handled_Statement_Sequence
=>
1991 Make_Handled_Sequence_Of_Statements
(Loc
,
1992 Statements
=> New_List
(
1994 Make_Implicit_If_Statement
(Nod
,
1995 Condition
=> Test_Empty_Arrays
,
1996 Then_Statements
=> New_List
(
1997 Make_Simple_Return_Statement
(Loc
,
1999 New_Occurrence_Of
(Standard_True
, Loc
)))),
2001 Make_Implicit_If_Statement
(Nod
,
2002 Condition
=> Test_Lengths_Correspond
,
2003 Then_Statements
=> New_List
(
2004 Make_Simple_Return_Statement
(Loc
,
2005 Expression
=> New_Occurrence_Of
(Standard_False
, Loc
)))),
2007 Handle_One_Dimension
(1, First_Index
(Ltyp
)),
2009 Make_Simple_Return_Statement
(Loc
,
2010 Expression
=> New_Occurrence_Of
(Standard_True
, Loc
)))));
2012 Set_Has_Completion
(Func_Name
, True);
2013 Set_Is_Inlined
(Func_Name
);
2015 -- If the array type is distinct from the type of the arguments, it
2016 -- is the full view of a private type. Apply an unchecked conversion
2017 -- to insure that analysis of the call succeeds.
2027 or else Base_Type
(Etype
(Lhs
)) /= Base_Type
(Ltyp
)
2029 L
:= OK_Convert_To
(Ltyp
, Lhs
);
2033 or else Base_Type
(Etype
(Rhs
)) /= Base_Type
(Rtyp
)
2035 R
:= OK_Convert_To
(Rtyp
, Rhs
);
2038 Actuals
:= New_List
(L
, R
);
2041 Append_To
(Bodies
, Func_Body
);
2044 Make_Function_Call
(Loc
,
2045 Name
=> New_Occurrence_Of
(Func_Name
, Loc
),
2046 Parameter_Associations
=> Actuals
);
2047 end Expand_Array_Equality
;
2049 -----------------------------
2050 -- Expand_Boolean_Operator --
2051 -----------------------------
2053 -- Note that we first get the actual subtypes of the operands, since we
2054 -- always want to deal with types that have bounds.
2056 procedure Expand_Boolean_Operator
(N
: Node_Id
) is
2057 Typ
: constant Entity_Id
:= Etype
(N
);
2060 -- Special case of bit packed array where both operands are known to be
2061 -- properly aligned. In this case we use an efficient run time routine
2062 -- to carry out the operation (see System.Bit_Ops).
2064 if Is_Bit_Packed_Array
(Typ
)
2065 and then not Is_Possibly_Unaligned_Object
(Left_Opnd
(N
))
2066 and then not Is_Possibly_Unaligned_Object
(Right_Opnd
(N
))
2068 Expand_Packed_Boolean_Operator
(N
);
2072 -- For the normal non-packed case, the general expansion is to build
2073 -- function for carrying out the comparison (use Make_Boolean_Array_Op)
2074 -- and then inserting it into the tree. The original operator node is
2075 -- then rewritten as a call to this function. We also use this in the
2076 -- packed case if either operand is a possibly unaligned object.
2079 Loc
: constant Source_Ptr
:= Sloc
(N
);
2080 L
: constant Node_Id
:= Relocate_Node
(Left_Opnd
(N
));
2081 R
: Node_Id
:= Relocate_Node
(Right_Opnd
(N
));
2082 Func_Body
: Node_Id
;
2083 Func_Name
: Entity_Id
;
2086 Convert_To_Actual_Subtype
(L
);
2087 Convert_To_Actual_Subtype
(R
);
2088 Ensure_Defined
(Etype
(L
), N
);
2089 Ensure_Defined
(Etype
(R
), N
);
2090 Apply_Length_Check
(R
, Etype
(L
));
2092 if Nkind
(N
) = N_Op_Xor
then
2093 R
:= Duplicate_Subexpr
(R
);
2094 Silly_Boolean_Array_Xor_Test
(N
, R
, Etype
(L
));
2097 if Nkind
(Parent
(N
)) = N_Assignment_Statement
2098 and then Safe_In_Place_Array_Op
(Name
(Parent
(N
)), L
, R
)
2100 Build_Boolean_Array_Proc_Call
(Parent
(N
), L
, R
);
2102 elsif Nkind
(Parent
(N
)) = N_Op_Not
2103 and then Nkind
(N
) = N_Op_And
2104 and then Nkind
(Parent
(Parent
(N
))) = N_Assignment_Statement
2105 and then Safe_In_Place_Array_Op
(Name
(Parent
(Parent
(N
))), L
, R
)
2110 Func_Body
:= Make_Boolean_Array_Op
(Etype
(L
), N
);
2111 Func_Name
:= Defining_Unit_Name
(Specification
(Func_Body
));
2112 Insert_Action
(N
, Func_Body
);
2114 -- Now rewrite the expression with a call
2117 Make_Function_Call
(Loc
,
2118 Name
=> New_Occurrence_Of
(Func_Name
, Loc
),
2119 Parameter_Associations
=>
2122 Make_Type_Conversion
2123 (Loc
, New_Occurrence_Of
(Etype
(L
), Loc
), R
))));
2125 Analyze_And_Resolve
(N
, Typ
);
2128 end Expand_Boolean_Operator
;
2130 ------------------------------------------------
2131 -- Expand_Compare_Minimize_Eliminate_Overflow --
2132 ------------------------------------------------
2134 procedure Expand_Compare_Minimize_Eliminate_Overflow
(N
: Node_Id
) is
2135 Loc
: constant Source_Ptr
:= Sloc
(N
);
2137 Result_Type
: constant Entity_Id
:= Etype
(N
);
2138 -- Capture result type (could be a derived boolean type)
2143 LLIB
: constant Entity_Id
:= Base_Type
(Standard_Long_Long_Integer
);
2144 -- Entity for Long_Long_Integer'Base
2146 Check
: constant Overflow_Mode_Type
:= Overflow_Check_Mode
;
2147 -- Current overflow checking mode
2150 procedure Set_False
;
2151 -- These procedures rewrite N with an occurrence of Standard_True or
2152 -- Standard_False, and then makes a call to Warn_On_Known_Condition.
2158 procedure Set_False
is
2160 Rewrite
(N
, New_Occurrence_Of
(Standard_False
, Loc
));
2161 Warn_On_Known_Condition
(N
);
2168 procedure Set_True
is
2170 Rewrite
(N
, New_Occurrence_Of
(Standard_True
, Loc
));
2171 Warn_On_Known_Condition
(N
);
2174 -- Start of processing for Expand_Compare_Minimize_Eliminate_Overflow
2177 -- Nothing to do unless we have a comparison operator with operands
2178 -- that are signed integer types, and we are operating in either
2179 -- MINIMIZED or ELIMINATED overflow checking mode.
2181 if Nkind
(N
) not in N_Op_Compare
2182 or else Check
not in Minimized_Or_Eliminated
2183 or else not Is_Signed_Integer_Type
(Etype
(Left_Opnd
(N
)))
2188 -- OK, this is the case we are interested in. First step is to process
2189 -- our operands using the Minimize_Eliminate circuitry which applies
2190 -- this processing to the two operand subtrees.
2192 Minimize_Eliminate_Overflows
2193 (Left_Opnd
(N
), Llo
, Lhi
, Top_Level
=> False);
2194 Minimize_Eliminate_Overflows
2195 (Right_Opnd
(N
), Rlo
, Rhi
, Top_Level
=> False);
2197 -- See if the range information decides the result of the comparison.
2198 -- We can only do this if we in fact have full range information (which
2199 -- won't be the case if either operand is bignum at this stage).
2201 if Llo
/= No_Uint
and then Rlo
/= No_Uint
then
2202 case N_Op_Compare
(Nkind
(N
)) is
2204 if Llo
= Lhi
and then Rlo
= Rhi
and then Llo
= Rlo
then
2206 elsif Llo
> Rhi
or else Lhi
< Rlo
then
2213 elsif Lhi
< Rlo
then
2220 elsif Lhi
<= Rlo
then
2227 elsif Lhi
<= Rlo
then
2234 elsif Lhi
< Rlo
then
2239 if Llo
= Lhi
and then Rlo
= Rhi
and then Llo
= Rlo
then
2241 elsif Llo
> Rhi
or else Lhi
< Rlo
then
2246 -- All done if we did the rewrite
2248 if Nkind
(N
) not in N_Op_Compare
then
2253 -- Otherwise, time to do the comparison
2256 Ltype
: constant Entity_Id
:= Etype
(Left_Opnd
(N
));
2257 Rtype
: constant Entity_Id
:= Etype
(Right_Opnd
(N
));
2260 -- If the two operands have the same signed integer type we are
2261 -- all set, nothing more to do. This is the case where either
2262 -- both operands were unchanged, or we rewrote both of them to
2263 -- be Long_Long_Integer.
2265 -- Note: Entity for the comparison may be wrong, but it's not worth
2266 -- the effort to change it, since the back end does not use it.
2268 if Is_Signed_Integer_Type
(Ltype
)
2269 and then Base_Type
(Ltype
) = Base_Type
(Rtype
)
2273 -- Here if bignums are involved (can only happen in ELIMINATED mode)
2275 elsif Is_RTE
(Ltype
, RE_Bignum
) or else Is_RTE
(Rtype
, RE_Bignum
) then
2277 Left
: Node_Id
:= Left_Opnd
(N
);
2278 Right
: Node_Id
:= Right_Opnd
(N
);
2279 -- Bignum references for left and right operands
2282 if not Is_RTE
(Ltype
, RE_Bignum
) then
2283 Left
:= Convert_To_Bignum
(Left
);
2284 elsif not Is_RTE
(Rtype
, RE_Bignum
) then
2285 Right
:= Convert_To_Bignum
(Right
);
2288 -- We rewrite our node with:
2291 -- Bnn : Result_Type;
2293 -- M : Mark_Id := SS_Mark;
2295 -- Bnn := Big_xx (Left, Right); (xx = EQ, NT etc)
2303 Blk
: constant Node_Id
:= Make_Bignum_Block
(Loc
);
2304 Bnn
: constant Entity_Id
:= Make_Temporary
(Loc
, 'B', N
);
2308 case N_Op_Compare
(Nkind
(N
)) is
2309 when N_Op_Eq
=> Ent
:= RE_Big_EQ
;
2310 when N_Op_Ge
=> Ent
:= RE_Big_GE
;
2311 when N_Op_Gt
=> Ent
:= RE_Big_GT
;
2312 when N_Op_Le
=> Ent
:= RE_Big_LE
;
2313 when N_Op_Lt
=> Ent
:= RE_Big_LT
;
2314 when N_Op_Ne
=> Ent
:= RE_Big_NE
;
2317 -- Insert assignment to Bnn into the bignum block
2320 (First
(Statements
(Handled_Statement_Sequence
(Blk
))),
2321 Make_Assignment_Statement
(Loc
,
2322 Name
=> New_Occurrence_Of
(Bnn
, Loc
),
2324 Make_Function_Call
(Loc
,
2326 New_Occurrence_Of
(RTE
(Ent
), Loc
),
2327 Parameter_Associations
=> New_List
(Left
, Right
))));
2329 -- Now do the rewrite with expression actions
2332 Make_Expression_With_Actions
(Loc
,
2333 Actions
=> New_List
(
2334 Make_Object_Declaration
(Loc
,
2335 Defining_Identifier
=> Bnn
,
2336 Object_Definition
=>
2337 New_Occurrence_Of
(Result_Type
, Loc
)),
2339 Expression
=> New_Occurrence_Of
(Bnn
, Loc
)));
2340 Analyze_And_Resolve
(N
, Result_Type
);
2344 -- No bignums involved, but types are different, so we must have
2345 -- rewritten one of the operands as a Long_Long_Integer but not
2348 -- If left operand is Long_Long_Integer, convert right operand
2349 -- and we are done (with a comparison of two Long_Long_Integers).
2351 elsif Ltype
= LLIB
then
2352 Convert_To_And_Rewrite
(LLIB
, Right_Opnd
(N
));
2353 Analyze_And_Resolve
(Right_Opnd
(N
), LLIB
, Suppress
=> All_Checks
);
2356 -- If right operand is Long_Long_Integer, convert left operand
2357 -- and we are done (with a comparison of two Long_Long_Integers).
2359 -- This is the only remaining possibility
2361 else pragma Assert
(Rtype
= LLIB
);
2362 Convert_To_And_Rewrite
(LLIB
, Left_Opnd
(N
));
2363 Analyze_And_Resolve
(Left_Opnd
(N
), LLIB
, Suppress
=> All_Checks
);
2367 end Expand_Compare_Minimize_Eliminate_Overflow
;
2369 -------------------------------
2370 -- Expand_Composite_Equality --
2371 -------------------------------
2373 -- This function is only called for comparing internal fields of composite
2374 -- types when these fields are themselves composites. This is a special
2375 -- case because it is not possible to respect normal Ada visibility rules.
2377 function Expand_Composite_Equality
2382 Bodies
: List_Id
) return Node_Id
2384 Loc
: constant Source_Ptr
:= Sloc
(Nod
);
2385 Full_Type
: Entity_Id
;
2388 -- Start of processing for Expand_Composite_Equality
2391 if Is_Private_Type
(Typ
) then
2392 Full_Type
:= Underlying_Type
(Typ
);
2397 -- If the private type has no completion the context may be the
2398 -- expansion of a composite equality for a composite type with some
2399 -- still incomplete components. The expression will not be analyzed
2400 -- until the enclosing type is completed, at which point this will be
2401 -- properly expanded, unless there is a bona fide completion error.
2403 if No
(Full_Type
) then
2404 return Make_Op_Eq
(Loc
, Left_Opnd
=> Lhs
, Right_Opnd
=> Rhs
);
2407 Full_Type
:= Base_Type
(Full_Type
);
2409 -- When the base type itself is private, use the full view to expand
2410 -- the composite equality.
2412 if Is_Private_Type
(Full_Type
) then
2413 Full_Type
:= Underlying_Type
(Full_Type
);
2416 -- Case of array types
2418 if Is_Array_Type
(Full_Type
) then
2420 -- If the operand is an elementary type other than a floating-point
2421 -- type, then we can simply use the built-in block bitwise equality,
2422 -- since the predefined equality operators always apply and bitwise
2423 -- equality is fine for all these cases.
2425 if Is_Elementary_Type
(Component_Type
(Full_Type
))
2426 and then not Is_Floating_Point_Type
(Component_Type
(Full_Type
))
2428 return Make_Op_Eq
(Loc
, Left_Opnd
=> Lhs
, Right_Opnd
=> Rhs
);
2430 -- For composite component types, and floating-point types, use the
2431 -- expansion. This deals with tagged component types (where we use
2432 -- the applicable equality routine) and floating-point (where we
2433 -- need to worry about negative zeroes), and also the case of any
2434 -- composite type recursively containing such fields.
2438 Comp_Typ
: Entity_Id
;
2445 -- Do the comparison in the type (or its full view) and not in
2446 -- its unconstrained base type, because the latter operation is
2447 -- more complex and would also require an unchecked conversion.
2449 if Is_Private_Type
(Typ
) then
2450 Comp_Typ
:= Underlying_Type
(Typ
);
2455 -- Except for the case where the bounds of the type depend on a
2456 -- discriminant, or else we would run into scoping issues.
2458 Indx
:= First_Index
(Comp_Typ
);
2459 while Present
(Indx
) loop
2460 Ityp
:= Etype
(Indx
);
2462 Lo
:= Type_Low_Bound
(Ityp
);
2463 Hi
:= Type_High_Bound
(Ityp
);
2465 if (Nkind
(Lo
) = N_Identifier
2466 and then Ekind
(Entity
(Lo
)) = E_Discriminant
)
2468 (Nkind
(Hi
) = N_Identifier
2469 and then Ekind
(Entity
(Hi
)) = E_Discriminant
)
2471 Comp_Typ
:= Full_Type
;
2478 return Expand_Array_Equality
(Nod
, Lhs
, Rhs
, Bodies
, Comp_Typ
);
2482 -- Case of tagged record types
2484 elsif Is_Tagged_Type
(Full_Type
) then
2485 Eq_Op
:= Find_Primitive_Eq
(Typ
);
2486 pragma Assert
(Present
(Eq_Op
));
2489 Make_Function_Call
(Loc
,
2490 Name
=> New_Occurrence_Of
(Eq_Op
, Loc
),
2491 Parameter_Associations
=>
2493 (Unchecked_Convert_To
(Etype
(First_Formal
(Eq_Op
)), Lhs
),
2494 Unchecked_Convert_To
(Etype
(First_Formal
(Eq_Op
)), Rhs
)));
2496 -- Case of untagged record types
2498 elsif Is_Record_Type
(Full_Type
) then
2499 Eq_Op
:= TSS
(Full_Type
, TSS_Composite_Equality
);
2501 if Present
(Eq_Op
) then
2502 if Etype
(First_Formal
(Eq_Op
)) /= Full_Type
then
2504 -- Inherited equality from parent type. Convert the actuals to
2505 -- match signature of operation.
2508 T
: constant Entity_Id
:= Etype
(First_Formal
(Eq_Op
));
2512 Make_Function_Call
(Loc
,
2513 Name
=> New_Occurrence_Of
(Eq_Op
, Loc
),
2514 Parameter_Associations
=> New_List
(
2515 OK_Convert_To
(T
, Lhs
),
2516 OK_Convert_To
(T
, Rhs
)));
2520 -- Comparison between Unchecked_Union components
2522 if Is_Unchecked_Union
(Full_Type
) then
2524 Lhs_Type
: Node_Id
:= Full_Type
;
2525 Rhs_Type
: Node_Id
:= Full_Type
;
2526 Lhs_Discr_Val
: Node_Id
;
2527 Rhs_Discr_Val
: Node_Id
;
2532 if Nkind
(Lhs
) = N_Selected_Component
then
2533 Lhs_Type
:= Etype
(Entity
(Selector_Name
(Lhs
)));
2538 if Nkind
(Rhs
) = N_Selected_Component
then
2539 Rhs_Type
:= Etype
(Entity
(Selector_Name
(Rhs
)));
2542 -- Lhs of the composite equality
2544 if Is_Constrained
(Lhs_Type
) then
2546 -- Since the enclosing record type can never be an
2547 -- Unchecked_Union (this code is executed for records
2548 -- that do not have variants), we may reference its
2551 if Nkind
(Lhs
) = N_Selected_Component
2552 and then Has_Per_Object_Constraint
2553 (Entity
(Selector_Name
(Lhs
)))
2556 Make_Selected_Component
(Loc
,
2557 Prefix
=> Prefix
(Lhs
),
2560 (Get_Discriminant_Value
2561 (First_Discriminant
(Lhs_Type
),
2563 Stored_Constraint
(Lhs_Type
))));
2568 (Get_Discriminant_Value
2569 (First_Discriminant
(Lhs_Type
),
2571 Stored_Constraint
(Lhs_Type
)));
2575 -- It is not possible to infer the discriminant since
2576 -- the subtype is not constrained.
2579 Make_Raise_Program_Error
(Loc
,
2580 Reason
=> PE_Unchecked_Union_Restriction
);
2583 -- Rhs of the composite equality
2585 if Is_Constrained
(Rhs_Type
) then
2586 if Nkind
(Rhs
) = N_Selected_Component
2587 and then Has_Per_Object_Constraint
2588 (Entity
(Selector_Name
(Rhs
)))
2591 Make_Selected_Component
(Loc
,
2592 Prefix
=> Prefix
(Rhs
),
2595 (Get_Discriminant_Value
2596 (First_Discriminant
(Rhs_Type
),
2598 Stored_Constraint
(Rhs_Type
))));
2603 (Get_Discriminant_Value
2604 (First_Discriminant
(Rhs_Type
),
2606 Stored_Constraint
(Rhs_Type
)));
2611 Make_Raise_Program_Error
(Loc
,
2612 Reason
=> PE_Unchecked_Union_Restriction
);
2615 -- Call the TSS equality function with the inferred
2616 -- discriminant values.
2619 Make_Function_Call
(Loc
,
2620 Name
=> New_Occurrence_Of
(Eq_Op
, Loc
),
2621 Parameter_Associations
=> New_List
(
2628 -- All cases other than comparing Unchecked_Union types
2632 T
: constant Entity_Id
:= Etype
(First_Formal
(Eq_Op
));
2635 Make_Function_Call
(Loc
,
2637 New_Occurrence_Of
(Eq_Op
, Loc
),
2638 Parameter_Associations
=> New_List
(
2639 OK_Convert_To
(T
, Lhs
),
2640 OK_Convert_To
(T
, Rhs
)));
2645 -- Equality composes in Ada 2012 for untagged record types. It also
2646 -- composes for bounded strings, because they are part of the
2647 -- predefined environment. We could make it compose for bounded
2648 -- strings by making them tagged, or by making sure all subcomponents
2649 -- are set to the same value, even when not used. Instead, we have
2650 -- this special case in the compiler, because it's more efficient.
2652 elsif Ada_Version
>= Ada_2012
or else Is_Bounded_String
(Typ
) then
2654 -- If no TSS has been created for the type, check whether there is
2655 -- a primitive equality declared for it.
2658 Op
: constant Node_Id
:= Build_Eq_Call
(Typ
, Loc
, Lhs
, Rhs
);
2661 -- Use user-defined primitive if it exists, otherwise use
2662 -- predefined equality.
2664 if Present
(Op
) then
2667 return Make_Op_Eq
(Loc
, Lhs
, Rhs
);
2672 return Expand_Record_Equality
(Nod
, Full_Type
, Lhs
, Rhs
, Bodies
);
2675 -- Non-composite types (always use predefined equality)
2678 return Make_Op_Eq
(Loc
, Left_Opnd
=> Lhs
, Right_Opnd
=> Rhs
);
2680 end Expand_Composite_Equality
;
2682 ------------------------
2683 -- Expand_Concatenate --
2684 ------------------------
2686 procedure Expand_Concatenate
(Cnode
: Node_Id
; Opnds
: List_Id
) is
2687 Loc
: constant Source_Ptr
:= Sloc
(Cnode
);
2689 Atyp
: constant Entity_Id
:= Base_Type
(Etype
(Cnode
));
2690 -- Result type of concatenation
2692 Ctyp
: constant Entity_Id
:= Base_Type
(Component_Type
(Etype
(Cnode
)));
2693 -- Component type. Elements of this component type can appear as one
2694 -- of the operands of concatenation as well as arrays.
2696 Istyp
: constant Entity_Id
:= Etype
(First_Index
(Atyp
));
2699 Ityp
: constant Entity_Id
:= Base_Type
(Istyp
);
2700 -- Index type. This is the base type of the index subtype, and is used
2701 -- for all computed bounds (which may be out of range of Istyp in the
2702 -- case of null ranges).
2705 -- This is the type we use to do arithmetic to compute the bounds and
2706 -- lengths of operands. The choice of this type is a little subtle and
2707 -- is discussed in a separate section at the start of the body code.
2709 Concatenation_Error
: exception;
2710 -- Raised if concatenation is sure to raise a CE
2712 Result_May_Be_Null
: Boolean := True;
2713 -- Reset to False if at least one operand is encountered which is known
2714 -- at compile time to be non-null. Used for handling the special case
2715 -- of setting the high bound to the last operand high bound for a null
2716 -- result, thus ensuring a proper high bound in the super-flat case.
2718 N
: constant Nat
:= List_Length
(Opnds
);
2719 -- Number of concatenation operands including possibly null operands
2722 -- Number of operands excluding any known to be null, except that the
2723 -- last operand is always retained, in case it provides the bounds for
2726 Opnd
: Node_Id
:= Empty
;
2727 -- Current operand being processed in the loop through operands. After
2728 -- this loop is complete, always contains the last operand (which is not
2729 -- the same as Operands (NN), since null operands are skipped).
2731 -- Arrays describing the operands, only the first NN entries of each
2732 -- array are set (NN < N when we exclude known null operands).
2734 Is_Fixed_Length
: array (1 .. N
) of Boolean;
2735 -- True if length of corresponding operand known at compile time
2737 Operands
: array (1 .. N
) of Node_Id
;
2738 -- Set to the corresponding entry in the Opnds list (but note that null
2739 -- operands are excluded, so not all entries in the list are stored).
2741 Fixed_Length
: array (1 .. N
) of Uint
;
2742 -- Set to length of operand. Entries in this array are set only if the
2743 -- corresponding entry in Is_Fixed_Length is True.
2745 Opnd_Low_Bound
: array (1 .. N
) of Node_Id
;
2746 -- Set to lower bound of operand. Either an integer literal in the case
2747 -- where the bound is known at compile time, else actual lower bound.
2748 -- The operand low bound is of type Ityp.
2750 Var_Length
: array (1 .. N
) of Entity_Id
;
2751 -- Set to an entity of type Natural that contains the length of an
2752 -- operand whose length is not known at compile time. Entries in this
2753 -- array are set only if the corresponding entry in Is_Fixed_Length
2754 -- is False. The entity is of type Artyp.
2756 Aggr_Length
: array (0 .. N
) of Node_Id
;
2757 -- The J'th entry in an expression node that represents the total length
2758 -- of operands 1 through J. It is either an integer literal node, or a
2759 -- reference to a constant entity with the right value, so it is fine
2760 -- to just do a Copy_Node to get an appropriate copy. The extra zero'th
2761 -- entry always is set to zero. The length is of type Artyp.
2763 Low_Bound
: Node_Id
;
2764 -- A tree node representing the low bound of the result (of type Ityp).
2765 -- This is either an integer literal node, or an identifier reference to
2766 -- a constant entity initialized to the appropriate value.
2768 Last_Opnd_Low_Bound
: Node_Id
:= Empty
;
2769 -- A tree node representing the low bound of the last operand. This
2770 -- need only be set if the result could be null. It is used for the
2771 -- special case of setting the right low bound for a null result.
2772 -- This is of type Ityp.
2774 Last_Opnd_High_Bound
: Node_Id
:= Empty
;
2775 -- A tree node representing the high bound of the last operand. This
2776 -- need only be set if the result could be null. It is used for the
2777 -- special case of setting the right high bound for a null result.
2778 -- This is of type Ityp.
2780 High_Bound
: Node_Id
:= Empty
;
2781 -- A tree node representing the high bound of the result (of type Ityp)
2784 -- Result of the concatenation (of type Ityp)
2786 Actions
: constant List_Id
:= New_List
;
2787 -- Collect actions to be inserted
2789 Known_Non_Null_Operand_Seen
: Boolean;
2790 -- Set True during generation of the assignments of operands into
2791 -- result once an operand known to be non-null has been seen.
2793 function Library_Level_Target
return Boolean;
2794 -- Return True if the concatenation is within the expression of the
2795 -- declaration of a library-level object.
2797 function Make_Artyp_Literal
(Val
: Nat
) return Node_Id
;
2798 -- This function makes an N_Integer_Literal node that is returned in
2799 -- analyzed form with the type set to Artyp. Importantly this literal
2800 -- is not flagged as static, so that if we do computations with it that
2801 -- result in statically detected out of range conditions, we will not
2802 -- generate error messages but instead warning messages.
2804 function To_Artyp
(X
: Node_Id
) return Node_Id
;
2805 -- Given a node of type Ityp, returns the corresponding value of type
2806 -- Artyp. For non-enumeration types, this is a plain integer conversion.
2807 -- For enum types, the Pos of the value is returned.
2809 function To_Ityp
(X
: Node_Id
) return Node_Id
;
2810 -- The inverse function (uses Val in the case of enumeration types)
2812 --------------------------
2813 -- Library_Level_Target --
2814 --------------------------
2816 function Library_Level_Target
return Boolean is
2817 P
: Node_Id
:= Parent
(Cnode
);
2820 while Present
(P
) loop
2821 if Nkind
(P
) = N_Object_Declaration
then
2822 return Is_Library_Level_Entity
(Defining_Identifier
(P
));
2824 -- Prevent the search from going too far
2826 elsif Is_Body_Or_Package_Declaration
(P
) then
2834 end Library_Level_Target
;
2836 ------------------------
2837 -- Make_Artyp_Literal --
2838 ------------------------
2840 function Make_Artyp_Literal
(Val
: Nat
) return Node_Id
is
2841 Result
: constant Node_Id
:= Make_Integer_Literal
(Loc
, Val
);
2843 Set_Etype
(Result
, Artyp
);
2844 Set_Analyzed
(Result
, True);
2845 Set_Is_Static_Expression
(Result
, False);
2847 end Make_Artyp_Literal
;
2853 function To_Artyp
(X
: Node_Id
) return Node_Id
is
2855 if Ityp
= Base_Type
(Artyp
) then
2858 elsif Is_Enumeration_Type
(Ityp
) then
2860 Make_Attribute_Reference
(Loc
,
2861 Prefix
=> New_Occurrence_Of
(Ityp
, Loc
),
2862 Attribute_Name
=> Name_Pos
,
2863 Expressions
=> New_List
(X
));
2866 return Convert_To
(Artyp
, X
);
2874 function To_Ityp
(X
: Node_Id
) return Node_Id
is
2876 if Is_Enumeration_Type
(Ityp
) then
2878 Make_Attribute_Reference
(Loc
,
2879 Prefix
=> New_Occurrence_Of
(Ityp
, Loc
),
2880 Attribute_Name
=> Name_Val
,
2881 Expressions
=> New_List
(X
));
2883 -- Case where we will do a type conversion
2886 if Ityp
= Base_Type
(Artyp
) then
2889 return Convert_To
(Ityp
, X
);
2894 -- Local Declarations
2896 Opnd_Typ
: Entity_Id
;
2903 -- Start of processing for Expand_Concatenate
2906 -- Choose an appropriate computational type
2908 -- We will be doing calculations of lengths and bounds in this routine
2909 -- and computing one from the other in some cases, e.g. getting the high
2910 -- bound by adding the length-1 to the low bound.
2912 -- We can't just use the index type, or even its base type for this
2913 -- purpose for two reasons. First it might be an enumeration type which
2914 -- is not suitable for computations of any kind, and second it may
2915 -- simply not have enough range. For example if the index type is
2916 -- -128..+127 then lengths can be up to 256, which is out of range of
2919 -- For enumeration types, we can simply use Standard_Integer, this is
2920 -- sufficient since the actual number of enumeration literals cannot
2921 -- possibly exceed the range of integer (remember we will be doing the
2922 -- arithmetic with POS values, not representation values).
2924 if Is_Enumeration_Type
(Ityp
) then
2925 Artyp
:= Standard_Integer
;
2927 -- If index type is Positive, we use the standard unsigned type, to give
2928 -- more room on the top of the range, obviating the need for an overflow
2929 -- check when creating the upper bound. This is needed to avoid junk
2930 -- overflow checks in the common case of String types.
2932 -- ??? Disabled for now
2934 -- elsif Istyp = Standard_Positive then
2935 -- Artyp := Standard_Unsigned;
2937 -- For modular types, we use a 32-bit modular type for types whose size
2938 -- is in the range 1-31 bits. For 32-bit unsigned types, we use the
2939 -- identity type, and for larger unsigned types we use 64-bits.
2941 elsif Is_Modular_Integer_Type
(Ityp
) then
2942 if RM_Size
(Ityp
) < RM_Size
(Standard_Unsigned
) then
2943 Artyp
:= Standard_Unsigned
;
2944 elsif RM_Size
(Ityp
) = RM_Size
(Standard_Unsigned
) then
2947 Artyp
:= RTE
(RE_Long_Long_Unsigned
);
2950 -- Similar treatment for signed types
2953 if RM_Size
(Ityp
) < RM_Size
(Standard_Integer
) then
2954 Artyp
:= Standard_Integer
;
2955 elsif RM_Size
(Ityp
) = RM_Size
(Standard_Integer
) then
2958 Artyp
:= Standard_Long_Long_Integer
;
2962 -- Supply dummy entry at start of length array
2964 Aggr_Length
(0) := Make_Artyp_Literal
(0);
2966 -- Go through operands setting up the above arrays
2970 Opnd
:= Remove_Head
(Opnds
);
2971 Opnd_Typ
:= Etype
(Opnd
);
2973 -- The parent got messed up when we put the operands in a list,
2974 -- so now put back the proper parent for the saved operand, that
2975 -- is to say the concatenation node, to make sure that each operand
2976 -- is seen as a subexpression, e.g. if actions must be inserted.
2978 Set_Parent
(Opnd
, Cnode
);
2980 -- Set will be True when we have setup one entry in the array
2984 -- Singleton element (or character literal) case
2986 if Base_Type
(Opnd_Typ
) = Ctyp
then
2988 Operands
(NN
) := Opnd
;
2989 Is_Fixed_Length
(NN
) := True;
2990 Fixed_Length
(NN
) := Uint_1
;
2991 Result_May_Be_Null
:= False;
2993 -- Set low bound of operand (no need to set Last_Opnd_High_Bound
2994 -- since we know that the result cannot be null).
2996 Opnd_Low_Bound
(NN
) :=
2997 Make_Attribute_Reference
(Loc
,
2998 Prefix
=> New_Occurrence_Of
(Istyp
, Loc
),
2999 Attribute_Name
=> Name_First
);
3003 -- String literal case (can only occur for strings of course)
3005 elsif Nkind
(Opnd
) = N_String_Literal
then
3006 Len
:= String_Literal_Length
(Opnd_Typ
);
3009 Result_May_Be_Null
:= False;
3012 -- Capture last operand low and high bound if result could be null
3014 if J
= N
and then Result_May_Be_Null
then
3015 Last_Opnd_Low_Bound
:=
3016 New_Copy_Tree
(String_Literal_Low_Bound
(Opnd_Typ
));
3018 Last_Opnd_High_Bound
:=
3019 Make_Op_Subtract
(Loc
,
3021 New_Copy_Tree
(String_Literal_Low_Bound
(Opnd_Typ
)),
3022 Right_Opnd
=> Make_Integer_Literal
(Loc
, 1));
3025 -- Skip null string literal
3027 if J
< N
and then Len
= 0 then
3032 Operands
(NN
) := Opnd
;
3033 Is_Fixed_Length
(NN
) := True;
3035 -- Set length and bounds
3037 Fixed_Length
(NN
) := Len
;
3039 Opnd_Low_Bound
(NN
) :=
3040 New_Copy_Tree
(String_Literal_Low_Bound
(Opnd_Typ
));
3047 -- Check constrained case with known bounds
3049 if Is_Constrained
(Opnd_Typ
) then
3051 Index
: constant Node_Id
:= First_Index
(Opnd_Typ
);
3052 Indx_Typ
: constant Entity_Id
:= Etype
(Index
);
3053 Lo
: constant Node_Id
:= Type_Low_Bound
(Indx_Typ
);
3054 Hi
: constant Node_Id
:= Type_High_Bound
(Indx_Typ
);
3057 -- Fixed length constrained array type with known at compile
3058 -- time bounds is last case of fixed length operand.
3060 if Compile_Time_Known_Value
(Lo
)
3062 Compile_Time_Known_Value
(Hi
)
3065 Loval
: constant Uint
:= Expr_Value
(Lo
);
3066 Hival
: constant Uint
:= Expr_Value
(Hi
);
3067 Len
: constant Uint
:=
3068 UI_Max
(Hival
- Loval
+ 1, Uint_0
);
3072 Result_May_Be_Null
:= False;
3075 -- Capture last operand bounds if result could be null
3077 if J
= N
and then Result_May_Be_Null
then
3078 Last_Opnd_Low_Bound
:=
3080 Make_Integer_Literal
(Loc
, Expr_Value
(Lo
)));
3082 Last_Opnd_High_Bound
:=
3084 Make_Integer_Literal
(Loc
, Expr_Value
(Hi
)));
3087 -- Exclude null length case unless last operand
3089 if J
< N
and then Len
= 0 then
3094 Operands
(NN
) := Opnd
;
3095 Is_Fixed_Length
(NN
) := True;
3096 Fixed_Length
(NN
) := Len
;
3098 Opnd_Low_Bound
(NN
) :=
3100 (Make_Integer_Literal
(Loc
, Expr_Value
(Lo
)));
3107 -- All cases where the length is not known at compile time, or the
3108 -- special case of an operand which is known to be null but has a
3109 -- lower bound other than 1 or is other than a string type.
3114 -- Capture operand bounds
3116 Opnd_Low_Bound
(NN
) :=
3117 Make_Attribute_Reference
(Loc
,
3119 Duplicate_Subexpr
(Opnd
, Name_Req
=> True),
3120 Attribute_Name
=> Name_First
);
3122 -- Capture last operand bounds if result could be null
3124 if J
= N
and Result_May_Be_Null
then
3125 Last_Opnd_Low_Bound
:=
3127 Make_Attribute_Reference
(Loc
,
3129 Duplicate_Subexpr
(Opnd
, Name_Req
=> True),
3130 Attribute_Name
=> Name_First
));
3132 Last_Opnd_High_Bound
:=
3134 Make_Attribute_Reference
(Loc
,
3136 Duplicate_Subexpr
(Opnd
, Name_Req
=> True),
3137 Attribute_Name
=> Name_Last
));
3140 -- Capture length of operand in entity
3142 Operands
(NN
) := Opnd
;
3143 Is_Fixed_Length
(NN
) := False;
3145 Var_Length
(NN
) := Make_Temporary
(Loc
, 'L');
3148 Make_Object_Declaration
(Loc
,
3149 Defining_Identifier
=> Var_Length
(NN
),
3150 Constant_Present
=> True,
3151 Object_Definition
=> New_Occurrence_Of
(Artyp
, Loc
),
3153 Make_Attribute_Reference
(Loc
,
3155 Duplicate_Subexpr
(Opnd
, Name_Req
=> True),
3156 Attribute_Name
=> Name_Length
)));
3160 -- Set next entry in aggregate length array
3162 -- For first entry, make either integer literal for fixed length
3163 -- or a reference to the saved length for variable length.
3166 if Is_Fixed_Length
(1) then
3167 Aggr_Length
(1) := Make_Integer_Literal
(Loc
, Fixed_Length
(1));
3169 Aggr_Length
(1) := New_Occurrence_Of
(Var_Length
(1), Loc
);
3172 -- If entry is fixed length and only fixed lengths so far, make
3173 -- appropriate new integer literal adding new length.
3175 elsif Is_Fixed_Length
(NN
)
3176 and then Nkind
(Aggr_Length
(NN
- 1)) = N_Integer_Literal
3179 Make_Integer_Literal
(Loc
,
3180 Intval
=> Fixed_Length
(NN
) + Intval
(Aggr_Length
(NN
- 1)));
3182 -- All other cases, construct an addition node for the length and
3183 -- create an entity initialized to this length.
3186 Ent
:= Make_Temporary
(Loc
, 'L');
3188 if Is_Fixed_Length
(NN
) then
3189 Clen
:= Make_Integer_Literal
(Loc
, Fixed_Length
(NN
));
3191 Clen
:= New_Occurrence_Of
(Var_Length
(NN
), Loc
);
3195 Make_Object_Declaration
(Loc
,
3196 Defining_Identifier
=> Ent
,
3197 Constant_Present
=> True,
3198 Object_Definition
=> New_Occurrence_Of
(Artyp
, Loc
),
3201 Left_Opnd
=> New_Copy_Tree
(Aggr_Length
(NN
- 1)),
3202 Right_Opnd
=> Clen
)));
3204 Aggr_Length
(NN
) := Make_Identifier
(Loc
, Chars
=> Chars
(Ent
));
3211 -- If we have only skipped null operands, return the last operand
3218 -- If we have only one non-null operand, return it and we are done.
3219 -- There is one case in which this cannot be done, and that is when
3220 -- the sole operand is of the element type, in which case it must be
3221 -- converted to an array, and the easiest way of doing that is to go
3222 -- through the normal general circuit.
3224 if NN
= 1 and then Base_Type
(Etype
(Operands
(1))) /= Ctyp
then
3225 Result
:= Operands
(1);
3229 -- Cases where we have a real concatenation
3231 -- Next step is to find the low bound for the result array that we
3232 -- will allocate. The rules for this are in (RM 4.5.6(5-7)).
3234 -- If the ultimate ancestor of the index subtype is a constrained array
3235 -- definition, then the lower bound is that of the index subtype as
3236 -- specified by (RM 4.5.3(6)).
3238 -- The right test here is to go to the root type, and then the ultimate
3239 -- ancestor is the first subtype of this root type.
3241 if Is_Constrained
(First_Subtype
(Root_Type
(Atyp
))) then
3243 Make_Attribute_Reference
(Loc
,
3245 New_Occurrence_Of
(First_Subtype
(Root_Type
(Atyp
)), Loc
),
3246 Attribute_Name
=> Name_First
);
3248 -- If the first operand in the list has known length we know that
3249 -- the lower bound of the result is the lower bound of this operand.
3251 elsif Is_Fixed_Length
(1) then
3252 Low_Bound
:= Opnd_Low_Bound
(1);
3254 -- OK, we don't know the lower bound, we have to build a horrible
3255 -- if expression node of the form
3257 -- if Cond1'Length /= 0 then
3260 -- if Opnd2'Length /= 0 then
3265 -- The nesting ends either when we hit an operand whose length is known
3266 -- at compile time, or on reaching the last operand, whose low bound we
3267 -- take unconditionally whether or not it is null. It's easiest to do
3268 -- this with a recursive procedure:
3272 function Get_Known_Bound
(J
: Nat
) return Node_Id
;
3273 -- Returns the lower bound determined by operands J .. NN
3275 ---------------------
3276 -- Get_Known_Bound --
3277 ---------------------
3279 function Get_Known_Bound
(J
: Nat
) return Node_Id
is
3281 if Is_Fixed_Length
(J
) or else J
= NN
then
3282 return New_Copy_Tree
(Opnd_Low_Bound
(J
));
3286 Make_If_Expression
(Loc
,
3287 Expressions
=> New_List
(
3291 New_Occurrence_Of
(Var_Length
(J
), Loc
),
3293 Make_Integer_Literal
(Loc
, 0)),
3295 New_Copy_Tree
(Opnd_Low_Bound
(J
)),
3296 Get_Known_Bound
(J
+ 1)));
3298 end Get_Known_Bound
;
3301 Ent
:= Make_Temporary
(Loc
, 'L');
3304 Make_Object_Declaration
(Loc
,
3305 Defining_Identifier
=> Ent
,
3306 Constant_Present
=> True,
3307 Object_Definition
=> New_Occurrence_Of
(Ityp
, Loc
),
3308 Expression
=> Get_Known_Bound
(1)));
3310 Low_Bound
:= New_Occurrence_Of
(Ent
, Loc
);
3314 -- Now we can safely compute the upper bound, normally
3315 -- Low_Bound + Length - 1.
3320 Left_Opnd
=> To_Artyp
(New_Copy_Tree
(Low_Bound
)),
3322 Make_Op_Subtract
(Loc
,
3323 Left_Opnd
=> New_Copy_Tree
(Aggr_Length
(NN
)),
3324 Right_Opnd
=> Make_Artyp_Literal
(1))));
3326 -- Note that calculation of the high bound may cause overflow in some
3327 -- very weird cases, so in the general case we need an overflow check on
3328 -- the high bound. We can avoid this for the common case of string types
3329 -- and other types whose index is Positive, since we chose a wider range
3330 -- for the arithmetic type. If checks are suppressed we do not set the
3331 -- flag, and possibly superfluous warnings will be omitted.
3333 if Istyp
/= Standard_Positive
3334 and then not Overflow_Checks_Suppressed
(Istyp
)
3336 Activate_Overflow_Check
(High_Bound
);
3339 -- Handle the exceptional case where the result is null, in which case
3340 -- case the bounds come from the last operand (so that we get the proper
3341 -- bounds if the last operand is super-flat).
3343 if Result_May_Be_Null
then
3345 Make_If_Expression
(Loc
,
3346 Expressions
=> New_List
(
3348 Left_Opnd
=> New_Copy_Tree
(Aggr_Length
(NN
)),
3349 Right_Opnd
=> Make_Artyp_Literal
(0)),
3350 Last_Opnd_Low_Bound
,
3354 Make_If_Expression
(Loc
,
3355 Expressions
=> New_List
(
3357 Left_Opnd
=> New_Copy_Tree
(Aggr_Length
(NN
)),
3358 Right_Opnd
=> Make_Artyp_Literal
(0)),
3359 Last_Opnd_High_Bound
,
3363 -- Here is where we insert the saved up actions
3365 Insert_Actions
(Cnode
, Actions
, Suppress
=> All_Checks
);
3367 -- Now we construct an array object with appropriate bounds. We mark
3368 -- the target as internal to prevent useless initialization when
3369 -- Initialize_Scalars is enabled. Also since this is the actual result
3370 -- entity, we make sure we have debug information for the result.
3372 Ent
:= Make_Temporary
(Loc
, 'S');
3373 Set_Is_Internal
(Ent
);
3374 Set_Debug_Info_Needed
(Ent
);
3376 -- If the bound is statically known to be out of range, we do not want
3377 -- to abort, we want a warning and a runtime constraint error. Note that
3378 -- we have arranged that the result will not be treated as a static
3379 -- constant, so we won't get an illegality during this insertion.
3381 Insert_Action
(Cnode
,
3382 Make_Object_Declaration
(Loc
,
3383 Defining_Identifier
=> Ent
,
3384 Object_Definition
=>
3385 Make_Subtype_Indication
(Loc
,
3386 Subtype_Mark
=> New_Occurrence_Of
(Atyp
, Loc
),
3388 Make_Index_Or_Discriminant_Constraint
(Loc
,
3389 Constraints
=> New_List
(
3391 Low_Bound
=> Low_Bound
,
3392 High_Bound
=> High_Bound
))))),
3393 Suppress
=> All_Checks
);
3395 -- If the result of the concatenation appears as the initializing
3396 -- expression of an object declaration, we can just rename the
3397 -- result, rather than copying it.
3399 Set_OK_To_Rename
(Ent
);
3401 -- Catch the static out of range case now
3403 if Raises_Constraint_Error
(High_Bound
) then
3404 raise Concatenation_Error
;
3407 -- Now we will generate the assignments to do the actual concatenation
3409 -- There is one case in which we will not do this, namely when all the
3410 -- following conditions are met:
3412 -- The result type is Standard.String
3414 -- There are nine or fewer retained (non-null) operands
3416 -- The optimization level is -O0 or the debug flag gnatd.C is set,
3417 -- and the debug flag gnatd.c is not set.
3419 -- The corresponding System.Concat_n.Str_Concat_n routine is
3420 -- available in the run time.
3422 -- If all these conditions are met then we generate a call to the
3423 -- relevant concatenation routine. The purpose of this is to avoid
3424 -- undesirable code bloat at -O0.
3426 -- If the concatenation is within the declaration of a library-level
3427 -- object, we call the built-in concatenation routines to prevent code
3428 -- bloat, regardless of the optimization level. This is space efficient
3429 -- and prevents linking problems when units are compiled with different
3430 -- optimization levels.
3432 if Atyp
= Standard_String
3433 and then NN
in 2 .. 9
3434 and then (((Optimization_Level
= 0 or else Debug_Flag_Dot_CC
)
3435 and then not Debug_Flag_Dot_C
)
3436 or else Library_Level_Target
)
3439 RR
: constant array (Nat
range 2 .. 9) of RE_Id
:=
3450 if RTE_Available
(RR
(NN
)) then
3452 Opnds
: constant List_Id
:=
3453 New_List
(New_Occurrence_Of
(Ent
, Loc
));
3456 for J
in 1 .. NN
loop
3457 if Is_List_Member
(Operands
(J
)) then
3458 Remove
(Operands
(J
));
3461 if Base_Type
(Etype
(Operands
(J
))) = Ctyp
then
3463 Make_Aggregate
(Loc
,
3464 Component_Associations
=> New_List
(
3465 Make_Component_Association
(Loc
,
3466 Choices
=> New_List
(
3467 Make_Integer_Literal
(Loc
, 1)),
3468 Expression
=> Operands
(J
)))));
3471 Append_To
(Opnds
, Operands
(J
));
3475 Insert_Action
(Cnode
,
3476 Make_Procedure_Call_Statement
(Loc
,
3477 Name
=> New_Occurrence_Of
(RTE
(RR
(NN
)), Loc
),
3478 Parameter_Associations
=> Opnds
));
3480 Result
:= New_Occurrence_Of
(Ent
, Loc
);
3487 -- Not special case so generate the assignments
3489 Known_Non_Null_Operand_Seen
:= False;
3491 for J
in 1 .. NN
loop
3493 Lo
: constant Node_Id
:=
3495 Left_Opnd
=> To_Artyp
(New_Copy_Tree
(Low_Bound
)),
3496 Right_Opnd
=> Aggr_Length
(J
- 1));
3498 Hi
: constant Node_Id
:=
3500 Left_Opnd
=> To_Artyp
(New_Copy_Tree
(Low_Bound
)),
3502 Make_Op_Subtract
(Loc
,
3503 Left_Opnd
=> Aggr_Length
(J
),
3504 Right_Opnd
=> Make_Artyp_Literal
(1)));
3507 -- Singleton case, simple assignment
3509 if Base_Type
(Etype
(Operands
(J
))) = Ctyp
then
3510 Known_Non_Null_Operand_Seen
:= True;
3511 Insert_Action
(Cnode
,
3512 Make_Assignment_Statement
(Loc
,
3514 Make_Indexed_Component
(Loc
,
3515 Prefix
=> New_Occurrence_Of
(Ent
, Loc
),
3516 Expressions
=> New_List
(To_Ityp
(Lo
))),
3517 Expression
=> Operands
(J
)),
3518 Suppress
=> All_Checks
);
3520 -- Array case, slice assignment, skipped when argument is fixed
3521 -- length and known to be null.
3523 elsif (not Is_Fixed_Length
(J
)) or else (Fixed_Length
(J
) > 0) then
3526 Make_Assignment_Statement
(Loc
,
3530 New_Occurrence_Of
(Ent
, Loc
),
3533 Low_Bound
=> To_Ityp
(Lo
),
3534 High_Bound
=> To_Ityp
(Hi
))),
3535 Expression
=> Operands
(J
));
3537 if Is_Fixed_Length
(J
) then
3538 Known_Non_Null_Operand_Seen
:= True;
3540 elsif not Known_Non_Null_Operand_Seen
then
3542 -- Here if operand length is not statically known and no
3543 -- operand known to be non-null has been processed yet.
3544 -- If operand length is 0, we do not need to perform the
3545 -- assignment, and we must avoid the evaluation of the
3546 -- high bound of the slice, since it may underflow if the
3547 -- low bound is Ityp'First.
3550 Make_Implicit_If_Statement
(Cnode
,
3554 New_Occurrence_Of
(Var_Length
(J
), Loc
),
3555 Right_Opnd
=> Make_Integer_Literal
(Loc
, 0)),
3556 Then_Statements
=> New_List
(Assign
));
3559 Insert_Action
(Cnode
, Assign
, Suppress
=> All_Checks
);
3565 -- Finally we build the result, which is a reference to the array object
3567 Result
:= New_Occurrence_Of
(Ent
, Loc
);
3570 Rewrite
(Cnode
, Result
);
3571 Analyze_And_Resolve
(Cnode
, Atyp
);
3574 when Concatenation_Error
=>
3576 -- Kill warning generated for the declaration of the static out of
3577 -- range high bound, and instead generate a Constraint_Error with
3578 -- an appropriate specific message.
3580 Kill_Dead_Code
(Declaration_Node
(Entity
(High_Bound
)));
3581 Apply_Compile_Time_Constraint_Error
3583 Msg
=> "concatenation result upper bound out of range??",
3584 Reason
=> CE_Range_Check_Failed
);
3585 end Expand_Concatenate
;
3587 ---------------------------------------------------
3588 -- Expand_Membership_Minimize_Eliminate_Overflow --
3589 ---------------------------------------------------
3591 procedure Expand_Membership_Minimize_Eliminate_Overflow
(N
: Node_Id
) is
3592 pragma Assert
(Nkind
(N
) = N_In
);
3593 -- Despite the name, this routine applies only to N_In, not to
3594 -- N_Not_In. The latter is always rewritten as not (X in Y).
3596 Result_Type
: constant Entity_Id
:= Etype
(N
);
3597 -- Capture result type, may be a derived boolean type
3599 Loc
: constant Source_Ptr
:= Sloc
(N
);
3600 Lop
: constant Node_Id
:= Left_Opnd
(N
);
3601 Rop
: constant Node_Id
:= Right_Opnd
(N
);
3603 -- Note: there are many referencs to Etype (Lop) and Etype (Rop). It
3604 -- is thus tempting to capture these values, but due to the rewrites
3605 -- that occur as a result of overflow checking, these values change
3606 -- as we go along, and it is safe just to always use Etype explicitly.
3608 Restype
: constant Entity_Id
:= Etype
(N
);
3612 -- Bounds in Minimize calls, not used currently
3614 LLIB
: constant Entity_Id
:= Base_Type
(Standard_Long_Long_Integer
);
3615 -- Entity for Long_Long_Integer'Base (Standard should export this???)
3618 Minimize_Eliminate_Overflows
(Lop
, Lo
, Hi
, Top_Level
=> False);
3620 -- If right operand is a subtype name, and the subtype name has no
3621 -- predicate, then we can just replace the right operand with an
3622 -- explicit range T'First .. T'Last, and use the explicit range code.
3624 if Nkind
(Rop
) /= N_Range
3625 and then No
(Predicate_Function
(Etype
(Rop
)))
3628 Rtyp
: constant Entity_Id
:= Etype
(Rop
);
3633 Make_Attribute_Reference
(Loc
,
3634 Attribute_Name
=> Name_First
,
3635 Prefix
=> New_Occurrence_Of
(Rtyp
, Loc
)),
3637 Make_Attribute_Reference
(Loc
,
3638 Attribute_Name
=> Name_Last
,
3639 Prefix
=> New_Occurrence_Of
(Rtyp
, Loc
))));
3640 Analyze_And_Resolve
(Rop
, Rtyp
, Suppress
=> All_Checks
);
3644 -- Here for the explicit range case. Note that the bounds of the range
3645 -- have not been processed for minimized or eliminated checks.
3647 if Nkind
(Rop
) = N_Range
then
3648 Minimize_Eliminate_Overflows
3649 (Low_Bound
(Rop
), Lo
, Hi
, Top_Level
=> False);
3650 Minimize_Eliminate_Overflows
3651 (High_Bound
(Rop
), Lo
, Hi
, Top_Level
=> False);
3653 -- We have A in B .. C, treated as A >= B and then A <= C
3657 if Is_RTE
(Etype
(Lop
), RE_Bignum
)
3658 or else Is_RTE
(Etype
(Low_Bound
(Rop
)), RE_Bignum
)
3659 or else Is_RTE
(Etype
(High_Bound
(Rop
)), RE_Bignum
)
3662 Blk
: constant Node_Id
:= Make_Bignum_Block
(Loc
);
3663 Bnn
: constant Entity_Id
:= Make_Temporary
(Loc
, 'B', N
);
3664 L
: constant Entity_Id
:=
3665 Make_Defining_Identifier
(Loc
, Name_uL
);
3666 Lopnd
: constant Node_Id
:= Convert_To_Bignum
(Lop
);
3667 Lbound
: constant Node_Id
:=
3668 Convert_To_Bignum
(Low_Bound
(Rop
));
3669 Hbound
: constant Node_Id
:=
3670 Convert_To_Bignum
(High_Bound
(Rop
));
3672 -- Now we rewrite the membership test node to look like
3675 -- Bnn : Result_Type;
3677 -- M : Mark_Id := SS_Mark;
3678 -- L : Bignum := Lopnd;
3680 -- Bnn := Big_GE (L, Lbound) and then Big_LE (L, Hbound)
3688 -- Insert declaration of L into declarations of bignum block
3691 (Last
(Declarations
(Blk
)),
3692 Make_Object_Declaration
(Loc
,
3693 Defining_Identifier
=> L
,
3694 Object_Definition
=>
3695 New_Occurrence_Of
(RTE
(RE_Bignum
), Loc
),
3696 Expression
=> Lopnd
));
3698 -- Insert assignment to Bnn into expressions of bignum block
3701 (First
(Statements
(Handled_Statement_Sequence
(Blk
))),
3702 Make_Assignment_Statement
(Loc
,
3703 Name
=> New_Occurrence_Of
(Bnn
, Loc
),
3707 Make_Function_Call
(Loc
,
3709 New_Occurrence_Of
(RTE
(RE_Big_GE
), Loc
),
3710 Parameter_Associations
=> New_List
(
3711 New_Occurrence_Of
(L
, Loc
),
3715 Make_Function_Call
(Loc
,
3717 New_Occurrence_Of
(RTE
(RE_Big_LE
), Loc
),
3718 Parameter_Associations
=> New_List
(
3719 New_Occurrence_Of
(L
, Loc
),
3722 -- Now rewrite the node
3725 Make_Expression_With_Actions
(Loc
,
3726 Actions
=> New_List
(
3727 Make_Object_Declaration
(Loc
,
3728 Defining_Identifier
=> Bnn
,
3729 Object_Definition
=>
3730 New_Occurrence_Of
(Result_Type
, Loc
)),
3732 Expression
=> New_Occurrence_Of
(Bnn
, Loc
)));
3733 Analyze_And_Resolve
(N
, Result_Type
);
3737 -- Here if no bignums around
3740 -- Case where types are all the same
3742 if Base_Type
(Etype
(Lop
)) = Base_Type
(Etype
(Low_Bound
(Rop
)))
3744 Base_Type
(Etype
(Lop
)) = Base_Type
(Etype
(High_Bound
(Rop
)))
3748 -- If types are not all the same, it means that we have rewritten
3749 -- at least one of them to be of type Long_Long_Integer, and we
3750 -- will convert the other operands to Long_Long_Integer.
3753 Convert_To_And_Rewrite
(LLIB
, Lop
);
3754 Set_Analyzed
(Lop
, False);
3755 Analyze_And_Resolve
(Lop
, LLIB
);
3757 -- For the right operand, avoid unnecessary recursion into
3758 -- this routine, we know that overflow is not possible.
3760 Convert_To_And_Rewrite
(LLIB
, Low_Bound
(Rop
));
3761 Convert_To_And_Rewrite
(LLIB
, High_Bound
(Rop
));
3762 Set_Analyzed
(Rop
, False);
3763 Analyze_And_Resolve
(Rop
, LLIB
, Suppress
=> Overflow_Check
);
3766 -- Now the three operands are of the same signed integer type,
3767 -- so we can use the normal expansion routine for membership,
3768 -- setting the flag to prevent recursion into this procedure.
3770 Set_No_Minimize_Eliminate
(N
);
3774 -- Right operand is a subtype name and the subtype has a predicate. We
3775 -- have to make sure the predicate is checked, and for that we need to
3776 -- use the standard N_In circuitry with appropriate types.
3779 pragma Assert
(Present
(Predicate_Function
(Etype
(Rop
))));
3781 -- If types are "right", just call Expand_N_In preventing recursion
3783 if Base_Type
(Etype
(Lop
)) = Base_Type
(Etype
(Rop
)) then
3784 Set_No_Minimize_Eliminate
(N
);
3789 elsif Is_RTE
(Etype
(Lop
), RE_Bignum
) then
3791 -- For X in T, we want to rewrite our node as
3794 -- Bnn : Result_Type;
3797 -- M : Mark_Id := SS_Mark;
3798 -- Lnn : Long_Long_Integer'Base
3804 -- if not Bignum_In_LLI_Range (Nnn) then
3807 -- Lnn := From_Bignum (Nnn);
3809 -- Lnn in LLIB (T'Base'First) .. LLIB (T'Base'Last)
3810 -- and then T'Base (Lnn) in T;
3819 -- A bit gruesome, but there doesn't seem to be a simpler way
3822 Blk
: constant Node_Id
:= Make_Bignum_Block
(Loc
);
3823 Bnn
: constant Entity_Id
:= Make_Temporary
(Loc
, 'B', N
);
3824 Lnn
: constant Entity_Id
:= Make_Temporary
(Loc
, 'L', N
);
3825 Nnn
: constant Entity_Id
:= Make_Temporary
(Loc
, 'N', N
);
3826 T
: constant Entity_Id
:= Etype
(Rop
);
3827 TB
: constant Entity_Id
:= Base_Type
(T
);
3831 -- Mark the last membership operation to prevent recursion
3835 Left_Opnd
=> Convert_To
(TB
, New_Occurrence_Of
(Lnn
, Loc
)),
3836 Right_Opnd
=> New_Occurrence_Of
(T
, Loc
));
3837 Set_No_Minimize_Eliminate
(Nin
);
3839 -- Now decorate the block
3842 (Last
(Declarations
(Blk
)),
3843 Make_Object_Declaration
(Loc
,
3844 Defining_Identifier
=> Lnn
,
3845 Object_Definition
=> New_Occurrence_Of
(LLIB
, Loc
)));
3848 (Last
(Declarations
(Blk
)),
3849 Make_Object_Declaration
(Loc
,
3850 Defining_Identifier
=> Nnn
,
3851 Object_Definition
=>
3852 New_Occurrence_Of
(RTE
(RE_Bignum
), Loc
)));
3855 (First
(Statements
(Handled_Statement_Sequence
(Blk
))),
3857 Make_Assignment_Statement
(Loc
,
3858 Name
=> New_Occurrence_Of
(Nnn
, Loc
),
3859 Expression
=> Relocate_Node
(Lop
)),
3861 Make_Implicit_If_Statement
(N
,
3865 Make_Function_Call
(Loc
,
3868 (RTE
(RE_Bignum_In_LLI_Range
), Loc
),
3869 Parameter_Associations
=> New_List
(
3870 New_Occurrence_Of
(Nnn
, Loc
)))),
3872 Then_Statements
=> New_List
(
3873 Make_Assignment_Statement
(Loc
,
3874 Name
=> New_Occurrence_Of
(Bnn
, Loc
),
3876 New_Occurrence_Of
(Standard_False
, Loc
))),
3878 Else_Statements
=> New_List
(
3879 Make_Assignment_Statement
(Loc
,
3880 Name
=> New_Occurrence_Of
(Lnn
, Loc
),
3882 Make_Function_Call
(Loc
,
3884 New_Occurrence_Of
(RTE
(RE_From_Bignum
), Loc
),
3885 Parameter_Associations
=> New_List
(
3886 New_Occurrence_Of
(Nnn
, Loc
)))),
3888 Make_Assignment_Statement
(Loc
,
3889 Name
=> New_Occurrence_Of
(Bnn
, Loc
),
3894 Left_Opnd
=> New_Occurrence_Of
(Lnn
, Loc
),
3899 Make_Attribute_Reference
(Loc
,
3900 Attribute_Name
=> Name_First
,
3902 New_Occurrence_Of
(TB
, Loc
))),
3906 Make_Attribute_Reference
(Loc
,
3907 Attribute_Name
=> Name_Last
,
3909 New_Occurrence_Of
(TB
, Loc
))))),
3911 Right_Opnd
=> Nin
))))));
3913 -- Now we can do the rewrite
3916 Make_Expression_With_Actions
(Loc
,
3917 Actions
=> New_List
(
3918 Make_Object_Declaration
(Loc
,
3919 Defining_Identifier
=> Bnn
,
3920 Object_Definition
=>
3921 New_Occurrence_Of
(Result_Type
, Loc
)),
3923 Expression
=> New_Occurrence_Of
(Bnn
, Loc
)));
3924 Analyze_And_Resolve
(N
, Result_Type
);
3928 -- Not bignum case, but types don't match (this means we rewrote the
3929 -- left operand to be Long_Long_Integer).
3932 pragma Assert
(Base_Type
(Etype
(Lop
)) = LLIB
);
3934 -- We rewrite the membership test as (where T is the type with
3935 -- the predicate, i.e. the type of the right operand)
3937 -- Lop in LLIB (T'Base'First) .. LLIB (T'Base'Last)
3938 -- and then T'Base (Lop) in T
3941 T
: constant Entity_Id
:= Etype
(Rop
);
3942 TB
: constant Entity_Id
:= Base_Type
(T
);
3946 -- The last membership test is marked to prevent recursion
3950 Left_Opnd
=> Convert_To
(TB
, Duplicate_Subexpr
(Lop
)),
3951 Right_Opnd
=> New_Occurrence_Of
(T
, Loc
));
3952 Set_No_Minimize_Eliminate
(Nin
);
3954 -- Now do the rewrite
3965 Make_Attribute_Reference
(Loc
,
3966 Attribute_Name
=> Name_First
,
3968 New_Occurrence_Of
(TB
, Loc
))),
3971 Make_Attribute_Reference
(Loc
,
3972 Attribute_Name
=> Name_Last
,
3974 New_Occurrence_Of
(TB
, Loc
))))),
3975 Right_Opnd
=> Nin
));
3976 Set_Analyzed
(N
, False);
3977 Analyze_And_Resolve
(N
, Restype
);
3981 end Expand_Membership_Minimize_Eliminate_Overflow
;
3983 ---------------------------------
3984 -- Expand_Nonbinary_Modular_Op --
3985 ---------------------------------
3987 procedure Expand_Nonbinary_Modular_Op
(N
: Node_Id
) is
3988 Loc
: constant Source_Ptr
:= Sloc
(N
);
3989 Typ
: constant Entity_Id
:= Etype
(N
);
3991 procedure Expand_Modular_Addition
;
3992 -- Expand the modular addition, handling the special case of adding a
3995 procedure Expand_Modular_Op
;
3996 -- Compute the general rule: (lhs OP rhs) mod Modulus
3998 procedure Expand_Modular_Subtraction
;
3999 -- Expand the modular addition, handling the special case of subtracting
4002 -----------------------------
4003 -- Expand_Modular_Addition --
4004 -----------------------------
4006 procedure Expand_Modular_Addition
is
4008 -- If this is not the addition of a constant then compute it using
4009 -- the general rule: (lhs + rhs) mod Modulus
4011 if Nkind
(Right_Opnd
(N
)) /= N_Integer_Literal
then
4014 -- If this is an addition of a constant, convert it to a subtraction
4015 -- plus a conditional expression since we can compute it faster than
4016 -- computing the modulus.
4018 -- modMinusRhs = Modulus - rhs
4019 -- if lhs < modMinusRhs then lhs + rhs
4020 -- else lhs - modMinusRhs
4024 Mod_Minus_Right
: constant Uint
:=
4025 Modulus
(Typ
) - Intval
(Right_Opnd
(N
));
4027 Exprs
: constant List_Id
:= New_List
;
4028 Cond_Expr
: constant Node_Id
:= New_Op_Node
(N_Op_Lt
, Loc
);
4029 Then_Expr
: constant Node_Id
:= New_Op_Node
(N_Op_Add
, Loc
);
4030 Else_Expr
: constant Node_Id
:= New_Op_Node
(N_Op_Subtract
,
4033 -- To prevent spurious visibility issues, convert all
4034 -- operands to Standard.Unsigned.
4036 Set_Left_Opnd
(Cond_Expr
,
4037 Unchecked_Convert_To
(Standard_Unsigned
,
4038 New_Copy_Tree
(Left_Opnd
(N
))));
4039 Set_Right_Opnd
(Cond_Expr
,
4040 Make_Integer_Literal
(Loc
, Mod_Minus_Right
));
4041 Append_To
(Exprs
, Cond_Expr
);
4043 Set_Left_Opnd
(Then_Expr
,
4044 Unchecked_Convert_To
(Standard_Unsigned
,
4045 New_Copy_Tree
(Left_Opnd
(N
))));
4046 Set_Right_Opnd
(Then_Expr
,
4047 Make_Integer_Literal
(Loc
, Intval
(Right_Opnd
(N
))));
4048 Append_To
(Exprs
, Then_Expr
);
4050 Set_Left_Opnd
(Else_Expr
,
4051 Unchecked_Convert_To
(Standard_Unsigned
,
4052 New_Copy_Tree
(Left_Opnd
(N
))));
4053 Set_Right_Opnd
(Else_Expr
,
4054 Make_Integer_Literal
(Loc
, Mod_Minus_Right
));
4055 Append_To
(Exprs
, Else_Expr
);
4058 Unchecked_Convert_To
(Typ
,
4059 Make_If_Expression
(Loc
, Expressions
=> Exprs
)));
4062 end Expand_Modular_Addition
;
4064 -----------------------
4065 -- Expand_Modular_Op --
4066 -----------------------
4068 procedure Expand_Modular_Op
is
4069 Op_Expr
: constant Node_Id
:= New_Op_Node
(Nkind
(N
), Loc
);
4070 Mod_Expr
: constant Node_Id
:= New_Op_Node
(N_Op_Mod
, Loc
);
4072 Target_Type
: Entity_Id
;
4075 -- Convert nonbinary modular type operands into integer values. Thus
4076 -- we avoid never-ending loops expanding them, and we also ensure
4077 -- the back end never receives nonbinary modular type expressions.
4079 if Nkind_In
(Nkind
(N
), N_Op_And
, N_Op_Or
, N_Op_Xor
) then
4080 Set_Left_Opnd
(Op_Expr
,
4081 Unchecked_Convert_To
(Standard_Unsigned
,
4082 New_Copy_Tree
(Left_Opnd
(N
))));
4083 Set_Right_Opnd
(Op_Expr
,
4084 Unchecked_Convert_To
(Standard_Unsigned
,
4085 New_Copy_Tree
(Right_Opnd
(N
))));
4086 Set_Left_Opnd
(Mod_Expr
,
4087 Unchecked_Convert_To
(Standard_Integer
, Op_Expr
));
4090 -- If the modulus of the type is larger than Integer'Last use a
4091 -- larger type for the operands, to prevent spurious constraint
4092 -- errors on large legal literals of the type.
4094 if Modulus
(Etype
(N
)) > UI_From_Int
(Int
(Integer'Last)) then
4095 Target_Type
:= Standard_Long_Integer
;
4097 Target_Type
:= Standard_Integer
;
4100 Set_Left_Opnd
(Op_Expr
,
4101 Unchecked_Convert_To
(Target_Type
,
4102 New_Copy_Tree
(Left_Opnd
(N
))));
4103 Set_Right_Opnd
(Op_Expr
,
4104 Unchecked_Convert_To
(Target_Type
,
4105 New_Copy_Tree
(Right_Opnd
(N
))));
4107 -- Link this node to the tree to analyze it
4109 -- If the parent node is an expression with actions we link it to
4110 -- N since otherwise Force_Evaluation cannot identify if this node
4111 -- comes from the Expression and rejects generating the temporary.
4113 if Nkind
(Parent
(N
)) = N_Expression_With_Actions
then
4114 Set_Parent
(Op_Expr
, N
);
4119 Set_Parent
(Op_Expr
, Parent
(N
));
4124 -- Force generating a temporary because in the expansion of this
4125 -- expression we may generate code that performs this computation
4128 Force_Evaluation
(Op_Expr
, Mode
=> Strict
);
4130 Set_Left_Opnd
(Mod_Expr
, Op_Expr
);
4133 Set_Right_Opnd
(Mod_Expr
,
4134 Make_Integer_Literal
(Loc
, Modulus
(Typ
)));
4137 Unchecked_Convert_To
(Typ
, Mod_Expr
));
4138 end Expand_Modular_Op
;
4140 --------------------------------
4141 -- Expand_Modular_Subtraction --
4142 --------------------------------
4144 procedure Expand_Modular_Subtraction
is
4146 -- If this is not the addition of a constant then compute it using
4147 -- the general rule: (lhs + rhs) mod Modulus
4149 if Nkind
(Right_Opnd
(N
)) /= N_Integer_Literal
then
4152 -- If this is an addition of a constant, convert it to a subtraction
4153 -- plus a conditional expression since we can compute it faster than
4154 -- computing the modulus.
4156 -- modMinusRhs = Modulus - rhs
4157 -- if lhs < rhs then lhs + modMinusRhs
4162 Mod_Minus_Right
: constant Uint
:=
4163 Modulus
(Typ
) - Intval
(Right_Opnd
(N
));
4165 Exprs
: constant List_Id
:= New_List
;
4166 Cond_Expr
: constant Node_Id
:= New_Op_Node
(N_Op_Lt
, Loc
);
4167 Then_Expr
: constant Node_Id
:= New_Op_Node
(N_Op_Add
, Loc
);
4168 Else_Expr
: constant Node_Id
:= New_Op_Node
(N_Op_Subtract
,
4171 Set_Left_Opnd
(Cond_Expr
,
4172 Unchecked_Convert_To
(Standard_Unsigned
,
4173 New_Copy_Tree
(Left_Opnd
(N
))));
4174 Set_Right_Opnd
(Cond_Expr
,
4175 Make_Integer_Literal
(Loc
, Intval
(Right_Opnd
(N
))));
4176 Append_To
(Exprs
, Cond_Expr
);
4178 Set_Left_Opnd
(Then_Expr
,
4179 Unchecked_Convert_To
(Standard_Unsigned
,
4180 New_Copy_Tree
(Left_Opnd
(N
))));
4181 Set_Right_Opnd
(Then_Expr
,
4182 Make_Integer_Literal
(Loc
, Mod_Minus_Right
));
4183 Append_To
(Exprs
, Then_Expr
);
4185 Set_Left_Opnd
(Else_Expr
,
4186 Unchecked_Convert_To
(Standard_Unsigned
,
4187 New_Copy_Tree
(Left_Opnd
(N
))));
4188 Set_Right_Opnd
(Else_Expr
,
4189 Unchecked_Convert_To
(Standard_Unsigned
,
4190 New_Copy_Tree
(Right_Opnd
(N
))));
4191 Append_To
(Exprs
, Else_Expr
);
4194 Unchecked_Convert_To
(Typ
,
4195 Make_If_Expression
(Loc
, Expressions
=> Exprs
)));
4198 end Expand_Modular_Subtraction
;
4200 -- Start of processing for Expand_Nonbinary_Modular_Op
4203 -- No action needed if front-end expansion is not required or if we
4204 -- have a binary modular operand.
4206 if not Expand_Nonbinary_Modular_Ops
4207 or else not Non_Binary_Modulus
(Typ
)
4214 Expand_Modular_Addition
;
4216 when N_Op_Subtract
=>
4217 Expand_Modular_Subtraction
;
4221 -- Expand -expr into (0 - expr)
4224 Make_Op_Subtract
(Loc
,
4225 Left_Opnd
=> Make_Integer_Literal
(Loc
, 0),
4226 Right_Opnd
=> Right_Opnd
(N
)));
4227 Analyze_And_Resolve
(N
, Typ
);
4233 Analyze_And_Resolve
(N
, Typ
);
4234 end Expand_Nonbinary_Modular_Op
;
4236 ------------------------
4237 -- Expand_N_Allocator --
4238 ------------------------
4240 procedure Expand_N_Allocator
(N
: Node_Id
) is
4241 Etyp
: constant Entity_Id
:= Etype
(Expression
(N
));
4242 Loc
: constant Source_Ptr
:= Sloc
(N
);
4243 PtrT
: constant Entity_Id
:= Etype
(N
);
4245 procedure Rewrite_Coextension
(N
: Node_Id
);
4246 -- Static coextensions have the same lifetime as the entity they
4247 -- constrain. Such occurrences can be rewritten as aliased objects
4248 -- and their unrestricted access used instead of the coextension.
4250 function Size_In_Storage_Elements
(E
: Entity_Id
) return Node_Id
;
4251 -- Given a constrained array type E, returns a node representing the
4252 -- code to compute a close approximation of the size in storage elements
4253 -- for the given type; for indexes that are modular types we compute
4254 -- 'Last - First (instead of 'Length) because for large arrays computing
4255 -- 'Last -'First + 1 causes overflow. This is done without using the
4256 -- attribute 'Size_In_Storage_Elements (which malfunctions for large
4259 -------------------------
4260 -- Rewrite_Coextension --
4261 -------------------------
4263 procedure Rewrite_Coextension
(N
: Node_Id
) is
4264 Temp_Id
: constant Node_Id
:= Make_Temporary
(Loc
, 'C');
4265 Temp_Decl
: Node_Id
;
4269 -- Cnn : aliased Etyp;
4272 Make_Object_Declaration
(Loc
,
4273 Defining_Identifier
=> Temp_Id
,
4274 Aliased_Present
=> True,
4275 Object_Definition
=> New_Occurrence_Of
(Etyp
, Loc
));
4277 if Nkind
(Expression
(N
)) = N_Qualified_Expression
then
4278 Set_Expression
(Temp_Decl
, Expression
(Expression
(N
)));
4281 Insert_Action
(N
, Temp_Decl
);
4283 Make_Attribute_Reference
(Loc
,
4284 Prefix
=> New_Occurrence_Of
(Temp_Id
, Loc
),
4285 Attribute_Name
=> Name_Unrestricted_Access
));
4287 Analyze_And_Resolve
(N
, PtrT
);
4288 end Rewrite_Coextension
;
4290 ------------------------------
4291 -- Size_In_Storage_Elements --
4292 ------------------------------
4294 function Size_In_Storage_Elements
(E
: Entity_Id
) return Node_Id
is
4296 -- Logically this just returns E'Max_Size_In_Storage_Elements.
4297 -- However, the reason for the existence of this function is
4298 -- to construct a test for sizes too large, which means near the
4299 -- 32-bit limit on a 32-bit machine, and precisely the trouble
4300 -- is that we get overflows when sizes are greater than 2**31.
4302 -- So what we end up doing for array types is to use the expression:
4304 -- number-of-elements * component_type'Max_Size_In_Storage_Elements
4306 -- which avoids this problem. All this is a bit bogus, but it does
4307 -- mean we catch common cases of trying to allocate arrays that
4308 -- are too large, and which in the absence of a check results in
4309 -- undetected chaos ???
4311 -- Note in particular that this is a pessimistic estimate in the
4312 -- case of packed array types, where an array element might occupy
4313 -- just a fraction of a storage element???
4316 Idx
: Node_Id
:= First_Index
(E
);
4319 pragma Warnings
(Off
, Res
);
4322 for J
in 1 .. Number_Dimensions
(E
) loop
4324 if not Is_Modular_Integer_Type
(Etype
(Idx
)) then
4326 Make_Attribute_Reference
(Loc
,
4327 Prefix
=> New_Occurrence_Of
(E
, Loc
),
4328 Attribute_Name
=> Name_Length
,
4329 Expressions
=> New_List
4330 (Make_Integer_Literal
(Loc
, J
)));
4332 -- For indexes that are modular types we cannot generate code
4333 -- to compute 'Length since for large arrays 'Last -'First + 1
4334 -- causes overflow; therefore we compute 'Last - 'First (which
4335 -- is not the exact number of components but it is valid for
4336 -- the purpose of this runtime check on 32-bit targets)
4340 Len_Minus_1_Expr
: Node_Id
;
4346 Make_Attribute_Reference
(Loc
,
4347 Prefix
=> New_Occurrence_Of
(E
, Loc
),
4348 Attribute_Name
=> Name_Last
,
4350 New_List
(Make_Integer_Literal
(Loc
, J
))),
4351 Make_Attribute_Reference
(Loc
,
4352 Prefix
=> New_Occurrence_Of
(E
, Loc
),
4353 Attribute_Name
=> Name_First
,
4355 New_List
(Make_Integer_Literal
(Loc
, J
))));
4358 Convert_To
(Standard_Unsigned
,
4359 Make_Op_Subtract
(Loc
,
4360 Make_Attribute_Reference
(Loc
,
4361 Prefix
=> New_Occurrence_Of
(E
, Loc
),
4362 Attribute_Name
=> Name_Last
,
4365 (Make_Integer_Literal
(Loc
, J
))),
4366 Make_Attribute_Reference
(Loc
,
4367 Prefix
=> New_Occurrence_Of
(E
, Loc
),
4368 Attribute_Name
=> Name_First
,
4371 (Make_Integer_Literal
(Loc
, J
)))));
4373 -- Handle superflat arrays, i.e. arrays with such bounds
4374 -- as 4 .. 2, to insure that the result is correct.
4377 -- (if X'Last > X'First then X'Last - X'First else 0)
4380 Make_If_Expression
(Loc
,
4381 Expressions
=> New_List
(
4384 Make_Integer_Literal
(Loc
, Uint_0
)));
4393 Make_Op_Multiply
(Loc
,
4402 Make_Op_Multiply
(Loc
,
4405 Make_Attribute_Reference
(Loc
,
4406 Prefix
=> New_Occurrence_Of
(Component_Type
(E
), Loc
),
4407 Attribute_Name
=> Name_Max_Size_In_Storage_Elements
));
4409 end Size_In_Storage_Elements
;
4413 Dtyp
: constant Entity_Id
:= Available_View
(Designated_Type
(PtrT
));
4417 Rel_Typ
: Entity_Id
;
4420 -- Start of processing for Expand_N_Allocator
4423 -- Warn on the presence of an allocator of an anonymous access type when
4426 if Warn_On_Anonymous_Allocators
4427 and then Ekind
(PtrT
) = E_Anonymous_Access_Type
4429 Error_Msg_N
("?use of an anonymous access type allocator", N
);
4432 -- RM E.2.3(22). We enforce that the expected type of an allocator
4433 -- shall not be a remote access-to-class-wide-limited-private type
4435 -- Why is this being done at expansion time, seems clearly wrong ???
4437 Validate_Remote_Access_To_Class_Wide_Type
(N
);
4439 -- Processing for anonymous access-to-controlled types. These access
4440 -- types receive a special finalization master which appears in the
4441 -- declarations of the enclosing semantic unit. This expansion is done
4442 -- now to ensure that any additional types generated by this routine or
4443 -- Expand_Allocator_Expression inherit the proper type attributes.
4445 if (Ekind
(PtrT
) = E_Anonymous_Access_Type
4446 or else (Is_Itype
(PtrT
) and then No
(Finalization_Master
(PtrT
))))
4447 and then Needs_Finalization
(Dtyp
)
4449 -- Detect the allocation of an anonymous controlled object where the
4450 -- type of the context is named. For example:
4452 -- procedure Proc (Ptr : Named_Access_Typ);
4453 -- Proc (new Designated_Typ);
4455 -- Regardless of the anonymous-to-named access type conversion, the
4456 -- lifetime of the object must be associated with the named access
4457 -- type. Use the finalization-related attributes of this type.
4459 if Nkind_In
(Parent
(N
), N_Type_Conversion
,
4460 N_Unchecked_Type_Conversion
)
4461 and then Ekind_In
(Etype
(Parent
(N
)), E_Access_Subtype
,
4463 E_General_Access_Type
)
4465 Rel_Typ
:= Etype
(Parent
(N
));
4470 -- Anonymous access-to-controlled types allocate on the global pool.
4471 -- Note that this is a "root type only" attribute.
4473 if No
(Associated_Storage_Pool
(PtrT
)) then
4474 if Present
(Rel_Typ
) then
4475 Set_Associated_Storage_Pool
4476 (Root_Type
(PtrT
), Associated_Storage_Pool
(Rel_Typ
));
4478 Set_Associated_Storage_Pool
4479 (Root_Type
(PtrT
), RTE
(RE_Global_Pool_Object
));
4483 -- The finalization master must be inserted and analyzed as part of
4484 -- the current semantic unit. Note that the master is updated when
4485 -- analysis changes current units. Note that this is a "root type
4488 if Present
(Rel_Typ
) then
4489 Set_Finalization_Master
4490 (Root_Type
(PtrT
), Finalization_Master
(Rel_Typ
));
4492 Build_Anonymous_Master
(Root_Type
(PtrT
));
4496 -- Set the storage pool and find the appropriate version of Allocate to
4497 -- call. Do not overwrite the storage pool if it is already set, which
4498 -- can happen for build-in-place function returns (see
4499 -- Exp_Ch4.Expand_N_Extended_Return_Statement).
4501 if No
(Storage_Pool
(N
)) then
4502 Pool
:= Associated_Storage_Pool
(Root_Type
(PtrT
));
4504 if Present
(Pool
) then
4505 Set_Storage_Pool
(N
, Pool
);
4507 if Is_RTE
(Pool
, RE_SS_Pool
) then
4508 Check_Restriction
(No_Secondary_Stack
, N
);
4509 Set_Procedure_To_Call
(N
, RTE
(RE_SS_Allocate
));
4511 -- In the case of an allocator for a simple storage pool, locate
4512 -- and save a reference to the pool type's Allocate routine.
4514 elsif Present
(Get_Rep_Pragma
4515 (Etype
(Pool
), Name_Simple_Storage_Pool_Type
))
4518 Pool_Type
: constant Entity_Id
:= Base_Type
(Etype
(Pool
));
4519 Alloc_Op
: Entity_Id
;
4521 Alloc_Op
:= Get_Name_Entity_Id
(Name_Allocate
);
4522 while Present
(Alloc_Op
) loop
4523 if Scope
(Alloc_Op
) = Scope
(Pool_Type
)
4524 and then Present
(First_Formal
(Alloc_Op
))
4525 and then Etype
(First_Formal
(Alloc_Op
)) = Pool_Type
4527 Set_Procedure_To_Call
(N
, Alloc_Op
);
4530 Alloc_Op
:= Homonym
(Alloc_Op
);
4535 elsif Is_Class_Wide_Type
(Etype
(Pool
)) then
4536 Set_Procedure_To_Call
(N
, RTE
(RE_Allocate_Any
));
4539 Set_Procedure_To_Call
(N
,
4540 Find_Prim_Op
(Etype
(Pool
), Name_Allocate
));
4545 -- Under certain circumstances we can replace an allocator by an access
4546 -- to statically allocated storage. The conditions, as noted in AARM
4547 -- 3.10 (10c) are as follows:
4549 -- Size and initial value is known at compile time
4550 -- Access type is access-to-constant
4552 -- The allocator is not part of a constraint on a record component,
4553 -- because in that case the inserted actions are delayed until the
4554 -- record declaration is fully analyzed, which is too late for the
4555 -- analysis of the rewritten allocator.
4557 if Is_Access_Constant
(PtrT
)
4558 and then Nkind
(Expression
(N
)) = N_Qualified_Expression
4559 and then Compile_Time_Known_Value
(Expression
(Expression
(N
)))
4560 and then Size_Known_At_Compile_Time
4561 (Etype
(Expression
(Expression
(N
))))
4562 and then not Is_Record_Type
(Current_Scope
)
4564 -- Here we can do the optimization. For the allocator
4568 -- We insert an object declaration
4570 -- Tnn : aliased x := y;
4572 -- and replace the allocator by Tnn'Unrestricted_Access. Tnn is
4573 -- marked as requiring static allocation.
4575 Temp
:= Make_Temporary
(Loc
, 'T', Expression
(Expression
(N
)));
4576 Desig
:= Subtype_Mark
(Expression
(N
));
4578 -- If context is constrained, use constrained subtype directly,
4579 -- so that the constant is not labelled as having a nominally
4580 -- unconstrained subtype.
4582 if Entity
(Desig
) = Base_Type
(Dtyp
) then
4583 Desig
:= New_Occurrence_Of
(Dtyp
, Loc
);
4587 Make_Object_Declaration
(Loc
,
4588 Defining_Identifier
=> Temp
,
4589 Aliased_Present
=> True,
4590 Constant_Present
=> Is_Access_Constant
(PtrT
),
4591 Object_Definition
=> Desig
,
4592 Expression
=> Expression
(Expression
(N
))));
4595 Make_Attribute_Reference
(Loc
,
4596 Prefix
=> New_Occurrence_Of
(Temp
, Loc
),
4597 Attribute_Name
=> Name_Unrestricted_Access
));
4599 Analyze_And_Resolve
(N
, PtrT
);
4601 -- We set the variable as statically allocated, since we don't want
4602 -- it going on the stack of the current procedure.
4604 Set_Is_Statically_Allocated
(Temp
);
4608 -- Same if the allocator is an access discriminant for a local object:
4609 -- instead of an allocator we create a local value and constrain the
4610 -- enclosing object with the corresponding access attribute.
4612 if Is_Static_Coextension
(N
) then
4613 Rewrite_Coextension
(N
);
4617 -- Check for size too large, we do this because the back end misses
4618 -- proper checks here and can generate rubbish allocation calls when
4619 -- we are near the limit. We only do this for the 32-bit address case
4620 -- since that is from a practical point of view where we see a problem.
4622 if System_Address_Size
= 32
4623 and then not Storage_Checks_Suppressed
(PtrT
)
4624 and then not Storage_Checks_Suppressed
(Dtyp
)
4625 and then not Storage_Checks_Suppressed
(Etyp
)
4627 -- The check we want to generate should look like
4629 -- if Etyp'Max_Size_In_Storage_Elements > 3.5 gigabytes then
4630 -- raise Storage_Error;
4633 -- where 3.5 gigabytes is a constant large enough to accommodate any
4634 -- reasonable request for. But we can't do it this way because at
4635 -- least at the moment we don't compute this attribute right, and
4636 -- can silently give wrong results when the result gets large. Since
4637 -- this is all about large results, that's bad, so instead we only
4638 -- apply the check for constrained arrays, and manually compute the
4639 -- value of the attribute ???
4641 -- The check on No_Initialization is used here to prevent generating
4642 -- this runtime check twice when the allocator is locally replaced by
4643 -- the expander by another one.
4645 if Is_Array_Type
(Etyp
) and then not No_Initialization
(N
) then
4648 Ins_Nod
: Node_Id
:= N
;
4649 Siz_Typ
: Entity_Id
:= Etyp
;
4653 -- For unconstrained array types initialized with a qualified
4654 -- expression we use its type to perform this check
4656 if not Is_Constrained
(Etyp
)
4657 and then not No_Initialization
(N
)
4658 and then Nkind
(Expression
(N
)) = N_Qualified_Expression
4660 Expr
:= Expression
(Expression
(N
));
4661 Siz_Typ
:= Etype
(Expression
(Expression
(N
)));
4663 -- If the qualified expression has been moved to an internal
4664 -- temporary (to remove side effects) then we must insert
4665 -- the runtime check before its declaration to ensure that
4666 -- the check is performed before the execution of the code
4667 -- computing the qualified expression.
4669 if Nkind
(Expr
) = N_Identifier
4670 and then Is_Internal_Name
(Chars
(Expr
))
4672 Nkind
(Parent
(Entity
(Expr
))) = N_Object_Declaration
4674 Ins_Nod
:= Parent
(Entity
(Expr
));
4680 if Is_Constrained
(Siz_Typ
)
4681 and then Ekind
(Siz_Typ
) /= E_String_Literal_Subtype
4683 -- For CCG targets the largest array may have up to 2**31-1
4684 -- components (i.e. 2 Gigabytes if each array component is
4685 -- 1-byte). This insures that fat pointer fields do not
4686 -- overflow, since they are 32-bit integer types, and also
4687 -- insures that 'Length can be computed at run time.
4689 if Modify_Tree_For_C
then
4692 Left_Opnd
=> Size_In_Storage_Elements
(Siz_Typ
),
4693 Right_Opnd
=> Make_Integer_Literal
(Loc
,
4694 Uint_2
** 31 - Uint_1
));
4696 -- For native targets the largest object is 3.5 gigabytes
4701 Left_Opnd
=> Size_In_Storage_Elements
(Siz_Typ
),
4702 Right_Opnd
=> Make_Integer_Literal
(Loc
,
4703 Uint_7
* (Uint_2
** 29)));
4706 Insert_Action
(Ins_Nod
,
4707 Make_Raise_Storage_Error
(Loc
,
4709 Reason
=> SE_Object_Too_Large
));
4711 if Entity
(Cond
) = Standard_True
then
4713 ("object too large: Storage_Error will be raised at "
4721 -- If no storage pool has been specified, or the storage pool
4722 -- is System.Pool_Global.Global_Pool_Object, and the restriction
4723 -- No_Standard_Allocators_After_Elaboration is present, then generate
4724 -- a call to Elaboration_Allocators.Check_Standard_Allocator.
4726 if Nkind
(N
) = N_Allocator
4727 and then (No
(Storage_Pool
(N
))
4728 or else Is_RTE
(Storage_Pool
(N
), RE_Global_Pool_Object
))
4729 and then Restriction_Active
(No_Standard_Allocators_After_Elaboration
)
4732 Make_Procedure_Call_Statement
(Loc
,
4734 New_Occurrence_Of
(RTE
(RE_Check_Standard_Allocator
), Loc
)));
4737 -- Handle case of qualified expression (other than optimization above)
4738 -- First apply constraint checks, because the bounds or discriminants
4739 -- in the aggregate might not match the subtype mark in the allocator.
4741 if Nkind
(Expression
(N
)) = N_Qualified_Expression
then
4743 Exp
: constant Node_Id
:= Expression
(Expression
(N
));
4744 Typ
: constant Entity_Id
:= Etype
(Expression
(N
));
4747 Apply_Constraint_Check
(Exp
, Typ
);
4748 Apply_Predicate_Check
(Exp
, Typ
);
4751 Expand_Allocator_Expression
(N
);
4755 -- If the allocator is for a type which requires initialization, and
4756 -- there is no initial value (i.e. operand is a subtype indication
4757 -- rather than a qualified expression), then we must generate a call to
4758 -- the initialization routine using an expressions action node:
4760 -- [Pnnn : constant ptr_T := new (T); Init (Pnnn.all,...); Pnnn]
4762 -- Here ptr_T is the pointer type for the allocator, and T is the
4763 -- subtype of the allocator. A special case arises if the designated
4764 -- type of the access type is a task or contains tasks. In this case
4765 -- the call to Init (Temp.all ...) is replaced by code that ensures
4766 -- that tasks get activated (see Exp_Ch9.Build_Task_Allocate_Block
4767 -- for details). In addition, if the type T is a task type, then the
4768 -- first argument to Init must be converted to the task record type.
4771 T
: constant Entity_Id
:= Etype
(Expression
(N
));
4777 Init_Arg1
: Node_Id
;
4778 Init_Call
: Node_Id
;
4779 Temp_Decl
: Node_Id
;
4780 Temp_Type
: Entity_Id
;
4783 if No_Initialization
(N
) then
4785 -- Even though this might be a simple allocation, create a custom
4786 -- Allocate if the context requires it.
4788 if Present
(Finalization_Master
(PtrT
)) then
4789 Build_Allocate_Deallocate_Proc
4791 Is_Allocate
=> True);
4794 -- Optimize the default allocation of an array object when pragma
4795 -- Initialize_Scalars or Normalize_Scalars is in effect. Construct an
4796 -- in-place initialization aggregate which may be convert into a fast
4797 -- memset by the backend.
4799 elsif Init_Or_Norm_Scalars
4800 and then Is_Array_Type
(T
)
4802 -- The array must lack atomic components because they are treated
4803 -- as non-static, and as a result the backend will not initialize
4804 -- the memory in one go.
4806 and then not Has_Atomic_Components
(T
)
4808 -- The array must not be packed because the invalid values in
4809 -- System.Scalar_Values are multiples of Storage_Unit.
4811 and then not Is_Packed
(T
)
4813 -- The array must have static non-empty ranges, otherwise the
4814 -- backend cannot initialize the memory in one go.
4816 and then Has_Static_Non_Empty_Array_Bounds
(T
)
4818 -- The optimization is only relevant for arrays of scalar types
4820 and then Is_Scalar_Type
(Component_Type
(T
))
4822 -- Similar to regular array initialization using a type init proc,
4823 -- predicate checks are not performed because the initialization
4824 -- values are intentionally invalid, and may violate the predicate.
4826 and then not Has_Predicates
(Component_Type
(T
))
4828 -- The component type must have a single initialization value
4830 and then Needs_Simple_Initialization
4831 (Typ
=> Component_Type
(T
),
4832 Consider_IS
=> True)
4835 Temp
:= Make_Temporary
(Loc
, 'P');
4838 -- Temp : Ptr_Typ := new ...;
4843 Make_Object_Declaration
(Loc
,
4844 Defining_Identifier
=> Temp
,
4845 Object_Definition
=> New_Occurrence_Of
(PtrT
, Loc
),
4846 Expression
=> Relocate_Node
(N
)),
4847 Suppress
=> All_Checks
);
4850 -- Temp.all := (others => ...);
4855 Make_Assignment_Statement
(Loc
,
4857 Make_Explicit_Dereference
(Loc
,
4858 Prefix
=> New_Occurrence_Of
(Temp
, Loc
)),
4863 Size
=> Esize
(Component_Type
(T
)))),
4864 Suppress
=> All_Checks
);
4866 Rewrite
(N
, New_Occurrence_Of
(Temp
, Loc
));
4867 Analyze_And_Resolve
(N
, PtrT
);
4869 -- Case of no initialization procedure present
4871 elsif not Has_Non_Null_Base_Init_Proc
(T
) then
4873 -- Case of simple initialization required
4875 if Needs_Simple_Initialization
(T
) then
4876 Check_Restriction
(No_Default_Initialization
, N
);
4877 Rewrite
(Expression
(N
),
4878 Make_Qualified_Expression
(Loc
,
4879 Subtype_Mark
=> New_Occurrence_Of
(T
, Loc
),
4880 Expression
=> Get_Simple_Init_Val
(T
, N
)));
4882 Analyze_And_Resolve
(Expression
(Expression
(N
)), T
);
4883 Analyze_And_Resolve
(Expression
(N
), T
);
4884 Set_Paren_Count
(Expression
(Expression
(N
)), 1);
4885 Expand_N_Allocator
(N
);
4887 -- No initialization required
4890 Build_Allocate_Deallocate_Proc
4892 Is_Allocate
=> True);
4895 -- Case of initialization procedure present, must be called
4897 -- NOTE: There is a *huge* amount of code duplication here from
4898 -- Build_Initialization_Call. We should probably refactor???
4901 Check_Restriction
(No_Default_Initialization
, N
);
4903 if not Restriction_Active
(No_Default_Initialization
) then
4904 Init
:= Base_Init_Proc
(T
);
4906 Temp
:= Make_Temporary
(Loc
, 'P');
4908 -- Construct argument list for the initialization routine call
4911 Make_Explicit_Dereference
(Loc
,
4913 New_Occurrence_Of
(Temp
, Loc
));
4915 Set_Assignment_OK
(Init_Arg1
);
4918 -- The initialization procedure expects a specific type. if the
4919 -- context is access to class wide, indicate that the object
4920 -- being allocated has the right specific type.
4922 if Is_Class_Wide_Type
(Dtyp
) then
4923 Init_Arg1
:= Unchecked_Convert_To
(T
, Init_Arg1
);
4926 -- If designated type is a concurrent type or if it is private
4927 -- type whose definition is a concurrent type, the first
4928 -- argument in the Init routine has to be unchecked conversion
4929 -- to the corresponding record type. If the designated type is
4930 -- a derived type, also convert the argument to its root type.
4932 if Is_Concurrent_Type
(T
) then
4934 Unchecked_Convert_To
(
4935 Corresponding_Record_Type
(T
), Init_Arg1
);
4937 elsif Is_Private_Type
(T
)
4938 and then Present
(Full_View
(T
))
4939 and then Is_Concurrent_Type
(Full_View
(T
))
4942 Unchecked_Convert_To
4943 (Corresponding_Record_Type
(Full_View
(T
)), Init_Arg1
);
4945 elsif Etype
(First_Formal
(Init
)) /= Base_Type
(T
) then
4947 Ftyp
: constant Entity_Id
:= Etype
(First_Formal
(Init
));
4950 Init_Arg1
:= OK_Convert_To
(Etype
(Ftyp
), Init_Arg1
);
4951 Set_Etype
(Init_Arg1
, Ftyp
);
4955 Args
:= New_List
(Init_Arg1
);
4957 -- For the task case, pass the Master_Id of the access type as
4958 -- the value of the _Master parameter, and _Chain as the value
4959 -- of the _Chain parameter (_Chain will be defined as part of
4960 -- the generated code for the allocator).
4962 -- In Ada 2005, the context may be a function that returns an
4963 -- anonymous access type. In that case the Master_Id has been
4964 -- created when expanding the function declaration.
4966 if Has_Task
(T
) then
4967 if No
(Master_Id
(Base_Type
(PtrT
))) then
4969 -- The designated type was an incomplete type, and the
4970 -- access type did not get expanded. Salvage it now.
4972 if not Restriction_Active
(No_Task_Hierarchy
) then
4973 if Present
(Parent
(Base_Type
(PtrT
))) then
4974 Expand_N_Full_Type_Declaration
4975 (Parent
(Base_Type
(PtrT
)));
4977 -- The only other possibility is an itype. For this
4978 -- case, the master must exist in the context. This is
4979 -- the case when the allocator initializes an access
4980 -- component in an init-proc.
4983 pragma Assert
(Is_Itype
(PtrT
));
4984 Build_Master_Renaming
(PtrT
, N
);
4989 -- If the context of the allocator is a declaration or an
4990 -- assignment, we can generate a meaningful image for it,
4991 -- even though subsequent assignments might remove the
4992 -- connection between task and entity. We build this image
4993 -- when the left-hand side is a simple variable, a simple
4994 -- indexed assignment or a simple selected component.
4996 if Nkind
(Parent
(N
)) = N_Assignment_Statement
then
4998 Nam
: constant Node_Id
:= Name
(Parent
(N
));
5001 if Is_Entity_Name
(Nam
) then
5003 Build_Task_Image_Decls
5006 (Entity
(Nam
), Sloc
(Nam
)), T
);
5008 elsif Nkind_In
(Nam
, N_Indexed_Component
,
5009 N_Selected_Component
)
5010 and then Is_Entity_Name
(Prefix
(Nam
))
5013 Build_Task_Image_Decls
5014 (Loc
, Nam
, Etype
(Prefix
(Nam
)));
5016 Decls
:= Build_Task_Image_Decls
(Loc
, T
, T
);
5020 elsif Nkind
(Parent
(N
)) = N_Object_Declaration
then
5022 Build_Task_Image_Decls
5023 (Loc
, Defining_Identifier
(Parent
(N
)), T
);
5026 Decls
:= Build_Task_Image_Decls
(Loc
, T
, T
);
5029 if Restriction_Active
(No_Task_Hierarchy
) then
5031 New_Occurrence_Of
(RTE
(RE_Library_Task_Level
), Loc
));
5035 (Master_Id
(Base_Type
(Root_Type
(PtrT
))), Loc
));
5038 Append_To
(Args
, Make_Identifier
(Loc
, Name_uChain
));
5040 Decl
:= Last
(Decls
);
5042 New_Occurrence_Of
(Defining_Identifier
(Decl
), Loc
));
5044 -- Has_Task is false, Decls not used
5050 -- Add discriminants if discriminated type
5053 Dis
: Boolean := False;
5054 Typ
: Entity_Id
:= Empty
;
5057 if Has_Discriminants
(T
) then
5061 -- Type may be a private type with no visible discriminants
5062 -- in which case check full view if in scope, or the
5063 -- underlying_full_view if dealing with a type whose full
5064 -- view may be derived from a private type whose own full
5065 -- view has discriminants.
5067 elsif Is_Private_Type
(T
) then
5068 if Present
(Full_View
(T
))
5069 and then Has_Discriminants
(Full_View
(T
))
5072 Typ
:= Full_View
(T
);
5074 elsif Present
(Underlying_Full_View
(T
))
5075 and then Has_Discriminants
(Underlying_Full_View
(T
))
5078 Typ
:= Underlying_Full_View
(T
);
5084 -- If the allocated object will be constrained by the
5085 -- default values for discriminants, then build a subtype
5086 -- with those defaults, and change the allocated subtype
5087 -- to that. Note that this happens in fewer cases in Ada
5090 if not Is_Constrained
(Typ
)
5091 and then Present
(Discriminant_Default_Value
5092 (First_Discriminant
(Typ
)))
5093 and then (Ada_Version
< Ada_2005
5095 Object_Type_Has_Constrained_Partial_View
5096 (Typ
, Current_Scope
))
5098 Typ
:= Build_Default_Subtype
(Typ
, N
);
5099 Set_Expression
(N
, New_Occurrence_Of
(Typ
, Loc
));
5102 Discr
:= First_Elmt
(Discriminant_Constraint
(Typ
));
5103 while Present
(Discr
) loop
5104 Nod
:= Node
(Discr
);
5105 Append
(New_Copy_Tree
(Node
(Discr
)), Args
);
5107 -- AI-416: when the discriminant constraint is an
5108 -- anonymous access type make sure an accessibility
5109 -- check is inserted if necessary (3.10.2(22.q/2))
5111 if Ada_Version
>= Ada_2005
5113 Ekind
(Etype
(Nod
)) = E_Anonymous_Access_Type
5115 Apply_Accessibility_Check
5116 (Nod
, Typ
, Insert_Node
=> Nod
);
5124 -- We set the allocator as analyzed so that when we analyze
5125 -- the if expression node, we do not get an unwanted recursive
5126 -- expansion of the allocator expression.
5128 Set_Analyzed
(N
, True);
5129 Nod
:= Relocate_Node
(N
);
5131 -- Here is the transformation:
5132 -- input: new Ctrl_Typ
5133 -- output: Temp : constant Ctrl_Typ_Ptr := new Ctrl_Typ;
5134 -- Ctrl_TypIP (Temp.all, ...);
5135 -- [Deep_]Initialize (Temp.all);
5137 -- Here Ctrl_Typ_Ptr is the pointer type for the allocator, and
5138 -- is the subtype of the allocator.
5141 Make_Object_Declaration
(Loc
,
5142 Defining_Identifier
=> Temp
,
5143 Constant_Present
=> True,
5144 Object_Definition
=> New_Occurrence_Of
(Temp_Type
, Loc
),
5147 Set_Assignment_OK
(Temp_Decl
);
5148 Insert_Action
(N
, Temp_Decl
, Suppress
=> All_Checks
);
5150 Build_Allocate_Deallocate_Proc
(Temp_Decl
, True);
5152 -- If the designated type is a task type or contains tasks,
5153 -- create block to activate created tasks, and insert
5154 -- declaration for Task_Image variable ahead of call.
5156 if Has_Task
(T
) then
5158 L
: constant List_Id
:= New_List
;
5161 Build_Task_Allocate_Block
(L
, Nod
, Args
);
5163 Insert_List_Before
(First
(Declarations
(Blk
)), Decls
);
5164 Insert_Actions
(N
, L
);
5169 Make_Procedure_Call_Statement
(Loc
,
5170 Name
=> New_Occurrence_Of
(Init
, Loc
),
5171 Parameter_Associations
=> Args
));
5174 if Needs_Finalization
(T
) then
5177 -- [Deep_]Initialize (Init_Arg1);
5181 (Obj_Ref
=> New_Copy_Tree
(Init_Arg1
),
5184 -- Guard against a missing [Deep_]Initialize when the
5185 -- designated type was not properly frozen.
5187 if Present
(Init_Call
) then
5188 Insert_Action
(N
, Init_Call
);
5192 Rewrite
(N
, New_Occurrence_Of
(Temp
, Loc
));
5193 Analyze_And_Resolve
(N
, PtrT
);
5198 -- Ada 2005 (AI-251): If the allocator is for a class-wide interface
5199 -- object that has been rewritten as a reference, we displace "this"
5200 -- to reference properly its secondary dispatch table.
5202 if Nkind
(N
) = N_Identifier
and then Is_Interface
(Dtyp
) then
5203 Displace_Allocator_Pointer
(N
);
5207 when RE_Not_Available
=>
5209 end Expand_N_Allocator
;
5211 -----------------------
5212 -- Expand_N_And_Then --
5213 -----------------------
5215 procedure Expand_N_And_Then
(N
: Node_Id
)
5216 renames Expand_Short_Circuit_Operator
;
5218 ------------------------------
5219 -- Expand_N_Case_Expression --
5220 ------------------------------
5222 procedure Expand_N_Case_Expression
(N
: Node_Id
) is
5223 function Is_Copy_Type
(Typ
: Entity_Id
) return Boolean;
5224 -- Return True if we can copy objects of this type when expanding a case
5231 function Is_Copy_Type
(Typ
: Entity_Id
) return Boolean is
5233 -- If Minimize_Expression_With_Actions is True, we can afford to copy
5234 -- large objects, as long as they are constrained and not limited.
5237 Is_Elementary_Type
(Underlying_Type
(Typ
))
5239 (Minimize_Expression_With_Actions
5240 and then Is_Constrained
(Underlying_Type
(Typ
))
5241 and then not Is_Limited_Type
(Underlying_Type
(Typ
)));
5246 Loc
: constant Source_Ptr
:= Sloc
(N
);
5247 Par
: constant Node_Id
:= Parent
(N
);
5248 Typ
: constant Entity_Id
:= Etype
(N
);
5252 Case_Stmt
: Node_Id
;
5256 Target_Typ
: Entity_Id
;
5258 In_Predicate
: Boolean := False;
5259 -- Flag set when the case expression appears within a predicate
5261 Optimize_Return_Stmt
: Boolean := False;
5262 -- Flag set when the case expression can be optimized in the context of
5263 -- a simple return statement.
5265 -- Start of processing for Expand_N_Case_Expression
5268 -- Check for MINIMIZED/ELIMINATED overflow mode
5270 if Minimized_Eliminated_Overflow_Check
(N
) then
5271 Apply_Arithmetic_Overflow_Check
(N
);
5275 -- If the case expression is a predicate specification, and the type
5276 -- to which it applies has a static predicate aspect, do not expand,
5277 -- because it will be converted to the proper predicate form later.
5279 if Ekind_In
(Current_Scope
, E_Function
, E_Procedure
)
5280 and then Is_Predicate_Function
(Current_Scope
)
5282 In_Predicate
:= True;
5284 if Has_Static_Predicate_Aspect
(Etype
(First_Entity
(Current_Scope
)))
5290 -- When the type of the case expression is elementary, expand
5292 -- (case X is when A => AX, when B => BX ...)
5307 -- In all other cases expand into
5310 -- type Ptr_Typ is access all Typ;
5311 -- Target : Ptr_Typ;
5314 -- Target := AX'Unrestricted_Access;
5316 -- Target := BX'Unrestricted_Access;
5319 -- in Target.all end;
5321 -- This approach avoids extra copies of potentially large objects. It
5322 -- also allows handling of values of limited or unconstrained types.
5323 -- Note that we do the copy also for constrained, nonlimited types
5324 -- when minimizing expressions with actions (e.g. when generating C
5325 -- code) since it allows us to do the optimization below in more cases.
5327 -- Small optimization: when the case expression appears in the context
5328 -- of a simple return statement, expand into
5339 Make_Case_Statement
(Loc
,
5340 Expression
=> Expression
(N
),
5341 Alternatives
=> New_List
);
5343 -- Preserve the original context for which the case statement is being
5344 -- generated. This is needed by the finalization machinery to prevent
5345 -- the premature finalization of controlled objects found within the
5348 Set_From_Conditional_Expression
(Case_Stmt
);
5353 if Is_Copy_Type
(Typ
) then
5356 -- ??? Do not perform the optimization when the return statement is
5357 -- within a predicate function, as this causes spurious errors. Could
5358 -- this be a possible mismatch in handling this case somewhere else
5359 -- in semantic analysis?
5361 Optimize_Return_Stmt
:=
5362 Nkind
(Par
) = N_Simple_Return_Statement
and then not In_Predicate
;
5364 -- Otherwise create an access type to handle the general case using
5365 -- 'Unrestricted_Access.
5368 -- type Ptr_Typ is access all Typ;
5371 if Generate_C_Code
then
5373 -- We cannot ensure that correct C code will be generated if any
5374 -- temporary is created down the line (to e.g. handle checks or
5375 -- capture values) since we might end up with dangling references
5376 -- to local variables, so better be safe and reject the construct.
5379 ("case expression too complex, use case statement instead", N
);
5382 Target_Typ
:= Make_Temporary
(Loc
, 'P');
5385 Make_Full_Type_Declaration
(Loc
,
5386 Defining_Identifier
=> Target_Typ
,
5388 Make_Access_To_Object_Definition
(Loc
,
5389 All_Present
=> True,
5390 Subtype_Indication
=> New_Occurrence_Of
(Typ
, Loc
))));
5393 -- Create the declaration of the target which captures the value of the
5397 -- Target : [Ptr_]Typ;
5399 if not Optimize_Return_Stmt
then
5400 Target
:= Make_Temporary
(Loc
, 'T');
5403 Make_Object_Declaration
(Loc
,
5404 Defining_Identifier
=> Target
,
5405 Object_Definition
=> New_Occurrence_Of
(Target_Typ
, Loc
));
5406 Set_No_Initialization
(Decl
);
5408 Append_To
(Acts
, Decl
);
5411 -- Process the alternatives
5413 Alt
:= First
(Alternatives
(N
));
5414 while Present
(Alt
) loop
5416 Alt_Expr
: Node_Id
:= Expression
(Alt
);
5417 Alt_Loc
: constant Source_Ptr
:= Sloc
(Alt_Expr
);
5422 -- Take the unrestricted access of the expression value for non-
5423 -- scalar types. This approach avoids big copies and covers the
5424 -- limited and unconstrained cases.
5427 -- AX'Unrestricted_Access
5429 if not Is_Copy_Type
(Typ
) then
5431 Make_Attribute_Reference
(Alt_Loc
,
5432 Prefix
=> Relocate_Node
(Alt_Expr
),
5433 Attribute_Name
=> Name_Unrestricted_Access
);
5437 -- return AX['Unrestricted_Access];
5439 if Optimize_Return_Stmt
then
5441 Make_Simple_Return_Statement
(Alt_Loc
,
5442 Expression
=> Alt_Expr
));
5445 -- Target := AX['Unrestricted_Access];
5448 LHS
:= New_Occurrence_Of
(Target
, Loc
);
5449 Set_Assignment_OK
(LHS
);
5452 Make_Assignment_Statement
(Alt_Loc
,
5454 Expression
=> Alt_Expr
));
5457 -- Propagate declarations inserted in the node by Insert_Actions
5458 -- (for example, temporaries generated to remove side effects).
5459 -- These actions must remain attached to the alternative, given
5460 -- that they are generated by the corresponding expression.
5462 if Present
(Actions
(Alt
)) then
5463 Prepend_List
(Actions
(Alt
), Stmts
);
5466 -- Finalize any transient objects on exit from the alternative.
5467 -- This is done only in the return optimization case because
5468 -- otherwise the case expression is converted into an expression
5469 -- with actions which already contains this form of processing.
5471 if Optimize_Return_Stmt
then
5472 Process_If_Case_Statements
(N
, Stmts
);
5476 (Alternatives
(Case_Stmt
),
5477 Make_Case_Statement_Alternative
(Sloc
(Alt
),
5478 Discrete_Choices
=> Discrete_Choices
(Alt
),
5479 Statements
=> Stmts
));
5485 -- Rewrite the parent return statement as a case statement
5487 if Optimize_Return_Stmt
then
5488 Rewrite
(Par
, Case_Stmt
);
5491 -- Otherwise convert the case expression into an expression with actions
5494 Append_To
(Acts
, Case_Stmt
);
5496 if Is_Copy_Type
(Typ
) then
5497 Expr
:= New_Occurrence_Of
(Target
, Loc
);
5501 Make_Explicit_Dereference
(Loc
,
5502 Prefix
=> New_Occurrence_Of
(Target
, Loc
));
5508 -- in Target[.all] end;
5511 Make_Expression_With_Actions
(Loc
,
5515 Analyze_And_Resolve
(N
, Typ
);
5517 end Expand_N_Case_Expression
;
5519 -----------------------------------
5520 -- Expand_N_Explicit_Dereference --
5521 -----------------------------------
5523 procedure Expand_N_Explicit_Dereference
(N
: Node_Id
) is
5525 -- Insert explicit dereference call for the checked storage pool case
5527 Insert_Dereference_Action
(Prefix
(N
));
5529 -- If the type is an Atomic type for which Atomic_Sync is enabled, then
5530 -- we set the atomic sync flag.
5532 if Is_Atomic
(Etype
(N
))
5533 and then not Atomic_Synchronization_Disabled
(Etype
(N
))
5535 Activate_Atomic_Synchronization
(N
);
5537 end Expand_N_Explicit_Dereference
;
5539 --------------------------------------
5540 -- Expand_N_Expression_With_Actions --
5541 --------------------------------------
5543 procedure Expand_N_Expression_With_Actions
(N
: Node_Id
) is
5544 Acts
: constant List_Id
:= Actions
(N
);
5546 procedure Force_Boolean_Evaluation
(Expr
: Node_Id
);
5547 -- Force the evaluation of Boolean expression Expr
5549 function Process_Action
(Act
: Node_Id
) return Traverse_Result
;
5550 -- Inspect and process a single action of an expression_with_actions for
5551 -- transient objects. If such objects are found, the routine generates
5552 -- code to clean them up when the context of the expression is evaluated
5555 ------------------------------
5556 -- Force_Boolean_Evaluation --
5557 ------------------------------
5559 procedure Force_Boolean_Evaluation
(Expr
: Node_Id
) is
5560 Loc
: constant Source_Ptr
:= Sloc
(N
);
5561 Flag_Decl
: Node_Id
;
5562 Flag_Id
: Entity_Id
;
5565 -- Relocate the expression to the actions list by capturing its value
5566 -- in a Boolean flag. Generate:
5567 -- Flag : constant Boolean := Expr;
5569 Flag_Id
:= Make_Temporary
(Loc
, 'F');
5572 Make_Object_Declaration
(Loc
,
5573 Defining_Identifier
=> Flag_Id
,
5574 Constant_Present
=> True,
5575 Object_Definition
=> New_Occurrence_Of
(Standard_Boolean
, Loc
),
5576 Expression
=> Relocate_Node
(Expr
));
5578 Append
(Flag_Decl
, Acts
);
5579 Analyze
(Flag_Decl
);
5581 -- Replace the expression with a reference to the flag
5583 Rewrite
(Expression
(N
), New_Occurrence_Of
(Flag_Id
, Loc
));
5584 Analyze
(Expression
(N
));
5585 end Force_Boolean_Evaluation
;
5587 --------------------
5588 -- Process_Action --
5589 --------------------
5591 function Process_Action
(Act
: Node_Id
) return Traverse_Result
is
5593 if Nkind
(Act
) = N_Object_Declaration
5594 and then Is_Finalizable_Transient
(Act
, N
)
5596 Process_Transient_In_Expression
(Act
, N
, Acts
);
5599 -- Avoid processing temporary function results multiple times when
5600 -- dealing with nested expression_with_actions.
5602 elsif Nkind
(Act
) = N_Expression_With_Actions
then
5605 -- Do not process temporary function results in loops. This is done
5606 -- by Expand_N_Loop_Statement and Build_Finalizer.
5608 elsif Nkind
(Act
) = N_Loop_Statement
then
5615 procedure Process_Single_Action
is new Traverse_Proc
(Process_Action
);
5621 -- Start of processing for Expand_N_Expression_With_Actions
5624 -- Do not evaluate the expression when it denotes an entity because the
5625 -- expression_with_actions node will be replaced by the reference.
5627 if Is_Entity_Name
(Expression
(N
)) then
5630 -- Do not evaluate the expression when there are no actions because the
5631 -- expression_with_actions node will be replaced by the expression.
5633 elsif No
(Acts
) or else Is_Empty_List
(Acts
) then
5636 -- Force the evaluation of the expression by capturing its value in a
5637 -- temporary. This ensures that aliases of transient objects do not leak
5638 -- to the expression of the expression_with_actions node:
5641 -- Trans_Id : Ctrl_Typ := ...;
5642 -- Alias : ... := Trans_Id;
5643 -- in ... Alias ... end;
5645 -- In the example above, Trans_Id cannot be finalized at the end of the
5646 -- actions list because this may affect the alias and the final value of
5647 -- the expression_with_actions. Forcing the evaluation encapsulates the
5648 -- reference to the Alias within the actions list:
5651 -- Trans_Id : Ctrl_Typ := ...;
5652 -- Alias : ... := Trans_Id;
5653 -- Val : constant Boolean := ... Alias ...;
5654 -- <finalize Trans_Id>
5657 -- Once this transformation is performed, it is safe to finalize the
5658 -- transient object at the end of the actions list.
5660 -- Note that Force_Evaluation does not remove side effects in operators
5661 -- because it assumes that all operands are evaluated and side effect
5662 -- free. This is not the case when an operand depends implicitly on the
5663 -- transient object through the use of access types.
5665 elsif Is_Boolean_Type
(Etype
(Expression
(N
))) then
5666 Force_Boolean_Evaluation
(Expression
(N
));
5668 -- The expression of an expression_with_actions node may not necessarily
5669 -- be Boolean when the node appears in an if expression. In this case do
5670 -- the usual forced evaluation to encapsulate potential aliasing.
5673 Force_Evaluation
(Expression
(N
));
5676 -- Process all transient objects found within the actions of the EWA
5679 Act
:= First
(Acts
);
5680 while Present
(Act
) loop
5681 Process_Single_Action
(Act
);
5685 -- Deal with case where there are no actions. In this case we simply
5686 -- rewrite the node with its expression since we don't need the actions
5687 -- and the specification of this node does not allow a null action list.
5689 -- Note: we use Rewrite instead of Replace, because Codepeer is using
5690 -- the expanded tree and relying on being able to retrieve the original
5691 -- tree in cases like this. This raises a whole lot of issues of whether
5692 -- we have problems elsewhere, which will be addressed in the future???
5694 if Is_Empty_List
(Acts
) then
5695 Rewrite
(N
, Relocate_Node
(Expression
(N
)));
5697 end Expand_N_Expression_With_Actions
;
5699 ----------------------------
5700 -- Expand_N_If_Expression --
5701 ----------------------------
5703 -- Deal with limited types and condition actions
5705 procedure Expand_N_If_Expression
(N
: Node_Id
) is
5706 Cond
: constant Node_Id
:= First
(Expressions
(N
));
5707 Loc
: constant Source_Ptr
:= Sloc
(N
);
5708 Thenx
: constant Node_Id
:= Next
(Cond
);
5709 Elsex
: constant Node_Id
:= Next
(Thenx
);
5710 Typ
: constant Entity_Id
:= Etype
(N
);
5719 -- Check for MINIMIZED/ELIMINATED overflow mode
5721 if Minimized_Eliminated_Overflow_Check
(N
) then
5722 Apply_Arithmetic_Overflow_Check
(N
);
5726 -- Fold at compile time if condition known. We have already folded
5727 -- static if expressions, but it is possible to fold any case in which
5728 -- the condition is known at compile time, even though the result is
5731 -- Note that we don't do the fold of such cases in Sem_Elab because
5732 -- it can cause infinite loops with the expander adding a conditional
5733 -- expression, and Sem_Elab circuitry removing it repeatedly.
5735 if Compile_Time_Known_Value
(Cond
) then
5737 function Fold_Known_Value
(Cond
: Node_Id
) return Boolean;
5738 -- Fold at compile time. Assumes condition known. Return True if
5739 -- folding occurred, meaning we're done.
5741 ----------------------
5742 -- Fold_Known_Value --
5743 ----------------------
5745 function Fold_Known_Value
(Cond
: Node_Id
) return Boolean is
5747 if Is_True
(Expr_Value
(Cond
)) then
5749 Actions
:= Then_Actions
(N
);
5752 Actions
:= Else_Actions
(N
);
5757 if Present
(Actions
) then
5759 -- To minimize the use of Expression_With_Actions, just skip
5760 -- the optimization as it is not critical for correctness.
5762 if Minimize_Expression_With_Actions
then
5767 Make_Expression_With_Actions
(Loc
,
5768 Expression
=> Relocate_Node
(Expr
),
5769 Actions
=> Actions
));
5770 Analyze_And_Resolve
(N
, Typ
);
5773 Rewrite
(N
, Relocate_Node
(Expr
));
5776 -- Note that the result is never static (legitimate cases of
5777 -- static if expressions were folded in Sem_Eval).
5779 Set_Is_Static_Expression
(N
, False);
5781 end Fold_Known_Value
;
5784 if Fold_Known_Value
(Cond
) then
5790 -- If the type is limited, and the back end does not handle limited
5791 -- types, then we expand as follows to avoid the possibility of
5792 -- improper copying.
5794 -- type Ptr is access all Typ;
5798 -- Cnn := then-expr'Unrestricted_Access;
5801 -- Cnn := else-expr'Unrestricted_Access;
5804 -- and replace the if expression by a reference to Cnn.all.
5806 -- This special case can be skipped if the back end handles limited
5807 -- types properly and ensures that no incorrect copies are made.
5809 if Is_By_Reference_Type
(Typ
)
5810 and then not Back_End_Handles_Limited_Types
5812 -- When the "then" or "else" expressions involve controlled function
5813 -- calls, generated temporaries are chained on the corresponding list
5814 -- of actions. These temporaries need to be finalized after the if
5815 -- expression is evaluated.
5817 Process_If_Case_Statements
(N
, Then_Actions
(N
));
5818 Process_If_Case_Statements
(N
, Else_Actions
(N
));
5821 Cnn
: constant Entity_Id
:= Make_Temporary
(Loc
, 'C', N
);
5822 Ptr_Typ
: constant Entity_Id
:= Make_Temporary
(Loc
, 'A');
5826 -- type Ann is access all Typ;
5829 Make_Full_Type_Declaration
(Loc
,
5830 Defining_Identifier
=> Ptr_Typ
,
5832 Make_Access_To_Object_Definition
(Loc
,
5833 All_Present
=> True,
5834 Subtype_Indication
=> New_Occurrence_Of
(Typ
, Loc
))));
5840 Make_Object_Declaration
(Loc
,
5841 Defining_Identifier
=> Cnn
,
5842 Object_Definition
=> New_Occurrence_Of
(Ptr_Typ
, Loc
));
5846 -- Cnn := <Thenx>'Unrestricted_Access;
5848 -- Cnn := <Elsex>'Unrestricted_Access;
5852 Make_Implicit_If_Statement
(N
,
5853 Condition
=> Relocate_Node
(Cond
),
5854 Then_Statements
=> New_List
(
5855 Make_Assignment_Statement
(Sloc
(Thenx
),
5856 Name
=> New_Occurrence_Of
(Cnn
, Sloc
(Thenx
)),
5858 Make_Attribute_Reference
(Loc
,
5859 Prefix
=> Relocate_Node
(Thenx
),
5860 Attribute_Name
=> Name_Unrestricted_Access
))),
5862 Else_Statements
=> New_List
(
5863 Make_Assignment_Statement
(Sloc
(Elsex
),
5864 Name
=> New_Occurrence_Of
(Cnn
, Sloc
(Elsex
)),
5866 Make_Attribute_Reference
(Loc
,
5867 Prefix
=> Relocate_Node
(Elsex
),
5868 Attribute_Name
=> Name_Unrestricted_Access
))));
5870 -- Preserve the original context for which the if statement is
5871 -- being generated. This is needed by the finalization machinery
5872 -- to prevent the premature finalization of controlled objects
5873 -- found within the if statement.
5875 Set_From_Conditional_Expression
(New_If
);
5878 Make_Explicit_Dereference
(Loc
,
5879 Prefix
=> New_Occurrence_Of
(Cnn
, Loc
));
5882 -- If the result is an unconstrained array and the if expression is in a
5883 -- context other than the initializing expression of the declaration of
5884 -- an object, then we pull out the if expression as follows:
5886 -- Cnn : constant typ := if-expression
5888 -- and then replace the if expression with an occurrence of Cnn. This
5889 -- avoids the need in the back end to create on-the-fly variable length
5890 -- temporaries (which it cannot do!)
5892 -- Note that the test for being in an object declaration avoids doing an
5893 -- unnecessary expansion, and also avoids infinite recursion.
5895 elsif Is_Array_Type
(Typ
) and then not Is_Constrained
(Typ
)
5896 and then (Nkind
(Parent
(N
)) /= N_Object_Declaration
5897 or else Expression
(Parent
(N
)) /= N
)
5900 Cnn
: constant Node_Id
:= Make_Temporary
(Loc
, 'C', N
);
5904 Make_Object_Declaration
(Loc
,
5905 Defining_Identifier
=> Cnn
,
5906 Constant_Present
=> True,
5907 Object_Definition
=> New_Occurrence_Of
(Typ
, Loc
),
5908 Expression
=> Relocate_Node
(N
),
5909 Has_Init_Expression
=> True));
5911 Rewrite
(N
, New_Occurrence_Of
(Cnn
, Loc
));
5915 -- For other types, we only need to expand if there are other actions
5916 -- associated with either branch.
5918 elsif Present
(Then_Actions
(N
)) or else Present
(Else_Actions
(N
)) then
5920 -- We now wrap the actions into the appropriate expression
5922 if Minimize_Expression_With_Actions
5923 and then (Is_Elementary_Type
(Underlying_Type
(Typ
))
5924 or else Is_Constrained
(Underlying_Type
(Typ
)))
5926 -- If we can't use N_Expression_With_Actions nodes, then we insert
5927 -- the following sequence of actions (using Insert_Actions):
5932 -- Cnn := then-expr;
5938 -- and replace the if expression by a reference to Cnn
5941 Cnn
: constant Node_Id
:= Make_Temporary
(Loc
, 'C', N
);
5945 Make_Object_Declaration
(Loc
,
5946 Defining_Identifier
=> Cnn
,
5947 Object_Definition
=> New_Occurrence_Of
(Typ
, Loc
));
5950 Make_Implicit_If_Statement
(N
,
5951 Condition
=> Relocate_Node
(Cond
),
5953 Then_Statements
=> New_List
(
5954 Make_Assignment_Statement
(Sloc
(Thenx
),
5955 Name
=> New_Occurrence_Of
(Cnn
, Sloc
(Thenx
)),
5956 Expression
=> Relocate_Node
(Thenx
))),
5958 Else_Statements
=> New_List
(
5959 Make_Assignment_Statement
(Sloc
(Elsex
),
5960 Name
=> New_Occurrence_Of
(Cnn
, Sloc
(Elsex
)),
5961 Expression
=> Relocate_Node
(Elsex
))));
5963 Set_Assignment_OK
(Name
(First
(Then_Statements
(New_If
))));
5964 Set_Assignment_OK
(Name
(First
(Else_Statements
(New_If
))));
5966 New_N
:= New_Occurrence_Of
(Cnn
, Loc
);
5969 -- Regular path using Expression_With_Actions
5972 if Present
(Then_Actions
(N
)) then
5974 Make_Expression_With_Actions
(Sloc
(Thenx
),
5975 Actions
=> Then_Actions
(N
),
5976 Expression
=> Relocate_Node
(Thenx
)));
5978 Set_Then_Actions
(N
, No_List
);
5979 Analyze_And_Resolve
(Thenx
, Typ
);
5982 if Present
(Else_Actions
(N
)) then
5984 Make_Expression_With_Actions
(Sloc
(Elsex
),
5985 Actions
=> Else_Actions
(N
),
5986 Expression
=> Relocate_Node
(Elsex
)));
5988 Set_Else_Actions
(N
, No_List
);
5989 Analyze_And_Resolve
(Elsex
, Typ
);
5995 -- If no actions then no expansion needed, gigi will handle it using the
5996 -- same approach as a C conditional expression.
6002 -- Fall through here for either the limited expansion, or the case of
6003 -- inserting actions for nonlimited types. In both these cases, we must
6004 -- move the SLOC of the parent If statement to the newly created one and
6005 -- change it to the SLOC of the expression which, after expansion, will
6006 -- correspond to what is being evaluated.
6008 if Present
(Parent
(N
)) and then Nkind
(Parent
(N
)) = N_If_Statement
then
6009 Set_Sloc
(New_If
, Sloc
(Parent
(N
)));
6010 Set_Sloc
(Parent
(N
), Loc
);
6013 -- Make sure Then_Actions and Else_Actions are appropriately moved
6014 -- to the new if statement.
6016 if Present
(Then_Actions
(N
)) then
6018 (First
(Then_Statements
(New_If
)), Then_Actions
(N
));
6021 if Present
(Else_Actions
(N
)) then
6023 (First
(Else_Statements
(New_If
)), Else_Actions
(N
));
6026 Insert_Action
(N
, Decl
);
6027 Insert_Action
(N
, New_If
);
6029 Analyze_And_Resolve
(N
, Typ
);
6030 end Expand_N_If_Expression
;
6036 procedure Expand_N_In
(N
: Node_Id
) is
6037 Loc
: constant Source_Ptr
:= Sloc
(N
);
6038 Restyp
: constant Entity_Id
:= Etype
(N
);
6039 Lop
: constant Node_Id
:= Left_Opnd
(N
);
6040 Rop
: constant Node_Id
:= Right_Opnd
(N
);
6041 Static
: constant Boolean := Is_OK_Static_Expression
(N
);
6043 procedure Substitute_Valid_Check
;
6044 -- Replaces node N by Lop'Valid. This is done when we have an explicit
6045 -- test for the left operand being in range of its subtype.
6047 ----------------------------
6048 -- Substitute_Valid_Check --
6049 ----------------------------
6051 procedure Substitute_Valid_Check
is
6052 function Is_OK_Object_Reference
(Nod
: Node_Id
) return Boolean;
6053 -- Determine whether arbitrary node Nod denotes a source object that
6054 -- may safely act as prefix of attribute 'Valid.
6056 ----------------------------
6057 -- Is_OK_Object_Reference --
6058 ----------------------------
6060 function Is_OK_Object_Reference
(Nod
: Node_Id
) return Boolean is
6064 -- Inspect the original operand
6066 Obj_Ref
:= Original_Node
(Nod
);
6068 -- The object reference must be a source construct, otherwise the
6069 -- codefix suggestion may refer to nonexistent code from a user
6072 if Comes_From_Source
(Obj_Ref
) then
6074 -- Recover the actual object reference. There may be more cases
6078 if Nkind_In
(Obj_Ref
, N_Type_Conversion
,
6079 N_Unchecked_Type_Conversion
)
6081 Obj_Ref
:= Expression
(Obj_Ref
);
6087 return Is_Object_Reference
(Obj_Ref
);
6091 end Is_OK_Object_Reference
;
6093 -- Start of processing for Substitute_Valid_Check
6097 Make_Attribute_Reference
(Loc
,
6098 Prefix
=> Relocate_Node
(Lop
),
6099 Attribute_Name
=> Name_Valid
));
6101 Analyze_And_Resolve
(N
, Restyp
);
6103 -- Emit a warning when the left-hand operand of the membership test
6104 -- is a source object, otherwise the use of attribute 'Valid would be
6105 -- illegal. The warning is not given when overflow checking is either
6106 -- MINIMIZED or ELIMINATED, as the danger of optimization has been
6107 -- eliminated above.
6109 if Is_OK_Object_Reference
(Lop
)
6110 and then Overflow_Check_Mode
not in Minimized_Or_Eliminated
6113 ("??explicit membership test may be optimized away", N
);
6114 Error_Msg_N
-- CODEFIX
6115 ("\??use ''Valid attribute instead", N
);
6117 end Substitute_Valid_Check
;
6124 -- Start of processing for Expand_N_In
6127 -- If set membership case, expand with separate procedure
6129 if Present
(Alternatives
(N
)) then
6130 Expand_Set_Membership
(N
);
6134 -- Not set membership, proceed with expansion
6136 Ltyp
:= Etype
(Left_Opnd
(N
));
6137 Rtyp
:= Etype
(Right_Opnd
(N
));
6139 -- If MINIMIZED/ELIMINATED overflow mode and type is a signed integer
6140 -- type, then expand with a separate procedure. Note the use of the
6141 -- flag No_Minimize_Eliminate to prevent infinite recursion.
6143 if Overflow_Check_Mode
in Minimized_Or_Eliminated
6144 and then Is_Signed_Integer_Type
(Ltyp
)
6145 and then not No_Minimize_Eliminate
(N
)
6147 Expand_Membership_Minimize_Eliminate_Overflow
(N
);
6151 -- Check case of explicit test for an expression in range of its
6152 -- subtype. This is suspicious usage and we replace it with a 'Valid
6153 -- test and give a warning for scalar types.
6155 if Is_Scalar_Type
(Ltyp
)
6157 -- Only relevant for source comparisons
6159 and then Comes_From_Source
(N
)
6161 -- In floating-point this is a standard way to check for finite values
6162 -- and using 'Valid would typically be a pessimization.
6164 and then not Is_Floating_Point_Type
(Ltyp
)
6166 -- Don't give the message unless right operand is a type entity and
6167 -- the type of the left operand matches this type. Note that this
6168 -- eliminates the cases where MINIMIZED/ELIMINATED mode overflow
6169 -- checks have changed the type of the left operand.
6171 and then Nkind
(Rop
) in N_Has_Entity
6172 and then Ltyp
= Entity
(Rop
)
6174 -- Skip this for predicated types, where such expressions are a
6175 -- reasonable way of testing if something meets the predicate.
6177 and then not Present
(Predicate_Function
(Ltyp
))
6179 Substitute_Valid_Check
;
6183 -- Do validity check on operands
6185 if Validity_Checks_On
and Validity_Check_Operands
then
6186 Ensure_Valid
(Left_Opnd
(N
));
6187 Validity_Check_Range
(Right_Opnd
(N
));
6190 -- Case of explicit range
6192 if Nkind
(Rop
) = N_Range
then
6194 Lo
: constant Node_Id
:= Low_Bound
(Rop
);
6195 Hi
: constant Node_Id
:= High_Bound
(Rop
);
6197 Lo_Orig
: constant Node_Id
:= Original_Node
(Lo
);
6198 Hi_Orig
: constant Node_Id
:= Original_Node
(Hi
);
6200 Lcheck
: Compare_Result
;
6201 Ucheck
: Compare_Result
;
6203 Warn1
: constant Boolean :=
6204 Constant_Condition_Warnings
6205 and then Comes_From_Source
(N
)
6206 and then not In_Instance
;
6207 -- This must be true for any of the optimization warnings, we
6208 -- clearly want to give them only for source with the flag on. We
6209 -- also skip these warnings in an instance since it may be the
6210 -- case that different instantiations have different ranges.
6212 Warn2
: constant Boolean :=
6214 and then Nkind
(Original_Node
(Rop
)) = N_Range
6215 and then Is_Integer_Type
(Etype
(Lo
));
6216 -- For the case where only one bound warning is elided, we also
6217 -- insist on an explicit range and an integer type. The reason is
6218 -- that the use of enumeration ranges including an end point is
6219 -- common, as is the use of a subtype name, one of whose bounds is
6220 -- the same as the type of the expression.
6223 -- If test is explicit x'First .. x'Last, replace by valid check
6225 -- Could use some individual comments for this complex test ???
6227 if Is_Scalar_Type
(Ltyp
)
6229 -- And left operand is X'First where X matches left operand
6230 -- type (this eliminates cases of type mismatch, including
6231 -- the cases where ELIMINATED/MINIMIZED mode has changed the
6232 -- type of the left operand.
6234 and then Nkind
(Lo_Orig
) = N_Attribute_Reference
6235 and then Attribute_Name
(Lo_Orig
) = Name_First
6236 and then Nkind
(Prefix
(Lo_Orig
)) in N_Has_Entity
6237 and then Entity
(Prefix
(Lo_Orig
)) = Ltyp
6239 -- Same tests for right operand
6241 and then Nkind
(Hi_Orig
) = N_Attribute_Reference
6242 and then Attribute_Name
(Hi_Orig
) = Name_Last
6243 and then Nkind
(Prefix
(Hi_Orig
)) in N_Has_Entity
6244 and then Entity
(Prefix
(Hi_Orig
)) = Ltyp
6246 -- Relevant only for source cases
6248 and then Comes_From_Source
(N
)
6250 Substitute_Valid_Check
;
6254 -- If bounds of type are known at compile time, and the end points
6255 -- are known at compile time and identical, this is another case
6256 -- for substituting a valid test. We only do this for discrete
6257 -- types, since it won't arise in practice for float types.
6259 if Comes_From_Source
(N
)
6260 and then Is_Discrete_Type
(Ltyp
)
6261 and then Compile_Time_Known_Value
(Type_High_Bound
(Ltyp
))
6262 and then Compile_Time_Known_Value
(Type_Low_Bound
(Ltyp
))
6263 and then Compile_Time_Known_Value
(Lo
)
6264 and then Compile_Time_Known_Value
(Hi
)
6265 and then Expr_Value
(Type_High_Bound
(Ltyp
)) = Expr_Value
(Hi
)
6266 and then Expr_Value
(Type_Low_Bound
(Ltyp
)) = Expr_Value
(Lo
)
6268 -- Kill warnings in instances, since they may be cases where we
6269 -- have a test in the generic that makes sense with some types
6270 -- and not with other types.
6272 -- Similarly, do not rewrite membership as a validity check if
6273 -- within the predicate function for the type.
6275 -- Finally, if the original bounds are type conversions, even
6276 -- if they have been folded into constants, there are different
6277 -- types involved and 'Valid is not appropriate.
6281 or else (Ekind
(Current_Scope
) = E_Function
6282 and then Is_Predicate_Function
(Current_Scope
))
6286 elsif Nkind
(Lo_Orig
) = N_Type_Conversion
6287 or else Nkind
(Hi_Orig
) = N_Type_Conversion
6292 Substitute_Valid_Check
;
6297 -- If we have an explicit range, do a bit of optimization based on
6298 -- range analysis (we may be able to kill one or both checks).
6300 Lcheck
:= Compile_Time_Compare
(Lop
, Lo
, Assume_Valid
=> False);
6301 Ucheck
:= Compile_Time_Compare
(Lop
, Hi
, Assume_Valid
=> False);
6303 -- If either check is known to fail, replace result by False since
6304 -- the other check does not matter. Preserve the static flag for
6305 -- legality checks, because we are constant-folding beyond RM 4.9.
6307 if Lcheck
= LT
or else Ucheck
= GT
then
6309 Error_Msg_N
("?c?range test optimized away", N
);
6310 Error_Msg_N
("\?c?value is known to be out of range", N
);
6313 Rewrite
(N
, New_Occurrence_Of
(Standard_False
, Loc
));
6314 Analyze_And_Resolve
(N
, Restyp
);
6315 Set_Is_Static_Expression
(N
, Static
);
6318 -- If both checks are known to succeed, replace result by True,
6319 -- since we know we are in range.
6321 elsif Lcheck
in Compare_GE
and then Ucheck
in Compare_LE
then
6323 Error_Msg_N
("?c?range test optimized away", N
);
6324 Error_Msg_N
("\?c?value is known to be in range", N
);
6327 Rewrite
(N
, New_Occurrence_Of
(Standard_True
, Loc
));
6328 Analyze_And_Resolve
(N
, Restyp
);
6329 Set_Is_Static_Expression
(N
, Static
);
6332 -- If lower bound check succeeds and upper bound check is not
6333 -- known to succeed or fail, then replace the range check with
6334 -- a comparison against the upper bound.
6336 elsif Lcheck
in Compare_GE
then
6337 if Warn2
and then not In_Instance
then
6338 Error_Msg_N
("??lower bound test optimized away", Lo
);
6339 Error_Msg_N
("\??value is known to be in range", Lo
);
6345 Right_Opnd
=> High_Bound
(Rop
)));
6346 Analyze_And_Resolve
(N
, Restyp
);
6349 -- If upper bound check succeeds and lower bound check is not
6350 -- known to succeed or fail, then replace the range check with
6351 -- a comparison against the lower bound.
6353 elsif Ucheck
in Compare_LE
then
6354 if Warn2
and then not In_Instance
then
6355 Error_Msg_N
("??upper bound test optimized away", Hi
);
6356 Error_Msg_N
("\??value is known to be in range", Hi
);
6362 Right_Opnd
=> Low_Bound
(Rop
)));
6363 Analyze_And_Resolve
(N
, Restyp
);
6367 -- We couldn't optimize away the range check, but there is one
6368 -- more issue. If we are checking constant conditionals, then we
6369 -- see if we can determine the outcome assuming everything is
6370 -- valid, and if so give an appropriate warning.
6372 if Warn1
and then not Assume_No_Invalid_Values
then
6373 Lcheck
:= Compile_Time_Compare
(Lop
, Lo
, Assume_Valid
=> True);
6374 Ucheck
:= Compile_Time_Compare
(Lop
, Hi
, Assume_Valid
=> True);
6376 -- Result is out of range for valid value
6378 if Lcheck
= LT
or else Ucheck
= GT
then
6380 ("?c?value can only be in range if it is invalid", N
);
6382 -- Result is in range for valid value
6384 elsif Lcheck
in Compare_GE
and then Ucheck
in Compare_LE
then
6386 ("?c?value can only be out of range if it is invalid", N
);
6388 -- Lower bound check succeeds if value is valid
6390 elsif Warn2
and then Lcheck
in Compare_GE
then
6392 ("?c?lower bound check only fails if it is invalid", Lo
);
6394 -- Upper bound check succeeds if value is valid
6396 elsif Warn2
and then Ucheck
in Compare_LE
then
6398 ("?c?upper bound check only fails for invalid values", Hi
);
6403 -- For all other cases of an explicit range, nothing to be done
6407 -- Here right operand is a subtype mark
6411 Typ
: Entity_Id
:= Etype
(Rop
);
6412 Is_Acc
: constant Boolean := Is_Access_Type
(Typ
);
6413 Cond
: Node_Id
:= Empty
;
6415 Obj
: Node_Id
:= Lop
;
6416 SCIL_Node
: Node_Id
;
6419 Remove_Side_Effects
(Obj
);
6421 -- For tagged type, do tagged membership operation
6423 if Is_Tagged_Type
(Typ
) then
6425 -- No expansion will be performed for VM targets, as the VM
6426 -- back ends will handle the membership tests directly.
6428 if Tagged_Type_Expansion
then
6429 Tagged_Membership
(N
, SCIL_Node
, New_N
);
6431 Analyze_And_Resolve
(N
, Restyp
, Suppress
=> All_Checks
);
6433 -- Update decoration of relocated node referenced by the
6436 if Generate_SCIL
and then Present
(SCIL_Node
) then
6437 Set_SCIL_Node
(N
, SCIL_Node
);
6443 -- If type is scalar type, rewrite as x in t'First .. t'Last.
6444 -- This reason we do this is that the bounds may have the wrong
6445 -- type if they come from the original type definition. Also this
6446 -- way we get all the processing above for an explicit range.
6448 -- Don't do this for predicated types, since in this case we
6449 -- want to check the predicate.
6451 elsif Is_Scalar_Type
(Typ
) then
6452 if No
(Predicate_Function
(Typ
)) then
6456 Make_Attribute_Reference
(Loc
,
6457 Attribute_Name
=> Name_First
,
6458 Prefix
=> New_Occurrence_Of
(Typ
, Loc
)),
6461 Make_Attribute_Reference
(Loc
,
6462 Attribute_Name
=> Name_Last
,
6463 Prefix
=> New_Occurrence_Of
(Typ
, Loc
))));
6464 Analyze_And_Resolve
(N
, Restyp
);
6469 -- Ada 2005 (AI-216): Program_Error is raised when evaluating
6470 -- a membership test if the subtype mark denotes a constrained
6471 -- Unchecked_Union subtype and the expression lacks inferable
6474 elsif Is_Unchecked_Union
(Base_Type
(Typ
))
6475 and then Is_Constrained
(Typ
)
6476 and then not Has_Inferable_Discriminants
(Lop
)
6479 Make_Raise_Program_Error
(Loc
,
6480 Reason
=> PE_Unchecked_Union_Restriction
));
6482 -- Prevent Gigi from generating incorrect code by rewriting the
6483 -- test as False. What is this undocumented thing about ???
6485 Rewrite
(N
, New_Occurrence_Of
(Standard_False
, Loc
));
6489 -- Here we have a non-scalar type
6492 Typ
:= Designated_Type
(Typ
);
6495 if not Is_Constrained
(Typ
) then
6496 Rewrite
(N
, New_Occurrence_Of
(Standard_True
, Loc
));
6497 Analyze_And_Resolve
(N
, Restyp
);
6499 -- For the constrained array case, we have to check the subscripts
6500 -- for an exact match if the lengths are non-zero (the lengths
6501 -- must match in any case).
6503 elsif Is_Array_Type
(Typ
) then
6504 Check_Subscripts
: declare
6505 function Build_Attribute_Reference
6508 Dim
: Nat
) return Node_Id
;
6509 -- Build attribute reference E'Nam (Dim)
6511 -------------------------------
6512 -- Build_Attribute_Reference --
6513 -------------------------------
6515 function Build_Attribute_Reference
6518 Dim
: Nat
) return Node_Id
6522 Make_Attribute_Reference
(Loc
,
6524 Attribute_Name
=> Nam
,
6525 Expressions
=> New_List
(
6526 Make_Integer_Literal
(Loc
, Dim
)));
6527 end Build_Attribute_Reference
;
6529 -- Start of processing for Check_Subscripts
6532 for J
in 1 .. Number_Dimensions
(Typ
) loop
6533 Evolve_And_Then
(Cond
,
6536 Build_Attribute_Reference
6537 (Duplicate_Subexpr_No_Checks
(Obj
),
6540 Build_Attribute_Reference
6541 (New_Occurrence_Of
(Typ
, Loc
), Name_First
, J
)));
6543 Evolve_And_Then
(Cond
,
6546 Build_Attribute_Reference
6547 (Duplicate_Subexpr_No_Checks
(Obj
),
6550 Build_Attribute_Reference
6551 (New_Occurrence_Of
(Typ
, Loc
), Name_Last
, J
)));
6560 Right_Opnd
=> Make_Null
(Loc
)),
6561 Right_Opnd
=> Cond
);
6565 Analyze_And_Resolve
(N
, Restyp
);
6566 end Check_Subscripts
;
6568 -- These are the cases where constraint checks may be required,
6569 -- e.g. records with possible discriminants
6572 -- Expand the test into a series of discriminant comparisons.
6573 -- The expression that is built is the negation of the one that
6574 -- is used for checking discriminant constraints.
6576 Obj
:= Relocate_Node
(Left_Opnd
(N
));
6578 if Has_Discriminants
(Typ
) then
6579 Cond
:= Make_Op_Not
(Loc
,
6580 Right_Opnd
=> Build_Discriminant_Checks
(Obj
, Typ
));
6583 Cond
:= Make_Or_Else
(Loc
,
6587 Right_Opnd
=> Make_Null
(Loc
)),
6588 Right_Opnd
=> Cond
);
6592 Cond
:= New_Occurrence_Of
(Standard_True
, Loc
);
6596 Analyze_And_Resolve
(N
, Restyp
);
6599 -- Ada 2012 (AI05-0149): Handle membership tests applied to an
6600 -- expression of an anonymous access type. This can involve an
6601 -- accessibility test and a tagged type membership test in the
6602 -- case of tagged designated types.
6604 if Ada_Version
>= Ada_2012
6606 and then Ekind
(Ltyp
) = E_Anonymous_Access_Type
6609 Expr_Entity
: Entity_Id
:= Empty
;
6611 Param_Level
: Node_Id
;
6612 Type_Level
: Node_Id
;
6615 if Is_Entity_Name
(Lop
) then
6616 Expr_Entity
:= Param_Entity
(Lop
);
6618 if not Present
(Expr_Entity
) then
6619 Expr_Entity
:= Entity
(Lop
);
6623 -- If a conversion of the anonymous access value to the
6624 -- tested type would be illegal, then the result is False.
6626 if not Valid_Conversion
6627 (Lop
, Rtyp
, Lop
, Report_Errs
=> False)
6629 Rewrite
(N
, New_Occurrence_Of
(Standard_False
, Loc
));
6630 Analyze_And_Resolve
(N
, Restyp
);
6632 -- Apply an accessibility check if the access object has an
6633 -- associated access level and when the level of the type is
6634 -- less deep than the level of the access parameter. This
6635 -- only occur for access parameters and stand-alone objects
6636 -- of an anonymous access type.
6639 if Present
(Expr_Entity
)
6642 (Effective_Extra_Accessibility
(Expr_Entity
))
6643 and then UI_Gt
(Object_Access_Level
(Lop
),
6644 Type_Access_Level
(Rtyp
))
6648 (Effective_Extra_Accessibility
(Expr_Entity
), Loc
);
6651 Make_Integer_Literal
(Loc
, Type_Access_Level
(Rtyp
));
6653 -- Return True only if the accessibility level of the
6654 -- expression entity is not deeper than the level of
6655 -- the tested access type.
6659 Left_Opnd
=> Relocate_Node
(N
),
6660 Right_Opnd
=> Make_Op_Le
(Loc
,
6661 Left_Opnd
=> Param_Level
,
6662 Right_Opnd
=> Type_Level
)));
6664 Analyze_And_Resolve
(N
);
6667 -- If the designated type is tagged, do tagged membership
6670 -- *** NOTE: we have to check not null before doing the
6671 -- tagged membership test (but maybe that can be done
6672 -- inside Tagged_Membership?).
6674 if Is_Tagged_Type
(Typ
) then
6677 Left_Opnd
=> Relocate_Node
(N
),
6681 Right_Opnd
=> Make_Null
(Loc
))));
6683 -- No expansion will be performed for VM targets, as
6684 -- the VM back ends will handle the membership tests
6687 if Tagged_Type_Expansion
then
6689 -- Note that we have to pass Original_Node, because
6690 -- the membership test might already have been
6691 -- rewritten by earlier parts of membership test.
6694 (Original_Node
(N
), SCIL_Node
, New_N
);
6696 -- Update decoration of relocated node referenced
6697 -- by the SCIL node.
6699 if Generate_SCIL
and then Present
(SCIL_Node
) then
6700 Set_SCIL_Node
(New_N
, SCIL_Node
);
6705 Left_Opnd
=> Relocate_Node
(N
),
6706 Right_Opnd
=> New_N
));
6708 Analyze_And_Resolve
(N
, Restyp
);
6717 -- At this point, we have done the processing required for the basic
6718 -- membership test, but not yet dealt with the predicate.
6722 -- If a predicate is present, then we do the predicate test, but we
6723 -- most certainly want to omit this if we are within the predicate
6724 -- function itself, since otherwise we have an infinite recursion.
6725 -- The check should also not be emitted when testing against a range
6726 -- (the check is only done when the right operand is a subtype; see
6727 -- RM12-4.5.2 (28.1/3-30/3)).
6729 Predicate_Check
: declare
6730 function In_Range_Check
return Boolean;
6731 -- Within an expanded range check that may raise Constraint_Error do
6732 -- not generate a predicate check as well. It is redundant because
6733 -- the context will add an explicit predicate check, and it will
6734 -- raise the wrong exception if it fails.
6736 --------------------
6737 -- In_Range_Check --
6738 --------------------
6740 function In_Range_Check
return Boolean is
6744 while Present
(P
) loop
6745 if Nkind
(P
) = N_Raise_Constraint_Error
then
6748 elsif Nkind
(P
) in N_Statement_Other_Than_Procedure_Call
6749 or else Nkind
(P
) = N_Procedure_Call_Statement
6750 or else Nkind
(P
) in N_Declaration
6763 PFunc
: constant Entity_Id
:= Predicate_Function
(Rtyp
);
6766 -- Start of processing for Predicate_Check
6770 and then Current_Scope
/= PFunc
6771 and then Nkind
(Rop
) /= N_Range
6773 if not In_Range_Check
then
6774 R_Op
:= Make_Predicate_Call
(Rtyp
, Lop
, Mem
=> True);
6776 R_Op
:= New_Occurrence_Of
(Standard_True
, Loc
);
6781 Left_Opnd
=> Relocate_Node
(N
),
6782 Right_Opnd
=> R_Op
));
6784 -- Analyze new expression, mark left operand as analyzed to
6785 -- avoid infinite recursion adding predicate calls. Similarly,
6786 -- suppress further range checks on the call.
6788 Set_Analyzed
(Left_Opnd
(N
));
6789 Analyze_And_Resolve
(N
, Standard_Boolean
, Suppress
=> All_Checks
);
6791 -- All done, skip attempt at compile time determination of result
6795 end Predicate_Check
;
6798 --------------------------------
6799 -- Expand_N_Indexed_Component --
6800 --------------------------------
6802 procedure Expand_N_Indexed_Component
(N
: Node_Id
) is
6803 Loc
: constant Source_Ptr
:= Sloc
(N
);
6804 Typ
: constant Entity_Id
:= Etype
(N
);
6805 P
: constant Node_Id
:= Prefix
(N
);
6806 T
: constant Entity_Id
:= Etype
(P
);
6810 -- A special optimization, if we have an indexed component that is
6811 -- selecting from a slice, then we can eliminate the slice, since, for
6812 -- example, x (i .. j)(k) is identical to x(k). The only difference is
6813 -- the range check required by the slice. The range check for the slice
6814 -- itself has already been generated. The range check for the
6815 -- subscripting operation is ensured by converting the subject to
6816 -- the subtype of the slice.
6818 -- This optimization not only generates better code, avoiding slice
6819 -- messing especially in the packed case, but more importantly bypasses
6820 -- some problems in handling this peculiar case, for example, the issue
6821 -- of dealing specially with object renamings.
6823 if Nkind
(P
) = N_Slice
6825 -- This optimization is disabled for CodePeer because it can transform
6826 -- an index-check constraint_error into a range-check constraint_error
6827 -- and CodePeer cares about that distinction.
6829 and then not CodePeer_Mode
6832 Make_Indexed_Component
(Loc
,
6833 Prefix
=> Prefix
(P
),
6834 Expressions
=> New_List
(
6836 (Etype
(First_Index
(Etype
(P
))),
6837 First
(Expressions
(N
))))));
6838 Analyze_And_Resolve
(N
, Typ
);
6842 -- Ada 2005 (AI-318-02): If the prefix is a call to a build-in-place
6843 -- function, then additional actuals must be passed.
6845 if Is_Build_In_Place_Function_Call
(P
) then
6846 Make_Build_In_Place_Call_In_Anonymous_Context
(P
);
6848 -- Ada 2005 (AI-318-02): Specialization of the previous case for prefix
6849 -- containing build-in-place function calls whose returned object covers
6852 elsif Present
(Unqual_BIP_Iface_Function_Call
(P
)) then
6853 Make_Build_In_Place_Iface_Call_In_Anonymous_Context
(P
);
6856 -- If the prefix is an access type, then we unconditionally rewrite if
6857 -- as an explicit dereference. This simplifies processing for several
6858 -- cases, including packed array cases and certain cases in which checks
6859 -- must be generated. We used to try to do this only when it was
6860 -- necessary, but it cleans up the code to do it all the time.
6862 if Is_Access_Type
(T
) then
6863 Insert_Explicit_Dereference
(P
);
6864 Analyze_And_Resolve
(P
, Designated_Type
(T
));
6865 Atp
:= Designated_Type
(T
);
6870 -- Generate index and validity checks
6872 Generate_Index_Checks
(N
);
6874 if Validity_Checks_On
and then Validity_Check_Subscripts
then
6875 Apply_Subscript_Validity_Checks
(N
);
6878 -- If selecting from an array with atomic components, and atomic sync
6879 -- is not suppressed for this array type, set atomic sync flag.
6881 if (Has_Atomic_Components
(Atp
)
6882 and then not Atomic_Synchronization_Disabled
(Atp
))
6883 or else (Is_Atomic
(Typ
)
6884 and then not Atomic_Synchronization_Disabled
(Typ
))
6885 or else (Is_Entity_Name
(P
)
6886 and then Has_Atomic_Components
(Entity
(P
))
6887 and then not Atomic_Synchronization_Disabled
(Entity
(P
)))
6889 Activate_Atomic_Synchronization
(N
);
6892 -- All done if the prefix is not a packed array implemented specially
6894 if not (Is_Packed
(Etype
(Prefix
(N
)))
6895 and then Present
(Packed_Array_Impl_Type
(Etype
(Prefix
(N
)))))
6900 -- For packed arrays that are not bit-packed (i.e. the case of an array
6901 -- with one or more index types with a non-contiguous enumeration type),
6902 -- we can always use the normal packed element get circuit.
6904 if not Is_Bit_Packed_Array
(Etype
(Prefix
(N
))) then
6905 Expand_Packed_Element_Reference
(N
);
6909 -- For a reference to a component of a bit packed array, we convert it
6910 -- to a reference to the corresponding Packed_Array_Impl_Type. We only
6911 -- want to do this for simple references, and not for:
6913 -- Left side of assignment, or prefix of left side of assignment, or
6914 -- prefix of the prefix, to handle packed arrays of packed arrays,
6915 -- This case is handled in Exp_Ch5.Expand_N_Assignment_Statement
6917 -- Renaming objects in renaming associations
6918 -- This case is handled when a use of the renamed variable occurs
6920 -- Actual parameters for a subprogram call
6921 -- This case is handled in Exp_Ch6.Expand_Actuals
6923 -- The second expression in a 'Read attribute reference
6925 -- The prefix of an address or bit or size attribute reference
6927 -- The following circuit detects these exceptions. Note that we need to
6928 -- deal with implicit dereferences when climbing up the parent chain,
6929 -- with the additional difficulty that the type of parents may have yet
6930 -- to be resolved since prefixes are usually resolved first.
6933 Child
: Node_Id
:= N
;
6934 Parnt
: Node_Id
:= Parent
(N
);
6938 if Nkind
(Parnt
) = N_Unchecked_Expression
then
6941 elsif Nkind
(Parnt
) = N_Object_Renaming_Declaration
then
6944 elsif Nkind
(Parnt
) in N_Subprogram_Call
6945 or else (Nkind
(Parnt
) = N_Parameter_Association
6946 and then Nkind
(Parent
(Parnt
)) in N_Subprogram_Call
)
6950 elsif Nkind
(Parnt
) = N_Attribute_Reference
6951 and then Nam_In
(Attribute_Name
(Parnt
), Name_Address
,
6954 and then Prefix
(Parnt
) = Child
6958 elsif Nkind
(Parnt
) = N_Assignment_Statement
6959 and then Name
(Parnt
) = Child
6963 -- If the expression is an index of an indexed component, it must
6964 -- be expanded regardless of context.
6966 elsif Nkind
(Parnt
) = N_Indexed_Component
6967 and then Child
/= Prefix
(Parnt
)
6969 Expand_Packed_Element_Reference
(N
);
6972 elsif Nkind
(Parent
(Parnt
)) = N_Assignment_Statement
6973 and then Name
(Parent
(Parnt
)) = Parnt
6977 elsif Nkind
(Parnt
) = N_Attribute_Reference
6978 and then Attribute_Name
(Parnt
) = Name_Read
6979 and then Next
(First
(Expressions
(Parnt
))) = Child
6983 elsif Nkind
(Parnt
) = N_Indexed_Component
6984 and then Prefix
(Parnt
) = Child
6988 elsif Nkind
(Parnt
) = N_Selected_Component
6989 and then Prefix
(Parnt
) = Child
6990 and then not (Present
(Etype
(Selector_Name
(Parnt
)))
6992 Is_Access_Type
(Etype
(Selector_Name
(Parnt
))))
6996 -- If the parent is a dereference, either implicit or explicit,
6997 -- then the packed reference needs to be expanded.
7000 Expand_Packed_Element_Reference
(N
);
7004 -- Keep looking up tree for unchecked expression, or if we are the
7005 -- prefix of a possible assignment left side.
7008 Parnt
:= Parent
(Child
);
7011 end Expand_N_Indexed_Component
;
7013 ---------------------
7014 -- Expand_N_Not_In --
7015 ---------------------
7017 -- Replace a not in b by not (a in b) so that the expansions for (a in b)
7018 -- can be done. This avoids needing to duplicate this expansion code.
7020 procedure Expand_N_Not_In
(N
: Node_Id
) is
7021 Loc
: constant Source_Ptr
:= Sloc
(N
);
7022 Typ
: constant Entity_Id
:= Etype
(N
);
7023 Cfs
: constant Boolean := Comes_From_Source
(N
);
7030 Left_Opnd
=> Left_Opnd
(N
),
7031 Right_Opnd
=> Right_Opnd
(N
))));
7033 -- If this is a set membership, preserve list of alternatives
7035 Set_Alternatives
(Right_Opnd
(N
), Alternatives
(Original_Node
(N
)));
7037 -- We want this to appear as coming from source if original does (see
7038 -- transformations in Expand_N_In).
7040 Set_Comes_From_Source
(N
, Cfs
);
7041 Set_Comes_From_Source
(Right_Opnd
(N
), Cfs
);
7043 -- Now analyze transformed node
7045 Analyze_And_Resolve
(N
, Typ
);
7046 end Expand_N_Not_In
;
7052 -- The only replacement required is for the case of a null of a type that
7053 -- is an access to protected subprogram, or a subtype thereof. We represent
7054 -- such access values as a record, and so we must replace the occurrence of
7055 -- null by the equivalent record (with a null address and a null pointer in
7056 -- it), so that the back end creates the proper value.
7058 procedure Expand_N_Null
(N
: Node_Id
) is
7059 Loc
: constant Source_Ptr
:= Sloc
(N
);
7060 Typ
: constant Entity_Id
:= Base_Type
(Etype
(N
));
7064 if Is_Access_Protected_Subprogram_Type
(Typ
) then
7066 Make_Aggregate
(Loc
,
7067 Expressions
=> New_List
(
7068 New_Occurrence_Of
(RTE
(RE_Null_Address
), Loc
),
7072 Analyze_And_Resolve
(N
, Equivalent_Type
(Typ
));
7074 -- For subsequent semantic analysis, the node must retain its type.
7075 -- Gigi in any case replaces this type by the corresponding record
7076 -- type before processing the node.
7082 when RE_Not_Available
=>
7086 ---------------------
7087 -- Expand_N_Op_Abs --
7088 ---------------------
7090 procedure Expand_N_Op_Abs
(N
: Node_Id
) is
7091 Loc
: constant Source_Ptr
:= Sloc
(N
);
7092 Expr
: constant Node_Id
:= Right_Opnd
(N
);
7095 Unary_Op_Validity_Checks
(N
);
7097 -- Check for MINIMIZED/ELIMINATED overflow mode
7099 if Minimized_Eliminated_Overflow_Check
(N
) then
7100 Apply_Arithmetic_Overflow_Check
(N
);
7104 -- Deal with software overflow checking
7106 if Is_Signed_Integer_Type
(Etype
(N
))
7107 and then Do_Overflow_Check
(N
)
7109 -- The only case to worry about is when the argument is equal to the
7110 -- largest negative number, so what we do is to insert the check:
7112 -- [constraint_error when Expr = typ'Base'First]
7114 -- with the usual Duplicate_Subexpr use coding for expr
7117 Make_Raise_Constraint_Error
(Loc
,
7120 Left_Opnd
=> Duplicate_Subexpr
(Expr
),
7122 Make_Attribute_Reference
(Loc
,
7124 New_Occurrence_Of
(Base_Type
(Etype
(Expr
)), Loc
),
7125 Attribute_Name
=> Name_First
)),
7126 Reason
=> CE_Overflow_Check_Failed
));
7128 Set_Do_Overflow_Check
(N
, False);
7130 end Expand_N_Op_Abs
;
7132 ---------------------
7133 -- Expand_N_Op_Add --
7134 ---------------------
7136 procedure Expand_N_Op_Add
(N
: Node_Id
) is
7137 Typ
: constant Entity_Id
:= Etype
(N
);
7140 Binary_Op_Validity_Checks
(N
);
7142 -- Check for MINIMIZED/ELIMINATED overflow mode
7144 if Minimized_Eliminated_Overflow_Check
(N
) then
7145 Apply_Arithmetic_Overflow_Check
(N
);
7149 -- N + 0 = 0 + N = N for integer types
7151 if Is_Integer_Type
(Typ
) then
7152 if Compile_Time_Known_Value
(Right_Opnd
(N
))
7153 and then Expr_Value
(Right_Opnd
(N
)) = Uint_0
7155 Rewrite
(N
, Left_Opnd
(N
));
7158 elsif Compile_Time_Known_Value
(Left_Opnd
(N
))
7159 and then Expr_Value
(Left_Opnd
(N
)) = Uint_0
7161 Rewrite
(N
, Right_Opnd
(N
));
7166 -- Arithmetic overflow checks for signed integer/fixed point types
7168 if Is_Signed_Integer_Type
(Typ
) or else Is_Fixed_Point_Type
(Typ
) then
7169 Apply_Arithmetic_Overflow_Check
(N
);
7173 -- Overflow checks for floating-point if -gnateF mode active
7175 Check_Float_Op_Overflow
(N
);
7177 Expand_Nonbinary_Modular_Op
(N
);
7178 end Expand_N_Op_Add
;
7180 ---------------------
7181 -- Expand_N_Op_And --
7182 ---------------------
7184 procedure Expand_N_Op_And
(N
: Node_Id
) is
7185 Typ
: constant Entity_Id
:= Etype
(N
);
7188 Binary_Op_Validity_Checks
(N
);
7190 if Is_Array_Type
(Etype
(N
)) then
7191 Expand_Boolean_Operator
(N
);
7193 elsif Is_Boolean_Type
(Etype
(N
)) then
7194 Adjust_Condition
(Left_Opnd
(N
));
7195 Adjust_Condition
(Right_Opnd
(N
));
7196 Set_Etype
(N
, Standard_Boolean
);
7197 Adjust_Result_Type
(N
, Typ
);
7199 elsif Is_Intrinsic_Subprogram
(Entity
(N
)) then
7200 Expand_Intrinsic_Call
(N
, Entity
(N
));
7203 Expand_Nonbinary_Modular_Op
(N
);
7204 end Expand_N_Op_And
;
7206 ------------------------
7207 -- Expand_N_Op_Concat --
7208 ------------------------
7210 procedure Expand_N_Op_Concat
(N
: Node_Id
) is
7212 -- List of operands to be concatenated
7215 -- Node which is to be replaced by the result of concatenating the nodes
7216 -- in the list Opnds.
7219 -- Ensure validity of both operands
7221 Binary_Op_Validity_Checks
(N
);
7223 -- If we are the left operand of a concatenation higher up the tree,
7224 -- then do nothing for now, since we want to deal with a series of
7225 -- concatenations as a unit.
7227 if Nkind
(Parent
(N
)) = N_Op_Concat
7228 and then N
= Left_Opnd
(Parent
(N
))
7233 -- We get here with a concatenation whose left operand may be a
7234 -- concatenation itself with a consistent type. We need to process
7235 -- these concatenation operands from left to right, which means
7236 -- from the deepest node in the tree to the highest node.
7239 while Nkind
(Left_Opnd
(Cnode
)) = N_Op_Concat
loop
7240 Cnode
:= Left_Opnd
(Cnode
);
7243 -- Now Cnode is the deepest concatenation, and its parents are the
7244 -- concatenation nodes above, so now we process bottom up, doing the
7247 -- The outer loop runs more than once if more than one concatenation
7248 -- type is involved.
7251 Opnds
:= New_List
(Left_Opnd
(Cnode
), Right_Opnd
(Cnode
));
7252 Set_Parent
(Opnds
, N
);
7254 -- The inner loop gathers concatenation operands
7256 Inner
: while Cnode
/= N
7257 and then Base_Type
(Etype
(Cnode
)) =
7258 Base_Type
(Etype
(Parent
(Cnode
)))
7260 Cnode
:= Parent
(Cnode
);
7261 Append
(Right_Opnd
(Cnode
), Opnds
);
7264 -- Note: The following code is a temporary workaround for N731-034
7265 -- and N829-028 and will be kept until the general issue of internal
7266 -- symbol serialization is addressed. The workaround is kept under a
7267 -- debug switch to avoid permiating into the general case.
7269 -- Wrap the node to concatenate into an expression actions node to
7270 -- keep it nicely packaged. This is useful in the case of an assert
7271 -- pragma with a concatenation where we want to be able to delete
7272 -- the concatenation and all its expansion stuff.
7274 if Debug_Flag_Dot_H
then
7276 Cnod
: constant Node_Id
:= New_Copy_Tree
(Cnode
);
7277 Typ
: constant Entity_Id
:= Base_Type
(Etype
(Cnode
));
7280 -- Note: use Rewrite rather than Replace here, so that for
7281 -- example Why_Not_Static can find the original concatenation
7285 Make_Expression_With_Actions
(Sloc
(Cnode
),
7286 Actions
=> New_List
(Make_Null_Statement
(Sloc
(Cnode
))),
7287 Expression
=> Cnod
));
7289 Expand_Concatenate
(Cnod
, Opnds
);
7290 Analyze_And_Resolve
(Cnode
, Typ
);
7296 Expand_Concatenate
(Cnode
, Opnds
);
7299 exit Outer
when Cnode
= N
;
7300 Cnode
:= Parent
(Cnode
);
7302 end Expand_N_Op_Concat
;
7304 ------------------------
7305 -- Expand_N_Op_Divide --
7306 ------------------------
7308 procedure Expand_N_Op_Divide
(N
: Node_Id
) is
7309 Loc
: constant Source_Ptr
:= Sloc
(N
);
7310 Lopnd
: constant Node_Id
:= Left_Opnd
(N
);
7311 Ropnd
: constant Node_Id
:= Right_Opnd
(N
);
7312 Ltyp
: constant Entity_Id
:= Etype
(Lopnd
);
7313 Rtyp
: constant Entity_Id
:= Etype
(Ropnd
);
7314 Typ
: Entity_Id
:= Etype
(N
);
7315 Rknow
: constant Boolean := Is_Integer_Type
(Typ
)
7317 Compile_Time_Known_Value
(Ropnd
);
7321 Binary_Op_Validity_Checks
(N
);
7323 -- Check for MINIMIZED/ELIMINATED overflow mode
7325 if Minimized_Eliminated_Overflow_Check
(N
) then
7326 Apply_Arithmetic_Overflow_Check
(N
);
7330 -- Otherwise proceed with expansion of division
7333 Rval
:= Expr_Value
(Ropnd
);
7336 -- N / 1 = N for integer types
7338 if Rknow
and then Rval
= Uint_1
then
7343 -- Convert x / 2 ** y to Shift_Right (x, y). Note that the fact that
7344 -- Is_Power_Of_2_For_Shift is set means that we know that our left
7345 -- operand is an unsigned integer, as required for this to work.
7347 if Nkind
(Ropnd
) = N_Op_Expon
7348 and then Is_Power_Of_2_For_Shift
(Ropnd
)
7350 -- We cannot do this transformation in configurable run time mode if we
7351 -- have 64-bit integers and long shifts are not available.
7353 and then (Esize
(Ltyp
) <= 32 or else Support_Long_Shifts_On_Target
)
7356 Make_Op_Shift_Right
(Loc
,
7359 Convert_To
(Standard_Natural
, Right_Opnd
(Ropnd
))));
7360 Analyze_And_Resolve
(N
, Typ
);
7364 -- Do required fixup of universal fixed operation
7366 if Typ
= Universal_Fixed
then
7367 Fixup_Universal_Fixed_Operation
(N
);
7371 -- Divisions with fixed-point results
7373 if Is_Fixed_Point_Type
(Typ
) then
7375 -- No special processing if Treat_Fixed_As_Integer is set, since
7376 -- from a semantic point of view such operations are simply integer
7377 -- operations and will be treated that way.
7379 if not Treat_Fixed_As_Integer
(N
) then
7380 if Is_Integer_Type
(Rtyp
) then
7381 Expand_Divide_Fixed_By_Integer_Giving_Fixed
(N
);
7383 Expand_Divide_Fixed_By_Fixed_Giving_Fixed
(N
);
7387 -- Deal with divide-by-zero check if back end cannot handle them
7388 -- and the flag is set indicating that we need such a check. Note
7389 -- that we don't need to bother here with the case of mixed-mode
7390 -- (Right operand an integer type), since these will be rewritten
7391 -- with conversions to a divide with a fixed-point right operand.
7393 if Nkind
(N
) = N_Op_Divide
7394 and then Do_Division_Check
(N
)
7395 and then not Backend_Divide_Checks_On_Target
7396 and then not Is_Integer_Type
(Rtyp
)
7398 Set_Do_Division_Check
(N
, False);
7400 Make_Raise_Constraint_Error
(Loc
,
7403 Left_Opnd
=> Duplicate_Subexpr_Move_Checks
(Ropnd
),
7404 Right_Opnd
=> Make_Real_Literal
(Loc
, Ureal_0
)),
7405 Reason
=> CE_Divide_By_Zero
));
7408 -- Other cases of division of fixed-point operands. Again we exclude the
7409 -- case where Treat_Fixed_As_Integer is set.
7411 elsif (Is_Fixed_Point_Type
(Ltyp
) or else Is_Fixed_Point_Type
(Rtyp
))
7412 and then not Treat_Fixed_As_Integer
(N
)
7414 if Is_Integer_Type
(Typ
) then
7415 Expand_Divide_Fixed_By_Fixed_Giving_Integer
(N
);
7417 pragma Assert
(Is_Floating_Point_Type
(Typ
));
7418 Expand_Divide_Fixed_By_Fixed_Giving_Float
(N
);
7421 -- Mixed-mode operations can appear in a non-static universal context,
7422 -- in which case the integer argument must be converted explicitly.
7424 elsif Typ
= Universal_Real
and then Is_Integer_Type
(Rtyp
) then
7426 Convert_To
(Universal_Real
, Relocate_Node
(Ropnd
)));
7428 Analyze_And_Resolve
(Ropnd
, Universal_Real
);
7430 elsif Typ
= Universal_Real
and then Is_Integer_Type
(Ltyp
) then
7432 Convert_To
(Universal_Real
, Relocate_Node
(Lopnd
)));
7434 Analyze_And_Resolve
(Lopnd
, Universal_Real
);
7436 -- Non-fixed point cases, do integer zero divide and overflow checks
7438 elsif Is_Integer_Type
(Typ
) then
7439 Apply_Divide_Checks
(N
);
7442 -- Overflow checks for floating-point if -gnateF mode active
7444 Check_Float_Op_Overflow
(N
);
7446 Expand_Nonbinary_Modular_Op
(N
);
7447 end Expand_N_Op_Divide
;
7449 --------------------
7450 -- Expand_N_Op_Eq --
7451 --------------------
7453 procedure Expand_N_Op_Eq
(N
: Node_Id
) is
7454 Loc
: constant Source_Ptr
:= Sloc
(N
);
7455 Typ
: constant Entity_Id
:= Etype
(N
);
7456 Lhs
: constant Node_Id
:= Left_Opnd
(N
);
7457 Rhs
: constant Node_Id
:= Right_Opnd
(N
);
7458 Bodies
: constant List_Id
:= New_List
;
7459 A_Typ
: constant Entity_Id
:= Etype
(Lhs
);
7461 procedure Build_Equality_Call
(Eq
: Entity_Id
);
7462 -- If a constructed equality exists for the type or for its parent,
7463 -- build and analyze call, adding conversions if the operation is
7466 function Find_Equality
(Prims
: Elist_Id
) return Entity_Id
;
7467 -- Find a primitive equality function within primitive operation list
7470 function Has_Unconstrained_UU_Component
(Typ
: Entity_Id
) return Boolean;
7471 -- Determines whether a type has a subcomponent of an unconstrained
7472 -- Unchecked_Union subtype. Typ is a record type.
7474 -------------------------
7475 -- Build_Equality_Call --
7476 -------------------------
7478 procedure Build_Equality_Call
(Eq
: Entity_Id
) is
7479 Op_Type
: constant Entity_Id
:= Etype
(First_Formal
(Eq
));
7480 L_Exp
: Node_Id
:= Relocate_Node
(Lhs
);
7481 R_Exp
: Node_Id
:= Relocate_Node
(Rhs
);
7484 -- Adjust operands if necessary to comparison type
7486 if Base_Type
(Op_Type
) /= Base_Type
(A_Typ
)
7487 and then not Is_Class_Wide_Type
(A_Typ
)
7489 L_Exp
:= OK_Convert_To
(Op_Type
, L_Exp
);
7490 R_Exp
:= OK_Convert_To
(Op_Type
, R_Exp
);
7493 -- If we have an Unchecked_Union, we need to add the inferred
7494 -- discriminant values as actuals in the function call. At this
7495 -- point, the expansion has determined that both operands have
7496 -- inferable discriminants.
7498 if Is_Unchecked_Union
(Op_Type
) then
7500 Lhs_Type
: constant Node_Id
:= Etype
(L_Exp
);
7501 Rhs_Type
: constant Node_Id
:= Etype
(R_Exp
);
7503 Lhs_Discr_Vals
: Elist_Id
;
7504 -- List of inferred discriminant values for left operand.
7506 Rhs_Discr_Vals
: Elist_Id
;
7507 -- List of inferred discriminant values for right operand.
7512 Lhs_Discr_Vals
:= New_Elmt_List
;
7513 Rhs_Discr_Vals
:= New_Elmt_List
;
7515 -- Per-object constrained selected components require special
7516 -- attention. If the enclosing scope of the component is an
7517 -- Unchecked_Union, we cannot reference its discriminants
7518 -- directly. This is why we use the extra parameters of the
7519 -- equality function of the enclosing Unchecked_Union.
7521 -- type UU_Type (Discr : Integer := 0) is
7524 -- pragma Unchecked_Union (UU_Type);
7526 -- 1. Unchecked_Union enclosing record:
7528 -- type Enclosing_UU_Type (Discr : Integer := 0) is record
7530 -- Comp : UU_Type (Discr);
7532 -- end Enclosing_UU_Type;
7533 -- pragma Unchecked_Union (Enclosing_UU_Type);
7535 -- Obj1 : Enclosing_UU_Type;
7536 -- Obj2 : Enclosing_UU_Type (1);
7538 -- [. . .] Obj1 = Obj2 [. . .]
7542 -- if not (uu_typeEQ (obj1.comp, obj2.comp, a, b)) then
7544 -- A and B are the formal parameters of the equality function
7545 -- of Enclosing_UU_Type. The function always has two extra
7546 -- formals to capture the inferred discriminant values for
7547 -- each discriminant of the type.
7549 -- 2. Non-Unchecked_Union enclosing record:
7552 -- Enclosing_Non_UU_Type (Discr : Integer := 0)
7555 -- Comp : UU_Type (Discr);
7557 -- end Enclosing_Non_UU_Type;
7559 -- Obj1 : Enclosing_Non_UU_Type;
7560 -- Obj2 : Enclosing_Non_UU_Type (1);
7562 -- ... Obj1 = Obj2 ...
7566 -- if not (uu_typeEQ (obj1.comp, obj2.comp,
7567 -- obj1.discr, obj2.discr)) then
7569 -- In this case we can directly reference the discriminants of
7570 -- the enclosing record.
7572 -- Process left operand of equality
7574 if Nkind
(Lhs
) = N_Selected_Component
7576 Has_Per_Object_Constraint
(Entity
(Selector_Name
(Lhs
)))
7578 -- If enclosing record is an Unchecked_Union, use formals
7579 -- corresponding to each discriminant. The name of the
7580 -- formal is that of the discriminant, with added suffix,
7581 -- see Exp_Ch3.Build_Record_Equality for details.
7583 if Is_Unchecked_Union
(Scope
(Entity
(Selector_Name
(Lhs
))))
7587 (Scope
(Entity
(Selector_Name
(Lhs
))));
7588 while Present
(Discr
) loop
7590 (Make_Identifier
(Loc
,
7591 Chars
=> New_External_Name
(Chars
(Discr
), 'A')),
7592 To
=> Lhs_Discr_Vals
);
7593 Next_Discriminant
(Discr
);
7596 -- If enclosing record is of a non-Unchecked_Union type, it
7597 -- is possible to reference its discriminants directly.
7600 Discr
:= First_Discriminant
(Lhs_Type
);
7601 while Present
(Discr
) loop
7603 (Make_Selected_Component
(Loc
,
7604 Prefix
=> Prefix
(Lhs
),
7607 (Get_Discriminant_Value
(Discr
,
7609 Stored_Constraint
(Lhs_Type
)))),
7610 To
=> Lhs_Discr_Vals
);
7611 Next_Discriminant
(Discr
);
7615 -- Otherwise operand is on object with a constrained type.
7616 -- Infer the discriminant values from the constraint.
7619 Discr
:= First_Discriminant
(Lhs_Type
);
7620 while Present
(Discr
) loop
7623 (Get_Discriminant_Value
(Discr
,
7625 Stored_Constraint
(Lhs_Type
))),
7626 To
=> Lhs_Discr_Vals
);
7627 Next_Discriminant
(Discr
);
7631 -- Similar processing for right operand of equality
7633 if Nkind
(Rhs
) = N_Selected_Component
7635 Has_Per_Object_Constraint
(Entity
(Selector_Name
(Rhs
)))
7637 if Is_Unchecked_Union
7638 (Scope
(Entity
(Selector_Name
(Rhs
))))
7642 (Scope
(Entity
(Selector_Name
(Rhs
))));
7643 while Present
(Discr
) loop
7645 (Make_Identifier
(Loc
,
7646 Chars
=> New_External_Name
(Chars
(Discr
), 'B')),
7647 To
=> Rhs_Discr_Vals
);
7648 Next_Discriminant
(Discr
);
7652 Discr
:= First_Discriminant
(Rhs_Type
);
7653 while Present
(Discr
) loop
7655 (Make_Selected_Component
(Loc
,
7656 Prefix
=> Prefix
(Rhs
),
7658 New_Copy
(Get_Discriminant_Value
7661 Stored_Constraint
(Rhs_Type
)))),
7662 To
=> Rhs_Discr_Vals
);
7663 Next_Discriminant
(Discr
);
7668 Discr
:= First_Discriminant
(Rhs_Type
);
7669 while Present
(Discr
) loop
7671 (New_Copy
(Get_Discriminant_Value
7674 Stored_Constraint
(Rhs_Type
))),
7675 To
=> Rhs_Discr_Vals
);
7676 Next_Discriminant
(Discr
);
7680 -- Now merge the list of discriminant values so that values
7681 -- of corresponding discriminants are adjacent.
7689 Params
:= New_List
(L_Exp
, R_Exp
);
7690 L_Elmt
:= First_Elmt
(Lhs_Discr_Vals
);
7691 R_Elmt
:= First_Elmt
(Rhs_Discr_Vals
);
7692 while Present
(L_Elmt
) loop
7693 Append_To
(Params
, Node
(L_Elmt
));
7694 Append_To
(Params
, Node
(R_Elmt
));
7700 Make_Function_Call
(Loc
,
7701 Name
=> New_Occurrence_Of
(Eq
, Loc
),
7702 Parameter_Associations
=> Params
));
7706 -- Normal case, not an unchecked union
7710 Make_Function_Call
(Loc
,
7711 Name
=> New_Occurrence_Of
(Eq
, Loc
),
7712 Parameter_Associations
=> New_List
(L_Exp
, R_Exp
)));
7715 Analyze_And_Resolve
(N
, Standard_Boolean
, Suppress
=> All_Checks
);
7716 end Build_Equality_Call
;
7722 function Find_Equality
(Prims
: Elist_Id
) return Entity_Id
is
7723 function Find_Aliased_Equality
(Prim
: Entity_Id
) return Entity_Id
;
7724 -- Find an equality in a possible alias chain starting from primitive
7727 function Is_Equality
(Id
: Entity_Id
) return Boolean;
7728 -- Determine whether arbitrary entity Id denotes an equality
7730 ---------------------------
7731 -- Find_Aliased_Equality --
7732 ---------------------------
7734 function Find_Aliased_Equality
(Prim
: Entity_Id
) return Entity_Id
is
7738 -- Inspect each candidate in the alias chain, checking whether it
7739 -- denotes an equality.
7742 while Present
(Candid
) loop
7743 if Is_Equality
(Candid
) then
7747 Candid
:= Alias
(Candid
);
7751 end Find_Aliased_Equality
;
7757 function Is_Equality
(Id
: Entity_Id
) return Boolean is
7758 Formal_1
: Entity_Id
;
7759 Formal_2
: Entity_Id
;
7762 -- The equality function carries name "=", returns Boolean, and
7763 -- has exactly two formal parameters of an identical type.
7765 if Ekind
(Id
) = E_Function
7766 and then Chars
(Id
) = Name_Op_Eq
7767 and then Base_Type
(Etype
(Id
)) = Standard_Boolean
7769 Formal_1
:= First_Formal
(Id
);
7772 if Present
(Formal_1
) then
7773 Formal_2
:= Next_Formal
(Formal_1
);
7778 and then Present
(Formal_2
)
7779 and then Etype
(Formal_1
) = Etype
(Formal_2
)
7780 and then No
(Next_Formal
(Formal_2
));
7788 Eq_Prim
: Entity_Id
;
7789 Prim_Elmt
: Elmt_Id
;
7791 -- Start of processing for Find_Equality
7794 -- Assume that the tagged type lacks an equality
7798 -- Inspect the list of primitives looking for a suitable equality
7799 -- within a possible chain of aliases.
7801 Prim_Elmt
:= First_Elmt
(Prims
);
7802 while Present
(Prim_Elmt
) and then No
(Eq_Prim
) loop
7803 Eq_Prim
:= Find_Aliased_Equality
(Node
(Prim_Elmt
));
7805 Next_Elmt
(Prim_Elmt
);
7808 -- A tagged type should always have an equality
7810 pragma Assert
(Present
(Eq_Prim
));
7815 ------------------------------------
7816 -- Has_Unconstrained_UU_Component --
7817 ------------------------------------
7819 function Has_Unconstrained_UU_Component
7820 (Typ
: Entity_Id
) return Boolean
7822 Tdef
: constant Node_Id
:=
7823 Type_Definition
(Declaration_Node
(Base_Type
(Typ
)));
7827 function Component_Is_Unconstrained_UU
7828 (Comp
: Node_Id
) return Boolean;
7829 -- Determines whether the subtype of the component is an
7830 -- unconstrained Unchecked_Union.
7832 function Variant_Is_Unconstrained_UU
7833 (Variant
: Node_Id
) return Boolean;
7834 -- Determines whether a component of the variant has an unconstrained
7835 -- Unchecked_Union subtype.
7837 -----------------------------------
7838 -- Component_Is_Unconstrained_UU --
7839 -----------------------------------
7841 function Component_Is_Unconstrained_UU
7842 (Comp
: Node_Id
) return Boolean
7845 if Nkind
(Comp
) /= N_Component_Declaration
then
7850 Sindic
: constant Node_Id
:=
7851 Subtype_Indication
(Component_Definition
(Comp
));
7854 -- Unconstrained nominal type. In the case of a constraint
7855 -- present, the node kind would have been N_Subtype_Indication.
7857 if Nkind
(Sindic
) = N_Identifier
then
7858 return Is_Unchecked_Union
(Base_Type
(Etype
(Sindic
)));
7863 end Component_Is_Unconstrained_UU
;
7865 ---------------------------------
7866 -- Variant_Is_Unconstrained_UU --
7867 ---------------------------------
7869 function Variant_Is_Unconstrained_UU
7870 (Variant
: Node_Id
) return Boolean
7872 Clist
: constant Node_Id
:= Component_List
(Variant
);
7875 if Is_Empty_List
(Component_Items
(Clist
)) then
7879 -- We only need to test one component
7882 Comp
: Node_Id
:= First
(Component_Items
(Clist
));
7885 while Present
(Comp
) loop
7886 if Component_Is_Unconstrained_UU
(Comp
) then
7894 -- None of the components withing the variant were of
7895 -- unconstrained Unchecked_Union type.
7898 end Variant_Is_Unconstrained_UU
;
7900 -- Start of processing for Has_Unconstrained_UU_Component
7903 if Null_Present
(Tdef
) then
7907 Clist
:= Component_List
(Tdef
);
7908 Vpart
:= Variant_Part
(Clist
);
7910 -- Inspect available components
7912 if Present
(Component_Items
(Clist
)) then
7914 Comp
: Node_Id
:= First
(Component_Items
(Clist
));
7917 while Present
(Comp
) loop
7919 -- One component is sufficient
7921 if Component_Is_Unconstrained_UU
(Comp
) then
7930 -- Inspect available components withing variants
7932 if Present
(Vpart
) then
7934 Variant
: Node_Id
:= First
(Variants
(Vpart
));
7937 while Present
(Variant
) loop
7939 -- One component within a variant is sufficient
7941 if Variant_Is_Unconstrained_UU
(Variant
) then
7950 -- Neither the available components, nor the components inside the
7951 -- variant parts were of an unconstrained Unchecked_Union subtype.
7954 end Has_Unconstrained_UU_Component
;
7960 -- Start of processing for Expand_N_Op_Eq
7963 Binary_Op_Validity_Checks
(N
);
7965 -- Deal with private types
7969 if Ekind
(Typl
) = E_Private_Type
then
7970 Typl
:= Underlying_Type
(Typl
);
7972 elsif Ekind
(Typl
) = E_Private_Subtype
then
7973 Typl
:= Underlying_Type
(Base_Type
(Typl
));
7976 -- It may happen in error situations that the underlying type is not
7977 -- set. The error will be detected later, here we just defend the
7984 -- Now get the implementation base type (note that plain Base_Type here
7985 -- might lead us back to the private type, which is not what we want!)
7987 Typl
:= Implementation_Base_Type
(Typl
);
7989 -- Equality between variant records results in a call to a routine
7990 -- that has conditional tests of the discriminant value(s), and hence
7991 -- violates the No_Implicit_Conditionals restriction.
7993 if Has_Variant_Part
(Typl
) then
7998 Check_Restriction
(Msg
, No_Implicit_Conditionals
, N
);
8002 ("\comparison of variant records tests discriminants", N
);
8008 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
8009 -- means we no longer have a comparison operation, we are all done.
8011 Expand_Compare_Minimize_Eliminate_Overflow
(N
);
8013 if Nkind
(N
) /= N_Op_Eq
then
8017 -- Boolean types (requiring handling of non-standard case)
8019 if Is_Boolean_Type
(Typl
) then
8020 Adjust_Condition
(Left_Opnd
(N
));
8021 Adjust_Condition
(Right_Opnd
(N
));
8022 Set_Etype
(N
, Standard_Boolean
);
8023 Adjust_Result_Type
(N
, Typ
);
8027 elsif Is_Array_Type
(Typl
) then
8029 -- If we are doing full validity checking, and it is possible for the
8030 -- array elements to be invalid then expand out array comparisons to
8031 -- make sure that we check the array elements.
8033 if Validity_Check_Operands
8034 and then not Is_Known_Valid
(Component_Type
(Typl
))
8037 Save_Force_Validity_Checks
: constant Boolean :=
8038 Force_Validity_Checks
;
8040 Force_Validity_Checks
:= True;
8042 Expand_Array_Equality
8044 Relocate_Node
(Lhs
),
8045 Relocate_Node
(Rhs
),
8048 Insert_Actions
(N
, Bodies
);
8049 Analyze_And_Resolve
(N
, Standard_Boolean
);
8050 Force_Validity_Checks
:= Save_Force_Validity_Checks
;
8053 -- Packed case where both operands are known aligned
8055 elsif Is_Bit_Packed_Array
(Typl
)
8056 and then not Is_Possibly_Unaligned_Object
(Lhs
)
8057 and then not Is_Possibly_Unaligned_Object
(Rhs
)
8059 Expand_Packed_Eq
(N
);
8061 -- Where the component type is elementary we can use a block bit
8062 -- comparison (if supported on the target) exception in the case
8063 -- of floating-point (negative zero issues require element by
8064 -- element comparison), and atomic/VFA types (where we must be sure
8065 -- to load elements independently) and possibly unaligned arrays.
8067 elsif Is_Elementary_Type
(Component_Type
(Typl
))
8068 and then not Is_Floating_Point_Type
(Component_Type
(Typl
))
8069 and then not Is_Atomic_Or_VFA
(Component_Type
(Typl
))
8070 and then not Is_Possibly_Unaligned_Object
(Lhs
)
8071 and then not Is_Possibly_Unaligned_Object
(Rhs
)
8072 and then Support_Composite_Compare_On_Target
8076 -- For composite and floating-point cases, expand equality loop to
8077 -- make sure of using proper comparisons for tagged types, and
8078 -- correctly handling the floating-point case.
8082 Expand_Array_Equality
8084 Relocate_Node
(Lhs
),
8085 Relocate_Node
(Rhs
),
8088 Insert_Actions
(N
, Bodies
, Suppress
=> All_Checks
);
8089 Analyze_And_Resolve
(N
, Standard_Boolean
, Suppress
=> All_Checks
);
8094 elsif Is_Record_Type
(Typl
) then
8096 -- For tagged types, use the primitive "="
8098 if Is_Tagged_Type
(Typl
) then
8100 -- No need to do anything else compiling under restriction
8101 -- No_Dispatching_Calls. During the semantic analysis we
8102 -- already notified such violation.
8104 if Restriction_Active
(No_Dispatching_Calls
) then
8108 -- If this is an untagged private type completed with a derivation
8109 -- of an untagged private type whose full view is a tagged type,
8110 -- we use the primitive operations of the private type (since it
8111 -- does not have a full view, and also because its equality
8112 -- primitive may have been overridden in its untagged full view).
8114 if Inherits_From_Tagged_Full_View
(A_Typ
) then
8116 (Find_Equality
(Collect_Primitive_Operations
(A_Typ
)));
8118 -- Find the type's predefined equality or an overriding
8119 -- user-defined equality. The reason for not simply calling
8120 -- Find_Prim_Op here is that there may be a user-defined
8121 -- overloaded equality op that precedes the equality that we
8122 -- want, so we have to explicitly search (e.g., there could be
8123 -- an equality with two different parameter types).
8126 if Is_Class_Wide_Type
(Typl
) then
8127 Typl
:= Find_Specific_Type
(Typl
);
8131 (Find_Equality
(Primitive_Operations
(Typl
)));
8134 -- Ada 2005 (AI-216): Program_Error is raised when evaluating the
8135 -- predefined equality operator for a type which has a subcomponent
8136 -- of an Unchecked_Union type whose nominal subtype is unconstrained.
8138 elsif Has_Unconstrained_UU_Component
(Typl
) then
8140 Make_Raise_Program_Error
(Loc
,
8141 Reason
=> PE_Unchecked_Union_Restriction
));
8143 -- Prevent Gigi from generating incorrect code by rewriting the
8144 -- equality as a standard False. (is this documented somewhere???)
8147 New_Occurrence_Of
(Standard_False
, Loc
));
8149 elsif Is_Unchecked_Union
(Typl
) then
8151 -- If we can infer the discriminants of the operands, we make a
8152 -- call to the TSS equality function.
8154 if Has_Inferable_Discriminants
(Lhs
)
8156 Has_Inferable_Discriminants
(Rhs
)
8159 (TSS
(Root_Type
(Typl
), TSS_Composite_Equality
));
8162 -- Ada 2005 (AI-216): Program_Error is raised when evaluating
8163 -- the predefined equality operator for an Unchecked_Union type
8164 -- if either of the operands lack inferable discriminants.
8167 Make_Raise_Program_Error
(Loc
,
8168 Reason
=> PE_Unchecked_Union_Restriction
));
8170 -- Emit a warning on source equalities only, otherwise the
8171 -- message may appear out of place due to internal use. The
8172 -- warning is unconditional because it is required by the
8175 if Comes_From_Source
(N
) then
8177 ("Unchecked_Union discriminants cannot be determined??",
8180 ("\Program_Error will be raised for equality operation??",
8184 -- Prevent Gigi from generating incorrect code by rewriting
8185 -- the equality as a standard False (documented where???).
8188 New_Occurrence_Of
(Standard_False
, Loc
));
8191 -- If a type support function is present (for complex cases), use it
8193 elsif Present
(TSS
(Root_Type
(Typl
), TSS_Composite_Equality
)) then
8195 (TSS
(Root_Type
(Typl
), TSS_Composite_Equality
));
8197 -- When comparing two Bounded_Strings, use the primitive equality of
8198 -- the root Super_String type.
8200 elsif Is_Bounded_String
(Typl
) then
8203 (Collect_Primitive_Operations
(Root_Type
(Typl
))));
8205 -- Otherwise expand the component by component equality. Note that
8206 -- we never use block-bit comparisons for records, because of the
8207 -- problems with gaps. The back end will often be able to recombine
8208 -- the separate comparisons that we generate here.
8211 Remove_Side_Effects
(Lhs
);
8212 Remove_Side_Effects
(Rhs
);
8214 Expand_Record_Equality
(N
, Typl
, Lhs
, Rhs
, Bodies
));
8216 Insert_Actions
(N
, Bodies
, Suppress
=> All_Checks
);
8217 Analyze_And_Resolve
(N
, Standard_Boolean
, Suppress
=> All_Checks
);
8221 -- Test if result is known at compile time
8223 Rewrite_Comparison
(N
);
8225 -- Special optimization of length comparison
8227 Optimize_Length_Comparison
(N
);
8229 -- One more special case: if we have a comparison of X'Result = expr
8230 -- in floating-point, then if not already there, change expr to be
8231 -- f'Machine (expr) to eliminate surprise from extra precision.
8233 if Is_Floating_Point_Type
(Typl
)
8234 and then Nkind
(Original_Node
(Lhs
)) = N_Attribute_Reference
8235 and then Attribute_Name
(Original_Node
(Lhs
)) = Name_Result
8237 -- Stick in the Typ'Machine call if not already there
8239 if Nkind
(Rhs
) /= N_Attribute_Reference
8240 or else Attribute_Name
(Rhs
) /= Name_Machine
8243 Make_Attribute_Reference
(Loc
,
8244 Prefix
=> New_Occurrence_Of
(Typl
, Loc
),
8245 Attribute_Name
=> Name_Machine
,
8246 Expressions
=> New_List
(Relocate_Node
(Rhs
))));
8247 Analyze_And_Resolve
(Rhs
, Typl
);
8252 -----------------------
8253 -- Expand_N_Op_Expon --
8254 -----------------------
8256 procedure Expand_N_Op_Expon
(N
: Node_Id
) is
8257 Loc
: constant Source_Ptr
:= Sloc
(N
);
8258 Ovflo
: constant Boolean := Do_Overflow_Check
(N
);
8259 Typ
: constant Entity_Id
:= Etype
(N
);
8260 Rtyp
: constant Entity_Id
:= Root_Type
(Typ
);
8264 function Wrap_MA
(Exp
: Node_Id
) return Node_Id
;
8265 -- Given an expression Exp, if the root type is Float or Long_Float,
8266 -- then wrap the expression in a call of Bastyp'Machine, to stop any
8267 -- extra precision. This is done to ensure that X**A = X**B when A is
8268 -- a static constant and B is a variable with the same value. For any
8269 -- other type, the node Exp is returned unchanged.
8275 function Wrap_MA
(Exp
: Node_Id
) return Node_Id
is
8276 Loc
: constant Source_Ptr
:= Sloc
(Exp
);
8279 if Rtyp
= Standard_Float
or else Rtyp
= Standard_Long_Float
then
8281 Make_Attribute_Reference
(Loc
,
8282 Attribute_Name
=> Name_Machine
,
8283 Prefix
=> New_Occurrence_Of
(Bastyp
, Loc
),
8284 Expressions
=> New_List
(Relocate_Node
(Exp
)));
8302 -- Start of processing for Expand_N_Op_Expon
8305 Binary_Op_Validity_Checks
(N
);
8307 -- CodePeer wants to see the unexpanded N_Op_Expon node
8309 if CodePeer_Mode
then
8313 -- Relocation of left and right operands must be done after performing
8314 -- the validity checks since the generation of validation checks may
8315 -- remove side effects.
8317 Base
:= Relocate_Node
(Left_Opnd
(N
));
8318 Bastyp
:= Etype
(Base
);
8319 Exp
:= Relocate_Node
(Right_Opnd
(N
));
8320 Exptyp
:= Etype
(Exp
);
8322 -- If either operand is of a private type, then we have the use of an
8323 -- intrinsic operator, and we get rid of the privateness, by using root
8324 -- types of underlying types for the actual operation. Otherwise the
8325 -- private types will cause trouble if we expand multiplications or
8326 -- shifts etc. We also do this transformation if the result type is
8327 -- different from the base type.
8329 if Is_Private_Type
(Etype
(Base
))
8330 or else Is_Private_Type
(Typ
)
8331 or else Is_Private_Type
(Exptyp
)
8332 or else Rtyp
/= Root_Type
(Bastyp
)
8335 Bt
: constant Entity_Id
:= Root_Type
(Underlying_Type
(Bastyp
));
8336 Et
: constant Entity_Id
:= Root_Type
(Underlying_Type
(Exptyp
));
8339 Unchecked_Convert_To
(Typ
,
8341 Left_Opnd
=> Unchecked_Convert_To
(Bt
, Base
),
8342 Right_Opnd
=> Unchecked_Convert_To
(Et
, Exp
))));
8343 Analyze_And_Resolve
(N
, Typ
);
8348 -- Check for MINIMIZED/ELIMINATED overflow mode
8350 if Minimized_Eliminated_Overflow_Check
(N
) then
8351 Apply_Arithmetic_Overflow_Check
(N
);
8355 -- Test for case of known right argument where we can replace the
8356 -- exponentiation by an equivalent expression using multiplication.
8358 -- Note: use CRT_Safe version of Compile_Time_Known_Value because in
8359 -- configurable run-time mode, we may not have the exponentiation
8360 -- routine available, and we don't want the legality of the program
8361 -- to depend on how clever the compiler is in knowing values.
8363 if CRT_Safe_Compile_Time_Known_Value
(Exp
) then
8364 Expv
:= Expr_Value
(Exp
);
8366 -- We only fold small non-negative exponents. You might think we
8367 -- could fold small negative exponents for the real case, but we
8368 -- can't because we are required to raise Constraint_Error for
8369 -- the case of 0.0 ** (negative) even if Machine_Overflows = False.
8370 -- See ACVC test C4A012B, and it is not worth generating the test.
8372 -- For small negative exponents, we return the reciprocal of
8373 -- the folding of the exponentiation for the opposite (positive)
8374 -- exponent, as required by Ada RM 4.5.6(11/3).
8376 if abs Expv
<= 4 then
8378 -- X ** 0 = 1 (or 1.0)
8382 -- Call Remove_Side_Effects to ensure that any side effects
8383 -- in the ignored left operand (in particular function calls
8384 -- to user defined functions) are properly executed.
8386 Remove_Side_Effects
(Base
);
8388 if Ekind
(Typ
) in Integer_Kind
then
8389 Xnode
:= Make_Integer_Literal
(Loc
, Intval
=> 1);
8391 Xnode
:= Make_Real_Literal
(Loc
, Ureal_1
);
8404 Make_Op_Multiply
(Loc
,
8405 Left_Opnd
=> Duplicate_Subexpr
(Base
),
8406 Right_Opnd
=> Duplicate_Subexpr_No_Checks
(Base
)));
8408 -- X ** 3 = X * X * X
8413 Make_Op_Multiply
(Loc
,
8415 Make_Op_Multiply
(Loc
,
8416 Left_Opnd
=> Duplicate_Subexpr
(Base
),
8417 Right_Opnd
=> Duplicate_Subexpr_No_Checks
(Base
)),
8418 Right_Opnd
=> Duplicate_Subexpr_No_Checks
(Base
)));
8423 -- En : constant base'type := base * base;
8428 Temp
:= Make_Temporary
(Loc
, 'E', Base
);
8431 Make_Expression_With_Actions
(Loc
,
8432 Actions
=> New_List
(
8433 Make_Object_Declaration
(Loc
,
8434 Defining_Identifier
=> Temp
,
8435 Constant_Present
=> True,
8436 Object_Definition
=> New_Occurrence_Of
(Typ
, Loc
),
8439 Make_Op_Multiply
(Loc
,
8441 Duplicate_Subexpr
(Base
),
8443 Duplicate_Subexpr_No_Checks
(Base
))))),
8447 Make_Op_Multiply
(Loc
,
8448 Left_Opnd
=> New_Occurrence_Of
(Temp
, Loc
),
8449 Right_Opnd
=> New_Occurrence_Of
(Temp
, Loc
))));
8451 -- X ** N = 1.0 / X ** (-N)
8456 (Expv
= -1 or Expv
= -2 or Expv
= -3 or Expv
= -4);
8459 Make_Op_Divide
(Loc
,
8461 Make_Float_Literal
(Loc
,
8463 Significand
=> Uint_1
,
8464 Exponent
=> Uint_0
),
8467 Left_Opnd
=> Duplicate_Subexpr
(Base
),
8469 Make_Integer_Literal
(Loc
,
8474 Analyze_And_Resolve
(N
, Typ
);
8479 -- Deal with optimizing 2 ** expression to shift where possible
8481 -- Note: we used to check that Exptyp was an unsigned type. But that is
8482 -- an unnecessary check, since if Exp is negative, we have a run-time
8483 -- error that is either caught (so we get the right result) or we have
8484 -- suppressed the check, in which case the code is erroneous anyway.
8486 if Is_Integer_Type
(Rtyp
)
8488 -- The base value must be "safe compile-time known", and exactly 2
8490 and then Nkind
(Base
) = N_Integer_Literal
8491 and then CRT_Safe_Compile_Time_Known_Value
(Base
)
8492 and then Expr_Value
(Base
) = Uint_2
8494 -- We only handle cases where the right type is a integer
8496 and then Is_Integer_Type
(Root_Type
(Exptyp
))
8497 and then Esize
(Root_Type
(Exptyp
)) <= Esize
(Standard_Integer
)
8499 -- This transformation is not applicable for a modular type with a
8500 -- nonbinary modulus because we do not handle modular reduction in
8501 -- a correct manner if we attempt this transformation in this case.
8503 and then not Non_Binary_Modulus
(Typ
)
8505 -- Handle the cases where our parent is a division or multiplication
8506 -- specially. In these cases we can convert to using a shift at the
8507 -- parent level if we are not doing overflow checking, since it is
8508 -- too tricky to combine the overflow check at the parent level.
8511 and then Nkind_In
(Parent
(N
), N_Op_Divide
, N_Op_Multiply
)
8514 P
: constant Node_Id
:= Parent
(N
);
8515 L
: constant Node_Id
:= Left_Opnd
(P
);
8516 R
: constant Node_Id
:= Right_Opnd
(P
);
8519 if (Nkind
(P
) = N_Op_Multiply
8521 ((Is_Integer_Type
(Etype
(L
)) and then R
= N
)
8523 (Is_Integer_Type
(Etype
(R
)) and then L
= N
))
8524 and then not Do_Overflow_Check
(P
))
8527 (Nkind
(P
) = N_Op_Divide
8528 and then Is_Integer_Type
(Etype
(L
))
8529 and then Is_Unsigned_Type
(Etype
(L
))
8531 and then not Do_Overflow_Check
(P
))
8533 Set_Is_Power_Of_2_For_Shift
(N
);
8538 -- Here we just have 2 ** N on its own, so we can convert this to a
8539 -- shift node. We are prepared to deal with overflow here, and we
8540 -- also have to handle proper modular reduction for binary modular.
8549 -- Maximum shift count with no overflow
8552 -- Set True if we must test the shift count
8555 -- Node for test against TestS
8558 -- Compute maximum shift based on the underlying size. For a
8559 -- modular type this is one less than the size.
8561 if Is_Modular_Integer_Type
(Typ
) then
8563 -- For modular integer types, this is the size of the value
8564 -- being shifted minus one. Any larger values will cause
8565 -- modular reduction to a result of zero. Note that we do
8566 -- want the RM_Size here (e.g. mod 2 ** 7, we want a result
8567 -- of 6, since 2**7 should be reduced to zero).
8569 MaxS
:= RM_Size
(Rtyp
) - 1;
8571 -- For signed integer types, we use the size of the value
8572 -- being shifted minus 2. Larger values cause overflow.
8575 MaxS
:= Esize
(Rtyp
) - 2;
8578 -- Determine range to see if it can be larger than MaxS
8581 (Right_Opnd
(N
), OK
, Lo
, Hi
, Assume_Valid
=> True);
8582 TestS
:= (not OK
) or else Hi
> MaxS
;
8584 -- Signed integer case
8586 if Is_Signed_Integer_Type
(Typ
) then
8588 -- Generate overflow check if overflow is active. Note that
8589 -- we can simply ignore the possibility of overflow if the
8590 -- flag is not set (means that overflow cannot happen or
8591 -- that overflow checks are suppressed).
8593 if Ovflo
and TestS
then
8595 Make_Raise_Constraint_Error
(Loc
,
8598 Left_Opnd
=> Duplicate_Subexpr
(Right_Opnd
(N
)),
8599 Right_Opnd
=> Make_Integer_Literal
(Loc
, MaxS
)),
8600 Reason
=> CE_Overflow_Check_Failed
));
8603 -- Now rewrite node as Shift_Left (1, right-operand)
8606 Make_Op_Shift_Left
(Loc
,
8607 Left_Opnd
=> Make_Integer_Literal
(Loc
, Uint_1
),
8608 Right_Opnd
=> Right_Opnd
(N
)));
8610 -- Modular integer case
8612 else pragma Assert
(Is_Modular_Integer_Type
(Typ
));
8614 -- If shift count can be greater than MaxS, we need to wrap
8615 -- the shift in a test that will reduce the result value to
8616 -- zero if this shift count is exceeded.
8620 -- Note: build node for the comparison first, before we
8621 -- reuse the Right_Opnd, so that we have proper parents
8622 -- in place for the Duplicate_Subexpr call.
8626 Left_Opnd
=> Duplicate_Subexpr
(Right_Opnd
(N
)),
8627 Right_Opnd
=> Make_Integer_Literal
(Loc
, MaxS
));
8630 Make_If_Expression
(Loc
,
8631 Expressions
=> New_List
(
8633 Make_Integer_Literal
(Loc
, Uint_0
),
8634 Make_Op_Shift_Left
(Loc
,
8635 Left_Opnd
=> Make_Integer_Literal
(Loc
, Uint_1
),
8636 Right_Opnd
=> Right_Opnd
(N
)))));
8638 -- If we know shift count cannot be greater than MaxS, then
8639 -- it is safe to just rewrite as a shift with no test.
8643 Make_Op_Shift_Left
(Loc
,
8644 Left_Opnd
=> Make_Integer_Literal
(Loc
, Uint_1
),
8645 Right_Opnd
=> Right_Opnd
(N
)));
8649 Analyze_And_Resolve
(N
, Typ
);
8655 -- Fall through if exponentiation must be done using a runtime routine
8657 -- First deal with modular case
8659 if Is_Modular_Integer_Type
(Rtyp
) then
8661 -- Nonbinary modular case, we call the special exponentiation
8662 -- routine for the nonbinary case, converting the argument to
8663 -- Long_Long_Integer and passing the modulus value. Then the
8664 -- result is converted back to the base type.
8666 if Non_Binary_Modulus
(Rtyp
) then
8669 Make_Function_Call
(Loc
,
8671 New_Occurrence_Of
(RTE
(RE_Exp_Modular
), Loc
),
8672 Parameter_Associations
=> New_List
(
8673 Convert_To
(RTE
(RE_Unsigned
), Base
),
8674 Make_Integer_Literal
(Loc
, Modulus
(Rtyp
)),
8677 -- Binary modular case, in this case, we call one of two routines,
8678 -- either the unsigned integer case, or the unsigned long long
8679 -- integer case, with a final "and" operation to do the required mod.
8682 if UI_To_Int
(Esize
(Rtyp
)) <= Standard_Integer_Size
then
8683 Ent
:= RTE
(RE_Exp_Unsigned
);
8685 Ent
:= RTE
(RE_Exp_Long_Long_Unsigned
);
8692 Make_Function_Call
(Loc
,
8693 Name
=> New_Occurrence_Of
(Ent
, Loc
),
8694 Parameter_Associations
=> New_List
(
8695 Convert_To
(Etype
(First_Formal
(Ent
)), Base
),
8698 Make_Integer_Literal
(Loc
, Modulus
(Rtyp
) - 1))));
8702 -- Common exit point for modular type case
8704 Analyze_And_Resolve
(N
, Typ
);
8707 -- Signed integer cases, done using either Integer or Long_Long_Integer.
8708 -- It is not worth having routines for Short_[Short_]Integer, since for
8709 -- most machines it would not help, and it would generate more code that
8710 -- might need certification when a certified run time is required.
8712 -- In the integer cases, we have two routines, one for when overflow
8713 -- checks are required, and one when they are not required, since there
8714 -- is a real gain in omitting checks on many machines.
8716 elsif Rtyp
= Base_Type
(Standard_Long_Long_Integer
)
8717 or else (Rtyp
= Base_Type
(Standard_Long_Integer
)
8719 Esize
(Standard_Long_Integer
) > Esize
(Standard_Integer
))
8720 or else Rtyp
= Universal_Integer
8722 Etyp
:= Standard_Long_Long_Integer
;
8725 Rent
:= RE_Exp_Long_Long_Integer
;
8727 Rent
:= RE_Exn_Long_Long_Integer
;
8730 elsif Is_Signed_Integer_Type
(Rtyp
) then
8731 Etyp
:= Standard_Integer
;
8734 Rent
:= RE_Exp_Integer
;
8736 Rent
:= RE_Exn_Integer
;
8739 -- Floating-point cases. We do not need separate routines for the
8740 -- overflow case here, since in the case of floating-point, we generate
8741 -- infinities anyway as a rule (either that or we automatically trap
8742 -- overflow), and if there is an infinity generated and a range check
8743 -- is required, the check will fail anyway.
8745 -- Historical note: we used to convert everything to Long_Long_Float
8746 -- and call a single common routine, but this had the undesirable effect
8747 -- of giving different results for small static exponent values and the
8748 -- same dynamic values.
8751 pragma Assert
(Is_Floating_Point_Type
(Rtyp
));
8753 if Rtyp
= Standard_Float
then
8754 Etyp
:= Standard_Float
;
8755 Rent
:= RE_Exn_Float
;
8757 elsif Rtyp
= Standard_Long_Float
then
8758 Etyp
:= Standard_Long_Float
;
8759 Rent
:= RE_Exn_Long_Float
;
8762 Etyp
:= Standard_Long_Long_Float
;
8763 Rent
:= RE_Exn_Long_Long_Float
;
8767 -- Common processing for integer cases and floating-point cases.
8768 -- If we are in the right type, we can call runtime routine directly
8771 and then Rtyp
/= Universal_Integer
8772 and then Rtyp
/= Universal_Real
8776 Make_Function_Call
(Loc
,
8777 Name
=> New_Occurrence_Of
(RTE
(Rent
), Loc
),
8778 Parameter_Associations
=> New_List
(Base
, Exp
))));
8780 -- Otherwise we have to introduce conversions (conversions are also
8781 -- required in the universal cases, since the runtime routine is
8782 -- typed using one of the standard types).
8787 Make_Function_Call
(Loc
,
8788 Name
=> New_Occurrence_Of
(RTE
(Rent
), Loc
),
8789 Parameter_Associations
=> New_List
(
8790 Convert_To
(Etyp
, Base
),
8794 Analyze_And_Resolve
(N
, Typ
);
8798 when RE_Not_Available
=>
8800 end Expand_N_Op_Expon
;
8802 --------------------
8803 -- Expand_N_Op_Ge --
8804 --------------------
8806 procedure Expand_N_Op_Ge
(N
: Node_Id
) is
8807 Typ
: constant Entity_Id
:= Etype
(N
);
8808 Op1
: constant Node_Id
:= Left_Opnd
(N
);
8809 Op2
: constant Node_Id
:= Right_Opnd
(N
);
8810 Typ1
: constant Entity_Id
:= Base_Type
(Etype
(Op1
));
8813 Binary_Op_Validity_Checks
(N
);
8815 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
8816 -- means we no longer have a comparison operation, we are all done.
8818 Expand_Compare_Minimize_Eliminate_Overflow
(N
);
8820 if Nkind
(N
) /= N_Op_Ge
then
8826 if Is_Array_Type
(Typ1
) then
8827 Expand_Array_Comparison
(N
);
8831 -- Deal with boolean operands
8833 if Is_Boolean_Type
(Typ1
) then
8834 Adjust_Condition
(Op1
);
8835 Adjust_Condition
(Op2
);
8836 Set_Etype
(N
, Standard_Boolean
);
8837 Adjust_Result_Type
(N
, Typ
);
8840 Rewrite_Comparison
(N
);
8842 Optimize_Length_Comparison
(N
);
8845 --------------------
8846 -- Expand_N_Op_Gt --
8847 --------------------
8849 procedure Expand_N_Op_Gt
(N
: Node_Id
) is
8850 Typ
: constant Entity_Id
:= Etype
(N
);
8851 Op1
: constant Node_Id
:= Left_Opnd
(N
);
8852 Op2
: constant Node_Id
:= Right_Opnd
(N
);
8853 Typ1
: constant Entity_Id
:= Base_Type
(Etype
(Op1
));
8856 Binary_Op_Validity_Checks
(N
);
8858 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
8859 -- means we no longer have a comparison operation, we are all done.
8861 Expand_Compare_Minimize_Eliminate_Overflow
(N
);
8863 if Nkind
(N
) /= N_Op_Gt
then
8867 -- Deal with array type operands
8869 if Is_Array_Type
(Typ1
) then
8870 Expand_Array_Comparison
(N
);
8874 -- Deal with boolean type operands
8876 if Is_Boolean_Type
(Typ1
) then
8877 Adjust_Condition
(Op1
);
8878 Adjust_Condition
(Op2
);
8879 Set_Etype
(N
, Standard_Boolean
);
8880 Adjust_Result_Type
(N
, Typ
);
8883 Rewrite_Comparison
(N
);
8885 Optimize_Length_Comparison
(N
);
8888 --------------------
8889 -- Expand_N_Op_Le --
8890 --------------------
8892 procedure Expand_N_Op_Le
(N
: Node_Id
) is
8893 Typ
: constant Entity_Id
:= Etype
(N
);
8894 Op1
: constant Node_Id
:= Left_Opnd
(N
);
8895 Op2
: constant Node_Id
:= Right_Opnd
(N
);
8896 Typ1
: constant Entity_Id
:= Base_Type
(Etype
(Op1
));
8899 Binary_Op_Validity_Checks
(N
);
8901 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
8902 -- means we no longer have a comparison operation, we are all done.
8904 Expand_Compare_Minimize_Eliminate_Overflow
(N
);
8906 if Nkind
(N
) /= N_Op_Le
then
8910 -- Deal with array type operands
8912 if Is_Array_Type
(Typ1
) then
8913 Expand_Array_Comparison
(N
);
8917 -- Deal with Boolean type operands
8919 if Is_Boolean_Type
(Typ1
) then
8920 Adjust_Condition
(Op1
);
8921 Adjust_Condition
(Op2
);
8922 Set_Etype
(N
, Standard_Boolean
);
8923 Adjust_Result_Type
(N
, Typ
);
8926 Rewrite_Comparison
(N
);
8928 Optimize_Length_Comparison
(N
);
8931 --------------------
8932 -- Expand_N_Op_Lt --
8933 --------------------
8935 procedure Expand_N_Op_Lt
(N
: Node_Id
) is
8936 Typ
: constant Entity_Id
:= Etype
(N
);
8937 Op1
: constant Node_Id
:= Left_Opnd
(N
);
8938 Op2
: constant Node_Id
:= Right_Opnd
(N
);
8939 Typ1
: constant Entity_Id
:= Base_Type
(Etype
(Op1
));
8942 Binary_Op_Validity_Checks
(N
);
8944 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
8945 -- means we no longer have a comparison operation, we are all done.
8947 Expand_Compare_Minimize_Eliminate_Overflow
(N
);
8949 if Nkind
(N
) /= N_Op_Lt
then
8953 -- Deal with array type operands
8955 if Is_Array_Type
(Typ1
) then
8956 Expand_Array_Comparison
(N
);
8960 -- Deal with Boolean type operands
8962 if Is_Boolean_Type
(Typ1
) then
8963 Adjust_Condition
(Op1
);
8964 Adjust_Condition
(Op2
);
8965 Set_Etype
(N
, Standard_Boolean
);
8966 Adjust_Result_Type
(N
, Typ
);
8969 Rewrite_Comparison
(N
);
8971 Optimize_Length_Comparison
(N
);
8974 -----------------------
8975 -- Expand_N_Op_Minus --
8976 -----------------------
8978 procedure Expand_N_Op_Minus
(N
: Node_Id
) is
8979 Loc
: constant Source_Ptr
:= Sloc
(N
);
8980 Typ
: constant Entity_Id
:= Etype
(N
);
8983 Unary_Op_Validity_Checks
(N
);
8985 -- Check for MINIMIZED/ELIMINATED overflow mode
8987 if Minimized_Eliminated_Overflow_Check
(N
) then
8988 Apply_Arithmetic_Overflow_Check
(N
);
8992 if not Backend_Overflow_Checks_On_Target
8993 and then Is_Signed_Integer_Type
(Etype
(N
))
8994 and then Do_Overflow_Check
(N
)
8996 -- Software overflow checking expands -expr into (0 - expr)
8999 Make_Op_Subtract
(Loc
,
9000 Left_Opnd
=> Make_Integer_Literal
(Loc
, 0),
9001 Right_Opnd
=> Right_Opnd
(N
)));
9003 Analyze_And_Resolve
(N
, Typ
);
9006 Expand_Nonbinary_Modular_Op
(N
);
9007 end Expand_N_Op_Minus
;
9009 ---------------------
9010 -- Expand_N_Op_Mod --
9011 ---------------------
9013 procedure Expand_N_Op_Mod
(N
: Node_Id
) is
9014 Loc
: constant Source_Ptr
:= Sloc
(N
);
9015 Typ
: constant Entity_Id
:= Etype
(N
);
9016 DDC
: constant Boolean := Do_Division_Check
(N
);
9029 pragma Warnings
(Off
, Lhi
);
9032 Binary_Op_Validity_Checks
(N
);
9034 -- Check for MINIMIZED/ELIMINATED overflow mode
9036 if Minimized_Eliminated_Overflow_Check
(N
) then
9037 Apply_Arithmetic_Overflow_Check
(N
);
9041 if Is_Integer_Type
(Etype
(N
)) then
9042 Apply_Divide_Checks
(N
);
9044 -- All done if we don't have a MOD any more, which can happen as a
9045 -- result of overflow expansion in MINIMIZED or ELIMINATED modes.
9047 if Nkind
(N
) /= N_Op_Mod
then
9052 -- Proceed with expansion of mod operator
9054 Left
:= Left_Opnd
(N
);
9055 Right
:= Right_Opnd
(N
);
9057 Determine_Range
(Right
, ROK
, Rlo
, Rhi
, Assume_Valid
=> True);
9058 Determine_Range
(Left
, LOK
, Llo
, Lhi
, Assume_Valid
=> True);
9060 -- Convert mod to rem if operands are both known to be non-negative, or
9061 -- both known to be non-positive (these are the cases in which rem and
9062 -- mod are the same, see (RM 4.5.5(28-30)). We do this since it is quite
9063 -- likely that this will improve the quality of code, (the operation now
9064 -- corresponds to the hardware remainder), and it does not seem likely
9065 -- that it could be harmful. It also avoids some cases of the elaborate
9066 -- expansion in Modify_Tree_For_C mode below (since Ada rem = C %).
9069 and then ((Llo
>= 0 and then Rlo
>= 0)
9071 (Lhi
<= 0 and then Rhi
<= 0))
9074 Make_Op_Rem
(Sloc
(N
),
9075 Left_Opnd
=> Left_Opnd
(N
),
9076 Right_Opnd
=> Right_Opnd
(N
)));
9078 -- Instead of reanalyzing the node we do the analysis manually. This
9079 -- avoids anomalies when the replacement is done in an instance and
9080 -- is epsilon more efficient.
9082 Set_Entity
(N
, Standard_Entity
(S_Op_Rem
));
9084 Set_Do_Division_Check
(N
, DDC
);
9085 Expand_N_Op_Rem
(N
);
9089 -- Otherwise, normal mod processing
9092 -- Apply optimization x mod 1 = 0. We don't really need that with
9093 -- gcc, but it is useful with other back ends and is certainly
9096 if Is_Integer_Type
(Etype
(N
))
9097 and then Compile_Time_Known_Value
(Right
)
9098 and then Expr_Value
(Right
) = Uint_1
9100 -- Call Remove_Side_Effects to ensure that any side effects in
9101 -- the ignored left operand (in particular function calls to
9102 -- user defined functions) are properly executed.
9104 Remove_Side_Effects
(Left
);
9106 Rewrite
(N
, Make_Integer_Literal
(Loc
, 0));
9107 Analyze_And_Resolve
(N
, Typ
);
9111 -- If we still have a mod operator and we are in Modify_Tree_For_C
9112 -- mode, and we have a signed integer type, then here is where we do
9113 -- the rewrite in terms of Rem. Note this rewrite bypasses the need
9114 -- for the special handling of the annoying case of largest negative
9115 -- number mod minus one.
9117 if Nkind
(N
) = N_Op_Mod
9118 and then Is_Signed_Integer_Type
(Typ
)
9119 and then Modify_Tree_For_C
9121 -- In the general case, we expand A mod B as
9123 -- Tnn : constant typ := A rem B;
9125 -- (if (A >= 0) = (B >= 0) then Tnn
9126 -- elsif Tnn = 0 then 0
9129 -- The comparison can be written simply as A >= 0 if we know that
9130 -- B >= 0 which is a very common case.
9132 -- An important optimization is when B is known at compile time
9133 -- to be 2**K for some constant. In this case we can simply AND
9134 -- the left operand with the bit string 2**K-1 (i.e. K 1-bits)
9135 -- and that works for both the positive and negative cases.
9138 P2
: constant Nat
:= Power_Of_Two
(Right
);
9143 Unchecked_Convert_To
(Typ
,
9146 Unchecked_Convert_To
9147 (Corresponding_Unsigned_Type
(Typ
), Left
),
9149 Make_Integer_Literal
(Loc
, 2 ** P2
- 1))));
9150 Analyze_And_Resolve
(N
, Typ
);
9155 -- Here for the full rewrite
9158 Tnn
: constant Entity_Id
:= Make_Temporary
(Sloc
(N
), 'T', N
);
9164 Left_Opnd
=> Duplicate_Subexpr_No_Checks
(Left
),
9165 Right_Opnd
=> Make_Integer_Literal
(Loc
, 0));
9167 if not LOK
or else Rlo
< 0 then
9173 Left_Opnd
=> Duplicate_Subexpr_No_Checks
(Right
),
9174 Right_Opnd
=> Make_Integer_Literal
(Loc
, 0)));
9178 Make_Object_Declaration
(Loc
,
9179 Defining_Identifier
=> Tnn
,
9180 Constant_Present
=> True,
9181 Object_Definition
=> New_Occurrence_Of
(Typ
, Loc
),
9185 Right_Opnd
=> Right
)));
9188 Make_If_Expression
(Loc
,
9189 Expressions
=> New_List
(
9191 New_Occurrence_Of
(Tnn
, Loc
),
9192 Make_If_Expression
(Loc
,
9194 Expressions
=> New_List
(
9196 Left_Opnd
=> New_Occurrence_Of
(Tnn
, Loc
),
9197 Right_Opnd
=> Make_Integer_Literal
(Loc
, 0)),
9198 Make_Integer_Literal
(Loc
, 0),
9200 Left_Opnd
=> New_Occurrence_Of
(Tnn
, Loc
),
9202 Duplicate_Subexpr_No_Checks
(Right
)))))));
9204 Analyze_And_Resolve
(N
, Typ
);
9209 -- Deal with annoying case of largest negative number mod minus one.
9210 -- Gigi may not handle this case correctly, because on some targets,
9211 -- the mod value is computed using a divide instruction which gives
9212 -- an overflow trap for this case.
9214 -- It would be a bit more efficient to figure out which targets
9215 -- this is really needed for, but in practice it is reasonable
9216 -- to do the following special check in all cases, since it means
9217 -- we get a clearer message, and also the overhead is minimal given
9218 -- that division is expensive in any case.
9220 -- In fact the check is quite easy, if the right operand is -1, then
9221 -- the mod value is always 0, and we can just ignore the left operand
9222 -- completely in this case.
9224 -- This only applies if we still have a mod operator. Skip if we
9225 -- have already rewritten this (e.g. in the case of eliminated
9226 -- overflow checks which have driven us into bignum mode).
9228 if Nkind
(N
) = N_Op_Mod
then
9230 -- The operand type may be private (e.g. in the expansion of an
9231 -- intrinsic operation) so we must use the underlying type to get
9232 -- the bounds, and convert the literals explicitly.
9236 (Type_Low_Bound
(Base_Type
(Underlying_Type
(Etype
(Left
)))));
9238 if ((not ROK
) or else (Rlo
<= (-1) and then (-1) <= Rhi
))
9239 and then ((not LOK
) or else (Llo
= LLB
))
9242 Make_If_Expression
(Loc
,
9243 Expressions
=> New_List
(
9245 Left_Opnd
=> Duplicate_Subexpr
(Right
),
9247 Unchecked_Convert_To
(Typ
,
9248 Make_Integer_Literal
(Loc
, -1))),
9249 Unchecked_Convert_To
(Typ
,
9250 Make_Integer_Literal
(Loc
, Uint_0
)),
9251 Relocate_Node
(N
))));
9253 Set_Analyzed
(Next
(Next
(First
(Expressions
(N
)))));
9254 Analyze_And_Resolve
(N
, Typ
);
9258 end Expand_N_Op_Mod
;
9260 --------------------------
9261 -- Expand_N_Op_Multiply --
9262 --------------------------
9264 procedure Expand_N_Op_Multiply
(N
: Node_Id
) is
9265 Loc
: constant Source_Ptr
:= Sloc
(N
);
9266 Lop
: constant Node_Id
:= Left_Opnd
(N
);
9267 Rop
: constant Node_Id
:= Right_Opnd
(N
);
9269 Lp2
: constant Boolean :=
9270 Nkind
(Lop
) = N_Op_Expon
and then Is_Power_Of_2_For_Shift
(Lop
);
9271 Rp2
: constant Boolean :=
9272 Nkind
(Rop
) = N_Op_Expon
and then Is_Power_Of_2_For_Shift
(Rop
);
9274 Ltyp
: constant Entity_Id
:= Etype
(Lop
);
9275 Rtyp
: constant Entity_Id
:= Etype
(Rop
);
9276 Typ
: Entity_Id
:= Etype
(N
);
9279 Binary_Op_Validity_Checks
(N
);
9281 -- Check for MINIMIZED/ELIMINATED overflow mode
9283 if Minimized_Eliminated_Overflow_Check
(N
) then
9284 Apply_Arithmetic_Overflow_Check
(N
);
9288 -- Special optimizations for integer types
9290 if Is_Integer_Type
(Typ
) then
9292 -- N * 0 = 0 for integer types
9294 if Compile_Time_Known_Value
(Rop
)
9295 and then Expr_Value
(Rop
) = Uint_0
9297 -- Call Remove_Side_Effects to ensure that any side effects in
9298 -- the ignored left operand (in particular function calls to
9299 -- user defined functions) are properly executed.
9301 Remove_Side_Effects
(Lop
);
9303 Rewrite
(N
, Make_Integer_Literal
(Loc
, Uint_0
));
9304 Analyze_And_Resolve
(N
, Typ
);
9308 -- Similar handling for 0 * N = 0
9310 if Compile_Time_Known_Value
(Lop
)
9311 and then Expr_Value
(Lop
) = Uint_0
9313 Remove_Side_Effects
(Rop
);
9314 Rewrite
(N
, Make_Integer_Literal
(Loc
, Uint_0
));
9315 Analyze_And_Resolve
(N
, Typ
);
9319 -- N * 1 = 1 * N = N for integer types
9321 -- This optimisation is not done if we are going to
9322 -- rewrite the product 1 * 2 ** N to a shift.
9324 if Compile_Time_Known_Value
(Rop
)
9325 and then Expr_Value
(Rop
) = Uint_1
9331 elsif Compile_Time_Known_Value
(Lop
)
9332 and then Expr_Value
(Lop
) = Uint_1
9340 -- Convert x * 2 ** y to Shift_Left (x, y). Note that the fact that
9341 -- Is_Power_Of_2_For_Shift is set means that we know that our left
9342 -- operand is an integer, as required for this to work.
9347 -- Convert 2 ** A * 2 ** B into 2 ** (A + B)
9351 Left_Opnd
=> Make_Integer_Literal
(Loc
, 2),
9354 Left_Opnd
=> Right_Opnd
(Lop
),
9355 Right_Opnd
=> Right_Opnd
(Rop
))));
9356 Analyze_And_Resolve
(N
, Typ
);
9360 -- If the result is modular, perform the reduction of the result
9363 if Is_Modular_Integer_Type
(Typ
)
9364 and then not Non_Binary_Modulus
(Typ
)
9369 Make_Op_Shift_Left
(Loc
,
9372 Convert_To
(Standard_Natural
, Right_Opnd
(Rop
))),
9374 Make_Integer_Literal
(Loc
, Modulus
(Typ
) - 1)));
9378 Make_Op_Shift_Left
(Loc
,
9381 Convert_To
(Standard_Natural
, Right_Opnd
(Rop
))));
9384 Analyze_And_Resolve
(N
, Typ
);
9388 -- Same processing for the operands the other way round
9391 if Is_Modular_Integer_Type
(Typ
)
9392 and then not Non_Binary_Modulus
(Typ
)
9397 Make_Op_Shift_Left
(Loc
,
9400 Convert_To
(Standard_Natural
, Right_Opnd
(Lop
))),
9402 Make_Integer_Literal
(Loc
, Modulus
(Typ
) - 1)));
9406 Make_Op_Shift_Left
(Loc
,
9409 Convert_To
(Standard_Natural
, Right_Opnd
(Lop
))));
9412 Analyze_And_Resolve
(N
, Typ
);
9416 -- Do required fixup of universal fixed operation
9418 if Typ
= Universal_Fixed
then
9419 Fixup_Universal_Fixed_Operation
(N
);
9423 -- Multiplications with fixed-point results
9425 if Is_Fixed_Point_Type
(Typ
) then
9427 -- No special processing if Treat_Fixed_As_Integer is set, since from
9428 -- a semantic point of view such operations are simply integer
9429 -- operations and will be treated that way.
9431 if not Treat_Fixed_As_Integer
(N
) then
9433 -- Case of fixed * integer => fixed
9435 if Is_Integer_Type
(Rtyp
) then
9436 Expand_Multiply_Fixed_By_Integer_Giving_Fixed
(N
);
9438 -- Case of integer * fixed => fixed
9440 elsif Is_Integer_Type
(Ltyp
) then
9441 Expand_Multiply_Integer_By_Fixed_Giving_Fixed
(N
);
9443 -- Case of fixed * fixed => fixed
9446 Expand_Multiply_Fixed_By_Fixed_Giving_Fixed
(N
);
9450 -- Other cases of multiplication of fixed-point operands. Again we
9451 -- exclude the cases where Treat_Fixed_As_Integer flag is set.
9453 elsif (Is_Fixed_Point_Type
(Ltyp
) or else Is_Fixed_Point_Type
(Rtyp
))
9454 and then not Treat_Fixed_As_Integer
(N
)
9456 if Is_Integer_Type
(Typ
) then
9457 Expand_Multiply_Fixed_By_Fixed_Giving_Integer
(N
);
9459 pragma Assert
(Is_Floating_Point_Type
(Typ
));
9460 Expand_Multiply_Fixed_By_Fixed_Giving_Float
(N
);
9463 -- Mixed-mode operations can appear in a non-static universal context,
9464 -- in which case the integer argument must be converted explicitly.
9466 elsif Typ
= Universal_Real
and then Is_Integer_Type
(Rtyp
) then
9467 Rewrite
(Rop
, Convert_To
(Universal_Real
, Relocate_Node
(Rop
)));
9468 Analyze_And_Resolve
(Rop
, Universal_Real
);
9470 elsif Typ
= Universal_Real
and then Is_Integer_Type
(Ltyp
) then
9471 Rewrite
(Lop
, Convert_To
(Universal_Real
, Relocate_Node
(Lop
)));
9472 Analyze_And_Resolve
(Lop
, Universal_Real
);
9474 -- Non-fixed point cases, check software overflow checking required
9476 elsif Is_Signed_Integer_Type
(Etype
(N
)) then
9477 Apply_Arithmetic_Overflow_Check
(N
);
9480 -- Overflow checks for floating-point if -gnateF mode active
9482 Check_Float_Op_Overflow
(N
);
9484 Expand_Nonbinary_Modular_Op
(N
);
9485 end Expand_N_Op_Multiply
;
9487 --------------------
9488 -- Expand_N_Op_Ne --
9489 --------------------
9491 procedure Expand_N_Op_Ne
(N
: Node_Id
) is
9492 Typ
: constant Entity_Id
:= Etype
(Left_Opnd
(N
));
9495 -- Case of elementary type with standard operator
9497 if Is_Elementary_Type
(Typ
)
9498 and then Sloc
(Entity
(N
)) = Standard_Location
9500 Binary_Op_Validity_Checks
(N
);
9502 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if
9503 -- means we no longer have a /= operation, we are all done.
9505 Expand_Compare_Minimize_Eliminate_Overflow
(N
);
9507 if Nkind
(N
) /= N_Op_Ne
then
9511 -- Boolean types (requiring handling of non-standard case)
9513 if Is_Boolean_Type
(Typ
) then
9514 Adjust_Condition
(Left_Opnd
(N
));
9515 Adjust_Condition
(Right_Opnd
(N
));
9516 Set_Etype
(N
, Standard_Boolean
);
9517 Adjust_Result_Type
(N
, Typ
);
9520 Rewrite_Comparison
(N
);
9522 -- For all cases other than elementary types, we rewrite node as the
9523 -- negation of an equality operation, and reanalyze. The equality to be
9524 -- used is defined in the same scope and has the same signature. This
9525 -- signature must be set explicitly since in an instance it may not have
9526 -- the same visibility as in the generic unit. This avoids duplicating
9527 -- or factoring the complex code for record/array equality tests etc.
9529 -- This case is also used for the minimal expansion performed in
9534 Loc
: constant Source_Ptr
:= Sloc
(N
);
9536 Ne
: constant Entity_Id
:= Entity
(N
);
9539 Binary_Op_Validity_Checks
(N
);
9545 Left_Opnd
=> Left_Opnd
(N
),
9546 Right_Opnd
=> Right_Opnd
(N
)));
9548 -- The level of parentheses is useless in GNATprove mode, and
9549 -- bumping its level here leads to wrong columns being used in
9550 -- check messages, hence skip it in this mode.
9552 if not GNATprove_Mode
then
9553 Set_Paren_Count
(Right_Opnd
(Neg
), 1);
9556 if Scope
(Ne
) /= Standard_Standard
then
9557 Set_Entity
(Right_Opnd
(Neg
), Corresponding_Equality
(Ne
));
9560 -- For navigation purposes, we want to treat the inequality as an
9561 -- implicit reference to the corresponding equality. Preserve the
9562 -- Comes_From_ source flag to generate proper Xref entries.
9564 Preserve_Comes_From_Source
(Neg
, N
);
9565 Preserve_Comes_From_Source
(Right_Opnd
(Neg
), N
);
9567 Analyze_And_Resolve
(N
, Standard_Boolean
);
9571 -- No need for optimization in GNATprove mode, where we would rather see
9572 -- the original source expression.
9574 if not GNATprove_Mode
then
9575 Optimize_Length_Comparison
(N
);
9579 ---------------------
9580 -- Expand_N_Op_Not --
9581 ---------------------
9583 -- If the argument is other than a Boolean array type, there is no special
9584 -- expansion required, except for dealing with validity checks, and non-
9585 -- standard boolean representations.
9587 -- For the packed array case, we call the special routine in Exp_Pakd,
9588 -- except that if the component size is greater than one, we use the
9589 -- standard routine generating a gruesome loop (it is so peculiar to have
9590 -- packed arrays with non-standard Boolean representations anyway, so it
9591 -- does not matter that we do not handle this case efficiently).
9593 -- For the unpacked array case (and for the special packed case where we
9594 -- have non standard Booleans, as discussed above), we generate and insert
9595 -- into the tree the following function definition:
9597 -- function Nnnn (A : arr) is
9600 -- for J in a'range loop
9601 -- B (J) := not A (J);
9606 -- Here arr is the actual subtype of the parameter (and hence always
9607 -- constrained). Then we replace the not with a call to this function.
9609 procedure Expand_N_Op_Not
(N
: Node_Id
) is
9610 Loc
: constant Source_Ptr
:= Sloc
(N
);
9611 Typ
: constant Entity_Id
:= Etype
(N
);
9620 Func_Name
: Entity_Id
;
9621 Loop_Statement
: Node_Id
;
9624 Unary_Op_Validity_Checks
(N
);
9626 -- For boolean operand, deal with non-standard booleans
9628 if Is_Boolean_Type
(Typ
) then
9629 Adjust_Condition
(Right_Opnd
(N
));
9630 Set_Etype
(N
, Standard_Boolean
);
9631 Adjust_Result_Type
(N
, Typ
);
9635 -- Only array types need any other processing
9637 if not Is_Array_Type
(Typ
) then
9641 -- Case of array operand. If bit packed with a component size of 1,
9642 -- handle it in Exp_Pakd if the operand is known to be aligned.
9644 if Is_Bit_Packed_Array
(Typ
)
9645 and then Component_Size
(Typ
) = 1
9646 and then not Is_Possibly_Unaligned_Object
(Right_Opnd
(N
))
9648 Expand_Packed_Not
(N
);
9652 -- Case of array operand which is not bit-packed. If the context is
9653 -- a safe assignment, call in-place operation, If context is a larger
9654 -- boolean expression in the context of a safe assignment, expansion is
9655 -- done by enclosing operation.
9657 Opnd
:= Relocate_Node
(Right_Opnd
(N
));
9658 Convert_To_Actual_Subtype
(Opnd
);
9659 Arr
:= Etype
(Opnd
);
9660 Ensure_Defined
(Arr
, N
);
9661 Silly_Boolean_Array_Not_Test
(N
, Arr
);
9663 if Nkind
(Parent
(N
)) = N_Assignment_Statement
then
9664 if Safe_In_Place_Array_Op
(Name
(Parent
(N
)), N
, Empty
) then
9665 Build_Boolean_Array_Proc_Call
(Parent
(N
), Opnd
, Empty
);
9668 -- Special case the negation of a binary operation
9670 elsif Nkind_In
(Opnd
, N_Op_And
, N_Op_Or
, N_Op_Xor
)
9671 and then Safe_In_Place_Array_Op
9672 (Name
(Parent
(N
)), Left_Opnd
(Opnd
), Right_Opnd
(Opnd
))
9674 Build_Boolean_Array_Proc_Call
(Parent
(N
), Opnd
, Empty
);
9678 elsif Nkind
(Parent
(N
)) in N_Binary_Op
9679 and then Nkind
(Parent
(Parent
(N
))) = N_Assignment_Statement
9682 Op1
: constant Node_Id
:= Left_Opnd
(Parent
(N
));
9683 Op2
: constant Node_Id
:= Right_Opnd
(Parent
(N
));
9684 Lhs
: constant Node_Id
:= Name
(Parent
(Parent
(N
)));
9687 if Safe_In_Place_Array_Op
(Lhs
, Op1
, Op2
) then
9689 -- (not A) op (not B) can be reduced to a single call
9691 if N
= Op1
and then Nkind
(Op2
) = N_Op_Not
then
9694 elsif N
= Op2
and then Nkind
(Op1
) = N_Op_Not
then
9697 -- A xor (not B) can also be special-cased
9699 elsif N
= Op2
and then Nkind
(Parent
(N
)) = N_Op_Xor
then
9706 A
:= Make_Defining_Identifier
(Loc
, Name_uA
);
9707 B
:= Make_Defining_Identifier
(Loc
, Name_uB
);
9708 J
:= Make_Defining_Identifier
(Loc
, Name_uJ
);
9711 Make_Indexed_Component
(Loc
,
9712 Prefix
=> New_Occurrence_Of
(A
, Loc
),
9713 Expressions
=> New_List
(New_Occurrence_Of
(J
, Loc
)));
9716 Make_Indexed_Component
(Loc
,
9717 Prefix
=> New_Occurrence_Of
(B
, Loc
),
9718 Expressions
=> New_List
(New_Occurrence_Of
(J
, Loc
)));
9721 Make_Implicit_Loop_Statement
(N
,
9722 Identifier
=> Empty
,
9725 Make_Iteration_Scheme
(Loc
,
9726 Loop_Parameter_Specification
=>
9727 Make_Loop_Parameter_Specification
(Loc
,
9728 Defining_Identifier
=> J
,
9729 Discrete_Subtype_Definition
=>
9730 Make_Attribute_Reference
(Loc
,
9731 Prefix
=> Make_Identifier
(Loc
, Chars
(A
)),
9732 Attribute_Name
=> Name_Range
))),
9734 Statements
=> New_List
(
9735 Make_Assignment_Statement
(Loc
,
9737 Expression
=> Make_Op_Not
(Loc
, A_J
))));
9739 Func_Name
:= Make_Temporary
(Loc
, 'N');
9740 Set_Is_Inlined
(Func_Name
);
9743 Make_Subprogram_Body
(Loc
,
9745 Make_Function_Specification
(Loc
,
9746 Defining_Unit_Name
=> Func_Name
,
9747 Parameter_Specifications
=> New_List
(
9748 Make_Parameter_Specification
(Loc
,
9749 Defining_Identifier
=> A
,
9750 Parameter_Type
=> New_Occurrence_Of
(Typ
, Loc
))),
9751 Result_Definition
=> New_Occurrence_Of
(Typ
, Loc
)),
9753 Declarations
=> New_List
(
9754 Make_Object_Declaration
(Loc
,
9755 Defining_Identifier
=> B
,
9756 Object_Definition
=> New_Occurrence_Of
(Arr
, Loc
))),
9758 Handled_Statement_Sequence
=>
9759 Make_Handled_Sequence_Of_Statements
(Loc
,
9760 Statements
=> New_List
(
9762 Make_Simple_Return_Statement
(Loc
,
9763 Expression
=> Make_Identifier
(Loc
, Chars
(B
)))))));
9766 Make_Function_Call
(Loc
,
9767 Name
=> New_Occurrence_Of
(Func_Name
, Loc
),
9768 Parameter_Associations
=> New_List
(Opnd
)));
9770 Analyze_And_Resolve
(N
, Typ
);
9771 end Expand_N_Op_Not
;
9773 --------------------
9774 -- Expand_N_Op_Or --
9775 --------------------
9777 procedure Expand_N_Op_Or
(N
: Node_Id
) is
9778 Typ
: constant Entity_Id
:= Etype
(N
);
9781 Binary_Op_Validity_Checks
(N
);
9783 if Is_Array_Type
(Etype
(N
)) then
9784 Expand_Boolean_Operator
(N
);
9786 elsif Is_Boolean_Type
(Etype
(N
)) then
9787 Adjust_Condition
(Left_Opnd
(N
));
9788 Adjust_Condition
(Right_Opnd
(N
));
9789 Set_Etype
(N
, Standard_Boolean
);
9790 Adjust_Result_Type
(N
, Typ
);
9792 elsif Is_Intrinsic_Subprogram
(Entity
(N
)) then
9793 Expand_Intrinsic_Call
(N
, Entity
(N
));
9796 Expand_Nonbinary_Modular_Op
(N
);
9799 ----------------------
9800 -- Expand_N_Op_Plus --
9801 ----------------------
9803 procedure Expand_N_Op_Plus
(N
: Node_Id
) is
9805 Unary_Op_Validity_Checks
(N
);
9807 -- Check for MINIMIZED/ELIMINATED overflow mode
9809 if Minimized_Eliminated_Overflow_Check
(N
) then
9810 Apply_Arithmetic_Overflow_Check
(N
);
9813 end Expand_N_Op_Plus
;
9815 ---------------------
9816 -- Expand_N_Op_Rem --
9817 ---------------------
9819 procedure Expand_N_Op_Rem
(N
: Node_Id
) is
9820 Loc
: constant Source_Ptr
:= Sloc
(N
);
9821 Typ
: constant Entity_Id
:= Etype
(N
);
9832 -- Set if corresponding operand can be negative
9834 pragma Unreferenced
(Hi
);
9837 Binary_Op_Validity_Checks
(N
);
9839 -- Check for MINIMIZED/ELIMINATED overflow mode
9841 if Minimized_Eliminated_Overflow_Check
(N
) then
9842 Apply_Arithmetic_Overflow_Check
(N
);
9846 if Is_Integer_Type
(Etype
(N
)) then
9847 Apply_Divide_Checks
(N
);
9849 -- All done if we don't have a REM any more, which can happen as a
9850 -- result of overflow expansion in MINIMIZED or ELIMINATED modes.
9852 if Nkind
(N
) /= N_Op_Rem
then
9857 -- Proceed with expansion of REM
9859 Left
:= Left_Opnd
(N
);
9860 Right
:= Right_Opnd
(N
);
9862 -- Apply optimization x rem 1 = 0. We don't really need that with gcc,
9863 -- but it is useful with other back ends, and is certainly harmless.
9865 if Is_Integer_Type
(Etype
(N
))
9866 and then Compile_Time_Known_Value
(Right
)
9867 and then Expr_Value
(Right
) = Uint_1
9869 -- Call Remove_Side_Effects to ensure that any side effects in the
9870 -- ignored left operand (in particular function calls to user defined
9871 -- functions) are properly executed.
9873 Remove_Side_Effects
(Left
);
9875 Rewrite
(N
, Make_Integer_Literal
(Loc
, 0));
9876 Analyze_And_Resolve
(N
, Typ
);
9880 -- Deal with annoying case of largest negative number remainder minus
9881 -- one. Gigi may not handle this case correctly, because on some
9882 -- targets, the mod value is computed using a divide instruction
9883 -- which gives an overflow trap for this case.
9885 -- It would be a bit more efficient to figure out which targets this
9886 -- is really needed for, but in practice it is reasonable to do the
9887 -- following special check in all cases, since it means we get a clearer
9888 -- message, and also the overhead is minimal given that division is
9889 -- expensive in any case.
9891 -- In fact the check is quite easy, if the right operand is -1, then
9892 -- the remainder is always 0, and we can just ignore the left operand
9893 -- completely in this case.
9895 Determine_Range
(Right
, OK
, Lo
, Hi
, Assume_Valid
=> True);
9896 Lneg
:= (not OK
) or else Lo
< 0;
9898 Determine_Range
(Left
, OK
, Lo
, Hi
, Assume_Valid
=> True);
9899 Rneg
:= (not OK
) or else Lo
< 0;
9901 -- We won't mess with trying to find out if the left operand can really
9902 -- be the largest negative number (that's a pain in the case of private
9903 -- types and this is really marginal). We will just assume that we need
9904 -- the test if the left operand can be negative at all.
9906 if Lneg
and Rneg
then
9908 Make_If_Expression
(Loc
,
9909 Expressions
=> New_List
(
9911 Left_Opnd
=> Duplicate_Subexpr
(Right
),
9913 Unchecked_Convert_To
(Typ
, Make_Integer_Literal
(Loc
, -1))),
9915 Unchecked_Convert_To
(Typ
,
9916 Make_Integer_Literal
(Loc
, Uint_0
)),
9918 Relocate_Node
(N
))));
9920 Set_Analyzed
(Next
(Next
(First
(Expressions
(N
)))));
9921 Analyze_And_Resolve
(N
, Typ
);
9923 end Expand_N_Op_Rem
;
9925 -----------------------------
9926 -- Expand_N_Op_Rotate_Left --
9927 -----------------------------
9929 procedure Expand_N_Op_Rotate_Left
(N
: Node_Id
) is
9931 Binary_Op_Validity_Checks
(N
);
9933 -- If we are in Modify_Tree_For_C mode, there is no rotate left in C,
9934 -- so we rewrite in terms of logical shifts
9936 -- Shift_Left (Num, Bits) or Shift_Right (num, Esize - Bits)
9938 -- where Bits is the shift count mod Esize (the mod operation here
9939 -- deals with ludicrous large shift counts, which are apparently OK).
9941 -- What about nonbinary modulus ???
9944 Loc
: constant Source_Ptr
:= Sloc
(N
);
9945 Rtp
: constant Entity_Id
:= Etype
(Right_Opnd
(N
));
9946 Typ
: constant Entity_Id
:= Etype
(N
);
9949 if Modify_Tree_For_C
then
9950 Rewrite
(Right_Opnd
(N
),
9952 Left_Opnd
=> Relocate_Node
(Right_Opnd
(N
)),
9953 Right_Opnd
=> Make_Integer_Literal
(Loc
, Esize
(Typ
))));
9955 Analyze_And_Resolve
(Right_Opnd
(N
), Rtp
);
9960 Make_Op_Shift_Left
(Loc
,
9961 Left_Opnd
=> Left_Opnd
(N
),
9962 Right_Opnd
=> Right_Opnd
(N
)),
9965 Make_Op_Shift_Right
(Loc
,
9966 Left_Opnd
=> Duplicate_Subexpr_No_Checks
(Left_Opnd
(N
)),
9968 Make_Op_Subtract
(Loc
,
9969 Left_Opnd
=> Make_Integer_Literal
(Loc
, Esize
(Typ
)),
9971 Duplicate_Subexpr_No_Checks
(Right_Opnd
(N
))))));
9973 Analyze_And_Resolve
(N
, Typ
);
9976 end Expand_N_Op_Rotate_Left
;
9978 ------------------------------
9979 -- Expand_N_Op_Rotate_Right --
9980 ------------------------------
9982 procedure Expand_N_Op_Rotate_Right
(N
: Node_Id
) is
9984 Binary_Op_Validity_Checks
(N
);
9986 -- If we are in Modify_Tree_For_C mode, there is no rotate right in C,
9987 -- so we rewrite in terms of logical shifts
9989 -- Shift_Right (Num, Bits) or Shift_Left (num, Esize - Bits)
9991 -- where Bits is the shift count mod Esize (the mod operation here
9992 -- deals with ludicrous large shift counts, which are apparently OK).
9994 -- What about nonbinary modulus ???
9997 Loc
: constant Source_Ptr
:= Sloc
(N
);
9998 Rtp
: constant Entity_Id
:= Etype
(Right_Opnd
(N
));
9999 Typ
: constant Entity_Id
:= Etype
(N
);
10002 Rewrite
(Right_Opnd
(N
),
10004 Left_Opnd
=> Relocate_Node
(Right_Opnd
(N
)),
10005 Right_Opnd
=> Make_Integer_Literal
(Loc
, Esize
(Typ
))));
10007 Analyze_And_Resolve
(Right_Opnd
(N
), Rtp
);
10009 if Modify_Tree_For_C
then
10013 Make_Op_Shift_Right
(Loc
,
10014 Left_Opnd
=> Left_Opnd
(N
),
10015 Right_Opnd
=> Right_Opnd
(N
)),
10018 Make_Op_Shift_Left
(Loc
,
10019 Left_Opnd
=> Duplicate_Subexpr_No_Checks
(Left_Opnd
(N
)),
10021 Make_Op_Subtract
(Loc
,
10022 Left_Opnd
=> Make_Integer_Literal
(Loc
, Esize
(Typ
)),
10024 Duplicate_Subexpr_No_Checks
(Right_Opnd
(N
))))));
10026 Analyze_And_Resolve
(N
, Typ
);
10029 end Expand_N_Op_Rotate_Right
;
10031 ----------------------------
10032 -- Expand_N_Op_Shift_Left --
10033 ----------------------------
10035 -- Note: nothing in this routine depends on left as opposed to right shifts
10036 -- so we share the routine for expanding shift right operations.
10038 procedure Expand_N_Op_Shift_Left
(N
: Node_Id
) is
10040 Binary_Op_Validity_Checks
(N
);
10042 -- If we are in Modify_Tree_For_C mode, then ensure that the right
10043 -- operand is not greater than the word size (since that would not
10044 -- be defined properly by the corresponding C shift operator).
10046 if Modify_Tree_For_C
then
10048 Right
: constant Node_Id
:= Right_Opnd
(N
);
10049 Loc
: constant Source_Ptr
:= Sloc
(Right
);
10050 Typ
: constant Entity_Id
:= Etype
(N
);
10051 Siz
: constant Uint
:= Esize
(Typ
);
10058 if Compile_Time_Known_Value
(Right
) then
10059 if Expr_Value
(Right
) >= Siz
then
10060 Rewrite
(N
, Make_Integer_Literal
(Loc
, 0));
10061 Analyze_And_Resolve
(N
, Typ
);
10064 -- Not compile time known, find range
10067 Determine_Range
(Right
, OK
, Lo
, Hi
, Assume_Valid
=> True);
10069 -- Nothing to do if known to be OK range, otherwise expand
10071 if not OK
or else Hi
>= Siz
then
10073 -- Prevent recursion on copy of shift node
10075 Orig
:= Relocate_Node
(N
);
10076 Set_Analyzed
(Orig
);
10078 -- Now do the rewrite
10081 Make_If_Expression
(Loc
,
10082 Expressions
=> New_List
(
10084 Left_Opnd
=> Duplicate_Subexpr_Move_Checks
(Right
),
10085 Right_Opnd
=> Make_Integer_Literal
(Loc
, Siz
)),
10086 Make_Integer_Literal
(Loc
, 0),
10088 Analyze_And_Resolve
(N
, Typ
);
10093 end Expand_N_Op_Shift_Left
;
10095 -----------------------------
10096 -- Expand_N_Op_Shift_Right --
10097 -----------------------------
10099 procedure Expand_N_Op_Shift_Right
(N
: Node_Id
) is
10101 -- Share shift left circuit
10103 Expand_N_Op_Shift_Left
(N
);
10104 end Expand_N_Op_Shift_Right
;
10106 ----------------------------------------
10107 -- Expand_N_Op_Shift_Right_Arithmetic --
10108 ----------------------------------------
10110 procedure Expand_N_Op_Shift_Right_Arithmetic
(N
: Node_Id
) is
10112 Binary_Op_Validity_Checks
(N
);
10114 -- If we are in Modify_Tree_For_C mode, there is no shift right
10115 -- arithmetic in C, so we rewrite in terms of logical shifts.
10117 -- Shift_Right (Num, Bits) or
10119 -- then not (Shift_Right (Mask, bits))
10122 -- Here Mask is all 1 bits (2**size - 1), and Sign is 2**(size - 1)
10124 -- Note: in almost all C compilers it would work to just shift a
10125 -- signed integer right, but it's undefined and we cannot rely on it.
10127 -- Note: the above works fine for shift counts greater than or equal
10128 -- to the word size, since in this case (not (Shift_Right (Mask, bits)))
10129 -- generates all 1'bits.
10131 -- What about nonbinary modulus ???
10134 Loc
: constant Source_Ptr
:= Sloc
(N
);
10135 Typ
: constant Entity_Id
:= Etype
(N
);
10136 Sign
: constant Uint
:= 2 ** (Esize
(Typ
) - 1);
10137 Mask
: constant Uint
:= (2 ** Esize
(Typ
)) - 1;
10138 Left
: constant Node_Id
:= Left_Opnd
(N
);
10139 Right
: constant Node_Id
:= Right_Opnd
(N
);
10143 if Modify_Tree_For_C
then
10145 -- Here if not (Shift_Right (Mask, bits)) can be computed at
10146 -- compile time as a single constant.
10148 if Compile_Time_Known_Value
(Right
) then
10150 Val
: constant Uint
:= Expr_Value
(Right
);
10153 if Val
>= Esize
(Typ
) then
10154 Maskx
:= Make_Integer_Literal
(Loc
, Mask
);
10158 Make_Integer_Literal
(Loc
,
10159 Intval
=> Mask
- (Mask
/ (2 ** Expr_Value
(Right
))));
10167 Make_Op_Shift_Right
(Loc
,
10168 Left_Opnd
=> Make_Integer_Literal
(Loc
, Mask
),
10169 Right_Opnd
=> Duplicate_Subexpr_No_Checks
(Right
)));
10172 -- Now do the rewrite
10177 Make_Op_Shift_Right
(Loc
,
10179 Right_Opnd
=> Right
),
10181 Make_If_Expression
(Loc
,
10182 Expressions
=> New_List
(
10184 Left_Opnd
=> Duplicate_Subexpr_No_Checks
(Left
),
10185 Right_Opnd
=> Make_Integer_Literal
(Loc
, Sign
)),
10187 Make_Integer_Literal
(Loc
, 0)))));
10188 Analyze_And_Resolve
(N
, Typ
);
10191 end Expand_N_Op_Shift_Right_Arithmetic
;
10193 --------------------------
10194 -- Expand_N_Op_Subtract --
10195 --------------------------
10197 procedure Expand_N_Op_Subtract
(N
: Node_Id
) is
10198 Typ
: constant Entity_Id
:= Etype
(N
);
10201 Binary_Op_Validity_Checks
(N
);
10203 -- Check for MINIMIZED/ELIMINATED overflow mode
10205 if Minimized_Eliminated_Overflow_Check
(N
) then
10206 Apply_Arithmetic_Overflow_Check
(N
);
10210 -- N - 0 = N for integer types
10212 if Is_Integer_Type
(Typ
)
10213 and then Compile_Time_Known_Value
(Right_Opnd
(N
))
10214 and then Expr_Value
(Right_Opnd
(N
)) = 0
10216 Rewrite
(N
, Left_Opnd
(N
));
10220 -- Arithmetic overflow checks for signed integer/fixed point types
10222 if Is_Signed_Integer_Type
(Typ
) or else Is_Fixed_Point_Type
(Typ
) then
10223 Apply_Arithmetic_Overflow_Check
(N
);
10226 -- Overflow checks for floating-point if -gnateF mode active
10228 Check_Float_Op_Overflow
(N
);
10230 Expand_Nonbinary_Modular_Op
(N
);
10231 end Expand_N_Op_Subtract
;
10233 ---------------------
10234 -- Expand_N_Op_Xor --
10235 ---------------------
10237 procedure Expand_N_Op_Xor
(N
: Node_Id
) is
10238 Typ
: constant Entity_Id
:= Etype
(N
);
10241 Binary_Op_Validity_Checks
(N
);
10243 if Is_Array_Type
(Etype
(N
)) then
10244 Expand_Boolean_Operator
(N
);
10246 elsif Is_Boolean_Type
(Etype
(N
)) then
10247 Adjust_Condition
(Left_Opnd
(N
));
10248 Adjust_Condition
(Right_Opnd
(N
));
10249 Set_Etype
(N
, Standard_Boolean
);
10250 Adjust_Result_Type
(N
, Typ
);
10252 elsif Is_Intrinsic_Subprogram
(Entity
(N
)) then
10253 Expand_Intrinsic_Call
(N
, Entity
(N
));
10256 Expand_Nonbinary_Modular_Op
(N
);
10257 end Expand_N_Op_Xor
;
10259 ----------------------
10260 -- Expand_N_Or_Else --
10261 ----------------------
10263 procedure Expand_N_Or_Else
(N
: Node_Id
)
10264 renames Expand_Short_Circuit_Operator
;
10266 -----------------------------------
10267 -- Expand_N_Qualified_Expression --
10268 -----------------------------------
10270 procedure Expand_N_Qualified_Expression
(N
: Node_Id
) is
10271 Operand
: constant Node_Id
:= Expression
(N
);
10272 Target_Type
: constant Entity_Id
:= Entity
(Subtype_Mark
(N
));
10275 -- Do validity check if validity checking operands
10277 if Validity_Checks_On
and Validity_Check_Operands
then
10278 Ensure_Valid
(Operand
);
10281 -- Apply possible constraint check
10283 Apply_Constraint_Check
(Operand
, Target_Type
, No_Sliding
=> True);
10285 if Do_Range_Check
(Operand
) then
10286 Generate_Range_Check
(Operand
, Target_Type
, CE_Range_Check_Failed
);
10288 end Expand_N_Qualified_Expression
;
10290 ------------------------------------
10291 -- Expand_N_Quantified_Expression --
10292 ------------------------------------
10296 -- for all X in range => Cond
10301 -- for X in range loop
10302 -- if not Cond then
10308 -- Similarly, an existentially quantified expression:
10310 -- for some X in range => Cond
10315 -- for X in range loop
10322 -- In both cases, the iteration may be over a container in which case it is
10323 -- given by an iterator specification, not a loop parameter specification.
10325 procedure Expand_N_Quantified_Expression
(N
: Node_Id
) is
10326 Actions
: constant List_Id
:= New_List
;
10327 For_All
: constant Boolean := All_Present
(N
);
10328 Iter_Spec
: constant Node_Id
:= Iterator_Specification
(N
);
10329 Loc
: constant Source_Ptr
:= Sloc
(N
);
10330 Loop_Spec
: constant Node_Id
:= Loop_Parameter_Specification
(N
);
10337 -- Create the declaration of the flag which tracks the status of the
10338 -- quantified expression. Generate:
10340 -- Flag : Boolean := (True | False);
10342 Flag
:= Make_Temporary
(Loc
, 'T', N
);
10344 Append_To
(Actions
,
10345 Make_Object_Declaration
(Loc
,
10346 Defining_Identifier
=> Flag
,
10347 Object_Definition
=> New_Occurrence_Of
(Standard_Boolean
, Loc
),
10349 New_Occurrence_Of
(Boolean_Literals
(For_All
), Loc
)));
10351 -- Construct the circuitry which tracks the status of the quantified
10352 -- expression. Generate:
10354 -- if [not] Cond then
10355 -- Flag := (False | True);
10359 Cond
:= Relocate_Node
(Condition
(N
));
10362 Cond
:= Make_Op_Not
(Loc
, Cond
);
10365 Stmts
:= New_List
(
10366 Make_Implicit_If_Statement
(N
,
10368 Then_Statements
=> New_List
(
10369 Make_Assignment_Statement
(Loc
,
10370 Name
=> New_Occurrence_Of
(Flag
, Loc
),
10372 New_Occurrence_Of
(Boolean_Literals
(not For_All
), Loc
)),
10373 Make_Exit_Statement
(Loc
))));
10375 -- Build the loop equivalent of the quantified expression
10377 if Present
(Iter_Spec
) then
10379 Make_Iteration_Scheme
(Loc
,
10380 Iterator_Specification
=> Iter_Spec
);
10383 Make_Iteration_Scheme
(Loc
,
10384 Loop_Parameter_Specification
=> Loop_Spec
);
10387 Append_To
(Actions
,
10388 Make_Loop_Statement
(Loc
,
10389 Iteration_Scheme
=> Scheme
,
10390 Statements
=> Stmts
,
10391 End_Label
=> Empty
));
10393 -- Transform the quantified expression
10396 Make_Expression_With_Actions
(Loc
,
10397 Expression
=> New_Occurrence_Of
(Flag
, Loc
),
10398 Actions
=> Actions
));
10399 Analyze_And_Resolve
(N
, Standard_Boolean
);
10400 end Expand_N_Quantified_Expression
;
10402 ---------------------------------
10403 -- Expand_N_Selected_Component --
10404 ---------------------------------
10406 procedure Expand_N_Selected_Component
(N
: Node_Id
) is
10407 Loc
: constant Source_Ptr
:= Sloc
(N
);
10408 Par
: constant Node_Id
:= Parent
(N
);
10409 P
: constant Node_Id
:= Prefix
(N
);
10410 S
: constant Node_Id
:= Selector_Name
(N
);
10411 Ptyp
: Entity_Id
:= Underlying_Type
(Etype
(P
));
10417 function In_Left_Hand_Side
(Comp
: Node_Id
) return Boolean;
10418 -- Gigi needs a temporary for prefixes that depend on a discriminant,
10419 -- unless the context of an assignment can provide size information.
10420 -- Don't we have a general routine that does this???
10422 function Is_Subtype_Declaration
return Boolean;
10423 -- The replacement of a discriminant reference by its value is required
10424 -- if this is part of the initialization of an temporary generated by a
10425 -- change of representation. This shows up as the construction of a
10426 -- discriminant constraint for a subtype declared at the same point as
10427 -- the entity in the prefix of the selected component. We recognize this
10428 -- case when the context of the reference is:
10429 -- subtype ST is T(Obj.D);
10430 -- where the entity for Obj comes from source, and ST has the same sloc.
10432 -----------------------
10433 -- In_Left_Hand_Side --
10434 -----------------------
10436 function In_Left_Hand_Side
(Comp
: Node_Id
) return Boolean is
10438 return (Nkind
(Parent
(Comp
)) = N_Assignment_Statement
10439 and then Comp
= Name
(Parent
(Comp
)))
10440 or else (Present
(Parent
(Comp
))
10441 and then Nkind
(Parent
(Comp
)) in N_Subexpr
10442 and then In_Left_Hand_Side
(Parent
(Comp
)));
10443 end In_Left_Hand_Side
;
10445 -----------------------------
10446 -- Is_Subtype_Declaration --
10447 -----------------------------
10449 function Is_Subtype_Declaration
return Boolean is
10450 Par
: constant Node_Id
:= Parent
(N
);
10453 Nkind
(Par
) = N_Index_Or_Discriminant_Constraint
10454 and then Nkind
(Parent
(Parent
(Par
))) = N_Subtype_Declaration
10455 and then Comes_From_Source
(Entity
(Prefix
(N
)))
10456 and then Sloc
(Par
) = Sloc
(Entity
(Prefix
(N
)));
10457 end Is_Subtype_Declaration
;
10459 -- Start of processing for Expand_N_Selected_Component
10462 -- Insert explicit dereference if required
10464 if Is_Access_Type
(Ptyp
) then
10466 -- First set prefix type to proper access type, in case it currently
10467 -- has a private (non-access) view of this type.
10469 Set_Etype
(P
, Ptyp
);
10471 Insert_Explicit_Dereference
(P
);
10472 Analyze_And_Resolve
(P
, Designated_Type
(Ptyp
));
10477 -- Deal with discriminant check required
10479 if Do_Discriminant_Check
(N
) then
10480 if Present
(Discriminant_Checking_Func
10481 (Original_Record_Component
(Entity
(S
))))
10483 -- Present the discriminant checking function to the backend, so
10484 -- that it can inline the call to the function.
10487 (Discriminant_Checking_Func
10488 (Original_Record_Component
(Entity
(S
))),
10491 -- Now reset the flag and generate the call
10493 Set_Do_Discriminant_Check
(N
, False);
10494 Generate_Discriminant_Check
(N
);
10496 -- In the case of Unchecked_Union, no discriminant checking is
10497 -- actually performed.
10500 Set_Do_Discriminant_Check
(N
, False);
10504 -- Ada 2005 (AI-318-02): If the prefix is a call to a build-in-place
10505 -- function, then additional actuals must be passed.
10507 if Is_Build_In_Place_Function_Call
(P
) then
10508 Make_Build_In_Place_Call_In_Anonymous_Context
(P
);
10510 -- Ada 2005 (AI-318-02): Specialization of the previous case for prefix
10511 -- containing build-in-place function calls whose returned object covers
10512 -- interface types.
10514 elsif Present
(Unqual_BIP_Iface_Function_Call
(P
)) then
10515 Make_Build_In_Place_Iface_Call_In_Anonymous_Context
(P
);
10518 -- Gigi cannot handle unchecked conversions that are the prefix of a
10519 -- selected component with discriminants. This must be checked during
10520 -- expansion, because during analysis the type of the selector is not
10521 -- known at the point the prefix is analyzed. If the conversion is the
10522 -- target of an assignment, then we cannot force the evaluation.
10524 if Nkind
(Prefix
(N
)) = N_Unchecked_Type_Conversion
10525 and then Has_Discriminants
(Etype
(N
))
10526 and then not In_Left_Hand_Side
(N
)
10528 Force_Evaluation
(Prefix
(N
));
10531 -- Remaining processing applies only if selector is a discriminant
10533 if Ekind
(Entity
(Selector_Name
(N
))) = E_Discriminant
then
10535 -- If the selector is a discriminant of a constrained record type,
10536 -- we may be able to rewrite the expression with the actual value
10537 -- of the discriminant, a useful optimization in some cases.
10539 if Is_Record_Type
(Ptyp
)
10540 and then Has_Discriminants
(Ptyp
)
10541 and then Is_Constrained
(Ptyp
)
10543 -- Do this optimization for discrete types only, and not for
10544 -- access types (access discriminants get us into trouble).
10546 if not Is_Discrete_Type
(Etype
(N
)) then
10549 -- Don't do this on the left-hand side of an assignment statement.
10550 -- Normally one would think that references like this would not
10551 -- occur, but they do in generated code, and mean that we really
10552 -- do want to assign the discriminant.
10554 elsif Nkind
(Par
) = N_Assignment_Statement
10555 and then Name
(Par
) = N
10559 -- Don't do this optimization for the prefix of an attribute or
10560 -- the name of an object renaming declaration since these are
10561 -- contexts where we do not want the value anyway.
10563 elsif (Nkind
(Par
) = N_Attribute_Reference
10564 and then Prefix
(Par
) = N
)
10565 or else Is_Renamed_Object
(N
)
10569 -- Don't do this optimization if we are within the code for a
10570 -- discriminant check, since the whole point of such a check may
10571 -- be to verify the condition on which the code below depends.
10573 elsif Is_In_Discriminant_Check
(N
) then
10576 -- Green light to see if we can do the optimization. There is
10577 -- still one condition that inhibits the optimization below but
10578 -- now is the time to check the particular discriminant.
10581 -- Loop through discriminants to find the matching discriminant
10582 -- constraint to see if we can copy it.
10584 Disc
:= First_Discriminant
(Ptyp
);
10585 Dcon
:= First_Elmt
(Discriminant_Constraint
(Ptyp
));
10586 Discr_Loop
: while Present
(Dcon
) loop
10587 Dval
:= Node
(Dcon
);
10589 -- Check if this is the matching discriminant and if the
10590 -- discriminant value is simple enough to make sense to
10591 -- copy. We don't want to copy complex expressions, and
10592 -- indeed to do so can cause trouble (before we put in
10593 -- this guard, a discriminant expression containing an
10594 -- AND THEN was copied, causing problems for coverage
10595 -- analysis tools).
10597 -- However, if the reference is part of the initialization
10598 -- code generated for an object declaration, we must use
10599 -- the discriminant value from the subtype constraint,
10600 -- because the selected component may be a reference to the
10601 -- object being initialized, whose discriminant is not yet
10602 -- set. This only happens in complex cases involving changes
10603 -- or representation.
10605 if Disc
= Entity
(Selector_Name
(N
))
10606 and then (Is_Entity_Name
(Dval
)
10607 or else Compile_Time_Known_Value
(Dval
)
10608 or else Is_Subtype_Declaration
)
10610 -- Here we have the matching discriminant. Check for
10611 -- the case of a discriminant of a component that is
10612 -- constrained by an outer discriminant, which cannot
10613 -- be optimized away.
10615 if Denotes_Discriminant
10616 (Dval
, Check_Concurrent
=> True)
10620 elsif Nkind
(Original_Node
(Dval
)) = N_Selected_Component
10622 Denotes_Discriminant
10623 (Selector_Name
(Original_Node
(Dval
)), True)
10627 -- Do not retrieve value if constraint is not static. It
10628 -- is generally not useful, and the constraint may be a
10629 -- rewritten outer discriminant in which case it is in
10632 elsif Is_Entity_Name
(Dval
)
10634 Nkind
(Parent
(Entity
(Dval
))) = N_Object_Declaration
10635 and then Present
(Expression
(Parent
(Entity
(Dval
))))
10637 Is_OK_Static_Expression
10638 (Expression
(Parent
(Entity
(Dval
))))
10642 -- In the context of a case statement, the expression may
10643 -- have the base type of the discriminant, and we need to
10644 -- preserve the constraint to avoid spurious errors on
10647 elsif Nkind
(Parent
(N
)) = N_Case_Statement
10648 and then Etype
(Dval
) /= Etype
(Disc
)
10651 Make_Qualified_Expression
(Loc
,
10653 New_Occurrence_Of
(Etype
(Disc
), Loc
),
10655 New_Copy_Tree
(Dval
)));
10656 Analyze_And_Resolve
(N
, Etype
(Disc
));
10658 -- In case that comes out as a static expression,
10659 -- reset it (a selected component is never static).
10661 Set_Is_Static_Expression
(N
, False);
10664 -- Otherwise we can just copy the constraint, but the
10665 -- result is certainly not static. In some cases the
10666 -- discriminant constraint has been analyzed in the
10667 -- context of the original subtype indication, but for
10668 -- itypes the constraint might not have been analyzed
10669 -- yet, and this must be done now.
10672 Rewrite
(N
, New_Copy_Tree
(Dval
));
10673 Analyze_And_Resolve
(N
);
10674 Set_Is_Static_Expression
(N
, False);
10680 Next_Discriminant
(Disc
);
10681 end loop Discr_Loop
;
10683 -- Note: the above loop should always find a matching
10684 -- discriminant, but if it does not, we just missed an
10685 -- optimization due to some glitch (perhaps a previous
10686 -- error), so ignore.
10691 -- The only remaining processing is in the case of a discriminant of
10692 -- a concurrent object, where we rewrite the prefix to denote the
10693 -- corresponding record type. If the type is derived and has renamed
10694 -- discriminants, use corresponding discriminant, which is the one
10695 -- that appears in the corresponding record.
10697 if not Is_Concurrent_Type
(Ptyp
) then
10701 Disc
:= Entity
(Selector_Name
(N
));
10703 if Is_Derived_Type
(Ptyp
)
10704 and then Present
(Corresponding_Discriminant
(Disc
))
10706 Disc
:= Corresponding_Discriminant
(Disc
);
10710 Make_Selected_Component
(Loc
,
10712 Unchecked_Convert_To
(Corresponding_Record_Type
(Ptyp
),
10713 New_Copy_Tree
(P
)),
10714 Selector_Name
=> Make_Identifier
(Loc
, Chars
(Disc
)));
10716 Rewrite
(N
, New_N
);
10720 -- Set Atomic_Sync_Required if necessary for atomic component
10722 if Nkind
(N
) = N_Selected_Component
then
10724 E
: constant Entity_Id
:= Entity
(Selector_Name
(N
));
10728 -- If component is atomic, but type is not, setting depends on
10729 -- disable/enable state for the component.
10731 if Is_Atomic
(E
) and then not Is_Atomic
(Etype
(E
)) then
10732 Set
:= not Atomic_Synchronization_Disabled
(E
);
10734 -- If component is not atomic, but its type is atomic, setting
10735 -- depends on disable/enable state for the type.
10737 elsif not Is_Atomic
(E
) and then Is_Atomic
(Etype
(E
)) then
10738 Set
:= not Atomic_Synchronization_Disabled
(Etype
(E
));
10740 -- If both component and type are atomic, we disable if either
10741 -- component or its type have sync disabled.
10743 elsif Is_Atomic
(E
) and then Is_Atomic
(Etype
(E
)) then
10744 Set
:= (not Atomic_Synchronization_Disabled
(E
))
10746 (not Atomic_Synchronization_Disabled
(Etype
(E
)));
10752 -- Set flag if required
10755 Activate_Atomic_Synchronization
(N
);
10759 end Expand_N_Selected_Component
;
10761 --------------------
10762 -- Expand_N_Slice --
10763 --------------------
10765 procedure Expand_N_Slice
(N
: Node_Id
) is
10766 Loc
: constant Source_Ptr
:= Sloc
(N
);
10767 Typ
: constant Entity_Id
:= Etype
(N
);
10769 function Is_Procedure_Actual
(N
: Node_Id
) return Boolean;
10770 -- Check whether the argument is an actual for a procedure call, in
10771 -- which case the expansion of a bit-packed slice is deferred until the
10772 -- call itself is expanded. The reason this is required is that we might
10773 -- have an IN OUT or OUT parameter, and the copy out is essential, and
10774 -- that copy out would be missed if we created a temporary here in
10775 -- Expand_N_Slice. Note that we don't bother to test specifically for an
10776 -- IN OUT or OUT mode parameter, since it is a bit tricky to do, and it
10777 -- is harmless to defer expansion in the IN case, since the call
10778 -- processing will still generate the appropriate copy in operation,
10779 -- which will take care of the slice.
10781 procedure Make_Temporary_For_Slice
;
10782 -- Create a named variable for the value of the slice, in cases where
10783 -- the back end cannot handle it properly, e.g. when packed types or
10784 -- unaligned slices are involved.
10786 -------------------------
10787 -- Is_Procedure_Actual --
10788 -------------------------
10790 function Is_Procedure_Actual
(N
: Node_Id
) return Boolean is
10791 Par
: Node_Id
:= Parent
(N
);
10795 -- If our parent is a procedure call we can return
10797 if Nkind
(Par
) = N_Procedure_Call_Statement
then
10800 -- If our parent is a type conversion, keep climbing the tree,
10801 -- since a type conversion can be a procedure actual. Also keep
10802 -- climbing if parameter association or a qualified expression,
10803 -- since these are additional cases that do can appear on
10804 -- procedure actuals.
10806 elsif Nkind_In
(Par
, N_Type_Conversion
,
10807 N_Parameter_Association
,
10808 N_Qualified_Expression
)
10810 Par
:= Parent
(Par
);
10812 -- Any other case is not what we are looking for
10818 end Is_Procedure_Actual
;
10820 ------------------------------
10821 -- Make_Temporary_For_Slice --
10822 ------------------------------
10824 procedure Make_Temporary_For_Slice
is
10825 Ent
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T', N
);
10830 Make_Object_Declaration
(Loc
,
10831 Defining_Identifier
=> Ent
,
10832 Object_Definition
=> New_Occurrence_Of
(Typ
, Loc
));
10834 Set_No_Initialization
(Decl
);
10836 Insert_Actions
(N
, New_List
(
10838 Make_Assignment_Statement
(Loc
,
10839 Name
=> New_Occurrence_Of
(Ent
, Loc
),
10840 Expression
=> Relocate_Node
(N
))));
10842 Rewrite
(N
, New_Occurrence_Of
(Ent
, Loc
));
10843 Analyze_And_Resolve
(N
, Typ
);
10844 end Make_Temporary_For_Slice
;
10848 Pref
: constant Node_Id
:= Prefix
(N
);
10849 Pref_Typ
: Entity_Id
:= Etype
(Pref
);
10851 -- Start of processing for Expand_N_Slice
10854 -- Special handling for access types
10856 if Is_Access_Type
(Pref_Typ
) then
10857 Pref_Typ
:= Designated_Type
(Pref_Typ
);
10860 Make_Explicit_Dereference
(Sloc
(N
),
10861 Prefix
=> Relocate_Node
(Pref
)));
10863 Analyze_And_Resolve
(Pref
, Pref_Typ
);
10866 -- Ada 2005 (AI-318-02): If the prefix is a call to a build-in-place
10867 -- function, then additional actuals must be passed.
10869 if Is_Build_In_Place_Function_Call
(Pref
) then
10870 Make_Build_In_Place_Call_In_Anonymous_Context
(Pref
);
10872 -- Ada 2005 (AI-318-02): Specialization of the previous case for prefix
10873 -- containing build-in-place function calls whose returned object covers
10874 -- interface types.
10876 elsif Present
(Unqual_BIP_Iface_Function_Call
(Pref
)) then
10877 Make_Build_In_Place_Iface_Call_In_Anonymous_Context
(Pref
);
10880 -- The remaining case to be handled is packed slices. We can leave
10881 -- packed slices as they are in the following situations:
10883 -- 1. Right or left side of an assignment (we can handle this
10884 -- situation correctly in the assignment statement expansion).
10886 -- 2. Prefix of indexed component (the slide is optimized away in this
10887 -- case, see the start of Expand_N_Slice.)
10889 -- 3. Object renaming declaration, since we want the name of the
10890 -- slice, not the value.
10892 -- 4. Argument to procedure call, since copy-in/copy-out handling may
10893 -- be required, and this is handled in the expansion of call
10896 -- 5. Prefix of an address attribute (this is an error which is caught
10897 -- elsewhere, and the expansion would interfere with generating the
10900 if not Is_Packed
(Typ
) then
10902 -- Apply transformation for actuals of a function call, where
10903 -- Expand_Actuals is not used.
10905 if Nkind
(Parent
(N
)) = N_Function_Call
10906 and then Is_Possibly_Unaligned_Slice
(N
)
10908 Make_Temporary_For_Slice
;
10911 elsif Nkind
(Parent
(N
)) = N_Assignment_Statement
10912 or else (Nkind
(Parent
(Parent
(N
))) = N_Assignment_Statement
10913 and then Parent
(N
) = Name
(Parent
(Parent
(N
))))
10917 elsif Nkind
(Parent
(N
)) = N_Indexed_Component
10918 or else Is_Renamed_Object
(N
)
10919 or else Is_Procedure_Actual
(N
)
10923 elsif Nkind
(Parent
(N
)) = N_Attribute_Reference
10924 and then Attribute_Name
(Parent
(N
)) = Name_Address
10929 Make_Temporary_For_Slice
;
10931 end Expand_N_Slice
;
10933 ------------------------------
10934 -- Expand_N_Type_Conversion --
10935 ------------------------------
10937 procedure Expand_N_Type_Conversion
(N
: Node_Id
) is
10938 Loc
: constant Source_Ptr
:= Sloc
(N
);
10939 Operand
: constant Node_Id
:= Expression
(N
);
10940 Target_Type
: Entity_Id
:= Etype
(N
);
10941 Operand_Type
: Entity_Id
:= Etype
(Operand
);
10943 procedure Discrete_Range_Check
;
10944 -- Handles generation of range check for discrete target value
10946 procedure Handle_Changed_Representation
;
10947 -- This is called in the case of record and array type conversions to
10948 -- see if there is a change of representation to be handled. Change of
10949 -- representation is actually handled at the assignment statement level,
10950 -- and what this procedure does is rewrite node N conversion as an
10951 -- assignment to temporary. If there is no change of representation,
10952 -- then the conversion node is unchanged.
10954 procedure Raise_Accessibility_Error
;
10955 -- Called when we know that an accessibility check will fail. Rewrites
10956 -- node N to an appropriate raise statement and outputs warning msgs.
10957 -- The Etype of the raise node is set to Target_Type. Note that in this
10958 -- case the rest of the processing should be skipped (i.e. the call to
10959 -- this procedure will be followed by "goto Done").
10961 procedure Real_Range_Check
;
10962 -- Handles generation of range check for real target value
10964 function Has_Extra_Accessibility
(Id
: Entity_Id
) return Boolean;
10965 -- True iff Present (Effective_Extra_Accessibility (Id)) successfully
10966 -- evaluates to True.
10968 --------------------------
10969 -- Discrete_Range_Check --
10970 --------------------------
10972 -- Case of conversions to a discrete type
10974 procedure Discrete_Range_Check
is
10979 -- Nothing to do if conversion was rewritten
10981 if Nkind
(N
) /= N_Type_Conversion
then
10985 Expr
:= Expression
(N
);
10987 -- Before we do a range check, we have to deal with treating
10988 -- a fixed-point operand as an integer. The way we do this
10989 -- is simply to do an unchecked conversion to an appropriate
10990 -- integer type large enough to hold the result.
10992 if Is_Fixed_Point_Type
(Etype
(Expr
)) then
10993 if Esize
(Base_Type
(Etype
(Expr
))) > Esize
(Standard_Integer
) then
10994 Ityp
:= Standard_Long_Long_Integer
;
10996 Ityp
:= Standard_Integer
;
10999 Set_Do_Range_Check
(Expr
, False);
11000 Rewrite
(Expr
, Unchecked_Convert_To
(Ityp
, Expr
));
11003 -- Reset overflow flag, since the range check will include
11004 -- dealing with possible overflow, and generate the check.
11006 Set_Do_Overflow_Check
(N
, False);
11008 Generate_Range_Check
(Expr
, Target_Type
, CE_Range_Check_Failed
);
11009 end Discrete_Range_Check
;
11011 -----------------------------------
11012 -- Handle_Changed_Representation --
11013 -----------------------------------
11015 procedure Handle_Changed_Representation
is
11023 -- Nothing else to do if no change of representation
11025 if Same_Representation
(Operand_Type
, Target_Type
) then
11028 -- The real change of representation work is done by the assignment
11029 -- statement processing. So if this type conversion is appearing as
11030 -- the expression of an assignment statement, nothing needs to be
11031 -- done to the conversion.
11033 elsif Nkind
(Parent
(N
)) = N_Assignment_Statement
then
11036 -- Otherwise we need to generate a temporary variable, and do the
11037 -- change of representation assignment into that temporary variable.
11038 -- The conversion is then replaced by a reference to this variable.
11043 -- If type is unconstrained we have to add a constraint, copied
11044 -- from the actual value of the left-hand side.
11046 if not Is_Constrained
(Target_Type
) then
11047 if Has_Discriminants
(Operand_Type
) then
11049 -- A change of representation can only apply to untagged
11050 -- types. We need to build the constraint that applies to
11051 -- the target type, using the constraints of the operand.
11052 -- The analysis is complicated if there are both inherited
11053 -- discriminants and constrained discriminants.
11054 -- We iterate over the discriminants of the target, and
11055 -- find the discriminant of the same name:
11057 -- a) If there is a corresponding discriminant in the object
11058 -- then the value is a selected component of the operand.
11060 -- b) Otherwise the value of a constrained discriminant is
11061 -- found in the stored constraint of the operand.
11064 Stored
: constant Elist_Id
:=
11065 Stored_Constraint
(Operand_Type
);
11069 Disc_O
: Entity_Id
;
11070 -- Discriminant of the operand type. Its value in the
11071 -- object is captured in a selected component.
11073 Disc_S
: Entity_Id
;
11074 -- Stored discriminant of the operand. If present, it
11075 -- corresponds to a constrained discriminant of the
11078 Disc_T
: Entity_Id
;
11079 -- Discriminant of the target type
11082 Disc_T
:= First_Discriminant
(Target_Type
);
11083 Disc_O
:= First_Discriminant
(Operand_Type
);
11084 Disc_S
:= First_Stored_Discriminant
(Operand_Type
);
11086 if Present
(Stored
) then
11087 Elmt
:= First_Elmt
(Stored
);
11089 Elmt
:= No_Elmt
; -- init to avoid warning
11093 while Present
(Disc_T
) loop
11094 if Present
(Disc_O
)
11095 and then Chars
(Disc_T
) = Chars
(Disc_O
)
11098 Make_Selected_Component
(Loc
,
11100 Duplicate_Subexpr_Move_Checks
(Operand
),
11102 Make_Identifier
(Loc
, Chars
(Disc_O
))));
11103 Next_Discriminant
(Disc_O
);
11105 elsif Present
(Disc_S
) then
11106 Append_To
(Cons
, New_Copy_Tree
(Node
(Elmt
)));
11110 Next_Discriminant
(Disc_T
);
11114 elsif Is_Array_Type
(Operand_Type
) then
11115 N_Ix
:= First_Index
(Target_Type
);
11118 for J
in 1 .. Number_Dimensions
(Operand_Type
) loop
11120 -- We convert the bounds explicitly. We use an unchecked
11121 -- conversion because bounds checks are done elsewhere.
11126 Unchecked_Convert_To
(Etype
(N_Ix
),
11127 Make_Attribute_Reference
(Loc
,
11129 Duplicate_Subexpr_No_Checks
11130 (Operand
, Name_Req
=> True),
11131 Attribute_Name
=> Name_First
,
11132 Expressions
=> New_List
(
11133 Make_Integer_Literal
(Loc
, J
)))),
11136 Unchecked_Convert_To
(Etype
(N_Ix
),
11137 Make_Attribute_Reference
(Loc
,
11139 Duplicate_Subexpr_No_Checks
11140 (Operand
, Name_Req
=> True),
11141 Attribute_Name
=> Name_Last
,
11142 Expressions
=> New_List
(
11143 Make_Integer_Literal
(Loc
, J
))))));
11150 Odef
:= New_Occurrence_Of
(Target_Type
, Loc
);
11152 if Present
(Cons
) then
11154 Make_Subtype_Indication
(Loc
,
11155 Subtype_Mark
=> Odef
,
11157 Make_Index_Or_Discriminant_Constraint
(Loc
,
11158 Constraints
=> Cons
));
11161 Temp
:= Make_Temporary
(Loc
, 'C');
11163 Make_Object_Declaration
(Loc
,
11164 Defining_Identifier
=> Temp
,
11165 Object_Definition
=> Odef
);
11167 Set_No_Initialization
(Decl
, True);
11169 -- Insert required actions. It is essential to suppress checks
11170 -- since we have suppressed default initialization, which means
11171 -- that the variable we create may have no discriminants.
11176 Make_Assignment_Statement
(Loc
,
11177 Name
=> New_Occurrence_Of
(Temp
, Loc
),
11178 Expression
=> Relocate_Node
(N
))),
11179 Suppress
=> All_Checks
);
11181 Rewrite
(N
, New_Occurrence_Of
(Temp
, Loc
));
11184 end Handle_Changed_Representation
;
11186 -------------------------------
11187 -- Raise_Accessibility_Error --
11188 -------------------------------
11190 procedure Raise_Accessibility_Error
is
11192 Error_Msg_Warn
:= SPARK_Mode
/= On
;
11194 Make_Raise_Program_Error
(Sloc
(N
),
11195 Reason
=> PE_Accessibility_Check_Failed
));
11196 Set_Etype
(N
, Target_Type
);
11198 Error_Msg_N
("<<accessibility check failure", N
);
11199 Error_Msg_NE
("\<<& [", N
, Standard_Program_Error
);
11200 end Raise_Accessibility_Error
;
11202 ----------------------
11203 -- Real_Range_Check --
11204 ----------------------
11206 -- Case of conversions to floating-point or fixed-point. If range checks
11207 -- are enabled and the target type has a range constraint, we convert:
11213 -- Tnn : typ'Base := typ'Base (x);
11214 -- [constraint_error when Tnn < typ'First or else Tnn > typ'Last]
11217 -- This is necessary when there is a conversion of integer to float or
11218 -- to fixed-point to ensure that the correct checks are made. It is not
11219 -- necessary for float to float where it is enough to simply set the
11220 -- Do_Range_Check flag.
11222 procedure Real_Range_Check
is
11223 Btyp
: constant Entity_Id
:= Base_Type
(Target_Type
);
11224 Lo
: constant Node_Id
:= Type_Low_Bound
(Target_Type
);
11225 Hi
: constant Node_Id
:= Type_High_Bound
(Target_Type
);
11235 -- Nothing to do if conversion was rewritten
11237 if Nkind
(N
) /= N_Type_Conversion
then
11241 -- Nothing to do if range checks suppressed, or target has the same
11242 -- range as the base type (or is the base type).
11244 if Range_Checks_Suppressed
(Target_Type
)
11245 or else (Lo
= Type_Low_Bound
(Btyp
)
11247 Hi
= Type_High_Bound
(Btyp
))
11249 -- Unset the range check flag on the current value of
11250 -- Expression (N), since the captured Operand may have
11251 -- been rewritten (such as for the case of a conversion
11252 -- to a fixed-point type).
11254 Set_Do_Range_Check
(Expression
(N
), False);
11258 -- Nothing to do if expression is an entity on which checks have been
11261 if Is_Entity_Name
(Operand
)
11262 and then Range_Checks_Suppressed
(Entity
(Operand
))
11264 Set_Do_Range_Check
(Expression
(N
), False);
11268 -- Nothing to do if bounds are all static and we can tell that the
11269 -- expression is within the bounds of the target. Note that if the
11270 -- operand is of an unconstrained floating-point type, then we do
11271 -- not trust it to be in range (might be infinite)
11274 S_Lo
: constant Node_Id
:= Type_Low_Bound
(Operand_Type
);
11275 S_Hi
: constant Node_Id
:= Type_High_Bound
(Operand_Type
);
11278 if (not Is_Floating_Point_Type
(Operand_Type
)
11279 or else Is_Constrained
(Operand_Type
))
11280 and then Compile_Time_Known_Value
(S_Lo
)
11281 and then Compile_Time_Known_Value
(S_Hi
)
11282 and then Compile_Time_Known_Value
(Hi
)
11283 and then Compile_Time_Known_Value
(Lo
)
11286 D_Lov
: constant Ureal
:= Expr_Value_R
(Lo
);
11287 D_Hiv
: constant Ureal
:= Expr_Value_R
(Hi
);
11292 if Is_Real_Type
(Operand_Type
) then
11293 S_Lov
:= Expr_Value_R
(S_Lo
);
11294 S_Hiv
:= Expr_Value_R
(S_Hi
);
11296 S_Lov
:= UR_From_Uint
(Expr_Value
(S_Lo
));
11297 S_Hiv
:= UR_From_Uint
(Expr_Value
(S_Hi
));
11301 and then S_Lov
>= D_Lov
11302 and then S_Hiv
<= D_Hiv
11304 Set_Do_Range_Check
(Expression
(N
), False);
11311 -- Otherwise rewrite the conversion as described above
11313 Set_Do_Range_Check
(Expression
(N
), False);
11315 Conv
:= Relocate_Node
(N
);
11316 Rewrite
(Subtype_Mark
(Conv
), New_Occurrence_Of
(Btyp
, Loc
));
11317 Set_Etype
(Conv
, Btyp
);
11319 -- Enable overflow except for case of integer to float conversions,
11320 -- where it is never required, since we can never have overflow in
11323 if not Is_Integer_Type
(Operand_Type
) then
11324 Enable_Overflow_Check
(Conv
);
11327 Tnn
:= Make_Temporary
(Loc
, 'T', Conv
);
11329 -- For a conversion from Float to Fixed where the bounds of the
11330 -- fixed-point type are static, we can obtain a more accurate
11331 -- fixed-point value by converting the result of the floating-
11332 -- point expression to an appropriate integer type, and then
11333 -- performing an unchecked conversion to the target fixed-point
11334 -- type. The range check can then use the corresponding integer
11335 -- value of the bounds instead of requiring further conversions.
11336 -- This preserves the identity:
11338 -- Fix_Val = Fixed_Type (Float_Type (Fix_Val))
11340 -- which used to fail when Fix_Val was a bound of the type and
11341 -- the 'Small was not a representable number.
11342 -- This transformation requires an integer type large enough to
11343 -- accommodate a fixed-point value. This will not be the case
11344 -- in systems where Duration is larger than Long_Integer.
11346 if Is_Ordinary_Fixed_Point_Type
(Target_Type
)
11347 and then Is_Floating_Point_Type
(Operand_Type
)
11348 and then RM_Size
(Base_Type
(Target_Type
)) <=
11349 RM_Size
(Standard_Long_Integer
)
11350 and then Nkind
(Lo
) = N_Real_Literal
11351 and then Nkind
(Hi
) = N_Real_Literal
11353 -- Find the integer type of the right size to perform an unchecked
11354 -- conversion to the target fixed-point type.
11357 Bfx_Type
: constant Entity_Id
:= Base_Type
(Target_Type
);
11358 Expr_Id
: constant Entity_Id
:=
11359 Make_Temporary
(Loc
, 'T', Conv
);
11360 Int_Type
: Entity_Id
;
11363 if RM_Size
(Bfx_Type
) > RM_Size
(Standard_Integer
) then
11364 Int_Type
:= Standard_Long_Integer
;
11366 elsif RM_Size
(Bfx_Type
) > RM_Size
(Standard_Short_Integer
) then
11367 Int_Type
:= Standard_Integer
;
11370 Int_Type
:= Standard_Short_Integer
;
11373 -- Generate a temporary with the integer value. Required in the
11374 -- CCG compiler to ensure that runtime checks reference this
11375 -- integer expression (instead of the resulting fixed-point
11376 -- value) because fixed-point values are handled by means of
11377 -- unsigned integer types).
11380 Make_Object_Declaration
(Loc
,
11381 Defining_Identifier
=> Expr_Id
,
11382 Object_Definition
=> New_Occurrence_Of
(Int_Type
, Loc
),
11383 Constant_Present
=> True,
11385 Convert_To
(Int_Type
, Expression
(Conv
))));
11387 -- Create integer objects for range checking of result.
11390 Unchecked_Convert_To
11391 (Int_Type
, New_Occurrence_Of
(Expr_Id
, Loc
));
11394 Make_Integer_Literal
(Loc
, Corresponding_Integer_Value
(Lo
));
11397 Unchecked_Convert_To
11398 (Int_Type
, New_Occurrence_Of
(Expr_Id
, Loc
));
11401 Make_Integer_Literal
(Loc
, Corresponding_Integer_Value
(Hi
));
11403 -- Rewrite conversion as an integer conversion of the
11404 -- original floating-point expression, followed by an
11405 -- unchecked conversion to the target fixed-point type.
11408 Make_Unchecked_Type_Conversion
(Loc
,
11409 Subtype_Mark
=> New_Occurrence_Of
(Target_Type
, Loc
),
11410 Expression
=> New_Occurrence_Of
(Expr_Id
, Loc
));
11413 -- All other conversions
11416 Lo_Arg
:= New_Occurrence_Of
(Tnn
, Loc
);
11418 Make_Attribute_Reference
(Loc
,
11419 Prefix
=> New_Occurrence_Of
(Target_Type
, Loc
),
11420 Attribute_Name
=> Name_First
);
11422 Hi_Arg
:= New_Occurrence_Of
(Tnn
, Loc
);
11424 Make_Attribute_Reference
(Loc
,
11425 Prefix
=> New_Occurrence_Of
(Target_Type
, Loc
),
11426 Attribute_Name
=> Name_Last
);
11429 -- Build code for range checking
11431 Insert_Actions
(N
, New_List
(
11432 Make_Object_Declaration
(Loc
,
11433 Defining_Identifier
=> Tnn
,
11434 Object_Definition
=> New_Occurrence_Of
(Btyp
, Loc
),
11435 Constant_Present
=> True,
11436 Expression
=> Conv
),
11438 Make_Raise_Constraint_Error
(Loc
,
11443 Left_Opnd
=> Lo_Arg
,
11444 Right_Opnd
=> Lo_Val
),
11448 Left_Opnd
=> Hi_Arg
,
11449 Right_Opnd
=> Hi_Val
)),
11450 Reason
=> CE_Range_Check_Failed
)));
11452 Rewrite
(N
, New_Occurrence_Of
(Tnn
, Loc
));
11453 Analyze_And_Resolve
(N
, Btyp
);
11454 end Real_Range_Check
;
11456 -----------------------------
11457 -- Has_Extra_Accessibility --
11458 -----------------------------
11460 -- Returns true for a formal of an anonymous access type or for an Ada
11461 -- 2012-style stand-alone object of an anonymous access type.
11463 function Has_Extra_Accessibility
(Id
: Entity_Id
) return Boolean is
11465 if Is_Formal
(Id
) or else Ekind_In
(Id
, E_Constant
, E_Variable
) then
11466 return Present
(Effective_Extra_Accessibility
(Id
));
11470 end Has_Extra_Accessibility
;
11472 -- Start of processing for Expand_N_Type_Conversion
11475 -- First remove check marks put by the semantic analysis on the type
11476 -- conversion between array types. We need these checks, and they will
11477 -- be generated by this expansion routine, but we do not depend on these
11478 -- flags being set, and since we do intend to expand the checks in the
11479 -- front end, we don't want them on the tree passed to the back end.
11481 if Is_Array_Type
(Target_Type
) then
11482 if Is_Constrained
(Target_Type
) then
11483 Set_Do_Length_Check
(N
, False);
11485 Set_Do_Range_Check
(Operand
, False);
11489 -- Nothing at all to do if conversion is to the identical type so remove
11490 -- the conversion completely, it is useless, except that it may carry
11491 -- an Assignment_OK attribute, which must be propagated to the operand.
11493 if Operand_Type
= Target_Type
then
11494 if Assignment_OK
(N
) then
11495 Set_Assignment_OK
(Operand
);
11498 Rewrite
(N
, Relocate_Node
(Operand
));
11502 -- Nothing to do if this is the second argument of read. This is a
11503 -- "backwards" conversion that will be handled by the specialized code
11504 -- in attribute processing.
11506 if Nkind
(Parent
(N
)) = N_Attribute_Reference
11507 and then Attribute_Name
(Parent
(N
)) = Name_Read
11508 and then Next
(First
(Expressions
(Parent
(N
)))) = N
11513 -- Check for case of converting to a type that has an invariant
11514 -- associated with it. This requires an invariant check. We insert
11517 -- invariant_check (typ (expr))
11519 -- in the code, after removing side effects from the expression.
11520 -- This is clearer than replacing the conversion into an expression
11521 -- with actions, because the context may impose additional actions
11522 -- (tag checks, membership tests, etc.) that conflict with this
11523 -- rewriting (used previously).
11525 -- Note: the Comes_From_Source check, and then the resetting of this
11526 -- flag prevents what would otherwise be an infinite recursion.
11528 if Has_Invariants
(Target_Type
)
11529 and then Present
(Invariant_Procedure
(Target_Type
))
11530 and then Comes_From_Source
(N
)
11532 Set_Comes_From_Source
(N
, False);
11533 Remove_Side_Effects
(N
);
11534 Insert_Action
(N
, Make_Invariant_Call
(Duplicate_Subexpr
(N
)));
11538 -- Here if we may need to expand conversion
11540 -- If the operand of the type conversion is an arithmetic operation on
11541 -- signed integers, and the based type of the signed integer type in
11542 -- question is smaller than Standard.Integer, we promote both of the
11543 -- operands to type Integer.
11545 -- For example, if we have
11547 -- target-type (opnd1 + opnd2)
11549 -- and opnd1 and opnd2 are of type short integer, then we rewrite
11552 -- target-type (integer(opnd1) + integer(opnd2))
11554 -- We do this because we are always allowed to compute in a larger type
11555 -- if we do the right thing with the result, and in this case we are
11556 -- going to do a conversion which will do an appropriate check to make
11557 -- sure that things are in range of the target type in any case. This
11558 -- avoids some unnecessary intermediate overflows.
11560 -- We might consider a similar transformation in the case where the
11561 -- target is a real type or a 64-bit integer type, and the operand
11562 -- is an arithmetic operation using a 32-bit integer type. However,
11563 -- we do not bother with this case, because it could cause significant
11564 -- inefficiencies on 32-bit machines. On a 64-bit machine it would be
11565 -- much cheaper, but we don't want different behavior on 32-bit and
11566 -- 64-bit machines. Note that the exclusion of the 64-bit case also
11567 -- handles the configurable run-time cases where 64-bit arithmetic
11568 -- may simply be unavailable.
11570 -- Note: this circuit is partially redundant with respect to the circuit
11571 -- in Checks.Apply_Arithmetic_Overflow_Check, but we catch more cases in
11572 -- the processing here. Also we still need the Checks circuit, since we
11573 -- have to be sure not to generate junk overflow checks in the first
11574 -- place, since it would be trick to remove them here.
11576 if Integer_Promotion_Possible
(N
) then
11578 -- All conditions met, go ahead with transformation
11586 Make_Type_Conversion
(Loc
,
11587 Subtype_Mark
=> New_Occurrence_Of
(Standard_Integer
, Loc
),
11588 Expression
=> Relocate_Node
(Right_Opnd
(Operand
)));
11590 Opnd
:= New_Op_Node
(Nkind
(Operand
), Loc
);
11591 Set_Right_Opnd
(Opnd
, R
);
11593 if Nkind
(Operand
) in N_Binary_Op
then
11595 Make_Type_Conversion
(Loc
,
11596 Subtype_Mark
=> New_Occurrence_Of
(Standard_Integer
, Loc
),
11597 Expression
=> Relocate_Node
(Left_Opnd
(Operand
)));
11599 Set_Left_Opnd
(Opnd
, L
);
11603 Make_Type_Conversion
(Loc
,
11604 Subtype_Mark
=> Relocate_Node
(Subtype_Mark
(N
)),
11605 Expression
=> Opnd
));
11607 Analyze_And_Resolve
(N
, Target_Type
);
11612 -- Do validity check if validity checking operands
11614 if Validity_Checks_On
and Validity_Check_Operands
then
11615 Ensure_Valid
(Operand
);
11618 -- Special case of converting from non-standard boolean type
11620 if Is_Boolean_Type
(Operand_Type
)
11621 and then (Nonzero_Is_True
(Operand_Type
))
11623 Adjust_Condition
(Operand
);
11624 Set_Etype
(Operand
, Standard_Boolean
);
11625 Operand_Type
:= Standard_Boolean
;
11628 -- Case of converting to an access type
11630 if Is_Access_Type
(Target_Type
) then
11632 -- If this type conversion was internally generated by the front end
11633 -- to displace the pointer to the object to reference an interface
11634 -- type and the original node was an Unrestricted_Access attribute,
11635 -- then skip applying accessibility checks (because, according to the
11636 -- GNAT Reference Manual, this attribute is similar to 'Access except
11637 -- that all accessibility and aliased view checks are omitted).
11639 if not Comes_From_Source
(N
)
11640 and then Is_Interface
(Designated_Type
(Target_Type
))
11641 and then Nkind
(Original_Node
(N
)) = N_Attribute_Reference
11642 and then Attribute_Name
(Original_Node
(N
)) =
11643 Name_Unrestricted_Access
11647 -- Apply an accessibility check when the conversion operand is an
11648 -- access parameter (or a renaming thereof), unless conversion was
11649 -- expanded from an Unchecked_ or Unrestricted_Access attribute,
11650 -- or for the actual of a class-wide interface parameter. Note that
11651 -- other checks may still need to be applied below (such as tagged
11654 elsif Is_Entity_Name
(Operand
)
11655 and then Has_Extra_Accessibility
(Entity
(Operand
))
11656 and then Ekind
(Etype
(Operand
)) = E_Anonymous_Access_Type
11657 and then (Nkind
(Original_Node
(N
)) /= N_Attribute_Reference
11658 or else Attribute_Name
(Original_Node
(N
)) = Name_Access
)
11660 if not Comes_From_Source
(N
)
11661 and then Nkind_In
(Parent
(N
), N_Function_Call
,
11662 N_Parameter_Association
,
11663 N_Procedure_Call_Statement
)
11664 and then Is_Interface
(Designated_Type
(Target_Type
))
11665 and then Is_Class_Wide_Type
(Designated_Type
(Target_Type
))
11670 Apply_Accessibility_Check
11671 (Operand
, Target_Type
, Insert_Node
=> Operand
);
11674 -- If the level of the operand type is statically deeper than the
11675 -- level of the target type, then force Program_Error. Note that this
11676 -- can only occur for cases where the attribute is within the body of
11677 -- an instantiation, otherwise the conversion will already have been
11678 -- rejected as illegal.
11680 -- Note: warnings are issued by the analyzer for the instance cases
11682 elsif In_Instance_Body
11684 -- The case where the target type is an anonymous access type of
11685 -- a discriminant is excluded, because the level of such a type
11686 -- depends on the context and currently the level returned for such
11687 -- types is zero, resulting in warnings about about check failures
11688 -- in certain legal cases involving class-wide interfaces as the
11689 -- designated type (some cases, such as return statements, are
11690 -- checked at run time, but not clear if these are handled right
11691 -- in general, see 3.10.2(12/2-12.5/3) ???).
11694 not (Ekind
(Target_Type
) = E_Anonymous_Access_Type
11695 and then Present
(Associated_Node_For_Itype
(Target_Type
))
11696 and then Nkind
(Associated_Node_For_Itype
(Target_Type
)) =
11697 N_Discriminant_Specification
)
11699 Type_Access_Level
(Operand_Type
) > Type_Access_Level
(Target_Type
)
11701 Raise_Accessibility_Error
;
11704 -- When the operand is a selected access discriminant the check needs
11705 -- to be made against the level of the object denoted by the prefix
11706 -- of the selected name. Force Program_Error for this case as well
11707 -- (this accessibility violation can only happen if within the body
11708 -- of an instantiation).
11710 elsif In_Instance_Body
11711 and then Ekind
(Operand_Type
) = E_Anonymous_Access_Type
11712 and then Nkind
(Operand
) = N_Selected_Component
11713 and then Ekind
(Entity
(Selector_Name
(Operand
))) = E_Discriminant
11714 and then Object_Access_Level
(Operand
) >
11715 Type_Access_Level
(Target_Type
)
11717 Raise_Accessibility_Error
;
11722 -- Case of conversions of tagged types and access to tagged types
11724 -- When needed, that is to say when the expression is class-wide, Add
11725 -- runtime a tag check for (strict) downward conversion by using the
11726 -- membership test, generating:
11728 -- [constraint_error when Operand not in Target_Type'Class]
11730 -- or in the access type case
11732 -- [constraint_error
11733 -- when Operand /= null
11734 -- and then Operand.all not in
11735 -- Designated_Type (Target_Type)'Class]
11737 if (Is_Access_Type
(Target_Type
)
11738 and then Is_Tagged_Type
(Designated_Type
(Target_Type
)))
11739 or else Is_Tagged_Type
(Target_Type
)
11741 -- Do not do any expansion in the access type case if the parent is a
11742 -- renaming, since this is an error situation which will be caught by
11743 -- Sem_Ch8, and the expansion can interfere with this error check.
11745 if Is_Access_Type
(Target_Type
) and then Is_Renamed_Object
(N
) then
11749 -- Otherwise, proceed with processing tagged conversion
11751 Tagged_Conversion
: declare
11752 Actual_Op_Typ
: Entity_Id
;
11753 Actual_Targ_Typ
: Entity_Id
;
11754 Make_Conversion
: Boolean := False;
11755 Root_Op_Typ
: Entity_Id
;
11757 procedure Make_Tag_Check
(Targ_Typ
: Entity_Id
);
11758 -- Create a membership check to test whether Operand is a member
11759 -- of Targ_Typ. If the original Target_Type is an access, include
11760 -- a test for null value. The check is inserted at N.
11762 --------------------
11763 -- Make_Tag_Check --
11764 --------------------
11766 procedure Make_Tag_Check
(Targ_Typ
: Entity_Id
) is
11771 -- [Constraint_Error
11772 -- when Operand /= null
11773 -- and then Operand.all not in Targ_Typ]
11775 if Is_Access_Type
(Target_Type
) then
11777 Make_And_Then
(Loc
,
11780 Left_Opnd
=> Duplicate_Subexpr_No_Checks
(Operand
),
11781 Right_Opnd
=> Make_Null
(Loc
)),
11786 Make_Explicit_Dereference
(Loc
,
11787 Prefix
=> Duplicate_Subexpr_No_Checks
(Operand
)),
11788 Right_Opnd
=> New_Occurrence_Of
(Targ_Typ
, Loc
)));
11791 -- [Constraint_Error when Operand not in Targ_Typ]
11796 Left_Opnd
=> Duplicate_Subexpr_No_Checks
(Operand
),
11797 Right_Opnd
=> New_Occurrence_Of
(Targ_Typ
, Loc
));
11801 Make_Raise_Constraint_Error
(Loc
,
11803 Reason
=> CE_Tag_Check_Failed
),
11804 Suppress
=> All_Checks
);
11805 end Make_Tag_Check
;
11807 -- Start of processing for Tagged_Conversion
11810 -- Handle entities from the limited view
11812 if Is_Access_Type
(Operand_Type
) then
11814 Available_View
(Designated_Type
(Operand_Type
));
11816 Actual_Op_Typ
:= Operand_Type
;
11819 if Is_Access_Type
(Target_Type
) then
11821 Available_View
(Designated_Type
(Target_Type
));
11823 Actual_Targ_Typ
:= Target_Type
;
11826 Root_Op_Typ
:= Root_Type
(Actual_Op_Typ
);
11828 -- Ada 2005 (AI-251): Handle interface type conversion
11830 if Is_Interface
(Actual_Op_Typ
)
11832 Is_Interface
(Actual_Targ_Typ
)
11834 Expand_Interface_Conversion
(N
);
11838 if not Tag_Checks_Suppressed
(Actual_Targ_Typ
) then
11840 -- Create a runtime tag check for a downward class-wide type
11843 if Is_Class_Wide_Type
(Actual_Op_Typ
)
11844 and then Actual_Op_Typ
/= Actual_Targ_Typ
11845 and then Root_Op_Typ
/= Actual_Targ_Typ
11846 and then Is_Ancestor
(Root_Op_Typ
, Actual_Targ_Typ
,
11847 Use_Full_View
=> True)
11849 Make_Tag_Check
(Class_Wide_Type
(Actual_Targ_Typ
));
11850 Make_Conversion
:= True;
11853 -- AI05-0073: If the result subtype of the function is defined
11854 -- by an access_definition designating a specific tagged type
11855 -- T, a check is made that the result value is null or the tag
11856 -- of the object designated by the result value identifies T.
11857 -- Constraint_Error is raised if this check fails.
11859 if Nkind
(Parent
(N
)) = N_Simple_Return_Statement
then
11862 Func_Typ
: Entity_Id
;
11865 -- Climb scope stack looking for the enclosing function
11867 Func
:= Current_Scope
;
11868 while Present
(Func
)
11869 and then Ekind
(Func
) /= E_Function
11871 Func
:= Scope
(Func
);
11874 -- The function's return subtype must be defined using
11875 -- an access definition.
11877 if Nkind
(Result_Definition
(Parent
(Func
))) =
11878 N_Access_Definition
11880 Func_Typ
:= Directly_Designated_Type
(Etype
(Func
));
11882 -- The return subtype denotes a specific tagged type,
11883 -- in other words, a non class-wide type.
11885 if Is_Tagged_Type
(Func_Typ
)
11886 and then not Is_Class_Wide_Type
(Func_Typ
)
11888 Make_Tag_Check
(Actual_Targ_Typ
);
11889 Make_Conversion
:= True;
11895 -- We have generated a tag check for either a class-wide type
11896 -- conversion or for AI05-0073.
11898 if Make_Conversion
then
11903 Make_Unchecked_Type_Conversion
(Loc
,
11904 Subtype_Mark
=> New_Occurrence_Of
(Target_Type
, Loc
),
11905 Expression
=> Relocate_Node
(Expression
(N
)));
11907 Analyze_And_Resolve
(N
, Target_Type
);
11911 end Tagged_Conversion
;
11913 -- Case of other access type conversions
11915 elsif Is_Access_Type
(Target_Type
) then
11916 Apply_Constraint_Check
(Operand
, Target_Type
);
11918 -- Case of conversions from a fixed-point type
11920 -- These conversions require special expansion and processing, found in
11921 -- the Exp_Fixd package. We ignore cases where Conversion_OK is set,
11922 -- since from a semantic point of view, these are simple integer
11923 -- conversions, which do not need further processing.
11925 elsif Is_Fixed_Point_Type
(Operand_Type
)
11926 and then not Conversion_OK
(N
)
11928 -- We should never see universal fixed at this case, since the
11929 -- expansion of the constituent divide or multiply should have
11930 -- eliminated the explicit mention of universal fixed.
11932 pragma Assert
(Operand_Type
/= Universal_Fixed
);
11934 -- Check for special case of the conversion to universal real that
11935 -- occurs as a result of the use of a round attribute. In this case,
11936 -- the real type for the conversion is taken from the target type of
11937 -- the Round attribute and the result must be marked as rounded.
11939 if Target_Type
= Universal_Real
11940 and then Nkind
(Parent
(N
)) = N_Attribute_Reference
11941 and then Attribute_Name
(Parent
(N
)) = Name_Round
11943 Set_Rounded_Result
(N
);
11944 Set_Etype
(N
, Etype
(Parent
(N
)));
11945 Target_Type
:= Etype
(N
);
11948 if Is_Fixed_Point_Type
(Target_Type
) then
11949 Expand_Convert_Fixed_To_Fixed
(N
);
11952 elsif Is_Integer_Type
(Target_Type
) then
11953 Expand_Convert_Fixed_To_Integer
(N
);
11954 Discrete_Range_Check
;
11957 pragma Assert
(Is_Floating_Point_Type
(Target_Type
));
11958 Expand_Convert_Fixed_To_Float
(N
);
11962 -- Case of conversions to a fixed-point type
11964 -- These conversions require special expansion and processing, found in
11965 -- the Exp_Fixd package. Again, ignore cases where Conversion_OK is set,
11966 -- since from a semantic point of view, these are simple integer
11967 -- conversions, which do not need further processing.
11969 elsif Is_Fixed_Point_Type
(Target_Type
)
11970 and then not Conversion_OK
(N
)
11972 if Is_Integer_Type
(Operand_Type
) then
11973 Expand_Convert_Integer_To_Fixed
(N
);
11976 pragma Assert
(Is_Floating_Point_Type
(Operand_Type
));
11977 Expand_Convert_Float_To_Fixed
(N
);
11981 -- Case of array conversions
11983 -- Expansion of array conversions, add required length/range checks but
11984 -- only do this if there is no change of representation. For handling of
11985 -- this case, see Handle_Changed_Representation.
11987 elsif Is_Array_Type
(Target_Type
) then
11988 if Is_Constrained
(Target_Type
) then
11989 Apply_Length_Check
(Operand
, Target_Type
);
11991 Apply_Range_Check
(Operand
, Target_Type
);
11994 Handle_Changed_Representation
;
11996 -- Case of conversions of discriminated types
11998 -- Add required discriminant checks if target is constrained. Again this
11999 -- change is skipped if we have a change of representation.
12001 elsif Has_Discriminants
(Target_Type
)
12002 and then Is_Constrained
(Target_Type
)
12004 Apply_Discriminant_Check
(Operand
, Target_Type
);
12005 Handle_Changed_Representation
;
12007 -- Case of all other record conversions. The only processing required
12008 -- is to check for a change of representation requiring the special
12009 -- assignment processing.
12011 elsif Is_Record_Type
(Target_Type
) then
12013 -- Ada 2005 (AI-216): Program_Error is raised when converting from
12014 -- a derived Unchecked_Union type to an unconstrained type that is
12015 -- not Unchecked_Union if the operand lacks inferable discriminants.
12017 if Is_Derived_Type
(Operand_Type
)
12018 and then Is_Unchecked_Union
(Base_Type
(Operand_Type
))
12019 and then not Is_Constrained
(Target_Type
)
12020 and then not Is_Unchecked_Union
(Base_Type
(Target_Type
))
12021 and then not Has_Inferable_Discriminants
(Operand
)
12023 -- To prevent Gigi from generating illegal code, we generate a
12024 -- Program_Error node, but we give it the target type of the
12025 -- conversion (is this requirement documented somewhere ???)
12028 PE
: constant Node_Id
:= Make_Raise_Program_Error
(Loc
,
12029 Reason
=> PE_Unchecked_Union_Restriction
);
12032 Set_Etype
(PE
, Target_Type
);
12037 Handle_Changed_Representation
;
12040 -- Case of conversions of enumeration types
12042 elsif Is_Enumeration_Type
(Target_Type
) then
12044 -- Special processing is required if there is a change of
12045 -- representation (from enumeration representation clauses).
12047 if not Same_Representation
(Target_Type
, Operand_Type
) then
12049 -- Convert: x(y) to x'val (ytyp'val (y))
12052 Make_Attribute_Reference
(Loc
,
12053 Prefix
=> New_Occurrence_Of
(Target_Type
, Loc
),
12054 Attribute_Name
=> Name_Val
,
12055 Expressions
=> New_List
(
12056 Make_Attribute_Reference
(Loc
,
12057 Prefix
=> New_Occurrence_Of
(Operand_Type
, Loc
),
12058 Attribute_Name
=> Name_Pos
,
12059 Expressions
=> New_List
(Operand
)))));
12061 Analyze_And_Resolve
(N
, Target_Type
);
12065 -- At this stage, either the conversion node has been transformed into
12066 -- some other equivalent expression, or left as a conversion that can be
12067 -- handled by Gigi, in the following cases:
12069 -- Conversions with no change of representation or type
12071 -- Numeric conversions involving integer, floating- and fixed-point
12072 -- values. Fixed-point values are allowed only if Conversion_OK is
12073 -- set, i.e. if the fixed-point values are to be treated as integers.
12075 -- No other conversions should be passed to Gigi
12077 -- Check: are these rules stated in sinfo??? if so, why restate here???
12079 -- The only remaining step is to generate a range check if we still have
12080 -- a type conversion at this stage and Do_Range_Check is set. Note that
12081 -- we need to deal with at most 8 out of the 9 possible cases of numeric
12082 -- conversions here, because the float-to-integer case is entirely dealt
12083 -- with by Apply_Float_Conversion_Check.
12085 if Nkind
(N
) = N_Type_Conversion
12086 and then Do_Range_Check
(Expression
(N
))
12088 -- Float-to-float conversions
12090 if Is_Floating_Point_Type
(Target_Type
)
12091 and then Is_Floating_Point_Type
(Etype
(Expression
(N
)))
12093 -- Reset overflow flag, since the range check will include
12094 -- dealing with possible overflow, and generate the check.
12096 Set_Do_Overflow_Check
(N
, False);
12098 Generate_Range_Check
12099 (Expression
(N
), Target_Type
, CE_Range_Check_Failed
);
12101 -- Discrete-to-discrete conversions or fixed-point-to-discrete
12102 -- conversions when Conversion_OK is set.
12104 elsif Is_Discrete_Type
(Target_Type
)
12105 and then (Is_Discrete_Type
(Etype
(Expression
(N
)))
12106 or else (Is_Fixed_Point_Type
(Etype
(Expression
(N
)))
12107 and then Conversion_OK
(N
)))
12109 -- If Address is either a source type or target type,
12110 -- suppress range check to avoid typing anomalies when
12111 -- it is a visible integer type.
12113 if Is_Descendant_Of_Address
(Etype
(Expression
(N
)))
12114 or else Is_Descendant_Of_Address
(Target_Type
)
12116 Set_Do_Range_Check
(Expression
(N
), False);
12118 Discrete_Range_Check
;
12121 -- Conversions to floating- or fixed-point when Conversion_OK is set
12123 elsif Is_Floating_Point_Type
(Target_Type
)
12124 or else (Is_Fixed_Point_Type
(Target_Type
)
12125 and then Conversion_OK
(N
))
12131 -- Here at end of processing
12134 -- Apply predicate check if required. Note that we can't just call
12135 -- Apply_Predicate_Check here, because the type looks right after
12136 -- the conversion and it would omit the check. The Comes_From_Source
12137 -- guard is necessary to prevent infinite recursions when we generate
12138 -- internal conversions for the purpose of checking predicates.
12140 if Present
(Predicate_Function
(Target_Type
))
12141 and then not Predicates_Ignored
(Target_Type
)
12142 and then Target_Type
/= Operand_Type
12143 and then Comes_From_Source
(N
)
12146 New_Expr
: constant Node_Id
:= Duplicate_Subexpr
(N
);
12149 -- Avoid infinite recursion on the subsequent expansion of
12150 -- of the copy of the original type conversion. When needed,
12151 -- a range check has already been applied to the expression.
12153 Set_Comes_From_Source
(New_Expr
, False);
12155 Make_Predicate_Check
(Target_Type
, New_Expr
),
12156 Suppress
=> Range_Check
);
12159 end Expand_N_Type_Conversion
;
12161 -----------------------------------
12162 -- Expand_N_Unchecked_Expression --
12163 -----------------------------------
12165 -- Remove the unchecked expression node from the tree. Its job was simply
12166 -- to make sure that its constituent expression was handled with checks
12167 -- off, and now that that is done, we can remove it from the tree, and
12168 -- indeed must, since Gigi does not expect to see these nodes.
12170 procedure Expand_N_Unchecked_Expression
(N
: Node_Id
) is
12171 Exp
: constant Node_Id
:= Expression
(N
);
12173 Set_Assignment_OK
(Exp
, Assignment_OK
(N
) or else Assignment_OK
(Exp
));
12175 end Expand_N_Unchecked_Expression
;
12177 ----------------------------------------
12178 -- Expand_N_Unchecked_Type_Conversion --
12179 ----------------------------------------
12181 -- If this cannot be handled by Gigi and we haven't already made a
12182 -- temporary for it, do it now.
12184 procedure Expand_N_Unchecked_Type_Conversion
(N
: Node_Id
) is
12185 Target_Type
: constant Entity_Id
:= Etype
(N
);
12186 Operand
: constant Node_Id
:= Expression
(N
);
12187 Operand_Type
: constant Entity_Id
:= Etype
(Operand
);
12190 -- Nothing at all to do if conversion is to the identical type so remove
12191 -- the conversion completely, it is useless, except that it may carry
12192 -- an Assignment_OK indication which must be propagated to the operand.
12194 if Operand_Type
= Target_Type
then
12196 -- Code duplicates Expand_N_Unchecked_Expression above, factor???
12198 if Assignment_OK
(N
) then
12199 Set_Assignment_OK
(Operand
);
12202 Rewrite
(N
, Relocate_Node
(Operand
));
12206 -- If we have a conversion of a compile time known value to a target
12207 -- type and the value is in range of the target type, then we can simply
12208 -- replace the construct by an integer literal of the correct type. We
12209 -- only apply this to integer types being converted. Possibly it may
12210 -- apply in other cases, but it is too much trouble to worry about.
12212 -- Note that we do not do this transformation if the Kill_Range_Check
12213 -- flag is set, since then the value may be outside the expected range.
12214 -- This happens in the Normalize_Scalars case.
12216 -- We also skip this if either the target or operand type is biased
12217 -- because in this case, the unchecked conversion is supposed to
12218 -- preserve the bit pattern, not the integer value.
12220 if Is_Integer_Type
(Target_Type
)
12221 and then not Has_Biased_Representation
(Target_Type
)
12222 and then Is_Integer_Type
(Operand_Type
)
12223 and then not Has_Biased_Representation
(Operand_Type
)
12224 and then Compile_Time_Known_Value
(Operand
)
12225 and then not Kill_Range_Check
(N
)
12228 Val
: constant Uint
:= Expr_Value
(Operand
);
12231 if Compile_Time_Known_Value
(Type_Low_Bound
(Target_Type
))
12233 Compile_Time_Known_Value
(Type_High_Bound
(Target_Type
))
12235 Val
>= Expr_Value
(Type_Low_Bound
(Target_Type
))
12237 Val
<= Expr_Value
(Type_High_Bound
(Target_Type
))
12239 Rewrite
(N
, Make_Integer_Literal
(Sloc
(N
), Val
));
12241 -- If Address is the target type, just set the type to avoid a
12242 -- spurious type error on the literal when Address is a visible
12245 if Is_Descendant_Of_Address
(Target_Type
) then
12246 Set_Etype
(N
, Target_Type
);
12248 Analyze_And_Resolve
(N
, Target_Type
);
12256 -- Nothing to do if conversion is safe
12258 if Safe_Unchecked_Type_Conversion
(N
) then
12262 -- Otherwise force evaluation unless Assignment_OK flag is set (this
12263 -- flag indicates ??? More comments needed here)
12265 if Assignment_OK
(N
) then
12268 Force_Evaluation
(N
);
12270 end Expand_N_Unchecked_Type_Conversion
;
12272 ----------------------------
12273 -- Expand_Record_Equality --
12274 ----------------------------
12276 -- For non-variant records, Equality is expanded when needed into:
12278 -- and then Lhs.Discr1 = Rhs.Discr1
12280 -- and then Lhs.Discrn = Rhs.Discrn
12281 -- and then Lhs.Cmp1 = Rhs.Cmp1
12283 -- and then Lhs.Cmpn = Rhs.Cmpn
12285 -- The expression is folded by the back end for adjacent fields. This
12286 -- function is called for tagged record in only one occasion: for imple-
12287 -- menting predefined primitive equality (see Predefined_Primitives_Bodies)
12288 -- otherwise the primitive "=" is used directly.
12290 function Expand_Record_Equality
12295 Bodies
: List_Id
) return Node_Id
12297 Loc
: constant Source_Ptr
:= Sloc
(Nod
);
12302 First_Time
: Boolean := True;
12304 function Element_To_Compare
(C
: Entity_Id
) return Entity_Id
;
12305 -- Return the next discriminant or component to compare, starting with
12306 -- C, skipping inherited components.
12308 ------------------------
12309 -- Element_To_Compare --
12310 ------------------------
12312 function Element_To_Compare
(C
: Entity_Id
) return Entity_Id
is
12318 -- Exit loop when the next element to be compared is found, or
12319 -- there is no more such element.
12321 exit when No
(Comp
);
12323 exit when Ekind_In
(Comp
, E_Discriminant
, E_Component
)
12326 -- Skip inherited components
12328 -- Note: for a tagged type, we always generate the "=" primitive
12329 -- for the base type (not on the first subtype), so the test for
12330 -- Comp /= Original_Record_Component (Comp) is True for
12331 -- inherited components only.
12333 (Is_Tagged_Type
(Typ
)
12334 and then Comp
/= Original_Record_Component
(Comp
))
12338 or else Chars
(Comp
) = Name_uTag
12340 -- Skip interface elements (secondary tags???)
12342 or else Is_Interface
(Etype
(Comp
)));
12344 Next_Entity
(Comp
);
12348 end Element_To_Compare
;
12350 -- Start of processing for Expand_Record_Equality
12353 -- Generates the following code: (assuming that Typ has one Discr and
12354 -- component C2 is also a record)
12356 -- Lhs.Discr1 = Rhs.Discr1
12357 -- and then Lhs.C1 = Rhs.C1
12358 -- and then Lhs.C2.C1=Rhs.C2.C1 and then ... Lhs.C2.Cn=Rhs.C2.Cn
12360 -- and then Lhs.Cmpn = Rhs.Cmpn
12362 Result
:= New_Occurrence_Of
(Standard_True
, Loc
);
12363 C
:= Element_To_Compare
(First_Entity
(Typ
));
12364 while Present
(C
) loop
12375 New_Lhs
:= New_Copy_Tree
(Lhs
);
12376 New_Rhs
:= New_Copy_Tree
(Rhs
);
12380 Expand_Composite_Equality
(Nod
, Etype
(C
),
12382 Make_Selected_Component
(Loc
,
12384 Selector_Name
=> New_Occurrence_Of
(C
, Loc
)),
12386 Make_Selected_Component
(Loc
,
12388 Selector_Name
=> New_Occurrence_Of
(C
, Loc
)),
12391 -- If some (sub)component is an unchecked_union, the whole
12392 -- operation will raise program error.
12394 if Nkind
(Check
) = N_Raise_Program_Error
then
12396 Set_Etype
(Result
, Standard_Boolean
);
12402 -- Generate logical "and" for CodePeer to simplify the
12403 -- generated code and analysis.
12405 elsif CodePeer_Mode
then
12408 Left_Opnd
=> Result
,
12409 Right_Opnd
=> Check
);
12413 Make_And_Then
(Loc
,
12414 Left_Opnd
=> Result
,
12415 Right_Opnd
=> Check
);
12420 First_Time
:= False;
12421 C
:= Element_To_Compare
(Next_Entity
(C
));
12425 end Expand_Record_Equality
;
12427 ---------------------------
12428 -- Expand_Set_Membership --
12429 ---------------------------
12431 procedure Expand_Set_Membership
(N
: Node_Id
) is
12432 Lop
: constant Node_Id
:= Left_Opnd
(N
);
12436 function Make_Cond
(Alt
: Node_Id
) return Node_Id
;
12437 -- If the alternative is a subtype mark, create a simple membership
12438 -- test. Otherwise create an equality test for it.
12444 function Make_Cond
(Alt
: Node_Id
) return Node_Id
is
12446 L
: constant Node_Id
:= New_Copy_Tree
(Lop
);
12447 R
: constant Node_Id
:= Relocate_Node
(Alt
);
12450 if (Is_Entity_Name
(Alt
) and then Is_Type
(Entity
(Alt
)))
12451 or else Nkind
(Alt
) = N_Range
12454 Make_In
(Sloc
(Alt
),
12459 Make_Op_Eq
(Sloc
(Alt
),
12467 -- Start of processing for Expand_Set_Membership
12470 Remove_Side_Effects
(Lop
);
12472 Alt
:= Last
(Alternatives
(N
));
12473 Res
:= Make_Cond
(Alt
);
12476 while Present
(Alt
) loop
12478 Make_Or_Else
(Sloc
(Alt
),
12479 Left_Opnd
=> Make_Cond
(Alt
),
12480 Right_Opnd
=> Res
);
12485 Analyze_And_Resolve
(N
, Standard_Boolean
);
12486 end Expand_Set_Membership
;
12488 -----------------------------------
12489 -- Expand_Short_Circuit_Operator --
12490 -----------------------------------
12492 -- Deal with special expansion if actions are present for the right operand
12493 -- and deal with optimizing case of arguments being True or False. We also
12494 -- deal with the special case of non-standard boolean values.
12496 procedure Expand_Short_Circuit_Operator
(N
: Node_Id
) is
12497 Loc
: constant Source_Ptr
:= Sloc
(N
);
12498 Typ
: constant Entity_Id
:= Etype
(N
);
12499 Left
: constant Node_Id
:= Left_Opnd
(N
);
12500 Right
: constant Node_Id
:= Right_Opnd
(N
);
12501 LocR
: constant Source_Ptr
:= Sloc
(Right
);
12504 Shortcut_Value
: constant Boolean := Nkind
(N
) = N_Or_Else
;
12505 Shortcut_Ent
: constant Entity_Id
:= Boolean_Literals
(Shortcut_Value
);
12506 -- If Left = Shortcut_Value then Right need not be evaluated
12508 function Make_Test_Expr
(Opnd
: Node_Id
) return Node_Id
;
12509 -- For Opnd a boolean expression, return a Boolean expression equivalent
12510 -- to Opnd /= Shortcut_Value.
12512 function Useful
(Actions
: List_Id
) return Boolean;
12513 -- Return True if Actions is not empty and contains useful nodes to
12516 --------------------
12517 -- Make_Test_Expr --
12518 --------------------
12520 function Make_Test_Expr
(Opnd
: Node_Id
) return Node_Id
is
12522 if Shortcut_Value
then
12523 return Make_Op_Not
(Sloc
(Opnd
), Opnd
);
12527 end Make_Test_Expr
;
12533 function Useful
(Actions
: List_Id
) return Boolean is
12536 if Present
(Actions
) then
12537 L
:= First
(Actions
);
12539 -- For now "useful" means not N_Variable_Reference_Marker.
12540 -- Consider stripping other nodes in the future.
12542 while Present
(L
) loop
12543 if Nkind
(L
) /= N_Variable_Reference_Marker
then
12556 Op_Var
: Entity_Id
;
12557 -- Entity for a temporary variable holding the value of the operator,
12558 -- used for expansion in the case where actions are present.
12560 -- Start of processing for Expand_Short_Circuit_Operator
12563 -- Deal with non-standard booleans
12565 if Is_Boolean_Type
(Typ
) then
12566 Adjust_Condition
(Left
);
12567 Adjust_Condition
(Right
);
12568 Set_Etype
(N
, Standard_Boolean
);
12571 -- Check for cases where left argument is known to be True or False
12573 if Compile_Time_Known_Value
(Left
) then
12575 -- Mark SCO for left condition as compile time known
12577 if Generate_SCO
and then Comes_From_Source
(Left
) then
12578 Set_SCO_Condition
(Left
, Expr_Value_E
(Left
) = Standard_True
);
12581 -- Rewrite True AND THEN Right / False OR ELSE Right to Right.
12582 -- Any actions associated with Right will be executed unconditionally
12583 -- and can thus be inserted into the tree unconditionally.
12585 if Expr_Value_E
(Left
) /= Shortcut_Ent
then
12586 if Present
(Actions
(N
)) then
12587 Insert_Actions
(N
, Actions
(N
));
12590 Rewrite
(N
, Right
);
12592 -- Rewrite False AND THEN Right / True OR ELSE Right to Left.
12593 -- In this case we can forget the actions associated with Right,
12594 -- since they will never be executed.
12597 Kill_Dead_Code
(Right
);
12598 Kill_Dead_Code
(Actions
(N
));
12599 Rewrite
(N
, New_Occurrence_Of
(Shortcut_Ent
, Loc
));
12602 Adjust_Result_Type
(N
, Typ
);
12606 -- If Actions are present for the right operand, we have to do some
12607 -- special processing. We can't just let these actions filter back into
12608 -- code preceding the short circuit (which is what would have happened
12609 -- if we had not trapped them in the short-circuit form), since they
12610 -- must only be executed if the right operand of the short circuit is
12611 -- executed and not otherwise.
12613 if Useful
(Actions
(N
)) then
12614 Actlist
:= Actions
(N
);
12616 -- The old approach is to expand:
12618 -- left AND THEN right
12622 -- C : Boolean := False;
12630 -- and finally rewrite the operator into a reference to C. Similarly
12631 -- for left OR ELSE right, with negated values. Note that this
12632 -- rewrite causes some difficulties for coverage analysis because
12633 -- of the introduction of the new variable C, which obscures the
12634 -- structure of the test.
12636 -- We use this "old approach" if Minimize_Expression_With_Actions
12639 if Minimize_Expression_With_Actions
then
12640 Op_Var
:= Make_Temporary
(Loc
, 'C', Related_Node
=> N
);
12643 Make_Object_Declaration
(Loc
,
12644 Defining_Identifier
=> Op_Var
,
12645 Object_Definition
=>
12646 New_Occurrence_Of
(Standard_Boolean
, Loc
),
12648 New_Occurrence_Of
(Shortcut_Ent
, Loc
)));
12650 Append_To
(Actlist
,
12651 Make_Implicit_If_Statement
(Right
,
12652 Condition
=> Make_Test_Expr
(Right
),
12653 Then_Statements
=> New_List
(
12654 Make_Assignment_Statement
(LocR
,
12655 Name
=> New_Occurrence_Of
(Op_Var
, LocR
),
12658 (Boolean_Literals
(not Shortcut_Value
), LocR
)))));
12661 Make_Implicit_If_Statement
(Left
,
12662 Condition
=> Make_Test_Expr
(Left
),
12663 Then_Statements
=> Actlist
));
12665 Rewrite
(N
, New_Occurrence_Of
(Op_Var
, Loc
));
12666 Analyze_And_Resolve
(N
, Standard_Boolean
);
12668 -- The new approach (the default) is to use an
12669 -- Expression_With_Actions node for the right operand of the
12670 -- short-circuit form. Note that this solves the traceability
12671 -- problems for coverage analysis.
12675 Make_Expression_With_Actions
(LocR
,
12676 Expression
=> Relocate_Node
(Right
),
12677 Actions
=> Actlist
));
12679 Set_Actions
(N
, No_List
);
12680 Analyze_And_Resolve
(Right
, Standard_Boolean
);
12683 Adjust_Result_Type
(N
, Typ
);
12687 -- No actions present, check for cases of right argument True/False
12689 if Compile_Time_Known_Value
(Right
) then
12691 -- Mark SCO for left condition as compile time known
12693 if Generate_SCO
and then Comes_From_Source
(Right
) then
12694 Set_SCO_Condition
(Right
, Expr_Value_E
(Right
) = Standard_True
);
12697 -- Change (Left and then True), (Left or else False) to Left. Note
12698 -- that we know there are no actions associated with the right
12699 -- operand, since we just checked for this case above.
12701 if Expr_Value_E
(Right
) /= Shortcut_Ent
then
12704 -- Change (Left and then False), (Left or else True) to Right,
12705 -- making sure to preserve any side effects associated with the Left
12709 Remove_Side_Effects
(Left
);
12710 Rewrite
(N
, New_Occurrence_Of
(Shortcut_Ent
, Loc
));
12714 Adjust_Result_Type
(N
, Typ
);
12715 end Expand_Short_Circuit_Operator
;
12717 ------------------------------------
12718 -- Fixup_Universal_Fixed_Operation --
12719 -------------------------------------
12721 procedure Fixup_Universal_Fixed_Operation
(N
: Node_Id
) is
12722 Conv
: constant Node_Id
:= Parent
(N
);
12725 -- We must have a type conversion immediately above us
12727 pragma Assert
(Nkind
(Conv
) = N_Type_Conversion
);
12729 -- Normally the type conversion gives our target type. The exception
12730 -- occurs in the case of the Round attribute, where the conversion
12731 -- will be to universal real, and our real type comes from the Round
12732 -- attribute (as well as an indication that we must round the result)
12734 if Nkind
(Parent
(Conv
)) = N_Attribute_Reference
12735 and then Attribute_Name
(Parent
(Conv
)) = Name_Round
12737 Set_Etype
(N
, Base_Type
(Etype
(Parent
(Conv
))));
12738 Set_Rounded_Result
(N
);
12740 -- Normal case where type comes from conversion above us
12743 Set_Etype
(N
, Base_Type
(Etype
(Conv
)));
12745 end Fixup_Universal_Fixed_Operation
;
12747 ---------------------------------
12748 -- Has_Inferable_Discriminants --
12749 ---------------------------------
12751 function Has_Inferable_Discriminants
(N
: Node_Id
) return Boolean is
12753 function Prefix_Is_Formal_Parameter
(N
: Node_Id
) return Boolean;
12754 -- Determines whether the left-most prefix of a selected component is a
12755 -- formal parameter in a subprogram. Assumes N is a selected component.
12757 --------------------------------
12758 -- Prefix_Is_Formal_Parameter --
12759 --------------------------------
12761 function Prefix_Is_Formal_Parameter
(N
: Node_Id
) return Boolean is
12762 Sel_Comp
: Node_Id
;
12765 -- Move to the left-most prefix by climbing up the tree
12768 while Present
(Parent
(Sel_Comp
))
12769 and then Nkind
(Parent
(Sel_Comp
)) = N_Selected_Component
12771 Sel_Comp
:= Parent
(Sel_Comp
);
12774 return Is_Formal
(Entity
(Prefix
(Sel_Comp
)));
12775 end Prefix_Is_Formal_Parameter
;
12777 -- Start of processing for Has_Inferable_Discriminants
12780 -- For selected components, the subtype of the selector must be a
12781 -- constrained Unchecked_Union. If the component is subject to a
12782 -- per-object constraint, then the enclosing object must have inferable
12785 if Nkind
(N
) = N_Selected_Component
then
12786 if Has_Per_Object_Constraint
(Entity
(Selector_Name
(N
))) then
12788 -- A small hack. If we have a per-object constrained selected
12789 -- component of a formal parameter, return True since we do not
12790 -- know the actual parameter association yet.
12792 if Prefix_Is_Formal_Parameter
(N
) then
12795 -- Otherwise, check the enclosing object and the selector
12798 return Has_Inferable_Discriminants
(Prefix
(N
))
12799 and then Has_Inferable_Discriminants
(Selector_Name
(N
));
12802 -- The call to Has_Inferable_Discriminants will determine whether
12803 -- the selector has a constrained Unchecked_Union nominal type.
12806 return Has_Inferable_Discriminants
(Selector_Name
(N
));
12809 -- A qualified expression has inferable discriminants if its subtype
12810 -- mark is a constrained Unchecked_Union subtype.
12812 elsif Nkind
(N
) = N_Qualified_Expression
then
12813 return Is_Unchecked_Union
(Etype
(Subtype_Mark
(N
)))
12814 and then Is_Constrained
(Etype
(Subtype_Mark
(N
)));
12816 -- For all other names, it is sufficient to have a constrained
12817 -- Unchecked_Union nominal subtype.
12820 return Is_Unchecked_Union
(Base_Type
(Etype
(N
)))
12821 and then Is_Constrained
(Etype
(N
));
12823 end Has_Inferable_Discriminants
;
12825 -------------------------------
12826 -- Insert_Dereference_Action --
12827 -------------------------------
12829 procedure Insert_Dereference_Action
(N
: Node_Id
) is
12830 function Is_Checked_Storage_Pool
(P
: Entity_Id
) return Boolean;
12831 -- Return true if type of P is derived from Checked_Pool;
12833 -----------------------------
12834 -- Is_Checked_Storage_Pool --
12835 -----------------------------
12837 function Is_Checked_Storage_Pool
(P
: Entity_Id
) return Boolean is
12846 while T
/= Etype
(T
) loop
12847 if Is_RTE
(T
, RE_Checked_Pool
) then
12855 end Is_Checked_Storage_Pool
;
12859 Context
: constant Node_Id
:= Parent
(N
);
12860 Ptr_Typ
: constant Entity_Id
:= Etype
(N
);
12861 Desig_Typ
: constant Entity_Id
:=
12862 Available_View
(Designated_Type
(Ptr_Typ
));
12863 Loc
: constant Source_Ptr
:= Sloc
(N
);
12864 Pool
: constant Entity_Id
:= Associated_Storage_Pool
(Ptr_Typ
);
12870 Size_Bits
: Node_Id
;
12873 -- Start of processing for Insert_Dereference_Action
12876 pragma Assert
(Nkind
(Context
) = N_Explicit_Dereference
);
12878 -- Do not re-expand a dereference which has already been processed by
12881 if Has_Dereference_Action
(Context
) then
12884 -- Do not perform this type of expansion for internally-generated
12887 elsif not Comes_From_Source
(Original_Node
(Context
)) then
12890 -- A dereference action is only applicable to objects which have been
12891 -- allocated on a checked pool.
12893 elsif not Is_Checked_Storage_Pool
(Pool
) then
12897 -- Extract the address of the dereferenced object. Generate:
12899 -- Addr : System.Address := <N>'Pool_Address;
12901 Addr
:= Make_Temporary
(Loc
, 'P');
12904 Make_Object_Declaration
(Loc
,
12905 Defining_Identifier
=> Addr
,
12906 Object_Definition
=>
12907 New_Occurrence_Of
(RTE
(RE_Address
), Loc
),
12909 Make_Attribute_Reference
(Loc
,
12910 Prefix
=> Duplicate_Subexpr_Move_Checks
(N
),
12911 Attribute_Name
=> Name_Pool_Address
)));
12913 -- Calculate the size of the dereferenced object. Generate:
12915 -- Size : Storage_Count := <N>.all'Size / Storage_Unit;
12918 Make_Explicit_Dereference
(Loc
,
12919 Prefix
=> Duplicate_Subexpr_Move_Checks
(N
));
12920 Set_Has_Dereference_Action
(Deref
);
12923 Make_Attribute_Reference
(Loc
,
12925 Attribute_Name
=> Name_Size
);
12927 -- Special case of an unconstrained array: need to add descriptor size
12929 if Is_Array_Type
(Desig_Typ
)
12930 and then not Is_Constrained
(First_Subtype
(Desig_Typ
))
12935 Make_Attribute_Reference
(Loc
,
12937 New_Occurrence_Of
(First_Subtype
(Desig_Typ
), Loc
),
12938 Attribute_Name
=> Name_Descriptor_Size
),
12939 Right_Opnd
=> Size_Bits
);
12942 Size
:= Make_Temporary
(Loc
, 'S');
12944 Make_Object_Declaration
(Loc
,
12945 Defining_Identifier
=> Size
,
12946 Object_Definition
=>
12947 New_Occurrence_Of
(RTE
(RE_Storage_Count
), Loc
),
12949 Make_Op_Divide
(Loc
,
12950 Left_Opnd
=> Size_Bits
,
12951 Right_Opnd
=> Make_Integer_Literal
(Loc
, System_Storage_Unit
))));
12953 -- Calculate the alignment of the dereferenced object. Generate:
12954 -- Alig : constant Storage_Count := <N>.all'Alignment;
12957 Make_Explicit_Dereference
(Loc
,
12958 Prefix
=> Duplicate_Subexpr_Move_Checks
(N
));
12959 Set_Has_Dereference_Action
(Deref
);
12961 Alig
:= Make_Temporary
(Loc
, 'A');
12963 Make_Object_Declaration
(Loc
,
12964 Defining_Identifier
=> Alig
,
12965 Object_Definition
=>
12966 New_Occurrence_Of
(RTE
(RE_Storage_Count
), Loc
),
12968 Make_Attribute_Reference
(Loc
,
12970 Attribute_Name
=> Name_Alignment
)));
12972 -- A dereference of a controlled object requires special processing. The
12973 -- finalization machinery requests additional space from the underlying
12974 -- pool to allocate and hide two pointers. As a result, a checked pool
12975 -- may mark the wrong memory as valid. Since checked pools do not have
12976 -- knowledge of hidden pointers, we have to bring the two pointers back
12977 -- in view in order to restore the original state of the object.
12979 -- The address manipulation is not performed for access types that are
12980 -- subject to pragma No_Heap_Finalization because the two pointers do
12981 -- not exist in the first place.
12983 if No_Heap_Finalization
(Ptr_Typ
) then
12986 elsif Needs_Finalization
(Desig_Typ
) then
12988 -- Adjust the address and size of the dereferenced object. Generate:
12989 -- Adjust_Controlled_Dereference (Addr, Size, Alig);
12992 Make_Procedure_Call_Statement
(Loc
,
12994 New_Occurrence_Of
(RTE
(RE_Adjust_Controlled_Dereference
), Loc
),
12995 Parameter_Associations
=> New_List
(
12996 New_Occurrence_Of
(Addr
, Loc
),
12997 New_Occurrence_Of
(Size
, Loc
),
12998 New_Occurrence_Of
(Alig
, Loc
)));
13000 -- Class-wide types complicate things because we cannot determine
13001 -- statically whether the actual object is truly controlled. We must
13002 -- generate a runtime check to detect this property. Generate:
13004 -- if Needs_Finalization (<N>.all'Tag) then
13008 if Is_Class_Wide_Type
(Desig_Typ
) then
13010 Make_Explicit_Dereference
(Loc
,
13011 Prefix
=> Duplicate_Subexpr_Move_Checks
(N
));
13012 Set_Has_Dereference_Action
(Deref
);
13015 Make_Implicit_If_Statement
(N
,
13017 Make_Function_Call
(Loc
,
13019 New_Occurrence_Of
(RTE
(RE_Needs_Finalization
), Loc
),
13020 Parameter_Associations
=> New_List
(
13021 Make_Attribute_Reference
(Loc
,
13023 Attribute_Name
=> Name_Tag
))),
13024 Then_Statements
=> New_List
(Stmt
));
13027 Insert_Action
(N
, Stmt
);
13031 -- Dereference (Pool, Addr, Size, Alig);
13034 Make_Procedure_Call_Statement
(Loc
,
13037 (Find_Prim_Op
(Etype
(Pool
), Name_Dereference
), Loc
),
13038 Parameter_Associations
=> New_List
(
13039 New_Occurrence_Of
(Pool
, Loc
),
13040 New_Occurrence_Of
(Addr
, Loc
),
13041 New_Occurrence_Of
(Size
, Loc
),
13042 New_Occurrence_Of
(Alig
, Loc
))));
13044 -- Mark the explicit dereference as processed to avoid potential
13045 -- infinite expansion.
13047 Set_Has_Dereference_Action
(Context
);
13050 when RE_Not_Available
=>
13052 end Insert_Dereference_Action
;
13054 --------------------------------
13055 -- Integer_Promotion_Possible --
13056 --------------------------------
13058 function Integer_Promotion_Possible
(N
: Node_Id
) return Boolean is
13059 Operand
: constant Node_Id
:= Expression
(N
);
13060 Operand_Type
: constant Entity_Id
:= Etype
(Operand
);
13061 Root_Operand_Type
: constant Entity_Id
:= Root_Type
(Operand_Type
);
13064 pragma Assert
(Nkind
(N
) = N_Type_Conversion
);
13068 -- We only do the transformation for source constructs. We assume
13069 -- that the expander knows what it is doing when it generates code.
13071 Comes_From_Source
(N
)
13073 -- If the operand type is Short_Integer or Short_Short_Integer,
13074 -- then we will promote to Integer, which is available on all
13075 -- targets, and is sufficient to ensure no intermediate overflow.
13076 -- Furthermore it is likely to be as efficient or more efficient
13077 -- than using the smaller type for the computation so we do this
13078 -- unconditionally.
13081 (Root_Operand_Type
= Base_Type
(Standard_Short_Integer
)
13083 Root_Operand_Type
= Base_Type
(Standard_Short_Short_Integer
))
13085 -- Test for interesting operation, which includes addition,
13086 -- division, exponentiation, multiplication, subtraction, absolute
13087 -- value and unary negation. Unary "+" is omitted since it is a
13088 -- no-op and thus can't overflow.
13090 and then Nkind_In
(Operand
, N_Op_Abs
,
13097 end Integer_Promotion_Possible
;
13099 ------------------------------
13100 -- Make_Array_Comparison_Op --
13101 ------------------------------
13103 -- This is a hand-coded expansion of the following generic function:
13106 -- type elem is (<>);
13107 -- type index is (<>);
13108 -- type a is array (index range <>) of elem;
13110 -- function Gnnn (X : a; Y: a) return boolean is
13111 -- J : index := Y'first;
13114 -- if X'length = 0 then
13117 -- elsif Y'length = 0 then
13121 -- for I in X'range loop
13122 -- if X (I) = Y (J) then
13123 -- if J = Y'last then
13126 -- J := index'succ (J);
13130 -- return X (I) > Y (J);
13134 -- return X'length > Y'length;
13138 -- Note that since we are essentially doing this expansion by hand, we
13139 -- do not need to generate an actual or formal generic part, just the
13140 -- instantiated function itself.
13142 -- Perhaps we could have the actual generic available in the run-time,
13143 -- obtained by rtsfind, and actually expand a real instantiation ???
13145 function Make_Array_Comparison_Op
13147 Nod
: Node_Id
) return Node_Id
13149 Loc
: constant Source_Ptr
:= Sloc
(Nod
);
13151 X
: constant Entity_Id
:= Make_Defining_Identifier
(Loc
, Name_uX
);
13152 Y
: constant Entity_Id
:= Make_Defining_Identifier
(Loc
, Name_uY
);
13153 I
: constant Entity_Id
:= Make_Defining_Identifier
(Loc
, Name_uI
);
13154 J
: constant Entity_Id
:= Make_Defining_Identifier
(Loc
, Name_uJ
);
13156 Index
: constant Entity_Id
:= Base_Type
(Etype
(First_Index
(Typ
)));
13158 Loop_Statement
: Node_Id
;
13159 Loop_Body
: Node_Id
;
13161 Inner_If
: Node_Id
;
13162 Final_Expr
: Node_Id
;
13163 Func_Body
: Node_Id
;
13164 Func_Name
: Entity_Id
;
13170 -- if J = Y'last then
13173 -- J := index'succ (J);
13177 Make_Implicit_If_Statement
(Nod
,
13180 Left_Opnd
=> New_Occurrence_Of
(J
, Loc
),
13182 Make_Attribute_Reference
(Loc
,
13183 Prefix
=> New_Occurrence_Of
(Y
, Loc
),
13184 Attribute_Name
=> Name_Last
)),
13186 Then_Statements
=> New_List
(
13187 Make_Exit_Statement
(Loc
)),
13191 Make_Assignment_Statement
(Loc
,
13192 Name
=> New_Occurrence_Of
(J
, Loc
),
13194 Make_Attribute_Reference
(Loc
,
13195 Prefix
=> New_Occurrence_Of
(Index
, Loc
),
13196 Attribute_Name
=> Name_Succ
,
13197 Expressions
=> New_List
(New_Occurrence_Of
(J
, Loc
))))));
13199 -- if X (I) = Y (J) then
13202 -- return X (I) > Y (J);
13206 Make_Implicit_If_Statement
(Nod
,
13210 Make_Indexed_Component
(Loc
,
13211 Prefix
=> New_Occurrence_Of
(X
, Loc
),
13212 Expressions
=> New_List
(New_Occurrence_Of
(I
, Loc
))),
13215 Make_Indexed_Component
(Loc
,
13216 Prefix
=> New_Occurrence_Of
(Y
, Loc
),
13217 Expressions
=> New_List
(New_Occurrence_Of
(J
, Loc
)))),
13219 Then_Statements
=> New_List
(Inner_If
),
13221 Else_Statements
=> New_List
(
13222 Make_Simple_Return_Statement
(Loc
,
13226 Make_Indexed_Component
(Loc
,
13227 Prefix
=> New_Occurrence_Of
(X
, Loc
),
13228 Expressions
=> New_List
(New_Occurrence_Of
(I
, Loc
))),
13231 Make_Indexed_Component
(Loc
,
13232 Prefix
=> New_Occurrence_Of
(Y
, Loc
),
13233 Expressions
=> New_List
(
13234 New_Occurrence_Of
(J
, Loc
)))))));
13236 -- for I in X'range loop
13241 Make_Implicit_Loop_Statement
(Nod
,
13242 Identifier
=> Empty
,
13244 Iteration_Scheme
=>
13245 Make_Iteration_Scheme
(Loc
,
13246 Loop_Parameter_Specification
=>
13247 Make_Loop_Parameter_Specification
(Loc
,
13248 Defining_Identifier
=> I
,
13249 Discrete_Subtype_Definition
=>
13250 Make_Attribute_Reference
(Loc
,
13251 Prefix
=> New_Occurrence_Of
(X
, Loc
),
13252 Attribute_Name
=> Name_Range
))),
13254 Statements
=> New_List
(Loop_Body
));
13256 -- if X'length = 0 then
13258 -- elsif Y'length = 0 then
13261 -- for ... loop ... end loop;
13262 -- return X'length > Y'length;
13266 Make_Attribute_Reference
(Loc
,
13267 Prefix
=> New_Occurrence_Of
(X
, Loc
),
13268 Attribute_Name
=> Name_Length
);
13271 Make_Attribute_Reference
(Loc
,
13272 Prefix
=> New_Occurrence_Of
(Y
, Loc
),
13273 Attribute_Name
=> Name_Length
);
13277 Left_Opnd
=> Length1
,
13278 Right_Opnd
=> Length2
);
13281 Make_Implicit_If_Statement
(Nod
,
13285 Make_Attribute_Reference
(Loc
,
13286 Prefix
=> New_Occurrence_Of
(X
, Loc
),
13287 Attribute_Name
=> Name_Length
),
13289 Make_Integer_Literal
(Loc
, 0)),
13293 Make_Simple_Return_Statement
(Loc
,
13294 Expression
=> New_Occurrence_Of
(Standard_False
, Loc
))),
13296 Elsif_Parts
=> New_List
(
13297 Make_Elsif_Part
(Loc
,
13301 Make_Attribute_Reference
(Loc
,
13302 Prefix
=> New_Occurrence_Of
(Y
, Loc
),
13303 Attribute_Name
=> Name_Length
),
13305 Make_Integer_Literal
(Loc
, 0)),
13309 Make_Simple_Return_Statement
(Loc
,
13310 Expression
=> New_Occurrence_Of
(Standard_True
, Loc
))))),
13312 Else_Statements
=> New_List
(
13314 Make_Simple_Return_Statement
(Loc
,
13315 Expression
=> Final_Expr
)));
13319 Formals
:= New_List
(
13320 Make_Parameter_Specification
(Loc
,
13321 Defining_Identifier
=> X
,
13322 Parameter_Type
=> New_Occurrence_Of
(Typ
, Loc
)),
13324 Make_Parameter_Specification
(Loc
,
13325 Defining_Identifier
=> Y
,
13326 Parameter_Type
=> New_Occurrence_Of
(Typ
, Loc
)));
13328 -- function Gnnn (...) return boolean is
13329 -- J : index := Y'first;
13334 Func_Name
:= Make_Temporary
(Loc
, 'G');
13337 Make_Subprogram_Body
(Loc
,
13339 Make_Function_Specification
(Loc
,
13340 Defining_Unit_Name
=> Func_Name
,
13341 Parameter_Specifications
=> Formals
,
13342 Result_Definition
=> New_Occurrence_Of
(Standard_Boolean
, Loc
)),
13344 Declarations
=> New_List
(
13345 Make_Object_Declaration
(Loc
,
13346 Defining_Identifier
=> J
,
13347 Object_Definition
=> New_Occurrence_Of
(Index
, Loc
),
13349 Make_Attribute_Reference
(Loc
,
13350 Prefix
=> New_Occurrence_Of
(Y
, Loc
),
13351 Attribute_Name
=> Name_First
))),
13353 Handled_Statement_Sequence
=>
13354 Make_Handled_Sequence_Of_Statements
(Loc
,
13355 Statements
=> New_List
(If_Stat
)));
13358 end Make_Array_Comparison_Op
;
13360 ---------------------------
13361 -- Make_Boolean_Array_Op --
13362 ---------------------------
13364 -- For logical operations on boolean arrays, expand in line the following,
13365 -- replacing 'and' with 'or' or 'xor' where needed:
13367 -- function Annn (A : typ; B: typ) return typ is
13370 -- for J in A'range loop
13371 -- C (J) := A (J) op B (J);
13376 -- Here typ is the boolean array type
13378 function Make_Boolean_Array_Op
13380 N
: Node_Id
) return Node_Id
13382 Loc
: constant Source_Ptr
:= Sloc
(N
);
13384 A
: constant Entity_Id
:= Make_Defining_Identifier
(Loc
, Name_uA
);
13385 B
: constant Entity_Id
:= Make_Defining_Identifier
(Loc
, Name_uB
);
13386 C
: constant Entity_Id
:= Make_Defining_Identifier
(Loc
, Name_uC
);
13387 J
: constant Entity_Id
:= Make_Defining_Identifier
(Loc
, Name_uJ
);
13395 Func_Name
: Entity_Id
;
13396 Func_Body
: Node_Id
;
13397 Loop_Statement
: Node_Id
;
13401 Make_Indexed_Component
(Loc
,
13402 Prefix
=> New_Occurrence_Of
(A
, Loc
),
13403 Expressions
=> New_List
(New_Occurrence_Of
(J
, Loc
)));
13406 Make_Indexed_Component
(Loc
,
13407 Prefix
=> New_Occurrence_Of
(B
, Loc
),
13408 Expressions
=> New_List
(New_Occurrence_Of
(J
, Loc
)));
13411 Make_Indexed_Component
(Loc
,
13412 Prefix
=> New_Occurrence_Of
(C
, Loc
),
13413 Expressions
=> New_List
(New_Occurrence_Of
(J
, Loc
)));
13415 if Nkind
(N
) = N_Op_And
then
13419 Right_Opnd
=> B_J
);
13421 elsif Nkind
(N
) = N_Op_Or
then
13425 Right_Opnd
=> B_J
);
13431 Right_Opnd
=> B_J
);
13435 Make_Implicit_Loop_Statement
(N
,
13436 Identifier
=> Empty
,
13438 Iteration_Scheme
=>
13439 Make_Iteration_Scheme
(Loc
,
13440 Loop_Parameter_Specification
=>
13441 Make_Loop_Parameter_Specification
(Loc
,
13442 Defining_Identifier
=> J
,
13443 Discrete_Subtype_Definition
=>
13444 Make_Attribute_Reference
(Loc
,
13445 Prefix
=> New_Occurrence_Of
(A
, Loc
),
13446 Attribute_Name
=> Name_Range
))),
13448 Statements
=> New_List
(
13449 Make_Assignment_Statement
(Loc
,
13451 Expression
=> Op
)));
13453 Formals
:= New_List
(
13454 Make_Parameter_Specification
(Loc
,
13455 Defining_Identifier
=> A
,
13456 Parameter_Type
=> New_Occurrence_Of
(Typ
, Loc
)),
13458 Make_Parameter_Specification
(Loc
,
13459 Defining_Identifier
=> B
,
13460 Parameter_Type
=> New_Occurrence_Of
(Typ
, Loc
)));
13462 Func_Name
:= Make_Temporary
(Loc
, 'A');
13463 Set_Is_Inlined
(Func_Name
);
13466 Make_Subprogram_Body
(Loc
,
13468 Make_Function_Specification
(Loc
,
13469 Defining_Unit_Name
=> Func_Name
,
13470 Parameter_Specifications
=> Formals
,
13471 Result_Definition
=> New_Occurrence_Of
(Typ
, Loc
)),
13473 Declarations
=> New_List
(
13474 Make_Object_Declaration
(Loc
,
13475 Defining_Identifier
=> C
,
13476 Object_Definition
=> New_Occurrence_Of
(Typ
, Loc
))),
13478 Handled_Statement_Sequence
=>
13479 Make_Handled_Sequence_Of_Statements
(Loc
,
13480 Statements
=> New_List
(
13482 Make_Simple_Return_Statement
(Loc
,
13483 Expression
=> New_Occurrence_Of
(C
, Loc
)))));
13486 end Make_Boolean_Array_Op
;
13488 -----------------------------------------
13489 -- Minimized_Eliminated_Overflow_Check --
13490 -----------------------------------------
13492 function Minimized_Eliminated_Overflow_Check
(N
: Node_Id
) return Boolean is
13495 Is_Signed_Integer_Type
(Etype
(N
))
13496 and then Overflow_Check_Mode
in Minimized_Or_Eliminated
;
13497 end Minimized_Eliminated_Overflow_Check
;
13499 --------------------------------
13500 -- Optimize_Length_Comparison --
13501 --------------------------------
13503 procedure Optimize_Length_Comparison
(N
: Node_Id
) is
13504 Loc
: constant Source_Ptr
:= Sloc
(N
);
13505 Typ
: constant Entity_Id
:= Etype
(N
);
13510 -- First and Last attribute reference nodes, which end up as left and
13511 -- right operands of the optimized result.
13514 -- True for comparison operand of zero
13517 -- Comparison operand, set only if Is_Zero is false
13519 Ent
: Entity_Id
:= Empty
;
13520 -- Entity whose length is being compared
13522 Index
: Node_Id
:= Empty
;
13523 -- Integer_Literal node for length attribute expression, or Empty
13524 -- if there is no such expression present.
13527 -- Type of array index to which 'Length is applied
13529 Op
: Node_Kind
:= Nkind
(N
);
13530 -- Kind of comparison operator, gets flipped if operands backwards
13532 function Is_Optimizable
(N
: Node_Id
) return Boolean;
13533 -- Tests N to see if it is an optimizable comparison value (defined as
13534 -- constant zero or one, or something else where the value is known to
13535 -- be positive and in the range of 32-bits, and where the corresponding
13536 -- Length value is also known to be 32-bits. If result is true, sets
13537 -- Is_Zero, Ityp, and Comp accordingly.
13539 function Is_Entity_Length
(N
: Node_Id
) return Boolean;
13540 -- Tests if N is a length attribute applied to a simple entity. If so,
13541 -- returns True, and sets Ent to the entity, and Index to the integer
13542 -- literal provided as an attribute expression, or to Empty if none.
13543 -- Also returns True if the expression is a generated type conversion
13544 -- whose expression is of the desired form. This latter case arises
13545 -- when Apply_Universal_Integer_Attribute_Check installs a conversion
13546 -- to check for being in range, which is not needed in this context.
13547 -- Returns False if neither condition holds.
13549 function Prepare_64
(N
: Node_Id
) return Node_Id
;
13550 -- Given a discrete expression, returns a Long_Long_Integer typed
13551 -- expression representing the underlying value of the expression.
13552 -- This is done with an unchecked conversion to the result type. We
13553 -- use unchecked conversion to handle the enumeration type case.
13555 ----------------------
13556 -- Is_Entity_Length --
13557 ----------------------
13559 function Is_Entity_Length
(N
: Node_Id
) return Boolean is
13561 if Nkind
(N
) = N_Attribute_Reference
13562 and then Attribute_Name
(N
) = Name_Length
13563 and then Is_Entity_Name
(Prefix
(N
))
13565 Ent
:= Entity
(Prefix
(N
));
13567 if Present
(Expressions
(N
)) then
13568 Index
:= First
(Expressions
(N
));
13575 elsif Nkind
(N
) = N_Type_Conversion
13576 and then not Comes_From_Source
(N
)
13578 return Is_Entity_Length
(Expression
(N
));
13583 end Is_Entity_Length
;
13585 --------------------
13586 -- Is_Optimizable --
13587 --------------------
13589 function Is_Optimizable
(N
: Node_Id
) return Boolean is
13597 if Compile_Time_Known_Value
(N
) then
13598 Val
:= Expr_Value
(N
);
13600 if Val
= Uint_0
then
13605 elsif Val
= Uint_1
then
13612 -- Here we have to make sure of being within 32-bits
13614 Determine_Range
(N
, OK
, Lo
, Hi
, Assume_Valid
=> True);
13617 or else Lo
< Uint_1
13618 or else Hi
> UI_From_Int
(Int
'Last)
13623 -- Comparison value was within range, so now we must check the index
13624 -- value to make sure it is also within 32-bits.
13626 Indx
:= First_Index
(Etype
(Ent
));
13628 if Present
(Index
) then
13629 for J
in 2 .. UI_To_Int
(Intval
(Index
)) loop
13634 Ityp
:= Etype
(Indx
);
13636 if Esize
(Ityp
) > 32 then
13643 end Is_Optimizable
;
13649 function Prepare_64
(N
: Node_Id
) return Node_Id
is
13651 return Unchecked_Convert_To
(Standard_Long_Long_Integer
, N
);
13654 -- Start of processing for Optimize_Length_Comparison
13657 -- Nothing to do if not a comparison
13659 if Op
not in N_Op_Compare
then
13663 -- Nothing to do if special -gnatd.P debug flag set.
13665 if Debug_Flag_Dot_PP
then
13669 -- Ent'Length op 0/1
13671 if Is_Entity_Length
(Left_Opnd
(N
))
13672 and then Is_Optimizable
(Right_Opnd
(N
))
13676 -- 0/1 op Ent'Length
13678 elsif Is_Entity_Length
(Right_Opnd
(N
))
13679 and then Is_Optimizable
(Left_Opnd
(N
))
13681 -- Flip comparison to opposite sense
13684 when N_Op_Lt
=> Op
:= N_Op_Gt
;
13685 when N_Op_Le
=> Op
:= N_Op_Ge
;
13686 when N_Op_Gt
=> Op
:= N_Op_Lt
;
13687 when N_Op_Ge
=> Op
:= N_Op_Le
;
13688 when others => null;
13691 -- Else optimization not possible
13697 -- Fall through if we will do the optimization
13699 -- Cases to handle:
13701 -- X'Length = 0 => X'First > X'Last
13702 -- X'Length = 1 => X'First = X'Last
13703 -- X'Length = n => X'First + (n - 1) = X'Last
13705 -- X'Length /= 0 => X'First <= X'Last
13706 -- X'Length /= 1 => X'First /= X'Last
13707 -- X'Length /= n => X'First + (n - 1) /= X'Last
13709 -- X'Length >= 0 => always true, warn
13710 -- X'Length >= 1 => X'First <= X'Last
13711 -- X'Length >= n => X'First + (n - 1) <= X'Last
13713 -- X'Length > 0 => X'First <= X'Last
13714 -- X'Length > 1 => X'First < X'Last
13715 -- X'Length > n => X'First + (n - 1) < X'Last
13717 -- X'Length <= 0 => X'First > X'Last (warn, could be =)
13718 -- X'Length <= 1 => X'First >= X'Last
13719 -- X'Length <= n => X'First + (n - 1) >= X'Last
13721 -- X'Length < 0 => always false (warn)
13722 -- X'Length < 1 => X'First > X'Last
13723 -- X'Length < n => X'First + (n - 1) > X'Last
13725 -- Note: for the cases of n (not constant 0,1), we require that the
13726 -- corresponding index type be integer or shorter (i.e. not 64-bit),
13727 -- and the same for the comparison value. Then we do the comparison
13728 -- using 64-bit arithmetic (actually long long integer), so that we
13729 -- cannot have overflow intefering with the result.
13731 -- First deal with warning cases
13740 Convert_To
(Typ
, New_Occurrence_Of
(Standard_True
, Loc
)));
13741 Analyze_And_Resolve
(N
, Typ
);
13742 Warn_On_Known_Condition
(N
);
13749 Convert_To
(Typ
, New_Occurrence_Of
(Standard_False
, Loc
)));
13750 Analyze_And_Resolve
(N
, Typ
);
13751 Warn_On_Known_Condition
(N
);
13755 if Constant_Condition_Warnings
13756 and then Comes_From_Source
(Original_Node
(N
))
13758 Error_Msg_N
("could replace by ""'=""?c?", N
);
13768 -- Build the First reference we will use
13771 Make_Attribute_Reference
(Loc
,
13772 Prefix
=> New_Occurrence_Of
(Ent
, Loc
),
13773 Attribute_Name
=> Name_First
);
13775 if Present
(Index
) then
13776 Set_Expressions
(Left
, New_List
(New_Copy
(Index
)));
13779 -- If general value case, then do the addition of (n - 1), and
13780 -- also add the needed conversions to type Long_Long_Integer.
13782 if Present
(Comp
) then
13785 Left_Opnd
=> Prepare_64
(Left
),
13787 Make_Op_Subtract
(Loc
,
13788 Left_Opnd
=> Prepare_64
(Comp
),
13789 Right_Opnd
=> Make_Integer_Literal
(Loc
, 1)));
13792 -- Build the Last reference we will use
13795 Make_Attribute_Reference
(Loc
,
13796 Prefix
=> New_Occurrence_Of
(Ent
, Loc
),
13797 Attribute_Name
=> Name_Last
);
13799 if Present
(Index
) then
13800 Set_Expressions
(Right
, New_List
(New_Copy
(Index
)));
13803 -- If general operand, convert Last reference to Long_Long_Integer
13805 if Present
(Comp
) then
13806 Right
:= Prepare_64
(Right
);
13809 -- Check for cases to optimize
13811 -- X'Length = 0 => X'First > X'Last
13812 -- X'Length < 1 => X'First > X'Last
13813 -- X'Length < n => X'First + (n - 1) > X'Last
13815 if (Is_Zero
and then Op
= N_Op_Eq
)
13816 or else (not Is_Zero
and then Op
= N_Op_Lt
)
13821 Right_Opnd
=> Right
);
13823 -- X'Length = 1 => X'First = X'Last
13824 -- X'Length = n => X'First + (n - 1) = X'Last
13826 elsif not Is_Zero
and then Op
= N_Op_Eq
then
13830 Right_Opnd
=> Right
);
13832 -- X'Length /= 0 => X'First <= X'Last
13833 -- X'Length > 0 => X'First <= X'Last
13835 elsif Is_Zero
and (Op
= N_Op_Ne
or else Op
= N_Op_Gt
) then
13839 Right_Opnd
=> Right
);
13841 -- X'Length /= 1 => X'First /= X'Last
13842 -- X'Length /= n => X'First + (n - 1) /= X'Last
13844 elsif not Is_Zero
and then Op
= N_Op_Ne
then
13848 Right_Opnd
=> Right
);
13850 -- X'Length >= 1 => X'First <= X'Last
13851 -- X'Length >= n => X'First + (n - 1) <= X'Last
13853 elsif not Is_Zero
and then Op
= N_Op_Ge
then
13857 Right_Opnd
=> Right
);
13859 -- X'Length > 1 => X'First < X'Last
13860 -- X'Length > n => X'First + (n = 1) < X'Last
13862 elsif not Is_Zero
and then Op
= N_Op_Gt
then
13866 Right_Opnd
=> Right
);
13868 -- X'Length <= 1 => X'First >= X'Last
13869 -- X'Length <= n => X'First + (n - 1) >= X'Last
13871 elsif not Is_Zero
and then Op
= N_Op_Le
then
13875 Right_Opnd
=> Right
);
13877 -- Should not happen at this stage
13880 raise Program_Error
;
13883 -- Rewrite and finish up
13885 Rewrite
(N
, Result
);
13886 Analyze_And_Resolve
(N
, Typ
);
13888 end Optimize_Length_Comparison
;
13890 --------------------------------
13891 -- Process_If_Case_Statements --
13892 --------------------------------
13894 procedure Process_If_Case_Statements
(N
: Node_Id
; Stmts
: List_Id
) is
13898 Decl
:= First
(Stmts
);
13899 while Present
(Decl
) loop
13900 if Nkind
(Decl
) = N_Object_Declaration
13901 and then Is_Finalizable_Transient
(Decl
, N
)
13903 Process_Transient_In_Expression
(Decl
, N
, Stmts
);
13908 end Process_If_Case_Statements
;
13910 -------------------------------------
13911 -- Process_Transient_In_Expression --
13912 -------------------------------------
13914 procedure Process_Transient_In_Expression
13915 (Obj_Decl
: Node_Id
;
13919 Loc
: constant Source_Ptr
:= Sloc
(Obj_Decl
);
13920 Obj_Id
: constant Entity_Id
:= Defining_Identifier
(Obj_Decl
);
13922 Hook_Context
: constant Node_Id
:= Find_Hook_Context
(Expr
);
13923 -- The node on which to insert the hook as an action. This is usually
13924 -- the innermost enclosing non-transient construct.
13926 Fin_Call
: Node_Id
;
13927 Hook_Assign
: Node_Id
;
13928 Hook_Clear
: Node_Id
;
13929 Hook_Decl
: Node_Id
;
13930 Hook_Insert
: Node_Id
;
13931 Ptr_Decl
: Node_Id
;
13933 Fin_Context
: Node_Id
;
13934 -- The node after which to insert the finalization actions of the
13935 -- transient object.
13938 pragma Assert
(Nkind_In
(Expr
, N_Case_Expression
,
13939 N_Expression_With_Actions
,
13942 -- When the context is a Boolean evaluation, all three nodes capture the
13943 -- result of their computation in a local temporary:
13946 -- Trans_Id : Ctrl_Typ := ...;
13947 -- Result : constant Boolean := ... Trans_Id ...;
13948 -- <finalize Trans_Id>
13951 -- As a result, the finalization of any transient objects can safely
13952 -- take place after the result capture.
13954 -- ??? could this be extended to elementary types?
13956 if Is_Boolean_Type
(Etype
(Expr
)) then
13957 Fin_Context
:= Last
(Stmts
);
13959 -- Otherwise the immediate context may not be safe enough to carry
13960 -- out transient object finalization due to aliasing and nesting of
13961 -- constructs. Insert calls to [Deep_]Finalize after the innermost
13962 -- enclosing non-transient construct.
13965 Fin_Context
:= Hook_Context
;
13968 -- Mark the transient object as successfully processed to avoid double
13971 Set_Is_Finalized_Transient
(Obj_Id
);
13973 -- Construct all the pieces necessary to hook and finalize a transient
13976 Build_Transient_Object_Statements
13977 (Obj_Decl
=> Obj_Decl
,
13978 Fin_Call
=> Fin_Call
,
13979 Hook_Assign
=> Hook_Assign
,
13980 Hook_Clear
=> Hook_Clear
,
13981 Hook_Decl
=> Hook_Decl
,
13982 Ptr_Decl
=> Ptr_Decl
,
13983 Finalize_Obj
=> False);
13985 -- Add the access type which provides a reference to the transient
13986 -- object. Generate:
13988 -- type Ptr_Typ is access all Desig_Typ;
13990 Insert_Action
(Hook_Context
, Ptr_Decl
);
13992 -- Add the temporary which acts as a hook to the transient object.
13995 -- Hook : Ptr_Id := null;
13997 Insert_Action
(Hook_Context
, Hook_Decl
);
13999 -- When the transient object is initialized by an aggregate, the hook
14000 -- must capture the object after the last aggregate assignment takes
14001 -- place. Only then is the object considered initialized. Generate:
14003 -- Hook := Ptr_Typ (Obj_Id);
14005 -- Hook := Obj_Id'Unrestricted_Access;
14007 if Ekind_In
(Obj_Id
, E_Constant
, E_Variable
)
14008 and then Present
(Last_Aggregate_Assignment
(Obj_Id
))
14010 Hook_Insert
:= Last_Aggregate_Assignment
(Obj_Id
);
14012 -- Otherwise the hook seizes the related object immediately
14015 Hook_Insert
:= Obj_Decl
;
14018 Insert_After_And_Analyze
(Hook_Insert
, Hook_Assign
);
14020 -- When the node is part of a return statement, there is no need to
14021 -- insert a finalization call, as the general finalization mechanism
14022 -- (see Build_Finalizer) would take care of the transient object on
14023 -- subprogram exit. Note that it would also be impossible to insert the
14024 -- finalization code after the return statement as this will render it
14027 if Nkind
(Fin_Context
) = N_Simple_Return_Statement
then
14030 -- Finalize the hook after the context has been evaluated. Generate:
14032 -- if Hook /= null then
14033 -- [Deep_]Finalize (Hook.all);
14038 Insert_Action_After
(Fin_Context
,
14039 Make_Implicit_If_Statement
(Obj_Decl
,
14043 New_Occurrence_Of
(Defining_Entity
(Hook_Decl
), Loc
),
14044 Right_Opnd
=> Make_Null
(Loc
)),
14046 Then_Statements
=> New_List
(
14050 end Process_Transient_In_Expression
;
14052 ------------------------
14053 -- Rewrite_Comparison --
14054 ------------------------
14056 procedure Rewrite_Comparison
(N
: Node_Id
) is
14057 Typ
: constant Entity_Id
:= Etype
(N
);
14059 False_Result
: Boolean;
14060 True_Result
: Boolean;
14063 if Nkind
(N
) = N_Type_Conversion
then
14064 Rewrite_Comparison
(Expression
(N
));
14067 elsif Nkind
(N
) not in N_Op_Compare
then
14071 -- Determine the potential outcome of the comparison assuming that the
14072 -- operands are valid and emit a warning when the comparison evaluates
14073 -- to True or False only in the presence of invalid values.
14075 Warn_On_Constant_Valid_Condition
(N
);
14077 -- Determine the potential outcome of the comparison assuming that the
14078 -- operands are not valid.
14082 Assume_Valid
=> False,
14083 True_Result
=> True_Result
,
14084 False_Result
=> False_Result
);
14086 -- The outcome is a decisive False or True, rewrite the operator
14088 if False_Result
or True_Result
then
14091 New_Occurrence_Of
(Boolean_Literals
(True_Result
), Sloc
(N
))));
14093 Analyze_And_Resolve
(N
, Typ
);
14094 Warn_On_Known_Condition
(N
);
14096 end Rewrite_Comparison
;
14098 ----------------------------
14099 -- Safe_In_Place_Array_Op --
14100 ----------------------------
14102 function Safe_In_Place_Array_Op
14105 Op2
: Node_Id
) return Boolean
14107 Target
: Entity_Id
;
14109 function Is_Safe_Operand
(Op
: Node_Id
) return Boolean;
14110 -- Operand is safe if it cannot overlap part of the target of the
14111 -- operation. If the operand and the target are identical, the operand
14112 -- is safe. The operand can be empty in the case of negation.
14114 function Is_Unaliased
(N
: Node_Id
) return Boolean;
14115 -- Check that N is a stand-alone entity
14121 function Is_Unaliased
(N
: Node_Id
) return Boolean is
14125 and then No
(Address_Clause
(Entity
(N
)))
14126 and then No
(Renamed_Object
(Entity
(N
)));
14129 ---------------------
14130 -- Is_Safe_Operand --
14131 ---------------------
14133 function Is_Safe_Operand
(Op
: Node_Id
) return Boolean is
14138 elsif Is_Entity_Name
(Op
) then
14139 return Is_Unaliased
(Op
);
14141 elsif Nkind_In
(Op
, N_Indexed_Component
, N_Selected_Component
) then
14142 return Is_Unaliased
(Prefix
(Op
));
14144 elsif Nkind
(Op
) = N_Slice
then
14146 Is_Unaliased
(Prefix
(Op
))
14147 and then Entity
(Prefix
(Op
)) /= Target
;
14149 elsif Nkind
(Op
) = N_Op_Not
then
14150 return Is_Safe_Operand
(Right_Opnd
(Op
));
14155 end Is_Safe_Operand
;
14157 -- Start of processing for Safe_In_Place_Array_Op
14160 -- Skip this processing if the component size is different from system
14161 -- storage unit (since at least for NOT this would cause problems).
14163 if Component_Size
(Etype
(Lhs
)) /= System_Storage_Unit
then
14166 -- Cannot do in place stuff if non-standard Boolean representation
14168 elsif Has_Non_Standard_Rep
(Component_Type
(Etype
(Lhs
))) then
14171 elsif not Is_Unaliased
(Lhs
) then
14175 Target
:= Entity
(Lhs
);
14176 return Is_Safe_Operand
(Op1
) and then Is_Safe_Operand
(Op2
);
14178 end Safe_In_Place_Array_Op
;
14180 -----------------------
14181 -- Tagged_Membership --
14182 -----------------------
14184 -- There are two different cases to consider depending on whether the right
14185 -- operand is a class-wide type or not. If not we just compare the actual
14186 -- tag of the left expr to the target type tag:
14188 -- Left_Expr.Tag = Right_Type'Tag;
14190 -- If it is a class-wide type we use the RT function CW_Membership which is
14191 -- usually implemented by looking in the ancestor tables contained in the
14192 -- dispatch table pointed by Left_Expr.Tag for Typ'Tag
14194 -- Ada 2005 (AI-251): If it is a class-wide interface type we use the RT
14195 -- function IW_Membership which is usually implemented by looking in the
14196 -- table of abstract interface types plus the ancestor table contained in
14197 -- the dispatch table pointed by Left_Expr.Tag for Typ'Tag
14199 procedure Tagged_Membership
14201 SCIL_Node
: out Node_Id
;
14202 Result
: out Node_Id
)
14204 Left
: constant Node_Id
:= Left_Opnd
(N
);
14205 Right
: constant Node_Id
:= Right_Opnd
(N
);
14206 Loc
: constant Source_Ptr
:= Sloc
(N
);
14208 Full_R_Typ
: Entity_Id
;
14209 Left_Type
: Entity_Id
;
14210 New_Node
: Node_Id
;
14211 Right_Type
: Entity_Id
;
14215 SCIL_Node
:= Empty
;
14217 -- Handle entities from the limited view
14219 Left_Type
:= Available_View
(Etype
(Left
));
14220 Right_Type
:= Available_View
(Etype
(Right
));
14222 -- In the case where the type is an access type, the test is applied
14223 -- using the designated types (needed in Ada 2012 for implicit anonymous
14224 -- access conversions, for AI05-0149).
14226 if Is_Access_Type
(Right_Type
) then
14227 Left_Type
:= Designated_Type
(Left_Type
);
14228 Right_Type
:= Designated_Type
(Right_Type
);
14231 if Is_Class_Wide_Type
(Left_Type
) then
14232 Left_Type
:= Root_Type
(Left_Type
);
14235 if Is_Class_Wide_Type
(Right_Type
) then
14236 Full_R_Typ
:= Underlying_Type
(Root_Type
(Right_Type
));
14238 Full_R_Typ
:= Underlying_Type
(Right_Type
);
14242 Make_Selected_Component
(Loc
,
14243 Prefix
=> Relocate_Node
(Left
),
14245 New_Occurrence_Of
(First_Tag_Component
(Left_Type
), Loc
));
14247 if Is_Class_Wide_Type
(Right_Type
) or else Is_Interface
(Left_Type
) then
14249 -- No need to issue a run-time check if we statically know that the
14250 -- result of this membership test is always true. For example,
14251 -- considering the following declarations:
14253 -- type Iface is interface;
14254 -- type T is tagged null record;
14255 -- type DT is new T and Iface with null record;
14260 -- These membership tests are always true:
14263 -- Obj2 in T'Class;
14264 -- Obj2 in Iface'Class;
14266 -- We do not need to handle cases where the membership is illegal.
14269 -- Obj1 in DT'Class; -- Compile time error
14270 -- Obj1 in Iface'Class; -- Compile time error
14272 if not Is_Interface
(Left_Type
)
14273 and then not Is_Class_Wide_Type
(Left_Type
)
14274 and then (Is_Ancestor
(Etype
(Right_Type
), Left_Type
,
14275 Use_Full_View
=> True)
14276 or else (Is_Interface
(Etype
(Right_Type
))
14277 and then Interface_Present_In_Ancestor
14279 Iface
=> Etype
(Right_Type
))))
14281 Result
:= New_Occurrence_Of
(Standard_True
, Loc
);
14285 -- Ada 2005 (AI-251): Class-wide applied to interfaces
14287 if Is_Interface
(Etype
(Class_Wide_Type
(Right_Type
)))
14289 -- Support to: "Iface_CW_Typ in Typ'Class"
14291 or else Is_Interface
(Left_Type
)
14293 -- Issue error if IW_Membership operation not available in a
14294 -- configurable run time setting.
14296 if not RTE_Available
(RE_IW_Membership
) then
14298 ("dynamic membership test on interface types", N
);
14304 Make_Function_Call
(Loc
,
14305 Name
=> New_Occurrence_Of
(RTE
(RE_IW_Membership
), Loc
),
14306 Parameter_Associations
=> New_List
(
14307 Make_Attribute_Reference
(Loc
,
14309 Attribute_Name
=> Name_Address
),
14310 New_Occurrence_Of
(
14311 Node
(First_Elmt
(Access_Disp_Table
(Full_R_Typ
))),
14314 -- Ada 95: Normal case
14317 Build_CW_Membership
(Loc
,
14318 Obj_Tag_Node
=> Obj_Tag
,
14320 New_Occurrence_Of
(
14321 Node
(First_Elmt
(Access_Disp_Table
(Full_R_Typ
))), Loc
),
14323 New_Node
=> New_Node
);
14325 -- Generate the SCIL node for this class-wide membership test.
14326 -- Done here because the previous call to Build_CW_Membership
14327 -- relocates Obj_Tag.
14329 if Generate_SCIL
then
14330 SCIL_Node
:= Make_SCIL_Membership_Test
(Sloc
(N
));
14331 Set_SCIL_Entity
(SCIL_Node
, Etype
(Right_Type
));
14332 Set_SCIL_Tag_Value
(SCIL_Node
, Obj_Tag
);
14335 Result
:= New_Node
;
14338 -- Right_Type is not a class-wide type
14341 -- No need to check the tag of the object if Right_Typ is abstract
14343 if Is_Abstract_Type
(Right_Type
) then
14344 Result
:= New_Occurrence_Of
(Standard_False
, Loc
);
14349 Left_Opnd
=> Obj_Tag
,
14352 (Node
(First_Elmt
(Access_Disp_Table
(Full_R_Typ
))), Loc
));
14355 end Tagged_Membership
;
14357 ------------------------------
14358 -- Unary_Op_Validity_Checks --
14359 ------------------------------
14361 procedure Unary_Op_Validity_Checks
(N
: Node_Id
) is
14363 if Validity_Checks_On
and Validity_Check_Operands
then
14364 Ensure_Valid
(Right_Opnd
(N
));
14366 end Unary_Op_Validity_Checks
;