PR ipa/65648
[official-gcc.git] / gcc / var-tracking.c
blob18eff20355f1bd888d9d218c81c3dce4a569140c
1 /* Variable tracking routines for the GNU compiler.
2 Copyright (C) 2002-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file contains the variable tracking pass. It computes where
21 variables are located (which registers or where in memory) at each position
22 in instruction stream and emits notes describing the locations.
23 Debug information (DWARF2 location lists) is finally generated from
24 these notes.
25 With this debug information, it is possible to show variables
26 even when debugging optimized code.
28 How does the variable tracking pass work?
30 First, it scans RTL code for uses, stores and clobbers (register/memory
31 references in instructions), for call insns and for stack adjustments
32 separately for each basic block and saves them to an array of micro
33 operations.
34 The micro operations of one instruction are ordered so that
35 pre-modifying stack adjustment < use < use with no var < call insn <
36 < clobber < set < post-modifying stack adjustment
38 Then, a forward dataflow analysis is performed to find out how locations
39 of variables change through code and to propagate the variable locations
40 along control flow graph.
41 The IN set for basic block BB is computed as a union of OUT sets of BB's
42 predecessors, the OUT set for BB is copied from the IN set for BB and
43 is changed according to micro operations in BB.
45 The IN and OUT sets for basic blocks consist of a current stack adjustment
46 (used for adjusting offset of variables addressed using stack pointer),
47 the table of structures describing the locations of parts of a variable
48 and for each physical register a linked list for each physical register.
49 The linked list is a list of variable parts stored in the register,
50 i.e. it is a list of triplets (reg, decl, offset) where decl is
51 REG_EXPR (reg) and offset is REG_OFFSET (reg). The linked list is used for
52 effective deleting appropriate variable parts when we set or clobber the
53 register.
55 There may be more than one variable part in a register. The linked lists
56 should be pretty short so it is a good data structure here.
57 For example in the following code, register allocator may assign same
58 register to variables A and B, and both of them are stored in the same
59 register in CODE:
61 if (cond)
62 set A;
63 else
64 set B;
65 CODE;
66 if (cond)
67 use A;
68 else
69 use B;
71 Finally, the NOTE_INSN_VAR_LOCATION notes describing the variable locations
72 are emitted to appropriate positions in RTL code. Each such a note describes
73 the location of one variable at the point in instruction stream where the
74 note is. There is no need to emit a note for each variable before each
75 instruction, we only emit these notes where the location of variable changes
76 (this means that we also emit notes for changes between the OUT set of the
77 previous block and the IN set of the current block).
79 The notes consist of two parts:
80 1. the declaration (from REG_EXPR or MEM_EXPR)
81 2. the location of a variable - it is either a simple register/memory
82 reference (for simple variables, for example int),
83 or a parallel of register/memory references (for a large variables
84 which consist of several parts, for example long long).
88 #include "config.h"
89 #include "system.h"
90 #include "coretypes.h"
91 #include "tm.h"
92 #include "rtl.h"
93 #include "hash-set.h"
94 #include "machmode.h"
95 #include "vec.h"
96 #include "double-int.h"
97 #include "input.h"
98 #include "alias.h"
99 #include "symtab.h"
100 #include "wide-int.h"
101 #include "inchash.h"
102 #include "tree.h"
103 #include "varasm.h"
104 #include "stor-layout.h"
105 #include "hash-map.h"
106 #include "hash-table.h"
107 #include "predict.h"
108 #include "hard-reg-set.h"
109 #include "function.h"
110 #include "dominance.h"
111 #include "cfg.h"
112 #include "cfgrtl.h"
113 #include "cfganal.h"
114 #include "basic-block.h"
115 #include "tm_p.h"
116 #include "flags.h"
117 #include "insn-config.h"
118 #include "reload.h"
119 #include "sbitmap.h"
120 #include "alloc-pool.h"
121 #include "regs.h"
122 #include "hashtab.h"
123 #include "statistics.h"
124 #include "real.h"
125 #include "fixed-value.h"
126 #include "expmed.h"
127 #include "dojump.h"
128 #include "explow.h"
129 #include "calls.h"
130 #include "emit-rtl.h"
131 #include "stmt.h"
132 #include "expr.h"
133 #include "tree-pass.h"
134 #include "bitmap.h"
135 #include "tree-dfa.h"
136 #include "tree-ssa.h"
137 #include "cselib.h"
138 #include "target.h"
139 #include "params.h"
140 #include "diagnostic.h"
141 #include "tree-pretty-print.h"
142 #include "recog.h"
143 #include "rtl-iter.h"
144 #include "fibonacci_heap.h"
146 typedef fibonacci_heap <long, basic_block_def> bb_heap_t;
147 typedef fibonacci_node <long, basic_block_def> bb_heap_node_t;
149 /* var-tracking.c assumes that tree code with the same value as VALUE rtx code
150 has no chance to appear in REG_EXPR/MEM_EXPRs and isn't a decl.
151 Currently the value is the same as IDENTIFIER_NODE, which has such
152 a property. If this compile time assertion ever fails, make sure that
153 the new tree code that equals (int) VALUE has the same property. */
154 extern char check_value_val[(int) VALUE == (int) IDENTIFIER_NODE ? 1 : -1];
156 /* Type of micro operation. */
157 enum micro_operation_type
159 MO_USE, /* Use location (REG or MEM). */
160 MO_USE_NO_VAR,/* Use location which is not associated with a variable
161 or the variable is not trackable. */
162 MO_VAL_USE, /* Use location which is associated with a value. */
163 MO_VAL_LOC, /* Use location which appears in a debug insn. */
164 MO_VAL_SET, /* Set location associated with a value. */
165 MO_SET, /* Set location. */
166 MO_COPY, /* Copy the same portion of a variable from one
167 location to another. */
168 MO_CLOBBER, /* Clobber location. */
169 MO_CALL, /* Call insn. */
170 MO_ADJUST /* Adjust stack pointer. */
174 static const char * const ATTRIBUTE_UNUSED
175 micro_operation_type_name[] = {
176 "MO_USE",
177 "MO_USE_NO_VAR",
178 "MO_VAL_USE",
179 "MO_VAL_LOC",
180 "MO_VAL_SET",
181 "MO_SET",
182 "MO_COPY",
183 "MO_CLOBBER",
184 "MO_CALL",
185 "MO_ADJUST"
188 /* Where shall the note be emitted? BEFORE or AFTER the instruction.
189 Notes emitted as AFTER_CALL are to take effect during the call,
190 rather than after the call. */
191 enum emit_note_where
193 EMIT_NOTE_BEFORE_INSN,
194 EMIT_NOTE_AFTER_INSN,
195 EMIT_NOTE_AFTER_CALL_INSN
198 /* Structure holding information about micro operation. */
199 typedef struct micro_operation_def
201 /* Type of micro operation. */
202 enum micro_operation_type type;
204 /* The instruction which the micro operation is in, for MO_USE,
205 MO_USE_NO_VAR, MO_CALL and MO_ADJUST, or the subsequent
206 instruction or note in the original flow (before any var-tracking
207 notes are inserted, to simplify emission of notes), for MO_SET
208 and MO_CLOBBER. */
209 rtx_insn *insn;
211 union {
212 /* Location. For MO_SET and MO_COPY, this is the SET that
213 performs the assignment, if known, otherwise it is the target
214 of the assignment. For MO_VAL_USE and MO_VAL_SET, it is a
215 CONCAT of the VALUE and the LOC associated with it. For
216 MO_VAL_LOC, it is a CONCAT of the VALUE and the VAR_LOCATION
217 associated with it. */
218 rtx loc;
220 /* Stack adjustment. */
221 HOST_WIDE_INT adjust;
222 } u;
223 } micro_operation;
226 /* A declaration of a variable, or an RTL value being handled like a
227 declaration. */
228 typedef void *decl_or_value;
230 /* Return true if a decl_or_value DV is a DECL or NULL. */
231 static inline bool
232 dv_is_decl_p (decl_or_value dv)
234 return !dv || (int) TREE_CODE ((tree) dv) != (int) VALUE;
237 /* Return true if a decl_or_value is a VALUE rtl. */
238 static inline bool
239 dv_is_value_p (decl_or_value dv)
241 return dv && !dv_is_decl_p (dv);
244 /* Return the decl in the decl_or_value. */
245 static inline tree
246 dv_as_decl (decl_or_value dv)
248 gcc_checking_assert (dv_is_decl_p (dv));
249 return (tree) dv;
252 /* Return the value in the decl_or_value. */
253 static inline rtx
254 dv_as_value (decl_or_value dv)
256 gcc_checking_assert (dv_is_value_p (dv));
257 return (rtx)dv;
260 /* Return the opaque pointer in the decl_or_value. */
261 static inline void *
262 dv_as_opaque (decl_or_value dv)
264 return dv;
268 /* Description of location of a part of a variable. The content of a physical
269 register is described by a chain of these structures.
270 The chains are pretty short (usually 1 or 2 elements) and thus
271 chain is the best data structure. */
272 typedef struct attrs_def
274 /* Pointer to next member of the list. */
275 struct attrs_def *next;
277 /* The rtx of register. */
278 rtx loc;
280 /* The declaration corresponding to LOC. */
281 decl_or_value dv;
283 /* Offset from start of DECL. */
284 HOST_WIDE_INT offset;
285 } *attrs;
287 /* Structure for chaining the locations. */
288 typedef struct location_chain_def
290 /* Next element in the chain. */
291 struct location_chain_def *next;
293 /* The location (REG, MEM or VALUE). */
294 rtx loc;
296 /* The "value" stored in this location. */
297 rtx set_src;
299 /* Initialized? */
300 enum var_init_status init;
301 } *location_chain;
303 /* A vector of loc_exp_dep holds the active dependencies of a one-part
304 DV on VALUEs, i.e., the VALUEs expanded so as to form the current
305 location of DV. Each entry is also part of VALUE' s linked-list of
306 backlinks back to DV. */
307 typedef struct loc_exp_dep_s
309 /* The dependent DV. */
310 decl_or_value dv;
311 /* The dependency VALUE or DECL_DEBUG. */
312 rtx value;
313 /* The next entry in VALUE's backlinks list. */
314 struct loc_exp_dep_s *next;
315 /* A pointer to the pointer to this entry (head or prev's next) in
316 the doubly-linked list. */
317 struct loc_exp_dep_s **pprev;
318 } loc_exp_dep;
321 /* This data structure holds information about the depth of a variable
322 expansion. */
323 typedef struct expand_depth_struct
325 /* This measures the complexity of the expanded expression. It
326 grows by one for each level of expansion that adds more than one
327 operand. */
328 int complexity;
329 /* This counts the number of ENTRY_VALUE expressions in an
330 expansion. We want to minimize their use. */
331 int entryvals;
332 } expand_depth;
334 /* This data structure is allocated for one-part variables at the time
335 of emitting notes. */
336 struct onepart_aux
338 /* Doubly-linked list of dependent DVs. These are DVs whose cur_loc
339 computation used the expansion of this variable, and that ought
340 to be notified should this variable change. If the DV's cur_loc
341 expanded to NULL, all components of the loc list are regarded as
342 active, so that any changes in them give us a chance to get a
343 location. Otherwise, only components of the loc that expanded to
344 non-NULL are regarded as active dependencies. */
345 loc_exp_dep *backlinks;
346 /* This holds the LOC that was expanded into cur_loc. We need only
347 mark a one-part variable as changed if the FROM loc is removed,
348 or if it has no known location and a loc is added, or if it gets
349 a change notification from any of its active dependencies. */
350 rtx from;
351 /* The depth of the cur_loc expression. */
352 expand_depth depth;
353 /* Dependencies actively used when expand FROM into cur_loc. */
354 vec<loc_exp_dep, va_heap, vl_embed> deps;
357 /* Structure describing one part of variable. */
358 typedef struct variable_part_def
360 /* Chain of locations of the part. */
361 location_chain loc_chain;
363 /* Location which was last emitted to location list. */
364 rtx cur_loc;
366 union variable_aux
368 /* The offset in the variable, if !var->onepart. */
369 HOST_WIDE_INT offset;
371 /* Pointer to auxiliary data, if var->onepart and emit_notes. */
372 struct onepart_aux *onepaux;
373 } aux;
374 } variable_part;
376 /* Maximum number of location parts. */
377 #define MAX_VAR_PARTS 16
379 /* Enumeration type used to discriminate various types of one-part
380 variables. */
381 typedef enum onepart_enum
383 /* Not a one-part variable. */
384 NOT_ONEPART = 0,
385 /* A one-part DECL that is not a DEBUG_EXPR_DECL. */
386 ONEPART_VDECL = 1,
387 /* A DEBUG_EXPR_DECL. */
388 ONEPART_DEXPR = 2,
389 /* A VALUE. */
390 ONEPART_VALUE = 3
391 } onepart_enum_t;
393 /* Structure describing where the variable is located. */
394 typedef struct variable_def
396 /* The declaration of the variable, or an RTL value being handled
397 like a declaration. */
398 decl_or_value dv;
400 /* Reference count. */
401 int refcount;
403 /* Number of variable parts. */
404 char n_var_parts;
406 /* What type of DV this is, according to enum onepart_enum. */
407 ENUM_BITFIELD (onepart_enum) onepart : CHAR_BIT;
409 /* True if this variable_def struct is currently in the
410 changed_variables hash table. */
411 bool in_changed_variables;
413 /* The variable parts. */
414 variable_part var_part[1];
415 } *variable;
416 typedef const struct variable_def *const_variable;
418 /* Pointer to the BB's information specific to variable tracking pass. */
419 #define VTI(BB) ((variable_tracking_info) (BB)->aux)
421 /* Macro to access MEM_OFFSET as an HOST_WIDE_INT. Evaluates MEM twice. */
422 #define INT_MEM_OFFSET(mem) (MEM_OFFSET_KNOWN_P (mem) ? MEM_OFFSET (mem) : 0)
424 #if ENABLE_CHECKING && (GCC_VERSION >= 2007)
426 /* Access VAR's Ith part's offset, checking that it's not a one-part
427 variable. */
428 #define VAR_PART_OFFSET(var, i) __extension__ \
429 (*({ variable const __v = (var); \
430 gcc_checking_assert (!__v->onepart); \
431 &__v->var_part[(i)].aux.offset; }))
433 /* Access VAR's one-part auxiliary data, checking that it is a
434 one-part variable. */
435 #define VAR_LOC_1PAUX(var) __extension__ \
436 (*({ variable const __v = (var); \
437 gcc_checking_assert (__v->onepart); \
438 &__v->var_part[0].aux.onepaux; }))
440 #else
441 #define VAR_PART_OFFSET(var, i) ((var)->var_part[(i)].aux.offset)
442 #define VAR_LOC_1PAUX(var) ((var)->var_part[0].aux.onepaux)
443 #endif
445 /* These are accessor macros for the one-part auxiliary data. When
446 convenient for users, they're guarded by tests that the data was
447 allocated. */
448 #define VAR_LOC_DEP_LST(var) (VAR_LOC_1PAUX (var) \
449 ? VAR_LOC_1PAUX (var)->backlinks \
450 : NULL)
451 #define VAR_LOC_DEP_LSTP(var) (VAR_LOC_1PAUX (var) \
452 ? &VAR_LOC_1PAUX (var)->backlinks \
453 : NULL)
454 #define VAR_LOC_FROM(var) (VAR_LOC_1PAUX (var)->from)
455 #define VAR_LOC_DEPTH(var) (VAR_LOC_1PAUX (var)->depth)
456 #define VAR_LOC_DEP_VEC(var) (VAR_LOC_1PAUX (var) \
457 ? &VAR_LOC_1PAUX (var)->deps \
458 : NULL)
462 typedef unsigned int dvuid;
464 /* Return the uid of DV. */
466 static inline dvuid
467 dv_uid (decl_or_value dv)
469 if (dv_is_value_p (dv))
470 return CSELIB_VAL_PTR (dv_as_value (dv))->uid;
471 else
472 return DECL_UID (dv_as_decl (dv));
475 /* Compute the hash from the uid. */
477 static inline hashval_t
478 dv_uid2hash (dvuid uid)
480 return uid;
483 /* The hash function for a mask table in a shared_htab chain. */
485 static inline hashval_t
486 dv_htab_hash (decl_or_value dv)
488 return dv_uid2hash (dv_uid (dv));
491 static void variable_htab_free (void *);
493 /* Variable hashtable helpers. */
495 struct variable_hasher
497 typedef variable_def value_type;
498 typedef void compare_type;
499 static inline hashval_t hash (const value_type *);
500 static inline bool equal (const value_type *, const compare_type *);
501 static inline void remove (value_type *);
504 /* The hash function for variable_htab, computes the hash value
505 from the declaration of variable X. */
507 inline hashval_t
508 variable_hasher::hash (const value_type *v)
510 return dv_htab_hash (v->dv);
513 /* Compare the declaration of variable X with declaration Y. */
515 inline bool
516 variable_hasher::equal (const value_type *v, const compare_type *y)
518 decl_or_value dv = CONST_CAST2 (decl_or_value, const void *, y);
520 return (dv_as_opaque (v->dv) == dv_as_opaque (dv));
523 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
525 inline void
526 variable_hasher::remove (value_type *var)
528 variable_htab_free (var);
531 typedef hash_table<variable_hasher> variable_table_type;
532 typedef variable_table_type::iterator variable_iterator_type;
534 /* Structure for passing some other parameters to function
535 emit_note_insn_var_location. */
536 typedef struct emit_note_data_def
538 /* The instruction which the note will be emitted before/after. */
539 rtx_insn *insn;
541 /* Where the note will be emitted (before/after insn)? */
542 enum emit_note_where where;
544 /* The variables and values active at this point. */
545 variable_table_type *vars;
546 } emit_note_data;
548 /* Structure holding a refcounted hash table. If refcount > 1,
549 it must be first unshared before modified. */
550 typedef struct shared_hash_def
552 /* Reference count. */
553 int refcount;
555 /* Actual hash table. */
556 variable_table_type *htab;
557 } *shared_hash;
559 /* Structure holding the IN or OUT set for a basic block. */
560 typedef struct dataflow_set_def
562 /* Adjustment of stack offset. */
563 HOST_WIDE_INT stack_adjust;
565 /* Attributes for registers (lists of attrs). */
566 attrs regs[FIRST_PSEUDO_REGISTER];
568 /* Variable locations. */
569 shared_hash vars;
571 /* Vars that is being traversed. */
572 shared_hash traversed_vars;
573 } dataflow_set;
575 /* The structure (one for each basic block) containing the information
576 needed for variable tracking. */
577 typedef struct variable_tracking_info_def
579 /* The vector of micro operations. */
580 vec<micro_operation> mos;
582 /* The IN and OUT set for dataflow analysis. */
583 dataflow_set in;
584 dataflow_set out;
586 /* The permanent-in dataflow set for this block. This is used to
587 hold values for which we had to compute entry values. ??? This
588 should probably be dynamically allocated, to avoid using more
589 memory in non-debug builds. */
590 dataflow_set *permp;
592 /* Has the block been visited in DFS? */
593 bool visited;
595 /* Has the block been flooded in VTA? */
596 bool flooded;
598 } *variable_tracking_info;
600 /* Alloc pool for struct attrs_def. */
601 static alloc_pool attrs_pool;
603 /* Alloc pool for struct variable_def with MAX_VAR_PARTS entries. */
604 static alloc_pool var_pool;
606 /* Alloc pool for struct variable_def with a single var_part entry. */
607 static alloc_pool valvar_pool;
609 /* Alloc pool for struct location_chain_def. */
610 static alloc_pool loc_chain_pool;
612 /* Alloc pool for struct shared_hash_def. */
613 static alloc_pool shared_hash_pool;
615 /* Alloc pool for struct loc_exp_dep_s for NOT_ONEPART variables. */
616 static alloc_pool loc_exp_dep_pool;
618 /* Changed variables, notes will be emitted for them. */
619 static variable_table_type *changed_variables;
621 /* Shall notes be emitted? */
622 static bool emit_notes;
624 /* Values whose dynamic location lists have gone empty, but whose
625 cselib location lists are still usable. Use this to hold the
626 current location, the backlinks, etc, during emit_notes. */
627 static variable_table_type *dropped_values;
629 /* Empty shared hashtable. */
630 static shared_hash empty_shared_hash;
632 /* Scratch register bitmap used by cselib_expand_value_rtx. */
633 static bitmap scratch_regs = NULL;
635 #ifdef HAVE_window_save
636 typedef struct GTY(()) parm_reg {
637 rtx outgoing;
638 rtx incoming;
639 } parm_reg_t;
642 /* Vector of windowed parameter registers, if any. */
643 static vec<parm_reg_t, va_gc> *windowed_parm_regs = NULL;
644 #endif
646 /* Variable used to tell whether cselib_process_insn called our hook. */
647 static bool cselib_hook_called;
649 /* Local function prototypes. */
650 static void stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
651 HOST_WIDE_INT *);
652 static void insn_stack_adjust_offset_pre_post (rtx_insn *, HOST_WIDE_INT *,
653 HOST_WIDE_INT *);
654 static bool vt_stack_adjustments (void);
656 static void init_attrs_list_set (attrs *);
657 static void attrs_list_clear (attrs *);
658 static attrs attrs_list_member (attrs, decl_or_value, HOST_WIDE_INT);
659 static void attrs_list_insert (attrs *, decl_or_value, HOST_WIDE_INT, rtx);
660 static void attrs_list_copy (attrs *, attrs);
661 static void attrs_list_union (attrs *, attrs);
663 static variable_def **unshare_variable (dataflow_set *set, variable_def **slot,
664 variable var, enum var_init_status);
665 static void vars_copy (variable_table_type *, variable_table_type *);
666 static tree var_debug_decl (tree);
667 static void var_reg_set (dataflow_set *, rtx, enum var_init_status, rtx);
668 static void var_reg_delete_and_set (dataflow_set *, rtx, bool,
669 enum var_init_status, rtx);
670 static void var_reg_delete (dataflow_set *, rtx, bool);
671 static void var_regno_delete (dataflow_set *, int);
672 static void var_mem_set (dataflow_set *, rtx, enum var_init_status, rtx);
673 static void var_mem_delete_and_set (dataflow_set *, rtx, bool,
674 enum var_init_status, rtx);
675 static void var_mem_delete (dataflow_set *, rtx, bool);
677 static void dataflow_set_init (dataflow_set *);
678 static void dataflow_set_clear (dataflow_set *);
679 static void dataflow_set_copy (dataflow_set *, dataflow_set *);
680 static int variable_union_info_cmp_pos (const void *, const void *);
681 static void dataflow_set_union (dataflow_set *, dataflow_set *);
682 static location_chain find_loc_in_1pdv (rtx, variable, variable_table_type *);
683 static bool canon_value_cmp (rtx, rtx);
684 static int loc_cmp (rtx, rtx);
685 static bool variable_part_different_p (variable_part *, variable_part *);
686 static bool onepart_variable_different_p (variable, variable);
687 static bool variable_different_p (variable, variable);
688 static bool dataflow_set_different (dataflow_set *, dataflow_set *);
689 static void dataflow_set_destroy (dataflow_set *);
691 static bool contains_symbol_ref (rtx);
692 static bool track_expr_p (tree, bool);
693 static bool same_variable_part_p (rtx, tree, HOST_WIDE_INT);
694 static void add_uses_1 (rtx *, void *);
695 static void add_stores (rtx, const_rtx, void *);
696 static bool compute_bb_dataflow (basic_block);
697 static bool vt_find_locations (void);
699 static void dump_attrs_list (attrs);
700 static void dump_var (variable);
701 static void dump_vars (variable_table_type *);
702 static void dump_dataflow_set (dataflow_set *);
703 static void dump_dataflow_sets (void);
705 static void set_dv_changed (decl_or_value, bool);
706 static void variable_was_changed (variable, dataflow_set *);
707 static variable_def **set_slot_part (dataflow_set *, rtx, variable_def **,
708 decl_or_value, HOST_WIDE_INT,
709 enum var_init_status, rtx);
710 static void set_variable_part (dataflow_set *, rtx,
711 decl_or_value, HOST_WIDE_INT,
712 enum var_init_status, rtx, enum insert_option);
713 static variable_def **clobber_slot_part (dataflow_set *, rtx,
714 variable_def **, HOST_WIDE_INT, rtx);
715 static void clobber_variable_part (dataflow_set *, rtx,
716 decl_or_value, HOST_WIDE_INT, rtx);
717 static variable_def **delete_slot_part (dataflow_set *, rtx, variable_def **,
718 HOST_WIDE_INT);
719 static void delete_variable_part (dataflow_set *, rtx,
720 decl_or_value, HOST_WIDE_INT);
721 static void emit_notes_in_bb (basic_block, dataflow_set *);
722 static void vt_emit_notes (void);
724 static bool vt_get_decl_and_offset (rtx, tree *, HOST_WIDE_INT *);
725 static void vt_add_function_parameters (void);
726 static bool vt_initialize (void);
727 static void vt_finalize (void);
729 /* Callback for stack_adjust_offset_pre_post, called via for_each_inc_dec. */
731 static int
732 stack_adjust_offset_pre_post_cb (rtx, rtx op, rtx dest, rtx src, rtx srcoff,
733 void *arg)
735 if (dest != stack_pointer_rtx)
736 return 0;
738 switch (GET_CODE (op))
740 case PRE_INC:
741 case PRE_DEC:
742 ((HOST_WIDE_INT *)arg)[0] -= INTVAL (srcoff);
743 return 0;
744 case POST_INC:
745 case POST_DEC:
746 ((HOST_WIDE_INT *)arg)[1] -= INTVAL (srcoff);
747 return 0;
748 case PRE_MODIFY:
749 case POST_MODIFY:
750 /* We handle only adjustments by constant amount. */
751 gcc_assert (GET_CODE (src) == PLUS
752 && CONST_INT_P (XEXP (src, 1))
753 && XEXP (src, 0) == stack_pointer_rtx);
754 ((HOST_WIDE_INT *)arg)[GET_CODE (op) == POST_MODIFY]
755 -= INTVAL (XEXP (src, 1));
756 return 0;
757 default:
758 gcc_unreachable ();
762 /* Given a SET, calculate the amount of stack adjustment it contains
763 PRE- and POST-modifying stack pointer.
764 This function is similar to stack_adjust_offset. */
766 static void
767 stack_adjust_offset_pre_post (rtx pattern, HOST_WIDE_INT *pre,
768 HOST_WIDE_INT *post)
770 rtx src = SET_SRC (pattern);
771 rtx dest = SET_DEST (pattern);
772 enum rtx_code code;
774 if (dest == stack_pointer_rtx)
776 /* (set (reg sp) (plus (reg sp) (const_int))) */
777 code = GET_CODE (src);
778 if (! (code == PLUS || code == MINUS)
779 || XEXP (src, 0) != stack_pointer_rtx
780 || !CONST_INT_P (XEXP (src, 1)))
781 return;
783 if (code == MINUS)
784 *post += INTVAL (XEXP (src, 1));
785 else
786 *post -= INTVAL (XEXP (src, 1));
787 return;
789 HOST_WIDE_INT res[2] = { 0, 0 };
790 for_each_inc_dec (pattern, stack_adjust_offset_pre_post_cb, res);
791 *pre += res[0];
792 *post += res[1];
795 /* Given an INSN, calculate the amount of stack adjustment it contains
796 PRE- and POST-modifying stack pointer. */
798 static void
799 insn_stack_adjust_offset_pre_post (rtx_insn *insn, HOST_WIDE_INT *pre,
800 HOST_WIDE_INT *post)
802 rtx pattern;
804 *pre = 0;
805 *post = 0;
807 pattern = PATTERN (insn);
808 if (RTX_FRAME_RELATED_P (insn))
810 rtx expr = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
811 if (expr)
812 pattern = XEXP (expr, 0);
815 if (GET_CODE (pattern) == SET)
816 stack_adjust_offset_pre_post (pattern, pre, post);
817 else if (GET_CODE (pattern) == PARALLEL
818 || GET_CODE (pattern) == SEQUENCE)
820 int i;
822 /* There may be stack adjustments inside compound insns. Search
823 for them. */
824 for ( i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
825 if (GET_CODE (XVECEXP (pattern, 0, i)) == SET)
826 stack_adjust_offset_pre_post (XVECEXP (pattern, 0, i), pre, post);
830 /* Compute stack adjustments for all blocks by traversing DFS tree.
831 Return true when the adjustments on all incoming edges are consistent.
832 Heavily borrowed from pre_and_rev_post_order_compute. */
834 static bool
835 vt_stack_adjustments (void)
837 edge_iterator *stack;
838 int sp;
840 /* Initialize entry block. */
841 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->visited = true;
842 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->in.stack_adjust
843 = INCOMING_FRAME_SP_OFFSET;
844 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->out.stack_adjust
845 = INCOMING_FRAME_SP_OFFSET;
847 /* Allocate stack for back-tracking up CFG. */
848 stack = XNEWVEC (edge_iterator, n_basic_blocks_for_fn (cfun) + 1);
849 sp = 0;
851 /* Push the first edge on to the stack. */
852 stack[sp++] = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs);
854 while (sp)
856 edge_iterator ei;
857 basic_block src;
858 basic_block dest;
860 /* Look at the edge on the top of the stack. */
861 ei = stack[sp - 1];
862 src = ei_edge (ei)->src;
863 dest = ei_edge (ei)->dest;
865 /* Check if the edge destination has been visited yet. */
866 if (!VTI (dest)->visited)
868 rtx_insn *insn;
869 HOST_WIDE_INT pre, post, offset;
870 VTI (dest)->visited = true;
871 VTI (dest)->in.stack_adjust = offset = VTI (src)->out.stack_adjust;
873 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
874 for (insn = BB_HEAD (dest);
875 insn != NEXT_INSN (BB_END (dest));
876 insn = NEXT_INSN (insn))
877 if (INSN_P (insn))
879 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
880 offset += pre + post;
883 VTI (dest)->out.stack_adjust = offset;
885 if (EDGE_COUNT (dest->succs) > 0)
886 /* Since the DEST node has been visited for the first
887 time, check its successors. */
888 stack[sp++] = ei_start (dest->succs);
890 else
892 /* We can end up with different stack adjustments for the exit block
893 of a shrink-wrapped function if stack_adjust_offset_pre_post
894 doesn't understand the rtx pattern used to restore the stack
895 pointer in the epilogue. For example, on s390(x), the stack
896 pointer is often restored via a load-multiple instruction
897 and so no stack_adjust offset is recorded for it. This means
898 that the stack offset at the end of the epilogue block is the
899 the same as the offset before the epilogue, whereas other paths
900 to the exit block will have the correct stack_adjust.
902 It is safe to ignore these differences because (a) we never
903 use the stack_adjust for the exit block in this pass and
904 (b) dwarf2cfi checks whether the CFA notes in a shrink-wrapped
905 function are correct.
907 We must check whether the adjustments on other edges are
908 the same though. */
909 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
910 && VTI (dest)->in.stack_adjust != VTI (src)->out.stack_adjust)
912 free (stack);
913 return false;
916 if (! ei_one_before_end_p (ei))
917 /* Go to the next edge. */
918 ei_next (&stack[sp - 1]);
919 else
920 /* Return to previous level if there are no more edges. */
921 sp--;
925 free (stack);
926 return true;
929 /* arg_pointer_rtx resp. frame_pointer_rtx if stack_pointer_rtx or
930 hard_frame_pointer_rtx is being mapped to it and offset for it. */
931 static rtx cfa_base_rtx;
932 static HOST_WIDE_INT cfa_base_offset;
934 /* Compute a CFA-based value for an ADJUSTMENT made to stack_pointer_rtx
935 or hard_frame_pointer_rtx. */
937 static inline rtx
938 compute_cfa_pointer (HOST_WIDE_INT adjustment)
940 return plus_constant (Pmode, cfa_base_rtx, adjustment + cfa_base_offset);
943 /* Adjustment for hard_frame_pointer_rtx to cfa base reg,
944 or -1 if the replacement shouldn't be done. */
945 static HOST_WIDE_INT hard_frame_pointer_adjustment = -1;
947 /* Data for adjust_mems callback. */
949 struct adjust_mem_data
951 bool store;
952 machine_mode mem_mode;
953 HOST_WIDE_INT stack_adjust;
954 rtx_expr_list *side_effects;
957 /* Helper for adjust_mems. Return true if X is suitable for
958 transformation of wider mode arithmetics to narrower mode. */
960 static bool
961 use_narrower_mode_test (rtx x, const_rtx subreg)
963 subrtx_var_iterator::array_type array;
964 FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
966 rtx x = *iter;
967 if (CONSTANT_P (x))
968 iter.skip_subrtxes ();
969 else
970 switch (GET_CODE (x))
972 case REG:
973 if (cselib_lookup (x, GET_MODE (SUBREG_REG (subreg)), 0, VOIDmode))
974 return false;
975 if (!validate_subreg (GET_MODE (subreg), GET_MODE (x), x,
976 subreg_lowpart_offset (GET_MODE (subreg),
977 GET_MODE (x))))
978 return false;
979 break;
980 case PLUS:
981 case MINUS:
982 case MULT:
983 break;
984 case ASHIFT:
985 iter.substitute (XEXP (x, 0));
986 break;
987 default:
988 return false;
991 return true;
994 /* Transform X into narrower mode MODE from wider mode WMODE. */
996 static rtx
997 use_narrower_mode (rtx x, machine_mode mode, machine_mode wmode)
999 rtx op0, op1;
1000 if (CONSTANT_P (x))
1001 return lowpart_subreg (mode, x, wmode);
1002 switch (GET_CODE (x))
1004 case REG:
1005 return lowpart_subreg (mode, x, wmode);
1006 case PLUS:
1007 case MINUS:
1008 case MULT:
1009 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
1010 op1 = use_narrower_mode (XEXP (x, 1), mode, wmode);
1011 return simplify_gen_binary (GET_CODE (x), mode, op0, op1);
1012 case ASHIFT:
1013 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
1014 op1 = XEXP (x, 1);
1015 /* Ensure shift amount is not wider than mode. */
1016 if (GET_MODE (op1) == VOIDmode)
1017 op1 = lowpart_subreg (mode, op1, wmode);
1018 else if (GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (GET_MODE (op1)))
1019 op1 = lowpart_subreg (mode, op1, GET_MODE (op1));
1020 return simplify_gen_binary (ASHIFT, mode, op0, op1);
1021 default:
1022 gcc_unreachable ();
1026 /* Helper function for adjusting used MEMs. */
1028 static rtx
1029 adjust_mems (rtx loc, const_rtx old_rtx, void *data)
1031 struct adjust_mem_data *amd = (struct adjust_mem_data *) data;
1032 rtx mem, addr = loc, tem;
1033 machine_mode mem_mode_save;
1034 bool store_save;
1035 switch (GET_CODE (loc))
1037 case REG:
1038 /* Don't do any sp or fp replacements outside of MEM addresses
1039 on the LHS. */
1040 if (amd->mem_mode == VOIDmode && amd->store)
1041 return loc;
1042 if (loc == stack_pointer_rtx
1043 && !frame_pointer_needed
1044 && cfa_base_rtx)
1045 return compute_cfa_pointer (amd->stack_adjust);
1046 else if (loc == hard_frame_pointer_rtx
1047 && frame_pointer_needed
1048 && hard_frame_pointer_adjustment != -1
1049 && cfa_base_rtx)
1050 return compute_cfa_pointer (hard_frame_pointer_adjustment);
1051 gcc_checking_assert (loc != virtual_incoming_args_rtx);
1052 return loc;
1053 case MEM:
1054 mem = loc;
1055 if (!amd->store)
1057 mem = targetm.delegitimize_address (mem);
1058 if (mem != loc && !MEM_P (mem))
1059 return simplify_replace_fn_rtx (mem, old_rtx, adjust_mems, data);
1062 addr = XEXP (mem, 0);
1063 mem_mode_save = amd->mem_mode;
1064 amd->mem_mode = GET_MODE (mem);
1065 store_save = amd->store;
1066 amd->store = false;
1067 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1068 amd->store = store_save;
1069 amd->mem_mode = mem_mode_save;
1070 if (mem == loc)
1071 addr = targetm.delegitimize_address (addr);
1072 if (addr != XEXP (mem, 0))
1073 mem = replace_equiv_address_nv (mem, addr);
1074 if (!amd->store)
1075 mem = avoid_constant_pool_reference (mem);
1076 return mem;
1077 case PRE_INC:
1078 case PRE_DEC:
1079 addr = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
1080 gen_int_mode (GET_CODE (loc) == PRE_INC
1081 ? GET_MODE_SIZE (amd->mem_mode)
1082 : -GET_MODE_SIZE (amd->mem_mode),
1083 GET_MODE (loc)));
1084 case POST_INC:
1085 case POST_DEC:
1086 if (addr == loc)
1087 addr = XEXP (loc, 0);
1088 gcc_assert (amd->mem_mode != VOIDmode && amd->mem_mode != BLKmode);
1089 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1090 tem = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
1091 gen_int_mode ((GET_CODE (loc) == PRE_INC
1092 || GET_CODE (loc) == POST_INC)
1093 ? GET_MODE_SIZE (amd->mem_mode)
1094 : -GET_MODE_SIZE (amd->mem_mode),
1095 GET_MODE (loc)));
1096 store_save = amd->store;
1097 amd->store = false;
1098 tem = simplify_replace_fn_rtx (tem, old_rtx, adjust_mems, data);
1099 amd->store = store_save;
1100 amd->side_effects = alloc_EXPR_LIST (0,
1101 gen_rtx_SET (VOIDmode,
1102 XEXP (loc, 0), tem),
1103 amd->side_effects);
1104 return addr;
1105 case PRE_MODIFY:
1106 addr = XEXP (loc, 1);
1107 case POST_MODIFY:
1108 if (addr == loc)
1109 addr = XEXP (loc, 0);
1110 gcc_assert (amd->mem_mode != VOIDmode);
1111 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1112 store_save = amd->store;
1113 amd->store = false;
1114 tem = simplify_replace_fn_rtx (XEXP (loc, 1), old_rtx,
1115 adjust_mems, data);
1116 amd->store = store_save;
1117 amd->side_effects = alloc_EXPR_LIST (0,
1118 gen_rtx_SET (VOIDmode,
1119 XEXP (loc, 0), tem),
1120 amd->side_effects);
1121 return addr;
1122 case SUBREG:
1123 /* First try without delegitimization of whole MEMs and
1124 avoid_constant_pool_reference, which is more likely to succeed. */
1125 store_save = amd->store;
1126 amd->store = true;
1127 addr = simplify_replace_fn_rtx (SUBREG_REG (loc), old_rtx, adjust_mems,
1128 data);
1129 amd->store = store_save;
1130 mem = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1131 if (mem == SUBREG_REG (loc))
1133 tem = loc;
1134 goto finish_subreg;
1136 tem = simplify_gen_subreg (GET_MODE (loc), mem,
1137 GET_MODE (SUBREG_REG (loc)),
1138 SUBREG_BYTE (loc));
1139 if (tem)
1140 goto finish_subreg;
1141 tem = simplify_gen_subreg (GET_MODE (loc), addr,
1142 GET_MODE (SUBREG_REG (loc)),
1143 SUBREG_BYTE (loc));
1144 if (tem == NULL_RTX)
1145 tem = gen_rtx_raw_SUBREG (GET_MODE (loc), addr, SUBREG_BYTE (loc));
1146 finish_subreg:
1147 if (MAY_HAVE_DEBUG_INSNS
1148 && GET_CODE (tem) == SUBREG
1149 && (GET_CODE (SUBREG_REG (tem)) == PLUS
1150 || GET_CODE (SUBREG_REG (tem)) == MINUS
1151 || GET_CODE (SUBREG_REG (tem)) == MULT
1152 || GET_CODE (SUBREG_REG (tem)) == ASHIFT)
1153 && (GET_MODE_CLASS (GET_MODE (tem)) == MODE_INT
1154 || GET_MODE_CLASS (GET_MODE (tem)) == MODE_PARTIAL_INT)
1155 && (GET_MODE_CLASS (GET_MODE (SUBREG_REG (tem))) == MODE_INT
1156 || GET_MODE_CLASS (GET_MODE (SUBREG_REG (tem))) == MODE_PARTIAL_INT)
1157 && GET_MODE_PRECISION (GET_MODE (tem))
1158 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (tem)))
1159 && subreg_lowpart_p (tem)
1160 && use_narrower_mode_test (SUBREG_REG (tem), tem))
1161 return use_narrower_mode (SUBREG_REG (tem), GET_MODE (tem),
1162 GET_MODE (SUBREG_REG (tem)));
1163 return tem;
1164 case ASM_OPERANDS:
1165 /* Don't do any replacements in second and following
1166 ASM_OPERANDS of inline-asm with multiple sets.
1167 ASM_OPERANDS_INPUT_VEC, ASM_OPERANDS_INPUT_CONSTRAINT_VEC
1168 and ASM_OPERANDS_LABEL_VEC need to be equal between
1169 all the ASM_OPERANDs in the insn and adjust_insn will
1170 fix this up. */
1171 if (ASM_OPERANDS_OUTPUT_IDX (loc) != 0)
1172 return loc;
1173 break;
1174 default:
1175 break;
1177 return NULL_RTX;
1180 /* Helper function for replacement of uses. */
1182 static void
1183 adjust_mem_uses (rtx *x, void *data)
1185 rtx new_x = simplify_replace_fn_rtx (*x, NULL_RTX, adjust_mems, data);
1186 if (new_x != *x)
1187 validate_change (NULL_RTX, x, new_x, true);
1190 /* Helper function for replacement of stores. */
1192 static void
1193 adjust_mem_stores (rtx loc, const_rtx expr, void *data)
1195 if (MEM_P (loc))
1197 rtx new_dest = simplify_replace_fn_rtx (SET_DEST (expr), NULL_RTX,
1198 adjust_mems, data);
1199 if (new_dest != SET_DEST (expr))
1201 rtx xexpr = CONST_CAST_RTX (expr);
1202 validate_change (NULL_RTX, &SET_DEST (xexpr), new_dest, true);
1207 /* Simplify INSN. Remove all {PRE,POST}_{INC,DEC,MODIFY} rtxes,
1208 replace them with their value in the insn and add the side-effects
1209 as other sets to the insn. */
1211 static void
1212 adjust_insn (basic_block bb, rtx_insn *insn)
1214 struct adjust_mem_data amd;
1215 rtx set;
1217 #ifdef HAVE_window_save
1218 /* If the target machine has an explicit window save instruction, the
1219 transformation OUTGOING_REGNO -> INCOMING_REGNO is done there. */
1220 if (RTX_FRAME_RELATED_P (insn)
1221 && find_reg_note (insn, REG_CFA_WINDOW_SAVE, NULL_RTX))
1223 unsigned int i, nregs = vec_safe_length (windowed_parm_regs);
1224 rtx rtl = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (nregs * 2));
1225 parm_reg_t *p;
1227 FOR_EACH_VEC_SAFE_ELT (windowed_parm_regs, i, p)
1229 XVECEXP (rtl, 0, i * 2)
1230 = gen_rtx_SET (VOIDmode, p->incoming, p->outgoing);
1231 /* Do not clobber the attached DECL, but only the REG. */
1232 XVECEXP (rtl, 0, i * 2 + 1)
1233 = gen_rtx_CLOBBER (GET_MODE (p->outgoing),
1234 gen_raw_REG (GET_MODE (p->outgoing),
1235 REGNO (p->outgoing)));
1238 validate_change (NULL_RTX, &PATTERN (insn), rtl, true);
1239 return;
1241 #endif
1243 amd.mem_mode = VOIDmode;
1244 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
1245 amd.side_effects = NULL;
1247 amd.store = true;
1248 note_stores (PATTERN (insn), adjust_mem_stores, &amd);
1250 amd.store = false;
1251 if (GET_CODE (PATTERN (insn)) == PARALLEL
1252 && asm_noperands (PATTERN (insn)) > 0
1253 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1255 rtx body, set0;
1256 int i;
1258 /* inline-asm with multiple sets is tiny bit more complicated,
1259 because the 3 vectors in ASM_OPERANDS need to be shared between
1260 all ASM_OPERANDS in the instruction. adjust_mems will
1261 not touch ASM_OPERANDS other than the first one, asm_noperands
1262 test above needs to be called before that (otherwise it would fail)
1263 and afterwards this code fixes it up. */
1264 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1265 body = PATTERN (insn);
1266 set0 = XVECEXP (body, 0, 0);
1267 gcc_checking_assert (GET_CODE (set0) == SET
1268 && GET_CODE (SET_SRC (set0)) == ASM_OPERANDS
1269 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set0)) == 0);
1270 for (i = 1; i < XVECLEN (body, 0); i++)
1271 if (GET_CODE (XVECEXP (body, 0, i)) != SET)
1272 break;
1273 else
1275 set = XVECEXP (body, 0, i);
1276 gcc_checking_assert (GET_CODE (SET_SRC (set)) == ASM_OPERANDS
1277 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set))
1278 == i);
1279 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (set))
1280 != ASM_OPERANDS_INPUT_VEC (SET_SRC (set0))
1281 || ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set))
1282 != ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0))
1283 || ASM_OPERANDS_LABEL_VEC (SET_SRC (set))
1284 != ASM_OPERANDS_LABEL_VEC (SET_SRC (set0)))
1286 rtx newsrc = shallow_copy_rtx (SET_SRC (set));
1287 ASM_OPERANDS_INPUT_VEC (newsrc)
1288 = ASM_OPERANDS_INPUT_VEC (SET_SRC (set0));
1289 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (newsrc)
1290 = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0));
1291 ASM_OPERANDS_LABEL_VEC (newsrc)
1292 = ASM_OPERANDS_LABEL_VEC (SET_SRC (set0));
1293 validate_change (NULL_RTX, &SET_SRC (set), newsrc, true);
1297 else
1298 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1300 /* For read-only MEMs containing some constant, prefer those
1301 constants. */
1302 set = single_set (insn);
1303 if (set && MEM_P (SET_SRC (set)) && MEM_READONLY_P (SET_SRC (set)))
1305 rtx note = find_reg_equal_equiv_note (insn);
1307 if (note && CONSTANT_P (XEXP (note, 0)))
1308 validate_change (NULL_RTX, &SET_SRC (set), XEXP (note, 0), true);
1311 if (amd.side_effects)
1313 rtx *pat, new_pat, s;
1314 int i, oldn, newn;
1316 pat = &PATTERN (insn);
1317 if (GET_CODE (*pat) == COND_EXEC)
1318 pat = &COND_EXEC_CODE (*pat);
1319 if (GET_CODE (*pat) == PARALLEL)
1320 oldn = XVECLEN (*pat, 0);
1321 else
1322 oldn = 1;
1323 for (s = amd.side_effects, newn = 0; s; newn++)
1324 s = XEXP (s, 1);
1325 new_pat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (oldn + newn));
1326 if (GET_CODE (*pat) == PARALLEL)
1327 for (i = 0; i < oldn; i++)
1328 XVECEXP (new_pat, 0, i) = XVECEXP (*pat, 0, i);
1329 else
1330 XVECEXP (new_pat, 0, 0) = *pat;
1331 for (s = amd.side_effects, i = oldn; i < oldn + newn; i++, s = XEXP (s, 1))
1332 XVECEXP (new_pat, 0, i) = XEXP (s, 0);
1333 free_EXPR_LIST_list (&amd.side_effects);
1334 validate_change (NULL_RTX, pat, new_pat, true);
1338 /* Return the DEBUG_EXPR of a DEBUG_EXPR_DECL or the VALUE in DV. */
1339 static inline rtx
1340 dv_as_rtx (decl_or_value dv)
1342 tree decl;
1344 if (dv_is_value_p (dv))
1345 return dv_as_value (dv);
1347 decl = dv_as_decl (dv);
1349 gcc_checking_assert (TREE_CODE (decl) == DEBUG_EXPR_DECL);
1350 return DECL_RTL_KNOWN_SET (decl);
1353 /* Return nonzero if a decl_or_value must not have more than one
1354 variable part. The returned value discriminates among various
1355 kinds of one-part DVs ccording to enum onepart_enum. */
1356 static inline onepart_enum_t
1357 dv_onepart_p (decl_or_value dv)
1359 tree decl;
1361 if (!MAY_HAVE_DEBUG_INSNS)
1362 return NOT_ONEPART;
1364 if (dv_is_value_p (dv))
1365 return ONEPART_VALUE;
1367 decl = dv_as_decl (dv);
1369 if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
1370 return ONEPART_DEXPR;
1372 if (target_for_debug_bind (decl) != NULL_TREE)
1373 return ONEPART_VDECL;
1375 return NOT_ONEPART;
1378 /* Return the variable pool to be used for a dv of type ONEPART. */
1379 static inline alloc_pool
1380 onepart_pool (onepart_enum_t onepart)
1382 return onepart ? valvar_pool : var_pool;
1385 /* Build a decl_or_value out of a decl. */
1386 static inline decl_or_value
1387 dv_from_decl (tree decl)
1389 decl_or_value dv;
1390 dv = decl;
1391 gcc_checking_assert (dv_is_decl_p (dv));
1392 return dv;
1395 /* Build a decl_or_value out of a value. */
1396 static inline decl_or_value
1397 dv_from_value (rtx value)
1399 decl_or_value dv;
1400 dv = value;
1401 gcc_checking_assert (dv_is_value_p (dv));
1402 return dv;
1405 /* Return a value or the decl of a debug_expr as a decl_or_value. */
1406 static inline decl_or_value
1407 dv_from_rtx (rtx x)
1409 decl_or_value dv;
1411 switch (GET_CODE (x))
1413 case DEBUG_EXPR:
1414 dv = dv_from_decl (DEBUG_EXPR_TREE_DECL (x));
1415 gcc_checking_assert (DECL_RTL_KNOWN_SET (DEBUG_EXPR_TREE_DECL (x)) == x);
1416 break;
1418 case VALUE:
1419 dv = dv_from_value (x);
1420 break;
1422 default:
1423 gcc_unreachable ();
1426 return dv;
1429 extern void debug_dv (decl_or_value dv);
1431 DEBUG_FUNCTION void
1432 debug_dv (decl_or_value dv)
1434 if (dv_is_value_p (dv))
1435 debug_rtx (dv_as_value (dv));
1436 else
1437 debug_generic_stmt (dv_as_decl (dv));
1440 static void loc_exp_dep_clear (variable var);
1442 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
1444 static void
1445 variable_htab_free (void *elem)
1447 int i;
1448 variable var = (variable) elem;
1449 location_chain node, next;
1451 gcc_checking_assert (var->refcount > 0);
1453 var->refcount--;
1454 if (var->refcount > 0)
1455 return;
1457 for (i = 0; i < var->n_var_parts; i++)
1459 for (node = var->var_part[i].loc_chain; node; node = next)
1461 next = node->next;
1462 pool_free (loc_chain_pool, node);
1464 var->var_part[i].loc_chain = NULL;
1466 if (var->onepart && VAR_LOC_1PAUX (var))
1468 loc_exp_dep_clear (var);
1469 if (VAR_LOC_DEP_LST (var))
1470 VAR_LOC_DEP_LST (var)->pprev = NULL;
1471 XDELETE (VAR_LOC_1PAUX (var));
1472 /* These may be reused across functions, so reset
1473 e.g. NO_LOC_P. */
1474 if (var->onepart == ONEPART_DEXPR)
1475 set_dv_changed (var->dv, true);
1477 pool_free (onepart_pool (var->onepart), var);
1480 /* Initialize the set (array) SET of attrs to empty lists. */
1482 static void
1483 init_attrs_list_set (attrs *set)
1485 int i;
1487 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1488 set[i] = NULL;
1491 /* Make the list *LISTP empty. */
1493 static void
1494 attrs_list_clear (attrs *listp)
1496 attrs list, next;
1498 for (list = *listp; list; list = next)
1500 next = list->next;
1501 pool_free (attrs_pool, list);
1503 *listp = NULL;
1506 /* Return true if the pair of DECL and OFFSET is the member of the LIST. */
1508 static attrs
1509 attrs_list_member (attrs list, decl_or_value dv, HOST_WIDE_INT offset)
1511 for (; list; list = list->next)
1512 if (dv_as_opaque (list->dv) == dv_as_opaque (dv) && list->offset == offset)
1513 return list;
1514 return NULL;
1517 /* Insert the triplet DECL, OFFSET, LOC to the list *LISTP. */
1519 static void
1520 attrs_list_insert (attrs *listp, decl_or_value dv,
1521 HOST_WIDE_INT offset, rtx loc)
1523 attrs list;
1525 list = (attrs) pool_alloc (attrs_pool);
1526 list->loc = loc;
1527 list->dv = dv;
1528 list->offset = offset;
1529 list->next = *listp;
1530 *listp = list;
1533 /* Copy all nodes from SRC and create a list *DSTP of the copies. */
1535 static void
1536 attrs_list_copy (attrs *dstp, attrs src)
1538 attrs n;
1540 attrs_list_clear (dstp);
1541 for (; src; src = src->next)
1543 n = (attrs) pool_alloc (attrs_pool);
1544 n->loc = src->loc;
1545 n->dv = src->dv;
1546 n->offset = src->offset;
1547 n->next = *dstp;
1548 *dstp = n;
1552 /* Add all nodes from SRC which are not in *DSTP to *DSTP. */
1554 static void
1555 attrs_list_union (attrs *dstp, attrs src)
1557 for (; src; src = src->next)
1559 if (!attrs_list_member (*dstp, src->dv, src->offset))
1560 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1564 /* Combine nodes that are not onepart nodes from SRC and SRC2 into
1565 *DSTP. */
1567 static void
1568 attrs_list_mpdv_union (attrs *dstp, attrs src, attrs src2)
1570 gcc_assert (!*dstp);
1571 for (; src; src = src->next)
1573 if (!dv_onepart_p (src->dv))
1574 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1576 for (src = src2; src; src = src->next)
1578 if (!dv_onepart_p (src->dv)
1579 && !attrs_list_member (*dstp, src->dv, src->offset))
1580 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1584 /* Shared hashtable support. */
1586 /* Return true if VARS is shared. */
1588 static inline bool
1589 shared_hash_shared (shared_hash vars)
1591 return vars->refcount > 1;
1594 /* Return the hash table for VARS. */
1596 static inline variable_table_type *
1597 shared_hash_htab (shared_hash vars)
1599 return vars->htab;
1602 /* Return true if VAR is shared, or maybe because VARS is shared. */
1604 static inline bool
1605 shared_var_p (variable var, shared_hash vars)
1607 /* Don't count an entry in the changed_variables table as a duplicate. */
1608 return ((var->refcount > 1 + (int) var->in_changed_variables)
1609 || shared_hash_shared (vars));
1612 /* Copy variables into a new hash table. */
1614 static shared_hash
1615 shared_hash_unshare (shared_hash vars)
1617 shared_hash new_vars = (shared_hash) pool_alloc (shared_hash_pool);
1618 gcc_assert (vars->refcount > 1);
1619 new_vars->refcount = 1;
1620 new_vars->htab = new variable_table_type (vars->htab->elements () + 3);
1621 vars_copy (new_vars->htab, vars->htab);
1622 vars->refcount--;
1623 return new_vars;
1626 /* Increment reference counter on VARS and return it. */
1628 static inline shared_hash
1629 shared_hash_copy (shared_hash vars)
1631 vars->refcount++;
1632 return vars;
1635 /* Decrement reference counter and destroy hash table if not shared
1636 anymore. */
1638 static void
1639 shared_hash_destroy (shared_hash vars)
1641 gcc_checking_assert (vars->refcount > 0);
1642 if (--vars->refcount == 0)
1644 delete vars->htab;
1645 pool_free (shared_hash_pool, vars);
1649 /* Unshare *PVARS if shared and return slot for DV. If INS is
1650 INSERT, insert it if not already present. */
1652 static inline variable_def **
1653 shared_hash_find_slot_unshare_1 (shared_hash *pvars, decl_or_value dv,
1654 hashval_t dvhash, enum insert_option ins)
1656 if (shared_hash_shared (*pvars))
1657 *pvars = shared_hash_unshare (*pvars);
1658 return shared_hash_htab (*pvars)->find_slot_with_hash (dv, dvhash, ins);
1661 static inline variable_def **
1662 shared_hash_find_slot_unshare (shared_hash *pvars, decl_or_value dv,
1663 enum insert_option ins)
1665 return shared_hash_find_slot_unshare_1 (pvars, dv, dv_htab_hash (dv), ins);
1668 /* Return slot for DV, if it is already present in the hash table.
1669 If it is not present, insert it only VARS is not shared, otherwise
1670 return NULL. */
1672 static inline variable_def **
1673 shared_hash_find_slot_1 (shared_hash vars, decl_or_value dv, hashval_t dvhash)
1675 return shared_hash_htab (vars)->find_slot_with_hash (dv, dvhash,
1676 shared_hash_shared (vars)
1677 ? NO_INSERT : INSERT);
1680 static inline variable_def **
1681 shared_hash_find_slot (shared_hash vars, decl_or_value dv)
1683 return shared_hash_find_slot_1 (vars, dv, dv_htab_hash (dv));
1686 /* Return slot for DV only if it is already present in the hash table. */
1688 static inline variable_def **
1689 shared_hash_find_slot_noinsert_1 (shared_hash vars, decl_or_value dv,
1690 hashval_t dvhash)
1692 return shared_hash_htab (vars)->find_slot_with_hash (dv, dvhash, NO_INSERT);
1695 static inline variable_def **
1696 shared_hash_find_slot_noinsert (shared_hash vars, decl_or_value dv)
1698 return shared_hash_find_slot_noinsert_1 (vars, dv, dv_htab_hash (dv));
1701 /* Return variable for DV or NULL if not already present in the hash
1702 table. */
1704 static inline variable
1705 shared_hash_find_1 (shared_hash vars, decl_or_value dv, hashval_t dvhash)
1707 return shared_hash_htab (vars)->find_with_hash (dv, dvhash);
1710 static inline variable
1711 shared_hash_find (shared_hash vars, decl_or_value dv)
1713 return shared_hash_find_1 (vars, dv, dv_htab_hash (dv));
1716 /* Return true if TVAL is better than CVAL as a canonival value. We
1717 choose lowest-numbered VALUEs, using the RTX address as a
1718 tie-breaker. The idea is to arrange them into a star topology,
1719 such that all of them are at most one step away from the canonical
1720 value, and the canonical value has backlinks to all of them, in
1721 addition to all the actual locations. We don't enforce this
1722 topology throughout the entire dataflow analysis, though.
1725 static inline bool
1726 canon_value_cmp (rtx tval, rtx cval)
1728 return !cval
1729 || CSELIB_VAL_PTR (tval)->uid < CSELIB_VAL_PTR (cval)->uid;
1732 static bool dst_can_be_shared;
1734 /* Return a copy of a variable VAR and insert it to dataflow set SET. */
1736 static variable_def **
1737 unshare_variable (dataflow_set *set, variable_def **slot, variable var,
1738 enum var_init_status initialized)
1740 variable new_var;
1741 int i;
1743 new_var = (variable) pool_alloc (onepart_pool (var->onepart));
1744 new_var->dv = var->dv;
1745 new_var->refcount = 1;
1746 var->refcount--;
1747 new_var->n_var_parts = var->n_var_parts;
1748 new_var->onepart = var->onepart;
1749 new_var->in_changed_variables = false;
1751 if (! flag_var_tracking_uninit)
1752 initialized = VAR_INIT_STATUS_INITIALIZED;
1754 for (i = 0; i < var->n_var_parts; i++)
1756 location_chain node;
1757 location_chain *nextp;
1759 if (i == 0 && var->onepart)
1761 /* One-part auxiliary data is only used while emitting
1762 notes, so propagate it to the new variable in the active
1763 dataflow set. If we're not emitting notes, this will be
1764 a no-op. */
1765 gcc_checking_assert (!VAR_LOC_1PAUX (var) || emit_notes);
1766 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (var);
1767 VAR_LOC_1PAUX (var) = NULL;
1769 else
1770 VAR_PART_OFFSET (new_var, i) = VAR_PART_OFFSET (var, i);
1771 nextp = &new_var->var_part[i].loc_chain;
1772 for (node = var->var_part[i].loc_chain; node; node = node->next)
1774 location_chain new_lc;
1776 new_lc = (location_chain) pool_alloc (loc_chain_pool);
1777 new_lc->next = NULL;
1778 if (node->init > initialized)
1779 new_lc->init = node->init;
1780 else
1781 new_lc->init = initialized;
1782 if (node->set_src && !(MEM_P (node->set_src)))
1783 new_lc->set_src = node->set_src;
1784 else
1785 new_lc->set_src = NULL;
1786 new_lc->loc = node->loc;
1788 *nextp = new_lc;
1789 nextp = &new_lc->next;
1792 new_var->var_part[i].cur_loc = var->var_part[i].cur_loc;
1795 dst_can_be_shared = false;
1796 if (shared_hash_shared (set->vars))
1797 slot = shared_hash_find_slot_unshare (&set->vars, var->dv, NO_INSERT);
1798 else if (set->traversed_vars && set->vars != set->traversed_vars)
1799 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
1800 *slot = new_var;
1801 if (var->in_changed_variables)
1803 variable_def **cslot
1804 = changed_variables->find_slot_with_hash (var->dv,
1805 dv_htab_hash (var->dv),
1806 NO_INSERT);
1807 gcc_assert (*cslot == (void *) var);
1808 var->in_changed_variables = false;
1809 variable_htab_free (var);
1810 *cslot = new_var;
1811 new_var->in_changed_variables = true;
1813 return slot;
1816 /* Copy all variables from hash table SRC to hash table DST. */
1818 static void
1819 vars_copy (variable_table_type *dst, variable_table_type *src)
1821 variable_iterator_type hi;
1822 variable var;
1824 FOR_EACH_HASH_TABLE_ELEMENT (*src, var, variable, hi)
1826 variable_def **dstp;
1827 var->refcount++;
1828 dstp = dst->find_slot_with_hash (var->dv, dv_htab_hash (var->dv),
1829 INSERT);
1830 *dstp = var;
1834 /* Map a decl to its main debug decl. */
1836 static inline tree
1837 var_debug_decl (tree decl)
1839 if (decl && TREE_CODE (decl) == VAR_DECL
1840 && DECL_HAS_DEBUG_EXPR_P (decl))
1842 tree debugdecl = DECL_DEBUG_EXPR (decl);
1843 if (DECL_P (debugdecl))
1844 decl = debugdecl;
1847 return decl;
1850 /* Set the register LOC to contain DV, OFFSET. */
1852 static void
1853 var_reg_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1854 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
1855 enum insert_option iopt)
1857 attrs node;
1858 bool decl_p = dv_is_decl_p (dv);
1860 if (decl_p)
1861 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
1863 for (node = set->regs[REGNO (loc)]; node; node = node->next)
1864 if (dv_as_opaque (node->dv) == dv_as_opaque (dv)
1865 && node->offset == offset)
1866 break;
1867 if (!node)
1868 attrs_list_insert (&set->regs[REGNO (loc)], dv, offset, loc);
1869 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
1872 /* Set the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). */
1874 static void
1875 var_reg_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1876 rtx set_src)
1878 tree decl = REG_EXPR (loc);
1879 HOST_WIDE_INT offset = REG_OFFSET (loc);
1881 var_reg_decl_set (set, loc, initialized,
1882 dv_from_decl (decl), offset, set_src, INSERT);
1885 static enum var_init_status
1886 get_init_value (dataflow_set *set, rtx loc, decl_or_value dv)
1888 variable var;
1889 int i;
1890 enum var_init_status ret_val = VAR_INIT_STATUS_UNKNOWN;
1892 if (! flag_var_tracking_uninit)
1893 return VAR_INIT_STATUS_INITIALIZED;
1895 var = shared_hash_find (set->vars, dv);
1896 if (var)
1898 for (i = 0; i < var->n_var_parts && ret_val == VAR_INIT_STATUS_UNKNOWN; i++)
1900 location_chain nextp;
1901 for (nextp = var->var_part[i].loc_chain; nextp; nextp = nextp->next)
1902 if (rtx_equal_p (nextp->loc, loc))
1904 ret_val = nextp->init;
1905 break;
1910 return ret_val;
1913 /* Delete current content of register LOC in dataflow set SET and set
1914 the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). If
1915 MODIFY is true, any other live copies of the same variable part are
1916 also deleted from the dataflow set, otherwise the variable part is
1917 assumed to be copied from another location holding the same
1918 part. */
1920 static void
1921 var_reg_delete_and_set (dataflow_set *set, rtx loc, bool modify,
1922 enum var_init_status initialized, rtx set_src)
1924 tree decl = REG_EXPR (loc);
1925 HOST_WIDE_INT offset = REG_OFFSET (loc);
1926 attrs node, next;
1927 attrs *nextp;
1929 decl = var_debug_decl (decl);
1931 if (initialized == VAR_INIT_STATUS_UNKNOWN)
1932 initialized = get_init_value (set, loc, dv_from_decl (decl));
1934 nextp = &set->regs[REGNO (loc)];
1935 for (node = *nextp; node; node = next)
1937 next = node->next;
1938 if (dv_as_opaque (node->dv) != decl || node->offset != offset)
1940 delete_variable_part (set, node->loc, node->dv, node->offset);
1941 pool_free (attrs_pool, node);
1942 *nextp = next;
1944 else
1946 node->loc = loc;
1947 nextp = &node->next;
1950 if (modify)
1951 clobber_variable_part (set, loc, dv_from_decl (decl), offset, set_src);
1952 var_reg_set (set, loc, initialized, set_src);
1955 /* Delete the association of register LOC in dataflow set SET with any
1956 variables that aren't onepart. If CLOBBER is true, also delete any
1957 other live copies of the same variable part, and delete the
1958 association with onepart dvs too. */
1960 static void
1961 var_reg_delete (dataflow_set *set, rtx loc, bool clobber)
1963 attrs *nextp = &set->regs[REGNO (loc)];
1964 attrs node, next;
1966 if (clobber)
1968 tree decl = REG_EXPR (loc);
1969 HOST_WIDE_INT offset = REG_OFFSET (loc);
1971 decl = var_debug_decl (decl);
1973 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
1976 for (node = *nextp; node; node = next)
1978 next = node->next;
1979 if (clobber || !dv_onepart_p (node->dv))
1981 delete_variable_part (set, node->loc, node->dv, node->offset);
1982 pool_free (attrs_pool, node);
1983 *nextp = next;
1985 else
1986 nextp = &node->next;
1990 /* Delete content of register with number REGNO in dataflow set SET. */
1992 static void
1993 var_regno_delete (dataflow_set *set, int regno)
1995 attrs *reg = &set->regs[regno];
1996 attrs node, next;
1998 for (node = *reg; node; node = next)
2000 next = node->next;
2001 delete_variable_part (set, node->loc, node->dv, node->offset);
2002 pool_free (attrs_pool, node);
2004 *reg = NULL;
2007 /* Return true if I is the negated value of a power of two. */
2008 static bool
2009 negative_power_of_two_p (HOST_WIDE_INT i)
2011 unsigned HOST_WIDE_INT x = -(unsigned HOST_WIDE_INT)i;
2012 return x == (x & -x);
2015 /* Strip constant offsets and alignments off of LOC. Return the base
2016 expression. */
2018 static rtx
2019 vt_get_canonicalize_base (rtx loc)
2021 while ((GET_CODE (loc) == PLUS
2022 || GET_CODE (loc) == AND)
2023 && GET_CODE (XEXP (loc, 1)) == CONST_INT
2024 && (GET_CODE (loc) != AND
2025 || negative_power_of_two_p (INTVAL (XEXP (loc, 1)))))
2026 loc = XEXP (loc, 0);
2028 return loc;
2031 /* This caches canonicalized addresses for VALUEs, computed using
2032 information in the global cselib table. */
2033 static hash_map<rtx, rtx> *global_get_addr_cache;
2035 /* This caches canonicalized addresses for VALUEs, computed using
2036 information from the global cache and information pertaining to a
2037 basic block being analyzed. */
2038 static hash_map<rtx, rtx> *local_get_addr_cache;
2040 static rtx vt_canonicalize_addr (dataflow_set *, rtx);
2042 /* Return the canonical address for LOC, that must be a VALUE, using a
2043 cached global equivalence or computing it and storing it in the
2044 global cache. */
2046 static rtx
2047 get_addr_from_global_cache (rtx const loc)
2049 rtx x;
2051 gcc_checking_assert (GET_CODE (loc) == VALUE);
2053 bool existed;
2054 rtx *slot = &global_get_addr_cache->get_or_insert (loc, &existed);
2055 if (existed)
2056 return *slot;
2058 x = canon_rtx (get_addr (loc));
2060 /* Tentative, avoiding infinite recursion. */
2061 *slot = x;
2063 if (x != loc)
2065 rtx nx = vt_canonicalize_addr (NULL, x);
2066 if (nx != x)
2068 /* The table may have moved during recursion, recompute
2069 SLOT. */
2070 *global_get_addr_cache->get (loc) = x = nx;
2074 return x;
2077 /* Return the canonical address for LOC, that must be a VALUE, using a
2078 cached local equivalence or computing it and storing it in the
2079 local cache. */
2081 static rtx
2082 get_addr_from_local_cache (dataflow_set *set, rtx const loc)
2084 rtx x;
2085 decl_or_value dv;
2086 variable var;
2087 location_chain l;
2089 gcc_checking_assert (GET_CODE (loc) == VALUE);
2091 bool existed;
2092 rtx *slot = &local_get_addr_cache->get_or_insert (loc, &existed);
2093 if (existed)
2094 return *slot;
2096 x = get_addr_from_global_cache (loc);
2098 /* Tentative, avoiding infinite recursion. */
2099 *slot = x;
2101 /* Recurse to cache local expansion of X, or if we need to search
2102 for a VALUE in the expansion. */
2103 if (x != loc)
2105 rtx nx = vt_canonicalize_addr (set, x);
2106 if (nx != x)
2108 slot = local_get_addr_cache->get (loc);
2109 *slot = x = nx;
2111 return x;
2114 dv = dv_from_rtx (x);
2115 var = shared_hash_find (set->vars, dv);
2116 if (!var)
2117 return x;
2119 /* Look for an improved equivalent expression. */
2120 for (l = var->var_part[0].loc_chain; l; l = l->next)
2122 rtx base = vt_get_canonicalize_base (l->loc);
2123 if (GET_CODE (base) == VALUE
2124 && canon_value_cmp (base, loc))
2126 rtx nx = vt_canonicalize_addr (set, l->loc);
2127 if (x != nx)
2129 slot = local_get_addr_cache->get (loc);
2130 *slot = x = nx;
2132 break;
2136 return x;
2139 /* Canonicalize LOC using equivalences from SET in addition to those
2140 in the cselib static table. It expects a VALUE-based expression,
2141 and it will only substitute VALUEs with other VALUEs or
2142 function-global equivalences, so that, if two addresses have base
2143 VALUEs that are locally or globally related in ways that
2144 memrefs_conflict_p cares about, they will both canonicalize to
2145 expressions that have the same base VALUE.
2147 The use of VALUEs as canonical base addresses enables the canonical
2148 RTXs to remain unchanged globally, if they resolve to a constant,
2149 or throughout a basic block otherwise, so that they can be cached
2150 and the cache needs not be invalidated when REGs, MEMs or such
2151 change. */
2153 static rtx
2154 vt_canonicalize_addr (dataflow_set *set, rtx oloc)
2156 HOST_WIDE_INT ofst = 0;
2157 machine_mode mode = GET_MODE (oloc);
2158 rtx loc = oloc;
2159 rtx x;
2160 bool retry = true;
2162 while (retry)
2164 while (GET_CODE (loc) == PLUS
2165 && GET_CODE (XEXP (loc, 1)) == CONST_INT)
2167 ofst += INTVAL (XEXP (loc, 1));
2168 loc = XEXP (loc, 0);
2171 /* Alignment operations can't normally be combined, so just
2172 canonicalize the base and we're done. We'll normally have
2173 only one stack alignment anyway. */
2174 if (GET_CODE (loc) == AND
2175 && GET_CODE (XEXP (loc, 1)) == CONST_INT
2176 && negative_power_of_two_p (INTVAL (XEXP (loc, 1))))
2178 x = vt_canonicalize_addr (set, XEXP (loc, 0));
2179 if (x != XEXP (loc, 0))
2180 loc = gen_rtx_AND (mode, x, XEXP (loc, 1));
2181 retry = false;
2184 if (GET_CODE (loc) == VALUE)
2186 if (set)
2187 loc = get_addr_from_local_cache (set, loc);
2188 else
2189 loc = get_addr_from_global_cache (loc);
2191 /* Consolidate plus_constants. */
2192 while (ofst && GET_CODE (loc) == PLUS
2193 && GET_CODE (XEXP (loc, 1)) == CONST_INT)
2195 ofst += INTVAL (XEXP (loc, 1));
2196 loc = XEXP (loc, 0);
2199 retry = false;
2201 else
2203 x = canon_rtx (loc);
2204 if (retry)
2205 retry = (x != loc);
2206 loc = x;
2210 /* Add OFST back in. */
2211 if (ofst)
2213 /* Don't build new RTL if we can help it. */
2214 if (GET_CODE (oloc) == PLUS
2215 && XEXP (oloc, 0) == loc
2216 && INTVAL (XEXP (oloc, 1)) == ofst)
2217 return oloc;
2219 loc = plus_constant (mode, loc, ofst);
2222 return loc;
2225 /* Return true iff there's a true dependence between MLOC and LOC.
2226 MADDR must be a canonicalized version of MLOC's address. */
2228 static inline bool
2229 vt_canon_true_dep (dataflow_set *set, rtx mloc, rtx maddr, rtx loc)
2231 if (GET_CODE (loc) != MEM)
2232 return false;
2234 rtx addr = vt_canonicalize_addr (set, XEXP (loc, 0));
2235 if (!canon_true_dependence (mloc, GET_MODE (mloc), maddr, loc, addr))
2236 return false;
2238 return true;
2241 /* Hold parameters for the hashtab traversal function
2242 drop_overlapping_mem_locs, see below. */
2244 struct overlapping_mems
2246 dataflow_set *set;
2247 rtx loc, addr;
2250 /* Remove all MEMs that overlap with COMS->LOC from the location list
2251 of a hash table entry for a value. COMS->ADDR must be a
2252 canonicalized form of COMS->LOC's address, and COMS->LOC must be
2253 canonicalized itself. */
2256 drop_overlapping_mem_locs (variable_def **slot, overlapping_mems *coms)
2258 dataflow_set *set = coms->set;
2259 rtx mloc = coms->loc, addr = coms->addr;
2260 variable var = *slot;
2262 if (var->onepart == ONEPART_VALUE)
2264 location_chain loc, *locp;
2265 bool changed = false;
2266 rtx cur_loc;
2268 gcc_assert (var->n_var_parts == 1);
2270 if (shared_var_p (var, set->vars))
2272 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
2273 if (vt_canon_true_dep (set, mloc, addr, loc->loc))
2274 break;
2276 if (!loc)
2277 return 1;
2279 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
2280 var = *slot;
2281 gcc_assert (var->n_var_parts == 1);
2284 if (VAR_LOC_1PAUX (var))
2285 cur_loc = VAR_LOC_FROM (var);
2286 else
2287 cur_loc = var->var_part[0].cur_loc;
2289 for (locp = &var->var_part[0].loc_chain, loc = *locp;
2290 loc; loc = *locp)
2292 if (!vt_canon_true_dep (set, mloc, addr, loc->loc))
2294 locp = &loc->next;
2295 continue;
2298 *locp = loc->next;
2299 /* If we have deleted the location which was last emitted
2300 we have to emit new location so add the variable to set
2301 of changed variables. */
2302 if (cur_loc == loc->loc)
2304 changed = true;
2305 var->var_part[0].cur_loc = NULL;
2306 if (VAR_LOC_1PAUX (var))
2307 VAR_LOC_FROM (var) = NULL;
2309 pool_free (loc_chain_pool, loc);
2312 if (!var->var_part[0].loc_chain)
2314 var->n_var_parts--;
2315 changed = true;
2317 if (changed)
2318 variable_was_changed (var, set);
2321 return 1;
2324 /* Remove from SET all VALUE bindings to MEMs that overlap with LOC. */
2326 static void
2327 clobber_overlapping_mems (dataflow_set *set, rtx loc)
2329 struct overlapping_mems coms;
2331 gcc_checking_assert (GET_CODE (loc) == MEM);
2333 coms.set = set;
2334 coms.loc = canon_rtx (loc);
2335 coms.addr = vt_canonicalize_addr (set, XEXP (loc, 0));
2337 set->traversed_vars = set->vars;
2338 shared_hash_htab (set->vars)
2339 ->traverse <overlapping_mems*, drop_overlapping_mem_locs> (&coms);
2340 set->traversed_vars = NULL;
2343 /* Set the location of DV, OFFSET as the MEM LOC. */
2345 static void
2346 var_mem_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
2347 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
2348 enum insert_option iopt)
2350 if (dv_is_decl_p (dv))
2351 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
2353 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
2356 /* Set the location part of variable MEM_EXPR (LOC) in dataflow set
2357 SET to LOC.
2358 Adjust the address first if it is stack pointer based. */
2360 static void
2361 var_mem_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
2362 rtx set_src)
2364 tree decl = MEM_EXPR (loc);
2365 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2367 var_mem_decl_set (set, loc, initialized,
2368 dv_from_decl (decl), offset, set_src, INSERT);
2371 /* Delete and set the location part of variable MEM_EXPR (LOC) in
2372 dataflow set SET to LOC. If MODIFY is true, any other live copies
2373 of the same variable part are also deleted from the dataflow set,
2374 otherwise the variable part is assumed to be copied from another
2375 location holding the same part.
2376 Adjust the address first if it is stack pointer based. */
2378 static void
2379 var_mem_delete_and_set (dataflow_set *set, rtx loc, bool modify,
2380 enum var_init_status initialized, rtx set_src)
2382 tree decl = MEM_EXPR (loc);
2383 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2385 clobber_overlapping_mems (set, loc);
2386 decl = var_debug_decl (decl);
2388 if (initialized == VAR_INIT_STATUS_UNKNOWN)
2389 initialized = get_init_value (set, loc, dv_from_decl (decl));
2391 if (modify)
2392 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, set_src);
2393 var_mem_set (set, loc, initialized, set_src);
2396 /* Delete the location part LOC from dataflow set SET. If CLOBBER is
2397 true, also delete any other live copies of the same variable part.
2398 Adjust the address first if it is stack pointer based. */
2400 static void
2401 var_mem_delete (dataflow_set *set, rtx loc, bool clobber)
2403 tree decl = MEM_EXPR (loc);
2404 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2406 clobber_overlapping_mems (set, loc);
2407 decl = var_debug_decl (decl);
2408 if (clobber)
2409 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
2410 delete_variable_part (set, loc, dv_from_decl (decl), offset);
2413 /* Return true if LOC should not be expanded for location expressions,
2414 or used in them. */
2416 static inline bool
2417 unsuitable_loc (rtx loc)
2419 switch (GET_CODE (loc))
2421 case PC:
2422 case SCRATCH:
2423 case CC0:
2424 case ASM_INPUT:
2425 case ASM_OPERANDS:
2426 return true;
2428 default:
2429 return false;
2433 /* Bind VAL to LOC in SET. If MODIFIED, detach LOC from any values
2434 bound to it. */
2436 static inline void
2437 val_bind (dataflow_set *set, rtx val, rtx loc, bool modified)
2439 if (REG_P (loc))
2441 if (modified)
2442 var_regno_delete (set, REGNO (loc));
2443 var_reg_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2444 dv_from_value (val), 0, NULL_RTX, INSERT);
2446 else if (MEM_P (loc))
2448 struct elt_loc_list *l = CSELIB_VAL_PTR (val)->locs;
2450 if (modified)
2451 clobber_overlapping_mems (set, loc);
2453 if (l && GET_CODE (l->loc) == VALUE)
2454 l = canonical_cselib_val (CSELIB_VAL_PTR (l->loc))->locs;
2456 /* If this MEM is a global constant, we don't need it in the
2457 dynamic tables. ??? We should test this before emitting the
2458 micro-op in the first place. */
2459 while (l)
2460 if (GET_CODE (l->loc) == MEM && XEXP (l->loc, 0) == XEXP (loc, 0))
2461 break;
2462 else
2463 l = l->next;
2465 if (!l)
2466 var_mem_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2467 dv_from_value (val), 0, NULL_RTX, INSERT);
2469 else
2471 /* Other kinds of equivalences are necessarily static, at least
2472 so long as we do not perform substitutions while merging
2473 expressions. */
2474 gcc_unreachable ();
2475 set_variable_part (set, loc, dv_from_value (val), 0,
2476 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2480 /* Bind a value to a location it was just stored in. If MODIFIED
2481 holds, assume the location was modified, detaching it from any
2482 values bound to it. */
2484 static void
2485 val_store (dataflow_set *set, rtx val, rtx loc, rtx_insn *insn,
2486 bool modified)
2488 cselib_val *v = CSELIB_VAL_PTR (val);
2490 gcc_assert (cselib_preserved_value_p (v));
2492 if (dump_file)
2494 fprintf (dump_file, "%i: ", insn ? INSN_UID (insn) : 0);
2495 print_inline_rtx (dump_file, loc, 0);
2496 fprintf (dump_file, " evaluates to ");
2497 print_inline_rtx (dump_file, val, 0);
2498 if (v->locs)
2500 struct elt_loc_list *l;
2501 for (l = v->locs; l; l = l->next)
2503 fprintf (dump_file, "\n%i: ", INSN_UID (l->setting_insn));
2504 print_inline_rtx (dump_file, l->loc, 0);
2507 fprintf (dump_file, "\n");
2510 gcc_checking_assert (!unsuitable_loc (loc));
2512 val_bind (set, val, loc, modified);
2515 /* Clear (canonical address) slots that reference X. */
2517 bool
2518 local_get_addr_clear_given_value (rtx const &, rtx *slot, rtx x)
2520 if (vt_get_canonicalize_base (*slot) == x)
2521 *slot = NULL;
2522 return true;
2525 /* Reset this node, detaching all its equivalences. Return the slot
2526 in the variable hash table that holds dv, if there is one. */
2528 static void
2529 val_reset (dataflow_set *set, decl_or_value dv)
2531 variable var = shared_hash_find (set->vars, dv) ;
2532 location_chain node;
2533 rtx cval;
2535 if (!var || !var->n_var_parts)
2536 return;
2538 gcc_assert (var->n_var_parts == 1);
2540 if (var->onepart == ONEPART_VALUE)
2542 rtx x = dv_as_value (dv);
2544 /* Relationships in the global cache don't change, so reset the
2545 local cache entry only. */
2546 rtx *slot = local_get_addr_cache->get (x);
2547 if (slot)
2549 /* If the value resolved back to itself, odds are that other
2550 values may have cached it too. These entries now refer
2551 to the old X, so detach them too. Entries that used the
2552 old X but resolved to something else remain ok as long as
2553 that something else isn't also reset. */
2554 if (*slot == x)
2555 local_get_addr_cache
2556 ->traverse<rtx, local_get_addr_clear_given_value> (x);
2557 *slot = NULL;
2561 cval = NULL;
2562 for (node = var->var_part[0].loc_chain; node; node = node->next)
2563 if (GET_CODE (node->loc) == VALUE
2564 && canon_value_cmp (node->loc, cval))
2565 cval = node->loc;
2567 for (node = var->var_part[0].loc_chain; node; node = node->next)
2568 if (GET_CODE (node->loc) == VALUE && cval != node->loc)
2570 /* Redirect the equivalence link to the new canonical
2571 value, or simply remove it if it would point at
2572 itself. */
2573 if (cval)
2574 set_variable_part (set, cval, dv_from_value (node->loc),
2575 0, node->init, node->set_src, NO_INSERT);
2576 delete_variable_part (set, dv_as_value (dv),
2577 dv_from_value (node->loc), 0);
2580 if (cval)
2582 decl_or_value cdv = dv_from_value (cval);
2584 /* Keep the remaining values connected, accummulating links
2585 in the canonical value. */
2586 for (node = var->var_part[0].loc_chain; node; node = node->next)
2588 if (node->loc == cval)
2589 continue;
2590 else if (GET_CODE (node->loc) == REG)
2591 var_reg_decl_set (set, node->loc, node->init, cdv, 0,
2592 node->set_src, NO_INSERT);
2593 else if (GET_CODE (node->loc) == MEM)
2594 var_mem_decl_set (set, node->loc, node->init, cdv, 0,
2595 node->set_src, NO_INSERT);
2596 else
2597 set_variable_part (set, node->loc, cdv, 0,
2598 node->init, node->set_src, NO_INSERT);
2602 /* We remove this last, to make sure that the canonical value is not
2603 removed to the point of requiring reinsertion. */
2604 if (cval)
2605 delete_variable_part (set, dv_as_value (dv), dv_from_value (cval), 0);
2607 clobber_variable_part (set, NULL, dv, 0, NULL);
2610 /* Find the values in a given location and map the val to another
2611 value, if it is unique, or add the location as one holding the
2612 value. */
2614 static void
2615 val_resolve (dataflow_set *set, rtx val, rtx loc, rtx_insn *insn)
2617 decl_or_value dv = dv_from_value (val);
2619 if (dump_file && (dump_flags & TDF_DETAILS))
2621 if (insn)
2622 fprintf (dump_file, "%i: ", INSN_UID (insn));
2623 else
2624 fprintf (dump_file, "head: ");
2625 print_inline_rtx (dump_file, val, 0);
2626 fputs (" is at ", dump_file);
2627 print_inline_rtx (dump_file, loc, 0);
2628 fputc ('\n', dump_file);
2631 val_reset (set, dv);
2633 gcc_checking_assert (!unsuitable_loc (loc));
2635 if (REG_P (loc))
2637 attrs node, found = NULL;
2639 for (node = set->regs[REGNO (loc)]; node; node = node->next)
2640 if (dv_is_value_p (node->dv)
2641 && GET_MODE (dv_as_value (node->dv)) == GET_MODE (loc))
2643 found = node;
2645 /* Map incoming equivalences. ??? Wouldn't it be nice if
2646 we just started sharing the location lists? Maybe a
2647 circular list ending at the value itself or some
2648 such. */
2649 set_variable_part (set, dv_as_value (node->dv),
2650 dv_from_value (val), node->offset,
2651 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2652 set_variable_part (set, val, node->dv, node->offset,
2653 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2656 /* If we didn't find any equivalence, we need to remember that
2657 this value is held in the named register. */
2658 if (found)
2659 return;
2661 /* ??? Attempt to find and merge equivalent MEMs or other
2662 expressions too. */
2664 val_bind (set, val, loc, false);
2667 /* Initialize dataflow set SET to be empty.
2668 VARS_SIZE is the initial size of hash table VARS. */
2670 static void
2671 dataflow_set_init (dataflow_set *set)
2673 init_attrs_list_set (set->regs);
2674 set->vars = shared_hash_copy (empty_shared_hash);
2675 set->stack_adjust = 0;
2676 set->traversed_vars = NULL;
2679 /* Delete the contents of dataflow set SET. */
2681 static void
2682 dataflow_set_clear (dataflow_set *set)
2684 int i;
2686 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2687 attrs_list_clear (&set->regs[i]);
2689 shared_hash_destroy (set->vars);
2690 set->vars = shared_hash_copy (empty_shared_hash);
2693 /* Copy the contents of dataflow set SRC to DST. */
2695 static void
2696 dataflow_set_copy (dataflow_set *dst, dataflow_set *src)
2698 int i;
2700 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2701 attrs_list_copy (&dst->regs[i], src->regs[i]);
2703 shared_hash_destroy (dst->vars);
2704 dst->vars = shared_hash_copy (src->vars);
2705 dst->stack_adjust = src->stack_adjust;
2708 /* Information for merging lists of locations for a given offset of variable.
2710 struct variable_union_info
2712 /* Node of the location chain. */
2713 location_chain lc;
2715 /* The sum of positions in the input chains. */
2716 int pos;
2718 /* The position in the chain of DST dataflow set. */
2719 int pos_dst;
2722 /* Buffer for location list sorting and its allocated size. */
2723 static struct variable_union_info *vui_vec;
2724 static int vui_allocated;
2726 /* Compare function for qsort, order the structures by POS element. */
2728 static int
2729 variable_union_info_cmp_pos (const void *n1, const void *n2)
2731 const struct variable_union_info *const i1 =
2732 (const struct variable_union_info *) n1;
2733 const struct variable_union_info *const i2 =
2734 ( const struct variable_union_info *) n2;
2736 if (i1->pos != i2->pos)
2737 return i1->pos - i2->pos;
2739 return (i1->pos_dst - i2->pos_dst);
2742 /* Compute union of location parts of variable *SLOT and the same variable
2743 from hash table DATA. Compute "sorted" union of the location chains
2744 for common offsets, i.e. the locations of a variable part are sorted by
2745 a priority where the priority is the sum of the positions in the 2 chains
2746 (if a location is only in one list the position in the second list is
2747 defined to be larger than the length of the chains).
2748 When we are updating the location parts the newest location is in the
2749 beginning of the chain, so when we do the described "sorted" union
2750 we keep the newest locations in the beginning. */
2752 static int
2753 variable_union (variable src, dataflow_set *set)
2755 variable dst;
2756 variable_def **dstp;
2757 int i, j, k;
2759 dstp = shared_hash_find_slot (set->vars, src->dv);
2760 if (!dstp || !*dstp)
2762 src->refcount++;
2764 dst_can_be_shared = false;
2765 if (!dstp)
2766 dstp = shared_hash_find_slot_unshare (&set->vars, src->dv, INSERT);
2768 *dstp = src;
2770 /* Continue traversing the hash table. */
2771 return 1;
2773 else
2774 dst = *dstp;
2776 gcc_assert (src->n_var_parts);
2777 gcc_checking_assert (src->onepart == dst->onepart);
2779 /* We can combine one-part variables very efficiently, because their
2780 entries are in canonical order. */
2781 if (src->onepart)
2783 location_chain *nodep, dnode, snode;
2785 gcc_assert (src->n_var_parts == 1
2786 && dst->n_var_parts == 1);
2788 snode = src->var_part[0].loc_chain;
2789 gcc_assert (snode);
2791 restart_onepart_unshared:
2792 nodep = &dst->var_part[0].loc_chain;
2793 dnode = *nodep;
2794 gcc_assert (dnode);
2796 while (snode)
2798 int r = dnode ? loc_cmp (dnode->loc, snode->loc) : 1;
2800 if (r > 0)
2802 location_chain nnode;
2804 if (shared_var_p (dst, set->vars))
2806 dstp = unshare_variable (set, dstp, dst,
2807 VAR_INIT_STATUS_INITIALIZED);
2808 dst = *dstp;
2809 goto restart_onepart_unshared;
2812 *nodep = nnode = (location_chain) pool_alloc (loc_chain_pool);
2813 nnode->loc = snode->loc;
2814 nnode->init = snode->init;
2815 if (!snode->set_src || MEM_P (snode->set_src))
2816 nnode->set_src = NULL;
2817 else
2818 nnode->set_src = snode->set_src;
2819 nnode->next = dnode;
2820 dnode = nnode;
2822 else if (r == 0)
2823 gcc_checking_assert (rtx_equal_p (dnode->loc, snode->loc));
2825 if (r >= 0)
2826 snode = snode->next;
2828 nodep = &dnode->next;
2829 dnode = *nodep;
2832 return 1;
2835 gcc_checking_assert (!src->onepart);
2837 /* Count the number of location parts, result is K. */
2838 for (i = 0, j = 0, k = 0;
2839 i < src->n_var_parts && j < dst->n_var_parts; k++)
2841 if (VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2843 i++;
2844 j++;
2846 else if (VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
2847 i++;
2848 else
2849 j++;
2851 k += src->n_var_parts - i;
2852 k += dst->n_var_parts - j;
2854 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
2855 thus there are at most MAX_VAR_PARTS different offsets. */
2856 gcc_checking_assert (dst->onepart ? k == 1 : k <= MAX_VAR_PARTS);
2858 if (dst->n_var_parts != k && shared_var_p (dst, set->vars))
2860 dstp = unshare_variable (set, dstp, dst, VAR_INIT_STATUS_UNKNOWN);
2861 dst = *dstp;
2864 i = src->n_var_parts - 1;
2865 j = dst->n_var_parts - 1;
2866 dst->n_var_parts = k;
2868 for (k--; k >= 0; k--)
2870 location_chain node, node2;
2872 if (i >= 0 && j >= 0
2873 && VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2875 /* Compute the "sorted" union of the chains, i.e. the locations which
2876 are in both chains go first, they are sorted by the sum of
2877 positions in the chains. */
2878 int dst_l, src_l;
2879 int ii, jj, n;
2880 struct variable_union_info *vui;
2882 /* If DST is shared compare the location chains.
2883 If they are different we will modify the chain in DST with
2884 high probability so make a copy of DST. */
2885 if (shared_var_p (dst, set->vars))
2887 for (node = src->var_part[i].loc_chain,
2888 node2 = dst->var_part[j].loc_chain; node && node2;
2889 node = node->next, node2 = node2->next)
2891 if (!((REG_P (node2->loc)
2892 && REG_P (node->loc)
2893 && REGNO (node2->loc) == REGNO (node->loc))
2894 || rtx_equal_p (node2->loc, node->loc)))
2896 if (node2->init < node->init)
2897 node2->init = node->init;
2898 break;
2901 if (node || node2)
2903 dstp = unshare_variable (set, dstp, dst,
2904 VAR_INIT_STATUS_UNKNOWN);
2905 dst = (variable)*dstp;
2909 src_l = 0;
2910 for (node = src->var_part[i].loc_chain; node; node = node->next)
2911 src_l++;
2912 dst_l = 0;
2913 for (node = dst->var_part[j].loc_chain; node; node = node->next)
2914 dst_l++;
2916 if (dst_l == 1)
2918 /* The most common case, much simpler, no qsort is needed. */
2919 location_chain dstnode = dst->var_part[j].loc_chain;
2920 dst->var_part[k].loc_chain = dstnode;
2921 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
2922 node2 = dstnode;
2923 for (node = src->var_part[i].loc_chain; node; node = node->next)
2924 if (!((REG_P (dstnode->loc)
2925 && REG_P (node->loc)
2926 && REGNO (dstnode->loc) == REGNO (node->loc))
2927 || rtx_equal_p (dstnode->loc, node->loc)))
2929 location_chain new_node;
2931 /* Copy the location from SRC. */
2932 new_node = (location_chain) pool_alloc (loc_chain_pool);
2933 new_node->loc = node->loc;
2934 new_node->init = node->init;
2935 if (!node->set_src || MEM_P (node->set_src))
2936 new_node->set_src = NULL;
2937 else
2938 new_node->set_src = node->set_src;
2939 node2->next = new_node;
2940 node2 = new_node;
2942 node2->next = NULL;
2944 else
2946 if (src_l + dst_l > vui_allocated)
2948 vui_allocated = MAX (vui_allocated * 2, src_l + dst_l);
2949 vui_vec = XRESIZEVEC (struct variable_union_info, vui_vec,
2950 vui_allocated);
2952 vui = vui_vec;
2954 /* Fill in the locations from DST. */
2955 for (node = dst->var_part[j].loc_chain, jj = 0; node;
2956 node = node->next, jj++)
2958 vui[jj].lc = node;
2959 vui[jj].pos_dst = jj;
2961 /* Pos plus value larger than a sum of 2 valid positions. */
2962 vui[jj].pos = jj + src_l + dst_l;
2965 /* Fill in the locations from SRC. */
2966 n = dst_l;
2967 for (node = src->var_part[i].loc_chain, ii = 0; node;
2968 node = node->next, ii++)
2970 /* Find location from NODE. */
2971 for (jj = 0; jj < dst_l; jj++)
2973 if ((REG_P (vui[jj].lc->loc)
2974 && REG_P (node->loc)
2975 && REGNO (vui[jj].lc->loc) == REGNO (node->loc))
2976 || rtx_equal_p (vui[jj].lc->loc, node->loc))
2978 vui[jj].pos = jj + ii;
2979 break;
2982 if (jj >= dst_l) /* The location has not been found. */
2984 location_chain new_node;
2986 /* Copy the location from SRC. */
2987 new_node = (location_chain) pool_alloc (loc_chain_pool);
2988 new_node->loc = node->loc;
2989 new_node->init = node->init;
2990 if (!node->set_src || MEM_P (node->set_src))
2991 new_node->set_src = NULL;
2992 else
2993 new_node->set_src = node->set_src;
2994 vui[n].lc = new_node;
2995 vui[n].pos_dst = src_l + dst_l;
2996 vui[n].pos = ii + src_l + dst_l;
2997 n++;
3001 if (dst_l == 2)
3003 /* Special case still very common case. For dst_l == 2
3004 all entries dst_l ... n-1 are sorted, with for i >= dst_l
3005 vui[i].pos == i + src_l + dst_l. */
3006 if (vui[0].pos > vui[1].pos)
3008 /* Order should be 1, 0, 2... */
3009 dst->var_part[k].loc_chain = vui[1].lc;
3010 vui[1].lc->next = vui[0].lc;
3011 if (n >= 3)
3013 vui[0].lc->next = vui[2].lc;
3014 vui[n - 1].lc->next = NULL;
3016 else
3017 vui[0].lc->next = NULL;
3018 ii = 3;
3020 else
3022 dst->var_part[k].loc_chain = vui[0].lc;
3023 if (n >= 3 && vui[2].pos < vui[1].pos)
3025 /* Order should be 0, 2, 1, 3... */
3026 vui[0].lc->next = vui[2].lc;
3027 vui[2].lc->next = vui[1].lc;
3028 if (n >= 4)
3030 vui[1].lc->next = vui[3].lc;
3031 vui[n - 1].lc->next = NULL;
3033 else
3034 vui[1].lc->next = NULL;
3035 ii = 4;
3037 else
3039 /* Order should be 0, 1, 2... */
3040 ii = 1;
3041 vui[n - 1].lc->next = NULL;
3044 for (; ii < n; ii++)
3045 vui[ii - 1].lc->next = vui[ii].lc;
3047 else
3049 qsort (vui, n, sizeof (struct variable_union_info),
3050 variable_union_info_cmp_pos);
3052 /* Reconnect the nodes in sorted order. */
3053 for (ii = 1; ii < n; ii++)
3054 vui[ii - 1].lc->next = vui[ii].lc;
3055 vui[n - 1].lc->next = NULL;
3056 dst->var_part[k].loc_chain = vui[0].lc;
3059 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
3061 i--;
3062 j--;
3064 else if ((i >= 0 && j >= 0
3065 && VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
3066 || i < 0)
3068 dst->var_part[k] = dst->var_part[j];
3069 j--;
3071 else if ((i >= 0 && j >= 0
3072 && VAR_PART_OFFSET (src, i) > VAR_PART_OFFSET (dst, j))
3073 || j < 0)
3075 location_chain *nextp;
3077 /* Copy the chain from SRC. */
3078 nextp = &dst->var_part[k].loc_chain;
3079 for (node = src->var_part[i].loc_chain; node; node = node->next)
3081 location_chain new_lc;
3083 new_lc = (location_chain) pool_alloc (loc_chain_pool);
3084 new_lc->next = NULL;
3085 new_lc->init = node->init;
3086 if (!node->set_src || MEM_P (node->set_src))
3087 new_lc->set_src = NULL;
3088 else
3089 new_lc->set_src = node->set_src;
3090 new_lc->loc = node->loc;
3092 *nextp = new_lc;
3093 nextp = &new_lc->next;
3096 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (src, i);
3097 i--;
3099 dst->var_part[k].cur_loc = NULL;
3102 if (flag_var_tracking_uninit)
3103 for (i = 0; i < src->n_var_parts && i < dst->n_var_parts; i++)
3105 location_chain node, node2;
3106 for (node = src->var_part[i].loc_chain; node; node = node->next)
3107 for (node2 = dst->var_part[i].loc_chain; node2; node2 = node2->next)
3108 if (rtx_equal_p (node->loc, node2->loc))
3110 if (node->init > node2->init)
3111 node2->init = node->init;
3115 /* Continue traversing the hash table. */
3116 return 1;
3119 /* Compute union of dataflow sets SRC and DST and store it to DST. */
3121 static void
3122 dataflow_set_union (dataflow_set *dst, dataflow_set *src)
3124 int i;
3126 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3127 attrs_list_union (&dst->regs[i], src->regs[i]);
3129 if (dst->vars == empty_shared_hash)
3131 shared_hash_destroy (dst->vars);
3132 dst->vars = shared_hash_copy (src->vars);
3134 else
3136 variable_iterator_type hi;
3137 variable var;
3139 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (src->vars),
3140 var, variable, hi)
3141 variable_union (var, dst);
3145 /* Whether the value is currently being expanded. */
3146 #define VALUE_RECURSED_INTO(x) \
3147 (RTL_FLAG_CHECK2 ("VALUE_RECURSED_INTO", (x), VALUE, DEBUG_EXPR)->used)
3149 /* Whether no expansion was found, saving useless lookups.
3150 It must only be set when VALUE_CHANGED is clear. */
3151 #define NO_LOC_P(x) \
3152 (RTL_FLAG_CHECK2 ("NO_LOC_P", (x), VALUE, DEBUG_EXPR)->return_val)
3154 /* Whether cur_loc in the value needs to be (re)computed. */
3155 #define VALUE_CHANGED(x) \
3156 (RTL_FLAG_CHECK1 ("VALUE_CHANGED", (x), VALUE)->frame_related)
3157 /* Whether cur_loc in the decl needs to be (re)computed. */
3158 #define DECL_CHANGED(x) TREE_VISITED (x)
3160 /* Record (if NEWV) that DV needs to have its cur_loc recomputed. For
3161 user DECLs, this means they're in changed_variables. Values and
3162 debug exprs may be left with this flag set if no user variable
3163 requires them to be evaluated. */
3165 static inline void
3166 set_dv_changed (decl_or_value dv, bool newv)
3168 switch (dv_onepart_p (dv))
3170 case ONEPART_VALUE:
3171 if (newv)
3172 NO_LOC_P (dv_as_value (dv)) = false;
3173 VALUE_CHANGED (dv_as_value (dv)) = newv;
3174 break;
3176 case ONEPART_DEXPR:
3177 if (newv)
3178 NO_LOC_P (DECL_RTL_KNOWN_SET (dv_as_decl (dv))) = false;
3179 /* Fall through... */
3181 default:
3182 DECL_CHANGED (dv_as_decl (dv)) = newv;
3183 break;
3187 /* Return true if DV needs to have its cur_loc recomputed. */
3189 static inline bool
3190 dv_changed_p (decl_or_value dv)
3192 return (dv_is_value_p (dv)
3193 ? VALUE_CHANGED (dv_as_value (dv))
3194 : DECL_CHANGED (dv_as_decl (dv)));
3197 /* Return a location list node whose loc is rtx_equal to LOC, in the
3198 location list of a one-part variable or value VAR, or in that of
3199 any values recursively mentioned in the location lists. VARS must
3200 be in star-canonical form. */
3202 static location_chain
3203 find_loc_in_1pdv (rtx loc, variable var, variable_table_type *vars)
3205 location_chain node;
3206 enum rtx_code loc_code;
3208 if (!var)
3209 return NULL;
3211 gcc_checking_assert (var->onepart);
3213 if (!var->n_var_parts)
3214 return NULL;
3216 gcc_checking_assert (loc != dv_as_opaque (var->dv));
3218 loc_code = GET_CODE (loc);
3219 for (node = var->var_part[0].loc_chain; node; node = node->next)
3221 decl_or_value dv;
3222 variable rvar;
3224 if (GET_CODE (node->loc) != loc_code)
3226 if (GET_CODE (node->loc) != VALUE)
3227 continue;
3229 else if (loc == node->loc)
3230 return node;
3231 else if (loc_code != VALUE)
3233 if (rtx_equal_p (loc, node->loc))
3234 return node;
3235 continue;
3238 /* Since we're in star-canonical form, we don't need to visit
3239 non-canonical nodes: one-part variables and non-canonical
3240 values would only point back to the canonical node. */
3241 if (dv_is_value_p (var->dv)
3242 && !canon_value_cmp (node->loc, dv_as_value (var->dv)))
3244 /* Skip all subsequent VALUEs. */
3245 while (node->next && GET_CODE (node->next->loc) == VALUE)
3247 node = node->next;
3248 gcc_checking_assert (!canon_value_cmp (node->loc,
3249 dv_as_value (var->dv)));
3250 if (loc == node->loc)
3251 return node;
3253 continue;
3256 gcc_checking_assert (node == var->var_part[0].loc_chain);
3257 gcc_checking_assert (!node->next);
3259 dv = dv_from_value (node->loc);
3260 rvar = vars->find_with_hash (dv, dv_htab_hash (dv));
3261 return find_loc_in_1pdv (loc, rvar, vars);
3264 /* ??? Gotta look in cselib_val locations too. */
3266 return NULL;
3269 /* Hash table iteration argument passed to variable_merge. */
3270 struct dfset_merge
3272 /* The set in which the merge is to be inserted. */
3273 dataflow_set *dst;
3274 /* The set that we're iterating in. */
3275 dataflow_set *cur;
3276 /* The set that may contain the other dv we are to merge with. */
3277 dataflow_set *src;
3278 /* Number of onepart dvs in src. */
3279 int src_onepart_cnt;
3282 /* Insert LOC in *DNODE, if it's not there yet. The list must be in
3283 loc_cmp order, and it is maintained as such. */
3285 static void
3286 insert_into_intersection (location_chain *nodep, rtx loc,
3287 enum var_init_status status)
3289 location_chain node;
3290 int r;
3292 for (node = *nodep; node; nodep = &node->next, node = *nodep)
3293 if ((r = loc_cmp (node->loc, loc)) == 0)
3295 node->init = MIN (node->init, status);
3296 return;
3298 else if (r > 0)
3299 break;
3301 node = (location_chain) pool_alloc (loc_chain_pool);
3303 node->loc = loc;
3304 node->set_src = NULL;
3305 node->init = status;
3306 node->next = *nodep;
3307 *nodep = node;
3310 /* Insert in DEST the intersection of the locations present in both
3311 S1NODE and S2VAR, directly or indirectly. S1NODE is from a
3312 variable in DSM->cur, whereas S2VAR is from DSM->src. dvar is in
3313 DSM->dst. */
3315 static void
3316 intersect_loc_chains (rtx val, location_chain *dest, struct dfset_merge *dsm,
3317 location_chain s1node, variable s2var)
3319 dataflow_set *s1set = dsm->cur;
3320 dataflow_set *s2set = dsm->src;
3321 location_chain found;
3323 if (s2var)
3325 location_chain s2node;
3327 gcc_checking_assert (s2var->onepart);
3329 if (s2var->n_var_parts)
3331 s2node = s2var->var_part[0].loc_chain;
3333 for (; s1node && s2node;
3334 s1node = s1node->next, s2node = s2node->next)
3335 if (s1node->loc != s2node->loc)
3336 break;
3337 else if (s1node->loc == val)
3338 continue;
3339 else
3340 insert_into_intersection (dest, s1node->loc,
3341 MIN (s1node->init, s2node->init));
3345 for (; s1node; s1node = s1node->next)
3347 if (s1node->loc == val)
3348 continue;
3350 if ((found = find_loc_in_1pdv (s1node->loc, s2var,
3351 shared_hash_htab (s2set->vars))))
3353 insert_into_intersection (dest, s1node->loc,
3354 MIN (s1node->init, found->init));
3355 continue;
3358 if (GET_CODE (s1node->loc) == VALUE
3359 && !VALUE_RECURSED_INTO (s1node->loc))
3361 decl_or_value dv = dv_from_value (s1node->loc);
3362 variable svar = shared_hash_find (s1set->vars, dv);
3363 if (svar)
3365 if (svar->n_var_parts == 1)
3367 VALUE_RECURSED_INTO (s1node->loc) = true;
3368 intersect_loc_chains (val, dest, dsm,
3369 svar->var_part[0].loc_chain,
3370 s2var);
3371 VALUE_RECURSED_INTO (s1node->loc) = false;
3376 /* ??? gotta look in cselib_val locations too. */
3378 /* ??? if the location is equivalent to any location in src,
3379 searched recursively
3381 add to dst the values needed to represent the equivalence
3383 telling whether locations S is equivalent to another dv's
3384 location list:
3386 for each location D in the list
3388 if S and D satisfy rtx_equal_p, then it is present
3390 else if D is a value, recurse without cycles
3392 else if S and D have the same CODE and MODE
3394 for each operand oS and the corresponding oD
3396 if oS and oD are not equivalent, then S an D are not equivalent
3398 else if they are RTX vectors
3400 if any vector oS element is not equivalent to its respective oD,
3401 then S and D are not equivalent
3409 /* Return -1 if X should be before Y in a location list for a 1-part
3410 variable, 1 if Y should be before X, and 0 if they're equivalent
3411 and should not appear in the list. */
3413 static int
3414 loc_cmp (rtx x, rtx y)
3416 int i, j, r;
3417 RTX_CODE code = GET_CODE (x);
3418 const char *fmt;
3420 if (x == y)
3421 return 0;
3423 if (REG_P (x))
3425 if (!REG_P (y))
3426 return -1;
3427 gcc_assert (GET_MODE (x) == GET_MODE (y));
3428 if (REGNO (x) == REGNO (y))
3429 return 0;
3430 else if (REGNO (x) < REGNO (y))
3431 return -1;
3432 else
3433 return 1;
3436 if (REG_P (y))
3437 return 1;
3439 if (MEM_P (x))
3441 if (!MEM_P (y))
3442 return -1;
3443 gcc_assert (GET_MODE (x) == GET_MODE (y));
3444 return loc_cmp (XEXP (x, 0), XEXP (y, 0));
3447 if (MEM_P (y))
3448 return 1;
3450 if (GET_CODE (x) == VALUE)
3452 if (GET_CODE (y) != VALUE)
3453 return -1;
3454 /* Don't assert the modes are the same, that is true only
3455 when not recursing. (subreg:QI (value:SI 1:1) 0)
3456 and (subreg:QI (value:DI 2:2) 0) can be compared,
3457 even when the modes are different. */
3458 if (canon_value_cmp (x, y))
3459 return -1;
3460 else
3461 return 1;
3464 if (GET_CODE (y) == VALUE)
3465 return 1;
3467 /* Entry value is the least preferable kind of expression. */
3468 if (GET_CODE (x) == ENTRY_VALUE)
3470 if (GET_CODE (y) != ENTRY_VALUE)
3471 return 1;
3472 gcc_assert (GET_MODE (x) == GET_MODE (y));
3473 return loc_cmp (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
3476 if (GET_CODE (y) == ENTRY_VALUE)
3477 return -1;
3479 if (GET_CODE (x) == GET_CODE (y))
3480 /* Compare operands below. */;
3481 else if (GET_CODE (x) < GET_CODE (y))
3482 return -1;
3483 else
3484 return 1;
3486 gcc_assert (GET_MODE (x) == GET_MODE (y));
3488 if (GET_CODE (x) == DEBUG_EXPR)
3490 if (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3491 < DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)))
3492 return -1;
3493 gcc_checking_assert (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3494 > DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)));
3495 return 1;
3498 fmt = GET_RTX_FORMAT (code);
3499 for (i = 0; i < GET_RTX_LENGTH (code); i++)
3500 switch (fmt[i])
3502 case 'w':
3503 if (XWINT (x, i) == XWINT (y, i))
3504 break;
3505 else if (XWINT (x, i) < XWINT (y, i))
3506 return -1;
3507 else
3508 return 1;
3510 case 'n':
3511 case 'i':
3512 if (XINT (x, i) == XINT (y, i))
3513 break;
3514 else if (XINT (x, i) < XINT (y, i))
3515 return -1;
3516 else
3517 return 1;
3519 case 'V':
3520 case 'E':
3521 /* Compare the vector length first. */
3522 if (XVECLEN (x, i) == XVECLEN (y, i))
3523 /* Compare the vectors elements. */;
3524 else if (XVECLEN (x, i) < XVECLEN (y, i))
3525 return -1;
3526 else
3527 return 1;
3529 for (j = 0; j < XVECLEN (x, i); j++)
3530 if ((r = loc_cmp (XVECEXP (x, i, j),
3531 XVECEXP (y, i, j))))
3532 return r;
3533 break;
3535 case 'e':
3536 if ((r = loc_cmp (XEXP (x, i), XEXP (y, i))))
3537 return r;
3538 break;
3540 case 'S':
3541 case 's':
3542 if (XSTR (x, i) == XSTR (y, i))
3543 break;
3544 if (!XSTR (x, i))
3545 return -1;
3546 if (!XSTR (y, i))
3547 return 1;
3548 if ((r = strcmp (XSTR (x, i), XSTR (y, i))) == 0)
3549 break;
3550 else if (r < 0)
3551 return -1;
3552 else
3553 return 1;
3555 case 'u':
3556 /* These are just backpointers, so they don't matter. */
3557 break;
3559 case '0':
3560 case 't':
3561 break;
3563 /* It is believed that rtx's at this level will never
3564 contain anything but integers and other rtx's,
3565 except for within LABEL_REFs and SYMBOL_REFs. */
3566 default:
3567 gcc_unreachable ();
3569 if (CONST_WIDE_INT_P (x))
3571 /* Compare the vector length first. */
3572 if (CONST_WIDE_INT_NUNITS (x) >= CONST_WIDE_INT_NUNITS (y))
3573 return 1;
3574 else if (CONST_WIDE_INT_NUNITS (x) < CONST_WIDE_INT_NUNITS (y))
3575 return -1;
3577 /* Compare the vectors elements. */;
3578 for (j = CONST_WIDE_INT_NUNITS (x) - 1; j >= 0 ; j--)
3580 if (CONST_WIDE_INT_ELT (x, j) < CONST_WIDE_INT_ELT (y, j))
3581 return -1;
3582 if (CONST_WIDE_INT_ELT (x, j) > CONST_WIDE_INT_ELT (y, j))
3583 return 1;
3587 return 0;
3590 #if ENABLE_CHECKING
3591 /* Check the order of entries in one-part variables. */
3594 canonicalize_loc_order_check (variable_def **slot,
3595 dataflow_set *data ATTRIBUTE_UNUSED)
3597 variable var = *slot;
3598 location_chain node, next;
3600 #ifdef ENABLE_RTL_CHECKING
3601 int i;
3602 for (i = 0; i < var->n_var_parts; i++)
3603 gcc_assert (var->var_part[0].cur_loc == NULL);
3604 gcc_assert (!var->in_changed_variables);
3605 #endif
3607 if (!var->onepart)
3608 return 1;
3610 gcc_assert (var->n_var_parts == 1);
3611 node = var->var_part[0].loc_chain;
3612 gcc_assert (node);
3614 while ((next = node->next))
3616 gcc_assert (loc_cmp (node->loc, next->loc) < 0);
3617 node = next;
3620 return 1;
3622 #endif
3624 /* Mark with VALUE_RECURSED_INTO values that have neighbors that are
3625 more likely to be chosen as canonical for an equivalence set.
3626 Ensure less likely values can reach more likely neighbors, making
3627 the connections bidirectional. */
3630 canonicalize_values_mark (variable_def **slot, dataflow_set *set)
3632 variable var = *slot;
3633 decl_or_value dv = var->dv;
3634 rtx val;
3635 location_chain node;
3637 if (!dv_is_value_p (dv))
3638 return 1;
3640 gcc_checking_assert (var->n_var_parts == 1);
3642 val = dv_as_value (dv);
3644 for (node = var->var_part[0].loc_chain; node; node = node->next)
3645 if (GET_CODE (node->loc) == VALUE)
3647 if (canon_value_cmp (node->loc, val))
3648 VALUE_RECURSED_INTO (val) = true;
3649 else
3651 decl_or_value odv = dv_from_value (node->loc);
3652 variable_def **oslot;
3653 oslot = shared_hash_find_slot_noinsert (set->vars, odv);
3655 set_slot_part (set, val, oslot, odv, 0,
3656 node->init, NULL_RTX);
3658 VALUE_RECURSED_INTO (node->loc) = true;
3662 return 1;
3665 /* Remove redundant entries from equivalence lists in onepart
3666 variables, canonicalizing equivalence sets into star shapes. */
3669 canonicalize_values_star (variable_def **slot, dataflow_set *set)
3671 variable var = *slot;
3672 decl_or_value dv = var->dv;
3673 location_chain node;
3674 decl_or_value cdv;
3675 rtx val, cval;
3676 variable_def **cslot;
3677 bool has_value;
3678 bool has_marks;
3680 if (!var->onepart)
3681 return 1;
3683 gcc_checking_assert (var->n_var_parts == 1);
3685 if (dv_is_value_p (dv))
3687 cval = dv_as_value (dv);
3688 if (!VALUE_RECURSED_INTO (cval))
3689 return 1;
3690 VALUE_RECURSED_INTO (cval) = false;
3692 else
3693 cval = NULL_RTX;
3695 restart:
3696 val = cval;
3697 has_value = false;
3698 has_marks = false;
3700 gcc_assert (var->n_var_parts == 1);
3702 for (node = var->var_part[0].loc_chain; node; node = node->next)
3703 if (GET_CODE (node->loc) == VALUE)
3705 has_value = true;
3706 if (VALUE_RECURSED_INTO (node->loc))
3707 has_marks = true;
3708 if (canon_value_cmp (node->loc, cval))
3709 cval = node->loc;
3712 if (!has_value)
3713 return 1;
3715 if (cval == val)
3717 if (!has_marks || dv_is_decl_p (dv))
3718 return 1;
3720 /* Keep it marked so that we revisit it, either after visiting a
3721 child node, or after visiting a new parent that might be
3722 found out. */
3723 VALUE_RECURSED_INTO (val) = true;
3725 for (node = var->var_part[0].loc_chain; node; node = node->next)
3726 if (GET_CODE (node->loc) == VALUE
3727 && VALUE_RECURSED_INTO (node->loc))
3729 cval = node->loc;
3730 restart_with_cval:
3731 VALUE_RECURSED_INTO (cval) = false;
3732 dv = dv_from_value (cval);
3733 slot = shared_hash_find_slot_noinsert (set->vars, dv);
3734 if (!slot)
3736 gcc_assert (dv_is_decl_p (var->dv));
3737 /* The canonical value was reset and dropped.
3738 Remove it. */
3739 clobber_variable_part (set, NULL, var->dv, 0, NULL);
3740 return 1;
3742 var = *slot;
3743 gcc_assert (dv_is_value_p (var->dv));
3744 if (var->n_var_parts == 0)
3745 return 1;
3746 gcc_assert (var->n_var_parts == 1);
3747 goto restart;
3750 VALUE_RECURSED_INTO (val) = false;
3752 return 1;
3755 /* Push values to the canonical one. */
3756 cdv = dv_from_value (cval);
3757 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3759 for (node = var->var_part[0].loc_chain; node; node = node->next)
3760 if (node->loc != cval)
3762 cslot = set_slot_part (set, node->loc, cslot, cdv, 0,
3763 node->init, NULL_RTX);
3764 if (GET_CODE (node->loc) == VALUE)
3766 decl_or_value ndv = dv_from_value (node->loc);
3768 set_variable_part (set, cval, ndv, 0, node->init, NULL_RTX,
3769 NO_INSERT);
3771 if (canon_value_cmp (node->loc, val))
3773 /* If it could have been a local minimum, it's not any more,
3774 since it's now neighbor to cval, so it may have to push
3775 to it. Conversely, if it wouldn't have prevailed over
3776 val, then whatever mark it has is fine: if it was to
3777 push, it will now push to a more canonical node, but if
3778 it wasn't, then it has already pushed any values it might
3779 have to. */
3780 VALUE_RECURSED_INTO (node->loc) = true;
3781 /* Make sure we visit node->loc by ensuring we cval is
3782 visited too. */
3783 VALUE_RECURSED_INTO (cval) = true;
3785 else if (!VALUE_RECURSED_INTO (node->loc))
3786 /* If we have no need to "recurse" into this node, it's
3787 already "canonicalized", so drop the link to the old
3788 parent. */
3789 clobber_variable_part (set, cval, ndv, 0, NULL);
3791 else if (GET_CODE (node->loc) == REG)
3793 attrs list = set->regs[REGNO (node->loc)], *listp;
3795 /* Change an existing attribute referring to dv so that it
3796 refers to cdv, removing any duplicate this might
3797 introduce, and checking that no previous duplicates
3798 existed, all in a single pass. */
3800 while (list)
3802 if (list->offset == 0
3803 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3804 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3805 break;
3807 list = list->next;
3810 gcc_assert (list);
3811 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3813 list->dv = cdv;
3814 for (listp = &list->next; (list = *listp); listp = &list->next)
3816 if (list->offset)
3817 continue;
3819 if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3821 *listp = list->next;
3822 pool_free (attrs_pool, list);
3823 list = *listp;
3824 break;
3827 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (dv));
3830 else if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3832 for (listp = &list->next; (list = *listp); listp = &list->next)
3834 if (list->offset)
3835 continue;
3837 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3839 *listp = list->next;
3840 pool_free (attrs_pool, list);
3841 list = *listp;
3842 break;
3845 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (cdv));
3848 else
3849 gcc_unreachable ();
3851 #if ENABLE_CHECKING
3852 while (list)
3854 if (list->offset == 0
3855 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3856 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3857 gcc_unreachable ();
3859 list = list->next;
3861 #endif
3865 if (val)
3866 set_slot_part (set, val, cslot, cdv, 0,
3867 VAR_INIT_STATUS_INITIALIZED, NULL_RTX);
3869 slot = clobber_slot_part (set, cval, slot, 0, NULL);
3871 /* Variable may have been unshared. */
3872 var = *slot;
3873 gcc_checking_assert (var->n_var_parts && var->var_part[0].loc_chain->loc == cval
3874 && var->var_part[0].loc_chain->next == NULL);
3876 if (VALUE_RECURSED_INTO (cval))
3877 goto restart_with_cval;
3879 return 1;
3882 /* Bind one-part variables to the canonical value in an equivalence
3883 set. Not doing this causes dataflow convergence failure in rare
3884 circumstances, see PR42873. Unfortunately we can't do this
3885 efficiently as part of canonicalize_values_star, since we may not
3886 have determined or even seen the canonical value of a set when we
3887 get to a variable that references another member of the set. */
3890 canonicalize_vars_star (variable_def **slot, dataflow_set *set)
3892 variable var = *slot;
3893 decl_or_value dv = var->dv;
3894 location_chain node;
3895 rtx cval;
3896 decl_or_value cdv;
3897 variable_def **cslot;
3898 variable cvar;
3899 location_chain cnode;
3901 if (!var->onepart || var->onepart == ONEPART_VALUE)
3902 return 1;
3904 gcc_assert (var->n_var_parts == 1);
3906 node = var->var_part[0].loc_chain;
3908 if (GET_CODE (node->loc) != VALUE)
3909 return 1;
3911 gcc_assert (!node->next);
3912 cval = node->loc;
3914 /* Push values to the canonical one. */
3915 cdv = dv_from_value (cval);
3916 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3917 if (!cslot)
3918 return 1;
3919 cvar = *cslot;
3920 gcc_assert (cvar->n_var_parts == 1);
3922 cnode = cvar->var_part[0].loc_chain;
3924 /* CVAL is canonical if its value list contains non-VALUEs or VALUEs
3925 that are not “more canonical” than it. */
3926 if (GET_CODE (cnode->loc) != VALUE
3927 || !canon_value_cmp (cnode->loc, cval))
3928 return 1;
3930 /* CVAL was found to be non-canonical. Change the variable to point
3931 to the canonical VALUE. */
3932 gcc_assert (!cnode->next);
3933 cval = cnode->loc;
3935 slot = set_slot_part (set, cval, slot, dv, 0,
3936 node->init, node->set_src);
3937 clobber_slot_part (set, cval, slot, 0, node->set_src);
3939 return 1;
3942 /* Combine variable or value in *S1SLOT (in DSM->cur) with the
3943 corresponding entry in DSM->src. Multi-part variables are combined
3944 with variable_union, whereas onepart dvs are combined with
3945 intersection. */
3947 static int
3948 variable_merge_over_cur (variable s1var, struct dfset_merge *dsm)
3950 dataflow_set *dst = dsm->dst;
3951 variable_def **dstslot;
3952 variable s2var, dvar = NULL;
3953 decl_or_value dv = s1var->dv;
3954 onepart_enum_t onepart = s1var->onepart;
3955 rtx val;
3956 hashval_t dvhash;
3957 location_chain node, *nodep;
3959 /* If the incoming onepart variable has an empty location list, then
3960 the intersection will be just as empty. For other variables,
3961 it's always union. */
3962 gcc_checking_assert (s1var->n_var_parts
3963 && s1var->var_part[0].loc_chain);
3965 if (!onepart)
3966 return variable_union (s1var, dst);
3968 gcc_checking_assert (s1var->n_var_parts == 1);
3970 dvhash = dv_htab_hash (dv);
3971 if (dv_is_value_p (dv))
3972 val = dv_as_value (dv);
3973 else
3974 val = NULL;
3976 s2var = shared_hash_find_1 (dsm->src->vars, dv, dvhash);
3977 if (!s2var)
3979 dst_can_be_shared = false;
3980 return 1;
3983 dsm->src_onepart_cnt--;
3984 gcc_assert (s2var->var_part[0].loc_chain
3985 && s2var->onepart == onepart
3986 && s2var->n_var_parts == 1);
3988 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
3989 if (dstslot)
3991 dvar = *dstslot;
3992 gcc_assert (dvar->refcount == 1
3993 && dvar->onepart == onepart
3994 && dvar->n_var_parts == 1);
3995 nodep = &dvar->var_part[0].loc_chain;
3997 else
3999 nodep = &node;
4000 node = NULL;
4003 if (!dstslot && !onepart_variable_different_p (s1var, s2var))
4005 dstslot = shared_hash_find_slot_unshare_1 (&dst->vars, dv,
4006 dvhash, INSERT);
4007 *dstslot = dvar = s2var;
4008 dvar->refcount++;
4010 else
4012 dst_can_be_shared = false;
4014 intersect_loc_chains (val, nodep, dsm,
4015 s1var->var_part[0].loc_chain, s2var);
4017 if (!dstslot)
4019 if (node)
4021 dvar = (variable) pool_alloc (onepart_pool (onepart));
4022 dvar->dv = dv;
4023 dvar->refcount = 1;
4024 dvar->n_var_parts = 1;
4025 dvar->onepart = onepart;
4026 dvar->in_changed_variables = false;
4027 dvar->var_part[0].loc_chain = node;
4028 dvar->var_part[0].cur_loc = NULL;
4029 if (onepart)
4030 VAR_LOC_1PAUX (dvar) = NULL;
4031 else
4032 VAR_PART_OFFSET (dvar, 0) = 0;
4034 dstslot
4035 = shared_hash_find_slot_unshare_1 (&dst->vars, dv, dvhash,
4036 INSERT);
4037 gcc_assert (!*dstslot);
4038 *dstslot = dvar;
4040 else
4041 return 1;
4045 nodep = &dvar->var_part[0].loc_chain;
4046 while ((node = *nodep))
4048 location_chain *nextp = &node->next;
4050 if (GET_CODE (node->loc) == REG)
4052 attrs list;
4054 for (list = dst->regs[REGNO (node->loc)]; list; list = list->next)
4055 if (GET_MODE (node->loc) == GET_MODE (list->loc)
4056 && dv_is_value_p (list->dv))
4057 break;
4059 if (!list)
4060 attrs_list_insert (&dst->regs[REGNO (node->loc)],
4061 dv, 0, node->loc);
4062 /* If this value became canonical for another value that had
4063 this register, we want to leave it alone. */
4064 else if (dv_as_value (list->dv) != val)
4066 dstslot = set_slot_part (dst, dv_as_value (list->dv),
4067 dstslot, dv, 0,
4068 node->init, NULL_RTX);
4069 dstslot = delete_slot_part (dst, node->loc, dstslot, 0);
4071 /* Since nextp points into the removed node, we can't
4072 use it. The pointer to the next node moved to nodep.
4073 However, if the variable we're walking is unshared
4074 during our walk, we'll keep walking the location list
4075 of the previously-shared variable, in which case the
4076 node won't have been removed, and we'll want to skip
4077 it. That's why we test *nodep here. */
4078 if (*nodep != node)
4079 nextp = nodep;
4082 else
4083 /* Canonicalization puts registers first, so we don't have to
4084 walk it all. */
4085 break;
4086 nodep = nextp;
4089 if (dvar != *dstslot)
4090 dvar = *dstslot;
4091 nodep = &dvar->var_part[0].loc_chain;
4093 if (val)
4095 /* Mark all referenced nodes for canonicalization, and make sure
4096 we have mutual equivalence links. */
4097 VALUE_RECURSED_INTO (val) = true;
4098 for (node = *nodep; node; node = node->next)
4099 if (GET_CODE (node->loc) == VALUE)
4101 VALUE_RECURSED_INTO (node->loc) = true;
4102 set_variable_part (dst, val, dv_from_value (node->loc), 0,
4103 node->init, NULL, INSERT);
4106 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4107 gcc_assert (*dstslot == dvar);
4108 canonicalize_values_star (dstslot, dst);
4109 gcc_checking_assert (dstslot
4110 == shared_hash_find_slot_noinsert_1 (dst->vars,
4111 dv, dvhash));
4112 dvar = *dstslot;
4114 else
4116 bool has_value = false, has_other = false;
4118 /* If we have one value and anything else, we're going to
4119 canonicalize this, so make sure all values have an entry in
4120 the table and are marked for canonicalization. */
4121 for (node = *nodep; node; node = node->next)
4123 if (GET_CODE (node->loc) == VALUE)
4125 /* If this was marked during register canonicalization,
4126 we know we have to canonicalize values. */
4127 if (has_value)
4128 has_other = true;
4129 has_value = true;
4130 if (has_other)
4131 break;
4133 else
4135 has_other = true;
4136 if (has_value)
4137 break;
4141 if (has_value && has_other)
4143 for (node = *nodep; node; node = node->next)
4145 if (GET_CODE (node->loc) == VALUE)
4147 decl_or_value dv = dv_from_value (node->loc);
4148 variable_def **slot = NULL;
4150 if (shared_hash_shared (dst->vars))
4151 slot = shared_hash_find_slot_noinsert (dst->vars, dv);
4152 if (!slot)
4153 slot = shared_hash_find_slot_unshare (&dst->vars, dv,
4154 INSERT);
4155 if (!*slot)
4157 variable var = (variable) pool_alloc (onepart_pool
4158 (ONEPART_VALUE));
4159 var->dv = dv;
4160 var->refcount = 1;
4161 var->n_var_parts = 1;
4162 var->onepart = ONEPART_VALUE;
4163 var->in_changed_variables = false;
4164 var->var_part[0].loc_chain = NULL;
4165 var->var_part[0].cur_loc = NULL;
4166 VAR_LOC_1PAUX (var) = NULL;
4167 *slot = var;
4170 VALUE_RECURSED_INTO (node->loc) = true;
4174 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4175 gcc_assert (*dstslot == dvar);
4176 canonicalize_values_star (dstslot, dst);
4177 gcc_checking_assert (dstslot
4178 == shared_hash_find_slot_noinsert_1 (dst->vars,
4179 dv, dvhash));
4180 dvar = *dstslot;
4184 if (!onepart_variable_different_p (dvar, s2var))
4186 variable_htab_free (dvar);
4187 *dstslot = dvar = s2var;
4188 dvar->refcount++;
4190 else if (s2var != s1var && !onepart_variable_different_p (dvar, s1var))
4192 variable_htab_free (dvar);
4193 *dstslot = dvar = s1var;
4194 dvar->refcount++;
4195 dst_can_be_shared = false;
4197 else
4198 dst_can_be_shared = false;
4200 return 1;
4203 /* Copy s2slot (in DSM->src) to DSM->dst if the variable is a
4204 multi-part variable. Unions of multi-part variables and
4205 intersections of one-part ones will be handled in
4206 variable_merge_over_cur(). */
4208 static int
4209 variable_merge_over_src (variable s2var, struct dfset_merge *dsm)
4211 dataflow_set *dst = dsm->dst;
4212 decl_or_value dv = s2var->dv;
4214 if (!s2var->onepart)
4216 variable_def **dstp = shared_hash_find_slot (dst->vars, dv);
4217 *dstp = s2var;
4218 s2var->refcount++;
4219 return 1;
4222 dsm->src_onepart_cnt++;
4223 return 1;
4226 /* Combine dataflow set information from SRC2 into DST, using PDST
4227 to carry over information across passes. */
4229 static void
4230 dataflow_set_merge (dataflow_set *dst, dataflow_set *src2)
4232 dataflow_set cur = *dst;
4233 dataflow_set *src1 = &cur;
4234 struct dfset_merge dsm;
4235 int i;
4236 size_t src1_elems, src2_elems;
4237 variable_iterator_type hi;
4238 variable var;
4240 src1_elems = shared_hash_htab (src1->vars)->elements ();
4241 src2_elems = shared_hash_htab (src2->vars)->elements ();
4242 dataflow_set_init (dst);
4243 dst->stack_adjust = cur.stack_adjust;
4244 shared_hash_destroy (dst->vars);
4245 dst->vars = (shared_hash) pool_alloc (shared_hash_pool);
4246 dst->vars->refcount = 1;
4247 dst->vars->htab = new variable_table_type (MAX (src1_elems, src2_elems));
4249 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4250 attrs_list_mpdv_union (&dst->regs[i], src1->regs[i], src2->regs[i]);
4252 dsm.dst = dst;
4253 dsm.src = src2;
4254 dsm.cur = src1;
4255 dsm.src_onepart_cnt = 0;
4257 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (dsm.src->vars),
4258 var, variable, hi)
4259 variable_merge_over_src (var, &dsm);
4260 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (dsm.cur->vars),
4261 var, variable, hi)
4262 variable_merge_over_cur (var, &dsm);
4264 if (dsm.src_onepart_cnt)
4265 dst_can_be_shared = false;
4267 dataflow_set_destroy (src1);
4270 /* Mark register equivalences. */
4272 static void
4273 dataflow_set_equiv_regs (dataflow_set *set)
4275 int i;
4276 attrs list, *listp;
4278 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4280 rtx canon[NUM_MACHINE_MODES];
4282 /* If the list is empty or one entry, no need to canonicalize
4283 anything. */
4284 if (set->regs[i] == NULL || set->regs[i]->next == NULL)
4285 continue;
4287 memset (canon, 0, sizeof (canon));
4289 for (list = set->regs[i]; list; list = list->next)
4290 if (list->offset == 0 && dv_is_value_p (list->dv))
4292 rtx val = dv_as_value (list->dv);
4293 rtx *cvalp = &canon[(int)GET_MODE (val)];
4294 rtx cval = *cvalp;
4296 if (canon_value_cmp (val, cval))
4297 *cvalp = val;
4300 for (list = set->regs[i]; list; list = list->next)
4301 if (list->offset == 0 && dv_onepart_p (list->dv))
4303 rtx cval = canon[(int)GET_MODE (list->loc)];
4305 if (!cval)
4306 continue;
4308 if (dv_is_value_p (list->dv))
4310 rtx val = dv_as_value (list->dv);
4312 if (val == cval)
4313 continue;
4315 VALUE_RECURSED_INTO (val) = true;
4316 set_variable_part (set, val, dv_from_value (cval), 0,
4317 VAR_INIT_STATUS_INITIALIZED,
4318 NULL, NO_INSERT);
4321 VALUE_RECURSED_INTO (cval) = true;
4322 set_variable_part (set, cval, list->dv, 0,
4323 VAR_INIT_STATUS_INITIALIZED, NULL, NO_INSERT);
4326 for (listp = &set->regs[i]; (list = *listp);
4327 listp = list ? &list->next : listp)
4328 if (list->offset == 0 && dv_onepart_p (list->dv))
4330 rtx cval = canon[(int)GET_MODE (list->loc)];
4331 variable_def **slot;
4333 if (!cval)
4334 continue;
4336 if (dv_is_value_p (list->dv))
4338 rtx val = dv_as_value (list->dv);
4339 if (!VALUE_RECURSED_INTO (val))
4340 continue;
4343 slot = shared_hash_find_slot_noinsert (set->vars, list->dv);
4344 canonicalize_values_star (slot, set);
4345 if (*listp != list)
4346 list = NULL;
4351 /* Remove any redundant values in the location list of VAR, which must
4352 be unshared and 1-part. */
4354 static void
4355 remove_duplicate_values (variable var)
4357 location_chain node, *nodep;
4359 gcc_assert (var->onepart);
4360 gcc_assert (var->n_var_parts == 1);
4361 gcc_assert (var->refcount == 1);
4363 for (nodep = &var->var_part[0].loc_chain; (node = *nodep); )
4365 if (GET_CODE (node->loc) == VALUE)
4367 if (VALUE_RECURSED_INTO (node->loc))
4369 /* Remove duplicate value node. */
4370 *nodep = node->next;
4371 pool_free (loc_chain_pool, node);
4372 continue;
4374 else
4375 VALUE_RECURSED_INTO (node->loc) = true;
4377 nodep = &node->next;
4380 for (node = var->var_part[0].loc_chain; node; node = node->next)
4381 if (GET_CODE (node->loc) == VALUE)
4383 gcc_assert (VALUE_RECURSED_INTO (node->loc));
4384 VALUE_RECURSED_INTO (node->loc) = false;
4389 /* Hash table iteration argument passed to variable_post_merge. */
4390 struct dfset_post_merge
4392 /* The new input set for the current block. */
4393 dataflow_set *set;
4394 /* Pointer to the permanent input set for the current block, or
4395 NULL. */
4396 dataflow_set **permp;
4399 /* Create values for incoming expressions associated with one-part
4400 variables that don't have value numbers for them. */
4403 variable_post_merge_new_vals (variable_def **slot, dfset_post_merge *dfpm)
4405 dataflow_set *set = dfpm->set;
4406 variable var = *slot;
4407 location_chain node;
4409 if (!var->onepart || !var->n_var_parts)
4410 return 1;
4412 gcc_assert (var->n_var_parts == 1);
4414 if (dv_is_decl_p (var->dv))
4416 bool check_dupes = false;
4418 restart:
4419 for (node = var->var_part[0].loc_chain; node; node = node->next)
4421 if (GET_CODE (node->loc) == VALUE)
4422 gcc_assert (!VALUE_RECURSED_INTO (node->loc));
4423 else if (GET_CODE (node->loc) == REG)
4425 attrs att, *attp, *curp = NULL;
4427 if (var->refcount != 1)
4429 slot = unshare_variable (set, slot, var,
4430 VAR_INIT_STATUS_INITIALIZED);
4431 var = *slot;
4432 goto restart;
4435 for (attp = &set->regs[REGNO (node->loc)]; (att = *attp);
4436 attp = &att->next)
4437 if (att->offset == 0
4438 && GET_MODE (att->loc) == GET_MODE (node->loc))
4440 if (dv_is_value_p (att->dv))
4442 rtx cval = dv_as_value (att->dv);
4443 node->loc = cval;
4444 check_dupes = true;
4445 break;
4447 else if (dv_as_opaque (att->dv) == dv_as_opaque (var->dv))
4448 curp = attp;
4451 if (!curp)
4453 curp = attp;
4454 while (*curp)
4455 if ((*curp)->offset == 0
4456 && GET_MODE ((*curp)->loc) == GET_MODE (node->loc)
4457 && dv_as_opaque ((*curp)->dv) == dv_as_opaque (var->dv))
4458 break;
4459 else
4460 curp = &(*curp)->next;
4461 gcc_assert (*curp);
4464 if (!att)
4466 decl_or_value cdv;
4467 rtx cval;
4469 if (!*dfpm->permp)
4471 *dfpm->permp = XNEW (dataflow_set);
4472 dataflow_set_init (*dfpm->permp);
4475 for (att = (*dfpm->permp)->regs[REGNO (node->loc)];
4476 att; att = att->next)
4477 if (GET_MODE (att->loc) == GET_MODE (node->loc))
4479 gcc_assert (att->offset == 0
4480 && dv_is_value_p (att->dv));
4481 val_reset (set, att->dv);
4482 break;
4485 if (att)
4487 cdv = att->dv;
4488 cval = dv_as_value (cdv);
4490 else
4492 /* Create a unique value to hold this register,
4493 that ought to be found and reused in
4494 subsequent rounds. */
4495 cselib_val *v;
4496 gcc_assert (!cselib_lookup (node->loc,
4497 GET_MODE (node->loc), 0,
4498 VOIDmode));
4499 v = cselib_lookup (node->loc, GET_MODE (node->loc), 1,
4500 VOIDmode);
4501 cselib_preserve_value (v);
4502 cselib_invalidate_rtx (node->loc);
4503 cval = v->val_rtx;
4504 cdv = dv_from_value (cval);
4505 if (dump_file)
4506 fprintf (dump_file,
4507 "Created new value %u:%u for reg %i\n",
4508 v->uid, v->hash, REGNO (node->loc));
4511 var_reg_decl_set (*dfpm->permp, node->loc,
4512 VAR_INIT_STATUS_INITIALIZED,
4513 cdv, 0, NULL, INSERT);
4515 node->loc = cval;
4516 check_dupes = true;
4519 /* Remove attribute referring to the decl, which now
4520 uses the value for the register, already existing or
4521 to be added when we bring perm in. */
4522 att = *curp;
4523 *curp = att->next;
4524 pool_free (attrs_pool, att);
4528 if (check_dupes)
4529 remove_duplicate_values (var);
4532 return 1;
4535 /* Reset values in the permanent set that are not associated with the
4536 chosen expression. */
4539 variable_post_merge_perm_vals (variable_def **pslot, dfset_post_merge *dfpm)
4541 dataflow_set *set = dfpm->set;
4542 variable pvar = *pslot, var;
4543 location_chain pnode;
4544 decl_or_value dv;
4545 attrs att;
4547 gcc_assert (dv_is_value_p (pvar->dv)
4548 && pvar->n_var_parts == 1);
4549 pnode = pvar->var_part[0].loc_chain;
4550 gcc_assert (pnode
4551 && !pnode->next
4552 && REG_P (pnode->loc));
4554 dv = pvar->dv;
4556 var = shared_hash_find (set->vars, dv);
4557 if (var)
4559 /* Although variable_post_merge_new_vals may have made decls
4560 non-star-canonical, values that pre-existed in canonical form
4561 remain canonical, and newly-created values reference a single
4562 REG, so they are canonical as well. Since VAR has the
4563 location list for a VALUE, using find_loc_in_1pdv for it is
4564 fine, since VALUEs don't map back to DECLs. */
4565 if (find_loc_in_1pdv (pnode->loc, var, shared_hash_htab (set->vars)))
4566 return 1;
4567 val_reset (set, dv);
4570 for (att = set->regs[REGNO (pnode->loc)]; att; att = att->next)
4571 if (att->offset == 0
4572 && GET_MODE (att->loc) == GET_MODE (pnode->loc)
4573 && dv_is_value_p (att->dv))
4574 break;
4576 /* If there is a value associated with this register already, create
4577 an equivalence. */
4578 if (att && dv_as_value (att->dv) != dv_as_value (dv))
4580 rtx cval = dv_as_value (att->dv);
4581 set_variable_part (set, cval, dv, 0, pnode->init, NULL, INSERT);
4582 set_variable_part (set, dv_as_value (dv), att->dv, 0, pnode->init,
4583 NULL, INSERT);
4585 else if (!att)
4587 attrs_list_insert (&set->regs[REGNO (pnode->loc)],
4588 dv, 0, pnode->loc);
4589 variable_union (pvar, set);
4592 return 1;
4595 /* Just checking stuff and registering register attributes for
4596 now. */
4598 static void
4599 dataflow_post_merge_adjust (dataflow_set *set, dataflow_set **permp)
4601 struct dfset_post_merge dfpm;
4603 dfpm.set = set;
4604 dfpm.permp = permp;
4606 shared_hash_htab (set->vars)
4607 ->traverse <dfset_post_merge*, variable_post_merge_new_vals> (&dfpm);
4608 if (*permp)
4609 shared_hash_htab ((*permp)->vars)
4610 ->traverse <dfset_post_merge*, variable_post_merge_perm_vals> (&dfpm);
4611 shared_hash_htab (set->vars)
4612 ->traverse <dataflow_set *, canonicalize_values_star> (set);
4613 shared_hash_htab (set->vars)
4614 ->traverse <dataflow_set *, canonicalize_vars_star> (set);
4617 /* Return a node whose loc is a MEM that refers to EXPR in the
4618 location list of a one-part variable or value VAR, or in that of
4619 any values recursively mentioned in the location lists. */
4621 static location_chain
4622 find_mem_expr_in_1pdv (tree expr, rtx val, variable_table_type *vars)
4624 location_chain node;
4625 decl_or_value dv;
4626 variable var;
4627 location_chain where = NULL;
4629 if (!val)
4630 return NULL;
4632 gcc_assert (GET_CODE (val) == VALUE
4633 && !VALUE_RECURSED_INTO (val));
4635 dv = dv_from_value (val);
4636 var = vars->find_with_hash (dv, dv_htab_hash (dv));
4638 if (!var)
4639 return NULL;
4641 gcc_assert (var->onepart);
4643 if (!var->n_var_parts)
4644 return NULL;
4646 VALUE_RECURSED_INTO (val) = true;
4648 for (node = var->var_part[0].loc_chain; node; node = node->next)
4649 if (MEM_P (node->loc)
4650 && MEM_EXPR (node->loc) == expr
4651 && INT_MEM_OFFSET (node->loc) == 0)
4653 where = node;
4654 break;
4656 else if (GET_CODE (node->loc) == VALUE
4657 && !VALUE_RECURSED_INTO (node->loc)
4658 && (where = find_mem_expr_in_1pdv (expr, node->loc, vars)))
4659 break;
4661 VALUE_RECURSED_INTO (val) = false;
4663 return where;
4666 /* Return TRUE if the value of MEM may vary across a call. */
4668 static bool
4669 mem_dies_at_call (rtx mem)
4671 tree expr = MEM_EXPR (mem);
4672 tree decl;
4674 if (!expr)
4675 return true;
4677 decl = get_base_address (expr);
4679 if (!decl)
4680 return true;
4682 if (!DECL_P (decl))
4683 return true;
4685 return (may_be_aliased (decl)
4686 || (!TREE_READONLY (decl) && is_global_var (decl)));
4689 /* Remove all MEMs from the location list of a hash table entry for a
4690 one-part variable, except those whose MEM attributes map back to
4691 the variable itself, directly or within a VALUE. */
4694 dataflow_set_preserve_mem_locs (variable_def **slot, dataflow_set *set)
4696 variable var = *slot;
4698 if (var->onepart == ONEPART_VDECL || var->onepart == ONEPART_DEXPR)
4700 tree decl = dv_as_decl (var->dv);
4701 location_chain loc, *locp;
4702 bool changed = false;
4704 if (!var->n_var_parts)
4705 return 1;
4707 gcc_assert (var->n_var_parts == 1);
4709 if (shared_var_p (var, set->vars))
4711 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4713 /* We want to remove dying MEMs that doesn't refer to DECL. */
4714 if (GET_CODE (loc->loc) == MEM
4715 && (MEM_EXPR (loc->loc) != decl
4716 || INT_MEM_OFFSET (loc->loc) != 0)
4717 && !mem_dies_at_call (loc->loc))
4718 break;
4719 /* We want to move here MEMs that do refer to DECL. */
4720 else if (GET_CODE (loc->loc) == VALUE
4721 && find_mem_expr_in_1pdv (decl, loc->loc,
4722 shared_hash_htab (set->vars)))
4723 break;
4726 if (!loc)
4727 return 1;
4729 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4730 var = *slot;
4731 gcc_assert (var->n_var_parts == 1);
4734 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4735 loc; loc = *locp)
4737 rtx old_loc = loc->loc;
4738 if (GET_CODE (old_loc) == VALUE)
4740 location_chain mem_node
4741 = find_mem_expr_in_1pdv (decl, loc->loc,
4742 shared_hash_htab (set->vars));
4744 /* ??? This picks up only one out of multiple MEMs that
4745 refer to the same variable. Do we ever need to be
4746 concerned about dealing with more than one, or, given
4747 that they should all map to the same variable
4748 location, their addresses will have been merged and
4749 they will be regarded as equivalent? */
4750 if (mem_node)
4752 loc->loc = mem_node->loc;
4753 loc->set_src = mem_node->set_src;
4754 loc->init = MIN (loc->init, mem_node->init);
4758 if (GET_CODE (loc->loc) != MEM
4759 || (MEM_EXPR (loc->loc) == decl
4760 && INT_MEM_OFFSET (loc->loc) == 0)
4761 || !mem_dies_at_call (loc->loc))
4763 if (old_loc != loc->loc && emit_notes)
4765 if (old_loc == var->var_part[0].cur_loc)
4767 changed = true;
4768 var->var_part[0].cur_loc = NULL;
4771 locp = &loc->next;
4772 continue;
4775 if (emit_notes)
4777 if (old_loc == var->var_part[0].cur_loc)
4779 changed = true;
4780 var->var_part[0].cur_loc = NULL;
4783 *locp = loc->next;
4784 pool_free (loc_chain_pool, loc);
4787 if (!var->var_part[0].loc_chain)
4789 var->n_var_parts--;
4790 changed = true;
4792 if (changed)
4793 variable_was_changed (var, set);
4796 return 1;
4799 /* Remove all MEMs from the location list of a hash table entry for a
4800 value. */
4803 dataflow_set_remove_mem_locs (variable_def **slot, dataflow_set *set)
4805 variable var = *slot;
4807 if (var->onepart == ONEPART_VALUE)
4809 location_chain loc, *locp;
4810 bool changed = false;
4811 rtx cur_loc;
4813 gcc_assert (var->n_var_parts == 1);
4815 if (shared_var_p (var, set->vars))
4817 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4818 if (GET_CODE (loc->loc) == MEM
4819 && mem_dies_at_call (loc->loc))
4820 break;
4822 if (!loc)
4823 return 1;
4825 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4826 var = *slot;
4827 gcc_assert (var->n_var_parts == 1);
4830 if (VAR_LOC_1PAUX (var))
4831 cur_loc = VAR_LOC_FROM (var);
4832 else
4833 cur_loc = var->var_part[0].cur_loc;
4835 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4836 loc; loc = *locp)
4838 if (GET_CODE (loc->loc) != MEM
4839 || !mem_dies_at_call (loc->loc))
4841 locp = &loc->next;
4842 continue;
4845 *locp = loc->next;
4846 /* If we have deleted the location which was last emitted
4847 we have to emit new location so add the variable to set
4848 of changed variables. */
4849 if (cur_loc == loc->loc)
4851 changed = true;
4852 var->var_part[0].cur_loc = NULL;
4853 if (VAR_LOC_1PAUX (var))
4854 VAR_LOC_FROM (var) = NULL;
4856 pool_free (loc_chain_pool, loc);
4859 if (!var->var_part[0].loc_chain)
4861 var->n_var_parts--;
4862 changed = true;
4864 if (changed)
4865 variable_was_changed (var, set);
4868 return 1;
4871 /* Remove all variable-location information about call-clobbered
4872 registers, as well as associations between MEMs and VALUEs. */
4874 static void
4875 dataflow_set_clear_at_call (dataflow_set *set)
4877 unsigned int r;
4878 hard_reg_set_iterator hrsi;
4880 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, r, hrsi)
4881 var_regno_delete (set, r);
4883 if (MAY_HAVE_DEBUG_INSNS)
4885 set->traversed_vars = set->vars;
4886 shared_hash_htab (set->vars)
4887 ->traverse <dataflow_set *, dataflow_set_preserve_mem_locs> (set);
4888 set->traversed_vars = set->vars;
4889 shared_hash_htab (set->vars)
4890 ->traverse <dataflow_set *, dataflow_set_remove_mem_locs> (set);
4891 set->traversed_vars = NULL;
4895 static bool
4896 variable_part_different_p (variable_part *vp1, variable_part *vp2)
4898 location_chain lc1, lc2;
4900 for (lc1 = vp1->loc_chain; lc1; lc1 = lc1->next)
4902 for (lc2 = vp2->loc_chain; lc2; lc2 = lc2->next)
4904 if (REG_P (lc1->loc) && REG_P (lc2->loc))
4906 if (REGNO (lc1->loc) == REGNO (lc2->loc))
4907 break;
4909 if (rtx_equal_p (lc1->loc, lc2->loc))
4910 break;
4912 if (!lc2)
4913 return true;
4915 return false;
4918 /* Return true if one-part variables VAR1 and VAR2 are different.
4919 They must be in canonical order. */
4921 static bool
4922 onepart_variable_different_p (variable var1, variable var2)
4924 location_chain lc1, lc2;
4926 if (var1 == var2)
4927 return false;
4929 gcc_assert (var1->n_var_parts == 1
4930 && var2->n_var_parts == 1);
4932 lc1 = var1->var_part[0].loc_chain;
4933 lc2 = var2->var_part[0].loc_chain;
4935 gcc_assert (lc1 && lc2);
4937 while (lc1 && lc2)
4939 if (loc_cmp (lc1->loc, lc2->loc))
4940 return true;
4941 lc1 = lc1->next;
4942 lc2 = lc2->next;
4945 return lc1 != lc2;
4948 /* Return true if variables VAR1 and VAR2 are different. */
4950 static bool
4951 variable_different_p (variable var1, variable var2)
4953 int i;
4955 if (var1 == var2)
4956 return false;
4958 if (var1->onepart != var2->onepart)
4959 return true;
4961 if (var1->n_var_parts != var2->n_var_parts)
4962 return true;
4964 if (var1->onepart && var1->n_var_parts)
4966 gcc_checking_assert (dv_as_opaque (var1->dv) == dv_as_opaque (var2->dv)
4967 && var1->n_var_parts == 1);
4968 /* One-part values have locations in a canonical order. */
4969 return onepart_variable_different_p (var1, var2);
4972 for (i = 0; i < var1->n_var_parts; i++)
4974 if (VAR_PART_OFFSET (var1, i) != VAR_PART_OFFSET (var2, i))
4975 return true;
4976 if (variable_part_different_p (&var1->var_part[i], &var2->var_part[i]))
4977 return true;
4978 if (variable_part_different_p (&var2->var_part[i], &var1->var_part[i]))
4979 return true;
4981 return false;
4984 /* Return true if dataflow sets OLD_SET and NEW_SET differ. */
4986 static bool
4987 dataflow_set_different (dataflow_set *old_set, dataflow_set *new_set)
4989 variable_iterator_type hi;
4990 variable var1;
4992 if (old_set->vars == new_set->vars)
4993 return false;
4995 if (shared_hash_htab (old_set->vars)->elements ()
4996 != shared_hash_htab (new_set->vars)->elements ())
4997 return true;
4999 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (old_set->vars),
5000 var1, variable, hi)
5002 variable_table_type *htab = shared_hash_htab (new_set->vars);
5003 variable var2 = htab->find_with_hash (var1->dv, dv_htab_hash (var1->dv));
5004 if (!var2)
5006 if (dump_file && (dump_flags & TDF_DETAILS))
5008 fprintf (dump_file, "dataflow difference found: removal of:\n");
5009 dump_var (var1);
5011 return true;
5014 if (variable_different_p (var1, var2))
5016 if (dump_file && (dump_flags & TDF_DETAILS))
5018 fprintf (dump_file, "dataflow difference found: "
5019 "old and new follow:\n");
5020 dump_var (var1);
5021 dump_var (var2);
5023 return true;
5027 /* No need to traverse the second hashtab, if both have the same number
5028 of elements and the second one had all entries found in the first one,
5029 then it can't have any extra entries. */
5030 return false;
5033 /* Free the contents of dataflow set SET. */
5035 static void
5036 dataflow_set_destroy (dataflow_set *set)
5038 int i;
5040 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5041 attrs_list_clear (&set->regs[i]);
5043 shared_hash_destroy (set->vars);
5044 set->vars = NULL;
5047 /* Return true if RTL X contains a SYMBOL_REF. */
5049 static bool
5050 contains_symbol_ref (rtx x)
5052 const char *fmt;
5053 RTX_CODE code;
5054 int i;
5056 if (!x)
5057 return false;
5059 code = GET_CODE (x);
5060 if (code == SYMBOL_REF)
5061 return true;
5063 fmt = GET_RTX_FORMAT (code);
5064 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5066 if (fmt[i] == 'e')
5068 if (contains_symbol_ref (XEXP (x, i)))
5069 return true;
5071 else if (fmt[i] == 'E')
5073 int j;
5074 for (j = 0; j < XVECLEN (x, i); j++)
5075 if (contains_symbol_ref (XVECEXP (x, i, j)))
5076 return true;
5080 return false;
5083 /* Shall EXPR be tracked? */
5085 static bool
5086 track_expr_p (tree expr, bool need_rtl)
5088 rtx decl_rtl;
5089 tree realdecl;
5091 if (TREE_CODE (expr) == DEBUG_EXPR_DECL)
5092 return DECL_RTL_SET_P (expr);
5094 /* If EXPR is not a parameter or a variable do not track it. */
5095 if (TREE_CODE (expr) != VAR_DECL && TREE_CODE (expr) != PARM_DECL)
5096 return 0;
5098 /* It also must have a name... */
5099 if (!DECL_NAME (expr) && need_rtl)
5100 return 0;
5102 /* ... and a RTL assigned to it. */
5103 decl_rtl = DECL_RTL_IF_SET (expr);
5104 if (!decl_rtl && need_rtl)
5105 return 0;
5107 /* If this expression is really a debug alias of some other declaration, we
5108 don't need to track this expression if the ultimate declaration is
5109 ignored. */
5110 realdecl = expr;
5111 if (TREE_CODE (realdecl) == VAR_DECL && DECL_HAS_DEBUG_EXPR_P (realdecl))
5113 realdecl = DECL_DEBUG_EXPR (realdecl);
5114 if (!DECL_P (realdecl))
5116 if (handled_component_p (realdecl)
5117 || (TREE_CODE (realdecl) == MEM_REF
5118 && TREE_CODE (TREE_OPERAND (realdecl, 0)) == ADDR_EXPR))
5120 HOST_WIDE_INT bitsize, bitpos, maxsize;
5121 tree innerdecl
5122 = get_ref_base_and_extent (realdecl, &bitpos, &bitsize,
5123 &maxsize);
5124 if (!DECL_P (innerdecl)
5125 || DECL_IGNORED_P (innerdecl)
5126 /* Do not track declarations for parts of tracked parameters
5127 since we want to track them as a whole instead. */
5128 || (TREE_CODE (innerdecl) == PARM_DECL
5129 && DECL_MODE (innerdecl) != BLKmode
5130 && TREE_CODE (TREE_TYPE (innerdecl)) != UNION_TYPE)
5131 || TREE_STATIC (innerdecl)
5132 || bitsize <= 0
5133 || bitpos + bitsize > 256
5134 || bitsize != maxsize)
5135 return 0;
5136 else
5137 realdecl = expr;
5139 else
5140 return 0;
5144 /* Do not track EXPR if REALDECL it should be ignored for debugging
5145 purposes. */
5146 if (DECL_IGNORED_P (realdecl))
5147 return 0;
5149 /* Do not track global variables until we are able to emit correct location
5150 list for them. */
5151 if (TREE_STATIC (realdecl))
5152 return 0;
5154 /* When the EXPR is a DECL for alias of some variable (see example)
5155 the TREE_STATIC flag is not used. Disable tracking all DECLs whose
5156 DECL_RTL contains SYMBOL_REF.
5158 Example:
5159 extern char **_dl_argv_internal __attribute__ ((alias ("_dl_argv")));
5160 char **_dl_argv;
5162 if (decl_rtl && MEM_P (decl_rtl)
5163 && contains_symbol_ref (XEXP (decl_rtl, 0)))
5164 return 0;
5166 /* If RTX is a memory it should not be very large (because it would be
5167 an array or struct). */
5168 if (decl_rtl && MEM_P (decl_rtl))
5170 /* Do not track structures and arrays. */
5171 if (GET_MODE (decl_rtl) == BLKmode
5172 || AGGREGATE_TYPE_P (TREE_TYPE (realdecl)))
5173 return 0;
5174 if (MEM_SIZE_KNOWN_P (decl_rtl)
5175 && MEM_SIZE (decl_rtl) > MAX_VAR_PARTS)
5176 return 0;
5179 DECL_CHANGED (expr) = 0;
5180 DECL_CHANGED (realdecl) = 0;
5181 return 1;
5184 /* Determine whether a given LOC refers to the same variable part as
5185 EXPR+OFFSET. */
5187 static bool
5188 same_variable_part_p (rtx loc, tree expr, HOST_WIDE_INT offset)
5190 tree expr2;
5191 HOST_WIDE_INT offset2;
5193 if (! DECL_P (expr))
5194 return false;
5196 if (REG_P (loc))
5198 expr2 = REG_EXPR (loc);
5199 offset2 = REG_OFFSET (loc);
5201 else if (MEM_P (loc))
5203 expr2 = MEM_EXPR (loc);
5204 offset2 = INT_MEM_OFFSET (loc);
5206 else
5207 return false;
5209 if (! expr2 || ! DECL_P (expr2))
5210 return false;
5212 expr = var_debug_decl (expr);
5213 expr2 = var_debug_decl (expr2);
5215 return (expr == expr2 && offset == offset2);
5218 /* LOC is a REG or MEM that we would like to track if possible.
5219 If EXPR is null, we don't know what expression LOC refers to,
5220 otherwise it refers to EXPR + OFFSET. STORE_REG_P is true if
5221 LOC is an lvalue register.
5223 Return true if EXPR is nonnull and if LOC, or some lowpart of it,
5224 is something we can track. When returning true, store the mode of
5225 the lowpart we can track in *MODE_OUT (if nonnull) and its offset
5226 from EXPR in *OFFSET_OUT (if nonnull). */
5228 static bool
5229 track_loc_p (rtx loc, tree expr, HOST_WIDE_INT offset, bool store_reg_p,
5230 machine_mode *mode_out, HOST_WIDE_INT *offset_out)
5232 machine_mode mode;
5234 if (expr == NULL || !track_expr_p (expr, true))
5235 return false;
5237 /* If REG was a paradoxical subreg, its REG_ATTRS will describe the
5238 whole subreg, but only the old inner part is really relevant. */
5239 mode = GET_MODE (loc);
5240 if (REG_P (loc) && !HARD_REGISTER_NUM_P (ORIGINAL_REGNO (loc)))
5242 machine_mode pseudo_mode;
5244 pseudo_mode = PSEUDO_REGNO_MODE (ORIGINAL_REGNO (loc));
5245 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (pseudo_mode))
5247 offset += byte_lowpart_offset (pseudo_mode, mode);
5248 mode = pseudo_mode;
5252 /* If LOC is a paradoxical lowpart of EXPR, refer to EXPR itself.
5253 Do the same if we are storing to a register and EXPR occupies
5254 the whole of register LOC; in that case, the whole of EXPR is
5255 being changed. We exclude complex modes from the second case
5256 because the real and imaginary parts are represented as separate
5257 pseudo registers, even if the whole complex value fits into one
5258 hard register. */
5259 if ((GET_MODE_SIZE (mode) > GET_MODE_SIZE (DECL_MODE (expr))
5260 || (store_reg_p
5261 && !COMPLEX_MODE_P (DECL_MODE (expr))
5262 && hard_regno_nregs[REGNO (loc)][DECL_MODE (expr)] == 1))
5263 && offset + byte_lowpart_offset (DECL_MODE (expr), mode) == 0)
5265 mode = DECL_MODE (expr);
5266 offset = 0;
5269 if (offset < 0 || offset >= MAX_VAR_PARTS)
5270 return false;
5272 if (mode_out)
5273 *mode_out = mode;
5274 if (offset_out)
5275 *offset_out = offset;
5276 return true;
5279 /* Return the MODE lowpart of LOC, or null if LOC is not something we
5280 want to track. When returning nonnull, make sure that the attributes
5281 on the returned value are updated. */
5283 static rtx
5284 var_lowpart (machine_mode mode, rtx loc)
5286 unsigned int offset, reg_offset, regno;
5288 if (GET_MODE (loc) == mode)
5289 return loc;
5291 if (!REG_P (loc) && !MEM_P (loc))
5292 return NULL;
5294 offset = byte_lowpart_offset (mode, GET_MODE (loc));
5296 if (MEM_P (loc))
5297 return adjust_address_nv (loc, mode, offset);
5299 reg_offset = subreg_lowpart_offset (mode, GET_MODE (loc));
5300 regno = REGNO (loc) + subreg_regno_offset (REGNO (loc), GET_MODE (loc),
5301 reg_offset, mode);
5302 return gen_rtx_REG_offset (loc, mode, regno, offset);
5305 /* Carry information about uses and stores while walking rtx. */
5307 struct count_use_info
5309 /* The insn where the RTX is. */
5310 rtx_insn *insn;
5312 /* The basic block where insn is. */
5313 basic_block bb;
5315 /* The array of n_sets sets in the insn, as determined by cselib. */
5316 struct cselib_set *sets;
5317 int n_sets;
5319 /* True if we're counting stores, false otherwise. */
5320 bool store_p;
5323 /* Find a VALUE corresponding to X. */
5325 static inline cselib_val *
5326 find_use_val (rtx x, machine_mode mode, struct count_use_info *cui)
5328 int i;
5330 if (cui->sets)
5332 /* This is called after uses are set up and before stores are
5333 processed by cselib, so it's safe to look up srcs, but not
5334 dsts. So we look up expressions that appear in srcs or in
5335 dest expressions, but we search the sets array for dests of
5336 stores. */
5337 if (cui->store_p)
5339 /* Some targets represent memset and memcpy patterns
5340 by (set (mem:BLK ...) (reg:[QHSD]I ...)) or
5341 (set (mem:BLK ...) (const_int ...)) or
5342 (set (mem:BLK ...) (mem:BLK ...)). Don't return anything
5343 in that case, otherwise we end up with mode mismatches. */
5344 if (mode == BLKmode && MEM_P (x))
5345 return NULL;
5346 for (i = 0; i < cui->n_sets; i++)
5347 if (cui->sets[i].dest == x)
5348 return cui->sets[i].src_elt;
5350 else
5351 return cselib_lookup (x, mode, 0, VOIDmode);
5354 return NULL;
5357 /* Replace all registers and addresses in an expression with VALUE
5358 expressions that map back to them, unless the expression is a
5359 register. If no mapping is or can be performed, returns NULL. */
5361 static rtx
5362 replace_expr_with_values (rtx loc)
5364 if (REG_P (loc) || GET_CODE (loc) == ENTRY_VALUE)
5365 return NULL;
5366 else if (MEM_P (loc))
5368 cselib_val *addr = cselib_lookup (XEXP (loc, 0),
5369 get_address_mode (loc), 0,
5370 GET_MODE (loc));
5371 if (addr)
5372 return replace_equiv_address_nv (loc, addr->val_rtx);
5373 else
5374 return NULL;
5376 else
5377 return cselib_subst_to_values (loc, VOIDmode);
5380 /* Return true if X contains a DEBUG_EXPR. */
5382 static bool
5383 rtx_debug_expr_p (const_rtx x)
5385 subrtx_iterator::array_type array;
5386 FOR_EACH_SUBRTX (iter, array, x, ALL)
5387 if (GET_CODE (*iter) == DEBUG_EXPR)
5388 return true;
5389 return false;
5392 /* Determine what kind of micro operation to choose for a USE. Return
5393 MO_CLOBBER if no micro operation is to be generated. */
5395 static enum micro_operation_type
5396 use_type (rtx loc, struct count_use_info *cui, machine_mode *modep)
5398 tree expr;
5400 if (cui && cui->sets)
5402 if (GET_CODE (loc) == VAR_LOCATION)
5404 if (track_expr_p (PAT_VAR_LOCATION_DECL (loc), false))
5406 rtx ploc = PAT_VAR_LOCATION_LOC (loc);
5407 if (! VAR_LOC_UNKNOWN_P (ploc))
5409 cselib_val *val = cselib_lookup (ploc, GET_MODE (loc), 1,
5410 VOIDmode);
5412 /* ??? flag_float_store and volatile mems are never
5413 given values, but we could in theory use them for
5414 locations. */
5415 gcc_assert (val || 1);
5417 return MO_VAL_LOC;
5419 else
5420 return MO_CLOBBER;
5423 if (REG_P (loc) || MEM_P (loc))
5425 if (modep)
5426 *modep = GET_MODE (loc);
5427 if (cui->store_p)
5429 if (REG_P (loc)
5430 || (find_use_val (loc, GET_MODE (loc), cui)
5431 && cselib_lookup (XEXP (loc, 0),
5432 get_address_mode (loc), 0,
5433 GET_MODE (loc))))
5434 return MO_VAL_SET;
5436 else
5438 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5440 if (val && !cselib_preserved_value_p (val))
5441 return MO_VAL_USE;
5446 if (REG_P (loc))
5448 gcc_assert (REGNO (loc) < FIRST_PSEUDO_REGISTER);
5450 if (loc == cfa_base_rtx)
5451 return MO_CLOBBER;
5452 expr = REG_EXPR (loc);
5454 if (!expr)
5455 return MO_USE_NO_VAR;
5456 else if (target_for_debug_bind (var_debug_decl (expr)))
5457 return MO_CLOBBER;
5458 else if (track_loc_p (loc, expr, REG_OFFSET (loc),
5459 false, modep, NULL))
5460 return MO_USE;
5461 else
5462 return MO_USE_NO_VAR;
5464 else if (MEM_P (loc))
5466 expr = MEM_EXPR (loc);
5468 if (!expr)
5469 return MO_CLOBBER;
5470 else if (target_for_debug_bind (var_debug_decl (expr)))
5471 return MO_CLOBBER;
5472 else if (track_loc_p (loc, expr, INT_MEM_OFFSET (loc),
5473 false, modep, NULL)
5474 /* Multi-part variables shouldn't refer to one-part
5475 variable names such as VALUEs (never happens) or
5476 DEBUG_EXPRs (only happens in the presence of debug
5477 insns). */
5478 && (!MAY_HAVE_DEBUG_INSNS
5479 || !rtx_debug_expr_p (XEXP (loc, 0))))
5480 return MO_USE;
5481 else
5482 return MO_CLOBBER;
5485 return MO_CLOBBER;
5488 /* Log to OUT information about micro-operation MOPT involving X in
5489 INSN of BB. */
5491 static inline void
5492 log_op_type (rtx x, basic_block bb, rtx_insn *insn,
5493 enum micro_operation_type mopt, FILE *out)
5495 fprintf (out, "bb %i op %i insn %i %s ",
5496 bb->index, VTI (bb)->mos.length (),
5497 INSN_UID (insn), micro_operation_type_name[mopt]);
5498 print_inline_rtx (out, x, 2);
5499 fputc ('\n', out);
5502 /* Tell whether the CONCAT used to holds a VALUE and its location
5503 needs value resolution, i.e., an attempt of mapping the location
5504 back to other incoming values. */
5505 #define VAL_NEEDS_RESOLUTION(x) \
5506 (RTL_FLAG_CHECK1 ("VAL_NEEDS_RESOLUTION", (x), CONCAT)->volatil)
5507 /* Whether the location in the CONCAT is a tracked expression, that
5508 should also be handled like a MO_USE. */
5509 #define VAL_HOLDS_TRACK_EXPR(x) \
5510 (RTL_FLAG_CHECK1 ("VAL_HOLDS_TRACK_EXPR", (x), CONCAT)->used)
5511 /* Whether the location in the CONCAT should be handled like a MO_COPY
5512 as well. */
5513 #define VAL_EXPR_IS_COPIED(x) \
5514 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_COPIED", (x), CONCAT)->jump)
5515 /* Whether the location in the CONCAT should be handled like a
5516 MO_CLOBBER as well. */
5517 #define VAL_EXPR_IS_CLOBBERED(x) \
5518 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_CLOBBERED", (x), CONCAT)->unchanging)
5520 /* All preserved VALUEs. */
5521 static vec<rtx> preserved_values;
5523 /* Ensure VAL is preserved and remember it in a vector for vt_emit_notes. */
5525 static void
5526 preserve_value (cselib_val *val)
5528 cselib_preserve_value (val);
5529 preserved_values.safe_push (val->val_rtx);
5532 /* Helper function for MO_VAL_LOC handling. Return non-zero if
5533 any rtxes not suitable for CONST use not replaced by VALUEs
5534 are discovered. */
5536 static bool
5537 non_suitable_const (const_rtx x)
5539 subrtx_iterator::array_type array;
5540 FOR_EACH_SUBRTX (iter, array, x, ALL)
5542 const_rtx x = *iter;
5543 switch (GET_CODE (x))
5545 case REG:
5546 case DEBUG_EXPR:
5547 case PC:
5548 case SCRATCH:
5549 case CC0:
5550 case ASM_INPUT:
5551 case ASM_OPERANDS:
5552 return true;
5553 case MEM:
5554 if (!MEM_READONLY_P (x))
5555 return true;
5556 break;
5557 default:
5558 break;
5561 return false;
5564 /* Add uses (register and memory references) LOC which will be tracked
5565 to VTI (bb)->mos. */
5567 static void
5568 add_uses (rtx loc, struct count_use_info *cui)
5570 machine_mode mode = VOIDmode;
5571 enum micro_operation_type type = use_type (loc, cui, &mode);
5573 if (type != MO_CLOBBER)
5575 basic_block bb = cui->bb;
5576 micro_operation mo;
5578 mo.type = type;
5579 mo.u.loc = type == MO_USE ? var_lowpart (mode, loc) : loc;
5580 mo.insn = cui->insn;
5582 if (type == MO_VAL_LOC)
5584 rtx oloc = loc;
5585 rtx vloc = PAT_VAR_LOCATION_LOC (oloc);
5586 cselib_val *val;
5588 gcc_assert (cui->sets);
5590 if (MEM_P (vloc)
5591 && !REG_P (XEXP (vloc, 0))
5592 && !MEM_P (XEXP (vloc, 0)))
5594 rtx mloc = vloc;
5595 machine_mode address_mode = get_address_mode (mloc);
5596 cselib_val *val
5597 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5598 GET_MODE (mloc));
5600 if (val && !cselib_preserved_value_p (val))
5601 preserve_value (val);
5604 if (CONSTANT_P (vloc)
5605 && (GET_CODE (vloc) != CONST || non_suitable_const (vloc)))
5606 /* For constants don't look up any value. */;
5607 else if (!VAR_LOC_UNKNOWN_P (vloc) && !unsuitable_loc (vloc)
5608 && (val = find_use_val (vloc, GET_MODE (oloc), cui)))
5610 machine_mode mode2;
5611 enum micro_operation_type type2;
5612 rtx nloc = NULL;
5613 bool resolvable = REG_P (vloc) || MEM_P (vloc);
5615 if (resolvable)
5616 nloc = replace_expr_with_values (vloc);
5618 if (nloc)
5620 oloc = shallow_copy_rtx (oloc);
5621 PAT_VAR_LOCATION_LOC (oloc) = nloc;
5624 oloc = gen_rtx_CONCAT (mode, val->val_rtx, oloc);
5626 type2 = use_type (vloc, 0, &mode2);
5628 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5629 || type2 == MO_CLOBBER);
5631 if (type2 == MO_CLOBBER
5632 && !cselib_preserved_value_p (val))
5634 VAL_NEEDS_RESOLUTION (oloc) = resolvable;
5635 preserve_value (val);
5638 else if (!VAR_LOC_UNKNOWN_P (vloc))
5640 oloc = shallow_copy_rtx (oloc);
5641 PAT_VAR_LOCATION_LOC (oloc) = gen_rtx_UNKNOWN_VAR_LOC ();
5644 mo.u.loc = oloc;
5646 else if (type == MO_VAL_USE)
5648 machine_mode mode2 = VOIDmode;
5649 enum micro_operation_type type2;
5650 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5651 rtx vloc, oloc = loc, nloc;
5653 gcc_assert (cui->sets);
5655 if (MEM_P (oloc)
5656 && !REG_P (XEXP (oloc, 0))
5657 && !MEM_P (XEXP (oloc, 0)))
5659 rtx mloc = oloc;
5660 machine_mode address_mode = get_address_mode (mloc);
5661 cselib_val *val
5662 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5663 GET_MODE (mloc));
5665 if (val && !cselib_preserved_value_p (val))
5666 preserve_value (val);
5669 type2 = use_type (loc, 0, &mode2);
5671 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5672 || type2 == MO_CLOBBER);
5674 if (type2 == MO_USE)
5675 vloc = var_lowpart (mode2, loc);
5676 else
5677 vloc = oloc;
5679 /* The loc of a MO_VAL_USE may have two forms:
5681 (concat val src): val is at src, a value-based
5682 representation.
5684 (concat (concat val use) src): same as above, with use as
5685 the MO_USE tracked value, if it differs from src.
5689 gcc_checking_assert (REG_P (loc) || MEM_P (loc));
5690 nloc = replace_expr_with_values (loc);
5691 if (!nloc)
5692 nloc = oloc;
5694 if (vloc != nloc)
5695 oloc = gen_rtx_CONCAT (mode2, val->val_rtx, vloc);
5696 else
5697 oloc = val->val_rtx;
5699 mo.u.loc = gen_rtx_CONCAT (mode, oloc, nloc);
5701 if (type2 == MO_USE)
5702 VAL_HOLDS_TRACK_EXPR (mo.u.loc) = 1;
5703 if (!cselib_preserved_value_p (val))
5705 VAL_NEEDS_RESOLUTION (mo.u.loc) = 1;
5706 preserve_value (val);
5709 else
5710 gcc_assert (type == MO_USE || type == MO_USE_NO_VAR);
5712 if (dump_file && (dump_flags & TDF_DETAILS))
5713 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
5714 VTI (bb)->mos.safe_push (mo);
5718 /* Helper function for finding all uses of REG/MEM in X in insn INSN. */
5720 static void
5721 add_uses_1 (rtx *x, void *cui)
5723 subrtx_var_iterator::array_type array;
5724 FOR_EACH_SUBRTX_VAR (iter, array, *x, NONCONST)
5725 add_uses (*iter, (struct count_use_info *) cui);
5728 /* This is the value used during expansion of locations. We want it
5729 to be unbounded, so that variables expanded deep in a recursion
5730 nest are fully evaluated, so that their values are cached
5731 correctly. We avoid recursion cycles through other means, and we
5732 don't unshare RTL, so excess complexity is not a problem. */
5733 #define EXPR_DEPTH (INT_MAX)
5734 /* We use this to keep too-complex expressions from being emitted as
5735 location notes, and then to debug information. Users can trade
5736 compile time for ridiculously complex expressions, although they're
5737 seldom useful, and they may often have to be discarded as not
5738 representable anyway. */
5739 #define EXPR_USE_DEPTH (PARAM_VALUE (PARAM_MAX_VARTRACK_EXPR_DEPTH))
5741 /* Attempt to reverse the EXPR operation in the debug info and record
5742 it in the cselib table. Say for reg1 = reg2 + 6 even when reg2 is
5743 no longer live we can express its value as VAL - 6. */
5745 static void
5746 reverse_op (rtx val, const_rtx expr, rtx_insn *insn)
5748 rtx src, arg, ret;
5749 cselib_val *v;
5750 struct elt_loc_list *l;
5751 enum rtx_code code;
5752 int count;
5754 if (GET_CODE (expr) != SET)
5755 return;
5757 if (!REG_P (SET_DEST (expr)) || GET_MODE (val) != GET_MODE (SET_DEST (expr)))
5758 return;
5760 src = SET_SRC (expr);
5761 switch (GET_CODE (src))
5763 case PLUS:
5764 case MINUS:
5765 case XOR:
5766 case NOT:
5767 case NEG:
5768 if (!REG_P (XEXP (src, 0)))
5769 return;
5770 break;
5771 case SIGN_EXTEND:
5772 case ZERO_EXTEND:
5773 if (!REG_P (XEXP (src, 0)) && !MEM_P (XEXP (src, 0)))
5774 return;
5775 break;
5776 default:
5777 return;
5780 if (!SCALAR_INT_MODE_P (GET_MODE (src)) || XEXP (src, 0) == cfa_base_rtx)
5781 return;
5783 v = cselib_lookup (XEXP (src, 0), GET_MODE (XEXP (src, 0)), 0, VOIDmode);
5784 if (!v || !cselib_preserved_value_p (v))
5785 return;
5787 /* Use canonical V to avoid creating multiple redundant expressions
5788 for different VALUES equivalent to V. */
5789 v = canonical_cselib_val (v);
5791 /* Adding a reverse op isn't useful if V already has an always valid
5792 location. Ignore ENTRY_VALUE, while it is always constant, we should
5793 prefer non-ENTRY_VALUE locations whenever possible. */
5794 for (l = v->locs, count = 0; l; l = l->next, count++)
5795 if (CONSTANT_P (l->loc)
5796 && (GET_CODE (l->loc) != CONST || !references_value_p (l->loc, 0)))
5797 return;
5798 /* Avoid creating too large locs lists. */
5799 else if (count == PARAM_VALUE (PARAM_MAX_VARTRACK_REVERSE_OP_SIZE))
5800 return;
5802 switch (GET_CODE (src))
5804 case NOT:
5805 case NEG:
5806 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5807 return;
5808 ret = gen_rtx_fmt_e (GET_CODE (src), GET_MODE (val), val);
5809 break;
5810 case SIGN_EXTEND:
5811 case ZERO_EXTEND:
5812 ret = gen_lowpart_SUBREG (GET_MODE (v->val_rtx), val);
5813 break;
5814 case XOR:
5815 code = XOR;
5816 goto binary;
5817 case PLUS:
5818 code = MINUS;
5819 goto binary;
5820 case MINUS:
5821 code = PLUS;
5822 goto binary;
5823 binary:
5824 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5825 return;
5826 arg = XEXP (src, 1);
5827 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5829 arg = cselib_expand_value_rtx (arg, scratch_regs, 5);
5830 if (arg == NULL_RTX)
5831 return;
5832 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5833 return;
5835 ret = simplify_gen_binary (code, GET_MODE (val), val, arg);
5836 if (ret == val)
5837 /* Ensure ret isn't VALUE itself (which can happen e.g. for
5838 (plus (reg1) (reg2)) when reg2 is known to be 0), as that
5839 breaks a lot of routines during var-tracking. */
5840 ret = gen_rtx_fmt_ee (PLUS, GET_MODE (val), val, const0_rtx);
5841 break;
5842 default:
5843 gcc_unreachable ();
5846 cselib_add_permanent_equiv (v, ret, insn);
5849 /* Add stores (register and memory references) LOC which will be tracked
5850 to VTI (bb)->mos. EXPR is the RTL expression containing the store.
5851 CUIP->insn is instruction which the LOC is part of. */
5853 static void
5854 add_stores (rtx loc, const_rtx expr, void *cuip)
5856 machine_mode mode = VOIDmode, mode2;
5857 struct count_use_info *cui = (struct count_use_info *)cuip;
5858 basic_block bb = cui->bb;
5859 micro_operation mo;
5860 rtx oloc = loc, nloc, src = NULL;
5861 enum micro_operation_type type = use_type (loc, cui, &mode);
5862 bool track_p = false;
5863 cselib_val *v;
5864 bool resolve, preserve;
5866 if (type == MO_CLOBBER)
5867 return;
5869 mode2 = mode;
5871 if (REG_P (loc))
5873 gcc_assert (loc != cfa_base_rtx);
5874 if ((GET_CODE (expr) == CLOBBER && type != MO_VAL_SET)
5875 || !(track_p = use_type (loc, NULL, &mode2) == MO_USE)
5876 || GET_CODE (expr) == CLOBBER)
5878 mo.type = MO_CLOBBER;
5879 mo.u.loc = loc;
5880 if (GET_CODE (expr) == SET
5881 && SET_DEST (expr) == loc
5882 && !unsuitable_loc (SET_SRC (expr))
5883 && find_use_val (loc, mode, cui))
5885 gcc_checking_assert (type == MO_VAL_SET);
5886 mo.u.loc = gen_rtx_SET (VOIDmode, loc, SET_SRC (expr));
5889 else
5891 if (GET_CODE (expr) == SET
5892 && SET_DEST (expr) == loc
5893 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
5894 src = var_lowpart (mode2, SET_SRC (expr));
5895 loc = var_lowpart (mode2, loc);
5897 if (src == NULL)
5899 mo.type = MO_SET;
5900 mo.u.loc = loc;
5902 else
5904 rtx xexpr = gen_rtx_SET (VOIDmode, loc, src);
5905 if (same_variable_part_p (src, REG_EXPR (loc), REG_OFFSET (loc)))
5907 /* If this is an instruction copying (part of) a parameter
5908 passed by invisible reference to its register location,
5909 pretend it's a SET so that the initial memory location
5910 is discarded, as the parameter register can be reused
5911 for other purposes and we do not track locations based
5912 on generic registers. */
5913 if (MEM_P (src)
5914 && REG_EXPR (loc)
5915 && TREE_CODE (REG_EXPR (loc)) == PARM_DECL
5916 && DECL_MODE (REG_EXPR (loc)) != BLKmode
5917 && MEM_P (DECL_INCOMING_RTL (REG_EXPR (loc)))
5918 && XEXP (DECL_INCOMING_RTL (REG_EXPR (loc)), 0)
5919 != arg_pointer_rtx)
5920 mo.type = MO_SET;
5921 else
5922 mo.type = MO_COPY;
5924 else
5925 mo.type = MO_SET;
5926 mo.u.loc = xexpr;
5929 mo.insn = cui->insn;
5931 else if (MEM_P (loc)
5932 && ((track_p = use_type (loc, NULL, &mode2) == MO_USE)
5933 || cui->sets))
5935 if (MEM_P (loc) && type == MO_VAL_SET
5936 && !REG_P (XEXP (loc, 0))
5937 && !MEM_P (XEXP (loc, 0)))
5939 rtx mloc = loc;
5940 machine_mode address_mode = get_address_mode (mloc);
5941 cselib_val *val = cselib_lookup (XEXP (mloc, 0),
5942 address_mode, 0,
5943 GET_MODE (mloc));
5945 if (val && !cselib_preserved_value_p (val))
5946 preserve_value (val);
5949 if (GET_CODE (expr) == CLOBBER || !track_p)
5951 mo.type = MO_CLOBBER;
5952 mo.u.loc = track_p ? var_lowpart (mode2, loc) : loc;
5954 else
5956 if (GET_CODE (expr) == SET
5957 && SET_DEST (expr) == loc
5958 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
5959 src = var_lowpart (mode2, SET_SRC (expr));
5960 loc = var_lowpart (mode2, loc);
5962 if (src == NULL)
5964 mo.type = MO_SET;
5965 mo.u.loc = loc;
5967 else
5969 rtx xexpr = gen_rtx_SET (VOIDmode, loc, src);
5970 if (same_variable_part_p (SET_SRC (xexpr),
5971 MEM_EXPR (loc),
5972 INT_MEM_OFFSET (loc)))
5973 mo.type = MO_COPY;
5974 else
5975 mo.type = MO_SET;
5976 mo.u.loc = xexpr;
5979 mo.insn = cui->insn;
5981 else
5982 return;
5984 if (type != MO_VAL_SET)
5985 goto log_and_return;
5987 v = find_use_val (oloc, mode, cui);
5989 if (!v)
5990 goto log_and_return;
5992 resolve = preserve = !cselib_preserved_value_p (v);
5994 /* We cannot track values for multiple-part variables, so we track only
5995 locations for tracked parameters passed either by invisible reference
5996 or directly in multiple locations. */
5997 if (track_p
5998 && REG_P (loc)
5999 && REG_EXPR (loc)
6000 && TREE_CODE (REG_EXPR (loc)) == PARM_DECL
6001 && DECL_MODE (REG_EXPR (loc)) != BLKmode
6002 && TREE_CODE (TREE_TYPE (REG_EXPR (loc))) != UNION_TYPE
6003 && ((MEM_P (DECL_INCOMING_RTL (REG_EXPR (loc)))
6004 && XEXP (DECL_INCOMING_RTL (REG_EXPR (loc)), 0) != arg_pointer_rtx)
6005 || (GET_CODE (DECL_INCOMING_RTL (REG_EXPR (loc))) == PARALLEL
6006 && XVECLEN (DECL_INCOMING_RTL (REG_EXPR (loc)), 0) > 1)))
6008 /* Although we don't use the value here, it could be used later by the
6009 mere virtue of its existence as the operand of the reverse operation
6010 that gave rise to it (typically extension/truncation). Make sure it
6011 is preserved as required by vt_expand_var_loc_chain. */
6012 if (preserve)
6013 preserve_value (v);
6014 goto log_and_return;
6017 if (loc == stack_pointer_rtx
6018 && hard_frame_pointer_adjustment != -1
6019 && preserve)
6020 cselib_set_value_sp_based (v);
6022 nloc = replace_expr_with_values (oloc);
6023 if (nloc)
6024 oloc = nloc;
6026 if (GET_CODE (PATTERN (cui->insn)) == COND_EXEC)
6028 cselib_val *oval = cselib_lookup (oloc, GET_MODE (oloc), 0, VOIDmode);
6030 if (oval == v)
6031 return;
6032 gcc_assert (REG_P (oloc) || MEM_P (oloc));
6034 if (oval && !cselib_preserved_value_p (oval))
6036 micro_operation moa;
6038 preserve_value (oval);
6040 moa.type = MO_VAL_USE;
6041 moa.u.loc = gen_rtx_CONCAT (mode, oval->val_rtx, oloc);
6042 VAL_NEEDS_RESOLUTION (moa.u.loc) = 1;
6043 moa.insn = cui->insn;
6045 if (dump_file && (dump_flags & TDF_DETAILS))
6046 log_op_type (moa.u.loc, cui->bb, cui->insn,
6047 moa.type, dump_file);
6048 VTI (bb)->mos.safe_push (moa);
6051 resolve = false;
6053 else if (resolve && GET_CODE (mo.u.loc) == SET)
6055 if (REG_P (SET_SRC (expr)) || MEM_P (SET_SRC (expr)))
6056 nloc = replace_expr_with_values (SET_SRC (expr));
6057 else
6058 nloc = NULL_RTX;
6060 /* Avoid the mode mismatch between oexpr and expr. */
6061 if (!nloc && mode != mode2)
6063 nloc = SET_SRC (expr);
6064 gcc_assert (oloc == SET_DEST (expr));
6067 if (nloc && nloc != SET_SRC (mo.u.loc))
6068 oloc = gen_rtx_SET (GET_MODE (mo.u.loc), oloc, nloc);
6069 else
6071 if (oloc == SET_DEST (mo.u.loc))
6072 /* No point in duplicating. */
6073 oloc = mo.u.loc;
6074 if (!REG_P (SET_SRC (mo.u.loc)))
6075 resolve = false;
6078 else if (!resolve)
6080 if (GET_CODE (mo.u.loc) == SET
6081 && oloc == SET_DEST (mo.u.loc))
6082 /* No point in duplicating. */
6083 oloc = mo.u.loc;
6085 else
6086 resolve = false;
6088 loc = gen_rtx_CONCAT (mode, v->val_rtx, oloc);
6090 if (mo.u.loc != oloc)
6091 loc = gen_rtx_CONCAT (GET_MODE (mo.u.loc), loc, mo.u.loc);
6093 /* The loc of a MO_VAL_SET may have various forms:
6095 (concat val dst): dst now holds val
6097 (concat val (set dst src)): dst now holds val, copied from src
6099 (concat (concat val dstv) dst): dst now holds val; dstv is dst
6100 after replacing mems and non-top-level regs with values.
6102 (concat (concat val dstv) (set dst src)): dst now holds val,
6103 copied from src. dstv is a value-based representation of dst, if
6104 it differs from dst. If resolution is needed, src is a REG, and
6105 its mode is the same as that of val.
6107 (concat (concat val (set dstv srcv)) (set dst src)): src
6108 copied to dst, holding val. dstv and srcv are value-based
6109 representations of dst and src, respectively.
6113 if (GET_CODE (PATTERN (cui->insn)) != COND_EXEC)
6114 reverse_op (v->val_rtx, expr, cui->insn);
6116 mo.u.loc = loc;
6118 if (track_p)
6119 VAL_HOLDS_TRACK_EXPR (loc) = 1;
6120 if (preserve)
6122 VAL_NEEDS_RESOLUTION (loc) = resolve;
6123 preserve_value (v);
6125 if (mo.type == MO_CLOBBER)
6126 VAL_EXPR_IS_CLOBBERED (loc) = 1;
6127 if (mo.type == MO_COPY)
6128 VAL_EXPR_IS_COPIED (loc) = 1;
6130 mo.type = MO_VAL_SET;
6132 log_and_return:
6133 if (dump_file && (dump_flags & TDF_DETAILS))
6134 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
6135 VTI (bb)->mos.safe_push (mo);
6138 /* Arguments to the call. */
6139 static rtx call_arguments;
6141 /* Compute call_arguments. */
6143 static void
6144 prepare_call_arguments (basic_block bb, rtx_insn *insn)
6146 rtx link, x, call;
6147 rtx prev, cur, next;
6148 rtx this_arg = NULL_RTX;
6149 tree type = NULL_TREE, t, fndecl = NULL_TREE;
6150 tree obj_type_ref = NULL_TREE;
6151 CUMULATIVE_ARGS args_so_far_v;
6152 cumulative_args_t args_so_far;
6154 memset (&args_so_far_v, 0, sizeof (args_so_far_v));
6155 args_so_far = pack_cumulative_args (&args_so_far_v);
6156 call = get_call_rtx_from (insn);
6157 if (call)
6159 if (GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
6161 rtx symbol = XEXP (XEXP (call, 0), 0);
6162 if (SYMBOL_REF_DECL (symbol))
6163 fndecl = SYMBOL_REF_DECL (symbol);
6165 if (fndecl == NULL_TREE)
6166 fndecl = MEM_EXPR (XEXP (call, 0));
6167 if (fndecl
6168 && TREE_CODE (TREE_TYPE (fndecl)) != FUNCTION_TYPE
6169 && TREE_CODE (TREE_TYPE (fndecl)) != METHOD_TYPE)
6170 fndecl = NULL_TREE;
6171 if (fndecl && TYPE_ARG_TYPES (TREE_TYPE (fndecl)))
6172 type = TREE_TYPE (fndecl);
6173 if (fndecl && TREE_CODE (fndecl) != FUNCTION_DECL)
6175 if (TREE_CODE (fndecl) == INDIRECT_REF
6176 && TREE_CODE (TREE_OPERAND (fndecl, 0)) == OBJ_TYPE_REF)
6177 obj_type_ref = TREE_OPERAND (fndecl, 0);
6178 fndecl = NULL_TREE;
6180 if (type)
6182 for (t = TYPE_ARG_TYPES (type); t && t != void_list_node;
6183 t = TREE_CHAIN (t))
6184 if (TREE_CODE (TREE_VALUE (t)) == REFERENCE_TYPE
6185 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_VALUE (t))))
6186 break;
6187 if ((t == NULL || t == void_list_node) && obj_type_ref == NULL_TREE)
6188 type = NULL;
6189 else
6191 int nargs ATTRIBUTE_UNUSED = list_length (TYPE_ARG_TYPES (type));
6192 link = CALL_INSN_FUNCTION_USAGE (insn);
6193 #ifndef PCC_STATIC_STRUCT_RETURN
6194 if (aggregate_value_p (TREE_TYPE (type), type)
6195 && targetm.calls.struct_value_rtx (type, 0) == 0)
6197 tree struct_addr = build_pointer_type (TREE_TYPE (type));
6198 machine_mode mode = TYPE_MODE (struct_addr);
6199 rtx reg;
6200 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
6201 nargs + 1);
6202 reg = targetm.calls.function_arg (args_so_far, mode,
6203 struct_addr, true);
6204 targetm.calls.function_arg_advance (args_so_far, mode,
6205 struct_addr, true);
6206 if (reg == NULL_RTX)
6208 for (; link; link = XEXP (link, 1))
6209 if (GET_CODE (XEXP (link, 0)) == USE
6210 && MEM_P (XEXP (XEXP (link, 0), 0)))
6212 link = XEXP (link, 1);
6213 break;
6217 else
6218 #endif
6219 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
6220 nargs);
6221 if (obj_type_ref && TYPE_ARG_TYPES (type) != void_list_node)
6223 machine_mode mode;
6224 t = TYPE_ARG_TYPES (type);
6225 mode = TYPE_MODE (TREE_VALUE (t));
6226 this_arg = targetm.calls.function_arg (args_so_far, mode,
6227 TREE_VALUE (t), true);
6228 if (this_arg && !REG_P (this_arg))
6229 this_arg = NULL_RTX;
6230 else if (this_arg == NULL_RTX)
6232 for (; link; link = XEXP (link, 1))
6233 if (GET_CODE (XEXP (link, 0)) == USE
6234 && MEM_P (XEXP (XEXP (link, 0), 0)))
6236 this_arg = XEXP (XEXP (link, 0), 0);
6237 break;
6244 t = type ? TYPE_ARG_TYPES (type) : NULL_TREE;
6246 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
6247 if (GET_CODE (XEXP (link, 0)) == USE)
6249 rtx item = NULL_RTX;
6250 x = XEXP (XEXP (link, 0), 0);
6251 if (GET_MODE (link) == VOIDmode
6252 || GET_MODE (link) == BLKmode
6253 || (GET_MODE (link) != GET_MODE (x)
6254 && ((GET_MODE_CLASS (GET_MODE (link)) != MODE_INT
6255 && GET_MODE_CLASS (GET_MODE (link)) != MODE_PARTIAL_INT)
6256 || (GET_MODE_CLASS (GET_MODE (x)) != MODE_INT
6257 && GET_MODE_CLASS (GET_MODE (x)) != MODE_PARTIAL_INT))))
6258 /* Can't do anything for these, if the original type mode
6259 isn't known or can't be converted. */;
6260 else if (REG_P (x))
6262 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6263 if (val && cselib_preserved_value_p (val))
6264 item = val->val_rtx;
6265 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
6266 || GET_MODE_CLASS (GET_MODE (x)) == MODE_PARTIAL_INT)
6268 machine_mode mode = GET_MODE (x);
6270 while ((mode = GET_MODE_WIDER_MODE (mode)) != VOIDmode
6271 && GET_MODE_BITSIZE (mode) <= BITS_PER_WORD)
6273 rtx reg = simplify_subreg (mode, x, GET_MODE (x), 0);
6275 if (reg == NULL_RTX || !REG_P (reg))
6276 continue;
6277 val = cselib_lookup (reg, mode, 0, VOIDmode);
6278 if (val && cselib_preserved_value_p (val))
6280 item = val->val_rtx;
6281 break;
6286 else if (MEM_P (x))
6288 rtx mem = x;
6289 cselib_val *val;
6291 if (!frame_pointer_needed)
6293 struct adjust_mem_data amd;
6294 amd.mem_mode = VOIDmode;
6295 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
6296 amd.side_effects = NULL;
6297 amd.store = true;
6298 mem = simplify_replace_fn_rtx (mem, NULL_RTX, adjust_mems,
6299 &amd);
6300 gcc_assert (amd.side_effects == NULL_RTX);
6302 val = cselib_lookup (mem, GET_MODE (mem), 0, VOIDmode);
6303 if (val && cselib_preserved_value_p (val))
6304 item = val->val_rtx;
6305 else if (GET_MODE_CLASS (GET_MODE (mem)) != MODE_INT
6306 && GET_MODE_CLASS (GET_MODE (mem)) != MODE_PARTIAL_INT)
6308 /* For non-integer stack argument see also if they weren't
6309 initialized by integers. */
6310 machine_mode imode = int_mode_for_mode (GET_MODE (mem));
6311 if (imode != GET_MODE (mem) && imode != BLKmode)
6313 val = cselib_lookup (adjust_address_nv (mem, imode, 0),
6314 imode, 0, VOIDmode);
6315 if (val && cselib_preserved_value_p (val))
6316 item = lowpart_subreg (GET_MODE (x), val->val_rtx,
6317 imode);
6321 if (item)
6323 rtx x2 = x;
6324 if (GET_MODE (item) != GET_MODE (link))
6325 item = lowpart_subreg (GET_MODE (link), item, GET_MODE (item));
6326 if (GET_MODE (x2) != GET_MODE (link))
6327 x2 = lowpart_subreg (GET_MODE (link), x2, GET_MODE (x2));
6328 item = gen_rtx_CONCAT (GET_MODE (link), x2, item);
6329 call_arguments
6330 = gen_rtx_EXPR_LIST (VOIDmode, item, call_arguments);
6332 if (t && t != void_list_node)
6334 tree argtype = TREE_VALUE (t);
6335 machine_mode mode = TYPE_MODE (argtype);
6336 rtx reg;
6337 if (pass_by_reference (&args_so_far_v, mode, argtype, true))
6339 argtype = build_pointer_type (argtype);
6340 mode = TYPE_MODE (argtype);
6342 reg = targetm.calls.function_arg (args_so_far, mode,
6343 argtype, true);
6344 if (TREE_CODE (argtype) == REFERENCE_TYPE
6345 && INTEGRAL_TYPE_P (TREE_TYPE (argtype))
6346 && reg
6347 && REG_P (reg)
6348 && GET_MODE (reg) == mode
6349 && (GET_MODE_CLASS (mode) == MODE_INT
6350 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
6351 && REG_P (x)
6352 && REGNO (x) == REGNO (reg)
6353 && GET_MODE (x) == mode
6354 && item)
6356 machine_mode indmode
6357 = TYPE_MODE (TREE_TYPE (argtype));
6358 rtx mem = gen_rtx_MEM (indmode, x);
6359 cselib_val *val = cselib_lookup (mem, indmode, 0, VOIDmode);
6360 if (val && cselib_preserved_value_p (val))
6362 item = gen_rtx_CONCAT (indmode, mem, val->val_rtx);
6363 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6364 call_arguments);
6366 else
6368 struct elt_loc_list *l;
6369 tree initial;
6371 /* Try harder, when passing address of a constant
6372 pool integer it can be easily read back. */
6373 item = XEXP (item, 1);
6374 if (GET_CODE (item) == SUBREG)
6375 item = SUBREG_REG (item);
6376 gcc_assert (GET_CODE (item) == VALUE);
6377 val = CSELIB_VAL_PTR (item);
6378 for (l = val->locs; l; l = l->next)
6379 if (GET_CODE (l->loc) == SYMBOL_REF
6380 && TREE_CONSTANT_POOL_ADDRESS_P (l->loc)
6381 && SYMBOL_REF_DECL (l->loc)
6382 && DECL_INITIAL (SYMBOL_REF_DECL (l->loc)))
6384 initial = DECL_INITIAL (SYMBOL_REF_DECL (l->loc));
6385 if (tree_fits_shwi_p (initial))
6387 item = GEN_INT (tree_to_shwi (initial));
6388 item = gen_rtx_CONCAT (indmode, mem, item);
6389 call_arguments
6390 = gen_rtx_EXPR_LIST (VOIDmode, item,
6391 call_arguments);
6393 break;
6397 targetm.calls.function_arg_advance (args_so_far, mode,
6398 argtype, true);
6399 t = TREE_CHAIN (t);
6403 /* Add debug arguments. */
6404 if (fndecl
6405 && TREE_CODE (fndecl) == FUNCTION_DECL
6406 && DECL_HAS_DEBUG_ARGS_P (fndecl))
6408 vec<tree, va_gc> **debug_args = decl_debug_args_lookup (fndecl);
6409 if (debug_args)
6411 unsigned int ix;
6412 tree param;
6413 for (ix = 0; vec_safe_iterate (*debug_args, ix, &param); ix += 2)
6415 rtx item;
6416 tree dtemp = (**debug_args)[ix + 1];
6417 machine_mode mode = DECL_MODE (dtemp);
6418 item = gen_rtx_DEBUG_PARAMETER_REF (mode, param);
6419 item = gen_rtx_CONCAT (mode, item, DECL_RTL_KNOWN_SET (dtemp));
6420 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6421 call_arguments);
6426 /* Reverse call_arguments chain. */
6427 prev = NULL_RTX;
6428 for (cur = call_arguments; cur; cur = next)
6430 next = XEXP (cur, 1);
6431 XEXP (cur, 1) = prev;
6432 prev = cur;
6434 call_arguments = prev;
6436 x = get_call_rtx_from (insn);
6437 if (x)
6439 x = XEXP (XEXP (x, 0), 0);
6440 if (GET_CODE (x) == SYMBOL_REF)
6441 /* Don't record anything. */;
6442 else if (CONSTANT_P (x))
6444 x = gen_rtx_CONCAT (GET_MODE (x) == VOIDmode ? Pmode : GET_MODE (x),
6445 pc_rtx, x);
6446 call_arguments
6447 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6449 else
6451 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6452 if (val && cselib_preserved_value_p (val))
6454 x = gen_rtx_CONCAT (GET_MODE (x), pc_rtx, val->val_rtx);
6455 call_arguments
6456 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6460 if (this_arg)
6462 machine_mode mode
6463 = TYPE_MODE (TREE_TYPE (OBJ_TYPE_REF_EXPR (obj_type_ref)));
6464 rtx clobbered = gen_rtx_MEM (mode, this_arg);
6465 HOST_WIDE_INT token
6466 = tree_to_shwi (OBJ_TYPE_REF_TOKEN (obj_type_ref));
6467 if (token)
6468 clobbered = plus_constant (mode, clobbered,
6469 token * GET_MODE_SIZE (mode));
6470 clobbered = gen_rtx_MEM (mode, clobbered);
6471 x = gen_rtx_CONCAT (mode, gen_rtx_CLOBBER (VOIDmode, pc_rtx), clobbered);
6472 call_arguments
6473 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6477 /* Callback for cselib_record_sets_hook, that records as micro
6478 operations uses and stores in an insn after cselib_record_sets has
6479 analyzed the sets in an insn, but before it modifies the stored
6480 values in the internal tables, unless cselib_record_sets doesn't
6481 call it directly (perhaps because we're not doing cselib in the
6482 first place, in which case sets and n_sets will be 0). */
6484 static void
6485 add_with_sets (rtx_insn *insn, struct cselib_set *sets, int n_sets)
6487 basic_block bb = BLOCK_FOR_INSN (insn);
6488 int n1, n2;
6489 struct count_use_info cui;
6490 micro_operation *mos;
6492 cselib_hook_called = true;
6494 cui.insn = insn;
6495 cui.bb = bb;
6496 cui.sets = sets;
6497 cui.n_sets = n_sets;
6499 n1 = VTI (bb)->mos.length ();
6500 cui.store_p = false;
6501 note_uses (&PATTERN (insn), add_uses_1, &cui);
6502 n2 = VTI (bb)->mos.length () - 1;
6503 mos = VTI (bb)->mos.address ();
6505 /* Order the MO_USEs to be before MO_USE_NO_VARs and MO_VAL_USE, and
6506 MO_VAL_LOC last. */
6507 while (n1 < n2)
6509 while (n1 < n2 && mos[n1].type == MO_USE)
6510 n1++;
6511 while (n1 < n2 && mos[n2].type != MO_USE)
6512 n2--;
6513 if (n1 < n2)
6515 micro_operation sw;
6517 sw = mos[n1];
6518 mos[n1] = mos[n2];
6519 mos[n2] = sw;
6523 n2 = VTI (bb)->mos.length () - 1;
6524 while (n1 < n2)
6526 while (n1 < n2 && mos[n1].type != MO_VAL_LOC)
6527 n1++;
6528 while (n1 < n2 && mos[n2].type == MO_VAL_LOC)
6529 n2--;
6530 if (n1 < n2)
6532 micro_operation sw;
6534 sw = mos[n1];
6535 mos[n1] = mos[n2];
6536 mos[n2] = sw;
6540 if (CALL_P (insn))
6542 micro_operation mo;
6544 mo.type = MO_CALL;
6545 mo.insn = insn;
6546 mo.u.loc = call_arguments;
6547 call_arguments = NULL_RTX;
6549 if (dump_file && (dump_flags & TDF_DETAILS))
6550 log_op_type (PATTERN (insn), bb, insn, mo.type, dump_file);
6551 VTI (bb)->mos.safe_push (mo);
6554 n1 = VTI (bb)->mos.length ();
6555 /* This will record NEXT_INSN (insn), such that we can
6556 insert notes before it without worrying about any
6557 notes that MO_USEs might emit after the insn. */
6558 cui.store_p = true;
6559 note_stores (PATTERN (insn), add_stores, &cui);
6560 n2 = VTI (bb)->mos.length () - 1;
6561 mos = VTI (bb)->mos.address ();
6563 /* Order the MO_VAL_USEs first (note_stores does nothing
6564 on DEBUG_INSNs, so there are no MO_VAL_LOCs from this
6565 insn), then MO_CLOBBERs, then MO_SET/MO_COPY/MO_VAL_SET. */
6566 while (n1 < n2)
6568 while (n1 < n2 && mos[n1].type == MO_VAL_USE)
6569 n1++;
6570 while (n1 < n2 && mos[n2].type != MO_VAL_USE)
6571 n2--;
6572 if (n1 < n2)
6574 micro_operation sw;
6576 sw = mos[n1];
6577 mos[n1] = mos[n2];
6578 mos[n2] = sw;
6582 n2 = VTI (bb)->mos.length () - 1;
6583 while (n1 < n2)
6585 while (n1 < n2 && mos[n1].type == MO_CLOBBER)
6586 n1++;
6587 while (n1 < n2 && mos[n2].type != MO_CLOBBER)
6588 n2--;
6589 if (n1 < n2)
6591 micro_operation sw;
6593 sw = mos[n1];
6594 mos[n1] = mos[n2];
6595 mos[n2] = sw;
6600 static enum var_init_status
6601 find_src_status (dataflow_set *in, rtx src)
6603 tree decl = NULL_TREE;
6604 enum var_init_status status = VAR_INIT_STATUS_UNINITIALIZED;
6606 if (! flag_var_tracking_uninit)
6607 status = VAR_INIT_STATUS_INITIALIZED;
6609 if (src && REG_P (src))
6610 decl = var_debug_decl (REG_EXPR (src));
6611 else if (src && MEM_P (src))
6612 decl = var_debug_decl (MEM_EXPR (src));
6614 if (src && decl)
6615 status = get_init_value (in, src, dv_from_decl (decl));
6617 return status;
6620 /* SRC is the source of an assignment. Use SET to try to find what
6621 was ultimately assigned to SRC. Return that value if known,
6622 otherwise return SRC itself. */
6624 static rtx
6625 find_src_set_src (dataflow_set *set, rtx src)
6627 tree decl = NULL_TREE; /* The variable being copied around. */
6628 rtx set_src = NULL_RTX; /* The value for "decl" stored in "src". */
6629 variable var;
6630 location_chain nextp;
6631 int i;
6632 bool found;
6634 if (src && REG_P (src))
6635 decl = var_debug_decl (REG_EXPR (src));
6636 else if (src && MEM_P (src))
6637 decl = var_debug_decl (MEM_EXPR (src));
6639 if (src && decl)
6641 decl_or_value dv = dv_from_decl (decl);
6643 var = shared_hash_find (set->vars, dv);
6644 if (var)
6646 found = false;
6647 for (i = 0; i < var->n_var_parts && !found; i++)
6648 for (nextp = var->var_part[i].loc_chain; nextp && !found;
6649 nextp = nextp->next)
6650 if (rtx_equal_p (nextp->loc, src))
6652 set_src = nextp->set_src;
6653 found = true;
6659 return set_src;
6662 /* Compute the changes of variable locations in the basic block BB. */
6664 static bool
6665 compute_bb_dataflow (basic_block bb)
6667 unsigned int i;
6668 micro_operation *mo;
6669 bool changed;
6670 dataflow_set old_out;
6671 dataflow_set *in = &VTI (bb)->in;
6672 dataflow_set *out = &VTI (bb)->out;
6674 dataflow_set_init (&old_out);
6675 dataflow_set_copy (&old_out, out);
6676 dataflow_set_copy (out, in);
6678 if (MAY_HAVE_DEBUG_INSNS)
6679 local_get_addr_cache = new hash_map<rtx, rtx>;
6681 FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
6683 rtx_insn *insn = mo->insn;
6685 switch (mo->type)
6687 case MO_CALL:
6688 dataflow_set_clear_at_call (out);
6689 break;
6691 case MO_USE:
6693 rtx loc = mo->u.loc;
6695 if (REG_P (loc))
6696 var_reg_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6697 else if (MEM_P (loc))
6698 var_mem_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6700 break;
6702 case MO_VAL_LOC:
6704 rtx loc = mo->u.loc;
6705 rtx val, vloc;
6706 tree var;
6708 if (GET_CODE (loc) == CONCAT)
6710 val = XEXP (loc, 0);
6711 vloc = XEXP (loc, 1);
6713 else
6715 val = NULL_RTX;
6716 vloc = loc;
6719 var = PAT_VAR_LOCATION_DECL (vloc);
6721 clobber_variable_part (out, NULL_RTX,
6722 dv_from_decl (var), 0, NULL_RTX);
6723 if (val)
6725 if (VAL_NEEDS_RESOLUTION (loc))
6726 val_resolve (out, val, PAT_VAR_LOCATION_LOC (vloc), insn);
6727 set_variable_part (out, val, dv_from_decl (var), 0,
6728 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6729 INSERT);
6731 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
6732 set_variable_part (out, PAT_VAR_LOCATION_LOC (vloc),
6733 dv_from_decl (var), 0,
6734 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6735 INSERT);
6737 break;
6739 case MO_VAL_USE:
6741 rtx loc = mo->u.loc;
6742 rtx val, vloc, uloc;
6744 vloc = uloc = XEXP (loc, 1);
6745 val = XEXP (loc, 0);
6747 if (GET_CODE (val) == CONCAT)
6749 uloc = XEXP (val, 1);
6750 val = XEXP (val, 0);
6753 if (VAL_NEEDS_RESOLUTION (loc))
6754 val_resolve (out, val, vloc, insn);
6755 else
6756 val_store (out, val, uloc, insn, false);
6758 if (VAL_HOLDS_TRACK_EXPR (loc))
6760 if (GET_CODE (uloc) == REG)
6761 var_reg_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6762 NULL);
6763 else if (GET_CODE (uloc) == MEM)
6764 var_mem_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6765 NULL);
6768 break;
6770 case MO_VAL_SET:
6772 rtx loc = mo->u.loc;
6773 rtx val, vloc, uloc;
6774 rtx dstv, srcv;
6776 vloc = loc;
6777 uloc = XEXP (vloc, 1);
6778 val = XEXP (vloc, 0);
6779 vloc = uloc;
6781 if (GET_CODE (uloc) == SET)
6783 dstv = SET_DEST (uloc);
6784 srcv = SET_SRC (uloc);
6786 else
6788 dstv = uloc;
6789 srcv = NULL;
6792 if (GET_CODE (val) == CONCAT)
6794 dstv = vloc = XEXP (val, 1);
6795 val = XEXP (val, 0);
6798 if (GET_CODE (vloc) == SET)
6800 srcv = SET_SRC (vloc);
6802 gcc_assert (val != srcv);
6803 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
6805 dstv = vloc = SET_DEST (vloc);
6807 if (VAL_NEEDS_RESOLUTION (loc))
6808 val_resolve (out, val, srcv, insn);
6810 else if (VAL_NEEDS_RESOLUTION (loc))
6812 gcc_assert (GET_CODE (uloc) == SET
6813 && GET_CODE (SET_SRC (uloc)) == REG);
6814 val_resolve (out, val, SET_SRC (uloc), insn);
6817 if (VAL_HOLDS_TRACK_EXPR (loc))
6819 if (VAL_EXPR_IS_CLOBBERED (loc))
6821 if (REG_P (uloc))
6822 var_reg_delete (out, uloc, true);
6823 else if (MEM_P (uloc))
6825 gcc_assert (MEM_P (dstv));
6826 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
6827 var_mem_delete (out, dstv, true);
6830 else
6832 bool copied_p = VAL_EXPR_IS_COPIED (loc);
6833 rtx src = NULL, dst = uloc;
6834 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
6836 if (GET_CODE (uloc) == SET)
6838 src = SET_SRC (uloc);
6839 dst = SET_DEST (uloc);
6842 if (copied_p)
6844 if (flag_var_tracking_uninit)
6846 status = find_src_status (in, src);
6848 if (status == VAR_INIT_STATUS_UNKNOWN)
6849 status = find_src_status (out, src);
6852 src = find_src_set_src (in, src);
6855 if (REG_P (dst))
6856 var_reg_delete_and_set (out, dst, !copied_p,
6857 status, srcv);
6858 else if (MEM_P (dst))
6860 gcc_assert (MEM_P (dstv));
6861 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
6862 var_mem_delete_and_set (out, dstv, !copied_p,
6863 status, srcv);
6867 else if (REG_P (uloc))
6868 var_regno_delete (out, REGNO (uloc));
6869 else if (MEM_P (uloc))
6871 gcc_checking_assert (GET_CODE (vloc) == MEM);
6872 gcc_checking_assert (dstv == vloc);
6873 if (dstv != vloc)
6874 clobber_overlapping_mems (out, vloc);
6877 val_store (out, val, dstv, insn, true);
6879 break;
6881 case MO_SET:
6883 rtx loc = mo->u.loc;
6884 rtx set_src = NULL;
6886 if (GET_CODE (loc) == SET)
6888 set_src = SET_SRC (loc);
6889 loc = SET_DEST (loc);
6892 if (REG_P (loc))
6893 var_reg_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6894 set_src);
6895 else if (MEM_P (loc))
6896 var_mem_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6897 set_src);
6899 break;
6901 case MO_COPY:
6903 rtx loc = mo->u.loc;
6904 enum var_init_status src_status;
6905 rtx set_src = NULL;
6907 if (GET_CODE (loc) == SET)
6909 set_src = SET_SRC (loc);
6910 loc = SET_DEST (loc);
6913 if (! flag_var_tracking_uninit)
6914 src_status = VAR_INIT_STATUS_INITIALIZED;
6915 else
6917 src_status = find_src_status (in, set_src);
6919 if (src_status == VAR_INIT_STATUS_UNKNOWN)
6920 src_status = find_src_status (out, set_src);
6923 set_src = find_src_set_src (in, set_src);
6925 if (REG_P (loc))
6926 var_reg_delete_and_set (out, loc, false, src_status, set_src);
6927 else if (MEM_P (loc))
6928 var_mem_delete_and_set (out, loc, false, src_status, set_src);
6930 break;
6932 case MO_USE_NO_VAR:
6934 rtx loc = mo->u.loc;
6936 if (REG_P (loc))
6937 var_reg_delete (out, loc, false);
6938 else if (MEM_P (loc))
6939 var_mem_delete (out, loc, false);
6941 break;
6943 case MO_CLOBBER:
6945 rtx loc = mo->u.loc;
6947 if (REG_P (loc))
6948 var_reg_delete (out, loc, true);
6949 else if (MEM_P (loc))
6950 var_mem_delete (out, loc, true);
6952 break;
6954 case MO_ADJUST:
6955 out->stack_adjust += mo->u.adjust;
6956 break;
6960 if (MAY_HAVE_DEBUG_INSNS)
6962 delete local_get_addr_cache;
6963 local_get_addr_cache = NULL;
6965 dataflow_set_equiv_regs (out);
6966 shared_hash_htab (out->vars)
6967 ->traverse <dataflow_set *, canonicalize_values_mark> (out);
6968 shared_hash_htab (out->vars)
6969 ->traverse <dataflow_set *, canonicalize_values_star> (out);
6970 #if ENABLE_CHECKING
6971 shared_hash_htab (out->vars)
6972 ->traverse <dataflow_set *, canonicalize_loc_order_check> (out);
6973 #endif
6975 changed = dataflow_set_different (&old_out, out);
6976 dataflow_set_destroy (&old_out);
6977 return changed;
6980 /* Find the locations of variables in the whole function. */
6982 static bool
6983 vt_find_locations (void)
6985 bb_heap_t *worklist = new bb_heap_t (LONG_MIN);
6986 bb_heap_t *pending = new bb_heap_t (LONG_MIN);
6987 bb_heap_t *fibheap_swap = NULL;
6988 sbitmap visited, in_worklist, in_pending, sbitmap_swap;
6989 basic_block bb;
6990 edge e;
6991 int *bb_order;
6992 int *rc_order;
6993 int i;
6994 int htabsz = 0;
6995 int htabmax = PARAM_VALUE (PARAM_MAX_VARTRACK_SIZE);
6996 bool success = true;
6998 timevar_push (TV_VAR_TRACKING_DATAFLOW);
6999 /* Compute reverse completion order of depth first search of the CFG
7000 so that the data-flow runs faster. */
7001 rc_order = XNEWVEC (int, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS);
7002 bb_order = XNEWVEC (int, last_basic_block_for_fn (cfun));
7003 pre_and_rev_post_order_compute (NULL, rc_order, false);
7004 for (i = 0; i < n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS; i++)
7005 bb_order[rc_order[i]] = i;
7006 free (rc_order);
7008 visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
7009 in_worklist = sbitmap_alloc (last_basic_block_for_fn (cfun));
7010 in_pending = sbitmap_alloc (last_basic_block_for_fn (cfun));
7011 bitmap_clear (in_worklist);
7013 FOR_EACH_BB_FN (bb, cfun)
7014 pending->insert (bb_order[bb->index], bb);
7015 bitmap_ones (in_pending);
7017 while (success && !pending->empty ())
7019 fibheap_swap = pending;
7020 pending = worklist;
7021 worklist = fibheap_swap;
7022 sbitmap_swap = in_pending;
7023 in_pending = in_worklist;
7024 in_worklist = sbitmap_swap;
7026 bitmap_clear (visited);
7028 while (!worklist->empty ())
7030 bb = worklist->extract_min ();
7031 bitmap_clear_bit (in_worklist, bb->index);
7032 gcc_assert (!bitmap_bit_p (visited, bb->index));
7033 if (!bitmap_bit_p (visited, bb->index))
7035 bool changed;
7036 edge_iterator ei;
7037 int oldinsz, oldoutsz;
7039 bitmap_set_bit (visited, bb->index);
7041 if (VTI (bb)->in.vars)
7043 htabsz
7044 -= shared_hash_htab (VTI (bb)->in.vars)->size ()
7045 + shared_hash_htab (VTI (bb)->out.vars)->size ();
7046 oldinsz = shared_hash_htab (VTI (bb)->in.vars)->elements ();
7047 oldoutsz
7048 = shared_hash_htab (VTI (bb)->out.vars)->elements ();
7050 else
7051 oldinsz = oldoutsz = 0;
7053 if (MAY_HAVE_DEBUG_INSNS)
7055 dataflow_set *in = &VTI (bb)->in, *first_out = NULL;
7056 bool first = true, adjust = false;
7058 /* Calculate the IN set as the intersection of
7059 predecessor OUT sets. */
7061 dataflow_set_clear (in);
7062 dst_can_be_shared = true;
7064 FOR_EACH_EDGE (e, ei, bb->preds)
7065 if (!VTI (e->src)->flooded)
7066 gcc_assert (bb_order[bb->index]
7067 <= bb_order[e->src->index]);
7068 else if (first)
7070 dataflow_set_copy (in, &VTI (e->src)->out);
7071 first_out = &VTI (e->src)->out;
7072 first = false;
7074 else
7076 dataflow_set_merge (in, &VTI (e->src)->out);
7077 adjust = true;
7080 if (adjust)
7082 dataflow_post_merge_adjust (in, &VTI (bb)->permp);
7083 #if ENABLE_CHECKING
7084 /* Merge and merge_adjust should keep entries in
7085 canonical order. */
7086 shared_hash_htab (in->vars)
7087 ->traverse <dataflow_set *,
7088 canonicalize_loc_order_check> (in);
7089 #endif
7090 if (dst_can_be_shared)
7092 shared_hash_destroy (in->vars);
7093 in->vars = shared_hash_copy (first_out->vars);
7097 VTI (bb)->flooded = true;
7099 else
7101 /* Calculate the IN set as union of predecessor OUT sets. */
7102 dataflow_set_clear (&VTI (bb)->in);
7103 FOR_EACH_EDGE (e, ei, bb->preds)
7104 dataflow_set_union (&VTI (bb)->in, &VTI (e->src)->out);
7107 changed = compute_bb_dataflow (bb);
7108 htabsz += shared_hash_htab (VTI (bb)->in.vars)->size ()
7109 + shared_hash_htab (VTI (bb)->out.vars)->size ();
7111 if (htabmax && htabsz > htabmax)
7113 if (MAY_HAVE_DEBUG_INSNS)
7114 inform (DECL_SOURCE_LOCATION (cfun->decl),
7115 "variable tracking size limit exceeded with "
7116 "-fvar-tracking-assignments, retrying without");
7117 else
7118 inform (DECL_SOURCE_LOCATION (cfun->decl),
7119 "variable tracking size limit exceeded");
7120 success = false;
7121 break;
7124 if (changed)
7126 FOR_EACH_EDGE (e, ei, bb->succs)
7128 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
7129 continue;
7131 if (bitmap_bit_p (visited, e->dest->index))
7133 if (!bitmap_bit_p (in_pending, e->dest->index))
7135 /* Send E->DEST to next round. */
7136 bitmap_set_bit (in_pending, e->dest->index);
7137 pending->insert (bb_order[e->dest->index],
7138 e->dest);
7141 else if (!bitmap_bit_p (in_worklist, e->dest->index))
7143 /* Add E->DEST to current round. */
7144 bitmap_set_bit (in_worklist, e->dest->index);
7145 worklist->insert (bb_order[e->dest->index],
7146 e->dest);
7151 if (dump_file)
7152 fprintf (dump_file,
7153 "BB %i: in %i (was %i), out %i (was %i), rem %i + %i, tsz %i\n",
7154 bb->index,
7155 (int)shared_hash_htab (VTI (bb)->in.vars)->size (),
7156 oldinsz,
7157 (int)shared_hash_htab (VTI (bb)->out.vars)->size (),
7158 oldoutsz,
7159 (int)worklist->nodes (), (int)pending->nodes (),
7160 htabsz);
7162 if (dump_file && (dump_flags & TDF_DETAILS))
7164 fprintf (dump_file, "BB %i IN:\n", bb->index);
7165 dump_dataflow_set (&VTI (bb)->in);
7166 fprintf (dump_file, "BB %i OUT:\n", bb->index);
7167 dump_dataflow_set (&VTI (bb)->out);
7173 if (success && MAY_HAVE_DEBUG_INSNS)
7174 FOR_EACH_BB_FN (bb, cfun)
7175 gcc_assert (VTI (bb)->flooded);
7177 free (bb_order);
7178 delete worklist;
7179 delete pending;
7180 sbitmap_free (visited);
7181 sbitmap_free (in_worklist);
7182 sbitmap_free (in_pending);
7184 timevar_pop (TV_VAR_TRACKING_DATAFLOW);
7185 return success;
7188 /* Print the content of the LIST to dump file. */
7190 static void
7191 dump_attrs_list (attrs list)
7193 for (; list; list = list->next)
7195 if (dv_is_decl_p (list->dv))
7196 print_mem_expr (dump_file, dv_as_decl (list->dv));
7197 else
7198 print_rtl_single (dump_file, dv_as_value (list->dv));
7199 fprintf (dump_file, "+" HOST_WIDE_INT_PRINT_DEC, list->offset);
7201 fprintf (dump_file, "\n");
7204 /* Print the information about variable *SLOT to dump file. */
7207 dump_var_tracking_slot (variable_def **slot, void *data ATTRIBUTE_UNUSED)
7209 variable var = *slot;
7211 dump_var (var);
7213 /* Continue traversing the hash table. */
7214 return 1;
7217 /* Print the information about variable VAR to dump file. */
7219 static void
7220 dump_var (variable var)
7222 int i;
7223 location_chain node;
7225 if (dv_is_decl_p (var->dv))
7227 const_tree decl = dv_as_decl (var->dv);
7229 if (DECL_NAME (decl))
7231 fprintf (dump_file, " name: %s",
7232 IDENTIFIER_POINTER (DECL_NAME (decl)));
7233 if (dump_flags & TDF_UID)
7234 fprintf (dump_file, "D.%u", DECL_UID (decl));
7236 else if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
7237 fprintf (dump_file, " name: D#%u", DEBUG_TEMP_UID (decl));
7238 else
7239 fprintf (dump_file, " name: D.%u", DECL_UID (decl));
7240 fprintf (dump_file, "\n");
7242 else
7244 fputc (' ', dump_file);
7245 print_rtl_single (dump_file, dv_as_value (var->dv));
7248 for (i = 0; i < var->n_var_parts; i++)
7250 fprintf (dump_file, " offset %ld\n",
7251 (long)(var->onepart ? 0 : VAR_PART_OFFSET (var, i)));
7252 for (node = var->var_part[i].loc_chain; node; node = node->next)
7254 fprintf (dump_file, " ");
7255 if (node->init == VAR_INIT_STATUS_UNINITIALIZED)
7256 fprintf (dump_file, "[uninit]");
7257 print_rtl_single (dump_file, node->loc);
7262 /* Print the information about variables from hash table VARS to dump file. */
7264 static void
7265 dump_vars (variable_table_type *vars)
7267 if (vars->elements () > 0)
7269 fprintf (dump_file, "Variables:\n");
7270 vars->traverse <void *, dump_var_tracking_slot> (NULL);
7274 /* Print the dataflow set SET to dump file. */
7276 static void
7277 dump_dataflow_set (dataflow_set *set)
7279 int i;
7281 fprintf (dump_file, "Stack adjustment: " HOST_WIDE_INT_PRINT_DEC "\n",
7282 set->stack_adjust);
7283 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
7285 if (set->regs[i])
7287 fprintf (dump_file, "Reg %d:", i);
7288 dump_attrs_list (set->regs[i]);
7291 dump_vars (shared_hash_htab (set->vars));
7292 fprintf (dump_file, "\n");
7295 /* Print the IN and OUT sets for each basic block to dump file. */
7297 static void
7298 dump_dataflow_sets (void)
7300 basic_block bb;
7302 FOR_EACH_BB_FN (bb, cfun)
7304 fprintf (dump_file, "\nBasic block %d:\n", bb->index);
7305 fprintf (dump_file, "IN:\n");
7306 dump_dataflow_set (&VTI (bb)->in);
7307 fprintf (dump_file, "OUT:\n");
7308 dump_dataflow_set (&VTI (bb)->out);
7312 /* Return the variable for DV in dropped_values, inserting one if
7313 requested with INSERT. */
7315 static inline variable
7316 variable_from_dropped (decl_or_value dv, enum insert_option insert)
7318 variable_def **slot;
7319 variable empty_var;
7320 onepart_enum_t onepart;
7322 slot = dropped_values->find_slot_with_hash (dv, dv_htab_hash (dv), insert);
7324 if (!slot)
7325 return NULL;
7327 if (*slot)
7328 return *slot;
7330 gcc_checking_assert (insert == INSERT);
7332 onepart = dv_onepart_p (dv);
7334 gcc_checking_assert (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR);
7336 empty_var = (variable) pool_alloc (onepart_pool (onepart));
7337 empty_var->dv = dv;
7338 empty_var->refcount = 1;
7339 empty_var->n_var_parts = 0;
7340 empty_var->onepart = onepart;
7341 empty_var->in_changed_variables = false;
7342 empty_var->var_part[0].loc_chain = NULL;
7343 empty_var->var_part[0].cur_loc = NULL;
7344 VAR_LOC_1PAUX (empty_var) = NULL;
7345 set_dv_changed (dv, true);
7347 *slot = empty_var;
7349 return empty_var;
7352 /* Recover the one-part aux from dropped_values. */
7354 static struct onepart_aux *
7355 recover_dropped_1paux (variable var)
7357 variable dvar;
7359 gcc_checking_assert (var->onepart);
7361 if (VAR_LOC_1PAUX (var))
7362 return VAR_LOC_1PAUX (var);
7364 if (var->onepart == ONEPART_VDECL)
7365 return NULL;
7367 dvar = variable_from_dropped (var->dv, NO_INSERT);
7369 if (!dvar)
7370 return NULL;
7372 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (dvar);
7373 VAR_LOC_1PAUX (dvar) = NULL;
7375 return VAR_LOC_1PAUX (var);
7378 /* Add variable VAR to the hash table of changed variables and
7379 if it has no locations delete it from SET's hash table. */
7381 static void
7382 variable_was_changed (variable var, dataflow_set *set)
7384 hashval_t hash = dv_htab_hash (var->dv);
7386 if (emit_notes)
7388 variable_def **slot;
7390 /* Remember this decl or VALUE has been added to changed_variables. */
7391 set_dv_changed (var->dv, true);
7393 slot = changed_variables->find_slot_with_hash (var->dv, hash, INSERT);
7395 if (*slot)
7397 variable old_var = *slot;
7398 gcc_assert (old_var->in_changed_variables);
7399 old_var->in_changed_variables = false;
7400 if (var != old_var && var->onepart)
7402 /* Restore the auxiliary info from an empty variable
7403 previously created for changed_variables, so it is
7404 not lost. */
7405 gcc_checking_assert (!VAR_LOC_1PAUX (var));
7406 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (old_var);
7407 VAR_LOC_1PAUX (old_var) = NULL;
7409 variable_htab_free (*slot);
7412 if (set && var->n_var_parts == 0)
7414 onepart_enum_t onepart = var->onepart;
7415 variable empty_var = NULL;
7416 variable_def **dslot = NULL;
7418 if (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR)
7420 dslot = dropped_values->find_slot_with_hash (var->dv,
7421 dv_htab_hash (var->dv),
7422 INSERT);
7423 empty_var = *dslot;
7425 if (empty_var)
7427 gcc_checking_assert (!empty_var->in_changed_variables);
7428 if (!VAR_LOC_1PAUX (var))
7430 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (empty_var);
7431 VAR_LOC_1PAUX (empty_var) = NULL;
7433 else
7434 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
7438 if (!empty_var)
7440 empty_var = (variable) pool_alloc (onepart_pool (onepart));
7441 empty_var->dv = var->dv;
7442 empty_var->refcount = 1;
7443 empty_var->n_var_parts = 0;
7444 empty_var->onepart = onepart;
7445 if (dslot)
7447 empty_var->refcount++;
7448 *dslot = empty_var;
7451 else
7452 empty_var->refcount++;
7453 empty_var->in_changed_variables = true;
7454 *slot = empty_var;
7455 if (onepart)
7457 empty_var->var_part[0].loc_chain = NULL;
7458 empty_var->var_part[0].cur_loc = NULL;
7459 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (var);
7460 VAR_LOC_1PAUX (var) = NULL;
7462 goto drop_var;
7464 else
7466 if (var->onepart && !VAR_LOC_1PAUX (var))
7467 recover_dropped_1paux (var);
7468 var->refcount++;
7469 var->in_changed_variables = true;
7470 *slot = var;
7473 else
7475 gcc_assert (set);
7476 if (var->n_var_parts == 0)
7478 variable_def **slot;
7480 drop_var:
7481 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
7482 if (slot)
7484 if (shared_hash_shared (set->vars))
7485 slot = shared_hash_find_slot_unshare (&set->vars, var->dv,
7486 NO_INSERT);
7487 shared_hash_htab (set->vars)->clear_slot (slot);
7493 /* Look for the index in VAR->var_part corresponding to OFFSET.
7494 Return -1 if not found. If INSERTION_POINT is non-NULL, the
7495 referenced int will be set to the index that the part has or should
7496 have, if it should be inserted. */
7498 static inline int
7499 find_variable_location_part (variable var, HOST_WIDE_INT offset,
7500 int *insertion_point)
7502 int pos, low, high;
7504 if (var->onepart)
7506 if (offset != 0)
7507 return -1;
7509 if (insertion_point)
7510 *insertion_point = 0;
7512 return var->n_var_parts - 1;
7515 /* Find the location part. */
7516 low = 0;
7517 high = var->n_var_parts;
7518 while (low != high)
7520 pos = (low + high) / 2;
7521 if (VAR_PART_OFFSET (var, pos) < offset)
7522 low = pos + 1;
7523 else
7524 high = pos;
7526 pos = low;
7528 if (insertion_point)
7529 *insertion_point = pos;
7531 if (pos < var->n_var_parts && VAR_PART_OFFSET (var, pos) == offset)
7532 return pos;
7534 return -1;
7537 static variable_def **
7538 set_slot_part (dataflow_set *set, rtx loc, variable_def **slot,
7539 decl_or_value dv, HOST_WIDE_INT offset,
7540 enum var_init_status initialized, rtx set_src)
7542 int pos;
7543 location_chain node, next;
7544 location_chain *nextp;
7545 variable var;
7546 onepart_enum_t onepart;
7548 var = *slot;
7550 if (var)
7551 onepart = var->onepart;
7552 else
7553 onepart = dv_onepart_p (dv);
7555 gcc_checking_assert (offset == 0 || !onepart);
7556 gcc_checking_assert (loc != dv_as_opaque (dv));
7558 if (! flag_var_tracking_uninit)
7559 initialized = VAR_INIT_STATUS_INITIALIZED;
7561 if (!var)
7563 /* Create new variable information. */
7564 var = (variable) pool_alloc (onepart_pool (onepart));
7565 var->dv = dv;
7566 var->refcount = 1;
7567 var->n_var_parts = 1;
7568 var->onepart = onepart;
7569 var->in_changed_variables = false;
7570 if (var->onepart)
7571 VAR_LOC_1PAUX (var) = NULL;
7572 else
7573 VAR_PART_OFFSET (var, 0) = offset;
7574 var->var_part[0].loc_chain = NULL;
7575 var->var_part[0].cur_loc = NULL;
7576 *slot = var;
7577 pos = 0;
7578 nextp = &var->var_part[0].loc_chain;
7580 else if (onepart)
7582 int r = -1, c = 0;
7584 gcc_assert (dv_as_opaque (var->dv) == dv_as_opaque (dv));
7586 pos = 0;
7588 if (GET_CODE (loc) == VALUE)
7590 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7591 nextp = &node->next)
7592 if (GET_CODE (node->loc) == VALUE)
7594 if (node->loc == loc)
7596 r = 0;
7597 break;
7599 if (canon_value_cmp (node->loc, loc))
7600 c++;
7601 else
7603 r = 1;
7604 break;
7607 else if (REG_P (node->loc) || MEM_P (node->loc))
7608 c++;
7609 else
7611 r = 1;
7612 break;
7615 else if (REG_P (loc))
7617 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7618 nextp = &node->next)
7619 if (REG_P (node->loc))
7621 if (REGNO (node->loc) < REGNO (loc))
7622 c++;
7623 else
7625 if (REGNO (node->loc) == REGNO (loc))
7626 r = 0;
7627 else
7628 r = 1;
7629 break;
7632 else
7634 r = 1;
7635 break;
7638 else if (MEM_P (loc))
7640 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7641 nextp = &node->next)
7642 if (REG_P (node->loc))
7643 c++;
7644 else if (MEM_P (node->loc))
7646 if ((r = loc_cmp (XEXP (node->loc, 0), XEXP (loc, 0))) >= 0)
7647 break;
7648 else
7649 c++;
7651 else
7653 r = 1;
7654 break;
7657 else
7658 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7659 nextp = &node->next)
7660 if ((r = loc_cmp (node->loc, loc)) >= 0)
7661 break;
7662 else
7663 c++;
7665 if (r == 0)
7666 return slot;
7668 if (shared_var_p (var, set->vars))
7670 slot = unshare_variable (set, slot, var, initialized);
7671 var = *slot;
7672 for (nextp = &var->var_part[0].loc_chain; c;
7673 nextp = &(*nextp)->next)
7674 c--;
7675 gcc_assert ((!node && !*nextp) || node->loc == (*nextp)->loc);
7678 else
7680 int inspos = 0;
7682 gcc_assert (dv_as_decl (var->dv) == dv_as_decl (dv));
7684 pos = find_variable_location_part (var, offset, &inspos);
7686 if (pos >= 0)
7688 node = var->var_part[pos].loc_chain;
7690 if (node
7691 && ((REG_P (node->loc) && REG_P (loc)
7692 && REGNO (node->loc) == REGNO (loc))
7693 || rtx_equal_p (node->loc, loc)))
7695 /* LOC is in the beginning of the chain so we have nothing
7696 to do. */
7697 if (node->init < initialized)
7698 node->init = initialized;
7699 if (set_src != NULL)
7700 node->set_src = set_src;
7702 return slot;
7704 else
7706 /* We have to make a copy of a shared variable. */
7707 if (shared_var_p (var, set->vars))
7709 slot = unshare_variable (set, slot, var, initialized);
7710 var = *slot;
7714 else
7716 /* We have not found the location part, new one will be created. */
7718 /* We have to make a copy of the shared variable. */
7719 if (shared_var_p (var, set->vars))
7721 slot = unshare_variable (set, slot, var, initialized);
7722 var = *slot;
7725 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
7726 thus there are at most MAX_VAR_PARTS different offsets. */
7727 gcc_assert (var->n_var_parts < MAX_VAR_PARTS
7728 && (!var->n_var_parts || !onepart));
7730 /* We have to move the elements of array starting at index
7731 inspos to the next position. */
7732 for (pos = var->n_var_parts; pos > inspos; pos--)
7733 var->var_part[pos] = var->var_part[pos - 1];
7735 var->n_var_parts++;
7736 gcc_checking_assert (!onepart);
7737 VAR_PART_OFFSET (var, pos) = offset;
7738 var->var_part[pos].loc_chain = NULL;
7739 var->var_part[pos].cur_loc = NULL;
7742 /* Delete the location from the list. */
7743 nextp = &var->var_part[pos].loc_chain;
7744 for (node = var->var_part[pos].loc_chain; node; node = next)
7746 next = node->next;
7747 if ((REG_P (node->loc) && REG_P (loc)
7748 && REGNO (node->loc) == REGNO (loc))
7749 || rtx_equal_p (node->loc, loc))
7751 /* Save these values, to assign to the new node, before
7752 deleting this one. */
7753 if (node->init > initialized)
7754 initialized = node->init;
7755 if (node->set_src != NULL && set_src == NULL)
7756 set_src = node->set_src;
7757 if (var->var_part[pos].cur_loc == node->loc)
7758 var->var_part[pos].cur_loc = NULL;
7759 pool_free (loc_chain_pool, node);
7760 *nextp = next;
7761 break;
7763 else
7764 nextp = &node->next;
7767 nextp = &var->var_part[pos].loc_chain;
7770 /* Add the location to the beginning. */
7771 node = (location_chain) pool_alloc (loc_chain_pool);
7772 node->loc = loc;
7773 node->init = initialized;
7774 node->set_src = set_src;
7775 node->next = *nextp;
7776 *nextp = node;
7778 /* If no location was emitted do so. */
7779 if (var->var_part[pos].cur_loc == NULL)
7780 variable_was_changed (var, set);
7782 return slot;
7785 /* Set the part of variable's location in the dataflow set SET. The
7786 variable part is specified by variable's declaration in DV and
7787 offset OFFSET and the part's location by LOC. IOPT should be
7788 NO_INSERT if the variable is known to be in SET already and the
7789 variable hash table must not be resized, and INSERT otherwise. */
7791 static void
7792 set_variable_part (dataflow_set *set, rtx loc,
7793 decl_or_value dv, HOST_WIDE_INT offset,
7794 enum var_init_status initialized, rtx set_src,
7795 enum insert_option iopt)
7797 variable_def **slot;
7799 if (iopt == NO_INSERT)
7800 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7801 else
7803 slot = shared_hash_find_slot (set->vars, dv);
7804 if (!slot)
7805 slot = shared_hash_find_slot_unshare (&set->vars, dv, iopt);
7807 set_slot_part (set, loc, slot, dv, offset, initialized, set_src);
7810 /* Remove all recorded register locations for the given variable part
7811 from dataflow set SET, except for those that are identical to loc.
7812 The variable part is specified by variable's declaration or value
7813 DV and offset OFFSET. */
7815 static variable_def **
7816 clobber_slot_part (dataflow_set *set, rtx loc, variable_def **slot,
7817 HOST_WIDE_INT offset, rtx set_src)
7819 variable var = *slot;
7820 int pos = find_variable_location_part (var, offset, NULL);
7822 if (pos >= 0)
7824 location_chain node, next;
7826 /* Remove the register locations from the dataflow set. */
7827 next = var->var_part[pos].loc_chain;
7828 for (node = next; node; node = next)
7830 next = node->next;
7831 if (node->loc != loc
7832 && (!flag_var_tracking_uninit
7833 || !set_src
7834 || MEM_P (set_src)
7835 || !rtx_equal_p (set_src, node->set_src)))
7837 if (REG_P (node->loc))
7839 attrs anode, anext;
7840 attrs *anextp;
7842 /* Remove the variable part from the register's
7843 list, but preserve any other variable parts
7844 that might be regarded as live in that same
7845 register. */
7846 anextp = &set->regs[REGNO (node->loc)];
7847 for (anode = *anextp; anode; anode = anext)
7849 anext = anode->next;
7850 if (dv_as_opaque (anode->dv) == dv_as_opaque (var->dv)
7851 && anode->offset == offset)
7853 pool_free (attrs_pool, anode);
7854 *anextp = anext;
7856 else
7857 anextp = &anode->next;
7861 slot = delete_slot_part (set, node->loc, slot, offset);
7866 return slot;
7869 /* Remove all recorded register locations for the given variable part
7870 from dataflow set SET, except for those that are identical to loc.
7871 The variable part is specified by variable's declaration or value
7872 DV and offset OFFSET. */
7874 static void
7875 clobber_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7876 HOST_WIDE_INT offset, rtx set_src)
7878 variable_def **slot;
7880 if (!dv_as_opaque (dv)
7881 || (!dv_is_value_p (dv) && ! DECL_P (dv_as_decl (dv))))
7882 return;
7884 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7885 if (!slot)
7886 return;
7888 clobber_slot_part (set, loc, slot, offset, set_src);
7891 /* Delete the part of variable's location from dataflow set SET. The
7892 variable part is specified by its SET->vars slot SLOT and offset
7893 OFFSET and the part's location by LOC. */
7895 static variable_def **
7896 delete_slot_part (dataflow_set *set, rtx loc, variable_def **slot,
7897 HOST_WIDE_INT offset)
7899 variable var = *slot;
7900 int pos = find_variable_location_part (var, offset, NULL);
7902 if (pos >= 0)
7904 location_chain node, next;
7905 location_chain *nextp;
7906 bool changed;
7907 rtx cur_loc;
7909 if (shared_var_p (var, set->vars))
7911 /* If the variable contains the location part we have to
7912 make a copy of the variable. */
7913 for (node = var->var_part[pos].loc_chain; node;
7914 node = node->next)
7916 if ((REG_P (node->loc) && REG_P (loc)
7917 && REGNO (node->loc) == REGNO (loc))
7918 || rtx_equal_p (node->loc, loc))
7920 slot = unshare_variable (set, slot, var,
7921 VAR_INIT_STATUS_UNKNOWN);
7922 var = *slot;
7923 break;
7928 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
7929 cur_loc = VAR_LOC_FROM (var);
7930 else
7931 cur_loc = var->var_part[pos].cur_loc;
7933 /* Delete the location part. */
7934 changed = false;
7935 nextp = &var->var_part[pos].loc_chain;
7936 for (node = *nextp; node; node = next)
7938 next = node->next;
7939 if ((REG_P (node->loc) && REG_P (loc)
7940 && REGNO (node->loc) == REGNO (loc))
7941 || rtx_equal_p (node->loc, loc))
7943 /* If we have deleted the location which was last emitted
7944 we have to emit new location so add the variable to set
7945 of changed variables. */
7946 if (cur_loc == node->loc)
7948 changed = true;
7949 var->var_part[pos].cur_loc = NULL;
7950 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
7951 VAR_LOC_FROM (var) = NULL;
7953 pool_free (loc_chain_pool, node);
7954 *nextp = next;
7955 break;
7957 else
7958 nextp = &node->next;
7961 if (var->var_part[pos].loc_chain == NULL)
7963 changed = true;
7964 var->n_var_parts--;
7965 while (pos < var->n_var_parts)
7967 var->var_part[pos] = var->var_part[pos + 1];
7968 pos++;
7971 if (changed)
7972 variable_was_changed (var, set);
7975 return slot;
7978 /* Delete the part of variable's location from dataflow set SET. The
7979 variable part is specified by variable's declaration or value DV
7980 and offset OFFSET and the part's location by LOC. */
7982 static void
7983 delete_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7984 HOST_WIDE_INT offset)
7986 variable_def **slot = shared_hash_find_slot_noinsert (set->vars, dv);
7987 if (!slot)
7988 return;
7990 delete_slot_part (set, loc, slot, offset);
7994 /* Structure for passing some other parameters to function
7995 vt_expand_loc_callback. */
7996 struct expand_loc_callback_data
7998 /* The variables and values active at this point. */
7999 variable_table_type *vars;
8001 /* Stack of values and debug_exprs under expansion, and their
8002 children. */
8003 auto_vec<rtx, 4> expanding;
8005 /* Stack of values and debug_exprs whose expansion hit recursion
8006 cycles. They will have VALUE_RECURSED_INTO marked when added to
8007 this list. This flag will be cleared if any of its dependencies
8008 resolves to a valid location. So, if the flag remains set at the
8009 end of the search, we know no valid location for this one can
8010 possibly exist. */
8011 auto_vec<rtx, 4> pending;
8013 /* The maximum depth among the sub-expressions under expansion.
8014 Zero indicates no expansion so far. */
8015 expand_depth depth;
8018 /* Allocate the one-part auxiliary data structure for VAR, with enough
8019 room for COUNT dependencies. */
8021 static void
8022 loc_exp_dep_alloc (variable var, int count)
8024 size_t allocsize;
8026 gcc_checking_assert (var->onepart);
8028 /* We can be called with COUNT == 0 to allocate the data structure
8029 without any dependencies, e.g. for the backlinks only. However,
8030 if we are specifying a COUNT, then the dependency list must have
8031 been emptied before. It would be possible to adjust pointers or
8032 force it empty here, but this is better done at an earlier point
8033 in the algorithm, so we instead leave an assertion to catch
8034 errors. */
8035 gcc_checking_assert (!count
8036 || VAR_LOC_DEP_VEC (var) == NULL
8037 || VAR_LOC_DEP_VEC (var)->is_empty ());
8039 if (VAR_LOC_1PAUX (var) && VAR_LOC_DEP_VEC (var)->space (count))
8040 return;
8042 allocsize = offsetof (struct onepart_aux, deps)
8043 + vec<loc_exp_dep, va_heap, vl_embed>::embedded_size (count);
8045 if (VAR_LOC_1PAUX (var))
8047 VAR_LOC_1PAUX (var) = XRESIZEVAR (struct onepart_aux,
8048 VAR_LOC_1PAUX (var), allocsize);
8049 /* If the reallocation moves the onepaux structure, the
8050 back-pointer to BACKLINKS in the first list member will still
8051 point to its old location. Adjust it. */
8052 if (VAR_LOC_DEP_LST (var))
8053 VAR_LOC_DEP_LST (var)->pprev = VAR_LOC_DEP_LSTP (var);
8055 else
8057 VAR_LOC_1PAUX (var) = XNEWVAR (struct onepart_aux, allocsize);
8058 *VAR_LOC_DEP_LSTP (var) = NULL;
8059 VAR_LOC_FROM (var) = NULL;
8060 VAR_LOC_DEPTH (var).complexity = 0;
8061 VAR_LOC_DEPTH (var).entryvals = 0;
8063 VAR_LOC_DEP_VEC (var)->embedded_init (count);
8066 /* Remove all entries from the vector of active dependencies of VAR,
8067 removing them from the back-links lists too. */
8069 static void
8070 loc_exp_dep_clear (variable var)
8072 while (VAR_LOC_DEP_VEC (var) && !VAR_LOC_DEP_VEC (var)->is_empty ())
8074 loc_exp_dep *led = &VAR_LOC_DEP_VEC (var)->last ();
8075 if (led->next)
8076 led->next->pprev = led->pprev;
8077 if (led->pprev)
8078 *led->pprev = led->next;
8079 VAR_LOC_DEP_VEC (var)->pop ();
8083 /* Insert an active dependency from VAR on X to the vector of
8084 dependencies, and add the corresponding back-link to X's list of
8085 back-links in VARS. */
8087 static void
8088 loc_exp_insert_dep (variable var, rtx x, variable_table_type *vars)
8090 decl_or_value dv;
8091 variable xvar;
8092 loc_exp_dep *led;
8094 dv = dv_from_rtx (x);
8096 /* ??? Build a vector of variables parallel to EXPANDING, to avoid
8097 an additional look up? */
8098 xvar = vars->find_with_hash (dv, dv_htab_hash (dv));
8100 if (!xvar)
8102 xvar = variable_from_dropped (dv, NO_INSERT);
8103 gcc_checking_assert (xvar);
8106 /* No point in adding the same backlink more than once. This may
8107 arise if say the same value appears in two complex expressions in
8108 the same loc_list, or even more than once in a single
8109 expression. */
8110 if (VAR_LOC_DEP_LST (xvar) && VAR_LOC_DEP_LST (xvar)->dv == var->dv)
8111 return;
8113 if (var->onepart == NOT_ONEPART)
8114 led = (loc_exp_dep *) pool_alloc (loc_exp_dep_pool);
8115 else
8117 loc_exp_dep empty;
8118 memset (&empty, 0, sizeof (empty));
8119 VAR_LOC_DEP_VEC (var)->quick_push (empty);
8120 led = &VAR_LOC_DEP_VEC (var)->last ();
8122 led->dv = var->dv;
8123 led->value = x;
8125 loc_exp_dep_alloc (xvar, 0);
8126 led->pprev = VAR_LOC_DEP_LSTP (xvar);
8127 led->next = *led->pprev;
8128 if (led->next)
8129 led->next->pprev = &led->next;
8130 *led->pprev = led;
8133 /* Create active dependencies of VAR on COUNT values starting at
8134 VALUE, and corresponding back-links to the entries in VARS. Return
8135 true if we found any pending-recursion results. */
8137 static bool
8138 loc_exp_dep_set (variable var, rtx result, rtx *value, int count,
8139 variable_table_type *vars)
8141 bool pending_recursion = false;
8143 gcc_checking_assert (VAR_LOC_DEP_VEC (var) == NULL
8144 || VAR_LOC_DEP_VEC (var)->is_empty ());
8146 /* Set up all dependencies from last_child (as set up at the end of
8147 the loop above) to the end. */
8148 loc_exp_dep_alloc (var, count);
8150 while (count--)
8152 rtx x = *value++;
8154 if (!pending_recursion)
8155 pending_recursion = !result && VALUE_RECURSED_INTO (x);
8157 loc_exp_insert_dep (var, x, vars);
8160 return pending_recursion;
8163 /* Notify the back-links of IVAR that are pending recursion that we
8164 have found a non-NIL value for it, so they are cleared for another
8165 attempt to compute a current location. */
8167 static void
8168 notify_dependents_of_resolved_value (variable ivar, variable_table_type *vars)
8170 loc_exp_dep *led, *next;
8172 for (led = VAR_LOC_DEP_LST (ivar); led; led = next)
8174 decl_or_value dv = led->dv;
8175 variable var;
8177 next = led->next;
8179 if (dv_is_value_p (dv))
8181 rtx value = dv_as_value (dv);
8183 /* If we have already resolved it, leave it alone. */
8184 if (!VALUE_RECURSED_INTO (value))
8185 continue;
8187 /* Check that VALUE_RECURSED_INTO, true from the test above,
8188 implies NO_LOC_P. */
8189 gcc_checking_assert (NO_LOC_P (value));
8191 /* We won't notify variables that are being expanded,
8192 because their dependency list is cleared before
8193 recursing. */
8194 NO_LOC_P (value) = false;
8195 VALUE_RECURSED_INTO (value) = false;
8197 gcc_checking_assert (dv_changed_p (dv));
8199 else
8201 gcc_checking_assert (dv_onepart_p (dv) != NOT_ONEPART);
8202 if (!dv_changed_p (dv))
8203 continue;
8206 var = vars->find_with_hash (dv, dv_htab_hash (dv));
8208 if (!var)
8209 var = variable_from_dropped (dv, NO_INSERT);
8211 if (var)
8212 notify_dependents_of_resolved_value (var, vars);
8214 if (next)
8215 next->pprev = led->pprev;
8216 if (led->pprev)
8217 *led->pprev = next;
8218 led->next = NULL;
8219 led->pprev = NULL;
8223 static rtx vt_expand_loc_callback (rtx x, bitmap regs,
8224 int max_depth, void *data);
8226 /* Return the combined depth, when one sub-expression evaluated to
8227 BEST_DEPTH and the previous known depth was SAVED_DEPTH. */
8229 static inline expand_depth
8230 update_depth (expand_depth saved_depth, expand_depth best_depth)
8232 /* If we didn't find anything, stick with what we had. */
8233 if (!best_depth.complexity)
8234 return saved_depth;
8236 /* If we found hadn't found anything, use the depth of the current
8237 expression. Do NOT add one extra level, we want to compute the
8238 maximum depth among sub-expressions. We'll increment it later,
8239 if appropriate. */
8240 if (!saved_depth.complexity)
8241 return best_depth;
8243 /* Combine the entryval count so that regardless of which one we
8244 return, the entryval count is accurate. */
8245 best_depth.entryvals = saved_depth.entryvals
8246 = best_depth.entryvals + saved_depth.entryvals;
8248 if (saved_depth.complexity < best_depth.complexity)
8249 return best_depth;
8250 else
8251 return saved_depth;
8254 /* Expand VAR to a location RTX, updating its cur_loc. Use REGS and
8255 DATA for cselib expand callback. If PENDRECP is given, indicate in
8256 it whether any sub-expression couldn't be fully evaluated because
8257 it is pending recursion resolution. */
8259 static inline rtx
8260 vt_expand_var_loc_chain (variable var, bitmap regs, void *data, bool *pendrecp)
8262 struct expand_loc_callback_data *elcd
8263 = (struct expand_loc_callback_data *) data;
8264 location_chain loc, next;
8265 rtx result = NULL;
8266 int first_child, result_first_child, last_child;
8267 bool pending_recursion;
8268 rtx loc_from = NULL;
8269 struct elt_loc_list *cloc = NULL;
8270 expand_depth depth = { 0, 0 }, saved_depth = elcd->depth;
8271 int wanted_entryvals, found_entryvals = 0;
8273 /* Clear all backlinks pointing at this, so that we're not notified
8274 while we're active. */
8275 loc_exp_dep_clear (var);
8277 retry:
8278 if (var->onepart == ONEPART_VALUE)
8280 cselib_val *val = CSELIB_VAL_PTR (dv_as_value (var->dv));
8282 gcc_checking_assert (cselib_preserved_value_p (val));
8284 cloc = val->locs;
8287 first_child = result_first_child = last_child
8288 = elcd->expanding.length ();
8290 wanted_entryvals = found_entryvals;
8292 /* Attempt to expand each available location in turn. */
8293 for (next = loc = var->n_var_parts ? var->var_part[0].loc_chain : NULL;
8294 loc || cloc; loc = next)
8296 result_first_child = last_child;
8298 if (!loc)
8300 loc_from = cloc->loc;
8301 next = loc;
8302 cloc = cloc->next;
8303 if (unsuitable_loc (loc_from))
8304 continue;
8306 else
8308 loc_from = loc->loc;
8309 next = loc->next;
8312 gcc_checking_assert (!unsuitable_loc (loc_from));
8314 elcd->depth.complexity = elcd->depth.entryvals = 0;
8315 result = cselib_expand_value_rtx_cb (loc_from, regs, EXPR_DEPTH,
8316 vt_expand_loc_callback, data);
8317 last_child = elcd->expanding.length ();
8319 if (result)
8321 depth = elcd->depth;
8323 gcc_checking_assert (depth.complexity
8324 || result_first_child == last_child);
8326 if (last_child - result_first_child != 1)
8328 if (!depth.complexity && GET_CODE (result) == ENTRY_VALUE)
8329 depth.entryvals++;
8330 depth.complexity++;
8333 if (depth.complexity <= EXPR_USE_DEPTH)
8335 if (depth.entryvals <= wanted_entryvals)
8336 break;
8337 else if (!found_entryvals || depth.entryvals < found_entryvals)
8338 found_entryvals = depth.entryvals;
8341 result = NULL;
8344 /* Set it up in case we leave the loop. */
8345 depth.complexity = depth.entryvals = 0;
8346 loc_from = NULL;
8347 result_first_child = first_child;
8350 if (!loc_from && wanted_entryvals < found_entryvals)
8352 /* We found entries with ENTRY_VALUEs and skipped them. Since
8353 we could not find any expansions without ENTRY_VALUEs, but we
8354 found at least one with them, go back and get an entry with
8355 the minimum number ENTRY_VALUE count that we found. We could
8356 avoid looping, but since each sub-loc is already resolved,
8357 the re-expansion should be trivial. ??? Should we record all
8358 attempted locs as dependencies, so that we retry the
8359 expansion should any of them change, in the hope it can give
8360 us a new entry without an ENTRY_VALUE? */
8361 elcd->expanding.truncate (first_child);
8362 goto retry;
8365 /* Register all encountered dependencies as active. */
8366 pending_recursion = loc_exp_dep_set
8367 (var, result, elcd->expanding.address () + result_first_child,
8368 last_child - result_first_child, elcd->vars);
8370 elcd->expanding.truncate (first_child);
8372 /* Record where the expansion came from. */
8373 gcc_checking_assert (!result || !pending_recursion);
8374 VAR_LOC_FROM (var) = loc_from;
8375 VAR_LOC_DEPTH (var) = depth;
8377 gcc_checking_assert (!depth.complexity == !result);
8379 elcd->depth = update_depth (saved_depth, depth);
8381 /* Indicate whether any of the dependencies are pending recursion
8382 resolution. */
8383 if (pendrecp)
8384 *pendrecp = pending_recursion;
8386 if (!pendrecp || !pending_recursion)
8387 var->var_part[0].cur_loc = result;
8389 return result;
8392 /* Callback for cselib_expand_value, that looks for expressions
8393 holding the value in the var-tracking hash tables. Return X for
8394 standard processing, anything else is to be used as-is. */
8396 static rtx
8397 vt_expand_loc_callback (rtx x, bitmap regs,
8398 int max_depth ATTRIBUTE_UNUSED,
8399 void *data)
8401 struct expand_loc_callback_data *elcd
8402 = (struct expand_loc_callback_data *) data;
8403 decl_or_value dv;
8404 variable var;
8405 rtx result, subreg;
8406 bool pending_recursion = false;
8407 bool from_empty = false;
8409 switch (GET_CODE (x))
8411 case SUBREG:
8412 subreg = cselib_expand_value_rtx_cb (SUBREG_REG (x), regs,
8413 EXPR_DEPTH,
8414 vt_expand_loc_callback, data);
8416 if (!subreg)
8417 return NULL;
8419 result = simplify_gen_subreg (GET_MODE (x), subreg,
8420 GET_MODE (SUBREG_REG (x)),
8421 SUBREG_BYTE (x));
8423 /* Invalid SUBREGs are ok in debug info. ??? We could try
8424 alternate expansions for the VALUE as well. */
8425 if (!result)
8426 result = gen_rtx_raw_SUBREG (GET_MODE (x), subreg, SUBREG_BYTE (x));
8428 return result;
8430 case DEBUG_EXPR:
8431 case VALUE:
8432 dv = dv_from_rtx (x);
8433 break;
8435 default:
8436 return x;
8439 elcd->expanding.safe_push (x);
8441 /* Check that VALUE_RECURSED_INTO implies NO_LOC_P. */
8442 gcc_checking_assert (!VALUE_RECURSED_INTO (x) || NO_LOC_P (x));
8444 if (NO_LOC_P (x))
8446 gcc_checking_assert (VALUE_RECURSED_INTO (x) || !dv_changed_p (dv));
8447 return NULL;
8450 var = elcd->vars->find_with_hash (dv, dv_htab_hash (dv));
8452 if (!var)
8454 from_empty = true;
8455 var = variable_from_dropped (dv, INSERT);
8458 gcc_checking_assert (var);
8460 if (!dv_changed_p (dv))
8462 gcc_checking_assert (!NO_LOC_P (x));
8463 gcc_checking_assert (var->var_part[0].cur_loc);
8464 gcc_checking_assert (VAR_LOC_1PAUX (var));
8465 gcc_checking_assert (VAR_LOC_1PAUX (var)->depth.complexity);
8467 elcd->depth = update_depth (elcd->depth, VAR_LOC_1PAUX (var)->depth);
8469 return var->var_part[0].cur_loc;
8472 VALUE_RECURSED_INTO (x) = true;
8473 /* This is tentative, but it makes some tests simpler. */
8474 NO_LOC_P (x) = true;
8476 gcc_checking_assert (var->n_var_parts == 1 || from_empty);
8478 result = vt_expand_var_loc_chain (var, regs, data, &pending_recursion);
8480 if (pending_recursion)
8482 gcc_checking_assert (!result);
8483 elcd->pending.safe_push (x);
8485 else
8487 NO_LOC_P (x) = !result;
8488 VALUE_RECURSED_INTO (x) = false;
8489 set_dv_changed (dv, false);
8491 if (result)
8492 notify_dependents_of_resolved_value (var, elcd->vars);
8495 return result;
8498 /* While expanding variables, we may encounter recursion cycles
8499 because of mutual (possibly indirect) dependencies between two
8500 particular variables (or values), say A and B. If we're trying to
8501 expand A when we get to B, which in turn attempts to expand A, if
8502 we can't find any other expansion for B, we'll add B to this
8503 pending-recursion stack, and tentatively return NULL for its
8504 location. This tentative value will be used for any other
8505 occurrences of B, unless A gets some other location, in which case
8506 it will notify B that it is worth another try at computing a
8507 location for it, and it will use the location computed for A then.
8508 At the end of the expansion, the tentative NULL locations become
8509 final for all members of PENDING that didn't get a notification.
8510 This function performs this finalization of NULL locations. */
8512 static void
8513 resolve_expansions_pending_recursion (vec<rtx, va_heap> *pending)
8515 while (!pending->is_empty ())
8517 rtx x = pending->pop ();
8518 decl_or_value dv;
8520 if (!VALUE_RECURSED_INTO (x))
8521 continue;
8523 gcc_checking_assert (NO_LOC_P (x));
8524 VALUE_RECURSED_INTO (x) = false;
8525 dv = dv_from_rtx (x);
8526 gcc_checking_assert (dv_changed_p (dv));
8527 set_dv_changed (dv, false);
8531 /* Initialize expand_loc_callback_data D with variable hash table V.
8532 It must be a macro because of alloca (vec stack). */
8533 #define INIT_ELCD(d, v) \
8534 do \
8536 (d).vars = (v); \
8537 (d).depth.complexity = (d).depth.entryvals = 0; \
8539 while (0)
8540 /* Finalize expand_loc_callback_data D, resolved to location L. */
8541 #define FINI_ELCD(d, l) \
8542 do \
8544 resolve_expansions_pending_recursion (&(d).pending); \
8545 (d).pending.release (); \
8546 (d).expanding.release (); \
8548 if ((l) && MEM_P (l)) \
8549 (l) = targetm.delegitimize_address (l); \
8551 while (0)
8553 /* Expand VALUEs and DEBUG_EXPRs in LOC to a location, using the
8554 equivalences in VARS, updating their CUR_LOCs in the process. */
8556 static rtx
8557 vt_expand_loc (rtx loc, variable_table_type *vars)
8559 struct expand_loc_callback_data data;
8560 rtx result;
8562 if (!MAY_HAVE_DEBUG_INSNS)
8563 return loc;
8565 INIT_ELCD (data, vars);
8567 result = cselib_expand_value_rtx_cb (loc, scratch_regs, EXPR_DEPTH,
8568 vt_expand_loc_callback, &data);
8570 FINI_ELCD (data, result);
8572 return result;
8575 /* Expand the one-part VARiable to a location, using the equivalences
8576 in VARS, updating their CUR_LOCs in the process. */
8578 static rtx
8579 vt_expand_1pvar (variable var, variable_table_type *vars)
8581 struct expand_loc_callback_data data;
8582 rtx loc;
8584 gcc_checking_assert (var->onepart && var->n_var_parts == 1);
8586 if (!dv_changed_p (var->dv))
8587 return var->var_part[0].cur_loc;
8589 INIT_ELCD (data, vars);
8591 loc = vt_expand_var_loc_chain (var, scratch_regs, &data, NULL);
8593 gcc_checking_assert (data.expanding.is_empty ());
8595 FINI_ELCD (data, loc);
8597 return loc;
8600 /* Emit the NOTE_INSN_VAR_LOCATION for variable *VARP. DATA contains
8601 additional parameters: WHERE specifies whether the note shall be emitted
8602 before or after instruction INSN. */
8605 emit_note_insn_var_location (variable_def **varp, emit_note_data *data)
8607 variable var = *varp;
8608 rtx_insn *insn = data->insn;
8609 enum emit_note_where where = data->where;
8610 variable_table_type *vars = data->vars;
8611 rtx_note *note;
8612 rtx note_vl;
8613 int i, j, n_var_parts;
8614 bool complete;
8615 enum var_init_status initialized = VAR_INIT_STATUS_UNINITIALIZED;
8616 HOST_WIDE_INT last_limit;
8617 tree type_size_unit;
8618 HOST_WIDE_INT offsets[MAX_VAR_PARTS];
8619 rtx loc[MAX_VAR_PARTS];
8620 tree decl;
8621 location_chain lc;
8623 gcc_checking_assert (var->onepart == NOT_ONEPART
8624 || var->onepart == ONEPART_VDECL);
8626 decl = dv_as_decl (var->dv);
8628 complete = true;
8629 last_limit = 0;
8630 n_var_parts = 0;
8631 if (!var->onepart)
8632 for (i = 0; i < var->n_var_parts; i++)
8633 if (var->var_part[i].cur_loc == NULL && var->var_part[i].loc_chain)
8634 var->var_part[i].cur_loc = var->var_part[i].loc_chain->loc;
8635 for (i = 0; i < var->n_var_parts; i++)
8637 machine_mode mode, wider_mode;
8638 rtx loc2;
8639 HOST_WIDE_INT offset;
8641 if (i == 0 && var->onepart)
8643 gcc_checking_assert (var->n_var_parts == 1);
8644 offset = 0;
8645 initialized = VAR_INIT_STATUS_INITIALIZED;
8646 loc2 = vt_expand_1pvar (var, vars);
8648 else
8650 if (last_limit < VAR_PART_OFFSET (var, i))
8652 complete = false;
8653 break;
8655 else if (last_limit > VAR_PART_OFFSET (var, i))
8656 continue;
8657 offset = VAR_PART_OFFSET (var, i);
8658 loc2 = var->var_part[i].cur_loc;
8659 if (loc2 && GET_CODE (loc2) == MEM
8660 && GET_CODE (XEXP (loc2, 0)) == VALUE)
8662 rtx depval = XEXP (loc2, 0);
8664 loc2 = vt_expand_loc (loc2, vars);
8666 if (loc2)
8667 loc_exp_insert_dep (var, depval, vars);
8669 if (!loc2)
8671 complete = false;
8672 continue;
8674 gcc_checking_assert (GET_CODE (loc2) != VALUE);
8675 for (lc = var->var_part[i].loc_chain; lc; lc = lc->next)
8676 if (var->var_part[i].cur_loc == lc->loc)
8678 initialized = lc->init;
8679 break;
8681 gcc_assert (lc);
8684 offsets[n_var_parts] = offset;
8685 if (!loc2)
8687 complete = false;
8688 continue;
8690 loc[n_var_parts] = loc2;
8691 mode = GET_MODE (var->var_part[i].cur_loc);
8692 if (mode == VOIDmode && var->onepart)
8693 mode = DECL_MODE (decl);
8694 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
8696 /* Attempt to merge adjacent registers or memory. */
8697 wider_mode = GET_MODE_WIDER_MODE (mode);
8698 for (j = i + 1; j < var->n_var_parts; j++)
8699 if (last_limit <= VAR_PART_OFFSET (var, j))
8700 break;
8701 if (j < var->n_var_parts
8702 && wider_mode != VOIDmode
8703 && var->var_part[j].cur_loc
8704 && mode == GET_MODE (var->var_part[j].cur_loc)
8705 && (REG_P (loc[n_var_parts]) || MEM_P (loc[n_var_parts]))
8706 && last_limit == (var->onepart ? 0 : VAR_PART_OFFSET (var, j))
8707 && (loc2 = vt_expand_loc (var->var_part[j].cur_loc, vars))
8708 && GET_CODE (loc[n_var_parts]) == GET_CODE (loc2))
8710 rtx new_loc = NULL;
8712 if (REG_P (loc[n_var_parts])
8713 && hard_regno_nregs[REGNO (loc[n_var_parts])][mode] * 2
8714 == hard_regno_nregs[REGNO (loc[n_var_parts])][wider_mode]
8715 && end_hard_regno (mode, REGNO (loc[n_var_parts]))
8716 == REGNO (loc2))
8718 if (! WORDS_BIG_ENDIAN && ! BYTES_BIG_ENDIAN)
8719 new_loc = simplify_subreg (wider_mode, loc[n_var_parts],
8720 mode, 0);
8721 else if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
8722 new_loc = simplify_subreg (wider_mode, loc2, mode, 0);
8723 if (new_loc)
8725 if (!REG_P (new_loc)
8726 || REGNO (new_loc) != REGNO (loc[n_var_parts]))
8727 new_loc = NULL;
8728 else
8729 REG_ATTRS (new_loc) = REG_ATTRS (loc[n_var_parts]);
8732 else if (MEM_P (loc[n_var_parts])
8733 && GET_CODE (XEXP (loc2, 0)) == PLUS
8734 && REG_P (XEXP (XEXP (loc2, 0), 0))
8735 && CONST_INT_P (XEXP (XEXP (loc2, 0), 1)))
8737 if ((REG_P (XEXP (loc[n_var_parts], 0))
8738 && rtx_equal_p (XEXP (loc[n_var_parts], 0),
8739 XEXP (XEXP (loc2, 0), 0))
8740 && INTVAL (XEXP (XEXP (loc2, 0), 1))
8741 == GET_MODE_SIZE (mode))
8742 || (GET_CODE (XEXP (loc[n_var_parts], 0)) == PLUS
8743 && CONST_INT_P (XEXP (XEXP (loc[n_var_parts], 0), 1))
8744 && rtx_equal_p (XEXP (XEXP (loc[n_var_parts], 0), 0),
8745 XEXP (XEXP (loc2, 0), 0))
8746 && INTVAL (XEXP (XEXP (loc[n_var_parts], 0), 1))
8747 + GET_MODE_SIZE (mode)
8748 == INTVAL (XEXP (XEXP (loc2, 0), 1))))
8749 new_loc = adjust_address_nv (loc[n_var_parts],
8750 wider_mode, 0);
8753 if (new_loc)
8755 loc[n_var_parts] = new_loc;
8756 mode = wider_mode;
8757 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
8758 i = j;
8761 ++n_var_parts;
8763 type_size_unit = TYPE_SIZE_UNIT (TREE_TYPE (decl));
8764 if ((unsigned HOST_WIDE_INT) last_limit < TREE_INT_CST_LOW (type_size_unit))
8765 complete = false;
8767 if (! flag_var_tracking_uninit)
8768 initialized = VAR_INIT_STATUS_INITIALIZED;
8770 note_vl = NULL_RTX;
8771 if (!complete)
8772 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, NULL_RTX, initialized);
8773 else if (n_var_parts == 1)
8775 rtx expr_list;
8777 if (offsets[0] || GET_CODE (loc[0]) == PARALLEL)
8778 expr_list = gen_rtx_EXPR_LIST (VOIDmode, loc[0], GEN_INT (offsets[0]));
8779 else
8780 expr_list = loc[0];
8782 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, expr_list, initialized);
8784 else if (n_var_parts)
8786 rtx parallel;
8788 for (i = 0; i < n_var_parts; i++)
8789 loc[i]
8790 = gen_rtx_EXPR_LIST (VOIDmode, loc[i], GEN_INT (offsets[i]));
8792 parallel = gen_rtx_PARALLEL (VOIDmode,
8793 gen_rtvec_v (n_var_parts, loc));
8794 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl,
8795 parallel, initialized);
8798 if (where != EMIT_NOTE_BEFORE_INSN)
8800 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8801 if (where == EMIT_NOTE_AFTER_CALL_INSN)
8802 NOTE_DURING_CALL_P (note) = true;
8804 else
8806 /* Make sure that the call related notes come first. */
8807 while (NEXT_INSN (insn)
8808 && NOTE_P (insn)
8809 && ((NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8810 && NOTE_DURING_CALL_P (insn))
8811 || NOTE_KIND (insn) == NOTE_INSN_CALL_ARG_LOCATION))
8812 insn = NEXT_INSN (insn);
8813 if (NOTE_P (insn)
8814 && ((NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8815 && NOTE_DURING_CALL_P (insn))
8816 || NOTE_KIND (insn) == NOTE_INSN_CALL_ARG_LOCATION))
8817 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8818 else
8819 note = emit_note_before (NOTE_INSN_VAR_LOCATION, insn);
8821 NOTE_VAR_LOCATION (note) = note_vl;
8823 set_dv_changed (var->dv, false);
8824 gcc_assert (var->in_changed_variables);
8825 var->in_changed_variables = false;
8826 changed_variables->clear_slot (varp);
8828 /* Continue traversing the hash table. */
8829 return 1;
8832 /* While traversing changed_variables, push onto DATA (a stack of RTX
8833 values) entries that aren't user variables. */
8836 var_track_values_to_stack (variable_def **slot,
8837 vec<rtx, va_heap> *changed_values_stack)
8839 variable var = *slot;
8841 if (var->onepart == ONEPART_VALUE)
8842 changed_values_stack->safe_push (dv_as_value (var->dv));
8843 else if (var->onepart == ONEPART_DEXPR)
8844 changed_values_stack->safe_push (DECL_RTL_KNOWN_SET (dv_as_decl (var->dv)));
8846 return 1;
8849 /* Remove from changed_variables the entry whose DV corresponds to
8850 value or debug_expr VAL. */
8851 static void
8852 remove_value_from_changed_variables (rtx val)
8854 decl_or_value dv = dv_from_rtx (val);
8855 variable_def **slot;
8856 variable var;
8858 slot = changed_variables->find_slot_with_hash (dv, dv_htab_hash (dv),
8859 NO_INSERT);
8860 var = *slot;
8861 var->in_changed_variables = false;
8862 changed_variables->clear_slot (slot);
8865 /* If VAL (a value or debug_expr) has backlinks to variables actively
8866 dependent on it in HTAB or in CHANGED_VARIABLES, mark them as
8867 changed, adding to CHANGED_VALUES_STACK any dependencies that may
8868 have dependencies of their own to notify. */
8870 static void
8871 notify_dependents_of_changed_value (rtx val, variable_table_type *htab,
8872 vec<rtx, va_heap> *changed_values_stack)
8874 variable_def **slot;
8875 variable var;
8876 loc_exp_dep *led;
8877 decl_or_value dv = dv_from_rtx (val);
8879 slot = changed_variables->find_slot_with_hash (dv, dv_htab_hash (dv),
8880 NO_INSERT);
8881 if (!slot)
8882 slot = htab->find_slot_with_hash (dv, dv_htab_hash (dv), NO_INSERT);
8883 if (!slot)
8884 slot = dropped_values->find_slot_with_hash (dv, dv_htab_hash (dv),
8885 NO_INSERT);
8886 var = *slot;
8888 while ((led = VAR_LOC_DEP_LST (var)))
8890 decl_or_value ldv = led->dv;
8891 variable ivar;
8893 /* Deactivate and remove the backlink, as it was “used up”. It
8894 makes no sense to attempt to notify the same entity again:
8895 either it will be recomputed and re-register an active
8896 dependency, or it will still have the changed mark. */
8897 if (led->next)
8898 led->next->pprev = led->pprev;
8899 if (led->pprev)
8900 *led->pprev = led->next;
8901 led->next = NULL;
8902 led->pprev = NULL;
8904 if (dv_changed_p (ldv))
8905 continue;
8907 switch (dv_onepart_p (ldv))
8909 case ONEPART_VALUE:
8910 case ONEPART_DEXPR:
8911 set_dv_changed (ldv, true);
8912 changed_values_stack->safe_push (dv_as_rtx (ldv));
8913 break;
8915 case ONEPART_VDECL:
8916 ivar = htab->find_with_hash (ldv, dv_htab_hash (ldv));
8917 gcc_checking_assert (!VAR_LOC_DEP_LST (ivar));
8918 variable_was_changed (ivar, NULL);
8919 break;
8921 case NOT_ONEPART:
8922 pool_free (loc_exp_dep_pool, led);
8923 ivar = htab->find_with_hash (ldv, dv_htab_hash (ldv));
8924 if (ivar)
8926 int i = ivar->n_var_parts;
8927 while (i--)
8929 rtx loc = ivar->var_part[i].cur_loc;
8931 if (loc && GET_CODE (loc) == MEM
8932 && XEXP (loc, 0) == val)
8934 variable_was_changed (ivar, NULL);
8935 break;
8939 break;
8941 default:
8942 gcc_unreachable ();
8947 /* Take out of changed_variables any entries that don't refer to use
8948 variables. Back-propagate change notifications from values and
8949 debug_exprs to their active dependencies in HTAB or in
8950 CHANGED_VARIABLES. */
8952 static void
8953 process_changed_values (variable_table_type *htab)
8955 int i, n;
8956 rtx val;
8957 auto_vec<rtx, 20> changed_values_stack;
8959 /* Move values from changed_variables to changed_values_stack. */
8960 changed_variables
8961 ->traverse <vec<rtx, va_heap>*, var_track_values_to_stack>
8962 (&changed_values_stack);
8964 /* Back-propagate change notifications in values while popping
8965 them from the stack. */
8966 for (n = i = changed_values_stack.length ();
8967 i > 0; i = changed_values_stack.length ())
8969 val = changed_values_stack.pop ();
8970 notify_dependents_of_changed_value (val, htab, &changed_values_stack);
8972 /* This condition will hold when visiting each of the entries
8973 originally in changed_variables. We can't remove them
8974 earlier because this could drop the backlinks before we got a
8975 chance to use them. */
8976 if (i == n)
8978 remove_value_from_changed_variables (val);
8979 n--;
8984 /* Emit NOTE_INSN_VAR_LOCATION note for each variable from a chain
8985 CHANGED_VARIABLES and delete this chain. WHERE specifies whether
8986 the notes shall be emitted before of after instruction INSN. */
8988 static void
8989 emit_notes_for_changes (rtx_insn *insn, enum emit_note_where where,
8990 shared_hash vars)
8992 emit_note_data data;
8993 variable_table_type *htab = shared_hash_htab (vars);
8995 if (!changed_variables->elements ())
8996 return;
8998 if (MAY_HAVE_DEBUG_INSNS)
8999 process_changed_values (htab);
9001 data.insn = insn;
9002 data.where = where;
9003 data.vars = htab;
9005 changed_variables
9006 ->traverse <emit_note_data*, emit_note_insn_var_location> (&data);
9009 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it differs from the
9010 same variable in hash table DATA or is not there at all. */
9013 emit_notes_for_differences_1 (variable_def **slot, variable_table_type *new_vars)
9015 variable old_var, new_var;
9017 old_var = *slot;
9018 new_var = new_vars->find_with_hash (old_var->dv, dv_htab_hash (old_var->dv));
9020 if (!new_var)
9022 /* Variable has disappeared. */
9023 variable empty_var = NULL;
9025 if (old_var->onepart == ONEPART_VALUE
9026 || old_var->onepart == ONEPART_DEXPR)
9028 empty_var = variable_from_dropped (old_var->dv, NO_INSERT);
9029 if (empty_var)
9031 gcc_checking_assert (!empty_var->in_changed_variables);
9032 if (!VAR_LOC_1PAUX (old_var))
9034 VAR_LOC_1PAUX (old_var) = VAR_LOC_1PAUX (empty_var);
9035 VAR_LOC_1PAUX (empty_var) = NULL;
9037 else
9038 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
9042 if (!empty_var)
9044 empty_var = (variable) pool_alloc (onepart_pool (old_var->onepart));
9045 empty_var->dv = old_var->dv;
9046 empty_var->refcount = 0;
9047 empty_var->n_var_parts = 0;
9048 empty_var->onepart = old_var->onepart;
9049 empty_var->in_changed_variables = false;
9052 if (empty_var->onepart)
9054 /* Propagate the auxiliary data to (ultimately)
9055 changed_variables. */
9056 empty_var->var_part[0].loc_chain = NULL;
9057 empty_var->var_part[0].cur_loc = NULL;
9058 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (old_var);
9059 VAR_LOC_1PAUX (old_var) = NULL;
9061 variable_was_changed (empty_var, NULL);
9062 /* Continue traversing the hash table. */
9063 return 1;
9065 /* Update cur_loc and one-part auxiliary data, before new_var goes
9066 through variable_was_changed. */
9067 if (old_var != new_var && new_var->onepart)
9069 gcc_checking_assert (VAR_LOC_1PAUX (new_var) == NULL);
9070 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (old_var);
9071 VAR_LOC_1PAUX (old_var) = NULL;
9072 new_var->var_part[0].cur_loc = old_var->var_part[0].cur_loc;
9074 if (variable_different_p (old_var, new_var))
9075 variable_was_changed (new_var, NULL);
9077 /* Continue traversing the hash table. */
9078 return 1;
9081 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it is not in hash
9082 table DATA. */
9085 emit_notes_for_differences_2 (variable_def **slot, variable_table_type *old_vars)
9087 variable old_var, new_var;
9089 new_var = *slot;
9090 old_var = old_vars->find_with_hash (new_var->dv, dv_htab_hash (new_var->dv));
9091 if (!old_var)
9093 int i;
9094 for (i = 0; i < new_var->n_var_parts; i++)
9095 new_var->var_part[i].cur_loc = NULL;
9096 variable_was_changed (new_var, NULL);
9099 /* Continue traversing the hash table. */
9100 return 1;
9103 /* Emit notes before INSN for differences between dataflow sets OLD_SET and
9104 NEW_SET. */
9106 static void
9107 emit_notes_for_differences (rtx_insn *insn, dataflow_set *old_set,
9108 dataflow_set *new_set)
9110 shared_hash_htab (old_set->vars)
9111 ->traverse <variable_table_type *, emit_notes_for_differences_1>
9112 (shared_hash_htab (new_set->vars));
9113 shared_hash_htab (new_set->vars)
9114 ->traverse <variable_table_type *, emit_notes_for_differences_2>
9115 (shared_hash_htab (old_set->vars));
9116 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, new_set->vars);
9119 /* Return the next insn after INSN that is not a NOTE_INSN_VAR_LOCATION. */
9121 static rtx_insn *
9122 next_non_note_insn_var_location (rtx_insn *insn)
9124 while (insn)
9126 insn = NEXT_INSN (insn);
9127 if (insn == 0
9128 || !NOTE_P (insn)
9129 || NOTE_KIND (insn) != NOTE_INSN_VAR_LOCATION)
9130 break;
9133 return insn;
9136 /* Emit the notes for changes of location parts in the basic block BB. */
9138 static void
9139 emit_notes_in_bb (basic_block bb, dataflow_set *set)
9141 unsigned int i;
9142 micro_operation *mo;
9144 dataflow_set_clear (set);
9145 dataflow_set_copy (set, &VTI (bb)->in);
9147 FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
9149 rtx_insn *insn = mo->insn;
9150 rtx_insn *next_insn = next_non_note_insn_var_location (insn);
9152 switch (mo->type)
9154 case MO_CALL:
9155 dataflow_set_clear_at_call (set);
9156 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_CALL_INSN, set->vars);
9158 rtx arguments = mo->u.loc, *p = &arguments;
9159 rtx_note *note;
9160 while (*p)
9162 XEXP (XEXP (*p, 0), 1)
9163 = vt_expand_loc (XEXP (XEXP (*p, 0), 1),
9164 shared_hash_htab (set->vars));
9165 /* If expansion is successful, keep it in the list. */
9166 if (XEXP (XEXP (*p, 0), 1))
9167 p = &XEXP (*p, 1);
9168 /* Otherwise, if the following item is data_value for it,
9169 drop it too too. */
9170 else if (XEXP (*p, 1)
9171 && REG_P (XEXP (XEXP (*p, 0), 0))
9172 && MEM_P (XEXP (XEXP (XEXP (*p, 1), 0), 0))
9173 && REG_P (XEXP (XEXP (XEXP (XEXP (*p, 1), 0), 0),
9175 && REGNO (XEXP (XEXP (*p, 0), 0))
9176 == REGNO (XEXP (XEXP (XEXP (XEXP (*p, 1), 0),
9177 0), 0)))
9178 *p = XEXP (XEXP (*p, 1), 1);
9179 /* Just drop this item. */
9180 else
9181 *p = XEXP (*p, 1);
9183 note = emit_note_after (NOTE_INSN_CALL_ARG_LOCATION, insn);
9184 NOTE_VAR_LOCATION (note) = arguments;
9186 break;
9188 case MO_USE:
9190 rtx loc = mo->u.loc;
9192 if (REG_P (loc))
9193 var_reg_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
9194 else
9195 var_mem_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
9197 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
9199 break;
9201 case MO_VAL_LOC:
9203 rtx loc = mo->u.loc;
9204 rtx val, vloc;
9205 tree var;
9207 if (GET_CODE (loc) == CONCAT)
9209 val = XEXP (loc, 0);
9210 vloc = XEXP (loc, 1);
9212 else
9214 val = NULL_RTX;
9215 vloc = loc;
9218 var = PAT_VAR_LOCATION_DECL (vloc);
9220 clobber_variable_part (set, NULL_RTX,
9221 dv_from_decl (var), 0, NULL_RTX);
9222 if (val)
9224 if (VAL_NEEDS_RESOLUTION (loc))
9225 val_resolve (set, val, PAT_VAR_LOCATION_LOC (vloc), insn);
9226 set_variable_part (set, val, dv_from_decl (var), 0,
9227 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
9228 INSERT);
9230 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
9231 set_variable_part (set, PAT_VAR_LOCATION_LOC (vloc),
9232 dv_from_decl (var), 0,
9233 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
9234 INSERT);
9236 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
9238 break;
9240 case MO_VAL_USE:
9242 rtx loc = mo->u.loc;
9243 rtx val, vloc, uloc;
9245 vloc = uloc = XEXP (loc, 1);
9246 val = XEXP (loc, 0);
9248 if (GET_CODE (val) == CONCAT)
9250 uloc = XEXP (val, 1);
9251 val = XEXP (val, 0);
9254 if (VAL_NEEDS_RESOLUTION (loc))
9255 val_resolve (set, val, vloc, insn);
9256 else
9257 val_store (set, val, uloc, insn, false);
9259 if (VAL_HOLDS_TRACK_EXPR (loc))
9261 if (GET_CODE (uloc) == REG)
9262 var_reg_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9263 NULL);
9264 else if (GET_CODE (uloc) == MEM)
9265 var_mem_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9266 NULL);
9269 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
9271 break;
9273 case MO_VAL_SET:
9275 rtx loc = mo->u.loc;
9276 rtx val, vloc, uloc;
9277 rtx dstv, srcv;
9279 vloc = loc;
9280 uloc = XEXP (vloc, 1);
9281 val = XEXP (vloc, 0);
9282 vloc = uloc;
9284 if (GET_CODE (uloc) == SET)
9286 dstv = SET_DEST (uloc);
9287 srcv = SET_SRC (uloc);
9289 else
9291 dstv = uloc;
9292 srcv = NULL;
9295 if (GET_CODE (val) == CONCAT)
9297 dstv = vloc = XEXP (val, 1);
9298 val = XEXP (val, 0);
9301 if (GET_CODE (vloc) == SET)
9303 srcv = SET_SRC (vloc);
9305 gcc_assert (val != srcv);
9306 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
9308 dstv = vloc = SET_DEST (vloc);
9310 if (VAL_NEEDS_RESOLUTION (loc))
9311 val_resolve (set, val, srcv, insn);
9313 else if (VAL_NEEDS_RESOLUTION (loc))
9315 gcc_assert (GET_CODE (uloc) == SET
9316 && GET_CODE (SET_SRC (uloc)) == REG);
9317 val_resolve (set, val, SET_SRC (uloc), insn);
9320 if (VAL_HOLDS_TRACK_EXPR (loc))
9322 if (VAL_EXPR_IS_CLOBBERED (loc))
9324 if (REG_P (uloc))
9325 var_reg_delete (set, uloc, true);
9326 else if (MEM_P (uloc))
9328 gcc_assert (MEM_P (dstv));
9329 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
9330 var_mem_delete (set, dstv, true);
9333 else
9335 bool copied_p = VAL_EXPR_IS_COPIED (loc);
9336 rtx src = NULL, dst = uloc;
9337 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
9339 if (GET_CODE (uloc) == SET)
9341 src = SET_SRC (uloc);
9342 dst = SET_DEST (uloc);
9345 if (copied_p)
9347 status = find_src_status (set, src);
9349 src = find_src_set_src (set, src);
9352 if (REG_P (dst))
9353 var_reg_delete_and_set (set, dst, !copied_p,
9354 status, srcv);
9355 else if (MEM_P (dst))
9357 gcc_assert (MEM_P (dstv));
9358 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
9359 var_mem_delete_and_set (set, dstv, !copied_p,
9360 status, srcv);
9364 else if (REG_P (uloc))
9365 var_regno_delete (set, REGNO (uloc));
9366 else if (MEM_P (uloc))
9368 gcc_checking_assert (GET_CODE (vloc) == MEM);
9369 gcc_checking_assert (vloc == dstv);
9370 if (vloc != dstv)
9371 clobber_overlapping_mems (set, vloc);
9374 val_store (set, val, dstv, insn, true);
9376 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9377 set->vars);
9379 break;
9381 case MO_SET:
9383 rtx loc = mo->u.loc;
9384 rtx set_src = NULL;
9386 if (GET_CODE (loc) == SET)
9388 set_src = SET_SRC (loc);
9389 loc = SET_DEST (loc);
9392 if (REG_P (loc))
9393 var_reg_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
9394 set_src);
9395 else
9396 var_mem_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
9397 set_src);
9399 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9400 set->vars);
9402 break;
9404 case MO_COPY:
9406 rtx loc = mo->u.loc;
9407 enum var_init_status src_status;
9408 rtx set_src = NULL;
9410 if (GET_CODE (loc) == SET)
9412 set_src = SET_SRC (loc);
9413 loc = SET_DEST (loc);
9416 src_status = find_src_status (set, set_src);
9417 set_src = find_src_set_src (set, set_src);
9419 if (REG_P (loc))
9420 var_reg_delete_and_set (set, loc, false, src_status, set_src);
9421 else
9422 var_mem_delete_and_set (set, loc, false, src_status, set_src);
9424 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9425 set->vars);
9427 break;
9429 case MO_USE_NO_VAR:
9431 rtx loc = mo->u.loc;
9433 if (REG_P (loc))
9434 var_reg_delete (set, loc, false);
9435 else
9436 var_mem_delete (set, loc, false);
9438 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
9440 break;
9442 case MO_CLOBBER:
9444 rtx loc = mo->u.loc;
9446 if (REG_P (loc))
9447 var_reg_delete (set, loc, true);
9448 else
9449 var_mem_delete (set, loc, true);
9451 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9452 set->vars);
9454 break;
9456 case MO_ADJUST:
9457 set->stack_adjust += mo->u.adjust;
9458 break;
9463 /* Emit notes for the whole function. */
9465 static void
9466 vt_emit_notes (void)
9468 basic_block bb;
9469 dataflow_set cur;
9471 gcc_assert (!changed_variables->elements ());
9473 /* Free memory occupied by the out hash tables, as they aren't used
9474 anymore. */
9475 FOR_EACH_BB_FN (bb, cfun)
9476 dataflow_set_clear (&VTI (bb)->out);
9478 /* Enable emitting notes by functions (mainly by set_variable_part and
9479 delete_variable_part). */
9480 emit_notes = true;
9482 if (MAY_HAVE_DEBUG_INSNS)
9484 dropped_values = new variable_table_type (cselib_get_next_uid () * 2);
9485 loc_exp_dep_pool = create_alloc_pool ("loc_exp_dep pool",
9486 sizeof (loc_exp_dep), 64);
9489 dataflow_set_init (&cur);
9491 FOR_EACH_BB_FN (bb, cfun)
9493 /* Emit the notes for changes of variable locations between two
9494 subsequent basic blocks. */
9495 emit_notes_for_differences (BB_HEAD (bb), &cur, &VTI (bb)->in);
9497 if (MAY_HAVE_DEBUG_INSNS)
9498 local_get_addr_cache = new hash_map<rtx, rtx>;
9500 /* Emit the notes for the changes in the basic block itself. */
9501 emit_notes_in_bb (bb, &cur);
9503 if (MAY_HAVE_DEBUG_INSNS)
9504 delete local_get_addr_cache;
9505 local_get_addr_cache = NULL;
9507 /* Free memory occupied by the in hash table, we won't need it
9508 again. */
9509 dataflow_set_clear (&VTI (bb)->in);
9511 #ifdef ENABLE_CHECKING
9512 shared_hash_htab (cur.vars)
9513 ->traverse <variable_table_type *, emit_notes_for_differences_1>
9514 (shared_hash_htab (empty_shared_hash));
9515 #endif
9516 dataflow_set_destroy (&cur);
9518 if (MAY_HAVE_DEBUG_INSNS)
9519 delete dropped_values;
9520 dropped_values = NULL;
9522 emit_notes = false;
9525 /* If there is a declaration and offset associated with register/memory RTL
9526 assign declaration to *DECLP and offset to *OFFSETP, and return true. */
9528 static bool
9529 vt_get_decl_and_offset (rtx rtl, tree *declp, HOST_WIDE_INT *offsetp)
9531 if (REG_P (rtl))
9533 if (REG_ATTRS (rtl))
9535 *declp = REG_EXPR (rtl);
9536 *offsetp = REG_OFFSET (rtl);
9537 return true;
9540 else if (GET_CODE (rtl) == PARALLEL)
9542 tree decl = NULL_TREE;
9543 HOST_WIDE_INT offset = MAX_VAR_PARTS;
9544 int len = XVECLEN (rtl, 0), i;
9546 for (i = 0; i < len; i++)
9548 rtx reg = XEXP (XVECEXP (rtl, 0, i), 0);
9549 if (!REG_P (reg) || !REG_ATTRS (reg))
9550 break;
9551 if (!decl)
9552 decl = REG_EXPR (reg);
9553 if (REG_EXPR (reg) != decl)
9554 break;
9555 if (REG_OFFSET (reg) < offset)
9556 offset = REG_OFFSET (reg);
9559 if (i == len)
9561 *declp = decl;
9562 *offsetp = offset;
9563 return true;
9566 else if (MEM_P (rtl))
9568 if (MEM_ATTRS (rtl))
9570 *declp = MEM_EXPR (rtl);
9571 *offsetp = INT_MEM_OFFSET (rtl);
9572 return true;
9575 return false;
9578 /* Record the value for the ENTRY_VALUE of RTL as a global equivalence
9579 of VAL. */
9581 static void
9582 record_entry_value (cselib_val *val, rtx rtl)
9584 rtx ev = gen_rtx_ENTRY_VALUE (GET_MODE (rtl));
9586 ENTRY_VALUE_EXP (ev) = rtl;
9588 cselib_add_permanent_equiv (val, ev, get_insns ());
9591 /* Insert function parameter PARM in IN and OUT sets of ENTRY_BLOCK. */
9593 static void
9594 vt_add_function_parameter (tree parm)
9596 rtx decl_rtl = DECL_RTL_IF_SET (parm);
9597 rtx incoming = DECL_INCOMING_RTL (parm);
9598 tree decl;
9599 machine_mode mode;
9600 HOST_WIDE_INT offset;
9601 dataflow_set *out;
9602 decl_or_value dv;
9604 if (TREE_CODE (parm) != PARM_DECL)
9605 return;
9607 if (!decl_rtl || !incoming)
9608 return;
9610 if (GET_MODE (decl_rtl) == BLKmode || GET_MODE (incoming) == BLKmode)
9611 return;
9613 /* If there is a DRAP register or a pseudo in internal_arg_pointer,
9614 rewrite the incoming location of parameters passed on the stack
9615 into MEMs based on the argument pointer, so that incoming doesn't
9616 depend on a pseudo. */
9617 if (MEM_P (incoming)
9618 && (XEXP (incoming, 0) == crtl->args.internal_arg_pointer
9619 || (GET_CODE (XEXP (incoming, 0)) == PLUS
9620 && XEXP (XEXP (incoming, 0), 0)
9621 == crtl->args.internal_arg_pointer
9622 && CONST_INT_P (XEXP (XEXP (incoming, 0), 1)))))
9624 HOST_WIDE_INT off = -FIRST_PARM_OFFSET (current_function_decl);
9625 if (GET_CODE (XEXP (incoming, 0)) == PLUS)
9626 off += INTVAL (XEXP (XEXP (incoming, 0), 1));
9627 incoming
9628 = replace_equiv_address_nv (incoming,
9629 plus_constant (Pmode,
9630 arg_pointer_rtx, off));
9633 #ifdef HAVE_window_save
9634 /* DECL_INCOMING_RTL uses the INCOMING_REGNO of parameter registers.
9635 If the target machine has an explicit window save instruction, the
9636 actual entry value is the corresponding OUTGOING_REGNO instead. */
9637 if (HAVE_window_save && !crtl->uses_only_leaf_regs)
9639 if (REG_P (incoming)
9640 && HARD_REGISTER_P (incoming)
9641 && OUTGOING_REGNO (REGNO (incoming)) != REGNO (incoming))
9643 parm_reg_t p;
9644 p.incoming = incoming;
9645 incoming
9646 = gen_rtx_REG_offset (incoming, GET_MODE (incoming),
9647 OUTGOING_REGNO (REGNO (incoming)), 0);
9648 p.outgoing = incoming;
9649 vec_safe_push (windowed_parm_regs, p);
9651 else if (GET_CODE (incoming) == PARALLEL)
9653 rtx outgoing
9654 = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (XVECLEN (incoming, 0)));
9655 int i;
9657 for (i = 0; i < XVECLEN (incoming, 0); i++)
9659 rtx reg = XEXP (XVECEXP (incoming, 0, i), 0);
9660 parm_reg_t p;
9661 p.incoming = reg;
9662 reg = gen_rtx_REG_offset (reg, GET_MODE (reg),
9663 OUTGOING_REGNO (REGNO (reg)), 0);
9664 p.outgoing = reg;
9665 XVECEXP (outgoing, 0, i)
9666 = gen_rtx_EXPR_LIST (VOIDmode, reg,
9667 XEXP (XVECEXP (incoming, 0, i), 1));
9668 vec_safe_push (windowed_parm_regs, p);
9671 incoming = outgoing;
9673 else if (MEM_P (incoming)
9674 && REG_P (XEXP (incoming, 0))
9675 && HARD_REGISTER_P (XEXP (incoming, 0)))
9677 rtx reg = XEXP (incoming, 0);
9678 if (OUTGOING_REGNO (REGNO (reg)) != REGNO (reg))
9680 parm_reg_t p;
9681 p.incoming = reg;
9682 reg = gen_raw_REG (GET_MODE (reg), OUTGOING_REGNO (REGNO (reg)));
9683 p.outgoing = reg;
9684 vec_safe_push (windowed_parm_regs, p);
9685 incoming = replace_equiv_address_nv (incoming, reg);
9689 #endif
9691 if (!vt_get_decl_and_offset (incoming, &decl, &offset))
9693 if (MEM_P (incoming))
9695 /* This means argument is passed by invisible reference. */
9696 offset = 0;
9697 decl = parm;
9699 else
9701 if (!vt_get_decl_and_offset (decl_rtl, &decl, &offset))
9702 return;
9703 offset += byte_lowpart_offset (GET_MODE (incoming),
9704 GET_MODE (decl_rtl));
9708 if (!decl)
9709 return;
9711 if (parm != decl)
9713 /* If that DECL_RTL wasn't a pseudo that got spilled to
9714 memory, bail out. Otherwise, the spill slot sharing code
9715 will force the memory to reference spill_slot_decl (%sfp),
9716 so we don't match above. That's ok, the pseudo must have
9717 referenced the entire parameter, so just reset OFFSET. */
9718 if (decl != get_spill_slot_decl (false))
9719 return;
9720 offset = 0;
9723 if (!track_loc_p (incoming, parm, offset, false, &mode, &offset))
9724 return;
9726 out = &VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->out;
9728 dv = dv_from_decl (parm);
9730 if (target_for_debug_bind (parm)
9731 /* We can't deal with these right now, because this kind of
9732 variable is single-part. ??? We could handle parallels
9733 that describe multiple locations for the same single
9734 value, but ATM we don't. */
9735 && GET_CODE (incoming) != PARALLEL)
9737 cselib_val *val;
9738 rtx lowpart;
9740 /* ??? We shouldn't ever hit this, but it may happen because
9741 arguments passed by invisible reference aren't dealt with
9742 above: incoming-rtl will have Pmode rather than the
9743 expected mode for the type. */
9744 if (offset)
9745 return;
9747 lowpart = var_lowpart (mode, incoming);
9748 if (!lowpart)
9749 return;
9751 val = cselib_lookup_from_insn (lowpart, mode, true,
9752 VOIDmode, get_insns ());
9754 /* ??? Float-typed values in memory are not handled by
9755 cselib. */
9756 if (val)
9758 preserve_value (val);
9759 set_variable_part (out, val->val_rtx, dv, offset,
9760 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9761 dv = dv_from_value (val->val_rtx);
9764 if (MEM_P (incoming))
9766 val = cselib_lookup_from_insn (XEXP (incoming, 0), mode, true,
9767 VOIDmode, get_insns ());
9768 if (val)
9770 preserve_value (val);
9771 incoming = replace_equiv_address_nv (incoming, val->val_rtx);
9776 if (REG_P (incoming))
9778 incoming = var_lowpart (mode, incoming);
9779 gcc_assert (REGNO (incoming) < FIRST_PSEUDO_REGISTER);
9780 attrs_list_insert (&out->regs[REGNO (incoming)], dv, offset,
9781 incoming);
9782 set_variable_part (out, incoming, dv, offset,
9783 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9784 if (dv_is_value_p (dv))
9786 record_entry_value (CSELIB_VAL_PTR (dv_as_value (dv)), incoming);
9787 if (TREE_CODE (TREE_TYPE (parm)) == REFERENCE_TYPE
9788 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_TYPE (parm))))
9790 machine_mode indmode
9791 = TYPE_MODE (TREE_TYPE (TREE_TYPE (parm)));
9792 rtx mem = gen_rtx_MEM (indmode, incoming);
9793 cselib_val *val = cselib_lookup_from_insn (mem, indmode, true,
9794 VOIDmode,
9795 get_insns ());
9796 if (val)
9798 preserve_value (val);
9799 record_entry_value (val, mem);
9800 set_variable_part (out, mem, dv_from_value (val->val_rtx), 0,
9801 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9806 else if (GET_CODE (incoming) == PARALLEL && !dv_onepart_p (dv))
9808 int i;
9810 for (i = 0; i < XVECLEN (incoming, 0); i++)
9812 rtx reg = XEXP (XVECEXP (incoming, 0, i), 0);
9813 offset = REG_OFFSET (reg);
9814 gcc_assert (REGNO (reg) < FIRST_PSEUDO_REGISTER);
9815 attrs_list_insert (&out->regs[REGNO (reg)], dv, offset, reg);
9816 set_variable_part (out, reg, dv, offset,
9817 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9820 else if (MEM_P (incoming))
9822 incoming = var_lowpart (mode, incoming);
9823 set_variable_part (out, incoming, dv, offset,
9824 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9828 /* Insert function parameters to IN and OUT sets of ENTRY_BLOCK. */
9830 static void
9831 vt_add_function_parameters (void)
9833 tree parm;
9835 for (parm = DECL_ARGUMENTS (current_function_decl);
9836 parm; parm = DECL_CHAIN (parm))
9837 if (!POINTER_BOUNDS_P (parm))
9838 vt_add_function_parameter (parm);
9840 if (DECL_HAS_VALUE_EXPR_P (DECL_RESULT (current_function_decl)))
9842 tree vexpr = DECL_VALUE_EXPR (DECL_RESULT (current_function_decl));
9844 if (TREE_CODE (vexpr) == INDIRECT_REF)
9845 vexpr = TREE_OPERAND (vexpr, 0);
9847 if (TREE_CODE (vexpr) == PARM_DECL
9848 && DECL_ARTIFICIAL (vexpr)
9849 && !DECL_IGNORED_P (vexpr)
9850 && DECL_NAMELESS (vexpr))
9851 vt_add_function_parameter (vexpr);
9855 /* Initialize cfa_base_rtx, create a preserved VALUE for it and
9856 ensure it isn't flushed during cselib_reset_table.
9857 Can be called only if frame_pointer_rtx resp. arg_pointer_rtx
9858 has been eliminated. */
9860 static void
9861 vt_init_cfa_base (void)
9863 cselib_val *val;
9865 #ifdef FRAME_POINTER_CFA_OFFSET
9866 cfa_base_rtx = frame_pointer_rtx;
9867 cfa_base_offset = -FRAME_POINTER_CFA_OFFSET (current_function_decl);
9868 #else
9869 cfa_base_rtx = arg_pointer_rtx;
9870 cfa_base_offset = -ARG_POINTER_CFA_OFFSET (current_function_decl);
9871 #endif
9872 if (cfa_base_rtx == hard_frame_pointer_rtx
9873 || !fixed_regs[REGNO (cfa_base_rtx)])
9875 cfa_base_rtx = NULL_RTX;
9876 return;
9878 if (!MAY_HAVE_DEBUG_INSNS)
9879 return;
9881 /* Tell alias analysis that cfa_base_rtx should share
9882 find_base_term value with stack pointer or hard frame pointer. */
9883 if (!frame_pointer_needed)
9884 vt_equate_reg_base_value (cfa_base_rtx, stack_pointer_rtx);
9885 else if (!crtl->stack_realign_tried)
9886 vt_equate_reg_base_value (cfa_base_rtx, hard_frame_pointer_rtx);
9888 val = cselib_lookup_from_insn (cfa_base_rtx, GET_MODE (cfa_base_rtx), 1,
9889 VOIDmode, get_insns ());
9890 preserve_value (val);
9891 cselib_preserve_cfa_base_value (val, REGNO (cfa_base_rtx));
9894 /* Allocate and initialize the data structures for variable tracking
9895 and parse the RTL to get the micro operations. */
9897 static bool
9898 vt_initialize (void)
9900 basic_block bb;
9901 HOST_WIDE_INT fp_cfa_offset = -1;
9903 alloc_aux_for_blocks (sizeof (struct variable_tracking_info_def));
9905 attrs_pool = create_alloc_pool ("attrs_def pool",
9906 sizeof (struct attrs_def), 1024);
9907 var_pool = create_alloc_pool ("variable_def pool",
9908 sizeof (struct variable_def)
9909 + (MAX_VAR_PARTS - 1)
9910 * sizeof (((variable)NULL)->var_part[0]), 64);
9911 loc_chain_pool = create_alloc_pool ("location_chain_def pool",
9912 sizeof (struct location_chain_def),
9913 1024);
9914 shared_hash_pool = create_alloc_pool ("shared_hash_def pool",
9915 sizeof (struct shared_hash_def), 256);
9916 empty_shared_hash = (shared_hash) pool_alloc (shared_hash_pool);
9917 empty_shared_hash->refcount = 1;
9918 empty_shared_hash->htab = new variable_table_type (1);
9919 changed_variables = new variable_table_type (10);
9921 /* Init the IN and OUT sets. */
9922 FOR_ALL_BB_FN (bb, cfun)
9924 VTI (bb)->visited = false;
9925 VTI (bb)->flooded = false;
9926 dataflow_set_init (&VTI (bb)->in);
9927 dataflow_set_init (&VTI (bb)->out);
9928 VTI (bb)->permp = NULL;
9931 if (MAY_HAVE_DEBUG_INSNS)
9933 cselib_init (CSELIB_RECORD_MEMORY | CSELIB_PRESERVE_CONSTANTS);
9934 scratch_regs = BITMAP_ALLOC (NULL);
9935 valvar_pool = create_alloc_pool ("small variable_def pool",
9936 sizeof (struct variable_def), 256);
9937 preserved_values.create (256);
9938 global_get_addr_cache = new hash_map<rtx, rtx>;
9940 else
9942 scratch_regs = NULL;
9943 valvar_pool = NULL;
9944 global_get_addr_cache = NULL;
9947 if (MAY_HAVE_DEBUG_INSNS)
9949 rtx reg, expr;
9950 int ofst;
9951 cselib_val *val;
9953 #ifdef FRAME_POINTER_CFA_OFFSET
9954 reg = frame_pointer_rtx;
9955 ofst = FRAME_POINTER_CFA_OFFSET (current_function_decl);
9956 #else
9957 reg = arg_pointer_rtx;
9958 ofst = ARG_POINTER_CFA_OFFSET (current_function_decl);
9959 #endif
9961 ofst -= INCOMING_FRAME_SP_OFFSET;
9963 val = cselib_lookup_from_insn (reg, GET_MODE (reg), 1,
9964 VOIDmode, get_insns ());
9965 preserve_value (val);
9966 if (reg != hard_frame_pointer_rtx && fixed_regs[REGNO (reg)])
9967 cselib_preserve_cfa_base_value (val, REGNO (reg));
9968 expr = plus_constant (GET_MODE (stack_pointer_rtx),
9969 stack_pointer_rtx, -ofst);
9970 cselib_add_permanent_equiv (val, expr, get_insns ());
9972 if (ofst)
9974 val = cselib_lookup_from_insn (stack_pointer_rtx,
9975 GET_MODE (stack_pointer_rtx), 1,
9976 VOIDmode, get_insns ());
9977 preserve_value (val);
9978 expr = plus_constant (GET_MODE (reg), reg, ofst);
9979 cselib_add_permanent_equiv (val, expr, get_insns ());
9983 /* In order to factor out the adjustments made to the stack pointer or to
9984 the hard frame pointer and thus be able to use DW_OP_fbreg operations
9985 instead of individual location lists, we're going to rewrite MEMs based
9986 on them into MEMs based on the CFA by de-eliminating stack_pointer_rtx
9987 or hard_frame_pointer_rtx to the virtual CFA pointer frame_pointer_rtx
9988 resp. arg_pointer_rtx. We can do this either when there is no frame
9989 pointer in the function and stack adjustments are consistent for all
9990 basic blocks or when there is a frame pointer and no stack realignment.
9991 But we first have to check that frame_pointer_rtx resp. arg_pointer_rtx
9992 has been eliminated. */
9993 if (!frame_pointer_needed)
9995 rtx reg, elim;
9997 if (!vt_stack_adjustments ())
9998 return false;
10000 #ifdef FRAME_POINTER_CFA_OFFSET
10001 reg = frame_pointer_rtx;
10002 #else
10003 reg = arg_pointer_rtx;
10004 #endif
10005 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10006 if (elim != reg)
10008 if (GET_CODE (elim) == PLUS)
10009 elim = XEXP (elim, 0);
10010 if (elim == stack_pointer_rtx)
10011 vt_init_cfa_base ();
10014 else if (!crtl->stack_realign_tried)
10016 rtx reg, elim;
10018 #ifdef FRAME_POINTER_CFA_OFFSET
10019 reg = frame_pointer_rtx;
10020 fp_cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
10021 #else
10022 reg = arg_pointer_rtx;
10023 fp_cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
10024 #endif
10025 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10026 if (elim != reg)
10028 if (GET_CODE (elim) == PLUS)
10030 fp_cfa_offset -= INTVAL (XEXP (elim, 1));
10031 elim = XEXP (elim, 0);
10033 if (elim != hard_frame_pointer_rtx)
10034 fp_cfa_offset = -1;
10036 else
10037 fp_cfa_offset = -1;
10040 /* If the stack is realigned and a DRAP register is used, we're going to
10041 rewrite MEMs based on it representing incoming locations of parameters
10042 passed on the stack into MEMs based on the argument pointer. Although
10043 we aren't going to rewrite other MEMs, we still need to initialize the
10044 virtual CFA pointer in order to ensure that the argument pointer will
10045 be seen as a constant throughout the function.
10047 ??? This doesn't work if FRAME_POINTER_CFA_OFFSET is defined. */
10048 else if (stack_realign_drap)
10050 rtx reg, elim;
10052 #ifdef FRAME_POINTER_CFA_OFFSET
10053 reg = frame_pointer_rtx;
10054 #else
10055 reg = arg_pointer_rtx;
10056 #endif
10057 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10058 if (elim != reg)
10060 if (GET_CODE (elim) == PLUS)
10061 elim = XEXP (elim, 0);
10062 if (elim == hard_frame_pointer_rtx)
10063 vt_init_cfa_base ();
10067 hard_frame_pointer_adjustment = -1;
10069 vt_add_function_parameters ();
10071 FOR_EACH_BB_FN (bb, cfun)
10073 rtx_insn *insn;
10074 HOST_WIDE_INT pre, post = 0;
10075 basic_block first_bb, last_bb;
10077 if (MAY_HAVE_DEBUG_INSNS)
10079 cselib_record_sets_hook = add_with_sets;
10080 if (dump_file && (dump_flags & TDF_DETAILS))
10081 fprintf (dump_file, "first value: %i\n",
10082 cselib_get_next_uid ());
10085 first_bb = bb;
10086 for (;;)
10088 edge e;
10089 if (bb->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
10090 || ! single_pred_p (bb->next_bb))
10091 break;
10092 e = find_edge (bb, bb->next_bb);
10093 if (! e || (e->flags & EDGE_FALLTHRU) == 0)
10094 break;
10095 bb = bb->next_bb;
10097 last_bb = bb;
10099 /* Add the micro-operations to the vector. */
10100 FOR_BB_BETWEEN (bb, first_bb, last_bb->next_bb, next_bb)
10102 HOST_WIDE_INT offset = VTI (bb)->out.stack_adjust;
10103 VTI (bb)->out.stack_adjust = VTI (bb)->in.stack_adjust;
10104 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
10105 insn = NEXT_INSN (insn))
10107 if (INSN_P (insn))
10109 if (!frame_pointer_needed)
10111 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
10112 if (pre)
10114 micro_operation mo;
10115 mo.type = MO_ADJUST;
10116 mo.u.adjust = pre;
10117 mo.insn = insn;
10118 if (dump_file && (dump_flags & TDF_DETAILS))
10119 log_op_type (PATTERN (insn), bb, insn,
10120 MO_ADJUST, dump_file);
10121 VTI (bb)->mos.safe_push (mo);
10122 VTI (bb)->out.stack_adjust += pre;
10126 cselib_hook_called = false;
10127 adjust_insn (bb, insn);
10128 if (MAY_HAVE_DEBUG_INSNS)
10130 if (CALL_P (insn))
10131 prepare_call_arguments (bb, insn);
10132 cselib_process_insn (insn);
10133 if (dump_file && (dump_flags & TDF_DETAILS))
10135 print_rtl_single (dump_file, insn);
10136 dump_cselib_table (dump_file);
10139 if (!cselib_hook_called)
10140 add_with_sets (insn, 0, 0);
10141 cancel_changes (0);
10143 if (!frame_pointer_needed && post)
10145 micro_operation mo;
10146 mo.type = MO_ADJUST;
10147 mo.u.adjust = post;
10148 mo.insn = insn;
10149 if (dump_file && (dump_flags & TDF_DETAILS))
10150 log_op_type (PATTERN (insn), bb, insn,
10151 MO_ADJUST, dump_file);
10152 VTI (bb)->mos.safe_push (mo);
10153 VTI (bb)->out.stack_adjust += post;
10156 if (fp_cfa_offset != -1
10157 && hard_frame_pointer_adjustment == -1
10158 && fp_setter_insn (insn))
10160 vt_init_cfa_base ();
10161 hard_frame_pointer_adjustment = fp_cfa_offset;
10162 /* Disassociate sp from fp now. */
10163 if (MAY_HAVE_DEBUG_INSNS)
10165 cselib_val *v;
10166 cselib_invalidate_rtx (stack_pointer_rtx);
10167 v = cselib_lookup (stack_pointer_rtx, Pmode, 1,
10168 VOIDmode);
10169 if (v && !cselib_preserved_value_p (v))
10171 cselib_set_value_sp_based (v);
10172 preserve_value (v);
10178 gcc_assert (offset == VTI (bb)->out.stack_adjust);
10181 bb = last_bb;
10183 if (MAY_HAVE_DEBUG_INSNS)
10185 cselib_preserve_only_values ();
10186 cselib_reset_table (cselib_get_next_uid ());
10187 cselib_record_sets_hook = NULL;
10191 hard_frame_pointer_adjustment = -1;
10192 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->flooded = true;
10193 cfa_base_rtx = NULL_RTX;
10194 return true;
10197 /* This is *not* reset after each function. It gives each
10198 NOTE_INSN_DELETED_DEBUG_LABEL in the entire compilation
10199 a unique label number. */
10201 static int debug_label_num = 1;
10203 /* Get rid of all debug insns from the insn stream. */
10205 static void
10206 delete_debug_insns (void)
10208 basic_block bb;
10209 rtx_insn *insn, *next;
10211 if (!MAY_HAVE_DEBUG_INSNS)
10212 return;
10214 FOR_EACH_BB_FN (bb, cfun)
10216 FOR_BB_INSNS_SAFE (bb, insn, next)
10217 if (DEBUG_INSN_P (insn))
10219 tree decl = INSN_VAR_LOCATION_DECL (insn);
10220 if (TREE_CODE (decl) == LABEL_DECL
10221 && DECL_NAME (decl)
10222 && !DECL_RTL_SET_P (decl))
10224 PUT_CODE (insn, NOTE);
10225 NOTE_KIND (insn) = NOTE_INSN_DELETED_DEBUG_LABEL;
10226 NOTE_DELETED_LABEL_NAME (insn)
10227 = IDENTIFIER_POINTER (DECL_NAME (decl));
10228 SET_DECL_RTL (decl, insn);
10229 CODE_LABEL_NUMBER (insn) = debug_label_num++;
10231 else
10232 delete_insn (insn);
10237 /* Run a fast, BB-local only version of var tracking, to take care of
10238 information that we don't do global analysis on, such that not all
10239 information is lost. If SKIPPED holds, we're skipping the global
10240 pass entirely, so we should try to use information it would have
10241 handled as well.. */
10243 static void
10244 vt_debug_insns_local (bool skipped ATTRIBUTE_UNUSED)
10246 /* ??? Just skip it all for now. */
10247 delete_debug_insns ();
10250 /* Free the data structures needed for variable tracking. */
10252 static void
10253 vt_finalize (void)
10255 basic_block bb;
10257 FOR_EACH_BB_FN (bb, cfun)
10259 VTI (bb)->mos.release ();
10262 FOR_ALL_BB_FN (bb, cfun)
10264 dataflow_set_destroy (&VTI (bb)->in);
10265 dataflow_set_destroy (&VTI (bb)->out);
10266 if (VTI (bb)->permp)
10268 dataflow_set_destroy (VTI (bb)->permp);
10269 XDELETE (VTI (bb)->permp);
10272 free_aux_for_blocks ();
10273 delete empty_shared_hash->htab;
10274 empty_shared_hash->htab = NULL;
10275 delete changed_variables;
10276 changed_variables = NULL;
10277 free_alloc_pool (attrs_pool);
10278 free_alloc_pool (var_pool);
10279 free_alloc_pool (loc_chain_pool);
10280 free_alloc_pool (shared_hash_pool);
10282 if (MAY_HAVE_DEBUG_INSNS)
10284 if (global_get_addr_cache)
10285 delete global_get_addr_cache;
10286 global_get_addr_cache = NULL;
10287 if (loc_exp_dep_pool)
10288 free_alloc_pool (loc_exp_dep_pool);
10289 loc_exp_dep_pool = NULL;
10290 free_alloc_pool (valvar_pool);
10291 preserved_values.release ();
10292 cselib_finish ();
10293 BITMAP_FREE (scratch_regs);
10294 scratch_regs = NULL;
10297 #ifdef HAVE_window_save
10298 vec_free (windowed_parm_regs);
10299 #endif
10301 if (vui_vec)
10302 XDELETEVEC (vui_vec);
10303 vui_vec = NULL;
10304 vui_allocated = 0;
10307 /* The entry point to variable tracking pass. */
10309 static inline unsigned int
10310 variable_tracking_main_1 (void)
10312 bool success;
10314 if (flag_var_tracking_assignments < 0
10315 /* Var-tracking right now assumes the IR doesn't contain
10316 any pseudos at this point. */
10317 || targetm.no_register_allocation)
10319 delete_debug_insns ();
10320 return 0;
10323 if (n_basic_blocks_for_fn (cfun) > 500 &&
10324 n_edges_for_fn (cfun) / n_basic_blocks_for_fn (cfun) >= 20)
10326 vt_debug_insns_local (true);
10327 return 0;
10330 mark_dfs_back_edges ();
10331 if (!vt_initialize ())
10333 vt_finalize ();
10334 vt_debug_insns_local (true);
10335 return 0;
10338 success = vt_find_locations ();
10340 if (!success && flag_var_tracking_assignments > 0)
10342 vt_finalize ();
10344 delete_debug_insns ();
10346 /* This is later restored by our caller. */
10347 flag_var_tracking_assignments = 0;
10349 success = vt_initialize ();
10350 gcc_assert (success);
10352 success = vt_find_locations ();
10355 if (!success)
10357 vt_finalize ();
10358 vt_debug_insns_local (false);
10359 return 0;
10362 if (dump_file && (dump_flags & TDF_DETAILS))
10364 dump_dataflow_sets ();
10365 dump_reg_info (dump_file);
10366 dump_flow_info (dump_file, dump_flags);
10369 timevar_push (TV_VAR_TRACKING_EMIT);
10370 vt_emit_notes ();
10371 timevar_pop (TV_VAR_TRACKING_EMIT);
10373 vt_finalize ();
10374 vt_debug_insns_local (false);
10375 return 0;
10378 unsigned int
10379 variable_tracking_main (void)
10381 unsigned int ret;
10382 int save = flag_var_tracking_assignments;
10384 ret = variable_tracking_main_1 ();
10386 flag_var_tracking_assignments = save;
10388 return ret;
10391 namespace {
10393 const pass_data pass_data_variable_tracking =
10395 RTL_PASS, /* type */
10396 "vartrack", /* name */
10397 OPTGROUP_NONE, /* optinfo_flags */
10398 TV_VAR_TRACKING, /* tv_id */
10399 0, /* properties_required */
10400 0, /* properties_provided */
10401 0, /* properties_destroyed */
10402 0, /* todo_flags_start */
10403 0, /* todo_flags_finish */
10406 class pass_variable_tracking : public rtl_opt_pass
10408 public:
10409 pass_variable_tracking (gcc::context *ctxt)
10410 : rtl_opt_pass (pass_data_variable_tracking, ctxt)
10413 /* opt_pass methods: */
10414 virtual bool gate (function *)
10416 return (flag_var_tracking && !targetm.delay_vartrack);
10419 virtual unsigned int execute (function *)
10421 return variable_tracking_main ();
10424 }; // class pass_variable_tracking
10426 } // anon namespace
10428 rtl_opt_pass *
10429 make_pass_variable_tracking (gcc::context *ctxt)
10431 return new pass_variable_tracking (ctxt);