1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987-2023 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file handles the generation of rtl code from tree structure
21 at the level of the function as a whole.
22 It creates the rtl expressions for parameters and auto variables
23 and has full responsibility for allocating stack slots.
25 `expand_function_start' is called at the beginning of a function,
26 before the function body is parsed, and `expand_function_end' is
27 called after parsing the body.
29 Call `assign_stack_local' to allocate a stack slot for a local variable.
30 This is usually done during the RTL generation for the function body,
31 but it can also be done in the reload pass when a pseudo-register does
32 not get a hard register. */
36 #include "coretypes.h"
41 #include "gimple-expr.h"
46 #include "stringpool.h"
53 #include "rtl-error.h"
54 #include "hard-reg-set.h"
56 #include "fold-const.h"
57 #include "stor-layout.h"
64 #include "optabs-tree.h"
66 #include "langhooks.h"
67 #include "common/common-target.h"
69 #include "tree-pass.h"
73 #include "cfgcleanup.h"
74 #include "cfgexpand.h"
75 #include "shrink-wrap.h"
80 #include "stringpool.h"
84 #include "function-abi.h"
85 #include "value-range.h"
86 #include "gimple-range.h"
88 /* So we can assign to cfun in this file. */
91 #ifndef STACK_ALIGNMENT_NEEDED
92 #define STACK_ALIGNMENT_NEEDED 1
95 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
97 /* Round a value to the lowest integer less than it that is a multiple of
98 the required alignment. Avoid using division in case the value is
99 negative. Assume the alignment is a power of two. */
100 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
102 /* Similar, but round to the next highest integer that meets the
104 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
106 /* Nonzero once virtual register instantiation has been done.
107 assign_stack_local uses frame_pointer_rtx when this is nonzero.
108 calls.cc:emit_library_call_value_1 uses it to set up
109 post-instantiation libcalls. */
110 int virtuals_instantiated
;
112 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
113 static GTY(()) int funcdef_no
;
115 /* These variables hold pointers to functions to create and destroy
116 target specific, per-function data structures. */
117 struct machine_function
* (*init_machine_status
) (void);
119 /* The currently compiled function. */
120 struct function
*cfun
= 0;
122 /* These hashes record the prologue and epilogue insns. */
124 struct insn_cache_hasher
: ggc_cache_ptr_hash
<rtx_def
>
126 static hashval_t
hash (rtx x
) { return htab_hash_pointer (x
); }
127 static bool equal (rtx a
, rtx b
) { return a
== b
; }
131 hash_table
<insn_cache_hasher
> *prologue_insn_hash
;
133 hash_table
<insn_cache_hasher
> *epilogue_insn_hash
;
136 hash_table
<used_type_hasher
> *types_used_by_vars_hash
= NULL
;
137 vec
<tree
, va_gc
> *types_used_by_cur_var_decl
;
139 /* Forward declarations. */
141 static class temp_slot
*find_temp_slot_from_address (rtx
);
142 static void pad_to_arg_alignment (struct args_size
*, int, struct args_size
*);
143 static void pad_below (struct args_size
*, machine_mode
, tree
);
144 static void reorder_blocks_1 (rtx_insn
*, tree
, vec
<tree
> *);
145 static int all_blocks (tree
, tree
*);
146 static tree
*get_block_vector (tree
, int *);
147 extern tree
debug_find_var_in_block_tree (tree
, tree
);
148 /* We always define `record_insns' even if it's not used so that we
149 can always export `prologue_epilogue_contains'. */
150 static void record_insns (rtx_insn
*, rtx
, hash_table
<insn_cache_hasher
> **)
152 static bool contains (const rtx_insn
*, hash_table
<insn_cache_hasher
> *);
153 static void prepare_function_start (void);
154 static void do_clobber_return_reg (rtx
, void *);
155 static void do_use_return_reg (rtx
, void *);
158 /* Stack of nested functions. */
159 /* Keep track of the cfun stack. */
161 static vec
<function
*> function_context_stack
;
163 /* Save the current context for compilation of a nested function.
164 This is called from language-specific code. */
167 push_function_context (void)
170 allocate_struct_function (NULL
, false);
172 function_context_stack
.safe_push (cfun
);
176 /* Restore the last saved context, at the end of a nested function.
177 This function is called from language-specific code. */
180 pop_function_context (void)
182 struct function
*p
= function_context_stack
.pop ();
184 current_function_decl
= p
->decl
;
186 /* Reset variables that have known state during rtx generation. */
187 virtuals_instantiated
= 0;
188 generating_concat_p
= 1;
191 /* Clear out all parts of the state in F that can safely be discarded
192 after the function has been parsed, but not compiled, to let
193 garbage collection reclaim the memory. */
196 free_after_parsing (struct function
*f
)
201 /* Clear out all parts of the state in F that can safely be discarded
202 after the function has been compiled, to let garbage collection
203 reclaim the memory. */
206 free_after_compilation (struct function
*f
)
208 prologue_insn_hash
= NULL
;
209 epilogue_insn_hash
= NULL
;
211 free (crtl
->emit
.regno_pointer_align
);
213 memset (crtl
, 0, sizeof (struct rtl_data
));
217 f
->curr_properties
&= ~PROP_cfg
;
219 regno_reg_rtx
= NULL
;
222 /* Return size needed for stack frame based on slots so far allocated.
223 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
224 the caller may have to do that. */
227 get_frame_size (void)
229 if (FRAME_GROWS_DOWNWARD
)
230 return -frame_offset
;
235 /* Issue an error message and return TRUE if frame OFFSET overflows in
236 the signed target pointer arithmetics for function FUNC. Otherwise
240 frame_offset_overflow (poly_int64 offset
, tree func
)
242 poly_uint64 size
= FRAME_GROWS_DOWNWARD
? -offset
: offset
;
243 unsigned HOST_WIDE_INT limit
244 = ((HOST_WIDE_INT_1U
<< (GET_MODE_BITSIZE (Pmode
) - 1))
245 /* Leave room for the fixed part of the frame. */
246 - 64 * UNITS_PER_WORD
);
248 if (!coeffs_in_range_p (size
, 0U, limit
))
250 unsigned HOST_WIDE_INT hwisize
;
251 if (size
.is_constant (&hwisize
))
252 error_at (DECL_SOURCE_LOCATION (func
),
253 "total size of local objects %wu exceeds maximum %wu",
256 error_at (DECL_SOURCE_LOCATION (func
),
257 "total size of local objects exceeds maximum %wu",
265 /* Return the minimum spill slot alignment for a register of mode MODE. */
268 spill_slot_alignment (machine_mode mode ATTRIBUTE_UNUSED
)
270 return STACK_SLOT_ALIGNMENT (NULL_TREE
, mode
, GET_MODE_ALIGNMENT (mode
));
273 /* Return stack slot alignment in bits for TYPE and MODE. */
276 get_stack_local_alignment (tree type
, machine_mode mode
)
278 unsigned int alignment
;
281 alignment
= BIGGEST_ALIGNMENT
;
283 alignment
= GET_MODE_ALIGNMENT (mode
);
285 /* Allow the frond-end to (possibly) increase the alignment of this
288 type
= lang_hooks
.types
.type_for_mode (mode
, 0);
290 return STACK_SLOT_ALIGNMENT (type
, mode
, alignment
);
293 /* Determine whether it is possible to fit a stack slot of size SIZE and
294 alignment ALIGNMENT into an area in the stack frame that starts at
295 frame offset START and has a length of LENGTH. If so, store the frame
296 offset to be used for the stack slot in *POFFSET and return true;
297 return false otherwise. This function will extend the frame size when
298 given a start/length pair that lies at the end of the frame. */
301 try_fit_stack_local (poly_int64 start
, poly_int64 length
,
302 poly_int64 size
, unsigned int alignment
,
303 poly_int64_pod
*poffset
)
305 poly_int64 this_frame_offset
;
306 int frame_off
, frame_alignment
, frame_phase
;
308 /* Calculate how many bytes the start of local variables is off from
310 frame_alignment
= PREFERRED_STACK_BOUNDARY
/ BITS_PER_UNIT
;
311 frame_off
= targetm
.starting_frame_offset () % frame_alignment
;
312 frame_phase
= frame_off
? frame_alignment
- frame_off
: 0;
314 /* Round the frame offset to the specified alignment. */
316 if (FRAME_GROWS_DOWNWARD
)
318 = (aligned_lower_bound (start
+ length
- size
- frame_phase
, alignment
)
322 = aligned_upper_bound (start
- frame_phase
, alignment
) + frame_phase
;
324 /* See if it fits. If this space is at the edge of the frame,
325 consider extending the frame to make it fit. Our caller relies on
326 this when allocating a new slot. */
327 if (maybe_lt (this_frame_offset
, start
))
329 if (known_eq (frame_offset
, start
))
330 frame_offset
= this_frame_offset
;
334 else if (maybe_gt (this_frame_offset
+ size
, start
+ length
))
336 if (known_eq (frame_offset
, start
+ length
))
337 frame_offset
= this_frame_offset
+ size
;
342 *poffset
= this_frame_offset
;
346 /* Create a new frame_space structure describing free space in the stack
347 frame beginning at START and ending at END, and chain it into the
348 function's frame_space_list. */
351 add_frame_space (poly_int64 start
, poly_int64 end
)
353 class frame_space
*space
= ggc_alloc
<frame_space
> ();
354 space
->next
= crtl
->frame_space_list
;
355 crtl
->frame_space_list
= space
;
356 space
->start
= start
;
357 space
->length
= end
- start
;
360 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
361 with machine mode MODE.
363 ALIGN controls the amount of alignment for the address of the slot:
364 0 means according to MODE,
365 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
366 -2 means use BITS_PER_UNIT,
367 positive specifies alignment boundary in bits.
369 KIND has ASLK_REDUCE_ALIGN bit set if it is OK to reduce
370 alignment and ASLK_RECORD_PAD bit set if we should remember
371 extra space we allocated for alignment purposes. When we are
372 called from assign_stack_temp_for_type, it is not set so we don't
373 track the same stack slot in two independent lists.
375 We do not round to stack_boundary here. */
378 assign_stack_local_1 (machine_mode mode
, poly_int64 size
,
382 poly_int64 bigend_correction
= 0;
383 poly_int64 slot_offset
= 0, old_frame_offset
;
384 unsigned int alignment
, alignment_in_bits
;
388 alignment
= get_stack_local_alignment (NULL
, mode
);
389 alignment
/= BITS_PER_UNIT
;
391 else if (align
== -1)
393 alignment
= BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
;
394 size
= aligned_upper_bound (size
, alignment
);
396 else if (align
== -2)
397 alignment
= 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
399 alignment
= align
/ BITS_PER_UNIT
;
401 alignment_in_bits
= alignment
* BITS_PER_UNIT
;
403 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
404 if (alignment_in_bits
> MAX_SUPPORTED_STACK_ALIGNMENT
)
406 alignment_in_bits
= MAX_SUPPORTED_STACK_ALIGNMENT
;
407 alignment
= MAX_SUPPORTED_STACK_ALIGNMENT
/ BITS_PER_UNIT
;
410 if (SUPPORTS_STACK_ALIGNMENT
)
412 if (crtl
->stack_alignment_estimated
< alignment_in_bits
)
414 if (!crtl
->stack_realign_processed
)
415 crtl
->stack_alignment_estimated
= alignment_in_bits
;
418 /* If stack is realigned and stack alignment value
419 hasn't been finalized, it is OK not to increase
420 stack_alignment_estimated. The bigger alignment
421 requirement is recorded in stack_alignment_needed
423 gcc_assert (!crtl
->stack_realign_finalized
);
424 if (!crtl
->stack_realign_needed
)
426 /* It is OK to reduce the alignment as long as the
427 requested size is 0 or the estimated stack
428 alignment >= mode alignment. */
429 gcc_assert ((kind
& ASLK_REDUCE_ALIGN
)
430 || known_eq (size
, 0)
431 || (crtl
->stack_alignment_estimated
432 >= GET_MODE_ALIGNMENT (mode
)));
433 alignment_in_bits
= crtl
->stack_alignment_estimated
;
434 alignment
= alignment_in_bits
/ BITS_PER_UNIT
;
440 if (crtl
->stack_alignment_needed
< alignment_in_bits
)
441 crtl
->stack_alignment_needed
= alignment_in_bits
;
442 if (crtl
->max_used_stack_slot_alignment
< alignment_in_bits
)
443 crtl
->max_used_stack_slot_alignment
= alignment_in_bits
;
445 if (mode
!= BLKmode
|| maybe_ne (size
, 0))
447 if (kind
& ASLK_RECORD_PAD
)
449 class frame_space
**psp
;
451 for (psp
= &crtl
->frame_space_list
; *psp
; psp
= &(*psp
)->next
)
453 class frame_space
*space
= *psp
;
454 if (!try_fit_stack_local (space
->start
, space
->length
, size
,
455 alignment
, &slot_offset
))
458 if (known_gt (slot_offset
, space
->start
))
459 add_frame_space (space
->start
, slot_offset
);
460 if (known_lt (slot_offset
+ size
, space
->start
+ space
->length
))
461 add_frame_space (slot_offset
+ size
,
462 space
->start
+ space
->length
);
467 else if (!STACK_ALIGNMENT_NEEDED
)
469 slot_offset
= frame_offset
;
473 old_frame_offset
= frame_offset
;
475 if (FRAME_GROWS_DOWNWARD
)
477 frame_offset
-= size
;
478 try_fit_stack_local (frame_offset
, size
, size
, alignment
, &slot_offset
);
480 if (kind
& ASLK_RECORD_PAD
)
482 if (known_gt (slot_offset
, frame_offset
))
483 add_frame_space (frame_offset
, slot_offset
);
484 if (known_lt (slot_offset
+ size
, old_frame_offset
))
485 add_frame_space (slot_offset
+ size
, old_frame_offset
);
490 frame_offset
+= size
;
491 try_fit_stack_local (old_frame_offset
, size
, size
, alignment
, &slot_offset
);
493 if (kind
& ASLK_RECORD_PAD
)
495 if (known_gt (slot_offset
, old_frame_offset
))
496 add_frame_space (old_frame_offset
, slot_offset
);
497 if (known_lt (slot_offset
+ size
, frame_offset
))
498 add_frame_space (slot_offset
+ size
, frame_offset
);
503 /* On a big-endian machine, if we are allocating more space than we will use,
504 use the least significant bytes of those that are allocated. */
507 /* The slot size can sometimes be smaller than the mode size;
508 e.g. the rs6000 port allocates slots with a vector mode
509 that have the size of only one element. However, the slot
510 size must always be ordered wrt to the mode size, in the
511 same way as for a subreg. */
512 gcc_checking_assert (ordered_p (GET_MODE_SIZE (mode
), size
));
513 if (BYTES_BIG_ENDIAN
&& maybe_lt (GET_MODE_SIZE (mode
), size
))
514 bigend_correction
= size
- GET_MODE_SIZE (mode
);
517 /* If we have already instantiated virtual registers, return the actual
518 address relative to the frame pointer. */
519 if (virtuals_instantiated
)
520 addr
= plus_constant (Pmode
, frame_pointer_rtx
,
522 (slot_offset
+ bigend_correction
523 + targetm
.starting_frame_offset (), Pmode
));
525 addr
= plus_constant (Pmode
, virtual_stack_vars_rtx
,
527 (slot_offset
+ bigend_correction
,
530 x
= gen_rtx_MEM (mode
, addr
);
531 set_mem_align (x
, alignment_in_bits
);
532 MEM_NOTRAP_P (x
) = 1;
534 vec_safe_push (stack_slot_list
, x
);
536 if (frame_offset_overflow (frame_offset
, current_function_decl
))
542 /* Wrap up assign_stack_local_1 with last parameter as false. */
545 assign_stack_local (machine_mode mode
, poly_int64 size
, int align
)
547 return assign_stack_local_1 (mode
, size
, align
, ASLK_RECORD_PAD
);
550 /* In order to evaluate some expressions, such as function calls returning
551 structures in memory, we need to temporarily allocate stack locations.
552 We record each allocated temporary in the following structure.
554 Associated with each temporary slot is a nesting level. When we pop up
555 one level, all temporaries associated with the previous level are freed.
556 Normally, all temporaries are freed after the execution of the statement
557 in which they were created. However, if we are inside a ({...}) grouping,
558 the result may be in a temporary and hence must be preserved. If the
559 result could be in a temporary, we preserve it if we can determine which
560 one it is in. If we cannot determine which temporary may contain the
561 result, all temporaries are preserved. A temporary is preserved by
562 pretending it was allocated at the previous nesting level. */
564 class GTY(()) temp_slot
{
566 /* Points to next temporary slot. */
567 class temp_slot
*next
;
568 /* Points to previous temporary slot. */
569 class temp_slot
*prev
;
570 /* The rtx to used to reference the slot. */
572 /* The size, in units, of the slot. */
574 /* The type of the object in the slot, or zero if it doesn't correspond
575 to a type. We use this to determine whether a slot can be reused.
576 It can be reused if objects of the type of the new slot will always
577 conflict with objects of the type of the old slot. */
579 /* The alignment (in bits) of the slot. */
581 /* True if this temporary is currently in use. */
583 /* Nesting level at which this slot is being used. */
585 /* The offset of the slot from the frame_pointer, including extra space
586 for alignment. This info is for combine_temp_slots. */
587 poly_int64 base_offset
;
588 /* The size of the slot, including extra space for alignment. This
589 info is for combine_temp_slots. */
590 poly_int64 full_size
;
593 /* Entry for the below hash table. */
594 struct GTY((for_user
)) temp_slot_address_entry
{
597 class temp_slot
*temp_slot
;
600 struct temp_address_hasher
: ggc_ptr_hash
<temp_slot_address_entry
>
602 static hashval_t
hash (temp_slot_address_entry
*);
603 static bool equal (temp_slot_address_entry
*, temp_slot_address_entry
*);
606 /* A table of addresses that represent a stack slot. The table is a mapping
607 from address RTXen to a temp slot. */
608 static GTY(()) hash_table
<temp_address_hasher
> *temp_slot_address_table
;
609 static size_t n_temp_slots_in_use
;
611 /* Removes temporary slot TEMP from LIST. */
614 cut_slot_from_list (class temp_slot
*temp
, class temp_slot
**list
)
617 temp
->next
->prev
= temp
->prev
;
619 temp
->prev
->next
= temp
->next
;
623 temp
->prev
= temp
->next
= NULL
;
626 /* Inserts temporary slot TEMP to LIST. */
629 insert_slot_to_list (class temp_slot
*temp
, class temp_slot
**list
)
633 (*list
)->prev
= temp
;
638 /* Returns the list of used temp slots at LEVEL. */
640 static class temp_slot
**
641 temp_slots_at_level (int level
)
643 if (level
>= (int) vec_safe_length (used_temp_slots
))
644 vec_safe_grow_cleared (used_temp_slots
, level
+ 1, true);
646 return &(*used_temp_slots
)[level
];
649 /* Returns the maximal temporary slot level. */
652 max_slot_level (void)
654 if (!used_temp_slots
)
657 return used_temp_slots
->length () - 1;
660 /* Moves temporary slot TEMP to LEVEL. */
663 move_slot_to_level (class temp_slot
*temp
, int level
)
665 cut_slot_from_list (temp
, temp_slots_at_level (temp
->level
));
666 insert_slot_to_list (temp
, temp_slots_at_level (level
));
670 /* Make temporary slot TEMP available. */
673 make_slot_available (class temp_slot
*temp
)
675 cut_slot_from_list (temp
, temp_slots_at_level (temp
->level
));
676 insert_slot_to_list (temp
, &avail_temp_slots
);
677 temp
->in_use
= false;
679 n_temp_slots_in_use
--;
682 /* Compute the hash value for an address -> temp slot mapping.
683 The value is cached on the mapping entry. */
685 temp_slot_address_compute_hash (struct temp_slot_address_entry
*t
)
687 int do_not_record
= 0;
688 return hash_rtx (t
->address
, GET_MODE (t
->address
),
689 &do_not_record
, NULL
, false);
692 /* Return the hash value for an address -> temp slot mapping. */
694 temp_address_hasher::hash (temp_slot_address_entry
*t
)
699 /* Compare two address -> temp slot mapping entries. */
701 temp_address_hasher::equal (temp_slot_address_entry
*t1
,
702 temp_slot_address_entry
*t2
)
704 return exp_equiv_p (t1
->address
, t2
->address
, 0, true);
707 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
709 insert_temp_slot_address (rtx address
, class temp_slot
*temp_slot
)
711 struct temp_slot_address_entry
*t
= ggc_alloc
<temp_slot_address_entry
> ();
712 t
->address
= copy_rtx (address
);
713 t
->temp_slot
= temp_slot
;
714 t
->hash
= temp_slot_address_compute_hash (t
);
715 *temp_slot_address_table
->find_slot_with_hash (t
, t
->hash
, INSERT
) = t
;
718 /* Remove an address -> temp slot mapping entry if the temp slot is
719 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
721 remove_unused_temp_slot_addresses_1 (temp_slot_address_entry
**slot
, void *)
723 const struct temp_slot_address_entry
*t
= *slot
;
724 if (! t
->temp_slot
->in_use
)
725 temp_slot_address_table
->clear_slot (slot
);
729 /* Remove all mappings of addresses to unused temp slots. */
731 remove_unused_temp_slot_addresses (void)
733 /* Use quicker clearing if there aren't any active temp slots. */
734 if (n_temp_slots_in_use
)
735 temp_slot_address_table
->traverse
736 <void *, remove_unused_temp_slot_addresses_1
> (NULL
);
738 temp_slot_address_table
->empty ();
741 /* Find the temp slot corresponding to the object at address X. */
743 static class temp_slot
*
744 find_temp_slot_from_address (rtx x
)
747 struct temp_slot_address_entry tmp
, *t
;
749 /* First try the easy way:
750 See if X exists in the address -> temp slot mapping. */
752 tmp
.temp_slot
= NULL
;
753 tmp
.hash
= temp_slot_address_compute_hash (&tmp
);
754 t
= temp_slot_address_table
->find_with_hash (&tmp
, tmp
.hash
);
758 /* If we have a sum involving a register, see if it points to a temp
760 if (GET_CODE (x
) == PLUS
&& REG_P (XEXP (x
, 0))
761 && (p
= find_temp_slot_from_address (XEXP (x
, 0))) != 0)
763 else if (GET_CODE (x
) == PLUS
&& REG_P (XEXP (x
, 1))
764 && (p
= find_temp_slot_from_address (XEXP (x
, 1))) != 0)
767 /* Last resort: Address is a virtual stack var address. */
769 if (strip_offset (x
, &offset
) == virtual_stack_vars_rtx
)
772 for (i
= max_slot_level (); i
>= 0; i
--)
773 for (p
= *temp_slots_at_level (i
); p
; p
= p
->next
)
774 if (known_in_range_p (offset
, p
->base_offset
, p
->full_size
))
781 /* Allocate a temporary stack slot and record it for possible later
784 MODE is the machine mode to be given to the returned rtx.
786 SIZE is the size in units of the space required. We do no rounding here
787 since assign_stack_local will do any required rounding.
789 TYPE is the type that will be used for the stack slot. */
792 assign_stack_temp_for_type (machine_mode mode
, poly_int64 size
, tree type
)
795 class temp_slot
*p
, *best_p
= 0, *selected
= NULL
, **pp
;
798 gcc_assert (known_size_p (size
));
800 align
= get_stack_local_alignment (type
, mode
);
802 /* Try to find an available, already-allocated temporary of the proper
803 mode which meets the size and alignment requirements. Choose the
804 smallest one with the closest alignment.
806 If assign_stack_temp is called outside of the tree->rtl expansion,
807 we cannot reuse the stack slots (that may still refer to
808 VIRTUAL_STACK_VARS_REGNUM). */
809 if (!virtuals_instantiated
)
811 for (p
= avail_temp_slots
; p
; p
= p
->next
)
813 if (p
->align
>= align
814 && known_ge (p
->size
, size
)
815 && GET_MODE (p
->slot
) == mode
816 && objects_must_conflict_p (p
->type
, type
)
818 || (known_eq (best_p
->size
, p
->size
)
819 ? best_p
->align
> p
->align
820 : known_ge (best_p
->size
, p
->size
))))
822 if (p
->align
== align
&& known_eq (p
->size
, size
))
825 cut_slot_from_list (selected
, &avail_temp_slots
);
834 /* Make our best, if any, the one to use. */
838 cut_slot_from_list (selected
, &avail_temp_slots
);
840 /* If there are enough aligned bytes left over, make them into a new
841 temp_slot so that the extra bytes don't get wasted. Do this only
842 for BLKmode slots, so that we can be sure of the alignment. */
843 if (GET_MODE (best_p
->slot
) == BLKmode
)
845 int alignment
= best_p
->align
/ BITS_PER_UNIT
;
846 poly_int64 rounded_size
= aligned_upper_bound (size
, alignment
);
848 if (known_ge (best_p
->size
- rounded_size
, alignment
))
850 p
= ggc_alloc
<temp_slot
> ();
852 p
->size
= best_p
->size
- rounded_size
;
853 p
->base_offset
= best_p
->base_offset
+ rounded_size
;
854 p
->full_size
= best_p
->full_size
- rounded_size
;
855 p
->slot
= adjust_address_nv (best_p
->slot
, BLKmode
, rounded_size
);
856 p
->align
= best_p
->align
;
857 p
->type
= best_p
->type
;
858 insert_slot_to_list (p
, &avail_temp_slots
);
860 vec_safe_push (stack_slot_list
, p
->slot
);
862 best_p
->size
= rounded_size
;
863 best_p
->full_size
= rounded_size
;
868 /* If we still didn't find one, make a new temporary. */
871 poly_int64 frame_offset_old
= frame_offset
;
873 p
= ggc_alloc
<temp_slot
> ();
875 /* We are passing an explicit alignment request to assign_stack_local.
876 One side effect of that is assign_stack_local will not round SIZE
877 to ensure the frame offset remains suitably aligned.
879 So for requests which depended on the rounding of SIZE, we go ahead
880 and round it now. We also make sure ALIGNMENT is at least
881 BIGGEST_ALIGNMENT. */
882 gcc_assert (mode
!= BLKmode
|| align
== BIGGEST_ALIGNMENT
);
883 p
->slot
= assign_stack_local_1 (mode
,
885 ? aligned_upper_bound (size
,
893 /* The following slot size computation is necessary because we don't
894 know the actual size of the temporary slot until assign_stack_local
895 has performed all the frame alignment and size rounding for the
896 requested temporary. Note that extra space added for alignment
897 can be either above or below this stack slot depending on which
898 way the frame grows. We include the extra space if and only if it
899 is above this slot. */
900 if (FRAME_GROWS_DOWNWARD
)
901 p
->size
= frame_offset_old
- frame_offset
;
905 /* Now define the fields used by combine_temp_slots. */
906 if (FRAME_GROWS_DOWNWARD
)
908 p
->base_offset
= frame_offset
;
909 p
->full_size
= frame_offset_old
- frame_offset
;
913 p
->base_offset
= frame_offset_old
;
914 p
->full_size
= frame_offset
- frame_offset_old
;
923 p
->level
= temp_slot_level
;
924 n_temp_slots_in_use
++;
926 pp
= temp_slots_at_level (p
->level
);
927 insert_slot_to_list (p
, pp
);
928 insert_temp_slot_address (XEXP (p
->slot
, 0), p
);
930 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
931 slot
= gen_rtx_MEM (mode
, XEXP (p
->slot
, 0));
932 vec_safe_push (stack_slot_list
, slot
);
934 /* If we know the alias set for the memory that will be used, use
935 it. If there's no TYPE, then we don't know anything about the
936 alias set for the memory. */
937 set_mem_alias_set (slot
, type
? get_alias_set (type
) : 0);
938 set_mem_align (slot
, align
);
940 /* If a type is specified, set the relevant flags. */
942 MEM_VOLATILE_P (slot
) = TYPE_VOLATILE (type
);
943 MEM_NOTRAP_P (slot
) = 1;
948 /* Allocate a temporary stack slot and record it for possible later
949 reuse. First two arguments are same as in preceding function. */
952 assign_stack_temp (machine_mode mode
, poly_int64 size
)
954 return assign_stack_temp_for_type (mode
, size
, NULL_TREE
);
957 /* Assign a temporary.
958 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
959 and so that should be used in error messages. In either case, we
960 allocate of the given type.
961 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
962 it is 0 if a register is OK.
963 DONT_PROMOTE is 1 if we should not promote values in register
967 assign_temp (tree type_or_decl
, int memory_required
,
968 int dont_promote ATTRIBUTE_UNUSED
)
976 if (DECL_P (type_or_decl
))
977 decl
= type_or_decl
, type
= TREE_TYPE (decl
);
979 decl
= NULL
, type
= type_or_decl
;
981 mode
= TYPE_MODE (type
);
983 unsignedp
= TYPE_UNSIGNED (type
);
986 /* Allocating temporaries of TREE_ADDRESSABLE type must be done in the front
987 end. See also create_tmp_var for the gimplification-time check. */
988 gcc_assert (!TREE_ADDRESSABLE (type
) && COMPLETE_TYPE_P (type
));
990 if (mode
== BLKmode
|| memory_required
)
995 /* Unfortunately, we don't yet know how to allocate variable-sized
996 temporaries. However, sometimes we can find a fixed upper limit on
997 the size, so try that instead. */
998 if (!poly_int_tree_p (TYPE_SIZE_UNIT (type
), &size
))
999 size
= max_int_size_in_bytes (type
);
1001 /* Zero sized arrays are a GNU C extension. Set size to 1 to avoid
1002 problems with allocating the stack space. */
1003 if (known_eq (size
, 0))
1006 /* The size of the temporary may be too large to fit into an integer. */
1007 /* ??? Not sure this should happen except for user silliness, so limit
1008 this to things that aren't compiler-generated temporaries. The
1009 rest of the time we'll die in assign_stack_temp_for_type. */
1011 && !known_size_p (size
)
1012 && TREE_CODE (TYPE_SIZE_UNIT (type
)) == INTEGER_CST
)
1014 error ("size of variable %q+D is too large", decl
);
1018 tmp
= assign_stack_temp_for_type (mode
, size
, type
);
1024 mode
= promote_mode (type
, mode
, &unsignedp
);
1027 return gen_reg_rtx (mode
);
1030 /* Combine temporary stack slots which are adjacent on the stack.
1032 This allows for better use of already allocated stack space. This is only
1033 done for BLKmode slots because we can be sure that we won't have alignment
1034 problems in this case. */
1037 combine_temp_slots (void)
1039 class temp_slot
*p
, *q
, *next
, *next_q
;
1042 /* We can't combine slots, because the information about which slot
1043 is in which alias set will be lost. */
1044 if (flag_strict_aliasing
)
1047 /* If there are a lot of temp slots, don't do anything unless
1048 high levels of optimization. */
1049 if (! flag_expensive_optimizations
)
1050 for (p
= avail_temp_slots
, num_slots
= 0; p
; p
= p
->next
, num_slots
++)
1051 if (num_slots
> 100 || (num_slots
> 10 && optimize
== 0))
1054 for (p
= avail_temp_slots
; p
; p
= next
)
1060 if (GET_MODE (p
->slot
) != BLKmode
)
1063 for (q
= p
->next
; q
; q
= next_q
)
1069 if (GET_MODE (q
->slot
) != BLKmode
)
1072 if (known_eq (p
->base_offset
+ p
->full_size
, q
->base_offset
))
1074 /* Q comes after P; combine Q into P. */
1076 p
->full_size
+= q
->full_size
;
1079 else if (known_eq (q
->base_offset
+ q
->full_size
, p
->base_offset
))
1081 /* P comes after Q; combine P into Q. */
1083 q
->full_size
+= p
->full_size
;
1088 cut_slot_from_list (q
, &avail_temp_slots
);
1091 /* Either delete P or advance past it. */
1093 cut_slot_from_list (p
, &avail_temp_slots
);
1097 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1098 slot that previously was known by OLD_RTX. */
1101 update_temp_slot_address (rtx old_rtx
, rtx new_rtx
)
1105 if (rtx_equal_p (old_rtx
, new_rtx
))
1108 p
= find_temp_slot_from_address (old_rtx
);
1110 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1111 NEW_RTX is a register, see if one operand of the PLUS is a
1112 temporary location. If so, NEW_RTX points into it. Otherwise,
1113 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1114 in common between them. If so, try a recursive call on those
1118 if (GET_CODE (old_rtx
) != PLUS
)
1121 if (REG_P (new_rtx
))
1123 update_temp_slot_address (XEXP (old_rtx
, 0), new_rtx
);
1124 update_temp_slot_address (XEXP (old_rtx
, 1), new_rtx
);
1127 else if (GET_CODE (new_rtx
) != PLUS
)
1130 if (rtx_equal_p (XEXP (old_rtx
, 0), XEXP (new_rtx
, 0)))
1131 update_temp_slot_address (XEXP (old_rtx
, 1), XEXP (new_rtx
, 1));
1132 else if (rtx_equal_p (XEXP (old_rtx
, 1), XEXP (new_rtx
, 0)))
1133 update_temp_slot_address (XEXP (old_rtx
, 0), XEXP (new_rtx
, 1));
1134 else if (rtx_equal_p (XEXP (old_rtx
, 0), XEXP (new_rtx
, 1)))
1135 update_temp_slot_address (XEXP (old_rtx
, 1), XEXP (new_rtx
, 0));
1136 else if (rtx_equal_p (XEXP (old_rtx
, 1), XEXP (new_rtx
, 1)))
1137 update_temp_slot_address (XEXP (old_rtx
, 0), XEXP (new_rtx
, 0));
1142 /* Otherwise add an alias for the temp's address. */
1143 insert_temp_slot_address (new_rtx
, p
);
1146 /* If X could be a reference to a temporary slot, mark that slot as
1147 belonging to the to one level higher than the current level. If X
1148 matched one of our slots, just mark that one. Otherwise, we can't
1149 easily predict which it is, so upgrade all of them.
1151 This is called when an ({...}) construct occurs and a statement
1152 returns a value in memory. */
1155 preserve_temp_slots (rtx x
)
1157 class temp_slot
*p
= 0, *next
;
1162 /* If X is a register that is being used as a pointer, see if we have
1163 a temporary slot we know it points to. */
1164 if (REG_P (x
) && REG_POINTER (x
))
1165 p
= find_temp_slot_from_address (x
);
1167 /* If X is not in memory or is at a constant address, it cannot be in
1168 a temporary slot. */
1169 if (p
== 0 && (!MEM_P (x
) || CONSTANT_P (XEXP (x
, 0))))
1172 /* First see if we can find a match. */
1174 p
= find_temp_slot_from_address (XEXP (x
, 0));
1178 if (p
->level
== temp_slot_level
)
1179 move_slot_to_level (p
, temp_slot_level
- 1);
1183 /* Otherwise, preserve all non-kept slots at this level. */
1184 for (p
= *temp_slots_at_level (temp_slot_level
); p
; p
= next
)
1187 move_slot_to_level (p
, temp_slot_level
- 1);
1191 /* Free all temporaries used so far. This is normally called at the
1192 end of generating code for a statement. */
1195 free_temp_slots (void)
1197 class temp_slot
*p
, *next
;
1198 bool some_available
= false;
1200 for (p
= *temp_slots_at_level (temp_slot_level
); p
; p
= next
)
1203 make_slot_available (p
);
1204 some_available
= true;
1209 remove_unused_temp_slot_addresses ();
1210 combine_temp_slots ();
1214 /* Push deeper into the nesting level for stack temporaries. */
1217 push_temp_slots (void)
1222 /* Pop a temporary nesting level. All slots in use in the current level
1226 pop_temp_slots (void)
1232 /* Initialize temporary slots. */
1235 init_temp_slots (void)
1237 /* We have not allocated any temporaries yet. */
1238 avail_temp_slots
= 0;
1239 vec_alloc (used_temp_slots
, 0);
1240 temp_slot_level
= 0;
1241 n_temp_slots_in_use
= 0;
1243 /* Set up the table to map addresses to temp slots. */
1244 if (! temp_slot_address_table
)
1245 temp_slot_address_table
= hash_table
<temp_address_hasher
>::create_ggc (32);
1247 temp_slot_address_table
->empty ();
1250 /* Functions and data structures to keep track of the values hard regs
1251 had at the start of the function. */
1253 /* Private type used by get_hard_reg_initial_reg, get_hard_reg_initial_val,
1254 and has_hard_reg_initial_val.. */
1255 struct GTY(()) initial_value_pair
{
1259 /* ??? This could be a VEC but there is currently no way to define an
1260 opaque VEC type. This could be worked around by defining struct
1261 initial_value_pair in function.h. */
1262 struct GTY(()) initial_value_struct
{
1265 initial_value_pair
* GTY ((length ("%h.num_entries"))) entries
;
1268 /* If a pseudo represents an initial hard reg (or expression), return
1269 it, else return NULL_RTX. */
1272 get_hard_reg_initial_reg (rtx reg
)
1274 struct initial_value_struct
*ivs
= crtl
->hard_reg_initial_vals
;
1280 for (i
= 0; i
< ivs
->num_entries
; i
++)
1281 if (rtx_equal_p (ivs
->entries
[i
].pseudo
, reg
))
1282 return ivs
->entries
[i
].hard_reg
;
1287 /* Make sure that there's a pseudo register of mode MODE that stores the
1288 initial value of hard register REGNO. Return an rtx for such a pseudo. */
1291 get_hard_reg_initial_val (machine_mode mode
, unsigned int regno
)
1293 struct initial_value_struct
*ivs
;
1296 rv
= has_hard_reg_initial_val (mode
, regno
);
1300 ivs
= crtl
->hard_reg_initial_vals
;
1303 ivs
= ggc_alloc
<initial_value_struct
> ();
1304 ivs
->num_entries
= 0;
1305 ivs
->max_entries
= 5;
1306 ivs
->entries
= ggc_vec_alloc
<initial_value_pair
> (5);
1307 crtl
->hard_reg_initial_vals
= ivs
;
1310 if (ivs
->num_entries
>= ivs
->max_entries
)
1312 ivs
->max_entries
+= 5;
1313 ivs
->entries
= GGC_RESIZEVEC (initial_value_pair
, ivs
->entries
,
1317 ivs
->entries
[ivs
->num_entries
].hard_reg
= gen_rtx_REG (mode
, regno
);
1318 ivs
->entries
[ivs
->num_entries
].pseudo
= gen_reg_rtx (mode
);
1320 return ivs
->entries
[ivs
->num_entries
++].pseudo
;
1323 /* See if get_hard_reg_initial_val has been used to create a pseudo
1324 for the initial value of hard register REGNO in mode MODE. Return
1325 the associated pseudo if so, otherwise return NULL. */
1328 has_hard_reg_initial_val (machine_mode mode
, unsigned int regno
)
1330 struct initial_value_struct
*ivs
;
1333 ivs
= crtl
->hard_reg_initial_vals
;
1335 for (i
= 0; i
< ivs
->num_entries
; i
++)
1336 if (GET_MODE (ivs
->entries
[i
].hard_reg
) == mode
1337 && REGNO (ivs
->entries
[i
].hard_reg
) == regno
)
1338 return ivs
->entries
[i
].pseudo
;
1344 emit_initial_value_sets (void)
1346 struct initial_value_struct
*ivs
= crtl
->hard_reg_initial_vals
;
1354 for (i
= 0; i
< ivs
->num_entries
; i
++)
1355 emit_move_insn (ivs
->entries
[i
].pseudo
, ivs
->entries
[i
].hard_reg
);
1359 emit_insn_at_entry (seq
);
1362 /* Return the hardreg-pseudoreg initial values pair entry I and
1363 TRUE if I is a valid entry, or FALSE if I is not a valid entry. */
1365 initial_value_entry (int i
, rtx
*hreg
, rtx
*preg
)
1367 struct initial_value_struct
*ivs
= crtl
->hard_reg_initial_vals
;
1368 if (!ivs
|| i
>= ivs
->num_entries
)
1371 *hreg
= ivs
->entries
[i
].hard_reg
;
1372 *preg
= ivs
->entries
[i
].pseudo
;
1376 /* These routines are responsible for converting virtual register references
1377 to the actual hard register references once RTL generation is complete.
1379 The following four variables are used for communication between the
1380 routines. They contain the offsets of the virtual registers from their
1381 respective hard registers. */
1383 static poly_int64 in_arg_offset
;
1384 static poly_int64 var_offset
;
1385 static poly_int64 dynamic_offset
;
1386 static poly_int64 out_arg_offset
;
1387 static poly_int64 cfa_offset
;
1389 /* In most machines, the stack pointer register is equivalent to the bottom
1392 #ifndef STACK_POINTER_OFFSET
1393 #define STACK_POINTER_OFFSET 0
1396 #if defined (REG_PARM_STACK_SPACE) && !defined (INCOMING_REG_PARM_STACK_SPACE)
1397 #define INCOMING_REG_PARM_STACK_SPACE REG_PARM_STACK_SPACE
1400 /* If not defined, pick an appropriate default for the offset of dynamically
1401 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1402 INCOMING_REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1404 #ifndef STACK_DYNAMIC_OFFSET
1406 /* The bottom of the stack points to the actual arguments. If
1407 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1408 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1409 stack space for register parameters is not pushed by the caller, but
1410 rather part of the fixed stack areas and hence not included in
1411 `crtl->outgoing_args_size'. Nevertheless, we must allow
1412 for it when allocating stack dynamic objects. */
1414 #ifdef INCOMING_REG_PARM_STACK_SPACE
1415 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1416 ((ACCUMULATE_OUTGOING_ARGS \
1417 ? (crtl->outgoing_args_size \
1418 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1419 : INCOMING_REG_PARM_STACK_SPACE (FNDECL))) \
1420 : 0) + (STACK_POINTER_OFFSET))
1422 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1423 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : poly_int64 (0)) \
1424 + (STACK_POINTER_OFFSET))
1429 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1430 is a virtual register, return the equivalent hard register and set the
1431 offset indirectly through the pointer. Otherwise, return 0. */
1434 instantiate_new_reg (rtx x
, poly_int64_pod
*poffset
)
1439 if (x
== virtual_incoming_args_rtx
)
1441 if (stack_realign_drap
)
1443 /* Replace virtual_incoming_args_rtx with internal arg
1444 pointer if DRAP is used to realign stack. */
1445 new_rtx
= crtl
->args
.internal_arg_pointer
;
1449 new_rtx
= arg_pointer_rtx
, offset
= in_arg_offset
;
1451 else if (x
== virtual_stack_vars_rtx
)
1452 new_rtx
= frame_pointer_rtx
, offset
= var_offset
;
1453 else if (x
== virtual_stack_dynamic_rtx
)
1454 new_rtx
= stack_pointer_rtx
, offset
= dynamic_offset
;
1455 else if (x
== virtual_outgoing_args_rtx
)
1456 new_rtx
= stack_pointer_rtx
, offset
= out_arg_offset
;
1457 else if (x
== virtual_cfa_rtx
)
1459 #ifdef FRAME_POINTER_CFA_OFFSET
1460 new_rtx
= frame_pointer_rtx
;
1462 new_rtx
= arg_pointer_rtx
;
1464 offset
= cfa_offset
;
1466 else if (x
== virtual_preferred_stack_boundary_rtx
)
1468 new_rtx
= GEN_INT (crtl
->preferred_stack_boundary
/ BITS_PER_UNIT
);
1478 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1479 registers present inside of *LOC. The expression is simplified,
1480 as much as possible, but is not to be considered "valid" in any sense
1481 implied by the target. Return true if any change is made. */
1484 instantiate_virtual_regs_in_rtx (rtx
*loc
)
1488 bool changed
= false;
1489 subrtx_ptr_iterator::array_type array
;
1490 FOR_EACH_SUBRTX_PTR (iter
, array
, loc
, NONCONST
)
1497 switch (GET_CODE (x
))
1500 new_rtx
= instantiate_new_reg (x
, &offset
);
1503 *loc
= plus_constant (GET_MODE (x
), new_rtx
, offset
);
1506 iter
.skip_subrtxes ();
1510 new_rtx
= instantiate_new_reg (XEXP (x
, 0), &offset
);
1513 XEXP (x
, 0) = new_rtx
;
1514 *loc
= plus_constant (GET_MODE (x
), x
, offset
, true);
1516 iter
.skip_subrtxes ();
1520 /* FIXME -- from old code */
1521 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1522 we can commute the PLUS and SUBREG because pointers into the
1523 frame are well-behaved. */
1534 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1535 matches the predicate for insn CODE operand OPERAND. */
1538 safe_insn_predicate (int code
, int operand
, rtx x
)
1540 return code
< 0 || insn_operand_matches ((enum insn_code
) code
, operand
, x
);
1543 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1544 registers present inside of insn. The result will be a valid insn. */
1547 instantiate_virtual_regs_in_insn (rtx_insn
*insn
)
1551 bool any_change
= false;
1552 rtx set
, new_rtx
, x
;
1555 /* There are some special cases to be handled first. */
1556 set
= single_set (insn
);
1559 /* We're allowed to assign to a virtual register. This is interpreted
1560 to mean that the underlying register gets assigned the inverse
1561 transformation. This is used, for example, in the handling of
1563 new_rtx
= instantiate_new_reg (SET_DEST (set
), &offset
);
1568 instantiate_virtual_regs_in_rtx (&SET_SRC (set
));
1569 x
= simplify_gen_binary (PLUS
, GET_MODE (new_rtx
), SET_SRC (set
),
1570 gen_int_mode (-offset
, GET_MODE (new_rtx
)));
1571 x
= force_operand (x
, new_rtx
);
1573 emit_move_insn (new_rtx
, x
);
1578 emit_insn_before (seq
, insn
);
1583 /* Handle a straight copy from a virtual register by generating a
1584 new add insn. The difference between this and falling through
1585 to the generic case is avoiding a new pseudo and eliminating a
1586 move insn in the initial rtl stream. */
1587 new_rtx
= instantiate_new_reg (SET_SRC (set
), &offset
);
1589 && maybe_ne (offset
, 0)
1590 && REG_P (SET_DEST (set
))
1591 && REGNO (SET_DEST (set
)) > LAST_VIRTUAL_REGISTER
)
1595 x
= expand_simple_binop (GET_MODE (SET_DEST (set
)), PLUS
, new_rtx
,
1596 gen_int_mode (offset
,
1597 GET_MODE (SET_DEST (set
))),
1598 SET_DEST (set
), 1, OPTAB_LIB_WIDEN
);
1599 if (x
!= SET_DEST (set
))
1600 emit_move_insn (SET_DEST (set
), x
);
1605 emit_insn_before (seq
, insn
);
1610 extract_insn (insn
);
1611 insn_code
= INSN_CODE (insn
);
1613 /* Handle a plus involving a virtual register by determining if the
1614 operands remain valid if they're modified in place. */
1616 if (GET_CODE (SET_SRC (set
)) == PLUS
1617 && recog_data
.n_operands
>= 3
1618 && recog_data
.operand_loc
[1] == &XEXP (SET_SRC (set
), 0)
1619 && recog_data
.operand_loc
[2] == &XEXP (SET_SRC (set
), 1)
1620 && poly_int_rtx_p (recog_data
.operand
[2], &delta
)
1621 && (new_rtx
= instantiate_new_reg (recog_data
.operand
[1], &offset
)))
1625 /* If the sum is zero, then replace with a plain move. */
1626 if (known_eq (offset
, 0)
1627 && REG_P (SET_DEST (set
))
1628 && REGNO (SET_DEST (set
)) > LAST_VIRTUAL_REGISTER
)
1631 emit_move_insn (SET_DEST (set
), new_rtx
);
1635 emit_insn_before (seq
, insn
);
1640 x
= gen_int_mode (offset
, recog_data
.operand_mode
[2]);
1642 /* Using validate_change and apply_change_group here leaves
1643 recog_data in an invalid state. Since we know exactly what
1644 we want to check, do those two by hand. */
1645 if (safe_insn_predicate (insn_code
, 1, new_rtx
)
1646 && safe_insn_predicate (insn_code
, 2, x
))
1648 *recog_data
.operand_loc
[1] = recog_data
.operand
[1] = new_rtx
;
1649 *recog_data
.operand_loc
[2] = recog_data
.operand
[2] = x
;
1652 /* Fall through into the regular operand fixup loop in
1653 order to take care of operands other than 1 and 2. */
1659 extract_insn (insn
);
1660 insn_code
= INSN_CODE (insn
);
1663 /* In the general case, we expect virtual registers to appear only in
1664 operands, and then only as either bare registers or inside memories. */
1665 for (i
= 0; i
< recog_data
.n_operands
; ++i
)
1667 x
= recog_data
.operand
[i
];
1668 switch (GET_CODE (x
))
1672 rtx addr
= XEXP (x
, 0);
1674 if (!instantiate_virtual_regs_in_rtx (&addr
))
1678 x
= replace_equiv_address (x
, addr
, true);
1679 /* It may happen that the address with the virtual reg
1680 was valid (e.g. based on the virtual stack reg, which might
1681 be acceptable to the predicates with all offsets), whereas
1682 the address now isn't anymore, for instance when the address
1683 is still offsetted, but the base reg isn't virtual-stack-reg
1684 anymore. Below we would do a force_reg on the whole operand,
1685 but this insn might actually only accept memory. Hence,
1686 before doing that last resort, try to reload the address into
1687 a register, so this operand stays a MEM. */
1688 if (!safe_insn_predicate (insn_code
, i
, x
))
1690 addr
= force_reg (GET_MODE (addr
), addr
);
1691 x
= replace_equiv_address (x
, addr
, true);
1696 emit_insn_before (seq
, insn
);
1701 new_rtx
= instantiate_new_reg (x
, &offset
);
1702 if (new_rtx
== NULL
)
1704 if (known_eq (offset
, 0))
1710 /* Careful, special mode predicates may have stuff in
1711 insn_data[insn_code].operand[i].mode that isn't useful
1712 to us for computing a new value. */
1713 /* ??? Recognize address_operand and/or "p" constraints
1714 to see if (plus new offset) is a valid before we put
1715 this through expand_simple_binop. */
1716 x
= expand_simple_binop (GET_MODE (x
), PLUS
, new_rtx
,
1717 gen_int_mode (offset
, GET_MODE (x
)),
1718 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1721 emit_insn_before (seq
, insn
);
1726 new_rtx
= instantiate_new_reg (SUBREG_REG (x
), &offset
);
1727 if (new_rtx
== NULL
)
1729 if (maybe_ne (offset
, 0))
1732 new_rtx
= expand_simple_binop
1733 (GET_MODE (new_rtx
), PLUS
, new_rtx
,
1734 gen_int_mode (offset
, GET_MODE (new_rtx
)),
1735 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1738 emit_insn_before (seq
, insn
);
1740 x
= simplify_gen_subreg (recog_data
.operand_mode
[i
], new_rtx
,
1741 GET_MODE (new_rtx
), SUBREG_BYTE (x
));
1749 /* At this point, X contains the new value for the operand.
1750 Validate the new value vs the insn predicate. Note that
1751 asm insns will have insn_code -1 here. */
1752 if (!safe_insn_predicate (insn_code
, i
, x
))
1757 gcc_assert (REGNO (x
) <= LAST_VIRTUAL_REGISTER
);
1758 x
= copy_to_reg (x
);
1761 x
= force_reg (insn_data
[insn_code
].operand
[i
].mode
, x
);
1765 emit_insn_before (seq
, insn
);
1768 *recog_data
.operand_loc
[i
] = recog_data
.operand
[i
] = x
;
1774 /* Propagate operand changes into the duplicates. */
1775 for (i
= 0; i
< recog_data
.n_dups
; ++i
)
1776 *recog_data
.dup_loc
[i
]
1777 = copy_rtx (recog_data
.operand
[(unsigned)recog_data
.dup_num
[i
]]);
1779 /* Force re-recognition of the instruction for validation. */
1780 INSN_CODE (insn
) = -1;
1783 if (asm_noperands (PATTERN (insn
)) >= 0)
1785 if (!check_asm_operands (PATTERN (insn
)))
1787 error_for_asm (insn
, "impossible constraint in %<asm%>");
1788 /* For asm goto, instead of fixing up all the edges
1789 just clear the template and clear input and output operands
1790 and strip away clobbers. */
1793 rtx asm_op
= extract_asm_operands (PATTERN (insn
));
1794 PATTERN (insn
) = asm_op
;
1795 PUT_MODE (asm_op
, VOIDmode
);
1796 ASM_OPERANDS_TEMPLATE (asm_op
) = ggc_strdup ("");
1797 ASM_OPERANDS_OUTPUT_CONSTRAINT (asm_op
) = "";
1798 ASM_OPERANDS_OUTPUT_IDX (asm_op
) = 0;
1799 ASM_OPERANDS_INPUT_VEC (asm_op
) = rtvec_alloc (0);
1800 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (asm_op
) = rtvec_alloc (0);
1808 if (recog_memoized (insn
) < 0)
1809 fatal_insn_not_found (insn
);
1813 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1814 do any instantiation required. */
1817 instantiate_decl_rtl (rtx x
)
1824 /* If this is a CONCAT, recurse for the pieces. */
1825 if (GET_CODE (x
) == CONCAT
)
1827 instantiate_decl_rtl (XEXP (x
, 0));
1828 instantiate_decl_rtl (XEXP (x
, 1));
1832 /* If this is not a MEM, no need to do anything. Similarly if the
1833 address is a constant or a register that is not a virtual register. */
1838 if (CONSTANT_P (addr
)
1840 && !VIRTUAL_REGISTER_P (addr
)))
1843 instantiate_virtual_regs_in_rtx (&XEXP (x
, 0));
1846 /* Helper for instantiate_decls called via walk_tree: Process all decls
1847 in the given DECL_VALUE_EXPR. */
1850 instantiate_expr (tree
*tp
, int *walk_subtrees
, void *data ATTRIBUTE_UNUSED
)
1858 if (DECL_RTL_SET_P (t
))
1859 instantiate_decl_rtl (DECL_RTL (t
));
1860 if (TREE_CODE (t
) == PARM_DECL
&& DECL_NAMELESS (t
)
1861 && DECL_INCOMING_RTL (t
))
1862 instantiate_decl_rtl (DECL_INCOMING_RTL (t
));
1863 if ((VAR_P (t
) || TREE_CODE (t
) == RESULT_DECL
)
1864 && DECL_HAS_VALUE_EXPR_P (t
))
1866 tree v
= DECL_VALUE_EXPR (t
);
1867 walk_tree (&v
, instantiate_expr
, NULL
, NULL
);
1874 /* Subroutine of instantiate_decls: Process all decls in the given
1875 BLOCK node and all its subblocks. */
1878 instantiate_decls_1 (tree let
)
1882 for (t
= BLOCK_VARS (let
); t
; t
= DECL_CHAIN (t
))
1884 if (DECL_RTL_SET_P (t
))
1885 instantiate_decl_rtl (DECL_RTL (t
));
1886 if (VAR_P (t
) && DECL_HAS_VALUE_EXPR_P (t
))
1888 tree v
= DECL_VALUE_EXPR (t
);
1889 walk_tree (&v
, instantiate_expr
, NULL
, NULL
);
1893 /* Process all subblocks. */
1894 for (t
= BLOCK_SUBBLOCKS (let
); t
; t
= BLOCK_CHAIN (t
))
1895 instantiate_decls_1 (t
);
1898 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1899 all virtual registers in their DECL_RTL's. */
1902 instantiate_decls (tree fndecl
)
1907 /* Process all parameters of the function. */
1908 for (decl
= DECL_ARGUMENTS (fndecl
); decl
; decl
= DECL_CHAIN (decl
))
1910 instantiate_decl_rtl (DECL_RTL (decl
));
1911 instantiate_decl_rtl (DECL_INCOMING_RTL (decl
));
1912 if (DECL_HAS_VALUE_EXPR_P (decl
))
1914 tree v
= DECL_VALUE_EXPR (decl
);
1915 walk_tree (&v
, instantiate_expr
, NULL
, NULL
);
1919 if ((decl
= DECL_RESULT (fndecl
))
1920 && TREE_CODE (decl
) == RESULT_DECL
)
1922 if (DECL_RTL_SET_P (decl
))
1923 instantiate_decl_rtl (DECL_RTL (decl
));
1924 if (DECL_HAS_VALUE_EXPR_P (decl
))
1926 tree v
= DECL_VALUE_EXPR (decl
);
1927 walk_tree (&v
, instantiate_expr
, NULL
, NULL
);
1931 /* Process the saved static chain if it exists. */
1932 decl
= DECL_STRUCT_FUNCTION (fndecl
)->static_chain_decl
;
1933 if (decl
&& DECL_HAS_VALUE_EXPR_P (decl
))
1934 instantiate_decl_rtl (DECL_RTL (DECL_VALUE_EXPR (decl
)));
1936 /* Now process all variables defined in the function or its subblocks. */
1937 if (DECL_INITIAL (fndecl
))
1938 instantiate_decls_1 (DECL_INITIAL (fndecl
));
1940 FOR_EACH_LOCAL_DECL (cfun
, ix
, decl
)
1941 if (DECL_RTL_SET_P (decl
))
1942 instantiate_decl_rtl (DECL_RTL (decl
));
1943 vec_free (cfun
->local_decls
);
1946 /* Pass through the INSNS of function FNDECL and convert virtual register
1947 references to hard register references. */
1950 instantiate_virtual_regs (void)
1954 /* Compute the offsets to use for this function. */
1955 in_arg_offset
= FIRST_PARM_OFFSET (current_function_decl
);
1956 var_offset
= targetm
.starting_frame_offset ();
1957 dynamic_offset
= STACK_DYNAMIC_OFFSET (current_function_decl
);
1958 out_arg_offset
= STACK_POINTER_OFFSET
;
1959 #ifdef FRAME_POINTER_CFA_OFFSET
1960 cfa_offset
= FRAME_POINTER_CFA_OFFSET (current_function_decl
);
1962 cfa_offset
= ARG_POINTER_CFA_OFFSET (current_function_decl
);
1965 /* Initialize recognition, indicating that volatile is OK. */
1968 /* Scan through all the insns, instantiating every virtual register still
1970 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
1973 /* These patterns in the instruction stream can never be recognized.
1974 Fortunately, they shouldn't contain virtual registers either. */
1975 if (GET_CODE (PATTERN (insn
)) == USE
1976 || GET_CODE (PATTERN (insn
)) == CLOBBER
1977 || GET_CODE (PATTERN (insn
)) == ASM_INPUT
1978 || DEBUG_MARKER_INSN_P (insn
))
1980 else if (DEBUG_BIND_INSN_P (insn
))
1981 instantiate_virtual_regs_in_rtx (INSN_VAR_LOCATION_PTR (insn
));
1983 instantiate_virtual_regs_in_insn (insn
);
1985 if (insn
->deleted ())
1988 instantiate_virtual_regs_in_rtx (®_NOTES (insn
));
1990 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1992 instantiate_virtual_regs_in_rtx (&CALL_INSN_FUNCTION_USAGE (insn
));
1995 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1996 instantiate_decls (current_function_decl
);
1998 targetm
.instantiate_decls ();
2000 /* Indicate that, from now on, assign_stack_local should use
2001 frame_pointer_rtx. */
2002 virtuals_instantiated
= 1;
2007 const pass_data pass_data_instantiate_virtual_regs
=
2009 RTL_PASS
, /* type */
2011 OPTGROUP_NONE
, /* optinfo_flags */
2012 TV_NONE
, /* tv_id */
2013 0, /* properties_required */
2014 0, /* properties_provided */
2015 0, /* properties_destroyed */
2016 0, /* todo_flags_start */
2017 0, /* todo_flags_finish */
2020 class pass_instantiate_virtual_regs
: public rtl_opt_pass
2023 pass_instantiate_virtual_regs (gcc::context
*ctxt
)
2024 : rtl_opt_pass (pass_data_instantiate_virtual_regs
, ctxt
)
2027 /* opt_pass methods: */
2028 unsigned int execute (function
*) final override
2030 instantiate_virtual_regs ();
2034 }; // class pass_instantiate_virtual_regs
2039 make_pass_instantiate_virtual_regs (gcc::context
*ctxt
)
2041 return new pass_instantiate_virtual_regs (ctxt
);
2045 /* Return true if EXP is an aggregate type (or a value with aggregate type).
2046 This means a type for which function calls must pass an address to the
2047 function or get an address back from the function.
2048 EXP may be a type node or an expression (whose type is tested). */
2051 aggregate_value_p (const_tree exp
, const_tree fntype
)
2053 const_tree type
= (TYPE_P (exp
)) ? exp
: TREE_TYPE (exp
);
2054 int i
, regno
, nregs
;
2058 switch (TREE_CODE (fntype
))
2062 tree fndecl
= get_callee_fndecl (fntype
);
2064 fntype
= TREE_TYPE (fndecl
);
2065 else if (CALL_EXPR_FN (fntype
))
2066 fntype
= TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype
)));
2068 /* For internal functions, assume nothing needs to be
2069 returned in memory. */
2074 fntype
= TREE_TYPE (fntype
);
2079 case IDENTIFIER_NODE
:
2083 /* We don't expect other tree types here. */
2087 if (VOID_TYPE_P (type
))
2090 if (error_operand_p (fntype
))
2093 /* If a record should be passed the same as its first (and only) member
2094 don't pass it as an aggregate. */
2095 if (TREE_CODE (type
) == RECORD_TYPE
&& TYPE_TRANSPARENT_AGGR (type
))
2096 return aggregate_value_p (first_field (type
), fntype
);
2098 /* If the front end has decided that this needs to be passed by
2099 reference, do so. */
2100 if ((TREE_CODE (exp
) == PARM_DECL
|| TREE_CODE (exp
) == RESULT_DECL
)
2101 && DECL_BY_REFERENCE (exp
))
2104 /* Function types that are TREE_ADDRESSABLE force return in memory. */
2105 if (fntype
&& TREE_ADDRESSABLE (fntype
))
2108 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
2109 and thus can't be returned in registers. */
2110 if (TREE_ADDRESSABLE (type
))
2113 if (TYPE_EMPTY_P (type
))
2116 if (flag_pcc_struct_return
&& AGGREGATE_TYPE_P (type
))
2119 if (targetm
.calls
.return_in_memory (type
, fntype
))
2122 /* Make sure we have suitable call-clobbered regs to return
2123 the value in; if not, we must return it in memory. */
2124 reg
= hard_function_value (type
, 0, fntype
, 0);
2126 /* If we have something other than a REG (e.g. a PARALLEL), then assume
2131 /* Use the default ABI if the type of the function isn't known.
2132 The scheme for handling interoperability between different ABIs
2133 requires us to be able to tell when we're calling a function with
2134 a nondefault ABI. */
2135 const predefined_function_abi
&abi
= (fntype
2136 ? fntype_abi (fntype
)
2137 : default_function_abi
);
2138 regno
= REGNO (reg
);
2139 nregs
= hard_regno_nregs (regno
, TYPE_MODE (type
));
2140 for (i
= 0; i
< nregs
; i
++)
2141 if (!fixed_regs
[regno
+ i
] && !abi
.clobbers_full_reg_p (regno
+ i
))
2147 /* Return true if we should assign DECL a pseudo register; false if it
2148 should live on the local stack. */
2151 use_register_for_decl (const_tree decl
)
2153 if (TREE_CODE (decl
) == SSA_NAME
)
2155 /* We often try to use the SSA_NAME, instead of its underlying
2156 decl, to get type information and guide decisions, to avoid
2157 differences of behavior between anonymous and named
2158 variables, but in this one case we have to go for the actual
2159 variable if there is one. The main reason is that, at least
2160 at -O0, we want to place user variables on the stack, but we
2161 don't mind using pseudos for anonymous or ignored temps.
2162 Should we take the SSA_NAME, we'd conclude all SSA_NAMEs
2163 should go in pseudos, whereas their corresponding variables
2164 might have to go on the stack. So, disregarding the decl
2165 here would negatively impact debug info at -O0, enable
2166 coalescing between SSA_NAMEs that ought to get different
2167 stack/pseudo assignments, and get the incoming argument
2168 processing thoroughly confused by PARM_DECLs expected to live
2169 in stack slots but assigned to pseudos. */
2170 if (!SSA_NAME_VAR (decl
))
2171 return TYPE_MODE (TREE_TYPE (decl
)) != BLKmode
2172 && !(flag_float_store
&& FLOAT_TYPE_P (TREE_TYPE (decl
)));
2174 decl
= SSA_NAME_VAR (decl
);
2177 /* Honor volatile. */
2178 if (TREE_SIDE_EFFECTS (decl
))
2181 /* Honor addressability. */
2182 if (TREE_ADDRESSABLE (decl
))
2185 /* RESULT_DECLs are a bit special in that they're assigned without
2186 regard to use_register_for_decl, but we generally only store in
2187 them. If we coalesce their SSA NAMEs, we'd better return a
2188 result that matches the assignment in expand_function_start. */
2189 if (TREE_CODE (decl
) == RESULT_DECL
)
2191 /* If it's not an aggregate, we're going to use a REG or a
2192 PARALLEL containing a REG. */
2193 if (!aggregate_value_p (decl
, current_function_decl
))
2196 /* If expand_function_start determines the return value, we'll
2197 use MEM if it's not by reference. */
2198 if (cfun
->returns_pcc_struct
2199 || (targetm
.calls
.struct_value_rtx
2200 (TREE_TYPE (current_function_decl
), 1)))
2201 return DECL_BY_REFERENCE (decl
);
2203 /* Otherwise, we're taking an extra all.function_result_decl
2204 argument. It's set up in assign_parms_augmented_arg_list,
2205 under the (negated) conditions above, and then it's used to
2206 set up the RESULT_DECL rtl in assign_params, after looping
2207 over all parameters. Now, if the RESULT_DECL is not by
2208 reference, we'll use a MEM either way. */
2209 if (!DECL_BY_REFERENCE (decl
))
2212 /* Otherwise, if RESULT_DECL is DECL_BY_REFERENCE, it will take
2213 the function_result_decl's assignment. Since it's a pointer,
2214 we can short-circuit a number of the tests below, and we must
2215 duplicate them because we don't have the function_result_decl
2217 if (!targetm
.calls
.allocate_stack_slots_for_args ())
2219 /* We don't set DECL_IGNORED_P for the function_result_decl. */
2222 if (cfun
->tail_call_marked
)
2224 /* We don't set DECL_REGISTER for the function_result_decl. */
2228 /* Only register-like things go in registers. */
2229 if (DECL_MODE (decl
) == BLKmode
)
2232 /* If -ffloat-store specified, don't put explicit float variables
2234 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
2235 propagates values across these stores, and it probably shouldn't. */
2236 if (flag_float_store
&& FLOAT_TYPE_P (TREE_TYPE (decl
)))
2239 if (!targetm
.calls
.allocate_stack_slots_for_args ())
2242 /* If we're not interested in tracking debugging information for
2243 this decl, then we can certainly put it in a register. */
2244 if (DECL_IGNORED_P (decl
))
2250 /* Thunks force a tail call even at -O0 so we need to avoid creating a
2251 dangling reference in case the parameter is passed by reference. */
2252 if (TREE_CODE (decl
) == PARM_DECL
&& cfun
->tail_call_marked
)
2255 if (!DECL_REGISTER (decl
))
2258 /* When not optimizing, disregard register keyword for types that
2259 could have methods, otherwise the methods won't be callable from
2261 if (RECORD_OR_UNION_TYPE_P (TREE_TYPE (decl
)))
2267 /* Structures to communicate between the subroutines of assign_parms.
2268 The first holds data persistent across all parameters, the second
2269 is cleared out for each parameter. */
2271 struct assign_parm_data_all
2273 /* When INIT_CUMULATIVE_ARGS gets revamped, allocating CUMULATIVE_ARGS
2274 should become a job of the target or otherwise encapsulated. */
2275 CUMULATIVE_ARGS args_so_far_v
;
2276 cumulative_args_t args_so_far
;
2277 struct args_size stack_args_size
;
2278 tree function_result_decl
;
2280 rtx_insn
*first_conversion_insn
;
2281 rtx_insn
*last_conversion_insn
;
2282 HOST_WIDE_INT pretend_args_size
;
2283 HOST_WIDE_INT extra_pretend_bytes
;
2284 int reg_parm_stack_space
;
2287 struct assign_parm_data_one
2290 function_arg_info arg
;
2293 machine_mode nominal_mode
;
2294 machine_mode passed_mode
;
2295 struct locate_and_pad_arg_data locate
;
2299 /* A subroutine of assign_parms. Initialize ALL. */
2302 assign_parms_initialize_all (struct assign_parm_data_all
*all
)
2304 tree fntype ATTRIBUTE_UNUSED
;
2306 memset (all
, 0, sizeof (*all
));
2308 fntype
= TREE_TYPE (current_function_decl
);
2310 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2311 INIT_CUMULATIVE_INCOMING_ARGS (all
->args_so_far_v
, fntype
, NULL_RTX
);
2313 INIT_CUMULATIVE_ARGS (all
->args_so_far_v
, fntype
, NULL_RTX
,
2314 current_function_decl
, -1);
2316 all
->args_so_far
= pack_cumulative_args (&all
->args_so_far_v
);
2318 #ifdef INCOMING_REG_PARM_STACK_SPACE
2319 all
->reg_parm_stack_space
2320 = INCOMING_REG_PARM_STACK_SPACE (current_function_decl
);
2324 /* If ARGS contains entries with complex types, split the entry into two
2325 entries of the component type. Return a new list of substitutions are
2326 needed, else the old list. */
2329 split_complex_args (vec
<tree
> *args
)
2334 FOR_EACH_VEC_ELT (*args
, i
, p
)
2336 tree type
= TREE_TYPE (p
);
2337 if (TREE_CODE (type
) == COMPLEX_TYPE
2338 && targetm
.calls
.split_complex_arg (type
))
2341 tree subtype
= TREE_TYPE (type
);
2342 bool addressable
= TREE_ADDRESSABLE (p
);
2344 /* Rewrite the PARM_DECL's type with its component. */
2346 TREE_TYPE (p
) = subtype
;
2347 DECL_ARG_TYPE (p
) = TREE_TYPE (DECL_ARG_TYPE (p
));
2348 SET_DECL_MODE (p
, VOIDmode
);
2349 DECL_SIZE (p
) = NULL
;
2350 DECL_SIZE_UNIT (p
) = NULL
;
2351 /* If this arg must go in memory, put it in a pseudo here.
2352 We can't allow it to go in memory as per normal parms,
2353 because the usual place might not have the imag part
2354 adjacent to the real part. */
2355 DECL_ARTIFICIAL (p
) = addressable
;
2356 DECL_IGNORED_P (p
) = addressable
;
2357 TREE_ADDRESSABLE (p
) = 0;
2361 /* Build a second synthetic decl. */
2362 decl
= build_decl (EXPR_LOCATION (p
),
2363 PARM_DECL
, NULL_TREE
, subtype
);
2364 DECL_ARG_TYPE (decl
) = DECL_ARG_TYPE (p
);
2365 DECL_ARTIFICIAL (decl
) = addressable
;
2366 DECL_IGNORED_P (decl
) = addressable
;
2367 layout_decl (decl
, 0);
2368 args
->safe_insert (++i
, decl
);
2373 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2374 the hidden struct return argument, and (abi willing) complex args.
2375 Return the new parameter list. */
2378 assign_parms_augmented_arg_list (struct assign_parm_data_all
*all
)
2380 tree fndecl
= current_function_decl
;
2381 tree fntype
= TREE_TYPE (fndecl
);
2382 vec
<tree
> fnargs
= vNULL
;
2385 for (arg
= DECL_ARGUMENTS (fndecl
); arg
; arg
= DECL_CHAIN (arg
))
2386 fnargs
.safe_push (arg
);
2388 all
->orig_fnargs
= DECL_ARGUMENTS (fndecl
);
2390 /* If struct value address is treated as the first argument, make it so. */
2391 if (aggregate_value_p (DECL_RESULT (fndecl
), fndecl
)
2392 && ! cfun
->returns_pcc_struct
2393 && targetm
.calls
.struct_value_rtx (TREE_TYPE (fndecl
), 1) == 0)
2395 tree type
= build_pointer_type (TREE_TYPE (fntype
));
2398 decl
= build_decl (DECL_SOURCE_LOCATION (fndecl
),
2399 PARM_DECL
, get_identifier (".result_ptr"), type
);
2400 DECL_ARG_TYPE (decl
) = type
;
2401 DECL_ARTIFICIAL (decl
) = 1;
2402 DECL_NAMELESS (decl
) = 1;
2403 TREE_CONSTANT (decl
) = 1;
2404 /* We don't set DECL_IGNORED_P or DECL_REGISTER here. If this
2405 changes, the end of the RESULT_DECL handling block in
2406 use_register_for_decl must be adjusted to match. */
2408 DECL_CHAIN (decl
) = all
->orig_fnargs
;
2409 all
->orig_fnargs
= decl
;
2410 fnargs
.safe_insert (0, decl
);
2412 all
->function_result_decl
= decl
;
2415 /* If the target wants to split complex arguments into scalars, do so. */
2416 if (targetm
.calls
.split_complex_arg
)
2417 split_complex_args (&fnargs
);
2422 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2423 data for the parameter. Incorporate ABI specifics such as pass-by-
2424 reference and type promotion. */
2427 assign_parm_find_data_types (struct assign_parm_data_all
*all
, tree parm
,
2428 struct assign_parm_data_one
*data
)
2432 #ifndef BROKEN_VALUE_INITIALIZATION
2433 *data
= assign_parm_data_one ();
2435 /* Old versions of GCC used to miscompile the above by only initializing
2436 the members with explicit constructors and copying garbage
2437 to the other members. */
2438 assign_parm_data_one zero_data
= {};
2442 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2444 data
->arg
.named
= 1; /* No variadic parms. */
2445 else if (DECL_CHAIN (parm
))
2446 data
->arg
.named
= 1; /* Not the last non-variadic parm. */
2447 else if (targetm
.calls
.strict_argument_naming (all
->args_so_far
))
2448 data
->arg
.named
= 1; /* Only variadic ones are unnamed. */
2450 data
->arg
.named
= 0; /* Treat as variadic. */
2452 data
->nominal_type
= TREE_TYPE (parm
);
2453 data
->arg
.type
= DECL_ARG_TYPE (parm
);
2455 /* Look out for errors propagating this far. Also, if the parameter's
2456 type is void then its value doesn't matter. */
2457 if (TREE_TYPE (parm
) == error_mark_node
2458 /* This can happen after weird syntax errors
2459 or if an enum type is defined among the parms. */
2460 || TREE_CODE (parm
) != PARM_DECL
2461 || data
->arg
.type
== NULL
2462 || VOID_TYPE_P (data
->nominal_type
))
2464 data
->nominal_type
= data
->arg
.type
= void_type_node
;
2465 data
->nominal_mode
= data
->passed_mode
= data
->arg
.mode
= VOIDmode
;
2469 /* Find mode of arg as it is passed, and mode of arg as it should be
2470 during execution of this function. */
2471 data
->passed_mode
= data
->arg
.mode
= TYPE_MODE (data
->arg
.type
);
2472 data
->nominal_mode
= TYPE_MODE (data
->nominal_type
);
2474 /* If the parm is to be passed as a transparent union or record, use the
2475 type of the first field for the tests below. We have already verified
2476 that the modes are the same. */
2477 if (RECORD_OR_UNION_TYPE_P (data
->arg
.type
)
2478 && TYPE_TRANSPARENT_AGGR (data
->arg
.type
))
2479 data
->arg
.type
= TREE_TYPE (first_field (data
->arg
.type
));
2481 /* See if this arg was passed by invisible reference. */
2482 if (apply_pass_by_reference_rules (&all
->args_so_far_v
, data
->arg
))
2484 data
->nominal_type
= data
->arg
.type
;
2485 data
->passed_mode
= data
->nominal_mode
= data
->arg
.mode
;
2488 /* Find mode as it is passed by the ABI. */
2489 unsignedp
= TYPE_UNSIGNED (data
->arg
.type
);
2491 = promote_function_mode (data
->arg
.type
, data
->arg
.mode
, &unsignedp
,
2492 TREE_TYPE (current_function_decl
), 0);
2495 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2498 assign_parms_setup_varargs (struct assign_parm_data_all
*all
,
2499 struct assign_parm_data_one
*data
, bool no_rtl
)
2501 int varargs_pretend_bytes
= 0;
2503 function_arg_info last_named_arg
= data
->arg
;
2504 last_named_arg
.named
= true;
2505 targetm
.calls
.setup_incoming_varargs (all
->args_so_far
, last_named_arg
,
2506 &varargs_pretend_bytes
, no_rtl
);
2508 /* If the back-end has requested extra stack space, record how much is
2509 needed. Do not change pretend_args_size otherwise since it may be
2510 nonzero from an earlier partial argument. */
2511 if (varargs_pretend_bytes
> 0)
2512 all
->pretend_args_size
= varargs_pretend_bytes
;
2515 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2516 the incoming location of the current parameter. */
2519 assign_parm_find_entry_rtl (struct assign_parm_data_all
*all
,
2520 struct assign_parm_data_one
*data
)
2522 HOST_WIDE_INT pretend_bytes
= 0;
2526 if (data
->arg
.mode
== VOIDmode
)
2528 data
->entry_parm
= data
->stack_parm
= const0_rtx
;
2532 targetm
.calls
.warn_parameter_passing_abi (all
->args_so_far
,
2535 entry_parm
= targetm
.calls
.function_incoming_arg (all
->args_so_far
,
2537 if (entry_parm
== 0)
2538 data
->arg
.mode
= data
->passed_mode
;
2540 /* Determine parm's home in the stack, in case it arrives in the stack
2541 or we should pretend it did. Compute the stack position and rtx where
2542 the argument arrives and its size.
2544 There is one complexity here: If this was a parameter that would
2545 have been passed in registers, but wasn't only because it is
2546 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2547 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2548 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2549 as it was the previous time. */
2550 in_regs
= (entry_parm
!= 0);
2551 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2554 if (!in_regs
&& !data
->arg
.named
)
2556 if (targetm
.calls
.pretend_outgoing_varargs_named (all
->args_so_far
))
2559 function_arg_info named_arg
= data
->arg
;
2560 named_arg
.named
= true;
2561 tem
= targetm
.calls
.function_incoming_arg (all
->args_so_far
,
2563 in_regs
= tem
!= NULL
;
2567 /* If this parameter was passed both in registers and in the stack, use
2568 the copy on the stack. */
2569 if (targetm
.calls
.must_pass_in_stack (data
->arg
))
2576 partial
= targetm
.calls
.arg_partial_bytes (all
->args_so_far
, data
->arg
);
2577 data
->partial
= partial
;
2579 /* The caller might already have allocated stack space for the
2580 register parameters. */
2581 if (partial
!= 0 && all
->reg_parm_stack_space
== 0)
2583 /* Part of this argument is passed in registers and part
2584 is passed on the stack. Ask the prologue code to extend
2585 the stack part so that we can recreate the full value.
2587 PRETEND_BYTES is the size of the registers we need to store.
2588 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2589 stack space that the prologue should allocate.
2591 Internally, gcc assumes that the argument pointer is aligned
2592 to STACK_BOUNDARY bits. This is used both for alignment
2593 optimizations (see init_emit) and to locate arguments that are
2594 aligned to more than PARM_BOUNDARY bits. We must preserve this
2595 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2596 a stack boundary. */
2598 /* We assume at most one partial arg, and it must be the first
2599 argument on the stack. */
2600 gcc_assert (!all
->extra_pretend_bytes
&& !all
->pretend_args_size
);
2602 pretend_bytes
= partial
;
2603 all
->pretend_args_size
= CEIL_ROUND (pretend_bytes
, STACK_BYTES
);
2605 /* We want to align relative to the actual stack pointer, so
2606 don't include this in the stack size until later. */
2607 all
->extra_pretend_bytes
= all
->pretend_args_size
;
2611 locate_and_pad_parm (data
->arg
.mode
, data
->arg
.type
, in_regs
,
2612 all
->reg_parm_stack_space
,
2613 entry_parm
? data
->partial
: 0, current_function_decl
,
2614 &all
->stack_args_size
, &data
->locate
);
2616 /* Update parm_stack_boundary if this parameter is passed in the
2618 if (!in_regs
&& crtl
->parm_stack_boundary
< data
->locate
.boundary
)
2619 crtl
->parm_stack_boundary
= data
->locate
.boundary
;
2621 /* Adjust offsets to include the pretend args. */
2622 pretend_bytes
= all
->extra_pretend_bytes
- pretend_bytes
;
2623 data
->locate
.slot_offset
.constant
+= pretend_bytes
;
2624 data
->locate
.offset
.constant
+= pretend_bytes
;
2626 data
->entry_parm
= entry_parm
;
2629 /* A subroutine of assign_parms. If there is actually space on the stack
2630 for this parm, count it in stack_args_size and return true. */
2633 assign_parm_is_stack_parm (struct assign_parm_data_all
*all
,
2634 struct assign_parm_data_one
*data
)
2636 /* Trivially true if we've no incoming register. */
2637 if (data
->entry_parm
== NULL
)
2639 /* Also true if we're partially in registers and partially not,
2640 since we've arranged to drop the entire argument on the stack. */
2641 else if (data
->partial
!= 0)
2643 /* Also true if the target says that it's passed in both registers
2644 and on the stack. */
2645 else if (GET_CODE (data
->entry_parm
) == PARALLEL
2646 && XEXP (XVECEXP (data
->entry_parm
, 0, 0), 0) == NULL_RTX
)
2648 /* Also true if the target says that there's stack allocated for
2649 all register parameters. */
2650 else if (all
->reg_parm_stack_space
> 0)
2652 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2656 all
->stack_args_size
.constant
+= data
->locate
.size
.constant
;
2657 if (data
->locate
.size
.var
)
2658 ADD_PARM_SIZE (all
->stack_args_size
, data
->locate
.size
.var
);
2663 /* A subroutine of assign_parms. Given that this parameter is allocated
2664 stack space by the ABI, find it. */
2667 assign_parm_find_stack_rtl (tree parm
, struct assign_parm_data_one
*data
)
2669 rtx offset_rtx
, stack_parm
;
2670 unsigned int align
, boundary
;
2672 /* If we're passing this arg using a reg, make its stack home the
2673 aligned stack slot. */
2674 if (data
->entry_parm
)
2675 offset_rtx
= ARGS_SIZE_RTX (data
->locate
.slot_offset
);
2677 offset_rtx
= ARGS_SIZE_RTX (data
->locate
.offset
);
2679 stack_parm
= crtl
->args
.internal_arg_pointer
;
2680 if (offset_rtx
!= const0_rtx
)
2681 stack_parm
= gen_rtx_PLUS (Pmode
, stack_parm
, offset_rtx
);
2682 stack_parm
= gen_rtx_MEM (data
->arg
.mode
, stack_parm
);
2684 if (!data
->arg
.pass_by_reference
)
2686 set_mem_attributes (stack_parm
, parm
, 1);
2687 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2688 while promoted mode's size is needed. */
2689 if (data
->arg
.mode
!= BLKmode
2690 && data
->arg
.mode
!= DECL_MODE (parm
))
2692 set_mem_size (stack_parm
, GET_MODE_SIZE (data
->arg
.mode
));
2693 if (MEM_EXPR (stack_parm
) && MEM_OFFSET_KNOWN_P (stack_parm
))
2695 poly_int64 offset
= subreg_lowpart_offset (DECL_MODE (parm
),
2697 if (maybe_ne (offset
, 0))
2698 set_mem_offset (stack_parm
, MEM_OFFSET (stack_parm
) - offset
);
2703 boundary
= data
->locate
.boundary
;
2704 align
= BITS_PER_UNIT
;
2706 /* If we're padding upward, we know that the alignment of the slot
2707 is TARGET_FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2708 intentionally forcing upward padding. Otherwise we have to come
2709 up with a guess at the alignment based on OFFSET_RTX. */
2711 if (data
->locate
.where_pad
== PAD_NONE
|| data
->entry_parm
)
2713 else if (data
->locate
.where_pad
== PAD_UPWARD
)
2716 /* If the argument offset is actually more aligned than the nominal
2717 stack slot boundary, take advantage of that excess alignment.
2718 Don't make any assumptions if STACK_POINTER_OFFSET is in use. */
2719 if (poly_int_rtx_p (offset_rtx
, &offset
)
2720 && known_eq (STACK_POINTER_OFFSET
, 0))
2722 unsigned int offset_align
= known_alignment (offset
) * BITS_PER_UNIT
;
2723 if (offset_align
== 0 || offset_align
> STACK_BOUNDARY
)
2724 offset_align
= STACK_BOUNDARY
;
2725 align
= MAX (align
, offset_align
);
2728 else if (poly_int_rtx_p (offset_rtx
, &offset
))
2730 align
= least_bit_hwi (boundary
);
2731 unsigned int offset_align
= known_alignment (offset
) * BITS_PER_UNIT
;
2732 if (offset_align
!= 0)
2733 align
= MIN (align
, offset_align
);
2735 set_mem_align (stack_parm
, align
);
2737 if (data
->entry_parm
)
2738 set_reg_attrs_for_parm (data
->entry_parm
, stack_parm
);
2740 data
->stack_parm
= stack_parm
;
2743 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2744 always valid and contiguous. */
2747 assign_parm_adjust_entry_rtl (struct assign_parm_data_one
*data
)
2749 rtx entry_parm
= data
->entry_parm
;
2750 rtx stack_parm
= data
->stack_parm
;
2752 /* If this parm was passed part in regs and part in memory, pretend it
2753 arrived entirely in memory by pushing the register-part onto the stack.
2754 In the special case of a DImode or DFmode that is split, we could put
2755 it together in a pseudoreg directly, but for now that's not worth
2757 if (data
->partial
!= 0)
2759 /* Handle calls that pass values in multiple non-contiguous
2760 locations. The Irix 6 ABI has examples of this. */
2761 if (GET_CODE (entry_parm
) == PARALLEL
)
2762 emit_group_store (validize_mem (copy_rtx (stack_parm
)), entry_parm
,
2763 data
->arg
.type
, int_size_in_bytes (data
->arg
.type
));
2766 gcc_assert (data
->partial
% UNITS_PER_WORD
== 0);
2767 move_block_from_reg (REGNO (entry_parm
),
2768 validize_mem (copy_rtx (stack_parm
)),
2769 data
->partial
/ UNITS_PER_WORD
);
2772 entry_parm
= stack_parm
;
2775 /* If we didn't decide this parm came in a register, by default it came
2777 else if (entry_parm
== NULL
)
2778 entry_parm
= stack_parm
;
2780 /* When an argument is passed in multiple locations, we can't make use
2781 of this information, but we can save some copying if the whole argument
2782 is passed in a single register. */
2783 else if (GET_CODE (entry_parm
) == PARALLEL
2784 && data
->nominal_mode
!= BLKmode
2785 && data
->passed_mode
!= BLKmode
)
2787 size_t i
, len
= XVECLEN (entry_parm
, 0);
2789 for (i
= 0; i
< len
; i
++)
2790 if (XEXP (XVECEXP (entry_parm
, 0, i
), 0) != NULL_RTX
2791 && REG_P (XEXP (XVECEXP (entry_parm
, 0, i
), 0))
2792 && (GET_MODE (XEXP (XVECEXP (entry_parm
, 0, i
), 0))
2793 == data
->passed_mode
)
2794 && INTVAL (XEXP (XVECEXP (entry_parm
, 0, i
), 1)) == 0)
2796 entry_parm
= XEXP (XVECEXP (entry_parm
, 0, i
), 0);
2801 data
->entry_parm
= entry_parm
;
2804 /* A subroutine of assign_parms. Reconstitute any values which were
2805 passed in multiple registers and would fit in a single register. */
2808 assign_parm_remove_parallels (struct assign_parm_data_one
*data
)
2810 rtx entry_parm
= data
->entry_parm
;
2812 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2813 This can be done with register operations rather than on the
2814 stack, even if we will store the reconstituted parameter on the
2816 if (GET_CODE (entry_parm
) == PARALLEL
&& GET_MODE (entry_parm
) != BLKmode
)
2818 rtx parmreg
= gen_reg_rtx (GET_MODE (entry_parm
));
2819 emit_group_store (parmreg
, entry_parm
, data
->arg
.type
,
2820 GET_MODE_SIZE (GET_MODE (entry_parm
)));
2821 entry_parm
= parmreg
;
2824 data
->entry_parm
= entry_parm
;
2827 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2828 always valid and properly aligned. */
2831 assign_parm_adjust_stack_rtl (struct assign_parm_data_one
*data
)
2833 rtx stack_parm
= data
->stack_parm
;
2835 /* If we can't trust the parm stack slot to be aligned enough for its
2836 ultimate type, don't use that slot after entry. We'll make another
2837 stack slot, if we need one. */
2839 && ((GET_MODE_ALIGNMENT (data
->nominal_mode
) > MEM_ALIGN (stack_parm
)
2840 && ((optab_handler (movmisalign_optab
, data
->nominal_mode
)
2841 != CODE_FOR_nothing
)
2842 || targetm
.slow_unaligned_access (data
->nominal_mode
,
2843 MEM_ALIGN (stack_parm
))))
2844 || (data
->nominal_type
2845 && TYPE_ALIGN (data
->nominal_type
) > MEM_ALIGN (stack_parm
)
2846 && MEM_ALIGN (stack_parm
) < PREFERRED_STACK_BOUNDARY
)))
2849 /* If parm was passed in memory, and we need to convert it on entry,
2850 don't store it back in that same slot. */
2851 else if (data
->entry_parm
== stack_parm
2852 && data
->nominal_mode
!= BLKmode
2853 && data
->nominal_mode
!= data
->passed_mode
)
2856 /* If stack protection is in effect for this function, don't leave any
2857 pointers in their passed stack slots. */
2858 else if (crtl
->stack_protect_guard
2859 && (flag_stack_protect
== SPCT_FLAG_ALL
2860 || data
->arg
.pass_by_reference
2861 || POINTER_TYPE_P (data
->nominal_type
)))
2864 data
->stack_parm
= stack_parm
;
2867 /* A subroutine of assign_parms. Return true if the current parameter
2868 should be stored as a BLKmode in the current frame. */
2871 assign_parm_setup_block_p (struct assign_parm_data_one
*data
)
2873 if (data
->nominal_mode
== BLKmode
)
2875 if (GET_MODE (data
->entry_parm
) == BLKmode
)
2878 #ifdef BLOCK_REG_PADDING
2879 /* Only assign_parm_setup_block knows how to deal with register arguments
2880 that are padded at the least significant end. */
2881 if (REG_P (data
->entry_parm
)
2882 && known_lt (GET_MODE_SIZE (data
->arg
.mode
), UNITS_PER_WORD
)
2883 && (BLOCK_REG_PADDING (data
->passed_mode
, data
->arg
.type
, 1)
2884 == (BYTES_BIG_ENDIAN
? PAD_UPWARD
: PAD_DOWNWARD
)))
2891 /* A subroutine of assign_parms. Arrange for the parameter to be
2892 present and valid in DATA->STACK_RTL. */
2895 assign_parm_setup_block (struct assign_parm_data_all
*all
,
2896 tree parm
, struct assign_parm_data_one
*data
)
2898 rtx entry_parm
= data
->entry_parm
;
2899 rtx stack_parm
= data
->stack_parm
;
2900 rtx target_reg
= NULL_RTX
;
2901 bool in_conversion_seq
= false;
2903 HOST_WIDE_INT size_stored
;
2905 if (GET_CODE (entry_parm
) == PARALLEL
)
2906 entry_parm
= emit_group_move_into_temps (entry_parm
);
2908 /* If we want the parameter in a pseudo, don't use a stack slot. */
2909 if (is_gimple_reg (parm
) && use_register_for_decl (parm
))
2911 tree def
= ssa_default_def (cfun
, parm
);
2913 machine_mode mode
= promote_ssa_mode (def
, NULL
);
2914 rtx reg
= gen_reg_rtx (mode
);
2915 if (GET_CODE (reg
) != CONCAT
)
2920 /* Avoid allocating a stack slot, if there isn't one
2921 preallocated by the ABI. It might seem like we should
2922 always prefer a pseudo, but converting between
2923 floating-point and integer modes goes through the stack
2924 on various machines, so it's better to use the reserved
2925 stack slot than to risk wasting it and allocating more
2926 for the conversion. */
2927 if (stack_parm
== NULL_RTX
)
2929 int save
= generating_concat_p
;
2930 generating_concat_p
= 0;
2931 stack_parm
= gen_reg_rtx (mode
);
2932 generating_concat_p
= save
;
2935 data
->stack_parm
= NULL
;
2938 size
= int_size_in_bytes (data
->arg
.type
);
2939 size_stored
= CEIL_ROUND (size
, UNITS_PER_WORD
);
2940 if (stack_parm
== 0)
2942 HOST_WIDE_INT parm_align
2944 ? MAX (DECL_ALIGN (parm
), BITS_PER_WORD
) : DECL_ALIGN (parm
));
2946 SET_DECL_ALIGN (parm
, parm_align
);
2947 if (DECL_ALIGN (parm
) > MAX_SUPPORTED_STACK_ALIGNMENT
)
2949 rtx allocsize
= gen_int_mode (size_stored
, Pmode
);
2950 get_dynamic_stack_size (&allocsize
, 0, DECL_ALIGN (parm
), NULL
);
2951 stack_parm
= assign_stack_local (BLKmode
, UINTVAL (allocsize
),
2952 MAX_SUPPORTED_STACK_ALIGNMENT
);
2953 rtx addr
= align_dynamic_address (XEXP (stack_parm
, 0),
2955 mark_reg_pointer (addr
, DECL_ALIGN (parm
));
2956 stack_parm
= gen_rtx_MEM (GET_MODE (stack_parm
), addr
);
2957 MEM_NOTRAP_P (stack_parm
) = 1;
2960 stack_parm
= assign_stack_local (BLKmode
, size_stored
,
2962 if (known_eq (GET_MODE_SIZE (GET_MODE (entry_parm
)), size
))
2963 PUT_MODE (stack_parm
, GET_MODE (entry_parm
));
2964 set_mem_attributes (stack_parm
, parm
, 1);
2967 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2968 calls that pass values in multiple non-contiguous locations. */
2969 if (REG_P (entry_parm
) || GET_CODE (entry_parm
) == PARALLEL
)
2973 /* Note that we will be storing an integral number of words.
2974 So we have to be careful to ensure that we allocate an
2975 integral number of words. We do this above when we call
2976 assign_stack_local if space was not allocated in the argument
2977 list. If it was, this will not work if PARM_BOUNDARY is not
2978 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2979 if it becomes a problem. Exception is when BLKmode arrives
2980 with arguments not conforming to word_mode. */
2982 if (data
->stack_parm
== 0)
2984 else if (GET_CODE (entry_parm
) == PARALLEL
)
2987 gcc_assert (!size
|| !(PARM_BOUNDARY
% BITS_PER_WORD
));
2989 mem
= validize_mem (copy_rtx (stack_parm
));
2991 /* Handle values in multiple non-contiguous locations. */
2992 if (GET_CODE (entry_parm
) == PARALLEL
&& !MEM_P (mem
))
2993 emit_group_store (mem
, entry_parm
, data
->arg
.type
, size
);
2994 else if (GET_CODE (entry_parm
) == PARALLEL
)
2996 push_to_sequence2 (all
->first_conversion_insn
,
2997 all
->last_conversion_insn
);
2998 emit_group_store (mem
, entry_parm
, data
->arg
.type
, size
);
2999 all
->first_conversion_insn
= get_insns ();
3000 all
->last_conversion_insn
= get_last_insn ();
3002 in_conversion_seq
= true;
3008 /* If SIZE is that of a mode no bigger than a word, just use
3009 that mode's store operation. */
3010 else if (size
<= UNITS_PER_WORD
)
3012 unsigned int bits
= size
* BITS_PER_UNIT
;
3013 machine_mode mode
= int_mode_for_size (bits
, 0).else_blk ();
3016 #ifdef BLOCK_REG_PADDING
3017 && (size
== UNITS_PER_WORD
3018 || (BLOCK_REG_PADDING (mode
, data
->arg
.type
, 1)
3019 != (BYTES_BIG_ENDIAN
? PAD_UPWARD
: PAD_DOWNWARD
)))
3025 /* We are really truncating a word_mode value containing
3026 SIZE bytes into a value of mode MODE. If such an
3027 operation requires no actual instructions, we can refer
3028 to the value directly in mode MODE, otherwise we must
3029 start with the register in word_mode and explicitly
3031 if (mode
== word_mode
3032 || TRULY_NOOP_TRUNCATION_MODES_P (mode
, word_mode
))
3033 reg
= gen_rtx_REG (mode
, REGNO (entry_parm
));
3036 reg
= gen_rtx_REG (word_mode
, REGNO (entry_parm
));
3037 reg
= convert_to_mode (mode
, copy_to_reg (reg
), 1);
3040 /* We use adjust_address to get a new MEM with the mode
3041 changed. adjust_address is better than change_address
3042 for this purpose because adjust_address does not lose
3043 the MEM_EXPR associated with the MEM.
3045 If the MEM_EXPR is lost, then optimizations like DSE
3046 assume the MEM escapes and thus is not subject to DSE. */
3047 emit_move_insn (adjust_address (mem
, mode
, 0), reg
);
3050 #ifdef BLOCK_REG_PADDING
3051 /* Storing the register in memory as a full word, as
3052 move_block_from_reg below would do, and then using the
3053 MEM in a smaller mode, has the effect of shifting right
3054 if BYTES_BIG_ENDIAN. If we're bypassing memory, the
3055 shifting must be explicit. */
3056 else if (!MEM_P (mem
))
3060 /* If the assert below fails, we should have taken the
3061 mode != BLKmode path above, unless we have downward
3062 padding of smaller-than-word arguments on a machine
3063 with little-endian bytes, which would likely require
3064 additional changes to work correctly. */
3065 gcc_checking_assert (BYTES_BIG_ENDIAN
3066 && (BLOCK_REG_PADDING (mode
,
3070 int by
= (UNITS_PER_WORD
- size
) * BITS_PER_UNIT
;
3072 x
= gen_rtx_REG (word_mode
, REGNO (entry_parm
));
3073 x
= expand_shift (RSHIFT_EXPR
, word_mode
, x
, by
,
3075 x
= force_reg (word_mode
, x
);
3076 x
= gen_lowpart_SUBREG (GET_MODE (mem
), x
);
3078 emit_move_insn (mem
, x
);
3082 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
3083 machine must be aligned to the left before storing
3084 to memory. Note that the previous test doesn't
3085 handle all cases (e.g. SIZE == 3). */
3086 else if (size
!= UNITS_PER_WORD
3087 #ifdef BLOCK_REG_PADDING
3088 && (BLOCK_REG_PADDING (mode
, data
->arg
.type
, 1)
3096 int by
= (UNITS_PER_WORD
- size
) * BITS_PER_UNIT
;
3097 rtx reg
= gen_rtx_REG (word_mode
, REGNO (entry_parm
));
3099 x
= expand_shift (LSHIFT_EXPR
, word_mode
, reg
, by
, NULL_RTX
, 1);
3100 tem
= change_address (mem
, word_mode
, 0);
3101 emit_move_insn (tem
, x
);
3104 move_block_from_reg (REGNO (entry_parm
), mem
,
3105 size_stored
/ UNITS_PER_WORD
);
3107 else if (!MEM_P (mem
))
3109 gcc_checking_assert (size
> UNITS_PER_WORD
);
3110 #ifdef BLOCK_REG_PADDING
3111 gcc_checking_assert (BLOCK_REG_PADDING (GET_MODE (mem
),
3115 emit_move_insn (mem
, entry_parm
);
3118 move_block_from_reg (REGNO (entry_parm
), mem
,
3119 size_stored
/ UNITS_PER_WORD
);
3121 else if (data
->stack_parm
== 0 && !TYPE_EMPTY_P (data
->arg
.type
))
3123 push_to_sequence2 (all
->first_conversion_insn
, all
->last_conversion_insn
);
3124 emit_block_move (stack_parm
, data
->entry_parm
, GEN_INT (size
),
3126 all
->first_conversion_insn
= get_insns ();
3127 all
->last_conversion_insn
= get_last_insn ();
3129 in_conversion_seq
= true;
3134 if (!in_conversion_seq
)
3135 emit_move_insn (target_reg
, stack_parm
);
3138 push_to_sequence2 (all
->first_conversion_insn
,
3139 all
->last_conversion_insn
);
3140 emit_move_insn (target_reg
, stack_parm
);
3141 all
->first_conversion_insn
= get_insns ();
3142 all
->last_conversion_insn
= get_last_insn ();
3145 stack_parm
= target_reg
;
3148 data
->stack_parm
= stack_parm
;
3149 set_parm_rtl (parm
, stack_parm
);
3152 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
3153 parameter. Get it there. Perform all ABI specified conversions. */
3156 assign_parm_setup_reg (struct assign_parm_data_all
*all
, tree parm
,
3157 struct assign_parm_data_one
*data
)
3159 rtx parmreg
, validated_mem
;
3160 rtx equiv_stack_parm
;
3161 machine_mode promoted_nominal_mode
;
3162 int unsignedp
= TYPE_UNSIGNED (TREE_TYPE (parm
));
3163 bool did_conversion
= false;
3164 bool need_conversion
, moved
;
3165 enum insn_code icode
;
3168 /* Store the parm in a pseudoregister during the function, but we may
3169 need to do it in a wider mode. Using 2 here makes the result
3170 consistent with promote_decl_mode and thus expand_expr_real_1. */
3171 promoted_nominal_mode
3172 = promote_function_mode (data
->nominal_type
, data
->nominal_mode
, &unsignedp
,
3173 TREE_TYPE (current_function_decl
), 2);
3175 parmreg
= gen_reg_rtx (promoted_nominal_mode
);
3176 if (!DECL_ARTIFICIAL (parm
))
3177 mark_user_reg (parmreg
);
3179 /* If this was an item that we received a pointer to,
3180 set rtl appropriately. */
3181 if (data
->arg
.pass_by_reference
)
3183 rtl
= gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data
->arg
.type
)), parmreg
);
3184 set_mem_attributes (rtl
, parm
, 1);
3189 assign_parm_remove_parallels (data
);
3191 /* Copy the value into the register, thus bridging between
3192 assign_parm_find_data_types and expand_expr_real_1. */
3194 equiv_stack_parm
= data
->stack_parm
;
3195 validated_mem
= validize_mem (copy_rtx (data
->entry_parm
));
3197 need_conversion
= (data
->nominal_mode
!= data
->passed_mode
3198 || promoted_nominal_mode
!= data
->arg
.mode
);
3202 && GET_MODE_CLASS (data
->nominal_mode
) == MODE_INT
3203 && data
->nominal_mode
== data
->passed_mode
3204 && data
->nominal_mode
== GET_MODE (data
->entry_parm
))
3206 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
3207 mode, by the caller. We now have to convert it to
3208 NOMINAL_MODE, if different. However, PARMREG may be in
3209 a different mode than NOMINAL_MODE if it is being stored
3212 If ENTRY_PARM is a hard register, it might be in a register
3213 not valid for operating in its mode (e.g., an odd-numbered
3214 register for a DFmode). In that case, moves are the only
3215 thing valid, so we can't do a convert from there. This
3216 occurs when the calling sequence allow such misaligned
3219 In addition, the conversion may involve a call, which could
3220 clobber parameters which haven't been copied to pseudo
3223 First, we try to emit an insn which performs the necessary
3224 conversion. We verify that this insn does not clobber any
3229 icode
= can_extend_p (promoted_nominal_mode
, data
->passed_mode
,
3233 op1
= validated_mem
;
3234 if (icode
!= CODE_FOR_nothing
3235 && insn_operand_matches (icode
, 0, op0
)
3236 && insn_operand_matches (icode
, 1, op1
))
3238 enum rtx_code code
= unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
;
3239 rtx_insn
*insn
, *insns
;
3241 HARD_REG_SET hardregs
;
3244 /* If op1 is a hard register that is likely spilled, first
3245 force it into a pseudo, otherwise combiner might extend
3246 its lifetime too much. */
3247 if (GET_CODE (t
) == SUBREG
)
3250 && HARD_REGISTER_P (t
)
3251 && ! TEST_HARD_REG_BIT (fixed_reg_set
, REGNO (t
))
3252 && targetm
.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (t
))))
3254 t
= gen_reg_rtx (GET_MODE (op1
));
3255 emit_move_insn (t
, op1
);
3259 rtx_insn
*pat
= gen_extend_insn (op0
, t
, promoted_nominal_mode
,
3260 data
->passed_mode
, unsignedp
);
3262 insns
= get_insns ();
3265 CLEAR_HARD_REG_SET (hardregs
);
3266 for (insn
= insns
; insn
&& moved
; insn
= NEXT_INSN (insn
))
3269 note_stores (insn
, record_hard_reg_sets
, &hardregs
);
3270 if (!hard_reg_set_empty_p (hardregs
))
3279 if (equiv_stack_parm
!= NULL_RTX
)
3280 equiv_stack_parm
= gen_rtx_fmt_e (code
, GET_MODE (parmreg
),
3287 /* Nothing to do. */
3289 else if (need_conversion
)
3291 /* We did not have an insn to convert directly, or the sequence
3292 generated appeared unsafe. We must first copy the parm to a
3293 pseudo reg, and save the conversion until after all
3294 parameters have been moved. */
3297 rtx tempreg
= gen_reg_rtx (GET_MODE (data
->entry_parm
));
3299 emit_move_insn (tempreg
, validated_mem
);
3301 push_to_sequence2 (all
->first_conversion_insn
, all
->last_conversion_insn
);
3302 tempreg
= convert_to_mode (data
->nominal_mode
, tempreg
, unsignedp
);
3304 if (partial_subreg_p (tempreg
)
3305 && GET_MODE (tempreg
) == data
->nominal_mode
3306 && REG_P (SUBREG_REG (tempreg
))
3307 && data
->nominal_mode
== data
->passed_mode
3308 && GET_MODE (SUBREG_REG (tempreg
)) == GET_MODE (data
->entry_parm
))
3310 /* The argument is already sign/zero extended, so note it
3312 SUBREG_PROMOTED_VAR_P (tempreg
) = 1;
3313 SUBREG_PROMOTED_SET (tempreg
, unsignedp
);
3316 /* TREE_USED gets set erroneously during expand_assignment. */
3317 save_tree_used
= TREE_USED (parm
);
3318 SET_DECL_RTL (parm
, rtl
);
3319 expand_assignment (parm
, make_tree (data
->nominal_type
, tempreg
), false);
3320 SET_DECL_RTL (parm
, NULL_RTX
);
3321 TREE_USED (parm
) = save_tree_used
;
3322 all
->first_conversion_insn
= get_insns ();
3323 all
->last_conversion_insn
= get_last_insn ();
3326 did_conversion
= true;
3328 else if (MEM_P (data
->entry_parm
)
3329 && GET_MODE_ALIGNMENT (promoted_nominal_mode
)
3330 > MEM_ALIGN (data
->entry_parm
)
3331 && (((icode
= optab_handler (movmisalign_optab
,
3332 promoted_nominal_mode
))
3333 != CODE_FOR_nothing
)
3334 || targetm
.slow_unaligned_access (promoted_nominal_mode
,
3335 MEM_ALIGN (data
->entry_parm
))))
3337 if (icode
!= CODE_FOR_nothing
)
3338 emit_insn (GEN_FCN (icode
) (parmreg
, validated_mem
));
3340 rtl
= parmreg
= extract_bit_field (validated_mem
,
3341 GET_MODE_BITSIZE (promoted_nominal_mode
), 0,
3343 promoted_nominal_mode
, VOIDmode
, false, NULL
);
3346 emit_move_insn (parmreg
, validated_mem
);
3348 /* If we were passed a pointer but the actual value can live in a register,
3349 retrieve it and use it directly. Note that we cannot use nominal_mode,
3350 because it will have been set to Pmode above, we must use the actual mode
3351 of the parameter instead. */
3352 if (data
->arg
.pass_by_reference
&& TYPE_MODE (TREE_TYPE (parm
)) != BLKmode
)
3354 /* Use a stack slot for debugging purposes if possible. */
3355 if (use_register_for_decl (parm
))
3357 parmreg
= gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm
)));
3358 mark_user_reg (parmreg
);
3362 int align
= STACK_SLOT_ALIGNMENT (TREE_TYPE (parm
),
3363 TYPE_MODE (TREE_TYPE (parm
)),
3364 TYPE_ALIGN (TREE_TYPE (parm
)));
3366 = assign_stack_local (TYPE_MODE (TREE_TYPE (parm
)),
3367 GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (parm
))),
3369 set_mem_attributes (parmreg
, parm
, 1);
3372 /* We need to preserve an address based on VIRTUAL_STACK_VARS_REGNUM for
3373 the debug info in case it is not legitimate. */
3374 if (GET_MODE (parmreg
) != GET_MODE (rtl
))
3376 rtx tempreg
= gen_reg_rtx (GET_MODE (rtl
));
3377 int unsigned_p
= TYPE_UNSIGNED (TREE_TYPE (parm
));
3379 push_to_sequence2 (all
->first_conversion_insn
,
3380 all
->last_conversion_insn
);
3381 emit_move_insn (tempreg
, rtl
);
3382 tempreg
= convert_to_mode (GET_MODE (parmreg
), tempreg
, unsigned_p
);
3383 emit_move_insn (MEM_P (parmreg
) ? copy_rtx (parmreg
) : parmreg
,
3385 all
->first_conversion_insn
= get_insns ();
3386 all
->last_conversion_insn
= get_last_insn ();
3389 did_conversion
= true;
3392 emit_move_insn (MEM_P (parmreg
) ? copy_rtx (parmreg
) : parmreg
, rtl
);
3396 /* STACK_PARM is the pointer, not the parm, and PARMREG is
3398 data
->stack_parm
= NULL
;
3401 set_parm_rtl (parm
, rtl
);
3403 /* Mark the register as eliminable if we did no conversion and it was
3404 copied from memory at a fixed offset, and the arg pointer was not
3405 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
3406 offset formed an invalid address, such memory-equivalences as we
3407 make here would screw up life analysis for it. */
3408 if (data
->nominal_mode
== data
->passed_mode
3410 && data
->stack_parm
!= 0
3411 && MEM_P (data
->stack_parm
)
3412 && data
->locate
.offset
.var
== 0
3413 && reg_mentioned_p (virtual_incoming_args_rtx
,
3414 XEXP (data
->stack_parm
, 0)))
3416 rtx_insn
*linsn
= get_last_insn ();
3420 /* Mark complex types separately. */
3421 if (GET_CODE (parmreg
) == CONCAT
)
3423 scalar_mode submode
= GET_MODE_INNER (GET_MODE (parmreg
));
3424 int regnor
= REGNO (XEXP (parmreg
, 0));
3425 int regnoi
= REGNO (XEXP (parmreg
, 1));
3426 rtx stackr
= adjust_address_nv (data
->stack_parm
, submode
, 0);
3427 rtx stacki
= adjust_address_nv (data
->stack_parm
, submode
,
3428 GET_MODE_SIZE (submode
));
3430 /* Scan backwards for the set of the real and
3432 for (sinsn
= linsn
; sinsn
!= 0;
3433 sinsn
= prev_nonnote_insn (sinsn
))
3435 set
= single_set (sinsn
);
3439 if (SET_DEST (set
) == regno_reg_rtx
[regnoi
])
3440 set_unique_reg_note (sinsn
, REG_EQUIV
, stacki
);
3441 else if (SET_DEST (set
) == regno_reg_rtx
[regnor
])
3442 set_unique_reg_note (sinsn
, REG_EQUIV
, stackr
);
3446 set_dst_reg_note (linsn
, REG_EQUIV
, equiv_stack_parm
, parmreg
);
3449 /* For pointer data type, suggest pointer register. */
3450 if (POINTER_TYPE_P (TREE_TYPE (parm
)))
3451 mark_reg_pointer (parmreg
,
3452 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm
))));
3455 /* A subroutine of assign_parms. Allocate stack space to hold the current
3456 parameter. Get it there. Perform all ABI specified conversions. */
3459 assign_parm_setup_stack (struct assign_parm_data_all
*all
, tree parm
,
3460 struct assign_parm_data_one
*data
)
3462 /* Value must be stored in the stack slot STACK_PARM during function
3464 bool to_conversion
= false;
3466 assign_parm_remove_parallels (data
);
3468 if (data
->arg
.mode
!= data
->nominal_mode
)
3470 /* Conversion is required. */
3471 rtx tempreg
= gen_reg_rtx (GET_MODE (data
->entry_parm
));
3473 emit_move_insn (tempreg
, validize_mem (copy_rtx (data
->entry_parm
)));
3475 /* Some ABIs require scalar floating point modes to be passed
3476 in a wider scalar integer mode. We need to explicitly
3477 truncate to an integer mode of the correct precision before
3478 using a SUBREG to reinterpret as a floating point value. */
3479 if (SCALAR_FLOAT_MODE_P (data
->nominal_mode
)
3480 && SCALAR_INT_MODE_P (data
->arg
.mode
)
3481 && known_lt (GET_MODE_SIZE (data
->nominal_mode
),
3482 GET_MODE_SIZE (data
->arg
.mode
)))
3483 tempreg
= convert_wider_int_to_float (data
->nominal_mode
,
3484 data
->arg
.mode
, tempreg
);
3486 push_to_sequence2 (all
->first_conversion_insn
, all
->last_conversion_insn
);
3487 to_conversion
= true;
3489 data
->entry_parm
= convert_to_mode (data
->nominal_mode
, tempreg
,
3490 TYPE_UNSIGNED (TREE_TYPE (parm
)));
3492 if (data
->stack_parm
)
3495 = subreg_lowpart_offset (data
->nominal_mode
,
3496 GET_MODE (data
->stack_parm
));
3497 /* ??? This may need a big-endian conversion on sparc64. */
3499 = adjust_address (data
->stack_parm
, data
->nominal_mode
, 0);
3500 if (maybe_ne (offset
, 0) && MEM_OFFSET_KNOWN_P (data
->stack_parm
))
3501 set_mem_offset (data
->stack_parm
,
3502 MEM_OFFSET (data
->stack_parm
) + offset
);
3506 if (data
->entry_parm
!= data
->stack_parm
)
3510 if (data
->stack_parm
== 0)
3512 int align
= STACK_SLOT_ALIGNMENT (data
->arg
.type
,
3513 GET_MODE (data
->entry_parm
),
3514 TYPE_ALIGN (data
->arg
.type
));
3515 if (align
< (int)GET_MODE_ALIGNMENT (GET_MODE (data
->entry_parm
))
3516 && ((optab_handler (movmisalign_optab
,
3517 GET_MODE (data
->entry_parm
))
3518 != CODE_FOR_nothing
)
3519 || targetm
.slow_unaligned_access (GET_MODE (data
->entry_parm
),
3521 align
= GET_MODE_ALIGNMENT (GET_MODE (data
->entry_parm
));
3523 = assign_stack_local (GET_MODE (data
->entry_parm
),
3524 GET_MODE_SIZE (GET_MODE (data
->entry_parm
)),
3526 align
= MEM_ALIGN (data
->stack_parm
);
3527 set_mem_attributes (data
->stack_parm
, parm
, 1);
3528 set_mem_align (data
->stack_parm
, align
);
3531 dest
= validize_mem (copy_rtx (data
->stack_parm
));
3532 src
= validize_mem (copy_rtx (data
->entry_parm
));
3534 if (TYPE_EMPTY_P (data
->arg
.type
))
3535 /* Empty types don't really need to be copied. */;
3536 else if (MEM_P (src
))
3538 /* Use a block move to handle potentially misaligned entry_parm. */
3540 push_to_sequence2 (all
->first_conversion_insn
,
3541 all
->last_conversion_insn
);
3542 to_conversion
= true;
3544 emit_block_move (dest
, src
,
3545 GEN_INT (int_size_in_bytes (data
->arg
.type
)),
3551 src
= force_reg (GET_MODE (src
), src
);
3552 emit_move_insn (dest
, src
);
3558 all
->first_conversion_insn
= get_insns ();
3559 all
->last_conversion_insn
= get_last_insn ();
3563 set_parm_rtl (parm
, data
->stack_parm
);
3566 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3567 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3570 assign_parms_unsplit_complex (struct assign_parm_data_all
*all
,
3574 tree orig_fnargs
= all
->orig_fnargs
;
3577 for (parm
= orig_fnargs
; parm
; parm
= TREE_CHAIN (parm
), ++i
)
3579 if (TREE_CODE (TREE_TYPE (parm
)) == COMPLEX_TYPE
3580 && targetm
.calls
.split_complex_arg (TREE_TYPE (parm
)))
3582 rtx tmp
, real
, imag
;
3583 scalar_mode inner
= GET_MODE_INNER (DECL_MODE (parm
));
3585 real
= DECL_RTL (fnargs
[i
]);
3586 imag
= DECL_RTL (fnargs
[i
+ 1]);
3587 if (inner
!= GET_MODE (real
))
3589 real
= gen_lowpart_SUBREG (inner
, real
);
3590 imag
= gen_lowpart_SUBREG (inner
, imag
);
3593 if (TREE_ADDRESSABLE (parm
))
3596 HOST_WIDE_INT size
= int_size_in_bytes (TREE_TYPE (parm
));
3597 int align
= STACK_SLOT_ALIGNMENT (TREE_TYPE (parm
),
3599 TYPE_ALIGN (TREE_TYPE (parm
)));
3601 /* split_complex_arg put the real and imag parts in
3602 pseudos. Move them to memory. */
3603 tmp
= assign_stack_local (DECL_MODE (parm
), size
, align
);
3604 set_mem_attributes (tmp
, parm
, 1);
3605 rmem
= adjust_address_nv (tmp
, inner
, 0);
3606 imem
= adjust_address_nv (tmp
, inner
, GET_MODE_SIZE (inner
));
3607 push_to_sequence2 (all
->first_conversion_insn
,
3608 all
->last_conversion_insn
);
3609 emit_move_insn (rmem
, real
);
3610 emit_move_insn (imem
, imag
);
3611 all
->first_conversion_insn
= get_insns ();
3612 all
->last_conversion_insn
= get_last_insn ();
3616 tmp
= gen_rtx_CONCAT (DECL_MODE (parm
), real
, imag
);
3617 set_parm_rtl (parm
, tmp
);
3619 real
= DECL_INCOMING_RTL (fnargs
[i
]);
3620 imag
= DECL_INCOMING_RTL (fnargs
[i
+ 1]);
3621 if (inner
!= GET_MODE (real
))
3623 real
= gen_lowpart_SUBREG (inner
, real
);
3624 imag
= gen_lowpart_SUBREG (inner
, imag
);
3626 tmp
= gen_rtx_CONCAT (DECL_MODE (parm
), real
, imag
);
3627 set_decl_incoming_rtl (parm
, tmp
, false);
3633 /* Assign RTL expressions to the function's parameters. This may involve
3634 copying them into registers and using those registers as the DECL_RTL. */
3637 assign_parms (tree fndecl
)
3639 struct assign_parm_data_all all
;
3644 crtl
->args
.internal_arg_pointer
3645 = targetm
.calls
.internal_arg_pointer ();
3647 assign_parms_initialize_all (&all
);
3648 fnargs
= assign_parms_augmented_arg_list (&all
);
3650 if (TYPE_NO_NAMED_ARGS_STDARG_P (TREE_TYPE (fndecl
)))
3652 struct assign_parm_data_one data
= {};
3653 assign_parms_setup_varargs (&all
, &data
, false);
3656 FOR_EACH_VEC_ELT (fnargs
, i
, parm
)
3658 struct assign_parm_data_one data
;
3660 /* Extract the type of PARM; adjust it according to ABI. */
3661 assign_parm_find_data_types (&all
, parm
, &data
);
3663 /* Early out for errors and void parameters. */
3664 if (data
.passed_mode
== VOIDmode
)
3666 SET_DECL_RTL (parm
, const0_rtx
);
3667 DECL_INCOMING_RTL (parm
) = DECL_RTL (parm
);
3671 /* Estimate stack alignment from parameter alignment. */
3672 if (SUPPORTS_STACK_ALIGNMENT
)
3675 = targetm
.calls
.function_arg_boundary (data
.arg
.mode
,
3677 align
= MINIMUM_ALIGNMENT (data
.arg
.type
, data
.arg
.mode
, align
);
3678 if (TYPE_ALIGN (data
.nominal_type
) > align
)
3679 align
= MINIMUM_ALIGNMENT (data
.nominal_type
,
3680 TYPE_MODE (data
.nominal_type
),
3681 TYPE_ALIGN (data
.nominal_type
));
3682 if (crtl
->stack_alignment_estimated
< align
)
3684 gcc_assert (!crtl
->stack_realign_processed
);
3685 crtl
->stack_alignment_estimated
= align
;
3689 /* Find out where the parameter arrives in this function. */
3690 assign_parm_find_entry_rtl (&all
, &data
);
3692 /* Find out where stack space for this parameter might be. */
3693 if (assign_parm_is_stack_parm (&all
, &data
))
3695 assign_parm_find_stack_rtl (parm
, &data
);
3696 assign_parm_adjust_entry_rtl (&data
);
3697 /* For arguments that occupy no space in the parameter
3698 passing area, have non-zero size and have address taken,
3699 force creation of a stack slot so that they have distinct
3700 address from other parameters. */
3701 if (TYPE_EMPTY_P (data
.arg
.type
)
3702 && TREE_ADDRESSABLE (parm
)
3703 && data
.entry_parm
== data
.stack_parm
3704 && MEM_P (data
.entry_parm
)
3705 && int_size_in_bytes (data
.arg
.type
))
3706 data
.stack_parm
= NULL_RTX
;
3708 /* Record permanently how this parm was passed. */
3709 if (data
.arg
.pass_by_reference
)
3712 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data
.arg
.type
)),
3714 set_decl_incoming_rtl (parm
, incoming_rtl
, true);
3717 set_decl_incoming_rtl (parm
, data
.entry_parm
, false);
3719 assign_parm_adjust_stack_rtl (&data
);
3721 if (assign_parm_setup_block_p (&data
))
3722 assign_parm_setup_block (&all
, parm
, &data
);
3723 else if (data
.arg
.pass_by_reference
|| use_register_for_decl (parm
))
3724 assign_parm_setup_reg (&all
, parm
, &data
);
3726 assign_parm_setup_stack (&all
, parm
, &data
);
3728 if (cfun
->stdarg
&& !DECL_CHAIN (parm
))
3729 assign_parms_setup_varargs (&all
, &data
, false);
3731 /* Update info on where next arg arrives in registers. */
3732 targetm
.calls
.function_arg_advance (all
.args_so_far
, data
.arg
);
3735 if (targetm
.calls
.split_complex_arg
)
3736 assign_parms_unsplit_complex (&all
, fnargs
);
3740 /* Output all parameter conversion instructions (possibly including calls)
3741 now that all parameters have been copied out of hard registers. */
3742 emit_insn (all
.first_conversion_insn
);
3744 /* Estimate reload stack alignment from scalar return mode. */
3745 if (SUPPORTS_STACK_ALIGNMENT
)
3747 if (DECL_RESULT (fndecl
))
3749 tree type
= TREE_TYPE (DECL_RESULT (fndecl
));
3750 machine_mode mode
= TYPE_MODE (type
);
3754 && !AGGREGATE_TYPE_P (type
))
3756 unsigned int align
= GET_MODE_ALIGNMENT (mode
);
3757 if (crtl
->stack_alignment_estimated
< align
)
3759 gcc_assert (!crtl
->stack_realign_processed
);
3760 crtl
->stack_alignment_estimated
= align
;
3766 /* If we are receiving a struct value address as the first argument, set up
3767 the RTL for the function result. As this might require code to convert
3768 the transmitted address to Pmode, we do this here to ensure that possible
3769 preliminary conversions of the address have been emitted already. */
3770 if (all
.function_result_decl
)
3772 tree result
= DECL_RESULT (current_function_decl
);
3773 rtx addr
= DECL_RTL (all
.function_result_decl
);
3776 if (DECL_BY_REFERENCE (result
))
3778 SET_DECL_VALUE_EXPR (result
, all
.function_result_decl
);
3783 SET_DECL_VALUE_EXPR (result
,
3784 build1 (INDIRECT_REF
, TREE_TYPE (result
),
3785 all
.function_result_decl
));
3786 addr
= convert_memory_address (Pmode
, addr
);
3787 x
= gen_rtx_MEM (DECL_MODE (result
), addr
);
3788 set_mem_attributes (x
, result
, 1);
3791 DECL_HAS_VALUE_EXPR_P (result
) = 1;
3793 set_parm_rtl (result
, x
);
3796 /* We have aligned all the args, so add space for the pretend args. */
3797 crtl
->args
.pretend_args_size
= all
.pretend_args_size
;
3798 all
.stack_args_size
.constant
+= all
.extra_pretend_bytes
;
3799 crtl
->args
.size
= all
.stack_args_size
.constant
;
3801 /* Adjust function incoming argument size for alignment and
3804 crtl
->args
.size
= upper_bound (crtl
->args
.size
, all
.reg_parm_stack_space
);
3805 crtl
->args
.size
= aligned_upper_bound (crtl
->args
.size
,
3806 PARM_BOUNDARY
/ BITS_PER_UNIT
);
3808 if (ARGS_GROW_DOWNWARD
)
3810 crtl
->args
.arg_offset_rtx
3811 = (all
.stack_args_size
.var
== 0
3812 ? gen_int_mode (-all
.stack_args_size
.constant
, Pmode
)
3813 : expand_expr (size_diffop (all
.stack_args_size
.var
,
3814 size_int (-all
.stack_args_size
.constant
)),
3815 NULL_RTX
, VOIDmode
, EXPAND_NORMAL
));
3818 crtl
->args
.arg_offset_rtx
= ARGS_SIZE_RTX (all
.stack_args_size
);
3820 /* See how many bytes, if any, of its args a function should try to pop
3823 crtl
->args
.pops_args
= targetm
.calls
.return_pops_args (fndecl
,
3827 /* For stdarg.h function, save info about
3828 regs and stack space used by the named args. */
3830 crtl
->args
.info
= all
.args_so_far_v
;
3832 /* Set the rtx used for the function return value. Put this in its
3833 own variable so any optimizers that need this information don't have
3834 to include tree.h. Do this here so it gets done when an inlined
3835 function gets output. */
3838 = (DECL_RTL_SET_P (DECL_RESULT (fndecl
))
3839 ? DECL_RTL (DECL_RESULT (fndecl
)) : NULL_RTX
);
3841 /* If scalar return value was computed in a pseudo-reg, or was a named
3842 return value that got dumped to the stack, copy that to the hard
3844 if (DECL_RTL_SET_P (DECL_RESULT (fndecl
)))
3846 tree decl_result
= DECL_RESULT (fndecl
);
3847 rtx decl_rtl
= DECL_RTL (decl_result
);
3849 if (REG_P (decl_rtl
)
3850 ? REGNO (decl_rtl
) >= FIRST_PSEUDO_REGISTER
3851 : DECL_REGISTER (decl_result
))
3855 /* Unless the psABI says not to. */
3856 if (TYPE_EMPTY_P (TREE_TYPE (decl_result
)))
3857 real_decl_rtl
= NULL_RTX
;
3861 = targetm
.calls
.function_value (TREE_TYPE (decl_result
),
3863 REG_FUNCTION_VALUE_P (real_decl_rtl
) = 1;
3865 /* The delay slot scheduler assumes that crtl->return_rtx
3866 holds the hard register containing the return value, not a
3867 temporary pseudo. */
3868 crtl
->return_rtx
= real_decl_rtl
;
3873 /* Gimplify the parameter list for current_function_decl. This involves
3874 evaluating SAVE_EXPRs of variable sized parameters and generating code
3875 to implement callee-copies reference parameters. Returns a sequence of
3876 statements to add to the beginning of the function. */
3879 gimplify_parameters (gimple_seq
*cleanup
)
3881 struct assign_parm_data_all all
;
3883 gimple_seq stmts
= NULL
;
3887 assign_parms_initialize_all (&all
);
3888 fnargs
= assign_parms_augmented_arg_list (&all
);
3890 FOR_EACH_VEC_ELT (fnargs
, i
, parm
)
3892 struct assign_parm_data_one data
;
3894 /* Extract the type of PARM; adjust it according to ABI. */
3895 assign_parm_find_data_types (&all
, parm
, &data
);
3897 /* Early out for errors and void parameters. */
3898 if (data
.passed_mode
== VOIDmode
|| DECL_SIZE (parm
) == NULL
)
3901 /* Update info on where next arg arrives in registers. */
3902 targetm
.calls
.function_arg_advance (all
.args_so_far
, data
.arg
);
3904 /* ??? Once upon a time variable_size stuffed parameter list
3905 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3906 turned out to be less than manageable in the gimple world.
3907 Now we have to hunt them down ourselves. */
3908 gimplify_type_sizes (TREE_TYPE (parm
), &stmts
);
3910 if (TREE_CODE (DECL_SIZE_UNIT (parm
)) != INTEGER_CST
)
3912 gimplify_one_sizepos (&DECL_SIZE (parm
), &stmts
);
3913 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm
), &stmts
);
3916 if (data
.arg
.pass_by_reference
)
3918 tree type
= TREE_TYPE (data
.arg
.type
);
3919 function_arg_info
orig_arg (type
, data
.arg
.named
);
3920 if (reference_callee_copied (&all
.args_so_far_v
, orig_arg
))
3924 /* For constant-sized objects, this is trivial; for
3925 variable-sized objects, we have to play games. */
3926 if (TREE_CODE (DECL_SIZE_UNIT (parm
)) == INTEGER_CST
3927 && !(flag_stack_check
== GENERIC_STACK_CHECK
3928 && compare_tree_int (DECL_SIZE_UNIT (parm
),
3929 STACK_CHECK_MAX_VAR_SIZE
) > 0))
3931 local
= create_tmp_var (type
, get_name (parm
));
3932 DECL_IGNORED_P (local
) = 0;
3933 /* If PARM was addressable, move that flag over
3934 to the local copy, as its address will be taken,
3935 not the PARMs. Keep the parms address taken
3936 as we'll query that flag during gimplification. */
3937 if (TREE_ADDRESSABLE (parm
))
3938 TREE_ADDRESSABLE (local
) = 1;
3939 if (DECL_NOT_GIMPLE_REG_P (parm
))
3940 DECL_NOT_GIMPLE_REG_P (local
) = 1;
3942 if (!is_gimple_reg (local
)
3943 && flag_stack_reuse
!= SR_NONE
)
3945 tree clobber
= build_clobber (type
);
3946 gimple
*clobber_stmt
;
3947 clobber_stmt
= gimple_build_assign (local
, clobber
);
3948 gimple_seq_add_stmt (cleanup
, clobber_stmt
);
3953 tree ptr_type
, addr
;
3955 ptr_type
= build_pointer_type (type
);
3956 addr
= create_tmp_reg (ptr_type
, get_name (parm
));
3957 DECL_IGNORED_P (addr
) = 0;
3958 local
= build_fold_indirect_ref (addr
);
3960 t
= build_alloca_call_expr (DECL_SIZE_UNIT (parm
),
3962 max_int_size_in_bytes (type
));
3963 /* The call has been built for a variable-sized object. */
3964 CALL_ALLOCA_FOR_VAR_P (t
) = 1;
3965 t
= fold_convert (ptr_type
, t
);
3966 t
= build2 (MODIFY_EXPR
, TREE_TYPE (addr
), addr
, t
);
3967 gimplify_and_add (t
, &stmts
);
3970 gimplify_assign (local
, parm
, &stmts
);
3972 SET_DECL_VALUE_EXPR (parm
, local
);
3973 DECL_HAS_VALUE_EXPR_P (parm
) = 1;
3983 /* Compute the size and offset from the start of the stacked arguments for a
3984 parm passed in mode PASSED_MODE and with type TYPE.
3986 INITIAL_OFFSET_PTR points to the current offset into the stacked
3989 The starting offset and size for this parm are returned in
3990 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3991 nonzero, the offset is that of stack slot, which is returned in
3992 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3993 padding required from the initial offset ptr to the stack slot.
3995 IN_REGS is nonzero if the argument will be passed in registers. It will
3996 never be set if REG_PARM_STACK_SPACE is not defined.
3998 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
3999 for arguments which are passed in registers.
4001 FNDECL is the function in which the argument was defined.
4003 There are two types of rounding that are done. The first, controlled by
4004 TARGET_FUNCTION_ARG_BOUNDARY, forces the offset from the start of the
4005 argument list to be aligned to the specific boundary (in bits). This
4006 rounding affects the initial and starting offsets, but not the argument
4009 The second, controlled by TARGET_FUNCTION_ARG_PADDING and PARM_BOUNDARY,
4010 optionally rounds the size of the parm to PARM_BOUNDARY. The
4011 initial offset is not affected by this rounding, while the size always
4012 is and the starting offset may be. */
4014 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
4015 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
4016 callers pass in the total size of args so far as
4017 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
4020 locate_and_pad_parm (machine_mode passed_mode
, tree type
, int in_regs
,
4021 int reg_parm_stack_space
, int partial
,
4022 tree fndecl ATTRIBUTE_UNUSED
,
4023 struct args_size
*initial_offset_ptr
,
4024 struct locate_and_pad_arg_data
*locate
)
4027 pad_direction where_pad
;
4028 unsigned int boundary
, round_boundary
;
4029 int part_size_in_regs
;
4031 /* If we have found a stack parm before we reach the end of the
4032 area reserved for registers, skip that area. */
4035 if (reg_parm_stack_space
> 0)
4037 if (initial_offset_ptr
->var
4038 || !ordered_p (initial_offset_ptr
->constant
,
4039 reg_parm_stack_space
))
4041 initial_offset_ptr
->var
4042 = size_binop (MAX_EXPR
, ARGS_SIZE_TREE (*initial_offset_ptr
),
4043 ssize_int (reg_parm_stack_space
));
4044 initial_offset_ptr
->constant
= 0;
4047 initial_offset_ptr
->constant
4048 = ordered_max (initial_offset_ptr
->constant
,
4049 reg_parm_stack_space
);
4053 part_size_in_regs
= (reg_parm_stack_space
== 0 ? partial
: 0);
4056 ? arg_size_in_bytes (type
)
4057 : size_int (GET_MODE_SIZE (passed_mode
)));
4058 where_pad
= targetm
.calls
.function_arg_padding (passed_mode
, type
);
4059 boundary
= targetm
.calls
.function_arg_boundary (passed_mode
, type
);
4060 round_boundary
= targetm
.calls
.function_arg_round_boundary (passed_mode
,
4062 locate
->where_pad
= where_pad
;
4064 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
4065 if (boundary
> MAX_SUPPORTED_STACK_ALIGNMENT
)
4066 boundary
= MAX_SUPPORTED_STACK_ALIGNMENT
;
4068 locate
->boundary
= boundary
;
4070 if (SUPPORTS_STACK_ALIGNMENT
)
4072 /* stack_alignment_estimated can't change after stack has been
4074 if (crtl
->stack_alignment_estimated
< boundary
)
4076 if (!crtl
->stack_realign_processed
)
4077 crtl
->stack_alignment_estimated
= boundary
;
4080 /* If stack is realigned and stack alignment value
4081 hasn't been finalized, it is OK not to increase
4082 stack_alignment_estimated. The bigger alignment
4083 requirement is recorded in stack_alignment_needed
4085 gcc_assert (!crtl
->stack_realign_finalized
4086 && crtl
->stack_realign_needed
);
4091 if (ARGS_GROW_DOWNWARD
)
4093 locate
->slot_offset
.constant
= -initial_offset_ptr
->constant
;
4094 if (initial_offset_ptr
->var
)
4095 locate
->slot_offset
.var
= size_binop (MINUS_EXPR
, ssize_int (0),
4096 initial_offset_ptr
->var
);
4100 if (where_pad
!= PAD_NONE
4101 && (!tree_fits_uhwi_p (sizetree
)
4102 || (tree_to_uhwi (sizetree
) * BITS_PER_UNIT
) % round_boundary
))
4103 s2
= round_up (s2
, round_boundary
/ BITS_PER_UNIT
);
4104 SUB_PARM_SIZE (locate
->slot_offset
, s2
);
4107 locate
->slot_offset
.constant
+= part_size_in_regs
;
4109 if (!in_regs
|| reg_parm_stack_space
> 0)
4110 pad_to_arg_alignment (&locate
->slot_offset
, boundary
,
4111 &locate
->alignment_pad
);
4113 locate
->size
.constant
= (-initial_offset_ptr
->constant
4114 - locate
->slot_offset
.constant
);
4115 if (initial_offset_ptr
->var
)
4116 locate
->size
.var
= size_binop (MINUS_EXPR
,
4117 size_binop (MINUS_EXPR
,
4119 initial_offset_ptr
->var
),
4120 locate
->slot_offset
.var
);
4122 /* Pad_below needs the pre-rounded size to know how much to pad
4124 locate
->offset
= locate
->slot_offset
;
4125 if (where_pad
== PAD_DOWNWARD
)
4126 pad_below (&locate
->offset
, passed_mode
, sizetree
);
4131 if (!in_regs
|| reg_parm_stack_space
> 0)
4132 pad_to_arg_alignment (initial_offset_ptr
, boundary
,
4133 &locate
->alignment_pad
);
4134 locate
->slot_offset
= *initial_offset_ptr
;
4136 #ifdef PUSH_ROUNDING
4137 if (passed_mode
!= BLKmode
)
4138 sizetree
= size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree
)));
4141 /* Pad_below needs the pre-rounded size to know how much to pad below
4142 so this must be done before rounding up. */
4143 locate
->offset
= locate
->slot_offset
;
4144 if (where_pad
== PAD_DOWNWARD
)
4145 pad_below (&locate
->offset
, passed_mode
, sizetree
);
4147 if (where_pad
!= PAD_NONE
4148 && (!tree_fits_uhwi_p (sizetree
)
4149 || (tree_to_uhwi (sizetree
) * BITS_PER_UNIT
) % round_boundary
))
4150 sizetree
= round_up (sizetree
, round_boundary
/ BITS_PER_UNIT
);
4152 ADD_PARM_SIZE (locate
->size
, sizetree
);
4154 locate
->size
.constant
-= part_size_in_regs
;
4157 locate
->offset
.constant
4158 += targetm
.calls
.function_arg_offset (passed_mode
, type
);
4161 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
4162 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
4165 pad_to_arg_alignment (struct args_size
*offset_ptr
, int boundary
,
4166 struct args_size
*alignment_pad
)
4168 tree save_var
= NULL_TREE
;
4169 poly_int64 save_constant
= 0;
4170 int boundary_in_bytes
= boundary
/ BITS_PER_UNIT
;
4171 poly_int64 sp_offset
= STACK_POINTER_OFFSET
;
4173 #ifdef SPARC_STACK_BOUNDARY_HACK
4174 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
4175 the real alignment of %sp. However, when it does this, the
4176 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
4177 if (SPARC_STACK_BOUNDARY_HACK
)
4181 if (boundary
> PARM_BOUNDARY
)
4183 save_var
= offset_ptr
->var
;
4184 save_constant
= offset_ptr
->constant
;
4187 alignment_pad
->var
= NULL_TREE
;
4188 alignment_pad
->constant
= 0;
4190 if (boundary
> BITS_PER_UNIT
)
4194 || !known_misalignment (offset_ptr
->constant
+ sp_offset
,
4195 boundary_in_bytes
, &misalign
))
4197 tree sp_offset_tree
= ssize_int (sp_offset
);
4198 tree offset
= size_binop (PLUS_EXPR
,
4199 ARGS_SIZE_TREE (*offset_ptr
),
4202 if (ARGS_GROW_DOWNWARD
)
4203 rounded
= round_down (offset
, boundary
/ BITS_PER_UNIT
);
4205 rounded
= round_up (offset
, boundary
/ BITS_PER_UNIT
);
4207 offset_ptr
->var
= size_binop (MINUS_EXPR
, rounded
, sp_offset_tree
);
4208 /* ARGS_SIZE_TREE includes constant term. */
4209 offset_ptr
->constant
= 0;
4210 if (boundary
> PARM_BOUNDARY
)
4211 alignment_pad
->var
= size_binop (MINUS_EXPR
, offset_ptr
->var
,
4216 if (ARGS_GROW_DOWNWARD
)
4217 offset_ptr
->constant
-= misalign
;
4219 offset_ptr
->constant
+= -misalign
& (boundary_in_bytes
- 1);
4221 if (boundary
> PARM_BOUNDARY
)
4222 alignment_pad
->constant
= offset_ptr
->constant
- save_constant
;
4228 pad_below (struct args_size
*offset_ptr
, machine_mode passed_mode
, tree sizetree
)
4230 unsigned int align
= PARM_BOUNDARY
/ BITS_PER_UNIT
;
4232 if (passed_mode
!= BLKmode
4233 && known_misalignment (GET_MODE_SIZE (passed_mode
), align
, &misalign
))
4234 offset_ptr
->constant
+= -misalign
& (align
- 1);
4237 if (TREE_CODE (sizetree
) != INTEGER_CST
4238 || (TREE_INT_CST_LOW (sizetree
) & (align
- 1)) != 0)
4240 /* Round the size up to multiple of PARM_BOUNDARY bits. */
4241 tree s2
= round_up (sizetree
, align
);
4243 ADD_PARM_SIZE (*offset_ptr
, s2
);
4244 SUB_PARM_SIZE (*offset_ptr
, sizetree
);
4250 /* True if register REGNO was alive at a place where `setjmp' was
4251 called and was set more than once or is an argument. Such regs may
4252 be clobbered by `longjmp'. */
4255 regno_clobbered_at_setjmp (bitmap setjmp_crosses
, int regno
)
4257 /* There appear to be cases where some local vars never reach the
4258 backend but have bogus regnos. */
4259 if (regno
>= max_reg_num ())
4262 return ((REG_N_SETS (regno
) > 1
4263 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun
)),
4265 && REGNO_REG_SET_P (setjmp_crosses
, regno
));
4268 /* Walk the tree of blocks describing the binding levels within a
4269 function and warn about variables the might be killed by setjmp or
4270 vfork. This is done after calling flow_analysis before register
4271 allocation since that will clobber the pseudo-regs to hard
4275 setjmp_vars_warning (bitmap setjmp_crosses
, tree block
)
4279 for (decl
= BLOCK_VARS (block
); decl
; decl
= DECL_CHAIN (decl
))
4282 && DECL_RTL_SET_P (decl
)
4283 && REG_P (DECL_RTL (decl
))
4284 && regno_clobbered_at_setjmp (setjmp_crosses
, REGNO (DECL_RTL (decl
))))
4285 warning (OPT_Wclobbered
, "variable %q+D might be clobbered by"
4286 " %<longjmp%> or %<vfork%>", decl
);
4289 for (sub
= BLOCK_SUBBLOCKS (block
); sub
; sub
= BLOCK_CHAIN (sub
))
4290 setjmp_vars_warning (setjmp_crosses
, sub
);
4293 /* Do the appropriate part of setjmp_vars_warning
4294 but for arguments instead of local variables. */
4297 setjmp_args_warning (bitmap setjmp_crosses
)
4300 for (decl
= DECL_ARGUMENTS (current_function_decl
);
4301 decl
; decl
= DECL_CHAIN (decl
))
4302 if (DECL_RTL (decl
) != 0
4303 && REG_P (DECL_RTL (decl
))
4304 && regno_clobbered_at_setjmp (setjmp_crosses
, REGNO (DECL_RTL (decl
))))
4305 warning (OPT_Wclobbered
,
4306 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
4310 /* Generate warning messages for variables live across setjmp. */
4313 generate_setjmp_warnings (void)
4315 bitmap setjmp_crosses
= regstat_get_setjmp_crosses ();
4317 if (n_basic_blocks_for_fn (cfun
) == NUM_FIXED_BLOCKS
4318 || bitmap_empty_p (setjmp_crosses
))
4321 setjmp_vars_warning (setjmp_crosses
, DECL_INITIAL (current_function_decl
));
4322 setjmp_args_warning (setjmp_crosses
);
4326 /* Reverse the order of elements in the fragment chain T of blocks,
4327 and return the new head of the chain (old last element).
4328 In addition to that clear BLOCK_SAME_RANGE flags when needed
4329 and adjust BLOCK_SUPERCONTEXT from the super fragment to
4330 its super fragment origin. */
4333 block_fragments_nreverse (tree t
)
4335 tree prev
= 0, block
, next
, prev_super
= 0;
4336 tree super
= BLOCK_SUPERCONTEXT (t
);
4337 if (BLOCK_FRAGMENT_ORIGIN (super
))
4338 super
= BLOCK_FRAGMENT_ORIGIN (super
);
4339 for (block
= t
; block
; block
= next
)
4341 next
= BLOCK_FRAGMENT_CHAIN (block
);
4342 BLOCK_FRAGMENT_CHAIN (block
) = prev
;
4343 if ((prev
&& !BLOCK_SAME_RANGE (prev
))
4344 || (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (block
))
4346 BLOCK_SAME_RANGE (block
) = 0;
4347 prev_super
= BLOCK_SUPERCONTEXT (block
);
4348 BLOCK_SUPERCONTEXT (block
) = super
;
4351 t
= BLOCK_FRAGMENT_ORIGIN (t
);
4352 if (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (t
))
4354 BLOCK_SAME_RANGE (t
) = 0;
4355 BLOCK_SUPERCONTEXT (t
) = super
;
4359 /* Reverse the order of elements in the chain T of blocks,
4360 and return the new head of the chain (old last element).
4361 Also do the same on subblocks and reverse the order of elements
4362 in BLOCK_FRAGMENT_CHAIN as well. */
4365 blocks_nreverse_all (tree t
)
4367 tree prev
= 0, block
, next
;
4368 for (block
= t
; block
; block
= next
)
4370 next
= BLOCK_CHAIN (block
);
4371 BLOCK_CHAIN (block
) = prev
;
4372 if (BLOCK_FRAGMENT_CHAIN (block
)
4373 && BLOCK_FRAGMENT_ORIGIN (block
) == NULL_TREE
)
4375 BLOCK_FRAGMENT_CHAIN (block
)
4376 = block_fragments_nreverse (BLOCK_FRAGMENT_CHAIN (block
));
4377 if (!BLOCK_SAME_RANGE (BLOCK_FRAGMENT_CHAIN (block
)))
4378 BLOCK_SAME_RANGE (block
) = 0;
4380 BLOCK_SUBBLOCKS (block
) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block
));
4387 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
4388 and create duplicate blocks. */
4389 /* ??? Need an option to either create block fragments or to create
4390 abstract origin duplicates of a source block. It really depends
4391 on what optimization has been performed. */
4394 reorder_blocks (void)
4396 tree block
= DECL_INITIAL (current_function_decl
);
4398 if (block
== NULL_TREE
)
4401 auto_vec
<tree
, 10> block_stack
;
4403 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
4404 clear_block_marks (block
);
4406 /* Prune the old trees away, so that they don't get in the way. */
4407 BLOCK_SUBBLOCKS (block
) = NULL_TREE
;
4408 BLOCK_CHAIN (block
) = NULL_TREE
;
4410 /* Recreate the block tree from the note nesting. */
4411 reorder_blocks_1 (get_insns (), block
, &block_stack
);
4412 BLOCK_SUBBLOCKS (block
) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block
));
4415 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
4418 clear_block_marks (tree block
)
4422 TREE_ASM_WRITTEN (block
) = 0;
4423 clear_block_marks (BLOCK_SUBBLOCKS (block
));
4424 block
= BLOCK_CHAIN (block
);
4429 reorder_blocks_1 (rtx_insn
*insns
, tree current_block
,
4430 vec
<tree
> *p_block_stack
)
4433 tree prev_beg
= NULL_TREE
, prev_end
= NULL_TREE
;
4435 for (insn
= insns
; insn
; insn
= NEXT_INSN (insn
))
4439 if (NOTE_KIND (insn
) == NOTE_INSN_BLOCK_BEG
)
4441 tree block
= NOTE_BLOCK (insn
);
4444 gcc_assert (BLOCK_FRAGMENT_ORIGIN (block
) == NULL_TREE
);
4448 BLOCK_SAME_RANGE (prev_end
) = 0;
4449 prev_end
= NULL_TREE
;
4451 /* If we have seen this block before, that means it now
4452 spans multiple address regions. Create a new fragment. */
4453 if (TREE_ASM_WRITTEN (block
))
4455 tree new_block
= copy_node (block
);
4457 BLOCK_SAME_RANGE (new_block
) = 0;
4458 BLOCK_FRAGMENT_ORIGIN (new_block
) = origin
;
4459 BLOCK_FRAGMENT_CHAIN (new_block
)
4460 = BLOCK_FRAGMENT_CHAIN (origin
);
4461 BLOCK_FRAGMENT_CHAIN (origin
) = new_block
;
4463 NOTE_BLOCK (insn
) = new_block
;
4467 if (prev_beg
== current_block
&& prev_beg
)
4468 BLOCK_SAME_RANGE (block
) = 1;
4472 BLOCK_SUBBLOCKS (block
) = 0;
4473 TREE_ASM_WRITTEN (block
) = 1;
4474 /* When there's only one block for the entire function,
4475 current_block == block and we mustn't do this, it
4476 will cause infinite recursion. */
4477 if (block
!= current_block
)
4480 if (block
!= origin
)
4481 gcc_assert (BLOCK_SUPERCONTEXT (origin
) == current_block
4482 || BLOCK_FRAGMENT_ORIGIN (BLOCK_SUPERCONTEXT
4485 if (p_block_stack
->is_empty ())
4486 super
= current_block
;
4489 super
= p_block_stack
->last ();
4490 gcc_assert (super
== current_block
4491 || BLOCK_FRAGMENT_ORIGIN (super
)
4494 BLOCK_SUPERCONTEXT (block
) = super
;
4495 BLOCK_CHAIN (block
) = BLOCK_SUBBLOCKS (current_block
);
4496 BLOCK_SUBBLOCKS (current_block
) = block
;
4497 current_block
= origin
;
4499 p_block_stack
->safe_push (block
);
4501 else if (NOTE_KIND (insn
) == NOTE_INSN_BLOCK_END
)
4503 NOTE_BLOCK (insn
) = p_block_stack
->pop ();
4504 current_block
= BLOCK_SUPERCONTEXT (current_block
);
4505 if (BLOCK_FRAGMENT_ORIGIN (current_block
))
4506 current_block
= BLOCK_FRAGMENT_ORIGIN (current_block
);
4507 prev_beg
= NULL_TREE
;
4508 prev_end
= BLOCK_SAME_RANGE (NOTE_BLOCK (insn
))
4509 ? NOTE_BLOCK (insn
) : NULL_TREE
;
4514 prev_beg
= NULL_TREE
;
4516 BLOCK_SAME_RANGE (prev_end
) = 0;
4517 prev_end
= NULL_TREE
;
4522 /* Reverse the order of elements in the chain T of blocks,
4523 and return the new head of the chain (old last element). */
4526 blocks_nreverse (tree t
)
4528 tree prev
= 0, block
, next
;
4529 for (block
= t
; block
; block
= next
)
4531 next
= BLOCK_CHAIN (block
);
4532 BLOCK_CHAIN (block
) = prev
;
4538 /* Concatenate two chains of blocks (chained through BLOCK_CHAIN)
4539 by modifying the last node in chain 1 to point to chain 2. */
4542 block_chainon (tree op1
, tree op2
)
4551 for (t1
= op1
; BLOCK_CHAIN (t1
); t1
= BLOCK_CHAIN (t1
))
4553 BLOCK_CHAIN (t1
) = op2
;
4555 #ifdef ENABLE_TREE_CHECKING
4558 for (t2
= op2
; t2
; t2
= BLOCK_CHAIN (t2
))
4559 gcc_assert (t2
!= t1
);
4566 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
4567 non-NULL, list them all into VECTOR, in a depth-first preorder
4568 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
4572 all_blocks (tree block
, tree
*vector
)
4578 TREE_ASM_WRITTEN (block
) = 0;
4580 /* Record this block. */
4582 vector
[n_blocks
] = block
;
4586 /* Record the subblocks, and their subblocks... */
4587 n_blocks
+= all_blocks (BLOCK_SUBBLOCKS (block
),
4588 vector
? vector
+ n_blocks
: 0);
4589 block
= BLOCK_CHAIN (block
);
4595 /* Return a vector containing all the blocks rooted at BLOCK. The
4596 number of elements in the vector is stored in N_BLOCKS_P. The
4597 vector is dynamically allocated; it is the caller's responsibility
4598 to call `free' on the pointer returned. */
4601 get_block_vector (tree block
, int *n_blocks_p
)
4605 *n_blocks_p
= all_blocks (block
, NULL
);
4606 block_vector
= XNEWVEC (tree
, *n_blocks_p
);
4607 all_blocks (block
, block_vector
);
4609 return block_vector
;
4612 static GTY(()) int next_block_index
= 2;
4614 /* Set BLOCK_NUMBER for all the blocks in FN. */
4617 number_blocks (tree fn
)
4623 block_vector
= get_block_vector (DECL_INITIAL (fn
), &n_blocks
);
4625 /* The top-level BLOCK isn't numbered at all. */
4626 for (i
= 1; i
< n_blocks
; ++i
)
4627 /* We number the blocks from two. */
4628 BLOCK_NUMBER (block_vector
[i
]) = next_block_index
++;
4630 free (block_vector
);
4635 /* If VAR is present in a subblock of BLOCK, return the subblock. */
4638 debug_find_var_in_block_tree (tree var
, tree block
)
4642 for (t
= BLOCK_VARS (block
); t
; t
= TREE_CHAIN (t
))
4646 for (t
= BLOCK_SUBBLOCKS (block
); t
; t
= TREE_CHAIN (t
))
4648 tree ret
= debug_find_var_in_block_tree (var
, t
);
4656 /* Keep track of whether we're in a dummy function context. If we are,
4657 we don't want to invoke the set_current_function hook, because we'll
4658 get into trouble if the hook calls target_reinit () recursively or
4659 when the initial initialization is not yet complete. */
4661 static bool in_dummy_function
;
4663 /* Invoke the target hook when setting cfun. Update the optimization options
4664 if the function uses different options than the default. */
4667 invoke_set_current_function_hook (tree fndecl
)
4669 if (!in_dummy_function
)
4671 tree opts
= ((fndecl
)
4672 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl
)
4673 : optimization_default_node
);
4676 opts
= optimization_default_node
;
4678 /* Change optimization options if needed. */
4679 if (optimization_current_node
!= opts
)
4681 optimization_current_node
= opts
;
4682 cl_optimization_restore (&global_options
, &global_options_set
,
4683 TREE_OPTIMIZATION (opts
));
4686 targetm
.set_current_function (fndecl
);
4687 this_fn_optabs
= this_target_optabs
;
4689 /* Initialize global alignment variables after op. */
4690 parse_alignment_opts ();
4692 if (opts
!= optimization_default_node
)
4694 init_tree_optimization_optabs (opts
);
4695 if (TREE_OPTIMIZATION_OPTABS (opts
))
4696 this_fn_optabs
= (struct target_optabs
*)
4697 TREE_OPTIMIZATION_OPTABS (opts
);
4702 /* cfun should never be set directly; use this function. */
4705 set_cfun (struct function
*new_cfun
, bool force
)
4707 if (cfun
!= new_cfun
|| force
)
4710 invoke_set_current_function_hook (new_cfun
? new_cfun
->decl
: NULL_TREE
);
4711 redirect_edge_var_map_empty ();
4715 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4717 static vec
<function
*> cfun_stack
;
4719 /* Push the current cfun onto the stack, and set cfun to new_cfun. Also set
4720 current_function_decl accordingly. */
4723 push_cfun (struct function
*new_cfun
)
4725 gcc_assert ((!cfun
&& !current_function_decl
)
4726 || (cfun
&& current_function_decl
== cfun
->decl
));
4727 cfun_stack
.safe_push (cfun
);
4728 current_function_decl
= new_cfun
? new_cfun
->decl
: NULL_TREE
;
4729 set_cfun (new_cfun
);
4732 /* Pop cfun from the stack. Also set current_function_decl accordingly. */
4737 struct function
*new_cfun
= cfun_stack
.pop ();
4738 /* When in_dummy_function, we do have a cfun but current_function_decl is
4739 NULL. We also allow pushing NULL cfun and subsequently changing
4740 current_function_decl to something else and have both restored by
4742 gcc_checking_assert (in_dummy_function
4744 || current_function_decl
== cfun
->decl
);
4745 set_cfun (new_cfun
);
4746 current_function_decl
= new_cfun
? new_cfun
->decl
: NULL_TREE
;
4749 /* Return value of funcdef and increase it. */
4751 get_next_funcdef_no (void)
4753 return funcdef_no
++;
4756 /* Return value of funcdef. */
4758 get_last_funcdef_no (void)
4763 /* Allocate and initialize the stack usage info data structure for the
4764 current function. */
4766 allocate_stack_usage_info (void)
4768 gcc_assert (!cfun
->su
);
4769 cfun
->su
= ggc_cleared_alloc
<stack_usage
> ();
4770 cfun
->su
->static_stack_size
= -1;
4773 /* Allocate a function structure for FNDECL and set its contents
4774 to the defaults. Set cfun to the newly-allocated object.
4775 Some of the helper functions invoked during initialization assume
4776 that cfun has already been set. Therefore, assign the new object
4777 directly into cfun and invoke the back end hook explicitly at the
4778 very end, rather than initializing a temporary and calling set_cfun
4781 ABSTRACT_P is true if this is a function that will never be seen by
4782 the middle-end. Such functions are front-end concepts (like C++
4783 function templates) that do not correspond directly to functions
4784 placed in object files. */
4787 allocate_struct_function (tree fndecl
, bool abstract_p
)
4789 tree fntype
= fndecl
? TREE_TYPE (fndecl
) : NULL_TREE
;
4791 cfun
= ggc_cleared_alloc
<function
> ();
4793 init_eh_for_function ();
4795 if (init_machine_status
)
4796 cfun
->machine
= (*init_machine_status
) ();
4798 #ifdef OVERRIDE_ABI_FORMAT
4799 OVERRIDE_ABI_FORMAT (fndecl
);
4802 if (fndecl
!= NULL_TREE
)
4804 DECL_STRUCT_FUNCTION (fndecl
) = cfun
;
4805 cfun
->decl
= fndecl
;
4806 current_function_funcdef_no
= get_next_funcdef_no ();
4809 invoke_set_current_function_hook (fndecl
);
4811 if (fndecl
!= NULL_TREE
)
4813 tree result
= DECL_RESULT (fndecl
);
4817 /* Now that we have activated any function-specific attributes
4818 that might affect layout, particularly vector modes, relayout
4819 each of the parameters and the result. */
4820 relayout_decl (result
);
4821 for (tree parm
= DECL_ARGUMENTS (fndecl
); parm
;
4822 parm
= DECL_CHAIN (parm
))
4823 relayout_decl (parm
);
4825 /* Similarly relayout the function decl. */
4826 targetm
.target_option
.relayout_function (fndecl
);
4829 if (!abstract_p
&& aggregate_value_p (result
, fndecl
))
4831 #ifdef PCC_STATIC_STRUCT_RETURN
4832 cfun
->returns_pcc_struct
= 1;
4834 cfun
->returns_struct
= 1;
4837 cfun
->stdarg
= stdarg_p (fntype
);
4839 /* Assume all registers in stdarg functions need to be saved. */
4840 cfun
->va_list_gpr_size
= VA_LIST_MAX_GPR_SIZE
;
4841 cfun
->va_list_fpr_size
= VA_LIST_MAX_FPR_SIZE
;
4843 /* ??? This could be set on a per-function basis by the front-end
4844 but is this worth the hassle? */
4845 cfun
->can_throw_non_call_exceptions
= flag_non_call_exceptions
;
4846 cfun
->can_delete_dead_exceptions
= flag_delete_dead_exceptions
;
4848 if (!profile_flag
&& !flag_instrument_function_entry_exit
)
4849 DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (fndecl
) = 1;
4851 if (flag_callgraph_info
)
4852 allocate_stack_usage_info ();
4855 /* Don't enable begin stmt markers if var-tracking at assignments is
4856 disabled. The markers make little sense without the variable
4857 binding annotations among them. */
4858 cfun
->debug_nonbind_markers
= lang_hooks
.emits_begin_stmt
4859 && MAY_HAVE_DEBUG_MARKER_STMTS
;
4862 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4863 instead of just setting it. */
4866 push_struct_function (tree fndecl
, bool abstract_p
)
4868 /* When in_dummy_function we might be in the middle of a pop_cfun and
4869 current_function_decl and cfun may not match. */
4870 gcc_assert (in_dummy_function
4871 || (!cfun
&& !current_function_decl
)
4872 || (cfun
&& current_function_decl
== cfun
->decl
));
4873 cfun_stack
.safe_push (cfun
);
4874 current_function_decl
= fndecl
;
4875 allocate_struct_function (fndecl
, abstract_p
);
4878 /* Reset crtl and other non-struct-function variables to defaults as
4879 appropriate for emitting rtl at the start of a function. */
4882 prepare_function_start (void)
4884 gcc_assert (!get_last_insn ());
4886 if (in_dummy_function
)
4887 crtl
->abi
= &default_function_abi
;
4889 crtl
->abi
= &fndecl_abi (cfun
->decl
).base_abi ();
4893 init_varasm_status ();
4895 default_rtl_profile ();
4897 if (flag_stack_usage_info
&& !flag_callgraph_info
)
4898 allocate_stack_usage_info ();
4900 cse_not_expected
= ! optimize
;
4902 /* Caller save not needed yet. */
4903 caller_save_needed
= 0;
4905 /* We haven't done register allocation yet. */
4908 /* Indicate that we have not instantiated virtual registers yet. */
4909 virtuals_instantiated
= 0;
4911 /* Indicate that we want CONCATs now. */
4912 generating_concat_p
= 1;
4914 /* Indicate we have no need of a frame pointer yet. */
4915 frame_pointer_needed
= 0;
4919 push_dummy_function (bool with_decl
)
4921 tree fn_decl
, fn_type
, fn_result_decl
;
4923 gcc_assert (!in_dummy_function
);
4924 in_dummy_function
= true;
4928 fn_type
= build_function_type_list (void_type_node
, NULL_TREE
);
4929 fn_decl
= build_decl (UNKNOWN_LOCATION
, FUNCTION_DECL
, NULL_TREE
,
4931 fn_result_decl
= build_decl (UNKNOWN_LOCATION
, RESULT_DECL
,
4932 NULL_TREE
, void_type_node
);
4933 DECL_RESULT (fn_decl
) = fn_result_decl
;
4934 DECL_ARTIFICIAL (fn_decl
) = 1;
4935 tree fn_name
= get_identifier (" ");
4936 SET_DECL_ASSEMBLER_NAME (fn_decl
, fn_name
);
4939 fn_decl
= NULL_TREE
;
4941 push_struct_function (fn_decl
);
4944 /* Initialize the rtl expansion mechanism so that we can do simple things
4945 like generate sequences. This is used to provide a context during global
4946 initialization of some passes. You must call expand_dummy_function_end
4947 to exit this context. */
4950 init_dummy_function_start (void)
4952 push_dummy_function (false);
4953 prepare_function_start ();
4956 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4957 and initialize static variables for generating RTL for the statements
4961 init_function_start (tree subr
)
4963 /* Initialize backend, if needed. */
4966 prepare_function_start ();
4967 decide_function_section (subr
);
4969 /* Warn if this value is an aggregate type,
4970 regardless of which calling convention we are using for it. */
4971 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr
))))
4972 warning_at (DECL_SOURCE_LOCATION (DECL_RESULT (subr
)),
4973 OPT_Waggregate_return
, "function returns an aggregate");
4976 /* Expand code to verify the stack_protect_guard. This is invoked at
4977 the end of a function to be protected. */
4980 stack_protect_epilogue (void)
4982 tree guard_decl
= crtl
->stack_protect_guard_decl
;
4983 rtx_code_label
*label
= gen_label_rtx ();
4985 rtx_insn
*seq
= NULL
;
4987 x
= expand_normal (crtl
->stack_protect_guard
);
4989 if (targetm
.have_stack_protect_combined_test () && guard_decl
)
4991 gcc_assert (DECL_P (guard_decl
));
4992 y
= DECL_RTL (guard_decl
);
4993 /* Allow the target to compute address of Y and compare it with X without
4994 leaking Y into a register. This combined address + compare pattern
4995 allows the target to prevent spilling of any intermediate results by
4996 splitting it after register allocator. */
4997 seq
= targetm
.gen_stack_protect_combined_test (x
, y
, label
);
5002 y
= expand_normal (guard_decl
);
5006 /* Allow the target to compare Y with X without leaking either into
5008 if (targetm
.have_stack_protect_test ())
5009 seq
= targetm
.gen_stack_protect_test (x
, y
, label
);
5015 emit_cmp_and_jump_insns (x
, y
, EQ
, NULL_RTX
, ptr_mode
, 1, label
);
5017 /* The noreturn predictor has been moved to the tree level. The rtl-level
5018 predictors estimate this branch about 20%, which isn't enough to get
5019 things moved out of line. Since this is the only extant case of adding
5020 a noreturn function at the rtl level, it doesn't seem worth doing ought
5021 except adding the prediction by hand. */
5022 rtx_insn
*tmp
= get_last_insn ();
5024 predict_insn_def (tmp
, PRED_NORETURN
, TAKEN
);
5026 expand_call (targetm
.stack_protect_fail (), NULL_RTX
, /*ignore=*/true);
5031 /* Start the RTL for a new function, and set variables used for
5033 SUBR is the FUNCTION_DECL node.
5034 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
5035 the function's parameters, which must be run at any return statement. */
5037 bool currently_expanding_function_start
;
5039 expand_function_start (tree subr
)
5041 currently_expanding_function_start
= true;
5043 /* Make sure volatile mem refs aren't considered
5044 valid operands of arithmetic insns. */
5045 init_recog_no_volatile ();
5049 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr
));
5052 = (stack_limit_rtx
!= NULL_RTX
&& ! DECL_NO_LIMIT_STACK (subr
));
5054 /* Make the label for return statements to jump to. Do not special
5055 case machines with special return instructions -- they will be
5056 handled later during jump, ifcvt, or epilogue creation. */
5057 return_label
= gen_label_rtx ();
5059 /* Initialize rtx used to return the value. */
5060 /* Do this before assign_parms so that we copy the struct value address
5061 before any library calls that assign parms might generate. */
5063 /* Decide whether to return the value in memory or in a register. */
5064 tree res
= DECL_RESULT (subr
);
5065 if (aggregate_value_p (res
, subr
))
5067 /* Returning something that won't go in a register. */
5068 rtx value_address
= 0;
5070 #ifdef PCC_STATIC_STRUCT_RETURN
5071 if (cfun
->returns_pcc_struct
)
5073 int size
= int_size_in_bytes (TREE_TYPE (res
));
5074 value_address
= assemble_static_space (size
);
5079 rtx sv
= targetm
.calls
.struct_value_rtx (TREE_TYPE (subr
), 2);
5080 /* Expect to be passed the address of a place to store the value.
5081 If it is passed as an argument, assign_parms will take care of
5085 value_address
= gen_reg_rtx (Pmode
);
5086 emit_move_insn (value_address
, sv
);
5091 rtx x
= value_address
;
5092 if (!DECL_BY_REFERENCE (res
))
5094 x
= gen_rtx_MEM (DECL_MODE (res
), x
);
5095 set_mem_attributes (x
, res
, 1);
5097 set_parm_rtl (res
, x
);
5100 else if (DECL_MODE (res
) == VOIDmode
)
5101 /* If return mode is void, this decl rtl should not be used. */
5102 set_parm_rtl (res
, NULL_RTX
);
5105 /* Compute the return values into a pseudo reg, which we will copy
5106 into the true return register after the cleanups are done. */
5107 tree return_type
= TREE_TYPE (res
);
5109 /* If we may coalesce this result, make sure it has the expected mode
5110 in case it was promoted. But we need not bother about BLKmode. */
5111 machine_mode promoted_mode
5112 = flag_tree_coalesce_vars
&& is_gimple_reg (res
)
5113 ? promote_ssa_mode (ssa_default_def (cfun
, res
), NULL
)
5116 if (promoted_mode
!= BLKmode
)
5117 set_parm_rtl (res
, gen_reg_rtx (promoted_mode
));
5118 else if (TYPE_MODE (return_type
) != BLKmode
5119 && targetm
.calls
.return_in_msb (return_type
))
5120 /* expand_function_end will insert the appropriate padding in
5121 this case. Use the return value's natural (unpadded) mode
5122 within the function proper. */
5123 set_parm_rtl (res
, gen_reg_rtx (TYPE_MODE (return_type
)));
5126 /* In order to figure out what mode to use for the pseudo, we
5127 figure out what the mode of the eventual return register will
5128 actually be, and use that. */
5129 rtx hard_reg
= hard_function_value (return_type
, subr
, 0, 1);
5131 /* Structures that are returned in registers are not
5132 aggregate_value_p, so we may see a PARALLEL or a REG. */
5133 if (REG_P (hard_reg
))
5134 set_parm_rtl (res
, gen_reg_rtx (GET_MODE (hard_reg
)));
5137 gcc_assert (GET_CODE (hard_reg
) == PARALLEL
);
5138 set_parm_rtl (res
, gen_group_rtx (hard_reg
));
5142 /* Set DECL_REGISTER flag so that expand_function_end will copy the
5143 result to the real return register(s). */
5144 DECL_REGISTER (res
) = 1;
5147 /* Initialize rtx for parameters and local variables.
5148 In some cases this requires emitting insns. */
5149 assign_parms (subr
);
5151 /* If function gets a static chain arg, store it. */
5152 if (cfun
->static_chain_decl
)
5154 tree parm
= cfun
->static_chain_decl
;
5159 local
= gen_reg_rtx (promote_decl_mode (parm
, &unsignedp
));
5160 chain
= targetm
.calls
.static_chain (current_function_decl
, true);
5162 set_decl_incoming_rtl (parm
, chain
, false);
5163 set_parm_rtl (parm
, local
);
5164 mark_reg_pointer (local
, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm
))));
5166 if (GET_MODE (local
) != GET_MODE (chain
))
5168 convert_move (local
, chain
, unsignedp
);
5169 insn
= get_last_insn ();
5172 insn
= emit_move_insn (local
, chain
);
5174 /* Mark the register as eliminable, similar to parameters. */
5176 && reg_mentioned_p (arg_pointer_rtx
, XEXP (chain
, 0)))
5177 set_dst_reg_note (insn
, REG_EQUIV
, chain
, local
);
5179 /* If we aren't optimizing, save the static chain onto the stack. */
5182 tree saved_static_chain_decl
5183 = build_decl (DECL_SOURCE_LOCATION (parm
), VAR_DECL
,
5184 DECL_NAME (parm
), TREE_TYPE (parm
));
5185 rtx saved_static_chain_rtx
5186 = assign_stack_local (Pmode
, GET_MODE_SIZE (Pmode
), 0);
5187 SET_DECL_RTL (saved_static_chain_decl
, saved_static_chain_rtx
);
5188 emit_move_insn (saved_static_chain_rtx
, chain
);
5189 SET_DECL_VALUE_EXPR (parm
, saved_static_chain_decl
);
5190 DECL_HAS_VALUE_EXPR_P (parm
) = 1;
5194 /* The following was moved from init_function_start.
5195 The move was supposed to make sdb output more accurate. */
5196 /* Indicate the beginning of the function body,
5197 as opposed to parm setup. */
5198 emit_note (NOTE_INSN_FUNCTION_BEG
);
5200 gcc_assert (NOTE_P (get_last_insn ()));
5202 parm_birth_insn
= get_last_insn ();
5204 /* If the function receives a non-local goto, then store the
5205 bits we need to restore the frame pointer. */
5206 if (cfun
->nonlocal_goto_save_area
)
5211 tree var
= TREE_OPERAND (cfun
->nonlocal_goto_save_area
, 0);
5212 gcc_assert (DECL_RTL_SET_P (var
));
5214 t_save
= build4 (ARRAY_REF
,
5215 TREE_TYPE (TREE_TYPE (cfun
->nonlocal_goto_save_area
)),
5216 cfun
->nonlocal_goto_save_area
,
5217 integer_zero_node
, NULL_TREE
, NULL_TREE
);
5218 r_save
= expand_expr (t_save
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
5219 gcc_assert (GET_MODE (r_save
) == Pmode
);
5221 emit_move_insn (r_save
, hard_frame_pointer_rtx
);
5222 update_nonlocal_goto_save_area ();
5228 PROFILE_HOOK (current_function_funcdef_no
);
5232 /* If we are doing generic stack checking, the probe should go here. */
5233 if (flag_stack_check
== GENERIC_STACK_CHECK
)
5234 stack_check_probe_note
= emit_note (NOTE_INSN_DELETED
);
5236 currently_expanding_function_start
= false;
5240 pop_dummy_function (void)
5243 in_dummy_function
= false;
5246 /* Undo the effects of init_dummy_function_start. */
5248 expand_dummy_function_end (void)
5250 gcc_assert (in_dummy_function
);
5252 /* End any sequences that failed to be closed due to syntax errors. */
5253 while (in_sequence_p ())
5256 /* Outside function body, can't compute type's actual size
5257 until next function's body starts. */
5259 free_after_parsing (cfun
);
5260 free_after_compilation (cfun
);
5261 pop_dummy_function ();
5264 /* Helper for diddle_return_value. */
5267 diddle_return_value_1 (void (*doit
) (rtx
, void *), void *arg
, rtx outgoing
)
5272 if (REG_P (outgoing
))
5273 (*doit
) (outgoing
, arg
);
5274 else if (GET_CODE (outgoing
) == PARALLEL
)
5278 for (i
= 0; i
< XVECLEN (outgoing
, 0); i
++)
5280 rtx x
= XEXP (XVECEXP (outgoing
, 0, i
), 0);
5282 if (REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
5288 /* Call DOIT for each hard register used as a return value from
5289 the current function. */
5292 diddle_return_value (void (*doit
) (rtx
, void *), void *arg
)
5294 diddle_return_value_1 (doit
, arg
, crtl
->return_rtx
);
5298 do_clobber_return_reg (rtx reg
, void *arg ATTRIBUTE_UNUSED
)
5304 clobber_return_register (void)
5306 diddle_return_value (do_clobber_return_reg
, NULL
);
5308 /* In case we do use pseudo to return value, clobber it too. */
5309 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl
)))
5311 tree decl_result
= DECL_RESULT (current_function_decl
);
5312 rtx decl_rtl
= DECL_RTL (decl_result
);
5313 if (REG_P (decl_rtl
) && REGNO (decl_rtl
) >= FIRST_PSEUDO_REGISTER
)
5315 do_clobber_return_reg (decl_rtl
, NULL
);
5321 do_use_return_reg (rtx reg
, void *arg ATTRIBUTE_UNUSED
)
5327 use_return_register (void)
5329 diddle_return_value (do_use_return_reg
, NULL
);
5332 /* Generate RTL for the end of the current function. */
5335 expand_function_end (void)
5337 /* If arg_pointer_save_area was referenced only from a nested
5338 function, we will not have initialized it yet. Do that now. */
5339 if (arg_pointer_save_area
&& ! crtl
->arg_pointer_save_area_init
)
5340 get_arg_pointer_save_area ();
5342 /* If we are doing generic stack checking and this function makes calls,
5343 do a stack probe at the start of the function to ensure we have enough
5344 space for another stack frame. */
5345 if (flag_stack_check
== GENERIC_STACK_CHECK
)
5347 rtx_insn
*insn
, *seq
;
5349 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
5352 rtx max_frame_size
= GEN_INT (STACK_CHECK_MAX_FRAME_SIZE
);
5354 if (STACK_CHECK_MOVING_SP
)
5355 anti_adjust_stack_and_probe (max_frame_size
, true);
5357 probe_stack_range (STACK_OLD_CHECK_PROTECT
, max_frame_size
);
5360 set_insn_locations (seq
, prologue_location
);
5361 emit_insn_before (seq
, stack_check_probe_note
);
5366 /* End any sequences that failed to be closed due to syntax errors. */
5367 while (in_sequence_p ())
5370 clear_pending_stack_adjust ();
5371 do_pending_stack_adjust ();
5373 /* Output a linenumber for the end of the function.
5374 SDB depended on this. */
5375 set_curr_insn_location (input_location
);
5377 /* Before the return label (if any), clobber the return
5378 registers so that they are not propagated live to the rest of
5379 the function. This can only happen with functions that drop
5380 through; if there had been a return statement, there would
5381 have either been a return rtx, or a jump to the return label.
5383 We delay actual code generation after the current_function_value_rtx
5385 rtx_insn
*clobber_after
= get_last_insn ();
5387 /* Output the label for the actual return from the function. */
5388 emit_label (return_label
);
5390 if (targetm_common
.except_unwind_info (&global_options
) == UI_SJLJ
)
5392 /* Let except.cc know where it should emit the call to unregister
5393 the function context for sjlj exceptions. */
5394 if (flag_exceptions
)
5395 sjlj_emit_function_exit_after (get_last_insn ());
5398 /* If this is an implementation of throw, do what's necessary to
5399 communicate between __builtin_eh_return and the epilogue. */
5400 expand_eh_return ();
5402 /* If stack protection is enabled for this function, check the guard. */
5403 if (crtl
->stack_protect_guard
5404 && targetm
.stack_protect_runtime_enabled_p ()
5405 && naked_return_label
== NULL_RTX
)
5406 stack_protect_epilogue ();
5408 /* If scalar return value was computed in a pseudo-reg, or was a named
5409 return value that got dumped to the stack, copy that to the hard
5411 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl
)))
5413 tree decl_result
= DECL_RESULT (current_function_decl
);
5414 rtx decl_rtl
= DECL_RTL (decl_result
);
5416 if ((REG_P (decl_rtl
)
5417 ? REGNO (decl_rtl
) >= FIRST_PSEUDO_REGISTER
5418 : DECL_REGISTER (decl_result
))
5419 /* Unless the psABI says not to. */
5420 && !TYPE_EMPTY_P (TREE_TYPE (decl_result
)))
5422 rtx real_decl_rtl
= crtl
->return_rtx
;
5425 /* This should be set in assign_parms. */
5426 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl
));
5428 /* If this is a BLKmode structure being returned in registers,
5429 then use the mode computed in expand_return. Note that if
5430 decl_rtl is memory, then its mode may have been changed,
5431 but that crtl->return_rtx has not. */
5432 if (GET_MODE (real_decl_rtl
) == BLKmode
)
5433 PUT_MODE (real_decl_rtl
, GET_MODE (decl_rtl
));
5435 /* If a non-BLKmode return value should be padded at the least
5436 significant end of the register, shift it left by the appropriate
5437 amount. BLKmode results are handled using the group load/store
5439 if (TYPE_MODE (TREE_TYPE (decl_result
)) != BLKmode
5440 && REG_P (real_decl_rtl
)
5441 && targetm
.calls
.return_in_msb (TREE_TYPE (decl_result
)))
5443 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl
),
5444 REGNO (real_decl_rtl
)),
5446 shift_return_value (GET_MODE (decl_rtl
), true, real_decl_rtl
);
5448 else if (GET_CODE (real_decl_rtl
) == PARALLEL
)
5450 /* If expand_function_start has created a PARALLEL for decl_rtl,
5451 move the result to the real return registers. Otherwise, do
5452 a group load from decl_rtl for a named return. */
5453 if (GET_CODE (decl_rtl
) == PARALLEL
)
5454 emit_group_move (real_decl_rtl
, decl_rtl
);
5456 emit_group_load (real_decl_rtl
, decl_rtl
,
5457 TREE_TYPE (decl_result
),
5458 int_size_in_bytes (TREE_TYPE (decl_result
)));
5460 /* In the case of complex integer modes smaller than a word, we'll
5461 need to generate some non-trivial bitfield insertions. Do that
5462 on a pseudo and not the hard register. */
5463 else if (GET_CODE (decl_rtl
) == CONCAT
5464 && is_complex_int_mode (GET_MODE (decl_rtl
), &cmode
)
5465 && GET_MODE_BITSIZE (cmode
) <= BITS_PER_WORD
)
5467 int old_generating_concat_p
;
5470 old_generating_concat_p
= generating_concat_p
;
5471 generating_concat_p
= 0;
5472 tmp
= gen_reg_rtx (GET_MODE (decl_rtl
));
5473 generating_concat_p
= old_generating_concat_p
;
5475 emit_move_insn (tmp
, decl_rtl
);
5476 emit_move_insn (real_decl_rtl
, tmp
);
5478 /* If a named return value dumped decl_return to memory, then
5479 we may need to re-do the PROMOTE_MODE signed/unsigned
5481 else if (GET_MODE (real_decl_rtl
) != GET_MODE (decl_rtl
))
5483 int unsignedp
= TYPE_UNSIGNED (TREE_TYPE (decl_result
));
5484 promote_function_mode (TREE_TYPE (decl_result
),
5485 GET_MODE (decl_rtl
), &unsignedp
,
5486 TREE_TYPE (current_function_decl
), 1);
5488 convert_move (real_decl_rtl
, decl_rtl
, unsignedp
);
5491 emit_move_insn (real_decl_rtl
, decl_rtl
);
5495 /* If returning a structure, arrange to return the address of the value
5496 in a place where debuggers expect to find it.
5498 If returning a structure PCC style,
5499 the caller also depends on this value.
5500 And cfun->returns_pcc_struct is not necessarily set. */
5501 if ((cfun
->returns_struct
|| cfun
->returns_pcc_struct
)
5502 && !targetm
.calls
.omit_struct_return_reg
)
5504 rtx value_address
= DECL_RTL (DECL_RESULT (current_function_decl
));
5505 tree type
= TREE_TYPE (DECL_RESULT (current_function_decl
));
5508 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl
)))
5509 type
= TREE_TYPE (type
);
5511 value_address
= XEXP (value_address
, 0);
5513 outgoing
= targetm
.calls
.function_value (build_pointer_type (type
),
5514 current_function_decl
, true);
5516 /* Mark this as a function return value so integrate will delete the
5517 assignment and USE below when inlining this function. */
5518 REG_FUNCTION_VALUE_P (outgoing
) = 1;
5520 /* The address may be ptr_mode and OUTGOING may be Pmode. */
5521 scalar_int_mode mode
= as_a
<scalar_int_mode
> (GET_MODE (outgoing
));
5522 value_address
= convert_memory_address (mode
, value_address
);
5524 emit_move_insn (outgoing
, value_address
);
5526 /* Show return register used to hold result (in this case the address
5528 crtl
->return_rtx
= outgoing
;
5531 /* Emit the actual code to clobber return register. Don't emit
5532 it if clobber_after is a barrier, then the previous basic block
5533 certainly doesn't fall thru into the exit block. */
5534 if (!BARRIER_P (clobber_after
))
5537 clobber_return_register ();
5538 rtx_insn
*seq
= get_insns ();
5541 emit_insn_after (seq
, clobber_after
);
5544 /* Output the label for the naked return from the function. */
5545 if (naked_return_label
)
5546 emit_label (naked_return_label
);
5548 /* @@@ This is a kludge. We want to ensure that instructions that
5549 may trap are not moved into the epilogue by scheduling, because
5550 we don't always emit unwind information for the epilogue. */
5551 if (cfun
->can_throw_non_call_exceptions
5552 && targetm_common
.except_unwind_info (&global_options
) != UI_SJLJ
)
5553 emit_insn (gen_blockage ());
5555 /* If stack protection is enabled for this function, check the guard. */
5556 if (crtl
->stack_protect_guard
5557 && targetm
.stack_protect_runtime_enabled_p ()
5558 && naked_return_label
)
5559 stack_protect_epilogue ();
5561 /* If we had calls to alloca, and this machine needs
5562 an accurate stack pointer to exit the function,
5563 insert some code to save and restore the stack pointer. */
5564 if (! EXIT_IGNORE_STACK
5565 && cfun
->calls_alloca
)
5570 emit_stack_save (SAVE_FUNCTION
, &tem
);
5571 rtx_insn
*seq
= get_insns ();
5573 emit_insn_before (seq
, parm_birth_insn
);
5575 emit_stack_restore (SAVE_FUNCTION
, tem
);
5578 /* ??? This should no longer be necessary since stupid is no longer with
5579 us, but there are some parts of the compiler (eg reload_combine, and
5580 sh mach_dep_reorg) that still try and compute their own lifetime info
5581 instead of using the general framework. */
5582 use_return_register ();
5586 get_arg_pointer_save_area (void)
5588 rtx ret
= arg_pointer_save_area
;
5592 ret
= assign_stack_local (Pmode
, GET_MODE_SIZE (Pmode
), 0);
5593 arg_pointer_save_area
= ret
;
5596 if (! crtl
->arg_pointer_save_area_init
)
5598 /* Save the arg pointer at the beginning of the function. The
5599 generated stack slot may not be a valid memory address, so we
5600 have to check it and fix it if necessary. */
5602 emit_move_insn (validize_mem (copy_rtx (ret
)),
5603 crtl
->args
.internal_arg_pointer
);
5604 rtx_insn
*seq
= get_insns ();
5607 push_topmost_sequence ();
5608 emit_insn_after (seq
, entry_of_function ());
5609 pop_topmost_sequence ();
5611 crtl
->arg_pointer_save_area_init
= true;
5618 /* If debugging dumps are requested, dump information about how the
5619 target handled -fstack-check=clash for the prologue.
5621 PROBES describes what if any probes were emitted.
5623 RESIDUALS indicates if the prologue had any residual allocation
5624 (i.e. total allocation was not a multiple of PROBE_INTERVAL). */
5627 dump_stack_clash_frame_info (enum stack_clash_probes probes
, bool residuals
)
5634 case NO_PROBE_NO_FRAME
:
5636 "Stack clash no probe no stack adjustment in prologue.\n");
5638 case NO_PROBE_SMALL_FRAME
:
5640 "Stack clash no probe small stack adjustment in prologue.\n");
5643 fprintf (dump_file
, "Stack clash inline probes in prologue.\n");
5646 fprintf (dump_file
, "Stack clash probe loop in prologue.\n");
5651 fprintf (dump_file
, "Stack clash residual allocation in prologue.\n");
5653 fprintf (dump_file
, "Stack clash no residual allocation in prologue.\n");
5655 if (frame_pointer_needed
)
5656 fprintf (dump_file
, "Stack clash frame pointer needed.\n");
5658 fprintf (dump_file
, "Stack clash no frame pointer needed.\n");
5660 if (TREE_THIS_VOLATILE (cfun
->decl
))
5662 "Stack clash noreturn prologue, assuming no implicit"
5663 " probes in caller.\n");
5666 "Stack clash not noreturn prologue.\n");
5669 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
5670 for the first time. */
5673 record_insns (rtx_insn
*insns
, rtx end
, hash_table
<insn_cache_hasher
> **hashp
)
5676 hash_table
<insn_cache_hasher
> *hash
= *hashp
;
5679 *hashp
= hash
= hash_table
<insn_cache_hasher
>::create_ggc (17);
5681 for (tmp
= insns
; tmp
!= end
; tmp
= NEXT_INSN (tmp
))
5683 rtx
*slot
= hash
->find_slot (tmp
, INSERT
);
5684 gcc_assert (*slot
== NULL
);
5689 /* INSN has been duplicated or replaced by as COPY, perhaps by duplicating a
5690 basic block, splitting or peepholes. If INSN is a prologue or epilogue
5691 insn, then record COPY as well. */
5694 maybe_copy_prologue_epilogue_insn (rtx insn
, rtx copy
)
5696 hash_table
<insn_cache_hasher
> *hash
;
5699 hash
= epilogue_insn_hash
;
5700 if (!hash
|| !hash
->find (insn
))
5702 hash
= prologue_insn_hash
;
5703 if (!hash
|| !hash
->find (insn
))
5707 slot
= hash
->find_slot (copy
, INSERT
);
5708 gcc_assert (*slot
== NULL
);
5712 /* Determine if any INSNs in HASH are, or are part of, INSN. Because
5713 we can be running after reorg, SEQUENCE rtl is possible. */
5716 contains (const rtx_insn
*insn
, hash_table
<insn_cache_hasher
> *hash
)
5721 if (NONJUMP_INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
5723 rtx_sequence
*seq
= as_a
<rtx_sequence
*> (PATTERN (insn
));
5725 for (i
= seq
->len () - 1; i
>= 0; i
--)
5726 if (hash
->find (seq
->element (i
)))
5731 return hash
->find (const_cast<rtx_insn
*> (insn
)) != NULL
;
5735 prologue_contains (const rtx_insn
*insn
)
5737 return contains (insn
, prologue_insn_hash
);
5741 epilogue_contains (const rtx_insn
*insn
)
5743 return contains (insn
, epilogue_insn_hash
);
5747 prologue_epilogue_contains (const rtx_insn
*insn
)
5749 if (contains (insn
, prologue_insn_hash
))
5751 if (contains (insn
, epilogue_insn_hash
))
5757 record_prologue_seq (rtx_insn
*seq
)
5759 record_insns (seq
, NULL
, &prologue_insn_hash
);
5763 record_epilogue_seq (rtx_insn
*seq
)
5765 record_insns (seq
, NULL
, &epilogue_insn_hash
);
5768 /* Set JUMP_LABEL for a return insn. */
5771 set_return_jump_label (rtx_insn
*returnjump
)
5773 rtx pat
= PATTERN (returnjump
);
5774 if (GET_CODE (pat
) == PARALLEL
)
5775 pat
= XVECEXP (pat
, 0, 0);
5776 if (ANY_RETURN_P (pat
))
5777 JUMP_LABEL (returnjump
) = pat
;
5779 JUMP_LABEL (returnjump
) = ret_rtx
;
5782 /* Return a sequence to be used as the split prologue for the current
5783 function, or NULL. */
5786 make_split_prologue_seq (void)
5788 if (!flag_split_stack
5789 || lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (cfun
->decl
)))
5793 emit_insn (targetm
.gen_split_stack_prologue ());
5794 rtx_insn
*seq
= get_insns ();
5797 record_insns (seq
, NULL
, &prologue_insn_hash
);
5798 set_insn_locations (seq
, prologue_location
);
5803 /* Return a sequence to be used as the prologue for the current function,
5807 make_prologue_seq (void)
5809 if (!targetm
.have_prologue ())
5813 rtx_insn
*seq
= targetm
.gen_prologue ();
5816 /* Insert an explicit USE for the frame pointer
5817 if the profiling is on and the frame pointer is required. */
5818 if (crtl
->profile
&& frame_pointer_needed
)
5819 emit_use (hard_frame_pointer_rtx
);
5821 /* Retain a map of the prologue insns. */
5822 record_insns (seq
, NULL
, &prologue_insn_hash
);
5823 emit_note (NOTE_INSN_PROLOGUE_END
);
5825 /* Ensure that instructions are not moved into the prologue when
5826 profiling is on. The call to the profiling routine can be
5827 emitted within the live range of a call-clobbered register. */
5828 if (!targetm
.profile_before_prologue () && crtl
->profile
)
5829 emit_insn (gen_blockage ());
5833 set_insn_locations (seq
, prologue_location
);
5838 /* Emit a sequence of insns to zero the call-used registers before RET
5839 according to ZERO_REGS_TYPE. */
5842 gen_call_used_regs_seq (rtx_insn
*ret
, unsigned int zero_regs_type
)
5844 bool only_gpr
= true;
5845 bool only_used
= true;
5846 bool only_arg
= true;
5848 /* No need to zero call-used-regs in main (). */
5849 if (MAIN_NAME_P (DECL_NAME (current_function_decl
)))
5852 /* No need to zero call-used-regs if __builtin_eh_return is called
5853 since it isn't a normal function return. */
5854 if (crtl
->calls_eh_return
)
5857 /* If only_gpr is true, only zero call-used registers that are
5858 general-purpose registers; if only_used is true, only zero
5859 call-used registers that are used in the current function;
5860 if only_arg is true, only zero call-used registers that pass
5861 parameters defined by the flatform's calling conversion. */
5863 using namespace zero_regs_flags
;
5865 only_gpr
= zero_regs_type
& ONLY_GPR
;
5866 only_used
= zero_regs_type
& ONLY_USED
;
5867 only_arg
= zero_regs_type
& ONLY_ARG
;
5869 if ((zero_regs_type
& LEAFY_MODE
) && leaf_function_p ())
5872 /* For each of the hard registers, we should zero it if:
5873 1. it is a call-used register;
5874 and 2. it is not a fixed register;
5875 and 3. it is not live at the return of the routine;
5876 and 4. it is general registor if only_gpr is true;
5877 and 5. it is used in the routine if only_used is true;
5878 and 6. it is a register that passes parameter if only_arg is true. */
5880 /* First, prepare the data flow information. */
5881 basic_block bb
= BLOCK_FOR_INSN (ret
);
5882 auto_bitmap live_out
;
5883 bitmap_copy (live_out
, df_get_live_out (bb
));
5884 df_simulate_initialize_backwards (bb
, live_out
);
5885 df_simulate_one_insn_backwards (bb
, ret
, live_out
);
5887 HARD_REG_SET selected_hardregs
;
5888 HARD_REG_SET all_call_used_regs
;
5889 CLEAR_HARD_REG_SET (selected_hardregs
);
5890 CLEAR_HARD_REG_SET (all_call_used_regs
);
5891 for (unsigned int regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
5893 if (!crtl
->abi
->clobbers_full_reg_p (regno
))
5895 if (fixed_regs
[regno
])
5897 if (REGNO_REG_SET_P (live_out
, regno
))
5899 #ifdef LEAF_REG_REMAP
5900 if (crtl
->uses_only_leaf_regs
&& LEAF_REG_REMAP (regno
) < 0)
5903 /* This is a call used register that is dead at return. */
5904 SET_HARD_REG_BIT (all_call_used_regs
, regno
);
5907 && !TEST_HARD_REG_BIT (reg_class_contents
[GENERAL_REGS
], regno
))
5909 if (only_used
&& !df_regs_ever_live_p (regno
))
5911 if (only_arg
&& !FUNCTION_ARG_REGNO_P (regno
))
5914 /* Now this is a register that we might want to zero. */
5915 SET_HARD_REG_BIT (selected_hardregs
, regno
);
5918 if (hard_reg_set_empty_p (selected_hardregs
))
5921 /* Now that we have a hard register set that needs to be zeroed, pass it to
5922 target to generate zeroing sequence. */
5923 HARD_REG_SET zeroed_hardregs
;
5925 zeroed_hardregs
= targetm
.calls
.zero_call_used_regs (selected_hardregs
);
5927 /* For most targets, the returned set of registers is a subset of
5928 selected_hardregs, however, for some of the targets (for example MIPS),
5929 clearing some registers that are in selected_hardregs requires clearing
5930 other call used registers that are not in the selected_hardregs, under
5931 such situation, the returned set of registers must be a subset of
5932 all call used registers. */
5933 gcc_assert (hard_reg_set_subset_p (zeroed_hardregs
, all_call_used_regs
));
5935 rtx_insn
*seq
= get_insns ();
5939 /* Emit the memory blockage and register clobber asm volatile before
5940 the whole sequence. */
5942 expand_asm_reg_clobber_mem_blockage (zeroed_hardregs
);
5943 rtx_insn
*seq_barrier
= get_insns ();
5946 emit_insn_before (seq_barrier
, ret
);
5947 emit_insn_before (seq
, ret
);
5949 /* Update the data flow information. */
5950 crtl
->must_be_zero_on_return
|= zeroed_hardregs
;
5951 df_update_exit_block_uses ();
5956 /* Return a sequence to be used as the epilogue for the current function,
5960 make_epilogue_seq (void)
5962 if (!targetm
.have_epilogue ())
5966 emit_note (NOTE_INSN_EPILOGUE_BEG
);
5967 rtx_insn
*seq
= targetm
.gen_epilogue ();
5969 emit_jump_insn (seq
);
5971 /* Retain a map of the epilogue insns. */
5972 record_insns (seq
, NULL
, &epilogue_insn_hash
);
5973 set_insn_locations (seq
, epilogue_location
);
5976 rtx_insn
*returnjump
= get_last_insn ();
5979 if (JUMP_P (returnjump
))
5980 set_return_jump_label (returnjump
);
5986 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5987 this into place with notes indicating where the prologue ends and where
5988 the epilogue begins. Update the basic block information when possible.
5990 Notes on epilogue placement:
5991 There are several kinds of edges to the exit block:
5992 * a single fallthru edge from LAST_BB
5993 * possibly, edges from blocks containing sibcalls
5994 * possibly, fake edges from infinite loops
5996 The epilogue is always emitted on the fallthru edge from the last basic
5997 block in the function, LAST_BB, into the exit block.
5999 If LAST_BB is empty except for a label, it is the target of every
6000 other basic block in the function that ends in a return. If a
6001 target has a return or simple_return pattern (possibly with
6002 conditional variants), these basic blocks can be changed so that a
6003 return insn is emitted into them, and their target is adjusted to
6004 the real exit block.
6006 Notes on shrink wrapping: We implement a fairly conservative
6007 version of shrink-wrapping rather than the textbook one. We only
6008 generate a single prologue and a single epilogue. This is
6009 sufficient to catch a number of interesting cases involving early
6012 First, we identify the blocks that require the prologue to occur before
6013 them. These are the ones that modify a call-saved register, or reference
6014 any of the stack or frame pointer registers. To simplify things, we then
6015 mark everything reachable from these blocks as also requiring a prologue.
6016 This takes care of loops automatically, and avoids the need to examine
6017 whether MEMs reference the frame, since it is sufficient to check for
6018 occurrences of the stack or frame pointer.
6020 We then compute the set of blocks for which the need for a prologue
6021 is anticipatable (borrowing terminology from the shrink-wrapping
6022 description in Muchnick's book). These are the blocks which either
6023 require a prologue themselves, or those that have only successors
6024 where the prologue is anticipatable. The prologue needs to be
6025 inserted on all edges from BB1->BB2 where BB2 is in ANTIC and BB1
6026 is not. For the moment, we ensure that only one such edge exists.
6028 The epilogue is placed as described above, but we make a
6029 distinction between inserting return and simple_return patterns
6030 when modifying other blocks that end in a return. Blocks that end
6031 in a sibcall omit the sibcall_epilogue if the block is not in
6035 thread_prologue_and_epilogue_insns (void)
6039 /* Can't deal with multiple successors of the entry block at the
6040 moment. Function should always have at least one entry
6042 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR_FOR_FN (cfun
)));
6044 edge entry_edge
= single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun
));
6045 edge orig_entry_edge
= entry_edge
;
6047 rtx_insn
*split_prologue_seq
= make_split_prologue_seq ();
6048 rtx_insn
*prologue_seq
= make_prologue_seq ();
6049 rtx_insn
*epilogue_seq
= make_epilogue_seq ();
6051 /* Try to perform a kind of shrink-wrapping, making sure the
6052 prologue/epilogue is emitted only around those parts of the
6053 function that require it. */
6054 try_shrink_wrapping (&entry_edge
, prologue_seq
);
6056 /* If the target can handle splitting the prologue/epilogue into separate
6057 components, try to shrink-wrap these components separately. */
6058 try_shrink_wrapping_separate (entry_edge
->dest
);
6060 /* If that did anything for any component we now need the generate the
6061 "main" prologue again. Because some targets require some of these
6062 to be called in a specific order (i386 requires the split prologue
6063 to be first, for example), we create all three sequences again here.
6064 If this does not work for some target, that target should not enable
6065 separate shrink-wrapping. */
6066 if (crtl
->shrink_wrapped_separate
)
6068 split_prologue_seq
= make_split_prologue_seq ();
6069 prologue_seq
= make_prologue_seq ();
6070 epilogue_seq
= make_epilogue_seq ();
6073 rtl_profile_for_bb (EXIT_BLOCK_PTR_FOR_FN (cfun
));
6075 /* A small fib -- epilogue is not yet completed, but we wish to re-use
6076 this marker for the splits of EH_RETURN patterns, and nothing else
6077 uses the flag in the meantime. */
6078 epilogue_completed
= 1;
6080 /* Find non-fallthru edges that end with EH_RETURN instructions. On
6081 some targets, these get split to a special version of the epilogue
6082 code. In order to be able to properly annotate these with unwind
6083 info, try to split them now. If we get a valid split, drop an
6084 EPILOGUE_BEG note and mark the insns as epilogue insns. */
6087 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR_FOR_FN (cfun
)->preds
)
6089 rtx_insn
*prev
, *last
, *trial
;
6091 if (e
->flags
& EDGE_FALLTHRU
)
6093 last
= BB_END (e
->src
);
6094 if (!eh_returnjump_p (last
))
6097 prev
= PREV_INSN (last
);
6098 trial
= try_split (PATTERN (last
), last
, 1);
6102 record_insns (NEXT_INSN (prev
), NEXT_INSN (trial
), &epilogue_insn_hash
);
6103 emit_note_after (NOTE_INSN_EPILOGUE_BEG
, prev
);
6106 edge exit_fallthru_edge
= find_fallthru_edge (EXIT_BLOCK_PTR_FOR_FN (cfun
)->preds
);
6108 if (exit_fallthru_edge
)
6112 insert_insn_on_edge (epilogue_seq
, exit_fallthru_edge
);
6113 commit_edge_insertions ();
6115 /* The epilogue insns we inserted may cause the exit edge to no longer
6117 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR_FOR_FN (cfun
)->preds
)
6119 if (((e
->flags
& EDGE_FALLTHRU
) != 0)
6120 && returnjump_p (BB_END (e
->src
)))
6121 e
->flags
&= ~EDGE_FALLTHRU
;
6124 else if (next_active_insn (BB_END (exit_fallthru_edge
->src
)))
6126 /* We have a fall-through edge to the exit block, the source is not
6127 at the end of the function, and there will be an assembler epilogue
6128 at the end of the function.
6129 We can't use force_nonfallthru here, because that would try to
6130 use return. Inserting a jump 'by hand' is extremely messy, so
6131 we take advantage of cfg_layout_finalize using
6132 fixup_fallthru_exit_predecessor. */
6133 cfg_layout_initialize (0);
6135 FOR_EACH_BB_FN (cur_bb
, cfun
)
6136 if (cur_bb
->index
>= NUM_FIXED_BLOCKS
6137 && cur_bb
->next_bb
->index
>= NUM_FIXED_BLOCKS
)
6138 cur_bb
->aux
= cur_bb
->next_bb
;
6139 cfg_layout_finalize ();
6143 /* Insert the prologue. */
6145 rtl_profile_for_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun
));
6147 if (split_prologue_seq
|| prologue_seq
)
6149 rtx_insn
*split_prologue_insn
= split_prologue_seq
;
6150 if (split_prologue_seq
)
6152 while (split_prologue_insn
&& !NONDEBUG_INSN_P (split_prologue_insn
))
6153 split_prologue_insn
= NEXT_INSN (split_prologue_insn
);
6154 insert_insn_on_edge (split_prologue_seq
, orig_entry_edge
);
6157 rtx_insn
*prologue_insn
= prologue_seq
;
6160 while (prologue_insn
&& !NONDEBUG_INSN_P (prologue_insn
))
6161 prologue_insn
= NEXT_INSN (prologue_insn
);
6162 insert_insn_on_edge (prologue_seq
, entry_edge
);
6165 commit_edge_insertions ();
6167 /* Look for basic blocks within the prologue insns. */
6168 if (split_prologue_insn
6169 && BLOCK_FOR_INSN (split_prologue_insn
) == NULL
)
6170 split_prologue_insn
= NULL
;
6172 && BLOCK_FOR_INSN (prologue_insn
) == NULL
)
6173 prologue_insn
= NULL
;
6174 if (split_prologue_insn
|| prologue_insn
)
6176 auto_sbitmap
blocks (last_basic_block_for_fn (cfun
));
6177 bitmap_clear (blocks
);
6178 if (split_prologue_insn
)
6179 bitmap_set_bit (blocks
,
6180 BLOCK_FOR_INSN (split_prologue_insn
)->index
);
6182 bitmap_set_bit (blocks
, BLOCK_FOR_INSN (prologue_insn
)->index
);
6183 find_many_sub_basic_blocks (blocks
);
6187 default_rtl_profile ();
6189 /* Emit sibling epilogues before any sibling call sites. */
6190 for (ei
= ei_start (EXIT_BLOCK_PTR_FOR_FN (cfun
)->preds
);
6191 (e
= ei_safe_edge (ei
));
6194 /* Skip those already handled, the ones that run without prologue. */
6195 if (e
->flags
& EDGE_IGNORE
)
6197 e
->flags
&= ~EDGE_IGNORE
;
6201 rtx_insn
*insn
= BB_END (e
->src
);
6203 if (!(CALL_P (insn
) && SIBLING_CALL_P (insn
)))
6206 if (rtx_insn
*ep_seq
= targetm
.gen_sibcall_epilogue ())
6209 emit_note (NOTE_INSN_EPILOGUE_BEG
);
6211 rtx_insn
*seq
= get_insns ();
6214 /* Retain a map of the epilogue insns. Used in life analysis to
6215 avoid getting rid of sibcall epilogue insns. Do this before we
6216 actually emit the sequence. */
6217 record_insns (seq
, NULL
, &epilogue_insn_hash
);
6218 set_insn_locations (seq
, epilogue_location
);
6220 emit_insn_before (seq
, insn
);
6226 rtx_insn
*insn
, *next
;
6228 /* Similarly, move any line notes that appear after the epilogue.
6229 There is no need, however, to be quite so anal about the existence
6230 of such a note. Also possibly move
6231 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
6233 for (insn
= epilogue_seq
; insn
; insn
= next
)
6235 next
= NEXT_INSN (insn
);
6237 && (NOTE_KIND (insn
) == NOTE_INSN_FUNCTION_BEG
))
6238 reorder_insns (insn
, insn
, PREV_INSN (epilogue_seq
));
6242 /* Threading the prologue and epilogue changes the artificial refs in the
6243 entry and exit blocks, and may invalidate DF info for tail calls. */
6245 || flag_optimize_sibling_calls
6246 || flag_ipa_icf_functions
6248 df_update_entry_exit_and_calls ();
6251 df_update_entry_block_defs ();
6252 df_update_exit_block_uses ();
6256 /* Reposition the prologue-end and epilogue-begin notes after
6257 instruction scheduling. */
6260 reposition_prologue_and_epilogue_notes (void)
6262 if (!targetm
.have_prologue ()
6263 && !targetm
.have_epilogue ()
6264 && !targetm
.have_sibcall_epilogue ())
6267 /* Since the hash table is created on demand, the fact that it is
6268 non-null is a signal that it is non-empty. */
6269 if (prologue_insn_hash
!= NULL
)
6271 size_t len
= prologue_insn_hash
->elements ();
6272 rtx_insn
*insn
, *last
= NULL
, *note
= NULL
;
6274 /* Scan from the beginning until we reach the last prologue insn. */
6275 /* ??? While we do have the CFG intact, there are two problems:
6276 (1) The prologue can contain loops (typically probing the stack),
6277 which means that the end of the prologue isn't in the first bb.
6278 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
6279 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
6283 if (NOTE_KIND (insn
) == NOTE_INSN_PROLOGUE_END
)
6286 else if (contains (insn
, prologue_insn_hash
))
6298 /* Scan forward looking for the PROLOGUE_END note. It should
6299 be right at the beginning of the block, possibly with other
6300 insn notes that got moved there. */
6301 for (note
= NEXT_INSN (last
); ; note
= NEXT_INSN (note
))
6304 && NOTE_KIND (note
) == NOTE_INSN_PROLOGUE_END
)
6309 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
6311 last
= NEXT_INSN (last
);
6312 reorder_insns (note
, note
, last
);
6316 if (epilogue_insn_hash
!= NULL
)
6321 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR_FOR_FN (cfun
)->preds
)
6323 rtx_insn
*insn
, *first
= NULL
, *note
= NULL
;
6324 basic_block bb
= e
->src
;
6326 /* Scan from the beginning until we reach the first epilogue insn. */
6327 FOR_BB_INSNS (bb
, insn
)
6331 if (NOTE_KIND (insn
) == NOTE_INSN_EPILOGUE_BEG
)
6338 else if (first
== NULL
&& contains (insn
, epilogue_insn_hash
))
6348 /* If the function has a single basic block, and no real
6349 epilogue insns (e.g. sibcall with no cleanup), the
6350 epilogue note can get scheduled before the prologue
6351 note. If we have frame related prologue insns, having
6352 them scanned during the epilogue will result in a crash.
6353 In this case re-order the epilogue note to just before
6354 the last insn in the block. */
6356 first
= BB_END (bb
);
6358 if (PREV_INSN (first
) != note
)
6359 reorder_insns (note
, note
, PREV_INSN (first
));
6365 /* Returns the name of function declared by FNDECL. */
6367 fndecl_name (tree fndecl
)
6371 return lang_hooks
.decl_printable_name (fndecl
, 1);
6374 /* Returns the name of function FN. */
6376 function_name (struct function
*fn
)
6378 tree fndecl
= (fn
== NULL
) ? NULL
: fn
->decl
;
6379 return fndecl_name (fndecl
);
6382 /* Returns the name of the current function. */
6384 current_function_name (void)
6386 return function_name (cfun
);
6391 rest_of_handle_check_leaf_regs (void)
6393 #ifdef LEAF_REGISTERS
6394 crtl
->uses_only_leaf_regs
6395 = optimize
> 0 && only_leaf_regs_used () && leaf_function_p ();
6399 /* Insert a TYPE into the used types hash table of CFUN. */
6402 used_types_insert_helper (tree type
, struct function
*func
)
6404 if (type
!= NULL
&& func
!= NULL
)
6406 if (func
->used_types_hash
== NULL
)
6407 func
->used_types_hash
= hash_set
<tree
>::create_ggc (37);
6409 func
->used_types_hash
->add (type
);
6413 /* Given a type, insert it into the used hash table in cfun. */
6415 used_types_insert (tree t
)
6417 while (POINTER_TYPE_P (t
) || TREE_CODE (t
) == ARRAY_TYPE
)
6422 if (TREE_CODE (t
) == ERROR_MARK
)
6424 if (TYPE_NAME (t
) == NULL_TREE
6425 || TYPE_NAME (t
) == TYPE_NAME (TYPE_MAIN_VARIANT (t
)))
6426 t
= TYPE_MAIN_VARIANT (t
);
6427 if (debug_info_level
> DINFO_LEVEL_NONE
)
6430 used_types_insert_helper (t
, cfun
);
6433 /* So this might be a type referenced by a global variable.
6434 Record that type so that we can later decide to emit its
6435 debug information. */
6436 vec_safe_push (types_used_by_cur_var_decl
, t
);
6441 /* Helper to Hash a struct types_used_by_vars_entry. */
6444 hash_types_used_by_vars_entry (const struct types_used_by_vars_entry
*entry
)
6446 gcc_assert (entry
&& entry
->var_decl
&& entry
->type
);
6448 return iterative_hash_object (entry
->type
,
6449 iterative_hash_object (entry
->var_decl
, 0));
6452 /* Hash function of the types_used_by_vars_entry hash table. */
6455 used_type_hasher::hash (types_used_by_vars_entry
*entry
)
6457 return hash_types_used_by_vars_entry (entry
);
6460 /*Equality function of the types_used_by_vars_entry hash table. */
6463 used_type_hasher::equal (types_used_by_vars_entry
*e1
,
6464 types_used_by_vars_entry
*e2
)
6466 return (e1
->var_decl
== e2
->var_decl
&& e1
->type
== e2
->type
);
6469 /* Inserts an entry into the types_used_by_vars_hash hash table. */
6472 types_used_by_var_decl_insert (tree type
, tree var_decl
)
6474 if (type
!= NULL
&& var_decl
!= NULL
)
6476 types_used_by_vars_entry
**slot
;
6477 struct types_used_by_vars_entry e
;
6478 e
.var_decl
= var_decl
;
6480 if (types_used_by_vars_hash
== NULL
)
6481 types_used_by_vars_hash
6482 = hash_table
<used_type_hasher
>::create_ggc (37);
6484 slot
= types_used_by_vars_hash
->find_slot (&e
, INSERT
);
6487 struct types_used_by_vars_entry
*entry
;
6488 entry
= ggc_alloc
<types_used_by_vars_entry
> ();
6490 entry
->var_decl
= var_decl
;
6498 const pass_data pass_data_leaf_regs
=
6500 RTL_PASS
, /* type */
6501 "*leaf_regs", /* name */
6502 OPTGROUP_NONE
, /* optinfo_flags */
6503 TV_NONE
, /* tv_id */
6504 0, /* properties_required */
6505 0, /* properties_provided */
6506 0, /* properties_destroyed */
6507 0, /* todo_flags_start */
6508 0, /* todo_flags_finish */
6511 class pass_leaf_regs
: public rtl_opt_pass
6514 pass_leaf_regs (gcc::context
*ctxt
)
6515 : rtl_opt_pass (pass_data_leaf_regs
, ctxt
)
6518 /* opt_pass methods: */
6519 unsigned int execute (function
*) final override
6521 rest_of_handle_check_leaf_regs ();
6525 }; // class pass_leaf_regs
6530 make_pass_leaf_regs (gcc::context
*ctxt
)
6532 return new pass_leaf_regs (ctxt
);
6536 rest_of_handle_thread_prologue_and_epilogue (function
*fun
)
6538 /* prepare_shrink_wrap is sensitive to the block structure of the control
6539 flow graph, so clean it up first. */
6543 /* On some machines, the prologue and epilogue code, or parts thereof,
6544 can be represented as RTL. Doing so lets us schedule insns between
6545 it and the rest of the code and also allows delayed branch
6546 scheduling to operate in the epilogue. */
6547 thread_prologue_and_epilogue_insns ();
6549 /* Some non-cold blocks may now be only reachable from cold blocks.
6551 fixup_partitions ();
6553 /* After prologue and epilogue generation, the judgement on whether
6554 one memory access onto stack frame may trap or not could change,
6555 since we get more exact stack information by now. So try to
6556 remove any EH edges here, see PR90259. */
6557 if (fun
->can_throw_non_call_exceptions
)
6558 purge_all_dead_edges ();
6560 /* Shrink-wrapping can result in unreachable edges in the epilogue,
6562 cleanup_cfg (optimize
? CLEANUP_EXPENSIVE
: 0);
6564 /* The stack usage info is finalized during prologue expansion. */
6565 if (flag_stack_usage_info
|| flag_callgraph_info
)
6566 output_stack_usage ();
6569 /* Record a final call to CALLEE at LOCATION. */
6572 record_final_call (tree callee
, location_t location
)
6574 struct callinfo_callee datum
= { location
, callee
};
6575 vec_safe_push (cfun
->su
->callees
, datum
);
6578 /* Record a dynamic allocation made for DECL_OR_EXP. */
6581 record_dynamic_alloc (tree decl_or_exp
)
6583 struct callinfo_dalloc datum
;
6585 if (DECL_P (decl_or_exp
))
6587 datum
.location
= DECL_SOURCE_LOCATION (decl_or_exp
);
6588 const char *name
= lang_hooks
.decl_printable_name (decl_or_exp
, 2);
6589 const char *dot
= strrchr (name
, '.');
6592 datum
.name
= ggc_strdup (name
);
6596 datum
.location
= EXPR_LOCATION (decl_or_exp
);
6600 vec_safe_push (cfun
->su
->dallocs
, datum
);
6605 const pass_data pass_data_thread_prologue_and_epilogue
=
6607 RTL_PASS
, /* type */
6608 "pro_and_epilogue", /* name */
6609 OPTGROUP_NONE
, /* optinfo_flags */
6610 TV_THREAD_PROLOGUE_AND_EPILOGUE
, /* tv_id */
6611 0, /* properties_required */
6612 0, /* properties_provided */
6613 0, /* properties_destroyed */
6614 0, /* todo_flags_start */
6615 ( TODO_df_verify
| TODO_df_finish
), /* todo_flags_finish */
6618 class pass_thread_prologue_and_epilogue
: public rtl_opt_pass
6621 pass_thread_prologue_and_epilogue (gcc::context
*ctxt
)
6622 : rtl_opt_pass (pass_data_thread_prologue_and_epilogue
, ctxt
)
6625 /* opt_pass methods: */
6626 unsigned int execute (function
* fun
) final override
6628 rest_of_handle_thread_prologue_and_epilogue (fun
);
6632 }; // class pass_thread_prologue_and_epilogue
6637 make_pass_thread_prologue_and_epilogue (gcc::context
*ctxt
)
6639 return new pass_thread_prologue_and_epilogue (ctxt
);
6644 const pass_data pass_data_zero_call_used_regs
=
6646 RTL_PASS
, /* type */
6647 "zero_call_used_regs", /* name */
6648 OPTGROUP_NONE
, /* optinfo_flags */
6649 TV_NONE
, /* tv_id */
6650 0, /* properties_required */
6651 0, /* properties_provided */
6652 0, /* properties_destroyed */
6653 0, /* todo_flags_start */
6654 0, /* todo_flags_finish */
6657 class pass_zero_call_used_regs
: public rtl_opt_pass
6660 pass_zero_call_used_regs (gcc::context
*ctxt
)
6661 : rtl_opt_pass (pass_data_zero_call_used_regs
, ctxt
)
6664 /* opt_pass methods: */
6665 unsigned int execute (function
*) final override
;
6667 }; // class pass_zero_call_used_regs
6670 pass_zero_call_used_regs::execute (function
*fun
)
6672 using namespace zero_regs_flags
;
6673 unsigned int zero_regs_type
= UNSET
;
6675 tree attr_zero_regs
= lookup_attribute ("zero_call_used_regs",
6676 DECL_ATTRIBUTES (fun
->decl
));
6678 /* Get the type of zero_call_used_regs from function attribute.
6679 We have filtered out invalid attribute values already at this point. */
6682 /* The TREE_VALUE of an attribute is a TREE_LIST whose TREE_VALUE
6683 is the attribute argument's value. */
6684 attr_zero_regs
= TREE_VALUE (attr_zero_regs
);
6685 gcc_assert (TREE_CODE (attr_zero_regs
) == TREE_LIST
);
6686 attr_zero_regs
= TREE_VALUE (attr_zero_regs
);
6687 gcc_assert (TREE_CODE (attr_zero_regs
) == STRING_CST
);
6689 for (unsigned int i
= 0; zero_call_used_regs_opts
[i
].name
!= NULL
; ++i
)
6690 if (strcmp (TREE_STRING_POINTER (attr_zero_regs
),
6691 zero_call_used_regs_opts
[i
].name
) == 0)
6693 zero_regs_type
= zero_call_used_regs_opts
[i
].flag
;
6698 if (!zero_regs_type
)
6699 zero_regs_type
= flag_zero_call_used_regs
;
6701 /* No need to zero call-used-regs when no user request is present. */
6702 if (!(zero_regs_type
& ENABLED
))
6708 /* This pass needs data flow information. */
6711 /* Iterate over the function's return instructions and insert any
6712 register zeroing required by the -fzero-call-used-regs command-line
6713 option or the "zero_call_used_regs" function attribute. */
6714 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR_FOR_FN (cfun
)->preds
)
6716 rtx_insn
*insn
= BB_END (e
->src
);
6717 if (JUMP_P (insn
) && ANY_RETURN_P (JUMP_LABEL (insn
)))
6718 gen_call_used_regs_seq (insn
, zero_regs_type
);
6727 make_pass_zero_call_used_regs (gcc::context
*ctxt
)
6729 return new pass_zero_call_used_regs (ctxt
);
6732 /* If CONSTRAINT is a matching constraint, then return its number.
6733 Otherwise, return -1. */
6736 matching_constraint_num (const char *constraint
)
6738 if (*constraint
== '%')
6741 if (IN_RANGE (*constraint
, '0', '9'))
6742 return strtoul (constraint
, NULL
, 10);
6747 /* This mini-pass fixes fall-out from SSA in asm statements that have
6748 in-out constraints. Say you start with
6751 asm ("": "+mr" (inout));
6754 which is transformed very early to use explicit output and match operands:
6757 asm ("": "=mr" (inout) : "0" (inout));
6760 Or, after SSA and copyprop,
6762 asm ("": "=mr" (inout_2) : "0" (inout_1));
6765 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
6766 they represent two separate values, so they will get different pseudo
6767 registers during expansion. Then, since the two operands need to match
6768 per the constraints, but use different pseudo registers, reload can
6769 only register a reload for these operands. But reloads can only be
6770 satisfied by hardregs, not by memory, so we need a register for this
6771 reload, just because we are presented with non-matching operands.
6772 So, even though we allow memory for this operand, no memory can be
6773 used for it, just because the two operands don't match. This can
6774 cause reload failures on register-starved targets.
6776 So it's a symptom of reload not being able to use memory for reloads
6777 or, alternatively it's also a symptom of both operands not coming into
6778 reload as matching (in which case the pseudo could go to memory just
6779 fine, as the alternative allows it, and no reload would be necessary).
6780 We fix the latter problem here, by transforming
6782 asm ("": "=mr" (inout_2) : "0" (inout_1));
6787 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
6790 match_asm_constraints_1 (rtx_insn
*insn
, rtx
*p_sets
, int noutputs
)
6793 bool changed
= false;
6794 rtx op
= SET_SRC (p_sets
[0]);
6795 int ninputs
= ASM_OPERANDS_INPUT_LENGTH (op
);
6796 rtvec inputs
= ASM_OPERANDS_INPUT_VEC (op
);
6797 bool *output_matched
= XALLOCAVEC (bool, noutputs
);
6799 memset (output_matched
, 0, noutputs
* sizeof (bool));
6800 for (i
= 0; i
< ninputs
; i
++)
6804 const char *constraint
= ASM_OPERANDS_INPUT_CONSTRAINT (op
, i
);
6807 match
= matching_constraint_num (constraint
);
6811 gcc_assert (match
< noutputs
);
6812 output
= SET_DEST (p_sets
[match
]);
6813 input
= RTVEC_ELT (inputs
, i
);
6814 /* Only do the transformation for pseudos. */
6815 if (! REG_P (output
)
6816 || rtx_equal_p (output
, input
)
6817 || !(REG_P (input
) || SUBREG_P (input
)
6818 || MEM_P (input
) || CONSTANT_P (input
))
6819 || !general_operand (input
, GET_MODE (output
)))
6822 /* We can't do anything if the output is also used as input,
6823 as we're going to overwrite it. */
6824 for (j
= 0; j
< ninputs
; j
++)
6825 if (reg_overlap_mentioned_p (output
, RTVEC_ELT (inputs
, j
)))
6830 /* Avoid changing the same input several times. For
6831 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
6832 only change it once (to out1), rather than changing it
6833 first to out1 and afterwards to out2. */
6836 for (j
= 0; j
< noutputs
; j
++)
6837 if (output_matched
[j
] && input
== SET_DEST (p_sets
[j
]))
6842 output_matched
[match
] = true;
6845 emit_move_insn (output
, copy_rtx (input
));
6846 insns
= get_insns ();
6848 emit_insn_before (insns
, insn
);
6850 constraint
= ASM_OPERANDS_OUTPUT_CONSTRAINT(SET_SRC(p_sets
[match
]));
6851 bool early_clobber_p
= strchr (constraint
, '&') != NULL
;
6853 /* Now replace all mentions of the input with output. We can't
6854 just replace the occurrence in inputs[i], as the register might
6855 also be used in some other input (or even in an address of an
6856 output), which would mean possibly increasing the number of
6857 inputs by one (namely 'output' in addition), which might pose
6858 a too complicated problem for reload to solve. E.g. this situation:
6860 asm ("" : "=r" (output), "=m" (input) : "0" (input))
6862 Here 'input' is used in two occurrences as input (once for the
6863 input operand, once for the address in the second output operand).
6864 If we would replace only the occurrence of the input operand (to
6865 make the matching) we would be left with this:
6868 asm ("" : "=r" (output), "=m" (input) : "0" (output))
6870 Now we suddenly have two different input values (containing the same
6871 value, but different pseudos) where we formerly had only one.
6872 With more complicated asms this might lead to reload failures
6873 which wouldn't have happen without this pass. So, iterate over
6874 all operands and replace all occurrences of the register used.
6876 However, if one or more of the 'input' uses have a non-matching
6877 constraint and the matched output operand is an early clobber
6878 operand, then do not replace the input operand, since by definition
6879 it conflicts with the output operand and cannot share the same
6880 register. See PR89313 for details. */
6882 for (j
= 0; j
< noutputs
; j
++)
6883 if (!rtx_equal_p (SET_DEST (p_sets
[j
]), input
)
6884 && reg_overlap_mentioned_p (input
, SET_DEST (p_sets
[j
])))
6885 SET_DEST (p_sets
[j
]) = replace_rtx (SET_DEST (p_sets
[j
]),
6887 for (j
= 0; j
< ninputs
; j
++)
6888 if (reg_overlap_mentioned_p (input
, RTVEC_ELT (inputs
, j
)))
6890 if (!early_clobber_p
6891 || match
== matching_constraint_num
6892 (ASM_OPERANDS_INPUT_CONSTRAINT (op
, j
)))
6893 RTVEC_ELT (inputs
, j
) = replace_rtx (RTVEC_ELT (inputs
, j
),
6901 df_insn_rescan (insn
);
6904 /* Add the decl D to the local_decls list of FUN. */
6907 add_local_decl (struct function
*fun
, tree d
)
6909 gcc_assert (VAR_P (d
));
6910 vec_safe_push (fun
->local_decls
, d
);
6915 const pass_data pass_data_match_asm_constraints
=
6917 RTL_PASS
, /* type */
6918 "asmcons", /* name */
6919 OPTGROUP_NONE
, /* optinfo_flags */
6920 TV_NONE
, /* tv_id */
6921 0, /* properties_required */
6922 0, /* properties_provided */
6923 0, /* properties_destroyed */
6924 0, /* todo_flags_start */
6925 0, /* todo_flags_finish */
6928 class pass_match_asm_constraints
: public rtl_opt_pass
6931 pass_match_asm_constraints (gcc::context
*ctxt
)
6932 : rtl_opt_pass (pass_data_match_asm_constraints
, ctxt
)
6935 /* opt_pass methods: */
6936 unsigned int execute (function
*) final override
;
6938 }; // class pass_match_asm_constraints
6941 pass_match_asm_constraints::execute (function
*fun
)
6948 if (!crtl
->has_asm_statement
)
6951 df_set_flags (DF_DEFER_INSN_RESCAN
);
6952 FOR_EACH_BB_FN (bb
, fun
)
6954 FOR_BB_INSNS (bb
, insn
)
6959 pat
= PATTERN (insn
);
6960 if (GET_CODE (pat
) == PARALLEL
)
6961 p_sets
= &XVECEXP (pat
, 0, 0), noutputs
= XVECLEN (pat
, 0);
6962 else if (GET_CODE (pat
) == SET
)
6963 p_sets
= &PATTERN (insn
), noutputs
= 1;
6967 if (GET_CODE (*p_sets
) == SET
6968 && GET_CODE (SET_SRC (*p_sets
)) == ASM_OPERANDS
)
6969 match_asm_constraints_1 (insn
, p_sets
, noutputs
);
6973 return TODO_df_finish
;
6979 make_pass_match_asm_constraints (gcc::context
*ctxt
)
6981 return new pass_match_asm_constraints (ctxt
);
6985 #include "gt-function.h"