PR ipa/65648
[official-gcc.git] / gcc / sel-sched-ir.c
blob94f6c43a2845b7004f150aefe14cbf789b2188c5
1 /* Instruction scheduling pass. Selective scheduler and pipeliner.
2 Copyright (C) 2006-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "diagnostic-core.h"
25 #include "rtl.h"
26 #include "tm_p.h"
27 #include "hard-reg-set.h"
28 #include "regs.h"
29 #include "hashtab.h"
30 #include "hash-set.h"
31 #include "vec.h"
32 #include "machmode.h"
33 #include "input.h"
34 #include "function.h"
35 #include "predict.h"
36 #include "dominance.h"
37 #include "cfg.h"
38 #include "cfgrtl.h"
39 #include "cfganal.h"
40 #include "cfgbuild.h"
41 #include "basic-block.h"
42 #include "flags.h"
43 #include "insn-config.h"
44 #include "insn-attr.h"
45 #include "except.h"
46 #include "recog.h"
47 #include "params.h"
48 #include "target.h"
49 #include "sched-int.h"
50 #include "ggc.h"
51 #include "symtab.h"
52 #include "wide-int.h"
53 #include "inchash.h"
54 #include "tree.h"
55 #include "langhooks.h"
56 #include "rtlhooks-def.h"
57 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
59 #ifdef INSN_SCHEDULING
60 #include "sel-sched-ir.h"
61 /* We don't have to use it except for sel_print_insn. */
62 #include "sel-sched-dump.h"
64 /* A vector holding bb info for whole scheduling pass. */
65 vec<sel_global_bb_info_def>
66 sel_global_bb_info = vNULL;
68 /* A vector holding bb info. */
69 vec<sel_region_bb_info_def>
70 sel_region_bb_info = vNULL;
72 /* A pool for allocating all lists. */
73 alloc_pool sched_lists_pool;
75 /* This contains information about successors for compute_av_set. */
76 struct succs_info current_succs;
78 /* Data structure to describe interaction with the generic scheduler utils. */
79 static struct common_sched_info_def sel_common_sched_info;
81 /* The loop nest being pipelined. */
82 struct loop *current_loop_nest;
84 /* LOOP_NESTS is a vector containing the corresponding loop nest for
85 each region. */
86 static vec<loop_p> loop_nests = vNULL;
88 /* Saves blocks already in loop regions, indexed by bb->index. */
89 static sbitmap bbs_in_loop_rgns = NULL;
91 /* CFG hooks that are saved before changing create_basic_block hook. */
92 static struct cfg_hooks orig_cfg_hooks;
95 /* Array containing reverse topological index of function basic blocks,
96 indexed by BB->INDEX. */
97 static int *rev_top_order_index = NULL;
99 /* Length of the above array. */
100 static int rev_top_order_index_len = -1;
102 /* A regset pool structure. */
103 static struct
105 /* The stack to which regsets are returned. */
106 regset *v;
108 /* Its pointer. */
109 int n;
111 /* Its size. */
112 int s;
114 /* In VV we save all generated regsets so that, when destructing the
115 pool, we can compare it with V and check that every regset was returned
116 back to pool. */
117 regset *vv;
119 /* The pointer of VV stack. */
120 int nn;
122 /* Its size. */
123 int ss;
125 /* The difference between allocated and returned regsets. */
126 int diff;
127 } regset_pool = { NULL, 0, 0, NULL, 0, 0, 0 };
129 /* This represents the nop pool. */
130 static struct
132 /* The vector which holds previously emitted nops. */
133 insn_t *v;
135 /* Its pointer. */
136 int n;
138 /* Its size. */
139 int s;
140 } nop_pool = { NULL, 0, 0 };
142 /* The pool for basic block notes. */
143 static vec<rtx_note *> bb_note_pool;
145 /* A NOP pattern used to emit placeholder insns. */
146 rtx nop_pattern = NULL_RTX;
147 /* A special instruction that resides in EXIT_BLOCK.
148 EXIT_INSN is successor of the insns that lead to EXIT_BLOCK. */
149 rtx_insn *exit_insn = NULL;
151 /* TRUE if while scheduling current region, which is loop, its preheader
152 was removed. */
153 bool preheader_removed = false;
156 /* Forward static declarations. */
157 static void fence_clear (fence_t);
159 static void deps_init_id (idata_t, insn_t, bool);
160 static void init_id_from_df (idata_t, insn_t, bool);
161 static expr_t set_insn_init (expr_t, vinsn_t, int);
163 static void cfg_preds (basic_block, insn_t **, int *);
164 static void prepare_insn_expr (insn_t, int);
165 static void free_history_vect (vec<expr_history_def> &);
167 static void move_bb_info (basic_block, basic_block);
168 static void remove_empty_bb (basic_block, bool);
169 static void sel_merge_blocks (basic_block, basic_block);
170 static void sel_remove_loop_preheader (void);
171 static bool bb_has_removable_jump_to_p (basic_block, basic_block);
173 static bool insn_is_the_only_one_in_bb_p (insn_t);
174 static void create_initial_data_sets (basic_block);
176 static void free_av_set (basic_block);
177 static void invalidate_av_set (basic_block);
178 static void extend_insn_data (void);
179 static void sel_init_new_insn (insn_t, int, int = -1);
180 static void finish_insns (void);
182 /* Various list functions. */
184 /* Copy an instruction list L. */
185 ilist_t
186 ilist_copy (ilist_t l)
188 ilist_t head = NULL, *tailp = &head;
190 while (l)
192 ilist_add (tailp, ILIST_INSN (l));
193 tailp = &ILIST_NEXT (*tailp);
194 l = ILIST_NEXT (l);
197 return head;
200 /* Invert an instruction list L. */
201 ilist_t
202 ilist_invert (ilist_t l)
204 ilist_t res = NULL;
206 while (l)
208 ilist_add (&res, ILIST_INSN (l));
209 l = ILIST_NEXT (l);
212 return res;
215 /* Add a new boundary to the LP list with parameters TO, PTR, and DC. */
216 void
217 blist_add (blist_t *lp, insn_t to, ilist_t ptr, deps_t dc)
219 bnd_t bnd;
221 _list_add (lp);
222 bnd = BLIST_BND (*lp);
224 BND_TO (bnd) = to;
225 BND_PTR (bnd) = ptr;
226 BND_AV (bnd) = NULL;
227 BND_AV1 (bnd) = NULL;
228 BND_DC (bnd) = dc;
231 /* Remove the list note pointed to by LP. */
232 void
233 blist_remove (blist_t *lp)
235 bnd_t b = BLIST_BND (*lp);
237 av_set_clear (&BND_AV (b));
238 av_set_clear (&BND_AV1 (b));
239 ilist_clear (&BND_PTR (b));
241 _list_remove (lp);
244 /* Init a fence tail L. */
245 void
246 flist_tail_init (flist_tail_t l)
248 FLIST_TAIL_HEAD (l) = NULL;
249 FLIST_TAIL_TAILP (l) = &FLIST_TAIL_HEAD (l);
252 /* Try to find fence corresponding to INSN in L. */
253 fence_t
254 flist_lookup (flist_t l, insn_t insn)
256 while (l)
258 if (FENCE_INSN (FLIST_FENCE (l)) == insn)
259 return FLIST_FENCE (l);
261 l = FLIST_NEXT (l);
264 return NULL;
267 /* Init the fields of F before running fill_insns. */
268 static void
269 init_fence_for_scheduling (fence_t f)
271 FENCE_BNDS (f) = NULL;
272 FENCE_PROCESSED_P (f) = false;
273 FENCE_SCHEDULED_P (f) = false;
276 /* Add new fence consisting of INSN and STATE to the list pointed to by LP. */
277 static void
278 flist_add (flist_t *lp, insn_t insn, state_t state, deps_t dc, void *tc,
279 insn_t last_scheduled_insn, vec<rtx_insn *, va_gc> *executing_insns,
280 int *ready_ticks, int ready_ticks_size, insn_t sched_next,
281 int cycle, int cycle_issued_insns, int issue_more,
282 bool starts_cycle_p, bool after_stall_p)
284 fence_t f;
286 _list_add (lp);
287 f = FLIST_FENCE (*lp);
289 FENCE_INSN (f) = insn;
291 gcc_assert (state != NULL);
292 FENCE_STATE (f) = state;
294 FENCE_CYCLE (f) = cycle;
295 FENCE_ISSUED_INSNS (f) = cycle_issued_insns;
296 FENCE_STARTS_CYCLE_P (f) = starts_cycle_p;
297 FENCE_AFTER_STALL_P (f) = after_stall_p;
299 gcc_assert (dc != NULL);
300 FENCE_DC (f) = dc;
302 gcc_assert (tc != NULL || targetm.sched.alloc_sched_context == NULL);
303 FENCE_TC (f) = tc;
305 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
306 FENCE_ISSUE_MORE (f) = issue_more;
307 FENCE_EXECUTING_INSNS (f) = executing_insns;
308 FENCE_READY_TICKS (f) = ready_ticks;
309 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
310 FENCE_SCHED_NEXT (f) = sched_next;
312 init_fence_for_scheduling (f);
315 /* Remove the head node of the list pointed to by LP. */
316 static void
317 flist_remove (flist_t *lp)
319 if (FENCE_INSN (FLIST_FENCE (*lp)))
320 fence_clear (FLIST_FENCE (*lp));
321 _list_remove (lp);
324 /* Clear the fence list pointed to by LP. */
325 void
326 flist_clear (flist_t *lp)
328 while (*lp)
329 flist_remove (lp);
332 /* Add ORIGINAL_INSN the def list DL honoring CROSSES_CALL. */
333 void
334 def_list_add (def_list_t *dl, insn_t original_insn, bool crosses_call)
336 def_t d;
338 _list_add (dl);
339 d = DEF_LIST_DEF (*dl);
341 d->orig_insn = original_insn;
342 d->crosses_call = crosses_call;
346 /* Functions to work with target contexts. */
348 /* Bulk target context. It is convenient for debugging purposes to ensure
349 that there are no uninitialized (null) target contexts. */
350 static tc_t bulk_tc = (tc_t) 1;
352 /* Target hooks wrappers. In the future we can provide some default
353 implementations for them. */
355 /* Allocate a store for the target context. */
356 static tc_t
357 alloc_target_context (void)
359 return (targetm.sched.alloc_sched_context
360 ? targetm.sched.alloc_sched_context () : bulk_tc);
363 /* Init target context TC.
364 If CLEAN_P is true, then make TC as it is beginning of the scheduler.
365 Overwise, copy current backend context to TC. */
366 static void
367 init_target_context (tc_t tc, bool clean_p)
369 if (targetm.sched.init_sched_context)
370 targetm.sched.init_sched_context (tc, clean_p);
373 /* Allocate and initialize a target context. Meaning of CLEAN_P is the same as
374 int init_target_context (). */
375 tc_t
376 create_target_context (bool clean_p)
378 tc_t tc = alloc_target_context ();
380 init_target_context (tc, clean_p);
381 return tc;
384 /* Copy TC to the current backend context. */
385 void
386 set_target_context (tc_t tc)
388 if (targetm.sched.set_sched_context)
389 targetm.sched.set_sched_context (tc);
392 /* TC is about to be destroyed. Free any internal data. */
393 static void
394 clear_target_context (tc_t tc)
396 if (targetm.sched.clear_sched_context)
397 targetm.sched.clear_sched_context (tc);
400 /* Clear and free it. */
401 static void
402 delete_target_context (tc_t tc)
404 clear_target_context (tc);
406 if (targetm.sched.free_sched_context)
407 targetm.sched.free_sched_context (tc);
410 /* Make a copy of FROM in TO.
411 NB: May be this should be a hook. */
412 static void
413 copy_target_context (tc_t to, tc_t from)
415 tc_t tmp = create_target_context (false);
417 set_target_context (from);
418 init_target_context (to, false);
420 set_target_context (tmp);
421 delete_target_context (tmp);
424 /* Create a copy of TC. */
425 static tc_t
426 create_copy_of_target_context (tc_t tc)
428 tc_t copy = alloc_target_context ();
430 copy_target_context (copy, tc);
432 return copy;
435 /* Clear TC and initialize it according to CLEAN_P. The meaning of CLEAN_P
436 is the same as in init_target_context (). */
437 void
438 reset_target_context (tc_t tc, bool clean_p)
440 clear_target_context (tc);
441 init_target_context (tc, clean_p);
444 /* Functions to work with dependence contexts.
445 Dc (aka deps context, aka deps_t, aka struct deps_desc *) is short for dependence
446 context. It accumulates information about processed insns to decide if
447 current insn is dependent on the processed ones. */
449 /* Make a copy of FROM in TO. */
450 static void
451 copy_deps_context (deps_t to, deps_t from)
453 init_deps (to, false);
454 deps_join (to, from);
457 /* Allocate store for dep context. */
458 static deps_t
459 alloc_deps_context (void)
461 return XNEW (struct deps_desc);
464 /* Allocate and initialize dep context. */
465 static deps_t
466 create_deps_context (void)
468 deps_t dc = alloc_deps_context ();
470 init_deps (dc, false);
471 return dc;
474 /* Create a copy of FROM. */
475 static deps_t
476 create_copy_of_deps_context (deps_t from)
478 deps_t to = alloc_deps_context ();
480 copy_deps_context (to, from);
481 return to;
484 /* Clean up internal data of DC. */
485 static void
486 clear_deps_context (deps_t dc)
488 free_deps (dc);
491 /* Clear and free DC. */
492 static void
493 delete_deps_context (deps_t dc)
495 clear_deps_context (dc);
496 free (dc);
499 /* Clear and init DC. */
500 static void
501 reset_deps_context (deps_t dc)
503 clear_deps_context (dc);
504 init_deps (dc, false);
507 /* This structure describes the dependence analysis hooks for advancing
508 dependence context. */
509 static struct sched_deps_info_def advance_deps_context_sched_deps_info =
511 NULL,
513 NULL, /* start_insn */
514 NULL, /* finish_insn */
515 NULL, /* start_lhs */
516 NULL, /* finish_lhs */
517 NULL, /* start_rhs */
518 NULL, /* finish_rhs */
519 haifa_note_reg_set,
520 haifa_note_reg_clobber,
521 haifa_note_reg_use,
522 NULL, /* note_mem_dep */
523 NULL, /* note_dep */
525 0, 0, 0
528 /* Process INSN and add its impact on DC. */
529 void
530 advance_deps_context (deps_t dc, insn_t insn)
532 sched_deps_info = &advance_deps_context_sched_deps_info;
533 deps_analyze_insn (dc, insn);
537 /* Functions to work with DFA states. */
539 /* Allocate store for a DFA state. */
540 static state_t
541 state_alloc (void)
543 return xmalloc (dfa_state_size);
546 /* Allocate and initialize DFA state. */
547 static state_t
548 state_create (void)
550 state_t state = state_alloc ();
552 state_reset (state);
553 advance_state (state);
554 return state;
557 /* Free DFA state. */
558 static void
559 state_free (state_t state)
561 free (state);
564 /* Make a copy of FROM in TO. */
565 static void
566 state_copy (state_t to, state_t from)
568 memcpy (to, from, dfa_state_size);
571 /* Create a copy of FROM. */
572 static state_t
573 state_create_copy (state_t from)
575 state_t to = state_alloc ();
577 state_copy (to, from);
578 return to;
582 /* Functions to work with fences. */
584 /* Clear the fence. */
585 static void
586 fence_clear (fence_t f)
588 state_t s = FENCE_STATE (f);
589 deps_t dc = FENCE_DC (f);
590 void *tc = FENCE_TC (f);
592 ilist_clear (&FENCE_BNDS (f));
594 gcc_assert ((s != NULL && dc != NULL && tc != NULL)
595 || (s == NULL && dc == NULL && tc == NULL));
597 free (s);
599 if (dc != NULL)
600 delete_deps_context (dc);
602 if (tc != NULL)
603 delete_target_context (tc);
604 vec_free (FENCE_EXECUTING_INSNS (f));
605 free (FENCE_READY_TICKS (f));
606 FENCE_READY_TICKS (f) = NULL;
609 /* Init a list of fences with successors of OLD_FENCE. */
610 void
611 init_fences (insn_t old_fence)
613 insn_t succ;
614 succ_iterator si;
615 bool first = true;
616 int ready_ticks_size = get_max_uid () + 1;
618 FOR_EACH_SUCC_1 (succ, si, old_fence,
619 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
622 if (first)
623 first = false;
624 else
625 gcc_assert (flag_sel_sched_pipelining_outer_loops);
627 flist_add (&fences, succ,
628 state_create (),
629 create_deps_context () /* dc */,
630 create_target_context (true) /* tc */,
631 NULL /* last_scheduled_insn */,
632 NULL, /* executing_insns */
633 XCNEWVEC (int, ready_ticks_size), /* ready_ticks */
634 ready_ticks_size,
635 NULL /* sched_next */,
636 1 /* cycle */, 0 /* cycle_issued_insns */,
637 issue_rate, /* issue_more */
638 1 /* starts_cycle_p */, 0 /* after_stall_p */);
642 /* Merges two fences (filling fields of fence F with resulting values) by
643 following rules: 1) state, target context and last scheduled insn are
644 propagated from fallthrough edge if it is available;
645 2) deps context and cycle is propagated from more probable edge;
646 3) all other fields are set to corresponding constant values.
648 INSN, STATE, DC, TC, LAST_SCHEDULED_INSN, EXECUTING_INSNS,
649 READY_TICKS, READY_TICKS_SIZE, SCHED_NEXT, CYCLE, ISSUE_MORE
650 and AFTER_STALL_P are the corresponding fields of the second fence. */
651 static void
652 merge_fences (fence_t f, insn_t insn,
653 state_t state, deps_t dc, void *tc,
654 rtx_insn *last_scheduled_insn,
655 vec<rtx_insn *, va_gc> *executing_insns,
656 int *ready_ticks, int ready_ticks_size,
657 rtx sched_next, int cycle, int issue_more, bool after_stall_p)
659 insn_t last_scheduled_insn_old = FENCE_LAST_SCHEDULED_INSN (f);
661 gcc_assert (sel_bb_head_p (FENCE_INSN (f))
662 && !sched_next && !FENCE_SCHED_NEXT (f));
664 /* Check if we can decide which path fences came.
665 If we can't (or don't want to) - reset all. */
666 if (last_scheduled_insn == NULL
667 || last_scheduled_insn_old == NULL
668 /* This is a case when INSN is reachable on several paths from
669 one insn (this can happen when pipelining of outer loops is on and
670 there are two edges: one going around of inner loop and the other -
671 right through it; in such case just reset everything). */
672 || last_scheduled_insn == last_scheduled_insn_old)
674 state_reset (FENCE_STATE (f));
675 state_free (state);
677 reset_deps_context (FENCE_DC (f));
678 delete_deps_context (dc);
680 reset_target_context (FENCE_TC (f), true);
681 delete_target_context (tc);
683 if (cycle > FENCE_CYCLE (f))
684 FENCE_CYCLE (f) = cycle;
686 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
687 FENCE_ISSUE_MORE (f) = issue_rate;
688 vec_free (executing_insns);
689 free (ready_ticks);
690 if (FENCE_EXECUTING_INSNS (f))
691 FENCE_EXECUTING_INSNS (f)->block_remove (0,
692 FENCE_EXECUTING_INSNS (f)->length ());
693 if (FENCE_READY_TICKS (f))
694 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
696 else
698 edge edge_old = NULL, edge_new = NULL;
699 edge candidate;
700 succ_iterator si;
701 insn_t succ;
703 /* Find fallthrough edge. */
704 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb);
705 candidate = find_fallthru_edge_from (BLOCK_FOR_INSN (insn)->prev_bb);
707 if (!candidate
708 || (candidate->src != BLOCK_FOR_INSN (last_scheduled_insn)
709 && candidate->src != BLOCK_FOR_INSN (last_scheduled_insn_old)))
711 /* No fallthrough edge leading to basic block of INSN. */
712 state_reset (FENCE_STATE (f));
713 state_free (state);
715 reset_target_context (FENCE_TC (f), true);
716 delete_target_context (tc);
718 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
719 FENCE_ISSUE_MORE (f) = issue_rate;
721 else
722 if (candidate->src == BLOCK_FOR_INSN (last_scheduled_insn))
724 /* Would be weird if same insn is successor of several fallthrough
725 edges. */
726 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
727 != BLOCK_FOR_INSN (last_scheduled_insn_old));
729 state_free (FENCE_STATE (f));
730 FENCE_STATE (f) = state;
732 delete_target_context (FENCE_TC (f));
733 FENCE_TC (f) = tc;
735 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
736 FENCE_ISSUE_MORE (f) = issue_more;
738 else
740 /* Leave STATE, TC and LAST_SCHEDULED_INSN fields untouched. */
741 state_free (state);
742 delete_target_context (tc);
744 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
745 != BLOCK_FOR_INSN (last_scheduled_insn));
748 /* Find edge of first predecessor (last_scheduled_insn_old->insn). */
749 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn_old,
750 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
752 if (succ == insn)
754 /* No same successor allowed from several edges. */
755 gcc_assert (!edge_old);
756 edge_old = si.e1;
759 /* Find edge of second predecessor (last_scheduled_insn->insn). */
760 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn,
761 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
763 if (succ == insn)
765 /* No same successor allowed from several edges. */
766 gcc_assert (!edge_new);
767 edge_new = si.e1;
771 /* Check if we can choose most probable predecessor. */
772 if (edge_old == NULL || edge_new == NULL)
774 reset_deps_context (FENCE_DC (f));
775 delete_deps_context (dc);
776 vec_free (executing_insns);
777 free (ready_ticks);
779 FENCE_CYCLE (f) = MAX (FENCE_CYCLE (f), cycle);
780 if (FENCE_EXECUTING_INSNS (f))
781 FENCE_EXECUTING_INSNS (f)->block_remove (0,
782 FENCE_EXECUTING_INSNS (f)->length ());
783 if (FENCE_READY_TICKS (f))
784 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
786 else
787 if (edge_new->probability > edge_old->probability)
789 delete_deps_context (FENCE_DC (f));
790 FENCE_DC (f) = dc;
791 vec_free (FENCE_EXECUTING_INSNS (f));
792 FENCE_EXECUTING_INSNS (f) = executing_insns;
793 free (FENCE_READY_TICKS (f));
794 FENCE_READY_TICKS (f) = ready_ticks;
795 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
796 FENCE_CYCLE (f) = cycle;
798 else
800 /* Leave DC and CYCLE untouched. */
801 delete_deps_context (dc);
802 vec_free (executing_insns);
803 free (ready_ticks);
807 /* Fill remaining invariant fields. */
808 if (after_stall_p)
809 FENCE_AFTER_STALL_P (f) = 1;
811 FENCE_ISSUED_INSNS (f) = 0;
812 FENCE_STARTS_CYCLE_P (f) = 1;
813 FENCE_SCHED_NEXT (f) = NULL;
816 /* Add a new fence to NEW_FENCES list, initializing it from all
817 other parameters. */
818 static void
819 add_to_fences (flist_tail_t new_fences, insn_t insn,
820 state_t state, deps_t dc, void *tc,
821 rtx_insn *last_scheduled_insn,
822 vec<rtx_insn *, va_gc> *executing_insns, int *ready_ticks,
823 int ready_ticks_size, rtx_insn *sched_next, int cycle,
824 int cycle_issued_insns, int issue_rate,
825 bool starts_cycle_p, bool after_stall_p)
827 fence_t f = flist_lookup (FLIST_TAIL_HEAD (new_fences), insn);
829 if (! f)
831 flist_add (FLIST_TAIL_TAILP (new_fences), insn, state, dc, tc,
832 last_scheduled_insn, executing_insns, ready_ticks,
833 ready_ticks_size, sched_next, cycle, cycle_issued_insns,
834 issue_rate, starts_cycle_p, after_stall_p);
836 FLIST_TAIL_TAILP (new_fences)
837 = &FLIST_NEXT (*FLIST_TAIL_TAILP (new_fences));
839 else
841 merge_fences (f, insn, state, dc, tc, last_scheduled_insn,
842 executing_insns, ready_ticks, ready_ticks_size,
843 sched_next, cycle, issue_rate, after_stall_p);
847 /* Move the first fence in the OLD_FENCES list to NEW_FENCES. */
848 void
849 move_fence_to_fences (flist_t old_fences, flist_tail_t new_fences)
851 fence_t f, old;
852 flist_t *tailp = FLIST_TAIL_TAILP (new_fences);
854 old = FLIST_FENCE (old_fences);
855 f = flist_lookup (FLIST_TAIL_HEAD (new_fences),
856 FENCE_INSN (FLIST_FENCE (old_fences)));
857 if (f)
859 merge_fences (f, old->insn, old->state, old->dc, old->tc,
860 old->last_scheduled_insn, old->executing_insns,
861 old->ready_ticks, old->ready_ticks_size,
862 old->sched_next, old->cycle, old->issue_more,
863 old->after_stall_p);
865 else
867 _list_add (tailp);
868 FLIST_TAIL_TAILP (new_fences) = &FLIST_NEXT (*tailp);
869 *FLIST_FENCE (*tailp) = *old;
870 init_fence_for_scheduling (FLIST_FENCE (*tailp));
872 FENCE_INSN (old) = NULL;
875 /* Add a new fence to NEW_FENCES list and initialize most of its data
876 as a clean one. */
877 void
878 add_clean_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
880 int ready_ticks_size = get_max_uid () + 1;
882 add_to_fences (new_fences,
883 succ, state_create (), create_deps_context (),
884 create_target_context (true),
885 NULL, NULL,
886 XCNEWVEC (int, ready_ticks_size), ready_ticks_size,
887 NULL, FENCE_CYCLE (fence) + 1,
888 0, issue_rate, 1, FENCE_AFTER_STALL_P (fence));
891 /* Add a new fence to NEW_FENCES list and initialize all of its data
892 from FENCE and SUCC. */
893 void
894 add_dirty_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
896 int * new_ready_ticks
897 = XNEWVEC (int, FENCE_READY_TICKS_SIZE (fence));
899 memcpy (new_ready_ticks, FENCE_READY_TICKS (fence),
900 FENCE_READY_TICKS_SIZE (fence) * sizeof (int));
901 add_to_fences (new_fences,
902 succ, state_create_copy (FENCE_STATE (fence)),
903 create_copy_of_deps_context (FENCE_DC (fence)),
904 create_copy_of_target_context (FENCE_TC (fence)),
905 FENCE_LAST_SCHEDULED_INSN (fence),
906 vec_safe_copy (FENCE_EXECUTING_INSNS (fence)),
907 new_ready_ticks,
908 FENCE_READY_TICKS_SIZE (fence),
909 FENCE_SCHED_NEXT (fence),
910 FENCE_CYCLE (fence),
911 FENCE_ISSUED_INSNS (fence),
912 FENCE_ISSUE_MORE (fence),
913 FENCE_STARTS_CYCLE_P (fence),
914 FENCE_AFTER_STALL_P (fence));
918 /* Functions to work with regset and nop pools. */
920 /* Returns the new regset from pool. It might have some of the bits set
921 from the previous usage. */
922 regset
923 get_regset_from_pool (void)
925 regset rs;
927 if (regset_pool.n != 0)
928 rs = regset_pool.v[--regset_pool.n];
929 else
930 /* We need to create the regset. */
932 rs = ALLOC_REG_SET (&reg_obstack);
934 if (regset_pool.nn == regset_pool.ss)
935 regset_pool.vv = XRESIZEVEC (regset, regset_pool.vv,
936 (regset_pool.ss = 2 * regset_pool.ss + 1));
937 regset_pool.vv[regset_pool.nn++] = rs;
940 regset_pool.diff++;
942 return rs;
945 /* Same as above, but returns the empty regset. */
946 regset
947 get_clear_regset_from_pool (void)
949 regset rs = get_regset_from_pool ();
951 CLEAR_REG_SET (rs);
952 return rs;
955 /* Return regset RS to the pool for future use. */
956 void
957 return_regset_to_pool (regset rs)
959 gcc_assert (rs);
960 regset_pool.diff--;
962 if (regset_pool.n == regset_pool.s)
963 regset_pool.v = XRESIZEVEC (regset, regset_pool.v,
964 (regset_pool.s = 2 * regset_pool.s + 1));
965 regset_pool.v[regset_pool.n++] = rs;
968 #ifdef ENABLE_CHECKING
969 /* This is used as a qsort callback for sorting regset pool stacks.
970 X and XX are addresses of two regsets. They are never equal. */
971 static int
972 cmp_v_in_regset_pool (const void *x, const void *xx)
974 uintptr_t r1 = (uintptr_t) *((const regset *) x);
975 uintptr_t r2 = (uintptr_t) *((const regset *) xx);
976 if (r1 > r2)
977 return 1;
978 else if (r1 < r2)
979 return -1;
980 gcc_unreachable ();
982 #endif
984 /* Free the regset pool possibly checking for memory leaks. */
985 void
986 free_regset_pool (void)
988 #ifdef ENABLE_CHECKING
990 regset *v = regset_pool.v;
991 int i = 0;
992 int n = regset_pool.n;
994 regset *vv = regset_pool.vv;
995 int ii = 0;
996 int nn = regset_pool.nn;
998 int diff = 0;
1000 gcc_assert (n <= nn);
1002 /* Sort both vectors so it will be possible to compare them. */
1003 qsort (v, n, sizeof (*v), cmp_v_in_regset_pool);
1004 qsort (vv, nn, sizeof (*vv), cmp_v_in_regset_pool);
1006 while (ii < nn)
1008 if (v[i] == vv[ii])
1009 i++;
1010 else
1011 /* VV[II] was lost. */
1012 diff++;
1014 ii++;
1017 gcc_assert (diff == regset_pool.diff);
1019 #endif
1021 /* If not true - we have a memory leak. */
1022 gcc_assert (regset_pool.diff == 0);
1024 while (regset_pool.n)
1026 --regset_pool.n;
1027 FREE_REG_SET (regset_pool.v[regset_pool.n]);
1030 free (regset_pool.v);
1031 regset_pool.v = NULL;
1032 regset_pool.s = 0;
1034 free (regset_pool.vv);
1035 regset_pool.vv = NULL;
1036 regset_pool.nn = 0;
1037 regset_pool.ss = 0;
1039 regset_pool.diff = 0;
1043 /* Functions to work with nop pools. NOP insns are used as temporary
1044 placeholders of the insns being scheduled to allow correct update of
1045 the data sets. When update is finished, NOPs are deleted. */
1047 /* A vinsn that is used to represent a nop. This vinsn is shared among all
1048 nops sel-sched generates. */
1049 static vinsn_t nop_vinsn = NULL;
1051 /* Emit a nop before INSN, taking it from pool. */
1052 insn_t
1053 get_nop_from_pool (insn_t insn)
1055 rtx nop_pat;
1056 insn_t nop;
1057 bool old_p = nop_pool.n != 0;
1058 int flags;
1060 if (old_p)
1061 nop_pat = nop_pool.v[--nop_pool.n];
1062 else
1063 nop_pat = nop_pattern;
1065 nop = emit_insn_before (nop_pat, insn);
1067 if (old_p)
1068 flags = INSN_INIT_TODO_SSID;
1069 else
1070 flags = INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID;
1072 set_insn_init (INSN_EXPR (insn), nop_vinsn, INSN_SEQNO (insn));
1073 sel_init_new_insn (nop, flags);
1075 return nop;
1078 /* Remove NOP from the instruction stream and return it to the pool. */
1079 void
1080 return_nop_to_pool (insn_t nop, bool full_tidying)
1082 gcc_assert (INSN_IN_STREAM_P (nop));
1083 sel_remove_insn (nop, false, full_tidying);
1085 /* We'll recycle this nop. */
1086 nop->set_undeleted ();
1088 if (nop_pool.n == nop_pool.s)
1089 nop_pool.v = XRESIZEVEC (rtx_insn *, nop_pool.v,
1090 (nop_pool.s = 2 * nop_pool.s + 1));
1091 nop_pool.v[nop_pool.n++] = nop;
1094 /* Free the nop pool. */
1095 void
1096 free_nop_pool (void)
1098 nop_pool.n = 0;
1099 nop_pool.s = 0;
1100 free (nop_pool.v);
1101 nop_pool.v = NULL;
1105 /* Skip unspec to support ia64 speculation. Called from rtx_equal_p_cb.
1106 The callback is given two rtxes XX and YY and writes the new rtxes
1107 to NX and NY in case some needs to be skipped. */
1108 static int
1109 skip_unspecs_callback (const_rtx *xx, const_rtx *yy, rtx *nx, rtx* ny)
1111 const_rtx x = *xx;
1112 const_rtx y = *yy;
1114 if (GET_CODE (x) == UNSPEC
1115 && (targetm.sched.skip_rtx_p == NULL
1116 || targetm.sched.skip_rtx_p (x)))
1118 *nx = XVECEXP (x, 0, 0);
1119 *ny = CONST_CAST_RTX (y);
1120 return 1;
1123 if (GET_CODE (y) == UNSPEC
1124 && (targetm.sched.skip_rtx_p == NULL
1125 || targetm.sched.skip_rtx_p (y)))
1127 *nx = CONST_CAST_RTX (x);
1128 *ny = XVECEXP (y, 0, 0);
1129 return 1;
1132 return 0;
1135 /* Callback, called from hash_rtx_cb. Helps to hash UNSPEC rtx X in a correct way
1136 to support ia64 speculation. When changes are needed, new rtx X and new mode
1137 NMODE are written, and the callback returns true. */
1138 static int
1139 hash_with_unspec_callback (const_rtx x, machine_mode mode ATTRIBUTE_UNUSED,
1140 rtx *nx, machine_mode* nmode)
1142 if (GET_CODE (x) == UNSPEC
1143 && targetm.sched.skip_rtx_p
1144 && targetm.sched.skip_rtx_p (x))
1146 *nx = XVECEXP (x, 0 ,0);
1147 *nmode = VOIDmode;
1148 return 1;
1151 return 0;
1154 /* Returns LHS and RHS are ok to be scheduled separately. */
1155 static bool
1156 lhs_and_rhs_separable_p (rtx lhs, rtx rhs)
1158 if (lhs == NULL || rhs == NULL)
1159 return false;
1161 /* Do not schedule constants as rhs: no point to use reg, if const
1162 can be used. Moreover, scheduling const as rhs may lead to mode
1163 mismatch cause consts don't have modes but they could be merged
1164 from branches where the same const used in different modes. */
1165 if (CONSTANT_P (rhs))
1166 return false;
1168 /* ??? Do not rename predicate registers to avoid ICEs in bundling. */
1169 if (COMPARISON_P (rhs))
1170 return false;
1172 /* Do not allow single REG to be an rhs. */
1173 if (REG_P (rhs))
1174 return false;
1176 /* See comment at find_used_regs_1 (*1) for explanation of this
1177 restriction. */
1178 /* FIXME: remove this later. */
1179 if (MEM_P (lhs))
1180 return false;
1182 /* This will filter all tricky things like ZERO_EXTRACT etc.
1183 For now we don't handle it. */
1184 if (!REG_P (lhs) && !MEM_P (lhs))
1185 return false;
1187 return true;
1190 /* Initialize vinsn VI for INSN. Only for use from vinsn_create (). When
1191 FORCE_UNIQUE_P is true, the resulting vinsn will not be clonable. This is
1192 used e.g. for insns from recovery blocks. */
1193 static void
1194 vinsn_init (vinsn_t vi, insn_t insn, bool force_unique_p)
1196 hash_rtx_callback_function hrcf;
1197 int insn_class;
1199 VINSN_INSN_RTX (vi) = insn;
1200 VINSN_COUNT (vi) = 0;
1201 vi->cost = -1;
1203 if (INSN_NOP_P (insn))
1204 return;
1206 if (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL)
1207 init_id_from_df (VINSN_ID (vi), insn, force_unique_p);
1208 else
1209 deps_init_id (VINSN_ID (vi), insn, force_unique_p);
1211 /* Hash vinsn depending on whether it is separable or not. */
1212 hrcf = targetm.sched.skip_rtx_p ? hash_with_unspec_callback : NULL;
1213 if (VINSN_SEPARABLE_P (vi))
1215 rtx rhs = VINSN_RHS (vi);
1217 VINSN_HASH (vi) = hash_rtx_cb (rhs, GET_MODE (rhs),
1218 NULL, NULL, false, hrcf);
1219 VINSN_HASH_RTX (vi) = hash_rtx_cb (VINSN_PATTERN (vi),
1220 VOIDmode, NULL, NULL,
1221 false, hrcf);
1223 else
1225 VINSN_HASH (vi) = hash_rtx_cb (VINSN_PATTERN (vi), VOIDmode,
1226 NULL, NULL, false, hrcf);
1227 VINSN_HASH_RTX (vi) = VINSN_HASH (vi);
1230 insn_class = haifa_classify_insn (insn);
1231 if (insn_class >= 2
1232 && (!targetm.sched.get_insn_spec_ds
1233 || ((targetm.sched.get_insn_spec_ds (insn) & BEGIN_CONTROL)
1234 == 0)))
1235 VINSN_MAY_TRAP_P (vi) = true;
1236 else
1237 VINSN_MAY_TRAP_P (vi) = false;
1240 /* Indicate that VI has become the part of an rtx object. */
1241 void
1242 vinsn_attach (vinsn_t vi)
1244 /* Assert that VI is not pending for deletion. */
1245 gcc_assert (VINSN_INSN_RTX (vi));
1247 VINSN_COUNT (vi)++;
1250 /* Create and init VI from the INSN. Use UNIQUE_P for determining the correct
1251 VINSN_TYPE (VI). */
1252 static vinsn_t
1253 vinsn_create (insn_t insn, bool force_unique_p)
1255 vinsn_t vi = XCNEW (struct vinsn_def);
1257 vinsn_init (vi, insn, force_unique_p);
1258 return vi;
1261 /* Return a copy of VI. When REATTACH_P is true, detach VI and attach
1262 the copy. */
1263 vinsn_t
1264 vinsn_copy (vinsn_t vi, bool reattach_p)
1266 rtx_insn *copy;
1267 bool unique = VINSN_UNIQUE_P (vi);
1268 vinsn_t new_vi;
1270 copy = create_copy_of_insn_rtx (VINSN_INSN_RTX (vi));
1271 new_vi = create_vinsn_from_insn_rtx (copy, unique);
1272 if (reattach_p)
1274 vinsn_detach (vi);
1275 vinsn_attach (new_vi);
1278 return new_vi;
1281 /* Delete the VI vinsn and free its data. */
1282 static void
1283 vinsn_delete (vinsn_t vi)
1285 gcc_assert (VINSN_COUNT (vi) == 0);
1287 if (!INSN_NOP_P (VINSN_INSN_RTX (vi)))
1289 return_regset_to_pool (VINSN_REG_SETS (vi));
1290 return_regset_to_pool (VINSN_REG_USES (vi));
1291 return_regset_to_pool (VINSN_REG_CLOBBERS (vi));
1294 free (vi);
1297 /* Indicate that VI is no longer a part of some rtx object.
1298 Remove VI if it is no longer needed. */
1299 void
1300 vinsn_detach (vinsn_t vi)
1302 gcc_assert (VINSN_COUNT (vi) > 0);
1304 if (--VINSN_COUNT (vi) == 0)
1305 vinsn_delete (vi);
1308 /* Returns TRUE if VI is a branch. */
1309 bool
1310 vinsn_cond_branch_p (vinsn_t vi)
1312 insn_t insn;
1314 if (!VINSN_UNIQUE_P (vi))
1315 return false;
1317 insn = VINSN_INSN_RTX (vi);
1318 if (BB_END (BLOCK_FOR_INSN (insn)) != insn)
1319 return false;
1321 return control_flow_insn_p (insn);
1324 /* Return latency of INSN. */
1325 static int
1326 sel_insn_rtx_cost (rtx_insn *insn)
1328 int cost;
1330 /* A USE insn, or something else we don't need to
1331 understand. We can't pass these directly to
1332 result_ready_cost or insn_default_latency because it will
1333 trigger a fatal error for unrecognizable insns. */
1334 if (recog_memoized (insn) < 0)
1335 cost = 0;
1336 else
1338 cost = insn_default_latency (insn);
1340 if (cost < 0)
1341 cost = 0;
1344 return cost;
1347 /* Return the cost of the VI.
1348 !!! FIXME: Unify with haifa-sched.c: insn_cost (). */
1350 sel_vinsn_cost (vinsn_t vi)
1352 int cost = vi->cost;
1354 if (cost < 0)
1356 cost = sel_insn_rtx_cost (VINSN_INSN_RTX (vi));
1357 vi->cost = cost;
1360 return cost;
1364 /* Functions for insn emitting. */
1366 /* Emit new insn after AFTER based on PATTERN and initialize its data from
1367 EXPR and SEQNO. */
1368 insn_t
1369 sel_gen_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno, insn_t after)
1371 insn_t new_insn;
1373 gcc_assert (EXPR_TARGET_AVAILABLE (expr) == true);
1375 new_insn = emit_insn_after (pattern, after);
1376 set_insn_init (expr, NULL, seqno);
1377 sel_init_new_insn (new_insn, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID);
1379 return new_insn;
1382 /* Force newly generated vinsns to be unique. */
1383 static bool init_insn_force_unique_p = false;
1385 /* Emit new speculation recovery insn after AFTER based on PATTERN and
1386 initialize its data from EXPR and SEQNO. */
1387 insn_t
1388 sel_gen_recovery_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno,
1389 insn_t after)
1391 insn_t insn;
1393 gcc_assert (!init_insn_force_unique_p);
1395 init_insn_force_unique_p = true;
1396 insn = sel_gen_insn_from_rtx_after (pattern, expr, seqno, after);
1397 CANT_MOVE (insn) = 1;
1398 init_insn_force_unique_p = false;
1400 return insn;
1403 /* Emit new insn after AFTER based on EXPR and SEQNO. If VINSN is not NULL,
1404 take it as a new vinsn instead of EXPR's vinsn.
1405 We simplify insns later, after scheduling region in
1406 simplify_changed_insns. */
1407 insn_t
1408 sel_gen_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
1409 insn_t after)
1411 expr_t emit_expr;
1412 insn_t insn;
1413 int flags;
1415 emit_expr = set_insn_init (expr, vinsn ? vinsn : EXPR_VINSN (expr),
1416 seqno);
1417 insn = EXPR_INSN_RTX (emit_expr);
1419 /* The insn may come from the transformation cache, which may hold already
1420 deleted insns, so mark it as not deleted. */
1421 insn->set_undeleted ();
1423 add_insn_after (insn, after, BLOCK_FOR_INSN (insn));
1425 flags = INSN_INIT_TODO_SSID;
1426 if (INSN_LUID (insn) == 0)
1427 flags |= INSN_INIT_TODO_LUID;
1428 sel_init_new_insn (insn, flags);
1430 return insn;
1433 /* Move insn from EXPR after AFTER. */
1434 insn_t
1435 sel_move_insn (expr_t expr, int seqno, insn_t after)
1437 insn_t insn = EXPR_INSN_RTX (expr);
1438 basic_block bb = BLOCK_FOR_INSN (after);
1439 insn_t next = NEXT_INSN (after);
1441 /* Assert that in move_op we disconnected this insn properly. */
1442 gcc_assert (EXPR_VINSN (INSN_EXPR (insn)) != NULL);
1443 SET_PREV_INSN (insn) = after;
1444 SET_NEXT_INSN (insn) = next;
1446 SET_NEXT_INSN (after) = insn;
1447 SET_PREV_INSN (next) = insn;
1449 /* Update links from insn to bb and vice versa. */
1450 df_insn_change_bb (insn, bb);
1451 if (BB_END (bb) == after)
1452 BB_END (bb) = insn;
1454 prepare_insn_expr (insn, seqno);
1455 return insn;
1459 /* Functions to work with right-hand sides. */
1461 /* Search for a hash value determined by UID/NEW_VINSN in a sorted vector
1462 VECT and return true when found. Use NEW_VINSN for comparison only when
1463 COMPARE_VINSNS is true. Write to INDP the index on which
1464 the search has stopped, such that inserting the new element at INDP will
1465 retain VECT's sort order. */
1466 static bool
1467 find_in_history_vect_1 (vec<expr_history_def> vect,
1468 unsigned uid, vinsn_t new_vinsn,
1469 bool compare_vinsns, int *indp)
1471 expr_history_def *arr;
1472 int i, j, len = vect.length ();
1474 if (len == 0)
1476 *indp = 0;
1477 return false;
1480 arr = vect.address ();
1481 i = 0, j = len - 1;
1483 while (i <= j)
1485 unsigned auid = arr[i].uid;
1486 vinsn_t avinsn = arr[i].new_expr_vinsn;
1488 if (auid == uid
1489 /* When undoing transformation on a bookkeeping copy, the new vinsn
1490 may not be exactly equal to the one that is saved in the vector.
1491 This is because the insn whose copy we're checking was possibly
1492 substituted itself. */
1493 && (! compare_vinsns
1494 || vinsn_equal_p (avinsn, new_vinsn)))
1496 *indp = i;
1497 return true;
1499 else if (auid > uid)
1500 break;
1501 i++;
1504 *indp = i;
1505 return false;
1508 /* Search for a uid of INSN and NEW_VINSN in a sorted vector VECT. Return
1509 the position found or -1, if no such value is in vector.
1510 Search also for UIDs of insn's originators, if ORIGINATORS_P is true. */
1512 find_in_history_vect (vec<expr_history_def> vect, rtx insn,
1513 vinsn_t new_vinsn, bool originators_p)
1515 int ind;
1517 if (find_in_history_vect_1 (vect, INSN_UID (insn), new_vinsn,
1518 false, &ind))
1519 return ind;
1521 if (INSN_ORIGINATORS (insn) && originators_p)
1523 unsigned uid;
1524 bitmap_iterator bi;
1526 EXECUTE_IF_SET_IN_BITMAP (INSN_ORIGINATORS (insn), 0, uid, bi)
1527 if (find_in_history_vect_1 (vect, uid, new_vinsn, false, &ind))
1528 return ind;
1531 return -1;
1534 /* Insert new element in a sorted history vector pointed to by PVECT,
1535 if it is not there already. The element is searched using
1536 UID/NEW_EXPR_VINSN pair. TYPE, OLD_EXPR_VINSN and SPEC_DS save
1537 the history of a transformation. */
1538 void
1539 insert_in_history_vect (vec<expr_history_def> *pvect,
1540 unsigned uid, enum local_trans_type type,
1541 vinsn_t old_expr_vinsn, vinsn_t new_expr_vinsn,
1542 ds_t spec_ds)
1544 vec<expr_history_def> vect = *pvect;
1545 expr_history_def temp;
1546 bool res;
1547 int ind;
1549 res = find_in_history_vect_1 (vect, uid, new_expr_vinsn, true, &ind);
1551 if (res)
1553 expr_history_def *phist = &vect[ind];
1555 /* It is possible that speculation types of expressions that were
1556 propagated through different paths will be different here. In this
1557 case, merge the status to get the correct check later. */
1558 if (phist->spec_ds != spec_ds)
1559 phist->spec_ds = ds_max_merge (phist->spec_ds, spec_ds);
1560 return;
1563 temp.uid = uid;
1564 temp.old_expr_vinsn = old_expr_vinsn;
1565 temp.new_expr_vinsn = new_expr_vinsn;
1566 temp.spec_ds = spec_ds;
1567 temp.type = type;
1569 vinsn_attach (old_expr_vinsn);
1570 vinsn_attach (new_expr_vinsn);
1571 vect.safe_insert (ind, temp);
1572 *pvect = vect;
1575 /* Free history vector PVECT. */
1576 static void
1577 free_history_vect (vec<expr_history_def> &pvect)
1579 unsigned i;
1580 expr_history_def *phist;
1582 if (! pvect.exists ())
1583 return;
1585 for (i = 0; pvect.iterate (i, &phist); i++)
1587 vinsn_detach (phist->old_expr_vinsn);
1588 vinsn_detach (phist->new_expr_vinsn);
1591 pvect.release ();
1594 /* Merge vector FROM to PVECT. */
1595 static void
1596 merge_history_vect (vec<expr_history_def> *pvect,
1597 vec<expr_history_def> from)
1599 expr_history_def *phist;
1600 int i;
1602 /* We keep this vector sorted. */
1603 for (i = 0; from.iterate (i, &phist); i++)
1604 insert_in_history_vect (pvect, phist->uid, phist->type,
1605 phist->old_expr_vinsn, phist->new_expr_vinsn,
1606 phist->spec_ds);
1609 /* Compare two vinsns as rhses if possible and as vinsns otherwise. */
1610 bool
1611 vinsn_equal_p (vinsn_t x, vinsn_t y)
1613 rtx_equal_p_callback_function repcf;
1615 if (x == y)
1616 return true;
1618 if (VINSN_TYPE (x) != VINSN_TYPE (y))
1619 return false;
1621 if (VINSN_HASH (x) != VINSN_HASH (y))
1622 return false;
1624 repcf = targetm.sched.skip_rtx_p ? skip_unspecs_callback : NULL;
1625 if (VINSN_SEPARABLE_P (x))
1627 /* Compare RHSes of VINSNs. */
1628 gcc_assert (VINSN_RHS (x));
1629 gcc_assert (VINSN_RHS (y));
1631 return rtx_equal_p_cb (VINSN_RHS (x), VINSN_RHS (y), repcf);
1634 return rtx_equal_p_cb (VINSN_PATTERN (x), VINSN_PATTERN (y), repcf);
1638 /* Functions for working with expressions. */
1640 /* Initialize EXPR. */
1641 static void
1642 init_expr (expr_t expr, vinsn_t vi, int spec, int use, int priority,
1643 int sched_times, int orig_bb_index, ds_t spec_done_ds,
1644 ds_t spec_to_check_ds, int orig_sched_cycle,
1645 vec<expr_history_def> history,
1646 signed char target_available,
1647 bool was_substituted, bool was_renamed, bool needs_spec_check_p,
1648 bool cant_move)
1650 vinsn_attach (vi);
1652 EXPR_VINSN (expr) = vi;
1653 EXPR_SPEC (expr) = spec;
1654 EXPR_USEFULNESS (expr) = use;
1655 EXPR_PRIORITY (expr) = priority;
1656 EXPR_PRIORITY_ADJ (expr) = 0;
1657 EXPR_SCHED_TIMES (expr) = sched_times;
1658 EXPR_ORIG_BB_INDEX (expr) = orig_bb_index;
1659 EXPR_ORIG_SCHED_CYCLE (expr) = orig_sched_cycle;
1660 EXPR_SPEC_DONE_DS (expr) = spec_done_ds;
1661 EXPR_SPEC_TO_CHECK_DS (expr) = spec_to_check_ds;
1663 if (history.exists ())
1664 EXPR_HISTORY_OF_CHANGES (expr) = history;
1665 else
1666 EXPR_HISTORY_OF_CHANGES (expr).create (0);
1668 EXPR_TARGET_AVAILABLE (expr) = target_available;
1669 EXPR_WAS_SUBSTITUTED (expr) = was_substituted;
1670 EXPR_WAS_RENAMED (expr) = was_renamed;
1671 EXPR_NEEDS_SPEC_CHECK_P (expr) = needs_spec_check_p;
1672 EXPR_CANT_MOVE (expr) = cant_move;
1675 /* Make a copy of the expr FROM into the expr TO. */
1676 void
1677 copy_expr (expr_t to, expr_t from)
1679 vec<expr_history_def> temp = vNULL;
1681 if (EXPR_HISTORY_OF_CHANGES (from).exists ())
1683 unsigned i;
1684 expr_history_def *phist;
1686 temp = EXPR_HISTORY_OF_CHANGES (from).copy ();
1687 for (i = 0;
1688 temp.iterate (i, &phist);
1689 i++)
1691 vinsn_attach (phist->old_expr_vinsn);
1692 vinsn_attach (phist->new_expr_vinsn);
1696 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from),
1697 EXPR_USEFULNESS (from), EXPR_PRIORITY (from),
1698 EXPR_SCHED_TIMES (from), EXPR_ORIG_BB_INDEX (from),
1699 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from),
1700 EXPR_ORIG_SCHED_CYCLE (from), temp,
1701 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1702 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1703 EXPR_CANT_MOVE (from));
1706 /* Same, but the final expr will not ever be in av sets, so don't copy
1707 "uninteresting" data such as bitmap cache. */
1708 void
1709 copy_expr_onside (expr_t to, expr_t from)
1711 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from), EXPR_USEFULNESS (from),
1712 EXPR_PRIORITY (from), EXPR_SCHED_TIMES (from), 0,
1713 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from), 0,
1714 vNULL,
1715 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1716 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1717 EXPR_CANT_MOVE (from));
1720 /* Prepare the expr of INSN for scheduling. Used when moving insn and when
1721 initializing new insns. */
1722 static void
1723 prepare_insn_expr (insn_t insn, int seqno)
1725 expr_t expr = INSN_EXPR (insn);
1726 ds_t ds;
1728 INSN_SEQNO (insn) = seqno;
1729 EXPR_ORIG_BB_INDEX (expr) = BLOCK_NUM (insn);
1730 EXPR_SPEC (expr) = 0;
1731 EXPR_ORIG_SCHED_CYCLE (expr) = 0;
1732 EXPR_WAS_SUBSTITUTED (expr) = 0;
1733 EXPR_WAS_RENAMED (expr) = 0;
1734 EXPR_TARGET_AVAILABLE (expr) = 1;
1735 INSN_LIVE_VALID_P (insn) = false;
1737 /* ??? If this expression is speculative, make its dependence
1738 as weak as possible. We can filter this expression later
1739 in process_spec_exprs, because we do not distinguish
1740 between the status we got during compute_av_set and the
1741 existing status. To be fixed. */
1742 ds = EXPR_SPEC_DONE_DS (expr);
1743 if (ds)
1744 EXPR_SPEC_DONE_DS (expr) = ds_get_max_dep_weak (ds);
1746 free_history_vect (EXPR_HISTORY_OF_CHANGES (expr));
1749 /* Update target_available bits when merging exprs TO and FROM. SPLIT_POINT
1750 is non-null when expressions are merged from different successors at
1751 a split point. */
1752 static void
1753 update_target_availability (expr_t to, expr_t from, insn_t split_point)
1755 if (EXPR_TARGET_AVAILABLE (to) < 0
1756 || EXPR_TARGET_AVAILABLE (from) < 0)
1757 EXPR_TARGET_AVAILABLE (to) = -1;
1758 else
1760 /* We try to detect the case when one of the expressions
1761 can only be reached through another one. In this case,
1762 we can do better. */
1763 if (split_point == NULL)
1765 int toind, fromind;
1767 toind = EXPR_ORIG_BB_INDEX (to);
1768 fromind = EXPR_ORIG_BB_INDEX (from);
1770 if (toind && toind == fromind)
1771 /* Do nothing -- everything is done in
1772 merge_with_other_exprs. */
1774 else
1775 EXPR_TARGET_AVAILABLE (to) = -1;
1777 else if (EXPR_TARGET_AVAILABLE (from) == 0
1778 && EXPR_LHS (from)
1779 && REG_P (EXPR_LHS (from))
1780 && REGNO (EXPR_LHS (to)) != REGNO (EXPR_LHS (from)))
1781 EXPR_TARGET_AVAILABLE (to) = -1;
1782 else
1783 EXPR_TARGET_AVAILABLE (to) &= EXPR_TARGET_AVAILABLE (from);
1787 /* Update speculation bits when merging exprs TO and FROM. SPLIT_POINT
1788 is non-null when expressions are merged from different successors at
1789 a split point. */
1790 static void
1791 update_speculative_bits (expr_t to, expr_t from, insn_t split_point)
1793 ds_t old_to_ds, old_from_ds;
1795 old_to_ds = EXPR_SPEC_DONE_DS (to);
1796 old_from_ds = EXPR_SPEC_DONE_DS (from);
1798 EXPR_SPEC_DONE_DS (to) = ds_max_merge (old_to_ds, old_from_ds);
1799 EXPR_SPEC_TO_CHECK_DS (to) |= EXPR_SPEC_TO_CHECK_DS (from);
1800 EXPR_NEEDS_SPEC_CHECK_P (to) |= EXPR_NEEDS_SPEC_CHECK_P (from);
1802 /* When merging e.g. control & data speculative exprs, or a control
1803 speculative with a control&data speculative one, we really have
1804 to change vinsn too. Also, when speculative status is changed,
1805 we also need to record this as a transformation in expr's history. */
1806 if ((old_to_ds & SPECULATIVE) || (old_from_ds & SPECULATIVE))
1808 old_to_ds = ds_get_speculation_types (old_to_ds);
1809 old_from_ds = ds_get_speculation_types (old_from_ds);
1811 if (old_to_ds != old_from_ds)
1813 ds_t record_ds;
1815 /* When both expressions are speculative, we need to change
1816 the vinsn first. */
1817 if ((old_to_ds & SPECULATIVE) && (old_from_ds & SPECULATIVE))
1819 int res;
1821 res = speculate_expr (to, EXPR_SPEC_DONE_DS (to));
1822 gcc_assert (res >= 0);
1825 if (split_point != NULL)
1827 /* Record the change with proper status. */
1828 record_ds = EXPR_SPEC_DONE_DS (to) & SPECULATIVE;
1829 record_ds &= ~(old_to_ds & SPECULATIVE);
1830 record_ds &= ~(old_from_ds & SPECULATIVE);
1832 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1833 INSN_UID (split_point), TRANS_SPECULATION,
1834 EXPR_VINSN (from), EXPR_VINSN (to),
1835 record_ds);
1842 /* Merge bits of FROM expr to TO expr. When SPLIT_POINT is not NULL,
1843 this is done along different paths. */
1844 void
1845 merge_expr_data (expr_t to, expr_t from, insn_t split_point)
1847 /* Choose the maximum of the specs of merged exprs. This is required
1848 for correctness of bookkeeping. */
1849 if (EXPR_SPEC (to) < EXPR_SPEC (from))
1850 EXPR_SPEC (to) = EXPR_SPEC (from);
1852 if (split_point)
1853 EXPR_USEFULNESS (to) += EXPR_USEFULNESS (from);
1854 else
1855 EXPR_USEFULNESS (to) = MAX (EXPR_USEFULNESS (to),
1856 EXPR_USEFULNESS (from));
1858 if (EXPR_PRIORITY (to) < EXPR_PRIORITY (from))
1859 EXPR_PRIORITY (to) = EXPR_PRIORITY (from);
1861 if (EXPR_SCHED_TIMES (to) > EXPR_SCHED_TIMES (from))
1862 EXPR_SCHED_TIMES (to) = EXPR_SCHED_TIMES (from);
1864 if (EXPR_ORIG_BB_INDEX (to) != EXPR_ORIG_BB_INDEX (from))
1865 EXPR_ORIG_BB_INDEX (to) = 0;
1867 EXPR_ORIG_SCHED_CYCLE (to) = MIN (EXPR_ORIG_SCHED_CYCLE (to),
1868 EXPR_ORIG_SCHED_CYCLE (from));
1870 EXPR_WAS_SUBSTITUTED (to) |= EXPR_WAS_SUBSTITUTED (from);
1871 EXPR_WAS_RENAMED (to) |= EXPR_WAS_RENAMED (from);
1872 EXPR_CANT_MOVE (to) |= EXPR_CANT_MOVE (from);
1874 merge_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1875 EXPR_HISTORY_OF_CHANGES (from));
1876 update_target_availability (to, from, split_point);
1877 update_speculative_bits (to, from, split_point);
1880 /* Merge bits of FROM expr to TO expr. Vinsns in the exprs should be equal
1881 in terms of vinsn_equal_p. SPLIT_POINT is non-null when expressions
1882 are merged from different successors at a split point. */
1883 void
1884 merge_expr (expr_t to, expr_t from, insn_t split_point)
1886 vinsn_t to_vi = EXPR_VINSN (to);
1887 vinsn_t from_vi = EXPR_VINSN (from);
1889 gcc_assert (vinsn_equal_p (to_vi, from_vi));
1891 /* Make sure that speculative pattern is propagated into exprs that
1892 have non-speculative one. This will provide us with consistent
1893 speculative bits and speculative patterns inside expr. */
1894 if ((EXPR_SPEC_DONE_DS (from) != 0
1895 && EXPR_SPEC_DONE_DS (to) == 0)
1896 /* Do likewise for volatile insns, so that we always retain
1897 the may_trap_p bit on the resulting expression. */
1898 || (VINSN_MAY_TRAP_P (EXPR_VINSN (from))
1899 && !VINSN_MAY_TRAP_P (EXPR_VINSN (to))))
1900 change_vinsn_in_expr (to, EXPR_VINSN (from));
1902 merge_expr_data (to, from, split_point);
1903 gcc_assert (EXPR_USEFULNESS (to) <= REG_BR_PROB_BASE);
1906 /* Clear the information of this EXPR. */
1907 void
1908 clear_expr (expr_t expr)
1911 vinsn_detach (EXPR_VINSN (expr));
1912 EXPR_VINSN (expr) = NULL;
1914 free_history_vect (EXPR_HISTORY_OF_CHANGES (expr));
1917 /* For a given LV_SET, mark EXPR having unavailable target register. */
1918 static void
1919 set_unavailable_target_for_expr (expr_t expr, regset lv_set)
1921 if (EXPR_SEPARABLE_P (expr))
1923 if (REG_P (EXPR_LHS (expr))
1924 && register_unavailable_p (lv_set, EXPR_LHS (expr)))
1926 /* If it's an insn like r1 = use (r1, ...), and it exists in
1927 different forms in each of the av_sets being merged, we can't say
1928 whether original destination register is available or not.
1929 However, this still works if destination register is not used
1930 in the original expression: if the branch at which LV_SET we're
1931 looking here is not actually 'other branch' in sense that same
1932 expression is available through it (but it can't be determined
1933 at computation stage because of transformations on one of the
1934 branches), it still won't affect the availability.
1935 Liveness of a register somewhere on a code motion path means
1936 it's either read somewhere on a codemotion path, live on
1937 'other' branch, live at the point immediately following
1938 the original operation, or is read by the original operation.
1939 The latter case is filtered out in the condition below.
1940 It still doesn't cover the case when register is defined and used
1941 somewhere within the code motion path, and in this case we could
1942 miss a unifying code motion along both branches using a renamed
1943 register, but it won't affect a code correctness since upon
1944 an actual code motion a bookkeeping code would be generated. */
1945 if (register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
1946 EXPR_LHS (expr)))
1947 EXPR_TARGET_AVAILABLE (expr) = -1;
1948 else
1949 EXPR_TARGET_AVAILABLE (expr) = false;
1952 else
1954 unsigned regno;
1955 reg_set_iterator rsi;
1957 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (EXPR_VINSN (expr)),
1958 0, regno, rsi)
1959 if (bitmap_bit_p (lv_set, regno))
1961 EXPR_TARGET_AVAILABLE (expr) = false;
1962 break;
1965 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (EXPR_VINSN (expr)),
1966 0, regno, rsi)
1967 if (bitmap_bit_p (lv_set, regno))
1969 EXPR_TARGET_AVAILABLE (expr) = false;
1970 break;
1975 /* Try to make EXPR speculative. Return 1 when EXPR's pattern
1976 or dependence status have changed, 2 when also the target register
1977 became unavailable, 0 if nothing had to be changed. */
1979 speculate_expr (expr_t expr, ds_t ds)
1981 int res;
1982 rtx_insn *orig_insn_rtx;
1983 rtx spec_pat;
1984 ds_t target_ds, current_ds;
1986 /* Obtain the status we need to put on EXPR. */
1987 target_ds = (ds & SPECULATIVE);
1988 current_ds = EXPR_SPEC_DONE_DS (expr);
1989 ds = ds_full_merge (current_ds, target_ds, NULL_RTX, NULL_RTX);
1991 orig_insn_rtx = EXPR_INSN_RTX (expr);
1993 res = sched_speculate_insn (orig_insn_rtx, ds, &spec_pat);
1995 switch (res)
1997 case 0:
1998 EXPR_SPEC_DONE_DS (expr) = ds;
1999 return current_ds != ds ? 1 : 0;
2001 case 1:
2003 rtx_insn *spec_insn_rtx =
2004 create_insn_rtx_from_pattern (spec_pat, NULL_RTX);
2005 vinsn_t spec_vinsn = create_vinsn_from_insn_rtx (spec_insn_rtx, false);
2007 change_vinsn_in_expr (expr, spec_vinsn);
2008 EXPR_SPEC_DONE_DS (expr) = ds;
2009 EXPR_NEEDS_SPEC_CHECK_P (expr) = true;
2011 /* Do not allow clobbering the address register of speculative
2012 insns. */
2013 if (register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
2014 expr_dest_reg (expr)))
2016 EXPR_TARGET_AVAILABLE (expr) = false;
2017 return 2;
2020 return 1;
2023 case -1:
2024 return -1;
2026 default:
2027 gcc_unreachable ();
2028 return -1;
2032 /* Return a destination register, if any, of EXPR. */
2034 expr_dest_reg (expr_t expr)
2036 rtx dest = VINSN_LHS (EXPR_VINSN (expr));
2038 if (dest != NULL_RTX && REG_P (dest))
2039 return dest;
2041 return NULL_RTX;
2044 /* Returns the REGNO of the R's destination. */
2045 unsigned
2046 expr_dest_regno (expr_t expr)
2048 rtx dest = expr_dest_reg (expr);
2050 gcc_assert (dest != NULL_RTX);
2051 return REGNO (dest);
2054 /* For a given LV_SET, mark all expressions in JOIN_SET, but not present in
2055 AV_SET having unavailable target register. */
2056 void
2057 mark_unavailable_targets (av_set_t join_set, av_set_t av_set, regset lv_set)
2059 expr_t expr;
2060 av_set_iterator avi;
2062 FOR_EACH_EXPR (expr, avi, join_set)
2063 if (av_set_lookup (av_set, EXPR_VINSN (expr)) == NULL)
2064 set_unavailable_target_for_expr (expr, lv_set);
2068 /* Returns true if REG (at least partially) is present in REGS. */
2069 bool
2070 register_unavailable_p (regset regs, rtx reg)
2072 unsigned regno, end_regno;
2074 regno = REGNO (reg);
2075 if (bitmap_bit_p (regs, regno))
2076 return true;
2078 end_regno = END_REGNO (reg);
2080 while (++regno < end_regno)
2081 if (bitmap_bit_p (regs, regno))
2082 return true;
2084 return false;
2087 /* Av set functions. */
2089 /* Add a new element to av set SETP.
2090 Return the element added. */
2091 static av_set_t
2092 av_set_add_element (av_set_t *setp)
2094 /* Insert at the beginning of the list. */
2095 _list_add (setp);
2096 return *setp;
2099 /* Add EXPR to SETP. */
2100 void
2101 av_set_add (av_set_t *setp, expr_t expr)
2103 av_set_t elem;
2105 gcc_assert (!INSN_NOP_P (EXPR_INSN_RTX (expr)));
2106 elem = av_set_add_element (setp);
2107 copy_expr (_AV_SET_EXPR (elem), expr);
2110 /* Same, but do not copy EXPR. */
2111 static void
2112 av_set_add_nocopy (av_set_t *setp, expr_t expr)
2114 av_set_t elem;
2116 elem = av_set_add_element (setp);
2117 *_AV_SET_EXPR (elem) = *expr;
2120 /* Remove expr pointed to by IP from the av_set. */
2121 void
2122 av_set_iter_remove (av_set_iterator *ip)
2124 clear_expr (_AV_SET_EXPR (*ip->lp));
2125 _list_iter_remove (ip);
2128 /* Search for an expr in SET, such that it's equivalent to SOUGHT_VINSN in the
2129 sense of vinsn_equal_p function. Return NULL if no such expr is
2130 in SET was found. */
2131 expr_t
2132 av_set_lookup (av_set_t set, vinsn_t sought_vinsn)
2134 expr_t expr;
2135 av_set_iterator i;
2137 FOR_EACH_EXPR (expr, i, set)
2138 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2139 return expr;
2140 return NULL;
2143 /* Same, but also remove the EXPR found. */
2144 static expr_t
2145 av_set_lookup_and_remove (av_set_t *setp, vinsn_t sought_vinsn)
2147 expr_t expr;
2148 av_set_iterator i;
2150 FOR_EACH_EXPR_1 (expr, i, setp)
2151 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2153 _list_iter_remove_nofree (&i);
2154 return expr;
2156 return NULL;
2159 /* Search for an expr in SET, such that it's equivalent to EXPR in the
2160 sense of vinsn_equal_p function of their vinsns, but not EXPR itself.
2161 Returns NULL if no such expr is in SET was found. */
2162 static expr_t
2163 av_set_lookup_other_equiv_expr (av_set_t set, expr_t expr)
2165 expr_t cur_expr;
2166 av_set_iterator i;
2168 FOR_EACH_EXPR (cur_expr, i, set)
2170 if (cur_expr == expr)
2171 continue;
2172 if (vinsn_equal_p (EXPR_VINSN (cur_expr), EXPR_VINSN (expr)))
2173 return cur_expr;
2176 return NULL;
2179 /* If other expression is already in AVP, remove one of them. */
2180 expr_t
2181 merge_with_other_exprs (av_set_t *avp, av_set_iterator *ip, expr_t expr)
2183 expr_t expr2;
2185 expr2 = av_set_lookup_other_equiv_expr (*avp, expr);
2186 if (expr2 != NULL)
2188 /* Reset target availability on merge, since taking it only from one
2189 of the exprs would be controversial for different code. */
2190 EXPR_TARGET_AVAILABLE (expr2) = -1;
2191 EXPR_USEFULNESS (expr2) = 0;
2193 merge_expr (expr2, expr, NULL);
2195 /* Fix usefulness as it should be now REG_BR_PROB_BASE. */
2196 EXPR_USEFULNESS (expr2) = REG_BR_PROB_BASE;
2198 av_set_iter_remove (ip);
2199 return expr2;
2202 return expr;
2205 /* Return true if there is an expr that correlates to VI in SET. */
2206 bool
2207 av_set_is_in_p (av_set_t set, vinsn_t vi)
2209 return av_set_lookup (set, vi) != NULL;
2212 /* Return a copy of SET. */
2213 av_set_t
2214 av_set_copy (av_set_t set)
2216 expr_t expr;
2217 av_set_iterator i;
2218 av_set_t res = NULL;
2220 FOR_EACH_EXPR (expr, i, set)
2221 av_set_add (&res, expr);
2223 return res;
2226 /* Join two av sets that do not have common elements by attaching second set
2227 (pointed to by FROMP) to the end of first set (TO_TAILP must point to
2228 _AV_SET_NEXT of first set's last element). */
2229 static void
2230 join_distinct_sets (av_set_t *to_tailp, av_set_t *fromp)
2232 gcc_assert (*to_tailp == NULL);
2233 *to_tailp = *fromp;
2234 *fromp = NULL;
2237 /* Makes set pointed to by TO to be the union of TO and FROM. Clear av_set
2238 pointed to by FROMP afterwards. */
2239 void
2240 av_set_union_and_clear (av_set_t *top, av_set_t *fromp, insn_t insn)
2242 expr_t expr1;
2243 av_set_iterator i;
2245 /* Delete from TOP all exprs, that present in FROMP. */
2246 FOR_EACH_EXPR_1 (expr1, i, top)
2248 expr_t expr2 = av_set_lookup (*fromp, EXPR_VINSN (expr1));
2250 if (expr2)
2252 merge_expr (expr2, expr1, insn);
2253 av_set_iter_remove (&i);
2257 join_distinct_sets (i.lp, fromp);
2260 /* Same as above, but also update availability of target register in
2261 TOP judging by TO_LV_SET and FROM_LV_SET. */
2262 void
2263 av_set_union_and_live (av_set_t *top, av_set_t *fromp, regset to_lv_set,
2264 regset from_lv_set, insn_t insn)
2266 expr_t expr1;
2267 av_set_iterator i;
2268 av_set_t *to_tailp, in_both_set = NULL;
2270 /* Delete from TOP all expres, that present in FROMP. */
2271 FOR_EACH_EXPR_1 (expr1, i, top)
2273 expr_t expr2 = av_set_lookup_and_remove (fromp, EXPR_VINSN (expr1));
2275 if (expr2)
2277 /* It may be that the expressions have different destination
2278 registers, in which case we need to check liveness here. */
2279 if (EXPR_SEPARABLE_P (expr1))
2281 int regno1 = (REG_P (EXPR_LHS (expr1))
2282 ? (int) expr_dest_regno (expr1) : -1);
2283 int regno2 = (REG_P (EXPR_LHS (expr2))
2284 ? (int) expr_dest_regno (expr2) : -1);
2286 /* ??? We don't have a way to check restrictions for
2287 *other* register on the current path, we did it only
2288 for the current target register. Give up. */
2289 if (regno1 != regno2)
2290 EXPR_TARGET_AVAILABLE (expr2) = -1;
2292 else if (EXPR_INSN_RTX (expr1) != EXPR_INSN_RTX (expr2))
2293 EXPR_TARGET_AVAILABLE (expr2) = -1;
2295 merge_expr (expr2, expr1, insn);
2296 av_set_add_nocopy (&in_both_set, expr2);
2297 av_set_iter_remove (&i);
2299 else
2300 /* EXPR1 is present in TOP, but not in FROMP. Check it on
2301 FROM_LV_SET. */
2302 set_unavailable_target_for_expr (expr1, from_lv_set);
2304 to_tailp = i.lp;
2306 /* These expressions are not present in TOP. Check liveness
2307 restrictions on TO_LV_SET. */
2308 FOR_EACH_EXPR (expr1, i, *fromp)
2309 set_unavailable_target_for_expr (expr1, to_lv_set);
2311 join_distinct_sets (i.lp, &in_both_set);
2312 join_distinct_sets (to_tailp, fromp);
2315 /* Clear av_set pointed to by SETP. */
2316 void
2317 av_set_clear (av_set_t *setp)
2319 expr_t expr;
2320 av_set_iterator i;
2322 FOR_EACH_EXPR_1 (expr, i, setp)
2323 av_set_iter_remove (&i);
2325 gcc_assert (*setp == NULL);
2328 /* Leave only one non-speculative element in the SETP. */
2329 void
2330 av_set_leave_one_nonspec (av_set_t *setp)
2332 expr_t expr;
2333 av_set_iterator i;
2334 bool has_one_nonspec = false;
2336 /* Keep all speculative exprs, and leave one non-speculative
2337 (the first one). */
2338 FOR_EACH_EXPR_1 (expr, i, setp)
2340 if (!EXPR_SPEC_DONE_DS (expr))
2342 if (has_one_nonspec)
2343 av_set_iter_remove (&i);
2344 else
2345 has_one_nonspec = true;
2350 /* Return the N'th element of the SET. */
2351 expr_t
2352 av_set_element (av_set_t set, int n)
2354 expr_t expr;
2355 av_set_iterator i;
2357 FOR_EACH_EXPR (expr, i, set)
2358 if (n-- == 0)
2359 return expr;
2361 gcc_unreachable ();
2362 return NULL;
2365 /* Deletes all expressions from AVP that are conditional branches (IFs). */
2366 void
2367 av_set_substract_cond_branches (av_set_t *avp)
2369 av_set_iterator i;
2370 expr_t expr;
2372 FOR_EACH_EXPR_1 (expr, i, avp)
2373 if (vinsn_cond_branch_p (EXPR_VINSN (expr)))
2374 av_set_iter_remove (&i);
2377 /* Multiplies usefulness attribute of each member of av-set *AVP by
2378 value PROB / ALL_PROB. */
2379 void
2380 av_set_split_usefulness (av_set_t av, int prob, int all_prob)
2382 av_set_iterator i;
2383 expr_t expr;
2385 FOR_EACH_EXPR (expr, i, av)
2386 EXPR_USEFULNESS (expr) = (all_prob
2387 ? (EXPR_USEFULNESS (expr) * prob) / all_prob
2388 : 0);
2391 /* Leave in AVP only those expressions, which are present in AV,
2392 and return it, merging history expressions. */
2393 void
2394 av_set_code_motion_filter (av_set_t *avp, av_set_t av)
2396 av_set_iterator i;
2397 expr_t expr, expr2;
2399 FOR_EACH_EXPR_1 (expr, i, avp)
2400 if ((expr2 = av_set_lookup (av, EXPR_VINSN (expr))) == NULL)
2401 av_set_iter_remove (&i);
2402 else
2403 /* When updating av sets in bookkeeping blocks, we can add more insns
2404 there which will be transformed but the upper av sets will not
2405 reflect those transformations. We then fail to undo those
2406 when searching for such insns. So merge the history saved
2407 in the av set of the block we are processing. */
2408 merge_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2409 EXPR_HISTORY_OF_CHANGES (expr2));
2414 /* Dependence hooks to initialize insn data. */
2416 /* This is used in hooks callable from dependence analysis when initializing
2417 instruction's data. */
2418 static struct
2420 /* Where the dependence was found (lhs/rhs). */
2421 deps_where_t where;
2423 /* The actual data object to initialize. */
2424 idata_t id;
2426 /* True when the insn should not be made clonable. */
2427 bool force_unique_p;
2429 /* True when insn should be treated as of type USE, i.e. never renamed. */
2430 bool force_use_p;
2431 } deps_init_id_data;
2434 /* Setup ID for INSN. FORCE_UNIQUE_P is true when INSN should not be
2435 clonable. */
2436 static void
2437 setup_id_for_insn (idata_t id, insn_t insn, bool force_unique_p)
2439 int type;
2441 /* Determine whether INSN could be cloned and return appropriate vinsn type.
2442 That clonable insns which can be separated into lhs and rhs have type SET.
2443 Other clonable insns have type USE. */
2444 type = GET_CODE (insn);
2446 /* Only regular insns could be cloned. */
2447 if (type == INSN && !force_unique_p)
2448 type = SET;
2449 else if (type == JUMP_INSN && simplejump_p (insn))
2450 type = PC;
2451 else if (type == DEBUG_INSN)
2452 type = !force_unique_p ? USE : INSN;
2454 IDATA_TYPE (id) = type;
2455 IDATA_REG_SETS (id) = get_clear_regset_from_pool ();
2456 IDATA_REG_USES (id) = get_clear_regset_from_pool ();
2457 IDATA_REG_CLOBBERS (id) = get_clear_regset_from_pool ();
2460 /* Start initializing insn data. */
2461 static void
2462 deps_init_id_start_insn (insn_t insn)
2464 gcc_assert (deps_init_id_data.where == DEPS_IN_NOWHERE);
2466 setup_id_for_insn (deps_init_id_data.id, insn,
2467 deps_init_id_data.force_unique_p);
2468 deps_init_id_data.where = DEPS_IN_INSN;
2471 /* Start initializing lhs data. */
2472 static void
2473 deps_init_id_start_lhs (rtx lhs)
2475 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2476 gcc_assert (IDATA_LHS (deps_init_id_data.id) == NULL);
2478 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2480 IDATA_LHS (deps_init_id_data.id) = lhs;
2481 deps_init_id_data.where = DEPS_IN_LHS;
2485 /* Finish initializing lhs data. */
2486 static void
2487 deps_init_id_finish_lhs (void)
2489 deps_init_id_data.where = DEPS_IN_INSN;
2492 /* Note a set of REGNO. */
2493 static void
2494 deps_init_id_note_reg_set (int regno)
2496 haifa_note_reg_set (regno);
2498 if (deps_init_id_data.where == DEPS_IN_RHS)
2499 deps_init_id_data.force_use_p = true;
2501 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2502 SET_REGNO_REG_SET (IDATA_REG_SETS (deps_init_id_data.id), regno);
2504 #ifdef STACK_REGS
2505 /* Make instructions that set stack registers to be ineligible for
2506 renaming to avoid issues with find_used_regs. */
2507 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2508 deps_init_id_data.force_use_p = true;
2509 #endif
2512 /* Note a clobber of REGNO. */
2513 static void
2514 deps_init_id_note_reg_clobber (int regno)
2516 haifa_note_reg_clobber (regno);
2518 if (deps_init_id_data.where == DEPS_IN_RHS)
2519 deps_init_id_data.force_use_p = true;
2521 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2522 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (deps_init_id_data.id), regno);
2525 /* Note a use of REGNO. */
2526 static void
2527 deps_init_id_note_reg_use (int regno)
2529 haifa_note_reg_use (regno);
2531 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2532 SET_REGNO_REG_SET (IDATA_REG_USES (deps_init_id_data.id), regno);
2535 /* Start initializing rhs data. */
2536 static void
2537 deps_init_id_start_rhs (rtx rhs)
2539 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2541 /* And there was no sel_deps_reset_to_insn (). */
2542 if (IDATA_LHS (deps_init_id_data.id) != NULL)
2544 IDATA_RHS (deps_init_id_data.id) = rhs;
2545 deps_init_id_data.where = DEPS_IN_RHS;
2549 /* Finish initializing rhs data. */
2550 static void
2551 deps_init_id_finish_rhs (void)
2553 gcc_assert (deps_init_id_data.where == DEPS_IN_RHS
2554 || deps_init_id_data.where == DEPS_IN_INSN);
2555 deps_init_id_data.where = DEPS_IN_INSN;
2558 /* Finish initializing insn data. */
2559 static void
2560 deps_init_id_finish_insn (void)
2562 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2564 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2566 rtx lhs = IDATA_LHS (deps_init_id_data.id);
2567 rtx rhs = IDATA_RHS (deps_init_id_data.id);
2569 if (lhs == NULL || rhs == NULL || !lhs_and_rhs_separable_p (lhs, rhs)
2570 || deps_init_id_data.force_use_p)
2572 /* This should be a USE, as we don't want to schedule its RHS
2573 separately. However, we still want to have them recorded
2574 for the purposes of substitution. That's why we don't
2575 simply call downgrade_to_use () here. */
2576 gcc_assert (IDATA_TYPE (deps_init_id_data.id) == SET);
2577 gcc_assert (!lhs == !rhs);
2579 IDATA_TYPE (deps_init_id_data.id) = USE;
2583 deps_init_id_data.where = DEPS_IN_NOWHERE;
2586 /* This is dependence info used for initializing insn's data. */
2587 static struct sched_deps_info_def deps_init_id_sched_deps_info;
2589 /* This initializes most of the static part of the above structure. */
2590 static const struct sched_deps_info_def const_deps_init_id_sched_deps_info =
2592 NULL,
2594 deps_init_id_start_insn,
2595 deps_init_id_finish_insn,
2596 deps_init_id_start_lhs,
2597 deps_init_id_finish_lhs,
2598 deps_init_id_start_rhs,
2599 deps_init_id_finish_rhs,
2600 deps_init_id_note_reg_set,
2601 deps_init_id_note_reg_clobber,
2602 deps_init_id_note_reg_use,
2603 NULL, /* note_mem_dep */
2604 NULL, /* note_dep */
2606 0, /* use_cselib */
2607 0, /* use_deps_list */
2608 0 /* generate_spec_deps */
2611 /* Initialize INSN's lhs and rhs in ID. When FORCE_UNIQUE_P is true,
2612 we don't actually need information about lhs and rhs. */
2613 static void
2614 setup_id_lhs_rhs (idata_t id, insn_t insn, bool force_unique_p)
2616 rtx pat = PATTERN (insn);
2618 if (NONJUMP_INSN_P (insn)
2619 && GET_CODE (pat) == SET
2620 && !force_unique_p)
2622 IDATA_RHS (id) = SET_SRC (pat);
2623 IDATA_LHS (id) = SET_DEST (pat);
2625 else
2626 IDATA_LHS (id) = IDATA_RHS (id) = NULL;
2629 /* Possibly downgrade INSN to USE. */
2630 static void
2631 maybe_downgrade_id_to_use (idata_t id, insn_t insn)
2633 bool must_be_use = false;
2634 df_ref def;
2635 rtx lhs = IDATA_LHS (id);
2636 rtx rhs = IDATA_RHS (id);
2638 /* We downgrade only SETs. */
2639 if (IDATA_TYPE (id) != SET)
2640 return;
2642 if (!lhs || !lhs_and_rhs_separable_p (lhs, rhs))
2644 IDATA_TYPE (id) = USE;
2645 return;
2648 FOR_EACH_INSN_DEF (def, insn)
2650 if (DF_REF_INSN (def)
2651 && DF_REF_FLAGS_IS_SET (def, DF_REF_PRE_POST_MODIFY)
2652 && loc_mentioned_in_p (DF_REF_LOC (def), IDATA_RHS (id)))
2654 must_be_use = true;
2655 break;
2658 #ifdef STACK_REGS
2659 /* Make instructions that set stack registers to be ineligible for
2660 renaming to avoid issues with find_used_regs. */
2661 if (IN_RANGE (DF_REF_REGNO (def), FIRST_STACK_REG, LAST_STACK_REG))
2663 must_be_use = true;
2664 break;
2666 #endif
2669 if (must_be_use)
2670 IDATA_TYPE (id) = USE;
2673 /* Setup register sets describing INSN in ID. */
2674 static void
2675 setup_id_reg_sets (idata_t id, insn_t insn)
2677 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
2678 df_ref def, use;
2679 regset tmp = get_clear_regset_from_pool ();
2681 FOR_EACH_INSN_INFO_DEF (def, insn_info)
2683 unsigned int regno = DF_REF_REGNO (def);
2685 /* Post modifies are treated like clobbers by sched-deps.c. */
2686 if (DF_REF_FLAGS_IS_SET (def, (DF_REF_MUST_CLOBBER
2687 | DF_REF_PRE_POST_MODIFY)))
2688 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (id), regno);
2689 else if (! DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
2691 SET_REGNO_REG_SET (IDATA_REG_SETS (id), regno);
2693 #ifdef STACK_REGS
2694 /* For stack registers, treat writes to them as writes
2695 to the first one to be consistent with sched-deps.c. */
2696 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2697 SET_REGNO_REG_SET (IDATA_REG_SETS (id), FIRST_STACK_REG);
2698 #endif
2700 /* Mark special refs that generate read/write def pair. */
2701 if (DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)
2702 || regno == STACK_POINTER_REGNUM)
2703 bitmap_set_bit (tmp, regno);
2706 FOR_EACH_INSN_INFO_USE (use, insn_info)
2708 unsigned int regno = DF_REF_REGNO (use);
2710 /* When these refs are met for the first time, skip them, as
2711 these uses are just counterparts of some defs. */
2712 if (bitmap_bit_p (tmp, regno))
2713 bitmap_clear_bit (tmp, regno);
2714 else if (! DF_REF_FLAGS_IS_SET (use, DF_REF_CALL_STACK_USAGE))
2716 SET_REGNO_REG_SET (IDATA_REG_USES (id), regno);
2718 #ifdef STACK_REGS
2719 /* For stack registers, treat reads from them as reads from
2720 the first one to be consistent with sched-deps.c. */
2721 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2722 SET_REGNO_REG_SET (IDATA_REG_USES (id), FIRST_STACK_REG);
2723 #endif
2727 return_regset_to_pool (tmp);
2730 /* Initialize instruction data for INSN in ID using DF's data. */
2731 static void
2732 init_id_from_df (idata_t id, insn_t insn, bool force_unique_p)
2734 gcc_assert (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL);
2736 setup_id_for_insn (id, insn, force_unique_p);
2737 setup_id_lhs_rhs (id, insn, force_unique_p);
2739 if (INSN_NOP_P (insn))
2740 return;
2742 maybe_downgrade_id_to_use (id, insn);
2743 setup_id_reg_sets (id, insn);
2746 /* Initialize instruction data for INSN in ID. */
2747 static void
2748 deps_init_id (idata_t id, insn_t insn, bool force_unique_p)
2750 struct deps_desc _dc, *dc = &_dc;
2752 deps_init_id_data.where = DEPS_IN_NOWHERE;
2753 deps_init_id_data.id = id;
2754 deps_init_id_data.force_unique_p = force_unique_p;
2755 deps_init_id_data.force_use_p = false;
2757 init_deps (dc, false);
2759 memcpy (&deps_init_id_sched_deps_info,
2760 &const_deps_init_id_sched_deps_info,
2761 sizeof (deps_init_id_sched_deps_info));
2763 if (spec_info != NULL)
2764 deps_init_id_sched_deps_info.generate_spec_deps = 1;
2766 sched_deps_info = &deps_init_id_sched_deps_info;
2768 deps_analyze_insn (dc, insn);
2770 free_deps (dc);
2772 deps_init_id_data.id = NULL;
2776 struct sched_scan_info_def
2778 /* This hook notifies scheduler frontend to extend its internal per basic
2779 block data structures. This hook should be called once before a series of
2780 calls to bb_init (). */
2781 void (*extend_bb) (void);
2783 /* This hook makes scheduler frontend to initialize its internal data
2784 structures for the passed basic block. */
2785 void (*init_bb) (basic_block);
2787 /* This hook notifies scheduler frontend to extend its internal per insn data
2788 structures. This hook should be called once before a series of calls to
2789 insn_init (). */
2790 void (*extend_insn) (void);
2792 /* This hook makes scheduler frontend to initialize its internal data
2793 structures for the passed insn. */
2794 void (*init_insn) (insn_t);
2797 /* A driver function to add a set of basic blocks (BBS) to the
2798 scheduling region. */
2799 static void
2800 sched_scan (const struct sched_scan_info_def *ssi, bb_vec_t bbs)
2802 unsigned i;
2803 basic_block bb;
2805 if (ssi->extend_bb)
2806 ssi->extend_bb ();
2808 if (ssi->init_bb)
2809 FOR_EACH_VEC_ELT (bbs, i, bb)
2810 ssi->init_bb (bb);
2812 if (ssi->extend_insn)
2813 ssi->extend_insn ();
2815 if (ssi->init_insn)
2816 FOR_EACH_VEC_ELT (bbs, i, bb)
2818 rtx_insn *insn;
2820 FOR_BB_INSNS (bb, insn)
2821 ssi->init_insn (insn);
2825 /* Implement hooks for collecting fundamental insn properties like if insn is
2826 an ASM or is within a SCHED_GROUP. */
2828 /* True when a "one-time init" data for INSN was already inited. */
2829 static bool
2830 first_time_insn_init (insn_t insn)
2832 return INSN_LIVE (insn) == NULL;
2835 /* Hash an entry in a transformed_insns hashtable. */
2836 static hashval_t
2837 hash_transformed_insns (const void *p)
2839 return VINSN_HASH_RTX (((const struct transformed_insns *) p)->vinsn_old);
2842 /* Compare the entries in a transformed_insns hashtable. */
2843 static int
2844 eq_transformed_insns (const void *p, const void *q)
2846 rtx_insn *i1 =
2847 VINSN_INSN_RTX (((const struct transformed_insns *) p)->vinsn_old);
2848 rtx_insn *i2 =
2849 VINSN_INSN_RTX (((const struct transformed_insns *) q)->vinsn_old);
2851 if (INSN_UID (i1) == INSN_UID (i2))
2852 return 1;
2853 return rtx_equal_p (PATTERN (i1), PATTERN (i2));
2856 /* Free an entry in a transformed_insns hashtable. */
2857 static void
2858 free_transformed_insns (void *p)
2860 struct transformed_insns *pti = (struct transformed_insns *) p;
2862 vinsn_detach (pti->vinsn_old);
2863 vinsn_detach (pti->vinsn_new);
2864 free (pti);
2867 /* Init the s_i_d data for INSN which should be inited just once, when
2868 we first see the insn. */
2869 static void
2870 init_first_time_insn_data (insn_t insn)
2872 /* This should not be set if this is the first time we init data for
2873 insn. */
2874 gcc_assert (first_time_insn_init (insn));
2876 /* These are needed for nops too. */
2877 INSN_LIVE (insn) = get_regset_from_pool ();
2878 INSN_LIVE_VALID_P (insn) = false;
2880 if (!INSN_NOP_P (insn))
2882 INSN_ANALYZED_DEPS (insn) = BITMAP_ALLOC (NULL);
2883 INSN_FOUND_DEPS (insn) = BITMAP_ALLOC (NULL);
2884 INSN_TRANSFORMED_INSNS (insn)
2885 = htab_create (16, hash_transformed_insns,
2886 eq_transformed_insns, free_transformed_insns);
2887 init_deps (&INSN_DEPS_CONTEXT (insn), true);
2891 /* Free almost all above data for INSN that is scheduled already.
2892 Used for extra-large basic blocks. */
2893 void
2894 free_data_for_scheduled_insn (insn_t insn)
2896 gcc_assert (! first_time_insn_init (insn));
2898 if (! INSN_ANALYZED_DEPS (insn))
2899 return;
2901 BITMAP_FREE (INSN_ANALYZED_DEPS (insn));
2902 BITMAP_FREE (INSN_FOUND_DEPS (insn));
2903 htab_delete (INSN_TRANSFORMED_INSNS (insn));
2905 /* This is allocated only for bookkeeping insns. */
2906 if (INSN_ORIGINATORS (insn))
2907 BITMAP_FREE (INSN_ORIGINATORS (insn));
2908 free_deps (&INSN_DEPS_CONTEXT (insn));
2910 INSN_ANALYZED_DEPS (insn) = NULL;
2912 /* Clear the readonly flag so we would ICE when trying to recalculate
2913 the deps context (as we believe that it should not happen). */
2914 (&INSN_DEPS_CONTEXT (insn))->readonly = 0;
2917 /* Free the same data as above for INSN. */
2918 static void
2919 free_first_time_insn_data (insn_t insn)
2921 gcc_assert (! first_time_insn_init (insn));
2923 free_data_for_scheduled_insn (insn);
2924 return_regset_to_pool (INSN_LIVE (insn));
2925 INSN_LIVE (insn) = NULL;
2926 INSN_LIVE_VALID_P (insn) = false;
2929 /* Initialize region-scope data structures for basic blocks. */
2930 static void
2931 init_global_and_expr_for_bb (basic_block bb)
2933 if (sel_bb_empty_p (bb))
2934 return;
2936 invalidate_av_set (bb);
2939 /* Data for global dependency analysis (to initialize CANT_MOVE and
2940 SCHED_GROUP_P). */
2941 static struct
2943 /* Previous insn. */
2944 insn_t prev_insn;
2945 } init_global_data;
2947 /* Determine if INSN is in the sched_group, is an asm or should not be
2948 cloned. After that initialize its expr. */
2949 static void
2950 init_global_and_expr_for_insn (insn_t insn)
2952 if (LABEL_P (insn))
2953 return;
2955 if (NOTE_INSN_BASIC_BLOCK_P (insn))
2957 init_global_data.prev_insn = NULL;
2958 return;
2961 gcc_assert (INSN_P (insn));
2963 if (SCHED_GROUP_P (insn))
2964 /* Setup a sched_group. */
2966 insn_t prev_insn = init_global_data.prev_insn;
2968 if (prev_insn)
2969 INSN_SCHED_NEXT (prev_insn) = insn;
2971 init_global_data.prev_insn = insn;
2973 else
2974 init_global_data.prev_insn = NULL;
2976 if (GET_CODE (PATTERN (insn)) == ASM_INPUT
2977 || asm_noperands (PATTERN (insn)) >= 0)
2978 /* Mark INSN as an asm. */
2979 INSN_ASM_P (insn) = true;
2982 bool force_unique_p;
2983 ds_t spec_done_ds;
2985 /* Certain instructions cannot be cloned, and frame related insns and
2986 the insn adjacent to NOTE_INSN_EPILOGUE_BEG cannot be moved out of
2987 their block. */
2988 if (prologue_epilogue_contains (insn))
2990 if (RTX_FRAME_RELATED_P (insn))
2991 CANT_MOVE (insn) = 1;
2992 else
2994 rtx note;
2995 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2996 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE
2997 && ((enum insn_note) INTVAL (XEXP (note, 0))
2998 == NOTE_INSN_EPILOGUE_BEG))
3000 CANT_MOVE (insn) = 1;
3001 break;
3004 force_unique_p = true;
3006 else
3007 if (CANT_MOVE (insn)
3008 || INSN_ASM_P (insn)
3009 || SCHED_GROUP_P (insn)
3010 || CALL_P (insn)
3011 /* Exception handling insns are always unique. */
3012 || (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
3013 /* TRAP_IF though have an INSN code is control_flow_insn_p (). */
3014 || control_flow_insn_p (insn)
3015 || volatile_insn_p (PATTERN (insn))
3016 || (targetm.cannot_copy_insn_p
3017 && targetm.cannot_copy_insn_p (insn)))
3018 force_unique_p = true;
3019 else
3020 force_unique_p = false;
3022 if (targetm.sched.get_insn_spec_ds)
3024 spec_done_ds = targetm.sched.get_insn_spec_ds (insn);
3025 spec_done_ds = ds_get_max_dep_weak (spec_done_ds);
3027 else
3028 spec_done_ds = 0;
3030 /* Initialize INSN's expr. */
3031 init_expr (INSN_EXPR (insn), vinsn_create (insn, force_unique_p), 0,
3032 REG_BR_PROB_BASE, INSN_PRIORITY (insn), 0, BLOCK_NUM (insn),
3033 spec_done_ds, 0, 0, vNULL, true,
3034 false, false, false, CANT_MOVE (insn));
3037 init_first_time_insn_data (insn);
3040 /* Scan the region and initialize instruction data for basic blocks BBS. */
3041 void
3042 sel_init_global_and_expr (bb_vec_t bbs)
3044 /* ??? It would be nice to implement push / pop scheme for sched_infos. */
3045 const struct sched_scan_info_def ssi =
3047 NULL, /* extend_bb */
3048 init_global_and_expr_for_bb, /* init_bb */
3049 extend_insn_data, /* extend_insn */
3050 init_global_and_expr_for_insn /* init_insn */
3053 sched_scan (&ssi, bbs);
3056 /* Finalize region-scope data structures for basic blocks. */
3057 static void
3058 finish_global_and_expr_for_bb (basic_block bb)
3060 av_set_clear (&BB_AV_SET (bb));
3061 BB_AV_LEVEL (bb) = 0;
3064 /* Finalize INSN's data. */
3065 static void
3066 finish_global_and_expr_insn (insn_t insn)
3068 if (LABEL_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn))
3069 return;
3071 gcc_assert (INSN_P (insn));
3073 if (INSN_LUID (insn) > 0)
3075 free_first_time_insn_data (insn);
3076 INSN_WS_LEVEL (insn) = 0;
3077 CANT_MOVE (insn) = 0;
3079 /* We can no longer assert this, as vinsns of this insn could be
3080 easily live in other insn's caches. This should be changed to
3081 a counter-like approach among all vinsns. */
3082 gcc_assert (true || VINSN_COUNT (INSN_VINSN (insn)) == 1);
3083 clear_expr (INSN_EXPR (insn));
3087 /* Finalize per instruction data for the whole region. */
3088 void
3089 sel_finish_global_and_expr (void)
3092 bb_vec_t bbs;
3093 int i;
3095 bbs.create (current_nr_blocks);
3097 for (i = 0; i < current_nr_blocks; i++)
3098 bbs.quick_push (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i)));
3100 /* Clear AV_SETs and INSN_EXPRs. */
3102 const struct sched_scan_info_def ssi =
3104 NULL, /* extend_bb */
3105 finish_global_and_expr_for_bb, /* init_bb */
3106 NULL, /* extend_insn */
3107 finish_global_and_expr_insn /* init_insn */
3110 sched_scan (&ssi, bbs);
3113 bbs.release ();
3116 finish_insns ();
3120 /* In the below hooks, we merely calculate whether or not a dependence
3121 exists, and in what part of insn. However, we will need more data
3122 when we'll start caching dependence requests. */
3124 /* Container to hold information for dependency analysis. */
3125 static struct
3127 deps_t dc;
3129 /* A variable to track which part of rtx we are scanning in
3130 sched-deps.c: sched_analyze_insn (). */
3131 deps_where_t where;
3133 /* Current producer. */
3134 insn_t pro;
3136 /* Current consumer. */
3137 vinsn_t con;
3139 /* Is SEL_DEPS_HAS_DEP_P[DEPS_IN_X] is true, then X has a dependence.
3140 X is from { INSN, LHS, RHS }. */
3141 ds_t has_dep_p[DEPS_IN_NOWHERE];
3142 } has_dependence_data;
3144 /* Start analyzing dependencies of INSN. */
3145 static void
3146 has_dependence_start_insn (insn_t insn ATTRIBUTE_UNUSED)
3148 gcc_assert (has_dependence_data.where == DEPS_IN_NOWHERE);
3150 has_dependence_data.where = DEPS_IN_INSN;
3153 /* Finish analyzing dependencies of an insn. */
3154 static void
3155 has_dependence_finish_insn (void)
3157 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3159 has_dependence_data.where = DEPS_IN_NOWHERE;
3162 /* Start analyzing dependencies of LHS. */
3163 static void
3164 has_dependence_start_lhs (rtx lhs ATTRIBUTE_UNUSED)
3166 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3168 if (VINSN_LHS (has_dependence_data.con) != NULL)
3169 has_dependence_data.where = DEPS_IN_LHS;
3172 /* Finish analyzing dependencies of an lhs. */
3173 static void
3174 has_dependence_finish_lhs (void)
3176 has_dependence_data.where = DEPS_IN_INSN;
3179 /* Start analyzing dependencies of RHS. */
3180 static void
3181 has_dependence_start_rhs (rtx rhs ATTRIBUTE_UNUSED)
3183 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3185 if (VINSN_RHS (has_dependence_data.con) != NULL)
3186 has_dependence_data.where = DEPS_IN_RHS;
3189 /* Start analyzing dependencies of an rhs. */
3190 static void
3191 has_dependence_finish_rhs (void)
3193 gcc_assert (has_dependence_data.where == DEPS_IN_RHS
3194 || has_dependence_data.where == DEPS_IN_INSN);
3196 has_dependence_data.where = DEPS_IN_INSN;
3199 /* Note a set of REGNO. */
3200 static void
3201 has_dependence_note_reg_set (int regno)
3203 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3205 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3206 VINSN_INSN_RTX
3207 (has_dependence_data.con)))
3209 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3211 if (reg_last->sets != NULL
3212 || reg_last->clobbers != NULL)
3213 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3215 if (reg_last->uses || reg_last->implicit_sets)
3216 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3220 /* Note a clobber of REGNO. */
3221 static void
3222 has_dependence_note_reg_clobber (int regno)
3224 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3226 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3227 VINSN_INSN_RTX
3228 (has_dependence_data.con)))
3230 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3232 if (reg_last->sets)
3233 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3235 if (reg_last->uses || reg_last->implicit_sets)
3236 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3240 /* Note a use of REGNO. */
3241 static void
3242 has_dependence_note_reg_use (int regno)
3244 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3246 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3247 VINSN_INSN_RTX
3248 (has_dependence_data.con)))
3250 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3252 if (reg_last->sets)
3253 *dsp = (*dsp & ~SPECULATIVE) | DEP_TRUE;
3255 if (reg_last->clobbers || reg_last->implicit_sets)
3256 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3258 /* Merge BE_IN_SPEC bits into *DSP when the dependency producer
3259 is actually a check insn. We need to do this for any register
3260 read-read dependency with the check unless we track properly
3261 all registers written by BE_IN_SPEC-speculated insns, as
3262 we don't have explicit dependence lists. See PR 53975. */
3263 if (reg_last->uses)
3265 ds_t pro_spec_checked_ds;
3267 pro_spec_checked_ds = INSN_SPEC_CHECKED_DS (has_dependence_data.pro);
3268 pro_spec_checked_ds = ds_get_max_dep_weak (pro_spec_checked_ds);
3270 if (pro_spec_checked_ds != 0)
3271 *dsp = ds_full_merge (*dsp, pro_spec_checked_ds,
3272 NULL_RTX, NULL_RTX);
3277 /* Note a memory dependence. */
3278 static void
3279 has_dependence_note_mem_dep (rtx mem ATTRIBUTE_UNUSED,
3280 rtx pending_mem ATTRIBUTE_UNUSED,
3281 insn_t pending_insn ATTRIBUTE_UNUSED,
3282 ds_t ds ATTRIBUTE_UNUSED)
3284 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3285 VINSN_INSN_RTX (has_dependence_data.con)))
3287 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3289 *dsp = ds_full_merge (ds, *dsp, pending_mem, mem);
3293 /* Note a dependence. */
3294 static void
3295 has_dependence_note_dep (insn_t pro ATTRIBUTE_UNUSED,
3296 ds_t ds ATTRIBUTE_UNUSED)
3298 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3299 VINSN_INSN_RTX (has_dependence_data.con)))
3301 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3303 *dsp = ds_full_merge (ds, *dsp, NULL_RTX, NULL_RTX);
3307 /* Mark the insn as having a hard dependence that prevents speculation. */
3308 void
3309 sel_mark_hard_insn (rtx insn)
3311 int i;
3313 /* Only work when we're in has_dependence_p mode.
3314 ??? This is a hack, this should actually be a hook. */
3315 if (!has_dependence_data.dc || !has_dependence_data.pro)
3316 return;
3318 gcc_assert (insn == VINSN_INSN_RTX (has_dependence_data.con));
3319 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3321 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3322 has_dependence_data.has_dep_p[i] &= ~SPECULATIVE;
3325 /* This structure holds the hooks for the dependency analysis used when
3326 actually processing dependencies in the scheduler. */
3327 static struct sched_deps_info_def has_dependence_sched_deps_info;
3329 /* This initializes most of the fields of the above structure. */
3330 static const struct sched_deps_info_def const_has_dependence_sched_deps_info =
3332 NULL,
3334 has_dependence_start_insn,
3335 has_dependence_finish_insn,
3336 has_dependence_start_lhs,
3337 has_dependence_finish_lhs,
3338 has_dependence_start_rhs,
3339 has_dependence_finish_rhs,
3340 has_dependence_note_reg_set,
3341 has_dependence_note_reg_clobber,
3342 has_dependence_note_reg_use,
3343 has_dependence_note_mem_dep,
3344 has_dependence_note_dep,
3346 0, /* use_cselib */
3347 0, /* use_deps_list */
3348 0 /* generate_spec_deps */
3351 /* Initialize has_dependence_sched_deps_info with extra spec field. */
3352 static void
3353 setup_has_dependence_sched_deps_info (void)
3355 memcpy (&has_dependence_sched_deps_info,
3356 &const_has_dependence_sched_deps_info,
3357 sizeof (has_dependence_sched_deps_info));
3359 if (spec_info != NULL)
3360 has_dependence_sched_deps_info.generate_spec_deps = 1;
3362 sched_deps_info = &has_dependence_sched_deps_info;
3365 /* Remove all dependences found and recorded in has_dependence_data array. */
3366 void
3367 sel_clear_has_dependence (void)
3369 int i;
3371 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3372 has_dependence_data.has_dep_p[i] = 0;
3375 /* Return nonzero if EXPR has is dependent upon PRED. Return the pointer
3376 to the dependence information array in HAS_DEP_PP. */
3377 ds_t
3378 has_dependence_p (expr_t expr, insn_t pred, ds_t **has_dep_pp)
3380 int i;
3381 ds_t ds;
3382 struct deps_desc *dc;
3384 if (INSN_SIMPLEJUMP_P (pred))
3385 /* Unconditional jump is just a transfer of control flow.
3386 Ignore it. */
3387 return false;
3389 dc = &INSN_DEPS_CONTEXT (pred);
3391 /* We init this field lazily. */
3392 if (dc->reg_last == NULL)
3393 init_deps_reg_last (dc);
3395 if (!dc->readonly)
3397 has_dependence_data.pro = NULL;
3398 /* Initialize empty dep context with information about PRED. */
3399 advance_deps_context (dc, pred);
3400 dc->readonly = 1;
3403 has_dependence_data.where = DEPS_IN_NOWHERE;
3404 has_dependence_data.pro = pred;
3405 has_dependence_data.con = EXPR_VINSN (expr);
3406 has_dependence_data.dc = dc;
3408 sel_clear_has_dependence ();
3410 /* Now catch all dependencies that would be generated between PRED and
3411 INSN. */
3412 setup_has_dependence_sched_deps_info ();
3413 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3414 has_dependence_data.dc = NULL;
3416 /* When a barrier was found, set DEPS_IN_INSN bits. */
3417 if (dc->last_reg_pending_barrier == TRUE_BARRIER)
3418 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_TRUE;
3419 else if (dc->last_reg_pending_barrier == MOVE_BARRIER)
3420 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3422 /* Do not allow stores to memory to move through checks. Currently
3423 we don't move this to sched-deps.c as the check doesn't have
3424 obvious places to which this dependence can be attached.
3425 FIMXE: this should go to a hook. */
3426 if (EXPR_LHS (expr)
3427 && MEM_P (EXPR_LHS (expr))
3428 && sel_insn_is_speculation_check (pred))
3429 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3431 *has_dep_pp = has_dependence_data.has_dep_p;
3432 ds = 0;
3433 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3434 ds = ds_full_merge (ds, has_dependence_data.has_dep_p[i],
3435 NULL_RTX, NULL_RTX);
3437 return ds;
3441 /* Dependence hooks implementation that checks dependence latency constraints
3442 on the insns being scheduled. The entry point for these routines is
3443 tick_check_p predicate. */
3445 static struct
3447 /* An expr we are currently checking. */
3448 expr_t expr;
3450 /* A minimal cycle for its scheduling. */
3451 int cycle;
3453 /* Whether we have seen a true dependence while checking. */
3454 bool seen_true_dep_p;
3455 } tick_check_data;
3457 /* Update minimal scheduling cycle for tick_check_insn given that it depends
3458 on PRO with status DS and weight DW. */
3459 static void
3460 tick_check_dep_with_dw (insn_t pro_insn, ds_t ds, dw_t dw)
3462 expr_t con_expr = tick_check_data.expr;
3463 insn_t con_insn = EXPR_INSN_RTX (con_expr);
3465 if (con_insn != pro_insn)
3467 enum reg_note dt;
3468 int tick;
3470 if (/* PROducer was removed from above due to pipelining. */
3471 !INSN_IN_STREAM_P (pro_insn)
3472 /* Or PROducer was originally on the next iteration regarding the
3473 CONsumer. */
3474 || (INSN_SCHED_TIMES (pro_insn)
3475 - EXPR_SCHED_TIMES (con_expr)) > 1)
3476 /* Don't count this dependence. */
3477 return;
3479 dt = ds_to_dt (ds);
3480 if (dt == REG_DEP_TRUE)
3481 tick_check_data.seen_true_dep_p = true;
3483 gcc_assert (INSN_SCHED_CYCLE (pro_insn) > 0);
3486 dep_def _dep, *dep = &_dep;
3488 init_dep (dep, pro_insn, con_insn, dt);
3490 tick = INSN_SCHED_CYCLE (pro_insn) + dep_cost_1 (dep, dw);
3493 /* When there are several kinds of dependencies between pro and con,
3494 only REG_DEP_TRUE should be taken into account. */
3495 if (tick > tick_check_data.cycle
3496 && (dt == REG_DEP_TRUE || !tick_check_data.seen_true_dep_p))
3497 tick_check_data.cycle = tick;
3501 /* An implementation of note_dep hook. */
3502 static void
3503 tick_check_note_dep (insn_t pro, ds_t ds)
3505 tick_check_dep_with_dw (pro, ds, 0);
3508 /* An implementation of note_mem_dep hook. */
3509 static void
3510 tick_check_note_mem_dep (rtx mem1, rtx mem2, insn_t pro, ds_t ds)
3512 dw_t dw;
3514 dw = (ds_to_dt (ds) == REG_DEP_TRUE
3515 ? estimate_dep_weak (mem1, mem2)
3516 : 0);
3518 tick_check_dep_with_dw (pro, ds, dw);
3521 /* This structure contains hooks for dependence analysis used when determining
3522 whether an insn is ready for scheduling. */
3523 static struct sched_deps_info_def tick_check_sched_deps_info =
3525 NULL,
3527 NULL,
3528 NULL,
3529 NULL,
3530 NULL,
3531 NULL,
3532 NULL,
3533 haifa_note_reg_set,
3534 haifa_note_reg_clobber,
3535 haifa_note_reg_use,
3536 tick_check_note_mem_dep,
3537 tick_check_note_dep,
3539 0, 0, 0
3542 /* Estimate number of cycles from the current cycle of FENCE until EXPR can be
3543 scheduled. Return 0 if all data from producers in DC is ready. */
3545 tick_check_p (expr_t expr, deps_t dc, fence_t fence)
3547 int cycles_left;
3548 /* Initialize variables. */
3549 tick_check_data.expr = expr;
3550 tick_check_data.cycle = 0;
3551 tick_check_data.seen_true_dep_p = false;
3552 sched_deps_info = &tick_check_sched_deps_info;
3554 gcc_assert (!dc->readonly);
3555 dc->readonly = 1;
3556 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3557 dc->readonly = 0;
3559 cycles_left = tick_check_data.cycle - FENCE_CYCLE (fence);
3561 return cycles_left >= 0 ? cycles_left : 0;
3565 /* Functions to work with insns. */
3567 /* Returns true if LHS of INSN is the same as DEST of an insn
3568 being moved. */
3569 bool
3570 lhs_of_insn_equals_to_dest_p (insn_t insn, rtx dest)
3572 rtx lhs = INSN_LHS (insn);
3574 if (lhs == NULL || dest == NULL)
3575 return false;
3577 return rtx_equal_p (lhs, dest);
3580 /* Return s_i_d entry of INSN. Callable from debugger. */
3581 sel_insn_data_def
3582 insn_sid (insn_t insn)
3584 return *SID (insn);
3587 /* True when INSN is a speculative check. We can tell this by looking
3588 at the data structures of the selective scheduler, not by examining
3589 the pattern. */
3590 bool
3591 sel_insn_is_speculation_check (rtx insn)
3593 return s_i_d.exists () && !! INSN_SPEC_CHECKED_DS (insn);
3596 /* Extracts machine mode MODE and destination location DST_LOC
3597 for given INSN. */
3598 void
3599 get_dest_and_mode (rtx insn, rtx *dst_loc, machine_mode *mode)
3601 rtx pat = PATTERN (insn);
3603 gcc_assert (dst_loc);
3604 gcc_assert (GET_CODE (pat) == SET);
3606 *dst_loc = SET_DEST (pat);
3608 gcc_assert (*dst_loc);
3609 gcc_assert (MEM_P (*dst_loc) || REG_P (*dst_loc));
3611 if (mode)
3612 *mode = GET_MODE (*dst_loc);
3615 /* Returns true when moving through JUMP will result in bookkeeping
3616 creation. */
3617 bool
3618 bookkeeping_can_be_created_if_moved_through_p (insn_t jump)
3620 insn_t succ;
3621 succ_iterator si;
3623 FOR_EACH_SUCC (succ, si, jump)
3624 if (sel_num_cfg_preds_gt_1 (succ))
3625 return true;
3627 return false;
3630 /* Return 'true' if INSN is the only one in its basic block. */
3631 static bool
3632 insn_is_the_only_one_in_bb_p (insn_t insn)
3634 return sel_bb_head_p (insn) && sel_bb_end_p (insn);
3637 #ifdef ENABLE_CHECKING
3638 /* Check that the region we're scheduling still has at most one
3639 backedge. */
3640 static void
3641 verify_backedges (void)
3643 if (pipelining_p)
3645 int i, n = 0;
3646 edge e;
3647 edge_iterator ei;
3649 for (i = 0; i < current_nr_blocks; i++)
3650 FOR_EACH_EDGE (e, ei, BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i))->succs)
3651 if (in_current_region_p (e->dest)
3652 && BLOCK_TO_BB (e->dest->index) < i)
3653 n++;
3655 gcc_assert (n <= 1);
3658 #endif
3661 /* Functions to work with control flow. */
3663 /* Recompute BLOCK_TO_BB and BB_FOR_BLOCK for current region so that blocks
3664 are sorted in topological order (it might have been invalidated by
3665 redirecting an edge). */
3666 static void
3667 sel_recompute_toporder (void)
3669 int i, n, rgn;
3670 int *postorder, n_blocks;
3672 postorder = XALLOCAVEC (int, n_basic_blocks_for_fn (cfun));
3673 n_blocks = post_order_compute (postorder, false, false);
3675 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
3676 for (n = 0, i = n_blocks - 1; i >= 0; i--)
3677 if (CONTAINING_RGN (postorder[i]) == rgn)
3679 BLOCK_TO_BB (postorder[i]) = n;
3680 BB_TO_BLOCK (n) = postorder[i];
3681 n++;
3684 /* Assert that we updated info for all blocks. We may miss some blocks if
3685 this function is called when redirecting an edge made a block
3686 unreachable, but that block is not deleted yet. */
3687 gcc_assert (n == RGN_NR_BLOCKS (rgn));
3690 /* Tidy the possibly empty block BB. */
3691 static bool
3692 maybe_tidy_empty_bb (basic_block bb)
3694 basic_block succ_bb, pred_bb, note_bb;
3695 vec<basic_block> dom_bbs;
3696 edge e;
3697 edge_iterator ei;
3698 bool rescan_p;
3700 /* Keep empty bb only if this block immediately precedes EXIT and
3701 has incoming non-fallthrough edge, or it has no predecessors or
3702 successors. Otherwise remove it. */
3703 if (!sel_bb_empty_p (bb)
3704 || (single_succ_p (bb)
3705 && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun)
3706 && (!single_pred_p (bb)
3707 || !(single_pred_edge (bb)->flags & EDGE_FALLTHRU)))
3708 || EDGE_COUNT (bb->preds) == 0
3709 || EDGE_COUNT (bb->succs) == 0)
3710 return false;
3712 /* Do not attempt to redirect complex edges. */
3713 FOR_EACH_EDGE (e, ei, bb->preds)
3714 if (e->flags & EDGE_COMPLEX)
3715 return false;
3716 else if (e->flags & EDGE_FALLTHRU)
3718 rtx note;
3719 /* If prev bb ends with asm goto, see if any of the
3720 ASM_OPERANDS_LABELs don't point to the fallthru
3721 label. Do not attempt to redirect it in that case. */
3722 if (JUMP_P (BB_END (e->src))
3723 && (note = extract_asm_operands (PATTERN (BB_END (e->src)))))
3725 int i, n = ASM_OPERANDS_LABEL_LENGTH (note);
3727 for (i = 0; i < n; ++i)
3728 if (XEXP (ASM_OPERANDS_LABEL (note, i), 0) == BB_HEAD (bb))
3729 return false;
3733 free_data_sets (bb);
3735 /* Do not delete BB if it has more than one successor.
3736 That can occur when we moving a jump. */
3737 if (!single_succ_p (bb))
3739 gcc_assert (can_merge_blocks_p (bb->prev_bb, bb));
3740 sel_merge_blocks (bb->prev_bb, bb);
3741 return true;
3744 succ_bb = single_succ (bb);
3745 rescan_p = true;
3746 pred_bb = NULL;
3747 dom_bbs.create (0);
3749 /* Save a pred/succ from the current region to attach the notes to. */
3750 note_bb = NULL;
3751 FOR_EACH_EDGE (e, ei, bb->preds)
3752 if (in_current_region_p (e->src))
3754 note_bb = e->src;
3755 break;
3757 if (note_bb == NULL)
3758 note_bb = succ_bb;
3760 /* Redirect all non-fallthru edges to the next bb. */
3761 while (rescan_p)
3763 rescan_p = false;
3765 FOR_EACH_EDGE (e, ei, bb->preds)
3767 pred_bb = e->src;
3769 if (!(e->flags & EDGE_FALLTHRU))
3771 /* We can not invalidate computed topological order by moving
3772 the edge destination block (E->SUCC) along a fallthru edge.
3774 We will update dominators here only when we'll get
3775 an unreachable block when redirecting, otherwise
3776 sel_redirect_edge_and_branch will take care of it. */
3777 if (e->dest != bb
3778 && single_pred_p (e->dest))
3779 dom_bbs.safe_push (e->dest);
3780 sel_redirect_edge_and_branch (e, succ_bb);
3781 rescan_p = true;
3782 break;
3784 /* If the edge is fallthru, but PRED_BB ends in a conditional jump
3785 to BB (so there is no non-fallthru edge from PRED_BB to BB), we
3786 still have to adjust it. */
3787 else if (single_succ_p (pred_bb) && any_condjump_p (BB_END (pred_bb)))
3789 /* If possible, try to remove the unneeded conditional jump. */
3790 if (INSN_SCHED_TIMES (BB_END (pred_bb)) == 0
3791 && !IN_CURRENT_FENCE_P (BB_END (pred_bb)))
3793 if (!sel_remove_insn (BB_END (pred_bb), false, false))
3794 tidy_fallthru_edge (e);
3796 else
3797 sel_redirect_edge_and_branch (e, succ_bb);
3798 rescan_p = true;
3799 break;
3804 if (can_merge_blocks_p (bb->prev_bb, bb))
3805 sel_merge_blocks (bb->prev_bb, bb);
3806 else
3808 /* This is a block without fallthru predecessor. Just delete it. */
3809 gcc_assert (note_bb);
3810 move_bb_info (note_bb, bb);
3811 remove_empty_bb (bb, true);
3814 if (!dom_bbs.is_empty ())
3816 dom_bbs.safe_push (succ_bb);
3817 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
3818 dom_bbs.release ();
3821 return true;
3824 /* Tidy the control flow after we have removed original insn from
3825 XBB. Return true if we have removed some blocks. When FULL_TIDYING
3826 is true, also try to optimize control flow on non-empty blocks. */
3827 bool
3828 tidy_control_flow (basic_block xbb, bool full_tidying)
3830 bool changed = true;
3831 insn_t first, last;
3833 /* First check whether XBB is empty. */
3834 changed = maybe_tidy_empty_bb (xbb);
3835 if (changed || !full_tidying)
3836 return changed;
3838 /* Check if there is a unnecessary jump after insn left. */
3839 if (bb_has_removable_jump_to_p (xbb, xbb->next_bb)
3840 && INSN_SCHED_TIMES (BB_END (xbb)) == 0
3841 && !IN_CURRENT_FENCE_P (BB_END (xbb)))
3843 if (sel_remove_insn (BB_END (xbb), false, false))
3844 return true;
3845 tidy_fallthru_edge (EDGE_SUCC (xbb, 0));
3848 first = sel_bb_head (xbb);
3849 last = sel_bb_end (xbb);
3850 if (MAY_HAVE_DEBUG_INSNS)
3852 if (first != last && DEBUG_INSN_P (first))
3854 first = NEXT_INSN (first);
3855 while (first != last && (DEBUG_INSN_P (first) || NOTE_P (first)));
3857 if (first != last && DEBUG_INSN_P (last))
3859 last = PREV_INSN (last);
3860 while (first != last && (DEBUG_INSN_P (last) || NOTE_P (last)));
3862 /* Check if there is an unnecessary jump in previous basic block leading
3863 to next basic block left after removing INSN from stream.
3864 If it is so, remove that jump and redirect edge to current
3865 basic block (where there was INSN before deletion). This way
3866 when NOP will be deleted several instructions later with its
3867 basic block we will not get a jump to next instruction, which
3868 can be harmful. */
3869 if (first == last
3870 && !sel_bb_empty_p (xbb)
3871 && INSN_NOP_P (last)
3872 /* Flow goes fallthru from current block to the next. */
3873 && EDGE_COUNT (xbb->succs) == 1
3874 && (EDGE_SUCC (xbb, 0)->flags & EDGE_FALLTHRU)
3875 /* When successor is an EXIT block, it may not be the next block. */
3876 && single_succ (xbb) != EXIT_BLOCK_PTR_FOR_FN (cfun)
3877 /* And unconditional jump in previous basic block leads to
3878 next basic block of XBB and this jump can be safely removed. */
3879 && in_current_region_p (xbb->prev_bb)
3880 && bb_has_removable_jump_to_p (xbb->prev_bb, xbb->next_bb)
3881 && INSN_SCHED_TIMES (BB_END (xbb->prev_bb)) == 0
3882 /* Also this jump is not at the scheduling boundary. */
3883 && !IN_CURRENT_FENCE_P (BB_END (xbb->prev_bb)))
3885 bool recompute_toporder_p;
3886 /* Clear data structures of jump - jump itself will be removed
3887 by sel_redirect_edge_and_branch. */
3888 clear_expr (INSN_EXPR (BB_END (xbb->prev_bb)));
3889 recompute_toporder_p
3890 = sel_redirect_edge_and_branch (EDGE_SUCC (xbb->prev_bb, 0), xbb);
3892 gcc_assert (EDGE_SUCC (xbb->prev_bb, 0)->flags & EDGE_FALLTHRU);
3894 /* It can turn out that after removing unused jump, basic block
3895 that contained that jump, becomes empty too. In such case
3896 remove it too. */
3897 if (sel_bb_empty_p (xbb->prev_bb))
3898 changed = maybe_tidy_empty_bb (xbb->prev_bb);
3899 if (recompute_toporder_p)
3900 sel_recompute_toporder ();
3903 #ifdef ENABLE_CHECKING
3904 verify_backedges ();
3905 verify_dominators (CDI_DOMINATORS);
3906 #endif
3908 return changed;
3911 /* Purge meaningless empty blocks in the middle of a region. */
3912 void
3913 purge_empty_blocks (void)
3915 int i;
3917 /* Do not attempt to delete the first basic block in the region. */
3918 for (i = 1; i < current_nr_blocks; )
3920 basic_block b = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i));
3922 if (maybe_tidy_empty_bb (b))
3923 continue;
3925 i++;
3929 /* Rip-off INSN from the insn stream. When ONLY_DISCONNECT is true,
3930 do not delete insn's data, because it will be later re-emitted.
3931 Return true if we have removed some blocks afterwards. */
3932 bool
3933 sel_remove_insn (insn_t insn, bool only_disconnect, bool full_tidying)
3935 basic_block bb = BLOCK_FOR_INSN (insn);
3937 gcc_assert (INSN_IN_STREAM_P (insn));
3939 if (DEBUG_INSN_P (insn) && BB_AV_SET_VALID_P (bb))
3941 expr_t expr;
3942 av_set_iterator i;
3944 /* When we remove a debug insn that is head of a BB, it remains
3945 in the AV_SET of the block, but it shouldn't. */
3946 FOR_EACH_EXPR_1 (expr, i, &BB_AV_SET (bb))
3947 if (EXPR_INSN_RTX (expr) == insn)
3949 av_set_iter_remove (&i);
3950 break;
3954 if (only_disconnect)
3955 remove_insn (insn);
3956 else
3958 delete_insn (insn);
3959 clear_expr (INSN_EXPR (insn));
3962 /* It is necessary to NULL these fields in case we are going to re-insert
3963 INSN into the insns stream, as will usually happen in the ONLY_DISCONNECT
3964 case, but also for NOPs that we will return to the nop pool. */
3965 SET_PREV_INSN (insn) = NULL_RTX;
3966 SET_NEXT_INSN (insn) = NULL_RTX;
3967 set_block_for_insn (insn, NULL);
3969 return tidy_control_flow (bb, full_tidying);
3972 /* Estimate number of the insns in BB. */
3973 static int
3974 sel_estimate_number_of_insns (basic_block bb)
3976 int res = 0;
3977 insn_t insn = NEXT_INSN (BB_HEAD (bb)), next_tail = NEXT_INSN (BB_END (bb));
3979 for (; insn != next_tail; insn = NEXT_INSN (insn))
3980 if (NONDEBUG_INSN_P (insn))
3981 res++;
3983 return res;
3986 /* We don't need separate luids for notes or labels. */
3987 static int
3988 sel_luid_for_non_insn (rtx x)
3990 gcc_assert (NOTE_P (x) || LABEL_P (x));
3992 return -1;
3995 /* Find the proper seqno for inserting at INSN by successors.
3996 Return -1 if no successors with positive seqno exist. */
3997 static int
3998 get_seqno_by_succs (rtx_insn *insn)
4000 basic_block bb = BLOCK_FOR_INSN (insn);
4001 rtx_insn *tmp = insn, *end = BB_END (bb);
4002 int seqno;
4003 insn_t succ = NULL;
4004 succ_iterator si;
4006 while (tmp != end)
4008 tmp = NEXT_INSN (tmp);
4009 if (INSN_P (tmp))
4010 return INSN_SEQNO (tmp);
4013 seqno = INT_MAX;
4015 FOR_EACH_SUCC_1 (succ, si, end, SUCCS_NORMAL)
4016 if (INSN_SEQNO (succ) > 0)
4017 seqno = MIN (seqno, INSN_SEQNO (succ));
4019 if (seqno == INT_MAX)
4020 return -1;
4022 return seqno;
4025 /* Compute seqno for INSN by its preds or succs. Use OLD_SEQNO to compute
4026 seqno in corner cases. */
4027 static int
4028 get_seqno_for_a_jump (insn_t insn, int old_seqno)
4030 int seqno;
4032 gcc_assert (INSN_SIMPLEJUMP_P (insn));
4034 if (!sel_bb_head_p (insn))
4035 seqno = INSN_SEQNO (PREV_INSN (insn));
4036 else
4038 basic_block bb = BLOCK_FOR_INSN (insn);
4040 if (single_pred_p (bb)
4041 && !in_current_region_p (single_pred (bb)))
4043 /* We can have preds outside a region when splitting edges
4044 for pipelining of an outer loop. Use succ instead.
4045 There should be only one of them. */
4046 insn_t succ = NULL;
4047 succ_iterator si;
4048 bool first = true;
4050 gcc_assert (flag_sel_sched_pipelining_outer_loops
4051 && current_loop_nest);
4052 FOR_EACH_SUCC_1 (succ, si, insn,
4053 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
4055 gcc_assert (first);
4056 first = false;
4059 gcc_assert (succ != NULL);
4060 seqno = INSN_SEQNO (succ);
4062 else
4064 insn_t *preds;
4065 int n;
4067 cfg_preds (BLOCK_FOR_INSN (insn), &preds, &n);
4069 gcc_assert (n > 0);
4070 /* For one predecessor, use simple method. */
4071 if (n == 1)
4072 seqno = INSN_SEQNO (preds[0]);
4073 else
4074 seqno = get_seqno_by_preds (insn);
4076 free (preds);
4080 /* We were unable to find a good seqno among preds. */
4081 if (seqno < 0)
4082 seqno = get_seqno_by_succs (insn);
4084 if (seqno < 0)
4086 /* The only case where this could be here legally is that the only
4087 unscheduled insn was a conditional jump that got removed and turned
4088 into this unconditional one. Initialize from the old seqno
4089 of that jump passed down to here. */
4090 seqno = old_seqno;
4093 gcc_assert (seqno >= 0);
4094 return seqno;
4097 /* Find the proper seqno for inserting at INSN. Returns -1 if no predecessors
4098 with positive seqno exist. */
4100 get_seqno_by_preds (rtx_insn *insn)
4102 basic_block bb = BLOCK_FOR_INSN (insn);
4103 rtx_insn *tmp = insn, *head = BB_HEAD (bb);
4104 insn_t *preds;
4105 int n, i, seqno;
4107 while (tmp != head)
4109 tmp = PREV_INSN (tmp);
4110 if (INSN_P (tmp))
4111 return INSN_SEQNO (tmp);
4114 cfg_preds (bb, &preds, &n);
4115 for (i = 0, seqno = -1; i < n; i++)
4116 seqno = MAX (seqno, INSN_SEQNO (preds[i]));
4118 return seqno;
4123 /* Extend pass-scope data structures for basic blocks. */
4124 void
4125 sel_extend_global_bb_info (void)
4127 sel_global_bb_info.safe_grow_cleared (last_basic_block_for_fn (cfun));
4130 /* Extend region-scope data structures for basic blocks. */
4131 static void
4132 extend_region_bb_info (void)
4134 sel_region_bb_info.safe_grow_cleared (last_basic_block_for_fn (cfun));
4137 /* Extend all data structures to fit for all basic blocks. */
4138 static void
4139 extend_bb_info (void)
4141 sel_extend_global_bb_info ();
4142 extend_region_bb_info ();
4145 /* Finalize pass-scope data structures for basic blocks. */
4146 void
4147 sel_finish_global_bb_info (void)
4149 sel_global_bb_info.release ();
4152 /* Finalize region-scope data structures for basic blocks. */
4153 static void
4154 finish_region_bb_info (void)
4156 sel_region_bb_info.release ();
4160 /* Data for each insn in current region. */
4161 vec<sel_insn_data_def> s_i_d = vNULL;
4163 /* Extend data structures for insns from current region. */
4164 static void
4165 extend_insn_data (void)
4167 int reserve;
4169 sched_extend_target ();
4170 sched_deps_init (false);
4172 /* Extend data structures for insns from current region. */
4173 reserve = (sched_max_luid + 1 - s_i_d.length ());
4174 if (reserve > 0 && ! s_i_d.space (reserve))
4176 int size;
4178 if (sched_max_luid / 2 > 1024)
4179 size = sched_max_luid + 1024;
4180 else
4181 size = 3 * sched_max_luid / 2;
4184 s_i_d.safe_grow_cleared (size);
4188 /* Finalize data structures for insns from current region. */
4189 static void
4190 finish_insns (void)
4192 unsigned i;
4194 /* Clear here all dependence contexts that may have left from insns that were
4195 removed during the scheduling. */
4196 for (i = 0; i < s_i_d.length (); i++)
4198 sel_insn_data_def *sid_entry = &s_i_d[i];
4200 if (sid_entry->live)
4201 return_regset_to_pool (sid_entry->live);
4202 if (sid_entry->analyzed_deps)
4204 BITMAP_FREE (sid_entry->analyzed_deps);
4205 BITMAP_FREE (sid_entry->found_deps);
4206 htab_delete (sid_entry->transformed_insns);
4207 free_deps (&sid_entry->deps_context);
4209 if (EXPR_VINSN (&sid_entry->expr))
4211 clear_expr (&sid_entry->expr);
4213 /* Also, clear CANT_MOVE bit here, because we really don't want it
4214 to be passed to the next region. */
4215 CANT_MOVE_BY_LUID (i) = 0;
4219 s_i_d.release ();
4222 /* A proxy to pass initialization data to init_insn (). */
4223 static sel_insn_data_def _insn_init_ssid;
4224 static sel_insn_data_t insn_init_ssid = &_insn_init_ssid;
4226 /* If true create a new vinsn. Otherwise use the one from EXPR. */
4227 static bool insn_init_create_new_vinsn_p;
4229 /* Set all necessary data for initialization of the new insn[s]. */
4230 static expr_t
4231 set_insn_init (expr_t expr, vinsn_t vi, int seqno)
4233 expr_t x = &insn_init_ssid->expr;
4235 copy_expr_onside (x, expr);
4236 if (vi != NULL)
4238 insn_init_create_new_vinsn_p = false;
4239 change_vinsn_in_expr (x, vi);
4241 else
4242 insn_init_create_new_vinsn_p = true;
4244 insn_init_ssid->seqno = seqno;
4245 return x;
4248 /* Init data for INSN. */
4249 static void
4250 init_insn_data (insn_t insn)
4252 expr_t expr;
4253 sel_insn_data_t ssid = insn_init_ssid;
4255 /* The fields mentioned below are special and hence are not being
4256 propagated to the new insns. */
4257 gcc_assert (!ssid->asm_p && ssid->sched_next == NULL
4258 && !ssid->after_stall_p && ssid->sched_cycle == 0);
4259 gcc_assert (INSN_P (insn) && INSN_LUID (insn) > 0);
4261 expr = INSN_EXPR (insn);
4262 copy_expr (expr, &ssid->expr);
4263 prepare_insn_expr (insn, ssid->seqno);
4265 if (insn_init_create_new_vinsn_p)
4266 change_vinsn_in_expr (expr, vinsn_create (insn, init_insn_force_unique_p));
4268 if (first_time_insn_init (insn))
4269 init_first_time_insn_data (insn);
4272 /* This is used to initialize spurious jumps generated by
4273 sel_redirect_edge (). OLD_SEQNO is used for initializing seqnos
4274 in corner cases within get_seqno_for_a_jump. */
4275 static void
4276 init_simplejump_data (insn_t insn, int old_seqno)
4278 init_expr (INSN_EXPR (insn), vinsn_create (insn, false), 0,
4279 REG_BR_PROB_BASE, 0, 0, 0, 0, 0, 0,
4280 vNULL, true, false, false,
4281 false, true);
4282 INSN_SEQNO (insn) = get_seqno_for_a_jump (insn, old_seqno);
4283 init_first_time_insn_data (insn);
4286 /* Perform deferred initialization of insns. This is used to process
4287 a new jump that may be created by redirect_edge. OLD_SEQNO is used
4288 for initializing simplejumps in init_simplejump_data. */
4289 static void
4290 sel_init_new_insn (insn_t insn, int flags, int old_seqno)
4292 /* We create data structures for bb when the first insn is emitted in it. */
4293 if (INSN_P (insn)
4294 && INSN_IN_STREAM_P (insn)
4295 && insn_is_the_only_one_in_bb_p (insn))
4297 extend_bb_info ();
4298 create_initial_data_sets (BLOCK_FOR_INSN (insn));
4301 if (flags & INSN_INIT_TODO_LUID)
4303 sched_extend_luids ();
4304 sched_init_insn_luid (insn);
4307 if (flags & INSN_INIT_TODO_SSID)
4309 extend_insn_data ();
4310 init_insn_data (insn);
4311 clear_expr (&insn_init_ssid->expr);
4314 if (flags & INSN_INIT_TODO_SIMPLEJUMP)
4316 extend_insn_data ();
4317 init_simplejump_data (insn, old_seqno);
4320 gcc_assert (CONTAINING_RGN (BLOCK_NUM (insn))
4321 == CONTAINING_RGN (BB_TO_BLOCK (0)));
4325 /* Functions to init/finish work with lv sets. */
4327 /* Init BB_LV_SET of BB from DF_LR_IN set of BB. */
4328 static void
4329 init_lv_set (basic_block bb)
4331 gcc_assert (!BB_LV_SET_VALID_P (bb));
4333 BB_LV_SET (bb) = get_regset_from_pool ();
4334 COPY_REG_SET (BB_LV_SET (bb), DF_LR_IN (bb));
4335 BB_LV_SET_VALID_P (bb) = true;
4338 /* Copy liveness information to BB from FROM_BB. */
4339 static void
4340 copy_lv_set_from (basic_block bb, basic_block from_bb)
4342 gcc_assert (!BB_LV_SET_VALID_P (bb));
4344 COPY_REG_SET (BB_LV_SET (bb), BB_LV_SET (from_bb));
4345 BB_LV_SET_VALID_P (bb) = true;
4348 /* Initialize lv set of all bb headers. */
4349 void
4350 init_lv_sets (void)
4352 basic_block bb;
4354 /* Initialize of LV sets. */
4355 FOR_EACH_BB_FN (bb, cfun)
4356 init_lv_set (bb);
4358 /* Don't forget EXIT_BLOCK. */
4359 init_lv_set (EXIT_BLOCK_PTR_FOR_FN (cfun));
4362 /* Release lv set of HEAD. */
4363 static void
4364 free_lv_set (basic_block bb)
4366 gcc_assert (BB_LV_SET (bb) != NULL);
4368 return_regset_to_pool (BB_LV_SET (bb));
4369 BB_LV_SET (bb) = NULL;
4370 BB_LV_SET_VALID_P (bb) = false;
4373 /* Finalize lv sets of all bb headers. */
4374 void
4375 free_lv_sets (void)
4377 basic_block bb;
4379 /* Don't forget EXIT_BLOCK. */
4380 free_lv_set (EXIT_BLOCK_PTR_FOR_FN (cfun));
4382 /* Free LV sets. */
4383 FOR_EACH_BB_FN (bb, cfun)
4384 if (BB_LV_SET (bb))
4385 free_lv_set (bb);
4388 /* Mark AV_SET for BB as invalid, so this set will be updated the next time
4389 compute_av() processes BB. This function is called when creating new basic
4390 blocks, as well as for blocks (either new or existing) where new jumps are
4391 created when the control flow is being updated. */
4392 static void
4393 invalidate_av_set (basic_block bb)
4395 BB_AV_LEVEL (bb) = -1;
4398 /* Create initial data sets for BB (they will be invalid). */
4399 static void
4400 create_initial_data_sets (basic_block bb)
4402 if (BB_LV_SET (bb))
4403 BB_LV_SET_VALID_P (bb) = false;
4404 else
4405 BB_LV_SET (bb) = get_regset_from_pool ();
4406 invalidate_av_set (bb);
4409 /* Free av set of BB. */
4410 static void
4411 free_av_set (basic_block bb)
4413 av_set_clear (&BB_AV_SET (bb));
4414 BB_AV_LEVEL (bb) = 0;
4417 /* Free data sets of BB. */
4418 void
4419 free_data_sets (basic_block bb)
4421 free_lv_set (bb);
4422 free_av_set (bb);
4425 /* Exchange lv sets of TO and FROM. */
4426 static void
4427 exchange_lv_sets (basic_block to, basic_block from)
4430 regset to_lv_set = BB_LV_SET (to);
4432 BB_LV_SET (to) = BB_LV_SET (from);
4433 BB_LV_SET (from) = to_lv_set;
4437 bool to_lv_set_valid_p = BB_LV_SET_VALID_P (to);
4439 BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4440 BB_LV_SET_VALID_P (from) = to_lv_set_valid_p;
4445 /* Exchange av sets of TO and FROM. */
4446 static void
4447 exchange_av_sets (basic_block to, basic_block from)
4450 av_set_t to_av_set = BB_AV_SET (to);
4452 BB_AV_SET (to) = BB_AV_SET (from);
4453 BB_AV_SET (from) = to_av_set;
4457 int to_av_level = BB_AV_LEVEL (to);
4459 BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4460 BB_AV_LEVEL (from) = to_av_level;
4464 /* Exchange data sets of TO and FROM. */
4465 void
4466 exchange_data_sets (basic_block to, basic_block from)
4468 exchange_lv_sets (to, from);
4469 exchange_av_sets (to, from);
4472 /* Copy data sets of FROM to TO. */
4473 void
4474 copy_data_sets (basic_block to, basic_block from)
4476 gcc_assert (!BB_LV_SET_VALID_P (to) && !BB_AV_SET_VALID_P (to));
4477 gcc_assert (BB_AV_SET (to) == NULL);
4479 BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4480 BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4482 if (BB_AV_SET_VALID_P (from))
4484 BB_AV_SET (to) = av_set_copy (BB_AV_SET (from));
4486 if (BB_LV_SET_VALID_P (from))
4488 gcc_assert (BB_LV_SET (to) != NULL);
4489 COPY_REG_SET (BB_LV_SET (to), BB_LV_SET (from));
4493 /* Return an av set for INSN, if any. */
4494 av_set_t
4495 get_av_set (insn_t insn)
4497 av_set_t av_set;
4499 gcc_assert (AV_SET_VALID_P (insn));
4501 if (sel_bb_head_p (insn))
4502 av_set = BB_AV_SET (BLOCK_FOR_INSN (insn));
4503 else
4504 av_set = NULL;
4506 return av_set;
4509 /* Implementation of AV_LEVEL () macro. Return AV_LEVEL () of INSN. */
4511 get_av_level (insn_t insn)
4513 int av_level;
4515 gcc_assert (INSN_P (insn));
4517 if (sel_bb_head_p (insn))
4518 av_level = BB_AV_LEVEL (BLOCK_FOR_INSN (insn));
4519 else
4520 av_level = INSN_WS_LEVEL (insn);
4522 return av_level;
4527 /* Variables to work with control-flow graph. */
4529 /* The basic block that already has been processed by the sched_data_update (),
4530 but hasn't been in sel_add_bb () yet. */
4531 static vec<basic_block>
4532 last_added_blocks = vNULL;
4534 /* A pool for allocating successor infos. */
4535 static struct
4537 /* A stack for saving succs_info structures. */
4538 struct succs_info *stack;
4540 /* Its size. */
4541 int size;
4543 /* Top of the stack. */
4544 int top;
4546 /* Maximal value of the top. */
4547 int max_top;
4548 } succs_info_pool;
4550 /* Functions to work with control-flow graph. */
4552 /* Return basic block note of BB. */
4553 rtx_insn *
4554 sel_bb_head (basic_block bb)
4556 rtx_insn *head;
4558 if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
4560 gcc_assert (exit_insn != NULL_RTX);
4561 head = exit_insn;
4563 else
4565 insn_t note;
4567 note = bb_note (bb);
4568 head = next_nonnote_insn (note);
4570 if (head && (BARRIER_P (head) || BLOCK_FOR_INSN (head) != bb))
4571 head = NULL;
4574 return head;
4577 /* Return true if INSN is a basic block header. */
4578 bool
4579 sel_bb_head_p (insn_t insn)
4581 return sel_bb_head (BLOCK_FOR_INSN (insn)) == insn;
4584 /* Return last insn of BB. */
4585 rtx_insn *
4586 sel_bb_end (basic_block bb)
4588 if (sel_bb_empty_p (bb))
4589 return NULL;
4591 gcc_assert (bb != EXIT_BLOCK_PTR_FOR_FN (cfun));
4593 return BB_END (bb);
4596 /* Return true if INSN is the last insn in its basic block. */
4597 bool
4598 sel_bb_end_p (insn_t insn)
4600 return insn == sel_bb_end (BLOCK_FOR_INSN (insn));
4603 /* Return true if BB consist of single NOTE_INSN_BASIC_BLOCK. */
4604 bool
4605 sel_bb_empty_p (basic_block bb)
4607 return sel_bb_head (bb) == NULL;
4610 /* True when BB belongs to the current scheduling region. */
4611 bool
4612 in_current_region_p (basic_block bb)
4614 if (bb->index < NUM_FIXED_BLOCKS)
4615 return false;
4617 return CONTAINING_RGN (bb->index) == CONTAINING_RGN (BB_TO_BLOCK (0));
4620 /* Return the block which is a fallthru bb of a conditional jump JUMP. */
4621 basic_block
4622 fallthru_bb_of_jump (const rtx_insn *jump)
4624 if (!JUMP_P (jump))
4625 return NULL;
4627 if (!any_condjump_p (jump))
4628 return NULL;
4630 /* A basic block that ends with a conditional jump may still have one successor
4631 (and be followed by a barrier), we are not interested. */
4632 if (single_succ_p (BLOCK_FOR_INSN (jump)))
4633 return NULL;
4635 return FALLTHRU_EDGE (BLOCK_FOR_INSN (jump))->dest;
4638 /* Remove all notes from BB. */
4639 static void
4640 init_bb (basic_block bb)
4642 remove_notes (bb_note (bb), BB_END (bb));
4643 BB_NOTE_LIST (bb) = note_list;
4646 void
4647 sel_init_bbs (bb_vec_t bbs)
4649 const struct sched_scan_info_def ssi =
4651 extend_bb_info, /* extend_bb */
4652 init_bb, /* init_bb */
4653 NULL, /* extend_insn */
4654 NULL /* init_insn */
4657 sched_scan (&ssi, bbs);
4660 /* Restore notes for the whole region. */
4661 static void
4662 sel_restore_notes (void)
4664 int bb;
4665 insn_t insn;
4667 for (bb = 0; bb < current_nr_blocks; bb++)
4669 basic_block first, last;
4671 first = EBB_FIRST_BB (bb);
4672 last = EBB_LAST_BB (bb)->next_bb;
4676 note_list = BB_NOTE_LIST (first);
4677 restore_other_notes (NULL, first);
4678 BB_NOTE_LIST (first) = NULL;
4680 FOR_BB_INSNS (first, insn)
4681 if (NONDEBUG_INSN_P (insn))
4682 reemit_notes (insn);
4684 first = first->next_bb;
4686 while (first != last);
4690 /* Free per-bb data structures. */
4691 void
4692 sel_finish_bbs (void)
4694 sel_restore_notes ();
4696 /* Remove current loop preheader from this loop. */
4697 if (current_loop_nest)
4698 sel_remove_loop_preheader ();
4700 finish_region_bb_info ();
4703 /* Return true if INSN has a single successor of type FLAGS. */
4704 bool
4705 sel_insn_has_single_succ_p (insn_t insn, int flags)
4707 insn_t succ;
4708 succ_iterator si;
4709 bool first_p = true;
4711 FOR_EACH_SUCC_1 (succ, si, insn, flags)
4713 if (first_p)
4714 first_p = false;
4715 else
4716 return false;
4719 return true;
4722 /* Allocate successor's info. */
4723 static struct succs_info *
4724 alloc_succs_info (void)
4726 if (succs_info_pool.top == succs_info_pool.max_top)
4728 int i;
4730 if (++succs_info_pool.max_top >= succs_info_pool.size)
4731 gcc_unreachable ();
4733 i = ++succs_info_pool.top;
4734 succs_info_pool.stack[i].succs_ok.create (10);
4735 succs_info_pool.stack[i].succs_other.create (10);
4736 succs_info_pool.stack[i].probs_ok.create (10);
4738 else
4739 succs_info_pool.top++;
4741 return &succs_info_pool.stack[succs_info_pool.top];
4744 /* Free successor's info. */
4745 void
4746 free_succs_info (struct succs_info * sinfo)
4748 gcc_assert (succs_info_pool.top >= 0
4749 && &succs_info_pool.stack[succs_info_pool.top] == sinfo);
4750 succs_info_pool.top--;
4752 /* Clear stale info. */
4753 sinfo->succs_ok.block_remove (0, sinfo->succs_ok.length ());
4754 sinfo->succs_other.block_remove (0, sinfo->succs_other.length ());
4755 sinfo->probs_ok.block_remove (0, sinfo->probs_ok.length ());
4756 sinfo->all_prob = 0;
4757 sinfo->succs_ok_n = 0;
4758 sinfo->all_succs_n = 0;
4761 /* Compute successor info for INSN. FLAGS are the flags passed
4762 to the FOR_EACH_SUCC_1 iterator. */
4763 struct succs_info *
4764 compute_succs_info (insn_t insn, short flags)
4766 succ_iterator si;
4767 insn_t succ;
4768 struct succs_info *sinfo = alloc_succs_info ();
4770 /* Traverse *all* successors and decide what to do with each. */
4771 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
4773 /* FIXME: this doesn't work for skipping to loop exits, as we don't
4774 perform code motion through inner loops. */
4775 short current_flags = si.current_flags & ~SUCCS_SKIP_TO_LOOP_EXITS;
4777 if (current_flags & flags)
4779 sinfo->succs_ok.safe_push (succ);
4780 sinfo->probs_ok.safe_push (
4781 /* FIXME: Improve calculation when skipping
4782 inner loop to exits. */
4783 si.bb_end ? si.e1->probability : REG_BR_PROB_BASE);
4784 sinfo->succs_ok_n++;
4786 else
4787 sinfo->succs_other.safe_push (succ);
4789 /* Compute all_prob. */
4790 if (!si.bb_end)
4791 sinfo->all_prob = REG_BR_PROB_BASE;
4792 else
4793 sinfo->all_prob += si.e1->probability;
4795 sinfo->all_succs_n++;
4798 return sinfo;
4801 /* Return the predecessors of BB in PREDS and their number in N.
4802 Empty blocks are skipped. SIZE is used to allocate PREDS. */
4803 static void
4804 cfg_preds_1 (basic_block bb, insn_t **preds, int *n, int *size)
4806 edge e;
4807 edge_iterator ei;
4809 gcc_assert (BLOCK_TO_BB (bb->index) != 0);
4811 FOR_EACH_EDGE (e, ei, bb->preds)
4813 basic_block pred_bb = e->src;
4814 insn_t bb_end = BB_END (pred_bb);
4816 if (!in_current_region_p (pred_bb))
4818 gcc_assert (flag_sel_sched_pipelining_outer_loops
4819 && current_loop_nest);
4820 continue;
4823 if (sel_bb_empty_p (pred_bb))
4824 cfg_preds_1 (pred_bb, preds, n, size);
4825 else
4827 if (*n == *size)
4828 *preds = XRESIZEVEC (insn_t, *preds,
4829 (*size = 2 * *size + 1));
4830 (*preds)[(*n)++] = bb_end;
4834 gcc_assert (*n != 0
4835 || (flag_sel_sched_pipelining_outer_loops
4836 && current_loop_nest));
4839 /* Find all predecessors of BB and record them in PREDS and their number
4840 in N. Empty blocks are skipped, and only normal (forward in-region)
4841 edges are processed. */
4842 static void
4843 cfg_preds (basic_block bb, insn_t **preds, int *n)
4845 int size = 0;
4847 *preds = NULL;
4848 *n = 0;
4849 cfg_preds_1 (bb, preds, n, &size);
4852 /* Returns true if we are moving INSN through join point. */
4853 bool
4854 sel_num_cfg_preds_gt_1 (insn_t insn)
4856 basic_block bb;
4858 if (!sel_bb_head_p (insn) || INSN_BB (insn) == 0)
4859 return false;
4861 bb = BLOCK_FOR_INSN (insn);
4863 while (1)
4865 if (EDGE_COUNT (bb->preds) > 1)
4866 return true;
4868 gcc_assert (EDGE_PRED (bb, 0)->dest == bb);
4869 bb = EDGE_PRED (bb, 0)->src;
4871 if (!sel_bb_empty_p (bb))
4872 break;
4875 return false;
4878 /* Returns true when BB should be the end of an ebb. Adapted from the
4879 code in sched-ebb.c. */
4880 bool
4881 bb_ends_ebb_p (basic_block bb)
4883 basic_block next_bb = bb_next_bb (bb);
4884 edge e;
4886 if (next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4887 || bitmap_bit_p (forced_ebb_heads, next_bb->index)
4888 || (LABEL_P (BB_HEAD (next_bb))
4889 /* NB: LABEL_NUSES () is not maintained outside of jump.c.
4890 Work around that. */
4891 && !single_pred_p (next_bb)))
4892 return true;
4894 if (!in_current_region_p (next_bb))
4895 return true;
4897 e = find_fallthru_edge (bb->succs);
4898 if (e)
4900 gcc_assert (e->dest == next_bb);
4902 return false;
4905 return true;
4908 /* Returns true when INSN and SUCC are in the same EBB, given that SUCC is a
4909 successor of INSN. */
4910 bool
4911 in_same_ebb_p (insn_t insn, insn_t succ)
4913 basic_block ptr = BLOCK_FOR_INSN (insn);
4915 for (;;)
4917 if (ptr == BLOCK_FOR_INSN (succ))
4918 return true;
4920 if (bb_ends_ebb_p (ptr))
4921 return false;
4923 ptr = bb_next_bb (ptr);
4926 gcc_unreachable ();
4927 return false;
4930 /* Recomputes the reverse topological order for the function and
4931 saves it in REV_TOP_ORDER_INDEX. REV_TOP_ORDER_INDEX_LEN is also
4932 modified appropriately. */
4933 static void
4934 recompute_rev_top_order (void)
4936 int *postorder;
4937 int n_blocks, i;
4939 if (!rev_top_order_index
4940 || rev_top_order_index_len < last_basic_block_for_fn (cfun))
4942 rev_top_order_index_len = last_basic_block_for_fn (cfun);
4943 rev_top_order_index = XRESIZEVEC (int, rev_top_order_index,
4944 rev_top_order_index_len);
4947 postorder = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
4949 n_blocks = post_order_compute (postorder, true, false);
4950 gcc_assert (n_basic_blocks_for_fn (cfun) == n_blocks);
4952 /* Build reverse function: for each basic block with BB->INDEX == K
4953 rev_top_order_index[K] is it's reverse topological sort number. */
4954 for (i = 0; i < n_blocks; i++)
4956 gcc_assert (postorder[i] < rev_top_order_index_len);
4957 rev_top_order_index[postorder[i]] = i;
4960 free (postorder);
4963 /* Clear all flags from insns in BB that could spoil its rescheduling. */
4964 void
4965 clear_outdated_rtx_info (basic_block bb)
4967 rtx_insn *insn;
4969 FOR_BB_INSNS (bb, insn)
4970 if (INSN_P (insn))
4972 SCHED_GROUP_P (insn) = 0;
4973 INSN_AFTER_STALL_P (insn) = 0;
4974 INSN_SCHED_TIMES (insn) = 0;
4975 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) = 0;
4977 /* We cannot use the changed caches, as previously we could ignore
4978 the LHS dependence due to enabled renaming and transform
4979 the expression, and currently we'll be unable to do this. */
4980 htab_empty (INSN_TRANSFORMED_INSNS (insn));
4984 /* Add BB_NOTE to the pool of available basic block notes. */
4985 static void
4986 return_bb_to_pool (basic_block bb)
4988 rtx note = bb_note (bb);
4990 gcc_assert (NOTE_BASIC_BLOCK (note) == bb
4991 && bb->aux == NULL);
4993 /* It turns out that current cfg infrastructure does not support
4994 reuse of basic blocks. Don't bother for now. */
4995 /*bb_note_pool.safe_push (note);*/
4998 /* Get a bb_note from pool or return NULL_RTX if pool is empty. */
4999 static rtx_note *
5000 get_bb_note_from_pool (void)
5002 if (bb_note_pool.is_empty ())
5003 return NULL;
5004 else
5006 rtx_note *note = bb_note_pool.pop ();
5008 SET_PREV_INSN (note) = NULL_RTX;
5009 SET_NEXT_INSN (note) = NULL_RTX;
5011 return note;
5015 /* Free bb_note_pool. */
5016 void
5017 free_bb_note_pool (void)
5019 bb_note_pool.release ();
5022 /* Setup scheduler pool and successor structure. */
5023 void
5024 alloc_sched_pools (void)
5026 int succs_size;
5028 succs_size = MAX_WS + 1;
5029 succs_info_pool.stack = XCNEWVEC (struct succs_info, succs_size);
5030 succs_info_pool.size = succs_size;
5031 succs_info_pool.top = -1;
5032 succs_info_pool.max_top = -1;
5034 sched_lists_pool = create_alloc_pool ("sel-sched-lists",
5035 sizeof (struct _list_node), 500);
5038 /* Free the pools. */
5039 void
5040 free_sched_pools (void)
5042 int i;
5044 free_alloc_pool (sched_lists_pool);
5045 gcc_assert (succs_info_pool.top == -1);
5046 for (i = 0; i <= succs_info_pool.max_top; i++)
5048 succs_info_pool.stack[i].succs_ok.release ();
5049 succs_info_pool.stack[i].succs_other.release ();
5050 succs_info_pool.stack[i].probs_ok.release ();
5052 free (succs_info_pool.stack);
5056 /* Returns a position in RGN where BB can be inserted retaining
5057 topological order. */
5058 static int
5059 find_place_to_insert_bb (basic_block bb, int rgn)
5061 bool has_preds_outside_rgn = false;
5062 edge e;
5063 edge_iterator ei;
5065 /* Find whether we have preds outside the region. */
5066 FOR_EACH_EDGE (e, ei, bb->preds)
5067 if (!in_current_region_p (e->src))
5069 has_preds_outside_rgn = true;
5070 break;
5073 /* Recompute the top order -- needed when we have > 1 pred
5074 and in case we don't have preds outside. */
5075 if (flag_sel_sched_pipelining_outer_loops
5076 && (has_preds_outside_rgn || EDGE_COUNT (bb->preds) > 1))
5078 int i, bbi = bb->index, cur_bbi;
5080 recompute_rev_top_order ();
5081 for (i = RGN_NR_BLOCKS (rgn) - 1; i >= 0; i--)
5083 cur_bbi = BB_TO_BLOCK (i);
5084 if (rev_top_order_index[bbi]
5085 < rev_top_order_index[cur_bbi])
5086 break;
5089 /* We skipped the right block, so we increase i. We accommodate
5090 it for increasing by step later, so we decrease i. */
5091 return (i + 1) - 1;
5093 else if (has_preds_outside_rgn)
5095 /* This is the case when we generate an extra empty block
5096 to serve as region head during pipelining. */
5097 e = EDGE_SUCC (bb, 0);
5098 gcc_assert (EDGE_COUNT (bb->succs) == 1
5099 && in_current_region_p (EDGE_SUCC (bb, 0)->dest)
5100 && (BLOCK_TO_BB (e->dest->index) == 0));
5101 return -1;
5104 /* We don't have preds outside the region. We should have
5105 the only pred, because the multiple preds case comes from
5106 the pipelining of outer loops, and that is handled above.
5107 Just take the bbi of this single pred. */
5108 if (EDGE_COUNT (bb->succs) > 0)
5110 int pred_bbi;
5112 gcc_assert (EDGE_COUNT (bb->preds) == 1);
5114 pred_bbi = EDGE_PRED (bb, 0)->src->index;
5115 return BLOCK_TO_BB (pred_bbi);
5117 else
5118 /* BB has no successors. It is safe to put it in the end. */
5119 return current_nr_blocks - 1;
5122 /* Deletes an empty basic block freeing its data. */
5123 static void
5124 delete_and_free_basic_block (basic_block bb)
5126 gcc_assert (sel_bb_empty_p (bb));
5128 if (BB_LV_SET (bb))
5129 free_lv_set (bb);
5131 bitmap_clear_bit (blocks_to_reschedule, bb->index);
5133 /* Can't assert av_set properties because we use sel_aremove_bb
5134 when removing loop preheader from the region. At the point of
5135 removing the preheader we already have deallocated sel_region_bb_info. */
5136 gcc_assert (BB_LV_SET (bb) == NULL
5137 && !BB_LV_SET_VALID_P (bb)
5138 && BB_AV_LEVEL (bb) == 0
5139 && BB_AV_SET (bb) == NULL);
5141 delete_basic_block (bb);
5144 /* Add BB to the current region and update the region data. */
5145 static void
5146 add_block_to_current_region (basic_block bb)
5148 int i, pos, bbi = -2, rgn;
5150 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
5151 bbi = find_place_to_insert_bb (bb, rgn);
5152 bbi += 1;
5153 pos = RGN_BLOCKS (rgn) + bbi;
5155 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
5156 && ebb_head[bbi] == pos);
5158 /* Make a place for the new block. */
5159 extend_regions ();
5161 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
5162 BLOCK_TO_BB (rgn_bb_table[i])++;
5164 memmove (rgn_bb_table + pos + 1,
5165 rgn_bb_table + pos,
5166 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
5168 /* Initialize data for BB. */
5169 rgn_bb_table[pos] = bb->index;
5170 BLOCK_TO_BB (bb->index) = bbi;
5171 CONTAINING_RGN (bb->index) = rgn;
5173 RGN_NR_BLOCKS (rgn)++;
5175 for (i = rgn + 1; i <= nr_regions; i++)
5176 RGN_BLOCKS (i)++;
5179 /* Remove BB from the current region and update the region data. */
5180 static void
5181 remove_bb_from_region (basic_block bb)
5183 int i, pos, bbi = -2, rgn;
5185 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
5186 bbi = BLOCK_TO_BB (bb->index);
5187 pos = RGN_BLOCKS (rgn) + bbi;
5189 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
5190 && ebb_head[bbi] == pos);
5192 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
5193 BLOCK_TO_BB (rgn_bb_table[i])--;
5195 memmove (rgn_bb_table + pos,
5196 rgn_bb_table + pos + 1,
5197 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
5199 RGN_NR_BLOCKS (rgn)--;
5200 for (i = rgn + 1; i <= nr_regions; i++)
5201 RGN_BLOCKS (i)--;
5204 /* Add BB to the current region and update all data. If BB is NULL, add all
5205 blocks from last_added_blocks vector. */
5206 static void
5207 sel_add_bb (basic_block bb)
5209 /* Extend luids so that new notes will receive zero luids. */
5210 sched_extend_luids ();
5211 sched_init_bbs ();
5212 sel_init_bbs (last_added_blocks);
5214 /* When bb is passed explicitly, the vector should contain
5215 the only element that equals to bb; otherwise, the vector
5216 should not be NULL. */
5217 gcc_assert (last_added_blocks.exists ());
5219 if (bb != NULL)
5221 gcc_assert (last_added_blocks.length () == 1
5222 && last_added_blocks[0] == bb);
5223 add_block_to_current_region (bb);
5225 /* We associate creating/deleting data sets with the first insn
5226 appearing / disappearing in the bb. */
5227 if (!sel_bb_empty_p (bb) && BB_LV_SET (bb) == NULL)
5228 create_initial_data_sets (bb);
5230 last_added_blocks.release ();
5232 else
5233 /* BB is NULL - process LAST_ADDED_BLOCKS instead. */
5235 int i;
5236 basic_block temp_bb = NULL;
5238 for (i = 0;
5239 last_added_blocks.iterate (i, &bb); i++)
5241 add_block_to_current_region (bb);
5242 temp_bb = bb;
5245 /* We need to fetch at least one bb so we know the region
5246 to update. */
5247 gcc_assert (temp_bb != NULL);
5248 bb = temp_bb;
5250 last_added_blocks.release ();
5253 rgn_setup_region (CONTAINING_RGN (bb->index));
5256 /* Remove BB from the current region and update all data.
5257 If REMOVE_FROM_CFG_PBB is true, also remove the block cfom cfg. */
5258 static void
5259 sel_remove_bb (basic_block bb, bool remove_from_cfg_p)
5261 unsigned idx = bb->index;
5263 gcc_assert (bb != NULL && BB_NOTE_LIST (bb) == NULL_RTX);
5265 remove_bb_from_region (bb);
5266 return_bb_to_pool (bb);
5267 bitmap_clear_bit (blocks_to_reschedule, idx);
5269 if (remove_from_cfg_p)
5271 basic_block succ = single_succ (bb);
5272 delete_and_free_basic_block (bb);
5273 set_immediate_dominator (CDI_DOMINATORS, succ,
5274 recompute_dominator (CDI_DOMINATORS, succ));
5277 rgn_setup_region (CONTAINING_RGN (idx));
5280 /* Concatenate info of EMPTY_BB to info of MERGE_BB. */
5281 static void
5282 move_bb_info (basic_block merge_bb, basic_block empty_bb)
5284 if (in_current_region_p (merge_bb))
5285 concat_note_lists (BB_NOTE_LIST (empty_bb),
5286 &BB_NOTE_LIST (merge_bb));
5287 BB_NOTE_LIST (empty_bb) = NULL;
5291 /* Remove EMPTY_BB. If REMOVE_FROM_CFG_P is false, remove EMPTY_BB from
5292 region, but keep it in CFG. */
5293 static void
5294 remove_empty_bb (basic_block empty_bb, bool remove_from_cfg_p)
5296 /* The block should contain just a note or a label.
5297 We try to check whether it is unused below. */
5298 gcc_assert (BB_HEAD (empty_bb) == BB_END (empty_bb)
5299 || LABEL_P (BB_HEAD (empty_bb)));
5301 /* If basic block has predecessors or successors, redirect them. */
5302 if (remove_from_cfg_p
5303 && (EDGE_COUNT (empty_bb->preds) > 0
5304 || EDGE_COUNT (empty_bb->succs) > 0))
5306 basic_block pred;
5307 basic_block succ;
5309 /* We need to init PRED and SUCC before redirecting edges. */
5310 if (EDGE_COUNT (empty_bb->preds) > 0)
5312 edge e;
5314 gcc_assert (EDGE_COUNT (empty_bb->preds) == 1);
5316 e = EDGE_PRED (empty_bb, 0);
5317 gcc_assert (e->src == empty_bb->prev_bb
5318 && (e->flags & EDGE_FALLTHRU));
5320 pred = empty_bb->prev_bb;
5322 else
5323 pred = NULL;
5325 if (EDGE_COUNT (empty_bb->succs) > 0)
5327 /* We do not check fallthruness here as above, because
5328 after removing a jump the edge may actually be not fallthru. */
5329 gcc_assert (EDGE_COUNT (empty_bb->succs) == 1);
5330 succ = EDGE_SUCC (empty_bb, 0)->dest;
5332 else
5333 succ = NULL;
5335 if (EDGE_COUNT (empty_bb->preds) > 0 && succ != NULL)
5337 edge e = EDGE_PRED (empty_bb, 0);
5339 if (e->flags & EDGE_FALLTHRU)
5340 redirect_edge_succ_nodup (e, succ);
5341 else
5342 sel_redirect_edge_and_branch (EDGE_PRED (empty_bb, 0), succ);
5345 if (EDGE_COUNT (empty_bb->succs) > 0 && pred != NULL)
5347 edge e = EDGE_SUCC (empty_bb, 0);
5349 if (find_edge (pred, e->dest) == NULL)
5350 redirect_edge_pred (e, pred);
5354 /* Finish removing. */
5355 sel_remove_bb (empty_bb, remove_from_cfg_p);
5358 /* An implementation of create_basic_block hook, which additionally updates
5359 per-bb data structures. */
5360 static basic_block
5361 sel_create_basic_block (void *headp, void *endp, basic_block after)
5363 basic_block new_bb;
5364 rtx_note *new_bb_note;
5366 gcc_assert (flag_sel_sched_pipelining_outer_loops
5367 || !last_added_blocks.exists ());
5369 new_bb_note = get_bb_note_from_pool ();
5371 if (new_bb_note == NULL_RTX)
5372 new_bb = orig_cfg_hooks.create_basic_block (headp, endp, after);
5373 else
5375 new_bb = create_basic_block_structure ((rtx_insn *) headp,
5376 (rtx_insn *) endp,
5377 new_bb_note, after);
5378 new_bb->aux = NULL;
5381 last_added_blocks.safe_push (new_bb);
5383 return new_bb;
5386 /* Implement sched_init_only_bb (). */
5387 static void
5388 sel_init_only_bb (basic_block bb, basic_block after)
5390 gcc_assert (after == NULL);
5392 extend_regions ();
5393 rgn_make_new_region_out_of_new_block (bb);
5396 /* Update the latch when we've splitted or merged it from FROM block to TO.
5397 This should be checked for all outer loops, too. */
5398 static void
5399 change_loops_latches (basic_block from, basic_block to)
5401 gcc_assert (from != to);
5403 if (current_loop_nest)
5405 struct loop *loop;
5407 for (loop = current_loop_nest; loop; loop = loop_outer (loop))
5408 if (considered_for_pipelining_p (loop) && loop->latch == from)
5410 gcc_assert (loop == current_loop_nest);
5411 loop->latch = to;
5412 gcc_assert (loop_latch_edge (loop));
5417 /* Splits BB on two basic blocks, adding it to the region and extending
5418 per-bb data structures. Returns the newly created bb. */
5419 static basic_block
5420 sel_split_block (basic_block bb, rtx after)
5422 basic_block new_bb;
5423 insn_t insn;
5425 new_bb = sched_split_block_1 (bb, after);
5426 sel_add_bb (new_bb);
5428 /* This should be called after sel_add_bb, because this uses
5429 CONTAINING_RGN for the new block, which is not yet initialized.
5430 FIXME: this function may be a no-op now. */
5431 change_loops_latches (bb, new_bb);
5433 /* Update ORIG_BB_INDEX for insns moved into the new block. */
5434 FOR_BB_INSNS (new_bb, insn)
5435 if (INSN_P (insn))
5436 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
5438 if (sel_bb_empty_p (bb))
5440 gcc_assert (!sel_bb_empty_p (new_bb));
5442 /* NEW_BB has data sets that need to be updated and BB holds
5443 data sets that should be removed. Exchange these data sets
5444 so that we won't lose BB's valid data sets. */
5445 exchange_data_sets (new_bb, bb);
5446 free_data_sets (bb);
5449 if (!sel_bb_empty_p (new_bb)
5450 && bitmap_bit_p (blocks_to_reschedule, bb->index))
5451 bitmap_set_bit (blocks_to_reschedule, new_bb->index);
5453 return new_bb;
5456 /* If BB ends with a jump insn whose ID is bigger then PREV_MAX_UID, return it.
5457 Otherwise returns NULL. */
5458 static rtx_insn *
5459 check_for_new_jump (basic_block bb, int prev_max_uid)
5461 rtx_insn *end;
5463 end = sel_bb_end (bb);
5464 if (end && INSN_UID (end) >= prev_max_uid)
5465 return end;
5466 return NULL;
5469 /* Look for a new jump either in FROM_BB block or in newly created JUMP_BB block.
5470 New means having UID at least equal to PREV_MAX_UID. */
5471 static rtx_insn *
5472 find_new_jump (basic_block from, basic_block jump_bb, int prev_max_uid)
5474 rtx_insn *jump;
5476 /* Return immediately if no new insns were emitted. */
5477 if (get_max_uid () == prev_max_uid)
5478 return NULL;
5480 /* Now check both blocks for new jumps. It will ever be only one. */
5481 if ((jump = check_for_new_jump (from, prev_max_uid)))
5482 return jump;
5484 if (jump_bb != NULL
5485 && (jump = check_for_new_jump (jump_bb, prev_max_uid)))
5486 return jump;
5487 return NULL;
5490 /* Splits E and adds the newly created basic block to the current region.
5491 Returns this basic block. */
5492 basic_block
5493 sel_split_edge (edge e)
5495 basic_block new_bb, src, other_bb = NULL;
5496 int prev_max_uid;
5497 rtx_insn *jump;
5499 src = e->src;
5500 prev_max_uid = get_max_uid ();
5501 new_bb = split_edge (e);
5503 if (flag_sel_sched_pipelining_outer_loops
5504 && current_loop_nest)
5506 int i;
5507 basic_block bb;
5509 /* Some of the basic blocks might not have been added to the loop.
5510 Add them here, until this is fixed in force_fallthru. */
5511 for (i = 0;
5512 last_added_blocks.iterate (i, &bb); i++)
5513 if (!bb->loop_father)
5515 add_bb_to_loop (bb, e->dest->loop_father);
5517 gcc_assert (!other_bb && (new_bb->index != bb->index));
5518 other_bb = bb;
5522 /* Add all last_added_blocks to the region. */
5523 sel_add_bb (NULL);
5525 jump = find_new_jump (src, new_bb, prev_max_uid);
5526 if (jump)
5527 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5529 /* Put the correct lv set on this block. */
5530 if (other_bb && !sel_bb_empty_p (other_bb))
5531 compute_live (sel_bb_head (other_bb));
5533 return new_bb;
5536 /* Implement sched_create_empty_bb (). */
5537 static basic_block
5538 sel_create_empty_bb (basic_block after)
5540 basic_block new_bb;
5542 new_bb = sched_create_empty_bb_1 (after);
5544 /* We'll explicitly initialize NEW_BB via sel_init_only_bb () a bit
5545 later. */
5546 gcc_assert (last_added_blocks.length () == 1
5547 && last_added_blocks[0] == new_bb);
5549 last_added_blocks.release ();
5550 return new_bb;
5553 /* Implement sched_create_recovery_block. ORIG_INSN is where block
5554 will be splitted to insert a check. */
5555 basic_block
5556 sel_create_recovery_block (insn_t orig_insn)
5558 basic_block first_bb, second_bb, recovery_block;
5559 basic_block before_recovery = NULL;
5560 rtx_insn *jump;
5562 first_bb = BLOCK_FOR_INSN (orig_insn);
5563 if (sel_bb_end_p (orig_insn))
5565 /* Avoid introducing an empty block while splitting. */
5566 gcc_assert (single_succ_p (first_bb));
5567 second_bb = single_succ (first_bb);
5569 else
5570 second_bb = sched_split_block (first_bb, orig_insn);
5572 recovery_block = sched_create_recovery_block (&before_recovery);
5573 if (before_recovery)
5574 copy_lv_set_from (before_recovery, EXIT_BLOCK_PTR_FOR_FN (cfun));
5576 gcc_assert (sel_bb_empty_p (recovery_block));
5577 sched_create_recovery_edges (first_bb, recovery_block, second_bb);
5578 if (current_loops != NULL)
5579 add_bb_to_loop (recovery_block, first_bb->loop_father);
5581 sel_add_bb (recovery_block);
5583 jump = BB_END (recovery_block);
5584 gcc_assert (sel_bb_head (recovery_block) == jump);
5585 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5587 return recovery_block;
5590 /* Merge basic block B into basic block A. */
5591 static void
5592 sel_merge_blocks (basic_block a, basic_block b)
5594 gcc_assert (sel_bb_empty_p (b)
5595 && EDGE_COUNT (b->preds) == 1
5596 && EDGE_PRED (b, 0)->src == b->prev_bb);
5598 move_bb_info (b->prev_bb, b);
5599 remove_empty_bb (b, false);
5600 merge_blocks (a, b);
5601 change_loops_latches (b, a);
5604 /* A wrapper for redirect_edge_and_branch_force, which also initializes
5605 data structures for possibly created bb and insns. */
5606 void
5607 sel_redirect_edge_and_branch_force (edge e, basic_block to)
5609 basic_block jump_bb, src, orig_dest = e->dest;
5610 int prev_max_uid;
5611 rtx_insn *jump;
5612 int old_seqno = -1;
5614 /* This function is now used only for bookkeeping code creation, where
5615 we'll never get the single pred of orig_dest block and thus will not
5616 hit unreachable blocks when updating dominator info. */
5617 gcc_assert (!sel_bb_empty_p (e->src)
5618 && !single_pred_p (orig_dest));
5619 src = e->src;
5620 prev_max_uid = get_max_uid ();
5621 /* Compute and pass old_seqno down to sel_init_new_insn only for the case
5622 when the conditional jump being redirected may become unconditional. */
5623 if (any_condjump_p (BB_END (src))
5624 && INSN_SEQNO (BB_END (src)) >= 0)
5625 old_seqno = INSN_SEQNO (BB_END (src));
5627 jump_bb = redirect_edge_and_branch_force (e, to);
5628 if (jump_bb != NULL)
5629 sel_add_bb (jump_bb);
5631 /* This function could not be used to spoil the loop structure by now,
5632 thus we don't care to update anything. But check it to be sure. */
5633 if (current_loop_nest
5634 && pipelining_p)
5635 gcc_assert (loop_latch_edge (current_loop_nest));
5637 jump = find_new_jump (src, jump_bb, prev_max_uid);
5638 if (jump)
5639 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP,
5640 old_seqno);
5641 set_immediate_dominator (CDI_DOMINATORS, to,
5642 recompute_dominator (CDI_DOMINATORS, to));
5643 set_immediate_dominator (CDI_DOMINATORS, orig_dest,
5644 recompute_dominator (CDI_DOMINATORS, orig_dest));
5647 /* A wrapper for redirect_edge_and_branch. Return TRUE if blocks connected by
5648 redirected edge are in reverse topological order. */
5649 bool
5650 sel_redirect_edge_and_branch (edge e, basic_block to)
5652 bool latch_edge_p;
5653 basic_block src, orig_dest = e->dest;
5654 int prev_max_uid;
5655 rtx_insn *jump;
5656 edge redirected;
5657 bool recompute_toporder_p = false;
5658 bool maybe_unreachable = single_pred_p (orig_dest);
5659 int old_seqno = -1;
5661 latch_edge_p = (pipelining_p
5662 && current_loop_nest
5663 && e == loop_latch_edge (current_loop_nest));
5665 src = e->src;
5666 prev_max_uid = get_max_uid ();
5668 /* Compute and pass old_seqno down to sel_init_new_insn only for the case
5669 when the conditional jump being redirected may become unconditional. */
5670 if (any_condjump_p (BB_END (src))
5671 && INSN_SEQNO (BB_END (src)) >= 0)
5672 old_seqno = INSN_SEQNO (BB_END (src));
5674 redirected = redirect_edge_and_branch (e, to);
5676 gcc_assert (redirected && !last_added_blocks.exists ());
5678 /* When we've redirected a latch edge, update the header. */
5679 if (latch_edge_p)
5681 current_loop_nest->header = to;
5682 gcc_assert (loop_latch_edge (current_loop_nest));
5685 /* In rare situations, the topological relation between the blocks connected
5686 by the redirected edge can change (see PR42245 for an example). Update
5687 block_to_bb/bb_to_block. */
5688 if (CONTAINING_RGN (e->src->index) == CONTAINING_RGN (to->index)
5689 && BLOCK_TO_BB (e->src->index) > BLOCK_TO_BB (to->index))
5690 recompute_toporder_p = true;
5692 jump = find_new_jump (src, NULL, prev_max_uid);
5693 if (jump)
5694 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP, old_seqno);
5696 /* Only update dominator info when we don't have unreachable blocks.
5697 Otherwise we'll update in maybe_tidy_empty_bb. */
5698 if (!maybe_unreachable)
5700 set_immediate_dominator (CDI_DOMINATORS, to,
5701 recompute_dominator (CDI_DOMINATORS, to));
5702 set_immediate_dominator (CDI_DOMINATORS, orig_dest,
5703 recompute_dominator (CDI_DOMINATORS, orig_dest));
5705 return recompute_toporder_p;
5708 /* This variable holds the cfg hooks used by the selective scheduler. */
5709 static struct cfg_hooks sel_cfg_hooks;
5711 /* Register sel-sched cfg hooks. */
5712 void
5713 sel_register_cfg_hooks (void)
5715 sched_split_block = sel_split_block;
5717 orig_cfg_hooks = get_cfg_hooks ();
5718 sel_cfg_hooks = orig_cfg_hooks;
5720 sel_cfg_hooks.create_basic_block = sel_create_basic_block;
5722 set_cfg_hooks (sel_cfg_hooks);
5724 sched_init_only_bb = sel_init_only_bb;
5725 sched_split_block = sel_split_block;
5726 sched_create_empty_bb = sel_create_empty_bb;
5729 /* Unregister sel-sched cfg hooks. */
5730 void
5731 sel_unregister_cfg_hooks (void)
5733 sched_create_empty_bb = NULL;
5734 sched_split_block = NULL;
5735 sched_init_only_bb = NULL;
5737 set_cfg_hooks (orig_cfg_hooks);
5741 /* Emit an insn rtx based on PATTERN. If a jump insn is wanted,
5742 LABEL is where this jump should be directed. */
5743 rtx_insn *
5744 create_insn_rtx_from_pattern (rtx pattern, rtx label)
5746 rtx_insn *insn_rtx;
5748 gcc_assert (!INSN_P (pattern));
5750 start_sequence ();
5752 if (label == NULL_RTX)
5753 insn_rtx = emit_insn (pattern);
5754 else if (DEBUG_INSN_P (label))
5755 insn_rtx = emit_debug_insn (pattern);
5756 else
5758 insn_rtx = emit_jump_insn (pattern);
5759 JUMP_LABEL (insn_rtx) = label;
5760 ++LABEL_NUSES (label);
5763 end_sequence ();
5765 sched_extend_luids ();
5766 sched_extend_target ();
5767 sched_deps_init (false);
5769 /* Initialize INSN_CODE now. */
5770 recog_memoized (insn_rtx);
5771 return insn_rtx;
5774 /* Create a new vinsn for INSN_RTX. FORCE_UNIQUE_P is true when the vinsn
5775 must not be clonable. */
5776 vinsn_t
5777 create_vinsn_from_insn_rtx (rtx_insn *insn_rtx, bool force_unique_p)
5779 gcc_assert (INSN_P (insn_rtx) && !INSN_IN_STREAM_P (insn_rtx));
5781 /* If VINSN_TYPE is not USE, retain its uniqueness. */
5782 return vinsn_create (insn_rtx, force_unique_p);
5785 /* Create a copy of INSN_RTX. */
5786 rtx_insn *
5787 create_copy_of_insn_rtx (rtx insn_rtx)
5789 rtx_insn *res;
5790 rtx link;
5792 if (DEBUG_INSN_P (insn_rtx))
5793 return create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5794 insn_rtx);
5796 gcc_assert (NONJUMP_INSN_P (insn_rtx));
5798 res = create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5799 NULL_RTX);
5801 /* Copy all REG_NOTES except REG_EQUAL/REG_EQUIV and REG_LABEL_OPERAND
5802 since mark_jump_label will make them. REG_LABEL_TARGETs are created
5803 there too, but are supposed to be sticky, so we copy them. */
5804 for (link = REG_NOTES (insn_rtx); link; link = XEXP (link, 1))
5805 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND
5806 && REG_NOTE_KIND (link) != REG_EQUAL
5807 && REG_NOTE_KIND (link) != REG_EQUIV)
5809 if (GET_CODE (link) == EXPR_LIST)
5810 add_reg_note (res, REG_NOTE_KIND (link),
5811 copy_insn_1 (XEXP (link, 0)));
5812 else
5813 add_reg_note (res, REG_NOTE_KIND (link), XEXP (link, 0));
5816 return res;
5819 /* Change vinsn field of EXPR to hold NEW_VINSN. */
5820 void
5821 change_vinsn_in_expr (expr_t expr, vinsn_t new_vinsn)
5823 vinsn_detach (EXPR_VINSN (expr));
5825 EXPR_VINSN (expr) = new_vinsn;
5826 vinsn_attach (new_vinsn);
5829 /* Helpers for global init. */
5830 /* This structure is used to be able to call existing bundling mechanism
5831 and calculate insn priorities. */
5832 static struct haifa_sched_info sched_sel_haifa_sched_info =
5834 NULL, /* init_ready_list */
5835 NULL, /* can_schedule_ready_p */
5836 NULL, /* schedule_more_p */
5837 NULL, /* new_ready */
5838 NULL, /* rgn_rank */
5839 sel_print_insn, /* rgn_print_insn */
5840 contributes_to_priority,
5841 NULL, /* insn_finishes_block_p */
5843 NULL, NULL,
5844 NULL, NULL,
5845 0, 0,
5847 NULL, /* add_remove_insn */
5848 NULL, /* begin_schedule_ready */
5849 NULL, /* begin_move_insn */
5850 NULL, /* advance_target_bb */
5852 NULL,
5853 NULL,
5855 SEL_SCHED | NEW_BBS
5858 /* Setup special insns used in the scheduler. */
5859 void
5860 setup_nop_and_exit_insns (void)
5862 gcc_assert (nop_pattern == NULL_RTX
5863 && exit_insn == NULL_RTX);
5865 nop_pattern = constm1_rtx;
5867 start_sequence ();
5868 emit_insn (nop_pattern);
5869 exit_insn = get_insns ();
5870 end_sequence ();
5871 set_block_for_insn (exit_insn, EXIT_BLOCK_PTR_FOR_FN (cfun));
5874 /* Free special insns used in the scheduler. */
5875 void
5876 free_nop_and_exit_insns (void)
5878 exit_insn = NULL;
5879 nop_pattern = NULL_RTX;
5882 /* Setup a special vinsn used in new insns initialization. */
5883 void
5884 setup_nop_vinsn (void)
5886 nop_vinsn = vinsn_create (exit_insn, false);
5887 vinsn_attach (nop_vinsn);
5890 /* Free a special vinsn used in new insns initialization. */
5891 void
5892 free_nop_vinsn (void)
5894 gcc_assert (VINSN_COUNT (nop_vinsn) == 1);
5895 vinsn_detach (nop_vinsn);
5896 nop_vinsn = NULL;
5899 /* Call a set_sched_flags hook. */
5900 void
5901 sel_set_sched_flags (void)
5903 /* ??? This means that set_sched_flags were called, and we decided to
5904 support speculation. However, set_sched_flags also modifies flags
5905 on current_sched_info, doing this only at global init. And we
5906 sometimes change c_s_i later. So put the correct flags again. */
5907 if (spec_info && targetm.sched.set_sched_flags)
5908 targetm.sched.set_sched_flags (spec_info);
5911 /* Setup pointers to global sched info structures. */
5912 void
5913 sel_setup_sched_infos (void)
5915 rgn_setup_common_sched_info ();
5917 memcpy (&sel_common_sched_info, common_sched_info,
5918 sizeof (sel_common_sched_info));
5920 sel_common_sched_info.fix_recovery_cfg = NULL;
5921 sel_common_sched_info.add_block = NULL;
5922 sel_common_sched_info.estimate_number_of_insns
5923 = sel_estimate_number_of_insns;
5924 sel_common_sched_info.luid_for_non_insn = sel_luid_for_non_insn;
5925 sel_common_sched_info.sched_pass_id = SCHED_SEL_PASS;
5927 common_sched_info = &sel_common_sched_info;
5929 current_sched_info = &sched_sel_haifa_sched_info;
5930 current_sched_info->sched_max_insns_priority =
5931 get_rgn_sched_max_insns_priority ();
5933 sel_set_sched_flags ();
5937 /* Adds basic block BB to region RGN at the position *BB_ORD_INDEX,
5938 *BB_ORD_INDEX after that is increased. */
5939 static void
5940 sel_add_block_to_region (basic_block bb, int *bb_ord_index, int rgn)
5942 RGN_NR_BLOCKS (rgn) += 1;
5943 RGN_DONT_CALC_DEPS (rgn) = 0;
5944 RGN_HAS_REAL_EBB (rgn) = 0;
5945 CONTAINING_RGN (bb->index) = rgn;
5946 BLOCK_TO_BB (bb->index) = *bb_ord_index;
5947 rgn_bb_table[RGN_BLOCKS (rgn) + *bb_ord_index] = bb->index;
5948 (*bb_ord_index)++;
5950 /* FIXME: it is true only when not scheduling ebbs. */
5951 RGN_BLOCKS (rgn + 1) = RGN_BLOCKS (rgn) + RGN_NR_BLOCKS (rgn);
5954 /* Functions to support pipelining of outer loops. */
5956 /* Creates a new empty region and returns it's number. */
5957 static int
5958 sel_create_new_region (void)
5960 int new_rgn_number = nr_regions;
5962 RGN_NR_BLOCKS (new_rgn_number) = 0;
5964 /* FIXME: This will work only when EBBs are not created. */
5965 if (new_rgn_number != 0)
5966 RGN_BLOCKS (new_rgn_number) = RGN_BLOCKS (new_rgn_number - 1) +
5967 RGN_NR_BLOCKS (new_rgn_number - 1);
5968 else
5969 RGN_BLOCKS (new_rgn_number) = 0;
5971 /* Set the blocks of the next region so the other functions may
5972 calculate the number of blocks in the region. */
5973 RGN_BLOCKS (new_rgn_number + 1) = RGN_BLOCKS (new_rgn_number) +
5974 RGN_NR_BLOCKS (new_rgn_number);
5976 nr_regions++;
5978 return new_rgn_number;
5981 /* If X has a smaller topological sort number than Y, returns -1;
5982 if greater, returns 1. */
5983 static int
5984 bb_top_order_comparator (const void *x, const void *y)
5986 basic_block bb1 = *(const basic_block *) x;
5987 basic_block bb2 = *(const basic_block *) y;
5989 gcc_assert (bb1 == bb2
5990 || rev_top_order_index[bb1->index]
5991 != rev_top_order_index[bb2->index]);
5993 /* It's a reverse topological order in REV_TOP_ORDER_INDEX, so
5994 bbs with greater number should go earlier. */
5995 if (rev_top_order_index[bb1->index] > rev_top_order_index[bb2->index])
5996 return -1;
5997 else
5998 return 1;
6001 /* Create a region for LOOP and return its number. If we don't want
6002 to pipeline LOOP, return -1. */
6003 static int
6004 make_region_from_loop (struct loop *loop)
6006 unsigned int i;
6007 int new_rgn_number = -1;
6008 struct loop *inner;
6010 /* Basic block index, to be assigned to BLOCK_TO_BB. */
6011 int bb_ord_index = 0;
6012 basic_block *loop_blocks;
6013 basic_block preheader_block;
6015 if (loop->num_nodes
6016 > (unsigned) PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_BLOCKS))
6017 return -1;
6019 /* Don't pipeline loops whose latch belongs to some of its inner loops. */
6020 for (inner = loop->inner; inner; inner = inner->inner)
6021 if (flow_bb_inside_loop_p (inner, loop->latch))
6022 return -1;
6024 loop->ninsns = num_loop_insns (loop);
6025 if ((int) loop->ninsns > PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_INSNS))
6026 return -1;
6028 loop_blocks = get_loop_body_in_custom_order (loop, bb_top_order_comparator);
6030 for (i = 0; i < loop->num_nodes; i++)
6031 if (loop_blocks[i]->flags & BB_IRREDUCIBLE_LOOP)
6033 free (loop_blocks);
6034 return -1;
6037 preheader_block = loop_preheader_edge (loop)->src;
6038 gcc_assert (preheader_block);
6039 gcc_assert (loop_blocks[0] == loop->header);
6041 new_rgn_number = sel_create_new_region ();
6043 sel_add_block_to_region (preheader_block, &bb_ord_index, new_rgn_number);
6044 bitmap_set_bit (bbs_in_loop_rgns, preheader_block->index);
6046 for (i = 0; i < loop->num_nodes; i++)
6048 /* Add only those blocks that haven't been scheduled in the inner loop.
6049 The exception is the basic blocks with bookkeeping code - they should
6050 be added to the region (and they actually don't belong to the loop
6051 body, but to the region containing that loop body). */
6053 gcc_assert (new_rgn_number >= 0);
6055 if (! bitmap_bit_p (bbs_in_loop_rgns, loop_blocks[i]->index))
6057 sel_add_block_to_region (loop_blocks[i], &bb_ord_index,
6058 new_rgn_number);
6059 bitmap_set_bit (bbs_in_loop_rgns, loop_blocks[i]->index);
6063 free (loop_blocks);
6064 MARK_LOOP_FOR_PIPELINING (loop);
6066 return new_rgn_number;
6069 /* Create a new region from preheader blocks LOOP_BLOCKS. */
6070 void
6071 make_region_from_loop_preheader (vec<basic_block> *&loop_blocks)
6073 unsigned int i;
6074 int new_rgn_number = -1;
6075 basic_block bb;
6077 /* Basic block index, to be assigned to BLOCK_TO_BB. */
6078 int bb_ord_index = 0;
6080 new_rgn_number = sel_create_new_region ();
6082 FOR_EACH_VEC_ELT (*loop_blocks, i, bb)
6084 gcc_assert (new_rgn_number >= 0);
6086 sel_add_block_to_region (bb, &bb_ord_index, new_rgn_number);
6089 vec_free (loop_blocks);
6093 /* Create region(s) from loop nest LOOP, such that inner loops will be
6094 pipelined before outer loops. Returns true when a region for LOOP
6095 is created. */
6096 static bool
6097 make_regions_from_loop_nest (struct loop *loop)
6099 struct loop *cur_loop;
6100 int rgn_number;
6102 /* Traverse all inner nodes of the loop. */
6103 for (cur_loop = loop->inner; cur_loop; cur_loop = cur_loop->next)
6104 if (! bitmap_bit_p (bbs_in_loop_rgns, cur_loop->header->index))
6105 return false;
6107 /* At this moment all regular inner loops should have been pipelined.
6108 Try to create a region from this loop. */
6109 rgn_number = make_region_from_loop (loop);
6111 if (rgn_number < 0)
6112 return false;
6114 loop_nests.safe_push (loop);
6115 return true;
6118 /* Initalize data structures needed. */
6119 void
6120 sel_init_pipelining (void)
6122 /* Collect loop information to be used in outer loops pipelining. */
6123 loop_optimizer_init (LOOPS_HAVE_PREHEADERS
6124 | LOOPS_HAVE_FALLTHRU_PREHEADERS
6125 | LOOPS_HAVE_RECORDED_EXITS
6126 | LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS);
6127 current_loop_nest = NULL;
6129 bbs_in_loop_rgns = sbitmap_alloc (last_basic_block_for_fn (cfun));
6130 bitmap_clear (bbs_in_loop_rgns);
6132 recompute_rev_top_order ();
6135 /* Returns a struct loop for region RGN. */
6136 loop_p
6137 get_loop_nest_for_rgn (unsigned int rgn)
6139 /* Regions created with extend_rgns don't have corresponding loop nests,
6140 because they don't represent loops. */
6141 if (rgn < loop_nests.length ())
6142 return loop_nests[rgn];
6143 else
6144 return NULL;
6147 /* True when LOOP was included into pipelining regions. */
6148 bool
6149 considered_for_pipelining_p (struct loop *loop)
6151 if (loop_depth (loop) == 0)
6152 return false;
6154 /* Now, the loop could be too large or irreducible. Check whether its
6155 region is in LOOP_NESTS.
6156 We determine the region number of LOOP as the region number of its
6157 latch. We can't use header here, because this header could be
6158 just removed preheader and it will give us the wrong region number.
6159 Latch can't be used because it could be in the inner loop too. */
6160 if (LOOP_MARKED_FOR_PIPELINING_P (loop))
6162 int rgn = CONTAINING_RGN (loop->latch->index);
6164 gcc_assert ((unsigned) rgn < loop_nests.length ());
6165 return true;
6168 return false;
6171 /* Makes regions from the rest of the blocks, after loops are chosen
6172 for pipelining. */
6173 static void
6174 make_regions_from_the_rest (void)
6176 int cur_rgn_blocks;
6177 int *loop_hdr;
6178 int i;
6180 basic_block bb;
6181 edge e;
6182 edge_iterator ei;
6183 int *degree;
6185 /* Index in rgn_bb_table where to start allocating new regions. */
6186 cur_rgn_blocks = nr_regions ? RGN_BLOCKS (nr_regions) : 0;
6188 /* Make regions from all the rest basic blocks - those that don't belong to
6189 any loop or belong to irreducible loops. Prepare the data structures
6190 for extend_rgns. */
6192 /* LOOP_HDR[I] == -1 if I-th bb doesn't belong to any loop,
6193 LOOP_HDR[I] == LOOP_HDR[J] iff basic blocks I and J reside within the same
6194 loop. */
6195 loop_hdr = XNEWVEC (int, last_basic_block_for_fn (cfun));
6196 degree = XCNEWVEC (int, last_basic_block_for_fn (cfun));
6199 /* For each basic block that belongs to some loop assign the number
6200 of innermost loop it belongs to. */
6201 for (i = 0; i < last_basic_block_for_fn (cfun); i++)
6202 loop_hdr[i] = -1;
6204 FOR_EACH_BB_FN (bb, cfun)
6206 if (bb->loop_father && bb->loop_father->num != 0
6207 && !(bb->flags & BB_IRREDUCIBLE_LOOP))
6208 loop_hdr[bb->index] = bb->loop_father->num;
6211 /* For each basic block degree is calculated as the number of incoming
6212 edges, that are going out of bbs that are not yet scheduled.
6213 The basic blocks that are scheduled have degree value of zero. */
6214 FOR_EACH_BB_FN (bb, cfun)
6216 degree[bb->index] = 0;
6218 if (!bitmap_bit_p (bbs_in_loop_rgns, bb->index))
6220 FOR_EACH_EDGE (e, ei, bb->preds)
6221 if (!bitmap_bit_p (bbs_in_loop_rgns, e->src->index))
6222 degree[bb->index]++;
6224 else
6225 degree[bb->index] = -1;
6228 extend_rgns (degree, &cur_rgn_blocks, bbs_in_loop_rgns, loop_hdr);
6230 /* Any block that did not end up in a region is placed into a region
6231 by itself. */
6232 FOR_EACH_BB_FN (bb, cfun)
6233 if (degree[bb->index] >= 0)
6235 rgn_bb_table[cur_rgn_blocks] = bb->index;
6236 RGN_NR_BLOCKS (nr_regions) = 1;
6237 RGN_BLOCKS (nr_regions) = cur_rgn_blocks++;
6238 RGN_DONT_CALC_DEPS (nr_regions) = 0;
6239 RGN_HAS_REAL_EBB (nr_regions) = 0;
6240 CONTAINING_RGN (bb->index) = nr_regions++;
6241 BLOCK_TO_BB (bb->index) = 0;
6244 free (degree);
6245 free (loop_hdr);
6248 /* Free data structures used in pipelining of loops. */
6249 void sel_finish_pipelining (void)
6251 struct loop *loop;
6253 /* Release aux fields so we don't free them later by mistake. */
6254 FOR_EACH_LOOP (loop, 0)
6255 loop->aux = NULL;
6257 loop_optimizer_finalize ();
6259 loop_nests.release ();
6261 free (rev_top_order_index);
6262 rev_top_order_index = NULL;
6265 /* This function replaces the find_rgns when
6266 FLAG_SEL_SCHED_PIPELINING_OUTER_LOOPS is set. */
6267 void
6268 sel_find_rgns (void)
6270 sel_init_pipelining ();
6271 extend_regions ();
6273 if (current_loops)
6275 loop_p loop;
6277 FOR_EACH_LOOP (loop, (flag_sel_sched_pipelining_outer_loops
6278 ? LI_FROM_INNERMOST
6279 : LI_ONLY_INNERMOST))
6280 make_regions_from_loop_nest (loop);
6283 /* Make regions from all the rest basic blocks and schedule them.
6284 These blocks include blocks that don't belong to any loop or belong
6285 to irreducible loops. */
6286 make_regions_from_the_rest ();
6288 /* We don't need bbs_in_loop_rgns anymore. */
6289 sbitmap_free (bbs_in_loop_rgns);
6290 bbs_in_loop_rgns = NULL;
6293 /* Add the preheader blocks from previous loop to current region taking
6294 it from LOOP_PREHEADER_BLOCKS (current_loop_nest) and record them in *BBS.
6295 This function is only used with -fsel-sched-pipelining-outer-loops. */
6296 void
6297 sel_add_loop_preheaders (bb_vec_t *bbs)
6299 int i;
6300 basic_block bb;
6301 vec<basic_block> *preheader_blocks
6302 = LOOP_PREHEADER_BLOCKS (current_loop_nest);
6304 if (!preheader_blocks)
6305 return;
6307 for (i = 0; preheader_blocks->iterate (i, &bb); i++)
6309 bbs->safe_push (bb);
6310 last_added_blocks.safe_push (bb);
6311 sel_add_bb (bb);
6314 vec_free (preheader_blocks);
6317 /* While pipelining outer loops, returns TRUE if BB is a loop preheader.
6318 Please note that the function should also work when pipelining_p is
6319 false, because it is used when deciding whether we should or should
6320 not reschedule pipelined code. */
6321 bool
6322 sel_is_loop_preheader_p (basic_block bb)
6324 if (current_loop_nest)
6326 struct loop *outer;
6328 if (preheader_removed)
6329 return false;
6331 /* Preheader is the first block in the region. */
6332 if (BLOCK_TO_BB (bb->index) == 0)
6333 return true;
6335 /* We used to find a preheader with the topological information.
6336 Check that the above code is equivalent to what we did before. */
6338 if (in_current_region_p (current_loop_nest->header))
6339 gcc_assert (!(BLOCK_TO_BB (bb->index)
6340 < BLOCK_TO_BB (current_loop_nest->header->index)));
6342 /* Support the situation when the latch block of outer loop
6343 could be from here. */
6344 for (outer = loop_outer (current_loop_nest);
6345 outer;
6346 outer = loop_outer (outer))
6347 if (considered_for_pipelining_p (outer) && outer->latch == bb)
6348 gcc_unreachable ();
6351 return false;
6354 /* Check whether JUMP_BB ends with a jump insn that leads only to DEST_BB and
6355 can be removed, making the corresponding edge fallthrough (assuming that
6356 all basic blocks between JUMP_BB and DEST_BB are empty). */
6357 static bool
6358 bb_has_removable_jump_to_p (basic_block jump_bb, basic_block dest_bb)
6360 if (!onlyjump_p (BB_END (jump_bb))
6361 || tablejump_p (BB_END (jump_bb), NULL, NULL))
6362 return false;
6364 /* Several outgoing edges, abnormal edge or destination of jump is
6365 not DEST_BB. */
6366 if (EDGE_COUNT (jump_bb->succs) != 1
6367 || EDGE_SUCC (jump_bb, 0)->flags & (EDGE_ABNORMAL | EDGE_CROSSING)
6368 || EDGE_SUCC (jump_bb, 0)->dest != dest_bb)
6369 return false;
6371 /* If not anything of the upper. */
6372 return true;
6375 /* Removes the loop preheader from the current region and saves it in
6376 PREHEADER_BLOCKS of the father loop, so they will be added later to
6377 region that represents an outer loop. */
6378 static void
6379 sel_remove_loop_preheader (void)
6381 int i, old_len;
6382 int cur_rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
6383 basic_block bb;
6384 bool all_empty_p = true;
6385 vec<basic_block> *preheader_blocks
6386 = LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest));
6388 vec_check_alloc (preheader_blocks, 0);
6390 gcc_assert (current_loop_nest);
6391 old_len = preheader_blocks->length ();
6393 /* Add blocks that aren't within the current loop to PREHEADER_BLOCKS. */
6394 for (i = 0; i < RGN_NR_BLOCKS (cur_rgn); i++)
6396 bb = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i));
6398 /* If the basic block belongs to region, but doesn't belong to
6399 corresponding loop, then it should be a preheader. */
6400 if (sel_is_loop_preheader_p (bb))
6402 preheader_blocks->safe_push (bb);
6403 if (BB_END (bb) != bb_note (bb))
6404 all_empty_p = false;
6408 /* Remove these blocks only after iterating over the whole region. */
6409 for (i = preheader_blocks->length () - 1; i >= old_len; i--)
6411 bb = (*preheader_blocks)[i];
6412 sel_remove_bb (bb, false);
6415 if (!considered_for_pipelining_p (loop_outer (current_loop_nest)))
6417 if (!all_empty_p)
6418 /* Immediately create new region from preheader. */
6419 make_region_from_loop_preheader (preheader_blocks);
6420 else
6422 /* If all preheader blocks are empty - dont create new empty region.
6423 Instead, remove them completely. */
6424 FOR_EACH_VEC_ELT (*preheader_blocks, i, bb)
6426 edge e;
6427 edge_iterator ei;
6428 basic_block prev_bb = bb->prev_bb, next_bb = bb->next_bb;
6430 /* Redirect all incoming edges to next basic block. */
6431 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
6433 if (! (e->flags & EDGE_FALLTHRU))
6434 redirect_edge_and_branch (e, bb->next_bb);
6435 else
6436 redirect_edge_succ (e, bb->next_bb);
6438 gcc_assert (BB_NOTE_LIST (bb) == NULL);
6439 delete_and_free_basic_block (bb);
6441 /* Check if after deleting preheader there is a nonconditional
6442 jump in PREV_BB that leads to the next basic block NEXT_BB.
6443 If it is so - delete this jump and clear data sets of its
6444 basic block if it becomes empty. */
6445 if (next_bb->prev_bb == prev_bb
6446 && prev_bb != ENTRY_BLOCK_PTR_FOR_FN (cfun)
6447 && bb_has_removable_jump_to_p (prev_bb, next_bb))
6449 redirect_edge_and_branch (EDGE_SUCC (prev_bb, 0), next_bb);
6450 if (BB_END (prev_bb) == bb_note (prev_bb))
6451 free_data_sets (prev_bb);
6454 set_immediate_dominator (CDI_DOMINATORS, next_bb,
6455 recompute_dominator (CDI_DOMINATORS,
6456 next_bb));
6459 vec_free (preheader_blocks);
6461 else
6462 /* Store preheader within the father's loop structure. */
6463 SET_LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest),
6464 preheader_blocks);
6467 #endif